code
stringlengths
13
1.2M
order_type
stringclasses
1 value
original_example
dict
step_ids
listlengths
1
5
from flask import request, Flask import ldap3 app = Flask(__name__) @app.route("/normal") def normal(): """ A RemoteFlowSource is used directly as DN and search filter """ unsafe_dc = request.args['dc'] unsafe_filter = request.args['username'] dn = "dc={}".format(unsafe_dc) search_filter = "(user={})".format(unsafe_filter) srv = ldap3.Server('ldap://127.0.0.1') conn = ldap3.Connection(srv, user=dn, auto_bind=True) conn.search(dn, search_filter) @app.route("/direct") def direct(): """ A RemoteFlowSource is used directly as DN and search filter using a oneline call to .search """ unsafe_dc = request.args['dc'] unsafe_filter = request.args['username'] dn = "dc={}".format(unsafe_dc) search_filter = "(user={})".format(unsafe_filter) srv = ldap3.Server('ldap://127.0.0.1') conn = ldap3.Connection(srv, user=dn, auto_bind=True).search( dn, search_filter) # if __name__ == "__main__": # app.run(debug=True)
normal
{ "blob_id": "b51591de921f6e153c1dd478cec7fad42ff4251a", "index": 749, "step-1": "<mask token>\n\n\[email protected]('/direct')\ndef direct():\n \"\"\"\n A RemoteFlowSource is used directly as DN and search filter using a oneline call to .search\n \"\"\"\n unsafe_dc = request.args['dc']\n unsafe_filter = request.args['username']\n dn = 'dc={}'.format(unsafe_dc)\n search_filter = '(user={})'.format(unsafe_filter)\n srv = ldap3.Server('ldap://127.0.0.1')\n conn = ldap3.Connection(srv, user=dn, auto_bind=True).search(dn,\n search_filter)\n", "step-2": "<mask token>\n\n\[email protected]('/normal')\ndef normal():\n \"\"\"\n A RemoteFlowSource is used directly as DN and search filter\n \"\"\"\n unsafe_dc = request.args['dc']\n unsafe_filter = request.args['username']\n dn = 'dc={}'.format(unsafe_dc)\n search_filter = '(user={})'.format(unsafe_filter)\n srv = ldap3.Server('ldap://127.0.0.1')\n conn = ldap3.Connection(srv, user=dn, auto_bind=True)\n conn.search(dn, search_filter)\n\n\[email protected]('/direct')\ndef direct():\n \"\"\"\n A RemoteFlowSource is used directly as DN and search filter using a oneline call to .search\n \"\"\"\n unsafe_dc = request.args['dc']\n unsafe_filter = request.args['username']\n dn = 'dc={}'.format(unsafe_dc)\n search_filter = '(user={})'.format(unsafe_filter)\n srv = ldap3.Server('ldap://127.0.0.1')\n conn = ldap3.Connection(srv, user=dn, auto_bind=True).search(dn,\n search_filter)\n", "step-3": "<mask token>\napp = Flask(__name__)\n\n\[email protected]('/normal')\ndef normal():\n \"\"\"\n A RemoteFlowSource is used directly as DN and search filter\n \"\"\"\n unsafe_dc = request.args['dc']\n unsafe_filter = request.args['username']\n dn = 'dc={}'.format(unsafe_dc)\n search_filter = '(user={})'.format(unsafe_filter)\n srv = ldap3.Server('ldap://127.0.0.1')\n conn = ldap3.Connection(srv, user=dn, auto_bind=True)\n conn.search(dn, search_filter)\n\n\[email protected]('/direct')\ndef direct():\n \"\"\"\n A RemoteFlowSource is used directly as DN and search filter using a oneline call to .search\n \"\"\"\n unsafe_dc = request.args['dc']\n unsafe_filter = request.args['username']\n dn = 'dc={}'.format(unsafe_dc)\n search_filter = '(user={})'.format(unsafe_filter)\n srv = ldap3.Server('ldap://127.0.0.1')\n conn = ldap3.Connection(srv, user=dn, auto_bind=True).search(dn,\n search_filter)\n", "step-4": "from flask import request, Flask\nimport ldap3\napp = Flask(__name__)\n\n\[email protected]('/normal')\ndef normal():\n \"\"\"\n A RemoteFlowSource is used directly as DN and search filter\n \"\"\"\n unsafe_dc = request.args['dc']\n unsafe_filter = request.args['username']\n dn = 'dc={}'.format(unsafe_dc)\n search_filter = '(user={})'.format(unsafe_filter)\n srv = ldap3.Server('ldap://127.0.0.1')\n conn = ldap3.Connection(srv, user=dn, auto_bind=True)\n conn.search(dn, search_filter)\n\n\[email protected]('/direct')\ndef direct():\n \"\"\"\n A RemoteFlowSource is used directly as DN and search filter using a oneline call to .search\n \"\"\"\n unsafe_dc = request.args['dc']\n unsafe_filter = request.args['username']\n dn = 'dc={}'.format(unsafe_dc)\n search_filter = '(user={})'.format(unsafe_filter)\n srv = ldap3.Server('ldap://127.0.0.1')\n conn = ldap3.Connection(srv, user=dn, auto_bind=True).search(dn,\n search_filter)\n", "step-5": "from flask import request, Flask\nimport ldap3\n\napp = Flask(__name__)\n\n\[email protected](\"/normal\")\ndef normal():\n \"\"\"\n A RemoteFlowSource is used directly as DN and search filter\n \"\"\"\n\n unsafe_dc = request.args['dc']\n unsafe_filter = request.args['username']\n\n dn = \"dc={}\".format(unsafe_dc)\n search_filter = \"(user={})\".format(unsafe_filter)\n\n srv = ldap3.Server('ldap://127.0.0.1')\n conn = ldap3.Connection(srv, user=dn, auto_bind=True)\n conn.search(dn, search_filter)\n\n\[email protected](\"/direct\")\ndef direct():\n \"\"\"\n A RemoteFlowSource is used directly as DN and search filter using a oneline call to .search\n \"\"\"\n\n unsafe_dc = request.args['dc']\n unsafe_filter = request.args['username']\n\n dn = \"dc={}\".format(unsafe_dc)\n search_filter = \"(user={})\".format(unsafe_filter)\n\n srv = ldap3.Server('ldap://127.0.0.1')\n conn = ldap3.Connection(srv, user=dn, auto_bind=True).search(\n dn, search_filter)\n\n# if __name__ == \"__main__\":\n# app.run(debug=True)\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
from .. import CURRENT_NAME from ..cmd import call_cmd from .config import Configurator from .config import USER_INI from icemac.install.addressbook._compat import Path import argparse import os import pdb # noqa: T002 import sys def update(stdin=None): """Update the current address book installation.""" curr_path = Path.cwd() / CURRENT_NAME if not curr_path.exists(): print("ERROR: There is no symlink named {!r} in the current" " directory.".format(CURRENT_NAME)) print("This script cannot be called here.") sys.exit(-1) if (curr_path / 'buildout.cfg').exists(): print("ERROR: '{}/buildout.cfg' already exists please (re-) move" " it.".format(CURRENT_NAME)) sys.exit(-2) cwd = os.getcwd() os.chdir(str(curr_path)) # PY2: in PY3 `str` is no longer needed configurator = Configurator( curr_path / USER_INI, install_new_version=False, stdin=stdin) try: configurator() call_cmd('running bin/buildout', '../bin/buildout') if configurator.restart_server == 'yes': call_cmd('Restarting instance', 'bin/svctl', 'restart', 'all') finally: os.chdir(str(cwd)) # PY2: in PY3 `str` is no longer needed print('Done.') def main(args=None): """Entry point for `bin/change-addressbook-config`.""" parser = argparse.ArgumentParser( description='Update the current address book installation.') parser.add_argument( '--debug', action="store_true", help='Enter debugger on errors.') args = parser.parse_args(args) try: update() except Exception: if args.debug: pdb.post_mortem() else: raise
normal
{ "blob_id": "f5274f5d838d484ca0c1cc5a5192a2fd698cf827", "index": 9432, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef update(stdin=None):\n \"\"\"Update the current address book installation.\"\"\"\n curr_path = Path.cwd() / CURRENT_NAME\n if not curr_path.exists():\n print('ERROR: There is no symlink named {!r} in the current directory.'\n .format(CURRENT_NAME))\n print('This script cannot be called here.')\n sys.exit(-1)\n if (curr_path / 'buildout.cfg').exists():\n print(\"ERROR: '{}/buildout.cfg' already exists please (re-) move it.\"\n .format(CURRENT_NAME))\n sys.exit(-2)\n cwd = os.getcwd()\n os.chdir(str(curr_path))\n configurator = Configurator(curr_path / USER_INI, install_new_version=\n False, stdin=stdin)\n try:\n configurator()\n call_cmd('running bin/buildout', '../bin/buildout')\n if configurator.restart_server == 'yes':\n call_cmd('Restarting instance', 'bin/svctl', 'restart', 'all')\n finally:\n os.chdir(str(cwd))\n print('Done.')\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef update(stdin=None):\n \"\"\"Update the current address book installation.\"\"\"\n curr_path = Path.cwd() / CURRENT_NAME\n if not curr_path.exists():\n print('ERROR: There is no symlink named {!r} in the current directory.'\n .format(CURRENT_NAME))\n print('This script cannot be called here.')\n sys.exit(-1)\n if (curr_path / 'buildout.cfg').exists():\n print(\"ERROR: '{}/buildout.cfg' already exists please (re-) move it.\"\n .format(CURRENT_NAME))\n sys.exit(-2)\n cwd = os.getcwd()\n os.chdir(str(curr_path))\n configurator = Configurator(curr_path / USER_INI, install_new_version=\n False, stdin=stdin)\n try:\n configurator()\n call_cmd('running bin/buildout', '../bin/buildout')\n if configurator.restart_server == 'yes':\n call_cmd('Restarting instance', 'bin/svctl', 'restart', 'all')\n finally:\n os.chdir(str(cwd))\n print('Done.')\n\n\ndef main(args=None):\n \"\"\"Entry point for `bin/change-addressbook-config`.\"\"\"\n parser = argparse.ArgumentParser(description=\n 'Update the current address book installation.')\n parser.add_argument('--debug', action='store_true', help=\n 'Enter debugger on errors.')\n args = parser.parse_args(args)\n try:\n update()\n except Exception:\n if args.debug:\n pdb.post_mortem()\n else:\n raise\n", "step-4": "from .. import CURRENT_NAME\nfrom ..cmd import call_cmd\nfrom .config import Configurator\nfrom .config import USER_INI\nfrom icemac.install.addressbook._compat import Path\nimport argparse\nimport os\nimport pdb\nimport sys\n\n\ndef update(stdin=None):\n \"\"\"Update the current address book installation.\"\"\"\n curr_path = Path.cwd() / CURRENT_NAME\n if not curr_path.exists():\n print('ERROR: There is no symlink named {!r} in the current directory.'\n .format(CURRENT_NAME))\n print('This script cannot be called here.')\n sys.exit(-1)\n if (curr_path / 'buildout.cfg').exists():\n print(\"ERROR: '{}/buildout.cfg' already exists please (re-) move it.\"\n .format(CURRENT_NAME))\n sys.exit(-2)\n cwd = os.getcwd()\n os.chdir(str(curr_path))\n configurator = Configurator(curr_path / USER_INI, install_new_version=\n False, stdin=stdin)\n try:\n configurator()\n call_cmd('running bin/buildout', '../bin/buildout')\n if configurator.restart_server == 'yes':\n call_cmd('Restarting instance', 'bin/svctl', 'restart', 'all')\n finally:\n os.chdir(str(cwd))\n print('Done.')\n\n\ndef main(args=None):\n \"\"\"Entry point for `bin/change-addressbook-config`.\"\"\"\n parser = argparse.ArgumentParser(description=\n 'Update the current address book installation.')\n parser.add_argument('--debug', action='store_true', help=\n 'Enter debugger on errors.')\n args = parser.parse_args(args)\n try:\n update()\n except Exception:\n if args.debug:\n pdb.post_mortem()\n else:\n raise\n", "step-5": "from .. import CURRENT_NAME\nfrom ..cmd import call_cmd\nfrom .config import Configurator\nfrom .config import USER_INI\nfrom icemac.install.addressbook._compat import Path\nimport argparse\nimport os\nimport pdb # noqa: T002\nimport sys\n\n\ndef update(stdin=None):\n \"\"\"Update the current address book installation.\"\"\"\n curr_path = Path.cwd() / CURRENT_NAME\n if not curr_path.exists():\n print(\"ERROR: There is no symlink named {!r} in the current\"\n \" directory.\".format(CURRENT_NAME))\n print(\"This script cannot be called here.\")\n sys.exit(-1)\n\n if (curr_path / 'buildout.cfg').exists():\n print(\"ERROR: '{}/buildout.cfg' already exists please (re-) move\"\n \" it.\".format(CURRENT_NAME))\n sys.exit(-2)\n\n cwd = os.getcwd()\n os.chdir(str(curr_path)) # PY2: in PY3 `str` is no longer needed\n configurator = Configurator(\n curr_path / USER_INI, install_new_version=False, stdin=stdin)\n try:\n configurator()\n call_cmd('running bin/buildout', '../bin/buildout')\n if configurator.restart_server == 'yes':\n call_cmd('Restarting instance', 'bin/svctl', 'restart', 'all')\n finally:\n os.chdir(str(cwd)) # PY2: in PY3 `str` is no longer needed\n print('Done.')\n\n\ndef main(args=None):\n \"\"\"Entry point for `bin/change-addressbook-config`.\"\"\"\n parser = argparse.ArgumentParser(\n description='Update the current address book installation.')\n parser.add_argument(\n '--debug', action=\"store_true\",\n help='Enter debugger on errors.')\n\n args = parser.parse_args(args)\n try:\n update()\n except Exception:\n if args.debug:\n pdb.post_mortem()\n else:\n raise\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import types import qt cfg = qt.cfgman cfg.remove_cfg('protocols') cfg.remove_cfg('samples') cfg.remove_cfg('setup') cfg.add_cfg('protocols') cfg.add_cfg('samples') cfg.add_cfg('setup') cfg['samples']['current'] = 'hans-sil13' cfg['protocols']['current'] = 'hans-sil13-default' print 'updating msmt params for {}'.format(cfg['samples']['current']) ############################################################################## ############################################################################## ### Protocols ### ### To make sure everything works fine, only leave the current sample ### un-commented here (we use local variables here for convenience, ### that WILL lead to trouble because the get overwritten in each sample ### section) ############################################################################## ############################################################################## ############################################################################## ### The111/2 ############################################################################## # branch='samples/sil2/' # f_msm1_cntr = 2.826961e9 # N_frq = 7.13429e6 # N_HF_frq = 2.19290e6 # cfg.set(branch+'ms-1_cntr_frq', f_msm1_cntr) # cfg.set(branch+'N_0-1_splitting_ms-1', N_frq) # cfg.set(branch+'N_HF_frq', N_HF_frq) # mw0 = 2.8e9 # f0 = f_msm1_cntr - mw0 # Nsplit = N_HF_frq # finit = f0 - Nsplit # fmIp1 = f_msm1_cntr - mw0 + N_HF_frq # cfg.set(branch+'mIm1_mod_frq', f_msm1_cntr - mw0 - N_HF_frq) # cfg.set(branch+'mI0_mod_frq', f_msm1_cntr - mw0) # cfg.set(branch+'mIp1_mod_frq', f_msm1_cntr - mw0 + N_HF_frq) ############################################################################## ### HANS/4 ############################################################################## # branch='samples/hans-sil4/' # f_msm1_cntr = 2.826455e9 # N_frq = 7.13377e6 # N_HF_frq = 2.19290e6 # cfg.set(branch+'ms-1_cntr_frq', f_msm1_cntr) # cfg.set(branch+'N_0-1_splitting_ms-1', N_frq) # cfg.set(branch+'N_HF_frq', N_HF_frq) # mw0 = 2.8e9 # f0 = f_msm1_cntr - mw0 # Nsplit = N_HF_frq # finit = f0 - Nsplit # fmIp1 = f_msm1_cntr - mw0 + N_HF_frq # cfg.set(branch+'mIm1_mod_frq', f_msm1_cntr - mw0 - N_HF_frq) # cfg.set(branch+'mI0_mod_frq', f_msm1_cntr - mw0) # cfg.set(branch+'mIp1_mod_frq', f_msm1_cntr - mw0 + N_HF_frq) branch='samples/hans-sil4/' f_msm1_cntr = 2.827962e9 N_frq = 7.13456e6 N_HF_frq = 2.19290e6 cfg.set(branch+'ms-1_cntr_frq', f_msm1_cntr) cfg.set(branch+'N_0-1_splitting_ms-1', N_frq) cfg.set(branch+'N_HF_frq', N_HF_frq) mw0 = 2.8e9 f0 = f_msm1_cntr - mw0 Nsplit = N_HF_frq finit = f0 - Nsplit fmIp1 = f_msm1_cntr - mw0 + N_HF_frq cfg.set(branch+'mIm1_mod_frq', f_msm1_cntr - mw0 - N_HF_frq) cfg.set(branch+'mI0_mod_frq', f_msm1_cntr - mw0) cfg.set(branch+'mIp1_mod_frq', f_msm1_cntr - mw0 + N_HF_frq) ############################################################################## ############################################################################## ### Protocols ############################################################################## ############################################################################## ### General settings for AdwinSSRO branch='protocols/AdwinSSRO/' cfg.set(branch+ 'AWG_done_DI_channel', 16) cfg.set(branch+ 'AWG_event_jump_DO_channel', 14) cfg.set(branch+ 'AWG_start_DO_channel', 10) cfg.set(branch+ 'A_laser_DAC_channel', 6) cfg.set(branch+ 'Ex_laser_DAC_channel', 7) cfg.set(branch+ 'counter_channel', 1) cfg.set(branch+ 'cycle_duration', 300) cfg.set(branch+ 'green_laser_DAC_channel', 4) cfg.set(branch+ 'green_off_amplitude', 0.0) cfg.set(branch+ 'green_repump_amplitude', 50e-6) cfg.set(branch+ 'green_repump_duration', 10) cfg.set(branch+ 'send_AWG_start', 0) cfg.set(branch+ 'sequence_wait_time', 1) cfg.set(branch+ 'wait_after_RO_pulse_duration', 3) cfg.set(branch+ 'wait_after_pulse_duration', 3) cfg.set(branch+ 'cr_wait_after_pulse_duration', 1) cfg.set(branch+ 'wait_for_AWG_done', 0) cfg.set(branch+ 'green_off_voltage', 0) cfg.set(branch+ 'repump_off_voltage', 0) cfg.set(branch+ 'yellow_repump_amplitude', 50e-9) cfg.set(branch+ 'yellow_repump_duration', 500) cfg.set(branch+ 'yellow_repump_after_repetitions',100) cfg.set(branch+ 'yellow_CR_repump', 1) cfg.set(branch+ 'green_repump_after_repetitions',1) cfg.set(branch+ 'green_CR_repump', 1000) cfg.set(branch+ 'CR_probe_max_time', 1000000) cfg.set(branch+ 'SP_filter_duration', 0) cfg.set(branch+ 'SSRO_duration', 50) cfg.set(branch+ 'SSRO_repetitions', 1000) cfg.set(branch+ 'SSRO_stop_after_first_photon', 0) yellow=True cfg.set(branch + 'yellow', yellow) if yellow: cfg.set(branch + 'repump_duration', cfg.get(branch+ 'yellow_repump_duration')) cfg.set(branch + 'repump_amplitude', cfg.get(branch+ 'yellow_repump_amplitude')) cfg.set(branch + 'CR_repump', cfg.get(branch+ 'yellow_CR_repump')) cfg.set(branch + 'repump_after_repetitions', cfg.get(branch+ 'yellow_repump_after_repetitions')) else: cfg.set(branch + 'repump_duration', cfg.get(branch+ 'green_repump_duration')) cfg.set(branch + 'repump_amplitude', cfg.get(branch+ 'green_repump_amplitude')) cfg.set(branch + 'CR_repump', cfg.get(branch+ 'green_CR_repump')) cfg.set(branch + 'repump_after_repetitions', cfg.get(branch+ 'green_repump_after_repetitions')) ### General settings for AdwinSSRO+espin branch='protocols/AdwinSSRO+espin/' cfg.set(branch+ 'send_AWG_start', 1) cfg.set(branch+ 'MW_pulse_mod_risetime', 10e-9) cfg.set(branch+ 'mw_frq', mw0) cfg.set(branch+ 'mw_power', 20) ### General settings for AdwinSSRO+MBI branch='protocols/AdwinSSRO+MBI/' cfg.set(branch+ 'AWG_wait_duration_before_MBI_MW_pulse', 1e-6) cfg.set(branch+ 'AWG_wait_for_adwin_MBI_duration', np.array([15e-6]).tolist()) cfg.set(branch+ 'AWG_wait_duration_before_shelving_pulse', 100e-9) cfg.set(branch+ 'nr_of_ROsequences', 1) cfg.set(branch+ 'MW_pulse_mod_risetime', 10e-9) cfg.set(branch+ 'AWG_to_adwin_ttl_trigger_duration', 5e-6) cfg.set(branch+ 'max_MBI_attempts', 1) cfg.set(branch+ 'N_randomize_duration', 50) cfg.set(branch+ 'Ex_N_randomize_amplitude', 0e-9) cfg.set(branch+ 'A_N_randomize_amplitude', 0e-9) cfg.set(branch+ 'yellow_N_randomize_amplitude', 0e-9) ############################################################################## ############################################################################## ### Specific sample settings for protocols ############################################################################## ############################################################################## ############################################################################## ### HANS/13 --- SSRO ############################################################################## branch='protocols/hans-sil13-default/AdwinSSRO/' cfg.set(branch+ 'A_CR_amplitude', 10e-9) cfg.set(branch+ 'A_RO_amplitude', 0.) cfg.set(branch+ 'A_SP_amplitude', 10e-9) cfg.set(branch+ 'CR_duration', 50) cfg.set(branch+ 'CR_preselect', 1000) cfg.set(branch+ 'CR_probe', 20) cfg.set(branch+ 'CR_repump', 1000) cfg.set(branch+ 'Ex_CR_amplitude', 10e-9) cfg.set(branch+ 'Ex_RO_amplitude', 5e-9) cfg.set(branch+ 'Ex_SP_amplitude', 0.) cfg.set(branch+ 'SP_duration', 100) cfg.set(branch+ 'SP_filter_duration', 0) cfg.set(branch+ 'SSRO_duration', 25) cfg.set(branch+ 'SSRO_repetitions', 5000) cfg.set(branch+ 'SSRO_stop_after_first_photon', 0) cfg.set('protocols/hans-sil1-default/AdwinSSRO-integrated/SSRO_duration', 25) ############################################################################### #### HANS/1 --- SSRO ############################################################################### # #branch='protocols/hans-sil1-default/AdwinSSRO/' #cfg.set(branch+ 'A_CR_amplitude', 15e-9) #cfg.set(branch+ 'A_RO_amplitude', 0.) #cfg.set(branch+ 'A_SP_amplitude', 15e-9) #cfg.set(branch+ 'CR_duration', 50) #cfg.set(branch+ 'CR_preselect', 1000) #cfg.set(branch+ 'CR_probe', 20) #cfg.set(branch+ 'CR_repump', 1000) #cfg.set(branch+ 'Ex_CR_amplitude', 4e-9) #cfg.set(branch+ 'Ex_RO_amplitude', 4e-9) #cfg.set(branch+ 'Ex_SP_amplitude', 0.) #cfg.set(branch+ 'SP_duration', 250) #cfg.set(branch+ 'SP_filter_duration', 0) #cfg.set(branch+ 'SSRO_duration', 50) #cfg.set(branch+ 'SSRO_repetitions', 5000) #cfg.set(branch+ 'SSRO_stop_after_first_photon', 0) # #cfg.set('protocols/hans-sil1-default/AdwinSSRO-integrated/SSRO_duration', 11) # ############################################################################### #### HANS/1 --- MBI ############################################################################### # #branch='protocols/hans-sil1-default/AdwinSSRO+MBI/' #cfg.set(branch+ 'mw_frq', mw0) #cfg.set(branch+ 'mw_power', 20) #cfg.set(branch+ 'Ex_MBI_amplitude', 4e-9) #cfg.set(branch+ 'Ex_SP_amplitude', 10e-9) #cfg.set(branch+ 'MBI_duration', 4) #put back to 4 with gate #cfg.set(branch+ 'max_MBI_attempts', 1) #cfg.set(branch+ 'MBI_threshold', 1) #cfg.set(branch+ 'SP_E_duration', 60) #cfg.set(branch+ 'repump_after_MBI_duration', 15) #cfg.set(branch+ 'repump_after_MBI_amplitude', 15e-9) #cfg.set(branch+ 'repump_after_E_RO_duration', 15) #cfg.set(branch+ 'repump_after_E_RO_amplitude', 15e-9) # ## MBI pulse #cfg.set(branch+ 'AWG_wait_duration_before_MBI_MW_pulse', 50e-9) #cfg.set(branch+ 'AWG_wait_for_adwin_MBI_duration', 15e-6) # ############################################################################### #### HANS/1 --- Pulses ############################################################################### # #branch='protocols/hans-sil1-default/pulses/' # #cfg.set(branch+ 'selective_pi_duration', 2500e-9) #cfg.set(branch+ 'selective_pi_amp', 0.0166) #cfg.set(branch+ 'selective_pi_mod_frq', finit) #cfg.set(branch+ 'AWG_MBI_MW_pulse_mod_frq', # finit) #cfg.set(branch+ 'AWG_MBI_MW_pulse_ssbmod_frq', # finit) #cfg.set(branch+ 'AWG_MBI_MW_pulse_amp', # cfg.get(branch+ 'selective_pi_amp')) #cfg.set(branch+ 'AWG_MBI_MW_pulse_duration', # cfg.get(branch+ 'selective_pi_duration')) # #cfg.set(branch+ 'fast_pi_duration', 80e-9) #cfg.set(branch+ 'fast_pi_amp', 0.816) #cfg.set(branch+ 'fast_pi_mod_frq', finit) # #cfg.set(branch+ 'fast_pi2_duration', 40e-9) #cfg.set(branch+ 'fast_pi2_amp', 0.816) #cfg.set(branch+ 'fast_pi2_mod_frq', finit) # #### CNOTs #cfg.set(branch+ 'pi2pi_mIm1_duration', 396e-9) #cfg.set(branch+ 'pi2pi_mIm1_amp', 0.109166) #cfg.set(branch+ 'pi2pi_mIm1_mod_frq', finit) # #### CORPSE used in the BSM #CORPSE_frq = 5e6 #cfg.set(branch+ 'CORPSE_pi_60_duration', 1./CORPSE_frq/6.) #cfg.set(branch+ 'CORPSE_pi_m300_duration', 5./CORPSE_frq/6.) #cfg.set(branch+ 'CORPSE_pi_420_duration', 7./CORPSE_frq/6.) #cfg.set(branch+ 'CORPSE_pi_mod_frq', finit + Nsplit/2.) #cfg.set(branch+ 'CORPSE_pi_amp', 0.529) # ## ### TODO #cfg.set(branch+ 'CORPSE_pi_phase_shift', 104.0) # ## ### TODO #cfg.set(branch+ 'CORPSE_pi_center_shift', 0.e-9) # #### CORPSE for the full ms=-1 manifold, driven in the center #### (resonant with mI = 0) #CORPSE_frq = 6.5e6 #cfg.set(branch+ 'msm1_CORPSE_pi_60_duration', 1./CORPSE_frq/6.) #cfg.set(branch+ 'msm1_CORPSE_pi_m300_duration', 5./CORPSE_frq/6.) #cfg.set(branch+ 'msm1_CORPSE_pi_420_duration', 7./CORPSE_frq/6.) #cfg.set(branch+ 'msm1_CORPSE_pi_mod_frq', f_msm1_cntr - mw0) #cfg.set(branch+ 'msm1_CORPSE_pi_amp', 0.797641) # ## cfg.set(branch+ 'msm1_CORPSE_pi2_24p3_duration', 24.3/CORPSE_frq/360.) ## cfg.set(branch+ 'msm1_CORPSE_pi2_m318p6_duration', 318.6/CORPSE_frq/360.) ## cfg.set(branch+ 'msm1_CORPSE_pi2_384p3_duration', 384.3/CORPSE_frq/360.) ## cfg.set(branch+ 'msm1_CORPSE_pi2_mod_frq', f_msm1_cntr - mw0) ## cfg.set(branch+ 'msm1_CORPSE_pi2_amp', 0.818) ###not calibrated # #cfg.set(branch+ 'first_C_revival', 50.90e-6) # #### Nitrogen pulses #cfg.set(branch+ 'N_pi_duration', 47.3e-6) #cfg.set(branch+ 'N_pi_amp', 1) # #cfg.set(branch+ 'N_pi2_duration', 47.3e-6/2.) #cfg.set(branch+ 'N_pi2_amp', 1) # # """ branch='protocols/sil2-default/pulses/' tof = 0#11e-9 cfg.set(branch+ 't_offset', tof) cfg.set(branch+ '4MHz_pi_duration', tof + 125e-9) cfg.set(branch+ '4MHz_pi_amp', 0.599) cfg.set(branch+ '4MHz_pi_mod_frq', finit) cfg.set(branch+ '4MHz_pi2_duration', tof + 62e-9) cfg.set(branch+ '4MHz_pi2_amp', 0.599) cfg.set(branch+ '4MHz_pi2_mod_frq', finit) cfg.set(branch+ 'selective_pi_duration', 2600e-9) cfg.set(branch+ 'selective_pi_amp', 0.02) cfg.set(branch+ 'selective_pi_mod_frq', finit) CORPSE_frq = 3.991e6 cfg.set(branch+ 'CORPSE_pi_60_duration', tof/2. + 1./CORPSE_frq/6.) cfg.set(branch+ 'CORPSE_pi_m300_duration', 5./CORPSE_frq/6.) cfg.set(branch+ 'CORPSE_pi_420_duration', tof/2. + 7./CORPSE_frq/6.) cfg.set(branch+ 'CORPSE_pi_mod_frq', finit + Nsplit/2.) cfg.set(branch+ 'CORPSE_pi_amp', 0.703) cfg.set(branch+ 'CORPSE_pi_phase_shift', 74.0) cfg.set(branch+ 'CORPSE_pi_center_shift', 13e-9) cfg.set(branch+ 'pi2pi_mIm1_duration', tof + 395e-9) cfg.set(branch+ 'pi2pi_mIm1_amp', 0.164) cfg.set(branch+ 'pi2pi_mIm1_mod_frq', finit) cfg.set(branch+ 'pi2pi_mI0_duration', tof + 395e-9) cfg.set(branch+ 'pi2pi_mI0_amp', 0.170) cfg.set(branch+ 'pi2pi_mI0_mod_frq', f0) cfg.set(branch+ 'pi2pi_mIp1_duration', tof + 395e-9) cfg.set(branch+ 'pi2pi_mIp1_amp', 0.185) cfg.set(branch+ 'pi2pi_mIp1_mod_frq', fmIp1) ### set some other pulses that determinine their values from the ones above cfg.set(branch+ 'AWG_N_CNOT_pulse_duration', cfg.get(branch+ 'pi2pi_mIm1_duration')) cfg.set(branch+ 'AWG_N_CNOT_pulse_amp', cfg.get(branch+ 'pi2pi_mIm1_amp')) cfg.set(branch+ 'AWG_N_CNOT_pulse_mod_frq', cfg.get(branch+ 'pi2pi_mIm1_mod_frq')) cfg.set(branch+ 'AWG_MBI_MW_pulse_mod_frq', finit) cfg.set(branch+ 'AWG_MBI_MW_pulse_amp', cfg.get(branch+ 'selective_pi_amp')) cfg.set(branch+ 'AWG_MBI_MW_pulse_duration', cfg.get(branch+ 'selective_pi_duration')) cfg.set(branch+ 'AWG_shelving_pulse_duration', cfg.get(branch+ '4MHz_pi_duration')) cfg.set(branch+ 'AWG_shelving_pulse_amp', cfg.get(branch+ '4MHz_pi_amp')) ### Nitrogen pulses cfg.set(branch+ 'N_pi_duration', 91.1e-6) cfg.set(branch+ 'N_pi_amp', 1) cfg.set(branch+ 'N_pi2_duration', 91.1e-6/2.) cfg.set(branch+ 'N_pi2_amp', 1) ############################################################################## ### The111/2 - SSRO ############################################################################## branch='protocols/sil2-default/AdwinSSRO/' cfg.set(branch+ 'A_CR_amplitude', 10e-9) cfg.set(branch+ 'A_RO_amplitude', 0.) cfg.set(branch+ 'A_SP_amplitude', 10e-9) cfg.set(branch+ 'CR_duration', 100) cfg.set(branch+ 'CR_preselect', 40) cfg.set(branch+ 'CR_probe', 40) cfg.set(branch+ 'CR_repump', 1000) cfg.set(branch+ 'Ex_CR_amplitude', 5e-9) cfg.set(branch+ 'Ex_RO_amplitude', 5e-9) cfg.set(branch+ 'Ex_SP_amplitude', 0.) cfg.set(branch+ 'SP_duration', 250) cfg.set(branch+ 'SP_filter_duration', 0) cfg.set(branch+ 'SSRO_duration', 50) cfg.set(branch+ 'SSRO_repetitions', 1000) cfg.set(branch+ 'SSRO_stop_after_first_photon', 0) ### integrated SSRO cfg.set('protocols/sil2-default/AdwinSSRO-integrated/SSRO_duration', 15) ############################################################################## ### The111/2 - MBI ############################################################################## branch='protocols/sil2-default/AdwinSSRO+MBI/' cfg.set(branch+ 'mw_frq', mw0) cfg.set(branch+ 'mw_power', 20) cfg.set(branch+ 'Ex_MBI_amplitude', 5e-9) cfg.set(branch+ 'Ex_SP_amplitude', 10e-9) cfg.set(branch+ 'MBI_duration', 4) cfg.set(branch+ 'max_MBI_attempts', 1) cfg.set(branch+ 'MBI_threshold', 1) cfg.set(branch+ 'SP_E_duration', 100) cfg.set(branch+ 'repump_after_MBI_duration', 100) cfg.set(branch+ 'repump_after_MBI_amplitude', 25e-9) cfg.set(branch+ 'repump_after_E_RO_duration', 100) cfg.set(branch+ 'repump_after_E_RO_amplitude', 25e-9) # MBI pulse cfg.set(branch+ 'AWG_wait_duration_before_MBI_MW_pulse', 50e-9) cfg.set(branch+ 'AWG_wait_for_adwin_MBI_duration', 15e-6) ### sil2, BSM cfg.set('protocols/sil2-default/BSM/N_ref_frq', N_frq) cfg.set('protocols/sil2-default/BSM/e_ref_frq', finit) ############################################################################## ### HANS/1 --- Pulses ############################################################################## branch='protocols/hans-sil1-default/pulses/' cfg.set(branch+ 'selective_pi_duration', 2500e-9) cfg.set(branch+ 'selective_pi_amp', 0.015) cfg.set(branch+ 'selective_pi_mod_frq', finit) cfg.set(branch+ 'AWG_MBI_MW_pulse_mod_frq', finit) cfg.set(branch+ 'AWG_MBI_MW_pulse_ssbmod_frq', finit) cfg.set(branch+ 'AWG_MBI_MW_pulse_amp', cfg.get(branch+ 'selective_pi_amp')) cfg.set(branch+ 'AWG_MBI_MW_pulse_duration', cfg.get(branch+ 'selective_pi_duration')) ############################################################################## ### HANS/1 --- SSRO ############################################################################## branch='protocols/hans-sil1-default/AdwinSSRO/' cfg.set(branch+ 'A_CR_amplitude', 15e-9) cfg.set(branch+ 'A_RO_amplitude', 0.) cfg.set(branch+ 'A_SP_amplitude', 15e-9) cfg.set(branch+ 'CR_duration', 50) cfg.set(branch+ 'CR_preselect', 1000) cfg.set(branch+ 'CR_probe', 20) cfg.set(branch+ 'CR_repump', 1000) cfg.set(branch+ 'Ex_CR_amplitude', 5e-9) cfg.set(branch+ 'Ex_RO_amplitude', 5e-9) cfg.set(branch+ 'Ex_SP_amplitude', 0.) cfg.set(branch+ 'SP_duration', 250) cfg.set(branch+ 'SP_filter_duration', 0) cfg.set(branch+ 'SSRO_duration', 50) cfg.set(branch+ 'SSRO_repetitions', 5000) cfg.set(branch+ 'SSRO_stop_after_first_photon', 0) cfg.set('protocols/hans-sil1-default/AdwinSSRO-integrated/SSRO_duration', 15) ############################################################################## ### HANS/1 --- MBI ############################################################################## branch='protocols/hans-sil1-default/AdwinSSRO+MBI/' cfg.set(branch+ 'mw_frq', mw0) cfg.set(branch+ 'mw_power', 20) cfg.set(branch+ 'Ex_MBI_amplitude', 5e-9) cfg.set(branch+ 'Ex_SP_amplitude', 15e-9) cfg.set(branch+ 'MBI_duration', 4) cfg.set(branch+ 'max_MBI_attempts', 1) cfg.set(branch+ 'MBI_threshold', 1) cfg.set(branch+ 'SP_E_duration', 60) cfg.set(branch+ 'repump_after_MBI_duration', 15) cfg.set(branch+ 'repump_after_MBI_amplitude', 15e-9) cfg.set(branch+ 'repump_after_E_RO_duration', 15) cfg.set(branch+ 'repump_after_E_RO_amplitude', 15e-9) # MBI pulse cfg.set(branch+ 'AWG_wait_duration_before_MBI_MW_pulse', 50e-9) cfg.set(branch+ 'AWG_wait_for_adwin_MBI_duration', 15e-6) ############################################################################## ### HANS/7 ############################################################################## branch='protocols/hans-sil7-default/AdwinSSRO/' cfg.set(branch+ 'A_CR_amplitude', 10e-9) cfg.set(branch+ 'A_RO_amplitude', 0.) cfg.set(branch+ 'A_SP_amplitude', 10e-9) cfg.set(branch+ 'CR_duration', 100) cfg.set(branch+ 'CR_preselect', 15) cfg.set(branch+ 'CR_probe', 5) cfg.set(branch+ 'CR_repump', 1000) cfg.set(branch+ 'Ex_CR_amplitude', 5e-9) cfg.set(branch+ 'Ex_RO_amplitude', 5e-9) cfg.set(branch+ 'Ex_SP_amplitude', 0.) cfg.set(branch+ 'SP_duration', 250) cfg.set(branch+ 'SP_filter_duration', 0) cfg.set(branch+ 'SSRO_duration', 50) cfg.set(branch+ 'SSRO_repetitions', 5000) cfg.set(branch+ 'SSRO_stop_after_first_photon', 0) cfg.set('protocols/hans-sil7-default/AdwinSSRO-integrated/SSRO_duration', 50) """ ############################################################################## ### HANS/4 --- SSRO ############################################################################## branch='protocols/hans-sil4-default/AdwinSSRO/' cfg.set(branch+ 'A_CR_amplitude', 5e-9) cfg.set(branch+ 'A_RO_amplitude', 0.) cfg.set(branch+ 'A_SP_amplitude', 60e-9) cfg.set(branch+ 'CR_duration', 50) cfg.set(branch+ 'CR_preselect', 1000) cfg.set(branch+ 'CR_probe', 20) cfg.set(branch+ 'CR_repump', 1000) cfg.set(branch+ 'Ex_CR_amplitude', 5e-9) cfg.set(branch+ 'Ex_RO_amplitude', 10e-9) cfg.set(branch+ 'Ex_SP_amplitude', 0.) cfg.set(branch+ 'SP_duration', 9) cfg.set(branch+ 'SP_filter_duration', 0) cfg.set(branch+ 'SSRO_duration', 10) cfg.set(branch+ 'SSRO_repetitions', 5000) cfg.set(branch+ 'SSRO_stop_after_first_photon', 0) cfg.set('protocols/hans-sil4-default/AdwinSSRO-integrated/SSRO_duration', 10) cfg.set('protocols/hans-sil4-default/AdwinSSRO+espin/mw_frq', mw0) cfg.set('protocols/hans-sil4-default/AdwinSSRO+espin/mw_power', 20) ############################################################################## ### HANS/4 --- MBI ############################################################################## branch='protocols/hans-sil4-default/AdwinSSRO+MBI/' cfg.set(branch+ 'mw_frq', mw0) cfg.set(branch+ 'mw_power', 20) cfg.set(branch+ 'Ex_MBI_amplitude', 5e-9) cfg.set(branch+ 'Ex_SP_amplitude', 10e-9) cfg.set(branch+ 'MBI_duration', 4) cfg.set(branch+ 'max_MBI_attempts', 1) cfg.set(branch+ 'MBI_threshold', 1) cfg.set(branch+ 'SP_E_duration', 100) cfg.set(branch+ 'repump_after_MBI_duration', 15) cfg.set(branch+ 'repump_after_MBI_A_amplitude', [5e-9]) cfg.set(branch+ 'repump_after_MBI_E_amplitude', [0e-9]) cfg.set(branch+ 'repump_after_E_RO_duration', 15) cfg.set(branch+ 'repump_after_E_RO_amplitude', 5e-9) # MBI pulse cfg.set(branch+ 'AWG_wait_duration_before_MBI_MW_pulse', 50e-9) cfg.set(branch+ 'AWG_wait_for_adwin_MBI_duration', 15e-6) ### BSM cfg.set('protocols/hans-sil4-default/BSM/N_ref_frq', N_frq) cfg.set('protocols/hans-sil4-default/BSM/e_ref_frq', finit) cfg.set('protocols/hans-sil4-default/BSM/pi2_evolution_time', 51.086e-6) cfg.set('protocols/hans-sil4-default/BSM/H_evolution_time', 50.746e-6) cfg.set('protocols/hans-sil4-default/BSM/H_phase', 46) ############################################################################## ### HANS/4 --- Pulses ############################################################################## branch='protocols/hans-sil4-default/pulses/' cfg.set(branch+ 'selective_pi_duration', 2500e-9) cfg.set(branch+ 'selective_pi_amp', 0.011) cfg.set(branch+ 'selective_pi_mod_frq', finit) cfg.set(branch+ 'AWG_MBI_MW_pulse_mod_frq', finit) cfg.set(branch+ 'AWG_MBI_MW_pulse_ssbmod_frq', finit) cfg.set(branch+ 'AWG_MBI_MW_pulse_amp', cfg.get(branch+ 'selective_pi_amp')) cfg.set(branch+ 'AWG_MBI_MW_pulse_duration', cfg.get(branch+ 'selective_pi_duration')) cfg.set(branch+ 'fast_pi_duration', 62e-9) cfg.set(branch+ 'fast_pi_amp', 0.844) cfg.set(branch+ 'fast_pi_mod_frq', finit) cfg.set(branch+ 'fast_pi2_duration', 33e-9) cfg.set(branch+ 'fast_pi2_amp', 0.812) cfg.set(branch+ 'fast_pi2_mod_frq', finit) ### CNOTs cfg.set(branch+ 'pi2pi_mIm1_duration', 396e-9) cfg.set(branch+ 'pi2pi_mIm1_amp', 0.083) cfg.set(branch+ 'pi2pi_mIm1_mod_frq', finit) ### CORPSE used in the BSM CORPSE_frq = 7.5e6 cfg.set(branch+ 'CORPSE_pi_60_duration', 1./CORPSE_frq/6.) cfg.set(branch+ 'CORPSE_pi_m300_duration', 5./CORPSE_frq/6.) cfg.set(branch+ 'CORPSE_pi_420_duration', 7./CORPSE_frq/6.) cfg.set(branch+ 'CORPSE_pi_mod_frq', finit + Nsplit/2.) cfg.set(branch+ 'CORPSE_pi_amp', 0.363) cfg.set(branch+ 'CORPSE_pi2_24p3_duration', 24.3/CORPSE_frq/360.) cfg.set(branch+ 'CORPSE_pi2_m318p6_duration', 318.6/CORPSE_frq/360.) cfg.set(branch+ 'CORPSE_pi2_384p3_duration', 384.3/CORPSE_frq/360.) cfg.set(branch+ 'CORPSE_pi2_mod_frq', f_msm1_cntr - mw0) cfg.set(branch+ 'CORPSE_pi2_amp', 0.55) ###not calibrated """ # ### TODO cfg.set(branch+ 'CORPSE_pi_phase_shift', 104.0) # ### TODO cfg.set(branch+ 'CORPSE_pi_center_shift', 0.e-9) ### CORPSE for the full ms=-1 manifold, driven in the center ### (resonant with mI = 0) CORPSE_frq = 8e6 cfg.set(branch+ 'msm1_CORPSE_pi_60_duration', 1./CORPSE_frq/6.) cfg.set(branch+ 'msm1_CORPSE_pi_m300_duration', 5./CORPSE_frq/6.) cfg.set(branch+ 'msm1_CORPSE_pi_420_duration', 7./CORPSE_frq/6.) cfg.set(branch+ 'msm1_CORPSE_pi_mod_frq', f_msm1_cntr - mw0) cfg.set(branch+ 'msm1_CORPSE_pi_amp', 0.782) cfg.set(branch+ 'msm1_CORPSE_pi2_24p3_duration', 24.3/CORPSE_frq/360.) cfg.set(branch+ 'msm1_CORPSE_pi2_m318p6_duration', 318.6/CORPSE_frq/360.) cfg.set(branch+ 'msm1_CORPSE_pi2_384p3_duration', 384.3/CORPSE_frq/360.) cfg.set(branch+ 'msm1_CORPSE_pi2_mod_frq', f_msm1_cntr - mw0) cfg.set(branch+ 'msm1_CORPSE_pi2_amp', 0.818) ###not calibrated cfg.set(branch+ 'first_C_revival', 50.90e-6) ### Nitrogen pulses cfg.set(branch+ 'N_pi_duration', 47.3e-6) cfg.set(branch+ 'N_pi_amp', 1) cfg.set(branch+ 'N_pi2_duration', 47.3e-6/2.) cfg.set(branch+ 'N_pi2_amp', 1) """ ############################################################################## ############################################################################## ############################################################################## ### DONE ############################################################################## ############################################################################## ############################################################################## cfg.save_all()
normal
{ "blob_id": "3f20438b0dd2ae8de470e5456dbb764eabf69645", "index": 8092, "step-1": "import types\nimport qt\ncfg = qt.cfgman\n\ncfg.remove_cfg('protocols')\ncfg.remove_cfg('samples')\ncfg.remove_cfg('setup')\ncfg.add_cfg('protocols')\ncfg.add_cfg('samples')\ncfg.add_cfg('setup')\n\ncfg['samples']['current'] = 'hans-sil13'\ncfg['protocols']['current'] = 'hans-sil13-default'\n\nprint 'updating msmt params for {}'.format(cfg['samples']['current'])\n\n##############################################################################\n##############################################################################\n### Protocols\n###\n### To make sure everything works fine, only leave the current sample\n### un-commented here (we use local variables here for convenience,\n### that WILL lead to trouble because the get overwritten in each sample \n### section)\n##############################################################################\n##############################################################################\n\n\n##############################################################################\n### The111/2\n##############################################################################\n\n# branch='samples/sil2/'\n\n# f_msm1_cntr = 2.826961e9\n# N_frq = 7.13429e6\n# N_HF_frq = 2.19290e6\n# cfg.set(branch+'ms-1_cntr_frq', f_msm1_cntr)\n# cfg.set(branch+'N_0-1_splitting_ms-1', N_frq)\n# cfg.set(branch+'N_HF_frq', N_HF_frq)\n# mw0 = 2.8e9\n# f0 = f_msm1_cntr - mw0\n# Nsplit = N_HF_frq\n# finit = f0 - Nsplit\n# fmIp1 = f_msm1_cntr - mw0 + N_HF_frq\n# cfg.set(branch+'mIm1_mod_frq', f_msm1_cntr - mw0 - N_HF_frq)\n# cfg.set(branch+'mI0_mod_frq', f_msm1_cntr - mw0)\n# cfg.set(branch+'mIp1_mod_frq', f_msm1_cntr - mw0 + N_HF_frq)\n\n\n##############################################################################\n### HANS/4\n##############################################################################\n\n# branch='samples/hans-sil4/'\n\n# f_msm1_cntr = 2.826455e9\n# N_frq = 7.13377e6\n# N_HF_frq = 2.19290e6\n# cfg.set(branch+'ms-1_cntr_frq', f_msm1_cntr)\n# cfg.set(branch+'N_0-1_splitting_ms-1', N_frq)\n# cfg.set(branch+'N_HF_frq', N_HF_frq)\n# mw0 = 2.8e9\n# f0 = f_msm1_cntr - mw0\n# Nsplit = N_HF_frq\n# finit = f0 - Nsplit\n# fmIp1 = f_msm1_cntr - mw0 + N_HF_frq\n# cfg.set(branch+'mIm1_mod_frq', f_msm1_cntr - mw0 - N_HF_frq)\n# cfg.set(branch+'mI0_mod_frq', f_msm1_cntr - mw0)\n# cfg.set(branch+'mIp1_mod_frq', f_msm1_cntr - mw0 + N_HF_frq)\n\nbranch='samples/hans-sil4/'\n\nf_msm1_cntr = 2.827962e9\nN_frq = 7.13456e6\nN_HF_frq = 2.19290e6\ncfg.set(branch+'ms-1_cntr_frq', f_msm1_cntr)\ncfg.set(branch+'N_0-1_splitting_ms-1', N_frq)\ncfg.set(branch+'N_HF_frq', N_HF_frq)\nmw0 = 2.8e9\nf0 = f_msm1_cntr - mw0\nNsplit = N_HF_frq\nfinit = f0 - Nsplit\nfmIp1 = f_msm1_cntr - mw0 + N_HF_frq\ncfg.set(branch+'mIm1_mod_frq', f_msm1_cntr - mw0 - N_HF_frq)\ncfg.set(branch+'mI0_mod_frq', f_msm1_cntr - mw0)\ncfg.set(branch+'mIp1_mod_frq', f_msm1_cntr - mw0 + N_HF_frq)\n\n##############################################################################\n##############################################################################\n### Protocols\n##############################################################################\n##############################################################################\n\n### General settings for AdwinSSRO\nbranch='protocols/AdwinSSRO/'\ncfg.set(branch+ 'AWG_done_DI_channel', 16)\ncfg.set(branch+ 'AWG_event_jump_DO_channel', 14)\ncfg.set(branch+ 'AWG_start_DO_channel', 10)\ncfg.set(branch+ 'A_laser_DAC_channel', 6)\ncfg.set(branch+ 'Ex_laser_DAC_channel', 7)\ncfg.set(branch+ 'counter_channel', 1)\ncfg.set(branch+ 'cycle_duration', 300)\ncfg.set(branch+ 'green_laser_DAC_channel', 4)\ncfg.set(branch+ 'green_off_amplitude', 0.0)\ncfg.set(branch+ 'green_repump_amplitude', 50e-6)\ncfg.set(branch+ 'green_repump_duration', 10)\ncfg.set(branch+ 'send_AWG_start', 0)\ncfg.set(branch+ 'sequence_wait_time', 1)\ncfg.set(branch+ 'wait_after_RO_pulse_duration', 3)\ncfg.set(branch+ 'wait_after_pulse_duration', 3)\ncfg.set(branch+ 'cr_wait_after_pulse_duration', 1)\ncfg.set(branch+ 'wait_for_AWG_done', 0)\ncfg.set(branch+ 'green_off_voltage', 0)\ncfg.set(branch+ 'repump_off_voltage', 0)\ncfg.set(branch+ 'yellow_repump_amplitude', 50e-9)\ncfg.set(branch+ 'yellow_repump_duration', 500)\ncfg.set(branch+ 'yellow_repump_after_repetitions',100)\ncfg.set(branch+ 'yellow_CR_repump', 1)\ncfg.set(branch+ 'green_repump_after_repetitions',1)\ncfg.set(branch+ 'green_CR_repump', 1000)\ncfg.set(branch+ 'CR_probe_max_time', 1000000)\n\ncfg.set(branch+ 'SP_filter_duration', 0)\ncfg.set(branch+ 'SSRO_duration', 50)\ncfg.set(branch+ 'SSRO_repetitions', 1000)\ncfg.set(branch+ 'SSRO_stop_after_first_photon', 0)\n\nyellow=True\ncfg.set(branch + 'yellow', yellow)\nif yellow:\n cfg.set(branch + 'repump_duration', cfg.get(branch+ 'yellow_repump_duration'))\n cfg.set(branch + 'repump_amplitude', cfg.get(branch+ 'yellow_repump_amplitude')) \n cfg.set(branch + 'CR_repump', cfg.get(branch+ 'yellow_CR_repump'))\n cfg.set(branch + 'repump_after_repetitions', cfg.get(branch+ 'yellow_repump_after_repetitions'))\nelse:\n cfg.set(branch + 'repump_duration', cfg.get(branch+ 'green_repump_duration'))\n cfg.set(branch + 'repump_amplitude', cfg.get(branch+ 'green_repump_amplitude')) \n cfg.set(branch + 'CR_repump', cfg.get(branch+ 'green_CR_repump'))\n cfg.set(branch + 'repump_after_repetitions', cfg.get(branch+ 'green_repump_after_repetitions'))\n\n### General settings for AdwinSSRO+espin\nbranch='protocols/AdwinSSRO+espin/'\ncfg.set(branch+ 'send_AWG_start', 1)\ncfg.set(branch+ 'MW_pulse_mod_risetime', 10e-9)\ncfg.set(branch+ 'mw_frq', mw0)\ncfg.set(branch+ 'mw_power', 20)\n\n### General settings for AdwinSSRO+MBI\nbranch='protocols/AdwinSSRO+MBI/'\ncfg.set(branch+ 'AWG_wait_duration_before_MBI_MW_pulse', 1e-6)\ncfg.set(branch+ 'AWG_wait_for_adwin_MBI_duration', \n np.array([15e-6]).tolist())\ncfg.set(branch+ 'AWG_wait_duration_before_shelving_pulse', 100e-9)\ncfg.set(branch+ 'nr_of_ROsequences', 1)\ncfg.set(branch+ 'MW_pulse_mod_risetime', 10e-9)\ncfg.set(branch+ 'AWG_to_adwin_ttl_trigger_duration', 5e-6)\ncfg.set(branch+ 'max_MBI_attempts', 1)\ncfg.set(branch+ 'N_randomize_duration', 50)\ncfg.set(branch+ 'Ex_N_randomize_amplitude', 0e-9)\ncfg.set(branch+ 'A_N_randomize_amplitude', 0e-9)\ncfg.set(branch+ 'yellow_N_randomize_amplitude', 0e-9)\n\n##############################################################################\n##############################################################################\n### Specific sample settings for protocols\n##############################################################################\n##############################################################################\n\n##############################################################################\n### HANS/13 --- SSRO\n##############################################################################\n\nbranch='protocols/hans-sil13-default/AdwinSSRO/' \ncfg.set(branch+ 'A_CR_amplitude', 10e-9)\ncfg.set(branch+ 'A_RO_amplitude', 0.)\ncfg.set(branch+ 'A_SP_amplitude', 10e-9)\ncfg.set(branch+ 'CR_duration', 50)\ncfg.set(branch+ 'CR_preselect', 1000)\ncfg.set(branch+ 'CR_probe', 20)\ncfg.set(branch+ 'CR_repump', 1000)\ncfg.set(branch+ 'Ex_CR_amplitude', 10e-9)\ncfg.set(branch+ 'Ex_RO_amplitude', 5e-9)\ncfg.set(branch+ 'Ex_SP_amplitude', 0.)\ncfg.set(branch+ 'SP_duration', 100)\ncfg.set(branch+ 'SP_filter_duration', 0)\ncfg.set(branch+ 'SSRO_duration', 25)\ncfg.set(branch+ 'SSRO_repetitions', 5000)\ncfg.set(branch+ 'SSRO_stop_after_first_photon', 0)\n\ncfg.set('protocols/hans-sil1-default/AdwinSSRO-integrated/SSRO_duration', 25)\n\n\n###############################################################################\n#### HANS/1 --- SSRO\n###############################################################################\n#\n#branch='protocols/hans-sil1-default/AdwinSSRO/' \n#cfg.set(branch+ 'A_CR_amplitude', 15e-9)\n#cfg.set(branch+ 'A_RO_amplitude', 0.)\n#cfg.set(branch+ 'A_SP_amplitude', 15e-9)\n#cfg.set(branch+ 'CR_duration', 50)\n#cfg.set(branch+ 'CR_preselect', 1000)\n#cfg.set(branch+ 'CR_probe', 20)\n#cfg.set(branch+ 'CR_repump', 1000)\n#cfg.set(branch+ 'Ex_CR_amplitude', 4e-9)\n#cfg.set(branch+ 'Ex_RO_amplitude', 4e-9)\n#cfg.set(branch+ 'Ex_SP_amplitude', 0.)\n#cfg.set(branch+ 'SP_duration', 250)\n#cfg.set(branch+ 'SP_filter_duration', 0)\n#cfg.set(branch+ 'SSRO_duration', 50)\n#cfg.set(branch+ 'SSRO_repetitions', 5000)\n#cfg.set(branch+ 'SSRO_stop_after_first_photon', 0)\n#\n#cfg.set('protocols/hans-sil1-default/AdwinSSRO-integrated/SSRO_duration', 11)\n#\n###############################################################################\n#### HANS/1 --- MBI\n###############################################################################\n#\n#branch='protocols/hans-sil1-default/AdwinSSRO+MBI/'\n#cfg.set(branch+ 'mw_frq', mw0)\n#cfg.set(branch+ 'mw_power', 20)\n#cfg.set(branch+ 'Ex_MBI_amplitude', 4e-9)\n#cfg.set(branch+ 'Ex_SP_amplitude', 10e-9)\n#cfg.set(branch+ 'MBI_duration', 4) #put back to 4 with gate\n#cfg.set(branch+ 'max_MBI_attempts', 1)\n#cfg.set(branch+ 'MBI_threshold', 1)\n#cfg.set(branch+ 'SP_E_duration', 60)\n#cfg.set(branch+ 'repump_after_MBI_duration', 15)\n#cfg.set(branch+ 'repump_after_MBI_amplitude', 15e-9)\n#cfg.set(branch+ 'repump_after_E_RO_duration', 15)\n#cfg.set(branch+ 'repump_after_E_RO_amplitude', 15e-9)\n#\n## MBI pulse\n#cfg.set(branch+ 'AWG_wait_duration_before_MBI_MW_pulse', 50e-9)\n#cfg.set(branch+ 'AWG_wait_for_adwin_MBI_duration', 15e-6)\n#\n###############################################################################\n#### HANS/1 --- Pulses\n###############################################################################\n#\n#branch='protocols/hans-sil1-default/pulses/'\n#\n#cfg.set(branch+ 'selective_pi_duration', 2500e-9)\n#cfg.set(branch+ 'selective_pi_amp', 0.0166)\n#cfg.set(branch+ 'selective_pi_mod_frq', finit)\n#cfg.set(branch+ 'AWG_MBI_MW_pulse_mod_frq', \n# finit)\n#cfg.set(branch+ 'AWG_MBI_MW_pulse_ssbmod_frq',\n# finit)\n#cfg.set(branch+ 'AWG_MBI_MW_pulse_amp', \n# cfg.get(branch+ 'selective_pi_amp'))\n#cfg.set(branch+ 'AWG_MBI_MW_pulse_duration', \n# cfg.get(branch+ 'selective_pi_duration'))\n#\n#cfg.set(branch+ 'fast_pi_duration', 80e-9)\n#cfg.set(branch+ 'fast_pi_amp', 0.816)\n#cfg.set(branch+ 'fast_pi_mod_frq', finit)\n#\n#cfg.set(branch+ 'fast_pi2_duration', 40e-9)\n#cfg.set(branch+ 'fast_pi2_amp', 0.816)\n#cfg.set(branch+ 'fast_pi2_mod_frq', finit)\n#\n#### CNOTs\n#cfg.set(branch+ 'pi2pi_mIm1_duration', 396e-9)\n#cfg.set(branch+ 'pi2pi_mIm1_amp', 0.109166)\n#cfg.set(branch+ 'pi2pi_mIm1_mod_frq', finit)\n#\n#### CORPSE used in the BSM\n#CORPSE_frq = 5e6\n#cfg.set(branch+ 'CORPSE_pi_60_duration', 1./CORPSE_frq/6.)\n#cfg.set(branch+ 'CORPSE_pi_m300_duration', 5./CORPSE_frq/6.)\n#cfg.set(branch+ 'CORPSE_pi_420_duration', 7./CORPSE_frq/6.)\n#cfg.set(branch+ 'CORPSE_pi_mod_frq', finit + Nsplit/2.)\n#cfg.set(branch+ 'CORPSE_pi_amp', 0.529)\n#\n## ### TODO\n#cfg.set(branch+ 'CORPSE_pi_phase_shift', 104.0)\n#\n## ### TODO\n#cfg.set(branch+ 'CORPSE_pi_center_shift', 0.e-9)\n#\n#### CORPSE for the full ms=-1 manifold, driven in the center \n#### (resonant with mI = 0)\n#CORPSE_frq = 6.5e6\n#cfg.set(branch+ 'msm1_CORPSE_pi_60_duration', 1./CORPSE_frq/6.)\n#cfg.set(branch+ 'msm1_CORPSE_pi_m300_duration', 5./CORPSE_frq/6.)\n#cfg.set(branch+ 'msm1_CORPSE_pi_420_duration', 7./CORPSE_frq/6.)\n#cfg.set(branch+ 'msm1_CORPSE_pi_mod_frq', f_msm1_cntr - mw0)\n#cfg.set(branch+ 'msm1_CORPSE_pi_amp', 0.797641)\n#\n## cfg.set(branch+ 'msm1_CORPSE_pi2_24p3_duration', 24.3/CORPSE_frq/360.)\n## cfg.set(branch+ 'msm1_CORPSE_pi2_m318p6_duration', 318.6/CORPSE_frq/360.)\n## cfg.set(branch+ 'msm1_CORPSE_pi2_384p3_duration', 384.3/CORPSE_frq/360.)\n## cfg.set(branch+ 'msm1_CORPSE_pi2_mod_frq', f_msm1_cntr - mw0)\n## cfg.set(branch+ 'msm1_CORPSE_pi2_amp', 0.818) ###not calibrated\n#\n#cfg.set(branch+ 'first_C_revival', 50.90e-6)\n#\n#### Nitrogen pulses\n#cfg.set(branch+ 'N_pi_duration', 47.3e-6)\n#cfg.set(branch+ 'N_pi_amp', 1)\n#\n#cfg.set(branch+ 'N_pi2_duration', 47.3e-6/2.)\n#cfg.set(branch+ 'N_pi2_amp', 1)\n#\n#\n\n\n\n\n\"\"\"\n\nbranch='protocols/sil2-default/pulses/'\n\ntof = 0#11e-9\ncfg.set(branch+ 't_offset', tof)\n\ncfg.set(branch+ '4MHz_pi_duration', tof + 125e-9)\ncfg.set(branch+ '4MHz_pi_amp', 0.599)\ncfg.set(branch+ '4MHz_pi_mod_frq', finit)\n\ncfg.set(branch+ '4MHz_pi2_duration', tof + 62e-9)\ncfg.set(branch+ '4MHz_pi2_amp', 0.599)\ncfg.set(branch+ '4MHz_pi2_mod_frq', finit)\n\ncfg.set(branch+ 'selective_pi_duration', 2600e-9)\ncfg.set(branch+ 'selective_pi_amp', 0.02)\ncfg.set(branch+ 'selective_pi_mod_frq', finit)\n\nCORPSE_frq = 3.991e6\ncfg.set(branch+ 'CORPSE_pi_60_duration', tof/2. + 1./CORPSE_frq/6.)\ncfg.set(branch+ 'CORPSE_pi_m300_duration', 5./CORPSE_frq/6.)\ncfg.set(branch+ 'CORPSE_pi_420_duration', tof/2. + 7./CORPSE_frq/6.)\ncfg.set(branch+ 'CORPSE_pi_mod_frq', finit + Nsplit/2.)\ncfg.set(branch+ 'CORPSE_pi_amp', 0.703)\ncfg.set(branch+ 'CORPSE_pi_phase_shift', 74.0)\ncfg.set(branch+ 'CORPSE_pi_center_shift', 13e-9)\n\ncfg.set(branch+ 'pi2pi_mIm1_duration', tof + 395e-9)\ncfg.set(branch+ 'pi2pi_mIm1_amp', 0.164)\ncfg.set(branch+ 'pi2pi_mIm1_mod_frq', finit)\n\ncfg.set(branch+ 'pi2pi_mI0_duration', tof + 395e-9)\ncfg.set(branch+ 'pi2pi_mI0_amp', 0.170)\ncfg.set(branch+ 'pi2pi_mI0_mod_frq', f0)\n\ncfg.set(branch+ 'pi2pi_mIp1_duration', tof + 395e-9)\ncfg.set(branch+ 'pi2pi_mIp1_amp', 0.185)\ncfg.set(branch+ 'pi2pi_mIp1_mod_frq', fmIp1)\n\n\n### set some other pulses that determinine their values from the ones above\ncfg.set(branch+ 'AWG_N_CNOT_pulse_duration', \n cfg.get(branch+ 'pi2pi_mIm1_duration'))\ncfg.set(branch+ 'AWG_N_CNOT_pulse_amp', \n cfg.get(branch+ 'pi2pi_mIm1_amp'))\ncfg.set(branch+ 'AWG_N_CNOT_pulse_mod_frq', \n cfg.get(branch+ 'pi2pi_mIm1_mod_frq'))\n\ncfg.set(branch+ 'AWG_MBI_MW_pulse_mod_frq', \n finit)\ncfg.set(branch+ 'AWG_MBI_MW_pulse_amp', \n cfg.get(branch+ 'selective_pi_amp'))\ncfg.set(branch+ 'AWG_MBI_MW_pulse_duration', \n cfg.get(branch+ 'selective_pi_duration'))\n\ncfg.set(branch+ 'AWG_shelving_pulse_duration',\n cfg.get(branch+ '4MHz_pi_duration'))\ncfg.set(branch+ 'AWG_shelving_pulse_amp', \n cfg.get(branch+ '4MHz_pi_amp'))\n\n### Nitrogen pulses\ncfg.set(branch+ 'N_pi_duration', 91.1e-6)\ncfg.set(branch+ 'N_pi_amp', 1)\n\ncfg.set(branch+ 'N_pi2_duration', 91.1e-6/2.)\ncfg.set(branch+ 'N_pi2_amp', 1)\n\n##############################################################################\n### The111/2 - SSRO\n##############################################################################\n\nbranch='protocols/sil2-default/AdwinSSRO/' \ncfg.set(branch+ 'A_CR_amplitude', 10e-9)\ncfg.set(branch+ 'A_RO_amplitude', 0.)\ncfg.set(branch+ 'A_SP_amplitude', 10e-9)\ncfg.set(branch+ 'CR_duration', 100)\ncfg.set(branch+ 'CR_preselect', 40)\ncfg.set(branch+ 'CR_probe', 40)\ncfg.set(branch+ 'CR_repump', 1000)\ncfg.set(branch+ 'Ex_CR_amplitude', 5e-9)\ncfg.set(branch+ 'Ex_RO_amplitude', 5e-9)\ncfg.set(branch+ 'Ex_SP_amplitude', 0.)\ncfg.set(branch+ 'SP_duration', 250)\ncfg.set(branch+ 'SP_filter_duration', 0)\ncfg.set(branch+ 'SSRO_duration', 50)\ncfg.set(branch+ 'SSRO_repetitions', 1000)\ncfg.set(branch+ 'SSRO_stop_after_first_photon', 0)\n\n### integrated SSRO\ncfg.set('protocols/sil2-default/AdwinSSRO-integrated/SSRO_duration', 15)\n\n##############################################################################\n### The111/2 - MBI\n##############################################################################\n\nbranch='protocols/sil2-default/AdwinSSRO+MBI/'\ncfg.set(branch+ 'mw_frq', mw0)\ncfg.set(branch+ 'mw_power', 20)\ncfg.set(branch+ 'Ex_MBI_amplitude', 5e-9)\ncfg.set(branch+ 'Ex_SP_amplitude', 10e-9)\ncfg.set(branch+ 'MBI_duration', 4)\ncfg.set(branch+ 'max_MBI_attempts', 1)\ncfg.set(branch+ 'MBI_threshold', 1)\ncfg.set(branch+ 'SP_E_duration', 100)\ncfg.set(branch+ 'repump_after_MBI_duration', 100)\ncfg.set(branch+ 'repump_after_MBI_amplitude', 25e-9)\ncfg.set(branch+ 'repump_after_E_RO_duration', 100)\ncfg.set(branch+ 'repump_after_E_RO_amplitude', 25e-9)\n\n# MBI pulse\ncfg.set(branch+ 'AWG_wait_duration_before_MBI_MW_pulse', 50e-9)\ncfg.set(branch+ 'AWG_wait_for_adwin_MBI_duration', 15e-6)\n\n### sil2, BSM\ncfg.set('protocols/sil2-default/BSM/N_ref_frq', N_frq)\ncfg.set('protocols/sil2-default/BSM/e_ref_frq', finit)\n\n##############################################################################\n### HANS/1 --- Pulses\n##############################################################################\n\nbranch='protocols/hans-sil1-default/pulses/'\n\ncfg.set(branch+ 'selective_pi_duration', 2500e-9)\ncfg.set(branch+ 'selective_pi_amp', 0.015)\ncfg.set(branch+ 'selective_pi_mod_frq', finit)\ncfg.set(branch+ 'AWG_MBI_MW_pulse_mod_frq', \n finit)\ncfg.set(branch+ 'AWG_MBI_MW_pulse_ssbmod_frq',\n finit)\ncfg.set(branch+ 'AWG_MBI_MW_pulse_amp', \n cfg.get(branch+ 'selective_pi_amp'))\ncfg.set(branch+ 'AWG_MBI_MW_pulse_duration', \n cfg.get(branch+ 'selective_pi_duration'))\n\n##############################################################################\n### HANS/1 --- SSRO\n##############################################################################\n\nbranch='protocols/hans-sil1-default/AdwinSSRO/' \ncfg.set(branch+ 'A_CR_amplitude', 15e-9)\ncfg.set(branch+ 'A_RO_amplitude', 0.)\ncfg.set(branch+ 'A_SP_amplitude', 15e-9)\ncfg.set(branch+ 'CR_duration', 50)\ncfg.set(branch+ 'CR_preselect', 1000)\ncfg.set(branch+ 'CR_probe', 20)\ncfg.set(branch+ 'CR_repump', 1000)\ncfg.set(branch+ 'Ex_CR_amplitude', 5e-9)\ncfg.set(branch+ 'Ex_RO_amplitude', 5e-9)\ncfg.set(branch+ 'Ex_SP_amplitude', 0.)\ncfg.set(branch+ 'SP_duration', 250)\ncfg.set(branch+ 'SP_filter_duration', 0)\ncfg.set(branch+ 'SSRO_duration', 50)\ncfg.set(branch+ 'SSRO_repetitions', 5000)\ncfg.set(branch+ 'SSRO_stop_after_first_photon', 0)\n\ncfg.set('protocols/hans-sil1-default/AdwinSSRO-integrated/SSRO_duration', 15)\n\n##############################################################################\n### HANS/1 --- MBI\n##############################################################################\n\nbranch='protocols/hans-sil1-default/AdwinSSRO+MBI/'\ncfg.set(branch+ 'mw_frq', mw0)\ncfg.set(branch+ 'mw_power', 20)\ncfg.set(branch+ 'Ex_MBI_amplitude', 5e-9)\ncfg.set(branch+ 'Ex_SP_amplitude', 15e-9)\ncfg.set(branch+ 'MBI_duration', 4)\ncfg.set(branch+ 'max_MBI_attempts', 1)\ncfg.set(branch+ 'MBI_threshold', 1)\ncfg.set(branch+ 'SP_E_duration', 60)\ncfg.set(branch+ 'repump_after_MBI_duration', 15)\ncfg.set(branch+ 'repump_after_MBI_amplitude', 15e-9)\ncfg.set(branch+ 'repump_after_E_RO_duration', 15)\ncfg.set(branch+ 'repump_after_E_RO_amplitude', 15e-9)\n\n# MBI pulse\ncfg.set(branch+ 'AWG_wait_duration_before_MBI_MW_pulse', 50e-9)\ncfg.set(branch+ 'AWG_wait_for_adwin_MBI_duration', 15e-6)\n\n##############################################################################\n### HANS/7\n##############################################################################\n\nbranch='protocols/hans-sil7-default/AdwinSSRO/' \ncfg.set(branch+ 'A_CR_amplitude', 10e-9)\ncfg.set(branch+ 'A_RO_amplitude', 0.)\ncfg.set(branch+ 'A_SP_amplitude', 10e-9)\ncfg.set(branch+ 'CR_duration', 100)\ncfg.set(branch+ 'CR_preselect', 15)\ncfg.set(branch+ 'CR_probe', 5)\ncfg.set(branch+ 'CR_repump', 1000)\ncfg.set(branch+ 'Ex_CR_amplitude', 5e-9)\ncfg.set(branch+ 'Ex_RO_amplitude', 5e-9)\ncfg.set(branch+ 'Ex_SP_amplitude', 0.)\ncfg.set(branch+ 'SP_duration', 250)\ncfg.set(branch+ 'SP_filter_duration', 0)\ncfg.set(branch+ 'SSRO_duration', 50)\ncfg.set(branch+ 'SSRO_repetitions', 5000)\ncfg.set(branch+ 'SSRO_stop_after_first_photon', 0)\n\ncfg.set('protocols/hans-sil7-default/AdwinSSRO-integrated/SSRO_duration', 50)\n\"\"\"\n##############################################################################\n### HANS/4 --- SSRO\n##############################################################################\n\nbranch='protocols/hans-sil4-default/AdwinSSRO/' \ncfg.set(branch+ 'A_CR_amplitude', 5e-9)\ncfg.set(branch+ 'A_RO_amplitude', 0.)\ncfg.set(branch+ 'A_SP_amplitude', 60e-9)\ncfg.set(branch+ 'CR_duration', 50)\ncfg.set(branch+ 'CR_preselect', 1000)\ncfg.set(branch+ 'CR_probe', 20)\ncfg.set(branch+ 'CR_repump', 1000)\ncfg.set(branch+ 'Ex_CR_amplitude', 5e-9)\ncfg.set(branch+ 'Ex_RO_amplitude', 10e-9)\ncfg.set(branch+ 'Ex_SP_amplitude', 0.)\ncfg.set(branch+ 'SP_duration', 9)\ncfg.set(branch+ 'SP_filter_duration', 0)\ncfg.set(branch+ 'SSRO_duration', 10)\ncfg.set(branch+ 'SSRO_repetitions', 5000)\ncfg.set(branch+ 'SSRO_stop_after_first_photon', 0)\ncfg.set('protocols/hans-sil4-default/AdwinSSRO-integrated/SSRO_duration', 10)\n\ncfg.set('protocols/hans-sil4-default/AdwinSSRO+espin/mw_frq', mw0)\ncfg.set('protocols/hans-sil4-default/AdwinSSRO+espin/mw_power', 20)\n\n##############################################################################\n### HANS/4 --- MBI\n##############################################################################\n\nbranch='protocols/hans-sil4-default/AdwinSSRO+MBI/'\ncfg.set(branch+ 'mw_frq', mw0)\ncfg.set(branch+ 'mw_power', 20)\ncfg.set(branch+ 'Ex_MBI_amplitude', 5e-9)\ncfg.set(branch+ 'Ex_SP_amplitude', 10e-9)\ncfg.set(branch+ 'MBI_duration', 4)\ncfg.set(branch+ 'max_MBI_attempts', 1)\ncfg.set(branch+ 'MBI_threshold', 1)\ncfg.set(branch+ 'SP_E_duration', 100)\ncfg.set(branch+ 'repump_after_MBI_duration', 15)\ncfg.set(branch+ 'repump_after_MBI_A_amplitude', [5e-9])\ncfg.set(branch+ 'repump_after_MBI_E_amplitude', [0e-9])\ncfg.set(branch+ 'repump_after_E_RO_duration', 15)\ncfg.set(branch+ 'repump_after_E_RO_amplitude', 5e-9)\n\n# MBI pulse\ncfg.set(branch+ 'AWG_wait_duration_before_MBI_MW_pulse', 50e-9)\ncfg.set(branch+ 'AWG_wait_for_adwin_MBI_duration', 15e-6)\n\n### BSM\ncfg.set('protocols/hans-sil4-default/BSM/N_ref_frq', N_frq)\ncfg.set('protocols/hans-sil4-default/BSM/e_ref_frq', finit)\ncfg.set('protocols/hans-sil4-default/BSM/pi2_evolution_time', 51.086e-6)\ncfg.set('protocols/hans-sil4-default/BSM/H_evolution_time', 50.746e-6)\ncfg.set('protocols/hans-sil4-default/BSM/H_phase', 46)\n\n##############################################################################\n### HANS/4 --- Pulses\n##############################################################################\n\nbranch='protocols/hans-sil4-default/pulses/'\n\ncfg.set(branch+ 'selective_pi_duration', 2500e-9)\ncfg.set(branch+ 'selective_pi_amp', 0.011)\ncfg.set(branch+ 'selective_pi_mod_frq', finit)\ncfg.set(branch+ 'AWG_MBI_MW_pulse_mod_frq', \n finit)\ncfg.set(branch+ 'AWG_MBI_MW_pulse_ssbmod_frq',\n finit)\ncfg.set(branch+ 'AWG_MBI_MW_pulse_amp', \n cfg.get(branch+ 'selective_pi_amp'))\ncfg.set(branch+ 'AWG_MBI_MW_pulse_duration', \n cfg.get(branch+ 'selective_pi_duration'))\n\ncfg.set(branch+ 'fast_pi_duration', 62e-9)\ncfg.set(branch+ 'fast_pi_amp', 0.844)\ncfg.set(branch+ 'fast_pi_mod_frq', finit)\n\ncfg.set(branch+ 'fast_pi2_duration', 33e-9)\ncfg.set(branch+ 'fast_pi2_amp', 0.812)\ncfg.set(branch+ 'fast_pi2_mod_frq', finit)\n\n### CNOTs\ncfg.set(branch+ 'pi2pi_mIm1_duration', 396e-9)\ncfg.set(branch+ 'pi2pi_mIm1_amp', 0.083)\ncfg.set(branch+ 'pi2pi_mIm1_mod_frq', finit)\n\n### CORPSE used in the BSM\nCORPSE_frq = 7.5e6\ncfg.set(branch+ 'CORPSE_pi_60_duration', 1./CORPSE_frq/6.)\ncfg.set(branch+ 'CORPSE_pi_m300_duration', 5./CORPSE_frq/6.)\ncfg.set(branch+ 'CORPSE_pi_420_duration', 7./CORPSE_frq/6.)\ncfg.set(branch+ 'CORPSE_pi_mod_frq', finit + Nsplit/2.)\ncfg.set(branch+ 'CORPSE_pi_amp', 0.363)\ncfg.set(branch+ 'CORPSE_pi2_24p3_duration', 24.3/CORPSE_frq/360.)\ncfg.set(branch+ 'CORPSE_pi2_m318p6_duration', 318.6/CORPSE_frq/360.)\ncfg.set(branch+ 'CORPSE_pi2_384p3_duration', 384.3/CORPSE_frq/360.)\ncfg.set(branch+ 'CORPSE_pi2_mod_frq', f_msm1_cntr - mw0)\ncfg.set(branch+ 'CORPSE_pi2_amp', 0.55) ###not calibrated\n\"\"\"\n# ### TODO\ncfg.set(branch+ 'CORPSE_pi_phase_shift', 104.0)\n\n# ### TODO\ncfg.set(branch+ 'CORPSE_pi_center_shift', 0.e-9)\n\n### CORPSE for the full ms=-1 manifold, driven in the center \n### (resonant with mI = 0)\nCORPSE_frq = 8e6\ncfg.set(branch+ 'msm1_CORPSE_pi_60_duration', 1./CORPSE_frq/6.)\ncfg.set(branch+ 'msm1_CORPSE_pi_m300_duration', 5./CORPSE_frq/6.)\ncfg.set(branch+ 'msm1_CORPSE_pi_420_duration', 7./CORPSE_frq/6.)\ncfg.set(branch+ 'msm1_CORPSE_pi_mod_frq', f_msm1_cntr - mw0)\ncfg.set(branch+ 'msm1_CORPSE_pi_amp', 0.782)\n\ncfg.set(branch+ 'msm1_CORPSE_pi2_24p3_duration', 24.3/CORPSE_frq/360.)\ncfg.set(branch+ 'msm1_CORPSE_pi2_m318p6_duration', 318.6/CORPSE_frq/360.)\ncfg.set(branch+ 'msm1_CORPSE_pi2_384p3_duration', 384.3/CORPSE_frq/360.)\ncfg.set(branch+ 'msm1_CORPSE_pi2_mod_frq', f_msm1_cntr - mw0)\ncfg.set(branch+ 'msm1_CORPSE_pi2_amp', 0.818) ###not calibrated\n\ncfg.set(branch+ 'first_C_revival', 50.90e-6)\n\n### Nitrogen pulses\ncfg.set(branch+ 'N_pi_duration', 47.3e-6)\ncfg.set(branch+ 'N_pi_amp', 1)\n\ncfg.set(branch+ 'N_pi2_duration', 47.3e-6/2.)\ncfg.set(branch+ 'N_pi2_amp', 1)\n\n\"\"\"\n\n##############################################################################\n##############################################################################\n##############################################################################\n### DONE\n##############################################################################\n##############################################################################\n##############################################################################\n\ncfg.save_all()\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
from project import db from project.models import User, Recipe, Association, Ingre, Recipe_ingre user=User.query.filter_by(username="xiaofan").first() recipe=Recipe.query.filter_by(recipename="Jerry").first() recipes = Recipe.query.filter(Recipe.users.any(username="xiaofan")).all() if recipe not in recipes: user.add_recipes([recipe]) # commit the changes db.session.commit()
normal
{ "blob_id": "07f8fd305e2311c0e37a785da0a826b8ea4e78ba", "index": 4154, "step-1": "<mask token>\n", "step-2": "<mask token>\nif recipe not in recipes:\n user.add_recipes([recipe])\n db.session.commit()\n", "step-3": "<mask token>\nuser = User.query.filter_by(username='xiaofan').first()\nrecipe = Recipe.query.filter_by(recipename='Jerry').first()\nrecipes = Recipe.query.filter(Recipe.users.any(username='xiaofan')).all()\nif recipe not in recipes:\n user.add_recipes([recipe])\n db.session.commit()\n", "step-4": "from project import db\nfrom project.models import User, Recipe, Association, Ingre, Recipe_ingre\nuser = User.query.filter_by(username='xiaofan').first()\nrecipe = Recipe.query.filter_by(recipename='Jerry').first()\nrecipes = Recipe.query.filter(Recipe.users.any(username='xiaofan')).all()\nif recipe not in recipes:\n user.add_recipes([recipe])\n db.session.commit()\n", "step-5": "from project import db\nfrom project.models import User, Recipe, Association, Ingre, Recipe_ingre\n\n\n\n\nuser=User.query.filter_by(username=\"xiaofan\").first()\nrecipe=Recipe.query.filter_by(recipename=\"Jerry\").first()\nrecipes = Recipe.query.filter(Recipe.users.any(username=\"xiaofan\")).all()\n\nif recipe not in recipes:\n user.add_recipes([recipe])\n\n # commit the changes\n db.session.commit()\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import weakref from soma.controller import Controller from soma.functiontools import SomaPartial from traits.api import File, Undefined, Instance class MatlabConfig(Controller): executable = File(Undefined, output=False, desc='Full path of the matlab executable') def load_module(capsul_engine, module_name): capsul_engine.add_trait('matlab', Instance(MatlabConfig)) capsul_engine.matlab = MatlabConfig() capsul_engine.matlab.on_trait_change(SomaPartial(update_execution_context, weakref.proxy(capsul_engine))) def init_module(capul_engine, module_name, loaded_module): pass def update_execution_context(capsul_engine): if capsul_engine.matlab.executable is not Undefined: capsul_engine.execution_context.environ['MATLAB_EXECUTABLE'] \ = capsul_engine.matlab.executable
normal
{ "blob_id": "4a8e8994ec8734664a5965b81da9d146d8504f8d", "index": 6096, "step-1": "<mask token>\n\n\nclass MatlabConfig(Controller):\n <mask token>\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass MatlabConfig(Controller):\n executable = File(Undefined, output=False, desc=\n 'Full path of the matlab executable')\n\n\ndef load_module(capsul_engine, module_name):\n capsul_engine.add_trait('matlab', Instance(MatlabConfig))\n capsul_engine.matlab = MatlabConfig()\n capsul_engine.matlab.on_trait_change(SomaPartial(\n update_execution_context, weakref.proxy(capsul_engine)))\n\n\n<mask token>\n\n\ndef update_execution_context(capsul_engine):\n if capsul_engine.matlab.executable is not Undefined:\n capsul_engine.execution_context.environ['MATLAB_EXECUTABLE'\n ] = capsul_engine.matlab.executable\n", "step-3": "<mask token>\n\n\nclass MatlabConfig(Controller):\n executable = File(Undefined, output=False, desc=\n 'Full path of the matlab executable')\n\n\ndef load_module(capsul_engine, module_name):\n capsul_engine.add_trait('matlab', Instance(MatlabConfig))\n capsul_engine.matlab = MatlabConfig()\n capsul_engine.matlab.on_trait_change(SomaPartial(\n update_execution_context, weakref.proxy(capsul_engine)))\n\n\ndef init_module(capul_engine, module_name, loaded_module):\n pass\n\n\ndef update_execution_context(capsul_engine):\n if capsul_engine.matlab.executable is not Undefined:\n capsul_engine.execution_context.environ['MATLAB_EXECUTABLE'\n ] = capsul_engine.matlab.executable\n", "step-4": "import weakref\nfrom soma.controller import Controller\nfrom soma.functiontools import SomaPartial\nfrom traits.api import File, Undefined, Instance\n\n\nclass MatlabConfig(Controller):\n executable = File(Undefined, output=False, desc=\n 'Full path of the matlab executable')\n\n\ndef load_module(capsul_engine, module_name):\n capsul_engine.add_trait('matlab', Instance(MatlabConfig))\n capsul_engine.matlab = MatlabConfig()\n capsul_engine.matlab.on_trait_change(SomaPartial(\n update_execution_context, weakref.proxy(capsul_engine)))\n\n\ndef init_module(capul_engine, module_name, loaded_module):\n pass\n\n\ndef update_execution_context(capsul_engine):\n if capsul_engine.matlab.executable is not Undefined:\n capsul_engine.execution_context.environ['MATLAB_EXECUTABLE'\n ] = capsul_engine.matlab.executable\n", "step-5": "import weakref\n\nfrom soma.controller import Controller\nfrom soma.functiontools import SomaPartial\nfrom traits.api import File, Undefined, Instance\n\nclass MatlabConfig(Controller):\n executable = File(Undefined, output=False,\n desc='Full path of the matlab executable')\n \ndef load_module(capsul_engine, module_name):\n capsul_engine.add_trait('matlab', Instance(MatlabConfig))\n capsul_engine.matlab = MatlabConfig()\n capsul_engine.matlab.on_trait_change(SomaPartial(update_execution_context, \n weakref.proxy(capsul_engine)))\n\ndef init_module(capul_engine, module_name, loaded_module):\n pass\n\n\ndef update_execution_context(capsul_engine):\n if capsul_engine.matlab.executable is not Undefined:\n capsul_engine.execution_context.environ['MATLAB_EXECUTABLE'] \\\n = capsul_engine.matlab.executable\n\n", "step-ids": [ 1, 4, 5, 6, 7 ] }
[ 1, 4, 5, 6, 7 ]
#!/bin/python import numpy as np import os from sklearn.svm.classes import SVC import pickle import sys # Apply the SVM model to the testing videos; Output the score for each video if __name__ == '__main__': if len(sys.argv) != 5: print("Usage: {0} model_file feat_dir feat_dim output_file".format(sys.argv[0])) print("model_file -- path of the trained svm file") print("feat_dir -- dir of feature files") print("file_list_path -- path of list file (val.lst or test.lst)") print("output_file -- path to save the prediction score") exit(1) model_file = sys.argv[1] feat_dir = sys.argv[2] file_list_path = sys.argv[3] output_file = sys.argv[4] file_list = [] with open(file_list_path) as f: for line in f.readlines(): L = line.replace('\n', ' ').split() file_list.append(L[0]) smodel = pickle.load(open(model_file,"rb")) possible_results = ['NULL', 'P001','P002','P003'] pred = [] conf = [] print('SVM_MODEL: {}'.format(model_file)) for file in file_list: bow_file = feat_dir + 'bow' + file + '.pkl' if os.path.isfile(bow_file): with open(bow_file,'rb') as f: data = pickle.load(f) pred.extend(smodel.predict([data])) conf.extend(smodel.decision_function([data])) else: pred.extend(['NULL']) conf.extend([[1, 0, 0, 0]]) print('NUM PREDICTION TO TEST: {}'.format(len(pred))) with open(output_file,'w') as f: for i in range(0, len(file_list)): video = file_list[i] f.write(str(video) + ' ' + pred[i] + '\n') for i in range(1,4): # tmp = np.asarray(pred) # template = np.zeros(np.size(tmp)) # with open(possible_results[i] +'_val','w') as f: # ind = np.where(tmp == possible_results[i]) # for j in range(0, len(ind)): # template[ind[j]] = 1 # for j in range(0, len(template)): # f.write(str(int(template[j])) +'\n') print(output_file[0:-4]+'_'+possible_results[i] +'_val_label') with open(output_file[0:-4]+'_'+possible_results[i] +'_val_label','w') as f: for j in range(0, len(pred)): video = file_list[j] if j< len(pred)-1: f.write(str(conf[j][i])+' # confidence for video ' + video + '\n') else: f.write(str(conf[j][i])+' # confidence for video ' + video + '\n')
normal
{ "blob_id": "385dccfab4d7c37d10d968658b51e231691a7b49", "index": 1556, "step-1": "<mask token>\n", "step-2": "<mask token>\nif __name__ == '__main__':\n if len(sys.argv) != 5:\n print('Usage: {0} model_file feat_dir feat_dim output_file'.format(\n sys.argv[0]))\n print('model_file -- path of the trained svm file')\n print('feat_dir -- dir of feature files')\n print('file_list_path -- path of list file (val.lst or test.lst)')\n print('output_file -- path to save the prediction score')\n exit(1)\n model_file = sys.argv[1]\n feat_dir = sys.argv[2]\n file_list_path = sys.argv[3]\n output_file = sys.argv[4]\n file_list = []\n with open(file_list_path) as f:\n for line in f.readlines():\n L = line.replace('\\n', ' ').split()\n file_list.append(L[0])\n smodel = pickle.load(open(model_file, 'rb'))\n possible_results = ['NULL', 'P001', 'P002', 'P003']\n pred = []\n conf = []\n print('SVM_MODEL: {}'.format(model_file))\n for file in file_list:\n bow_file = feat_dir + 'bow' + file + '.pkl'\n if os.path.isfile(bow_file):\n with open(bow_file, 'rb') as f:\n data = pickle.load(f)\n pred.extend(smodel.predict([data]))\n conf.extend(smodel.decision_function([data]))\n else:\n pred.extend(['NULL'])\n conf.extend([[1, 0, 0, 0]])\n print('NUM PREDICTION TO TEST: {}'.format(len(pred)))\n with open(output_file, 'w') as f:\n for i in range(0, len(file_list)):\n video = file_list[i]\n f.write(str(video) + ' ' + pred[i] + '\\n')\n for i in range(1, 4):\n print(output_file[0:-4] + '_' + possible_results[i] + '_val_label')\n with open(output_file[0:-4] + '_' + possible_results[i] +\n '_val_label', 'w') as f:\n for j in range(0, len(pred)):\n video = file_list[j]\n if j < len(pred) - 1:\n f.write(str(conf[j][i]) + ' # confidence for video ' +\n video + '\\n')\n else:\n f.write(str(conf[j][i]) + ' # confidence for video ' +\n video + '\\n')\n", "step-3": "import numpy as np\nimport os\nfrom sklearn.svm.classes import SVC\nimport pickle\nimport sys\nif __name__ == '__main__':\n if len(sys.argv) != 5:\n print('Usage: {0} model_file feat_dir feat_dim output_file'.format(\n sys.argv[0]))\n print('model_file -- path of the trained svm file')\n print('feat_dir -- dir of feature files')\n print('file_list_path -- path of list file (val.lst or test.lst)')\n print('output_file -- path to save the prediction score')\n exit(1)\n model_file = sys.argv[1]\n feat_dir = sys.argv[2]\n file_list_path = sys.argv[3]\n output_file = sys.argv[4]\n file_list = []\n with open(file_list_path) as f:\n for line in f.readlines():\n L = line.replace('\\n', ' ').split()\n file_list.append(L[0])\n smodel = pickle.load(open(model_file, 'rb'))\n possible_results = ['NULL', 'P001', 'P002', 'P003']\n pred = []\n conf = []\n print('SVM_MODEL: {}'.format(model_file))\n for file in file_list:\n bow_file = feat_dir + 'bow' + file + '.pkl'\n if os.path.isfile(bow_file):\n with open(bow_file, 'rb') as f:\n data = pickle.load(f)\n pred.extend(smodel.predict([data]))\n conf.extend(smodel.decision_function([data]))\n else:\n pred.extend(['NULL'])\n conf.extend([[1, 0, 0, 0]])\n print('NUM PREDICTION TO TEST: {}'.format(len(pred)))\n with open(output_file, 'w') as f:\n for i in range(0, len(file_list)):\n video = file_list[i]\n f.write(str(video) + ' ' + pred[i] + '\\n')\n for i in range(1, 4):\n print(output_file[0:-4] + '_' + possible_results[i] + '_val_label')\n with open(output_file[0:-4] + '_' + possible_results[i] +\n '_val_label', 'w') as f:\n for j in range(0, len(pred)):\n video = file_list[j]\n if j < len(pred) - 1:\n f.write(str(conf[j][i]) + ' # confidence for video ' +\n video + '\\n')\n else:\n f.write(str(conf[j][i]) + ' # confidence for video ' +\n video + '\\n')\n", "step-4": "#!/bin/python \n\nimport numpy as np\nimport os\nfrom sklearn.svm.classes import SVC\nimport pickle\nimport sys\n\n# Apply the SVM model to the testing videos; Output the score for each video\n\nif __name__ == '__main__':\n if len(sys.argv) != 5:\n print(\"Usage: {0} model_file feat_dir feat_dim output_file\".format(sys.argv[0]))\n print(\"model_file -- path of the trained svm file\")\n print(\"feat_dir -- dir of feature files\")\n print(\"file_list_path -- path of list file (val.lst or test.lst)\")\n print(\"output_file -- path to save the prediction score\")\n exit(1)\n\n model_file = sys.argv[1]\n feat_dir = sys.argv[2]\n file_list_path = sys.argv[3]\n output_file = sys.argv[4]\n \n file_list = []\n with open(file_list_path) as f:\n for line in f.readlines():\n L = line.replace('\\n', ' ').split()\n file_list.append(L[0])\n \n smodel = pickle.load(open(model_file,\"rb\"))\n possible_results = ['NULL', 'P001','P002','P003'] \n \n pred = []\n conf = []\n print('SVM_MODEL: {}'.format(model_file))\n for file in file_list:\n bow_file = feat_dir + 'bow' + file + '.pkl'\n if os.path.isfile(bow_file):\n with open(bow_file,'rb') as f:\n data = pickle.load(f)\n pred.extend(smodel.predict([data]))\n conf.extend(smodel.decision_function([data]))\n else:\n pred.extend(['NULL'])\n conf.extend([[1, 0, 0, 0]])\n \n print('NUM PREDICTION TO TEST: {}'.format(len(pred)))\n\n \n with open(output_file,'w') as f:\n for i in range(0, len(file_list)):\n video = file_list[i]\n f.write(str(video) + ' ' + pred[i] + '\\n')\n \n for i in range(1,4):\n# tmp = np.asarray(pred)\n# template = np.zeros(np.size(tmp))\n# with open(possible_results[i] +'_val','w') as f:\n# ind = np.where(tmp == possible_results[i])\n# for j in range(0, len(ind)):\n# template[ind[j]] = 1\n# for j in range(0, len(template)):\n# f.write(str(int(template[j])) +'\\n')\n \n print(output_file[0:-4]+'_'+possible_results[i] +'_val_label')\n with open(output_file[0:-4]+'_'+possible_results[i] +'_val_label','w') as f:\n for j in range(0, len(pred)):\n video = file_list[j]\n if j< len(pred)-1:\n f.write(str(conf[j][i])+' # confidence for video ' + video + '\\n')\n else:\n f.write(str(conf[j][i])+' # confidence for video ' + video + '\\n')\n\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
from django.http import HttpResponseRedirect from django.shortcuts import render from django.views.generic import TemplateView from pos.service.sumup import API_URL, create_checkout from pos.models.sumup import SumUpAPIKey, SumUpOnline from pos.forms import RemotePayForm from pos.models.user import User class RemotePayView(TemplateView): template_name = 'remotepay/pay.djhtml' def pay(request): if request.method == 'POST': form = RemotePayForm(request.POST) if form.is_valid(): phone = form.cleaned_data['phone'] amount = form.cleaned_data['amount'] # Check if user exists try: user = User.objects.get(phone=phone, is_crew=False) except User.DoesNotExist: return render(request, 'remotepay/pay.djhtml', {'form': form, 'error': True}) # Assuming the user exists, we proceed t = SumUpOnline.objects.create(user=user, amount=amount) try: txid = create_checkout(SumUpAPIKey.objects.all().last(), t.id, t.amount, user.phone) t.transaction_id = txid t.status = 1 t.save() return render(request, 'remotepay/process.djhtml', {'txid': txid, 'phone': phone, 'amount': amount}) except: return render(request, 'remotepay/pay.djhtml', {'form': form, 'systemerror': True}) else: form = RemotePayForm return render(request, 'remotepay/pay.djhtml', {'form': form}) def pay_callback(request, checkoutid): # Get the status of the transaction for the user t = SumUpOnline.objects.get(transaction_id=checkoutid) if (t.status == 0 or t.status == 3): return HttpResponseRedirect('/pay/error/') elif (t.status == 4): return HttpResponseRedirect('/pay/success/') elif (t.status == 1) or (t.status == 2): return render(request, 'remotepay/hold.djhtml', {'checkoutid': checkoutid}) def pay_success(request): return render(request, 'remotepay/success.djhtml') def pay_error(request): return render(request, 'remotepay/error.djhtml') def pay_hold(request): return render(request, 'remotepay/hold.djhtml')
normal
{ "blob_id": "731d2891bbc29879fd8900a11077c93550e4e88d", "index": 4251, "step-1": "<mask token>\n\n\nclass RemotePayView(TemplateView):\n template_name = 'remotepay/pay.djhtml'\n\n\n<mask token>\n\n\ndef pay_callback(request, checkoutid):\n t = SumUpOnline.objects.get(transaction_id=checkoutid)\n if t.status == 0 or t.status == 3:\n return HttpResponseRedirect('/pay/error/')\n elif t.status == 4:\n return HttpResponseRedirect('/pay/success/')\n elif t.status == 1 or t.status == 2:\n return render(request, 'remotepay/hold.djhtml', {'checkoutid':\n checkoutid})\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass RemotePayView(TemplateView):\n template_name = 'remotepay/pay.djhtml'\n\n\n<mask token>\n\n\ndef pay_callback(request, checkoutid):\n t = SumUpOnline.objects.get(transaction_id=checkoutid)\n if t.status == 0 or t.status == 3:\n return HttpResponseRedirect('/pay/error/')\n elif t.status == 4:\n return HttpResponseRedirect('/pay/success/')\n elif t.status == 1 or t.status == 2:\n return render(request, 'remotepay/hold.djhtml', {'checkoutid':\n checkoutid})\n\n\ndef pay_success(request):\n return render(request, 'remotepay/success.djhtml')\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass RemotePayView(TemplateView):\n template_name = 'remotepay/pay.djhtml'\n\n\ndef pay(request):\n if request.method == 'POST':\n form = RemotePayForm(request.POST)\n if form.is_valid():\n phone = form.cleaned_data['phone']\n amount = form.cleaned_data['amount']\n try:\n user = User.objects.get(phone=phone, is_crew=False)\n except User.DoesNotExist:\n return render(request, 'remotepay/pay.djhtml', {'form':\n form, 'error': True})\n t = SumUpOnline.objects.create(user=user, amount=amount)\n try:\n txid = create_checkout(SumUpAPIKey.objects.all().last(), t.\n id, t.amount, user.phone)\n t.transaction_id = txid\n t.status = 1\n t.save()\n return render(request, 'remotepay/process.djhtml', {'txid':\n txid, 'phone': phone, 'amount': amount})\n except:\n return render(request, 'remotepay/pay.djhtml', {'form':\n form, 'systemerror': True})\n else:\n form = RemotePayForm\n return render(request, 'remotepay/pay.djhtml', {'form': form})\n\n\ndef pay_callback(request, checkoutid):\n t = SumUpOnline.objects.get(transaction_id=checkoutid)\n if t.status == 0 or t.status == 3:\n return HttpResponseRedirect('/pay/error/')\n elif t.status == 4:\n return HttpResponseRedirect('/pay/success/')\n elif t.status == 1 or t.status == 2:\n return render(request, 'remotepay/hold.djhtml', {'checkoutid':\n checkoutid})\n\n\ndef pay_success(request):\n return render(request, 'remotepay/success.djhtml')\n\n\ndef pay_error(request):\n return render(request, 'remotepay/error.djhtml')\n\n\ndef pay_hold(request):\n return render(request, 'remotepay/hold.djhtml')\n", "step-4": "from django.http import HttpResponseRedirect\nfrom django.shortcuts import render\nfrom django.views.generic import TemplateView\nfrom pos.service.sumup import API_URL, create_checkout\nfrom pos.models.sumup import SumUpAPIKey, SumUpOnline\nfrom pos.forms import RemotePayForm\nfrom pos.models.user import User\n\n\nclass RemotePayView(TemplateView):\n template_name = 'remotepay/pay.djhtml'\n\n\ndef pay(request):\n if request.method == 'POST':\n form = RemotePayForm(request.POST)\n if form.is_valid():\n phone = form.cleaned_data['phone']\n amount = form.cleaned_data['amount']\n try:\n user = User.objects.get(phone=phone, is_crew=False)\n except User.DoesNotExist:\n return render(request, 'remotepay/pay.djhtml', {'form':\n form, 'error': True})\n t = SumUpOnline.objects.create(user=user, amount=amount)\n try:\n txid = create_checkout(SumUpAPIKey.objects.all().last(), t.\n id, t.amount, user.phone)\n t.transaction_id = txid\n t.status = 1\n t.save()\n return render(request, 'remotepay/process.djhtml', {'txid':\n txid, 'phone': phone, 'amount': amount})\n except:\n return render(request, 'remotepay/pay.djhtml', {'form':\n form, 'systemerror': True})\n else:\n form = RemotePayForm\n return render(request, 'remotepay/pay.djhtml', {'form': form})\n\n\ndef pay_callback(request, checkoutid):\n t = SumUpOnline.objects.get(transaction_id=checkoutid)\n if t.status == 0 or t.status == 3:\n return HttpResponseRedirect('/pay/error/')\n elif t.status == 4:\n return HttpResponseRedirect('/pay/success/')\n elif t.status == 1 or t.status == 2:\n return render(request, 'remotepay/hold.djhtml', {'checkoutid':\n checkoutid})\n\n\ndef pay_success(request):\n return render(request, 'remotepay/success.djhtml')\n\n\ndef pay_error(request):\n return render(request, 'remotepay/error.djhtml')\n\n\ndef pay_hold(request):\n return render(request, 'remotepay/hold.djhtml')\n", "step-5": "from django.http import HttpResponseRedirect\nfrom django.shortcuts import render\nfrom django.views.generic import TemplateView\nfrom pos.service.sumup import API_URL, create_checkout\nfrom pos.models.sumup import SumUpAPIKey, SumUpOnline\n\nfrom pos.forms import RemotePayForm\nfrom pos.models.user import User\n\n\nclass RemotePayView(TemplateView):\n template_name = 'remotepay/pay.djhtml'\n\n\ndef pay(request):\n if request.method == 'POST':\n form = RemotePayForm(request.POST)\n\n if form.is_valid():\n phone = form.cleaned_data['phone']\n amount = form.cleaned_data['amount']\n # Check if user exists\n try:\n user = User.objects.get(phone=phone, is_crew=False)\n except User.DoesNotExist:\n return render(request, 'remotepay/pay.djhtml', {'form': form, 'error': True})\n\n # Assuming the user exists, we proceed\n t = SumUpOnline.objects.create(user=user, amount=amount)\n\n try:\n txid = create_checkout(SumUpAPIKey.objects.all().last(), t.id, t.amount, user.phone)\n t.transaction_id = txid\n t.status = 1\n t.save()\n return render(request, 'remotepay/process.djhtml', {'txid': txid, 'phone': phone, 'amount': amount})\n except:\n return render(request, 'remotepay/pay.djhtml', {'form': form, 'systemerror': True})\n\n else:\n form = RemotePayForm\n\n return render(request, 'remotepay/pay.djhtml', {'form': form})\n\ndef pay_callback(request, checkoutid):\n # Get the status of the transaction for the user\n t = SumUpOnline.objects.get(transaction_id=checkoutid)\n\n if (t.status == 0 or t.status == 3):\n return HttpResponseRedirect('/pay/error/')\n elif (t.status == 4):\n return HttpResponseRedirect('/pay/success/')\n elif (t.status == 1) or (t.status == 2):\n return render(request, 'remotepay/hold.djhtml', {'checkoutid': checkoutid})\n\n\ndef pay_success(request):\n return render(request, 'remotepay/success.djhtml')\n\n\ndef pay_error(request):\n return render(request, 'remotepay/error.djhtml')\n\n\ndef pay_hold(request):\n return render(request, 'remotepay/hold.djhtml')\n", "step-ids": [ 3, 4, 7, 8, 9 ] }
[ 3, 4, 7, 8, 9 ]
class Circle(): def __init__(self, radius, color="white"): self.radius = radius self.color = color c1 = Circle(10, "black") print("半径:{}, 色: {}".format(c1.radius, c1.color))
normal
{ "blob_id": "6ce50552571594c7be77ac0bf3b5274f2f39e545", "index": 5086, "step-1": "class Circle:\n <mask token>\n\n\n<mask token>\n", "step-2": "class Circle:\n\n def __init__(self, radius, color='white'):\n self.radius = radius\n self.color = color\n\n\n<mask token>\n", "step-3": "class Circle:\n\n def __init__(self, radius, color='white'):\n self.radius = radius\n self.color = color\n\n\n<mask token>\nprint('半径:{}, 色: {}'.format(c1.radius, c1.color))\n", "step-4": "class Circle:\n\n def __init__(self, radius, color='white'):\n self.radius = radius\n self.color = color\n\n\nc1 = Circle(10, 'black')\nprint('半径:{}, 色: {}'.format(c1.radius, c1.color))\n", "step-5": "class Circle():\n def __init__(self, radius, color=\"white\"):\n self.radius = radius\n self.color = color\n \nc1 = Circle(10, \"black\")\nprint(\"半径:{}, 色: {}\".format(c1.radius, c1.color))", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
""" Generates a temperature celsius to fahrenheit conversion table AT 11-10-2018 """ __author__ = "Aspen Thompson" header = "| Celsius | Fahrenheit |" line = "-" * len(header) print("{0}\n{1}\n{0}".format(line, header)) for i in range(-10, 31): print("| {:^7} | {:^10.10} |".format(i, i * 1.8 + 32))
normal
{ "blob_id": "591d0a166af5b8d0bed851c2f56ecc3da4f3a5eb", "index": 4367, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint('{0}\\n{1}\\n{0}'.format(line, header))\nfor i in range(-10, 31):\n print('| {:^7} | {:^10.10} |'.format(i, i * 1.8 + 32))\n", "step-3": "<mask token>\n__author__ = 'Aspen Thompson'\nheader = '| Celsius | Fahrenheit |'\nline = '-' * len(header)\nprint('{0}\\n{1}\\n{0}'.format(line, header))\nfor i in range(-10, 31):\n print('| {:^7} | {:^10.10} |'.format(i, i * 1.8 + 32))\n", "step-4": "\"\"\"\nGenerates a temperature celsius to fahrenheit conversion table\n\nAT\n11-10-2018\n\"\"\"\n\n__author__ = \"Aspen Thompson\"\n\nheader = \"| Celsius | Fahrenheit |\"\nline = \"-\" * len(header)\nprint(\"{0}\\n{1}\\n{0}\".format(line, header))\n\nfor i in range(-10, 31):\n print(\"| {:^7} | {:^10.10} |\".format(i, i * 1.8 + 32))\n\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
from django.conf import settings from django.contrib.sites.models import RequestSite from django.contrib.sites.models import Site from fish.labinterface.models import * from registration import signals from registration.forms import RegistrationForm from registration.models import RegistrationProfile from labinterface.models import StaffMember class CustomRegistrationBackend(object): def register(self, request, **kwargs): username, email, password = kwargs['username'], kwargs['email'], kwargs['password1'] if Site._meta.installed: site = Site.objects.get_current() else: site = RequestSite(request) new_user = RegistrationProfile.objects.create_inactive_user(username, email, password, site) signals.user_registered.send(sender=self.__class__, user=new_user, request=request) new_profile = StaffMember.objects.get(user=new_user) new_profile.first_name=kwargs['first_name'] new_profile.last_name=kwargs['last_name'] new_profile.position=kwargs['position'] new_profile.save() return new_user def activate(self, request, activation_key): activated = RegistrationProfile.objects.activate_user(activation_key) if activated: signals.user_activated.send(sender=self.__class__, user=activated, request=request) return activated def registration_allowed(self, request): """ Indicate whether account registration is currently permitted, based on the value of the setting ``REGISTRATION_OPEN``. This is determined as follows: * If ``REGISTRATION_OPEN`` is not specified in settings, or is set to ``True``, registration is permitted. * If ``REGISTRATION_OPEN`` is both specified and set to ``False``, registration is not permitted. """ return getattr(settings, 'REGISTRATION_OPEN', True) def get_form_class(self, request): """ Return the default form class used for user registration. """ return RegistrationForm def post_registration_redirect(self, request, user): """ Return the name of the URL to redirect to after successful user registration. """ return ('registration_complete', (), {}) def post_activation_redirect(self, request, user): """ Return the name of the URL to redirect to after successful account activation. """ newMember = StaffMember.objects.filter(user_id__exact=user.pk).get() labGroup = LabGroup.objects.filter(pk=1).get() newMember.lab_group = labGroup newMember.save() return ('registration_activation_complete', (), {})
normal
{ "blob_id": "201279c0cba2d52b6863204bfadb6291a0065f60", "index": 3961, "step-1": "<mask token>\n\n\nclass CustomRegistrationBackend(object):\n <mask token>\n\n def activate(self, request, activation_key):\n activated = RegistrationProfile.objects.activate_user(activation_key)\n if activated:\n signals.user_activated.send(sender=self.__class__, user=\n activated, request=request)\n return activated\n\n def registration_allowed(self, request):\n \"\"\"\n\t\tIndicate whether account registration is currently permitted,\n\t\tbased on the value of the setting ``REGISTRATION_OPEN``. This\n\t\tis determined as follows:\n\n\t\t* If ``REGISTRATION_OPEN`` is not specified in settings, or is\n\t\tset to ``True``, registration is permitted.\n\n\t\t* If ``REGISTRATION_OPEN`` is both specified and set to\n\t\t``False``, registration is not permitted.\n\t\t\n\t\t\"\"\"\n return getattr(settings, 'REGISTRATION_OPEN', True)\n\n def get_form_class(self, request):\n \"\"\"\n\t\tReturn the default form class used for user registration.\n\t\t\n\t\t\"\"\"\n return RegistrationForm\n\n def post_registration_redirect(self, request, user):\n \"\"\"\n\t\tReturn the name of the URL to redirect to after successful\n\t\tuser registration.\n\t\t\n\t\t\"\"\"\n return 'registration_complete', (), {}\n <mask token>\n", "step-2": "<mask token>\n\n\nclass CustomRegistrationBackend(object):\n\n def register(self, request, **kwargs):\n username, email, password = kwargs['username'], kwargs['email'\n ], kwargs['password1']\n if Site._meta.installed:\n site = Site.objects.get_current()\n else:\n site = RequestSite(request)\n new_user = RegistrationProfile.objects.create_inactive_user(username,\n email, password, site)\n signals.user_registered.send(sender=self.__class__, user=new_user,\n request=request)\n new_profile = StaffMember.objects.get(user=new_user)\n new_profile.first_name = kwargs['first_name']\n new_profile.last_name = kwargs['last_name']\n new_profile.position = kwargs['position']\n new_profile.save()\n return new_user\n\n def activate(self, request, activation_key):\n activated = RegistrationProfile.objects.activate_user(activation_key)\n if activated:\n signals.user_activated.send(sender=self.__class__, user=\n activated, request=request)\n return activated\n\n def registration_allowed(self, request):\n \"\"\"\n\t\tIndicate whether account registration is currently permitted,\n\t\tbased on the value of the setting ``REGISTRATION_OPEN``. This\n\t\tis determined as follows:\n\n\t\t* If ``REGISTRATION_OPEN`` is not specified in settings, or is\n\t\tset to ``True``, registration is permitted.\n\n\t\t* If ``REGISTRATION_OPEN`` is both specified and set to\n\t\t``False``, registration is not permitted.\n\t\t\n\t\t\"\"\"\n return getattr(settings, 'REGISTRATION_OPEN', True)\n\n def get_form_class(self, request):\n \"\"\"\n\t\tReturn the default form class used for user registration.\n\t\t\n\t\t\"\"\"\n return RegistrationForm\n\n def post_registration_redirect(self, request, user):\n \"\"\"\n\t\tReturn the name of the URL to redirect to after successful\n\t\tuser registration.\n\t\t\n\t\t\"\"\"\n return 'registration_complete', (), {}\n <mask token>\n", "step-3": "<mask token>\n\n\nclass CustomRegistrationBackend(object):\n\n def register(self, request, **kwargs):\n username, email, password = kwargs['username'], kwargs['email'\n ], kwargs['password1']\n if Site._meta.installed:\n site = Site.objects.get_current()\n else:\n site = RequestSite(request)\n new_user = RegistrationProfile.objects.create_inactive_user(username,\n email, password, site)\n signals.user_registered.send(sender=self.__class__, user=new_user,\n request=request)\n new_profile = StaffMember.objects.get(user=new_user)\n new_profile.first_name = kwargs['first_name']\n new_profile.last_name = kwargs['last_name']\n new_profile.position = kwargs['position']\n new_profile.save()\n return new_user\n\n def activate(self, request, activation_key):\n activated = RegistrationProfile.objects.activate_user(activation_key)\n if activated:\n signals.user_activated.send(sender=self.__class__, user=\n activated, request=request)\n return activated\n\n def registration_allowed(self, request):\n \"\"\"\n\t\tIndicate whether account registration is currently permitted,\n\t\tbased on the value of the setting ``REGISTRATION_OPEN``. This\n\t\tis determined as follows:\n\n\t\t* If ``REGISTRATION_OPEN`` is not specified in settings, or is\n\t\tset to ``True``, registration is permitted.\n\n\t\t* If ``REGISTRATION_OPEN`` is both specified and set to\n\t\t``False``, registration is not permitted.\n\t\t\n\t\t\"\"\"\n return getattr(settings, 'REGISTRATION_OPEN', True)\n\n def get_form_class(self, request):\n \"\"\"\n\t\tReturn the default form class used for user registration.\n\t\t\n\t\t\"\"\"\n return RegistrationForm\n\n def post_registration_redirect(self, request, user):\n \"\"\"\n\t\tReturn the name of the URL to redirect to after successful\n\t\tuser registration.\n\t\t\n\t\t\"\"\"\n return 'registration_complete', (), {}\n\n def post_activation_redirect(self, request, user):\n \"\"\"\n\t\tReturn the name of the URL to redirect to after successful\n\t\taccount activation.\n\t\t\n\t\t\"\"\"\n newMember = StaffMember.objects.filter(user_id__exact=user.pk).get()\n labGroup = LabGroup.objects.filter(pk=1).get()\n newMember.lab_group = labGroup\n newMember.save()\n return 'registration_activation_complete', (), {}\n", "step-4": "from django.conf import settings\nfrom django.contrib.sites.models import RequestSite\nfrom django.contrib.sites.models import Site\nfrom fish.labinterface.models import *\nfrom registration import signals\nfrom registration.forms import RegistrationForm\nfrom registration.models import RegistrationProfile\nfrom labinterface.models import StaffMember\n\n\nclass CustomRegistrationBackend(object):\n\n def register(self, request, **kwargs):\n username, email, password = kwargs['username'], kwargs['email'\n ], kwargs['password1']\n if Site._meta.installed:\n site = Site.objects.get_current()\n else:\n site = RequestSite(request)\n new_user = RegistrationProfile.objects.create_inactive_user(username,\n email, password, site)\n signals.user_registered.send(sender=self.__class__, user=new_user,\n request=request)\n new_profile = StaffMember.objects.get(user=new_user)\n new_profile.first_name = kwargs['first_name']\n new_profile.last_name = kwargs['last_name']\n new_profile.position = kwargs['position']\n new_profile.save()\n return new_user\n\n def activate(self, request, activation_key):\n activated = RegistrationProfile.objects.activate_user(activation_key)\n if activated:\n signals.user_activated.send(sender=self.__class__, user=\n activated, request=request)\n return activated\n\n def registration_allowed(self, request):\n \"\"\"\n\t\tIndicate whether account registration is currently permitted,\n\t\tbased on the value of the setting ``REGISTRATION_OPEN``. This\n\t\tis determined as follows:\n\n\t\t* If ``REGISTRATION_OPEN`` is not specified in settings, or is\n\t\tset to ``True``, registration is permitted.\n\n\t\t* If ``REGISTRATION_OPEN`` is both specified and set to\n\t\t``False``, registration is not permitted.\n\t\t\n\t\t\"\"\"\n return getattr(settings, 'REGISTRATION_OPEN', True)\n\n def get_form_class(self, request):\n \"\"\"\n\t\tReturn the default form class used for user registration.\n\t\t\n\t\t\"\"\"\n return RegistrationForm\n\n def post_registration_redirect(self, request, user):\n \"\"\"\n\t\tReturn the name of the URL to redirect to after successful\n\t\tuser registration.\n\t\t\n\t\t\"\"\"\n return 'registration_complete', (), {}\n\n def post_activation_redirect(self, request, user):\n \"\"\"\n\t\tReturn the name of the URL to redirect to after successful\n\t\taccount activation.\n\t\t\n\t\t\"\"\"\n newMember = StaffMember.objects.filter(user_id__exact=user.pk).get()\n labGroup = LabGroup.objects.filter(pk=1).get()\n newMember.lab_group = labGroup\n newMember.save()\n return 'registration_activation_complete', (), {}\n", "step-5": "from django.conf import settings\nfrom django.contrib.sites.models import RequestSite\nfrom django.contrib.sites.models import Site\n\nfrom fish.labinterface.models import *\n\nfrom registration import signals\nfrom registration.forms import RegistrationForm\nfrom registration.models import RegistrationProfile\nfrom labinterface.models import StaffMember\n\n\nclass CustomRegistrationBackend(object):\n\tdef register(self, request, **kwargs):\n\t\tusername, email, password = kwargs['username'], kwargs['email'], kwargs['password1']\n\t\tif Site._meta.installed:\n\t\t\tsite = Site.objects.get_current()\n\t\telse:\n\t\t\tsite = RequestSite(request)\n\t\tnew_user = RegistrationProfile.objects.create_inactive_user(username, email, password, site)\n\t\tsignals.user_registered.send(sender=self.__class__, user=new_user, request=request)\n\t\tnew_profile = StaffMember.objects.get(user=new_user)\n\t\tnew_profile.first_name=kwargs['first_name']\n\t\tnew_profile.last_name=kwargs['last_name']\n\t\tnew_profile.position=kwargs['position']\n\t\tnew_profile.save()\n\t\treturn new_user\n\tdef activate(self, request, activation_key):\n\t\tactivated = RegistrationProfile.objects.activate_user(activation_key)\n\t\tif activated:\n\t\t\tsignals.user_activated.send(sender=self.__class__,\n\t\t\t\t\t\t\t\t\t\tuser=activated,\n\t\t\t\t\t\t\t\t\t\trequest=request)\n\t\treturn activated\n\n\tdef registration_allowed(self, request):\n\t\t\"\"\"\n\t\tIndicate whether account registration is currently permitted,\n\t\tbased on the value of the setting ``REGISTRATION_OPEN``. This\n\t\tis determined as follows:\n\n\t\t* If ``REGISTRATION_OPEN`` is not specified in settings, or is\n\t\tset to ``True``, registration is permitted.\n\n\t\t* If ``REGISTRATION_OPEN`` is both specified and set to\n\t\t``False``, registration is not permitted.\n\t\t\n\t\t\"\"\"\n\t\treturn getattr(settings, 'REGISTRATION_OPEN', True)\n\n\tdef get_form_class(self, request):\n\t\t\"\"\"\n\t\tReturn the default form class used for user registration.\n\t\t\n\t\t\"\"\"\n\t\treturn RegistrationForm\n\n\tdef post_registration_redirect(self, request, user):\n\t\t\"\"\"\n\t\tReturn the name of the URL to redirect to after successful\n\t\tuser registration.\n\t\t\n\t\t\"\"\"\n\t\treturn ('registration_complete', (), {})\n\n\tdef post_activation_redirect(self, request, user):\n\t\t\"\"\"\n\t\tReturn the name of the URL to redirect to after successful\n\t\taccount activation.\n\t\t\n\t\t\"\"\"\n\t\tnewMember = StaffMember.objects.filter(user_id__exact=user.pk).get()\n\t\tlabGroup = LabGroup.objects.filter(pk=1).get()\n\t\tnewMember.lab_group = labGroup\n\t\tnewMember.save()\n\t\treturn ('registration_activation_complete', (), {})", "step-ids": [ 5, 6, 7, 8, 9 ] }
[ 5, 6, 7, 8, 9 ]
# inserting logical unit ids for splitting texts into logical chunks import re import os splitter = "#META#Header#End#" def logical_units(file): ar_ra = re.compile("^[ذ١٢٣٤٥٦٧٨٩٠ّـضصثقفغعهخحجدًٌَُلإإشسيبلاتنمكطٍِلأأـئءؤرلاىةوزظْلآآ]+$") with open(file, "r", encoding="utf8") as f1: book = f1.read() # splitter test if splitter in book: # logical units log_ids = re.findall("\n#\d+#", book) if len(log_ids) > 0: print("\tthe text already have %d logical units of this length" % len(log_ids)) pass else: # insert logical unit ids new_data = [] head = book.split(splitter)[0] text = book.split(splitter)[1] token_count = 0 data = re.findall(r"\w+|\W+", text) word_len = len(str(len(data))) data_len = len(data) for i in range(0, data_len): if "\n#" in data[i]: if "Page" in data[i + 1]:# or ar_token_cnt(ar_ra, data[i + 1]) <= 0: new_data.append(data[i]) else: last = data[i].rfind("#") token_cnt_str = str(token_count + 1) if len(token_cnt_str) < word_len: tmp_cnt = token_cnt_str.zfill(word_len) else: tmp_cnt = token_cnt_str tmp = data[i][:last] + "#" + tmp_cnt + data[i][last:] new_data.append(tmp) elif ar_token_cnt(ar_ra, data[i]): token_count += 1 new_data.append(data[i]) else: new_data.append(data[i]) log_text = "".join(new_data) log_text = head + splitter + log_text with open(file + "_logical", "w", encoding="utf8") as f: f.write(log_text) else: print("The file is missing the splitter!") print(file) def ar_token_cnt(ar_ra, text): return sum(ar_ra.search(t) is not None for t in re.findall(r"\w+|\W+", text)) # process all texts in OpenITI def process_all(folder): exclude = (["OpenITI.github.io", "Annotation", "_maintenance", "i.mech"]) for root, dirs, files in os.walk(folder): # print("root: ",root) dirs[:] = [d for d in dirs if d not in exclude] # print("dir: ",dirs) for file in files: if re.search("^\d{4}\w+\.\w+\.\w+-ara\d$", file): logical_units(os.path.join(root, file)) # return # input() # /media/rostam/Seagate Backup Plus Drive # process_all("/home/rostam/projs/KITAB/test") # print("Done!")
normal
{ "blob_id": "5c001303962315afe2512eb307376f6f7a883cf9", "index": 6831, "step-1": "<mask token>\n\n\ndef process_all(folder):\n exclude = ['OpenITI.github.io', 'Annotation', '_maintenance', 'i.mech']\n for root, dirs, files in os.walk(folder):\n dirs[:] = [d for d in dirs if d not in exclude]\n for file in files:\n if re.search('^\\\\d{4}\\\\w+\\\\.\\\\w+\\\\.\\\\w+-ara\\\\d$', file):\n logical_units(os.path.join(root, file))\n", "step-2": "<mask token>\n\n\ndef logical_units(file):\n ar_ra = re.compile(\n '^[ذ١٢٣٤٥٦٧٨٩٠ّـضصثقفغعهخحجدًٌَُلإإشسيبلاتنمكطٍِلأأـئءؤرلاىةوزظْلآآ]+$'\n )\n with open(file, 'r', encoding='utf8') as f1:\n book = f1.read()\n if splitter in book:\n log_ids = re.findall('\\n#\\\\d+#', book)\n if len(log_ids) > 0:\n print(\n '\\tthe text already have %d logical units of this length' %\n len(log_ids))\n pass\n else:\n new_data = []\n head = book.split(splitter)[0]\n text = book.split(splitter)[1]\n token_count = 0\n data = re.findall('\\\\w+|\\\\W+', text)\n word_len = len(str(len(data)))\n data_len = len(data)\n for i in range(0, data_len):\n if '\\n#' in data[i]:\n if 'Page' in data[i + 1]:\n new_data.append(data[i])\n else:\n last = data[i].rfind('#')\n token_cnt_str = str(token_count + 1)\n if len(token_cnt_str) < word_len:\n tmp_cnt = token_cnt_str.zfill(word_len)\n else:\n tmp_cnt = token_cnt_str\n tmp = data[i][:last] + '#' + tmp_cnt + data[i][last\n :]\n new_data.append(tmp)\n elif ar_token_cnt(ar_ra, data[i]):\n token_count += 1\n new_data.append(data[i])\n else:\n new_data.append(data[i])\n log_text = ''.join(new_data)\n log_text = head + splitter + log_text\n with open(file + '_logical', 'w', encoding='utf8') as f:\n f.write(log_text)\n else:\n print('The file is missing the splitter!')\n print(file)\n\n\ndef ar_token_cnt(ar_ra, text):\n return sum(ar_ra.search(t) is not None for t in re.findall('\\\\w+|\\\\W+',\n text))\n\n\ndef process_all(folder):\n exclude = ['OpenITI.github.io', 'Annotation', '_maintenance', 'i.mech']\n for root, dirs, files in os.walk(folder):\n dirs[:] = [d for d in dirs if d not in exclude]\n for file in files:\n if re.search('^\\\\d{4}\\\\w+\\\\.\\\\w+\\\\.\\\\w+-ara\\\\d$', file):\n logical_units(os.path.join(root, file))\n", "step-3": "<mask token>\nsplitter = '#META#Header#End#'\n\n\ndef logical_units(file):\n ar_ra = re.compile(\n '^[ذ١٢٣٤٥٦٧٨٩٠ّـضصثقفغعهخحجدًٌَُلإإشسيبلاتنمكطٍِلأأـئءؤرلاىةوزظْلآآ]+$'\n )\n with open(file, 'r', encoding='utf8') as f1:\n book = f1.read()\n if splitter in book:\n log_ids = re.findall('\\n#\\\\d+#', book)\n if len(log_ids) > 0:\n print(\n '\\tthe text already have %d logical units of this length' %\n len(log_ids))\n pass\n else:\n new_data = []\n head = book.split(splitter)[0]\n text = book.split(splitter)[1]\n token_count = 0\n data = re.findall('\\\\w+|\\\\W+', text)\n word_len = len(str(len(data)))\n data_len = len(data)\n for i in range(0, data_len):\n if '\\n#' in data[i]:\n if 'Page' in data[i + 1]:\n new_data.append(data[i])\n else:\n last = data[i].rfind('#')\n token_cnt_str = str(token_count + 1)\n if len(token_cnt_str) < word_len:\n tmp_cnt = token_cnt_str.zfill(word_len)\n else:\n tmp_cnt = token_cnt_str\n tmp = data[i][:last] + '#' + tmp_cnt + data[i][last\n :]\n new_data.append(tmp)\n elif ar_token_cnt(ar_ra, data[i]):\n token_count += 1\n new_data.append(data[i])\n else:\n new_data.append(data[i])\n log_text = ''.join(new_data)\n log_text = head + splitter + log_text\n with open(file + '_logical', 'w', encoding='utf8') as f:\n f.write(log_text)\n else:\n print('The file is missing the splitter!')\n print(file)\n\n\ndef ar_token_cnt(ar_ra, text):\n return sum(ar_ra.search(t) is not None for t in re.findall('\\\\w+|\\\\W+',\n text))\n\n\ndef process_all(folder):\n exclude = ['OpenITI.github.io', 'Annotation', '_maintenance', 'i.mech']\n for root, dirs, files in os.walk(folder):\n dirs[:] = [d for d in dirs if d not in exclude]\n for file in files:\n if re.search('^\\\\d{4}\\\\w+\\\\.\\\\w+\\\\.\\\\w+-ara\\\\d$', file):\n logical_units(os.path.join(root, file))\n", "step-4": "import re\nimport os\nsplitter = '#META#Header#End#'\n\n\ndef logical_units(file):\n ar_ra = re.compile(\n '^[ذ١٢٣٤٥٦٧٨٩٠ّـضصثقفغعهخحجدًٌَُلإإشسيبلاتنمكطٍِلأأـئءؤرلاىةوزظْلآآ]+$'\n )\n with open(file, 'r', encoding='utf8') as f1:\n book = f1.read()\n if splitter in book:\n log_ids = re.findall('\\n#\\\\d+#', book)\n if len(log_ids) > 0:\n print(\n '\\tthe text already have %d logical units of this length' %\n len(log_ids))\n pass\n else:\n new_data = []\n head = book.split(splitter)[0]\n text = book.split(splitter)[1]\n token_count = 0\n data = re.findall('\\\\w+|\\\\W+', text)\n word_len = len(str(len(data)))\n data_len = len(data)\n for i in range(0, data_len):\n if '\\n#' in data[i]:\n if 'Page' in data[i + 1]:\n new_data.append(data[i])\n else:\n last = data[i].rfind('#')\n token_cnt_str = str(token_count + 1)\n if len(token_cnt_str) < word_len:\n tmp_cnt = token_cnt_str.zfill(word_len)\n else:\n tmp_cnt = token_cnt_str\n tmp = data[i][:last] + '#' + tmp_cnt + data[i][last\n :]\n new_data.append(tmp)\n elif ar_token_cnt(ar_ra, data[i]):\n token_count += 1\n new_data.append(data[i])\n else:\n new_data.append(data[i])\n log_text = ''.join(new_data)\n log_text = head + splitter + log_text\n with open(file + '_logical', 'w', encoding='utf8') as f:\n f.write(log_text)\n else:\n print('The file is missing the splitter!')\n print(file)\n\n\ndef ar_token_cnt(ar_ra, text):\n return sum(ar_ra.search(t) is not None for t in re.findall('\\\\w+|\\\\W+',\n text))\n\n\ndef process_all(folder):\n exclude = ['OpenITI.github.io', 'Annotation', '_maintenance', 'i.mech']\n for root, dirs, files in os.walk(folder):\n dirs[:] = [d for d in dirs if d not in exclude]\n for file in files:\n if re.search('^\\\\d{4}\\\\w+\\\\.\\\\w+\\\\.\\\\w+-ara\\\\d$', file):\n logical_units(os.path.join(root, file))\n", "step-5": "# inserting logical unit ids for splitting texts into logical chunks\n\nimport re\nimport os\n\nsplitter = \"#META#Header#End#\"\n\n\ndef logical_units(file):\n ar_ra = re.compile(\"^[ذ١٢٣٤٥٦٧٨٩٠ّـضصثقفغعهخحجدًٌَُلإإشسيبلاتنمكطٍِلأأـئءؤرلاىةوزظْلآآ]+$\")\n\n with open(file, \"r\", encoding=\"utf8\") as f1:\n book = f1.read()\n\n # splitter test\n if splitter in book:\n # logical units\n log_ids = re.findall(\"\\n#\\d+#\", book)\n if len(log_ids) > 0:\n print(\"\\tthe text already have %d logical units of this length\" % len(log_ids))\n pass\n else:\n # insert logical unit ids\n new_data = []\n head = book.split(splitter)[0]\n text = book.split(splitter)[1]\n token_count = 0\n\n data = re.findall(r\"\\w+|\\W+\", text)\n word_len = len(str(len(data)))\n data_len = len(data)\n\n for i in range(0, data_len):\n if \"\\n#\" in data[i]:\n if \"Page\" in data[i + 1]:# or ar_token_cnt(ar_ra, data[i + 1]) <= 0:\n new_data.append(data[i])\n else:\n last = data[i].rfind(\"#\")\n token_cnt_str = str(token_count + 1)\n if len(token_cnt_str) < word_len:\n tmp_cnt = token_cnt_str.zfill(word_len)\n else:\n tmp_cnt = token_cnt_str\n tmp = data[i][:last] + \"#\" + tmp_cnt + data[i][last:]\n new_data.append(tmp)\n\n elif ar_token_cnt(ar_ra, data[i]):\n token_count += 1\n new_data.append(data[i])\n else:\n new_data.append(data[i])\n\n log_text = \"\".join(new_data)\n log_text = head + splitter + log_text\n\n with open(file + \"_logical\", \"w\", encoding=\"utf8\") as f:\n f.write(log_text)\n\n else:\n print(\"The file is missing the splitter!\")\n print(file)\n\n\ndef ar_token_cnt(ar_ra, text):\n return sum(ar_ra.search(t) is not None for t in re.findall(r\"\\w+|\\W+\", text))\n\n\n# process all texts in OpenITI\n\n\ndef process_all(folder):\n exclude = ([\"OpenITI.github.io\", \"Annotation\", \"_maintenance\", \"i.mech\"])\n for root, dirs, files in os.walk(folder):\n # print(\"root: \",root)\n dirs[:] = [d for d in dirs if d not in exclude]\n # print(\"dir: \",dirs)\n for file in files:\n if re.search(\"^\\d{4}\\w+\\.\\w+\\.\\w+-ara\\d$\", file):\n logical_units(os.path.join(root, file))\n # return\n # input()\n\n\n# /media/rostam/Seagate Backup Plus Drive\n# process_all(\"/home/rostam/projs/KITAB/test\")\n\n# print(\"Done!\")\n", "step-ids": [ 1, 3, 4, 5, 6 ] }
[ 1, 3, 4, 5, 6 ]
def solve(bt): if len(bt) == n: print(*bt, sep="") exit() for i in [1, 2, 3]: if is_good(bt + [i]): solve(bt + [i]) def is_good(arr): for i in range(1, len(arr)//2+1): if arr[-i:] == arr[-(i*2):-i]: return False return True if __name__ == "__main__": n = int(input()) solve([1])
normal
{ "blob_id": "65d5cee6899b0b75474e3898459bf2cfa8b3635b", "index": 1042, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef is_good(arr):\n for i in range(1, len(arr) // 2 + 1):\n if arr[-i:] == arr[-(i * 2):-i]:\n return False\n return True\n\n\n<mask token>\n", "step-3": "def solve(bt):\n if len(bt) == n:\n print(*bt, sep='')\n exit()\n for i in [1, 2, 3]:\n if is_good(bt + [i]):\n solve(bt + [i])\n\n\ndef is_good(arr):\n for i in range(1, len(arr) // 2 + 1):\n if arr[-i:] == arr[-(i * 2):-i]:\n return False\n return True\n\n\n<mask token>\n", "step-4": "def solve(bt):\n if len(bt) == n:\n print(*bt, sep='')\n exit()\n for i in [1, 2, 3]:\n if is_good(bt + [i]):\n solve(bt + [i])\n\n\ndef is_good(arr):\n for i in range(1, len(arr) // 2 + 1):\n if arr[-i:] == arr[-(i * 2):-i]:\n return False\n return True\n\n\nif __name__ == '__main__':\n n = int(input())\n solve([1])\n", "step-5": "def solve(bt):\n if len(bt) == n:\n print(*bt, sep=\"\")\n exit()\n\n for i in [1, 2, 3]:\n if is_good(bt + [i]):\n solve(bt + [i])\n\n\ndef is_good(arr):\n for i in range(1, len(arr)//2+1):\n if arr[-i:] == arr[-(i*2):-i]:\n return False\n return True\n\nif __name__ == \"__main__\":\n n = int(input())\n\n solve([1])", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
# -*- coding: utf-8 -*- ############################################################################# # # Copyright (C) 2019-Antti Kärki. # Author: Antti Kärki. # # You can modify it under the terms of the GNU AFFERO # GENERAL PUBLIC LICENSE (AGPL v3), Version 3. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU AFFERO GENERAL PUBLIC LICENSE (AGPL v3) for more details. # # You should have received a copy of the GNU AFFERO GENERAL PUBLIC LICENSE # (AGPL v3) along with this program. # If not, see <http://www.gnu.org/licenses/>. # ############################################################################# from odoo import api, fields, models from odoo import exceptions import logging _logger = logging.getLogger(__name__) class rocker_connection(): @api.multi def create_connection(self): _database_record = self _datasource = _database_record.name _driver = _database_record.driver _odbcdriver = _database_record.odbcdriver _sid = _database_record.database _database = _database_record.database _host = _database_record.host _port = _database_record.port _user = _database_record.user _password = _database_record.password con = None _logger.info('Connecting to database: ' + _database) try: if _driver == 'postgresql': try: import psycopg2 except: raise exceptions.ValidationError('No Postgres drivers') con = psycopg2.connect(host=_host, port=_port, database=_database, user=_user, password=_password) elif _driver == "mysql": try: import mysql.connector except: raise exceptions.ValidationError('No MySQL drivers') con = mysql.connector.connect(host=_host, port=_port, database=_database, user=_user, password=_password) elif _driver == "mariadb": try: import mysql.connector except: raise exceptions.ValidationError('No MariaDB drivers') con = mysql.connector.connect(host=_host, port=_port, database=_database, user=_user, password=_password) elif _driver == "oracle": try: import cx_Oracle except: raise exceptions.ValidationError('No Oracle drivers') con = cx_Oracle.connect(_user + '/' + _password + '@//' + _host + ':' + _port + '/' + _sid) elif _driver == "sqlserver": try: import pyodbc except: raise exceptions.ValidationError('No SQLServer (ODBC) drivers') _logger.debug( 'DRIVER={' + _odbcdriver + '};SERVER=' + _host + ';DATABASE=' + _database + ';UID=' + _user + ';PWD=' + _password) con = pyodbc.connect( 'DRIVER={' + _odbcdriver + '};SERVER=' + _host + ';DATABASE=' + _database + ';UID=' + _user + ';PWD=' + _password) self._sqldriver = 'sqlserver' elif _driver == "odbc": try: import pyodbc except: raise exceptions.ValidationError('No ODBC drivers') _logger.debug( 'DRIVER={' + _odbcdriver + '};SERVER=' + _host + ';DATABASE=' + _database + ';UID=' + _user + ';PWD=' + _password) con = pyodbc.connect( 'DRIVER={' + _odbcdriver + '};SERVER=' + _host + ';DATABASE=' + _database + ';UID=' + _user + ';PWD=' + _password) self._sqldriver = 'odbc' else: raise exceptions.ValidationError('Driver not supported') except: raise exceptions.ValidationError('Database connection failed') return con
normal
{ "blob_id": "96131e3d6c67c0ee4ff7f69d4ffedcbf96470f14", "index": 7069, "step-1": "<mask token>\n\n\nclass rocker_connection:\n <mask token>\n", "step-2": "<mask token>\n\n\nclass rocker_connection:\n\n @api.multi\n def create_connection(self):\n _database_record = self\n _datasource = _database_record.name\n _driver = _database_record.driver\n _odbcdriver = _database_record.odbcdriver\n _sid = _database_record.database\n _database = _database_record.database\n _host = _database_record.host\n _port = _database_record.port\n _user = _database_record.user\n _password = _database_record.password\n con = None\n _logger.info('Connecting to database: ' + _database)\n try:\n if _driver == 'postgresql':\n try:\n import psycopg2\n except:\n raise exceptions.ValidationError('No Postgres drivers')\n con = psycopg2.connect(host=_host, port=_port, database=\n _database, user=_user, password=_password)\n elif _driver == 'mysql':\n try:\n import mysql.connector\n except:\n raise exceptions.ValidationError('No MySQL drivers')\n con = mysql.connector.connect(host=_host, port=_port,\n database=_database, user=_user, password=_password)\n elif _driver == 'mariadb':\n try:\n import mysql.connector\n except:\n raise exceptions.ValidationError('No MariaDB drivers')\n con = mysql.connector.connect(host=_host, port=_port,\n database=_database, user=_user, password=_password)\n elif _driver == 'oracle':\n try:\n import cx_Oracle\n except:\n raise exceptions.ValidationError('No Oracle drivers')\n con = cx_Oracle.connect(_user + '/' + _password + '@//' +\n _host + ':' + _port + '/' + _sid)\n elif _driver == 'sqlserver':\n try:\n import pyodbc\n except:\n raise exceptions.ValidationError(\n 'No SQLServer (ODBC) drivers')\n _logger.debug('DRIVER={' + _odbcdriver + '};SERVER=' +\n _host + ';DATABASE=' + _database + ';UID=' + _user +\n ';PWD=' + _password)\n con = pyodbc.connect('DRIVER={' + _odbcdriver + '};SERVER=' +\n _host + ';DATABASE=' + _database + ';UID=' + _user +\n ';PWD=' + _password)\n self._sqldriver = 'sqlserver'\n elif _driver == 'odbc':\n try:\n import pyodbc\n except:\n raise exceptions.ValidationError('No ODBC drivers')\n _logger.debug('DRIVER={' + _odbcdriver + '};SERVER=' +\n _host + ';DATABASE=' + _database + ';UID=' + _user +\n ';PWD=' + _password)\n con = pyodbc.connect('DRIVER={' + _odbcdriver + '};SERVER=' +\n _host + ';DATABASE=' + _database + ';UID=' + _user +\n ';PWD=' + _password)\n self._sqldriver = 'odbc'\n else:\n raise exceptions.ValidationError('Driver not supported')\n except:\n raise exceptions.ValidationError('Database connection failed')\n return con\n", "step-3": "<mask token>\n_logger = logging.getLogger(__name__)\n\n\nclass rocker_connection:\n\n @api.multi\n def create_connection(self):\n _database_record = self\n _datasource = _database_record.name\n _driver = _database_record.driver\n _odbcdriver = _database_record.odbcdriver\n _sid = _database_record.database\n _database = _database_record.database\n _host = _database_record.host\n _port = _database_record.port\n _user = _database_record.user\n _password = _database_record.password\n con = None\n _logger.info('Connecting to database: ' + _database)\n try:\n if _driver == 'postgresql':\n try:\n import psycopg2\n except:\n raise exceptions.ValidationError('No Postgres drivers')\n con = psycopg2.connect(host=_host, port=_port, database=\n _database, user=_user, password=_password)\n elif _driver == 'mysql':\n try:\n import mysql.connector\n except:\n raise exceptions.ValidationError('No MySQL drivers')\n con = mysql.connector.connect(host=_host, port=_port,\n database=_database, user=_user, password=_password)\n elif _driver == 'mariadb':\n try:\n import mysql.connector\n except:\n raise exceptions.ValidationError('No MariaDB drivers')\n con = mysql.connector.connect(host=_host, port=_port,\n database=_database, user=_user, password=_password)\n elif _driver == 'oracle':\n try:\n import cx_Oracle\n except:\n raise exceptions.ValidationError('No Oracle drivers')\n con = cx_Oracle.connect(_user + '/' + _password + '@//' +\n _host + ':' + _port + '/' + _sid)\n elif _driver == 'sqlserver':\n try:\n import pyodbc\n except:\n raise exceptions.ValidationError(\n 'No SQLServer (ODBC) drivers')\n _logger.debug('DRIVER={' + _odbcdriver + '};SERVER=' +\n _host + ';DATABASE=' + _database + ';UID=' + _user +\n ';PWD=' + _password)\n con = pyodbc.connect('DRIVER={' + _odbcdriver + '};SERVER=' +\n _host + ';DATABASE=' + _database + ';UID=' + _user +\n ';PWD=' + _password)\n self._sqldriver = 'sqlserver'\n elif _driver == 'odbc':\n try:\n import pyodbc\n except:\n raise exceptions.ValidationError('No ODBC drivers')\n _logger.debug('DRIVER={' + _odbcdriver + '};SERVER=' +\n _host + ';DATABASE=' + _database + ';UID=' + _user +\n ';PWD=' + _password)\n con = pyodbc.connect('DRIVER={' + _odbcdriver + '};SERVER=' +\n _host + ';DATABASE=' + _database + ';UID=' + _user +\n ';PWD=' + _password)\n self._sqldriver = 'odbc'\n else:\n raise exceptions.ValidationError('Driver not supported')\n except:\n raise exceptions.ValidationError('Database connection failed')\n return con\n", "step-4": "from odoo import api, fields, models\nfrom odoo import exceptions\nimport logging\n_logger = logging.getLogger(__name__)\n\n\nclass rocker_connection:\n\n @api.multi\n def create_connection(self):\n _database_record = self\n _datasource = _database_record.name\n _driver = _database_record.driver\n _odbcdriver = _database_record.odbcdriver\n _sid = _database_record.database\n _database = _database_record.database\n _host = _database_record.host\n _port = _database_record.port\n _user = _database_record.user\n _password = _database_record.password\n con = None\n _logger.info('Connecting to database: ' + _database)\n try:\n if _driver == 'postgresql':\n try:\n import psycopg2\n except:\n raise exceptions.ValidationError('No Postgres drivers')\n con = psycopg2.connect(host=_host, port=_port, database=\n _database, user=_user, password=_password)\n elif _driver == 'mysql':\n try:\n import mysql.connector\n except:\n raise exceptions.ValidationError('No MySQL drivers')\n con = mysql.connector.connect(host=_host, port=_port,\n database=_database, user=_user, password=_password)\n elif _driver == 'mariadb':\n try:\n import mysql.connector\n except:\n raise exceptions.ValidationError('No MariaDB drivers')\n con = mysql.connector.connect(host=_host, port=_port,\n database=_database, user=_user, password=_password)\n elif _driver == 'oracle':\n try:\n import cx_Oracle\n except:\n raise exceptions.ValidationError('No Oracle drivers')\n con = cx_Oracle.connect(_user + '/' + _password + '@//' +\n _host + ':' + _port + '/' + _sid)\n elif _driver == 'sqlserver':\n try:\n import pyodbc\n except:\n raise exceptions.ValidationError(\n 'No SQLServer (ODBC) drivers')\n _logger.debug('DRIVER={' + _odbcdriver + '};SERVER=' +\n _host + ';DATABASE=' + _database + ';UID=' + _user +\n ';PWD=' + _password)\n con = pyodbc.connect('DRIVER={' + _odbcdriver + '};SERVER=' +\n _host + ';DATABASE=' + _database + ';UID=' + _user +\n ';PWD=' + _password)\n self._sqldriver = 'sqlserver'\n elif _driver == 'odbc':\n try:\n import pyodbc\n except:\n raise exceptions.ValidationError('No ODBC drivers')\n _logger.debug('DRIVER={' + _odbcdriver + '};SERVER=' +\n _host + ';DATABASE=' + _database + ';UID=' + _user +\n ';PWD=' + _password)\n con = pyodbc.connect('DRIVER={' + _odbcdriver + '};SERVER=' +\n _host + ';DATABASE=' + _database + ';UID=' + _user +\n ';PWD=' + _password)\n self._sqldriver = 'odbc'\n else:\n raise exceptions.ValidationError('Driver not supported')\n except:\n raise exceptions.ValidationError('Database connection failed')\n return con\n", "step-5": "# -*- coding: utf-8 -*-\r\n#############################################################################\r\n#\r\n# Copyright (C) 2019-Antti Kärki.\r\n# Author: Antti Kärki.\r\n#\r\n# You can modify it under the terms of the GNU AFFERO\r\n# GENERAL PUBLIC LICENSE (AGPL v3), Version 3.\r\n#\r\n# This program is distributed in the hope that it will be useful,\r\n# but WITHOUT ANY WARRANTY; without even the implied warranty of\r\n# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\r\n# GNU AFFERO GENERAL PUBLIC LICENSE (AGPL v3) for more details.\r\n#\r\n# You should have received a copy of the GNU AFFERO GENERAL PUBLIC LICENSE\r\n# (AGPL v3) along with this program.\r\n# If not, see <http://www.gnu.org/licenses/>.\r\n#\r\n#############################################################################\r\n\r\n\r\nfrom odoo import api, fields, models\r\nfrom odoo import exceptions\r\nimport logging\r\n\r\n_logger = logging.getLogger(__name__)\r\n\r\n\r\nclass rocker_connection():\r\n\r\n @api.multi\r\n def create_connection(self):\r\n\r\n _database_record = self\r\n _datasource = _database_record.name\r\n _driver = _database_record.driver\r\n _odbcdriver = _database_record.odbcdriver\r\n _sid = _database_record.database\r\n _database = _database_record.database\r\n _host = _database_record.host\r\n _port = _database_record.port\r\n _user = _database_record.user\r\n _password = _database_record.password\r\n\r\n con = None\r\n _logger.info('Connecting to database: ' + _database)\r\n\r\n try:\r\n if _driver == 'postgresql':\r\n try:\r\n import psycopg2\r\n except:\r\n raise exceptions.ValidationError('No Postgres drivers')\r\n con = psycopg2.connect(host=_host, port=_port, database=_database, user=_user, password=_password)\r\n elif _driver == \"mysql\":\r\n try:\r\n import mysql.connector\r\n except:\r\n raise exceptions.ValidationError('No MySQL drivers')\r\n con = mysql.connector.connect(host=_host, port=_port, database=_database, user=_user,\r\n password=_password)\r\n elif _driver == \"mariadb\":\r\n try:\r\n import mysql.connector\r\n except:\r\n raise exceptions.ValidationError('No MariaDB drivers')\r\n con = mysql.connector.connect(host=_host, port=_port, database=_database, user=_user,\r\n password=_password)\r\n elif _driver == \"oracle\":\r\n try:\r\n import cx_Oracle\r\n except:\r\n raise exceptions.ValidationError('No Oracle drivers')\r\n con = cx_Oracle.connect(_user + '/' + _password + '@//' + _host + ':' + _port + '/' + _sid)\r\n elif _driver == \"sqlserver\":\r\n try:\r\n import pyodbc\r\n except:\r\n raise exceptions.ValidationError('No SQLServer (ODBC) drivers')\r\n _logger.debug(\r\n 'DRIVER={' + _odbcdriver + '};SERVER=' + _host + ';DATABASE=' + _database + ';UID=' + _user + ';PWD=' + _password)\r\n con = pyodbc.connect(\r\n 'DRIVER={' + _odbcdriver + '};SERVER=' + _host + ';DATABASE=' + _database + ';UID=' + _user + ';PWD=' + _password)\r\n self._sqldriver = 'sqlserver'\r\n elif _driver == \"odbc\":\r\n try:\r\n import pyodbc\r\n except:\r\n raise exceptions.ValidationError('No ODBC drivers')\r\n _logger.debug(\r\n 'DRIVER={' + _odbcdriver + '};SERVER=' + _host + ';DATABASE=' + _database + ';UID=' + _user + ';PWD=' + _password)\r\n con = pyodbc.connect(\r\n 'DRIVER={' + _odbcdriver + '};SERVER=' + _host + ';DATABASE=' + _database + ';UID=' + _user + ';PWD=' + _password)\r\n self._sqldriver = 'odbc'\r\n else:\r\n raise exceptions.ValidationError('Driver not supported')\r\n except:\r\n raise exceptions.ValidationError('Database connection failed')\r\n return con\r\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
def missing_value_count_and_percent(df): """ Return the number and percent of missing values for each column. Args: df (Dataframe): A dataframe with many columns Return: df (Dataframe): A dataframe with one column showing number of missing values, one column showing percentage of missing values with 4 digits """ df = pd.concat({'num_missing_values':df.isnull().sum(), 'pct_missing_values':df.isnull().mean().round(4)}, axis=1) ) return df
normal
{ "blob_id": "88c304f224ab60062582abbfa1146a651e1233e6", "index": 183, "step-1": "def missing_value_count_and_percent(df):\n \"\"\"\n Return the number and percent of missing values for each column. \n\n Args:\n df (Dataframe): A dataframe with many columns\n \n Return:\n df (Dataframe): A dataframe with one column showing number of missing values, one column showing percentage of missing values with 4 digits\n \n \"\"\"\n df = pd.concat({'num_missing_values':df.isnull().sum(), 'pct_missing_values':df.isnull().mean().round(4)}, axis=1)\n)\n return df", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
# -*- coding: utf-8 -*- """ @author: chris Modified from THOMAS MCTAVISH (2010-11-04). mpiexec -f ~/machinefile -enable-x -n 96 python Population.py --noplot """ from __future__ import with_statement from __future__ import division import sys sys.path.append('../NET/sheff/weasel/') sys.path.append('../NET/sheffprk/template/') import os #use_pc = True import sys argv = sys.argv if "-python" in argv: use_pc = True else: use_pc = False if use_pc == True: from neuron import h pc = h.ParallelContext() rank = int(pc.id()) nhost = pc.nhost() else: from mpi4py import MPI from neuron import h rank = MPI.COMM_WORLD.rank #print sys.version if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('-o', action='store', dest='opt') parser.add_argument('--noplot', action='store_true') parser.add_argument('--norun', action='store_true') parser.add_argument('--noconst', action='store_true') parser.add_argument('--noqual', action='store_true') pars, unknown = parser.parse_known_args(['-o','--noplot','--norun','--noconst','--noqual']) if __name__ == '__main__': import matplotlib if rank == 0: matplotlib.use('Tkagg', warn=True) else: matplotlib.use('Agg', warn=True) if __name__ == '__main__': do_plot = 1 if results.noplot: # do not plot to windows matplotlib.use('Agg', warn=True) if rank == 0: print "- No plotting" do_plot = 0 import numpy as np import matplotlib.pyplot as plt import matplotlib.mlab as mlab import random as rnd import neuronpy.util.spiketrain #set_printoptions(threshold='nan') from Stimulation import * from Stimhelp import * from units import * from cells.PassiveCell import * from itertools import izip try: import cPickle as pickle except: import pickle import gzip import h5py from templates.synapse.synapse import Synapse from synapsepfpurk import Synapse as Synapse2 if use_pc is False: import mdp import time as ttime from scipy.optimize import fmin, leastsq from NeuroTools import stgen, signals import md5 #from guppy import hpy #hpy = hpy() class Population: """ A population of N cells """ def __init__(self, cellimport = [], celltype = None, N = [10], temperature = 6.3, cell_exe = 0, ihold = [0*nA], ihold_sigma = [0*nA], amp = [0*nA], amod = [None], anoise = [None], give_freq = False, do_run = 1, pickle_prefix = "default", istart = 0, istop = 0.07, di = 0.001, dt = 0.025*ms, use_mpi = True, use_pc = False): """ :param N: Number of cells. :param fluct_m: :param fluct_s: :param fluct_tau: """ self.use_pc = use_pc if type(celltype) is not list: celltype = [celltype] #convert to list if it is not given as one self.celltype = celltype if type(cell_exe) is not list: cell_exe = [cell_exe] #convert to list if it is not given as one self.cell_exe = cell_exe if cellimport is not None: if cellimport == []: for n in range(len(celltype)): cellimport.append("from cells." + self.celltype[n] + " import *") self.cellimport = cellimport if type(N) is not list: N = [N] self.N = N # Total number of cells in the net self.n_celltypes = len(self.N) self.a_celltype = [0] # celltype to analyse self.factor_celltype = [1]*self.n_celltypes self.set_init(ihold, ihold_sigma, amp, amod) self.CF_var = False self.inh_hold_sigma = [0] self.intr_hold_sigma = [0] #self.sigma_inh_hold = 0 #self.sigma_ihold = 0 if type(anoise) is not list: anoise = [anoise]*self.n_celltypes if len(anoise) < self.n_celltypes: anoise = [anoise[0]]*self.n_celltypes self.anoise = anoise # RUN self.set_i() self.give_freq = give_freq # RUN self.set_i() self.temperature = temperature self.gid_count = 0 self.gidlist = [] # List of global identifiers on this host self.global_gidlist = [] # List of global identifiers self.cells = [] # Cells on this host self.t_vec = [] self.id_vec = [] self.rec_v = [] for n in range(self.n_celltypes): if use_mpi: self.t_vec.append(h.Vector()) # np.array([0]) self.id_vec.append(h.Vector()) # np.array([-1], dtype=int) else: self.t_vec.append([]) self.rec_v.append(h.Vector()) #self.t_vec = h.Vector(np.array([0])) # Spike time of all cells on this host #self.id_vec = h.Vector(np.array([-1])) # Ids of spike times on this host self.flucts = [] # Fluctuating inputs on this host self.fluct_m = 0 # [nA] self.fluct_s = [0] # [nA] self.fluct_tau = 0*ms # [ms] self.noises = [] # Random number generators on this host self.plays = [] # Play inputs on this host self.rec_is = [] self.trains = [] self.vecstim = [] self.nc_vecstim = [] self.spike_vec = [] self.syn_tau1 = 5*ms # Synapse of virtual target neuron self.syn_tau2 = 5*ms # Synapse of virtual target neuron self.tmax = 10*sec # maximum length of plot that should be plotted!! self.nc_delay = 0 #500*ms # only important if syn_output is used, not used currently self.dt = dt self.bin_width = dt self.jitter = 0*ms self.delta_t = 0*ms self.istart = istart self.istop = istop self.di = di self.ic_holds = [] self.i_holdrs = [] self.i_holds = [] self.ic_starts = [] self.vc_starts = [] self.ic_steps = [] self.rec_step = [] self.tvecs = [] self.ivecs = [] self.noises = [] self.record_syn = [] self.id_all_vec_input = [] self.t_all_vec_input = [] if len(self.N) == len(self.cell_exe) == len(self.celltype): pass else: raise ValueError('N, cell_exe, celltype do NOT have equal length!') self.use_mpi = use_mpi self.use_pc = use_pc if self.use_mpi: #### Make a new ParallelContext object self.pc = h.ParallelContext() self.id = self.pc.id() self.nhost = int(self.pc.nhost()) if self.use_pc == False: s = "mpi4py thinks I am %d of %d on %s, NEURON thinks I am %d of %d\n" processorname = MPI.Get_processor_name() self.comm = MPI.COMM_WORLD if self.id == 0: print s % (self.comm.rank, self.comm.size, processorname, self.id, self.nhost) else: s = "NEURON thinks I am %d of %d\n" if self.id == 0: print s % (self.id, self.nhost) self.barrier() else: self.id = 0 self.nhost = 1 self.do_run = do_run self.first_run = True self.set_numcells() # Build the portion of cells on this host. self.pickle_prefix = pickle_prefix # plot options self.ymax = 0 self.ax = None self.linewidth = 1.5 self.color_vec = None self.alpha = 0.8 self.method_interpol = np.array(['bin','syn']) self.dumpsave = 1 self.called_syn_out_all = False self.no_fmean=False self.tau1_ex=[0*ms]*self.n_celltypes self.tau2_ex=[10*ms]*self.n_celltypes self.tau1_inh=[0*ms]*self.n_celltypes self.tau2_inh=[100*ms]*self.n_celltypes self.n_syn_ex = [0]*self.n_celltypes self.g_syn_ex = [1]*self.n_celltypes self.g_syn_ex_s = [0]*self.n_celltypes self.mglufac_ex = [1,0] self.noise_syn = [0]*self.n_celltypes self.noise_syn_tau = [0*ms]*self.n_celltypes self.noise_syn_inh = [0]*self.n_celltypes self.noise_syn_tau_inh = [0*ms]*self.n_celltypes self.noise_a = [1e9]*self.n_celltypes self.noise_a_inh = [1e9]*self.n_celltypes self.inh_hold = [0]*self.n_celltypes self.n_syn_inh = [0]*self.n_celltypes self.g_syn_inh = [1]*self.n_celltypes self.g_syn_inh_s = [0]*self.n_celltypes self.intr_hold = [0]*self.n_celltypes self.n_syn_intr = [0]*self.n_celltypes self.g_syn_intr = [0]*self.n_celltypes self.syn_max_mf = [1]*self.n_celltypes # possible mossy fibres per synapse self.syn_max_inh = [1]*self.n_celltypes # possible Golgi cells per synapse self.syn_max_intr = [1]*self.n_celltypes # possible Intruding cells per synapse self.seed = 50 self.force_run = False self.give_psd = False self.do_if = True self.fluct_g_e0 = [] self.fluct_g_i0 = [] self.fluct_std_e = [] self.fluct_std_i = [] self.fluct_tau_e = [] self.fluct_tau_i = [] self.adjinh = True # adjust inhibition to get CFo instead of g_ex self.adjfinh = True # adjust frequnecy of inhibition to get CFo instead of g_ex self.syn_ex_dist = [] self.syn_inh_dist = [] self.stdp_used = False self.xmax = 20 self.use_multisplit = False self.use_local_dt = False self.simstep = 0 self.plot_train = True self.inh_delay = 0 # in ms self.plot_input = True self.delay_baseline = 8 self.tstop_if = 1 self.gsyn_in_fac = [] self.netcons = [] # keeping track of! self.nclist = [] self.ST_stims = [] self.PF_stims = [] self.data_dir = "./data" self.minimal_dir = False def set_init(self, ihold, ihold_sigma, amp, amod): # important for all methods: if type(ihold) is not list: ihold = [ihold] #convert to list if it is not given as one self.ihold = ihold self.ihold_orig = ihold if type(amp) is not list: amp = [amp] if len(amp) < self.n_celltypes: amp = [amp[0]]*self.n_celltypes self.amp = amp if type(amod) is not list: amod = [amod]*self.n_celltypes self.amod = amod # RUN self.set_i() self.ihold_sigma = ihold_sigma def barrier(self): if self.use_mpi: if self.use_pc == True: self.pc.barrier() else: self.comm.Barrier() def broadcast(self, vec, root = 0, fast = False): if self.use_mpi: if self.use_pc: if fast: hvec = h.Vector(vec) v = self.pc.broadcast(hvec,root) vec = np.array(hvec) else: sendlist = [None]*self.nhost if self.id == root: for i in range(self.nhost): sendlist[i] = vec getlist = self.pc.py_alltoall(sendlist) vec = getlist[root] else: #vec = np.array(vec, dtype=np.float64) #self.comm.Bcast([vec, MPI.DOUBLE]) vec = self.comm.bcast(vec, root=0) return vec def set_numcells(self, N = []): """ Create, layout, and connect N cells. """ self.set_gids(N) self.create_cells() #self.syn_output() # generate synaptic "output" in neuron #self.connect_cells() def set_gids(self, N = []): """Set the gidlist on this host. Round-robin counting. Each host as an id from 0 to pc.nhost()-1. Example: if N = 5 cells and nhost() = 3 node id() = 0 will get cells [0, 3] node id() = 1 will get cells [1, 4] node id() = 2 will get cells [2] """ self.gidlist = [] if N == []: N = self.N # borders where another celltype begins self.global_gidlist = [] self.n_borders = [0] for l in range(1,self.n_celltypes+1): self.n_borders.append(sum(N[0:l])) self.global_gidlist.append(range(self.n_borders[-2], self.n_borders[-1])) for n in range(self.n_celltypes): # create list in list self.gidlist.append([]) for i in range(int(self.id), sum(N), int(self.nhost)): # loop over all cells n = np.where((np.array(self.n_borders)-i)>0)[0][0]-1 # find out what cell type this is self.gidlist[n].append(i) # put in specific gidlist for that celltype self.gid_count = self.gid_count + sum(N) if self.id == 0: print "nodeid:" , self.id , ", gidlist:" , self.gidlist , ", total gids:" , len(self.global_gidlist) , ", sum(N):" , sum(N) # check gids of node def del_cells(self): if self.cells != []: for n in range(self.n_celltypes): for m in self.cells[n]: print "deleting cell", m del m del self.cells self.cells = [] if self.use_mpi: self.pc.gid_clear() def create_cells(self): """ Create cell objects on this host. """ if self.do_run: self.del_cells() if self.id == 0: print "creating cells" for n in range(self.n_celltypes): self.cells.append([]) # create list in list #print self.cellimport[n] exec self.cellimport[n] #print self.gidlist for i in self.gidlist[n]: #if "sigma" not in self.cell_exe[n]: # exec self.cell_exe[n] # cell.gid = i # tell cell it's gid! # print i #else: if (self.celltype[n] == "IfCell") or (self.celltype[n] == "Grc"): # add gid to cell and execute! if self.cell_exe[n][-2] == "(": exec self.cell_exe[n][0:-1] + "gid=" + str(i) + ")" else: exec self.cell_exe[n][0:-1] + ", gid=" + str(i) + ")" else: exec self.cell_exe[n] cell.gid = i self.cells[n].append(cell) # add to (local) list if self.use_mpi: #### Tell this host it has this gid #### gids can be any integer, they just need to be unique. #### In this simple case, we set the gid to i. self.pc.set_gid2node(i, int(self.id)) self.pc.cell(i, cell.nc_spike) # Associate the cell with this host and gid ## NOT NECESSARY ANYMORE ## #### Means to tell the ParallelContext that this cell is a source. #nc = cell.connect_target(None) #self.ncs[n].append(nc) #### Record spikes of this cell self.pc.spike_record(i, self.t_vec[n], self.id_vec[n]) #print n, self.cells[n][-1].nc_spike.thresh else: self.t_vec[n].append(h.Vector()) cell.nc_spike.record(self.t_vec[n][-1]) def connect_cells(self, conntype=[], stdp=[], tend=1e9): """ Connect cells as specified. """ if self.do_run: stdp = stdp[:] conntype = conntype[:] if len(stdp) == 0: for i in conntype: stdp.append({'wmax':0, 'taupre':0, 'taupost':0, 'apre':0, 'apost':0}) else: self.stdp_used = True for i, conn in enumerate(conntype): typ = conn['type'] conv = conn['conv'] src = conn['src'] tgt = conn['tgt'] w0 = conn['w'] var = conn['var'] tau1 = conn['tau1'] tau2 = conn['tau2'] if 'mgr2' in conn.keys(): mgr2 = conn['mgr2'] mgr2_var = conn['mgr2_var'] else: mgr2 = 0 mgr2_var = 0 if 'e_inh' in conn.keys(): e_inh = conn['e_inh'] else: e_inh = -65 if 'e_ex' in conn.keys(): e_ex = conn['e_ex'] else: e_ex = 0 wmax = stdp[i]['wmax'] taupre = stdp[i]['taupre'] taupost = stdp[i]['taupost'] apre = stdp[i]['apre'] apost = stdp[i]['apost'] # Connect conv cells of celltype src to every cell of celltype tgt for ni, i in enumerate(self.cells[tgt]): rnd.seed(i.gid*10*self.seed) if conv >= len(self.global_gidlist[src]): gids = self.global_gidlist[src] if self.id == 0: print "more or equal conv to len(self.global_gidlist[src])" else: gids = rnd.sample(self.global_gidlist[src],conv) if self.id == 0: print conn['type'], ":", ni, ":", gids[0], "\n" for ng, g in enumerate(gids): np.random.seed(g*12) #np.random.seed(int(g%10+1)*12) if len(shape(w0))>0: # array is given print "w array is given" if len(w0[ng]) == self.N[0]: w = w0[ng][ni] elif (var > 0) and (w0>0): w = np.random.normal(w0, w0*var, 1).clip(min=0) else: w = w0 if (mgr2_var > 0) and (mgr2>0): mg = np.random.normal(mgr2, mgr2*mgr2_var, 1).clip(min=0) else: mg = mgr2 #print conn['type'], ":", i.gid, ":", g, ", w:", w, "\n" if self.celltype[tgt] == 'IfCell': if typ == 'gogr': i.whatami = "grc" i.synlist_inh.append(Synapse('goc', i, i.soma, nrel=0, record_all=0, weight_gmax=w)) i0 = int(len(i.synlist_inh)-1) i.nc_inh.append(self.pc.gid_connect(g, i.synlist_inh[i0].input)) i.nc_inh[-1].delay = 1 i.nc_inh[-1].weight[0] = 1 if typ == 'grgo': i.whatami = "goc" i.synlist.append(Synapse('grc', i, i.soma, syntype = 'D', nrel=0, record_all=0, weight_gmax=w)) e0 = int(len(i.synlist)-1) i.nc.append(self.pc.gid_connect(g, i.synlist[e0].input)) i.nc[-1].delay = 1 i.nc[-1].weight[0] = 1 if typ == 'grgom': i.whatami = "goc" i.synlist.append(Synapse('grc', i, i.soma, syntype = 'DM', nrel=0, record_all=0, weight_gmax=w, mglufac = mg)) e0 = int(len(i.synlist)-1) i.nc.append(self.pc.gid_connect(g, i.synlist[e0].input)) i.nc[-1].delay = 1 i.nc[-1].weight[0] = 1 if typ == 'e2inh': i.create_synapses(n_inh=1, tau1_inh=tau1, tau2_inh=tau2, e_inh=e_inh, w = w, wmax = wmax, taupre = taupre, taupost = taupost, apre = apre, apost = apost, tend=tend) i0 = len(i.synlist_inh)-1 if self.use_mpi: if wmax == 0: i.pconnect_target(self.pc, source=g, target=i0, syntype='inh', weight=w, delay=1) else: i.pconnect_target(self.pc, source=g, target=i0, syntype='inh', weight=1, delay=1) else: if wmax == 0: i.nc_inh.append(self.cells[1][g-self.N[0]].connect_target(target=i.synlist_inh[i0], weight=w, delay=1)) else: i.nc_inh.append(self.cells[1][g-self.N[0]].connect_target(target=i.synlist_inh[i0], weight=1, delay=1)) if typ == 'e2ex': i.create_synapses(n_ex = 1, tau1 = tau1, tau2 = tau2, e_ex=e_ex, w = w, wmax = wmax, taupre = taupre, taupost = taupost, apre = apre, apost = apost, tend=tend) e0 = len(i.synlist)-1 if self.use_mpi: if wmax == 0: i.pconnect_target(self.pc, source=g, target=e0, syntype='ex', weight=w, delay=1) else: i.pconnect_target(self.pc, source=g, target=e0, syntype='ex', weight=1, delay=1) else: if wmax == 0: i.nc.append(self.cells[0][g].connect_target(target=i.synlist[e0], weight=w, delay=1)) else: i.nc.append(self.cells[0][g].connect_target(target=i.synlist[e0], weight=1, delay=1)) else: # No IfCell if typ == 'gogr': i.createsyn(ngoc = 1, weight_gmax=w) # multiplication factor i0 = len(i.GOC_L)-1 # get number of current synapse! i.pconnect(self.pc,g,i0,'goc') if typ == 'grgo': i.createsyn(ngrc = 1, weight_gmax=w) # multiplication factor i0 = len(i.GRC_L)-1 # get number of current synapse! i.pconnect(self.pc,g,i0,'grc',conduction_speed=0,grc_positions=[1]) if typ == 'grgom': #print w, mg i.createsyn(ngrcm = 1, weight_gmax=w, mglufac = mg) # multiplication factor i0 = len(i.GRC_L)-1 # get number of current synapse! i.pconnect(self.pc,g,i0,'grc',conduction_speed=0,grc_positions=[1]) if typ == 'grstl': i.createsyn(ngrc = 1, weight_gmax=w) # multiplication factor i0 = len(i.GRC_L)-1 # get number of current synapse! i.pconnect(self.pc,g,i0,'grc',conduction_speed=0,grc_positions=[1]) if 'e2' in typ: if 'inh' in typ: Erev = -65 elif 'ex' in typ: Erev = 0 if tau1 == 0: syn = h.ExpSyn(i.soma(0.5)) syn.tau = tau2/ms else: if wmax == 0: syn = h.Exp2Syn(i.soma(0.5)) syn.tau1 = tau1/ms syn.tau2 = tau2/ms else: # STDP syn = h.stdpE2S(i.soma(0.5)) syn.tau1 = tau1/ms syn.tau2 = tau2/ms syn.on = 1 syn.thresh = -20 syn.wmax = wmax syn.w = w syn.taupre = taupre/ms syn.taupost = taupost/ms syn.apre = apre syn.apost = apost syn.e = Erev/mV if self.celltype[tgt] == 'Grc': i.GOC_L.append(syn) i0 = int(len(i.GOC_L)-1) # get number of current synapse! i.gocncpc.append(self.pc.gid_connect(g, i.GOC_L[i0])) i.gocncpc[-1].delay = 1 if wmax == 0: i.gocncpc[-1].weight[0] = w else: i.gocncpc[-1].weight[0] = 1 elif self.celltype[tgt] == 'Goc': i.GRC_L.append(syn) e0 = int(len(i.GRC_L)-1) # get number of current synapse! i.pfncpc.append(self.pc.gid_connect(g, i.GRC_L[e0])) i.pfncpc[-1].delay = 1 i.pfncpc[-1].weight[0] = w if wmax == 0: i.pfncpc[-1].weight[0] = w else: i.pfncpc[-1].weight[0] = 1 #self.rec_s1 = h.Vector() #self.rec_s1.record(self.cells[0][0].synlist_inh[0]._ref_g) #self.rec_s2 = h.Vector() #self.rec_s2.record(self.cells[1][0].synlist_inh[0]._ref_g) def syn_output(self): """ Connect cell n to target cell sum(self.N) + 100. """ if self.id == 0: # create target cell tgt_gid = self.gid_count self.gid_count = self.gid_count + 1 # Synaptic integrated response self.rec_g = h.Vector() self.passive_target = PassiveCell() if self.use_mpi: self.pc.set_gid2node(tgt_gid, 0) # Tell this host it has this gid syn = self.passive_target.create_synapses(tau1 = self.syn_tau1, tau2 = self.syn_tau2) # if tau1=tau2: alpha synapse! for i in range(self.n_borders[self.a_celltype[0]],self.n_borders[self.a_celltype[0]+1]): # take all cells, corresponding to self.a_celltype, not just the ones in self.gidlist: src_gid = i if self.use_mpi: nc = self.pc.gid_connect(src_gid, syn) nc.weight[0] = 1 nc.delay = self.nc_delay/ms #0.05 # MUST be larger than dt!!! else: nc = self.cells[self.a_celltype[0]][src_gid].connect_target(target=syn, weight=1, delay=self.nc_delay/ms) self.nclist.append(nc) self.rec_g.record(syn._ref_g) def syn_out_all(self, tau1 = 1*ms, tau2 = 30*ms): if self.do_run: for n in range(self.n_celltypes): for i, gid in enumerate(self.gidlist[n]): self.cells[n][i].start_record(tau1 = tau1/ms, tau2 = tau2/ms) self.called_syn_out_all = True def get_i(self, a, n, do_plot = True): import md5 m = md5.new() if ", sigma" in self.cell_exe[n]: cell_exe_new = self.cell_exe[n].split(", sigma")[0] + ")" else: cell_exe_new = self.cell_exe[n] m.update(cell_exe_new) filename = self.data_dir + '/if_' + self.celltype[n] + '_' + m.hexdigest() + '.p' #print filename if self.id == 0: is_there = os.path.isfile(filename) else: is_there = None is_there = self.broadcast(is_there) if (is_there is not True) or (self.force_run is True): # run i/f estimation if self.id == 0: print '- running i/f estimation for ', self.celltype[n], ' id: ' , m.hexdigest() exec self.cellimport[n] exec cell_exe_new sim = Stimulation(cell, temperature = self.temperature, use_multisplit = self.use_multisplit) sim.spikes_from_neuron = False sim.celltype = self.celltype[n] current_vector, freq_vector, freq_onset_vector = sim.get_if(istart = self.istart, istop = self.istop, di = self.di, tstop = self.tstop_if) sim = None cell = None if self.id == 0: if do_plot: plt.figure(99) plt.plot(current_vector, freq_vector, 'r*-') plt.plot(current_vector, freq_onset_vector, 'b*-') plt.savefig("./figs/dump/latest_if_" + self.celltype[n] + ".pdf", dpi = 300) # save it plt.clf() #plt.show() ifv = {'i':current_vector,'f':freq_vector} print ifv pickle.dump(ifv, gzip.GzipFile(filename, "wb" )) self.barrier() else: if self.id == 0: ifv = pickle.load(gzip.GzipFile(filename, "rb" )) #print ifv self.barrier() if self.id == 0: f = ifv.get('f') i = ifv.get('i') i = i[~isnan(f)] f = f[~isnan(f)] iin = if_extrap(a, f, i) else: iin = [0] iin = self.broadcast(iin, root=0, fast = True) self.barrier() return iin def set_i(self, ihold = [0]): ihold = list(ihold) self.ihold_orig = list(ihold) self.barrier() # wait for other nodes # Ihold given as frequency, convert to current if ((self.give_freq)): ihold0 = [[] for _ in range(self.n_celltypes)] for n in range(self.n_celltypes): a = np.array([ihold[n]]) #print "a:", a iin = self.get_i(a, n) #print "iin:", iin ihold0[n] = iin[0] if self.id == 0: print '- ihold: ', ihold, 'Hz, => ihold: ', ihold0, 'nA' # Modulation depth given, not always applied to current! for n in range(self.n_celltypes): if self.amod[n] is not None: if self.give_freq: # Apply to amplitude: a = np.array([ihold[n]]) + self.amod[n]*np.array([ihold[n]]) self.amp[n] = self.get_i(a, n) - ihold0[n] if self.id == 0: print '- amp: ihold: ', ihold[n], 'Hz , amod: ', self.amod[n], ', => amp: ', self.amp[n], 'nA (' #, self.get_i(a, n), ')' elif self.n_syn_ex[n] > 0: if self.id == 0: print '- amp: ihold: ', ihold[n], 'Hz , amod: ', self.amod[n], ', => amp will be set for each spike generator' else: self.amp[n] = self.amod[n] * ihold[n] if self.id == 0: print '- amp: ihold: ', ihold[n], 'nA , amod: ', self.amod[n], ', => amp: ', self.amp[n], 'nA' # Noise depth given, not always applied to current! if self.anoise[n] is not None: if (self.give_freq is True) or (self.n_syn_ex[n] > 0): # Apply to amplitude: a = np.array([ihold[n]]) + self.anoise[n]*np.array([ihold[n]]) self.fluct_s[n] = ((self.get_i(a, n) - ihold0[n]))/2. # adjust with /2 so that noise = +-2*std if self.id == 0: print '- noise: ihold: ', ihold[n], 'Hz , anoise: ', self.anoise[n], ', => fluct_s: ', self.fluct_s[n], 'nA' else: self.fluct_s[n] = self.anoise[n] * ihold[n] if self.id == 0: print '- noise: ihold: ', ihold[n], 'nA , anoise: ', self.anoise[n], ', => fluct_s: ', self.fluct_s[n], 'nA' if self.give_freq is True: ihold = ihold0 return ihold def calc_fmean(self, t_vec, t_startstop): #t_startstop[0] = 1 #t_startstop[1] = 5 f_cells_mean = 0 f_cells_cv = np.nan f_cells_std = np.nan if len(t_vec) > 0: f_start_in = mlab.find(t_vec >= t_startstop[0]) # 1 f_stop_in = mlab.find(t_vec <= t_startstop[1]) # 5 if (len(f_start_in) > 0) & (len(f_stop_in) > 0): f_start = f_start_in[0] f_stop = f_stop_in[-1]+1 use_spikes = t_vec[f_start:f_stop]*1e3 if len(use_spikes) > 1: s1 = signals.SpikeTrain(use_spikes) isi = s1.isi() f_cells_mean = s1.mean_rate() # use mean of single cells f_cells_cv = np.std(isi)/np.mean(isi) f_cells_std = np.std(isi) #f_start_in = mlab.find(t_vec >= 1) #f_stop_in = mlab.find(t_vec <= 2) #if (len(f_start_in) > 0) & (len(f_stop_in) > 0): # f_start = f_start_in[0] # f_stop = f_stop_in[-1]+1 # use_spikes = t_vec[f_start:f_stop]*1e3 # if len(use_spikes) > 1: # s1 = signals.SpikeTrain(use_spikes) # isi = s1.isi() # f_cells_cv = np.std(isi)/np.mean(isi) return f_cells_mean, f_cells_cv, f_cells_std def get_fmean(self, t_all_vec_vecn, id_all_vec_vecn, t_startstop, gidlist, facborder = 3): # 1e9 f_cells_mean = zeros(len(gidlist)) f_cells_base = zeros(len(gidlist)) f_cells_std = nans(len(gidlist)) f_cells_cv = nans(len(gidlist)) f_cells_gid = nans(len(gidlist)) fbase = np.nan fmean = np.nan fmax = np.nan fmstd = np.nan fcvm = np.nan fstdm = np.nan f_cells_mean_all = [] f_cells_base_all = [] f_cells_cv_all = [] f_cells_std_all = [] gid_del = np.array([]) if self.no_fmean == False: if self.id == 0: print "- sorting for fmean" for i, l in enumerate(gidlist): t_0_vec = t_all_vec_vecn[where(id_all_vec_vecn==l)] f_cells_mean[i], f_cells_cv[i], f_cells_std[i] = self.calc_fmean(t_0_vec, t_startstop) f_cells_base[i], _, _ = self.calc_fmean(t_0_vec, [self.delay_baseline-4,self.delay_baseline]) f_cells_gid[i] = l if self.id == 0: print "- gather fmean" f_cells_mean_all = self.do_gather(f_cells_mean) f_cells_base_all = self.do_gather(f_cells_base) f_cells_std_all = self.do_gather(f_cells_std) f_cells_cv_all = self.do_gather(f_cells_cv) f_cells_gid_all = self.do_gather(f_cells_gid) if self.id == 0: #print f_cells_mean_all f_cells_mean_all = np.nan_to_num(f_cells_mean_all) fmean = mean(f_cells_mean_all) # compute mean of mean rate for all cells fmstd = std(f_cells_mean_all) fmax = max(f_cells_mean_all) f_cells_base_all = np.nan_to_num(f_cells_base_all) fbase = mean(f_cells_base_all) # compute mean of mean rate for all cells f_cells_cv_all = f_cells_cv_all[~np.isnan(f_cells_cv_all)] f_cells_std_all = f_cells_std_all[~np.isnan(f_cells_std_all)] fcvm = mean(f_cells_cv_all) fstdm = mean(f_cells_std_all) print "- get_fmean, fmean: ",fmean, "fmax: ",fmax, "Hz", "fmstd: ",fmstd, "Hz", "fcvm: ",fcvm, "fstdm: ",fstdm, "Hz" ,"fbase: ", fbase, "Hz" if facborder < 1e9: fborder = fmean + facborder*fmstd i = mlab.find(f_cells_mean_all > fborder) gid_del = f_cells_gid_all[i] # f_cells_mean_all[i] = 0 # f_cells_cv_all[i] = np.nan # f_cells_std_all[i] = np.nan # fmean2 = mean(np.nan_to_num(f_cells_mean_all)) # compute mean of mean rate for all cells # fmstd2 = std(np.nan_to_num(f_cells_mean_all)) # fmax2 = max(np.nan_to_num(f_cells_mean_all)) # fcvm2 = mean(f_cells_cv_all[~np.isnan(f_cells_cv_all)]) # fstdm2 = mean(f_cells_std_all[~np.isnan(f_cells_std_all)]) # print "- after facborder: get_fmean, fmean: ",fmean2, "fmax: ",fmax2, "Hz", "fmstd: ",fmstd2, "Hz", "fcvm: ",fcvm2, "fstdm: ",fstdm2, "Hz, gid_del: ", gid_del return fmean, fmax, fmstd, fcvm, fstdm, gid_del, f_cells_mean_all, f_cells_cv_all, f_cells_std_all, fbase, f_cells_base_all def connect_fluct(self): """ Create fluctuating input onto every cell. """ if self.do_run: for m in self.flucts: del m del self.flucts for m in self.noises: del m del self.noises self.flucts = [] self.noises = [] for n in range(self.n_celltypes): for i, gid in enumerate(self.gidlist[n]): # for every cell in the gidlist #h.mcell_ran4_init(gid) noiseRandObj = h.Random() # provides NOISE with random stream self.noises.append(noiseRandObj) # has to be set here not inside the nmodl function!! # print str(gid) + ": " + str(noiseRandObj.normal(0,1)) fluct = h.Ifluct2(self.cells[n][i].soma(0.5)) fluct.m = self.fluct_m/nA # [nA] fluct.s = self.fluct_s[n]/nA # [nA] fluct.tau = self.fluct_tau/ms # [ms] self.flucts.append(fluct) # add to list self.flucts[-1].noiseFromRandom(self.noises[-1]) # connect random generator! self.noises[-1].MCellRan4(1, gid+1) # set lowindex to gid+1, set highindex to > 0 self.noises[-1].normal(0,1) def connect_gfluct(self, E_e=0, E_i=-65): """ Create fluctuating conductance input onto every cell. """ if self.do_run: for m in self.flucts: del m del self.flucts for m in self.noises: del m del self.noises self.flucts = [] self.noises = [] for n in range(self.n_celltypes): fluct_g_i0_n = self.fluct_g_i0[n] if type(fluct_g_i0_n) is not ndarray: fluct_g_i0_n = np.array([fluct_g_i0_n]) if len(fluct_g_i0_n) == len(self.global_gidlist[n]): pass else: fluct_g_i0_n = np.ones(int(len(self.global_gidlist[n])))*fluct_g_i0_n[0] if self.id == 0: print "- single value in fluct_g_i0_n" #print fluct_g_i0_n for i, gid in enumerate(self.gidlist[n]): # for every cell in the gidlist #h.mcell_ran4_init(gid) noiseRandObj = h.Random() # provides NOISE with random stream self.noises.append(noiseRandObj) # has to be set here not inside the nmodl function!! # print str(gid) + ": " + str(noiseRandObj.normal(0,1)) fluct = h.Gfluct3(self.cells[n][i].soma(0.5)) fluct.E_e = E_e/mV # [mV] fluct.E_i = E_i/mV # [mV] fluct.g_e0 = self.fluct_g_e0[n]/uS # [uS] fluct.g_i0 = fluct_g_i0_n[i]/uS # [uS] fluct.std_e = self.fluct_std_e[n]/uS # [uS] fluct.std_i = self.fluct_std_i[n]/uS # [uS] fluct.tau_e = self.fluct_tau_e/ms #tau_e/ms # [ms] fluct.tau_i = self.fluct_tau_i/ms #tau_i/ms # [ms] self.flucts.append(fluct) # add to list self.flucts[-1].noiseFromRandom(self.noises[-1]) # connect random generator! self.noises[-1].MCellRan4(1, gid+1) # set lowindex to gid+1, set highindex to > 0 self.noises[-1].normal(0,1) def connect_synfluct(self, PF_BG_rate=6, PF_BG_cv=1, STL_BG_rate=20, STL_BG_cv=1): """ Create fluctuating synaptic input onto every cell. """ if self.do_run: for m in self.ST_stims: del m del self.ST_stims for m in self.PF_stims: del m del self.PF_stims self.ST_stims = [] self.PF_stims = [] for n in range(self.n_celltypes): for i, gid in enumerate(self.gidlist[n]): # for every cell in the gidlist PF_syn_list = self.cells[n][i].createsyn_PF() for d in PF_syn_list: d.input.newnetstim.number = 1e9 d.input.newnetstim.noise = PF_BG_cv d.input.newnetstim.interval = 1000.0 / PF_BG_rate d.input.newnetstim.start = 0 self.PF_stims.append(PF_syn_list) ST_stim_list = self.cells[n][i].createsyn_ST(record_all=0) for d in ST_stim_list: d.newnetstim.number = 1e9 d.newnetstim.noise = STL_BG_cv d.newnetstim.interval = 1000.0 / STL_BG_rate d.newnetstim.start = 0 self.ST_stims.append(ST_stim_list) if self.id == 0: print "- PF and ST stimulation added." def set_IStim(self, ihold = None, ihold_sigma = None, random_start = True, tstart_offset = 0): """ Add (random) ihold for each cell and offset! """ if self.do_run: # if not given, use the one in self if ihold == None: ihold = self.ihold if ihold_sigma == None: ihold_sigma = self.ihold_sigma if ihold[self.a_celltype[0]] != 0: ihold = self.set_i(ihold) for m in self.ic_holds: #m.destroy() del m del self.ic_holds for m in self.ic_starts: #m.destroy() del m del self.ic_starts for m in self.vc_starts: #m.destroy() del m del self.vc_starts self.ic_holds = [] self.ic_starts = [] self.vc_starts = [] self.i_holdrs = [] self.i_holds = ihold for n in range(self.n_celltypes): self.i_holdrs.append([]) for i, gid in enumerate(self.gidlist[n]): # for every cell in the gidlist np.random.seed(gid*20) tis = 1 if random_start == True: # random start time tstart = np.random.uniform(tstart_offset+0, tstart_offset+0.5) #if self.id == 0: print "tstart:", tstart vc_start = h.SEClamp(self.cells[n][i].soma(0.5)) vc_start.dur1 = tstart/ms vc_start.amp1 = -80 self.vc_starts.append(vc_start) tis = 0 else: tis = 0 if ihold_sigma[n] != 0: #print ihold_sigma[n], ihold[n] ihold_r = np.random.normal(ihold[n], ihold[n]*ihold_sigma[n], 1).clip(min=0) #ihold_r = np.random.uniform(ihold[n]*ihold_sigma[n], ihold[n]) elif self.CF_var is not False: # CF gets not adapted to current but final frequnecy! r_ok = False while r_ok == False: r_temp = np.random.normal(self.ihold_orig[n], self.CF_var[n][1], 1) if (r_temp <= self.CF_var[n][2]) and (r_temp >= self.CF_var[n][0]): # check borders! r_ok = True #print r_temp ihold_r = self.get_i(r_temp, n) #print ihold_r #if self.id == 0: print "set self.CF_var", r_temp, ihold_r else: # same ihold for all cells! ihold_r = ihold[n] self.i_holdrs[n].append(ihold_r) if ihold_r != 0: if hasattr(self.cells[n][i], 'input_vec'): ic_hold = [] for vec in self.cells[n][i].input_vec: for inv in vec: #print ihold_r ic_hold.append(h.IClamp(inv(0.5))) ic_hold[-1].amp = self.cells[n][i].ifac * ihold_r / self.cells[n][i].n_input_spiny / nA ic_hold[-1].delay = tis/ms ic_hold[-1].dur = 1e9 else: # holding current ic_hold = h.IClamp(self.cells[n][i].soma(0.5)) ic_hold.delay = tis/ms ic_hold.dur = 1e9 ic_hold.amp = ihold_r/nA self.ic_holds.append(ic_hold) if self.id == 0: print "set_IStim finished. ihold: ", ihold, ", ihold_sigma: ", ihold_sigma def set_IStep(self, istep = [0], istep_sigma = [0], tstep = 5, tdur = 1e6, give_freq = True): """ Add istep for each cell and offset! """ if self.do_run: #for m in self.ic_steps: # m.destroy() # del m #del self.ic_steps #self.ic_steps = [] istep = list(istep) neg = False for n in range(self.n_celltypes): if istep[n] < 0: neg = True istep[n] = abs(istep[n]) # make positive again if istep[n] != 0: if give_freq is True: a = np.array([istep[n]]) iin = self.get_i(a, n)[0] if self.id == 0: print "celltype: ", n, " istep: ", istep[n], "Hz => ", iin, " nA" istep[n] = iin for n in range(self.n_celltypes): for i, gid in enumerate(self.gidlist[n]): # for every cell in the gidlist np.random.seed(gid*30) if self.i_holdrs == []: if istep_sigma[n] != 0: istep_r = np.random.normal(istep[n], istep[n]*istep_sigma[n], 1).clip(min=0) else: # same ihold for all cells! istep_r = istep[n] else: # ihold has been set! if istep_sigma[n] != 0: istep_r = np.random.normal(istep[n]-self.i_holds[n], (istep[n]-self.i_holds[n])*istep_sigma[n], 1).clip(min=0) # delta now! put on top of hold! else: # same ihold for all cells! istep_r = istep[n]-self.i_holds[n] # delta now! put on top of hold! if neg: istep_r = -1*istep_r if istep[n] == 0: istep_r = -1*self.i_holdrs[n][i] #print 'is:' + str(istep_r) + 'was:' + str(self.i_holdrs[n][i]) if istep_r != 0: # step current ic_step = h.IClamp(self.cells[n][i].soma(0.5)) ic_step.delay = tstep/ms ic_step.dur = tdur/ms ic_step.amp = istep_r/nA self.ic_steps.append(ic_step) if self.id == 0: print "set_IStep finished. istep: ", istep, ", istep_sigma: ", istep_sigma def set_IPlay(self, stimulus, t): """ Initializes values for current clamp to play a signal. """ if self.do_run: for m in self.tvecs: #m.destroy() del m del self.tvecs for m in self.ivecs: #m.destroy() del m del self.ivecs for m in self.plays: #m.destroy() del m del self.plays self.tvecs = [] self.ivecs = [] self.plays = [] for i, gid in enumerate(self.gidlist[self.a_celltype[0]]): # for every cell in the gidlist tvec = h.Vector(t/ms) ivec = h.Vector(stimulus/nA) play = h.IClamp(self.cells[self.a_celltype[0]][i].soma(0.5)) play.delay = 0 play.dur = 1e9 ivec.play(play._ref_amp, tvec, 1) self.plays.append(play) # add to list self.tvecs.append(tvec) # add to list self.ivecs.append(ivec) # add to list if self.id == 0: print "set_IPlay finished." def set_IPlay2(self, stimulus, t): """ Initializes values for current clamp to play a signal. """ if self.do_run: for m in self.tvecs: #m.destroy() del m del self.tvecs for m in self.ivecs: #m.destroy() del m del self.ivecs for m in self.plays: #m.destroy() del m del self.plays self.tvecs = [] self.ivecs = [] self.plays = [] for j in self.a_celltype: tvec = h.Vector(t/ms) ivec = [] for s in stimulus: if hasattr(self.cells[j][0], 'input_vec'): ivec.append(h.Vector(self.factor_celltype[j] * self.cells[j][0].ifac * s / self.cells[j][0].n_input_spiny / nA)) else: ivec.append(h.Vector(self.factor_celltype[j]*s/nA)) self.tvecs.append(tvec) # add to list self.ivecs.append(ivec) # add to list for i, gid in enumerate(self.gidlist[j]): # for every cell in the gidlist if hasattr(self.cells[j][i], 'input_vec'): play = [] for iloc, vec in enumerate(self.cells[j][i].input_vec): isig = self.syn_ex_dist[j][iloc]-1 #print isig for inv in vec: play.append(h.IClamp(inv(0.5))) play[-1].delay = 0 play[-1].dur = 1e9 ivec[isig].play(play[-1]._ref_amp, tvec, 1) else: #fluctuating current play = h.IClamp(self.cells[j][i].soma(0.5)) play.delay = 0 play.dur = 1e9 ivec[0].play(play._ref_amp, tvec, 1) self.plays.append(play) # add to list if self.id == 0: print "set_IPlay2 finished." def set_IPlay3(self, stimulus, t, amp = None): """ Initializes values for current clamp to play a signal. """ if self.do_run: for m in self.tvecs: #m.destroy() del m del self.tvecs for m in self.ivecs: #m.destroy() del m del self.ivecs for m in self.plays: #m.destroy() del m del self.plays self.tvecs = [] self.ivecs = [] self.plays = [] for j in self.a_celltype: if amp is None: amp0 = 0 else: amp0 = amp[j] tvec = h.Vector(t/ms) self.tvecs.append(tvec) # add to list for i, gid in enumerate(self.gidlist[j]): # for every cell in the gidlist if isinstance(self.factor_celltype[j], ( int, long ) ): ivec = h.Vector(self.factor_celltype[j]*(stimulus*amp0)/nA) else: np.random.seed(gid*40) rnd.seed(gid*40) if self.factor_celltype[j][1] > 0: f = np.random.normal(self.factor_celltype[j][0], self.factor_celltype[j][1], 1).clip(min=0) else: f = self.factor_celltype[j][0] if self.factor_celltype[j][2] > 0: # add inverted input with 50% probability, in future versions this will indicate the propability for -1 and 1 f = rnd.sample([-1,1],1)[0] * f if self.id == 0: print "- inverted input with 50% probability:", f if self.id == 0: print "- randomize play stimulus height" ivec = h.Vector(f*(stimulus*amp0)/nA) self.ivecs.append(ivec) # add to list #fluctuating current play = h.IClamp(self.cells[j][i].soma(0.5)) play.delay = 0 play.dur = 1e9 ivec.play(play._ref_amp, tvec, 1) self.plays.append(play) # add to list if self.id == 0: print "set_IPlay3 finished." def set_PulseStim(self, start_time=[100*ms], dur=[1500*ms], steadyf=[100*Hz], pulsef=[150*Hz], pulse_start=[500*ms], pulse_len=[500*ms], weight0=1, tau01=[1*ms], tau02=[20*ms], weight1=1, tau11=[0*ms], tau12=[1*ms], noise = 1): if self.do_run: modulation_vec = [] for n in range(self.n_celltypes): t_input = np.arange(0, dur[n], self.dt) # create stimulus time vector has to be in ms!! mod = np.concatenate(([np.zeros(round(start_time[n]/self.dt)), steadyf[n]*np.ones(round((pulse_start[n]-start_time[n])/self.dt)), pulsef[n]*np.ones(round(pulse_len[n]/self.dt)),steadyf[n]*np.ones(round((dur[n]-pulse_start[n]-pulse_len[n])/self.dt)) ])) modulation = (t_input, mod) #print shape(t_input), shape(mod), shape(modulation) for i, gid in enumerate(self.gidlist[n]): # for every cell in the gidlist if dur[n] > 0: if self.celltype[n] == 'Grc': nmf = 4 for j in range(nmf): self.cells[n][i].createsyn(nmf = 1, ngoc = 0, weight = weight0) e0 = len(self.cells[n][i].MF_L)-1 # get number of current synapse! pulse_gid = int(self.gid_count + gid*1000 + j) train = mod_spike_train(modulation, noise = noise, seed = pulse_gid) self.setup_Play_train(train = train, input_gid = pulse_gid) self.cells[n][i].pconnect(self.pc,pulse_gid,int(e0),'mf') elif self.celltype[n] == 'Goc': nmf = 53 for j in range(nmf): self.cells[n][i].createsyn(nmf = 1, weight = weight1) e0 = len(self.cells[n][i].MF_L)-1 # get number of current synapse! pulse_gid = int(self.gid_count + gid*1000 + j) train = mod_spike_train(modulation, noise = noise, seed = pulse_gid) self.setup_Play_train(train = train, input_gid = pulse_gid) self.cells[n][i].pconnect(self.pc,pulse_gid,int(e0),'mf') elif self.celltype[n] == 'Goc_noloop': ngrc = 100 for j in range(ngrc): self.cells[n][i].createsyn(ngrc = 1, weight = weight0) e0 = len(self.cells[n][i].GRC_L)-1 # get number of current synapse! pulse_gid = int(self.gid_count + gid*1000 + j) train = mod_spike_train(modulation, noise = noise, seed=pulse_gid) self.setup_Play_train(train = train, input_gid = pulse_gid) self.cells[n][i].pconnect(self.pc,pulse_gid,int(e0),'grc') else: pulse_gid = int(self.gid_count + gid*1000 + 100) train = mod_spike_train(modulation, noise = noise, seed = pulse_gid) self.trains.append(train) setup_Play_train(train = train, input_gid = pulse_gid) # NMDA self.cells[n][i].create_synapses(n_ex=1, tau1=tau01[n], tau2=tau02[n]) e0 = len(self.cells[n][i].synlist)-1 weight=weight0[n] np.random.seed(gid*60) #weight = np.random.normal(weight, weight*0.5, 1).clip(min=0) self.cells[n][i].pconnect_target(self.pc, source=pulse_gid, target=e0, syntype='ex', weight=weight, delay=1) # AMPA self.cells[n][i].create_synapses(n_ex=1, tau1=tau11[n], tau2=tau12[n]) e0 = len(self.cells[n][i].synlist)-1 weight=weight1[n] np.random.seed(gid*60) #weight = np.random.normal(weight, weight*0.5, 1).clip(min=0) self.cells[n][i].pconnect_target(self.pc, source=pulse_gid, target=e0, syntype='ex', weight=weight, delay=1) modulation = (t_input, mod) # mack to s! modulation_vec.append(modulation) return modulation_vec def connect_Synapse(self, pulse_gid, nt, i, n, gid, j, syntype = "ex", nsyn=0): if self.do_run: if 'gsyn_in' in self.method_interpol: if isinstance(self.factor_celltype[nt], ( int, long ) ): f = self.factor_celltype[nt] else: f = self.factor_celltype[nt][0] if syntype == "ex": # each cell can receive different g_syn_ex ! if type(self.g_syn_ex[nt]) is ndarray: if len(self.g_syn_ex[nt]) == len(self.global_gidlist[nt]): w = self.g_syn_ex[nt][n] else: w = self.g_syn_ex[nt] else: w = self.g_syn_ex[nt] seed = int(10000 + 10*gid + j) np.random.seed(seed*41) if self.g_syn_ex_s[nt] > 0: w = np.random.normal(w, w*self.g_syn_ex_s[nt], 1).clip(min=0) # self.g_syn_ex_s[nt] if self.celltype[nt] == 'Grc': # delete old if j == 0: self.cells[nt][i].MF_L = [] self.cells[nt][i].mfncpc = [] if "gr" not in str(self.tau1_ex[nt]): if "amfit" in str(self.tau1_ex[nt]): syn = h.ExpZSyn(self.cells[nt][i].soma(0.5)) syn.tau1_ampa = 0.254 syn.tau2_ampa = 0.254 syn.tau3_ampa = 0.363 syn.tau4_ampa = 6.523 syn.f1_ampa = 8.8376e-05 syn.f2_ampa = 5.5257e-05 syn.f1_nmda = 0 elif "nmfit" in str(self.tau1_ex[nt]): syn = h.ExpYSyn(self.cells[nt][i].soma(0.5)) syn.f1_ampa = 0 syn.f2_ampa = 0 syn.tau1_nmda = 1.902 syn.tau2_nmda = 82.032 syn.f1_nmda = 7.853857483005277e-05 elif "fit" in str(self.tau1_ex[nt]): syn = h.ExpGrcSyn(self.cells[nt][i].soma(0.5)) syn.tau1_ampa = 0.254 syn.tau2_ampa = 0.254 syn.tau3_ampa = 0.363 syn.tau4_ampa = 6.523 syn.f1_ampa = 8.8376e-05 syn.f2_ampa = 5.5257e-05 syn.tau1_nmda = 1.902 syn.tau2_nmda = 82.032 syn.f1_nmda = 7.853857483005277e-05 else: tau1 = self.tau1_ex[nt] tau2 = self.tau2_ex[nt] if tau1 == 0: syn = h.ExpSyn(self.cells[nt][i].soma(0.5)) syn.tau = tau2/ms else: syn = h.Exp2Syn(self.cells[nt][i].soma(0.5)) syn.tau1 = tau1/ms syn.tau2 = tau2/ms syn.e = 0/mV self.cells[nt][i].MF_L.append(syn) e0 = len(self.cells[nt][i].MF_L)-1 # get number of current synapse! syn_idx = int(e0) source = int(pulse_gid) self.cells[nt][i].mfncpc.append(self.pc.gid_connect(source, self.cells[nt][i].MF_L[syn_idx])) self.cells[nt][i].mfncpc[-1].delay = 1 self.cells[nt][i].mfncpc[-1].weight[0] = w if 'gsyn_in' in self.method_interpol: self.record_syn.append(h.Vector()) self.record_syn[-1].record(self.cells[nt][i].MF_L[-1]._ref_g) self.gsyn_in_fac.append(f) else: nrel = 0 if "stoch" in str(self.tau1_ex[nt]): nrel = 4 self.cells[nt][i].createsyn(nmf = 1, ngoc = 0, weight_gmax = w, nrel=nrel) if "ampa" in str(self.tau1_ex[nt]): self.cells[nt][i].MF_L[-1].postsyns['NMDA'][0].gmax_factor = 0 if "nopre" in str(self.tau1_ex[nt]): print "- no pre" self.cells[nt][i].MF_L[-1].postsyns['AMPA'][0].tau_rec = 1e-9 self.cells[nt][i].MF_L[-1].postsyns['AMPA'][0].tau_facil = 1e-9 self.cells[nt][i].MF_L[-1].postsyns['AMPA'][0].tau_1 = 0 if "nostdampa" in str(self.tau1_ex[nt]): self.cells[nt][i].MF_L[-1].postsyns['NMDA'][0].gmax_factor = 0 self.cells[nt][i].MF_L[-1].postsyns['AMPA'][0].tau_rec = 1e-9 self.cells[nt][i].MF_L[-1].postsyns['AMPA'][0].tau_facil = 1e-9 self.cells[nt][i].MF_L[-1].postsyns['AMPA'][0].tau_1 = 0 self.cells[nt][i].MF_L[-1].postsyns['AMPA'][0].r6FIX = 0 if "nostdnmda" in str(self.tau1_ex[nt]): self.cells[nt][i].MF_L[-1].postsyns['AMPA'][0].gmax_factor = 0 self.cells[nt][i].MF_L[-1].postsyns['NMDA'][0].tau_rec = 1e-9 self.cells[nt][i].MF_L[-1].postsyns['NMDA'][0].tau_facil = 1e-9 self.cells[nt][i].MF_L[-1].postsyns['NMDA'][0].tau_1 = 0 self.cells[nt][i].MF_L[-1].postsyns['NMDA'][0].RdRate = 0 if "nmda" in str(self.tau1_ex[nt]): self.cells[nt][i].MF_L[-1].postsyns['AMPA'][0].gmax_factor = 0 if "nopre" in str(self.tau1_ex[nt]): self.cells[nt][i].MF_L[-1].postsyns['NMDA'][0].tau_rec = 1e-9 self.cells[nt][i].MF_L[-1].postsyns['NMDA'][0].tau_facil = 1e-9 self.cells[nt][i].MF_L[-1].postsyns['NMDA'][0].tau_1 = 0 if "nostdgr" in str(self.tau1_ex[nt]): self.cells[nt][i].MF_L[-1].postsyns['AMPA'][0].r6FIX = 0 #1.12 self.cells[nt][i].MF_L[-1].postsyns['NMDA'][0].RdRate = 0 #12e-3 print "- no std" if "nomggr" in str(self.tau1_ex[nt]): self.cells[nt][i].MF_L[-1].postsyns['NMDA'][0].v0_block = -1e9 print "- no mg block" e0 = len(self.cells[nt][i].MF_L)-1 # get number of current synapse! self.cells[nt][i].pconnect(self.pc,pulse_gid,int(e0),'mf') if 'gsyn_in' in self.method_interpol: self.record_syn.append(h.Vector()) self.record_syn[-1].record(self.cells[nt][i].MF_L[-1].postsyns['AMPA'][0]._ref_g) self.record_syn.append(h.Vector()) self.record_syn[-1].record(self.cells[nt][i].MF_L[-1].postsyns['NMDA'][0]._ref_g) self.gsyn_in_fac.append(f) self.gsyn_in_fac.append(f) elif self.celltype[nt] == 'Goc': # delete old if j == 0: self.cells[nt][i].MF_L = [] self.cells[nt][i].mfncpc = [] if "go" not in str(self.tau1_ex[nt]): tau1 = self.tau1_ex[nt] tau2 = self.tau2_ex[nt] if tau1 == 0: syn = h.ExpSyn(self.cells[nt][i].soma(0.5)) syn.tau = tau2/ms else: syn = h.Exp2Syn(self.cells[nt][i].soma(0.5)) syn.tau1 = tau1/ms syn.tau2 = tau2/ms syn.e = 0/mV self.cells[nt][i].MF_L.append(syn) e0 = len(self.cells[nt][i].MF_L)-1 # get number of current synapse! syn_idx = int(e0) source = int(pulse_gid) self.cells[nt][i].mfncpc.append(self.pc.gid_connect(source, self.cells[nt][i].MF_L[syn_idx])) self.cells[nt][i].mfncpc[-1].delay = 1 self.cells[nt][i].mfncpc[-1].weight[0] = w if 'gsyn_in' in self.method_interpol: self.record_syn.append(h.Vector()) self.record_syn[-1].record(self.cells[nt][i].MF_L[-1]._ref_g) self.gsyn_in_fac.append(f) else: nrel = 0 mg = self.mglufac_ex[0] if self.mglufac_ex[1] > 0: mg = np.random.normal(self.mglufac_ex[0], self.mglufac_ex[1]*self.mglufac_ex[0], 1).clip(min=0) # self.g_syn_ex_s[nt] if "stoch" in str(self.tau1_ex[nt]): nrel = 4 self.cells[nt][i].createsyn(nmf = 1, weight_gmax = w, nrel=nrel, mglufac = mg) e0 = len(self.cells[nt][i].MF_L)-1 # get number of current synapse! self.cells[nt][i].pconnect(self.pc,pulse_gid,int(e0),'mf') if 'gsyn_in' in self.method_interpol: self.record_syn.append(h.Vector()) self.record_syn[-1].record(self.cells[nt][i].MF_L[-1].postsyns['AMPA'][0]._ref_g) self.record_syn.append(h.Vector()) self.record_syn[-1].record(self.cells[nt][i].MF_L[-1].postsyns['NMDA'][0]._ref_g) self.gsyn_in_fac.append(f) self.gsyn_in_fac.append(f) elif self.celltype[nt] == 'IfCell': # delete old if j == 0: self.cells[nt][i].synlist = [] self.cells[nt][i].nc = [] if "gr" in str(self.tau1_ex[nt]): self.cells[nt][i].whatami = "grc" nrel = 0 if "stoch" in str(self.tau1_ex[nt]): nrel = 4 self.cells[nt][i].MF_L = self.cells[nt][i].synlist self.cells[nt][i].synlist.append(Synapse('glom', self.cells[nt][i], self.cells[nt][i].soma, nrel=nrel, record_all=0, weight_gmax = w)) if "ampa" in str(self.tau1_ex[nt]): self.cells[nt][i].synlist[-1].postsyns['NMDA'][0].gmax_factor = 0 if "nopre" in str(self.tau1_ex[nt]): print "- no pre" self.cells[nt][i].synlist[-1].postsyns['AMPA'][0].tau_rec = 1e-9 self.cells[nt][i].synlist[-1].postsyns['AMPA'][0].tau_facil = 1e-9 self.cells[nt][i].synlist[-1].postsyns['AMPA'][0].tau_1 = 0 if "nmda" in str(self.tau1_ex[nt]): self.cells[nt][i].synlist[-1].postsyns['AMPA'][0].gmax_factor = 0 if "nopre" in str(self.tau1_ex[nt]): self.cells[nt][i].synlist[-1].postsyns['NMDA'][0].tau_rec = 1e-9 self.cells[nt][i].synlist[-1].postsyns['NMDA'][0].tau_facil = 1e-9 self.cells[nt][i].synlist[-1].postsyns['NMDA'][0].tau_1 = 0 if "nostdampa" in str(self.tau1_ex[nt]): self.cells[nt][i].synlist[-1].postsyns['AMPA'][0].tau_rec = 1e-9 self.cells[nt][i].synlist[-1].postsyns['AMPA'][0].tau_facil = 1e-9 self.cells[nt][i].synlist[-1].postsyns['AMPA'][0].tau_1 = 0 self.cells[nt][i].synlist[-1].postsyns['AMPA'][0].r6FIX = 0 #1.12 if "nostdnmda" in str(self.tau1_ex[nt]): self.cells[nt][i].synlist[-1].postsyns['NMDA'][0].tau_rec = 1e-9 self.cells[nt][i].synlist[-1].postsyns['NMDA'][0].tau_facil = 1e-9 self.cells[nt][i].synlist[-1].postsyns['NMDA'][0].tau_1 = 0 self.cells[nt][i].synlist[-1].postsyns['NMDA'][0].RdRate = 0 if "nostdgr" in str(self.tau1_ex[nt]): self.cells[nt][i].synlist[-1].postsyns['AMPA'][0].r6FIX = 0 #1.12 self.cells[nt][i].synlist[-1].postsyns['NMDA'][0].RdRate = 0 #12e-3 print "- no std" if "nomggr" in str(self.tau1_ex[nt]): self.cells[nt][i].synlist[-1].postsyns['NMDA'][0].v0_block = -1e9 #.k_block = 1e-9 print "- no mg block" e0 = len(self.cells[nt][i].synlist)-1 syn_idx = int(e0) source = int(pulse_gid) self.cells[nt][i].nc.append(self.pc.gid_connect(source, self.cells[nt][i].synlist[syn_idx].input)) self.cells[nt][i].nc[-1].delay = 1 self.cells[nt][i].nc[-1].weight[0] = 1 if 'gsyn_in' in self.method_interpol: self.record_syn.append(h.Vector()) self.record_syn[-1].record(self.cells[nt][i].synlist[syn_idx].postsyns['AMPA'][0]._ref_g) self.record_syn.append(h.Vector()) self.record_syn[-1].record(self.cells[nt][i].synlist[syn_idx].postsyns['NMDA'][0]._ref_g) self.gsyn_in_fac.append(f) self.gsyn_in_fac.append(f) else: if "amfit" in str(self.tau1_ex): syn = h.ExpGrcSyn(self.cells[nt][i].soma(0.5)) syn.tau1_ampa = 0.254 syn.tau2_ampa = 0.254 syn.tau3_ampa = 0.363 syn.tau4_ampa = 6.523 syn.f1_ampa = 8.8376e-05 syn.f2_ampa = 5.5257e-05 syn.f1_nmda = 0 self.cells[nt][i].synlist.append(syn) # synlist is defined in Cell elif "nmfit" in str(self.tau1_ex): syn = h.ExpGrcSyn(self.cells[nt][i].soma(0.5)) syn.f1_ampa = 0 syn.f2_ampa = 0 syn.tau1_nmda = 1.902 syn.tau2_nmda = 82.032 syn.f1_nmda = 7.853857483005277e-05 self.cells[nt][i].synlist.append(syn) # synlist is defined in Cell elif "fit" in str(self.tau1_ex): syn = h.ExpGrcSyn(self.cells[nt][i].soma(0.5)) syn.tau1_ampa = 0.254 syn.tau2_ampa = 0.254 syn.tau3_ampa = 0.363 syn.tau4_ampa = 6.523 syn.f1_ampa = 8.8376e-05 syn.f2_ampa = 5.5257e-05 syn.tau1_nmda = 1.902 syn.tau2_nmda = 82.032 syn.f1_nmda = 7.853857483005277e-05 self.cells[nt][i].synlist.append(syn) # synlist is defined in Cell else: self.cells[nt][i].create_synapses(n_ex=1, tau1=self.tau1_ex[nt], tau2=self.tau2_ex[nt]) e0 = len(self.cells[nt][i].synlist)-1 syn_idx = int(e0) self.cells[nt][i].pconnect_target(self.pc, source=pulse_gid, target=int(e0), syntype='ex', weight=w, delay=1) if 'gsyn_in' in self.method_interpol: self.record_syn.append(h.Vector()) self.record_syn[-1].record(self.cells[nt][i].synlist[syn_idx]._ref_g) self.gsyn_in_fac.append(f) elif self.celltype[nt] == 'Prk': # delete old if j == 0: self.cells[nt][i].PF_Lsync = [] self.cells[nt][i].spk_nc_pfsync = [] self.cells[nt][i].pfrand = [] m = len(self.cells[nt][i].dendrange) seed = int(4*gid) np.random.seed(seed) for k in xrange(nsyn): m -= 1 mi = np.random.randint(0, m) self.cells[nt][i].dendrange[mi], self.cells[nt][i].dendrange[m] = self.cells[nt][i].dendrange[m], self.cells[nt][i].dendrange[mi] self.cells[nt][i].pfrand.append(self.cells[nt][i].dendrange[m]) #print self.cells[nt][i].pfrand if "prk" not in str(self.tau1_ex[nt]): pass else: self.cells[nt][i].PF_Lsync.append(Synapse2('pf',self.cells[nt][i],self.cells[nt][i].pfrand[j],record_all=0)) e0 = len(self.cells[nt][i].PF_Lsync)-1 # get number of current synapse! syn_idx = int(e0) self.cells[nt][i].spk_nc_pfsync.append(self.pc.gid_connect(pulse_gid, self.cells[nt][i].PF_Lsync[syn_idx].input.newnetstim)) self.cells[nt][i].spk_nc_pfsync[-1].delay = 1 self.cells[nt][i].spk_nc_pfsync[-1].weight[0] = 1 if 'gsyn_in' in self.method_interpol: self.record_syn.append(h.Vector()) self.record_syn[-1].record(self.cells[nt][i].PF_Lsync[-1].postsyns['AMPA'][0]._ref_g) self.gsyn_in_fac.append(f) elif syntype == "inh": w = self.g_syn_inh[nt] seed = int(10000 + 10*gid + j) np.random.seed(seed*42) if self.g_syn_inh_s[nt] > 0: w = np.random.normal(w, w*self.g_syn_inh_s[nt], 1).clip(min=w*0.1) # self.g_syn_inh_s[nt] if self.celltype[nt] == 'Grc': if j == 0: self.cells[nt][i].GOC_L = [] self.cells[nt][i].gocncpc = [] if "gr" not in str(self.tau1_inh[nt]): tau1 = self.tau1_inh[nt] tau2 = self.tau2_inh[nt] if tau1 == 0: syn = h.ExpSyn(self.cells[nt][i].soma(0.5)) syn.tau = tau2/ms else: syn = h.Exp2Syn(self.cells[nt][i].soma(0.5)) syn.tau1 = tau1/ms syn.tau2 = tau2/ms syn.e = -65 self.cells[nt][i].GOC_L.append(syn) i0 = len(self.cells[nt][i].GOC_L)-1 # get number of current synapse! syn_idx = int(i0) source = int(pulse_gid) self.cells[nt][i].gocncpc.append(self.pc.gid_connect(source, self.cells[nt][i].GOC_L[syn_idx])) self.cells[nt][i].gocncpc[-1].delay = 1 self.cells[nt][i].gocncpc[-1].weight[0] = w else: self.cells[nt][i].createsyn(nmf = 0, ngoc = 1, weight_gmax = w) i0 = len(self.cells[nt][i].GOC_L)-1 # get number of current synapse! self.cells[nt][i].pconnect(self.pc,pulse_gid,int(i0),'goc') if self.celltype[nt] == 'IfCell': if j == 0: self.cells[nt][i].synlist_inh = [] self.cells[nt][i].nc_inh = [] if "gr" in str(self.tau1_inh[nt]): nrel = 0 if "stoch" in str(self.tau1_ex[nt]): nrel = 4 self.cells[nt][i].GOC_L = self.cells[nt][i].synlist self.cells[nt][i].whatami = "grc" self.cells[nt][i].synlist_inh.append(Synapse('goc', self.cells[nt][i], self.cells[nt][i].soma, nrel=nrel, record_all=0, weight_gmax = w)) i0 = len(self.cells[nt][i].synlist_inh)-1 syn_idx = int(i0) source = int(pulse_gid) self.cells[nt][i].nc_inh.append(self.pc.gid_connect(source, self.cells[nt][i].synlist_inh[syn_idx].input)) self.cells[nt][i].nc_inh[-1].delay = 1 self.cells[nt][i].nc_inh[-1].weight[0] = 1 if "gaba" in str(self.tau1_ex[nt]): if 'gsyn_in' in self.method_interpol: if "nostdgaba" in str(self.tau1_ex[nt]): self.cells[nt][i].synlist_inh[syn_idx].postsyns['GABA'][0].tau_rec = 1e-9 self.cells[nt][i].synlist_inh[syn_idx].postsyns['GABA'][0].tau_facil = 1e-9 self.cells[nt][i].synlist_inh[syn_idx].postsyns['GABA'][0].tau_1 = 0 self.cells[nt][i].synlist_inh[syn_idx].postsyns['GABA'][0].d3 = 0 self.cells[nt][i].synlist_inh[syn_idx].postsyns['GABA'][0].d1d2 = 0 self.cells[nt][i].synlist_inh[syn_idx].postsyns['GABA'][0].d1 = 0 self.cells[nt][i].synlist_inh[syn_idx].postsyns['GABA'][0].d2 = 0 self.cells[nt][i].synlist_inh[syn_idx].postsyns['GABA'][0].d3_a6 = 0 self.cells[nt][i].synlist_inh[syn_idx].postsyns['GABA'][0].d1d2_a6 = 0 self.cells[nt][i].synlist_inh[syn_idx].postsyns['GABA'][0].d1_a6 = 0 self.cells[nt][i].synlist_inh[syn_idx].postsyns['GABA'][0].d2_a6 = 0 self.record_syn.append(h.Vector()) self.record_syn[-1].record(self.cells[nt][i].synlist_inh[syn_idx].postsyns['GABA'][0]._ref_g) self.gsyn_in_fac.append(f) else: self.cells[nt][i].create_synapses(n_inh=1, tau1_inh=self.tau1_inh[nt], tau2_inh=self.tau2_inh[nt], e_inh=-65) i0 = len(self.cells[nt][i].synlist_inh)-1 syn_idx = int(i0) self.cells[nt][i].pconnect_target(self.pc, source=pulse_gid, target=int(i0), syntype='inh', weight=w, delay=1) elif syntype == "intr": if self.celltype[nt] == 'Prk': pass def set_SynPlay(self, farray, tarray, N = [], t_startstop = [], amode = 1): if self.do_run: delay = 1 if (self.use_pc is False): delay = 0.1 if N == []: N = self.N self.pulse_list = [] self.global_pulse_list = [] self.global_pulse_list_inh = [] self.global_pulse_list_intr = [] f_cells_mean_local = [] f_cells_cv_local = [] f_cells_std_local = [] for nt in range(self.n_celltypes): # loop over all cells if (self.n_syn_ex[nt] > 0) or (self.n_syn_inh[nt] > 0) or (self.n_syn_intr[nt] > 0): local_gid_count = 0 local_gid_count_type = [] # EXCITATION if str(type(self.g_syn_ex[nt] )) is not ndarray: self.g_syn_ex[nt] = np.array([self.g_syn_ex[nt] ]) # each cell can receive different g_syn_ex ! if len(self.g_syn_ex[nt]) == len(self.global_gidlist[nt]): pass else: self.g_syn_ex[nt] = np.ones(len(self.global_gidlist[nt]))*self.g_syn_ex[nt][0] #print "- single value in g_syn_ex, cells:", len(self.global_gidlist[nt]) self.global_pulse_list.append([]) for ns in range(self.n_syn_ex[nt]): # loop over all excitatory synapses! self.global_pulse_list[-1].append([]) for n in range(self.syn_max_mf[nt]): # number of cells of this celltype self.global_pulse_list[-1][-1].append(local_gid_count+self.gid_count) local_gid_count += 1 local_gid_count_type.append([]) local_gid_count_type[-1].append('ex') local_gid_count_type[-1].append(n) # number of cell within their population 0..N[nt] local_gid_count_type[-1].append(ns) # number of synapse # INHIBITION if np.array(self.inh_hold[nt]).size <= 1: self.inh_hold[nt] = np.ones(len(self.global_gidlist[nt]))*self.inh_hold[nt] #print "- single value in inh_hold", self.inh_hold[nt] self.global_pulse_list_inh.append([]) for ns in range(self.n_syn_inh[nt]): # loop over all inhibitory synapses! self.global_pulse_list_inh[-1].append([]) for n in range(self.syn_max_inh[nt]): # number of cells of this celltype self.global_pulse_list_inh[-1][-1].append(local_gid_count+self.gid_count) local_gid_count += 1 local_gid_count_type.append([]) local_gid_count_type[-1].append('inh') local_gid_count_type[-1].append(n) # number of cell within their population 0..N[nt] local_gid_count_type[-1].append(ns) # number of synapse # INTRUDER SYNAPSE if str(type(self.g_syn_intr[nt] )) is not ndarray: self.g_syn_intr[nt] = np.array([self.g_syn_intr[nt] ]) # each cell can receive different g_syn_intr ! if len(self.g_syn_intr[nt]) == len(self.global_gidlist[nt]): pass else: self.g_syn_intr[nt] = np.ones(len(self.global_gidlist[nt]))*self.g_syn_intr[nt][0] #print "- single value in g_syn_intr, cells:", len(self.global_gidlist[nt]) self.global_pulse_list_intr.append([]) for ns in range(self.n_syn_intr[nt]): # loop over all intruding synapses! self.global_pulse_list_intr[-1].append([]) for n in range(self.syn_max_intr[nt]): # number of generators for this celltype self.global_pulse_list_intr[-1][-1].append(local_gid_count+self.gid_count) local_gid_count += 1 local_gid_count_type.append([]) local_gid_count_type[-1].append('intr') local_gid_count_type[-1].append(n) # number of cell within their population 0..N[nt] local_gid_count_type[-1].append(ns) # number of synapse t_vec_input = np.array([]) # input trains id_vec_input = np.array([]) # input trains id fs = 1 / self.dt ih_use_v = [] for i in range(int(self.id), local_gid_count, int(self.nhost)): # loop over all train generators and generate them self.pulse_list.append(i+self.gid_count) pulse_gid = self.pulse_list[-1] gid = local_gid_count_type[i][1] # should correspond to this gid when multiple values inserted if local_gid_count_type[i][0] == 'ex': seed = int(10001 + pulse_gid) # unique gid for generators! np.random.seed(seed*423) if self.ihold_sigma[nt] > 0: ih_use = np.random.normal(self.ihold[nt], self.ihold[nt]*self.ihold_sigma[nt], 1).clip(min=0) # self.ihold[nt]*self.ihold_sigma[nt] elif self.ihold_sigma[nt] < 0: ih_use = np.random.uniform(0.1, self.ihold[nt]) else: ih_use = self.ihold[nt] ih_use_v.append(ih_use) if ih_use > 0: # train has to be contructed here, to insert different train into each "dendrite" ## different ihold has to be implemented here!! iholdvec = concatenate((zeros(round(fs)), ones(round(len(tarray) - 1 * fs)) * ih_use)) if isinstance(self.syn_ex_dist[nt], ( tuple ) ): # distribution of amplitude, only one noise source! np.random.seed(pulse_gid*40) if self.syn_ex_dist[nt][1] > 0: f = np.random.normal(self.syn_ex_dist[nt][0], self.syn_ex_dist[nt][1], 1).clip(min=0) else: f = self.syn_ex_dist[nt][0] f2 = f rnd.seed(pulse_gid*40) # use gid so type 1, 2 is identical for each cell #rnd.seed(gid*40) # use gid so type 1, 2 is identical for each cell if self.syn_ex_dist[nt][2] > 0: # add inverted input with 50% probability, in future versions this will indicate the propability for -1 and 1 f2 = rnd.sample([-1,1],1)[0] * f #f2 = f if amode == 1: inamp = (f2 * self.amod[nt] * ih_use) elif amode == 2: inamp = (f2 * self.amod[nt] * self.ihold[nt]) modulation = (tarray, inamp * farray[0] + iholdvec) #if self.id == 0: print "- randomize play stimulus height, pulse_gid=", pulse_gid, " gid=", gid ," f=", f if (gid==0): print "- randomize play stimulus height, pulse_gid=", pulse_gid, " gid=", gid ," f2=", f2,"inamp=",inamp #rnd.seed(local_gid_count_type[i][1]*300) # pick seed based on number of cell #nj = rnd.sample(range(len(farray)),1)[0] nj = 1 else: # different noise sources can be used at different synapses, linear combination test in openloop nj = self.syn_ex_dist[nt][local_gid_count_type[i][2]] if nj == 0: modulation = (tarray, iholdvec) else: if amode == 1: inamp = (self.factor_celltype[nt] * self.amod[nt] * ih_use) elif amode == 2: inamp = (self.factor_celltype[nt] * self.amod[nt] * self.ihold[nt]) modulation = (tarray, inamp * farray[nj-1] + iholdvec) if self.id == 0: print "ex farray number:", nj-1, "ih_use:", ih_use, "self.amod[nt]:", self.amod[nt], "inamp: ", inamp # will be done n_syn_ex * number of cells! if self.noise_syn_tau[nt] < 0: # variable threshold no = self.noise_syn[nt] else: no = self.noise_syn[nt]*ih_use train, self.n_train_ex = mod_spike_train(modulation, noise = no, seed = seed, noise_tau = self.noise_syn_tau[nt], noise_a = self.noise_a[nt]) #plt.figure("input") #plt.plot(train, train*0, '|') #plt.show() t_vec_input = np.append(t_vec_input, train*ms).flatten() # use ms to save!! id_vec_input = np.append(id_vec_input, np.ones(len(train))*pulse_gid).flatten() f_cells_mean_local0, f_cells_cv_local0, f_cells_std_local0 = self.calc_fmean(train*ms, t_startstop) f_cells_mean_local.append(f_cells_mean_local0); f_cells_cv_local.append(f_cells_cv_local0); f_cells_std_local.append(f_cells_std_local0) if self.id == 0: print "TRAIN: requ. mean:", ih_use ,"eff. mean:", f_cells_mean_local0, "cv: " , f_cells_cv_local0, "std:" , f_cells_std_local0 else: train = [] self.n_train_ex = [] elif local_gid_count_type[i][0] == 'intr': # train has to be contructed here, to insert different train into each "dendrite" nj = 0 seed = int(10001 + pulse_gid) np.random.seed(seed*4411) if self.intr_hold_sigma[nt] > 0: ih_use = np.random.normal(self.intr_hold[nt], self.intr_hold[nt]*self.intr_hold_sigma[nt], 1).clip(min=0) else: ih_use = self.intr_hold[nt] ih_use_v.append(ih_use) if ih_use > 0: iholdvec = concatenate((zeros(round(fs)), ones(round(len(tarray) - 1 * fs)) * ih_use)) modulation = (tarray, iholdvec) # will be done n_syn_in * number of cells! if self.noise_syn_tau_intr[nt] < 0: # variable threshold no = self.noise_syn_intr[nt] else: no = self.noise_syn_intr[nt]*ih_use if self.noise_syn_tau_intr[nt] >= -1: train, _ = mod_spike_train(modulation, noise = no, seed = seed, noise_tau = self.noise_syn_tau_intr[nt], noise_a = self.noise_a_intr[nt]) # train in ms else: train = oscill_spike_train(sor = 4, spike_prob = 1/4, noise_fraction = 4, end_time = tarray[-1]/ms, seed = seed) elif local_gid_count_type[i][0] == 'inh': # train has to be contructed here, to insert different train into each "dendrite" seed = int(10001 + pulse_gid) np.random.seed(seed*44) if self.inh_hold_sigma[nt] > 0: ih_use = np.random.normal(self.inh_hold[nt][gid], self.inh_hold[nt][gid]*self.inh_hold_sigma[nt], 1).clip(min=0) else: ih_use = self.inh_hold[nt][gid] iholdvec = concatenate((zeros(round(fs)), ones(round(len(tarray) - 1 * fs)) * ih_use)) nj = self.syn_inh_dist[nt][local_gid_count_type[i][2]] if nj == 0: modulation = (tarray, iholdvec) else: inamp = (self.amod[nt] * ih_use) modulation = (tarray, inamp * farray[nj-1] + iholdvec) #print "inh farray number:", nj-1, "ih_use:", ih_use, "amp: ", inamp #old: nj-1+nemax # will be done n_syn_in * number of cells! if self.noise_syn_tau_inh[nt] < 0: # variable threshold no = self.noise_syn_inh[nt] else: no = self.noise_syn_inh[nt]*ih_use train, _ = mod_spike_train(modulation, noise = no, seed = seed, noise_tau = self.noise_syn_tau_inh[nt], noise_a = self.noise_a_inh[nt]) # train in ms #print train #print train if len(train) > 0: if self.id == 0: print "-", pulse_gid, local_gid_count_type[i], "seed: ", seed, "ih_use:", ih_use, no, nj #, "first spike: ", train[0] self.setup_Play_train(train = train+self.inh_delay, input_gid = pulse_gid, delay = delay) # train in ms self.gid_count += local_gid_count # increase gid count self.barrier() for i, gid in enumerate(self.gidlist[nt]): # for all input cells rnd.seed(gid*200) n = self.global_gidlist[nt].index(gid) # index of cell within their population 0..N[nt] # i is index on this node only! self.record_syn = [] for j in range(self.n_syn_ex[nt]): if N[nt] == len(self.global_pulse_list[nt][j]): pulse_gid = self.global_pulse_list[nt][j][n] #every cell of this type receives one pulse gid if self.id == 0: print "- gid:", gid ," n:", n ," one ex train for each synapse:", pulse_gid, "self.g_syn_ex[nt][n]:", self.g_syn_ex[nt][n] else: pulse_gid = rnd.sample(self.global_pulse_list[nt][j],1)[0] # not enough, just pick one at random, for inh/f search only one synapse available! if self.id == 0: print "- gid:", gid ," n:", n ," one ex train from", len(self.global_pulse_list[nt][j]), ":", pulse_gid, "self.g_syn_ex[nt][n]:", self.g_syn_ex[nt][n] if "gaba" in str(self.tau1_ex[nt]): self.connect_Synapse(pulse_gid, nt, i, n, gid, j, syntype = "inh") else: self.connect_Synapse(pulse_gid, nt, i, n, gid, j, syntype = "ex", nsyn = self.n_syn_ex[nt]) if self.n_syn_inh[nt] > 0: for j in range(self.n_syn_inh[nt]): if N[nt] == len(self.global_pulse_list_inh[nt][j]): pulse_gid = self.global_pulse_list_inh[nt][j][n] #every cell of this type receives one pulse gid if self.id == 0: print "- one inh train for each synapse:", pulse_gid else: pulse_gid = rnd.sample(self.global_pulse_list_inh[nt][j],1)[0] # not enough, just pick one at random if self.id == 0: print "- one inh train from", len(self.global_pulse_list_inh[nt][j]), ":", pulse_gid self.connect_Synapse(pulse_gid, nt, i, n, gid, j, syntype = "inh") if self.n_syn_intr[nt] > 0: for j in range(self.n_syn_intr[nt]): if N[nt] == len(self.global_pulse_list_intr[nt][j]): pulse_gid = self.global_pulse_list_intr[nt][j][n] #every cell of this type receives one pulse gid if self.id == 0: print "- one intruding train for each synapse:", pulse_gid else: pulse_gid = rnd.sample(self.global_pulse_list_intr[nt][j],1)[0] # not enough, just pick one at random if self.id == 0: print "- one intruding train from", len(self.global_pulse_list_intr[nt][j]), ":", pulse_gid if (self.use_pc is False): if self.celltype[nt] == 'Prk': self.cells[nt][i].delrerun() (msg,CF_input) = self.cells[nt][i].createsyn_CF(record_all=0,factor=self.g_syn_intr[nt][0],cf_setup_select='old') CF_input.number = 3 # three bursts CF_input.start = -0.3 # See synapsepfpurk.py CF_input.interval = 3 # 3 ms interval between bursts self.cells[nt][i].input_to_CF_nc.append(h.NetCon(self.vecstim[j], CF_input, 0, 0.1, 1)) self.netcons.append(self.cells[nt][i].input_to_CF_nc[-1]) else: print "NOT IMPLEMENTED" if self.id == 0: print "trains connected" if local_gid_count_type[i][0] == 'intr': pass else: self.id_all_vec_input.append(self.do_gather(id_vec_input, dtype = 'i')) self.t_all_vec_input.append(self.do_gather(t_vec_input)) f_cells_mean = self.do_gather(f_cells_mean_local) f_cells_cv = self.do_gather(f_cells_cv_local) f_cells_std = self.do_gather(f_cells_std_local) self.fmean_input = np.nan self.fmax_input = np.nan self.fmstd_input = np.nan self.fcvm_input = np.nan self.fstdm_input = np.nan ih_use_v_all = self.do_gather(ih_use_v) if self.id == 0 and local_gid_count_type[i][0] != 'intr': self.fmean_input = mean(np.nan_to_num(f_cells_mean)) # compute mean of mean rate for all cells self.fmstd_input = std(np.nan_to_num(f_cells_mean)) self.fmax_input = max(np.nan_to_num(f_cells_mean)) self.fcvm_input = mean(f_cells_cv[~np.isnan(f_cells_cv)]) self.fstdm_input = mean(f_cells_std[~np.isnan(f_cells_std)]) self.ih_use_max = max(ih_use_v_all) print "- trains, fmean: ",self.fmean_input, "fmax: ",self.fmax_input, "Hz", "fmstd: ",self.fmstd_input, "Hz", "fcvm: ",self.fcvm_input, "fstdm: ",self.fstdm_input, "Hz, ih_use_max:", self.ih_use_max else: self.global_pulse_list.append([]) self.global_pulse_list_inh.append([]) def do_gather(self, v_local, dtype = 'd'): if self.use_mpi: self.barrier() #v_local = v_local.astype(dtype).flatten() v_local = np.array(v_local, dtype=dtype).flatten() if self.use_pc == False: v_global = None counts_local = np.array(len(v_local), dtype='i') counts = 0 if self.id == 0: counts = np.empty(self.nhost, dtype='i') self.comm.Gather(sendbuf=[counts_local, MPI.INT], recvbuf=[counts, MPI.INT], root=0) if self.id == 0: v_global = np.empty(sum(counts), dtype=dtype) if dtype == 'd': self.comm.Gatherv(sendbuf=[v_local, MPI.DOUBLE], recvbuf=[v_global, (counts, None), MPI.DOUBLE], root=0) elif dtype == 'i': self.comm.Gatherv(sendbuf=[v_local, MPI.INT], recvbuf=[v_global, (counts, None), MPI.INT], root=0) #v_global = np.hstack(v_global) else: sendlist = [None]*self.nhost sendlist[0] = v_local getlist = self.pc.py_alltoall(sendlist) v_global = np.hstack(getlist) else: v_global = np.hstack(v_local) return v_global def setup_Play_train(self, train = [], input_gid = 0, delay = 1): self.trains.append(train) # possibility to play spikes into the cells! self.vecstim.append(h.VecStim(.5)) self.nc_vecstim.append(h.NetCon(self.vecstim[-1],None)) self.nc_vecstim[-1].delay = delay self.spike_vec.append(h.Vector(self.trains[-1])) self.vecstim[-1].play(self.spike_vec[-1]) if (self.use_mpi): self.pc.set_gid2node(input_gid, self.id) # associate gid with this host self.pc.cell(input_gid,self.nc_vecstim[-1]) # associate gid with spike detector def record(self): """ Initializes recording vectors. Internal function """ if self.n_celltypes > 1: #print "self.n_borders:",self.n_borders for n in range(self.n_celltypes): if self.n_borders[n] in self.gidlist[n]: #print "np.shape(self.rec_v):",np.shape(self.rec_v) #print "np.shape(self.cells):",np.shape(self.cells) self.rec_v[n].record(self.cells[n][0].soma(0.5)._ref_v) if self.id == 0: # only for first node and first cell # Voltage self.rec_v[0].record(self.cells[self.a_celltype[0]][0].soma(0.5)._ref_v) # Stimuli self.rec_i = h.Vector() if (self.plays != []): if (isinstance(self.plays[0], list) is False): self.rec_i.record(self.plays[0]._ref_i) else: self.rec_i.record(self.plays[0][0]._ref_i) self.rec_ich = h.Vector() if self.ic_holds != [] and (isinstance(self.ic_holds[0], list) is False): self.rec_ich.record(self.ic_holds[0]._ref_i) self.rec_ics = h.Vector() if self.ic_starts != []: self.rec_ics.record(self.ic_starts[0]._ref_i) self.rec_n = h.Vector() if self.fluct_s[0] > 0: # Fluctuating input self.rec_n.record(self.flucts[0]._ref_i) print "recording noise" elif (len(self.flucts) > 0) and (len(self.fluct_g_i0)>0): self.rec_n.record(self.flucts[0]._ref_g_i) print "recording g noise" else: print "nonoise" if hasattr(self.cells[self.a_celltype[0]][0], 'lkg2_noise'): if self.cells[self.a_celltype[0]][0].lkg2_noise > 0: self.rec_n.record(self.cells[self.a_celltype[0]][0].fluct._ref_il) print "recording tonic gaba noise" self.rec_step = h.Vector() if self.ic_steps != []: self.rec_step.record(self.ic_steps[0]._ref_i) # Time self.rec_t = h.Vector() self.rec_t.record(h._ref_t) def run(self, tstop = 10*s, do_loadstate = True): """ Starts the stimulation. """ self.record() if self.first_run: if self.use_mpi: self.pc.set_maxstep(100) #self.pc.spike_compress(1) #test if self.use_multisplit: import multiprocessing Hines = h.CVode() Hines.active(0) h.load_file("parcom.hoc") p = h.ParallelComputeTool() if self.use_mpi: cpus = multiprocessing.cpu_count() #32 #self.pc.nhost() else: cpus = multiprocessing.cpu_count() #32 p.change_nthread(cpus,1) p.multisplit(1) print "Using multisplit, cpus:", cpus else: h.load_file("stdrun.hoc") if self.use_local_dt: h.cvode.active(1) h.cvode.use_local_dt(1) h.celsius = self.temperature h.dt = self.dt/ms # Fixed dt h.steps_per_ms = 1 / (self.dt/ms) if self.cells[self.a_celltype[0]] != []: if hasattr(self.cells[self.a_celltype[0]][0], 'v_init'): h.v_init = self.cells[self.a_celltype[0]][0].v_init # v_init is supplied by cell itself! else: h.v_init = -60 h.stdinit() h.finitialize() if hasattr(self.cells[self.a_celltype[0]][0], 'load_states') and do_loadstate: m = md5.new() cell_exe_new = self.cell_exe[0] m.update(cell_exe_new) filename = './states_' + self.celltype[0] + '_' + m.hexdigest() + '_Population.b' self.cells[self.a_celltype[0]][0].load_states(filename) else: pass if self.id == 0: import time t0 = time.time() if self.simstep == 0: if self.id == 0: print "Running without steps", if self.use_mpi: self.pc.psolve(tstop/ms) else: h.init() h.tstop = tstop/ms h.run() else: h.finitialize() cnt = 1 #if self.id == 50: # print len(self.cells[1][0].nc), self.cells[1][0].nc[0].weight[0] # print len(self.cells[0][0].nc_inh), self.cells[0][0].nc_inh[0].weight[0] h.t = 0 while h.t < tstop/ms: if self.id == 0: print "Running...", if self.use_mpi: past_time = self.pc.time() h.continuerun(cnt*self.simstep/ms) if self.use_mpi: self.pc.barrier() if self.id == 0: if self.use_mpi: print "Simulated time =",h.t*ms, "s, Real time = ", (self.pc.time()-past_time), 's' else: print "Simulated time =",h.t*ms, "s" #if self.id == 0: # print hpy.heap().byrcs cnt += 1 if self.id == 0: print "psolve took ", time.time() - t0, "seconds" self.first_run = False self.barrier() # wait for other nodes self.tstop = tstop def get(self, t_startstop=[], i_startstop=[], N = []): """ Gets the recordings. """ if N == []: N = self.N if t_startstop == []: t_startstop = np.array([2, self.tstop]) t_all_vec = [] id_all_vec = [] fmean = [] fbase = [] fmax = [] fmstd = [] fcvm = [] fstdm = [] gid_del = [] f_cells_mean_all = [] f_cells_base_all = [] f_cells_cv_all = [] f_cells_std_all = [] fmeanA = [] fmstdA = [] fmaxA = [] fcvmA = [] fstdmA = [] fbaseA = [] fbstdA = [] if self.id == 0: print "start gathering spikes" for n in range(self.n_celltypes): if self.use_mpi: self.barrier() # wait for other node t_vec = np.array(self.t_vec[n]).flatten()*ms - 1*ms # shift time because of output delay id_vec = np.array(self.id_vec[n]).flatten() else: t_vec = np.array([]) id_vec = np.array([]) print np.shape(self.t_vec) for i in self.gidlist[n]: t_vec0 = np.array(self.t_vec[n][i]).flatten()*ms t_vec = np.append(t_vec, t_vec0).flatten() id_vec = np.append(id_vec, np.ones(len(t_vec0))*i).flatten() fmean0, fmax0, fmstd0, fcvm0, fstdm0, gid_del0, f_cells_mean_all0, f_cells_cv_all0, f_cells_std_all0, fbase0, f_cells_base_all0 = self.get_fmean(t_vec, id_vec, t_startstop = t_startstop, gidlist = self.gidlist[n]) fmean.append(fmean0); fmax.append(fmax0), fmstd.append(fmstd0), fcvm.append(fcvm0), fstdm.append(fstdm0), gid_del.append(gid_del0), f_cells_mean_all.append(f_cells_mean_all0), f_cells_cv_all.append(f_cells_cv_all0), f_cells_std_all.append(f_cells_std_all0) fbase.append(fbase0); f_cells_base_all.append(f_cells_base_all0) t_all_vec.append(self.do_gather(t_vec)) id_all_vec.append(self.do_gather(id_vec)) if (self.id == 0) and (self.no_fmean == False): f_cells_mean_all = np.array(f_cells_mean_all).flatten() fmeanA = mean(f_cells_mean_all) # compute mean of mean rate for all cells fmstdA = std(f_cells_mean_all) fmaxA = max(f_cells_mean_all) f_cells_base_all = np.array(f_cells_base_all).flatten() fbaseA = mean(f_cells_base_all) # compute mean of mean rate for all cells fbstdA = std(f_cells_base_all) f_cells_cv_all = np.concatenate((np.array(f_cells_cv_all))) f_cells_std_all = np.concatenate((np.array(f_cells_std_all))) fcvmA = mean(f_cells_cv_all) fstdmA = mean(f_cells_std_all) print "- ALL, fmean: ",fmeanA, "fmax: ",fmaxA, "Hz", "fmstd: ",fmstdA, "Hz", "fcvm: ",fcvmA, "fstdm: ",fstdmA, "Hz", "fbase: ",fbaseA, "Hz", "fbstd: ", fbstdA, "Hz" if self.id == 0: print "all spikes have been gathered" self.barrier() # do this here to have something to return voltage = [] current = [] time = [] freq_times = [] spike_freq = [] gsyn = [] if self.id == 0: # only for first node time = np.array(self.rec_t)*ms # use self.bin_width as bin width! freq_times = arange(0, time[-1], self.bin_width) voltage.append(np.array(self.rec_v[0])*mV) current = np.zeros(len(time)) if len(np.array(self.rec_ics)) > 0: current = current + np.array(self.rec_ics) if len(np.array(self.rec_ich)) > 0: current = current + np.array(self.rec_ich) if len(np.array(self.rec_i)) > 0: current = current + np.array(self.rec_i) if len(np.array(self.rec_n)) > 0: current = current + np.array(self.rec_n) print np.array(self.rec_n) if len(np.array(self.rec_step)) > 0: current = current + np.array(self.rec_step) else: time = [0] self.barrier() time = self.broadcast(time, fast = True) gsyn_in = [] gsyn_in0 = [] if 'gsyn_in' in self.method_interpol: gsyn_in = None if self.id == 0: print "- collecting gsyn_in" gsyn_in0 = np.zeros(len(time), dtype='d') if self.record_syn is not []: for i, j in enumerate(self.record_syn): gsyn_in0 = gsyn_in0 + self.gsyn_in_fac[i] * np.array(j, dtype='d') if self.use_mpi: count = len(time) #if self.id == 0: gsyn_in = np.empty(count*self.nhost, dtype='d') #self.comm.Gatherv(sendbuf=[gsyn_in0, MPI.DOUBLE], recvbuf=[gsyn_in, MPI.DOUBLE], root=0) gsyn_in = self.do_gather(gsyn_in0) if self.id == 0: gsyn_in = np.reshape(gsyn_in, (self.nhost,count)) gsyn_in = sum(gsyn_in,0) else: gsyn_in = gsyn_in0 self.barrier() # wait for other nodes if self.n_celltypes > 1: if self.id == 0: print "more than one celltype send voltage of first other cell to root" for n in range(1, self.n_celltypes): if self.use_pc == True: srclist = [None]*self.nhost if (self.n_borders[n] in self.gidlist[n]): srclist[0] = np.array(self.rec_v[n])*mV destlist = self.pc.py_alltoall(srclist) if self.id == 0: idx = [i for i, x in enumerate(destlist) if x is not None] if len(idx) > 1: raise ValueError('Error, too many vectors sent, should be one at a time!') voltage.append(np.array(destlist[idx[0]])) else: if self.id == 0: if (self.n_borders[n] in self.gidlist[n]): # first node has it, do not wait to receive it! v_temp = np.array(self.rec_v[n])*mV else: v_temp = np.zeros(len(voltage[0])) self.comm.Recv([v_temp, MPI.DOUBLE], source = MPI.ANY_SOURCE, tag=int(sum(N)+33)) voltage.append(v_temp) else: if self.n_borders[n] in self.gidlist[n]: voltage = np.array(self.rec_v[n])*mV self.comm.Ssend([voltage, MPI.DOUBLE], dest=0, tag=int(sum(N)+33)) self.barrier() # wait for other nodes times = arange(0, time[-1], 1*ms) gsyns = [] if self.called_syn_out_all == True: for n in range(self.n_celltypes): gsyns.append([]) if self.use_pc == True: for i, gid in enumerate(self.global_gidlist[n]): srclist = [None]*self.nhost if gid in self.gidlist[n]: #only one node does this a = np.array(self.cells[n][self.gidlist[n].index(gid)].record['gsyn']) c = np.zeros(int((1*ms)/self.dt)) temp = np.append(a, c).flatten() temp = temp[int((1*ms)/self.dt):len(temp)+1] gtemp = interp(times,time,temp) srclist[0] = gtemp # send to root only destlist = self.pc.py_alltoall(srclist) if self.id == 0: idx = [i for i, x in enumerate(destlist) if x is not None] if len(idx) > 1: raise ValueError('Error, too many vectors sent, should be one at a time!') gsyns[n].append(np.array(destlist[idx[0]])) else: for i, gid in enumerate(self.global_gidlist[n]): if self.id == 0: if gid in self.gidlist[n]: a = np.array(self.cells[n][self.gidlist[n].index(gid)].record['gsyn']) c = np.zeros(int((1*ms)/self.dt)) temp = np.append(a, c).flatten() temp = temp[int((1*ms)/self.dt):len(temp)+1] gtemp = interp(times,time,temp) else: gtemp = np.zeros(len(times)) self.comm.Recv([gtemp, MPI.DOUBLE], source = MPI.ANY_SOURCE, tag=int(gid)) gsyns[n].append(np.array(gtemp)) else: if gid in self.gidlist[n]: a = np.array(self.cells[n][self.gidlist[n].index(gid)].record['gsyn']) c = np.zeros(int((1*ms)/self.dt)) temp = np.append(a, c).flatten() temp = temp[int((1*ms)/self.dt):len(temp)+1] gtemp = interp(times,time,temp) #np.array(self.cells[n][self.gidlist[n].index(gid)].record['gsyn']) self.comm.Ssend([gtemp, MPI.DOUBLE], dest=0, tag=int(gid)) if self.id == 0: print "root gathered synaptic output conductance" self.barrier() # wait for other nodes times = arange(0, time[-1], 10*ms) w_mat = [] winh_mat = [] if self.stdp_used == True: for n in range(self.n_celltypes): w_mat.append([]) for i, gid in enumerate(self.global_gidlist[n]): if self.id == 0: wall = [] if gid in self.gidlist[n]: walltemp = self.cells[n][self.gidlist[n].index(gid)].record['w'] if len(walltemp) > 0: for l in range(len(walltemp)): wtemp = np.array(walltemp[l]) wtemp = interp(times,time,wtemp) wall.append(wtemp) else: while 1: wtemp = np.zeros(len(times)) self.comm.Recv([wtemp, MPI.DOUBLE], source = MPI.ANY_SOURCE, tag=int(gid)) if wtemp[0] == -1: break else: wall.append(wtemp) w_mat[n].append(wall) else: if gid in self.gidlist[n]: walltemp = self.cells[n][self.gidlist[n].index(gid)].record['w'] if len(walltemp) > 0: for l in range(len(walltemp)): wtemp = np.array(walltemp[l]) wtemp = interp(times,time,wtemp) self.comm.Ssend([wtemp, MPI.DOUBLE], dest=0, tag=int(gid)) wtemp = np.ones(len(times))*-1 self.comm.Ssend([wtemp, MPI.DOUBLE], dest=0, tag=int(gid)) if self.id == 0: print "root gathered synaptic input conductance" self.barrier() # wait for other nodes for n in range(self.n_celltypes): winh_mat.append([]) for i, gid in enumerate(self.global_gidlist[n]): if self.id == 0: wall = [] if gid in self.gidlist[n]: walltemp = self.cells[n][self.gidlist[n].index(gid)].record['w_inh'] if len(walltemp) > 0: for l in range(len(walltemp)): wtemp = np.array(walltemp[l]) wtemp = interp(times,time,wtemp) wall.append(wtemp) else: while 1: wtemp = np.zeros(len(times)) self.comm.Recv([wtemp, MPI.DOUBLE], source = MPI.ANY_SOURCE, tag=int(gid)) if wtemp[0] == -1: break else: wall.append(wtemp) winh_mat[n].append(wall) else: if gid in self.gidlist[n]: walltemp = self.cells[n][self.gidlist[n].index(gid)].record['w_inh'] if len(walltemp) > 0: for l in range(len(walltemp)): wtemp = np.array(walltemp[l]) wtemp = interp(times,time,wtemp) self.comm.Ssend([wtemp, MPI.DOUBLE], dest=0, tag=int(gid)) wtemp = np.ones(len(times))*-1 self.comm.Ssend([wtemp, MPI.DOUBLE], dest=0, tag=int(gid)) if self.id == 0: print "root gathered synaptic input conductance" self.barrier() # wait for other nodes t_all_vec_vec = [] id_all_vec_vec = [] f_cells_mean = [] if self.id == 0: # only for first node for n in range(self.n_celltypes): ie = argsort(t_all_vec[n]) t_all_vec_vec.append( t_all_vec[n][ie] ) id_all_vec_vec.append( id_all_vec[n][ie].astype(int) ) # print "all spikes have been sorted" if self.jitter > 0: # add jitter! np.random.seed(40) x = np.random.normal(0, self.jitter, len(t_all_vec_vec[self.a_celltype[0]])) t_all_vec_vec[self.a_celltype[0]] = t_all_vec_vec[self.a_celltype[0]] + x if self.delta_t > 0: t_all_vec_vec[self.a_celltype[0]] = t_all_vec_vec[self.a_celltype[0]] + self.delta_t gsyn = zeros(len(freq_times)) if 'gsyn_in' in self.method_interpol: pass else: bvec = ["syn" in st for st in self.method_interpol] if np.any(bvec): if (not hasattr(self, 'passive_target')) | (self.jitter > 0): # if not already done in neuron via artificial cell [resp, _] = neuronpy.util.spiketrain.get_histogram(t_all_vec_vec[self.a_celltype[0]], bins = freq_times) resp = np.concatenate((zeros(1),resp)) Ksyn = syn_kernel(arange(0,10*self.syn_tau2,self.bin_width), self.syn_tau1, self.syn_tau2) Ksyn = np.concatenate((zeros(len(Ksyn)-1),Ksyn)) gsyn = np.convolve(Ksyn, resp, mode='same') print "Generated gsyn by convolution with Ksyn" self.nc_delay = 0 else: gsyn = interp(freq_times,time,np.array(self.rec_g)) spike_freq = np.zeros(len(freq_times)) for j in self.a_celltype: #plt.figure('results_voltage') #ax99 = plt.subplot(2,1,1) #ax99.plot(time,voltage[j]) #plt.text(0.5, 1.1, r'CF=' + str(round(fmean,1)) + ',fmax=' + str(round(fmax,1)) + ',fmstd=' + str(round(fmstd,1)), transform=ax99.transAxes, fontsize=10, va='center', ha='center') #plt.savefig("./figs/Pub/Voltage_" + str(self.pickle_prefix) + "_cell" + str(j) + "_N" + str(self.N[j]) + ".pdf", dpi = 300, transparent=True) # save it #plt.show() #plt.clf() [num_spikes, _] = neuronpy.util.spiketrain.get_histogram(t_all_vec_vec[j], bins = freq_times) if isinstance(self.factor_celltype[j], ( int, long ) ): f = self.factor_celltype[j] else: f = self.factor_celltype[j][0] spike_freq = spike_freq + f * np.concatenate((zeros(1),num_spikes)) / self.bin_width self.barrier() # wait for other nodes #figure('1') #plot(time,np.array(self.rec_s1),'b', time,np.array(self.rec_s2),'r') #plt.show() return {'time':time, 'voltage':voltage, 'current':current, 'fmean':fmean, 'f_cells_mean':f_cells_mean, 'gsyn':gsyn, 'freq_times':freq_times, 'spike_freq':spike_freq, 'gsyn_in':gsyn_in, 'fmeanA':fmeanA, 'fmaxA':fmaxA, 'fmstdA':fmstdA, 'fcvmA':fcvmA, 'fstdmA':fstdmA, 'fbstdA':fbstdA, 't_all_vec_vec':t_all_vec_vec, 'id_all_vec_vec':id_all_vec_vec, 'gsyns':gsyns, 'w_mat':w_mat, 'winh_mat':winh_mat, 'fmax':fmax, 'fmstd':fmstd, 'fcvm':fcvm, 'fbaseA':fbaseA, 'fbase':fbase} def clean(self): self.pc.runworker() self.pc.done() def compute_Transfer(self, stimulus, spike_freq, freq_times, t, noise_data_points, gsyn, gsyn_in, do_csd, t_qual, K_mat_old, t_startstop, inh_factor=[1]): stimulus0 = np.zeros(len(stimulus[0])) for a in self.a_celltype: # sum input to produce linear input that should be reconstructed! if (any(self.syn_inh_dist) > 0) and (any(self.syn_ex_dist) > 0): if max(self.syn_inh_dist) == max(self.syn_ex_dist): # same signal through ex and inh print "inh_factor = [0,1]" inh_factor = [0,1] for ni in self.syn_ex_dist[a]: if ni != 0: stimulus0 += inh_factor[ni-1] * stimulus[ni-1] print "+ex:", ni-1 for ni in self.syn_inh_dist[a]: if ni != 0: stimulus0 -= inh_factor[ni-1] * stimulus[ni-1] #old: +nemax print "-inh:", ni-1 #old: +nemax if (max(self.n_syn_ex) == 0) and (max(self.n_syn_inh) == 0): stimulus0 += stimulus[0] print "current" #if self.n_syn_ex[self.celltype_syn[0]] == 0: # stimulus0 += stimulus[0] # amplitude should not matter since filter amplitude is simply adjusted #stimulus = stimulus0 #/len(self.syn_ex_dist) stimulus0 = stimulus0 / std(stimulus0) / 2 # linear interpolation inside compute_Transfer !!! print "max(stimulus0):",max(stimulus0) results = compute_Transfer(spike_freq = spike_freq, freq_times = freq_times, stimulus = stimulus0, t = t, noise_data_points = noise_data_points, gsyn = gsyn, gsyn_in = gsyn_in, do_csd = do_csd, t_kernel = 1*s, method_interpol = self.method_interpol, nc_delay = self.nc_delay, w_length = 3, t_qual = t_qual, K_mat_old = K_mat_old, t_startstop = t_startstop, give_psd = self.give_psd) # freq_wp not defined, use all frequencies # TEST: #VAF = results.get('VAFf_mat') #freq_used = results.get('freq_used') #iend = mlab.find(freq_used >= self.xmax)[0] #err = 1-mean(VAF[1][0,1:iend-1]) #print "err: ", err return results def residuals_compute_Transfer(self, p, stimulus, spike_freq, freq_times, t, noise_data_points, gsyn, gsyn_in, do_csd, t_qual, K_mat_old, t_startstop, inh_factor): inh_factor_in = inh_factor[:] ip = 0 for i, inhf in enumerate(inh_factor_in): if inhf < 0: inh_factor_in[i] = p[ip] ip += 1 results = self.compute_Transfer(stimulus = stimulus, spike_freq = spike_freq, freq_times = freq_times, t = t, noise_data_points = noise_data_points, gsyn = gsyn, gsyn_in = gsyn_in, do_csd = do_csd, t_qual = t_qual, K_mat_old = K_mat_old, t_startstop = t_startstop, inh_factor = inh_factor_in) VAF = results.get('VAFf_mat') freq_used = results.get('freq_used') iend = mlab.find(freq_used >= self.xmax)[0] err = 1-mean(VAF[1][0,0:iend]) print "inh_factor:", inh_factor_in, "err: ", err return err #@profile def fun_cnoise_Stim(self, t_stim = 10*s, sexp = 0, cutf = 0, do_csd = 1, t_qual = 0, freq_used = np.array([]), K_mat_old = np.array([]), inh_factor = [1], onf = None, equi = 0): """ Stimulate cell with colored noise sexp = spectral exponent: Power ~ 1/freq^sexp cutf = frequency cutoff: Power flat (white) for freq <~ cutf do_csd = 1: use cross spectral density function for computation """ self.barrier() # wait for other nodes filename = str(self.pickle_prefix) + "_results_pop_cnoise.p" filepath = self.data_dir + "/" + filename if self.id == 0: print "- filepath:", filepath if self.do_run or (os.path.isfile(filepath) is False): tstart = 0; fs = 1 / self.dt # sampling rate fmax = fs / 2 # maximum frequency (nyquist) t_noise = arange(tstart, t_stim, self.dt) # create stimulus time vector, make sure stimulus is even!!! #print self.syn_ex_dist #print self.syn_inh_dist #exit() if (self.syn_ex_dist == []): for nt in range(self.n_celltypes): # loop over all cells #print "nt", nt if hasattr(self.cells[nt][0], 'input_vec'): self.syn_ex_dist.append([1] * len(self.cells[nt][0].input_vec)) # default ex for all by default!!! else: self.syn_ex_dist.append([1] * self.n_syn_ex[nt]) # default ex for all by default!!! #print self.syn_ex_dist if (self.syn_ex_dist[0] == []): nemax = 1 else: nemax = max([item for sublist in self.syn_ex_dist for item in sublist]) if (self.syn_inh_dist == []): # and (any(self.n_syn_inh) > 0) for nt in range(self.n_celltypes): # loop over all cells self.syn_inh_dist.append([0] * self.n_syn_inh[nt]) # default no inh for all by default!!! #print self.syn_inh_dist #exit() if (self.syn_inh_dist[0] == []): nimax = 0 else: nimax = max([item for sublist in self.syn_inh_dist for item in sublist]) #print "self.syn_inh_dist, self.syn_ex_dist", self.syn_inh_dist, self.syn_ex_dist n_noise = max([nemax,nimax]) # number of noise sources #print n_noise,nemax,nimax # create reproduceable input noise_data = [] for nj in range(n_noise): if self.id == 0: # make sure all have the same signal !!! if len(freq_used) == 0: noise_data0 = create_colnoise(t_noise, sexp, cutf, self.seed+nj, onf = onf) else: noise_data0, _, _, _ = create_multisines(t_noise, freq_used) # create multi sine signal else: noise_data0 = np.empty(len(t_noise), dtype=np.float64) noise_data0 = self.broadcast(noise_data0, fast = True) noise_data.append(noise_data0) noise_data0 = [] noise_data_points = len(noise_data[0]) # Create signal weight vector inh_factor if it is not fully given if len(noise_data) > len(inh_factor): inh_factor = [inh_factor[0]] * len(noise_data) print "inh_factor:", inh_factor #if equi: #pass # tstop = t_stim if max(self.n_syn_ex) == 0: # this means current input self.set_IStim() # sets amp if self.fluct_s != []: if self.fluct_s[self.a_celltype[0]] > 0: if self.id == 0: print "- adding i fluct" self.connect_fluct() for i, m in enumerate(self.method_interpol): if "syn" in m: self.method_interpol[i] = "syn " + str(self.syn_tau1/ms) + "/" + str(self.syn_tau2/ms) + "ms" if "bin" in m: self.method_interpol[i] = "bin " + str(self.bin_width/ms) + "ms" stimulus = [] for nj in range(len(noise_data)): stimulus0, t, t_startstop = construct_Stimulus(noise_data[nj], fs, self.amp[self.a_celltype[0]], ihold = 0, delay_baseline = self.delay_baseline) # , tail_points = 0 stimulus.append(stimulus0) tstop = t[-1] self.set_IPlay2(stimulus, t) if self.id == 0: print "- starting colored noise transfer function estimation! with amp = " + str(np.round(self.amp[self.a_celltype[0]],4)) + ", ihold = " + str(np.round(self.ihold[self.a_celltype[0]],4)) + ", ihold_sigma = " + str(np.round(self.ihold_sigma,4)) + ", dt = " + str(self.dt) + " => maximum frequency = " + str(fmax) + "\r" else: self.give_freq = False ihold = self.set_i(self.ihold) # just sets amp, ihold should not change! if 'gsyn_in' not in self.method_interpol: pass else: self.g_syn_ex = [1]*len(self.N) if ((self.fluct_g_e0 != []) or (self.fluct_g_i0 != [])): if ((self.fluct_g_e0[self.a_celltype[0]] > 0) or (self.fluct_g_i0[self.a_celltype[0]] > 0)): if self.id == 0: print "- adding g fluct" self.connect_gfluct(E_i=-65) stimulus = [] for nj in range(len(noise_data)): stimulus0, t, t_startstop = construct_Stimulus(noise_data[nj], fs, amp=1, ihold = 0, tail_points = 0, delay_baseline = self.delay_baseline) # self.amp stimulus.append(stimulus0) noise_data = [] tstop = t[-1] if self.N[self.a_celltype[0]] > 1: self.set_IStim(ihold = [0]*self.n_celltypes, ihold_sigma = [0]*self.n_celltypes, random_start = True, tstart_offset = 1) if self.id == 0: print "- add random start" #print "Enter Synplay()" self.set_SynPlay(stimulus, t, t_startstop = t_startstop) #print "Exit Synplay()" if self.id == 0: print "- starting colored noise transfer function estimation with synaptic input! with amp = " + str(np.round(self.amp,4)) + ", ihold = " + str(np.round(self.ihold,4)) + ", ihold_sigma = " + str(np.round(self.ihold_sigma,4)) + ", dt = " + str(self.dt) + " => maximum frequency = " + str(fmax) + "\r" amp_vec = [] mag_vec = [] pha_vec = [] freq_used = [] ca = [] SNR_mat = [] VAFf_mat = [] Qual_mat = [] CF_mat = [] VAF_mat = [] stim = [] stim_re_mat = [] resp_mat = [] current_re = [] ihold1 = [] tk = [] K_mat = [] gsyn_in = [] fmean = [] fmax = [] fmstd = [] fcvm = [] fmeanA = [] fmaxA = [] fmstdA = [] fcvmA = [] t_all_vec_input_sorted = [] id_all_vec_input_sorted = [] if (self.id == 0) and (max(self.n_syn_ex) > 0): print range(self.n_celltypes), np.shape(self.t_all_vec_input) for l in range(self.n_celltypes): ie = argsort(self.t_all_vec_input[l]) t_all_vec_input_sorted.append( self.t_all_vec_input[l][ie] ) id_all_vec_input_sorted.append( self.id_all_vec_input[l][ie].astype(int) ) #if (self.id == 0): # print self.g_syn_ex # print np.array(self.g_syn_ex)>= 0 #print "g_syn_ex:",self.g_syn_ex if np.array(np.array(self.g_syn_ex)>= 0).any(): if hasattr(self.cells[self.a_celltype[0]][0], 'get_states') and equi: print "- Equilibrate!" self.run(tstop, do_loadstate = False) m = md5.new() cell_exe_new = self.cell_exe[0] m.update(cell_exe_new) filename = './states_' + self.celltype[0] + '_' + m.hexdigest() + '_Population.b' self.cells[self.a_celltype[0]][0].get_states(filename) else: self.run(tstop, do_loadstate = False) i_startstop = [] results = self.get(t_startstop, i_startstop) time = results.get('time') current = results.get('current') voltage = results.get('voltage') fmean = results.get('fmean') gsyn = results.get('gsyn') freq_times = results.get('freq_times') spike_freq = results.get('spike_freq') t_all_vec_vec = results.get('t_all_vec_vec') id_all_vec_vec = results.get('id_all_vec_vec') gsyns = results.get('gsyns') gsyn_in = results.get('gsyn_in') fmax = results.get('fmax') fmstd = results.get('fmstd') fcvm = results.get('fcvm') fmeanA = results.get('fmeanA') fmaxA = results.get('fmaxA') fmstdA = results.get('fmstdA') fcvmA = results.get('fcvmA') fbaseA = results.get('fbaseA') fbase = results.get('fbase') fbstdA = results.get('fbstdA') else: # do not run, analyse input!!! time = t voltage = [] for l in range(self.n_celltypes): voltage.append(np.zeros(len(t))) current = [] freq_times = [] spike_freq = [] gsyn = [] gsyn_in = [] t_all_vec_vec = [] id_all_vec_vec = [] fmean = [] fmax = [] fmstd = [] fcvm = [] fstdm = [] fmeanA = [] fmaxA = [] fmstdA = [] fcvmA = [] fbaseA = [] fbase = [] fbstdA = [] if self.id == 0: current = self.n_train_ex #t_all_vec = self.t_all_vec_input #id_all_vec = self.id_all_vec_input #ie = argsort(t_all_vec) #t_all_vec_vec.append( t_all_vec[ie] ) #id_all_vec_vec.append( id_all_vec[ie].astype(int) ) t_all_vec_vec = t_all_vec_input_sorted id_all_vec_vec = id_all_vec_input_sorted freq_times = arange(0, tstop, self.bin_width) spike_freq = np.zeros(len(freq_times)) for j in self.a_celltype: [num_spikes, _] = neuronpy.util.spiketrain.get_histogram(t_all_vec_vec[j], bins = freq_times) if self.tau2_ex[0] > 0: spike_freq = np.concatenate((zeros(1),num_spikes)) print "NOSYN TEST: start convolution with Ksyn" Ksyn = syn_kernel(arange(0,10*self.tau2_ex[0],self.bin_width), self.tau1_ex[0], self.tau2_ex[0]) Ksyn = np.concatenate((zeros(len(Ksyn)-1),Ksyn)) spike_freq = np.convolve(Ksyn, spike_freq, mode='same') print "NOSYN TEST: convolution finished" else: if isinstance(self.factor_celltype[j], ( int, long ) ): f = self.factor_celltype[j] else: f = self.factor_celltype[j][0] spike_freq = spike_freq + f * np.concatenate((zeros(1),num_spikes)) / self.bin_width fmean.append(self.fmean_input) fmax.append(self.fmax_input) fmstd.append(self.fmstd_input) fcvm.append(self.fcvm_input) fstdm.append(self.fstdm_input) if self.no_fmean == True: fmean.append(ihold) #plt.figure('spike_freq') #plt.plot(freq_times, spike_freq) #plt.savefig("./figs/Pub/Spike_freq_" + str(self.pickle_prefix) + ".pdf", dpi = 300, transparent=True) # save it #plt.clf() fmeanA = fmean[0] fmaxA = fmax[0] fmstdA = fmstd [0] fcvmA = fcvm[0] fstdmA = fstdm[0] if self.id == 0: if any([i<0 for i in inh_factor]): p0 = [] inhf_idx = [] for i, inhf in enumerate(inh_factor): if inhf < 0: p0.append(0) inhf_idx.append(i) plsq = fmin(self.residuals_compute_Transfer, p0, args=(stimulus, spike_freq, freq_times, t, noise_data_points, gsyn, gsyn_in, do_csd, t_qual, K_mat_old, t_startstop, inh_factor)) p = plsq ip = 0 for i in inhf_idx: inh_factor[i] = p[ip] ip += 1 print "Final inh_factor: ", inh_factor results = self.compute_Transfer(stimulus, spike_freq = spike_freq, freq_times = freq_times, t = t, noise_data_points = noise_data_points, gsyn = gsyn, gsyn_in = gsyn_in, do_csd = do_csd, t_qual = t_qual, K_mat_old = K_mat_old, t_startstop = t_startstop, inh_factor=inh_factor) mag_vec, pha_vec, ca, freq, freq_used, fmean_all = results.get('mag_mat'), results.get('pha_mat'), results.get('ca_mat'), results.get('freq'), results.get('freq_used'), results.get('fmean') SNR_mat, VAFf_mat, Qual_mat, CF_mat, VAF_mat = results.get('SNR_mat'), results.get('VAFf_mat'), results.get('Qual_mat'), results.get('CF_mat'), results.get('VAF_mat') stim, resp_mat, stim_re_mat, tk, K_mat = results.get('stim'), results.get('resp_mat'), results.get('stim_re_mat'), results.get('tk'), results.get('K_mat') self.barrier() # wait for other nodes if self.id == 0: if t_qual > 0: #print t_startstop[0], t_startstop[0]/self.dt, (t_startstop[0]+t_qual)/self.dt current_re = current[int(t_startstop[0]/self.dt):int((t_startstop[0]+t_qual)/self.dt)] current_re = current_re[int(len(K_mat[self.a_celltype[0]])):int(len(current_re))-int(len(K_mat[self.a_celltype[0]]))] if len(self.i_holdrs) > 0: ihold1 = self.i_holdrs[self.a_celltype[0]][0] else: ihold1 = [] for l in range(len(self.method_interpol)): # unwrap pha_vec[l,:] = unwrap(pha_vec[l,:] * (pi / 180)) * (180 / pi) # unwrap for smooth phase # only return fraction of actual signal, it is too long!!! if time[-1] > self.tmax: imax = -1*int(self.tmax/self.dt) time = time[imax:]; current = current[imax:]; gsyn = gsyn[imax:]; gsyn_in = gsyn_in[imax:] for n in range(self.n_celltypes): voltage[n] = voltage[n][imax:] if freq_times != []: if freq_times[-1] > self.tmax: imax2 = where(freq_times > self.tmax)[0][0] # for spike frequency freq_times = freq_times[0:imax2]; spike_freq = spike_freq[0:imax2] bvec = ["_syn" in st for st in self.method_interpol] if np.any(bvec): # normalize synaptic integration with others mag_vec[1,:]= mag_vec[0,0]*mag_vec[1,:]/mag_vec[1,0] if self.id == 0: print "start pickle" results = {'freq_used':freq_used, 'amp':amp_vec,'mag':mag_vec,'pha':pha_vec,'ca':ca,'voltage':voltage,'tk':tk,'K_mat':K_mat, 'ihold1': ihold1, 't_startstop':t_startstop, #'stimulus':stimulus, 'current':current,'t1':time,'freq_times':freq_times,'spike_freq':spike_freq, 'stim':stim, 'stim_re_mat':stim_re_mat, 'resp_mat':resp_mat, 'current_re':current_re, 'gsyn_in':gsyn_in, 'fmeanA':fmeanA, 'fmaxA':fmaxA, 'fmstdA':fmstdA, 'fcvmA':fcvmA, 'fbaseA':fbaseA, 'fbase':fbase, 'fbstdA':fbstdA, 'fmean':fmean,'method_interpol':self.method_interpol, 'SNR':SNR_mat, 'VAF':VAFf_mat, 'Qual':Qual_mat, 'CF':CF_mat, 'VAFs':VAF_mat, 'fmax':fmax, 'fmstd':fmstd, 'fcvm':fcvm, 'inh_factor':inh_factor, 't_all_vec_vec':t_all_vec_vec, 'id_all_vec_vec':id_all_vec_vec} if self.id == 0: if self.dumpsave == 1: pickle.dump( results, gzip.GzipFile( filepath, "wb" ) ) print "pickle done" if self.plot_train: for a in self.a_celltype: #i_start = mlab.find(t_all_vec_vec[a] >= 0)[0] #i_stop = mlab.find(t_all_vec_vec[a] >= 5)[0] #t_all_cut = t_all_vec_vec[a][i_start:i_stop] #id_all_cut = id_all_vec_vec[a][i_start:i_stop] t_all_cut = t_all_vec_vec[a] id_all_cut = id_all_vec_vec[a] f_start_in = mlab.find(t_all_cut >= 0) f_stop_in = mlab.find(t_all_cut <= 10) f_start = f_start_in[0] f_stop = f_stop_in[-1]+1 use_spikes = t_all_cut[f_start:f_stop] use_id = id_all_cut[f_start:f_stop] plt.figure('results_train') ax99 = plt.subplot(1,1,1) ax99.plot(use_spikes,use_id,'|', ms=2) plt.text(0.5, 1.1, r'CF=' + str(round(fmean,1)) + ',fmax=' + str(round(fmax,1)) + ',fmstd=' + str(round(fmstd,1)), transform=ax99.transAxes, fontsize=10, va='center', ha='center') plt.savefig("./figs/Pub/Train_" + str(self.pickle_prefix) + "_cell" + str(a) + "_N" + str(self.N[a]) + ".pdf", dpi = 300, transparent=True) # save it plt.clf() if len(t_all_cut) > 0: tbin = 100*ms tb = np.arange(0,t[-1],tbin) [all_rate, _] = neuronpy.util.spiketrain.get_histogram(t_all_cut, bins = tb) all_rate = np.concatenate((np.zeros(1),all_rate)) / self.N[a] / tbin plt.figure('results_train2') plt.plot(tb,all_rate) plt.savefig("./figs/Pub/PSTH_" + str(self.pickle_prefix) + "_cell" + str(a) + "_N" + str(self.N[a]) + ".pdf", dpi = 300, transparent=True) # save it plt.clf() plt.figure('results_noise') plt.plot(time,current) plt.savefig("./figs/Pub/Noise_" + str(self.pickle_prefix) + "_cell" + str(a) + "_N" + str(self.N[a]) + ".pdf", dpi = 300, transparent=True) # save it plt.clf() if self.plot_input: if len(t_all_vec_input_sorted[0]) > 0: i_start = mlab.find(t_all_vec_input_sorted[0] >= 0)[0] i_stop = mlab.find(t_all_vec_input_sorted[0] >= 5)[0] t_all_cut = t_all_vec_input_sorted[0][i_start:i_stop] id_all_cut = id_all_vec_input_sorted[0][i_start:i_stop] plt.figure('results_input') ax99 = plt.subplot(1,1,1) ax99.plot(t_all_cut,id_all_cut,'|', ms=2) plt.text(0.5, 1.1, r'fmean=' + str(round(self.fmean_input,1)) + ',fmax=' + str(round(self.fmax_input,1)) + ',fmstd=' + str(round(self.fmstd_input,1)) + ',fcvm=' + str(round(self.fcvm_input,1)) + ',fstdm=' + str(round(self.fstdm_input,1)), transform=ax99.transAxes, fontsize=10, va='center', ha='center') plt.savefig("./figs/Pub/Input_" + str(self.pickle_prefix) + "_N" + str(self.N[self.a_celltype[0]]) + ".pdf", dpi = 300, transparent=True) # save it plt.clf() else: if self.id == 0: results = pickle.load( gzip.GzipFile( filepath, "rb" ) ) #print results #print {key:np.shape(value) for key,value in results.iteritems()} if self.minimal_dir: # save only info needed for plot print {key:np.shape(value) for key,value in results.iteritems()} if "Fig6_pop_transfer_grc_syngr_nsyn4_cn_a1_noisesynlow_inhlow_adjfinh_varih_N100_CFo6.0_results_pop_cnoise.p" in filename: results['ca'] = [] results['resp_mat'] = [] results['stim'] = [] results['current'] = [] results['tk'] = [] results['K_mat'] = [] results['freq_times'] = [] results['spike_freq'] = [] results['stim_re_mat'] = [] results['current_re'] = [] results['t_all_vec_vec'] = [] results['id_all_vec_vec'] = [] results['gsyn_in'] = [] elif ("Fig8_pop_transfer_none_synno_cn_cutf30_a1_noisesynlow_ih20_varih_N100_CFo-1_results_pop_cnoise.p" in filename) \ or ("Fig8_pop_transfer_none_synno_cn_cutf30_a10_noisesynlow_ih20_varih_N100_CFo-1_results_pop_cnoise.p" in filename) \ or ("Fig8_pop_transfer_grc_syngr_nsyn4_cn_cutf30_a1_noisesynlow_inhlow_adjfinh_varih_varinhn_N100_CFo9.0_results_pop_cnoise.p" in filename) \ or ("Fig8_pop_transfer_grc_syngr_nsyn4_cn_cutf30_a10_noisesynlow_inhlow_adjfinh_varih_varinhn_N100_is0.14_CFo9.0_results_pop_cnoise.p" in filename) \ : results['ca'] = [] results['resp_mat'] = [] results['current'] = [] results['tk'] = [] results['K_mat'] = [] results['voltage'] = [] results['current_re'] = [] results['t_all_vec_vec'] = [] results['id_all_vec_vec'] = [] results['t1'] = [] results['gsyn_in'] = [] elif ("Fig8_pop_transfer_none_synno_cn_cutf30_a1_noisesynlow_ih20_varih_N50_twopop_CFo-1_results_pop_cnoise.p" in filename) \ or ("Fig8_pop_transfer_none_synno_cn_cutf30_a10_noisesynlow_ih20_varih_N50_twopop_CFo-1_results_pop_cnoise.p" in filename) \ or ("Fig8_pop_transfer_grc_syngr_nsyn4_cn_cutf30_a1_noisesynlow_inhlow_adjfinh_varih_varinhn_N50_twopop_CFo9.0_results_pop_cnoise.p" in filename) \ or ("Fig8_pop_transfer_grc_syngr_nsyn4_cn_cutf30_a10_noisesynlow_inhlow_adjfinh_varih_varinhn_N50_is0.14_twopop_CFo9.0_results_pop_cnoise.p" in filename) \ or ("Fig8_pop_transfer_grc_syngr_nsyn4_cn_cutf5_a1_noisesynlow_inhlow_adjfinh_varih_varinhn_N100_CFo14.0_results_pop_cnoise.p" in filename) \ or ("Fig8_pop_transfer_grc_syngr_nsyn4_cn_cutf5_a1_noisesynlow_inhlow_adjfinh_varih_varinhn_N50_twopop_CFo14.0_results_pop_cnoise.p" in filename) \ : results['ca'] = [] results['resp_mat'] = [] results['current'] = [] results['tk'] = [] results['K_mat'] = [] results['voltage'] = [] results['current_re'] = [] results['t_all_vec_vec'] = [] results['id_all_vec_vec'] = [] results['t1'] = [] results['gsyn_in'] = [] results['freq_times'] = [] results['spike_freq'] = [] elif ("Fig4_pop_transfer_grc_cn_addn100_N[100]_CF[40]_amod[1]_results_pop_cnoise.p" in filename) \ or ("Fig4_pop_transfer_grc_cn_addn1_N[100]_CF[40]_amod[1]_results_pop_cnoise.p" in filename) \ or ("Fig4b_pop_transfer_grc_lowcf_cn_twopop_N[50, 50]_CF[0.0055, 0.0055]_amod[None, None]_results_pop_cnoise.p" in filename) \ or ("Fig4b_pop_transfer_grc_lowcf_cn_N[100]_CF[0.0055]_amod[None]_results_pop_cnoise.p" in filename) \ or ("Fig4b_pop_transfer_grc_lowcf_slownoise_cn_twopop_N[50, 50]_CF[0.0051, 0.0051]_amod[None, None]_results_pop_cnoise.p" in filename) \ or ("Fig4b_pop_transfer_grc_lowcf_slownoise_cn_N[100]_CF[0.0051]_amod[None]_results_pop_cnoise.p" in filename) \ : results['ca'] = [] results['resp_mat'] = [] results['current'] = [] results['tk'] = [] results['K_mat'] = [] results['voltage'] = [] results['t_all_vec_vec'] = [] results['id_all_vec_vec'] = [] results['t1'] = [] results['gsyn_in'] = [] results['freq_times'] = [] results['spike_freq'] = [] elif ("Fig2_pop_transfer_" in filename) \ : results['ca'] = [] results['resp_mat'] = [] results['current'] = [] results['t1'] = [] results['voltage'] = [] results['freq_times'] = [] results['spike_freq'] = [] results['current_re'] = [] results['t_all_vec_vec'] = [] results['id_all_vec_vec'] = [] results['gsyn_in'] = [] else: results['ca'] = [] results['resp_mat'] = [] results['stim'] = [] results['current'] = [] results['tk'] = [] results['K_mat'] = [] results['t1'] = [] results['voltage'] = [] results['freq_times'] = [] results['spike_freq'] = [] results['stim_re_mat'] = [] results['current_re'] = [] results['t_all_vec_vec'] = [] results['id_all_vec_vec'] = [] results['gsyn_in'] = [] print {key:np.shape(value) for key,value in results.iteritems()} pickle.dump( results, gzip.GzipFile( self.minimal_dir + "/" + filename, "wb" ) ) else: results = {'freq_used':[], 'amp':[],'mag':[],'pha':[],'ca':[],'voltage':[], 'tk':[],'K_mat':[], 'ihold1':[], 't_startstop':[], #'stimulus':[], 'current':[],'t1':[],'freq_times':[],'spike_freq':[], 'stim':[], 'stim_re_mat':[], 'current_re':[], 'gsyn_in':[], 'fmeanA':[], 'fmaxA':[], 'fmstdA':[], 'fcvmA':[], 'fbaseA':[], 'fbase':[], 'fbstdA':[], 'fmean':[],'method_interpol':self.method_interpol, 'SNR':[], 'VAF':[], 'Qual':[], 'CF':[], 'VAFs':[], 'fmax':[], 'fmstd':[], 'fcvm':[], 'inh_factor':[], 't_all_vec_vec':[], 'id_all_vec_vec':[]} if self.id == 0: if self.plot_train: for a in self.a_celltype: t1 = results.get('t1') voltage = results.get('voltage') fmean = results.get('fmean') fmax = results.get('fmax') fmstd = results.get('fmstd') if results.has_key('t_all_vec_vec'): if len(results['t_all_vec_vec']) > 0: t_all_vec_vec = results.get('t_all_vec_vec') id_all_vec_vec = results.get('id_all_vec_vec') t_all_cut = t_all_vec_vec[a] id_all_cut = id_all_vec_vec[a] f_start_in = mlab.find(t_all_cut >= 0) f_stop_in = mlab.find(t_all_cut <= 10) f_start = f_start_in[0] f_stop = f_stop_in[-1]+1 use_spikes = t_all_cut[f_start:f_stop] use_id = id_all_cut[f_start:f_stop] plt.figure('results_train') ax97 = plt.subplot(1,1,1) ax97.plot(use_spikes,use_id,'|', ms=6) plt.text(0.5, 1.1, r'CF=' + str(round(fmean,1)) + ',fmax=' + str(round(fmax,1)) + ',fmstd=' + str(round(fmstd,1)), transform=ax97.transAxes, fontsize=10, va='center', ha='center') plt.savefig("./figs/Pub/Train_" + str(self.pickle_prefix) + "_cell" + str(a) + "_N" + str(self.N[a]) + ".pdf", dpi = 300, transparent=True) # save it plt.figure('results_voltage') ax99 = plt.subplot(2,1,1) ax99.plot(t1,voltage[a]) t_noise = arange(0, t_stim, self.dt) noise_data = create_colnoise(t_noise, sexp, cutf, 50, onf = onf) stimulus, t, t_startstop = construct_Stimulus(noise_data, 1/self.dt, amp=1, ihold = 0, tail_points = 0, delay_baseline = self.delay_baseline) ax98 = plt.subplot(2,1,2) ax98.plot(t[0:10/self.dt],stimulus[0:10/self.dt],color='k') plt.text(0.5, 1.1, r'CF=' + str(round(fmean,1)) + ',fmax=' + str(round(fmax,1)) + ',fmstd=' + str(round(fmstd,1)), transform=ax99.transAxes, fontsize=10, va='center', ha='center') plt.savefig("./figs/Pub/Voltage_" + str(self.pickle_prefix) + "_cell" + str(a) + "_N" + str(self.N[a]) + ".pdf", dpi = 300, transparent=True) # save it plt.show() plt.clf() if (self.id == 0) and (do_csd == 1): Qual = results.get('Qual') for i, ii in enumerate(self.method_interpol): print "\n[QUAL:] Interpol:", ii, "SNR0:", Qual[i,0,0], "SNR_cutff:", Qual[i,0,1], "SNR_mean:", Qual[i,0,2], "\n VAF0:", Qual[i,1,0], "VAF_cutff:", Qual[i,1,1], "VAF_mean:", Qual[i,1,2], "\n CF(subtracted):", Qual[i,2,0], "VAF(subtracted):", Qual[i,2,1] VAF = results.get('VAF') freq_used = results.get('freq_used') iend = mlab.find(freq_used >= self.xmax)[0] print 'm(VAF)=' + str(np.mean(VAF[1][0,0:iend])) self.barrier() # wait for other nodes return results # def fun_ssine_Stim(self, freq_used = np.array([1, 10, 100, 1000])*Hz): # """ # Compute impedance and/or transfer function using Single sine stimulation # Only compute transfer function if there is a steady state (resting) firing rate! # """ # self.barrier() # wait for other nodes # # filepath = "./data/" + str(self.pickle_prefix) + "_results_pop_ssine.p" # # if self.do_run or (os.path.isfile(filepath) is False): # # fs = 1 / self.dt # sampling rate # fmax = fs / 2 # maximum frequency (nyquist) # # if self.id == 0: print "- starting single sine transfer function estimation! with amp = " + str(np.round(self.amp[a_celltype[0]],4)) + ", ihold = " + str(np.round(self.ihold[self.a_celltype[0]],4)) + ", dt = " + str(self.dt) + " => maximum frequency = " + str(fmax) + "\r" # # if max(self.n_syn_ex) == 0: # self.set_IStim() # # if self.fluct_s != []: # if self.fluct_s[self.a_celltype[0]] > 0: # if self.id == 0: print "- adding i fluct" # self.connect_fluct() # # for i, m in enumerate(self.method_interpol): # if "syn" in m: self.method_interpol[i] = "syn " + str(self.syn_tau1/ms) + "/" + str(self.syn_tau2/ms) + "ms" # if "bin" in m: self.method_interpol[i] = "bin " + str(self.bin_width/ms) + "ms" # # else: # self.give_freq = False # ihold = self.set_i(self.ihold) # just sets amp, ihold should not change! # # if ((self.fluct_g_e0 != []) or (self.fluct_g_i0 != [])): # if ((self.fluct_g_e0[self.a_celltype[0]] > 0) or (self.fluct_g_i0[self.a_celltype[0]] > 0)): # if self.id == 0: print "- adding g fluct" # self.connect_gfluct(E_i=-65) # # #if ((self.fluct_std_e[self.a_celltype[0]] != []) or (self.fluct_std_i[self.a_celltype[0]] != [])): # # if ((self.fluct_std_e[self.a_celltype[0]] > 0) or (self.fluct_std_i[self.a_celltype[0]] > 0)): # # if self.id == 0: print "- adding g fluct" # # self.connect_gfluct(E_i=-65) # # if 'gsyn_in' not in self.method_interpol: # pass # else: # self.g_syn_ex = 1 # # # for i, fu in enumerate(freq_used): # # if self.id == 0: print "- single sine processing frequency = " + str(fu) # # t, stimulus, i_startstop, t_startstop = create_singlesine(fu = fu, amp = self.amp[a_celltype[0]], ihold = 0, dt = self.dt, periods = 20, minlength = 2*s, t_prestim = 1*s) # tstop = t[-1] # # if i == 0: t_startstop_plot = t_startstop # # if max(self.n_syn_ex) == 0: # self.set_IPlay(stimulus, t) # else: # self.set_SynPlay(stimulus, t) # # if self.g_syn_ex >= 0: # should also be true for current input!!! # # self.run(tstop) # # if i == 0: # do this here to have something to return # # # select first sinusoidal to plot, later # voltage_plot = [] # current_plot = [] # time_plot = [] # freq_times_plot = [] # spike_freq_plot = [] # gsyn_plot = [] # # # construct vectors # amp_vec = zeros(len(freq_used)) # amplitude vector # fmean_all = zeros(len(freq_used)) # mean firing frequency (all cells combined) # fmean = zeros(len(freq_used)) # mean firing frequency (one cell) # ca = zeros(len(freq_used), dtype=complex) # # # create matrix to hold all different interpolation methods: # mag_vec = zeros((len(self.method_interpol),len(freq_used))) # magnitude vector # pha_vec = zeros((len(self.method_interpol),len(freq_used))) # phase vector # NI_vec = zeros((len(self.method_interpol),len(freq_used))) # NI vector # VAF_vec = zeros((len(self.method_interpol),len(freq_used))) # VAF vector # # results = self.get(t_startstop, i_startstop) # t1 should be equal to t!!! # time, voltage, current, fmean0, gsyn = results.get('time'), results.get('voltage'), results.get('current'), results.get('fmean'), results.get('gsyn') # freq_times, spike_freq, t_all_vec_vec, id_all_vec_vec, gsyns = results.get('freq_times'), results.get('spike_freq'), results.get('t_all_vec_vec'), results.get('id_all_vec_vec'), results.get('gsyns') # # else: # # time = t # voltage = [] # voltage.append(np.zeros(len(t))) # current = stimulus # # freq_times = [] # spike_freq = [] # fmean0 = ihold # gsyn = [] # gsyn_in = [] # # t_all_vec_vec = [] # id_all_vec_vec = [] # # # if self.id == 0: # # t_all_vec = [] # t_all_vec.append([]) # t_all_vec[0] = np.concatenate(self.t_all_vec_input) # # id_all_vec = [] # id_all_vec.append([]) # id_all_vec[0] = np.concatenate(self.id_all_vec_input) # # ie = argsort(t_all_vec[0]) # t_all_vec_vec.append( t_all_vec[0][ie] ) # id_all_vec_vec.append( id_all_vec[0][ie].astype(int) ) # # # # freq_times = arange(0, tstop, self.bin_width) # [num_spikes, _] = neuronpy.util.spiketrain.get_histogram(t_all_vec_vec[0], bins = freq_times) # spike_freq = np.concatenate((zeros(1),num_spikes)) / self.bin_width # # # if self.id == 0: # # fmean[i] = fmean0[0] # # if i == 0: # # # select first sinusoidal to plot # voltage_plot = voltage # current_plot = current # time_plot = time # freq_times_plot = freq_times # spike_freq_plot = spike_freq # gsyn_plot = gsyn # # # for l in range(len(self.method_interpol)): # # if "bin" in self.method_interpol[l]: # # # binning and linear interpolation # stimulus_signal = stimulus[i_startstop[0]:i_startstop[1]] # cut out relevant signal # t_input_signal = t[i_startstop[0]:i_startstop[1]] - t[i_startstop[0]] # # spike_freq_interp = interp(t, freq_times, spike_freq, left=0, right=0) # interpolate to be eqivalent with input, set zero at beginning and end! # freq_out_signal_interp = spike_freq_interp[i_startstop[0]:i_startstop[1]] # cut out relevant signal # vamp, mag_vec[l,i], pha_vec[l,i], fmean_all[i], _ = get_magphase(stimulus_signal, t_input_signal, freq_out_signal_interp, t_input_signal, method = "fft", f = fu) # # results = est_quality(t_input_signal, fu, freq_out_signal_interp, self.amp[a_celltype[0]]*mag_vec[l,i], pha_vec[l,i]/ (180 / pi), fmean_all[i]) # NI_vec[l,i], VAF_vec[l,i] = results.get('NI'), results.get('VAF') # print "-[bin] NI: " + str(NI_vec[l,i]) + ", VAF: " + str(VAF_vec[l,i]) # # if "syn" in self.method_interpol[l]: # # # synaptic integration # dt_out = t_input_signal[2] - t_input_signal[1] # shift = self.nc_delay/dt_out # shift response by the nc delay to remove offset # freq_out_signal_syn = gsyn[i_startstop[0]+shift:i_startstop[1]+shift] # cut out relevant signal # # vamp, mag_vec[l,i], pha_vec[l,i], fm, _ = get_magphase(stimulus_signal, t_input_signal, freq_out_signal_syn, t_input_signal, method = "fft", f = fu) # # results = est_quality(t_input_signal, fu, freq_out_signal_syn, self.amp[a_celltype[0]]*mag_vec[l,i], pha_vec[l,i]/ (180 / pi), fm) # NI_vec[l,i], VAF_vec[l,i] = results.get('NI'), results.get('VAF') # print "-[syn] NI: " + str(NI_vec[l,i]) + ", VAF: " + str(VAF_vec[l,i]) # # # self.barrier() # wait for other nodes # # #print "rest: " + str(vrest) + " freq_used:" + str(freq_used) + " amp_vec:" + str(amp_vec) + " mag_vec:" + str(mag_vec) + " pha_vec:" + str(pha_vec) # # if self.id == 0: # # for l in range(len(self.method_interpol)): # unwrap # pha_vec[l,:] = unwrap(pha_vec[l,:] * (pi / 180)) * (180 / pi) # unwrap for smooth phase # # # only return fraction of actual signal, it is too long!!! # if time_plot[-1] > self.tmax: # imax = where(time_plot > self.tmax)[0][0] # for voltage, current and time # time_plot = time_plot[0:imax]; current_plot = current_plot[0:imax]; gsyn_plot = gsyn_plot[0:imax] # for n in range(self.n_celltypes): # voltage_plot[n] = voltage_plot[n][0:imax] # # if freq_times_plot != []: # if freq_times_plot[-1] > self.tmax: # imax2 = where(freq_times_plot > self.tmax)[0][0] # for spike frequency # freq_times_plot = freq_times_plot[0:imax2]; spike_freq_plot = spike_freq_plot[0:imax2] # # # normalize synaptic integration with with first magnitude, may by syn itself! # bvec = ["syn" in st for st in self.method_interpol] # if np.any(bvec): # k = where(bvec) # mag_vec[k,:]= mag_vec[0,0]*mag_vec[k,:]/mag_vec[k,0] # # NI_vec = (freq_used, NI_vec) # VAF_vec = (freq_used, VAF_vec) # results = {'freq_used':freq_used, 'amp':amp_vec,'mag':mag_vec,'pha':pha_vec,'ca':ca,'voltage':voltage_plot, 't_startstop':t_startstop_plot, # 'current':current_plot,'t1':time_plot,'freq_times':freq_times_plot,'spike_freq':spike_freq_plot, # 'fmean':mean(fmean),'method_interpol':self.method_interpol, 'NI':NI_vec, 'VAF':VAF_vec} # # if self.id == 0: # pickle.dump( results, gzip.GzipFile( filepath, "wb" ) ) # # else: # # if self.id == 0: # results = pickle.load( gzip.GzipFile( filepath, "rb" ) ) # else: # results = {'freq_used':[], 'amp':[],'mag':[],'pha':[],'ca':[],'voltage':[], 't_startstop':[], # 'current':[],'t1':[],'freq_times':[],'spike_freq':[], # 'fmean':[],'method_interpol':self.method_interpol,'NI':[],'VAF':[]} # # return results def get_RC(self, opt_plot): if self.id == 0: if "analytical" in opt_plot: # simplest case, only uses rm and tau, scaling necessary exec self.cell_exe[self.a_celltype[0]] sim = Stimulation(cell, temperature = self.temperature) rm, cm, taum = sim.get_RCtau() else: rm = cm = taum = 0 if "if" in opt_plot: Vrest = cell.soma(0.5).pas.e*mV Vth = cell.spkout.thresh*mV Vreset = cell.spkout.vrefrac*mV else: Vreset = 0*mV; Vth = 1*mV; Vrest = 0*mV sim = None cell = None else: rm = cm = taum = 0 Vreset = 0*mV; Vth = 1*mV; Vrest = 0*mV return rm, cm, taum, Vreset, Vth, Vrest def fun_plot(self, currlabel="control", dowhat="cnoise", freq_used=np.array([]), cutf=10, sexp=0, t_stim=100*s, ymax=0, ax=None, SNR=None, VAF=None, t_qual=0, opt_plot=np.array([]), method_interpol_plot=[], do_csd = 1): SNR_switch = SNR VAF_switch = VAF rm, cm, taum, Vreset, Vth, Vrest = self.get_RC(opt_plot) if dowhat == "cnoise": if do_csd == 0: t_qual = 0; SNR_switch = 0; VAF_switch = 0 results = self.fun_cnoise_Stim(t_stim = t_stim, cutf = cutf, sexp = sexp, t_qual = t_qual, freq_used = freq_used, do_csd = do_csd) freq_used, amp_vec, mag, pha, ca, voltage, current, t1 = results.get('freq_used'), results.get('amp'), results.get('mag'), results.get('pha'), results.get('ca'), results.get('voltage'), results.get('current'), results.get('t1') freq_times, spike_freq, fmean, method_interpol, SNR, VAF, Qual = results.get('freq_times'), results.get('spike_freq'), results.get('fmean'), results.get('method_interpol'), results.get('SNR'), results.get('VAF'), results.get('Qual') stim, stim_re_mat, current_re, tk, K_mat_old = results.get('stim'), results.get('stim_re_mat'), results.get('current_re'), results.get('tk'), results.get('K_mat') elif dowhat == "ssine": results = self.fun_ssine_Stim(freq_used = freq_used0) freq_used, amp_vec, mag, pha, ca, voltage, current, t1 = results.get('freq_used'), results.get('amp'), results.get('mag'), results.get('pha'), results.get('ca'), results.get('voltage'), results.get('current'), results.get('t1') freq_times, spike_freq, fmean, method_interpol, VAF = results.get('freq_times'), results.get('spike_freq'), results.get('fmean'), results.get('method_interpol'), results.get('VAF') tk = [] K_mat_old = [] # analyse if self.id == 0: print "Mean rate: " + str(fmean) # Turn it off if set to zero if SNR_switch == 0: SNR = None if VAF_switch == 0: VAF = None if t_qual > 0: plt.figure("Reconstruct") ax1 = subplot(2,1,1) ax1.plot(np.arange(len(stim))*dt-1, current_re*1e3, 'b', linewidth=1) ax1.plot(np.arange(len(stim))*dt-1, (stim)*1e3, 'k-', linewidth=1) ax1.plot(np.arange(len(stim))*dt-1, (stim_re_mat[0,:])*1e3, 'r', linewidth=1, alpha=1) #adjust_spines(ax1, ['left','bottom'], d_out = 10) #ax1.axis(xmin=0, xmax=1) #ax1.axis(ymin=8.3, ymax=10.7) #ax1.yaxis.set_ticks(array([8.5,9,9.5,10,10.5])) #ax1.set_title("Reconstruction") #ax1.set_xlabel("s") #ax1.set_ylabel("pA") #ax1.text(0.15, 10.7, "Input current", color=color3, fontsize = 8) #ax1.text(0.8, 10.7, "Signal", color="#000000", fontsize = 8) #ax1.text(0.0, 8.2, "Reconstruction", color=color2, fontsize = 8) ax2 = subplot(2,1,2) ax2.plot(tk, K_mat_old[0], 'k', linewidth=1) self.save_plot(directory = "./figs/dump/", prefix = "reconstruct") plt.figure("Transfer") currtitle = currlabel + " pop " + dowhat + ", " + self.celltype[self.a_celltype[0]] ax = plot_transfer(currtitle, freq_used, mag, pha, t1, current, voltage[self.a_celltype[0]], freq_times, spike_freq, taum, fmean, self.ihold, rm, Vreset, Vth, Vrest, method_interpol, method_interpol_plot, SNR = SNR, VAF = VAF, ymax = self.ymax, ax = self.ax, linewidth = self.linewidth, color_vec = self.color_vec, alpha = self.alpha, opt_plot = opt_plot) suptitle("Population transfer function of " + str(self.N[self.a_celltype[0]]) + " " + self.celltype[self.a_celltype[0]] + ", amp: " + str(np.round(self.amp[self.a_celltype[0]],4)) + ", amod: " + str(self.amod) + ", ih: " + str(np.round(self.ihold,4)) + ", ih_s: " + str(np.round(self.ihold_sigma,4)) + ", fm: " + str(np.round(fmean,2)) + ", fl_s: " + str(self.fluct_s)) return VAF, SNR, ax, tk, K_mat_old def save_plot(self, directory = "./figs/dump/", prefix = " "): if pop.id == 0: from datetime import datetime idate = datetime.now().strftime('%Y%m%d_%H%M') # %S savefig(directory + idate + "-pop_transfer_" + prefix + "_" + self.celltype[self.a_celltype[0]] + "_N" + str(self.N[self.a_celltype[0]]) + "_ihold" + str(np.round(self.ihold,4)) + "_amp" + str(np.round(self.amp[self.a_celltype[0]],4)) + ".pdf", dpi = 300) # save it def do_pca_ica(self, t_analysis_delay=0, t_analysis_stop=1, time=0, signals=0, output_dim=10, n_processes=32, n_chunks=32, do_ica=1, n_celltype = 0): if self.use_mpi: filepath = self.data_dir + "/" + str(self.pickle_prefix) + "_results_pop_pca_ica.p" if self.do_run or (os.path.isfile(filepath) is False): # PCA # remove beginning dt = time[2]-time[1] t = time[int(t_analysis_delay/dt):int(t_analysis_stop/dt)] pca_mat = np.array(signals[n_celltype]).T[int(t_analysis_delay/dt):int(t_analysis_stop/dt),:] node = mdp.nodes.PCANode(output_dim=output_dim, svd=True) # pad with zeros to be able to split into chunks! n_add = n_chunks-np.remainder(np.shape(pca_mat)[0],n_chunks) mat_add = np.zeros((n_add, np.shape(pca_mat)[1])) pca_mat_add = np.concatenate((pca_mat, mat_add)) pca_mat_iter = np.split(pca_mat_add, n_chunks) flow = mdp.parallel.ParallelFlow([node]) start_time = ttime.time() with mdp.parallel.ProcessScheduler(n_processes=n_processes, verbose=True) as scheduler: flow.train([pca_mat_iter], scheduler=scheduler) # input has to be list, why?? process_time = ttime.time() - start_time s = np.array(flow.execute(pca_mat_iter)) s = s[0:len(t),:] # resize to length of t! #print "node.d: ",node.d var_vec = node.d/sum(node.d) print 'Explained variance (', 0, ') : ', round(node.explained_variance,4) print 'Variance (' , 0, ') : ', var_vec print 'Time to run (' , 0, ') : ', process_time s2 = [] if do_ica: # ICA #s2 = mdp.fastica(s) ica = mdp.nodes.FastICANode() #CuBICANode() ica.train(s) s2 = ica(s) results = {'t':t, 'pca':s,'pca_var':var_vec,'pca_var_expl':round(node.explained_variance,4), 'ica':s2} if self.id == 0: if self.dumpsave == 1: pickle.dump( results, gzip.GzipFile( filepath, "wb" ) ) else: if self.id == 0: results = pickle.load( gzip.GzipFile( filepath, "rb" ) ) else: # remove beginning dt = time[2]-time[1] t = time[int(t_analysis_delay/dt):int(t_analysis_stop/dt)] pca_mat = np.array(signals[n_celltype]).T[int(t_analysis_delay/dt):int(t_analysis_stop/dt),:] node = mdp.nodes.PCANode(output_dim=output_dim, svd=True) start_time = ttime.time() node.train(pca_mat) s = node(pca_mat) process_time = ttime.time() - start_time #print "node.d: ",node.d var_vec = node.d/sum(node.d) print 'Explained variance (', 0, ') : ', round(node.explained_variance,4) print 'Variance (' , 0, ') : ', var_vec print 'Time to run (' , 0, ') : ', process_time s2 = [] if do_ica: # ICA #s2 = mdp.fastica(s) ica = mdp.nodes.FastICANode() #CuBICANode() ica.train(s) s2 = ica(s) results = {'t':t, 'pca':s,'pca_var':var_vec,'pca_var_expl':round(node.explained_variance,4), 'ica':s2} return results def net_run(self, tstop, simprop = "default", t_analysis_delay=0, t_analysis_stop=1, stim_start=0): freq_times = [] t_all_vec_vec = [] id_all_vec_vec = [] gsyns = [] w_mat = [] winh_mat = [] time = [] voltage = [] current = [] filepath = self.data_dir + "/" + str(self.pickle_prefix) + "_results_pop_randomnet.hdf5" if self.do_run or (os.path.isfile(filepath) is False): self.run(tstop) self.no_fmean = True results = self.get() time, voltage, current, fmean, gsyn = results.get('time'), results.get('voltage'), results.get('current'), results.get('fmean'), results.get('gsyn') freq_times, spike_freq, t_all_vec_vec, id_all_vec_vec, gsyns, w_mat, winh_mat = results.get('freq_times'), results.get('spike_freq'), results.get('t_all_vec_vec'), results.get('id_all_vec_vec'), results.get('gsyns'), results.get('w_mat'), results.get('winh_mat') if self.id == 0: if self.dumpsave == 1: #pickle.dump( results, open( filepath, "wb" ) ) # gzip.GzipFile print "- Saving", filepath f = h5py.File(filepath, 'w') f.create_dataset('time', data=time, compression='gzip', shuffle=True) f.create_dataset('voltage', data=np.array(voltage), compression='gzip', shuffle=True) f.create_dataset('current', data=current, compression='gzip', shuffle=True) f.create_dataset('freq_times', data=freq_times, compression='gzip', shuffle=True) #f.create_dataset('t_all_vec_vec', data=np.array(t_all_vec_vec), compression='lzf', shuffle=True) #f.create_dataset('id_all_vec_vec', data=np.array(id_all_vec_vec), compression='lzf', shuffle=True) #f.create_dataset('gsyns', data=np.array(gsyns), compression='lzf', shuffle=True) for i in range(len(self.N)): subgroup = f.create_group("cell" + str(i)) subgroup.create_dataset('t_all_vec_vec', data=t_all_vec_vec[i], compression='gzip', shuffle=True) subgroup.create_dataset('id_all_vec_vec', data=id_all_vec_vec[i], compression='gzip', shuffle=True) subgroup.create_dataset('g', data=gsyns[i], compression='gzip', shuffle=True) #for j in range(len(gsyns[i])): # subsubgroup = subgroup.create_group("gsyn" + str(j)) # subsubgroup.create_dataset('g', data=gsyns[i][j], compression='lzf', shuffle=True) f.close() print "- Save finished" #filename = slugify(simprop) #syn_grc = np.array(gsyns[0]) #import scipy #from scipy import io #print "Saving .mat" #data = {} #data['syn_grc'] = syn_grc[:,int(t_analysis_delay/self.bin_width):int(t_analysis_stop/self.bin_width)] #data['time'] = freq_times[int(t_analysis_delay/self.bin_width):int(t_analysis_stop/self.bin_width)]-stim_start #scipy.io.savemat('./figs/' + filename + '.mat',data) else: if self.id == 0: #results = pickle.load( open( filepath, "rb" ) ) #gzip.GzipFile f = h5py.File(filepath, 'r') time = np.array(f['time']) voltage = np.array(f['voltage']) current = np.array(f['current']) freq_times = np.array(f['freq_times']) for i in range(len(self.N)): t_all_vec_vec.append(np.array(f['/cell' + str(i) + '/t_all_vec_vec'])) id_all_vec_vec.append(np.array(f['/cell' + str(i) + '/id_all_vec_vec'])) gsyns.append(np.array(f['/cell' + str(i) + '/g'])) #gsyns.append([]) #for j in range(self.N[i]): # gsyns[i].append(np.array(f['/cell' + str(i) + '/gsyn' + str(j) + '/g' ])) f.close() return time, voltage, current, t_all_vec_vec, id_all_vec_vec, gsyns, freq_times, w_mat, winh_mat def delall(self): if self.use_mpi: self.pc.gid_clear() print "- clearing gids" else: pass #h.topology() #for sec in h.allsec(): # print "- deleting section:", sec.name() # #h("%s{delete_section()}"%sec.name()) # sec.push() # h.delete_section() #h.topology() for n in range(self.n_celltypes): for m in self.cells[n]: m.destroy() del m del self.cells del self.nc_vecstim del self.netcons del self.nclist print h.topology() def delrerun(self): del self.nc_vecstim del self.netcons del self.nclist del self.vecstim del self.spike_vec del self.ST_stims del self.PF_stims self.netcons = [] self.nclist = [] self.nc_vecstim = [] self.vecstim = [] self.spike_vec = [] self.ST_stims = [] self.PF_stims = [] self.t_vec = [] self.id_vec = [] self.rec_v = [] for n in range(self.n_celltypes): if self.use_mpi: self.t_vec.append(h.Vector()) # np.array([0]) self.id_vec.append(h.Vector()) # np.array([-1], dtype=int) else: self.t_vec.append([]) self.rec_v.append(h.Vector()) for cell in self.cells[n]: self.t_vec[n].append(h.Vector()) cell.nc_spike.record(self.t_vec[n][-1]) self.flucts = [] # Fluctuating inputs on this host self.noises = [] # Random number generators on this host self.plays = [] # Play inputs on this host self.rec_is = [] self.trains = [] self.ic_holds = [] self.i_holdrs = [] self.i_holds = [] self.ic_starts = [] self.vc_starts = [] self.ic_steps = [] self.tvecs = [] self.ivecs = [] self.noises = [] self.record_syn = [] self.id_all_vec_input = [] self.t_all_vec_input = [] self.syn_ex_dist = [] self.syn_inh_dist = [] # test code if __name__ == '__main__': # mpiexec -f ~/machinefile -enable-x -n 96 python Population.py --noplot from Stimulation import * from Plotter import * from Stimhelp import * from cells.IfCell import * import scipy from scipy import io dt = 0.1*ms dt = 0.025*ms do_run = 1 if results.norun: # do not run again use pickled files! print "- Not running, using saved files" do_run = 0 do = np.array(["transfer"]) opts = np.array(["if_cnoise", "grc_cnoise"]) #ssine #opts = np.array(["if_cnoise"]) #ssine #opts = np.array(["if_recon"]) #ssine opts = np.array(["if_syn_CFvec"]) #opts = np.array(["prk_cnoise"]) opts = np.array(["if_cnoise", "if_ssine"]) #ssine opts = np.array(["if_ssine"]) #ssine opts = np.array(["grc_cnoise_addn_cn_", "grc_cnoise_cn_", "grc_cnoise_addn_cn_a01"]) opts = np.array(["grc_cnoise_addn100_cn_", "grc_cnoise_addn_cn_", "grc_cnoise_cn_"]) opts = np.array(["grc_cnoise_addn100_cn_"]) opts = np.array(["grc_cnoise_addn100_"]) opts = np.array(["grc_cnoise_addn_cn_"]) #opts = np.array(["grc_cnoise"]) #opts = np.array(["grc_cnoise_cn", "grc_cnoise_addn_cn"]) #opts = np.array(["if_cnoise_addn", "if_cnoise"]) do = np.array(["timeconst"]) #do = np.array(["transfer"]) #opts = np.array(["grc_cnoise_syn"]) #opts = np.array(["grc_recon_syn"]) #do = np.array(["prk_test"]) if "prk_test" in do: import multiprocessing from Purkinje import Purkinje cell = Purkinje() # set up recording # Time rec_t = h.Vector() rec_t.record(h._ref_t) # Voltage rec_v = h.Vector() rec_v.record(cell.soma(0.5)._ref_v) tstop = 500 v_init = -60 stim = h.IClamp(cell.soma(0.5)) stim.amp = 0.0/nA stim.delay = 1 stim.dur = 1000 cpu = multiprocessing.cpu_count() h.load_file("parcom.hoc") p = h.ParallelComputeTool() p.change_nthread(cpu,1) p.multisplit(1) print 'cpus:', cpu h.load_file("stdrun.hoc") h.celsius = 37 h.init() h.tstop = tstop dt = 0.025 # ms h.dt = dt h.steps_per_ms = 1 / dt h.v_init = v_init h.finitialize() h.run() t1 = np.array(rec_t) voltage = np.array(rec_v) s, spike_times = get_spikes(voltage, -20, t1) print 1000/diff( spike_times) plt.figure() plt.subplot(2,1,1) plt.plot(t1, voltage) plt.show() if "transfer" in do: # SET DEFAULT VALUES FOR THIS PLOT fig_size = [11.7, 8.3] params = {'backend': 'ps', 'axes.labelsize': 9, 'axes.linewidth' : 0.5, 'title.fontsize': 8, 'text.fontsize': 9, 'legend.borderpad': 0.2, 'legend.fontsize': 8, 'legend.linewidth': 0.1, 'legend.loc': 'best', # 'lower right' 'legend.ncol': 4, 'xtick.labelsize': 8, 'ytick.labelsize': 8, 'text.usetex': False, 'figure.figsize': fig_size} rcParams.update(params) freq_used0 = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 65, 70, 80, 100, 1000])*Hz #freq_used0 = np.concatenate((arange(0.1, 1, 0.1), arange(1, 501, 1) )) freq_used0 = np.array([1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 200, 400, 600, 800, 1000]) SNR = None NI = None VAF = None t_stim = 1000*s # only for cnoise opt_plot = np.array(["only_mag","normalize", "dB"]) # #opt_plot = np.array(["normalize", "dB"]) # color_vec = (np.array(["Red", "Blue", "HotPink", "Indigo"]), np.array(["Blue", "Orange", "HotPink", "Indigo"])) #color=cm.jet(1.*i/x) method_interpol = np.array(['bin','syn']) method_interpol = np.array(['bin']) for i, o in enumerate(opts): dt = 0.025*ms bin_width = 5*ms bin_width = dt jitter = 0*ms n_syn_ex = [0] g_syn_ex = [1] noise_syn = 0 inh_hold = 0 n_syn_inh = [0] g_syn_inh = [1] tau1_ex = 0 tau2_ex = 10*ms tau1_inh = 0 tau2_inh = 100*ms cutf = 20 sexp = -1 cutf = 0 sexp = 0 ihold = [10] amod = 0.1 # relative value give_freq = True anoise = [0] fluct_tau = 0*ms N = [100] amp = 0 # absolute value fluct_s = [0] # absolute value 0.0008 ihold_sigma = [0] # 0.01 absolute value CF_var = [[5,10,20]] CF_var = False syn_tau1 = 5*ms syn_tau2 = 5*ms do_csd = 1 if "if" in o: do_csd = 1 color_vec = (np.array(["Blue"]), np.array(["Blue"])) #color_vec = (np.array(["Red"]), np.array(["Red"])) cellimport = [] celltype = ["IfCell"] #cell_exe = ["cell = IfCell()"] #cell_exe = ["cell = IfCell(e = -70*mV, thresh = -69*mV, vrefrac = -70*mV)"] #cell_exe = ["cell = IfCell(e = 0*mV, thresh = 1*mV, vrefrac = 0*mV)"] # Brunel #cell_exe = ["cell = IfCell(C = 0.0005 *uF, R = 40*MOhm, e = -70*mV, thresh = -50*mV, vrefrac = -56*mV); cell.add_resonance(tau_r = 100*ms, gr = 0.025*uS)"] #cell_exe = ["cell = IfCell(C = 0.0001*uF, R = 40*MOhm, sigma_C = 0.2, sigma_R = 0.2)"] #cell_exe = ["cell = IfCell(C = 0.0001*uF, R = 40*MOhm)"] # tau = 4 ms #cell_exe = ["cell = IfCell(C = 0.0001*uF, R = 40*MOhm, s_reset_noise = 0*mV)"] # tau = 4 ms #GrC resting: 737 MOhm, 2.985e-06 uF tau: 0.0022 s #GrC transfer fit: tau: 0.027 s => with 2.985e-06 uF, R = 0.027/2.985e-12 = 9045 MOhm #cell_exe = ["cell = IfCell(C = 2.985e-06*uF, R = 9045*MOhm)"] thresh = -41.8 R = 5227*MOhm #tau_passive = 3e-06*5227 = 15.7ms cell_exe = ["cell = IfCell(C = 3.0e-06*uF, R = " + str(R) + ", e = -71.5*mV, thresh =" + str(thresh) + ", vrefrac = -71.5*mV)"] prefix = "if_tf" istart = 0 istop = 0.01 di = 0.00001 syn_tau1 = 10*ms syn_tau2 = 10*ms # Indirect give_freq = True ihold = [40] amod = 1 # relative value anoise = [0] fluct_tau = 0*ms #anoise = 0.1 #fluct_tau = 100*ms # # Direct # give_freq = False # ihold = [0.00569223341176] # amod = None # amp = 7.31353725e-06 # # anoise = None # fluct_s = [3.65676863e-06] # fluct_tau = 0*ms # # # Low CF, No low noise # N = [10000] # give_freq = False # ihold = [0.004] # ihold_sigma = [0.1/2] # 0.1/2 0.01 realtive value # amod = None # amp = 0.0021 # # anoise = None # fluct_s = [0.00] # .005 # fluct_tau = 0*ms # # Low CF, With low noise # N = [10000] # give_freq = False # ihold = [0.002] # ihold_sigma = [0.1/2] # 0.1/2 0.01 realtive value # amod = None # amp = 0.001 # # anoise = None # fluct_s = [0.002] # .005 # fluct_tau = 100*ms if "resif" in o: do_csd = 1 color_vec = (np.array(["Blue"]), np.array(["Blue"])) #color_vec = (np.array(["Red"]), np.array(["Red"])) cellimport = [] celltype = ["IfCell"] gr = 5.56e-05*uS tau_r = 19.6*ms R = 5227*MOhm delta_t = 4.85*ms thresh = (0.00568*nA * R) - 71.5*mV # thresh = -41.8 cellimport = [] celltype = "IfCell" cell_exe = "cell = IfCell(C = 3e-06*uF, R = " + str(R) + ", e = -71.5*mV, thresh =" + str(thresh) + ", vrefrac = -71.5*mV, dgk =" + str(gr) + ", egk = -71.5*mV, ctau =" + str(tau_r) + ")" prefix = "resif_tf" istart = 0 istop = 0.01 di = 0.00001 syn_tau1 = 10*ms syn_tau2 = 10*ms # Indirect give_freq = True ihold = [40] amod = 1 # relative value anoise = [0] fluct_tau = 0*ms dt = 0.1*ms if "if_syn" in o: N = [1] ihold = [40] amod = 1 # relative value prefix = "if_syntf" n_syn_ex = 1 g_syn_ex = 0 noise_syn = 0 fluct_tau = 0*ms freq_used = np.array([]) tau1_ex=0*ms tau2_ex=10*ms anoise = [0] if "grc" in o: color_vec = (np.array(["Blue"]), np.array(["Blue"])) cellimport = ["from GRANULE_Cell import Grc"] celltype = ["Grc"] cell_exe = ["cell = Grc(np.array([0.,0.,0.]))"] prefix = "grc_tf" istart = 0 istop = 0.1 di = 0.01 syn_tau1 = 10*ms syn_tau2 = 10*ms # Indirect give_freq = True ihold = [40] amod = 1 # relative value anoise = [0] fluct_tau = 0*ms #anoise = 0.1 #fluct_tau = 100*ms # # Direct # give_freq = False # ihold = [0.0058021085712642992] # amod = None # amp = 7.31353725e-06 # # anoise = None # fluct_s = [3.65676863e-06] # fluct_tau = 0*ms # # # Low CF, No low noise # N = [50] # give_freq = False # ihold = [0.0049] # ihold_sigma = [0.1/2] # 0.1/2 0.01 realtive value # amod = None # amp = 0.0021 # # anoise = None # fluct_s = [0.00] # .005 # fluct_tau = 0*ms # # # # Low CF, With low noise # N = [10000] # give_freq = False # ihold = [0.003] # ihold_sigma = [0.1/2] # 0.1/2 0.01 realtive value # amod = None # amp = 0.001 # # anoise = None # fluct_s = [0.002] # .005 # fluct_tau = 100*ms use_multisplit = False use_mpi = True simstep = 1*s if "prk" in o: N = [1] ihold = [60] color_vec = (np.array(["Blue"]), np.array(["Blue"])) cellimport = ["from Purkinje import Purkinje"] celltype = ["Prk"] cell_exe = ["cell = Purkinje()"] prefix = "prk_tf" temperature = 37 istart = 0 istop = 0.1 di = 0.005 use_multisplit = True use_mpi = False t_stim = 5*s # only for cnoise simstep = 1*s if "grc_syn" in o: N = [1] ihold = [125] amod = 1 # relative value prefix = "grc_syntf" cutf = 20 sexp = -1 cutf = 0 sexp = 0 n_syn_ex = 1 g_syn_ex = -1 noise_syn = 1 n_syn_inh = -1 inh_hold = 0 g_syn_inh = 0 fluct_tau = 0*ms freq_used = np.array([]) anoise = 0 if "_addn" in o: anoise = [6] # RESPONSIBLE FOR FILTERING EFFECT!!! fluct_tau = 1*ms prefix = prefix + "_addn" color_vec = (np.array(["Red"]), np.array(["Red"])) if "_addn100" in o: anoise = [2] # RESPONSIBLE FOR FILTERING EFFECT!!! fluct_tau = 100*ms prefix = prefix + "100" color_vec = (np.array(["Green"]), np.array(["Green"])) if "_cn_" in o: cutf = 20 sexp = -1 prefix = prefix + "_cn" if "_a01" in o: amod=0.1 prefix = prefix + "_a01" plt.figure(i) pickle_prefix = "Population.py_" + prefix #comm = MPI.COMM_WORLD #comm.Barrier() # wait for other nodes pop = Population(cellimport = cellimport, celltype = celltype, cell_exe = cell_exe, N = N, temperature = 37, ihold = ihold, ihold_sigma = ihold_sigma, amp = amp, amod = amod, give_freq = give_freq, do_run = do_run, pickle_prefix = pickle_prefix, istart = istart, istop = istop, di = di, dt = dt) pop.bin_width = bin_width pop.jitter = jitter pop.anoise = anoise pop.fluct_s = fluct_s pop.fluct_tau = fluct_tau pop.method_interpol = method_interpol pop.no_fmean = False pop.CF_var = CF_var pop.tau1_ex=tau1_ex pop.tau2_ex=tau2_ex pop.tau1_inh=tau1_inh pop.tau2_inh=tau2_inh pop.n_syn_ex = n_syn_ex pop.g_syn_ex = g_syn_ex pop.noise_syn = noise_syn pop.inh_hold = inh_hold pop.n_syn_inh = n_syn_inh pop.g_syn_inh = g_syn_inh pop.force_run = False pop.use_multisplit = use_multisplit pop.use_mpi = use_mpi pop.simstep = simstep pop.use_local_dt = False pop.syn_tau1 = syn_tau1 pop.syn_tau2 = syn_tau2 pop.plot_input = False if n_syn_inh == -1: pop.connect_gfluct(g_i0=g_syn_inh) #pop.test_mod(n_syn_ex = n_syn_ex, g_syn_ex = g_syn_ex, noise_syn = noise_syn, inh_hold = inh_hold, n_syn_inh = n_syn_inh, g_syn_inh = g_syn_inh, do_plot = True) if "ssine" in o: pop.color_vec = color_vec #pop.color_vec = (np.array(["Red", "Orange", "HotPink", "Indigo"]), np.array(["Red", "Orange", "HotPink", "Indigo"])) pop.fun_plot(currlabel = "control", dowhat = "ssine", freq_used = freq_used0, opt_plot = opt_plot) pop.save_plot(directory = "./figs/dump/") if "cnoise" in o: freq_used = np.array([]) pop.color_vec = color_vec #pop.color_vec = (np.array(["Blue", "Green", "DimGray", "DarkGoldenRod"]), np.array(["Blue", "Green", "DimGray", "DarkGoldenRod"])) pop.fun_plot(currlabel = "control", dowhat = "cnoise", t_stim = t_stim, cutf = cutf, sexp = sexp, t_qual = 0, opt_plot = opt_plot, freq_used = freq_used, do_csd = do_csd) pop.save_plot(directory = "./figs/dump/") if "recon" in o: pop.color_vec = color_vec #VAF, SNR, ax, tk, K_mat_old = pop.fun_plot(currlabel = "control", dowhat = "cnoise", t_stim = t_stim, cutf = cutf, sexp = sexp, t_qual = 0, opt_plot = opt_plot, n_syn_ex = n_syn_ex, g_syn_ex = g_syn_ex, noise_syn = noise_syn, inh_hold = inh_hold, n_syn_inh = n_syn_inh, g_syn_inh = g_syn_inh, SNR=0, freq_used = freq_used) # RECONSTRUCT! freq_used = np.array([9, 47, 111, 1000])*Hz t_stim = 10*s tk = arange(0,0.8192*2,pop.dt) K_mat_old = zeros((len(method_interpol),len(tk)), dtype=complex) if pop.id == 0: sigma = 0.1e-3 a=0.1 t0 = tk[floor(len(tk)/2)] K_mat_old[0] = gauss_func(tk, a, t0, sigma) K_mat_old = np.array([]) results = pop.fun_cnoise_Stim(t_stim = t_stim, cutf = cutf, sexp = sexp, t_qual = 5, n_syn_ex = n_syn_ex, g_syn_ex = g_syn_ex, noise_syn = noise_syn, inh_hold = inh_hold, n_syn_inh = n_syn_inh, g_syn_inh = g_syn_inh, freq_used = freq_used, K_mat_old = K_mat_old, seed = 311) freq_used, amp_vec, mag, pha, ca, voltage, current, t1 = results.get('freq_used'), results.get('amp'), results.get('mag'), results.get('pha'), results.get('ca'), results.get('voltage'), results.get('current'), results.get('t1') freq_times, spike_freq, fmean, method_interpol, SNR, VAF, Qual = results.get('freq_times'), results.get('spike_freq'), results.get('fmean'), results.get('method_interpol'), results.get('SNR'), results.get('VAF'), results.get('Qual') stim, resp_mat, stim_re_mat = results.get('stim'), results.get('resp_mat'), results.get('stim_re_mat') if pop.id == 0: plt.figure('Reconstruct') axR0 = plt.subplot(4,1,1) axR1 = plt.subplot(4,1,2) axR2 = plt.subplot(4,1,3) axR3 = plt.subplot(4,1,4) axR0.plot(np.arange(len(stim))*pop.dt, resp_mat[0,:]) axR0.axis(xmin=0.9, xmax=1) #axR0.plot(t1, voltage[0]) axR1.plot(np.arange(len(stim))*pop.dt, stim, 'b') axR1.axis(xmin=0.9, xmax=1) axR2.plot(np.arange(len(stim))*pop.dt, stim_re_mat[0,:], 'r') axR2.axis(xmin=0.9, xmax=1) axR3.plot(tk, K_mat_old[0]) plt.savefig("./figs/dump/Reconstruct.pdf", dpi = 300, transparent=True) # save it pop = None plt.show() if "timeconst" in do: from lmfit import minimize, Parameters # SET DEFAULT VALUES FOR THIS PLOT fig_size = [11.7, 8.3] params = {'backend': 'ps', 'axes.labelsize': 9, 'axes.linewidth' : 0.5, 'title.fontsize': 8, 'text.fontsize': 9, 'legend.borderpad': 0.2, 'legend.fontsize': 8, 'legend.linewidth': 0.1, 'legend.loc': 'best', # 'lower right' 'legend.ncol': 4, 'xtick.labelsize': 8, 'ytick.labelsize': 8, 'text.usetex': False, 'figure.figsize': fig_size} rcParams.update(params) dt = 0.025*ms prefix = "timeconst" pickle_prefix = "Population.py_" + prefix stimtype = "inh_50ms_20ms" if stimtype == "ex_20ms": trun = 2.9 tstart = 1.8 tstop = 2.7 celltype = ["IfCell"] cell_exe = ["cell = IfCell(C = 0.0001*uF, R = 200*MOhm)"] N = [5000] pop = Population(celltype = celltype, cell_exe = cell_exe, N = N, temperature = 0, do_run = do_run, pickle_prefix = pickle_prefix, dt = dt) pop.method_interpol = np.array(["bin", "syn"]) pop.method_interpol = np.array(["bin"]) modulation_vec = pop.set_PulseStim(start_time=[100*ms], dur=[3000*ms], steadyf=[100*Hz], pulsef=[150*Hz], pulse_start=[2000*ms], pulse_len=[500*ms], weight0=[1*nS], tau01=[0*ms], tau02=[20*ms], weight1=[0*nS], tau11=[0*ms], tau12=[1*ms]) params = Parameters() params.add('amp', value=0.1) params.add('shift', value=10) params.add('tau1', value=1, vary=False) # alpha! params.add('tau2', value=20*ms) if stimtype == "ex_gr": trun = 6.9 tstart = 4.8 tstop = 6.5 cellimport = ["from GRANULE_Cell import Grc"] celltype = ["Grc"] cell_exe = ["cell = Grc(np.array([0.,0.,0.]))"] N = [4096*10] pop = Population(cellimport = cellimport, celltype = celltype, cell_exe = cell_exe, N = N, temperature = 37, do_run = do_run, pickle_prefix = pickle_prefix, dt = dt) pop.method_interpol = np.array(["bin", "syn"]) pop.method_interpol = np.array(["bin"]) modulation_vec = pop.set_PulseStim(start_time=[100*ms], dur=[7000*ms], steadyf=[20*Hz], pulsef=[30*Hz], pulse_start=[5000*ms], pulse_len=[500*ms]) params = Parameters() params.add('amp', value=0.1) params.add('shift', value=10) params.add('tau1', value=1, vary=False) # alpha! params.add('tau2', value=20*ms) if stimtype == "inh_50ms_20ms": trun = 2.9 tstart = 1.8 tstop = 2.7 celltype = ["IfCell", "IfCell"] cell_exe = ["cell = IfCell()", "cell = IfCell()"] N = [10000,10000] pop = Population(celltype = celltype, cell_exe = cell_exe, N = N, temperature = 0, do_run = do_run, pickle_prefix = pickle_prefix, dt = dt) pop.method_interpol = np.array(["bin", "syn"]) pop.method_interpol = np.array(["bin"]) modulation_vec = pop.set_PulseStim(start_time=[100*ms,100*ms], dur=[3000*ms,3000*ms], steadyf=[100*Hz,50*Hz], pulsef=[100*Hz,80*Hz], pulse_start=[2000*ms,2000*ms], pulse_len=[500*ms,500*ms], weight0=[1*nS,1*nS], tau01=[1*ms,1*ms], tau02=[20*ms,20*ms], weight1=[0,0], tau11=[0*ms,0*ms], tau12=[1*ms,1*ms]) pop.connect_cells(conntype='inh', weight=0.001, tau=50) params = Parameters() params.add('amp', value=-0.1) params.add('shift', value=10) params.add('tau1', value=1, vary=False) # alpha! params.add('tau2', value=20*ms) if stimtype == "inh_gr": trun = 9.9 tstart = 4.8 tstop = 8 cellimport = ["from GRANULE_Cell import Grc", "from templates.golgi.Golgi_template import Goc"] celltype = ["Grc","Goc_noloop"] cell_exe = ["cell = Grc(np.array([0.,0.,0.]))","cell = Goc(np.array([0.,0.,0.]))"] N = [100,4] #N = [4096, 27] #N = [4096*5, 27*5] pop = Population(cellimport = cellimport, celltype = celltype, cell_exe = cell_exe, N = N, temperature = 37, do_run = do_run, pickle_prefix = pickle_prefix, dt = dt) pop.method_interpol = np.array(["bin", "syn"]) pop.method_interpol = np.array(["bin"]) modulation_vec = pop.set_PulseStim(start_time=[100*ms,100*ms], dur=[9800*ms,9800*ms], steadyf=[60*Hz,10*Hz], pulsef=[60*Hz,22*Hz], pulse_start=[5000*ms,5000*ms], pulse_len=[1500*ms,1500*ms]) pop.connect_cells(conntype='inh_gr', weight = 0.3) params = Parameters() params.add('amp', value=-0.1) params.add('shift', value=10) params.add('tau1', value=1, vary=False) # alpha! params.add('tau2', value=20*ms) if stimtype == "inh_50ms_curr": trun = 2.9 tstart = 1.8 tstop = 2.8 celltype = ["IfCell", "IfCell"] cell_exe = ["cell = IfCell()", "cell = IfCell()"] N = [1000,1000] give_freq = True istart = 0 istop = 0.2 di = 0.01 ihold = [100, 50] ihold_sigma = [0.01, 0.01] # relative sigma pop = Population(celltype = celltype, cell_exe = cell_exe, N = N, temperature = 0, ihold = ihold, ihold_sigma = ihold_sigma, give_freq = give_freq, do_run = do_run, pickle_prefix = pickle_prefix, istart = istart, istop = istop, di = di, dt = dt) pop.method_interpol = np.array(["bin", "syn"]) pop.method_interpol = np.array(["bin"]) tstep = 2 tdur = 0.5 istep = [100,100] current1 = np.concatenate(([ihold[1]*np.ones(round((tstep)/pop.dt)), istep[1]*np.ones(round(tdur/pop.dt)),ihold[1]*np.ones(round((trun-tstep-tdur)/pop.dt)) ])) pop.set_IStim() pop.set_IStep(istep = istep, istep_sigma = [0.01,0.01], tstep = tstep, tdur = tdur) pop.connect_cells(conntype='inh', weight=0.0003, tau=50) pop.fluct_s = [0.02,0.05] pop.connect_fluct() params = Parameters() params.add('amp', value=-0.1) params.add('shift', value=10) params.add('tau1', value=1, vary=False) # alpha! params.add('tau2', value=20*ms) if stimtype == "inh_gr_curr": trun = 9.9 tstart = 4.8 tstop = 8 cellimport = ["from GRANULE_Cell import Grc", "from templates.golgi.Golgi_template import Goc"] celltype = ["Grc","Goc_noloop"] cell_exe = ["cell = Grc(np.array([0.,0.,0.]))","cell = Goc(np.array([0.,0.,0.]))"] N = [100,4] N = [4096, 27] N = [4096*10, 27*10] give_freq = True # GRC #istart = 0 #istop = 0.1 #di = 0.01 #GOC istart = 0 istop = 0.5 di = 0.02 ihold = [100, 10] ihold_sigma = [0, 0] # relative sigma pop = Population(cellimport = cellimport, celltype = celltype, cell_exe = cell_exe, N = N, temperature = 37, ihold = ihold, ihold_sigma = ihold_sigma, give_freq = give_freq, do_run = do_run, pickle_prefix = pickle_prefix, istart = istart, istop = istop, di = di, dt = dt) pop.method_interpol = np.array(["bin", "syn"]) pop.method_interpol = np.array(["bin"]) tstep = 5 tdur = 2 istep = [100,50] current1 = np.concatenate(([ihold[1]*np.ones(round((tstep)/pop.dt)), istep[1]*np.ones(round(tdur/pop.dt)),ihold[1]*np.ones(round((trun-tstep-tdur)/pop.dt)) ])) pop.set_IStim() pop.set_IStep(istep = istep, istep_sigma = [0,0], tstep = tstep, tdur = tdur) pop.connect_cells(conntype='inh_gr', weight = 0.4) pop.fluct_s = [0.05,2] pop.connect_fluct() params = Parameters() params.add('amp', value=-0.1) params.add('shift', value=10) params.add('tau1', value=1, vary=False) # alpha! params.add('tau2', value=20*ms) pop.run_steps(trun) self.no_fmean = True results = pop.get() time, voltage, current, fmean, gsyn = results.get('time'), results.get('voltage'), results.get('current'), results.get('fmean'), results.get('gsyn') freq_times, spike_freq, t_all_vec_vec, id_all_vec_vec, gsyns = results.get('freq_times'), results.get('spike_freq'), results.get('t_all_vec_vec'), results.get('id_all_vec_vec'), results.get('gsyns') if pop.id == 0: bin_width = 1*ms freq_times = arange(0, time[-1], bin_width) [num_spikes, _] = neuronpy.util.spiketrain.get_histogram(t_all_vec_vec[0], bins = freq_times) spike_freq = np.concatenate((zeros(1),num_spikes)) / bin_width / N[0] if "inh" in stimtype: # generate input current, to complicated to get it out if "curr" in stimtype: time1 = np.arange(0, trun, pop.dt) r_mod = interp(freq_times, time1, current1, left=0, right=0) [num_spikes, _] = neuronpy.util.spiketrain.get_histogram(t_all_vec_vec[1], bins = freq_times) spike_freq1 = np.concatenate((zeros(1),num_spikes)) / bin_width / N[1] else: r_mod = interp(freq_times, modulation_vec[1][0], modulation_vec[1][1], left=0, right=0) [num_spikes, _] = neuronpy.util.spiketrain.get_histogram(t_all_vec_vec[1], bins = freq_times) spike_freq1 = np.concatenate((zeros(1),num_spikes)) / bin_width / N[1] elif "ex" in stimtype: r_mod = interp(freq_times, modulation_vec[0][0], modulation_vec[0][1], left=0, right=0) def modelfun(amp, shift, tau1, tau2, bin_width, r_mod): tau1 = tau1 tau2 = tau2 t1 = np.arange(0,10*tau2,bin_width) K = amp*syn_kernel(t1, tau1, tau2) K = np.concatenate((np.zeros(len(K)-1),K)) t2 = np.arange(0,len(K)*bin_width,bin_width) model = np.convolve(K, r_mod, mode='same') + shift return model def residual(params, r_mod, data=None, bin_width=1*ms, tstart=0, tstop=3): amp = params['amp'].value shift = params['shift'].value tau1 = params['tau1'].value tau2 = params['tau2'].value model = modelfun(amp, shift, tau1, tau2, bin_width, r_mod) return (data[int(tstart/bin_width):int(tstop/bin_width)]-model[int(tstart/bin_width):int(tstop/bin_width)]) result = minimize(residual, params, args=(r_mod, spike_freq, bin_width, tstart, tstop)) print "chisqr: ", result.chisqr print 'Best-Fit Values:' for name, par in params.items(): print ' %s = %.4f +/- %.4f ' % (name, par.value, par.stderr) amp = params['amp'].value shift = params['shift'].value tau1 = params['tau1'].value tau2 = params['tau2'].value model = modelfun(amp, shift, tau1, tau2, bin_width = bin_width, r_mod = r_mod) if "ex" in stimtype: plt.figure(0) plt.plot(freq_times[int(0.5/bin_width):int(trun/bin_width)], spike_freq[int(0.5/bin_width):int(trun/bin_width)], freq_times[int(0.5/bin_width):int(trun/bin_width)], model[int(0.5/bin_width):int(trun/bin_width)]) plt.figure(1) plt.plot(time, voltage[0]), freq_times, r_mod, time, current #plt.figure(100) #plt.plot(t_all_vec_vec[0],id_all_vec_vec[0],'k|') #plt.savefig("./figs/dump/taufit_" + str(stimtype) + "_spikes.pdf", dpi = 300) # save it else: plt.figure(0) plt.plot(freq_times[int(0.5/bin_width):int(trun/bin_width)], spike_freq1[int(0.5/bin_width):int(trun/bin_width)], freq_times[int(0.5/bin_width):int(trun/bin_width)], spike_freq[int(0.5/bin_width):int(trun/bin_width)], freq_times[int(0.5/bin_width):int(trun/bin_width)], model[int(0.5/bin_width):int(trun/bin_width)]) plt.figure(1) plt.plot(time, voltage[0], time, voltage[1], freq_times, r_mod, time, current) plt.figure(100) #plt.plot(t_all_vec_vec[0],id_all_vec_vec[0],'k|') #plt.plot(t_all_vec_vec[1],id_all_vec_vec[1],'b|') #plt.savefig("./figs/dump/taufit_" + str(stimtype) + "_spikes.pdf", dpi = 300) # save it plt.figure(0) plt.title('Fit: ' + str(stimtype) + ', tau1=' + str(tau1) + ' tau2=' + str(tau2)) plt.savefig("./figs/dump/taufit_" + str(stimtype) + "_rate.png", dpi = 300) # save it plt.figure(1) plt.savefig("./figs/dump/taufit_" + str(stimtype) + "_voltage.png", dpi = 300) # save it plt.show()
normal
{ "blob_id": "06ea697989f8f9ac539559690dcfd7aa73151e0f", "index": 2700, "step-1": "# -*- coding: utf-8 -*-\n\"\"\"\n@author: chris\n\nModified from THOMAS MCTAVISH (2010-11-04).\n\nmpiexec -f ~/machinefile -enable-x -n 96 python Population.py --noplot\n\"\"\"\n\nfrom __future__ import with_statement\nfrom __future__ import division\n\nimport sys\nsys.path.append('../NET/sheff/weasel/')\nsys.path.append('../NET/sheffprk/template/')\n\nimport os\n\n#use_pc = True\n\nimport sys\nargv = sys.argv\n\nif \"-python\" in argv:\n use_pc = True\nelse:\n use_pc = False \n\nif use_pc == True:\n \n from neuron import h\n pc = h.ParallelContext()\n rank = int(pc.id())\n nhost = pc.nhost()\n \nelse:\n \n from mpi4py import MPI\n from neuron import h\n rank = MPI.COMM_WORLD.rank\n\n#print sys.version\n\nif __name__ == '__main__':\n \n import argparse\n parser = argparse.ArgumentParser()\n parser.add_argument('-o', action='store', dest='opt')\n parser.add_argument('--noplot', action='store_true')\n parser.add_argument('--norun', action='store_true')\n parser.add_argument('--noconst', action='store_true')\n parser.add_argument('--noqual', action='store_true')\n pars, unknown = parser.parse_known_args(['-o','--noplot','--norun','--noconst','--noqual'])\n\nif __name__ == '__main__':\n \n import matplotlib\n if rank == 0: \n matplotlib.use('Tkagg', warn=True) \n else: \n matplotlib.use('Agg', warn=True) \n\nif __name__ == '__main__':\n \n do_plot = 1\n if results.noplot: # do not plot to windows\n matplotlib.use('Agg', warn=True)\n if rank == 0: print \"- No plotting\"\n do_plot = 0\n\nimport numpy as np\nimport matplotlib.pyplot as plt\nimport matplotlib.mlab as mlab\n\nimport random as rnd\nimport neuronpy.util.spiketrain\n\n#set_printoptions(threshold='nan')\n\nfrom Stimulation import *\nfrom Stimhelp import *\nfrom units import *\n\nfrom cells.PassiveCell import *\n\nfrom itertools import izip\n\ntry:\n import cPickle as pickle\nexcept:\n import pickle\n \nimport gzip\nimport h5py\n\nfrom templates.synapse.synapse import Synapse\nfrom synapsepfpurk import Synapse as Synapse2\nif use_pc is False: import mdp\n \nimport time as ttime\nfrom scipy.optimize import fmin, leastsq\n\nfrom NeuroTools import stgen, signals\n\nimport md5\n\n#from guppy import hpy\n#hpy = hpy()\n \n\nclass Population:\n \"\"\"\n A population of N cells\n \"\"\"\n \n def __init__(self, cellimport = [], celltype = None, N = [10], temperature = 6.3, cell_exe = 0, ihold = [0*nA], ihold_sigma = [0*nA], amp = [0*nA], amod = [None], anoise = [None], give_freq = False, do_run = 1, pickle_prefix = \"default\", istart = 0, istop = 0.07, di = 0.001, dt = 0.025*ms, use_mpi = True, use_pc = False):\n \"\"\"\n :param N: Number of cells.\n :param fluct_m: \n :param fluct_s: \n :param fluct_tau: \n \"\"\"\n\n self.use_pc = use_pc\n \n if type(celltype) is not list: celltype = [celltype] #convert to list if it is not given as one\n self.celltype = celltype\n \n if type(cell_exe) is not list: cell_exe = [cell_exe] #convert to list if it is not given as one\n self.cell_exe = cell_exe \n \n if cellimport is not None:\n if cellimport == []: \n for n in range(len(celltype)):\n cellimport.append(\"from cells.\" + self.celltype[n] + \" import *\")\n self.cellimport = cellimport\n \n if type(N) is not list: N = [N]\n self.N = N # Total number of cells in the net\n \n self.n_celltypes = len(self.N)\n self.a_celltype = [0] # celltype to analyse\n \n self.factor_celltype = [1]*self.n_celltypes\n \n self.set_init(ihold, ihold_sigma, amp, amod)\n \n self.CF_var = False\n\n self.inh_hold_sigma = [0]\n self.intr_hold_sigma = [0]\n \n #self.sigma_inh_hold = 0\n #self.sigma_ihold = 0\n \n \n if type(anoise) is not list: anoise = [anoise]*self.n_celltypes\n if len(anoise) < self.n_celltypes: anoise = [anoise[0]]*self.n_celltypes\n self.anoise = anoise # RUN self.set_i()\n \n self.give_freq = give_freq # RUN self.set_i()\n \n self.temperature = temperature\n \n self.gid_count = 0\n self.gidlist = [] # List of global identifiers on this host\n self.global_gidlist = [] # List of global identifiers\n self.cells = [] # Cells on this host\n \n self.t_vec = []\n self.id_vec = []\n self.rec_v = []\n \n for n in range(self.n_celltypes):\n if use_mpi:\n self.t_vec.append(h.Vector()) # np.array([0])\n self.id_vec.append(h.Vector()) # np.array([-1], dtype=int)\n else:\n self.t_vec.append([])\n \n self.rec_v.append(h.Vector())\n \n #self.t_vec = h.Vector(np.array([0])) # Spike time of all cells on this host\n #self.id_vec = h.Vector(np.array([-1])) # Ids of spike times on this host\n \n self.flucts = [] # Fluctuating inputs on this host\n self.fluct_m = 0 # [nA]\n self.fluct_s = [0] # [nA]\n self.fluct_tau = 0*ms # [ms]\n \n self.noises = [] # Random number generators on this host\n self.plays = [] # Play inputs on this host\n self.rec_is = []\n \n self.trains = []\n self.vecstim = []\n self.nc_vecstim = []\n self.spike_vec = [] \n \n self.syn_tau1 = 5*ms # Synapse of virtual target neuron\n self.syn_tau2 = 5*ms # Synapse of virtual target neuron\n self.tmax = 10*sec # maximum length of plot that should be plotted!!\n \n self.nc_delay = 0 #500*ms # only important if syn_output is used, not used currently\n self.dt = dt\n self.bin_width = dt\n self.jitter = 0*ms\n self.delta_t = 0*ms\n \n self.istart = istart\n self.istop = istop\n self.di = di\n \n self.ic_holds = []\n self.i_holdrs = []\n self.i_holds = []\n self.ic_starts = [] \n self.vc_starts = []\n self.ic_steps = []\n \n self.rec_step = []\n \n self.tvecs = []\n self.ivecs = [] \n\n self.noises = []\n \n self.record_syn = []\n self.id_all_vec_input = []\n self.t_all_vec_input = []\n \n if len(self.N) == len(self.cell_exe) == len(self.celltype):\n pass\n else:\n raise ValueError('N, cell_exe, celltype do NOT have equal length!')\n\n self.use_mpi = use_mpi\n self.use_pc = use_pc\n \n if self.use_mpi:\n \n #### Make a new ParallelContext object\n self.pc = h.ParallelContext()\n self.id = self.pc.id()\n self.nhost = int(self.pc.nhost())\n \n if self.use_pc == False:\n\n s = \"mpi4py thinks I am %d of %d on %s, NEURON thinks I am %d of %d\\n\"\n processorname = MPI.Get_processor_name()\n self.comm = MPI.COMM_WORLD\n \n if self.id == 0:\n print s % (self.comm.rank, self.comm.size, processorname, self.id, self.nhost)\n \n else:\n \n s = \"NEURON thinks I am %d of %d\\n\"\n if self.id == 0:\n print s % (self.id, self.nhost)\n \n self.barrier()\n \n else:\n self.id = 0\n self.nhost = 1\n \n self.do_run = do_run\n\n self.first_run = True\n \n self.set_numcells() # Build the portion of cells on this host. \n \n self.pickle_prefix = pickle_prefix\n \n # plot options\n self.ymax = 0 \n self.ax = None \n self.linewidth = 1.5\n self.color_vec = None \n self.alpha = 0.8 \n self.method_interpol = np.array(['bin','syn']) \n self.dumpsave = 1 \n self.called_syn_out_all = False\n self.no_fmean=False\n \n self.tau1_ex=[0*ms]*self.n_celltypes\n self.tau2_ex=[10*ms]*self.n_celltypes\n self.tau1_inh=[0*ms]*self.n_celltypes\n self.tau2_inh=[100*ms]*self.n_celltypes\n \n self.n_syn_ex = [0]*self.n_celltypes \n self.g_syn_ex = [1]*self.n_celltypes\n self.g_syn_ex_s = [0]*self.n_celltypes\n self.mglufac_ex = [1,0] \n \n self.noise_syn = [0]*self.n_celltypes \n self.noise_syn_tau = [0*ms]*self.n_celltypes\n self.noise_syn_inh = [0]*self.n_celltypes\n self.noise_syn_tau_inh = [0*ms]*self.n_celltypes\n \n self.noise_a = [1e9]*self.n_celltypes\n self.noise_a_inh = [1e9]*self.n_celltypes\n \n self.inh_hold = [0]*self.n_celltypes\n self.n_syn_inh = [0]*self.n_celltypes\n self.g_syn_inh = [1]*self.n_celltypes\n self.g_syn_inh_s = [0]*self.n_celltypes\n self.intr_hold = [0]*self.n_celltypes\n self.n_syn_intr = [0]*self.n_celltypes\n self.g_syn_intr = [0]*self.n_celltypes\n self.syn_max_mf = [1]*self.n_celltypes # possible mossy fibres per synapse\n self.syn_max_inh = [1]*self.n_celltypes # possible Golgi cells per synapse\n self.syn_max_intr = [1]*self.n_celltypes # possible Intruding cells per synapse\n \n \n self.seed = 50\n \n self.force_run = False\n self.give_psd = False\n self.do_if = True\n \n self.fluct_g_e0 = []\n self.fluct_g_i0 = []\n self.fluct_std_e = [] \n self.fluct_std_i = [] \n self.fluct_tau_e = [] \n self.fluct_tau_i = [] \n \n self.adjinh = True # adjust inhibition to get CFo instead of g_ex\n self.adjfinh = True # adjust frequnecy of inhibition to get CFo instead of g_ex\n \n self.syn_ex_dist = []\n self.syn_inh_dist = []\n \n self.stdp_used = False\n self.xmax = 20\n self.use_multisplit = False\n self.use_local_dt = False\n self.simstep = 0\n self.plot_train = True\n self.inh_delay = 0 # in ms\n self.plot_input = True\n self.delay_baseline = 8\n \n self.tstop_if = 1\n self.gsyn_in_fac = []\n \n self.netcons = [] # keeping track of!\n self.nclist = []\n \n self.ST_stims = []\n self.PF_stims = []\n \n self.data_dir = \"./data\"\n self.minimal_dir = False\n \n\n def set_init(self, ihold, ihold_sigma, amp, amod):\n # important for all methods:\n if type(ihold) is not list: ihold = [ihold] #convert to list if it is not given as one\n self.ihold = ihold\n self.ihold_orig = ihold\n \n if type(amp) is not list: amp = [amp]\n if len(amp) < self.n_celltypes: amp = [amp[0]]*self.n_celltypes\n self.amp = amp \n \n if type(amod) is not list: amod = [amod]*self.n_celltypes\n self.amod = amod # RUN self.set_i()\n \n self.ihold_sigma = ihold_sigma\n \n def barrier(self):\n if self.use_mpi:\n if self.use_pc == True:\n self.pc.barrier()\n else:\n self.comm.Barrier()\n \n def broadcast(self, vec, root = 0, fast = False):\n if self.use_mpi: \n if self.use_pc:\n \n if fast:\n hvec = h.Vector(vec)\n v = self.pc.broadcast(hvec,root)\n vec = np.array(hvec)\n else:\n \n sendlist = [None]*self.nhost\n if self.id == root:\n for i in range(self.nhost):\n sendlist[i] = vec \n getlist = self.pc.py_alltoall(sendlist)\n vec = getlist[root]\n \n else:\n #vec = np.array(vec, dtype=np.float64)\n #self.comm.Bcast([vec, MPI.DOUBLE])\n vec = self.comm.bcast(vec, root=0)\n\n return vec \n \n def set_numcells(self, N = []):\n \"\"\"\n Create, layout, and connect N cells.\n \"\"\"\n self.set_gids(N)\n self.create_cells()\n\n #self.syn_output() # generate synaptic \"output\" in neuron\n #self.connect_cells()\n \n\n def set_gids(self, N = []):\n \"\"\"Set the gidlist on this host.\n Round-robin counting. Each host as an id from 0 to pc.nhost()-1.\n Example:\n if N = 5 cells and nhost() = 3\n node id() = 0 will get cells [0, 3]\n node id() = 1 will get cells [1, 4]\n node id() = 2 will get cells [2] \n \"\"\"\n \n self.gidlist = [] \n \n if N == []:\n N = self.N\n \n # borders where another celltype begins\n self.global_gidlist = []\n self.n_borders = [0]\n for l in range(1,self.n_celltypes+1):\n self.n_borders.append(sum(N[0:l]))\n self.global_gidlist.append(range(self.n_borders[-2], self.n_borders[-1]))\n\n for n in range(self.n_celltypes): # create list in list \n self.gidlist.append([]) \n \n for i in range(int(self.id), sum(N), int(self.nhost)): # loop over all cells\n \n n = np.where((np.array(self.n_borders)-i)>0)[0][0]-1 # find out what cell type this is\n self.gidlist[n].append(i) # put in specific gidlist for that celltype\n \n self.gid_count = self.gid_count + sum(N)\n \n if self.id == 0: print \"nodeid:\" , self.id , \", gidlist:\" , self.gidlist , \", total gids:\" , len(self.global_gidlist) , \", sum(N):\" , sum(N) # check gids of node\n \n \n def del_cells(self):\n if self.cells != []: \n for n in range(self.n_celltypes): \n for m in self.cells[n]:\n print \"deleting cell\", m\n del m \n del self.cells\n self.cells = [] \n if self.use_mpi: self.pc.gid_clear() \n\n\n def create_cells(self):\n \"\"\"\n Create cell objects on this host.\n \"\"\"\n if self.do_run:\n \n self.del_cells()\n \n if self.id == 0: print \"creating cells\"\n \n for n in range(self.n_celltypes): \n self.cells.append([]) # create list in list \n \n #print self.cellimport[n]\n exec self.cellimport[n]\n \n #print self.gidlist\n for i in self.gidlist[n]:\n \n #if \"sigma\" not in self.cell_exe[n]:\n # exec self.cell_exe[n]\n # cell.gid = i # tell cell it's gid!\n # print i\n #else:\n \n if (self.celltype[n] == \"IfCell\") or (self.celltype[n] == \"Grc\"):\n \n # add gid to cell and execute!\n if self.cell_exe[n][-2] == \"(\":\n exec self.cell_exe[n][0:-1] + \"gid=\" + str(i) + \")\"\n else:\n exec self.cell_exe[n][0:-1] + \", gid=\" + str(i) + \")\"\n \n else:\n exec self.cell_exe[n] \n cell.gid = i\n \n self.cells[n].append(cell) # add to (local) list\n \n if self.use_mpi:\n #### Tell this host it has this gid\n #### gids can be any integer, they just need to be unique.\n #### In this simple case, we set the gid to i.\n self.pc.set_gid2node(i, int(self.id))\n self.pc.cell(i, cell.nc_spike) # Associate the cell with this host and gid\n \n ## NOT NECESSARY ANYMORE ##\n #### Means to tell the ParallelContext that this cell is a source.\n #nc = cell.connect_target(None)\n #self.ncs[n].append(nc) \n \n #### Record spikes of this cell\n self.pc.spike_record(i, self.t_vec[n], self.id_vec[n])\n \n #print n, self.cells[n][-1].nc_spike.thresh\n else:\n \n self.t_vec[n].append(h.Vector())\n cell.nc_spike.record(self.t_vec[n][-1]) \n \n\n\n def connect_cells(self, conntype=[], stdp=[], tend=1e9):\n \"\"\"\n Connect cells as specified.\n \"\"\"\n \n if self.do_run:\n \n stdp = stdp[:]\n conntype = conntype[:]\n \n if len(stdp) == 0:\n for i in conntype:\n stdp.append({'wmax':0, 'taupre':0, 'taupost':0, 'apre':0, 'apost':0}) \n else:\n self.stdp_used = True\n \n for i, conn in enumerate(conntype): \n \n typ = conn['type']\n conv = conn['conv']\n src = conn['src']\n tgt = conn['tgt']\n w0 = conn['w']\n var = conn['var']\n tau1 = conn['tau1']\n tau2 = conn['tau2']\n \n if 'mgr2' in conn.keys():\n mgr2 = conn['mgr2']\n mgr2_var = conn['mgr2_var']\n else:\n mgr2 = 0\n mgr2_var = 0\n \n if 'e_inh' in conn.keys(): \n e_inh = conn['e_inh']\n else:\n e_inh = -65\n \n if 'e_ex' in conn.keys(): \n e_ex = conn['e_ex']\n else:\n e_ex = 0\n \n wmax = stdp[i]['wmax']\n taupre = stdp[i]['taupre']\n taupost = stdp[i]['taupost']\n apre = stdp[i]['apre']\n apost = stdp[i]['apost']\n \n # Connect conv cells of celltype src to every cell of celltype tgt\n for ni, i in enumerate(self.cells[tgt]):\n \n rnd.seed(i.gid*10*self.seed)\n \n if conv >= len(self.global_gidlist[src]):\n gids = self.global_gidlist[src]\n if self.id == 0: print \"more or equal conv to len(self.global_gidlist[src])\"\n else:\n gids = rnd.sample(self.global_gidlist[src],conv) \n \n if self.id == 0: print conn['type'], \":\", ni, \":\", gids[0], \"\\n\"\n \n for ng, g in enumerate(gids):\n \n np.random.seed(g*12) \n #np.random.seed(int(g%10+1)*12) \n \n if len(shape(w0))>0: # array is given\n print \"w array is given\"\n \n if len(w0[ng]) == self.N[0]:\n w = w0[ng][ni]\n \n elif (var > 0) and (w0>0):\n w = np.random.normal(w0, w0*var, 1).clip(min=0)\n else:\n w = w0\n \n if (mgr2_var > 0) and (mgr2>0):\n mg = np.random.normal(mgr2, mgr2*mgr2_var, 1).clip(min=0)\n else:\n mg = mgr2\n \n \n #print conn['type'], \":\", i.gid, \":\", g, \", w:\", w, \"\\n\"\n \n if self.celltype[tgt] == 'IfCell':\n \n if typ == 'gogr':\n \n i.whatami = \"grc\"\n i.synlist_inh.append(Synapse('goc', i, i.soma, nrel=0, record_all=0, weight_gmax=w))\n i0 = int(len(i.synlist_inh)-1)\n \n i.nc_inh.append(self.pc.gid_connect(g, i.synlist_inh[i0].input))\n i.nc_inh[-1].delay = 1\n i.nc_inh[-1].weight[0] = 1\n \n if typ == 'grgo':\n \n i.whatami = \"goc\"\n i.synlist.append(Synapse('grc', i, i.soma, syntype = 'D', nrel=0, record_all=0, weight_gmax=w))\n e0 = int(len(i.synlist)-1)\n \n i.nc.append(self.pc.gid_connect(g, i.synlist[e0].input))\n i.nc[-1].delay = 1\n i.nc[-1].weight[0] = 1\n \n if typ == 'grgom':\n \n i.whatami = \"goc\"\n i.synlist.append(Synapse('grc', i, i.soma, syntype = 'DM', nrel=0, record_all=0, weight_gmax=w, mglufac = mg))\n e0 = int(len(i.synlist)-1)\n \n i.nc.append(self.pc.gid_connect(g, i.synlist[e0].input))\n i.nc[-1].delay = 1\n i.nc[-1].weight[0] = 1\n \n \n if typ == 'e2inh':\n \n i.create_synapses(n_inh=1, tau1_inh=tau1, tau2_inh=tau2, e_inh=e_inh, w = w, wmax = wmax, taupre = taupre, taupost = taupost, apre = apre, apost = apost, tend=tend)\n i0 = len(i.synlist_inh)-1\n \n if self.use_mpi:\n if wmax == 0:\n i.pconnect_target(self.pc, source=g, target=i0, syntype='inh', weight=w, delay=1)\n else:\n i.pconnect_target(self.pc, source=g, target=i0, syntype='inh', weight=1, delay=1)\n \n else: \n if wmax == 0:\n i.nc_inh.append(self.cells[1][g-self.N[0]].connect_target(target=i.synlist_inh[i0], weight=w, delay=1))\n else:\n i.nc_inh.append(self.cells[1][g-self.N[0]].connect_target(target=i.synlist_inh[i0], weight=1, delay=1))\n \n if typ == 'e2ex':\n \n i.create_synapses(n_ex = 1, tau1 = tau1, tau2 = tau2, e_ex=e_ex, w = w, wmax = wmax, taupre = taupre, taupost = taupost, apre = apre, apost = apost, tend=tend)\n e0 = len(i.synlist)-1\n \n if self.use_mpi:\n if wmax == 0:\n i.pconnect_target(self.pc, source=g, target=e0, syntype='ex', weight=w, delay=1) \n else:\n i.pconnect_target(self.pc, source=g, target=e0, syntype='ex', weight=1, delay=1) \n \n else: \n if wmax == 0:\n i.nc.append(self.cells[0][g].connect_target(target=i.synlist[e0], weight=w, delay=1))\n else:\n i.nc.append(self.cells[0][g].connect_target(target=i.synlist[e0], weight=1, delay=1))\n \n else: # No IfCell\n \n if typ == 'gogr':\n i.createsyn(ngoc = 1, weight_gmax=w) # multiplication factor\n i0 = len(i.GOC_L)-1 # get number of current synapse!\n i.pconnect(self.pc,g,i0,'goc')\n \n if typ == 'grgo':\n i.createsyn(ngrc = 1, weight_gmax=w) # multiplication factor\n i0 = len(i.GRC_L)-1 # get number of current synapse!\n i.pconnect(self.pc,g,i0,'grc',conduction_speed=0,grc_positions=[1])\n \n if typ == 'grgom':\n #print w, mg\n i.createsyn(ngrcm = 1, weight_gmax=w, mglufac = mg) # multiplication factor\n i0 = len(i.GRC_L)-1 # get number of current synapse!\n i.pconnect(self.pc,g,i0,'grc',conduction_speed=0,grc_positions=[1])\n \n if typ == 'grstl':\n i.createsyn(ngrc = 1, weight_gmax=w) # multiplication factor\n i0 = len(i.GRC_L)-1 # get number of current synapse!\n i.pconnect(self.pc,g,i0,'grc',conduction_speed=0,grc_positions=[1])\n \n \n if 'e2' in typ:\n \n if 'inh' in typ:\n Erev = -65\n elif 'ex' in typ:\n Erev = 0\n \n if tau1 == 0:\n syn = h.ExpSyn(i.soma(0.5))\n syn.tau = tau2/ms\n else: \n if wmax == 0:\n syn = h.Exp2Syn(i.soma(0.5))\n syn.tau1 = tau1/ms\n syn.tau2 = tau2/ms\n \n else: # STDP\n syn = h.stdpE2S(i.soma(0.5))\n syn.tau1 = tau1/ms\n syn.tau2 = tau2/ms\n \n syn.on = 1\n syn.thresh = -20\n \n syn.wmax = wmax\n syn.w = w\n \n syn.taupre = taupre/ms\t\n syn.taupost = taupost/ms\n syn.apre = apre\n syn.apost = apost\n \n syn.e = Erev/mV\n \n if self.celltype[tgt] == 'Grc':\n \n i.GOC_L.append(syn)\n i0 = int(len(i.GOC_L)-1) # get number of current synapse!\n \n i.gocncpc.append(self.pc.gid_connect(g, i.GOC_L[i0]))\n i.gocncpc[-1].delay = 1\n \n if wmax == 0:\n i.gocncpc[-1].weight[0] = w\n else:\n i.gocncpc[-1].weight[0] = 1\n \n elif self.celltype[tgt] == 'Goc':\n \n i.GRC_L.append(syn)\n e0 = int(len(i.GRC_L)-1) # get number of current synapse!\n \n i.pfncpc.append(self.pc.gid_connect(g, i.GRC_L[e0]))\n i.pfncpc[-1].delay = 1\n i.pfncpc[-1].weight[0] = w\n \n if wmax == 0:\n i.pfncpc[-1].weight[0] = w\n else:\n i.pfncpc[-1].weight[0] = 1\n \n #self.rec_s1 = h.Vector()\n #self.rec_s1.record(self.cells[0][0].synlist_inh[0]._ref_g) \n #self.rec_s2 = h.Vector()\n #self.rec_s2.record(self.cells[1][0].synlist_inh[0]._ref_g) \n \n \n def syn_output(self):\n \"\"\"\n Connect cell n to target cell sum(self.N) + 100.\n \"\"\"\n \n if self.id == 0: # create target cell\n\n tgt_gid = self.gid_count\n self.gid_count = self.gid_count + 1 \n \n # Synaptic integrated response\n self.rec_g = h.Vector()\n self.passive_target = PassiveCell()\n if self.use_mpi: self.pc.set_gid2node(tgt_gid, 0) # Tell this host it has this gid\n \n syn = self.passive_target.create_synapses(tau1 = self.syn_tau1, tau2 = self.syn_tau2) # if tau1=tau2: alpha synapse!\n \n for i in range(self.n_borders[self.a_celltype[0]],self.n_borders[self.a_celltype[0]+1]): # take all cells, corresponding to self.a_celltype, not just the ones in self.gidlist:\n \n src_gid = i\n \n if self.use_mpi:\n nc = self.pc.gid_connect(src_gid, syn)\n nc.weight[0] = 1\n nc.delay = self.nc_delay/ms #0.05 # MUST be larger than dt!!!\n \n else:\n nc = self.cells[self.a_celltype[0]][src_gid].connect_target(target=syn, weight=1, delay=self.nc_delay/ms)\n \n self.nclist.append(nc) \n \n self.rec_g.record(syn._ref_g)\n \n \n def syn_out_all(self, tau1 = 1*ms, tau2 = 30*ms):\n \n if self.do_run:\n \n for n in range(self.n_celltypes): \n for i, gid in enumerate(self.gidlist[n]):\n \n self.cells[n][i].start_record(tau1 = tau1/ms, tau2 = tau2/ms)\n \n self.called_syn_out_all = True\n \n \n def get_i(self, a, n, do_plot = True):\n \n import md5\n m = md5.new()\n \n if \", sigma\" in self.cell_exe[n]: \n cell_exe_new = self.cell_exe[n].split(\", sigma\")[0] + \")\"\n else:\n cell_exe_new = self.cell_exe[n]\n \n m.update(cell_exe_new)\n filename = self.data_dir + '/if_' + self.celltype[n] + '_' + m.hexdigest() + '.p'\n \n #print filename\n \n if self.id == 0:\n is_there = os.path.isfile(filename)\n else:\n is_there = None\n \n is_there = self.broadcast(is_there)\n \n if (is_there is not True) or (self.force_run is True): # run i/f estimation\n \n if self.id == 0: print '- running i/f estimation for ', self.celltype[n], ' id: ' , m.hexdigest() \n exec self.cellimport[n]\n exec cell_exe_new\n sim = Stimulation(cell, temperature = self.temperature, use_multisplit = self.use_multisplit)\n sim.spikes_from_neuron = False\n sim.celltype = self.celltype[n]\n current_vector, freq_vector, freq_onset_vector = sim.get_if(istart = self.istart, istop = self.istop, di = self.di, tstop = self.tstop_if) \n \n sim = None\n cell = None\n \n if self.id == 0:\n if do_plot:\n plt.figure(99)\n plt.plot(current_vector, freq_vector, 'r*-')\n plt.plot(current_vector, freq_onset_vector, 'b*-')\n plt.savefig(\"./figs/dump/latest_if_\" + self.celltype[n] + \".pdf\", dpi = 300) # save it \n plt.clf()\n #plt.show()\n \n ifv = {'i':current_vector,'f':freq_vector}\n print ifv\n \n pickle.dump(ifv, gzip.GzipFile(filename, \"wb\" ))\n \n self.barrier()\n \n else:\n \n if self.id == 0: \n ifv = pickle.load(gzip.GzipFile(filename, \"rb\" ))\n #print ifv\n \n self.barrier()\n \n if self.id == 0:\n \n f = ifv.get('f') \n i = ifv.get('i')\n \n i = i[~isnan(f)]\n f = f[~isnan(f)]\n \n iin = if_extrap(a, f, i)\n \n else:\n \n iin = [0]\n \n iin = self.broadcast(iin, root=0, fast = True)\n self.barrier()\n \n return iin\n\n\n def set_i(self, ihold = [0]):\n \n ihold = list(ihold)\n self.ihold_orig = list(ihold)\n \n self.barrier() # wait for other nodes\n \n # Ihold given as frequency, convert to current\n \n if ((self.give_freq)): \n \n ihold0 = [[] for _ in range(self.n_celltypes)]\n \n for n in range(self.n_celltypes):\n a = np.array([ihold[n]])\n #print \"a:\", a\n iin = self.get_i(a, n)\n #print \"iin:\", iin\n ihold0[n] = iin[0]\n \n if self.id == 0: print '- ihold: ', ihold, 'Hz, => ihold: ', ihold0, 'nA' \n \n # Modulation depth given, not always applied to current!\n for n in range(self.n_celltypes):\n \n if self.amod[n] is not None:\n \n if self.give_freq:\n \n # Apply to amplitude:\n a = np.array([ihold[n]]) + self.amod[n]*np.array([ihold[n]])\n self.amp[n] = self.get_i(a, n) - ihold0[n]\n \n if self.id == 0:\n print '- amp: ihold: ', ihold[n], 'Hz , amod: ', self.amod[n], ', => amp: ', self.amp[n], 'nA (' #, self.get_i(a, n), ')'\n \n elif self.n_syn_ex[n] > 0:\n \n if self.id == 0:\n print '- amp: ihold: ', ihold[n], 'Hz , amod: ', self.amod[n], ', => amp will be set for each spike generator'\n\n else:\n \n self.amp[n] = self.amod[n] * ihold[n] \n \n if self.id == 0:\n print '- amp: ihold: ', ihold[n], 'nA , amod: ', self.amod[n], ', => amp: ', self.amp[n], 'nA'\n \n # Noise depth given, not always applied to current!\n if self.anoise[n] is not None:\n \n if (self.give_freq is True) or (self.n_syn_ex[n] > 0):\n \n # Apply to amplitude:\n a = np.array([ihold[n]]) + self.anoise[n]*np.array([ihold[n]])\n self.fluct_s[n] = ((self.get_i(a, n) - ihold0[n]))/2. # adjust with /2 so that noise = +-2*std\n \n if self.id == 0:\n print '- noise: ihold: ', ihold[n], 'Hz , anoise: ', self.anoise[n], ', => fluct_s: ', self.fluct_s[n], 'nA'\n \n else:\n \n self.fluct_s[n] = self.anoise[n] * ihold[n] \n \n if self.id == 0:\n print '- noise: ihold: ', ihold[n], 'nA , anoise: ', self.anoise[n], ', => fluct_s: ', self.fluct_s[n], 'nA'\n \n \n if self.give_freq is True: \n ihold = ihold0\n \n return ihold\n \n \n def calc_fmean(self, t_vec, t_startstop):\n \n #t_startstop[0] = 1\n #t_startstop[1] = 5\n \n f_cells_mean = 0\n f_cells_cv = np.nan\n f_cells_std = np.nan\n \n if len(t_vec) > 0: \n \n f_start_in = mlab.find(t_vec >= t_startstop[0]) # 1\n f_stop_in = mlab.find(t_vec <= t_startstop[1]) # 5\n \n if (len(f_start_in) > 0) & (len(f_stop_in) > 0):\n \n f_start = f_start_in[0] \n f_stop = f_stop_in[-1]+1 \n use_spikes = t_vec[f_start:f_stop]*1e3\n \n if len(use_spikes) > 1:\n s1 = signals.SpikeTrain(use_spikes)\n isi = s1.isi()\n f_cells_mean = s1.mean_rate() # use mean of single cells\n f_cells_cv = np.std(isi)/np.mean(isi)\n f_cells_std = np.std(isi)\n \n #f_start_in = mlab.find(t_vec >= 1) \n #f_stop_in = mlab.find(t_vec <= 2) \n \n #if (len(f_start_in) > 0) & (len(f_stop_in) > 0):\n \n # f_start = f_start_in[0] \n # f_stop = f_stop_in[-1]+1 \n # use_spikes = t_vec[f_start:f_stop]*1e3\n \n # if len(use_spikes) > 1:\n # s1 = signals.SpikeTrain(use_spikes)\n # isi = s1.isi()\n # f_cells_cv = np.std(isi)/np.mean(isi)\n \n return f_cells_mean, f_cells_cv, f_cells_std \n \n \n def get_fmean(self, t_all_vec_vecn, id_all_vec_vecn, t_startstop, gidlist, facborder = 3): # 1e9\n \n f_cells_mean = zeros(len(gidlist))\n f_cells_base = zeros(len(gidlist))\n f_cells_std = nans(len(gidlist))\n f_cells_cv = nans(len(gidlist))\n f_cells_gid = nans(len(gidlist))\n \n fbase = np.nan\n fmean = np.nan\n fmax = np.nan\n fmstd = np.nan\n fcvm = np.nan\n fstdm = np.nan\n \n f_cells_mean_all = []\n f_cells_base_all = []\n f_cells_cv_all = []\n f_cells_std_all = []\n \n gid_del = np.array([])\n \n if self.no_fmean == False:\n \n if self.id == 0: print \"- sorting for fmean\"\n\n for i, l in enumerate(gidlist):\n \n t_0_vec = t_all_vec_vecn[where(id_all_vec_vecn==l)]\n f_cells_mean[i], f_cells_cv[i], f_cells_std[i] = self.calc_fmean(t_0_vec, t_startstop)\n f_cells_base[i], _, _ = self.calc_fmean(t_0_vec, [self.delay_baseline-4,self.delay_baseline])\n f_cells_gid[i] = l\n \n if self.id == 0: print \"- gather fmean\" \n f_cells_mean_all = self.do_gather(f_cells_mean)\n f_cells_base_all = self.do_gather(f_cells_base)\n f_cells_std_all = self.do_gather(f_cells_std)\n f_cells_cv_all = self.do_gather(f_cells_cv)\n f_cells_gid_all = self.do_gather(f_cells_gid)\n\n if self.id == 0:\n \n #print f_cells_mean_all\n \n f_cells_mean_all = np.nan_to_num(f_cells_mean_all)\n fmean = mean(f_cells_mean_all) # compute mean of mean rate for all cells\n fmstd = std(f_cells_mean_all) \n fmax = max(f_cells_mean_all)\n \n f_cells_base_all = np.nan_to_num(f_cells_base_all)\n fbase = mean(f_cells_base_all) # compute mean of mean rate for all cells\n \n f_cells_cv_all = f_cells_cv_all[~np.isnan(f_cells_cv_all)]\n f_cells_std_all = f_cells_std_all[~np.isnan(f_cells_std_all)]\n fcvm = mean(f_cells_cv_all)\n fstdm = mean(f_cells_std_all)\n \n print \"- get_fmean, fmean: \",fmean, \"fmax: \",fmax, \"Hz\", \"fmstd: \",fmstd, \"Hz\", \"fcvm: \",fcvm, \"fstdm: \",fstdm, \"Hz\" ,\"fbase: \", fbase, \"Hz\"\n \n if facborder < 1e9:\n \n fborder = fmean + facborder*fmstd\n i = mlab.find(f_cells_mean_all > fborder)\n gid_del = f_cells_gid_all[i]\n \n # f_cells_mean_all[i] = 0\n # f_cells_cv_all[i] = np.nan\n # f_cells_std_all[i] = np.nan\n \n # fmean2 = mean(np.nan_to_num(f_cells_mean_all)) # compute mean of mean rate for all cells\n # fmstd2 = std(np.nan_to_num(f_cells_mean_all)) \n # fmax2 = max(np.nan_to_num(f_cells_mean_all))\n \n # fcvm2 = mean(f_cells_cv_all[~np.isnan(f_cells_cv_all)])\n # fstdm2 = mean(f_cells_std_all[~np.isnan(f_cells_std_all)])\n \n # print \"- after facborder: get_fmean, fmean: \",fmean2, \"fmax: \",fmax2, \"Hz\", \"fmstd: \",fmstd2, \"Hz\", \"fcvm: \",fcvm2, \"fstdm: \",fstdm2, \"Hz, gid_del: \", gid_del\n \n\n return fmean, fmax, fmstd, fcvm, fstdm, gid_del, f_cells_mean_all, f_cells_cv_all, f_cells_std_all, fbase, f_cells_base_all \n\n \n def connect_fluct(self):\n \"\"\"\n Create fluctuating input onto every cell.\n \"\"\"\n \n if self.do_run:\n \n for m in self.flucts:\n del m \n del self.flucts\n \n for m in self.noises:\n del m \n del self.noises\n \n self.flucts = []\n self.noises = []\n \n for n in range(self.n_celltypes):\n \n for i, gid in enumerate(self.gidlist[n]): # for every cell in the gidlist \n \n #h.mcell_ran4_init(gid)\n \n noiseRandObj = h.Random() # provides NOISE with random stream\n self.noises.append(noiseRandObj) # has to be set here not inside the nmodl function!! \n \n # print str(gid) + \": \" + str(noiseRandObj.normal(0,1))\n \n fluct = h.Ifluct2(self.cells[n][i].soma(0.5))\n fluct.m = self.fluct_m/nA # [nA]\n fluct.s = self.fluct_s[n]/nA # [nA]\n fluct.tau = self.fluct_tau/ms # [ms]\n self.flucts.append(fluct) # add to list \n self.flucts[-1].noiseFromRandom(self.noises[-1]) # connect random generator!\n \n self.noises[-1].MCellRan4(1, gid+1) # set lowindex to gid+1, set highindex to > 0 \n self.noises[-1].normal(0,1)\n \n \n def connect_gfluct(self, E_e=0, E_i=-65):\n \"\"\"\n Create fluctuating conductance input onto every cell.\n \"\"\"\n if self.do_run:\n \n for m in self.flucts:\n del m \n del self.flucts\n \n for m in self.noises:\n del m \n del self.noises\n \n self.flucts = []\n self.noises = []\n \n for n in range(self.n_celltypes):\n \n fluct_g_i0_n = self.fluct_g_i0[n]\n \n if type(fluct_g_i0_n) is not ndarray: fluct_g_i0_n = np.array([fluct_g_i0_n])\n \n if len(fluct_g_i0_n) == len(self.global_gidlist[n]):\n pass\n else:\n fluct_g_i0_n = np.ones(int(len(self.global_gidlist[n])))*fluct_g_i0_n[0]\n if self.id == 0: print \"- single value in fluct_g_i0_n\"\n \n #print fluct_g_i0_n\n \n for i, gid in enumerate(self.gidlist[n]): # for every cell in the gidlist \n \n #h.mcell_ran4_init(gid)\n \n noiseRandObj = h.Random() # provides NOISE with random stream\n self.noises.append(noiseRandObj) # has to be set here not inside the nmodl function!! \n \n # print str(gid) + \": \" + str(noiseRandObj.normal(0,1))\n \n fluct = h.Gfluct3(self.cells[n][i].soma(0.5))\n fluct.E_e = E_e/mV # [mV]\n fluct.E_i = E_i/mV # [mV]\n fluct.g_e0 = self.fluct_g_e0[n]/uS # [uS]\n fluct.g_i0 = fluct_g_i0_n[i]/uS # [uS]\n fluct.std_e = self.fluct_std_e[n]/uS # [uS] \n fluct.std_i = self.fluct_std_i[n]/uS # [uS] \n fluct.tau_e = self.fluct_tau_e/ms #tau_e/ms # [ms] \n fluct.tau_i = self.fluct_tau_i/ms #tau_i/ms # [ms]\n \n self.flucts.append(fluct) # add to list \n self.flucts[-1].noiseFromRandom(self.noises[-1]) # connect random generator!\n \n self.noises[-1].MCellRan4(1, gid+1) # set lowindex to gid+1, set highindex to > 0 \n self.noises[-1].normal(0,1)\n \n \n def connect_synfluct(self, PF_BG_rate=6, PF_BG_cv=1, STL_BG_rate=20, STL_BG_cv=1):\n \"\"\"\n Create fluctuating synaptic input onto every cell.\n \"\"\"\n \n if self.do_run:\n \n for m in self.ST_stims:\n del m \n del self.ST_stims\n \n for m in self.PF_stims:\n del m \n del self.PF_stims\n \n self.ST_stims = []\n self.PF_stims = []\n \n \n for n in range(self.n_celltypes):\n \n for i, gid in enumerate(self.gidlist[n]): # for every cell in the gidlist \n \n PF_syn_list = self.cells[n][i].createsyn_PF()\n \n for d in PF_syn_list:\n d.input.newnetstim.number = 1e9\n d.input.newnetstim.noise = PF_BG_cv\n d.input.newnetstim.interval = 1000.0 / PF_BG_rate\n d.input.newnetstim.start = 0\n \n self.PF_stims.append(PF_syn_list)\n \n ST_stim_list = self.cells[n][i].createsyn_ST(record_all=0)\n\n for d in ST_stim_list:\n d.newnetstim.number = 1e9\n d.newnetstim.noise = STL_BG_cv\n d.newnetstim.interval = 1000.0 / STL_BG_rate\n d.newnetstim.start = 0\n \n self.ST_stims.append(ST_stim_list)\n \n if self.id == 0: print \"- PF and ST stimulation added.\"\n \n \n\n def set_IStim(self, ihold = None, ihold_sigma = None, random_start = True, tstart_offset = 0):\n \"\"\"\n Add (random) ihold for each cell and offset!\n \"\"\"\n if self.do_run:\n \n # if not given, use the one in self\n if ihold == None:\n ihold = self.ihold\n if ihold_sigma == None:\n ihold_sigma = self.ihold_sigma\n \n if ihold[self.a_celltype[0]] != 0:\n ihold = self.set_i(ihold) \n \n for m in self.ic_holds:\n #m.destroy()\n del m \n del self.ic_holds\n \n for m in self.ic_starts:\n #m.destroy()\n del m \n del self.ic_starts\n \n for m in self.vc_starts:\n #m.destroy()\n del m \n del self.vc_starts\n \n self.ic_holds = []\n self.ic_starts = [] \n self.vc_starts = []\n self.i_holdrs = []\n self.i_holds = ihold\n \n for n in range(self.n_celltypes):\n self.i_holdrs.append([])\n \n for i, gid in enumerate(self.gidlist[n]): # for every cell in the gidlist \n \n np.random.seed(gid*20)\n \n tis = 1\n \n if random_start == True:\n \n # random start time\n tstart = np.random.uniform(tstart_offset+0, tstart_offset+0.5)\n #if self.id == 0: print \"tstart:\", tstart\n vc_start = h.SEClamp(self.cells[n][i].soma(0.5))\n vc_start.dur1 = tstart/ms\n vc_start.amp1 = -80\n self.vc_starts.append(vc_start)\n tis = 0\n \n else:\n \n tis = 0 \n \n \n if ihold_sigma[n] != 0:\n #print ihold_sigma[n], ihold[n]\n ihold_r = np.random.normal(ihold[n], ihold[n]*ihold_sigma[n], 1).clip(min=0)\n #ihold_r = np.random.uniform(ihold[n]*ihold_sigma[n], ihold[n])\n \n elif self.CF_var is not False: # CF gets not adapted to current but final frequnecy!\n \n r_ok = False\n while r_ok == False:\n r_temp = np.random.normal(self.ihold_orig[n], self.CF_var[n][1], 1) \n if (r_temp <= self.CF_var[n][2]) and (r_temp >= self.CF_var[n][0]): # check borders!\n r_ok = True\n \n #print r_temp \n ihold_r = self.get_i(r_temp, n)\n #print ihold_r\n #if self.id == 0: \n print \"set self.CF_var\", r_temp, ihold_r\n \n else: # same ihold for all cells!\n ihold_r = ihold[n]\n \n self.i_holdrs[n].append(ihold_r)\n \n if ihold_r != 0:\n \n if hasattr(self.cells[n][i], 'input_vec'):\n \n ic_hold = []\n for vec in self.cells[n][i].input_vec:\n for inv in vec:\n #print ihold_r\n ic_hold.append(h.IClamp(inv(0.5))) \n ic_hold[-1].amp = self.cells[n][i].ifac * ihold_r / self.cells[n][i].n_input_spiny / nA\n ic_hold[-1].delay = tis/ms\n ic_hold[-1].dur = 1e9\n \n else: \n\n # holding current\n ic_hold = h.IClamp(self.cells[n][i].soma(0.5))\n ic_hold.delay = tis/ms\n ic_hold.dur = 1e9\n ic_hold.amp = ihold_r/nA\n \n self.ic_holds.append(ic_hold)\n \n if self.id == 0: print \"set_IStim finished. ihold: \", ihold, \", ihold_sigma: \", ihold_sigma\n \n \n def set_IStep(self, istep = [0], istep_sigma = [0], tstep = 5, tdur = 1e6, give_freq = True):\n \"\"\"\n Add istep for each cell and offset!\n \"\"\"\n if self.do_run:\n #for m in self.ic_steps:\n # m.destroy()\n # del m \n #del self.ic_steps\n \n #self.ic_steps = []\n \n istep = list(istep)\n neg = False\n \n for n in range(self.n_celltypes):\n \n if istep[n] < 0: \n neg = True\n istep[n] = abs(istep[n]) # make positive again\n \n if istep[n] != 0:\n if give_freq is True:\n a = np.array([istep[n]])\n iin = self.get_i(a, n)[0]\n if self.id == 0: print \"celltype: \", n, \" istep: \", istep[n], \"Hz => \", iin, \" nA\"\n istep[n] = iin \n \n for n in range(self.n_celltypes):\n \n for i, gid in enumerate(self.gidlist[n]): # for every cell in the gidlist \n \n np.random.seed(gid*30)\n \n if self.i_holdrs == []:\n \n if istep_sigma[n] != 0:\n istep_r = np.random.normal(istep[n], istep[n]*istep_sigma[n], 1).clip(min=0)\n else: # same ihold for all cells!\n istep_r = istep[n]\n \n else: # ihold has been set!\n \n if istep_sigma[n] != 0:\n istep_r = np.random.normal(istep[n]-self.i_holds[n], (istep[n]-self.i_holds[n])*istep_sigma[n], 1).clip(min=0) # delta now! put on top of hold!\n else: # same ihold for all cells!\n istep_r = istep[n]-self.i_holds[n] # delta now! put on top of hold!\n \n if neg:\n istep_r = -1*istep_r\n \n if istep[n] == 0:\n istep_r = -1*self.i_holdrs[n][i] \n \n #print 'is:' + str(istep_r) + 'was:' + str(self.i_holdrs[n][i])\n \n if istep_r != 0: \n # step current\n ic_step = h.IClamp(self.cells[n][i].soma(0.5))\n ic_step.delay = tstep/ms\n ic_step.dur = tdur/ms\n ic_step.amp = istep_r/nA\n self.ic_steps.append(ic_step)\n \n \n if self.id == 0: print \"set_IStep finished. istep: \", istep, \", istep_sigma: \", istep_sigma\n \n\n def set_IPlay(self, stimulus, t):\n \"\"\"\n Initializes values for current clamp to play a signal. \n \"\"\"\n \n if self.do_run:\n \n for m in self.tvecs:\n #m.destroy()\n del m \n del self.tvecs\n \n for m in self.ivecs:\n #m.destroy()\n del m \n del self.ivecs\n \n for m in self.plays:\n #m.destroy()\n del m \n del self.plays\n \n self.tvecs = []\n self.ivecs = []\n self.plays = []\n \n for i, gid in enumerate(self.gidlist[self.a_celltype[0]]): # for every cell in the gidlist \n \n tvec = h.Vector(t/ms)\n ivec = h.Vector(stimulus/nA)\n \n play = h.IClamp(self.cells[self.a_celltype[0]][i].soma(0.5))\n play.delay = 0\n play.dur = 1e9\n \n ivec.play(play._ref_amp, tvec, 1)\n \n self.plays.append(play) # add to list\n self.tvecs.append(tvec) # add to list\n self.ivecs.append(ivec) # add to list \n \n if self.id == 0: print \"set_IPlay finished.\"\n \n \n def set_IPlay2(self, stimulus, t):\n \"\"\"\n Initializes values for current clamp to play a signal. \n \"\"\"\n \n if self.do_run:\n \n for m in self.tvecs:\n #m.destroy()\n del m \n del self.tvecs\n \n for m in self.ivecs:\n #m.destroy()\n del m \n del self.ivecs\n \n for m in self.plays:\n #m.destroy()\n del m \n del self.plays\n \n self.tvecs = []\n self.ivecs = []\n self.plays = []\n \n for j in self.a_celltype:\n \n tvec = h.Vector(t/ms)\n ivec = []\n for s in stimulus:\n if hasattr(self.cells[j][0], 'input_vec'):\n ivec.append(h.Vector(self.factor_celltype[j] * self.cells[j][0].ifac * s / self.cells[j][0].n_input_spiny / nA))\n else:\n ivec.append(h.Vector(self.factor_celltype[j]*s/nA))\n\n self.tvecs.append(tvec) # add to list\n self.ivecs.append(ivec) # add to list \n \n for i, gid in enumerate(self.gidlist[j]): # for every cell in the gidlist \n\n if hasattr(self.cells[j][i], 'input_vec'):\n \n play = []\n for iloc, vec in enumerate(self.cells[j][i].input_vec):\n isig = self.syn_ex_dist[j][iloc]-1\n #print isig\n for inv in vec:\n play.append(h.IClamp(inv(0.5))) \n play[-1].delay = 0\n play[-1].dur = 1e9\n ivec[isig].play(play[-1]._ref_amp, tvec, 1)\n \n else: \n #fluctuating current\n play = h.IClamp(self.cells[j][i].soma(0.5))\n play.delay = 0\n play.dur = 1e9\n ivec[0].play(play._ref_amp, tvec, 1)\n \n self.plays.append(play) # add to list\n\n \n if self.id == 0: print \"set_IPlay2 finished.\"\n \n \n def set_IPlay3(self, stimulus, t, amp = None):\n \"\"\"\n Initializes values for current clamp to play a signal. \n \"\"\"\n \n if self.do_run:\n \n for m in self.tvecs:\n #m.destroy()\n del m \n del self.tvecs\n \n for m in self.ivecs:\n #m.destroy()\n del m \n del self.ivecs\n \n for m in self.plays:\n #m.destroy()\n del m \n del self.plays\n \n self.tvecs = []\n self.ivecs = []\n self.plays = []\n \n for j in self.a_celltype:\n \n if amp is None:\n amp0 = 0\n else:\n amp0 = amp[j]\n \n tvec = h.Vector(t/ms)\n self.tvecs.append(tvec) # add to list\n \n for i, gid in enumerate(self.gidlist[j]): # for every cell in the gidlist \n \n if isinstance(self.factor_celltype[j], ( int, long ) ): \n ivec = h.Vector(self.factor_celltype[j]*(stimulus*amp0)/nA) \n else:\n np.random.seed(gid*40)\n rnd.seed(gid*40)\n if self.factor_celltype[j][1] > 0:\n f = np.random.normal(self.factor_celltype[j][0], self.factor_celltype[j][1], 1).clip(min=0)\n else:\n f = self.factor_celltype[j][0] \n if self.factor_celltype[j][2] > 0: # add inverted input with 50% probability, in future versions this will indicate the propability for -1 and 1\n f = rnd.sample([-1,1],1)[0] * f\n if self.id == 0: print \"- inverted input with 50% probability:\", f \n if self.id == 0: print \"- randomize play stimulus height\" \n ivec = h.Vector(f*(stimulus*amp0)/nA)\n \n self.ivecs.append(ivec) # add to list \n \n #fluctuating current\n play = h.IClamp(self.cells[j][i].soma(0.5))\n play.delay = 0\n play.dur = 1e9\n ivec.play(play._ref_amp, tvec, 1)\n \n self.plays.append(play) # add to list\n \n if self.id == 0: print \"set_IPlay3 finished.\"\n \n \n def set_PulseStim(self, start_time=[100*ms], dur=[1500*ms], steadyf=[100*Hz], pulsef=[150*Hz], pulse_start=[500*ms], pulse_len=[500*ms], weight0=1, tau01=[1*ms], tau02=[20*ms], weight1=1, tau11=[0*ms], tau12=[1*ms], noise = 1):\n \n if self.do_run:\n \n modulation_vec = []\n \n for n in range(self.n_celltypes):\n \n t_input = np.arange(0, dur[n], self.dt) # create stimulus time vector has to be in ms!! \n mod = np.concatenate(([np.zeros(round(start_time[n]/self.dt)), steadyf[n]*np.ones(round((pulse_start[n]-start_time[n])/self.dt)), pulsef[n]*np.ones(round(pulse_len[n]/self.dt)),steadyf[n]*np.ones(round((dur[n]-pulse_start[n]-pulse_len[n])/self.dt)) ])) \n modulation = (t_input, mod)\n \n #print shape(t_input), shape(mod), shape(modulation)\n \n for i, gid in enumerate(self.gidlist[n]): # for every cell in the gidlist \n \n if dur[n] > 0:\n \n if self.celltype[n] == 'Grc':\n \n nmf = 4\n \n for j in range(nmf):\n \n self.cells[n][i].createsyn(nmf = 1, ngoc = 0, weight = weight0) \n e0 = len(self.cells[n][i].MF_L)-1 # get number of current synapse!\n \n pulse_gid = int(self.gid_count + gid*1000 + j)\n \n train = mod_spike_train(modulation, noise = noise, seed = pulse_gid)\n \n self.setup_Play_train(train = train, input_gid = pulse_gid)\n \n self.cells[n][i].pconnect(self.pc,pulse_gid,int(e0),'mf') \n \n elif self.celltype[n] == 'Goc':\n \n nmf = 53\n \n for j in range(nmf):\n \n self.cells[n][i].createsyn(nmf = 1, weight = weight1)\n e0 = len(self.cells[n][i].MF_L)-1 # get number of current synapse!\n \n pulse_gid = int(self.gid_count + gid*1000 + j)\n \n train = mod_spike_train(modulation, noise = noise, seed = pulse_gid)\n \n self.setup_Play_train(train = train, input_gid = pulse_gid)\n \n self.cells[n][i].pconnect(self.pc,pulse_gid,int(e0),'mf') \n \n \n elif self.celltype[n] == 'Goc_noloop':\n \n ngrc = 100\n \n for j in range(ngrc):\n \n self.cells[n][i].createsyn(ngrc = 1, weight = weight0)\n e0 = len(self.cells[n][i].GRC_L)-1 # get number of current synapse!\n \n pulse_gid = int(self.gid_count + gid*1000 + j)\n \n train = mod_spike_train(modulation, noise = noise, seed=pulse_gid)\n \n self.setup_Play_train(train = train, input_gid = pulse_gid)\n \n self.cells[n][i].pconnect(self.pc,pulse_gid,int(e0),'grc') \n \n else:\n \n pulse_gid = int(self.gid_count + gid*1000 + 100)\n \n train = mod_spike_train(modulation, noise = noise, seed = pulse_gid)\n self.trains.append(train)\n \n setup_Play_train(train = train, input_gid = pulse_gid)\n \n # NMDA\n self.cells[n][i].create_synapses(n_ex=1, tau1=tau01[n], tau2=tau02[n])\n e0 = len(self.cells[n][i].synlist)-1\n \n weight=weight0[n]\n np.random.seed(gid*60)\n #weight = np.random.normal(weight, weight*0.5, 1).clip(min=0)\n self.cells[n][i].pconnect_target(self.pc, source=pulse_gid, target=e0, syntype='ex', weight=weight, delay=1)\n \n # AMPA\n self.cells[n][i].create_synapses(n_ex=1, tau1=tau11[n], tau2=tau12[n])\n e0 = len(self.cells[n][i].synlist)-1\n \n weight=weight1[n]\n np.random.seed(gid*60)\n #weight = np.random.normal(weight, weight*0.5, 1).clip(min=0)\n self.cells[n][i].pconnect_target(self.pc, source=pulse_gid, target=e0, syntype='ex', weight=weight, delay=1)\n \n \n modulation = (t_input, mod) # mack to s!\n modulation_vec.append(modulation) \n \n return modulation_vec\n \n \n def connect_Synapse(self, pulse_gid, nt, i, n, gid, j, syntype = \"ex\", nsyn=0): \n \n if self.do_run:\n \n if 'gsyn_in' in self.method_interpol: \n if isinstance(self.factor_celltype[nt], ( int, long ) ):\n f = self.factor_celltype[nt] \n else:\n f = self.factor_celltype[nt][0] \n \n if syntype == \"ex\":\n \n # each cell can receive different g_syn_ex ! \n if type(self.g_syn_ex[nt]) is ndarray:\n if len(self.g_syn_ex[nt]) == len(self.global_gidlist[nt]):\n w = self.g_syn_ex[nt][n]\n else:\n w = self.g_syn_ex[nt] \n else:\n w = self.g_syn_ex[nt] \n \n seed = int(10000 + 10*gid + j)\n np.random.seed(seed*41)\n \n if self.g_syn_ex_s[nt] > 0:\n w = np.random.normal(w, w*self.g_syn_ex_s[nt], 1).clip(min=0) # self.g_syn_ex_s[nt] \n \n if self.celltype[nt] == 'Grc':\n \n # delete old\n if j == 0: \n self.cells[nt][i].MF_L = []\n self.cells[nt][i].mfncpc = []\n \n if \"gr\" not in str(self.tau1_ex[nt]):\n \n if \"amfit\" in str(self.tau1_ex[nt]):\n syn = h.ExpZSyn(self.cells[nt][i].soma(0.5)) \n \n syn.tau1_ampa = 0.254\n syn.tau2_ampa = 0.254\n syn.tau3_ampa = 0.363\n syn.tau4_ampa = 6.523\n syn.f1_ampa = 8.8376e-05\n syn.f2_ampa = 5.5257e-05\n \n syn.f1_nmda = 0\n \n elif \"nmfit\" in str(self.tau1_ex[nt]):\n syn = h.ExpYSyn(self.cells[nt][i].soma(0.5))\n \n syn.f1_ampa = 0\n syn.f2_ampa = 0\n \n syn.tau1_nmda = 1.902\n syn.tau2_nmda = 82.032\n syn.f1_nmda = 7.853857483005277e-05\n \n elif \"fit\" in str(self.tau1_ex[nt]): \n syn = h.ExpGrcSyn(self.cells[nt][i].soma(0.5))\n \n syn.tau1_ampa = 0.254\n syn.tau2_ampa = 0.254\n syn.tau3_ampa = 0.363\n syn.tau4_ampa = 6.523\n syn.f1_ampa = 8.8376e-05\n syn.f2_ampa = 5.5257e-05\n \n syn.tau1_nmda = 1.902\n syn.tau2_nmda = 82.032\n syn.f1_nmda = 7.853857483005277e-05\n \n else:\n tau1 = self.tau1_ex[nt]\n tau2 = self.tau2_ex[nt]\n \n if tau1 == 0:\n syn = h.ExpSyn(self.cells[nt][i].soma(0.5))\n syn.tau = tau2/ms\n \n else: \n syn = h.Exp2Syn(self.cells[nt][i].soma(0.5))\n syn.tau1 = tau1/ms\n syn.tau2 = tau2/ms\n \n syn.e = 0/mV\n \n self.cells[nt][i].MF_L.append(syn)\n \n e0 = len(self.cells[nt][i].MF_L)-1 # get number of current synapse!\n \n syn_idx = int(e0)\n \n source = int(pulse_gid)\n self.cells[nt][i].mfncpc.append(self.pc.gid_connect(source, self.cells[nt][i].MF_L[syn_idx]))\n self.cells[nt][i].mfncpc[-1].delay = 1\n self.cells[nt][i].mfncpc[-1].weight[0] = w\n \n if 'gsyn_in' in self.method_interpol:\n self.record_syn.append(h.Vector())\n self.record_syn[-1].record(self.cells[nt][i].MF_L[-1]._ref_g)\n self.gsyn_in_fac.append(f)\n \n else:\n \n nrel = 0\n \n if \"stoch\" in str(self.tau1_ex[nt]):\n nrel = 4\n \n self.cells[nt][i].createsyn(nmf = 1, ngoc = 0, weight_gmax = w, nrel=nrel) \n \n if \"ampa\" in str(self.tau1_ex[nt]):\n self.cells[nt][i].MF_L[-1].postsyns['NMDA'][0].gmax_factor = 0\n if \"nopre\" in str(self.tau1_ex[nt]):\n print \"- no pre\"\n self.cells[nt][i].MF_L[-1].postsyns['AMPA'][0].tau_rec = 1e-9\n self.cells[nt][i].MF_L[-1].postsyns['AMPA'][0].tau_facil = 1e-9\n self.cells[nt][i].MF_L[-1].postsyns['AMPA'][0].tau_1 = 0\n \n if \"nostdampa\" in str(self.tau1_ex[nt]):\n self.cells[nt][i].MF_L[-1].postsyns['NMDA'][0].gmax_factor = 0\n self.cells[nt][i].MF_L[-1].postsyns['AMPA'][0].tau_rec = 1e-9\n self.cells[nt][i].MF_L[-1].postsyns['AMPA'][0].tau_facil = 1e-9\n self.cells[nt][i].MF_L[-1].postsyns['AMPA'][0].tau_1 = 0\n self.cells[nt][i].MF_L[-1].postsyns['AMPA'][0].r6FIX = 0\n \n if \"nostdnmda\" in str(self.tau1_ex[nt]):\n self.cells[nt][i].MF_L[-1].postsyns['AMPA'][0].gmax_factor = 0\n self.cells[nt][i].MF_L[-1].postsyns['NMDA'][0].tau_rec = 1e-9\n self.cells[nt][i].MF_L[-1].postsyns['NMDA'][0].tau_facil = 1e-9\n self.cells[nt][i].MF_L[-1].postsyns['NMDA'][0].tau_1 = 0\n self.cells[nt][i].MF_L[-1].postsyns['NMDA'][0].RdRate = 0\t\n \n if \"nmda\" in str(self.tau1_ex[nt]):\n self.cells[nt][i].MF_L[-1].postsyns['AMPA'][0].gmax_factor = 0\n if \"nopre\" in str(self.tau1_ex[nt]):\n self.cells[nt][i].MF_L[-1].postsyns['NMDA'][0].tau_rec = 1e-9\n self.cells[nt][i].MF_L[-1].postsyns['NMDA'][0].tau_facil = 1e-9\n self.cells[nt][i].MF_L[-1].postsyns['NMDA'][0].tau_1 = 0\n \n if \"nostdgr\" in str(self.tau1_ex[nt]):\n self.cells[nt][i].MF_L[-1].postsyns['AMPA'][0].r6FIX\t= 0 #1.12\t\n self.cells[nt][i].MF_L[-1].postsyns['NMDA'][0].RdRate = 0 #12e-3\n print \"- no std\"\n \n if \"nomggr\" in str(self.tau1_ex[nt]): \n self.cells[nt][i].MF_L[-1].postsyns['NMDA'][0].v0_block = -1e9\n print \"- no mg block\"\n \n e0 = len(self.cells[nt][i].MF_L)-1 # get number of current synapse!\n \n self.cells[nt][i].pconnect(self.pc,pulse_gid,int(e0),'mf') \n \n if 'gsyn_in' in self.method_interpol:\n self.record_syn.append(h.Vector())\n self.record_syn[-1].record(self.cells[nt][i].MF_L[-1].postsyns['AMPA'][0]._ref_g)\n self.record_syn.append(h.Vector())\n self.record_syn[-1].record(self.cells[nt][i].MF_L[-1].postsyns['NMDA'][0]._ref_g)\n self.gsyn_in_fac.append(f)\n self.gsyn_in_fac.append(f)\n \n \n elif self.celltype[nt] == 'Goc':\n \n # delete old\n if j == 0: \n self.cells[nt][i].MF_L = []\n self.cells[nt][i].mfncpc = []\n \n if \"go\" not in str(self.tau1_ex[nt]):\n \n tau1 = self.tau1_ex[nt]\n tau2 = self.tau2_ex[nt]\n \n if tau1 == 0:\n syn = h.ExpSyn(self.cells[nt][i].soma(0.5))\n syn.tau = tau2/ms\n \n else: \n syn = h.Exp2Syn(self.cells[nt][i].soma(0.5))\n syn.tau1 = tau1/ms\n syn.tau2 = tau2/ms\n \n syn.e = 0/mV\n \n self.cells[nt][i].MF_L.append(syn)\n \n e0 = len(self.cells[nt][i].MF_L)-1 # get number of current synapse!\n \n syn_idx = int(e0)\n \n source = int(pulse_gid)\n self.cells[nt][i].mfncpc.append(self.pc.gid_connect(source, self.cells[nt][i].MF_L[syn_idx]))\n self.cells[nt][i].mfncpc[-1].delay = 1\n self.cells[nt][i].mfncpc[-1].weight[0] = w\n \n if 'gsyn_in' in self.method_interpol:\n self.record_syn.append(h.Vector())\n self.record_syn[-1].record(self.cells[nt][i].MF_L[-1]._ref_g)\n self.gsyn_in_fac.append(f)\n else:\n \n nrel = 0\n \n mg = self.mglufac_ex[0]\n if self.mglufac_ex[1] > 0:\n mg = np.random.normal(self.mglufac_ex[0], self.mglufac_ex[1]*self.mglufac_ex[0], 1).clip(min=0) # self.g_syn_ex_s[nt] \n \n if \"stoch\" in str(self.tau1_ex[nt]):\n nrel = 4\n \n self.cells[nt][i].createsyn(nmf = 1, weight_gmax = w, nrel=nrel, mglufac = mg) \n \n e0 = len(self.cells[nt][i].MF_L)-1 # get number of current synapse!\n \n self.cells[nt][i].pconnect(self.pc,pulse_gid,int(e0),'mf') \n \n if 'gsyn_in' in self.method_interpol:\n self.record_syn.append(h.Vector())\n self.record_syn[-1].record(self.cells[nt][i].MF_L[-1].postsyns['AMPA'][0]._ref_g)\n self.record_syn.append(h.Vector())\n self.record_syn[-1].record(self.cells[nt][i].MF_L[-1].postsyns['NMDA'][0]._ref_g)\n self.gsyn_in_fac.append(f)\n self.gsyn_in_fac.append(f)\n \n elif self.celltype[nt] == 'IfCell': \n \n # delete old\n if j == 0: \n self.cells[nt][i].synlist = []\n self.cells[nt][i].nc = []\n \n if \"gr\" in str(self.tau1_ex[nt]):\n \n self.cells[nt][i].whatami = \"grc\"\n \n nrel = 0\n if \"stoch\" in str(self.tau1_ex[nt]):\n nrel = 4\n \n self.cells[nt][i].MF_L = self.cells[nt][i].synlist\n self.cells[nt][i].synlist.append(Synapse('glom', self.cells[nt][i], self.cells[nt][i].soma, nrel=nrel, record_all=0, weight_gmax = w))\n \n if \"ampa\" in str(self.tau1_ex[nt]):\n self.cells[nt][i].synlist[-1].postsyns['NMDA'][0].gmax_factor = 0\n if \"nopre\" in str(self.tau1_ex[nt]):\n print \"- no pre\"\n self.cells[nt][i].synlist[-1].postsyns['AMPA'][0].tau_rec = 1e-9\n self.cells[nt][i].synlist[-1].postsyns['AMPA'][0].tau_facil = 1e-9\n self.cells[nt][i].synlist[-1].postsyns['AMPA'][0].tau_1 = 0\n \n if \"nmda\" in str(self.tau1_ex[nt]):\n self.cells[nt][i].synlist[-1].postsyns['AMPA'][0].gmax_factor = 0\n if \"nopre\" in str(self.tau1_ex[nt]):\n self.cells[nt][i].synlist[-1].postsyns['NMDA'][0].tau_rec = 1e-9\n self.cells[nt][i].synlist[-1].postsyns['NMDA'][0].tau_facil = 1e-9\n self.cells[nt][i].synlist[-1].postsyns['NMDA'][0].tau_1 = 0\n \n if \"nostdampa\" in str(self.tau1_ex[nt]):\n self.cells[nt][i].synlist[-1].postsyns['AMPA'][0].tau_rec = 1e-9\n self.cells[nt][i].synlist[-1].postsyns['AMPA'][0].tau_facil = 1e-9\n self.cells[nt][i].synlist[-1].postsyns['AMPA'][0].tau_1 = 0\n self.cells[nt][i].synlist[-1].postsyns['AMPA'][0].r6FIX\t= 0 #1.12\t\n \n if \"nostdnmda\" in str(self.tau1_ex[nt]):\n self.cells[nt][i].synlist[-1].postsyns['NMDA'][0].tau_rec = 1e-9\n self.cells[nt][i].synlist[-1].postsyns['NMDA'][0].tau_facil = 1e-9\n self.cells[nt][i].synlist[-1].postsyns['NMDA'][0].tau_1 = 0\n self.cells[nt][i].synlist[-1].postsyns['NMDA'][0].RdRate = 0\t\n \n if \"nostdgr\" in str(self.tau1_ex[nt]):\n self.cells[nt][i].synlist[-1].postsyns['AMPA'][0].r6FIX\t= 0 #1.12\t\n self.cells[nt][i].synlist[-1].postsyns['NMDA'][0].RdRate = 0 #12e-3\n print \"- no std\"\n \n if \"nomggr\" in str(self.tau1_ex[nt]): \n self.cells[nt][i].synlist[-1].postsyns['NMDA'][0].v0_block = -1e9 #.k_block = 1e-9\n print \"- no mg block\"\n \n e0 = len(self.cells[nt][i].synlist)-1\n syn_idx = int(e0)\n \n source = int(pulse_gid)\n self.cells[nt][i].nc.append(self.pc.gid_connect(source, self.cells[nt][i].synlist[syn_idx].input))\n self.cells[nt][i].nc[-1].delay = 1\n self.cells[nt][i].nc[-1].weight[0] = 1\n \n if 'gsyn_in' in self.method_interpol:\n self.record_syn.append(h.Vector())\n self.record_syn[-1].record(self.cells[nt][i].synlist[syn_idx].postsyns['AMPA'][0]._ref_g)\n self.record_syn.append(h.Vector())\n self.record_syn[-1].record(self.cells[nt][i].synlist[syn_idx].postsyns['NMDA'][0]._ref_g) \n self.gsyn_in_fac.append(f)\n self.gsyn_in_fac.append(f)\n else:\n \n if \"amfit\" in str(self.tau1_ex):\n \n syn = h.ExpGrcSyn(self.cells[nt][i].soma(0.5)) \n \n syn.tau1_ampa = 0.254\n syn.tau2_ampa = 0.254\n syn.tau3_ampa = 0.363\n syn.tau4_ampa = 6.523\n syn.f1_ampa = 8.8376e-05\n syn.f2_ampa = 5.5257e-05\n \n syn.f1_nmda = 0\n \n self.cells[nt][i].synlist.append(syn) # synlist is defined in Cell \n \n elif \"nmfit\" in str(self.tau1_ex):\n \n syn = h.ExpGrcSyn(self.cells[nt][i].soma(0.5))\n \n syn.f1_ampa = 0\n syn.f2_ampa = 0\n \n syn.tau1_nmda = 1.902\n syn.tau2_nmda = 82.032\n syn.f1_nmda = 7.853857483005277e-05\n \n self.cells[nt][i].synlist.append(syn) # synlist is defined in Cell \n \n elif \"fit\" in str(self.tau1_ex): \n \n syn = h.ExpGrcSyn(self.cells[nt][i].soma(0.5))\n \n syn.tau1_ampa = 0.254\n syn.tau2_ampa = 0.254\n syn.tau3_ampa = 0.363\n syn.tau4_ampa = 6.523\n syn.f1_ampa = 8.8376e-05\n syn.f2_ampa = 5.5257e-05\n \n syn.tau1_nmda = 1.902\n syn.tau2_nmda = 82.032\n syn.f1_nmda = 7.853857483005277e-05 \n \n self.cells[nt][i].synlist.append(syn) # synlist is defined in Cell \n \n else:\n \n self.cells[nt][i].create_synapses(n_ex=1, tau1=self.tau1_ex[nt], tau2=self.tau2_ex[nt])\n \n \n e0 = len(self.cells[nt][i].synlist)-1\n syn_idx = int(e0)\n \n self.cells[nt][i].pconnect_target(self.pc, source=pulse_gid, target=int(e0), syntype='ex', weight=w, delay=1)\n \n if 'gsyn_in' in self.method_interpol:\n self.record_syn.append(h.Vector())\n self.record_syn[-1].record(self.cells[nt][i].synlist[syn_idx]._ref_g)\n self.gsyn_in_fac.append(f)\n \n elif self.celltype[nt] == 'Prk':\n \n # delete old\n if j == 0: \n self.cells[nt][i].PF_Lsync = []\n self.cells[nt][i].spk_nc_pfsync = []\n self.cells[nt][i].pfrand = []\n \n m = len(self.cells[nt][i].dendrange)\n \n seed = int(4*gid)\n np.random.seed(seed)\n \n for k in xrange(nsyn):\n m -= 1\n \t mi = np.random.randint(0, m)\t \n \t self.cells[nt][i].dendrange[mi], self.cells[nt][i].dendrange[m] = self.cells[nt][i].dendrange[m], self.cells[nt][i].dendrange[mi]\n \t self.cells[nt][i].pfrand.append(self.cells[nt][i].dendrange[m])\n \n #print self.cells[nt][i].pfrand\n\n if \"prk\" not in str(self.tau1_ex[nt]):\n pass\n else:\n self.cells[nt][i].PF_Lsync.append(Synapse2('pf',self.cells[nt][i],self.cells[nt][i].pfrand[j],record_all=0))\n\n e0 = len(self.cells[nt][i].PF_Lsync)-1 # get number of current synapse!\n syn_idx = int(e0)\n\n self.cells[nt][i].spk_nc_pfsync.append(self.pc.gid_connect(pulse_gid, self.cells[nt][i].PF_Lsync[syn_idx].input.newnetstim))\n self.cells[nt][i].spk_nc_pfsync[-1].delay = 1\n self.cells[nt][i].spk_nc_pfsync[-1].weight[0] = 1\n \n if 'gsyn_in' in self.method_interpol:\n self.record_syn.append(h.Vector())\n self.record_syn[-1].record(self.cells[nt][i].PF_Lsync[-1].postsyns['AMPA'][0]._ref_g)\n self.gsyn_in_fac.append(f) \n \n elif syntype == \"inh\":\n \n w = self.g_syn_inh[nt]\n \n seed = int(10000 + 10*gid + j)\n np.random.seed(seed*42)\n \n if self.g_syn_inh_s[nt] > 0:\n w = np.random.normal(w, w*self.g_syn_inh_s[nt], 1).clip(min=w*0.1) # self.g_syn_inh_s[nt] \n \n if self.celltype[nt] == 'Grc':\n \n if j == 0: \n self.cells[nt][i].GOC_L = []\n self.cells[nt][i].gocncpc = []\n \n if \"gr\" not in str(self.tau1_inh[nt]):\n \n tau1 = self.tau1_inh[nt]\n tau2 = self.tau2_inh[nt]\n \n if tau1 == 0:\n syn = h.ExpSyn(self.cells[nt][i].soma(0.5))\n syn.tau = tau2/ms\n \n else: \n syn = h.Exp2Syn(self.cells[nt][i].soma(0.5))\n syn.tau1 = tau1/ms\n syn.tau2 = tau2/ms\n \n syn.e = -65\n \n self.cells[nt][i].GOC_L.append(syn)\n \n i0 = len(self.cells[nt][i].GOC_L)-1 # get number of current synapse!\n \n syn_idx = int(i0)\n source = int(pulse_gid)\n self.cells[nt][i].gocncpc.append(self.pc.gid_connect(source, self.cells[nt][i].GOC_L[syn_idx]))\n self.cells[nt][i].gocncpc[-1].delay = 1\n self.cells[nt][i].gocncpc[-1].weight[0] = w\n \n else:\n \n self.cells[nt][i].createsyn(nmf = 0, ngoc = 1, weight_gmax = w) \n i0 = len(self.cells[nt][i].GOC_L)-1 # get number of current synapse!\n self.cells[nt][i].pconnect(self.pc,pulse_gid,int(i0),'goc')\n \n \n if self.celltype[nt] == 'IfCell': \n \n if j == 0: \n self.cells[nt][i].synlist_inh = []\n self.cells[nt][i].nc_inh = []\n \n if \"gr\" in str(self.tau1_inh[nt]):\n \n nrel = 0\n if \"stoch\" in str(self.tau1_ex[nt]):\n nrel = 4\n \n self.cells[nt][i].GOC_L = self.cells[nt][i].synlist\n self.cells[nt][i].whatami = \"grc\"\n self.cells[nt][i].synlist_inh.append(Synapse('goc', self.cells[nt][i], self.cells[nt][i].soma, nrel=nrel, record_all=0, weight_gmax = w))\n \n i0 = len(self.cells[nt][i].synlist_inh)-1\n syn_idx = int(i0)\n \n source = int(pulse_gid)\n self.cells[nt][i].nc_inh.append(self.pc.gid_connect(source, self.cells[nt][i].synlist_inh[syn_idx].input))\n self.cells[nt][i].nc_inh[-1].delay = 1\n self.cells[nt][i].nc_inh[-1].weight[0] = 1\n \n if \"gaba\" in str(self.tau1_ex[nt]):\n \n if 'gsyn_in' in self.method_interpol:\n \n if \"nostdgaba\" in str(self.tau1_ex[nt]):\n \n self.cells[nt][i].synlist_inh[syn_idx].postsyns['GABA'][0].tau_rec = 1e-9 \n self.cells[nt][i].synlist_inh[syn_idx].postsyns['GABA'][0].tau_facil = 1e-9 \n self.cells[nt][i].synlist_inh[syn_idx].postsyns['GABA'][0].tau_1 = 0 \n self.cells[nt][i].synlist_inh[syn_idx].postsyns['GABA'][0].d3 = 0 \n self.cells[nt][i].synlist_inh[syn_idx].postsyns['GABA'][0].d1d2 = 0 \n self.cells[nt][i].synlist_inh[syn_idx].postsyns['GABA'][0].d1 = 0 \n self.cells[nt][i].synlist_inh[syn_idx].postsyns['GABA'][0].d2 = 0 \n self.cells[nt][i].synlist_inh[syn_idx].postsyns['GABA'][0].d3_a6 = 0 \n self.cells[nt][i].synlist_inh[syn_idx].postsyns['GABA'][0].d1d2_a6 = 0 \n self.cells[nt][i].synlist_inh[syn_idx].postsyns['GABA'][0].d1_a6 = 0 \n self.cells[nt][i].synlist_inh[syn_idx].postsyns['GABA'][0].d2_a6 = 0 \n \n self.record_syn.append(h.Vector())\n self.record_syn[-1].record(self.cells[nt][i].synlist_inh[syn_idx].postsyns['GABA'][0]._ref_g)\n self.gsyn_in_fac.append(f)\n \n else:\n \n self.cells[nt][i].create_synapses(n_inh=1, tau1_inh=self.tau1_inh[nt], tau2_inh=self.tau2_inh[nt], e_inh=-65)\n i0 = len(self.cells[nt][i].synlist_inh)-1\n syn_idx = int(i0)\n self.cells[nt][i].pconnect_target(self.pc, source=pulse_gid, target=int(i0), syntype='inh', weight=w, delay=1)\n \n \n elif syntype == \"intr\":\n \n if self.celltype[nt] == 'Prk':\n \n pass\n\n \n def set_SynPlay(self, farray, tarray, N = [], t_startstop = [], amode = 1):\n \n if self.do_run:\n \n delay = 1\n if (self.use_pc is False):\n delay = 0.1\n \n if N == []:\n N = self.N\n \n self.pulse_list = [] \n self.global_pulse_list = []\n self.global_pulse_list_inh = []\n self.global_pulse_list_intr = []\n \n f_cells_mean_local = []\n f_cells_cv_local = []\n f_cells_std_local = []\n \n for nt in range(self.n_celltypes): # loop over all cells\n \n if (self.n_syn_ex[nt] > 0) or (self.n_syn_inh[nt] > 0) or (self.n_syn_intr[nt] > 0):\n\n local_gid_count = 0\n local_gid_count_type = []\n \n \n # EXCITATION\n if str(type(self.g_syn_ex[nt] )) is not ndarray: self.g_syn_ex[nt] = np.array([self.g_syn_ex[nt] ]) # each cell can receive different g_syn_ex !\n \n if len(self.g_syn_ex[nt]) == len(self.global_gidlist[nt]):\n pass\n else:\n self.g_syn_ex[nt] = np.ones(len(self.global_gidlist[nt]))*self.g_syn_ex[nt][0]\n #print \"- single value in g_syn_ex, cells:\", len(self.global_gidlist[nt])\n \n self.global_pulse_list.append([])\n for ns in range(self.n_syn_ex[nt]): # loop over all excitatory synapses!\n self.global_pulse_list[-1].append([])\n for n in range(self.syn_max_mf[nt]): # number of cells of this celltype\n self.global_pulse_list[-1][-1].append(local_gid_count+self.gid_count)\n local_gid_count += 1\n local_gid_count_type.append([])\n local_gid_count_type[-1].append('ex')\n local_gid_count_type[-1].append(n) # number of cell within their population 0..N[nt]\n local_gid_count_type[-1].append(ns) # number of synapse \n \n \n # INHIBITION \n if np.array(self.inh_hold[nt]).size <= 1:\n self.inh_hold[nt] = np.ones(len(self.global_gidlist[nt]))*self.inh_hold[nt]\n #print \"- single value in inh_hold\", self.inh_hold[nt] \n \n \n self.global_pulse_list_inh.append([])\n for ns in range(self.n_syn_inh[nt]): # loop over all inhibitory synapses!\n self.global_pulse_list_inh[-1].append([])\n for n in range(self.syn_max_inh[nt]): # number of cells of this celltype\n self.global_pulse_list_inh[-1][-1].append(local_gid_count+self.gid_count)\n local_gid_count += 1\n local_gid_count_type.append([])\n local_gid_count_type[-1].append('inh')\n local_gid_count_type[-1].append(n) # number of cell within their population 0..N[nt]\n local_gid_count_type[-1].append(ns) # number of synapse \n\n \n # INTRUDER SYNAPSE\n if str(type(self.g_syn_intr[nt] )) is not ndarray: self.g_syn_intr[nt] = np.array([self.g_syn_intr[nt] ]) # each cell can receive different g_syn_intr !\n \n if len(self.g_syn_intr[nt]) == len(self.global_gidlist[nt]):\n pass \n else:\n self.g_syn_intr[nt] = np.ones(len(self.global_gidlist[nt]))*self.g_syn_intr[nt][0]\n #print \"- single value in g_syn_intr, cells:\", len(self.global_gidlist[nt])\n \n self.global_pulse_list_intr.append([])\n for ns in range(self.n_syn_intr[nt]): # loop over all intruding synapses!\n self.global_pulse_list_intr[-1].append([])\n for n in range(self.syn_max_intr[nt]): # number of generators for this celltype\n self.global_pulse_list_intr[-1][-1].append(local_gid_count+self.gid_count)\n local_gid_count += 1\n local_gid_count_type.append([])\n local_gid_count_type[-1].append('intr')\n local_gid_count_type[-1].append(n) # number of cell within their population 0..N[nt]\n local_gid_count_type[-1].append(ns) # number of synapse \n \n \n t_vec_input = np.array([]) # input trains \n id_vec_input = np.array([]) # input trains id\n fs = 1 / self.dt\n ih_use_v = []\n \n for i in range(int(self.id), local_gid_count, int(self.nhost)): # loop over all train generators and generate them\n \n self.pulse_list.append(i+self.gid_count)\n pulse_gid = self.pulse_list[-1] \n gid = local_gid_count_type[i][1] # should correspond to this gid when multiple values inserted\n \n if local_gid_count_type[i][0] == 'ex':\n \n seed = int(10001 + pulse_gid) # unique gid for generators! \n np.random.seed(seed*423)\n \n if self.ihold_sigma[nt] > 0:\n ih_use = np.random.normal(self.ihold[nt], self.ihold[nt]*self.ihold_sigma[nt], 1).clip(min=0) # self.ihold[nt]*self.ihold_sigma[nt] \n \n elif self.ihold_sigma[nt] < 0:\n ih_use = np.random.uniform(0.1, self.ihold[nt])\n \n else:\n ih_use = self.ihold[nt] \n \n ih_use_v.append(ih_use)\n \n if ih_use > 0:\n # train has to be contructed here, to insert different train into each \"dendrite\"\n ## different ihold has to be implemented here!!\n iholdvec = concatenate((zeros(round(fs)), ones(round(len(tarray) - 1 * fs)) * ih_use))\n \n if isinstance(self.syn_ex_dist[nt], ( tuple ) ): # distribution of amplitude, only one noise source!\n \n np.random.seed(pulse_gid*40)\n if self.syn_ex_dist[nt][1] > 0:\n f = np.random.normal(self.syn_ex_dist[nt][0], self.syn_ex_dist[nt][1], 1).clip(min=0)\n else:\n f = self.syn_ex_dist[nt][0]\n \n f2 = f\n rnd.seed(pulse_gid*40) # use gid so type 1, 2 is identical for each cell\n #rnd.seed(gid*40) # use gid so type 1, 2 is identical for each cell\n if self.syn_ex_dist[nt][2] > 0: # add inverted input with 50% probability, in future versions this will indicate the propability for -1 and 1 \n f2 = rnd.sample([-1,1],1)[0] * f\n #f2 = f\n \n if amode == 1:\n inamp = (f2 * self.amod[nt] * ih_use)\n elif amode == 2:\n inamp = (f2 * self.amod[nt] * self.ihold[nt]) \n \n modulation = (tarray, inamp * farray[0] + iholdvec)\n \n #if self.id == 0: print \"- randomize play stimulus height, pulse_gid=\", pulse_gid, \" gid=\", gid ,\" f=\", f \n if (gid==0): print \"- randomize play stimulus height, pulse_gid=\", pulse_gid, \" gid=\", gid ,\" f2=\", f2,\"inamp=\",inamp \n \n #rnd.seed(local_gid_count_type[i][1]*300) # pick seed based on number of cell\n #nj = rnd.sample(range(len(farray)),1)[0] \n nj = 1\n \n else: # different noise sources can be used at different synapses, linear combination test in openloop\n \n nj = self.syn_ex_dist[nt][local_gid_count_type[i][2]]\n \n if nj == 0:\n modulation = (tarray, iholdvec)\n else:\n if amode == 1:\n inamp = (self.factor_celltype[nt] * self.amod[nt] * ih_use)\n elif amode == 2:\n inamp = (self.factor_celltype[nt] * self.amod[nt] * self.ihold[nt]) \n\n modulation = (tarray, inamp * farray[nj-1] + iholdvec)\n if self.id == 0: print \"ex farray number:\", nj-1, \"ih_use:\", ih_use, \"self.amod[nt]:\", self.amod[nt], \"inamp: \", inamp\n \n \n # will be done n_syn_ex * number of cells!\n if self.noise_syn_tau[nt] < 0: # variable threshold\n no = self.noise_syn[nt]\n else: \n no = self.noise_syn[nt]*ih_use\n\n train, self.n_train_ex = mod_spike_train(modulation, noise = no, seed = seed, noise_tau = self.noise_syn_tau[nt], noise_a = self.noise_a[nt]) \n \n #plt.figure(\"input\")\n #plt.plot(train, train*0, '|')\n #plt.show()\n \n t_vec_input = np.append(t_vec_input, train*ms).flatten() # use ms to save!!\n id_vec_input = np.append(id_vec_input, np.ones(len(train))*pulse_gid).flatten()\n \n f_cells_mean_local0, f_cells_cv_local0, f_cells_std_local0 = self.calc_fmean(train*ms, t_startstop)\n f_cells_mean_local.append(f_cells_mean_local0); f_cells_cv_local.append(f_cells_cv_local0); f_cells_std_local.append(f_cells_std_local0)\n \n if self.id == 0: print \"TRAIN: requ. mean:\", ih_use ,\"eff. mean:\", f_cells_mean_local0, \"cv: \" , f_cells_cv_local0, \"std:\" , f_cells_std_local0\n \n else:\n train = []\n self.n_train_ex = []\n \n\n\n elif local_gid_count_type[i][0] == 'intr':\n \n # train has to be contructed here, to insert different train into each \"dendrite\"\n nj = 0\n \n seed = int(10001 + pulse_gid)\n np.random.seed(seed*4411)\n \n if self.intr_hold_sigma[nt] > 0: \n ih_use = np.random.normal(self.intr_hold[nt], self.intr_hold[nt]*self.intr_hold_sigma[nt], 1).clip(min=0) \n else:\n ih_use = self.intr_hold[nt]\n \n ih_use_v.append(ih_use)\n \n if ih_use > 0: \n \n iholdvec = concatenate((zeros(round(fs)), ones(round(len(tarray) - 1 * fs)) * ih_use))\n modulation = (tarray, iholdvec)\n \n # will be done n_syn_in * number of cells! \n if self.noise_syn_tau_intr[nt] < 0: # variable threshold\n no = self.noise_syn_intr[nt]\n else: \n no = self.noise_syn_intr[nt]*ih_use\n \n if self.noise_syn_tau_intr[nt] >= -1:\n train, _ = mod_spike_train(modulation, noise = no, seed = seed, noise_tau = self.noise_syn_tau_intr[nt], noise_a = self.noise_a_intr[nt]) # train in ms\n else:\n train = oscill_spike_train(sor = 4, spike_prob = 1/4, noise_fraction = 4, end_time = tarray[-1]/ms, seed = seed) \n \n \n elif local_gid_count_type[i][0] == 'inh':\n \n # train has to be contructed here, to insert different train into each \"dendrite\"\n \n seed = int(10001 + pulse_gid)\n \n np.random.seed(seed*44)\n \n if self.inh_hold_sigma[nt] > 0: \n ih_use = np.random.normal(self.inh_hold[nt][gid], self.inh_hold[nt][gid]*self.inh_hold_sigma[nt], 1).clip(min=0) \n else:\n ih_use = self.inh_hold[nt][gid]\n \n \n iholdvec = concatenate((zeros(round(fs)), ones(round(len(tarray) - 1 * fs)) * ih_use))\n \n nj = self.syn_inh_dist[nt][local_gid_count_type[i][2]]\n if nj == 0:\n modulation = (tarray, iholdvec)\n else:\n inamp = (self.amod[nt] * ih_use)\n modulation = (tarray, inamp * farray[nj-1] + iholdvec)\n #print \"inh farray number:\", nj-1, \"ih_use:\", ih_use, \"amp: \", inamp #old: nj-1+nemax\n \n # will be done n_syn_in * number of cells! \n if self.noise_syn_tau_inh[nt] < 0: # variable threshold\n no = self.noise_syn_inh[nt]\n else: \n no = self.noise_syn_inh[nt]*ih_use\n \n train, _ = mod_spike_train(modulation, noise = no, seed = seed, noise_tau = self.noise_syn_tau_inh[nt], noise_a = self.noise_a_inh[nt]) # train in ms\n #print train\n \n #print train\n if len(train) > 0:\n if self.id == 0: \n print \"-\", pulse_gid, local_gid_count_type[i], \"seed: \", seed, \"ih_use:\", ih_use, no, nj #, \"first spike: \", train[0] \n self.setup_Play_train(train = train+self.inh_delay, input_gid = pulse_gid, delay = delay) # train in ms\n \n \n self.gid_count += local_gid_count # increase gid count\n \n self.barrier()\n \n for i, gid in enumerate(self.gidlist[nt]): # for all input cells\n \n rnd.seed(gid*200)\n n = self.global_gidlist[nt].index(gid) # index of cell within their population 0..N[nt]\n # i is index on this node only!\n \n self.record_syn = []\n for j in range(self.n_syn_ex[nt]):\n if N[nt] == len(self.global_pulse_list[nt][j]):\n pulse_gid = self.global_pulse_list[nt][j][n] #every cell of this type receives one pulse gid \n if self.id == 0: print \"- gid:\", gid ,\" n:\", n ,\" one ex train for each synapse:\", pulse_gid, \"self.g_syn_ex[nt][n]:\", self.g_syn_ex[nt][n] \n else:\n pulse_gid = rnd.sample(self.global_pulse_list[nt][j],1)[0] # not enough, just pick one at random, for inh/f search only one synapse available!\n if self.id == 0: print \"- gid:\", gid ,\" n:\", n ,\" one ex train from\", len(self.global_pulse_list[nt][j]), \":\", pulse_gid, \"self.g_syn_ex[nt][n]:\", self.g_syn_ex[nt][n] \n \n if \"gaba\" in str(self.tau1_ex[nt]):\n self.connect_Synapse(pulse_gid, nt, i, n, gid, j, syntype = \"inh\") \n else:\n self.connect_Synapse(pulse_gid, nt, i, n, gid, j, syntype = \"ex\", nsyn = self.n_syn_ex[nt]) \n \n \n if self.n_syn_inh[nt] > 0:\n for j in range(self.n_syn_inh[nt]):\n \n if N[nt] == len(self.global_pulse_list_inh[nt][j]):\n pulse_gid = self.global_pulse_list_inh[nt][j][n] #every cell of this type receives one pulse gid \n if self.id == 0: print \"- one inh train for each synapse:\", pulse_gid\n else:\n pulse_gid = rnd.sample(self.global_pulse_list_inh[nt][j],1)[0] # not enough, just pick one at random \n if self.id == 0: print \"- one inh train from\", len(self.global_pulse_list_inh[nt][j]), \":\", pulse_gid\n \n self.connect_Synapse(pulse_gid, nt, i, n, gid, j, syntype = \"inh\") \n \n \n if self.n_syn_intr[nt] > 0:\n for j in range(self.n_syn_intr[nt]):\n \n if N[nt] == len(self.global_pulse_list_intr[nt][j]):\n pulse_gid = self.global_pulse_list_intr[nt][j][n] #every cell of this type receives one pulse gid \n if self.id == 0: print \"- one intruding train for each synapse:\", pulse_gid\n else:\n pulse_gid = rnd.sample(self.global_pulse_list_intr[nt][j],1)[0] # not enough, just pick one at random \n if self.id == 0: print \"- one intruding train from\", len(self.global_pulse_list_intr[nt][j]), \":\", pulse_gid\n \n if (self.use_pc is False):\n \n if self.celltype[nt] == 'Prk': self.cells[nt][i].delrerun() \n \n (msg,CF_input) = self.cells[nt][i].createsyn_CF(record_all=0,factor=self.g_syn_intr[nt][0],cf_setup_select='old')\n CF_input.number = 3 # three bursts\n CF_input.start = -0.3 # See synapsepfpurk.py\n CF_input.interval = 3 # 3 ms interval between bursts\n\n self.cells[nt][i].input_to_CF_nc.append(h.NetCon(self.vecstim[j], CF_input, 0, 0.1, 1))\n self.netcons.append(self.cells[nt][i].input_to_CF_nc[-1])\n \n else:\n print \"NOT IMPLEMENTED\"\n \n \n if self.id == 0: print \"trains connected\"\n \n if local_gid_count_type[i][0] == 'intr':\n pass\n else:\n self.id_all_vec_input.append(self.do_gather(id_vec_input, dtype = 'i')) \n self.t_all_vec_input.append(self.do_gather(t_vec_input)) \n \n f_cells_mean = self.do_gather(f_cells_mean_local) \n f_cells_cv = self.do_gather(f_cells_cv_local) \n f_cells_std = self.do_gather(f_cells_std_local) \n \n self.fmean_input = np.nan\n self.fmax_input = np.nan\n self.fmstd_input = np.nan\n self.fcvm_input = np.nan\n self.fstdm_input = np.nan\n \n ih_use_v_all = self.do_gather(ih_use_v)\n \n if self.id == 0 and local_gid_count_type[i][0] != 'intr':\n \n self.fmean_input = mean(np.nan_to_num(f_cells_mean)) # compute mean of mean rate for all cells\n self.fmstd_input = std(np.nan_to_num(f_cells_mean)) \n self.fmax_input = max(np.nan_to_num(f_cells_mean))\n \n self.fcvm_input = mean(f_cells_cv[~np.isnan(f_cells_cv)])\n self.fstdm_input = mean(f_cells_std[~np.isnan(f_cells_std)])\n \n self.ih_use_max = max(ih_use_v_all)\n \n print \"- trains, fmean: \",self.fmean_input, \"fmax: \",self.fmax_input, \"Hz\", \"fmstd: \",self.fmstd_input, \"Hz\", \"fcvm: \",self.fcvm_input, \"fstdm: \",self.fstdm_input, \"Hz, ih_use_max:\", self.ih_use_max \n \n else:\n self.global_pulse_list.append([])\n self.global_pulse_list_inh.append([])\n \n\n\n def do_gather(self, v_local, dtype = 'd'):\n \n if self.use_mpi:\n \n self.barrier()\n \n #v_local = v_local.astype(dtype).flatten()\n v_local = np.array(v_local, dtype=dtype).flatten() \n \n if self.use_pc == False:\n\n v_global = None\n counts_local = np.array(len(v_local), dtype='i')\n \n counts = 0\n if self.id == 0:\n counts = np.empty(self.nhost, dtype='i')\n \n self.comm.Gather(sendbuf=[counts_local, MPI.INT], recvbuf=[counts, MPI.INT], root=0)\n \n if self.id == 0:\n v_global = np.empty(sum(counts), dtype=dtype)\n \n \n if dtype == 'd':\n self.comm.Gatherv(sendbuf=[v_local, MPI.DOUBLE], recvbuf=[v_global, (counts, None), MPI.DOUBLE], root=0)\n elif dtype == 'i':\n self.comm.Gatherv(sendbuf=[v_local, MPI.INT], recvbuf=[v_global, (counts, None), MPI.INT], root=0) \n \n #v_global = np.hstack(v_global)\n \n else:\n sendlist = [None]*self.nhost \n sendlist[0] = v_local\n getlist = self.pc.py_alltoall(sendlist)\n \n v_global = np.hstack(getlist) \n \n else:\n \n v_global = np.hstack(v_local)\n \n return v_global\n \n\n def setup_Play_train(self, train = [], input_gid = 0, delay = 1):\n \n self.trains.append(train)\n\n # possibility to play spikes into the cells!\n self.vecstim.append(h.VecStim(.5))\n self.nc_vecstim.append(h.NetCon(self.vecstim[-1],None))\n self.nc_vecstim[-1].delay = delay\n\n self.spike_vec.append(h.Vector(self.trains[-1]))\n self.vecstim[-1].play(self.spike_vec[-1]) \n\n if (self.use_mpi):\n self.pc.set_gid2node(input_gid, self.id) # associate gid with this host\n self.pc.cell(input_gid,self.nc_vecstim[-1]) # associate gid with spike detector\n \n\n def record(self):\n \"\"\"\n Initializes recording vectors. Internal function\n \"\"\"\n\n if self.n_celltypes > 1:\n #print \"self.n_borders:\",self.n_borders\n for n in range(self.n_celltypes):\n if self.n_borders[n] in self.gidlist[n]:\n #print \"np.shape(self.rec_v):\",np.shape(self.rec_v)\n #print \"np.shape(self.cells):\",np.shape(self.cells)\n self.rec_v[n].record(self.cells[n][0].soma(0.5)._ref_v) \n\n \n if self.id == 0: # only for first node and first cell\n \n # Voltage\n self.rec_v[0].record(self.cells[self.a_celltype[0]][0].soma(0.5)._ref_v) \n \n # Stimuli\n self.rec_i = h.Vector()\n\n if (self.plays != []): \n if (isinstance(self.plays[0], list) is False): \n self.rec_i.record(self.plays[0]._ref_i)\n else:\n self.rec_i.record(self.plays[0][0]._ref_i) \n \n self.rec_ich = h.Vector()\n if self.ic_holds != [] and (isinstance(self.ic_holds[0], list) is False): \n self.rec_ich.record(self.ic_holds[0]._ref_i)\n \n self.rec_ics = h.Vector()\n if self.ic_starts != []: \n self.rec_ics.record(self.ic_starts[0]._ref_i)\n \n self.rec_n = h.Vector() \n \n if self.fluct_s[0] > 0:\n # Fluctuating input \n self.rec_n.record(self.flucts[0]._ref_i)\n print \"recording noise\"\n elif (len(self.flucts) > 0) and (len(self.fluct_g_i0)>0):\n self.rec_n.record(self.flucts[0]._ref_g_i)\n print \"recording g noise\"\n else:\n print \"nonoise\"\n \n if hasattr(self.cells[self.a_celltype[0]][0], 'lkg2_noise'):\n if self.cells[self.a_celltype[0]][0].lkg2_noise > 0:\n self.rec_n.record(self.cells[self.a_celltype[0]][0].fluct._ref_il)\n print \"recording tonic gaba noise\" \n \n self.rec_step = h.Vector()\n if self.ic_steps != []: \n self.rec_step.record(self.ic_steps[0]._ref_i) \n \n # Time\n self.rec_t = h.Vector()\n self.rec_t.record(h._ref_t)\n \n \n def run(self, tstop = 10*s, do_loadstate = True):\n \"\"\"\n Starts the stimulation.\n \"\"\"\n self.record()\n \n if self.first_run:\n\n if self.use_mpi: self.pc.set_maxstep(100)\n #self.pc.spike_compress(1) #test\n \n if self.use_multisplit:\n import multiprocessing\n \n Hines = h.CVode()\n Hines.active(0)\n \n h.load_file(\"parcom.hoc\")\n p = h.ParallelComputeTool()\n \n if self.use_mpi:\n cpus = multiprocessing.cpu_count() #32 #self.pc.nhost()\n else:\n cpus = multiprocessing.cpu_count() #32 \n \n p.change_nthread(cpus,1) \n p.multisplit(1)\n print \"Using multisplit, cpus:\", cpus\n \n else:\n \n h.load_file(\"stdrun.hoc\")\n \n if self.use_local_dt:\n h.cvode.active(1) \n h.cvode.use_local_dt(1) \n \n h.celsius = self.temperature \n h.dt = self.dt/ms # Fixed dt\n h.steps_per_ms = 1 / (self.dt/ms)\n \n if self.cells[self.a_celltype[0]] != []: \n if hasattr(self.cells[self.a_celltype[0]][0], 'v_init'):\n h.v_init = self.cells[self.a_celltype[0]][0].v_init # v_init is supplied by cell itself!\n else: \n h.v_init = -60 \n \n h.stdinit() \n\n h.finitialize()\n \n if hasattr(self.cells[self.a_celltype[0]][0], 'load_states') and do_loadstate:\n m = md5.new()\n cell_exe_new = self.cell_exe[0]\n m.update(cell_exe_new)\n filename = './states_' + self.celltype[0] + '_' + m.hexdigest() + '_Population.b'\n self.cells[self.a_celltype[0]][0].load_states(filename)\n \n else:\n\n pass \n \n \n if self.id == 0:\n import time\n t0 = time.time()\n\n if self.simstep == 0:\n if self.id == 0: print \"Running without steps\",\n \n if self.use_mpi:\n self.pc.psolve(tstop/ms)\n else:\n h.init()\n h.tstop = tstop/ms\n h.run()\n\n else:\n \n h.finitialize()\n cnt = 1\n \n #if self.id == 50: \n # print len(self.cells[1][0].nc), self.cells[1][0].nc[0].weight[0]\n # print len(self.cells[0][0].nc_inh), self.cells[0][0].nc_inh[0].weight[0]\n \n h.t = 0\n while h.t < tstop/ms:\n \n if self.id == 0:\n print \"Running...\",\n if self.use_mpi:\n past_time = self.pc.time()\n \n h.continuerun(cnt*self.simstep/ms)\n if self.use_mpi: self.pc.barrier()\n \n if self.id == 0:\n if self.use_mpi:\n print \"Simulated time =\",h.t*ms, \"s, Real time = \", (self.pc.time()-past_time), 's'\n else:\n print \"Simulated time =\",h.t*ms, \"s\"\n \n #if self.id == 0:\n # print hpy.heap().byrcs\n cnt += 1\n\n if self.id == 0: print \"psolve took \", time.time() - t0, \"seconds\"\n \n self.first_run = False\n \n self.barrier() # wait for other nodes\n\n self.tstop = tstop \n \n \n def get(self, t_startstop=[], i_startstop=[], N = []):\n \"\"\"\n Gets the recordings.\n \"\"\"\n \n if N == []:\n N = self.N\n \n if t_startstop == []:\n t_startstop = np.array([2, self.tstop])\n \n t_all_vec = []\n id_all_vec = []\n \n fmean = []\n fbase = []\n fmax = []\n fmstd = []\n fcvm = []\n fstdm = []\n gid_del = []\n f_cells_mean_all = []\n f_cells_base_all = []\n f_cells_cv_all = [] \n f_cells_std_all = []\n \n fmeanA = []\n fmstdA = []\n fmaxA = []\n fcvmA = []\n fstdmA = []\n fbaseA = []\n fbstdA = []\n \n if self.id == 0: print \"start gathering spikes\"\n \n for n in range(self.n_celltypes):\n\n if self.use_mpi: \n \n self.barrier() # wait for other node\n t_vec = np.array(self.t_vec[n]).flatten()*ms - 1*ms # shift time because of output delay\n id_vec = np.array(self.id_vec[n]).flatten()\n \n else:\n \n t_vec = np.array([])\n id_vec = np.array([])\n print np.shape(self.t_vec)\n for i in self.gidlist[n]:\n t_vec0 = np.array(self.t_vec[n][i]).flatten()*ms \n t_vec = np.append(t_vec, t_vec0).flatten()\n id_vec = np.append(id_vec, np.ones(len(t_vec0))*i).flatten() \n\n fmean0, fmax0, fmstd0, fcvm0, fstdm0, gid_del0, f_cells_mean_all0, f_cells_cv_all0, f_cells_std_all0, fbase0, f_cells_base_all0 = self.get_fmean(t_vec, id_vec, t_startstop = t_startstop, gidlist = self.gidlist[n]) \n fmean.append(fmean0); fmax.append(fmax0), fmstd.append(fmstd0), fcvm.append(fcvm0), fstdm.append(fstdm0), gid_del.append(gid_del0), f_cells_mean_all.append(f_cells_mean_all0), f_cells_cv_all.append(f_cells_cv_all0), f_cells_std_all.append(f_cells_std_all0)\n fbase.append(fbase0); f_cells_base_all.append(f_cells_base_all0)\n \n t_all_vec.append(self.do_gather(t_vec))\n id_all_vec.append(self.do_gather(id_vec))\n \n if (self.id == 0) and (self.no_fmean == False): \n f_cells_mean_all = np.array(f_cells_mean_all).flatten()\n fmeanA = mean(f_cells_mean_all) # compute mean of mean rate for all cells\n fmstdA = std(f_cells_mean_all) \n fmaxA = max(f_cells_mean_all)\n \n f_cells_base_all = np.array(f_cells_base_all).flatten()\n fbaseA = mean(f_cells_base_all) # compute mean of mean rate for all cells\n fbstdA = std(f_cells_base_all)\n \n f_cells_cv_all = np.concatenate((np.array(f_cells_cv_all)))\n f_cells_std_all = np.concatenate((np.array(f_cells_std_all)))\n \n fcvmA = mean(f_cells_cv_all)\n fstdmA = mean(f_cells_std_all)\n \n print \"- ALL, fmean: \",fmeanA, \"fmax: \",fmaxA, \"Hz\", \"fmstd: \",fmstdA, \"Hz\", \"fcvm: \",fcvmA, \"fstdm: \",fstdmA, \"Hz\", \"fbase: \",fbaseA, \"Hz\", \"fbstd: \", fbstdA, \"Hz\"\n \n if self.id == 0: print \"all spikes have been gathered\"\n\n self.barrier()\n\n # do this here to have something to return\n voltage = []\n current = []\n time = []\n \n freq_times = []\n spike_freq = []\n gsyn = []\n \n if self.id == 0: # only for first node\n \n time = np.array(self.rec_t)*ms\n\n # use self.bin_width as bin width!\n freq_times = arange(0, time[-1], self.bin_width)\n\n voltage.append(np.array(self.rec_v[0])*mV)\n current = np.zeros(len(time))\n\n if len(np.array(self.rec_ics)) > 0:\n current = current + np.array(self.rec_ics) \n \n if len(np.array(self.rec_ich)) > 0:\n current = current + np.array(self.rec_ich)\n \n if len(np.array(self.rec_i)) > 0:\n current = current + np.array(self.rec_i) \n \n if len(np.array(self.rec_n)) > 0:\n current = current + np.array(self.rec_n) \n print np.array(self.rec_n) \n \n if len(np.array(self.rec_step)) > 0:\n current = current + np.array(self.rec_step) \n\n else:\n time = [0]\n \n self.barrier()\n time = self.broadcast(time, fast = True)\n\n gsyn_in = []\n gsyn_in0 = []\n \n if 'gsyn_in' in self.method_interpol:\n \n gsyn_in = None\n if self.id == 0: print \"- collecting gsyn_in\"\n gsyn_in0 = np.zeros(len(time), dtype='d')\n if self.record_syn is not []:\n for i, j in enumerate(self.record_syn):\n gsyn_in0 = gsyn_in0 + self.gsyn_in_fac[i] * np.array(j, dtype='d') \n \n if self.use_mpi:\n count = len(time)\n \n #if self.id == 0: gsyn_in = np.empty(count*self.nhost, dtype='d')\n #self.comm.Gatherv(sendbuf=[gsyn_in0, MPI.DOUBLE], recvbuf=[gsyn_in, MPI.DOUBLE], root=0)\n \n gsyn_in = self.do_gather(gsyn_in0)\n \n if self.id == 0:\n gsyn_in = np.reshape(gsyn_in, (self.nhost,count))\n gsyn_in = sum(gsyn_in,0)\n \n else:\n gsyn_in = gsyn_in0\n \n self.barrier() # wait for other nodes\n \n if self.n_celltypes > 1:\n if self.id == 0: print \"more than one celltype send voltage of first other cell to root\"\n \n for n in range(1, self.n_celltypes):\n \n if self.use_pc == True:\n \n srclist = [None]*self.nhost\n \n if (self.n_borders[n] in self.gidlist[n]):\n srclist[0] = np.array(self.rec_v[n])*mV\n \n destlist = self.pc.py_alltoall(srclist) \n \n if self.id == 0:\n idx = [i for i, x in enumerate(destlist) if x is not None]\n if len(idx) > 1: raise ValueError('Error, too many vectors sent, should be one at a time!')\n voltage.append(np.array(destlist[idx[0]]))\n \n else:\n \n if self.id == 0:\n if (self.n_borders[n] in self.gidlist[n]): # first node has it, do not wait to receive it!\n v_temp = np.array(self.rec_v[n])*mV\n else:\n v_temp = np.zeros(len(voltage[0]))\n self.comm.Recv([v_temp, MPI.DOUBLE], source = MPI.ANY_SOURCE, tag=int(sum(N)+33))\n \n voltage.append(v_temp)\n else:\n if self.n_borders[n] in self.gidlist[n]:\n voltage = np.array(self.rec_v[n])*mV \n self.comm.Ssend([voltage, MPI.DOUBLE], dest=0, tag=int(sum(N)+33))\n\n self.barrier() # wait for other nodes \n\n times = arange(0, time[-1], 1*ms) \n gsyns = []\n if self.called_syn_out_all == True:\n \n for n in range(self.n_celltypes):\n gsyns.append([])\n \n if self.use_pc == True:\n\n for i, gid in enumerate(self.global_gidlist[n]): \n \n srclist = [None]*self.nhost\n \n if gid in self.gidlist[n]: #only one node does this\n a = np.array(self.cells[n][self.gidlist[n].index(gid)].record['gsyn'])\n c = np.zeros(int((1*ms)/self.dt))\n temp = np.append(a, c).flatten()\n temp = temp[int((1*ms)/self.dt):len(temp)+1]\n gtemp = interp(times,time,temp)\n \n srclist[0] = gtemp # send to root only\n \n destlist = self.pc.py_alltoall(srclist) \n \n if self.id == 0:\n idx = [i for i, x in enumerate(destlist) if x is not None]\n if len(idx) > 1: raise ValueError('Error, too many vectors sent, should be one at a time!')\n gsyns[n].append(np.array(destlist[idx[0]]))\n \n else: \n \n for i, gid in enumerate(self.global_gidlist[n]): \n \n if self.id == 0:\n if gid in self.gidlist[n]:\n a = np.array(self.cells[n][self.gidlist[n].index(gid)].record['gsyn'])\n c = np.zeros(int((1*ms)/self.dt))\n temp = np.append(a, c).flatten()\n temp = temp[int((1*ms)/self.dt):len(temp)+1]\n gtemp = interp(times,time,temp)\n \n else:\n gtemp = np.zeros(len(times))\n self.comm.Recv([gtemp, MPI.DOUBLE], source = MPI.ANY_SOURCE, tag=int(gid))\n \n gsyns[n].append(np.array(gtemp))\n \n else:\n if gid in self.gidlist[n]:\n a = np.array(self.cells[n][self.gidlist[n].index(gid)].record['gsyn'])\n c = np.zeros(int((1*ms)/self.dt))\n temp = np.append(a, c).flatten()\n temp = temp[int((1*ms)/self.dt):len(temp)+1]\n gtemp = interp(times,time,temp) \n #np.array(self.cells[n][self.gidlist[n].index(gid)].record['gsyn'])\n self.comm.Ssend([gtemp, MPI.DOUBLE], dest=0, tag=int(gid))\n \n if self.id == 0: print \"root gathered synaptic output conductance\" \n \n \n self.barrier() # wait for other nodes \n \n times = arange(0, time[-1], 10*ms)\n \n w_mat = []\n winh_mat = []\n \n if self.stdp_used == True:\n \n for n in range(self.n_celltypes):\n w_mat.append([]) \n \n for i, gid in enumerate(self.global_gidlist[n]): \n \n if self.id == 0:\n \n wall = []\n \n if gid in self.gidlist[n]:\n\n walltemp = self.cells[n][self.gidlist[n].index(gid)].record['w'] \n if len(walltemp) > 0:\n for l in range(len(walltemp)):\n wtemp = np.array(walltemp[l])\n wtemp = interp(times,time,wtemp)\n wall.append(wtemp)\n \n else:\n \n while 1:\n wtemp = np.zeros(len(times))\n self.comm.Recv([wtemp, MPI.DOUBLE], source = MPI.ANY_SOURCE, tag=int(gid))\n \n if wtemp[0] == -1:\n break\n else:\n wall.append(wtemp)\n \n w_mat[n].append(wall)\n \n else:\n if gid in self.gidlist[n]:\n walltemp = self.cells[n][self.gidlist[n].index(gid)].record['w']\n \n if len(walltemp) > 0:\n for l in range(len(walltemp)):\n wtemp = np.array(walltemp[l])\n wtemp = interp(times,time,wtemp)\n self.comm.Ssend([wtemp, MPI.DOUBLE], dest=0, tag=int(gid))\n \n wtemp = np.ones(len(times))*-1\n self.comm.Ssend([wtemp, MPI.DOUBLE], dest=0, tag=int(gid)) \n\n if self.id == 0: \n print \"root gathered synaptic input conductance\" \n\n\n self.barrier() # wait for other nodes \n\n \n for n in range(self.n_celltypes):\n winh_mat.append([])\n \n for i, gid in enumerate(self.global_gidlist[n]): \n \n if self.id == 0:\n \n wall = []\n \n if gid in self.gidlist[n]:\n \n walltemp = self.cells[n][self.gidlist[n].index(gid)].record['w_inh'] \n if len(walltemp) > 0:\n for l in range(len(walltemp)):\n wtemp = np.array(walltemp[l])\n wtemp = interp(times,time,wtemp)\n wall.append(wtemp)\n \n else:\n \n while 1:\n wtemp = np.zeros(len(times))\n self.comm.Recv([wtemp, MPI.DOUBLE], source = MPI.ANY_SOURCE, tag=int(gid))\n \n if wtemp[0] == -1:\n break\n else:\n wall.append(wtemp)\n \n winh_mat[n].append(wall)\n \n else:\n if gid in self.gidlist[n]:\n walltemp = self.cells[n][self.gidlist[n].index(gid)].record['w_inh']\n \n if len(walltemp) > 0:\n for l in range(len(walltemp)):\n wtemp = np.array(walltemp[l])\n wtemp = interp(times,time,wtemp)\n self.comm.Ssend([wtemp, MPI.DOUBLE], dest=0, tag=int(gid))\n \n wtemp = np.ones(len(times))*-1\n self.comm.Ssend([wtemp, MPI.DOUBLE], dest=0, tag=int(gid))\n \n \n if self.id == 0: \n print \"root gathered synaptic input conductance\" \n \n\n self.barrier() # wait for other nodes \n \n\n t_all_vec_vec = []\n id_all_vec_vec = []\n f_cells_mean = []\n \n if self.id == 0: # only for first node\n \n for n in range(self.n_celltypes):\n \n ie = argsort(t_all_vec[n]) \n t_all_vec_vec.append( t_all_vec[n][ie] )\n id_all_vec_vec.append( id_all_vec[n][ie].astype(int) ) # \n \n print \"all spikes have been sorted\"\n\n if self.jitter > 0: # add jitter!\n np.random.seed(40)\n x = np.random.normal(0, self.jitter, len(t_all_vec_vec[self.a_celltype[0]])) \n t_all_vec_vec[self.a_celltype[0]] = t_all_vec_vec[self.a_celltype[0]] + x\n \n if self.delta_t > 0:\n t_all_vec_vec[self.a_celltype[0]] = t_all_vec_vec[self.a_celltype[0]] + self.delta_t\n \n gsyn = zeros(len(freq_times))\n \n if 'gsyn_in' in self.method_interpol:\n pass\n else: \n bvec = [\"syn\" in st for st in self.method_interpol]\n if np.any(bvec):\n \n if (not hasattr(self, 'passive_target')) | (self.jitter > 0): # if not already done in neuron via artificial cell\n \n [resp, _] = neuronpy.util.spiketrain.get_histogram(t_all_vec_vec[self.a_celltype[0]], bins = freq_times)\n resp = np.concatenate((zeros(1),resp))\n \n Ksyn = syn_kernel(arange(0,10*self.syn_tau2,self.bin_width), self.syn_tau1, self.syn_tau2) \n Ksyn = np.concatenate((zeros(len(Ksyn)-1),Ksyn))\n gsyn = np.convolve(Ksyn, resp, mode='same')\n print \"Generated gsyn by convolution with Ksyn\"\n self.nc_delay = 0 \n \n else:\n gsyn = interp(freq_times,time,np.array(self.rec_g)) \n \n spike_freq = np.zeros(len(freq_times))\n \n for j in self.a_celltype:\n \n #plt.figure('results_voltage') \n #ax99 = plt.subplot(2,1,1)\n #ax99.plot(time,voltage[j])\n \n #plt.text(0.5, 1.1, r'CF=' + str(round(fmean,1)) + ',fmax=' + str(round(fmax,1)) + ',fmstd=' + str(round(fmstd,1)), transform=ax99.transAxes, fontsize=10, va='center', ha='center')\n #plt.savefig(\"./figs/Pub/Voltage_\" + str(self.pickle_prefix) + \"_cell\" + str(j) + \"_N\" + str(self.N[j]) + \".pdf\", dpi = 300, transparent=True) # save it \n #plt.show()\n #plt.clf() \n \n [num_spikes, _] = neuronpy.util.spiketrain.get_histogram(t_all_vec_vec[j], bins = freq_times)\n \n if isinstance(self.factor_celltype[j], ( int, long ) ):\n f = self.factor_celltype[j] \n else:\n f = self.factor_celltype[j][0] \n \n spike_freq = spike_freq + f * np.concatenate((zeros(1),num_spikes)) / self.bin_width\n\n self.barrier() # wait for other nodes\n \n #figure('1')\n #plot(time,np.array(self.rec_s1),'b', time,np.array(self.rec_s2),'r')\n #plt.show()\n \n return {'time':time, 'voltage':voltage, 'current':current, 'fmean':fmean, 'f_cells_mean':f_cells_mean,\n 'gsyn':gsyn, 'freq_times':freq_times, 'spike_freq':spike_freq, 'gsyn_in':gsyn_in, 'fmeanA':fmeanA, 'fmaxA':fmaxA, 'fmstdA':fmstdA, 'fcvmA':fcvmA, 'fstdmA':fstdmA, 'fbstdA':fbstdA,\n 't_all_vec_vec':t_all_vec_vec, 'id_all_vec_vec':id_all_vec_vec, 'gsyns':gsyns, 'w_mat':w_mat, 'winh_mat':winh_mat, 'fmax':fmax, 'fmstd':fmstd, 'fcvm':fcvm, 'fbaseA':fbaseA, 'fbase':fbase}\n \n \n def clean(self):\n \n self.pc.runworker() \n self.pc.done() \n \n \n def compute_Transfer(self, stimulus, spike_freq, freq_times, t, noise_data_points, gsyn, gsyn_in, do_csd, t_qual, K_mat_old, t_startstop, inh_factor=[1]):\n\n stimulus0 = np.zeros(len(stimulus[0]))\n \n for a in self.a_celltype:\n # sum input to produce linear input that should be reconstructed!\n \n if (any(self.syn_inh_dist) > 0) and (any(self.syn_ex_dist) > 0):\n if max(self.syn_inh_dist) == max(self.syn_ex_dist): # same signal through ex and inh\n print \"inh_factor = [0,1]\"\n inh_factor = [0,1] \n \n for ni in self.syn_ex_dist[a]:\n if ni != 0:\n stimulus0 += inh_factor[ni-1] * stimulus[ni-1]\n print \"+ex:\", ni-1\n\n for ni in self.syn_inh_dist[a]:\n if ni != 0:\n stimulus0 -= inh_factor[ni-1] * stimulus[ni-1] #old: +nemax\n print \"-inh:\", ni-1 #old: +nemax\n \n if (max(self.n_syn_ex) == 0) and (max(self.n_syn_inh) == 0): \n stimulus0 += stimulus[0] \n print \"current\"\n \n #if self.n_syn_ex[self.celltype_syn[0]] == 0:\n # stimulus0 += stimulus[0] \n \n # amplitude should not matter since filter amplitude is simply adjusted \n #stimulus = stimulus0 #/len(self.syn_ex_dist)\n\n stimulus0 = stimulus0 / std(stimulus0) / 2\n \n # linear interpolation inside compute_Transfer !!!\n print \"max(stimulus0):\",max(stimulus0)\n results = compute_Transfer(spike_freq = spike_freq, freq_times = freq_times, \n stimulus = stimulus0, t = t, noise_data_points = noise_data_points, gsyn = gsyn, gsyn_in = gsyn_in, do_csd = do_csd, t_kernel = 1*s,\n method_interpol = self.method_interpol, nc_delay = self.nc_delay, w_length = 3, t_qual = t_qual, K_mat_old = K_mat_old, t_startstop = t_startstop, give_psd = self.give_psd) # freq_wp not defined, use all frequencies\n \n # TEST:\n #VAF = results.get('VAFf_mat')\n #freq_used = results.get('freq_used')\n \n #iend = mlab.find(freq_used >= self.xmax)[0] \n #err = 1-mean(VAF[1][0,1:iend-1])\n #print \"err: \", err \n \n return results\n \n \n def residuals_compute_Transfer(self, p, stimulus, spike_freq, freq_times, t, noise_data_points, gsyn, gsyn_in, do_csd, t_qual, K_mat_old, t_startstop, inh_factor):\n \n inh_factor_in = inh_factor[:]\n ip = 0\n for i, inhf in enumerate(inh_factor_in):\n if inhf < 0:\n inh_factor_in[i] = p[ip]\n ip += 1\n \n results = self.compute_Transfer(stimulus = stimulus, spike_freq = spike_freq, freq_times = freq_times, \n t = t, noise_data_points = noise_data_points, gsyn = gsyn, gsyn_in = gsyn_in, \n do_csd = do_csd, t_qual = t_qual, K_mat_old = K_mat_old, t_startstop = t_startstop, inh_factor = inh_factor_in) \n \n VAF = results.get('VAFf_mat')\n freq_used = results.get('freq_used')\n \n iend = mlab.find(freq_used >= self.xmax)[0] \n err = 1-mean(VAF[1][0,0:iend])\n print \"inh_factor:\", inh_factor_in, \"err: \", err \n \n return err \n \n #@profile \n def fun_cnoise_Stim(self, t_stim = 10*s, sexp = 0, cutf = 0, do_csd = 1, t_qual = 0, freq_used = np.array([]), K_mat_old = np.array([]), inh_factor = [1], onf = None, equi = 0):\n \"\"\"\n Stimulate cell with colored noise\n sexp = spectral exponent: Power ~ 1/freq^sexp\n cutf = frequency cutoff: Power flat (white) for freq <~ cutf \n do_csd = 1: use cross spectral density function for computation\n \"\"\"\n self.barrier() # wait for other nodes\n \n filename = str(self.pickle_prefix) + \"_results_pop_cnoise.p\"\n filepath = self.data_dir + \"/\" + filename\n \n if self.id == 0: print \"- filepath:\", filepath \n \n if self.do_run or (os.path.isfile(filepath) is False):\n\n tstart = 0; \n fs = 1 / self.dt # sampling rate \n fmax = fs / 2 # maximum frequency (nyquist)\n \n t_noise = arange(tstart, t_stim, self.dt) # create stimulus time vector, make sure stimulus is even!!!\n\n #print self.syn_ex_dist\n #print self.syn_inh_dist\n #exit()\n \n if (self.syn_ex_dist == []):\n for nt in range(self.n_celltypes): # loop over all cells\n #print \"nt\", nt\n if hasattr(self.cells[nt][0], 'input_vec'):\n self.syn_ex_dist.append([1] * len(self.cells[nt][0].input_vec)) # default ex for all by default!!!\n else: \n self.syn_ex_dist.append([1] * self.n_syn_ex[nt]) # default ex for all by default!!!\n \n #print self.syn_ex_dist\n \n if (self.syn_ex_dist[0] == []):\n nemax = 1\n else:\n nemax = max([item for sublist in self.syn_ex_dist for item in sublist])\n \n if (self.syn_inh_dist == []): # and (any(self.n_syn_inh) > 0)\n for nt in range(self.n_celltypes): # loop over all cells\n self.syn_inh_dist.append([0] * self.n_syn_inh[nt]) # default no inh for all by default!!!\n \n #print self.syn_inh_dist\n #exit()\n \n if (self.syn_inh_dist[0] == []):\n nimax = 0\n else:\n nimax = max([item for sublist in self.syn_inh_dist for item in sublist]) \n \n #print \"self.syn_inh_dist, self.syn_ex_dist\", self.syn_inh_dist, self.syn_ex_dist\n \n n_noise = max([nemax,nimax]) # number of noise sources\n #print n_noise,nemax,nimax\n # create reproduceable input\n noise_data = []\n\n for nj in range(n_noise):\n \n if self.id == 0: # make sure all have the same signal !!!\n if len(freq_used) == 0: \n noise_data0 = create_colnoise(t_noise, sexp, cutf, self.seed+nj, onf = onf)\n else:\n noise_data0, _, _, _ = create_multisines(t_noise, freq_used) # create multi sine signal\n else:\n noise_data0 = np.empty(len(t_noise), dtype=np.float64)\n\n noise_data0 = self.broadcast(noise_data0, fast = True) \n \n noise_data.append(noise_data0)\n noise_data0 = [] \n \n noise_data_points = len(noise_data[0]) \n\n # Create signal weight vector inh_factor if it is not fully given\n if len(noise_data) > len(inh_factor):\n inh_factor = [inh_factor[0]] * len(noise_data) \n print \"inh_factor:\", inh_factor\n\n #if equi:\n #pass\n # tstop = t_stim\n \n if max(self.n_syn_ex) == 0: # this means current input\n \n self.set_IStim() # sets amp\n \n if self.fluct_s != []:\n if self.fluct_s[self.a_celltype[0]] > 0:\n if self.id == 0: print \"- adding i fluct\"\n self.connect_fluct()\n \n for i, m in enumerate(self.method_interpol):\n if \"syn\" in m: self.method_interpol[i] = \"syn \" + str(self.syn_tau1/ms) + \"/\" + str(self.syn_tau2/ms) + \"ms\"\n if \"bin\" in m: self.method_interpol[i] = \"bin \" + str(self.bin_width/ms) + \"ms\"\n \n stimulus = []\n for nj in range(len(noise_data)):\n stimulus0, t, t_startstop = construct_Stimulus(noise_data[nj], fs, self.amp[self.a_celltype[0]], ihold = 0, delay_baseline = self.delay_baseline) # , tail_points = 0\n stimulus.append(stimulus0)\n tstop = t[-1]\n \n self.set_IPlay2(stimulus, t)\n if self.id == 0: print \"- starting colored noise transfer function estimation! with amp = \" + str(np.round(self.amp[self.a_celltype[0]],4)) + \", ihold = \" + str(np.round(self.ihold[self.a_celltype[0]],4)) + \", ihold_sigma = \" + str(np.round(self.ihold_sigma,4)) + \", dt = \" + str(self.dt) + \" => maximum frequency = \" + str(fmax) + \"\\r\" \n \n else:\n\n self.give_freq = False\n ihold = self.set_i(self.ihold) # just sets amp, ihold should not change! \n\n if 'gsyn_in' not in self.method_interpol: \n pass\n else:\n self.g_syn_ex = [1]*len(self.N)\n \n \n if ((self.fluct_g_e0 != []) or (self.fluct_g_i0 != [])):\n if ((self.fluct_g_e0[self.a_celltype[0]] > 0) or (self.fluct_g_i0[self.a_celltype[0]] > 0)):\n if self.id == 0: print \"- adding g fluct\"\n self.connect_gfluct(E_i=-65)\n \n stimulus = []\n for nj in range(len(noise_data)):\n stimulus0, t, t_startstop = construct_Stimulus(noise_data[nj], fs, amp=1, ihold = 0, tail_points = 0, delay_baseline = self.delay_baseline) # self.amp\n stimulus.append(stimulus0)\n \n noise_data = [] \n tstop = t[-1]\n \n if self.N[self.a_celltype[0]] > 1:\n self.set_IStim(ihold = [0]*self.n_celltypes, ihold_sigma = [0]*self.n_celltypes, random_start = True, tstart_offset = 1)\n if self.id == 0: print \"- add random start\"\n \n #print \"Enter Synplay()\"\n self.set_SynPlay(stimulus, t, t_startstop = t_startstop) \n #print \"Exit Synplay()\"\n\n if self.id == 0: print \"- starting colored noise transfer function estimation with synaptic input! with amp = \" + str(np.round(self.amp,4)) + \", ihold = \" + str(np.round(self.ihold,4)) + \", ihold_sigma = \" + str(np.round(self.ihold_sigma,4)) + \", dt = \" + str(self.dt) + \" => maximum frequency = \" + str(fmax) + \"\\r\" \n \n amp_vec = []\n mag_vec = [] \n pha_vec = []\n freq_used = []\n ca = []\n SNR_mat = []\n VAFf_mat = []\n Qual_mat = []\n CF_mat = [] \n VAF_mat = []\n stim = []\n stim_re_mat = []\n resp_mat = []\n current_re = []\n ihold1 = []\n tk = []\n K_mat = []\n gsyn_in = []\n fmean = []\n fmax = [] \n fmstd = [] \n fcvm = [] \n fmeanA = []\n fmaxA = [] \n fmstdA = [] \n fcvmA = [] \n t_all_vec_input_sorted = []\n id_all_vec_input_sorted = []\n \n if (self.id == 0) and (max(self.n_syn_ex) > 0):\n print range(self.n_celltypes), np.shape(self.t_all_vec_input)\n for l in range(self.n_celltypes): \n ie = argsort(self.t_all_vec_input[l]) \n t_all_vec_input_sorted.append( self.t_all_vec_input[l][ie] )\n id_all_vec_input_sorted.append( self.id_all_vec_input[l][ie].astype(int) )\n \n #if (self.id == 0): \n # print self.g_syn_ex\n # print np.array(self.g_syn_ex)>= 0\n \n #print \"g_syn_ex:\",self.g_syn_ex\n if np.array(np.array(self.g_syn_ex)>= 0).any():\n \n if hasattr(self.cells[self.a_celltype[0]][0], 'get_states') and equi:\n print \"- Equilibrate!\"\n self.run(tstop, do_loadstate = False)\n m = md5.new()\n cell_exe_new = self.cell_exe[0]\n m.update(cell_exe_new)\n filename = './states_' + self.celltype[0] + '_' + m.hexdigest() + '_Population.b'\n self.cells[self.a_celltype[0]][0].get_states(filename)\n else:\n self.run(tstop, do_loadstate = False)\n \n i_startstop = []\n \n results = self.get(t_startstop, i_startstop) \n time = results.get('time')\n current = results.get('current') \n voltage = results.get('voltage') \n fmean = results.get('fmean') \n gsyn = results.get('gsyn') \n freq_times = results.get('freq_times')\n spike_freq = results.get('spike_freq')\n t_all_vec_vec = results.get('t_all_vec_vec')\n id_all_vec_vec = results.get('id_all_vec_vec')\n gsyns = results.get('gsyns')\n gsyn_in = results.get('gsyn_in')\n \n fmax = results.get('fmax')\n fmstd = results.get('fmstd')\n fcvm = results.get('fcvm')\n \n fmeanA = results.get('fmeanA') \n fmaxA = results.get('fmaxA')\n fmstdA = results.get('fmstdA')\n fcvmA = results.get('fcvmA')\n \n fbaseA = results.get('fbaseA') \n fbase = results.get('fbase')\n fbstdA = results.get('fbstdA')\n \n \n else: # do not run, analyse input!!!\n \n time = t\n voltage = []\n for l in range(self.n_celltypes): \n voltage.append(np.zeros(len(t)))\n current = []\n \n freq_times = []\n spike_freq = []\n gsyn = []\n gsyn_in = []\n \n t_all_vec_vec = []\n id_all_vec_vec = []\n \n fmean = []\n fmax = []\n fmstd = []\n fcvm = []\n fstdm = []\n \n fmeanA = []\n fmaxA = []\n fmstdA = []\n fcvmA = []\n fbaseA = []\n fbase = []\n fbstdA = []\n \n if self.id == 0:\n \n current = self.n_train_ex\n \n #t_all_vec = self.t_all_vec_input\n #id_all_vec = self.id_all_vec_input\n\n #ie = argsort(t_all_vec) \n #t_all_vec_vec.append( t_all_vec[ie] )\n #id_all_vec_vec.append( id_all_vec[ie].astype(int) )\n \n t_all_vec_vec = t_all_vec_input_sorted\n id_all_vec_vec = id_all_vec_input_sorted\n \n freq_times = arange(0, tstop, self.bin_width)\n spike_freq = np.zeros(len(freq_times))\n \n for j in self.a_celltype:\n \n [num_spikes, _] = neuronpy.util.spiketrain.get_histogram(t_all_vec_vec[j], bins = freq_times)\n\n if self.tau2_ex[0] > 0:\n spike_freq = np.concatenate((zeros(1),num_spikes)) \n print \"NOSYN TEST: start convolution with Ksyn\"\n Ksyn = syn_kernel(arange(0,10*self.tau2_ex[0],self.bin_width), self.tau1_ex[0], self.tau2_ex[0]) \n Ksyn = np.concatenate((zeros(len(Ksyn)-1),Ksyn))\n spike_freq = np.convolve(Ksyn, spike_freq, mode='same')\n print \"NOSYN TEST: convolution finished\"\n else:\n\n if isinstance(self.factor_celltype[j], ( int, long ) ):\n f = self.factor_celltype[j] \n else:\n f = self.factor_celltype[j][0] \n \n spike_freq = spike_freq + f * np.concatenate((zeros(1),num_spikes)) / self.bin_width\n\n fmean.append(self.fmean_input)\n fmax.append(self.fmax_input) \n fmstd.append(self.fmstd_input) \n fcvm.append(self.fcvm_input) \n fstdm.append(self.fstdm_input)\n\n if self.no_fmean == True:\n fmean.append(ihold)\n \n #plt.figure('spike_freq') \n #plt.plot(freq_times, spike_freq)\n #plt.savefig(\"./figs/Pub/Spike_freq_\" + str(self.pickle_prefix) + \".pdf\", dpi = 300, transparent=True) # save it \n #plt.clf()\n \n fmeanA = fmean[0]\n fmaxA = fmax[0]\n fmstdA = fmstd [0] \n fcvmA = fcvm[0]\n fstdmA = fstdm[0]\n \n \n if self.id == 0: \n \n if any([i<0 for i in inh_factor]):\n \n p0 = []\n inhf_idx = []\n for i, inhf in enumerate(inh_factor):\n if inhf < 0: \n p0.append(0) \n inhf_idx.append(i)\n \n plsq = fmin(self.residuals_compute_Transfer, p0, args=(stimulus, spike_freq, freq_times, t, noise_data_points, gsyn, gsyn_in, do_csd, t_qual, K_mat_old, t_startstop, inh_factor))\n p = plsq\n \n ip = 0\n for i in inhf_idx:\n inh_factor[i] = p[ip]\n ip += 1\n \n\n print \"Final inh_factor: \", inh_factor\n \n \n results = self.compute_Transfer(stimulus, spike_freq = spike_freq, freq_times = freq_times, \n t = t, noise_data_points = noise_data_points, gsyn = gsyn, gsyn_in = gsyn_in, \n do_csd = do_csd, t_qual = t_qual, K_mat_old = K_mat_old, t_startstop = t_startstop, inh_factor=inh_factor)\n \n mag_vec, pha_vec, ca, freq, freq_used, fmean_all = results.get('mag_mat'), results.get('pha_mat'), results.get('ca_mat'), results.get('freq'), results.get('freq_used'), results.get('fmean') \n SNR_mat, VAFf_mat, Qual_mat, CF_mat, VAF_mat = results.get('SNR_mat'), results.get('VAFf_mat'), results.get('Qual_mat'), results.get('CF_mat'), results.get('VAF_mat') \n stim, resp_mat, stim_re_mat, tk, K_mat = results.get('stim'), results.get('resp_mat'), results.get('stim_re_mat'), results.get('tk'), results.get('K_mat') \n \n \n self.barrier() # wait for other nodes\n \n \n if self.id == 0:\n \n if t_qual > 0:\n #print t_startstop[0], t_startstop[0]/self.dt, (t_startstop[0]+t_qual)/self.dt\n current_re = current[int(t_startstop[0]/self.dt):int((t_startstop[0]+t_qual)/self.dt)]\n current_re = current_re[int(len(K_mat[self.a_celltype[0]])):int(len(current_re))-int(len(K_mat[self.a_celltype[0]]))]\n \n if len(self.i_holdrs) > 0:\n ihold1 = self.i_holdrs[self.a_celltype[0]][0]\n else:\n ihold1 = []\n \n for l in range(len(self.method_interpol)): # unwrap \n pha_vec[l,:] = unwrap(pha_vec[l,:] * (pi / 180)) * (180 / pi) # unwrap for smooth phase\n \n # only return fraction of actual signal, it is too long!!! \n if time[-1] > self.tmax: \n imax = -1*int(self.tmax/self.dt)\n time = time[imax:]; current = current[imax:]; gsyn = gsyn[imax:]; gsyn_in = gsyn_in[imax:]\n for n in range(self.n_celltypes): \n voltage[n] = voltage[n][imax:]\n \n if freq_times != []: \n if freq_times[-1] > self.tmax:\n imax2 = where(freq_times > self.tmax)[0][0] # for spike frequency \n freq_times = freq_times[0:imax2]; spike_freq = spike_freq[0:imax2] \n \n bvec = [\"_syn\" in st for st in self.method_interpol]\n if np.any(bvec):\n # normalize synaptic integration with others \n mag_vec[1,:]= mag_vec[0,0]*mag_vec[1,:]/mag_vec[1,0] \n \n if self.id == 0: print \"start pickle\"\n \n results = {'freq_used':freq_used, 'amp':amp_vec,'mag':mag_vec,'pha':pha_vec,'ca':ca,'voltage':voltage,'tk':tk,'K_mat':K_mat, 'ihold1': ihold1, 't_startstop':t_startstop, #'stimulus':stimulus,\n 'current':current,'t1':time,'freq_times':freq_times,'spike_freq':spike_freq, 'stim':stim, 'stim_re_mat':stim_re_mat, 'resp_mat':resp_mat, 'current_re':current_re, 'gsyn_in':gsyn_in, 'fmeanA':fmeanA, 'fmaxA':fmaxA, 'fmstdA':fmstdA, 'fcvmA':fcvmA, 'fbaseA':fbaseA, 'fbase':fbase, 'fbstdA':fbstdA,\n 'fmean':fmean,'method_interpol':self.method_interpol, 'SNR':SNR_mat, 'VAF':VAFf_mat, 'Qual':Qual_mat, 'CF':CF_mat, 'VAFs':VAF_mat, 'fmax':fmax, 'fmstd':fmstd, 'fcvm':fcvm, 'inh_factor':inh_factor, 't_all_vec_vec':t_all_vec_vec, 'id_all_vec_vec':id_all_vec_vec} \n \n if self.id == 0:\n if self.dumpsave == 1:\n pickle.dump( results, gzip.GzipFile( filepath, \"wb\" ) )\n print \"pickle done\" \n \n \n if self.plot_train:\n \n for a in self.a_celltype:\n\n #i_start = mlab.find(t_all_vec_vec[a] >= 0)[0]\n #i_stop = mlab.find(t_all_vec_vec[a] >= 5)[0]\n \n #t_all_cut = t_all_vec_vec[a][i_start:i_stop]\n #id_all_cut = id_all_vec_vec[a][i_start:i_stop]\n \n t_all_cut = t_all_vec_vec[a]\n id_all_cut = id_all_vec_vec[a]\n \n f_start_in = mlab.find(t_all_cut >= 0) \n f_stop_in = mlab.find(t_all_cut <= 10) \n \n f_start = f_start_in[0] \n f_stop = f_stop_in[-1]+1 \n use_spikes = t_all_cut[f_start:f_stop]\n use_id = id_all_cut[f_start:f_stop]\n \n plt.figure('results_train') \n ax99 = plt.subplot(1,1,1)\n ax99.plot(use_spikes,use_id,'|', ms=2)\n plt.text(0.5, 1.1, r'CF=' + str(round(fmean,1)) + ',fmax=' + str(round(fmax,1)) + ',fmstd=' + str(round(fmstd,1)), transform=ax99.transAxes, fontsize=10, va='center', ha='center')\n plt.savefig(\"./figs/Pub/Train_\" + str(self.pickle_prefix) + \"_cell\" + str(a) + \"_N\" + str(self.N[a]) + \".pdf\", dpi = 300, transparent=True) # save it \n \n plt.clf()\n \n if len(t_all_cut) > 0:\n \n tbin = 100*ms\n tb = np.arange(0,t[-1],tbin)\n [all_rate, _] = neuronpy.util.spiketrain.get_histogram(t_all_cut, bins = tb)\n all_rate = np.concatenate((np.zeros(1),all_rate)) / self.N[a] / tbin\n \n plt.figure('results_train2') \n plt.plot(tb,all_rate)\n plt.savefig(\"./figs/Pub/PSTH_\" + str(self.pickle_prefix) + \"_cell\" + str(a) + \"_N\" + str(self.N[a]) + \".pdf\", dpi = 300, transparent=True) # save it \n plt.clf()\n \n plt.figure('results_noise') \n plt.plot(time,current)\n plt.savefig(\"./figs/Pub/Noise_\" + str(self.pickle_prefix) + \"_cell\" + str(a) + \"_N\" + str(self.N[a]) + \".pdf\", dpi = 300, transparent=True) # save it \n plt.clf()\n \n \n if self.plot_input:\n \n if len(t_all_vec_input_sorted[0]) > 0:\n \n i_start = mlab.find(t_all_vec_input_sorted[0] >= 0)[0]\n i_stop = mlab.find(t_all_vec_input_sorted[0] >= 5)[0]\n \n t_all_cut = t_all_vec_input_sorted[0][i_start:i_stop]\n id_all_cut = id_all_vec_input_sorted[0][i_start:i_stop]\n \n plt.figure('results_input') \n ax99 = plt.subplot(1,1,1)\n ax99.plot(t_all_cut,id_all_cut,'|', ms=2)\n plt.text(0.5, 1.1, r'fmean=' + str(round(self.fmean_input,1)) + ',fmax=' + str(round(self.fmax_input,1)) + ',fmstd=' + str(round(self.fmstd_input,1)) + ',fcvm=' + str(round(self.fcvm_input,1)) + ',fstdm=' + str(round(self.fstdm_input,1)), transform=ax99.transAxes, fontsize=10, va='center', ha='center')\n plt.savefig(\"./figs/Pub/Input_\" + str(self.pickle_prefix) + \"_N\" + str(self.N[self.a_celltype[0]]) + \".pdf\", dpi = 300, transparent=True) # save it \n plt.clf()\n \n\n else:\n \n if self.id == 0:\n results = pickle.load( gzip.GzipFile( filepath, \"rb\" ) )\n \n #print results\n #print {key:np.shape(value) for key,value in results.iteritems()}\n \n if self.minimal_dir: # save only info needed for plot\n \n print {key:np.shape(value) for key,value in results.iteritems()}\n \n if \"Fig6_pop_transfer_grc_syngr_nsyn4_cn_a1_noisesynlow_inhlow_adjfinh_varih_N100_CFo6.0_results_pop_cnoise.p\" in filename:\n results['ca'] = [] \n results['resp_mat'] = []\n results['stim'] = []\n results['current'] = []\n results['tk'] = []\n results['K_mat'] = []\n results['freq_times'] = []\n results['spike_freq'] = []\n results['stim_re_mat'] = []\n results['current_re'] = []\n results['t_all_vec_vec'] = []\n results['id_all_vec_vec'] = [] \n results['gsyn_in'] = []\n \n elif (\"Fig8_pop_transfer_none_synno_cn_cutf30_a1_noisesynlow_ih20_varih_N100_CFo-1_results_pop_cnoise.p\" in filename) \\\n or (\"Fig8_pop_transfer_none_synno_cn_cutf30_a10_noisesynlow_ih20_varih_N100_CFo-1_results_pop_cnoise.p\" in filename) \\\n or (\"Fig8_pop_transfer_grc_syngr_nsyn4_cn_cutf30_a1_noisesynlow_inhlow_adjfinh_varih_varinhn_N100_CFo9.0_results_pop_cnoise.p\" in filename) \\\n or (\"Fig8_pop_transfer_grc_syngr_nsyn4_cn_cutf30_a10_noisesynlow_inhlow_adjfinh_varih_varinhn_N100_is0.14_CFo9.0_results_pop_cnoise.p\" in filename) \\\n :\n\n results['ca'] = [] \n results['resp_mat'] = []\n results['current'] = []\n results['tk'] = []\n results['K_mat'] = []\n results['voltage'] = [] \n results['current_re'] = []\n results['t_all_vec_vec'] = []\n results['id_all_vec_vec'] = []\n results['t1'] = []\n results['gsyn_in'] = []\n \n elif (\"Fig8_pop_transfer_none_synno_cn_cutf30_a1_noisesynlow_ih20_varih_N50_twopop_CFo-1_results_pop_cnoise.p\" in filename) \\\n or (\"Fig8_pop_transfer_none_synno_cn_cutf30_a10_noisesynlow_ih20_varih_N50_twopop_CFo-1_results_pop_cnoise.p\" in filename) \\\n or (\"Fig8_pop_transfer_grc_syngr_nsyn4_cn_cutf30_a1_noisesynlow_inhlow_adjfinh_varih_varinhn_N50_twopop_CFo9.0_results_pop_cnoise.p\" in filename) \\\n or (\"Fig8_pop_transfer_grc_syngr_nsyn4_cn_cutf30_a10_noisesynlow_inhlow_adjfinh_varih_varinhn_N50_is0.14_twopop_CFo9.0_results_pop_cnoise.p\" in filename) \\\n or (\"Fig8_pop_transfer_grc_syngr_nsyn4_cn_cutf5_a1_noisesynlow_inhlow_adjfinh_varih_varinhn_N100_CFo14.0_results_pop_cnoise.p\" in filename) \\\n or (\"Fig8_pop_transfer_grc_syngr_nsyn4_cn_cutf5_a1_noisesynlow_inhlow_adjfinh_varih_varinhn_N50_twopop_CFo14.0_results_pop_cnoise.p\" in filename) \\\n :\n \n results['ca'] = [] \n results['resp_mat'] = []\n results['current'] = []\n results['tk'] = []\n results['K_mat'] = []\n results['voltage'] = [] \n results['current_re'] = []\n results['t_all_vec_vec'] = []\n results['id_all_vec_vec'] = []\n results['t1'] = []\n results['gsyn_in'] = []\n results['freq_times'] = []\n results['spike_freq'] = []\n \n elif (\"Fig4_pop_transfer_grc_cn_addn100_N[100]_CF[40]_amod[1]_results_pop_cnoise.p\" in filename) \\\n or (\"Fig4_pop_transfer_grc_cn_addn1_N[100]_CF[40]_amod[1]_results_pop_cnoise.p\" in filename) \\\n or (\"Fig4b_pop_transfer_grc_lowcf_cn_twopop_N[50, 50]_CF[0.0055, 0.0055]_amod[None, None]_results_pop_cnoise.p\" in filename) \\\n or (\"Fig4b_pop_transfer_grc_lowcf_cn_N[100]_CF[0.0055]_amod[None]_results_pop_cnoise.p\" in filename) \\\n or (\"Fig4b_pop_transfer_grc_lowcf_slownoise_cn_twopop_N[50, 50]_CF[0.0051, 0.0051]_amod[None, None]_results_pop_cnoise.p\" in filename) \\\n or (\"Fig4b_pop_transfer_grc_lowcf_slownoise_cn_N[100]_CF[0.0051]_amod[None]_results_pop_cnoise.p\" in filename) \\\n :\n \n results['ca'] = [] \n results['resp_mat'] = []\n results['current'] = []\n results['tk'] = []\n results['K_mat'] = []\n results['voltage'] = [] \n results['t_all_vec_vec'] = []\n results['id_all_vec_vec'] = []\n results['t1'] = []\n results['gsyn_in'] = []\n results['freq_times'] = []\n results['spike_freq'] = []\n \n elif (\"Fig2_pop_transfer_\" in filename) \\\n :\n \n results['ca'] = [] \n results['resp_mat'] = []\n results['current'] = []\n results['t1'] = []\n results['voltage'] = [] \n results['freq_times'] = []\n results['spike_freq'] = []\n results['current_re'] = []\n results['t_all_vec_vec'] = []\n results['id_all_vec_vec'] = []\n results['gsyn_in'] = []\n \n else:\n results['ca'] = [] \n results['resp_mat'] = []\n results['stim'] = []\n results['current'] = []\n results['tk'] = []\n results['K_mat'] = []\n results['t1'] = []\n results['voltage'] = [] \n results['freq_times'] = []\n results['spike_freq'] = []\n results['stim_re_mat'] = []\n results['current_re'] = []\n results['t_all_vec_vec'] = []\n results['id_all_vec_vec'] = []\n results['gsyn_in'] = []\n\n print {key:np.shape(value) for key,value in results.iteritems()}\n\n pickle.dump( results, gzip.GzipFile( self.minimal_dir + \"/\" + filename, \"wb\" ) ) \n \n else:\n results = {'freq_used':[], 'amp':[],'mag':[],'pha':[],'ca':[],'voltage':[], 'tk':[],'K_mat':[], 'ihold1':[], 't_startstop':[], #'stimulus':[],\n 'current':[],'t1':[],'freq_times':[],'spike_freq':[], 'stim':[], 'stim_re_mat':[], 'current_re':[], 'gsyn_in':[], 'fmeanA':[], 'fmaxA':[], 'fmstdA':[], 'fcvmA':[], 'fbaseA':[], 'fbase':[], 'fbstdA':[],\n 'fmean':[],'method_interpol':self.method_interpol, 'SNR':[], 'VAF':[], 'Qual':[], 'CF':[], 'VAFs':[], 'fmax':[], 'fmstd':[], 'fcvm':[], 'inh_factor':[], 't_all_vec_vec':[], 'id_all_vec_vec':[]} \n \n if self.id == 0: \n\n if self.plot_train: \n\n for a in self.a_celltype:\n \n t1 = results.get('t1') \n voltage = results.get('voltage') \n fmean = results.get('fmean') \n fmax = results.get('fmax') \n fmstd = results.get('fmstd') \n \n \n if results.has_key('t_all_vec_vec'):\n \n if len(results['t_all_vec_vec']) > 0: \n t_all_vec_vec = results.get('t_all_vec_vec') \n id_all_vec_vec = results.get('id_all_vec_vec') \n \n t_all_cut = t_all_vec_vec[a]\n id_all_cut = id_all_vec_vec[a]\n \n f_start_in = mlab.find(t_all_cut >= 0) \n f_stop_in = mlab.find(t_all_cut <= 10) \n \n f_start = f_start_in[0] \n f_stop = f_stop_in[-1]+1 \n use_spikes = t_all_cut[f_start:f_stop]\n use_id = id_all_cut[f_start:f_stop]\n \n plt.figure('results_train') \n ax97 = plt.subplot(1,1,1)\n ax97.plot(use_spikes,use_id,'|', ms=6)\n plt.text(0.5, 1.1, r'CF=' + str(round(fmean,1)) + ',fmax=' + str(round(fmax,1)) + ',fmstd=' + str(round(fmstd,1)), transform=ax97.transAxes, fontsize=10, va='center', ha='center')\n plt.savefig(\"./figs/Pub/Train_\" + str(self.pickle_prefix) + \"_cell\" + str(a) + \"_N\" + str(self.N[a]) + \".pdf\", dpi = 300, transparent=True) # save it \n\n \n plt.figure('results_voltage') \n ax99 = plt.subplot(2,1,1)\n ax99.plot(t1,voltage[a])\n \n t_noise = arange(0, t_stim, self.dt)\n noise_data = create_colnoise(t_noise, sexp, cutf, 50, onf = onf)\n stimulus, t, t_startstop = construct_Stimulus(noise_data, 1/self.dt, amp=1, ihold = 0, tail_points = 0, delay_baseline = self.delay_baseline) \n ax98 = plt.subplot(2,1,2)\n ax98.plot(t[0:10/self.dt],stimulus[0:10/self.dt],color='k')\n \n plt.text(0.5, 1.1, r'CF=' + str(round(fmean,1)) + ',fmax=' + str(round(fmax,1)) + ',fmstd=' + str(round(fmstd,1)), transform=ax99.transAxes, fontsize=10, va='center', ha='center')\n plt.savefig(\"./figs/Pub/Voltage_\" + str(self.pickle_prefix) + \"_cell\" + str(a) + \"_N\" + str(self.N[a]) + \".pdf\", dpi = 300, transparent=True) # save it \n plt.show()\n plt.clf()\n \n if (self.id == 0) and (do_csd == 1):\n Qual = results.get('Qual') \n for i, ii in enumerate(self.method_interpol):\n print \"\\n[QUAL:] Interpol:\", ii, \"SNR0:\", Qual[i,0,0], \"SNR_cutff:\", Qual[i,0,1], \"SNR_mean:\", Qual[i,0,2], \"\\n VAF0:\", Qual[i,1,0], \"VAF_cutff:\", Qual[i,1,1], \"VAF_mean:\", Qual[i,1,2], \"\\n CF(subtracted):\", Qual[i,2,0], \"VAF(subtracted):\", Qual[i,2,1] \n \n VAF = results.get('VAF')\n freq_used = results.get('freq_used') \n iend = mlab.find(freq_used >= self.xmax)[0] \n print 'm(VAF)=' + str(np.mean(VAF[1][0,0:iend])) \n \n self.barrier() # wait for other nodes\n \n return results\n\n\n# def fun_ssine_Stim(self, freq_used = np.array([1, 10, 100, 1000])*Hz):\n# \"\"\"\n# Compute impedance and/or transfer function using Single sine stimulation\n# Only compute transfer function if there is a steady state (resting) firing rate!\n# \"\"\"\n# self.barrier() # wait for other nodes\n# \n# filepath = \"./data/\" + str(self.pickle_prefix) + \"_results_pop_ssine.p\"\n# \n# if self.do_run or (os.path.isfile(filepath) is False):\n# \n# fs = 1 / self.dt # sampling rate \n# fmax = fs / 2 # maximum frequency (nyquist)\n# \n# if self.id == 0: print \"- starting single sine transfer function estimation! with amp = \" + str(np.round(self.amp[a_celltype[0]],4)) + \", ihold = \" + str(np.round(self.ihold[self.a_celltype[0]],4)) + \", dt = \" + str(self.dt) + \" => maximum frequency = \" + str(fmax) + \"\\r\" \n# \n# if max(self.n_syn_ex) == 0:\n# self.set_IStim() \n# \n# if self.fluct_s != []:\n# if self.fluct_s[self.a_celltype[0]] > 0:\n# if self.id == 0: print \"- adding i fluct\"\n# self.connect_fluct()\n# \n# for i, m in enumerate(self.method_interpol):\n# if \"syn\" in m: self.method_interpol[i] = \"syn \" + str(self.syn_tau1/ms) + \"/\" + str(self.syn_tau2/ms) + \"ms\"\n# if \"bin\" in m: self.method_interpol[i] = \"bin \" + str(self.bin_width/ms) + \"ms\"\n# \n# else:\n# self.give_freq = False\n# ihold = self.set_i(self.ihold) # just sets amp, ihold should not change! \n# \n# if ((self.fluct_g_e0 != []) or (self.fluct_g_i0 != [])):\n# if ((self.fluct_g_e0[self.a_celltype[0]] > 0) or (self.fluct_g_i0[self.a_celltype[0]] > 0)):\n# if self.id == 0: print \"- adding g fluct\"\n# self.connect_gfluct(E_i=-65)\n# \n# #if ((self.fluct_std_e[self.a_celltype[0]] != []) or (self.fluct_std_i[self.a_celltype[0]] != [])):\n# # if ((self.fluct_std_e[self.a_celltype[0]] > 0) or (self.fluct_std_i[self.a_celltype[0]] > 0)):\n# # if self.id == 0: print \"- adding g fluct\"\n# # self.connect_gfluct(E_i=-65)\n# \n# if 'gsyn_in' not in self.method_interpol: \n# pass\n# else:\n# self.g_syn_ex = 1\n# \n# \n# for i, fu in enumerate(freq_used):\n# \n# if self.id == 0: print \"- single sine processing frequency = \" + str(fu)\n# \n# t, stimulus, i_startstop, t_startstop = create_singlesine(fu = fu, amp = self.amp[a_celltype[0]], ihold = 0, dt = self.dt, periods = 20, minlength = 2*s, t_prestim = 1*s)\n# tstop = t[-1]\n# \n# if i == 0: t_startstop_plot = t_startstop\n# \n# if max(self.n_syn_ex) == 0:\n# self.set_IPlay(stimulus, t)\n# else:\n# self.set_SynPlay(stimulus, t) \n# \n# if self.g_syn_ex >= 0: # should also be true for current input!!!\n# \n# self.run(tstop)\n# \n# if i == 0: # do this here to have something to return\n# \n# # select first sinusoidal to plot, later\n# voltage_plot = []\n# current_plot = []\n# time_plot = []\n# freq_times_plot = []\n# spike_freq_plot = []\n# gsyn_plot = []\n# \n# # construct vectors\n# amp_vec = zeros(len(freq_used)) # amplitude vector\n# fmean_all = zeros(len(freq_used)) # mean firing frequency (all cells combined)\n# fmean = zeros(len(freq_used)) # mean firing frequency (one cell)\n# ca = zeros(len(freq_used), dtype=complex)\n# \n# # create matrix to hold all different interpolation methods:\n# mag_vec = zeros((len(self.method_interpol),len(freq_used))) # magnitude vector\n# pha_vec = zeros((len(self.method_interpol),len(freq_used))) # phase vector \n# NI_vec = zeros((len(self.method_interpol),len(freq_used))) # NI vector\n# VAF_vec = zeros((len(self.method_interpol),len(freq_used))) # VAF vector\n# \n# results = self.get(t_startstop, i_startstop) # t1 should be equal to t!!!\n# time, voltage, current, fmean0, gsyn = results.get('time'), results.get('voltage'), results.get('current'), results.get('fmean'), results.get('gsyn')\n# freq_times, spike_freq, t_all_vec_vec, id_all_vec_vec, gsyns = results.get('freq_times'), results.get('spike_freq'), results.get('t_all_vec_vec'), results.get('id_all_vec_vec'), results.get('gsyns')\n# \n# else:\n# \n# time = t\n# voltage = []\n# voltage.append(np.zeros(len(t)))\n# current = stimulus\n# \n# freq_times = []\n# spike_freq = []\n# fmean0 = ihold\n# gsyn = []\n# gsyn_in = []\n# \n# t_all_vec_vec = []\n# id_all_vec_vec = []\n# \n# \n# if self.id == 0:\n# \n# t_all_vec = []\n# t_all_vec.append([])\n# t_all_vec[0] = np.concatenate(self.t_all_vec_input)\n# \n# id_all_vec = []\n# id_all_vec.append([])\n# id_all_vec[0] = np.concatenate(self.id_all_vec_input)\n# \n# ie = argsort(t_all_vec[0]) \n# t_all_vec_vec.append( t_all_vec[0][ie] )\n# id_all_vec_vec.append( id_all_vec[0][ie].astype(int) ) # \n# \n# \n# freq_times = arange(0, tstop, self.bin_width)\n# [num_spikes, _] = neuronpy.util.spiketrain.get_histogram(t_all_vec_vec[0], bins = freq_times)\n# spike_freq = np.concatenate((zeros(1),num_spikes)) / self.bin_width\n#\n# \n# if self.id == 0:\n#\n# fmean[i] = fmean0[0]\n#\n# if i == 0: \n# \n# # select first sinusoidal to plot\n# voltage_plot = voltage\n# current_plot = current\n# time_plot = time\n# freq_times_plot = freq_times\n# spike_freq_plot = spike_freq\n# gsyn_plot = gsyn\n# \n# \n# for l in range(len(self.method_interpol)):\n# \n# if \"bin\" in self.method_interpol[l]:\n# \n# # binning and linear interpolation\n# stimulus_signal = stimulus[i_startstop[0]:i_startstop[1]] # cut out relevant signal\n# t_input_signal = t[i_startstop[0]:i_startstop[1]] - t[i_startstop[0]]\n# \n# spike_freq_interp = interp(t, freq_times, spike_freq, left=0, right=0) # interpolate to be eqivalent with input, set zero at beginning and end!\n# freq_out_signal_interp = spike_freq_interp[i_startstop[0]:i_startstop[1]] # cut out relevant signal\n# vamp, mag_vec[l,i], pha_vec[l,i], fmean_all[i], _ = get_magphase(stimulus_signal, t_input_signal, freq_out_signal_interp, t_input_signal, method = \"fft\", f = fu)\n# \n# results = est_quality(t_input_signal, fu, freq_out_signal_interp, self.amp[a_celltype[0]]*mag_vec[l,i], pha_vec[l,i]/ (180 / pi), fmean_all[i]) \n# NI_vec[l,i], VAF_vec[l,i] = results.get('NI'), results.get('VAF')\n# print \"-[bin] NI: \" + str(NI_vec[l,i]) + \", VAF: \" + str(VAF_vec[l,i])\n# \n# if \"syn\" in self.method_interpol[l]:\n# \n# # synaptic integration \n# dt_out = t_input_signal[2] - t_input_signal[1]\n# shift = self.nc_delay/dt_out # shift response by the nc delay to remove offset\n# freq_out_signal_syn = gsyn[i_startstop[0]+shift:i_startstop[1]+shift] # cut out relevant signal\n# \n# vamp, mag_vec[l,i], pha_vec[l,i], fm, _ = get_magphase(stimulus_signal, t_input_signal, freq_out_signal_syn, t_input_signal, method = \"fft\", f = fu)\n# \n# results = est_quality(t_input_signal, fu, freq_out_signal_syn, self.amp[a_celltype[0]]*mag_vec[l,i], pha_vec[l,i]/ (180 / pi), fm) \n# NI_vec[l,i], VAF_vec[l,i] = results.get('NI'), results.get('VAF')\n# print \"-[syn] NI: \" + str(NI_vec[l,i]) + \", VAF: \" + str(VAF_vec[l,i])\n# \n# \n# self.barrier() # wait for other nodes\n# \n# #print \"rest: \" + str(vrest) + \" freq_used:\" + str(freq_used) + \" amp_vec:\" + str(amp_vec) + \" mag_vec:\" + str(mag_vec) + \" pha_vec:\" + str(pha_vec)\n# \n# if self.id == 0:\n# \n# for l in range(len(self.method_interpol)): # unwrap \n# pha_vec[l,:] = unwrap(pha_vec[l,:] * (pi / 180)) * (180 / pi) # unwrap for smooth phase\n# \n# # only return fraction of actual signal, it is too long!!! \n# if time_plot[-1] > self.tmax: \n# imax = where(time_plot > self.tmax)[0][0] # for voltage, current and time\n# time_plot = time_plot[0:imax]; current_plot = current_plot[0:imax]; gsyn_plot = gsyn_plot[0:imax]\n# for n in range(self.n_celltypes): \n# voltage_plot[n] = voltage_plot[n][0:imax]\n# \n# if freq_times_plot != []: \n# if freq_times_plot[-1] > self.tmax:\n# imax2 = where(freq_times_plot > self.tmax)[0][0] # for spike frequency \n# freq_times_plot = freq_times_plot[0:imax2]; spike_freq_plot = spike_freq_plot[0:imax2] \n# \n# # normalize synaptic integration with with first magnitude, may by syn itself! \n# bvec = [\"syn\" in st for st in self.method_interpol]\n# if np.any(bvec):\n# k = where(bvec) \n# mag_vec[k,:]= mag_vec[0,0]*mag_vec[k,:]/mag_vec[k,0]\n# \n# NI_vec = (freq_used, NI_vec)\n# VAF_vec = (freq_used, VAF_vec)\n# results = {'freq_used':freq_used, 'amp':amp_vec,'mag':mag_vec,'pha':pha_vec,'ca':ca,'voltage':voltage_plot, 't_startstop':t_startstop_plot,\n# 'current':current_plot,'t1':time_plot,'freq_times':freq_times_plot,'spike_freq':spike_freq_plot,\n# 'fmean':mean(fmean),'method_interpol':self.method_interpol, 'NI':NI_vec, 'VAF':VAF_vec}\n# \n# if self.id == 0:\n# pickle.dump( results, gzip.GzipFile( filepath, \"wb\" ) )\n# \n# else:\n# \n# if self.id == 0:\n# results = pickle.load( gzip.GzipFile( filepath, \"rb\" ) )\n# else:\n# results = {'freq_used':[], 'amp':[],'mag':[],'pha':[],'ca':[],'voltage':[], 't_startstop':[],\n# 'current':[],'t1':[],'freq_times':[],'spike_freq':[],\n# 'fmean':[],'method_interpol':self.method_interpol,'NI':[],'VAF':[]} \n# \n# return results\n \n def get_RC(self, opt_plot):\n \n if self.id == 0:\n if \"analytical\" in opt_plot: # simplest case, only uses rm and tau, scaling necessary \n exec self.cell_exe[self.a_celltype[0]]\n sim = Stimulation(cell, temperature = self.temperature)\n rm, cm, taum = sim.get_RCtau()\n else:\n rm = cm = taum = 0\n \n if \"if\" in opt_plot:\n Vrest = cell.soma(0.5).pas.e*mV\n Vth = cell.spkout.thresh*mV \n Vreset = cell.spkout.vrefrac*mV\n else:\n Vreset = 0*mV; Vth = 1*mV; Vrest = 0*mV\n \n sim = None\n cell = None \n else:\n rm = cm = taum = 0\n Vreset = 0*mV; Vth = 1*mV; Vrest = 0*mV\n \n return rm, cm, taum, Vreset, Vth, Vrest\n\n\n def fun_plot(self, currlabel=\"control\", dowhat=\"cnoise\", freq_used=np.array([]), cutf=10, sexp=0, t_stim=100*s, ymax=0, ax=None, SNR=None, VAF=None, t_qual=0, opt_plot=np.array([]), method_interpol_plot=[], do_csd = 1):\n\n SNR_switch = SNR\n VAF_switch = VAF\n \n rm, cm, taum, Vreset, Vth, Vrest = self.get_RC(opt_plot)\n \n if dowhat == \"cnoise\":\n \n if do_csd == 0:\n t_qual = 0; SNR_switch = 0; VAF_switch = 0\n\n results = self.fun_cnoise_Stim(t_stim = t_stim, cutf = cutf, sexp = sexp, t_qual = t_qual, freq_used = freq_used, do_csd = do_csd)\n \n freq_used, amp_vec, mag, pha, ca, voltage, current, t1 = results.get('freq_used'), results.get('amp'), results.get('mag'), results.get('pha'), results.get('ca'), results.get('voltage'), results.get('current'), results.get('t1') \n freq_times, spike_freq, fmean, method_interpol, SNR, VAF, Qual = results.get('freq_times'), results.get('spike_freq'), results.get('fmean'), results.get('method_interpol'), results.get('SNR'), results.get('VAF'), results.get('Qual') \n stim, stim_re_mat, current_re, tk, K_mat_old = results.get('stim'), results.get('stim_re_mat'), results.get('current_re'), results.get('tk'), results.get('K_mat')\n \n elif dowhat == \"ssine\":\n \n results = self.fun_ssine_Stim(freq_used = freq_used0)\n \n freq_used, amp_vec, mag, pha, ca, voltage, current, t1 = results.get('freq_used'), results.get('amp'), results.get('mag'), results.get('pha'), results.get('ca'), results.get('voltage'), results.get('current'), results.get('t1') \n freq_times, spike_freq, fmean, method_interpol, VAF = results.get('freq_times'), results.get('spike_freq'), results.get('fmean'), results.get('method_interpol'), results.get('VAF') \n tk = []\n K_mat_old = []\n\n # analyse\n if self.id == 0:\n \n print \"Mean rate: \" + str(fmean)\n \n # Turn it off if set to zero\n if SNR_switch == 0: SNR = None\n if VAF_switch == 0: VAF = None \n\n \n if t_qual > 0:\n \n plt.figure(\"Reconstruct\")\n \n ax1 = subplot(2,1,1)\n \n ax1.plot(np.arange(len(stim))*dt-1, current_re*1e3, 'b', linewidth=1) \n ax1.plot(np.arange(len(stim))*dt-1, (stim)*1e3, 'k-', linewidth=1)\n ax1.plot(np.arange(len(stim))*dt-1, (stim_re_mat[0,:])*1e3, 'r', linewidth=1, alpha=1)\n \n #adjust_spines(ax1, ['left','bottom'], d_out = 10) \n #ax1.axis(xmin=0, xmax=1) \n \n #ax1.axis(ymin=8.3, ymax=10.7)\n #ax1.yaxis.set_ticks(array([8.5,9,9.5,10,10.5]))\n #ax1.set_title(\"Reconstruction\") \n \n #ax1.set_xlabel(\"s\") \n #ax1.set_ylabel(\"pA\")\n \n #ax1.text(0.15, 10.7, \"Input current\", color=color3, fontsize = 8)\n #ax1.text(0.8, 10.7, \"Signal\", color=\"#000000\", fontsize = 8)\n #ax1.text(0.0, 8.2, \"Reconstruction\", color=color2, fontsize = 8)\n \n ax2 = subplot(2,1,2)\n ax2.plot(tk, K_mat_old[0], 'k', linewidth=1) \n \n \n self.save_plot(directory = \"./figs/dump/\", prefix = \"reconstruct\")\n \n plt.figure(\"Transfer\")\n \n currtitle = currlabel + \" pop \" + dowhat + \", \" + self.celltype[self.a_celltype[0]] \n \n ax = plot_transfer(currtitle, freq_used, mag, pha, t1, current, voltage[self.a_celltype[0]], freq_times, spike_freq, taum, fmean, self.ihold, rm, Vreset, Vth, Vrest, method_interpol, method_interpol_plot, SNR = SNR, VAF = VAF, ymax = self.ymax, ax = self.ax, linewidth = self.linewidth, color_vec = self.color_vec, alpha = self.alpha, opt_plot = opt_plot) \n \n suptitle(\"Population transfer function of \" + str(self.N[self.a_celltype[0]]) + \" \" + self.celltype[self.a_celltype[0]] + \", amp: \" + str(np.round(self.amp[self.a_celltype[0]],4)) + \", amod: \" + str(self.amod) + \", ih: \" + str(np.round(self.ihold,4)) + \", ih_s: \" + str(np.round(self.ihold_sigma,4)) + \", fm: \" + str(np.round(fmean,2)) + \", fl_s: \" + str(self.fluct_s)) \n \n return VAF, SNR, ax, tk, K_mat_old \n \n\n def save_plot(self, directory = \"./figs/dump/\", prefix = \" \"):\n \n if pop.id == 0:\n \n from datetime import datetime\n idate = datetime.now().strftime('%Y%m%d_%H%M') # %S\n savefig(directory + idate + \"-pop_transfer_\" + prefix + \"_\" + self.celltype[self.a_celltype[0]] + \"_N\" + str(self.N[self.a_celltype[0]]) + \"_ihold\" + str(np.round(self.ihold,4)) + \"_amp\" + str(np.round(self.amp[self.a_celltype[0]],4)) + \".pdf\", dpi = 300) # save it\n\n \n def do_pca_ica(self, t_analysis_delay=0, t_analysis_stop=1, time=0, signals=0, output_dim=10, n_processes=32, n_chunks=32, do_ica=1, n_celltype = 0):\n \n if self.use_mpi:\n \n filepath = self.data_dir + \"/\" + str(self.pickle_prefix) + \"_results_pop_pca_ica.p\"\n \n if self.do_run or (os.path.isfile(filepath) is False):\n \n # PCA\n \n # remove beginning\n dt = time[2]-time[1]\n t = time[int(t_analysis_delay/dt):int(t_analysis_stop/dt)] \n pca_mat = np.array(signals[n_celltype]).T[int(t_analysis_delay/dt):int(t_analysis_stop/dt),:]\n \n node = mdp.nodes.PCANode(output_dim=output_dim, svd=True)\n \n # pad with zeros to be able to split into chunks!\n n_add = n_chunks-np.remainder(np.shape(pca_mat)[0],n_chunks)\n mat_add = np.zeros((n_add, np.shape(pca_mat)[1]))\n pca_mat_add = np.concatenate((pca_mat, mat_add))\n pca_mat_iter = np.split(pca_mat_add, n_chunks) \n \n flow = mdp.parallel.ParallelFlow([node])\n \n start_time = ttime.time()\n \n with mdp.parallel.ProcessScheduler(n_processes=n_processes, verbose=True) as scheduler:\n flow.train([pca_mat_iter], scheduler=scheduler) # input has to be list, why??\n \n process_time = ttime.time() - start_time\n \n s = np.array(flow.execute(pca_mat_iter))\n s = s[0:len(t),:] # resize to length of t!\n \n #print \"node.d: \",node.d\n var_vec = node.d/sum(node.d)\n print 'Explained variance (', 0, ') : ', round(node.explained_variance,4)\n print 'Variance (' , 0, ') : ', var_vec\n print 'Time to run (' , 0, ') : ', process_time\n \n s2 = []\n if do_ica:\n # ICA\n #s2 = mdp.fastica(s)\n ica = mdp.nodes.FastICANode() #CuBICANode()\n ica.train(s)\n s2 = ica(s)\n \n results = {'t':t, 'pca':s,'pca_var':var_vec,'pca_var_expl':round(node.explained_variance,4), 'ica':s2}\n \n if self.id == 0:\n if self.dumpsave == 1:\n pickle.dump( results, gzip.GzipFile( filepath, \"wb\" ) )\n \n else:\n \n if self.id == 0:\n results = pickle.load( gzip.GzipFile( filepath, \"rb\" ) ) \n \n else:\n \n # remove beginning\n dt = time[2]-time[1]\n t = time[int(t_analysis_delay/dt):int(t_analysis_stop/dt)] \n pca_mat = np.array(signals[n_celltype]).T[int(t_analysis_delay/dt):int(t_analysis_stop/dt),:]\n \n node = mdp.nodes.PCANode(output_dim=output_dim, svd=True)\n\n start_time = ttime.time()\n \n node.train(pca_mat)\n s = node(pca_mat)\n \n process_time = ttime.time() - start_time \n #print \"node.d: \",node.d\n var_vec = node.d/sum(node.d)\n print 'Explained variance (', 0, ') : ', round(node.explained_variance,4)\n print 'Variance (' , 0, ') : ', var_vec\n print 'Time to run (' , 0, ') : ', process_time\n \n s2 = []\n if do_ica:\n # ICA\n #s2 = mdp.fastica(s)\n ica = mdp.nodes.FastICANode() #CuBICANode()\n ica.train(s)\n s2 = ica(s)\n \n results = {'t':t, 'pca':s,'pca_var':var_vec,'pca_var_expl':round(node.explained_variance,4), 'ica':s2}\n\n return results\n \n \n def net_run(self, tstop, simprop = \"default\", t_analysis_delay=0, t_analysis_stop=1, stim_start=0):\n\n freq_times = []\n t_all_vec_vec = []\n id_all_vec_vec = []\n gsyns = []\n w_mat = []\n winh_mat = []\n time = []\n voltage = []\n current = []\n \n filepath = self.data_dir + \"/\" + str(self.pickle_prefix) + \"_results_pop_randomnet.hdf5\"\n \n if self.do_run or (os.path.isfile(filepath) is False):\n \n self.run(tstop)\n \n self.no_fmean = True\n results = self.get()\n \n time, voltage, current, fmean, gsyn = results.get('time'), results.get('voltage'), results.get('current'), results.get('fmean'), results.get('gsyn')\n freq_times, spike_freq, t_all_vec_vec, id_all_vec_vec, gsyns, w_mat, winh_mat = results.get('freq_times'), results.get('spike_freq'), results.get('t_all_vec_vec'), results.get('id_all_vec_vec'), results.get('gsyns'), results.get('w_mat'), results.get('winh_mat')\n \n if self.id == 0:\n if self.dumpsave == 1:\n #pickle.dump( results, open( filepath, \"wb\" ) ) # gzip.GzipFile\n \n print \"- Saving\", filepath\n \n f = h5py.File(filepath, 'w')\n f.create_dataset('time', data=time, compression='gzip', shuffle=True)\n f.create_dataset('voltage', data=np.array(voltage), compression='gzip', shuffle=True)\n f.create_dataset('current', data=current, compression='gzip', shuffle=True)\n f.create_dataset('freq_times', data=freq_times, compression='gzip', shuffle=True)\n \n #f.create_dataset('t_all_vec_vec', data=np.array(t_all_vec_vec), compression='lzf', shuffle=True)\n #f.create_dataset('id_all_vec_vec', data=np.array(id_all_vec_vec), compression='lzf', shuffle=True)\n #f.create_dataset('gsyns', data=np.array(gsyns), compression='lzf', shuffle=True)\n\n for i in range(len(self.N)):\n subgroup = f.create_group(\"cell\" + str(i))\n subgroup.create_dataset('t_all_vec_vec', data=t_all_vec_vec[i], compression='gzip', shuffle=True)\n subgroup.create_dataset('id_all_vec_vec', data=id_all_vec_vec[i], compression='gzip', shuffle=True)\n subgroup.create_dataset('g', data=gsyns[i], compression='gzip', shuffle=True)\n\n #for j in range(len(gsyns[i])):\n # subsubgroup = subgroup.create_group(\"gsyn\" + str(j))\n # subsubgroup.create_dataset('g', data=gsyns[i][j], compression='lzf', shuffle=True)\n \n f.close() \n print \"- Save finished\"\n \n #filename = slugify(simprop)\n\n #syn_grc = np.array(gsyns[0])\n \n #import scipy\n #from scipy import io\n \n #print \"Saving .mat\"\n #data = {}\n #data['syn_grc'] = syn_grc[:,int(t_analysis_delay/self.bin_width):int(t_analysis_stop/self.bin_width)]\n #data['time'] = freq_times[int(t_analysis_delay/self.bin_width):int(t_analysis_stop/self.bin_width)]-stim_start\n #scipy.io.savemat('./figs/' + filename + '.mat',data)\n \n else:\n \n if self.id == 0:\n #results = pickle.load( open( filepath, \"rb\" ) ) #gzip.GzipFile\n f = h5py.File(filepath, 'r')\n \n time = np.array(f['time'])\n voltage = np.array(f['voltage'])\n current = np.array(f['current'])\n freq_times = np.array(f['freq_times'])\n \n \n for i in range(len(self.N)):\n t_all_vec_vec.append(np.array(f['/cell' + str(i) + '/t_all_vec_vec'])) \n id_all_vec_vec.append(np.array(f['/cell' + str(i) + '/id_all_vec_vec'])) \n gsyns.append(np.array(f['/cell' + str(i) + '/g'])) \n \n #gsyns.append([])\n #for j in range(self.N[i]):\n # gsyns[i].append(np.array(f['/cell' + str(i) + '/gsyn' + str(j) + '/g' ])) \n\n f.close()\n \n return time, voltage, current, t_all_vec_vec, id_all_vec_vec, gsyns, freq_times, w_mat, winh_mat \n\n \n def delall(self): \n \n if self.use_mpi: \n self.pc.gid_clear()\n print \"- clearing gids\"\n else:\n pass\n #h.topology() \n #for sec in h.allsec():\n # print \"- deleting section:\", sec.name()\n # #h(\"%s{delete_section()}\"%sec.name())\n # sec.push()\n # h.delete_section()\n #h.topology()\n \n for n in range(self.n_celltypes): \n for m in self.cells[n]:\n m.destroy()\n del m \n del self.cells\n del self.nc_vecstim\n del self.netcons\n del self.nclist\n print h.topology() \n \n \n def delrerun(self): \n \n del self.nc_vecstim\n del self.netcons\n del self.nclist\n del self.vecstim\n del self.spike_vec\n del self.ST_stims\n del self.PF_stims\n \n self.netcons = [] \n self.nclist = []\n self.nc_vecstim = []\n self.vecstim = []\n self.spike_vec = []\n self.ST_stims = []\n self.PF_stims = []\n \n self.t_vec = []\n self.id_vec = []\n self.rec_v = []\n \n for n in range(self.n_celltypes):\n if self.use_mpi:\n self.t_vec.append(h.Vector()) # np.array([0])\n self.id_vec.append(h.Vector()) # np.array([-1], dtype=int)\n else:\n self.t_vec.append([])\n \n self.rec_v.append(h.Vector())\n\n for cell in self.cells[n]:\n self.t_vec[n].append(h.Vector())\n cell.nc_spike.record(self.t_vec[n][-1]) \n\n self.flucts = [] # Fluctuating inputs on this host\n self.noises = [] # Random number generators on this host\n self.plays = [] # Play inputs on this host\n self.rec_is = []\n self.trains = [] \n \n self.ic_holds = []\n self.i_holdrs = []\n self.i_holds = []\n self.ic_starts = [] \n self.vc_starts = []\n self.ic_steps = []\n self.tvecs = []\n self.ivecs = [] \n self.noises = []\n self.record_syn = []\n self.id_all_vec_input = []\n self.t_all_vec_input = []\n self.syn_ex_dist = []\n self.syn_inh_dist = []\n\n \n# test code\nif __name__ == '__main__':\n \n # mpiexec -f ~/machinefile -enable-x -n 96 python Population.py --noplot\n \n from Stimulation import *\n from Plotter import *\n from Stimhelp import *\n\n from cells.IfCell import *\n import scipy\n from scipy import io\n \n dt = 0.1*ms\n dt = 0.025*ms\n \n do_run = 1\n if results.norun: # do not run again use pickled files!\n print \"- Not running, using saved files\"\n do_run = 0\n \n \n do = np.array([\"transfer\"])\n opts = np.array([\"if_cnoise\", \"grc_cnoise\"]) #ssine \n #opts = np.array([\"if_cnoise\"]) #ssine\n #opts = np.array([\"if_recon\"]) #ssine\n opts = np.array([\"if_syn_CFvec\"]) \n #opts = np.array([\"prk_cnoise\"])\n opts = np.array([\"if_cnoise\", \"if_ssine\"]) #ssine \n opts = np.array([\"if_ssine\"]) #ssine \n opts = np.array([\"grc_cnoise_addn_cn_\", \"grc_cnoise_cn_\", \"grc_cnoise_addn_cn_a01\"]) \n opts = np.array([\"grc_cnoise_addn100_cn_\", \"grc_cnoise_addn_cn_\", \"grc_cnoise_cn_\"]) \n opts = np.array([\"grc_cnoise_addn100_cn_\"])\n opts = np.array([\"grc_cnoise_addn100_\"])\n opts = np.array([\"grc_cnoise_addn_cn_\"])\n #opts = np.array([\"grc_cnoise\"])\n #opts = np.array([\"grc_cnoise_cn\", \"grc_cnoise_addn_cn\"]) \n #opts = np.array([\"if_cnoise_addn\", \"if_cnoise\"]) \n \n do = np.array([\"timeconst\"])\n \n #do = np.array([\"transfer\"])\n #opts = np.array([\"grc_cnoise_syn\"])\n #opts = np.array([\"grc_recon_syn\"])\n \n #do = np.array([\"prk_test\"])\n \n \n if \"prk_test\" in do:\n \n import multiprocessing\n from Purkinje import Purkinje\n cell = Purkinje() \n\n # set up recording\n # Time\n rec_t = h.Vector()\n rec_t.record(h._ref_t)\n \n # Voltage\n rec_v = h.Vector()\n rec_v.record(cell.soma(0.5)._ref_v)\n\n tstop = 500\n v_init = -60\n \n stim = h.IClamp(cell.soma(0.5))\n stim.amp = 0.0/nA\n stim.delay = 1\n stim.dur = 1000\n \n cpu = multiprocessing.cpu_count()\n h.load_file(\"parcom.hoc\")\n p = h.ParallelComputeTool()\n p.change_nthread(cpu,1)\n p.multisplit(1)\n print 'cpus:', cpu\n \n h.load_file(\"stdrun.hoc\")\n h.celsius = 37 \n h.init()\n h.tstop = tstop\n dt = 0.025 # ms\n h.dt = dt\n h.steps_per_ms = 1 / dt \n h.v_init = v_init \n \n h.finitialize()\n h.run()\n \n t1 = np.array(rec_t)\n voltage = np.array(rec_v)\n s, spike_times = get_spikes(voltage, -20, t1)\n\n print 1000/diff( spike_times)\n\n plt.figure()\n plt.subplot(2,1,1)\n plt.plot(t1, voltage)\n \n plt.show()\n\n\n if \"transfer\" in do:\n \n # SET DEFAULT VALUES FOR THIS PLOT\n fig_size = [11.7, 8.3]\n params = {'backend': 'ps', 'axes.labelsize': 9, 'axes.linewidth' : 0.5, 'title.fontsize': 8, 'text.fontsize': 9,\n 'legend.borderpad': 0.2, 'legend.fontsize': 8, 'legend.linewidth': 0.1, 'legend.loc': 'best', # 'lower right' \n 'legend.ncol': 4, 'xtick.labelsize': 8, 'ytick.labelsize': 8, 'text.usetex': False, 'figure.figsize': fig_size}\n rcParams.update(params) \n \n \n freq_used0 = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 65, 70, 80, 100, 1000])*Hz\n #freq_used0 = np.concatenate((arange(0.1, 1, 0.1), arange(1, 501, 1) ))\n freq_used0 = np.array([1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 200, 400, 600, 800, 1000])\n \n SNR = None \n NI = None\n VAF = None\n \n t_stim = 1000*s # only for cnoise \n \n opt_plot = np.array([\"only_mag\",\"normalize\", \"dB\"]) # \n #opt_plot = np.array([\"normalize\", \"dB\"]) # \n \n color_vec = (np.array([\"Red\", \"Blue\", \"HotPink\", \"Indigo\"]), np.array([\"Blue\", \"Orange\", \"HotPink\", \"Indigo\"]))\n #color=cm.jet(1.*i/x)\n \n method_interpol = np.array(['bin','syn']) \n method_interpol = np.array(['bin']) \n \n for i, o in enumerate(opts):\n \n dt = 0.025*ms\n bin_width = 5*ms\n bin_width = dt\n jitter = 0*ms\n \n n_syn_ex = [0] \n g_syn_ex = [1]\n noise_syn = 0 \n inh_hold = 0 \n n_syn_inh = [0] \n g_syn_inh = [1]\n tau1_ex = 0\n tau2_ex = 10*ms\n tau1_inh = 0\n tau2_inh = 100*ms\n \n cutf = 20\n sexp = -1\n\n cutf = 0\n sexp = 0\n \n ihold = [10]\n amod = 0.1 # relative value\n give_freq = True\n \n anoise = [0]\n fluct_tau = 0*ms \n \n N = [100]\n \n amp = 0 # absolute value\n fluct_s = [0] # absolute value 0.0008\n ihold_sigma = [0] # 0.01 absolute value\n \n CF_var = [[5,10,20]]\n CF_var = False\n \n syn_tau1 = 5*ms\n syn_tau2 = 5*ms\n \n do_csd = 1\n \n if \"if\" in o:\n \n do_csd = 1\n \n color_vec = (np.array([\"Blue\"]), np.array([\"Blue\"]))\n #color_vec = (np.array([\"Red\"]), np.array([\"Red\"]))\n \n cellimport = []\n celltype = [\"IfCell\"]\n #cell_exe = [\"cell = IfCell()\"]\n #cell_exe = [\"cell = IfCell(e = -70*mV, thresh = -69*mV, vrefrac = -70*mV)\"] \n #cell_exe = [\"cell = IfCell(e = 0*mV, thresh = 1*mV, vrefrac = 0*mV)\"]\n \n # Brunel\n #cell_exe = [\"cell = IfCell(C = 0.0005 *uF, R = 40*MOhm, e = -70*mV, thresh = -50*mV, vrefrac = -56*mV); cell.add_resonance(tau_r = 100*ms, gr = 0.025*uS)\"] \n \n #cell_exe = [\"cell = IfCell(C = 0.0001*uF, R = 40*MOhm, sigma_C = 0.2, sigma_R = 0.2)\"] \n #cell_exe = [\"cell = IfCell(C = 0.0001*uF, R = 40*MOhm)\"] # tau = 4 ms\n #cell_exe = [\"cell = IfCell(C = 0.0001*uF, R = 40*MOhm, s_reset_noise = 0*mV)\"] # tau = 4 ms\n \n #GrC resting: 737 MOhm, 2.985e-06 uF tau: 0.0022 s\n #GrC transfer fit: tau: 0.027 s => with 2.985e-06 uF, R = 0.027/2.985e-12 = 9045 MOhm\n \n #cell_exe = [\"cell = IfCell(C = 2.985e-06*uF, R = 9045*MOhm)\"] \n \n thresh = -41.8 \n R = 5227*MOhm\n #tau_passive = 3e-06*5227 = 15.7ms\n \n cell_exe = [\"cell = IfCell(C = 3.0e-06*uF, R = \" + str(R) + \", e = -71.5*mV, thresh =\" + str(thresh) + \", vrefrac = -71.5*mV)\"]\n \n prefix = \"if_tf\"\n \n istart = 0 \n istop = 0.01\n di = 0.00001\n \n \n syn_tau1 = 10*ms\n syn_tau2 = 10*ms\n \n # Indirect\n give_freq = True\n ihold = [40]\n amod = 1 # relative value\n \n anoise = [0] \n fluct_tau = 0*ms \n \n #anoise = 0.1\n #fluct_tau = 100*ms\n \n# # Direct\n# give_freq = False\n# ihold = [0.00569223341176]\n# amod = None\n# amp = 7.31353725e-06\n# \n# anoise = None\n# fluct_s = [3.65676863e-06] \n# fluct_tau = 0*ms\n# \n# # Low CF, No low noise\n# N = [10000]\n# give_freq = False\n# ihold = [0.004]\n# ihold_sigma = [0.1/2] # 0.1/2 0.01 realtive value\n# amod = None\n# amp = 0.0021\n# \n# anoise = None\n# fluct_s = [0.00] # .005\n# fluct_tau = 0*ms\n \n \n# # Low CF, With low noise\n# N = [10000]\n# give_freq = False\n# ihold = [0.002]\n# ihold_sigma = [0.1/2] # 0.1/2 0.01 realtive value\n# amod = None\n# amp = 0.001\n# \n# anoise = None\n# fluct_s = [0.002] # .005\n# fluct_tau = 100*ms\n \n if \"resif\" in o:\n \n do_csd = 1\n \n color_vec = (np.array([\"Blue\"]), np.array([\"Blue\"]))\n #color_vec = (np.array([\"Red\"]), np.array([\"Red\"]))\n \n cellimport = []\n celltype = [\"IfCell\"]\n \n gr = 5.56e-05*uS \n tau_r = 19.6*ms\n R = 5227*MOhm\n delta_t = 4.85*ms\n thresh = (0.00568*nA * R) - 71.5*mV # \n thresh = -41.8 \n \n cellimport = []\n celltype = \"IfCell\"\n cell_exe = \"cell = IfCell(C = 3e-06*uF, R = \" + str(R) + \", e = -71.5*mV, thresh =\" + str(thresh) + \", vrefrac = -71.5*mV, dgk =\" + str(gr) + \", egk = -71.5*mV, ctau =\" + str(tau_r) + \")\"\n\n prefix = \"resif_tf\"\n \n istart = 0 \n istop = 0.01\n di = 0.00001\n \n \n syn_tau1 = 10*ms\n syn_tau2 = 10*ms\n \n # Indirect\n give_freq = True\n ihold = [40]\n amod = 1 # relative value\n \n anoise = [0] \n fluct_tau = 0*ms \n dt = 0.1*ms\n \n \n \n if \"if_syn\" in o:\n \n N = [1] \n ihold = [40] \n amod = 1 # relative value\n \n prefix = \"if_syntf\" \n \n n_syn_ex = 1 \n\n g_syn_ex = 0 \n \n noise_syn = 0\n\n fluct_tau = 0*ms \n \n freq_used = np.array([])\n \n tau1_ex=0*ms\n tau2_ex=10*ms\n \n anoise = [0]\n\n \n if \"grc\" in o:\n \n color_vec = (np.array([\"Blue\"]), np.array([\"Blue\"]))\n\n cellimport = [\"from GRANULE_Cell import Grc\"]\n celltype = [\"Grc\"]\n cell_exe = [\"cell = Grc(np.array([0.,0.,0.]))\"] \n \n prefix = \"grc_tf\" \n\n istart = 0 \n istop = 0.1\n di = 0.01\n \n syn_tau1 = 10*ms\n syn_tau2 = 10*ms\n \n # Indirect\n give_freq = True\n ihold = [40]\n amod = 1 # relative value\n \n anoise = [0]\n fluct_tau = 0*ms \n \n #anoise = 0.1\n #fluct_tau = 100*ms\n \n# # Direct\n# give_freq = False\n# ihold = [0.0058021085712642992]\n# amod = None\n# amp = 7.31353725e-06\n# \n# anoise = None\n# fluct_s = [3.65676863e-06] \n# fluct_tau = 0*ms\n# \n# # Low CF, No low noise\n# N = [50]\n# give_freq = False\n# ihold = [0.0049]\n# ihold_sigma = [0.1/2] # 0.1/2 0.01 realtive value\n# amod = None\n# amp = 0.0021\n# \n# anoise = None\n# fluct_s = [0.00] # .005\n# fluct_tau = 0*ms\n# \n# \n# # Low CF, With low noise\n# N = [10000]\n# give_freq = False\n# ihold = [0.003]\n# ihold_sigma = [0.1/2] # 0.1/2 0.01 realtive value\n# amod = None\n# amp = 0.001\n# \n# anoise = None\n# fluct_s = [0.002] # .005\n# fluct_tau = 100*ms\n \n \n use_multisplit = False\n use_mpi = True\n simstep = 1*s\n \n if \"prk\" in o:\n \n N = [1] \n ihold = [60] \n \n color_vec = (np.array([\"Blue\"]), np.array([\"Blue\"]))\n\n cellimport = [\"from Purkinje import Purkinje\"]\n celltype = [\"Prk\"]\n cell_exe = [\"cell = Purkinje()\"] \n \n prefix = \"prk_tf\" \n\n temperature = 37\n\n istart = 0 \n istop = 0.1\n di = 0.005\n \n use_multisplit = True\n use_mpi = False\n \n t_stim = 5*s # only for cnoise \n simstep = 1*s\n\n\n if \"grc_syn\" in o:\n \n N = [1] \n ihold = [125] \n amod = 1 # relative value\n \n prefix = \"grc_syntf\" \n \n cutf = 20\n sexp = -1\n \n cutf = 0\n sexp = 0\n \n n_syn_ex = 1 \n g_syn_ex = -1\n noise_syn = 1\n\n n_syn_inh = -1\n inh_hold = 0\n g_syn_inh = 0\n \n fluct_tau = 0*ms \n \n freq_used = np.array([])\n \n anoise = 0\n \n \n if \"_addn\" in o:\n \n anoise = [6] # RESPONSIBLE FOR FILTERING EFFECT!!!\n fluct_tau = 1*ms \n prefix = prefix + \"_addn\"\n color_vec = (np.array([\"Red\"]), np.array([\"Red\"]))\n \n if \"_addn100\" in o:\n \n anoise = [2] # RESPONSIBLE FOR FILTERING EFFECT!!!\n fluct_tau = 100*ms \n prefix = prefix + \"100\"\n color_vec = (np.array([\"Green\"]), np.array([\"Green\"]))\n \n if \"_cn_\" in o:\n \n cutf = 20\n sexp = -1\n prefix = prefix + \"_cn\"\n \n if \"_a01\" in o:\n \n amod=0.1\n prefix = prefix + \"_a01\"\n \n\n \n plt.figure(i)\n pickle_prefix = \"Population.py_\" + prefix\n \n #comm = MPI.COMM_WORLD\n #comm.Barrier() # wait for other nodes\n \n pop = Population(cellimport = cellimport, celltype = celltype, cell_exe = cell_exe, N = N, temperature = 37, ihold = ihold, ihold_sigma = ihold_sigma, amp = amp, amod = amod, give_freq = give_freq, do_run = do_run, pickle_prefix = pickle_prefix, istart = istart, istop = istop, di = di, dt = dt) \n pop.bin_width = bin_width\n pop.jitter = jitter\n pop.anoise = anoise\n pop.fluct_s = fluct_s \n pop.fluct_tau = fluct_tau \n pop.method_interpol = method_interpol \n pop.no_fmean = False\n pop.CF_var = CF_var\n \n pop.tau1_ex=tau1_ex\n pop.tau2_ex=tau2_ex\n pop.tau1_inh=tau1_inh\n pop.tau2_inh=tau2_inh\n \n pop.n_syn_ex = n_syn_ex \n pop.g_syn_ex = g_syn_ex \n \n pop.noise_syn = noise_syn \n pop.inh_hold = inh_hold \n pop.n_syn_inh = n_syn_inh \n pop.g_syn_inh = g_syn_inh\n \n pop.force_run = False\n pop.use_multisplit = use_multisplit\n pop.use_mpi = use_mpi\n pop.simstep = simstep\n pop.use_local_dt = False\n pop.syn_tau1 = syn_tau1\n pop.syn_tau2 = syn_tau2\n pop.plot_input = False\n \n \n if n_syn_inh == -1:\n pop.connect_gfluct(g_i0=g_syn_inh)\n \n #pop.test_mod(n_syn_ex = n_syn_ex, g_syn_ex = g_syn_ex, noise_syn = noise_syn, inh_hold = inh_hold, n_syn_inh = n_syn_inh, g_syn_inh = g_syn_inh, do_plot = True)\n \n if \"ssine\" in o:\n pop.color_vec = color_vec\n #pop.color_vec = (np.array([\"Red\", \"Orange\", \"HotPink\", \"Indigo\"]), np.array([\"Red\", \"Orange\", \"HotPink\", \"Indigo\"])) \n pop.fun_plot(currlabel = \"control\", dowhat = \"ssine\", freq_used = freq_used0, opt_plot = opt_plot)\n\n pop.save_plot(directory = \"./figs/dump/\") \n \n if \"cnoise\" in o:\n \n freq_used = np.array([])\n pop.color_vec = color_vec\n #pop.color_vec = (np.array([\"Blue\", \"Green\", \"DimGray\", \"DarkGoldenRod\"]), np.array([\"Blue\", \"Green\", \"DimGray\", \"DarkGoldenRod\"])) \n pop.fun_plot(currlabel = \"control\", dowhat = \"cnoise\", t_stim = t_stim, cutf = cutf, sexp = sexp, t_qual = 0, opt_plot = opt_plot, freq_used = freq_used, do_csd = do_csd)\n \n pop.save_plot(directory = \"./figs/dump/\") \n \n \n if \"recon\" in o:\n \n pop.color_vec = color_vec \n #VAF, SNR, ax, tk, K_mat_old = pop.fun_plot(currlabel = \"control\", dowhat = \"cnoise\", t_stim = t_stim, cutf = cutf, sexp = sexp, t_qual = 0, opt_plot = opt_plot, n_syn_ex = n_syn_ex, g_syn_ex = g_syn_ex, noise_syn = noise_syn, inh_hold = inh_hold, n_syn_inh = n_syn_inh, g_syn_inh = g_syn_inh, SNR=0, freq_used = freq_used)\n \n # RECONSTRUCT!\n freq_used = np.array([9, 47, 111, 1000])*Hz\n t_stim = 10*s\n\n tk = arange(0,0.8192*2,pop.dt)\n K_mat_old = zeros((len(method_interpol),len(tk)), dtype=complex)\n \n if pop.id == 0:\n\n sigma = 0.1e-3\n a=0.1\n t0 = tk[floor(len(tk)/2)]\n K_mat_old[0] = gauss_func(tk, a, t0, sigma)\n \n K_mat_old = np.array([])\n\n results = pop.fun_cnoise_Stim(t_stim = t_stim, cutf = cutf, sexp = sexp, t_qual = 5, n_syn_ex = n_syn_ex, g_syn_ex = g_syn_ex, noise_syn = noise_syn, inh_hold = inh_hold, n_syn_inh = n_syn_inh, g_syn_inh = g_syn_inh, freq_used = freq_used, K_mat_old = K_mat_old, seed = 311)\n \n freq_used, amp_vec, mag, pha, ca, voltage, current, t1 = results.get('freq_used'), results.get('amp'), results.get('mag'), results.get('pha'), results.get('ca'), results.get('voltage'), results.get('current'), results.get('t1') \n freq_times, spike_freq, fmean, method_interpol, SNR, VAF, Qual = results.get('freq_times'), results.get('spike_freq'), results.get('fmean'), results.get('method_interpol'), results.get('SNR'), results.get('VAF'), results.get('Qual') \n stim, resp_mat, stim_re_mat = results.get('stim'), results.get('resp_mat'), results.get('stim_re_mat')\n \n if pop.id == 0:\n \n plt.figure('Reconstruct')\n axR0 = plt.subplot(4,1,1)\n axR1 = plt.subplot(4,1,2)\n axR2 = plt.subplot(4,1,3)\n axR3 = plt.subplot(4,1,4)\n \n axR0.plot(np.arange(len(stim))*pop.dt, resp_mat[0,:])\n axR0.axis(xmin=0.9, xmax=1)\n #axR0.plot(t1, voltage[0])\n axR1.plot(np.arange(len(stim))*pop.dt, stim, 'b')\n axR1.axis(xmin=0.9, xmax=1)\n axR2.plot(np.arange(len(stim))*pop.dt, stim_re_mat[0,:], 'r')\n axR2.axis(xmin=0.9, xmax=1)\n axR3.plot(tk, K_mat_old[0])\n plt.savefig(\"./figs/dump/Reconstruct.pdf\", dpi = 300, transparent=True) # save it\n \n pop = None\n \n \n plt.show()\n \n \n if \"timeconst\" in do:\n \n from lmfit import minimize, Parameters\n \n # SET DEFAULT VALUES FOR THIS PLOT\n fig_size = [11.7, 8.3]\n params = {'backend': 'ps', 'axes.labelsize': 9, 'axes.linewidth' : 0.5, 'title.fontsize': 8, 'text.fontsize': 9,\n 'legend.borderpad': 0.2, 'legend.fontsize': 8, 'legend.linewidth': 0.1, 'legend.loc': 'best', # 'lower right' \n 'legend.ncol': 4, 'xtick.labelsize': 8, 'ytick.labelsize': 8, 'text.usetex': False, 'figure.figsize': fig_size}\n rcParams.update(params) \n \n dt = 0.025*ms\n \n prefix = \"timeconst\"\n pickle_prefix = \"Population.py_\" + prefix\n \n stimtype = \"inh_50ms_20ms\"\n \n if stimtype == \"ex_20ms\":\n \n trun = 2.9\n tstart = 1.8\n tstop = 2.7\n\n celltype = [\"IfCell\"]\n cell_exe = [\"cell = IfCell(C = 0.0001*uF, R = 200*MOhm)\"]\n N = [5000]\n \n pop = Population(celltype = celltype, cell_exe = cell_exe, N = N, temperature = 0, do_run = do_run, pickle_prefix = pickle_prefix, dt = dt) \n \n pop.method_interpol = np.array([\"bin\", \"syn\"])\n pop.method_interpol = np.array([\"bin\"])\n \n modulation_vec = pop.set_PulseStim(start_time=[100*ms], dur=[3000*ms], steadyf=[100*Hz], pulsef=[150*Hz], pulse_start=[2000*ms], pulse_len=[500*ms], weight0=[1*nS], tau01=[0*ms], tau02=[20*ms], weight1=[0*nS], tau11=[0*ms], tau12=[1*ms])\n \n params = Parameters()\n params.add('amp', value=0.1)\n params.add('shift', value=10)\n params.add('tau1', value=1, vary=False) # alpha! \n params.add('tau2', value=20*ms) \n \n \n if stimtype == \"ex_gr\":\n \n trun = 6.9\n tstart = 4.8\n tstop = 6.5\n\n cellimport = [\"from GRANULE_Cell import Grc\"]\n celltype = [\"Grc\"]\n cell_exe = [\"cell = Grc(np.array([0.,0.,0.]))\"]\n N = [4096*10]\n \n pop = Population(cellimport = cellimport, celltype = celltype, cell_exe = cell_exe, N = N, temperature = 37, do_run = do_run, pickle_prefix = pickle_prefix, dt = dt) \n \n pop.method_interpol = np.array([\"bin\", \"syn\"])\n pop.method_interpol = np.array([\"bin\"])\n \n modulation_vec = pop.set_PulseStim(start_time=[100*ms], dur=[7000*ms], steadyf=[20*Hz], pulsef=[30*Hz], pulse_start=[5000*ms], pulse_len=[500*ms])\n \n params = Parameters()\n params.add('amp', value=0.1)\n params.add('shift', value=10)\n params.add('tau1', value=1, vary=False) # alpha! \n params.add('tau2', value=20*ms) \n \n \n if stimtype == \"inh_50ms_20ms\":\n \n trun = 2.9\n tstart = 1.8\n tstop = 2.7\n \n celltype = [\"IfCell\", \"IfCell\"]\n cell_exe = [\"cell = IfCell()\", \"cell = IfCell()\"]\n \n N = [10000,10000]\n \n pop = Population(celltype = celltype, cell_exe = cell_exe, N = N, temperature = 0, do_run = do_run, pickle_prefix = pickle_prefix, dt = dt) \n \n pop.method_interpol = np.array([\"bin\", \"syn\"])\n pop.method_interpol = np.array([\"bin\"])\n \n modulation_vec = pop.set_PulseStim(start_time=[100*ms,100*ms], dur=[3000*ms,3000*ms], steadyf=[100*Hz,50*Hz], pulsef=[100*Hz,80*Hz], pulse_start=[2000*ms,2000*ms], pulse_len=[500*ms,500*ms], weight0=[1*nS,1*nS], tau01=[1*ms,1*ms], tau02=[20*ms,20*ms], weight1=[0,0], tau11=[0*ms,0*ms], tau12=[1*ms,1*ms])\n\n pop.connect_cells(conntype='inh', weight=0.001, tau=50)\n \n params = Parameters()\n params.add('amp', value=-0.1)\n params.add('shift', value=10)\n params.add('tau1', value=1, vary=False) # alpha! \n params.add('tau2', value=20*ms)\n \n \n if stimtype == \"inh_gr\":\n\n trun = 9.9 \n tstart = 4.8\n tstop = 8\n \n cellimport = [\"from GRANULE_Cell import Grc\", \"from templates.golgi.Golgi_template import Goc\"]\n celltype = [\"Grc\",\"Goc_noloop\"]\n cell_exe = [\"cell = Grc(np.array([0.,0.,0.]))\",\"cell = Goc(np.array([0.,0.,0.]))\"]\n N = [100,4]\n #N = [4096, 27]\n #N = [4096*5, 27*5]\n\n pop = Population(cellimport = cellimport, celltype = celltype, cell_exe = cell_exe, N = N, temperature = 37, do_run = do_run, pickle_prefix = pickle_prefix, dt = dt) \n \n pop.method_interpol = np.array([\"bin\", \"syn\"])\n pop.method_interpol = np.array([\"bin\"])\n \n modulation_vec = pop.set_PulseStim(start_time=[100*ms,100*ms], dur=[9800*ms,9800*ms], steadyf=[60*Hz,10*Hz], pulsef=[60*Hz,22*Hz], pulse_start=[5000*ms,5000*ms], pulse_len=[1500*ms,1500*ms])\n\n pop.connect_cells(conntype='inh_gr', weight = 0.3)\n \n params = Parameters()\n params.add('amp', value=-0.1)\n params.add('shift', value=10)\n params.add('tau1', value=1, vary=False) # alpha! \n params.add('tau2', value=20*ms)\n \n \n if stimtype == \"inh_50ms_curr\":\n \n trun = 2.9\n tstart = 1.8\n tstop = 2.8\n \n celltype = [\"IfCell\", \"IfCell\"]\n cell_exe = [\"cell = IfCell()\", \"cell = IfCell()\"]\n \n N = [1000,1000]\n \n give_freq = True\n \n istart = 0 \n istop = 0.2\n di = 0.01\n \n ihold = [100, 50] \n ihold_sigma = [0.01, 0.01] # relative sigma\n \n pop = Population(celltype = celltype, cell_exe = cell_exe, N = N, temperature = 0, ihold = ihold, ihold_sigma = ihold_sigma, give_freq = give_freq, do_run = do_run, pickle_prefix = pickle_prefix, istart = istart, istop = istop, di = di, dt = dt) \n \n pop.method_interpol = np.array([\"bin\", \"syn\"])\n pop.method_interpol = np.array([\"bin\"])\n \n tstep = 2 \n tdur = 0.5\n \n istep = [100,100]\n current1 = np.concatenate(([ihold[1]*np.ones(round((tstep)/pop.dt)), istep[1]*np.ones(round(tdur/pop.dt)),ihold[1]*np.ones(round((trun-tstep-tdur)/pop.dt)) ])) \n \n pop.set_IStim()\n pop.set_IStep(istep = istep, istep_sigma = [0.01,0.01], tstep = tstep, tdur = tdur)\n \n pop.connect_cells(conntype='inh', weight=0.0003, tau=50)\n \n pop.fluct_s = [0.02,0.05]\n pop.connect_fluct() \n \n params = Parameters()\n params.add('amp', value=-0.1)\n params.add('shift', value=10)\n params.add('tau1', value=1, vary=False) # alpha! \n params.add('tau2', value=20*ms)\n \n \n if stimtype == \"inh_gr_curr\":\n \n trun = 9.9 \n tstart = 4.8\n tstop = 8\n \n cellimport = [\"from GRANULE_Cell import Grc\", \"from templates.golgi.Golgi_template import Goc\"]\n celltype = [\"Grc\",\"Goc_noloop\"]\n cell_exe = [\"cell = Grc(np.array([0.,0.,0.]))\",\"cell = Goc(np.array([0.,0.,0.]))\"]\n N = [100,4]\n N = [4096, 27]\n N = [4096*10, 27*10] \n\n give_freq = True\n \n # GRC \n #istart = 0 \n #istop = 0.1\n #di = 0.01\n \n #GOC\n istart = 0 \n istop = 0.5\n di = 0.02\n \n ihold = [100, 10] \n ihold_sigma = [0, 0] # relative sigma\n \n pop = Population(cellimport = cellimport, celltype = celltype, cell_exe = cell_exe, N = N, temperature = 37, ihold = ihold, ihold_sigma = ihold_sigma, give_freq = give_freq, do_run = do_run, pickle_prefix = pickle_prefix, istart = istart, istop = istop, di = di, dt = dt) \n \n pop.method_interpol = np.array([\"bin\", \"syn\"])\n pop.method_interpol = np.array([\"bin\"])\n \n tstep = 5 \n tdur = 2\n \n istep = [100,50]\n current1 = np.concatenate(([ihold[1]*np.ones(round((tstep)/pop.dt)), istep[1]*np.ones(round(tdur/pop.dt)),ihold[1]*np.ones(round((trun-tstep-tdur)/pop.dt)) ])) \n \n pop.set_IStim()\n pop.set_IStep(istep = istep, istep_sigma = [0,0], tstep = tstep, tdur = tdur)\n \n pop.connect_cells(conntype='inh_gr', weight = 0.4)\n \n pop.fluct_s = [0.05,2]\n pop.connect_fluct() \n \n params = Parameters()\n params.add('amp', value=-0.1)\n params.add('shift', value=10)\n params.add('tau1', value=1, vary=False) # alpha! \n params.add('tau2', value=20*ms) \n \n \n pop.run_steps(trun)\n \n self.no_fmean = True\n results = pop.get()\n time, voltage, current, fmean, gsyn = results.get('time'), results.get('voltage'), results.get('current'), results.get('fmean'), results.get('gsyn')\n freq_times, spike_freq, t_all_vec_vec, id_all_vec_vec, gsyns = results.get('freq_times'), results.get('spike_freq'), results.get('t_all_vec_vec'), results.get('id_all_vec_vec'), results.get('gsyns')\n \n if pop.id == 0:\n \n bin_width = 1*ms\n freq_times = arange(0, time[-1], bin_width)\n [num_spikes, _] = neuronpy.util.spiketrain.get_histogram(t_all_vec_vec[0], bins = freq_times)\n spike_freq = np.concatenate((zeros(1),num_spikes)) / bin_width / N[0]\n \n \n if \"inh\" in stimtype: # generate input current, to complicated to get it out\n \n if \"curr\" in stimtype:\n time1 = np.arange(0, trun, pop.dt)\n \n r_mod = interp(freq_times, time1, current1, left=0, right=0)\n \n [num_spikes, _] = neuronpy.util.spiketrain.get_histogram(t_all_vec_vec[1], bins = freq_times)\n spike_freq1 = np.concatenate((zeros(1),num_spikes)) / bin_width / N[1]\n else:\n r_mod = interp(freq_times, modulation_vec[1][0], modulation_vec[1][1], left=0, right=0)\n \n [num_spikes, _] = neuronpy.util.spiketrain.get_histogram(t_all_vec_vec[1], bins = freq_times)\n spike_freq1 = np.concatenate((zeros(1),num_spikes)) / bin_width / N[1]\n \n elif \"ex\" in stimtype:\n r_mod = interp(freq_times, modulation_vec[0][0], modulation_vec[0][1], left=0, right=0) \n\n\n def modelfun(amp, shift, tau1, tau2, bin_width, r_mod):\n \n tau1 = tau1\n tau2 = tau2\n \n t1 = np.arange(0,10*tau2,bin_width)\n K = amp*syn_kernel(t1, tau1, tau2) \n K = np.concatenate((np.zeros(len(K)-1),K))\n t2 = np.arange(0,len(K)*bin_width,bin_width)\n \n model = np.convolve(K, r_mod, mode='same') + shift\n \n return model\n\n \n def residual(params, r_mod, data=None, bin_width=1*ms, tstart=0, tstop=3):\n \n amp = params['amp'].value\n shift = params['shift'].value\n tau1 = params['tau1'].value\n tau2 = params['tau2'].value\n \n model = modelfun(amp, shift, tau1, tau2, bin_width, r_mod)\n \n return (data[int(tstart/bin_width):int(tstop/bin_width)]-model[int(tstart/bin_width):int(tstop/bin_width)])\n \n \n result = minimize(residual, params, args=(r_mod, spike_freq, bin_width, tstart, tstop))\n \n print \"chisqr: \", result.chisqr\n print 'Best-Fit Values:'\n for name, par in params.items():\n print ' %s = %.4f +/- %.4f ' % (name, par.value, par.stderr)\n \n amp = params['amp'].value\n shift = params['shift'].value\n tau1 = params['tau1'].value\n tau2 = params['tau2'].value\n \n model = modelfun(amp, shift, tau1, tau2, bin_width = bin_width, r_mod = r_mod) \n \n \n if \"ex\" in stimtype:\n plt.figure(0)\n plt.plot(freq_times[int(0.5/bin_width):int(trun/bin_width)], spike_freq[int(0.5/bin_width):int(trun/bin_width)], freq_times[int(0.5/bin_width):int(trun/bin_width)], model[int(0.5/bin_width):int(trun/bin_width)])\n plt.figure(1)\n plt.plot(time, voltage[0]), freq_times, r_mod, time, current\n #plt.figure(100) \n #plt.plot(t_all_vec_vec[0],id_all_vec_vec[0],'k|')\n #plt.savefig(\"./figs/dump/taufit_\" + str(stimtype) + \"_spikes.pdf\", dpi = 300) # save it \n \n else:\n plt.figure(0)\n plt.plot(freq_times[int(0.5/bin_width):int(trun/bin_width)], spike_freq1[int(0.5/bin_width):int(trun/bin_width)], freq_times[int(0.5/bin_width):int(trun/bin_width)], spike_freq[int(0.5/bin_width):int(trun/bin_width)], freq_times[int(0.5/bin_width):int(trun/bin_width)], model[int(0.5/bin_width):int(trun/bin_width)])\n plt.figure(1)\n plt.plot(time, voltage[0], time, voltage[1], freq_times, r_mod, time, current)\n plt.figure(100) \n #plt.plot(t_all_vec_vec[0],id_all_vec_vec[0],'k|')\n #plt.plot(t_all_vec_vec[1],id_all_vec_vec[1],'b|')\n #plt.savefig(\"./figs/dump/taufit_\" + str(stimtype) + \"_spikes.pdf\", dpi = 300) # save it \n \n \n plt.figure(0)\n plt.title('Fit: ' + str(stimtype) + ', tau1=' + str(tau1) + ' tau2=' + str(tau2))\n plt.savefig(\"./figs/dump/taufit_\" + str(stimtype) + \"_rate.png\", dpi = 300) # save it \n \n plt.figure(1)\n plt.savefig(\"./figs/dump/taufit_\" + str(stimtype) + \"_voltage.png\", dpi = 300) # save it \n \n \n plt.show()\n ", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
import re import random import requests from bs4 import BeautifulSoup import js2py from fake_useragent import UserAgent def _get_request_key(session): res = session.post("https://spys.one/en/socks-proxy-list/") soup = BeautifulSoup(res.text, 'html.parser') return soup.find("input", {"name": "xx0"}).get("value") def _get_proxy_list(session, xx0): res = session.post("https://spys.one/en/socks-proxy-list/", data=f"xx0={xx0}&xpp={0}&xf1={0}&xf2={0}&xf4={0}&xf5={2}", headers={ "Content-Type": "application/x-www-form-urlencoded", }) soup = BeautifulSoup(res.text, 'html.parser') js = js2py.EvalJs({"document": {"write": lambda a: a}}) js.execute(soup.select_one("body > script").string) addrs = soup.select("tr[onmouseover] > td:first-child") ports = [js.eval(i.find("script").string) for i in addrs] addrs = [i.get_text() for i in addrs] ports = [re.sub(r"<[^<]*>", "", i) for i in ports] return list(map(''.join, zip(addrs, ports))) class ProxyScrapper: def __init__(self): self._proxies = [] def refresh(self): session = requests.Session() session.headers["User-Agent"] = UserAgent().random print("Rotating proxy list") xx0 = _get_request_key(session) print(f"Got proxy request key xx0={xx0}") addrs = _get_proxy_list(session, xx0) self._proxies = [f"socks5://{i}" for i in addrs] print(f"Got {len(self._proxies)} proxies") def random(self): assert(len(self._proxies) > 0) return random.choice(self._proxies)
normal
{ "blob_id": "647dde6e3288ded29336062b78baacc3a92908a7", "index": 478, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass ProxyScrapper:\n\n def __init__(self):\n self._proxies = []\n\n def refresh(self):\n session = requests.Session()\n session.headers['User-Agent'] = UserAgent().random\n print('Rotating proxy list')\n xx0 = _get_request_key(session)\n print(f'Got proxy request key xx0={xx0}')\n addrs = _get_proxy_list(session, xx0)\n self._proxies = [f'socks5://{i}' for i in addrs]\n print(f'Got {len(self._proxies)} proxies')\n\n def random(self):\n assert len(self._proxies) > 0\n return random.choice(self._proxies)\n", "step-3": "<mask token>\n\n\ndef _get_request_key(session):\n res = session.post('https://spys.one/en/socks-proxy-list/')\n soup = BeautifulSoup(res.text, 'html.parser')\n return soup.find('input', {'name': 'xx0'}).get('value')\n\n\n<mask token>\n\n\nclass ProxyScrapper:\n\n def __init__(self):\n self._proxies = []\n\n def refresh(self):\n session = requests.Session()\n session.headers['User-Agent'] = UserAgent().random\n print('Rotating proxy list')\n xx0 = _get_request_key(session)\n print(f'Got proxy request key xx0={xx0}')\n addrs = _get_proxy_list(session, xx0)\n self._proxies = [f'socks5://{i}' for i in addrs]\n print(f'Got {len(self._proxies)} proxies')\n\n def random(self):\n assert len(self._proxies) > 0\n return random.choice(self._proxies)\n", "step-4": "import re\nimport random\nimport requests\nfrom bs4 import BeautifulSoup\nimport js2py\nfrom fake_useragent import UserAgent\n\n\ndef _get_request_key(session):\n res = session.post('https://spys.one/en/socks-proxy-list/')\n soup = BeautifulSoup(res.text, 'html.parser')\n return soup.find('input', {'name': 'xx0'}).get('value')\n\n\ndef _get_proxy_list(session, xx0):\n res = session.post('https://spys.one/en/socks-proxy-list/', data=\n f'xx0={xx0}&xpp={0}&xf1={0}&xf2={0}&xf4={0}&xf5={2}', headers={\n 'Content-Type': 'application/x-www-form-urlencoded'})\n soup = BeautifulSoup(res.text, 'html.parser')\n js = js2py.EvalJs({'document': {'write': lambda a: a}})\n js.execute(soup.select_one('body > script').string)\n addrs = soup.select('tr[onmouseover] > td:first-child')\n ports = [js.eval(i.find('script').string) for i in addrs]\n addrs = [i.get_text() for i in addrs]\n ports = [re.sub('<[^<]*>', '', i) for i in ports]\n return list(map(''.join, zip(addrs, ports)))\n\n\nclass ProxyScrapper:\n\n def __init__(self):\n self._proxies = []\n\n def refresh(self):\n session = requests.Session()\n session.headers['User-Agent'] = UserAgent().random\n print('Rotating proxy list')\n xx0 = _get_request_key(session)\n print(f'Got proxy request key xx0={xx0}')\n addrs = _get_proxy_list(session, xx0)\n self._proxies = [f'socks5://{i}' for i in addrs]\n print(f'Got {len(self._proxies)} proxies')\n\n def random(self):\n assert len(self._proxies) > 0\n return random.choice(self._proxies)\n", "step-5": "import re\nimport random\nimport requests\nfrom bs4 import BeautifulSoup\nimport js2py\nfrom fake_useragent import UserAgent\n\n\ndef _get_request_key(session):\n res = session.post(\"https://spys.one/en/socks-proxy-list/\")\n soup = BeautifulSoup(res.text, 'html.parser')\n return soup.find(\"input\", {\"name\": \"xx0\"}).get(\"value\")\n\n\ndef _get_proxy_list(session, xx0):\n res = session.post(\"https://spys.one/en/socks-proxy-list/\",\n data=f\"xx0={xx0}&xpp={0}&xf1={0}&xf2={0}&xf4={0}&xf5={2}\",\n headers={\n \"Content-Type\": \"application/x-www-form-urlencoded\",\n })\n\n soup = BeautifulSoup(res.text, 'html.parser')\n js = js2py.EvalJs({\"document\": {\"write\": lambda a: a}})\n js.execute(soup.select_one(\"body > script\").string)\n\n addrs = soup.select(\"tr[onmouseover] > td:first-child\")\n ports = [js.eval(i.find(\"script\").string) for i in addrs]\n addrs = [i.get_text() for i in addrs]\n ports = [re.sub(r\"<[^<]*>\", \"\", i) for i in ports]\n\n return list(map(''.join, zip(addrs, ports)))\n\n\nclass ProxyScrapper:\n def __init__(self):\n self._proxies = []\n\n def refresh(self):\n session = requests.Session()\n session.headers[\"User-Agent\"] = UserAgent().random\n print(\"Rotating proxy list\")\n\n xx0 = _get_request_key(session)\n print(f\"Got proxy request key xx0={xx0}\")\n\n addrs = _get_proxy_list(session, xx0)\n self._proxies = [f\"socks5://{i}\" for i in addrs]\n print(f\"Got {len(self._proxies)} proxies\")\n\n def random(self):\n assert(len(self._proxies) > 0)\n return random.choice(self._proxies)\n", "step-ids": [ 0, 4, 5, 7, 8 ] }
[ 0, 4, 5, 7, 8 ]
a=[1,2,3,4,5] max=0 for i in a: if i>=max: max=i elif i<=min: min=i print max print min
normal
{ "blob_id": "65da68d33aa382ed6deeff3c66a063ee299c2567", "index": 1448, "step-1": "a=[1,2,3,4,5]\nmax=0\nfor i in a:\n\tif i>=max:\n\t\tmax=i\n\telif i<=min:\n\t\tmin=i\nprint max\nprint min\n\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
#!/usr/bin/env python # -*- coding: utf-8 -*- #from setup_env import * #from mmlibrary import * from astropy.coordinates import SkyCoord import astropy.units as u from mmlibrary import * import numpy as np import lal from scipy.special import logsumexp import cpnest, cpnest.model # Oggetto per test: GW170817 #GW = SkyCoord('13h07m05.49s', '23d23m02.0s', unit=(u.hourangle, u.deg)) DL=33.4 dDL=3.34 GW = SkyCoord(ra = '13h07m05.49s', dec = '23d23m02.0s', unit=('hourangle','deg')) def Mstar(omega): ''' Calcolo magnitudine di taglio Schechter function ''' return -20.47 + 5.0*np.log10(omega.h) def Schechter_unnormed(M, omega, alpha): ''' Funzione di Schechter non normalizzata ''' Ms = Mstar(omega) tmp = 10**(-0.4*(M-Ms)) return tmp**(alpha+1.0)*np.exp(-tmp) def normalise(omega, alpha, Mmin = -30,Mmax = -10): ''' Normalizzazione funzione di Schechter (todo: fare analitica) ''' M = np.linspace(Mmin, Mmax, 100) return np.sum([Schechter_unnormed(Mi, omega, alpha = alpha)*np.diff(M)[0] for Mi in M]) def Schechter(M, omega, alpha = -1.07): ''' Funzione di Schechter normalizzata ''' return Schechter_unnormed(M, omega, alpha = alpha)/normalise(omega, alpha = alpha) def Mthreshold(DL, mth = 27.0): ''' Magnitudine assoluta di soglia ''' return mth - 5.0*np.log10(1e5*DL) def mabs(m, DL): return m - 5.0*np.log10(1e5*DL) def HubbleLaw(D_L, omega): # Da rivedere: test solo 1 ordine return D_L*omega.h/(3e3) # Sicuro del numero? def gaussian(x,x0,sigma): return np.exp(-(x-x0)**2/(2*sigma**2))/(sigma*np.sqrt(2*np.pi)) class completeness(cpnest.model.Model): def __init__(self, catalog): self.names=['z', 'h', 'om', 'ol'] self.bounds=[[0.001,0.012], [0.5,1.], [0.04,1.], [0.,1.]] self.omega = lal.CreateCosmologicalParameters(0.7,0.5,0.5,-1.,0.,0.) self.catalog = catalog def log_prior(self, x): # controllo finitezza e theta(M-Mth) if not(np.isfinite(super(completeness, self).log_prior(x))): return -np.inf else: self.omega.h = x['h'] self.omega.om = x['om'] self.omega.ol = x['ol'] zgw = x['z'] logP = 0.0 for zi,mi in zip(self.catalog['z'],self.catalog['Bmag']): DL = lal.LuminosityDistance(self.omega, zi) Mabsi = mabs(mi,DL) if Mthreshold(DL) < Mabsi: return -np.inf else: # Update parametri cosmologici con simulazione # Calcolo prior. Ciascuna coordinata è pesata con le probabilità # delle coordinate ('banane') GW, così come z. # Temporaneamente, è assunta gaussiana intorno a un evento. logP += np.log(Schechter(Mabsi, self.omega)) #log_P_RA = np.log(gaussian(x['ra'],Gal.ra.rad,Gal.ra.rad/100.)) #log_P_DEC = np.log(gaussian(x['dec'],Gal.dec.rad,Gal.dec.rad/100.)) logP += np.log(lal.ComovingVolumeElement(zi, self.omega)) return logP # PROBLEMA! Come introduco le delta(ra,dec)? def log_likelihood(self, x): logL = 0.0 zgw = x['z'] logL += np.log(gaussian(lal.LuminosityDistance(self.omega, zgw), DL,dDL)) logL += logsumexp([gaussian(zgw, zgi, zgi/10.0) for zgi in self.catalog['z']]) #logL += np.log(gaussian(x['ra'],GW.ra.rad,GW.ra.rad/10.)) #logL += np.log(gaussian(x['dec'],GW.dec.rad,GW.dec.rad/10.)) return logL if __name__ == '__main__': Gal_cat = GalInABox([190,200],[-25,-15], u.deg, u.deg, catalog='GLADE')[::100] M = completeness(Gal_cat) job = cpnest.CPNest(M, verbose=2, nthreads=4, nlive=1000, maxmcmc=1024) job.run() # GLADE galaxy catalog
normal
{ "blob_id": "fa5468741e9884f6c8bcacaf9d560b5c93ee781a", "index": 8906, "step-1": "<mask token>\n\n\nclass completeness(cpnest.model.Model):\n\n def __init__(self, catalog):\n self.names = ['z', 'h', 'om', 'ol']\n self.bounds = [[0.001, 0.012], [0.5, 1.0], [0.04, 1.0], [0.0, 1.0]]\n self.omega = lal.CreateCosmologicalParameters(0.7, 0.5, 0.5, -1.0, \n 0.0, 0.0)\n self.catalog = catalog\n <mask token>\n <mask token>\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef Schechter_unnormed(M, omega, alpha):\n \"\"\"\n Funzione di Schechter non normalizzata\n \"\"\"\n Ms = Mstar(omega)\n tmp = 10 ** (-0.4 * (M - Ms))\n return tmp ** (alpha + 1.0) * np.exp(-tmp)\n\n\ndef normalise(omega, alpha, Mmin=-30, Mmax=-10):\n \"\"\"\n Normalizzazione funzione di Schechter (todo: fare analitica)\n \"\"\"\n M = np.linspace(Mmin, Mmax, 100)\n return np.sum([(Schechter_unnormed(Mi, omega, alpha=alpha) * np.diff(M)\n [0]) for Mi in M])\n\n\n<mask token>\n\n\ndef Mthreshold(DL, mth=27.0):\n \"\"\"\n Magnitudine assoluta di soglia\n \"\"\"\n return mth - 5.0 * np.log10(100000.0 * DL)\n\n\ndef mabs(m, DL):\n return m - 5.0 * np.log10(100000.0 * DL)\n\n\ndef HubbleLaw(D_L, omega):\n return D_L * omega.h / 3000.0\n\n\n<mask token>\n\n\nclass completeness(cpnest.model.Model):\n\n def __init__(self, catalog):\n self.names = ['z', 'h', 'om', 'ol']\n self.bounds = [[0.001, 0.012], [0.5, 1.0], [0.04, 1.0], [0.0, 1.0]]\n self.omega = lal.CreateCosmologicalParameters(0.7, 0.5, 0.5, -1.0, \n 0.0, 0.0)\n self.catalog = catalog\n\n def log_prior(self, x):\n if not np.isfinite(super(completeness, self).log_prior(x)):\n return -np.inf\n else:\n self.omega.h = x['h']\n self.omega.om = x['om']\n self.omega.ol = x['ol']\n zgw = x['z']\n logP = 0.0\n for zi, mi in zip(self.catalog['z'], self.catalog['Bmag']):\n DL = lal.LuminosityDistance(self.omega, zi)\n Mabsi = mabs(mi, DL)\n if Mthreshold(DL) < Mabsi:\n return -np.inf\n else:\n logP += np.log(Schechter(Mabsi, self.omega))\n logP += np.log(lal.ComovingVolumeElement(zi, self.omega))\n return logP\n\n def log_likelihood(self, x):\n logL = 0.0\n zgw = x['z']\n logL += np.log(gaussian(lal.LuminosityDistance(self.omega, zgw), DL,\n dDL))\n logL += logsumexp([gaussian(zgw, zgi, zgi / 10.0) for zgi in self.\n catalog['z']])\n return logL\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef Mstar(omega):\n \"\"\"\n Calcolo magnitudine di taglio Schechter function\n \"\"\"\n return -20.47 + 5.0 * np.log10(omega.h)\n\n\ndef Schechter_unnormed(M, omega, alpha):\n \"\"\"\n Funzione di Schechter non normalizzata\n \"\"\"\n Ms = Mstar(omega)\n tmp = 10 ** (-0.4 * (M - Ms))\n return tmp ** (alpha + 1.0) * np.exp(-tmp)\n\n\ndef normalise(omega, alpha, Mmin=-30, Mmax=-10):\n \"\"\"\n Normalizzazione funzione di Schechter (todo: fare analitica)\n \"\"\"\n M = np.linspace(Mmin, Mmax, 100)\n return np.sum([(Schechter_unnormed(Mi, omega, alpha=alpha) * np.diff(M)\n [0]) for Mi in M])\n\n\ndef Schechter(M, omega, alpha=-1.07):\n \"\"\"\n Funzione di Schechter normalizzata\n \"\"\"\n return Schechter_unnormed(M, omega, alpha=alpha) / normalise(omega,\n alpha=alpha)\n\n\ndef Mthreshold(DL, mth=27.0):\n \"\"\"\n Magnitudine assoluta di soglia\n \"\"\"\n return mth - 5.0 * np.log10(100000.0 * DL)\n\n\ndef mabs(m, DL):\n return m - 5.0 * np.log10(100000.0 * DL)\n\n\ndef HubbleLaw(D_L, omega):\n return D_L * omega.h / 3000.0\n\n\ndef gaussian(x, x0, sigma):\n return np.exp(-(x - x0) ** 2 / (2 * sigma ** 2)) / (sigma * np.sqrt(2 *\n np.pi))\n\n\nclass completeness(cpnest.model.Model):\n\n def __init__(self, catalog):\n self.names = ['z', 'h', 'om', 'ol']\n self.bounds = [[0.001, 0.012], [0.5, 1.0], [0.04, 1.0], [0.0, 1.0]]\n self.omega = lal.CreateCosmologicalParameters(0.7, 0.5, 0.5, -1.0, \n 0.0, 0.0)\n self.catalog = catalog\n\n def log_prior(self, x):\n if not np.isfinite(super(completeness, self).log_prior(x)):\n return -np.inf\n else:\n self.omega.h = x['h']\n self.omega.om = x['om']\n self.omega.ol = x['ol']\n zgw = x['z']\n logP = 0.0\n for zi, mi in zip(self.catalog['z'], self.catalog['Bmag']):\n DL = lal.LuminosityDistance(self.omega, zi)\n Mabsi = mabs(mi, DL)\n if Mthreshold(DL) < Mabsi:\n return -np.inf\n else:\n logP += np.log(Schechter(Mabsi, self.omega))\n logP += np.log(lal.ComovingVolumeElement(zi, self.omega))\n return logP\n\n def log_likelihood(self, x):\n logL = 0.0\n zgw = x['z']\n logL += np.log(gaussian(lal.LuminosityDistance(self.omega, zgw), DL,\n dDL))\n logL += logsumexp([gaussian(zgw, zgi, zgi / 10.0) for zgi in self.\n catalog['z']])\n return logL\n\n\nif __name__ == '__main__':\n Gal_cat = GalInABox([190, 200], [-25, -15], u.deg, u.deg, catalog='GLADE')[\n ::100]\n M = completeness(Gal_cat)\n job = cpnest.CPNest(M, verbose=2, nthreads=4, nlive=1000, maxmcmc=1024)\n job.run()\n", "step-4": "from astropy.coordinates import SkyCoord\nimport astropy.units as u\nfrom mmlibrary import *\nimport numpy as np\nimport lal\nfrom scipy.special import logsumexp\nimport cpnest, cpnest.model\nDL = 33.4\ndDL = 3.34\nGW = SkyCoord(ra='13h07m05.49s', dec='23d23m02.0s', unit=('hourangle', 'deg'))\n\n\ndef Mstar(omega):\n \"\"\"\n Calcolo magnitudine di taglio Schechter function\n \"\"\"\n return -20.47 + 5.0 * np.log10(omega.h)\n\n\ndef Schechter_unnormed(M, omega, alpha):\n \"\"\"\n Funzione di Schechter non normalizzata\n \"\"\"\n Ms = Mstar(omega)\n tmp = 10 ** (-0.4 * (M - Ms))\n return tmp ** (alpha + 1.0) * np.exp(-tmp)\n\n\ndef normalise(omega, alpha, Mmin=-30, Mmax=-10):\n \"\"\"\n Normalizzazione funzione di Schechter (todo: fare analitica)\n \"\"\"\n M = np.linspace(Mmin, Mmax, 100)\n return np.sum([(Schechter_unnormed(Mi, omega, alpha=alpha) * np.diff(M)\n [0]) for Mi in M])\n\n\ndef Schechter(M, omega, alpha=-1.07):\n \"\"\"\n Funzione di Schechter normalizzata\n \"\"\"\n return Schechter_unnormed(M, omega, alpha=alpha) / normalise(omega,\n alpha=alpha)\n\n\ndef Mthreshold(DL, mth=27.0):\n \"\"\"\n Magnitudine assoluta di soglia\n \"\"\"\n return mth - 5.0 * np.log10(100000.0 * DL)\n\n\ndef mabs(m, DL):\n return m - 5.0 * np.log10(100000.0 * DL)\n\n\ndef HubbleLaw(D_L, omega):\n return D_L * omega.h / 3000.0\n\n\ndef gaussian(x, x0, sigma):\n return np.exp(-(x - x0) ** 2 / (2 * sigma ** 2)) / (sigma * np.sqrt(2 *\n np.pi))\n\n\nclass completeness(cpnest.model.Model):\n\n def __init__(self, catalog):\n self.names = ['z', 'h', 'om', 'ol']\n self.bounds = [[0.001, 0.012], [0.5, 1.0], [0.04, 1.0], [0.0, 1.0]]\n self.omega = lal.CreateCosmologicalParameters(0.7, 0.5, 0.5, -1.0, \n 0.0, 0.0)\n self.catalog = catalog\n\n def log_prior(self, x):\n if not np.isfinite(super(completeness, self).log_prior(x)):\n return -np.inf\n else:\n self.omega.h = x['h']\n self.omega.om = x['om']\n self.omega.ol = x['ol']\n zgw = x['z']\n logP = 0.0\n for zi, mi in zip(self.catalog['z'], self.catalog['Bmag']):\n DL = lal.LuminosityDistance(self.omega, zi)\n Mabsi = mabs(mi, DL)\n if Mthreshold(DL) < Mabsi:\n return -np.inf\n else:\n logP += np.log(Schechter(Mabsi, self.omega))\n logP += np.log(lal.ComovingVolumeElement(zi, self.omega))\n return logP\n\n def log_likelihood(self, x):\n logL = 0.0\n zgw = x['z']\n logL += np.log(gaussian(lal.LuminosityDistance(self.omega, zgw), DL,\n dDL))\n logL += logsumexp([gaussian(zgw, zgi, zgi / 10.0) for zgi in self.\n catalog['z']])\n return logL\n\n\nif __name__ == '__main__':\n Gal_cat = GalInABox([190, 200], [-25, -15], u.deg, u.deg, catalog='GLADE')[\n ::100]\n M = completeness(Gal_cat)\n job = cpnest.CPNest(M, verbose=2, nthreads=4, nlive=1000, maxmcmc=1024)\n job.run()\n", "step-5": "#!/usr/bin/env python\n# -*- coding: utf-8 -*-\n#from setup_env import *\n#from mmlibrary import *\n\nfrom astropy.coordinates import SkyCoord\nimport astropy.units as u\n\nfrom mmlibrary import *\n\nimport numpy as np\nimport lal\n\nfrom scipy.special import logsumexp\nimport cpnest, cpnest.model\n\n# Oggetto per test: GW170817\n#GW = SkyCoord('13h07m05.49s', '23d23m02.0s', unit=(u.hourangle, u.deg))\nDL=33.4\ndDL=3.34\n\nGW = SkyCoord(ra = '13h07m05.49s', dec = '23d23m02.0s',\n unit=('hourangle','deg'))\n\n\ndef Mstar(omega):\n '''\n Calcolo magnitudine di taglio Schechter function\n '''\n return -20.47 + 5.0*np.log10(omega.h)\n\ndef Schechter_unnormed(M, omega, alpha):\n '''\n Funzione di Schechter non normalizzata\n '''\n Ms = Mstar(omega)\n tmp = 10**(-0.4*(M-Ms))\n return tmp**(alpha+1.0)*np.exp(-tmp)\n\ndef normalise(omega, alpha, Mmin = -30,Mmax = -10):\n '''\n Normalizzazione funzione di Schechter (todo: fare analitica)\n '''\n M = np.linspace(Mmin, Mmax, 100)\n return np.sum([Schechter_unnormed(Mi, omega, alpha = alpha)*np.diff(M)[0] for Mi in M])\n\ndef Schechter(M, omega, alpha = -1.07):\n '''\n Funzione di Schechter normalizzata\n '''\n return Schechter_unnormed(M, omega, alpha = alpha)/normalise(omega, alpha = alpha)\n\ndef Mthreshold(DL, mth = 27.0):\n '''\n Magnitudine assoluta di soglia\n '''\n return mth - 5.0*np.log10(1e5*DL)\n\ndef mabs(m, DL):\n return m - 5.0*np.log10(1e5*DL)\n\n\ndef HubbleLaw(D_L, omega): # Da rivedere: test solo 1 ordine\n return D_L*omega.h/(3e3) # Sicuro del numero?\n\ndef gaussian(x,x0,sigma):\n return np.exp(-(x-x0)**2/(2*sigma**2))/(sigma*np.sqrt(2*np.pi))\n\nclass completeness(cpnest.model.Model):\n\n def __init__(self, catalog):\n self.names=['z', 'h', 'om', 'ol']\n self.bounds=[[0.001,0.012],\n [0.5,1.],\n [0.04,1.],\n [0.,1.]]\n self.omega = lal.CreateCosmologicalParameters(0.7,0.5,0.5,-1.,0.,0.)\n self.catalog = catalog\n\n\n def log_prior(self, x):\n # controllo finitezza e theta(M-Mth)\n\n if not(np.isfinite(super(completeness, self).log_prior(x))):\n return -np.inf\n else:\n self.omega.h = x['h']\n self.omega.om = x['om']\n self.omega.ol = x['ol']\n zgw = x['z']\n logP = 0.0\n for zi,mi in zip(self.catalog['z'],self.catalog['Bmag']):\n DL = lal.LuminosityDistance(self.omega, zi)\n Mabsi = mabs(mi,DL)\n if Mthreshold(DL) < Mabsi:\n\n return -np.inf\n else:\n # Update parametri cosmologici con simulazione\n\n # Calcolo prior. Ciascuna coordinata è pesata con le probabilità\n # delle coordinate ('banane') GW, così come z.\n # Temporaneamente, è assunta gaussiana intorno a un evento.\n logP += np.log(Schechter(Mabsi, self.omega))\n #log_P_RA = np.log(gaussian(x['ra'],Gal.ra.rad,Gal.ra.rad/100.))\n #log_P_DEC = np.log(gaussian(x['dec'],Gal.dec.rad,Gal.dec.rad/100.))\n logP += np.log(lal.ComovingVolumeElement(zi, self.omega))\n\n return logP\n # PROBLEMA! Come introduco le delta(ra,dec)?\n\n def log_likelihood(self, x):\n logL = 0.0\n zgw = x['z']\n\n logL += np.log(gaussian(lal.LuminosityDistance(self.omega, zgw), DL,dDL))\n logL += logsumexp([gaussian(zgw, zgi, zgi/10.0) for zgi in self.catalog['z']])\n #logL += np.log(gaussian(x['ra'],GW.ra.rad,GW.ra.rad/10.))\n #logL += np.log(gaussian(x['dec'],GW.dec.rad,GW.dec.rad/10.))\n\n return logL\n\nif __name__ == '__main__':\n Gal_cat = GalInABox([190,200],[-25,-15], u.deg, u.deg, catalog='GLADE')[::100]\n M = completeness(Gal_cat)\n\n job = cpnest.CPNest(M, verbose=2, nthreads=4, nlive=1000, maxmcmc=1024)\n job.run()\n# GLADE galaxy catalog\n", "step-ids": [ 2, 9, 13, 15, 16 ] }
[ 2, 9, 13, 15, 16 ]
# -*- coding: utf-8 -*- import json import os import io import shutil import pytest from chi_annotator.algo_factory.common import TrainingData from chi_annotator.task_center.config import AnnotatorConfig from chi_annotator.task_center.data_loader import load_local_data from chi_annotator.task_center.model import Interpreter from chi_annotator.task_center.model import Trainer from tests.utils.txt_to_json import create_tmp_test_jsonfile, rm_tmp_file class TestTrainer(object): @classmethod def setup_class(cls): """ setup any state specific to the execution of the given class (which usually contains tests). """ pass @classmethod def teardown_class(cls): """ teardown any state that was previously setup with a call to setup_class. """ pass """ test Trainer and Interpreter """ def ignore_test_load_local_data(self): """ test load local json format data :return: """ tmp_path = create_tmp_test_jsonfile("tmp.json") train_data = load_local_data(tmp_path) rm_tmp_file("tmp.json") assert train_data is not None assert len(train_data.training_examples) == 1000 assert "text" not in train_data.training_examples[0].data assert "label" in train_data.training_examples[0].data def ignore_test_load_config(self): """ test load config :return: """ config = AnnotatorConfig(\ filename="chi_annotator/user_instance/examples/classify/spam_email_classify_config.json") assert config["name"] == "email_spam_classification" def ignor_test_load_default_config(self): """ test load default config :return: """ config = AnnotatorConfig() assert config["config"] == "config.json" def ignore_test_trainer_init(self): """ test trainer :return: """ test_config = "tests/data/test_config/test_config.json" config = AnnotatorConfig(test_config) trainer = Trainer(config) assert len(trainer.pipeline) > 0 def ignore_test_pipeline_flow(self): """ test trainer's train func for pipeline :return: """ test_config = "tests/data/test_config/test_config.json" config = AnnotatorConfig(test_config) trainer = Trainer(config) assert len(trainer.pipeline) > 0 # create tmp train set tmp_path = create_tmp_test_jsonfile("tmp.json") train_data = load_local_data(tmp_path) # rm tmp train set rm_tmp_file("tmp.json") interpreter = trainer.train(train_data) assert interpreter is not None out1 = interpreter.parse(("点连接拿红包啦")) # test persist and load persisted_path = trainer.persist(config['path'], config['project'], config['fixed_model_name']) interpreter_loaded = Interpreter.load(persisted_path, config) out2 = interpreter_loaded.parse("点连接拿红包啦") assert out1.get("classifylabel").get("name") == out2.get("classifylabel").get("name") # remove tmp models shutil.rmtree(config['path'], ignore_errors=True) def ignore_test_trainer_persist(self): """ test pipeline persist, metadata will be saved :return: """ test_config = "tests/data/test_config/test_config.json" config = AnnotatorConfig(test_config) trainer = Trainer(config) assert len(trainer.pipeline) > 0 # char_tokenizer component should been created assert trainer.pipeline[0] is not None # create tmp train set tmp_path = create_tmp_test_jsonfile("tmp.json") train_data = load_local_data(tmp_path) # rm tmp train set rm_tmp_file("tmp.json") trainer.train(train_data) persisted_path = trainer.persist(config['path'], config['project'], config['fixed_model_name']) # load persisted metadata metadata_path = os.path.join(persisted_path, 'metadata.json') with io.open(metadata_path) as f: metadata = json.load(f) assert 'trained_at' in metadata # rm tmp files and dirs shutil.rmtree(config['path'], ignore_errors=False) def ignore_test_train_model_empty_pipeline(self): """ train model with no component :return: """ test_config = "tests/data/test_config/test_config.json" config = AnnotatorConfig(test_config) config['pipeline'] = [] tmp_path = create_tmp_test_jsonfile("tmp.json") train_data = load_local_data(tmp_path) rm_tmp_file("tmp.json") with pytest.raises(ValueError): trainer = Trainer(config) trainer.train(train_data) def ignore_test_handles_pipeline_with_non_existing_component(self): """ handle no exist component in pipeline :return: """ test_config = "tests/data/test_config/test_config.json" config = AnnotatorConfig(test_config) config['pipeline'].append("unknown_component") tmp_path = create_tmp_test_jsonfile("tmp.json") train_data = load_local_data(tmp_path) rm_tmp_file("tmp.json") with pytest.raises(Exception) as execinfo: trainer = Trainer(config) trainer.train(train_data) assert "Failed to find component" in str(execinfo.value) def ignore_test_load_and_persist_without_train(self): """ test save and load model without train :return: """ test_config = "tests/data/test_config/test_config.json" config = AnnotatorConfig(test_config) trainer = Trainer(config) assert len(trainer.pipeline) > 0 # create tmp train set tmp_path = create_tmp_test_jsonfile("tmp.json") train_data = load_local_data(tmp_path) # rm tmp train set rm_tmp_file("tmp.json") # interpreter = trainer.train(train_data) # test persist and load persisted_path = trainer.persist(config['path'], config['project'], config['fixed_model_name']) interpreter_loaded = Interpreter.load(persisted_path, config) assert interpreter_loaded.pipeline assert interpreter_loaded.parse("hello") is not None assert interpreter_loaded.parse("Hello today is Monday, again!") is not None # remove tmp models shutil.rmtree(config['path'], ignore_errors=False) def ignore_test_train_with_empty_data(self): """ test train with empty train data :return: """ test_config = "tests/data/test_config/test_config.json" config = AnnotatorConfig(test_config) trainer = Trainer(config) assert len(trainer.pipeline) > 0 # create tmp train set train_data = TrainingData([]) # rm tmp train set trainer.train(train_data) # test persist and load persisted_path = trainer.persist(config['path'], config['project'], config['fixed_model_name']) interpreter_loaded = Interpreter.load(persisted_path, config) assert interpreter_loaded.pipeline assert interpreter_loaded.parse("hello") is not None assert interpreter_loaded.parse("Hello today is Monday, again!") is not None # remove tmp models shutil.rmtree(config['path'], ignore_errors=False)
normal
{ "blob_id": "192c44540018b9e1ab857bdbfba6fdb39bb74431", "index": 8769, "step-1": "<mask token>\n\n\nclass TestTrainer(object):\n <mask token>\n\n @classmethod\n def teardown_class(cls):\n \"\"\" teardown any state that was previously setup with a call to\n setup_class.\n \"\"\"\n pass\n <mask token>\n\n def ignore_test_load_local_data(self):\n \"\"\"\n test load local json format data\n :return:\n \"\"\"\n tmp_path = create_tmp_test_jsonfile('tmp.json')\n train_data = load_local_data(tmp_path)\n rm_tmp_file('tmp.json')\n assert train_data is not None\n assert len(train_data.training_examples) == 1000\n assert 'text' not in train_data.training_examples[0].data\n assert 'label' in train_data.training_examples[0].data\n\n def ignore_test_load_config(self):\n \"\"\"\n test load config\n :return:\n \"\"\"\n config = AnnotatorConfig(filename=\n 'chi_annotator/user_instance/examples/classify/spam_email_classify_config.json'\n )\n assert config['name'] == 'email_spam_classification'\n\n def ignor_test_load_default_config(self):\n \"\"\"\n test load default config\n :return:\n \"\"\"\n config = AnnotatorConfig()\n assert config['config'] == 'config.json'\n\n def ignore_test_trainer_init(self):\n \"\"\"\n test trainer\n :return:\n \"\"\"\n test_config = 'tests/data/test_config/test_config.json'\n config = AnnotatorConfig(test_config)\n trainer = Trainer(config)\n assert len(trainer.pipeline) > 0\n\n def ignore_test_pipeline_flow(self):\n \"\"\"\n test trainer's train func for pipeline\n :return:\n \"\"\"\n test_config = 'tests/data/test_config/test_config.json'\n config = AnnotatorConfig(test_config)\n trainer = Trainer(config)\n assert len(trainer.pipeline) > 0\n tmp_path = create_tmp_test_jsonfile('tmp.json')\n train_data = load_local_data(tmp_path)\n rm_tmp_file('tmp.json')\n interpreter = trainer.train(train_data)\n assert interpreter is not None\n out1 = interpreter.parse('点连接拿红包啦')\n persisted_path = trainer.persist(config['path'], config['project'],\n config['fixed_model_name'])\n interpreter_loaded = Interpreter.load(persisted_path, config)\n out2 = interpreter_loaded.parse('点连接拿红包啦')\n assert out1.get('classifylabel').get('name') == out2.get(\n 'classifylabel').get('name')\n shutil.rmtree(config['path'], ignore_errors=True)\n\n def ignore_test_trainer_persist(self):\n \"\"\"\n test pipeline persist, metadata will be saved\n :return:\n \"\"\"\n test_config = 'tests/data/test_config/test_config.json'\n config = AnnotatorConfig(test_config)\n trainer = Trainer(config)\n assert len(trainer.pipeline) > 0\n assert trainer.pipeline[0] is not None\n tmp_path = create_tmp_test_jsonfile('tmp.json')\n train_data = load_local_data(tmp_path)\n rm_tmp_file('tmp.json')\n trainer.train(train_data)\n persisted_path = trainer.persist(config['path'], config['project'],\n config['fixed_model_name'])\n metadata_path = os.path.join(persisted_path, 'metadata.json')\n with io.open(metadata_path) as f:\n metadata = json.load(f)\n assert 'trained_at' in metadata\n shutil.rmtree(config['path'], ignore_errors=False)\n <mask token>\n\n def ignore_test_handles_pipeline_with_non_existing_component(self):\n \"\"\"\n handle no exist component in pipeline\n :return:\n \"\"\"\n test_config = 'tests/data/test_config/test_config.json'\n config = AnnotatorConfig(test_config)\n config['pipeline'].append('unknown_component')\n tmp_path = create_tmp_test_jsonfile('tmp.json')\n train_data = load_local_data(tmp_path)\n rm_tmp_file('tmp.json')\n with pytest.raises(Exception) as execinfo:\n trainer = Trainer(config)\n trainer.train(train_data)\n assert 'Failed to find component' in str(execinfo.value)\n <mask token>\n\n def ignore_test_train_with_empty_data(self):\n \"\"\"\n test train with empty train data\n :return:\n \"\"\"\n test_config = 'tests/data/test_config/test_config.json'\n config = AnnotatorConfig(test_config)\n trainer = Trainer(config)\n assert len(trainer.pipeline) > 0\n train_data = TrainingData([])\n trainer.train(train_data)\n persisted_path = trainer.persist(config['path'], config['project'],\n config['fixed_model_name'])\n interpreter_loaded = Interpreter.load(persisted_path, config)\n assert interpreter_loaded.pipeline\n assert interpreter_loaded.parse('hello') is not None\n assert interpreter_loaded.parse('Hello today is Monday, again!'\n ) is not None\n shutil.rmtree(config['path'], ignore_errors=False)\n", "step-2": "<mask token>\n\n\nclass TestTrainer(object):\n\n @classmethod\n def setup_class(cls):\n \"\"\" setup any state specific to the execution of the given class (which\n usually contains tests).\n \"\"\"\n pass\n\n @classmethod\n def teardown_class(cls):\n \"\"\" teardown any state that was previously setup with a call to\n setup_class.\n \"\"\"\n pass\n <mask token>\n\n def ignore_test_load_local_data(self):\n \"\"\"\n test load local json format data\n :return:\n \"\"\"\n tmp_path = create_tmp_test_jsonfile('tmp.json')\n train_data = load_local_data(tmp_path)\n rm_tmp_file('tmp.json')\n assert train_data is not None\n assert len(train_data.training_examples) == 1000\n assert 'text' not in train_data.training_examples[0].data\n assert 'label' in train_data.training_examples[0].data\n\n def ignore_test_load_config(self):\n \"\"\"\n test load config\n :return:\n \"\"\"\n config = AnnotatorConfig(filename=\n 'chi_annotator/user_instance/examples/classify/spam_email_classify_config.json'\n )\n assert config['name'] == 'email_spam_classification'\n\n def ignor_test_load_default_config(self):\n \"\"\"\n test load default config\n :return:\n \"\"\"\n config = AnnotatorConfig()\n assert config['config'] == 'config.json'\n\n def ignore_test_trainer_init(self):\n \"\"\"\n test trainer\n :return:\n \"\"\"\n test_config = 'tests/data/test_config/test_config.json'\n config = AnnotatorConfig(test_config)\n trainer = Trainer(config)\n assert len(trainer.pipeline) > 0\n\n def ignore_test_pipeline_flow(self):\n \"\"\"\n test trainer's train func for pipeline\n :return:\n \"\"\"\n test_config = 'tests/data/test_config/test_config.json'\n config = AnnotatorConfig(test_config)\n trainer = Trainer(config)\n assert len(trainer.pipeline) > 0\n tmp_path = create_tmp_test_jsonfile('tmp.json')\n train_data = load_local_data(tmp_path)\n rm_tmp_file('tmp.json')\n interpreter = trainer.train(train_data)\n assert interpreter is not None\n out1 = interpreter.parse('点连接拿红包啦')\n persisted_path = trainer.persist(config['path'], config['project'],\n config['fixed_model_name'])\n interpreter_loaded = Interpreter.load(persisted_path, config)\n out2 = interpreter_loaded.parse('点连接拿红包啦')\n assert out1.get('classifylabel').get('name') == out2.get(\n 'classifylabel').get('name')\n shutil.rmtree(config['path'], ignore_errors=True)\n\n def ignore_test_trainer_persist(self):\n \"\"\"\n test pipeline persist, metadata will be saved\n :return:\n \"\"\"\n test_config = 'tests/data/test_config/test_config.json'\n config = AnnotatorConfig(test_config)\n trainer = Trainer(config)\n assert len(trainer.pipeline) > 0\n assert trainer.pipeline[0] is not None\n tmp_path = create_tmp_test_jsonfile('tmp.json')\n train_data = load_local_data(tmp_path)\n rm_tmp_file('tmp.json')\n trainer.train(train_data)\n persisted_path = trainer.persist(config['path'], config['project'],\n config['fixed_model_name'])\n metadata_path = os.path.join(persisted_path, 'metadata.json')\n with io.open(metadata_path) as f:\n metadata = json.load(f)\n assert 'trained_at' in metadata\n shutil.rmtree(config['path'], ignore_errors=False)\n <mask token>\n\n def ignore_test_handles_pipeline_with_non_existing_component(self):\n \"\"\"\n handle no exist component in pipeline\n :return:\n \"\"\"\n test_config = 'tests/data/test_config/test_config.json'\n config = AnnotatorConfig(test_config)\n config['pipeline'].append('unknown_component')\n tmp_path = create_tmp_test_jsonfile('tmp.json')\n train_data = load_local_data(tmp_path)\n rm_tmp_file('tmp.json')\n with pytest.raises(Exception) as execinfo:\n trainer = Trainer(config)\n trainer.train(train_data)\n assert 'Failed to find component' in str(execinfo.value)\n\n def ignore_test_load_and_persist_without_train(self):\n \"\"\"\n test save and load model without train\n :return:\n \"\"\"\n test_config = 'tests/data/test_config/test_config.json'\n config = AnnotatorConfig(test_config)\n trainer = Trainer(config)\n assert len(trainer.pipeline) > 0\n tmp_path = create_tmp_test_jsonfile('tmp.json')\n train_data = load_local_data(tmp_path)\n rm_tmp_file('tmp.json')\n persisted_path = trainer.persist(config['path'], config['project'],\n config['fixed_model_name'])\n interpreter_loaded = Interpreter.load(persisted_path, config)\n assert interpreter_loaded.pipeline\n assert interpreter_loaded.parse('hello') is not None\n assert interpreter_loaded.parse('Hello today is Monday, again!'\n ) is not None\n shutil.rmtree(config['path'], ignore_errors=False)\n\n def ignore_test_train_with_empty_data(self):\n \"\"\"\n test train with empty train data\n :return:\n \"\"\"\n test_config = 'tests/data/test_config/test_config.json'\n config = AnnotatorConfig(test_config)\n trainer = Trainer(config)\n assert len(trainer.pipeline) > 0\n train_data = TrainingData([])\n trainer.train(train_data)\n persisted_path = trainer.persist(config['path'], config['project'],\n config['fixed_model_name'])\n interpreter_loaded = Interpreter.load(persisted_path, config)\n assert interpreter_loaded.pipeline\n assert interpreter_loaded.parse('hello') is not None\n assert interpreter_loaded.parse('Hello today is Monday, again!'\n ) is not None\n shutil.rmtree(config['path'], ignore_errors=False)\n", "step-3": "<mask token>\n\n\nclass TestTrainer(object):\n\n @classmethod\n def setup_class(cls):\n \"\"\" setup any state specific to the execution of the given class (which\n usually contains tests).\n \"\"\"\n pass\n\n @classmethod\n def teardown_class(cls):\n \"\"\" teardown any state that was previously setup with a call to\n setup_class.\n \"\"\"\n pass\n <mask token>\n\n def ignore_test_load_local_data(self):\n \"\"\"\n test load local json format data\n :return:\n \"\"\"\n tmp_path = create_tmp_test_jsonfile('tmp.json')\n train_data = load_local_data(tmp_path)\n rm_tmp_file('tmp.json')\n assert train_data is not None\n assert len(train_data.training_examples) == 1000\n assert 'text' not in train_data.training_examples[0].data\n assert 'label' in train_data.training_examples[0].data\n\n def ignore_test_load_config(self):\n \"\"\"\n test load config\n :return:\n \"\"\"\n config = AnnotatorConfig(filename=\n 'chi_annotator/user_instance/examples/classify/spam_email_classify_config.json'\n )\n assert config['name'] == 'email_spam_classification'\n\n def ignor_test_load_default_config(self):\n \"\"\"\n test load default config\n :return:\n \"\"\"\n config = AnnotatorConfig()\n assert config['config'] == 'config.json'\n\n def ignore_test_trainer_init(self):\n \"\"\"\n test trainer\n :return:\n \"\"\"\n test_config = 'tests/data/test_config/test_config.json'\n config = AnnotatorConfig(test_config)\n trainer = Trainer(config)\n assert len(trainer.pipeline) > 0\n\n def ignore_test_pipeline_flow(self):\n \"\"\"\n test trainer's train func for pipeline\n :return:\n \"\"\"\n test_config = 'tests/data/test_config/test_config.json'\n config = AnnotatorConfig(test_config)\n trainer = Trainer(config)\n assert len(trainer.pipeline) > 0\n tmp_path = create_tmp_test_jsonfile('tmp.json')\n train_data = load_local_data(tmp_path)\n rm_tmp_file('tmp.json')\n interpreter = trainer.train(train_data)\n assert interpreter is not None\n out1 = interpreter.parse('点连接拿红包啦')\n persisted_path = trainer.persist(config['path'], config['project'],\n config['fixed_model_name'])\n interpreter_loaded = Interpreter.load(persisted_path, config)\n out2 = interpreter_loaded.parse('点连接拿红包啦')\n assert out1.get('classifylabel').get('name') == out2.get(\n 'classifylabel').get('name')\n shutil.rmtree(config['path'], ignore_errors=True)\n\n def ignore_test_trainer_persist(self):\n \"\"\"\n test pipeline persist, metadata will be saved\n :return:\n \"\"\"\n test_config = 'tests/data/test_config/test_config.json'\n config = AnnotatorConfig(test_config)\n trainer = Trainer(config)\n assert len(trainer.pipeline) > 0\n assert trainer.pipeline[0] is not None\n tmp_path = create_tmp_test_jsonfile('tmp.json')\n train_data = load_local_data(tmp_path)\n rm_tmp_file('tmp.json')\n trainer.train(train_data)\n persisted_path = trainer.persist(config['path'], config['project'],\n config['fixed_model_name'])\n metadata_path = os.path.join(persisted_path, 'metadata.json')\n with io.open(metadata_path) as f:\n metadata = json.load(f)\n assert 'trained_at' in metadata\n shutil.rmtree(config['path'], ignore_errors=False)\n\n def ignore_test_train_model_empty_pipeline(self):\n \"\"\"\n train model with no component\n :return:\n \"\"\"\n test_config = 'tests/data/test_config/test_config.json'\n config = AnnotatorConfig(test_config)\n config['pipeline'] = []\n tmp_path = create_tmp_test_jsonfile('tmp.json')\n train_data = load_local_data(tmp_path)\n rm_tmp_file('tmp.json')\n with pytest.raises(ValueError):\n trainer = Trainer(config)\n trainer.train(train_data)\n\n def ignore_test_handles_pipeline_with_non_existing_component(self):\n \"\"\"\n handle no exist component in pipeline\n :return:\n \"\"\"\n test_config = 'tests/data/test_config/test_config.json'\n config = AnnotatorConfig(test_config)\n config['pipeline'].append('unknown_component')\n tmp_path = create_tmp_test_jsonfile('tmp.json')\n train_data = load_local_data(tmp_path)\n rm_tmp_file('tmp.json')\n with pytest.raises(Exception) as execinfo:\n trainer = Trainer(config)\n trainer.train(train_data)\n assert 'Failed to find component' in str(execinfo.value)\n\n def ignore_test_load_and_persist_without_train(self):\n \"\"\"\n test save and load model without train\n :return:\n \"\"\"\n test_config = 'tests/data/test_config/test_config.json'\n config = AnnotatorConfig(test_config)\n trainer = Trainer(config)\n assert len(trainer.pipeline) > 0\n tmp_path = create_tmp_test_jsonfile('tmp.json')\n train_data = load_local_data(tmp_path)\n rm_tmp_file('tmp.json')\n persisted_path = trainer.persist(config['path'], config['project'],\n config['fixed_model_name'])\n interpreter_loaded = Interpreter.load(persisted_path, config)\n assert interpreter_loaded.pipeline\n assert interpreter_loaded.parse('hello') is not None\n assert interpreter_loaded.parse('Hello today is Monday, again!'\n ) is not None\n shutil.rmtree(config['path'], ignore_errors=False)\n\n def ignore_test_train_with_empty_data(self):\n \"\"\"\n test train with empty train data\n :return:\n \"\"\"\n test_config = 'tests/data/test_config/test_config.json'\n config = AnnotatorConfig(test_config)\n trainer = Trainer(config)\n assert len(trainer.pipeline) > 0\n train_data = TrainingData([])\n trainer.train(train_data)\n persisted_path = trainer.persist(config['path'], config['project'],\n config['fixed_model_name'])\n interpreter_loaded = Interpreter.load(persisted_path, config)\n assert interpreter_loaded.pipeline\n assert interpreter_loaded.parse('hello') is not None\n assert interpreter_loaded.parse('Hello today is Monday, again!'\n ) is not None\n shutil.rmtree(config['path'], ignore_errors=False)\n", "step-4": "<mask token>\n\n\nclass TestTrainer(object):\n\n @classmethod\n def setup_class(cls):\n \"\"\" setup any state specific to the execution of the given class (which\n usually contains tests).\n \"\"\"\n pass\n\n @classmethod\n def teardown_class(cls):\n \"\"\" teardown any state that was previously setup with a call to\n setup_class.\n \"\"\"\n pass\n \"\"\"\n test Trainer and Interpreter\n \"\"\"\n\n def ignore_test_load_local_data(self):\n \"\"\"\n test load local json format data\n :return:\n \"\"\"\n tmp_path = create_tmp_test_jsonfile('tmp.json')\n train_data = load_local_data(tmp_path)\n rm_tmp_file('tmp.json')\n assert train_data is not None\n assert len(train_data.training_examples) == 1000\n assert 'text' not in train_data.training_examples[0].data\n assert 'label' in train_data.training_examples[0].data\n\n def ignore_test_load_config(self):\n \"\"\"\n test load config\n :return:\n \"\"\"\n config = AnnotatorConfig(filename=\n 'chi_annotator/user_instance/examples/classify/spam_email_classify_config.json'\n )\n assert config['name'] == 'email_spam_classification'\n\n def ignor_test_load_default_config(self):\n \"\"\"\n test load default config\n :return:\n \"\"\"\n config = AnnotatorConfig()\n assert config['config'] == 'config.json'\n\n def ignore_test_trainer_init(self):\n \"\"\"\n test trainer\n :return:\n \"\"\"\n test_config = 'tests/data/test_config/test_config.json'\n config = AnnotatorConfig(test_config)\n trainer = Trainer(config)\n assert len(trainer.pipeline) > 0\n\n def ignore_test_pipeline_flow(self):\n \"\"\"\n test trainer's train func for pipeline\n :return:\n \"\"\"\n test_config = 'tests/data/test_config/test_config.json'\n config = AnnotatorConfig(test_config)\n trainer = Trainer(config)\n assert len(trainer.pipeline) > 0\n tmp_path = create_tmp_test_jsonfile('tmp.json')\n train_data = load_local_data(tmp_path)\n rm_tmp_file('tmp.json')\n interpreter = trainer.train(train_data)\n assert interpreter is not None\n out1 = interpreter.parse('点连接拿红包啦')\n persisted_path = trainer.persist(config['path'], config['project'],\n config['fixed_model_name'])\n interpreter_loaded = Interpreter.load(persisted_path, config)\n out2 = interpreter_loaded.parse('点连接拿红包啦')\n assert out1.get('classifylabel').get('name') == out2.get(\n 'classifylabel').get('name')\n shutil.rmtree(config['path'], ignore_errors=True)\n\n def ignore_test_trainer_persist(self):\n \"\"\"\n test pipeline persist, metadata will be saved\n :return:\n \"\"\"\n test_config = 'tests/data/test_config/test_config.json'\n config = AnnotatorConfig(test_config)\n trainer = Trainer(config)\n assert len(trainer.pipeline) > 0\n assert trainer.pipeline[0] is not None\n tmp_path = create_tmp_test_jsonfile('tmp.json')\n train_data = load_local_data(tmp_path)\n rm_tmp_file('tmp.json')\n trainer.train(train_data)\n persisted_path = trainer.persist(config['path'], config['project'],\n config['fixed_model_name'])\n metadata_path = os.path.join(persisted_path, 'metadata.json')\n with io.open(metadata_path) as f:\n metadata = json.load(f)\n assert 'trained_at' in metadata\n shutil.rmtree(config['path'], ignore_errors=False)\n\n def ignore_test_train_model_empty_pipeline(self):\n \"\"\"\n train model with no component\n :return:\n \"\"\"\n test_config = 'tests/data/test_config/test_config.json'\n config = AnnotatorConfig(test_config)\n config['pipeline'] = []\n tmp_path = create_tmp_test_jsonfile('tmp.json')\n train_data = load_local_data(tmp_path)\n rm_tmp_file('tmp.json')\n with pytest.raises(ValueError):\n trainer = Trainer(config)\n trainer.train(train_data)\n\n def ignore_test_handles_pipeline_with_non_existing_component(self):\n \"\"\"\n handle no exist component in pipeline\n :return:\n \"\"\"\n test_config = 'tests/data/test_config/test_config.json'\n config = AnnotatorConfig(test_config)\n config['pipeline'].append('unknown_component')\n tmp_path = create_tmp_test_jsonfile('tmp.json')\n train_data = load_local_data(tmp_path)\n rm_tmp_file('tmp.json')\n with pytest.raises(Exception) as execinfo:\n trainer = Trainer(config)\n trainer.train(train_data)\n assert 'Failed to find component' in str(execinfo.value)\n\n def ignore_test_load_and_persist_without_train(self):\n \"\"\"\n test save and load model without train\n :return:\n \"\"\"\n test_config = 'tests/data/test_config/test_config.json'\n config = AnnotatorConfig(test_config)\n trainer = Trainer(config)\n assert len(trainer.pipeline) > 0\n tmp_path = create_tmp_test_jsonfile('tmp.json')\n train_data = load_local_data(tmp_path)\n rm_tmp_file('tmp.json')\n persisted_path = trainer.persist(config['path'], config['project'],\n config['fixed_model_name'])\n interpreter_loaded = Interpreter.load(persisted_path, config)\n assert interpreter_loaded.pipeline\n assert interpreter_loaded.parse('hello') is not None\n assert interpreter_loaded.parse('Hello today is Monday, again!'\n ) is not None\n shutil.rmtree(config['path'], ignore_errors=False)\n\n def ignore_test_train_with_empty_data(self):\n \"\"\"\n test train with empty train data\n :return:\n \"\"\"\n test_config = 'tests/data/test_config/test_config.json'\n config = AnnotatorConfig(test_config)\n trainer = Trainer(config)\n assert len(trainer.pipeline) > 0\n train_data = TrainingData([])\n trainer.train(train_data)\n persisted_path = trainer.persist(config['path'], config['project'],\n config['fixed_model_name'])\n interpreter_loaded = Interpreter.load(persisted_path, config)\n assert interpreter_loaded.pipeline\n assert interpreter_loaded.parse('hello') is not None\n assert interpreter_loaded.parse('Hello today is Monday, again!'\n ) is not None\n shutil.rmtree(config['path'], ignore_errors=False)\n", "step-5": "# -*- coding: utf-8 -*-\nimport json\nimport os\nimport io\nimport shutil\n\nimport pytest\n\nfrom chi_annotator.algo_factory.common import TrainingData\nfrom chi_annotator.task_center.config import AnnotatorConfig\nfrom chi_annotator.task_center.data_loader import load_local_data\nfrom chi_annotator.task_center.model import Interpreter\nfrom chi_annotator.task_center.model import Trainer\nfrom tests.utils.txt_to_json import create_tmp_test_jsonfile, rm_tmp_file\n\n\nclass TestTrainer(object):\n\n @classmethod\n def setup_class(cls):\n \"\"\" setup any state specific to the execution of the given class (which\n usually contains tests).\n \"\"\"\n pass\n\n @classmethod\n def teardown_class(cls):\n \"\"\" teardown any state that was previously setup with a call to\n setup_class.\n \"\"\"\n pass\n\n \"\"\"\n test Trainer and Interpreter\n \"\"\"\n def ignore_test_load_local_data(self):\n \"\"\"\n test load local json format data\n :return:\n \"\"\"\n tmp_path = create_tmp_test_jsonfile(\"tmp.json\")\n train_data = load_local_data(tmp_path)\n rm_tmp_file(\"tmp.json\")\n assert train_data is not None\n assert len(train_data.training_examples) == 1000\n assert \"text\" not in train_data.training_examples[0].data\n assert \"label\" in train_data.training_examples[0].data\n\n def ignore_test_load_config(self):\n \"\"\"\n test load config\n :return:\n \"\"\"\n config = AnnotatorConfig(\\\n filename=\"chi_annotator/user_instance/examples/classify/spam_email_classify_config.json\")\n assert config[\"name\"] == \"email_spam_classification\"\n\n def ignor_test_load_default_config(self):\n \"\"\"\n test load default config\n :return:\n \"\"\"\n config = AnnotatorConfig()\n assert config[\"config\"] == \"config.json\"\n\n def ignore_test_trainer_init(self):\n \"\"\"\n test trainer\n :return:\n \"\"\"\n test_config = \"tests/data/test_config/test_config.json\"\n config = AnnotatorConfig(test_config)\n\n trainer = Trainer(config)\n assert len(trainer.pipeline) > 0\n\n def ignore_test_pipeline_flow(self):\n \"\"\"\n test trainer's train func for pipeline\n :return:\n \"\"\"\n test_config = \"tests/data/test_config/test_config.json\"\n config = AnnotatorConfig(test_config)\n\n trainer = Trainer(config)\n assert len(trainer.pipeline) > 0\n # create tmp train set\n tmp_path = create_tmp_test_jsonfile(\"tmp.json\")\n train_data = load_local_data(tmp_path)\n # rm tmp train set\n rm_tmp_file(\"tmp.json\")\n\n interpreter = trainer.train(train_data)\n assert interpreter is not None\n out1 = interpreter.parse((\"点连接拿红包啦\"))\n\n # test persist and load\n persisted_path = trainer.persist(config['path'],\n config['project'],\n config['fixed_model_name'])\n\n interpreter_loaded = Interpreter.load(persisted_path, config)\n out2 = interpreter_loaded.parse(\"点连接拿红包啦\")\n assert out1.get(\"classifylabel\").get(\"name\") == out2.get(\"classifylabel\").get(\"name\")\n\n # remove tmp models\n shutil.rmtree(config['path'], ignore_errors=True)\n\n def ignore_test_trainer_persist(self):\n \"\"\"\n test pipeline persist, metadata will be saved\n :return:\n \"\"\"\n test_config = \"tests/data/test_config/test_config.json\"\n config = AnnotatorConfig(test_config)\n\n trainer = Trainer(config)\n assert len(trainer.pipeline) > 0\n # char_tokenizer component should been created\n assert trainer.pipeline[0] is not None\n # create tmp train set\n tmp_path = create_tmp_test_jsonfile(\"tmp.json\")\n train_data = load_local_data(tmp_path)\n # rm tmp train set\n rm_tmp_file(\"tmp.json\")\n\n trainer.train(train_data)\n persisted_path = trainer.persist(config['path'],\n config['project'],\n config['fixed_model_name'])\n # load persisted metadata\n metadata_path = os.path.join(persisted_path, 'metadata.json')\n with io.open(metadata_path) as f:\n metadata = json.load(f)\n assert 'trained_at' in metadata\n # rm tmp files and dirs\n shutil.rmtree(config['path'], ignore_errors=False)\n\n def ignore_test_train_model_empty_pipeline(self):\n \"\"\"\n train model with no component\n :return:\n \"\"\"\n test_config = \"tests/data/test_config/test_config.json\"\n config = AnnotatorConfig(test_config)\n config['pipeline'] = []\n\n tmp_path = create_tmp_test_jsonfile(\"tmp.json\")\n train_data = load_local_data(tmp_path)\n rm_tmp_file(\"tmp.json\")\n\n with pytest.raises(ValueError):\n trainer = Trainer(config)\n trainer.train(train_data)\n\n def ignore_test_handles_pipeline_with_non_existing_component(self):\n \"\"\"\n handle no exist component in pipeline\n :return:\n \"\"\"\n test_config = \"tests/data/test_config/test_config.json\"\n config = AnnotatorConfig(test_config)\n config['pipeline'].append(\"unknown_component\")\n\n tmp_path = create_tmp_test_jsonfile(\"tmp.json\")\n train_data = load_local_data(tmp_path)\n rm_tmp_file(\"tmp.json\")\n\n with pytest.raises(Exception) as execinfo:\n trainer = Trainer(config)\n trainer.train(train_data)\n assert \"Failed to find component\" in str(execinfo.value)\n\n def ignore_test_load_and_persist_without_train(self):\n \"\"\"\n test save and load model without train\n :return:\n \"\"\"\n test_config = \"tests/data/test_config/test_config.json\"\n config = AnnotatorConfig(test_config)\n\n trainer = Trainer(config)\n assert len(trainer.pipeline) > 0\n # create tmp train set\n tmp_path = create_tmp_test_jsonfile(\"tmp.json\")\n train_data = load_local_data(tmp_path)\n # rm tmp train set\n rm_tmp_file(\"tmp.json\")\n\n # interpreter = trainer.train(train_data)\n # test persist and load\n persisted_path = trainer.persist(config['path'],\n config['project'],\n config['fixed_model_name'])\n\n interpreter_loaded = Interpreter.load(persisted_path, config)\n assert interpreter_loaded.pipeline\n assert interpreter_loaded.parse(\"hello\") is not None\n assert interpreter_loaded.parse(\"Hello today is Monday, again!\") is not None\n # remove tmp models\n shutil.rmtree(config['path'], ignore_errors=False)\n\n def ignore_test_train_with_empty_data(self):\n \"\"\"\n test train with empty train data\n :return:\n \"\"\"\n test_config = \"tests/data/test_config/test_config.json\"\n config = AnnotatorConfig(test_config)\n\n trainer = Trainer(config)\n assert len(trainer.pipeline) > 0\n # create tmp train set\n\n train_data = TrainingData([])\n # rm tmp train set\n\n trainer.train(train_data)\n # test persist and load\n persisted_path = trainer.persist(config['path'],\n config['project'],\n config['fixed_model_name'])\n\n interpreter_loaded = Interpreter.load(persisted_path, config)\n \n assert interpreter_loaded.pipeline\n assert interpreter_loaded.parse(\"hello\") is not None\n assert interpreter_loaded.parse(\"Hello today is Monday, again!\") is not None\n \n # remove tmp models\n shutil.rmtree(config['path'], ignore_errors=False)\n\n\n\n", "step-ids": [ 10, 12, 13, 14, 16 ] }
[ 10, 12, 13, 14, 16 ]
import json import os import time import urllib.request import pandas as pd from lib.db.dbutils import ( check_blacklisted, check_ticker_exists, get_db, update_blacklisted, ) def get_data(url, delay=20): while True: df = json.loads(urllib.request.urlopen(url).read()) if df.get("Note", 0) == 0: break time.sleep(20) return df def grab_a_ticker(symbol="MSFT", apiKey=None): if apiKey is None: apiKey = os.environ.get("API_KEY") # Check if ticker already exists in the database if not check_ticker_exists(symbol) and not check_blacklisted(symbol): requestUrl = r"https://www.alphavantage.co/query?function=TIME_SERIES_DAILY&symbol={}&outputsize=full&apikey={}" metaDataUrl = r"https://www.alphavantage.co/query?function=SYMBOL_SEARCH&keywords={}&apikey={}" data = get_data(requestUrl.format(symbol, apiKey)) metaData = get_data(metaDataUrl.format(symbol, apiKey)) df = pd.DataFrame( pd.DataFrame(data.get("Time Series (Daily)")).transpose()[ "4. close" ] ).reset_index() df.columns = ["Date", "Price"] df["Symbol"] = data["Meta Data"]["2. Symbol"] if len(metaData["bestMatches"]) > 0: met_df = ( pd.DataFrame(metaData["bestMatches"][0], index=[0])[ ["1. symbol", "2. name", "3. type", "4. region"] ] .reset_index() .drop(["index"], axis=1) ) met_df.columns = ["Symbol", "Name", "Type", "Region"] else: print(metaData.keys()) met_df = pd.DataFrame() try: assert met_df.iloc[0, :].Symbol == df.iloc[0, :].Symbol df.to_sql( "time_series", con=get_db(), if_exists="append", index=False ) met_df.to_sql( "stock_meta_data", con=get_db(), if_exists="append", index=False, ) except AssertionError as e: print( "'Couldn't get it right with assertion error: {}".format( str(e) ) ) update_blacklisted(symbol) except Exception as e: print(str(e)) update_blacklisted(symbol) else: print("Symbol {} already exists.".format(symbol))
normal
{ "blob_id": "3c8e6a93c4d5616b9199cf473d298bfa2dc191af", "index": 9971, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef grab_a_ticker(symbol='MSFT', apiKey=None):\n if apiKey is None:\n apiKey = os.environ.get('API_KEY')\n if not check_ticker_exists(symbol) and not check_blacklisted(symbol):\n requestUrl = (\n 'https://www.alphavantage.co/query?function=TIME_SERIES_DAILY&symbol={}&outputsize=full&apikey={}'\n )\n metaDataUrl = (\n 'https://www.alphavantage.co/query?function=SYMBOL_SEARCH&keywords={}&apikey={}'\n )\n data = get_data(requestUrl.format(symbol, apiKey))\n metaData = get_data(metaDataUrl.format(symbol, apiKey))\n df = pd.DataFrame(pd.DataFrame(data.get('Time Series (Daily)')).\n transpose()['4. close']).reset_index()\n df.columns = ['Date', 'Price']\n df['Symbol'] = data['Meta Data']['2. Symbol']\n if len(metaData['bestMatches']) > 0:\n met_df = pd.DataFrame(metaData['bestMatches'][0], index=[0])[[\n '1. symbol', '2. name', '3. type', '4. region']].reset_index(\n ).drop(['index'], axis=1)\n met_df.columns = ['Symbol', 'Name', 'Type', 'Region']\n else:\n print(metaData.keys())\n met_df = pd.DataFrame()\n try:\n assert met_df.iloc[0, :].Symbol == df.iloc[0, :].Symbol\n df.to_sql('time_series', con=get_db(), if_exists='append',\n index=False)\n met_df.to_sql('stock_meta_data', con=get_db(), if_exists=\n 'append', index=False)\n except AssertionError as e:\n print(\"'Couldn't get it right with assertion error: {}\".format(\n str(e)))\n update_blacklisted(symbol)\n except Exception as e:\n print(str(e))\n update_blacklisted(symbol)\n else:\n print('Symbol {} already exists.'.format(symbol))\n", "step-3": "<mask token>\n\n\ndef get_data(url, delay=20):\n while True:\n df = json.loads(urllib.request.urlopen(url).read())\n if df.get('Note', 0) == 0:\n break\n time.sleep(20)\n return df\n\n\ndef grab_a_ticker(symbol='MSFT', apiKey=None):\n if apiKey is None:\n apiKey = os.environ.get('API_KEY')\n if not check_ticker_exists(symbol) and not check_blacklisted(symbol):\n requestUrl = (\n 'https://www.alphavantage.co/query?function=TIME_SERIES_DAILY&symbol={}&outputsize=full&apikey={}'\n )\n metaDataUrl = (\n 'https://www.alphavantage.co/query?function=SYMBOL_SEARCH&keywords={}&apikey={}'\n )\n data = get_data(requestUrl.format(symbol, apiKey))\n metaData = get_data(metaDataUrl.format(symbol, apiKey))\n df = pd.DataFrame(pd.DataFrame(data.get('Time Series (Daily)')).\n transpose()['4. close']).reset_index()\n df.columns = ['Date', 'Price']\n df['Symbol'] = data['Meta Data']['2. Symbol']\n if len(metaData['bestMatches']) > 0:\n met_df = pd.DataFrame(metaData['bestMatches'][0], index=[0])[[\n '1. symbol', '2. name', '3. type', '4. region']].reset_index(\n ).drop(['index'], axis=1)\n met_df.columns = ['Symbol', 'Name', 'Type', 'Region']\n else:\n print(metaData.keys())\n met_df = pd.DataFrame()\n try:\n assert met_df.iloc[0, :].Symbol == df.iloc[0, :].Symbol\n df.to_sql('time_series', con=get_db(), if_exists='append',\n index=False)\n met_df.to_sql('stock_meta_data', con=get_db(), if_exists=\n 'append', index=False)\n except AssertionError as e:\n print(\"'Couldn't get it right with assertion error: {}\".format(\n str(e)))\n update_blacklisted(symbol)\n except Exception as e:\n print(str(e))\n update_blacklisted(symbol)\n else:\n print('Symbol {} already exists.'.format(symbol))\n", "step-4": "import json\nimport os\nimport time\nimport urllib.request\nimport pandas as pd\nfrom lib.db.dbutils import check_blacklisted, check_ticker_exists, get_db, update_blacklisted\n\n\ndef get_data(url, delay=20):\n while True:\n df = json.loads(urllib.request.urlopen(url).read())\n if df.get('Note', 0) == 0:\n break\n time.sleep(20)\n return df\n\n\ndef grab_a_ticker(symbol='MSFT', apiKey=None):\n if apiKey is None:\n apiKey = os.environ.get('API_KEY')\n if not check_ticker_exists(symbol) and not check_blacklisted(symbol):\n requestUrl = (\n 'https://www.alphavantage.co/query?function=TIME_SERIES_DAILY&symbol={}&outputsize=full&apikey={}'\n )\n metaDataUrl = (\n 'https://www.alphavantage.co/query?function=SYMBOL_SEARCH&keywords={}&apikey={}'\n )\n data = get_data(requestUrl.format(symbol, apiKey))\n metaData = get_data(metaDataUrl.format(symbol, apiKey))\n df = pd.DataFrame(pd.DataFrame(data.get('Time Series (Daily)')).\n transpose()['4. close']).reset_index()\n df.columns = ['Date', 'Price']\n df['Symbol'] = data['Meta Data']['2. Symbol']\n if len(metaData['bestMatches']) > 0:\n met_df = pd.DataFrame(metaData['bestMatches'][0], index=[0])[[\n '1. symbol', '2. name', '3. type', '4. region']].reset_index(\n ).drop(['index'], axis=1)\n met_df.columns = ['Symbol', 'Name', 'Type', 'Region']\n else:\n print(metaData.keys())\n met_df = pd.DataFrame()\n try:\n assert met_df.iloc[0, :].Symbol == df.iloc[0, :].Symbol\n df.to_sql('time_series', con=get_db(), if_exists='append',\n index=False)\n met_df.to_sql('stock_meta_data', con=get_db(), if_exists=\n 'append', index=False)\n except AssertionError as e:\n print(\"'Couldn't get it right with assertion error: {}\".format(\n str(e)))\n update_blacklisted(symbol)\n except Exception as e:\n print(str(e))\n update_blacklisted(symbol)\n else:\n print('Symbol {} already exists.'.format(symbol))\n", "step-5": "import json\nimport os\nimport time\nimport urllib.request\n\nimport pandas as pd\n\nfrom lib.db.dbutils import (\n check_blacklisted,\n check_ticker_exists,\n get_db,\n update_blacklisted,\n)\n\n\ndef get_data(url, delay=20):\n while True:\n df = json.loads(urllib.request.urlopen(url).read())\n if df.get(\"Note\", 0) == 0:\n break\n time.sleep(20)\n return df\n\n\ndef grab_a_ticker(symbol=\"MSFT\", apiKey=None):\n if apiKey is None:\n apiKey = os.environ.get(\"API_KEY\")\n # Check if ticker already exists in the database\n if not check_ticker_exists(symbol) and not check_blacklisted(symbol):\n requestUrl = r\"https://www.alphavantage.co/query?function=TIME_SERIES_DAILY&symbol={}&outputsize=full&apikey={}\"\n metaDataUrl = r\"https://www.alphavantage.co/query?function=SYMBOL_SEARCH&keywords={}&apikey={}\"\n data = get_data(requestUrl.format(symbol, apiKey))\n metaData = get_data(metaDataUrl.format(symbol, apiKey))\n df = pd.DataFrame(\n pd.DataFrame(data.get(\"Time Series (Daily)\")).transpose()[\n \"4. close\"\n ]\n ).reset_index()\n\n df.columns = [\"Date\", \"Price\"]\n df[\"Symbol\"] = data[\"Meta Data\"][\"2. Symbol\"]\n if len(metaData[\"bestMatches\"]) > 0:\n met_df = (\n pd.DataFrame(metaData[\"bestMatches\"][0], index=[0])[\n [\"1. symbol\", \"2. name\", \"3. type\", \"4. region\"]\n ]\n .reset_index()\n .drop([\"index\"], axis=1)\n )\n met_df.columns = [\"Symbol\", \"Name\", \"Type\", \"Region\"]\n else:\n print(metaData.keys())\n met_df = pd.DataFrame()\n\n try:\n assert met_df.iloc[0, :].Symbol == df.iloc[0, :].Symbol\n df.to_sql(\n \"time_series\", con=get_db(), if_exists=\"append\", index=False\n )\n met_df.to_sql(\n \"stock_meta_data\",\n con=get_db(),\n if_exists=\"append\",\n index=False,\n )\n except AssertionError as e:\n print(\n \"'Couldn't get it right with assertion error: {}\".format(\n str(e)\n )\n )\n update_blacklisted(symbol)\n except Exception as e:\n print(str(e))\n update_blacklisted(symbol)\n else:\n print(\"Symbol {} already exists.\".format(symbol))\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
Ylist = ['yes', 'Yes', 'Y', 'y'] Nlist = ['no', 'No', 'N', 'n'] America = ['America', 'america', 'amer', 'rica'] TRW = ['1775', 'The Revolutionary war', 'the Revolutionary war', 'the revolutionary war', 'The Revolutionary War', 'trw', 'Trw', 'TRW'] TCW = ['1861', 'The civil war', 'The civil War', 'The Civil war', 'The Civil war', 'The civil War', 'The Civil War', 'TCW', 'tcw', 'Tcw'] TGW = ['1917', 'The Great War', 'the great war', 'the great War', 'the Great war', 'The great war', 'WW1', 'ww1', 'Ww1', 'wW1', 'World War One', 'World war 1'] WW2 = ['1941', 'WW2', 'ww2', 'Ww2', 'W2', 'World war two', 'World war two', 'World War 2', 'World War Two', 'world war two', 'world war two'] # Russia Russia = ['Russia', 'russia', 'rusia', 'ra', 'Ra', 'Rusia', 'Ru'] RJW = ['1904', 'TRJW', 'trjw']
normal
{ "blob_id": "6e07dcc3f3b8c7fbf8ce8d481b9612e7496967bd", "index": 8316, "step-1": "<mask token>\n", "step-2": "Ylist = ['yes', 'Yes', 'Y', 'y']\nNlist = ['no', 'No', 'N', 'n']\nAmerica = ['America', 'america', 'amer', 'rica']\nTRW = ['1775', 'The Revolutionary war', 'the Revolutionary war',\n 'the revolutionary war', 'The Revolutionary War', 'trw', 'Trw', 'TRW']\nTCW = ['1861', 'The civil war', 'The civil War', 'The Civil war',\n 'The Civil war', 'The civil War', 'The Civil War', 'TCW', 'tcw', 'Tcw']\nTGW = ['1917', 'The Great War', 'the great war', 'the great War',\n 'the Great war', 'The great war', 'WW1', 'ww1', 'Ww1', 'wW1',\n 'World War One', 'World war 1']\nWW2 = ['1941', 'WW2', 'ww2', 'Ww2', 'W2', 'World war two', 'World war two',\n 'World War 2', 'World War Two', 'world war two', 'world war two']\nRussia = ['Russia', 'russia', 'rusia', 'ra', 'Ra', 'Rusia', 'Ru']\nRJW = ['1904', 'TRJW', 'trjw']\n", "step-3": "Ylist = ['yes', 'Yes', 'Y', 'y']\r\nNlist = ['no', 'No', 'N', 'n']\r\nAmerica = ['America', 'america', 'amer', 'rica']\r\nTRW = ['1775', 'The Revolutionary war', 'the Revolutionary war', 'the revolutionary war', 'The Revolutionary War',\r\n 'trw', 'Trw', 'TRW']\r\nTCW = ['1861', 'The civil war', 'The civil War', 'The Civil war', 'The Civil war', 'The civil War', 'The Civil War',\r\n 'TCW', 'tcw', 'Tcw']\r\nTGW = ['1917', 'The Great War', 'the great war', 'the great War', 'the Great war', 'The great war', 'WW1', 'ww1', 'Ww1',\r\n 'wW1', 'World War One', 'World war 1']\r\nWW2 = ['1941', 'WW2', 'ww2', 'Ww2', 'W2', 'World war two', 'World war two', 'World War 2', 'World War Two',\r\n 'world war two', 'world war two']\r\n# Russia\r\nRussia = ['Russia', 'russia', 'rusia', 'ra', 'Ra', 'Rusia', 'Ru']\r\nRJW = ['1904', 'TRJW', 'trjw']\r\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
# coding=utf-8 from __future__ import print_function import os import sys os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' basedir = os.getcwd() os.chdir(os.path.dirname(os.path.abspath(__file__))) sys.path.append('trainer') sys.path.append('downloader') from gen.gen_captcha import gen_dataset, load_templates, candidates from gen.img_process import grey_to_binary, clear_paper_noise from model.nn import load_model_nn from model.common import find_model_ckpt import tensorflow as tf from gen.utils import vec2str import numpy as np from PIL import Image from downloader import download def show_im(dataset): data = np.uint8(dataset[0]).reshape((30, 96)) * 255 im = Image.fromarray(data) im.show() def test_model(captcha): im = Image.open(os.path.join(basedir, 'downloader', 'captchas', captcha)) im = im.convert('L') im = grey_to_binary(im) im = clear_paper_noise(im, 5) # im.show() # templates = load_templates(os.path.join('trainer', 'templates')) model = load_model_nn() x = model['x'] keep_prob = model['keep_prob'] saver = model['saver'] prediction = model['prediction'] graph = model['graph'] model_ckpt_path, _ = find_model_ckpt(os.path.join('trainer', '.checkpoint')) # print("Used the model:", model_ckpt_path) with tf.Session(graph=graph) as session: tf.global_variables_initializer().run() saver.restore(session, model_ckpt_path) # dataset, labels = gen_dataset(1, templates) # generate one image dataset = [] dataset.append(np.asarray(im.convert("L")).reshape([30 * 96]) / 255) label = prediction.eval(feed_dict={x: dataset, keep_prob: 1.0}, session=session)[0] string = '' for i in range(4): string += chr(label[i] + ord('0')) print(string) if __name__ == "__main__": if len(sys.argv) <= 1: captcha = download(1)[0] else: captcha = sys.argv[1] test_model(captcha)
normal
{ "blob_id": "8e34b5e15c5b6107d6841e7b567abf967c631f1b", "index": 7440, "step-1": "<mask token>\n\n\ndef show_im(dataset):\n data = np.uint8(dataset[0]).reshape((30, 96)) * 255\n im = Image.fromarray(data)\n im.show()\n\n\ndef test_model(captcha):\n im = Image.open(os.path.join(basedir, 'downloader', 'captchas', captcha))\n im = im.convert('L')\n im = grey_to_binary(im)\n im = clear_paper_noise(im, 5)\n model = load_model_nn()\n x = model['x']\n keep_prob = model['keep_prob']\n saver = model['saver']\n prediction = model['prediction']\n graph = model['graph']\n model_ckpt_path, _ = find_model_ckpt(os.path.join('trainer', '.checkpoint')\n )\n with tf.Session(graph=graph) as session:\n tf.global_variables_initializer().run()\n saver.restore(session, model_ckpt_path)\n dataset = []\n dataset.append(np.asarray(im.convert('L')).reshape([30 * 96]) / 255)\n label = prediction.eval(feed_dict={x: dataset, keep_prob: 1.0},\n session=session)[0]\n string = ''\n for i in range(4):\n string += chr(label[i] + ord('0'))\n print(string)\n\n\n<mask token>\n", "step-2": "<mask token>\nos.chdir(os.path.dirname(os.path.abspath(__file__)))\nsys.path.append('trainer')\nsys.path.append('downloader')\n<mask token>\n\n\ndef show_im(dataset):\n data = np.uint8(dataset[0]).reshape((30, 96)) * 255\n im = Image.fromarray(data)\n im.show()\n\n\ndef test_model(captcha):\n im = Image.open(os.path.join(basedir, 'downloader', 'captchas', captcha))\n im = im.convert('L')\n im = grey_to_binary(im)\n im = clear_paper_noise(im, 5)\n model = load_model_nn()\n x = model['x']\n keep_prob = model['keep_prob']\n saver = model['saver']\n prediction = model['prediction']\n graph = model['graph']\n model_ckpt_path, _ = find_model_ckpt(os.path.join('trainer', '.checkpoint')\n )\n with tf.Session(graph=graph) as session:\n tf.global_variables_initializer().run()\n saver.restore(session, model_ckpt_path)\n dataset = []\n dataset.append(np.asarray(im.convert('L')).reshape([30 * 96]) / 255)\n label = prediction.eval(feed_dict={x: dataset, keep_prob: 1.0},\n session=session)[0]\n string = ''\n for i in range(4):\n string += chr(label[i] + ord('0'))\n print(string)\n\n\nif __name__ == '__main__':\n if len(sys.argv) <= 1:\n captcha = download(1)[0]\n else:\n captcha = sys.argv[1]\n test_model(captcha)\n", "step-3": "<mask token>\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\nbasedir = os.getcwd()\nos.chdir(os.path.dirname(os.path.abspath(__file__)))\nsys.path.append('trainer')\nsys.path.append('downloader')\n<mask token>\n\n\ndef show_im(dataset):\n data = np.uint8(dataset[0]).reshape((30, 96)) * 255\n im = Image.fromarray(data)\n im.show()\n\n\ndef test_model(captcha):\n im = Image.open(os.path.join(basedir, 'downloader', 'captchas', captcha))\n im = im.convert('L')\n im = grey_to_binary(im)\n im = clear_paper_noise(im, 5)\n model = load_model_nn()\n x = model['x']\n keep_prob = model['keep_prob']\n saver = model['saver']\n prediction = model['prediction']\n graph = model['graph']\n model_ckpt_path, _ = find_model_ckpt(os.path.join('trainer', '.checkpoint')\n )\n with tf.Session(graph=graph) as session:\n tf.global_variables_initializer().run()\n saver.restore(session, model_ckpt_path)\n dataset = []\n dataset.append(np.asarray(im.convert('L')).reshape([30 * 96]) / 255)\n label = prediction.eval(feed_dict={x: dataset, keep_prob: 1.0},\n session=session)[0]\n string = ''\n for i in range(4):\n string += chr(label[i] + ord('0'))\n print(string)\n\n\nif __name__ == '__main__':\n if len(sys.argv) <= 1:\n captcha = download(1)[0]\n else:\n captcha = sys.argv[1]\n test_model(captcha)\n", "step-4": "from __future__ import print_function\nimport os\nimport sys\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\nbasedir = os.getcwd()\nos.chdir(os.path.dirname(os.path.abspath(__file__)))\nsys.path.append('trainer')\nsys.path.append('downloader')\nfrom gen.gen_captcha import gen_dataset, load_templates, candidates\nfrom gen.img_process import grey_to_binary, clear_paper_noise\nfrom model.nn import load_model_nn\nfrom model.common import find_model_ckpt\nimport tensorflow as tf\nfrom gen.utils import vec2str\nimport numpy as np\nfrom PIL import Image\nfrom downloader import download\n\n\ndef show_im(dataset):\n data = np.uint8(dataset[0]).reshape((30, 96)) * 255\n im = Image.fromarray(data)\n im.show()\n\n\ndef test_model(captcha):\n im = Image.open(os.path.join(basedir, 'downloader', 'captchas', captcha))\n im = im.convert('L')\n im = grey_to_binary(im)\n im = clear_paper_noise(im, 5)\n model = load_model_nn()\n x = model['x']\n keep_prob = model['keep_prob']\n saver = model['saver']\n prediction = model['prediction']\n graph = model['graph']\n model_ckpt_path, _ = find_model_ckpt(os.path.join('trainer', '.checkpoint')\n )\n with tf.Session(graph=graph) as session:\n tf.global_variables_initializer().run()\n saver.restore(session, model_ckpt_path)\n dataset = []\n dataset.append(np.asarray(im.convert('L')).reshape([30 * 96]) / 255)\n label = prediction.eval(feed_dict={x: dataset, keep_prob: 1.0},\n session=session)[0]\n string = ''\n for i in range(4):\n string += chr(label[i] + ord('0'))\n print(string)\n\n\nif __name__ == '__main__':\n if len(sys.argv) <= 1:\n captcha = download(1)[0]\n else:\n captcha = sys.argv[1]\n test_model(captcha)\n", "step-5": "# coding=utf-8\nfrom __future__ import print_function\n\nimport os\nimport sys\n\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\nbasedir = os.getcwd()\nos.chdir(os.path.dirname(os.path.abspath(__file__)))\nsys.path.append('trainer')\nsys.path.append('downloader')\n\nfrom gen.gen_captcha import gen_dataset, load_templates, candidates\nfrom gen.img_process import grey_to_binary, clear_paper_noise\nfrom model.nn import load_model_nn\nfrom model.common import find_model_ckpt\nimport tensorflow as tf\nfrom gen.utils import vec2str\nimport numpy as np\nfrom PIL import Image\nfrom downloader import download\n\ndef show_im(dataset):\n data = np.uint8(dataset[0]).reshape((30, 96)) * 255\n im = Image.fromarray(data)\n im.show()\n\ndef test_model(captcha):\n im = Image.open(os.path.join(basedir, 'downloader', 'captchas', captcha))\n im = im.convert('L')\n im = grey_to_binary(im)\n im = clear_paper_noise(im, 5)\n # im.show()\n # templates = load_templates(os.path.join('trainer', 'templates'))\n\n model = load_model_nn()\n x = model['x']\n keep_prob = model['keep_prob']\n saver = model['saver']\n prediction = model['prediction']\n graph = model['graph']\n model_ckpt_path, _ = find_model_ckpt(os.path.join('trainer', '.checkpoint'))\n # print(\"Used the model:\", model_ckpt_path)\n\n\n with tf.Session(graph=graph) as session:\n tf.global_variables_initializer().run()\n saver.restore(session, model_ckpt_path)\n\n # dataset, labels = gen_dataset(1, templates) # generate one image\n dataset = []\n dataset.append(np.asarray(im.convert(\"L\")).reshape([30 * 96]) / 255)\n\n label = prediction.eval(feed_dict={x: dataset, keep_prob: 1.0}, session=session)[0]\n string = ''\n for i in range(4):\n string += chr(label[i] + ord('0'))\n print(string)\n\n\nif __name__ == \"__main__\":\n if len(sys.argv) <= 1:\n captcha = download(1)[0]\n else:\n captcha = sys.argv[1]\n test_model(captcha)\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
from app01 import models from rest_framework.views import APIView # from api.utils.response import BaseResponse from rest_framework.response import Response from rest_framework.pagination import PageNumberPagination from api.serializers.course import DegreeCourseSerializer # 查询所有学位课程 class DegreeCourseView(APIView): def get(self,request,*args,**kwargs): response = {'code':100,'data':None,'error':None} try: # 从数据库获取数据 degreecourse_list = models.DegreeCourse.objects.all() # 分页 # page = PageNumberPagination() # course_list = page.paginate_queryset(queryset,request,self) # 分页之后的结果执行序列化 ser_obj = DegreeCourseSerializer(degreecourse_list,many=True) response['data'] = ser_obj.data except Exception as e: response['error'] = '获取数据失败' return Response(response) class DegreeCourseDetailView(APIView): def get(self, request, pk, *args, **kwargs): response = {'code': 100, 'data': None, 'error': None} try: degree_course = models.DegreeCourse.objects.filter(id=pk).first() ser = DegreeCourseSerializer(degree_course) response['data'] = ser.data except Exception as e: response['code'] = 500 response['error'] = '获取数据失败' return Response(response)
normal
{ "blob_id": "2b3f8b1ac4735785683c00f6e6ced85d201de53f", "index": 8567, "step-1": "<mask token>\n\n\nclass DegreeCourseDetailView(APIView):\n\n def get(self, request, pk, *args, **kwargs):\n response = {'code': 100, 'data': None, 'error': None}\n try:\n degree_course = models.DegreeCourse.objects.filter(id=pk).first()\n ser = DegreeCourseSerializer(degree_course)\n response['data'] = ser.data\n except Exception as e:\n response['code'] = 500\n response['error'] = '获取数据失败'\n return Response(response)\n", "step-2": "<mask token>\n\n\nclass DegreeCourseView(APIView):\n <mask token>\n\n\nclass DegreeCourseDetailView(APIView):\n\n def get(self, request, pk, *args, **kwargs):\n response = {'code': 100, 'data': None, 'error': None}\n try:\n degree_course = models.DegreeCourse.objects.filter(id=pk).first()\n ser = DegreeCourseSerializer(degree_course)\n response['data'] = ser.data\n except Exception as e:\n response['code'] = 500\n response['error'] = '获取数据失败'\n return Response(response)\n", "step-3": "<mask token>\n\n\nclass DegreeCourseView(APIView):\n\n def get(self, request, *args, **kwargs):\n response = {'code': 100, 'data': None, 'error': None}\n try:\n degreecourse_list = models.DegreeCourse.objects.all()\n ser_obj = DegreeCourseSerializer(degreecourse_list, many=True)\n response['data'] = ser_obj.data\n except Exception as e:\n response['error'] = '获取数据失败'\n return Response(response)\n\n\nclass DegreeCourseDetailView(APIView):\n\n def get(self, request, pk, *args, **kwargs):\n response = {'code': 100, 'data': None, 'error': None}\n try:\n degree_course = models.DegreeCourse.objects.filter(id=pk).first()\n ser = DegreeCourseSerializer(degree_course)\n response['data'] = ser.data\n except Exception as e:\n response['code'] = 500\n response['error'] = '获取数据失败'\n return Response(response)\n", "step-4": "from app01 import models\nfrom rest_framework.views import APIView\nfrom rest_framework.response import Response\nfrom rest_framework.pagination import PageNumberPagination\nfrom api.serializers.course import DegreeCourseSerializer\n\n\nclass DegreeCourseView(APIView):\n\n def get(self, request, *args, **kwargs):\n response = {'code': 100, 'data': None, 'error': None}\n try:\n degreecourse_list = models.DegreeCourse.objects.all()\n ser_obj = DegreeCourseSerializer(degreecourse_list, many=True)\n response['data'] = ser_obj.data\n except Exception as e:\n response['error'] = '获取数据失败'\n return Response(response)\n\n\nclass DegreeCourseDetailView(APIView):\n\n def get(self, request, pk, *args, **kwargs):\n response = {'code': 100, 'data': None, 'error': None}\n try:\n degree_course = models.DegreeCourse.objects.filter(id=pk).first()\n ser = DegreeCourseSerializer(degree_course)\n response['data'] = ser.data\n except Exception as e:\n response['code'] = 500\n response['error'] = '获取数据失败'\n return Response(response)\n", "step-5": "from app01 import models\nfrom rest_framework.views import APIView\n# from api.utils.response import BaseResponse\nfrom rest_framework.response import Response\nfrom rest_framework.pagination import PageNumberPagination\nfrom api.serializers.course import DegreeCourseSerializer\n\n\n# 查询所有学位课程\n\nclass DegreeCourseView(APIView):\n\n def get(self,request,*args,**kwargs):\n response = {'code':100,'data':None,'error':None}\n\n try:\n # 从数据库获取数据\n degreecourse_list = models.DegreeCourse.objects.all()\n\n # 分页\n # page = PageNumberPagination()\n # course_list = page.paginate_queryset(queryset,request,self)\n\n # 分页之后的结果执行序列化\n ser_obj = DegreeCourseSerializer(degreecourse_list,many=True)\n\n response['data'] = ser_obj.data\n except Exception as e:\n\n response['error'] = '获取数据失败'\n\n return Response(response)\n\n\n\n\nclass DegreeCourseDetailView(APIView):\n\n def get(self, request, pk, *args, **kwargs):\n response = {'code': 100, 'data': None, 'error': None}\n try:\n degree_course = models.DegreeCourse.objects.filter(id=pk).first()\n\n ser = DegreeCourseSerializer(degree_course)\n response['data'] = ser.data\n except Exception as e:\n response['code'] = 500\n response['error'] = '获取数据失败'\n return Response(response)\n\n\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
from django.contrib.auth.models import User from rest_framework.serializers import ModelSerializer from app_calendar.models import Holiday, Country, Event, User class CountrySerializer(ModelSerializer): class Meta: model = Country fields = '__all__' class UserSerializer(ModelSerializer): class Meta: model = User fields = '__all__' class EventSerializer(ModelSerializer): class Meta: model = Event fields = '__all__' class HolidaySerializerRead(ModelSerializer): country = CountrySerializer() class Meta: model = Holiday fields = '__all__' class HolidaySerializerWrite(ModelSerializer): class Meta: model = Holiday fields = '__all__'
normal
{ "blob_id": "5b366b0f6813f686600df9da4a17f190f034a10c", "index": 2046, "step-1": "<mask token>\n\n\nclass EventSerializer(ModelSerializer):\n\n\n class Meta:\n model = Event\n fields = '__all__'\n\n\nclass HolidaySerializerRead(ModelSerializer):\n country = CountrySerializer()\n\n\n class Meta:\n model = Holiday\n fields = '__all__'\n\n\nclass HolidaySerializerWrite(ModelSerializer):\n\n\n class Meta:\n model = Holiday\n fields = '__all__'\n", "step-2": "<mask token>\n\n\nclass UserSerializer(ModelSerializer):\n\n\n class Meta:\n model = User\n fields = '__all__'\n\n\nclass EventSerializer(ModelSerializer):\n\n\n class Meta:\n model = Event\n fields = '__all__'\n\n\nclass HolidaySerializerRead(ModelSerializer):\n country = CountrySerializer()\n\n\n class Meta:\n model = Holiday\n fields = '__all__'\n\n\nclass HolidaySerializerWrite(ModelSerializer):\n\n\n class Meta:\n model = Holiday\n fields = '__all__'\n", "step-3": "<mask token>\n\n\nclass CountrySerializer(ModelSerializer):\n\n\n class Meta:\n model = Country\n fields = '__all__'\n\n\nclass UserSerializer(ModelSerializer):\n\n\n class Meta:\n model = User\n fields = '__all__'\n\n\nclass EventSerializer(ModelSerializer):\n\n\n class Meta:\n model = Event\n fields = '__all__'\n\n\nclass HolidaySerializerRead(ModelSerializer):\n country = CountrySerializer()\n\n\n class Meta:\n model = Holiday\n fields = '__all__'\n\n\nclass HolidaySerializerWrite(ModelSerializer):\n\n\n class Meta:\n model = Holiday\n fields = '__all__'\n", "step-4": "from django.contrib.auth.models import User\nfrom rest_framework.serializers import ModelSerializer\nfrom app_calendar.models import Holiday, Country, Event, User\n\n\nclass CountrySerializer(ModelSerializer):\n\n\n class Meta:\n model = Country\n fields = '__all__'\n\n\nclass UserSerializer(ModelSerializer):\n\n\n class Meta:\n model = User\n fields = '__all__'\n\n\nclass EventSerializer(ModelSerializer):\n\n\n class Meta:\n model = Event\n fields = '__all__'\n\n\nclass HolidaySerializerRead(ModelSerializer):\n country = CountrySerializer()\n\n\n class Meta:\n model = Holiday\n fields = '__all__'\n\n\nclass HolidaySerializerWrite(ModelSerializer):\n\n\n class Meta:\n model = Holiday\n fields = '__all__'\n", "step-5": null, "step-ids": [ 4, 5, 6, 7 ] }
[ 4, 5, 6, 7 ]
""" 时间最优 思路: 将和为目标值的那 两个 整数定义为 num1 和 num2 创建一个新字典,内容存在数组中的数字及索引 将数组nums转换为字典, 遍历字典, num1为字典中的元素(其实与数组总的元素一样), num2 为 target减去num1, 判定num2是否在字典中,如果存在,返回字典中num2的值(也就是在数组nums中的下标)和 i(也就是num1在数组中的下标) 如果不存在,设置字典num1的值为i """ def two_sum(nums, target): dct = {} for i, num1 in enumerate(nums): num2 = target - num1 if num2 in dct: return [dct[num2], i] dct[num1] = i print(two_sum([14, 2, 31, 4], 6))
normal
{ "blob_id": "dac8dbb0eba78d4f8dfbe3284325735324a87dc2", "index": 8674, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef two_sum(nums, target):\n dct = {}\n for i, num1 in enumerate(nums):\n num2 = target - num1\n if num2 in dct:\n return [dct[num2], i]\n dct[num1] = i\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef two_sum(nums, target):\n dct = {}\n for i, num1 in enumerate(nums):\n num2 = target - num1\n if num2 in dct:\n return [dct[num2], i]\n dct[num1] = i\n\n\nprint(two_sum([14, 2, 31, 4], 6))\n", "step-4": "\"\"\"\r\n时间最优\r\n\r\n思路:\r\n将和为目标值的那 两个 整数定义为 num1 和 num2\r\n创建一个新字典,内容存在数组中的数字及索引\r\n将数组nums转换为字典,\r\n遍历字典, num1为字典中的元素(其实与数组总的元素一样),\r\nnum2 为 target减去num1, 判定num2是否在字典中,如果存在,返回字典中num2的值(也就是在数组nums中的下标)和 i(也就是num1在数组中的下标)\r\n如果不存在,设置字典num1的值为i\r\n\"\"\"\r\n\r\ndef two_sum(nums, target):\r\n dct = {}\r\n for i, num1 in enumerate(nums):\r\n num2 = target - num1\r\n if num2 in dct:\r\n return [dct[num2], i]\r\n dct[num1] = i\r\n\r\n\r\nprint(two_sum([14, 2, 31, 4], 6))\r\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
from django.urls import path from django.conf import settings from django.conf.urls.static import static from . import views urlpatterns = [path('', views.PostList.as_view(), name='blog_index'), path( '<slug:slug>/', views.post_detail, name='post_detail'), path( 'tag/<slug:slug>/', views.TagIndexView.as_view(), name='tag')]
normal
{ "blob_id": "09ea684cfb6f0a521d3bdadf977d9385636bdc83", "index": 7150, "step-1": "<mask token>\n", "step-2": "<mask token>\nurlpatterns = [path('', views.PostList.as_view(), name='blog_index'), path(\n '<slug:slug>/', views.post_detail, name='post_detail'), path(\n 'tag/<slug:slug>/', views.TagIndexView.as_view(), name='tag')]\n", "step-3": "from django.urls import path\nfrom django.conf import settings\nfrom django.conf.urls.static import static\nfrom . import views\nurlpatterns = [path('', views.PostList.as_view(), name='blog_index'), path(\n '<slug:slug>/', views.post_detail, name='post_detail'), path(\n 'tag/<slug:slug>/', views.TagIndexView.as_view(), name='tag')]\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
import socket import time import sys def main(): if len(sys.argv) != 2: print("usage : %s port") sys.exit() port = int(sys.argv[1]) count = 0 sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sock.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1) sock.settimeout(2) sock.bind(('', port)) sock.sendto(bytes("IBORN", "utf-8"), ('255.255.255.255', port)) lifetime = time.time() + 10 while time.time() < lifetime: try: message, address = sock.recvfrom(1024) message = message.decode("utf-8") print("Message : %s from : %s" % (message, str(address))) if message == "IBORN": sock.sendto(bytes("ILIVE", "utf-8"), address) print(address) me = (socket.gethostbyname(socket.gethostname()), sock.getsockname()[1]) if address != me: count += 1 print("Current count of copies : %s" % count) elif message == "ILIVE": if address != me: count += 1 print("Current count of copies : %s" % count) elif message == "IEXIT": if address != me: count -= 1 print("Current count of copies : %s" % count) except socket.timeout: print("No new messages in 2 seconds.") time.sleep(1) sock.sendto(bytes("IEXIT", "utf-8"), ('255.255.255.255', port)) print("Count at exit : %s" % count) if __name__ == "__main__": main()
normal
{ "blob_id": "68b9f7317f7c6dcda791338ee642dffb653ac694", "index": 4804, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef main():\n if len(sys.argv) != 2:\n print('usage : %s port')\n sys.exit()\n port = int(sys.argv[1])\n count = 0\n sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)\n sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)\n sock.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1)\n sock.settimeout(2)\n sock.bind(('', port))\n sock.sendto(bytes('IBORN', 'utf-8'), ('255.255.255.255', port))\n lifetime = time.time() + 10\n while time.time() < lifetime:\n try:\n message, address = sock.recvfrom(1024)\n message = message.decode('utf-8')\n print('Message : %s from : %s' % (message, str(address)))\n if message == 'IBORN':\n sock.sendto(bytes('ILIVE', 'utf-8'), address)\n print(address)\n me = socket.gethostbyname(socket.gethostname()\n ), sock.getsockname()[1]\n if address != me:\n count += 1\n print('Current count of copies : %s' % count)\n elif message == 'ILIVE':\n if address != me:\n count += 1\n print('Current count of copies : %s' % count)\n elif message == 'IEXIT':\n if address != me:\n count -= 1\n print('Current count of copies : %s' % count)\n except socket.timeout:\n print('No new messages in 2 seconds.')\n time.sleep(1)\n sock.sendto(bytes('IEXIT', 'utf-8'), ('255.255.255.255', port))\n print('Count at exit : %s' % count)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef main():\n if len(sys.argv) != 2:\n print('usage : %s port')\n sys.exit()\n port = int(sys.argv[1])\n count = 0\n sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)\n sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)\n sock.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1)\n sock.settimeout(2)\n sock.bind(('', port))\n sock.sendto(bytes('IBORN', 'utf-8'), ('255.255.255.255', port))\n lifetime = time.time() + 10\n while time.time() < lifetime:\n try:\n message, address = sock.recvfrom(1024)\n message = message.decode('utf-8')\n print('Message : %s from : %s' % (message, str(address)))\n if message == 'IBORN':\n sock.sendto(bytes('ILIVE', 'utf-8'), address)\n print(address)\n me = socket.gethostbyname(socket.gethostname()\n ), sock.getsockname()[1]\n if address != me:\n count += 1\n print('Current count of copies : %s' % count)\n elif message == 'ILIVE':\n if address != me:\n count += 1\n print('Current count of copies : %s' % count)\n elif message == 'IEXIT':\n if address != me:\n count -= 1\n print('Current count of copies : %s' % count)\n except socket.timeout:\n print('No new messages in 2 seconds.')\n time.sleep(1)\n sock.sendto(bytes('IEXIT', 'utf-8'), ('255.255.255.255', port))\n print('Count at exit : %s' % count)\n\n\nif __name__ == '__main__':\n main()\n", "step-4": "import socket\nimport time\nimport sys\n\n\ndef main():\n if len(sys.argv) != 2:\n print('usage : %s port')\n sys.exit()\n port = int(sys.argv[1])\n count = 0\n sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)\n sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)\n sock.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1)\n sock.settimeout(2)\n sock.bind(('', port))\n sock.sendto(bytes('IBORN', 'utf-8'), ('255.255.255.255', port))\n lifetime = time.time() + 10\n while time.time() < lifetime:\n try:\n message, address = sock.recvfrom(1024)\n message = message.decode('utf-8')\n print('Message : %s from : %s' % (message, str(address)))\n if message == 'IBORN':\n sock.sendto(bytes('ILIVE', 'utf-8'), address)\n print(address)\n me = socket.gethostbyname(socket.gethostname()\n ), sock.getsockname()[1]\n if address != me:\n count += 1\n print('Current count of copies : %s' % count)\n elif message == 'ILIVE':\n if address != me:\n count += 1\n print('Current count of copies : %s' % count)\n elif message == 'IEXIT':\n if address != me:\n count -= 1\n print('Current count of copies : %s' % count)\n except socket.timeout:\n print('No new messages in 2 seconds.')\n time.sleep(1)\n sock.sendto(bytes('IEXIT', 'utf-8'), ('255.255.255.255', port))\n print('Count at exit : %s' % count)\n\n\nif __name__ == '__main__':\n main()\n", "step-5": "import socket\nimport time\nimport sys\n\n\ndef main():\n if len(sys.argv) != 2:\n print(\"usage : %s port\")\n sys.exit()\n port = int(sys.argv[1])\n count = 0\n sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)\n sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)\n sock.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1)\n sock.settimeout(2)\n sock.bind(('', port))\n\n sock.sendto(bytes(\"IBORN\", \"utf-8\"), ('255.255.255.255', port))\n lifetime = time.time() + 10\n while time.time() < lifetime:\n try:\n message, address = sock.recvfrom(1024)\n message = message.decode(\"utf-8\")\n print(\"Message : %s from : %s\" % (message, str(address)))\n if message == \"IBORN\":\n sock.sendto(bytes(\"ILIVE\", \"utf-8\"), address)\n print(address)\n me = (socket.gethostbyname(socket.gethostname()), sock.getsockname()[1])\n if address != me:\n count += 1\n print(\"Current count of copies : %s\" % count)\n elif message == \"ILIVE\":\n if address != me:\n count += 1\n print(\"Current count of copies : %s\" % count)\n elif message == \"IEXIT\":\n if address != me:\n count -= 1\n print(\"Current count of copies : %s\" % count)\n except socket.timeout:\n print(\"No new messages in 2 seconds.\")\n time.sleep(1)\n sock.sendto(bytes(\"IEXIT\", \"utf-8\"), ('255.255.255.255', port))\n print(\"Count at exit : %s\" % count)\n\n\nif __name__ == \"__main__\":\n main()\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
#!/usr/bin/env python # encoding: utf-8 """ plot: regularization on x axis, number of k_best features on y Created by on 2012-01-27. Copyright (c) 2012. All rights reserved. """ import sys import os import json import numpy as np import pylab as plt import itertools as it from master.libs import plot_lib as plib from master.libs import read_data_lib as rdl from master.libs import utils import matplotlib.gridspec as gridspec reload(plib) reload(rdl) params = {'axes.labelsize': 6, 'font.size': 6, 'legend.fontsize': 7, 'xtick.labelsize':6, 'ytick.labelsize': 6} plt.rcParams.update(params) config = json.load(open(sys.argv[1])) outpath = os.path.join(config['inpath'], 'plots') if not os.path.exists(outpath): os.mkdir(outpath) # variables for results plt.close('all') search_res, max_overview, sc, _ = rdl.read_paramsearch_results(config['inpath'], p_selection=config.get('selection', {})) if config['plot_param_space']: for desc in search_res: fig = plt.figure() plib.plot_search_matrix(fig, search_res[desc], config['fselection'], config['method'], config.get('glomeruli', [])) fig.savefig(os.path.join(outpath, config['method'] + '_' + desc + '.' + config['format'])) # descriptor method performance plots fig = plt.figure(figsize=(3.35, 2)) ptype = config['descriptor_plot_type'] plib.new_descriptor_performance_plot(fig, max_overview, config['fselection'], config['method'], config.get('glomeruli', []), ptype) fig.subplots_adjust(bottom=0.25) fig.savefig(os.path.join(outpath, ptype + '_desc_comparison.' + config['format']), dpi=600) # ML method comparison plot markers = ['1', '0'] desc2comp = ['EVA_100', 'all'] fig = plt.figure(figsize=(3.35, 1.8)) ax = fig.add_subplot(111) desc1_collect, desc2_collect = [], [] for i, desc in enumerate(desc2comp): desc_idx1 = max_overview['svr']['linear']['desc_names'].index(desc) desc_idx2 = max_overview['forest']['forest']['desc_names'].index(desc) desc1_collect.extend(max_overview['svr']['linear']['p_selection'][desc_idx1, :]) desc2_collect.extend(max_overview['forest']['forest']['p_selection'][desc_idx2, :]) ax.plot(max_overview['svr']['linear']['p_selection'][desc_idx1, :], max_overview['forest']['forest']['p_selection'][desc_idx2, :], 'o', mfc=markers[i], label=desc, markersize=5) ax.plot([0, 0.8], [0, 0.8], color='0.5') plt.axis('scaled') ax.set_xlim([0, .9]) ax.set_ylim([0, .9]) ax.set_xlabel('SVR (q2)') ax.set_ylabel('RFR (q2)') utils.simple_axis(ax) ax.legend(loc='upper left', numpoints=1, frameon=False, prop={'size': 'small'}, bbox_to_anchor=(0.01, 1)) ticks = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] ticklabels = ['0', '', '.2', '', '.4', '', '.6', '', '.8', ''] ax.set_yticks(ticks) ax.set_yticklabels(ticklabels) ax.set_xticks(ticks) ax.set_xticklabels(ticklabels) fig.subplots_adjust(bottom=0.2) fig.tight_layout() fig.savefig(os.path.join(outpath, 'best_method_comparison.' + config['format']), dpi=600) assert len(desc1_collect) == len(desc2_collect) svr_better = np.sum([1 for d1, d2 in zip(desc1_collect, desc2_collect) if d1 > d2]) rfr_better = np.sum([1 for d1, d2 in zip(desc1_collect, desc2_collect) if d1 < d2]) ratio = float(svr_better) / (np.sum(rfr_better) + np.sum(svr_better)) print('svr better than rfr in {:.2f} \% of the cases'.format(ratio)) if utils.run_from_ipython(): plt.show()
normal
{ "blob_id": "c5bbfa1a86dbbd431566205ff7d7b941bdceff58", "index": 1233, "step-1": "<mask token>\n", "step-2": "<mask token>\nreload(plib)\nreload(rdl)\n<mask token>\nplt.rcParams.update(params)\n<mask token>\nif not os.path.exists(outpath):\n os.mkdir(outpath)\nplt.close('all')\n<mask token>\nif config['plot_param_space']:\n for desc in search_res:\n fig = plt.figure()\n plib.plot_search_matrix(fig, search_res[desc], config['fselection'],\n config['method'], config.get('glomeruli', []))\n fig.savefig(os.path.join(outpath, config['method'] + '_' + desc +\n '.' + config['format']))\n<mask token>\nplib.new_descriptor_performance_plot(fig, max_overview, config['fselection'\n ], config['method'], config.get('glomeruli', []), ptype)\nfig.subplots_adjust(bottom=0.25)\nfig.savefig(os.path.join(outpath, ptype + '_desc_comparison.' + config[\n 'format']), dpi=600)\n<mask token>\nfor i, desc in enumerate(desc2comp):\n desc_idx1 = max_overview['svr']['linear']['desc_names'].index(desc)\n desc_idx2 = max_overview['forest']['forest']['desc_names'].index(desc)\n desc1_collect.extend(max_overview['svr']['linear']['p_selection'][\n desc_idx1, :])\n desc2_collect.extend(max_overview['forest']['forest']['p_selection'][\n desc_idx2, :])\n ax.plot(max_overview['svr']['linear']['p_selection'][desc_idx1, :],\n max_overview['forest']['forest']['p_selection'][desc_idx2, :], 'o',\n mfc=markers[i], label=desc, markersize=5)\nax.plot([0, 0.8], [0, 0.8], color='0.5')\nplt.axis('scaled')\nax.set_xlim([0, 0.9])\nax.set_ylim([0, 0.9])\nax.set_xlabel('SVR (q2)')\nax.set_ylabel('RFR (q2)')\nutils.simple_axis(ax)\nax.legend(loc='upper left', numpoints=1, frameon=False, prop={'size':\n 'small'}, bbox_to_anchor=(0.01, 1))\n<mask token>\nax.set_yticks(ticks)\nax.set_yticklabels(ticklabels)\nax.set_xticks(ticks)\nax.set_xticklabels(ticklabels)\nfig.subplots_adjust(bottom=0.2)\nfig.tight_layout()\nfig.savefig(os.path.join(outpath, 'best_method_comparison.' + config[\n 'format']), dpi=600)\nassert len(desc1_collect) == len(desc2_collect)\n<mask token>\nprint('svr better than rfr in {:.2f} \\\\% of the cases'.format(ratio))\nif utils.run_from_ipython():\n plt.show()\n", "step-3": "<mask token>\nreload(plib)\nreload(rdl)\nparams = {'axes.labelsize': 6, 'font.size': 6, 'legend.fontsize': 7,\n 'xtick.labelsize': 6, 'ytick.labelsize': 6}\nplt.rcParams.update(params)\nconfig = json.load(open(sys.argv[1]))\noutpath = os.path.join(config['inpath'], 'plots')\nif not os.path.exists(outpath):\n os.mkdir(outpath)\nplt.close('all')\nsearch_res, max_overview, sc, _ = rdl.read_paramsearch_results(config[\n 'inpath'], p_selection=config.get('selection', {}))\nif config['plot_param_space']:\n for desc in search_res:\n fig = plt.figure()\n plib.plot_search_matrix(fig, search_res[desc], config['fselection'],\n config['method'], config.get('glomeruli', []))\n fig.savefig(os.path.join(outpath, config['method'] + '_' + desc +\n '.' + config['format']))\nfig = plt.figure(figsize=(3.35, 2))\nptype = config['descriptor_plot_type']\nplib.new_descriptor_performance_plot(fig, max_overview, config['fselection'\n ], config['method'], config.get('glomeruli', []), ptype)\nfig.subplots_adjust(bottom=0.25)\nfig.savefig(os.path.join(outpath, ptype + '_desc_comparison.' + config[\n 'format']), dpi=600)\nmarkers = ['1', '0']\ndesc2comp = ['EVA_100', 'all']\nfig = plt.figure(figsize=(3.35, 1.8))\nax = fig.add_subplot(111)\ndesc1_collect, desc2_collect = [], []\nfor i, desc in enumerate(desc2comp):\n desc_idx1 = max_overview['svr']['linear']['desc_names'].index(desc)\n desc_idx2 = max_overview['forest']['forest']['desc_names'].index(desc)\n desc1_collect.extend(max_overview['svr']['linear']['p_selection'][\n desc_idx1, :])\n desc2_collect.extend(max_overview['forest']['forest']['p_selection'][\n desc_idx2, :])\n ax.plot(max_overview['svr']['linear']['p_selection'][desc_idx1, :],\n max_overview['forest']['forest']['p_selection'][desc_idx2, :], 'o',\n mfc=markers[i], label=desc, markersize=5)\nax.plot([0, 0.8], [0, 0.8], color='0.5')\nplt.axis('scaled')\nax.set_xlim([0, 0.9])\nax.set_ylim([0, 0.9])\nax.set_xlabel('SVR (q2)')\nax.set_ylabel('RFR (q2)')\nutils.simple_axis(ax)\nax.legend(loc='upper left', numpoints=1, frameon=False, prop={'size':\n 'small'}, bbox_to_anchor=(0.01, 1))\nticks = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]\nticklabels = ['0', '', '.2', '', '.4', '', '.6', '', '.8', '']\nax.set_yticks(ticks)\nax.set_yticklabels(ticklabels)\nax.set_xticks(ticks)\nax.set_xticklabels(ticklabels)\nfig.subplots_adjust(bottom=0.2)\nfig.tight_layout()\nfig.savefig(os.path.join(outpath, 'best_method_comparison.' + config[\n 'format']), dpi=600)\nassert len(desc1_collect) == len(desc2_collect)\nsvr_better = np.sum([(1) for d1, d2 in zip(desc1_collect, desc2_collect) if\n d1 > d2])\nrfr_better = np.sum([(1) for d1, d2 in zip(desc1_collect, desc2_collect) if\n d1 < d2])\nratio = float(svr_better) / (np.sum(rfr_better) + np.sum(svr_better))\nprint('svr better than rfr in {:.2f} \\\\% of the cases'.format(ratio))\nif utils.run_from_ipython():\n plt.show()\n", "step-4": "<mask token>\nimport sys\nimport os\nimport json\nimport numpy as np\nimport pylab as plt\nimport itertools as it\nfrom master.libs import plot_lib as plib\nfrom master.libs import read_data_lib as rdl\nfrom master.libs import utils\nimport matplotlib.gridspec as gridspec\nreload(plib)\nreload(rdl)\nparams = {'axes.labelsize': 6, 'font.size': 6, 'legend.fontsize': 7,\n 'xtick.labelsize': 6, 'ytick.labelsize': 6}\nplt.rcParams.update(params)\nconfig = json.load(open(sys.argv[1]))\noutpath = os.path.join(config['inpath'], 'plots')\nif not os.path.exists(outpath):\n os.mkdir(outpath)\nplt.close('all')\nsearch_res, max_overview, sc, _ = rdl.read_paramsearch_results(config[\n 'inpath'], p_selection=config.get('selection', {}))\nif config['plot_param_space']:\n for desc in search_res:\n fig = plt.figure()\n plib.plot_search_matrix(fig, search_res[desc], config['fselection'],\n config['method'], config.get('glomeruli', []))\n fig.savefig(os.path.join(outpath, config['method'] + '_' + desc +\n '.' + config['format']))\nfig = plt.figure(figsize=(3.35, 2))\nptype = config['descriptor_plot_type']\nplib.new_descriptor_performance_plot(fig, max_overview, config['fselection'\n ], config['method'], config.get('glomeruli', []), ptype)\nfig.subplots_adjust(bottom=0.25)\nfig.savefig(os.path.join(outpath, ptype + '_desc_comparison.' + config[\n 'format']), dpi=600)\nmarkers = ['1', '0']\ndesc2comp = ['EVA_100', 'all']\nfig = plt.figure(figsize=(3.35, 1.8))\nax = fig.add_subplot(111)\ndesc1_collect, desc2_collect = [], []\nfor i, desc in enumerate(desc2comp):\n desc_idx1 = max_overview['svr']['linear']['desc_names'].index(desc)\n desc_idx2 = max_overview['forest']['forest']['desc_names'].index(desc)\n desc1_collect.extend(max_overview['svr']['linear']['p_selection'][\n desc_idx1, :])\n desc2_collect.extend(max_overview['forest']['forest']['p_selection'][\n desc_idx2, :])\n ax.plot(max_overview['svr']['linear']['p_selection'][desc_idx1, :],\n max_overview['forest']['forest']['p_selection'][desc_idx2, :], 'o',\n mfc=markers[i], label=desc, markersize=5)\nax.plot([0, 0.8], [0, 0.8], color='0.5')\nplt.axis('scaled')\nax.set_xlim([0, 0.9])\nax.set_ylim([0, 0.9])\nax.set_xlabel('SVR (q2)')\nax.set_ylabel('RFR (q2)')\nutils.simple_axis(ax)\nax.legend(loc='upper left', numpoints=1, frameon=False, prop={'size':\n 'small'}, bbox_to_anchor=(0.01, 1))\nticks = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]\nticklabels = ['0', '', '.2', '', '.4', '', '.6', '', '.8', '']\nax.set_yticks(ticks)\nax.set_yticklabels(ticklabels)\nax.set_xticks(ticks)\nax.set_xticklabels(ticklabels)\nfig.subplots_adjust(bottom=0.2)\nfig.tight_layout()\nfig.savefig(os.path.join(outpath, 'best_method_comparison.' + config[\n 'format']), dpi=600)\nassert len(desc1_collect) == len(desc2_collect)\nsvr_better = np.sum([(1) for d1, d2 in zip(desc1_collect, desc2_collect) if\n d1 > d2])\nrfr_better = np.sum([(1) for d1, d2 in zip(desc1_collect, desc2_collect) if\n d1 < d2])\nratio = float(svr_better) / (np.sum(rfr_better) + np.sum(svr_better))\nprint('svr better than rfr in {:.2f} \\\\% of the cases'.format(ratio))\nif utils.run_from_ipython():\n plt.show()\n", "step-5": "#!/usr/bin/env python\n# encoding: utf-8\n\"\"\"\n plot: regularization on x axis, number of k_best features on y\n\nCreated by on 2012-01-27.\nCopyright (c) 2012. All rights reserved.\n\"\"\"\nimport sys\nimport os\nimport json\nimport numpy as np\nimport pylab as plt\nimport itertools as it\nfrom master.libs import plot_lib as plib\nfrom master.libs import read_data_lib as rdl\nfrom master.libs import utils\nimport matplotlib.gridspec as gridspec\nreload(plib)\nreload(rdl)\n\n\nparams = {'axes.labelsize': 6,\n 'font.size': 6,\n 'legend.fontsize': 7,\n 'xtick.labelsize':6,\n 'ytick.labelsize': 6}\nplt.rcParams.update(params)\n\nconfig = json.load(open(sys.argv[1]))\noutpath = os.path.join(config['inpath'], 'plots')\nif not os.path.exists(outpath):\n os.mkdir(outpath)\n\n# variables for results\nplt.close('all')\nsearch_res, max_overview, sc, _ = rdl.read_paramsearch_results(config['inpath'],\n p_selection=config.get('selection', {}))\n\nif config['plot_param_space']:\n for desc in search_res:\n fig = plt.figure()\n plib.plot_search_matrix(fig, search_res[desc], config['fselection'],\n config['method'], config.get('glomeruli', []))\n fig.savefig(os.path.join(outpath, config['method'] + '_' + desc + '.' + config['format']))\n\n# descriptor method performance plots\nfig = plt.figure(figsize=(3.35, 2))\nptype = config['descriptor_plot_type']\nplib.new_descriptor_performance_plot(fig, max_overview, config['fselection'],\n config['method'],\n config.get('glomeruli', []),\n ptype)\nfig.subplots_adjust(bottom=0.25)\nfig.savefig(os.path.join(outpath, ptype + '_desc_comparison.' + config['format']), dpi=600)\n\n\n# ML method comparison plot\nmarkers = ['1', '0']\ndesc2comp = ['EVA_100', 'all']\nfig = plt.figure(figsize=(3.35, 1.8))\nax = fig.add_subplot(111)\ndesc1_collect, desc2_collect = [], []\nfor i, desc in enumerate(desc2comp):\n desc_idx1 = max_overview['svr']['linear']['desc_names'].index(desc)\n desc_idx2 = max_overview['forest']['forest']['desc_names'].index(desc)\n desc1_collect.extend(max_overview['svr']['linear']['p_selection'][desc_idx1, :])\n desc2_collect.extend(max_overview['forest']['forest']['p_selection'][desc_idx2, :])\n ax.plot(max_overview['svr']['linear']['p_selection'][desc_idx1, :],\n max_overview['forest']['forest']['p_selection'][desc_idx2, :],\n 'o', mfc=markers[i],\n label=desc,\n markersize=5)\nax.plot([0, 0.8], [0, 0.8], color='0.5')\nplt.axis('scaled')\nax.set_xlim([0, .9])\nax.set_ylim([0, .9])\nax.set_xlabel('SVR (q2)')\nax.set_ylabel('RFR (q2)')\nutils.simple_axis(ax)\nax.legend(loc='upper left', numpoints=1, frameon=False, prop={'size': 'small'}, bbox_to_anchor=(0.01, 1))\nticks = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]\nticklabels = ['0', '', '.2', '', '.4', '', '.6', '', '.8', '']\nax.set_yticks(ticks)\nax.set_yticklabels(ticklabels)\nax.set_xticks(ticks)\nax.set_xticklabels(ticklabels)\nfig.subplots_adjust(bottom=0.2)\nfig.tight_layout()\nfig.savefig(os.path.join(outpath, 'best_method_comparison.' + config['format']), dpi=600)\n\nassert len(desc1_collect) == len(desc2_collect)\nsvr_better = np.sum([1 for d1, d2 in zip(desc1_collect, desc2_collect) if d1 > d2])\nrfr_better = np.sum([1 for d1, d2 in zip(desc1_collect, desc2_collect) if d1 < d2])\nratio = float(svr_better) / (np.sum(rfr_better) + np.sum(svr_better))\nprint('svr better than rfr in {:.2f} \\% of the cases'.format(ratio))\n\nif utils.run_from_ipython():\n plt.show()\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import os import numpy as np from keras.models import Sequential, Model from keras.layers import Dense, Dropout, Flatten, concatenate from keras.layers import Conv2D, MaxPooling2D, GlobalAveragePooling2D, Activation from keras.layers.normalization import BatchNormalization from keras.optimizers import SGD from keras.utils import np_utils import matplotlib.pyplot as plt from sklearn.metrics import confusion_matrix, f1_score import seaborn as sns from keras.layers import Input, Dense, Add, Multiply # macOS特有の警告文を非表示(GPUがないからCPUでやるときに出る) os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # パラメータの初期化 classes = [ "normal cells", "blasts", "blasts_highSSC_granulocytes", "blasts_highSSC_middle_ugly", "blasts_highSSC_upper_dead", ] num_classes = len(classes) image_size = 66 # データの読み込み imagefiles = np.load("imagefiles_supplementary.npz") X_train = imagefiles['X_train'] X_test = imagefiles['X_test'] y_train = imagefiles['y_train'] y_test = imagefiles['y_test'] # グレースケール画像をCNNに入力するための次元操作 X_train = X_train.reshape((-1, image_size, image_size, 1)) X_test = X_test.reshape((-1, image_size, image_size, 1)) # データの正規化 X_train = X_train.astype("float32") X_test = X_test.astype("float32") # OneHotVector化する(正解ラベルの位置に1がつく) y_train = np_utils.to_categorical(y_train, num_classes) y_test = np_utils.to_categorical(y_test, num_classes) def _build(_input, *nodes): x = _input for node in nodes: if callable(node): x = node(x) elif isinstance(node, list): x = [_build(x, branch) for branch in node] elif isinstance(node, tuple): x = _build(x, *node) else: x = node return x _input = Input(X_train.shape[1:]) output = _build( _input, # Reduction dual-path module×3の定義 # --------------------------- # 畳み込み層の追加(96:フィルタ数) # バッチ正規化 # 活性化関数:ReLu # --------------------------- # MaxPooling # --------------------------- # Reduction dual-path module1 [(Conv2D(96, (3, 3), strides=(2, 2)), BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, beta_initializer='zeros', gamma_initializer='ones', moving_mean_initializer='zeros', moving_variance_initializer='ones', beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, gamma_constraint=None), Activation('relu')), MaxPooling2D(pool_size=(3, 3), strides=(2, 2))], # Reduction dual-path module2 Add(), [(Conv2D(96, (3, 3), strides=(2, 2)), BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, beta_initializer='zeros', gamma_initializer='ones', moving_mean_initializer='zeros', moving_variance_initializer='ones', beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, gamma_constraint=None), Activation('relu')), MaxPooling2D(pool_size=(3, 3), strides=(2, 2))], # Reduction dual-path module3 Add(), [(Conv2D(96, (3, 3), strides=(2, 2)), BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, beta_initializer='zeros', gamma_initializer='ones', moving_mean_initializer='zeros', moving_variance_initializer='ones', beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, gamma_constraint=None), Activation('relu')), MaxPooling2D(pool_size=(3, 3), strides=(2, 2))], # Dual-path modules×10の定義 # --------------------------- # 畳み込み層の追加(112:フィルタ数) # バッチ正規化 # 活性化関数:ReLu # --------------------------- # Dual-path modules2の定義 # 畳み込み層の追加(48:フィルタ数) # バッチ正規化 # 活性化関数:ReLu # --------------------------- # Dual-path modules1 Add(), [(Conv2D(112, (1, 1), strides=(1, 1)), BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, beta_initializer='zeros', gamma_initializer='ones', moving_mean_initializer='zeros', moving_variance_initializer='ones', beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, gamma_constraint=None), Activation('relu'), ), (Conv2D(48, (3, 3), strides=(1, 1)), BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, beta_initializer='zeros', gamma_initializer='ones', moving_mean_initializer='zeros', moving_variance_initializer='ones', beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, gamma_constraint=None), Activation('relu'), )], # # Dual-path modules2 # Add(), # [(Conv2D(112, (1, 1), strides=(1, 1)), # BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, # beta_initializer='zeros', gamma_initializer='ones', # moving_mean_initializer='zeros', moving_variance_initializer='ones', # beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, # gamma_constraint=None), # Activation('relu')), # (Conv2D(48, (3, 3), strides=(1, 1)), # BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, # beta_initializer='zeros', gamma_initializer='ones', # moving_mean_initializer='zeros', moving_variance_initializer='ones', # beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, # gamma_constraint=None), # Activation('relu'))], # # Dual-path modules3 # Add(), # [(Conv2D(112, (1, 1), strides=(1, 1)), # BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, # beta_initializer='zeros', gamma_initializer='ones', # moving_mean_initializer='zeros', moving_variance_initializer='ones', # beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, # gamma_constraint=None), # Activation('relu')), # (Conv2D(48, (3, 3), strides=(1, 1)), # BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, # beta_initializer='zeros', gamma_initializer='ones', # moving_mean_initializer='zeros', moving_variance_initializer='ones', # beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, # gamma_constraint=None), # Activation('relu'))], # # Dual-path modules4 # Add(), # [(Conv2D(112, (1, 1), strides=(1, 1)), # BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, # beta_initializer='zeros', gamma_initializer='ones', # moving_mean_initializer='zeros', moving_variance_initializer='ones', # beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, # gamma_constraint=None), # Activation('relu')), # (Conv2D(48, (3, 3), strides=(1, 1)), # BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, # beta_initializer='zeros', gamma_initializer='ones', # moving_mean_initializer='zeros', moving_variance_initializer='ones', # beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, # gamma_constraint=None), # Activation('relu'))], # # Dual-path modules5 # Add(), # [(Conv2D(112, (1, 1), strides=(1, 1)), # BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, # beta_initializer='zeros', gamma_initializer='ones', # moving_mean_initializer='zeros', moving_variance_initializer='ones', # beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, # gamma_constraint=None), # Activation('relu')), # (Conv2D(48, (3, 3), strides=(1, 1)), # BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, # beta_initializer='zeros', gamma_initializer='ones', # moving_mean_initializer='zeros', moving_variance_initializer='ones', # beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, # gamma_constraint=None), # Activation('relu'))], # # Dual-path modules6 # Add(), # [(Conv2D(112, (1, 1), strides=(1, 1)), # BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, # beta_initializer='zeros', gamma_initializer='ones', # moving_mean_initializer='zeros', moving_variance_initializer='ones', # beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, # gamma_constraint=None), # Activation('relu')), # (Conv2D(48, (3, 3), strides=(1, 1)), # BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, # beta_initializer='zeros', gamma_initializer='ones', # moving_mean_initializer='zeros', moving_variance_initializer='ones', # beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, # gamma_constraint=None), # Activation('relu'))], # # Dual-path modules7 # Add(), # [(Conv2D(112, (1, 1), strides=(1, 1)), # BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, # beta_initializer='zeros', gamma_initializer='ones', # moving_mean_initializer='zeros', moving_variance_initializer='ones', # beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, # gamma_constraint=None), # Activation('relu')), # (Conv2D(48, (3, 3), strides=(1, 1)), # BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, # beta_initializer='zeros', gamma_initializer='ones', # moving_mean_initializer='zeros', moving_variance_initializer='ones', # beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, # gamma_constraint=None), # Activation('relu'))], # # Dual-path modules8 # Add(), # [(Conv2D(112, (1, 1), strides=(1, 1)), # BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, # beta_initializer='zeros', gamma_initializer='ones', # moving_mean_initializer='zeros', moving_variance_initializer='ones', # beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, # gamma_constraint=None), # Activation('relu')), # (Conv2D(48, (3, 3), strides=(1, 1)), # BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, # beta_initializer='zeros', gamma_initializer='ones', # moving_mean_initializer='zeros', moving_variance_initializer='ones', # beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, # gamma_constraint=None), # Activation('relu'))], # # Dual-path modules9 # Add(), # [(Conv2D(112, (1, 1), strides=(1, 1)), # BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, # beta_initializer='zeros', gamma_initializer='ones', # moving_mean_initializer='zeros', moving_variance_initializer='ones', # beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, # gamma_constraint=None), # Activation('relu')), # (Conv2D(48, (3, 3), strides=(1, 1)), # BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, # beta_initializer='zeros', gamma_initializer='ones', # moving_mean_initializer='zeros', moving_variance_initializer='ones', # beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, # gamma_constraint=None), # Activation('relu'))], # # Dual-path modules10 # Add(), # [(Conv2D(112, (1, 1), strides=(1, 1)), # BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, # beta_initializer='zeros', gamma_initializer='ones', # moving_mean_initializer='zeros', moving_variance_initializer='ones', # beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, # gamma_constraint=None), # Activation('relu')), # (Conv2D(48, (3, 3), strides=(1, 1)), # BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, # beta_initializer='zeros', gamma_initializer='ones', # moving_mean_initializer='zeros', moving_variance_initializer='ones', # beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, # gamma_constraint=None), # Activation('relu'))], # 全結合 Add(), [MaxPooling2D(pool_size=(2, 2), strides=None, padding='valid', data_format=None), Flatten(), Dense(256, activation='relu'), Dropout(0.5), Dense(num_classes, activation='softmax') ] ) model = Model(_input, output) model.summary() # # 損失関数の設定 # opt = SGD(lr=0.01, momentum=0.0, decay=0.0, nesterov=False) # model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy']) # # # トレーニングの実施 # # 学習 # print("start training") # hist = model.fit(X_train, y_train, batch_size=32, epochs=30, validation_data=(X_test, y_test)) # # 評価 # print("start eval") # score = model.evaluate(X_test, y_test, batch_size=32, verbose=1) # verbose:途中結果表示 # print('Test Loss: ', score[0]) # print('Test Accuracy: ', score[1]) # # model.save('leukemia_cnn_supplementary.h5') # # # 学習の様子をグラフへ描画 # # 正解率の推移をプロット # fig = plt.figure() # plt.plot(hist.history['accuracy']) # plt.plot(hist.history['val_accuracy']) # plt.title('Accuracy') # plt.legend(['train', 'test'], loc='upper left') # fig.savefig('result/cnn_supplementary/cnn_accuracy_supplementary.png') # plt.close() # # ロスの推移をプロット # fig = plt.figure() # plt.plot(hist.history['loss']) # plt.plot(hist.history['val_loss']) # plt.title('Loss') # plt.legend(['train', 'test'], loc='upper left') # fig.savefig('result/cnn_supplementary/cnn_loss_supplementary.png') # plt.close() # # Confusion matrix作成 # plt.figure() # y_pred = model.predict(X_test) # y_test = imagefiles['y_test'] # one hot vector化されているのでロードし直す # cm = confusion_matrix(y_test, np.argmax(y_pred, axis=1)) # ticklabels = ["blasts_highSSC_granulocytes", # "blasts_highSSC_middle_ugly", # "blasts", # "normal cells", # "blasts_highSSC_upper_dead"] # sns.heatmap(cm, annot=True, cmap='Blues', yticklabels=ticklabels, xticklabels=ticklabels) # plt.ylabel("Correct") # plt.xlabel("Prediction") # plt.tight_layout() # plt.savefig('result/cnn_supplementary/confusion_matrix_cnn_supplementary.png') # plt.close() # # # F1 micro/macro # f1_macro = f1_score(y_test, np.argmax(y_pred, axis=1), average="macro") # f1_micro = f1_score(y_test, np.argmax(y_pred, axis=1), average="micro") # print(f"f1_macro:{f1_macro}") # print(f"f1_miro:{f1_micro}")
normal
{ "blob_id": "ebc050544da69837cc2b8977f347380b94474bab", "index": 576, "step-1": "<mask token>\n\n\ndef _build(_input, *nodes):\n x = _input\n for node in nodes:\n if callable(node):\n x = node(x)\n elif isinstance(node, list):\n x = [_build(x, branch) for branch in node]\n elif isinstance(node, tuple):\n x = _build(x, *node)\n else:\n x = node\n return x\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef _build(_input, *nodes):\n x = _input\n for node in nodes:\n if callable(node):\n x = node(x)\n elif isinstance(node, list):\n x = [_build(x, branch) for branch in node]\n elif isinstance(node, tuple):\n x = _build(x, *node)\n else:\n x = node\n return x\n\n\n<mask token>\nmodel.summary()\n", "step-3": "<mask token>\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'\nclasses = ['normal cells', 'blasts', 'blasts_highSSC_granulocytes',\n 'blasts_highSSC_middle_ugly', 'blasts_highSSC_upper_dead']\nnum_classes = len(classes)\nimage_size = 66\nimagefiles = np.load('imagefiles_supplementary.npz')\nX_train = imagefiles['X_train']\nX_test = imagefiles['X_test']\ny_train = imagefiles['y_train']\ny_test = imagefiles['y_test']\nX_train = X_train.reshape((-1, image_size, image_size, 1))\nX_test = X_test.reshape((-1, image_size, image_size, 1))\nX_train = X_train.astype('float32')\nX_test = X_test.astype('float32')\ny_train = np_utils.to_categorical(y_train, num_classes)\ny_test = np_utils.to_categorical(y_test, num_classes)\n\n\ndef _build(_input, *nodes):\n x = _input\n for node in nodes:\n if callable(node):\n x = node(x)\n elif isinstance(node, list):\n x = [_build(x, branch) for branch in node]\n elif isinstance(node, tuple):\n x = _build(x, *node)\n else:\n x = node\n return x\n\n\n_input = Input(X_train.shape[1:])\noutput = _build(_input, [(Conv2D(96, (3, 3), strides=(2, 2)),\n BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True,\n scale=True, beta_initializer='zeros', gamma_initializer='ones',\n moving_mean_initializer='zeros', moving_variance_initializer='ones',\n beta_regularizer=None, gamma_regularizer=None, beta_constraint=None,\n gamma_constraint=None), Activation('relu')), MaxPooling2D(pool_size=(3,\n 3), strides=(2, 2))], Add(), [(Conv2D(96, (3, 3), strides=(2, 2)),\n BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True,\n scale=True, beta_initializer='zeros', gamma_initializer='ones',\n moving_mean_initializer='zeros', moving_variance_initializer='ones',\n beta_regularizer=None, gamma_regularizer=None, beta_constraint=None,\n gamma_constraint=None), Activation('relu')), MaxPooling2D(pool_size=(3,\n 3), strides=(2, 2))], Add(), [(Conv2D(96, (3, 3), strides=(2, 2)),\n BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True,\n scale=True, beta_initializer='zeros', gamma_initializer='ones',\n moving_mean_initializer='zeros', moving_variance_initializer='ones',\n beta_regularizer=None, gamma_regularizer=None, beta_constraint=None,\n gamma_constraint=None), Activation('relu')), MaxPooling2D(pool_size=(3,\n 3), strides=(2, 2))], Add(), [(Conv2D(112, (1, 1), strides=(1, 1)),\n BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True,\n scale=True, beta_initializer='zeros', gamma_initializer='ones',\n moving_mean_initializer='zeros', moving_variance_initializer='ones',\n beta_regularizer=None, gamma_regularizer=None, beta_constraint=None,\n gamma_constraint=None), Activation('relu')), (Conv2D(48, (3, 3),\n strides=(1, 1)), BatchNormalization(axis=-1, momentum=0.99, epsilon=\n 0.001, center=True, scale=True, beta_initializer='zeros',\n gamma_initializer='ones', moving_mean_initializer='zeros',\n moving_variance_initializer='ones', beta_regularizer=None,\n gamma_regularizer=None, beta_constraint=None, gamma_constraint=None),\n Activation('relu'))], Add(), [MaxPooling2D(pool_size=(2, 2), strides=\n None, padding='valid', data_format=None), Flatten(), Dense(256,\n activation='relu'), Dropout(0.5), Dense(num_classes, activation='softmax')]\n )\nmodel = Model(_input, output)\nmodel.summary()\n", "step-4": "import os\nimport numpy as np\nfrom keras.models import Sequential, Model\nfrom keras.layers import Dense, Dropout, Flatten, concatenate\nfrom keras.layers import Conv2D, MaxPooling2D, GlobalAveragePooling2D, Activation\nfrom keras.layers.normalization import BatchNormalization\nfrom keras.optimizers import SGD\nfrom keras.utils import np_utils\nimport matplotlib.pyplot as plt\nfrom sklearn.metrics import confusion_matrix, f1_score\nimport seaborn as sns\nfrom keras.layers import Input, Dense, Add, Multiply\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'\nclasses = ['normal cells', 'blasts', 'blasts_highSSC_granulocytes',\n 'blasts_highSSC_middle_ugly', 'blasts_highSSC_upper_dead']\nnum_classes = len(classes)\nimage_size = 66\nimagefiles = np.load('imagefiles_supplementary.npz')\nX_train = imagefiles['X_train']\nX_test = imagefiles['X_test']\ny_train = imagefiles['y_train']\ny_test = imagefiles['y_test']\nX_train = X_train.reshape((-1, image_size, image_size, 1))\nX_test = X_test.reshape((-1, image_size, image_size, 1))\nX_train = X_train.astype('float32')\nX_test = X_test.astype('float32')\ny_train = np_utils.to_categorical(y_train, num_classes)\ny_test = np_utils.to_categorical(y_test, num_classes)\n\n\ndef _build(_input, *nodes):\n x = _input\n for node in nodes:\n if callable(node):\n x = node(x)\n elif isinstance(node, list):\n x = [_build(x, branch) for branch in node]\n elif isinstance(node, tuple):\n x = _build(x, *node)\n else:\n x = node\n return x\n\n\n_input = Input(X_train.shape[1:])\noutput = _build(_input, [(Conv2D(96, (3, 3), strides=(2, 2)),\n BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True,\n scale=True, beta_initializer='zeros', gamma_initializer='ones',\n moving_mean_initializer='zeros', moving_variance_initializer='ones',\n beta_regularizer=None, gamma_regularizer=None, beta_constraint=None,\n gamma_constraint=None), Activation('relu')), MaxPooling2D(pool_size=(3,\n 3), strides=(2, 2))], Add(), [(Conv2D(96, (3, 3), strides=(2, 2)),\n BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True,\n scale=True, beta_initializer='zeros', gamma_initializer='ones',\n moving_mean_initializer='zeros', moving_variance_initializer='ones',\n beta_regularizer=None, gamma_regularizer=None, beta_constraint=None,\n gamma_constraint=None), Activation('relu')), MaxPooling2D(pool_size=(3,\n 3), strides=(2, 2))], Add(), [(Conv2D(96, (3, 3), strides=(2, 2)),\n BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True,\n scale=True, beta_initializer='zeros', gamma_initializer='ones',\n moving_mean_initializer='zeros', moving_variance_initializer='ones',\n beta_regularizer=None, gamma_regularizer=None, beta_constraint=None,\n gamma_constraint=None), Activation('relu')), MaxPooling2D(pool_size=(3,\n 3), strides=(2, 2))], Add(), [(Conv2D(112, (1, 1), strides=(1, 1)),\n BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True,\n scale=True, beta_initializer='zeros', gamma_initializer='ones',\n moving_mean_initializer='zeros', moving_variance_initializer='ones',\n beta_regularizer=None, gamma_regularizer=None, beta_constraint=None,\n gamma_constraint=None), Activation('relu')), (Conv2D(48, (3, 3),\n strides=(1, 1)), BatchNormalization(axis=-1, momentum=0.99, epsilon=\n 0.001, center=True, scale=True, beta_initializer='zeros',\n gamma_initializer='ones', moving_mean_initializer='zeros',\n moving_variance_initializer='ones', beta_regularizer=None,\n gamma_regularizer=None, beta_constraint=None, gamma_constraint=None),\n Activation('relu'))], Add(), [MaxPooling2D(pool_size=(2, 2), strides=\n None, padding='valid', data_format=None), Flatten(), Dense(256,\n activation='relu'), Dropout(0.5), Dense(num_classes, activation='softmax')]\n )\nmodel = Model(_input, output)\nmodel.summary()\n", "step-5": "import os\n\n\nimport numpy as np\nfrom keras.models import Sequential, Model\nfrom keras.layers import Dense, Dropout, Flatten, concatenate\nfrom keras.layers import Conv2D, MaxPooling2D, GlobalAveragePooling2D, Activation\nfrom keras.layers.normalization import BatchNormalization\nfrom keras.optimizers import SGD\nfrom keras.utils import np_utils\nimport matplotlib.pyplot as plt\nfrom sklearn.metrics import confusion_matrix, f1_score\nimport seaborn as sns\nfrom keras.layers import Input, Dense, Add, Multiply\n\n# macOS特有の警告文を非表示(GPUがないからCPUでやるときに出る)\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'\n\n# パラメータの初期化\nclasses = [\n \"normal cells\",\n \"blasts\",\n \"blasts_highSSC_granulocytes\",\n \"blasts_highSSC_middle_ugly\",\n \"blasts_highSSC_upper_dead\",\n]\nnum_classes = len(classes)\nimage_size = 66\n\n# データの読み込み\nimagefiles = np.load(\"imagefiles_supplementary.npz\")\nX_train = imagefiles['X_train']\nX_test = imagefiles['X_test']\ny_train = imagefiles['y_train']\ny_test = imagefiles['y_test']\n# グレースケール画像をCNNに入力するための次元操作\nX_train = X_train.reshape((-1, image_size, image_size, 1))\nX_test = X_test.reshape((-1, image_size, image_size, 1))\n# データの正規化\nX_train = X_train.astype(\"float32\")\nX_test = X_test.astype(\"float32\")\n# OneHotVector化する(正解ラベルの位置に1がつく)\ny_train = np_utils.to_categorical(y_train, num_classes)\ny_test = np_utils.to_categorical(y_test, num_classes)\n\n\ndef _build(_input, *nodes):\n x = _input\n for node in nodes:\n if callable(node):\n x = node(x)\n elif isinstance(node, list):\n x = [_build(x, branch) for branch in node]\n elif isinstance(node, tuple):\n x = _build(x, *node)\n else:\n x = node\n return x\n\n\n_input = Input(X_train.shape[1:])\noutput = _build(\n _input,\n # Reduction dual-path module×3の定義\n # ---------------------------\n # 畳み込み層の追加(96:フィルタ数)\n # バッチ正規化\n # 活性化関数:ReLu\n # ---------------------------\n # MaxPooling\n # ---------------------------\n # Reduction dual-path module1\n [(Conv2D(96, (3, 3), strides=(2, 2)),\n BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True,\n beta_initializer='zeros', gamma_initializer='ones',\n moving_mean_initializer='zeros', moving_variance_initializer='ones',\n beta_regularizer=None, gamma_regularizer=None, beta_constraint=None,\n gamma_constraint=None),\n Activation('relu')),\n MaxPooling2D(pool_size=(3, 3), strides=(2, 2))],\n # Reduction dual-path module2\n Add(),\n [(Conv2D(96, (3, 3), strides=(2, 2)),\n BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True,\n beta_initializer='zeros', gamma_initializer='ones',\n moving_mean_initializer='zeros', moving_variance_initializer='ones',\n beta_regularizer=None, gamma_regularizer=None, beta_constraint=None,\n gamma_constraint=None),\n Activation('relu')),\n MaxPooling2D(pool_size=(3, 3), strides=(2, 2))],\n # Reduction dual-path module3\n Add(),\n [(Conv2D(96, (3, 3), strides=(2, 2)),\n BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True,\n beta_initializer='zeros', gamma_initializer='ones',\n moving_mean_initializer='zeros', moving_variance_initializer='ones',\n beta_regularizer=None, gamma_regularizer=None, beta_constraint=None,\n gamma_constraint=None),\n Activation('relu')),\n MaxPooling2D(pool_size=(3, 3), strides=(2, 2))],\n\n # Dual-path modules×10の定義\n # ---------------------------\n # 畳み込み層の追加(112:フィルタ数)\n # バッチ正規化\n # 活性化関数:ReLu\n # ---------------------------\n # Dual-path modules2の定義\n # 畳み込み層の追加(48:フィルタ数)\n # バッチ正規化\n # 活性化関数:ReLu\n # ---------------------------\n # Dual-path modules1\n Add(),\n [(Conv2D(112, (1, 1), strides=(1, 1)),\n BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True,\n beta_initializer='zeros', gamma_initializer='ones',\n moving_mean_initializer='zeros', moving_variance_initializer='ones',\n beta_regularizer=None, gamma_regularizer=None, beta_constraint=None,\n gamma_constraint=None),\n Activation('relu'),\n ),\n (Conv2D(48, (3, 3), strides=(1, 1)),\n BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True,\n beta_initializer='zeros', gamma_initializer='ones',\n moving_mean_initializer='zeros', moving_variance_initializer='ones',\n beta_regularizer=None, gamma_regularizer=None, beta_constraint=None,\n gamma_constraint=None),\n Activation('relu'),\n )],\n # # Dual-path modules2\n # Add(),\n # [(Conv2D(112, (1, 1), strides=(1, 1)),\n # BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True,\n # beta_initializer='zeros', gamma_initializer='ones',\n # moving_mean_initializer='zeros', moving_variance_initializer='ones',\n # beta_regularizer=None, gamma_regularizer=None, beta_constraint=None,\n # gamma_constraint=None),\n # Activation('relu')),\n # (Conv2D(48, (3, 3), strides=(1, 1)),\n # BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True,\n # beta_initializer='zeros', gamma_initializer='ones',\n # moving_mean_initializer='zeros', moving_variance_initializer='ones',\n # beta_regularizer=None, gamma_regularizer=None, beta_constraint=None,\n # gamma_constraint=None),\n # Activation('relu'))],\n # # Dual-path modules3\n # Add(),\n # [(Conv2D(112, (1, 1), strides=(1, 1)),\n # BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True,\n # beta_initializer='zeros', gamma_initializer='ones',\n # moving_mean_initializer='zeros', moving_variance_initializer='ones',\n # beta_regularizer=None, gamma_regularizer=None, beta_constraint=None,\n # gamma_constraint=None),\n # Activation('relu')),\n # (Conv2D(48, (3, 3), strides=(1, 1)),\n # BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True,\n # beta_initializer='zeros', gamma_initializer='ones',\n # moving_mean_initializer='zeros', moving_variance_initializer='ones',\n # beta_regularizer=None, gamma_regularizer=None, beta_constraint=None,\n # gamma_constraint=None),\n # Activation('relu'))],\n # # Dual-path modules4\n # Add(),\n # [(Conv2D(112, (1, 1), strides=(1, 1)),\n # BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True,\n # beta_initializer='zeros', gamma_initializer='ones',\n # moving_mean_initializer='zeros', moving_variance_initializer='ones',\n # beta_regularizer=None, gamma_regularizer=None, beta_constraint=None,\n # gamma_constraint=None),\n # Activation('relu')),\n # (Conv2D(48, (3, 3), strides=(1, 1)),\n # BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True,\n # beta_initializer='zeros', gamma_initializer='ones',\n # moving_mean_initializer='zeros', moving_variance_initializer='ones',\n # beta_regularizer=None, gamma_regularizer=None, beta_constraint=None,\n # gamma_constraint=None),\n # Activation('relu'))],\n # # Dual-path modules5\n # Add(),\n # [(Conv2D(112, (1, 1), strides=(1, 1)),\n # BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True,\n # beta_initializer='zeros', gamma_initializer='ones',\n # moving_mean_initializer='zeros', moving_variance_initializer='ones',\n # beta_regularizer=None, gamma_regularizer=None, beta_constraint=None,\n # gamma_constraint=None),\n # Activation('relu')),\n # (Conv2D(48, (3, 3), strides=(1, 1)),\n # BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True,\n # beta_initializer='zeros', gamma_initializer='ones',\n # moving_mean_initializer='zeros', moving_variance_initializer='ones',\n # beta_regularizer=None, gamma_regularizer=None, beta_constraint=None,\n # gamma_constraint=None),\n # Activation('relu'))],\n # # Dual-path modules6\n # Add(),\n # [(Conv2D(112, (1, 1), strides=(1, 1)),\n # BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True,\n # beta_initializer='zeros', gamma_initializer='ones',\n # moving_mean_initializer='zeros', moving_variance_initializer='ones',\n # beta_regularizer=None, gamma_regularizer=None, beta_constraint=None,\n # gamma_constraint=None),\n # Activation('relu')),\n # (Conv2D(48, (3, 3), strides=(1, 1)),\n # BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True,\n # beta_initializer='zeros', gamma_initializer='ones',\n # moving_mean_initializer='zeros', moving_variance_initializer='ones',\n # beta_regularizer=None, gamma_regularizer=None, beta_constraint=None,\n # gamma_constraint=None),\n # Activation('relu'))],\n # # Dual-path modules7\n # Add(),\n # [(Conv2D(112, (1, 1), strides=(1, 1)),\n # BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True,\n # beta_initializer='zeros', gamma_initializer='ones',\n # moving_mean_initializer='zeros', moving_variance_initializer='ones',\n # beta_regularizer=None, gamma_regularizer=None, beta_constraint=None,\n # gamma_constraint=None),\n # Activation('relu')),\n # (Conv2D(48, (3, 3), strides=(1, 1)),\n # BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True,\n # beta_initializer='zeros', gamma_initializer='ones',\n # moving_mean_initializer='zeros', moving_variance_initializer='ones',\n # beta_regularizer=None, gamma_regularizer=None, beta_constraint=None,\n # gamma_constraint=None),\n # Activation('relu'))],\n # # Dual-path modules8\n # Add(),\n # [(Conv2D(112, (1, 1), strides=(1, 1)),\n # BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True,\n # beta_initializer='zeros', gamma_initializer='ones',\n # moving_mean_initializer='zeros', moving_variance_initializer='ones',\n # beta_regularizer=None, gamma_regularizer=None, beta_constraint=None,\n # gamma_constraint=None),\n # Activation('relu')),\n # (Conv2D(48, (3, 3), strides=(1, 1)),\n # BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True,\n # beta_initializer='zeros', gamma_initializer='ones',\n # moving_mean_initializer='zeros', moving_variance_initializer='ones',\n # beta_regularizer=None, gamma_regularizer=None, beta_constraint=None,\n # gamma_constraint=None),\n # Activation('relu'))],\n # # Dual-path modules9\n # Add(),\n # [(Conv2D(112, (1, 1), strides=(1, 1)),\n # BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True,\n # beta_initializer='zeros', gamma_initializer='ones',\n # moving_mean_initializer='zeros', moving_variance_initializer='ones',\n # beta_regularizer=None, gamma_regularizer=None, beta_constraint=None,\n # gamma_constraint=None),\n # Activation('relu')),\n # (Conv2D(48, (3, 3), strides=(1, 1)),\n # BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True,\n # beta_initializer='zeros', gamma_initializer='ones',\n # moving_mean_initializer='zeros', moving_variance_initializer='ones',\n # beta_regularizer=None, gamma_regularizer=None, beta_constraint=None,\n # gamma_constraint=None),\n # Activation('relu'))],\n # # Dual-path modules10\n # Add(),\n # [(Conv2D(112, (1, 1), strides=(1, 1)),\n # BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True,\n # beta_initializer='zeros', gamma_initializer='ones',\n # moving_mean_initializer='zeros', moving_variance_initializer='ones',\n # beta_regularizer=None, gamma_regularizer=None, beta_constraint=None,\n # gamma_constraint=None),\n # Activation('relu')),\n # (Conv2D(48, (3, 3), strides=(1, 1)),\n # BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True,\n # beta_initializer='zeros', gamma_initializer='ones',\n # moving_mean_initializer='zeros', moving_variance_initializer='ones',\n # beta_regularizer=None, gamma_regularizer=None, beta_constraint=None,\n # gamma_constraint=None),\n # Activation('relu'))],\n # 全結合\n Add(),\n [MaxPooling2D(pool_size=(2, 2), strides=None, padding='valid', data_format=None),\n Flatten(),\n Dense(256, activation='relu'),\n Dropout(0.5),\n Dense(num_classes, activation='softmax')\n ]\n)\nmodel = Model(_input, output)\nmodel.summary()\n\n# # 損失関数の設定\n# opt = SGD(lr=0.01, momentum=0.0, decay=0.0, nesterov=False)\n# model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])\n#\n# # トレーニングの実施\n# # 学習\n# print(\"start training\")\n# hist = model.fit(X_train, y_train, batch_size=32, epochs=30, validation_data=(X_test, y_test))\n# # 評価\n# print(\"start eval\")\n# score = model.evaluate(X_test, y_test, batch_size=32, verbose=1) # verbose:途中結果表示\n# print('Test Loss: ', score[0])\n# print('Test Accuracy: ', score[1])\n#\n# model.save('leukemia_cnn_supplementary.h5')\n#\n# # 学習の様子をグラフへ描画\n# # 正解率の推移をプロット\n# fig = plt.figure()\n# plt.plot(hist.history['accuracy'])\n# plt.plot(hist.history['val_accuracy'])\n# plt.title('Accuracy')\n# plt.legend(['train', 'test'], loc='upper left')\n# fig.savefig('result/cnn_supplementary/cnn_accuracy_supplementary.png')\n# plt.close()\n# # ロスの推移をプロット\n# fig = plt.figure()\n# plt.plot(hist.history['loss'])\n# plt.plot(hist.history['val_loss'])\n# plt.title('Loss')\n# plt.legend(['train', 'test'], loc='upper left')\n# fig.savefig('result/cnn_supplementary/cnn_loss_supplementary.png')\n# plt.close()\n# # Confusion matrix作成\n# plt.figure()\n# y_pred = model.predict(X_test)\n# y_test = imagefiles['y_test'] # one hot vector化されているのでロードし直す\n# cm = confusion_matrix(y_test, np.argmax(y_pred, axis=1))\n# ticklabels = [\"blasts_highSSC_granulocytes\",\n# \"blasts_highSSC_middle_ugly\",\n# \"blasts\",\n# \"normal cells\",\n# \"blasts_highSSC_upper_dead\"]\n# sns.heatmap(cm, annot=True, cmap='Blues', yticklabels=ticklabels, xticklabels=ticklabels)\n# plt.ylabel(\"Correct\")\n# plt.xlabel(\"Prediction\")\n# plt.tight_layout()\n# plt.savefig('result/cnn_supplementary/confusion_matrix_cnn_supplementary.png')\n# plt.close()\n#\n# # F1 micro/macro\n# f1_macro = f1_score(y_test, np.argmax(y_pred, axis=1), average=\"macro\")\n# f1_micro = f1_score(y_test, np.argmax(y_pred, axis=1), average=\"micro\")\n# print(f\"f1_macro:{f1_macro}\")\n# print(f\"f1_miro:{f1_micro}\")\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
#n = int(input()) #s = input() n, m = map(int, input().split()) #s, t = input().split() #n, m, l = map(int, input().split()) #s, t, r = input().split() #a = map(int, input().split()) #a = input().split() a = [int(input()) for _ in range(n)] #a = [input() for _ in range(n)] #t = input() #m = int(input()) #p, q = map(int, input().split()) #p, q = input().split() #p, q, r = map(int, input().split()) #p, q, r = input().split() #b = map(int, input().split()) #b = input().split() #b = [int(input()) for _ in range(m)] #b = [input() for _ in range(m)] cnt, ans, mx, mn = 0, m, 0, 100000000 for i in range(n - 1): if a[i + 1] - a[i] < m: ans += a[i + 1] - a[i] else: ans += m print(ans)
normal
{ "blob_id": "a09bc84a14718422894127a519d67dc0c6b13bc9", "index": 746, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor i in range(n - 1):\n if a[i + 1] - a[i] < m:\n ans += a[i + 1] - a[i]\n else:\n ans += m\nprint(ans)\n", "step-3": "n, m = map(int, input().split())\na = [int(input()) for _ in range(n)]\ncnt, ans, mx, mn = 0, m, 0, 100000000\nfor i in range(n - 1):\n if a[i + 1] - a[i] < m:\n ans += a[i + 1] - a[i]\n else:\n ans += m\nprint(ans)\n", "step-4": "#n = int(input())\n#s = input()\nn, m = map(int, input().split())\n#s, t = input().split()\n#n, m, l = map(int, input().split())\n#s, t, r = input().split()\n#a = map(int, input().split())\n#a = input().split()\na = [int(input()) for _ in range(n)]\n#a = [input() for _ in range(n)]\n\n#t = input()\n#m = int(input())\n#p, q = map(int, input().split())\n#p, q = input().split()\n#p, q, r = map(int, input().split())\n#p, q, r = input().split()\n#b = map(int, input().split())\n#b = input().split()\n#b = [int(input()) for _ in range(m)]\n#b = [input() for _ in range(m)]\ncnt, ans, mx, mn = 0, m, 0, 100000000\nfor i in range(n - 1):\n if a[i + 1] - a[i] < m:\n ans += a[i + 1] - a[i]\n else:\n ans += m\nprint(ans)\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
import os from os.path import join import json import pandas as pd import time import numpy as np import torch def str2bool(v): # convert string to boolean type for argparser input if isinstance(v, bool): return v if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') def str_or_none(v): # convert string to boolean type for argparser input if v is None: return None if v.lower() == 'none': return None else: return v # helper functions for LDA arguments def dic2name(dic): return '_'.join(["{}-{}".format(k, dic[k]) for k in sorted(dic)]) def name2dic(s): return {x.split('-')[0]:x.split('-')[1] for x in s.split('_')} def get_valid_types(TYPENAME): with open(join(os.environ['BASEPATH'], 'configs', 'types.json'), 'r') as typefile: valid_types = json.load(typefile)[TYPENAME] return valid_types def df_index_gen(f, table=False): # merge locator and dataset_id to genearte index table_id f.loc[:,'table_id'] = f.apply(lambda x: '+'.join([x['locator'], x['dataset_id']]), axis = 1) if not table: f.loc[:,'field_id'] = f.apply(lambda x: x['field_id'].split(":")[-1], axis = 1) f = f.drop(columns=['locator', 'dataset_id']).set_index('table_id') return f # load dataframe from pickle or create pickle file def load_tmp_df(load_path, tmp_path, name, table=False): start = time.time() pkl_file = join(tmp_path, "{}.pkl".format(name)) if os.path.exists(pkl_file): print("{} pickle file found, loading...".format(pkl_file)) df = pd.read_pickle(pkl_file) else: #process and save pkl print("{} pickle file not found, creating...".format(pkl_file)) df = pd.read_csv(join(load_path, "{}.csv".format(name))) df = df_index_gen(df, table) df.to_pickle(pkl_file) print("{} Load complete. Time {}".format(name, time.time()-start)) return df def logSumExpTensor(vec): # vec -> 16, tag_size batch_size = vec.size()[0] vec = vec.view(batch_size, -1) max_score = torch.max(vec, 1)[0] max_score_broadcast = max_score.view(-1, 1).expand(-1, vec.size()[1]) return max_score + \ torch.log(torch.sum(torch.exp(vec - max_score_broadcast), 1)) def logNormalizeTensor(a): denom = logSumExpTensor(a) if len(a.size())==2: denom = denom.view(-1, 1).expand(-1, a.size()[1]) elif len(a.size())==3: denom = denom.view(a.size()[0], 1, 1).expand(-1, a.size()[1], a.size()[2]) return (a-denom) def logNormalize(a): denom = np.logaddexp.reduce(a, 1) return (a.transpose()- denom).transpose() def logDot(a, b): # numeric stable way of calculating log (e^a, e^b) max_a = np.amax(a) max_b = np.amax(b) C = np.dot(np.exp(a - max_a), np.exp(b - max_b)) np.log(C, out=C) # else: # np.log(C + 1e-300, out=C) C += max_a + max_b return C
normal
{ "blob_id": "a9302dbf724f9548411fbf2959f36b4cc5742ff8", "index": 4999, "step-1": "<mask token>\n\n\ndef str_or_none(v):\n if v is None:\n return None\n if v.lower() == 'none':\n return None\n else:\n return v\n\n\n<mask token>\n\n\ndef name2dic(s):\n return {x.split('-')[0]: x.split('-')[1] for x in s.split('_')}\n\n\n<mask token>\n\n\ndef load_tmp_df(load_path, tmp_path, name, table=False):\n start = time.time()\n pkl_file = join(tmp_path, '{}.pkl'.format(name))\n if os.path.exists(pkl_file):\n print('{} pickle file found, loading...'.format(pkl_file))\n df = pd.read_pickle(pkl_file)\n else:\n print('{} pickle file not found, creating...'.format(pkl_file))\n df = pd.read_csv(join(load_path, '{}.csv'.format(name)))\n df = df_index_gen(df, table)\n df.to_pickle(pkl_file)\n print('{} Load complete. Time {}'.format(name, time.time() - start))\n return df\n\n\ndef logSumExpTensor(vec):\n batch_size = vec.size()[0]\n vec = vec.view(batch_size, -1)\n max_score = torch.max(vec, 1)[0]\n max_score_broadcast = max_score.view(-1, 1).expand(-1, vec.size()[1])\n return max_score + torch.log(torch.sum(torch.exp(vec -\n max_score_broadcast), 1))\n\n\n<mask token>\n\n\ndef logNormalize(a):\n denom = np.logaddexp.reduce(a, 1)\n return (a.transpose() - denom).transpose()\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef str_or_none(v):\n if v is None:\n return None\n if v.lower() == 'none':\n return None\n else:\n return v\n\n\ndef dic2name(dic):\n return '_'.join(['{}-{}'.format(k, dic[k]) for k in sorted(dic)])\n\n\ndef name2dic(s):\n return {x.split('-')[0]: x.split('-')[1] for x in s.split('_')}\n\n\n<mask token>\n\n\ndef df_index_gen(f, table=False):\n f.loc[:, 'table_id'] = f.apply(lambda x: '+'.join([x['locator'], x[\n 'dataset_id']]), axis=1)\n if not table:\n f.loc[:, 'field_id'] = f.apply(lambda x: x['field_id'].split(':')[-\n 1], axis=1)\n f = f.drop(columns=['locator', 'dataset_id']).set_index('table_id')\n return f\n\n\ndef load_tmp_df(load_path, tmp_path, name, table=False):\n start = time.time()\n pkl_file = join(tmp_path, '{}.pkl'.format(name))\n if os.path.exists(pkl_file):\n print('{} pickle file found, loading...'.format(pkl_file))\n df = pd.read_pickle(pkl_file)\n else:\n print('{} pickle file not found, creating...'.format(pkl_file))\n df = pd.read_csv(join(load_path, '{}.csv'.format(name)))\n df = df_index_gen(df, table)\n df.to_pickle(pkl_file)\n print('{} Load complete. Time {}'.format(name, time.time() - start))\n return df\n\n\ndef logSumExpTensor(vec):\n batch_size = vec.size()[0]\n vec = vec.view(batch_size, -1)\n max_score = torch.max(vec, 1)[0]\n max_score_broadcast = max_score.view(-1, 1).expand(-1, vec.size()[1])\n return max_score + torch.log(torch.sum(torch.exp(vec -\n max_score_broadcast), 1))\n\n\n<mask token>\n\n\ndef logNormalize(a):\n denom = np.logaddexp.reduce(a, 1)\n return (a.transpose() - denom).transpose()\n\n\ndef logDot(a, b):\n max_a = np.amax(a)\n max_b = np.amax(b)\n C = np.dot(np.exp(a - max_a), np.exp(b - max_b))\n np.log(C, out=C)\n C += max_a + max_b\n return C\n", "step-3": "<mask token>\n\n\ndef str_or_none(v):\n if v is None:\n return None\n if v.lower() == 'none':\n return None\n else:\n return v\n\n\ndef dic2name(dic):\n return '_'.join(['{}-{}'.format(k, dic[k]) for k in sorted(dic)])\n\n\ndef name2dic(s):\n return {x.split('-')[0]: x.split('-')[1] for x in s.split('_')}\n\n\n<mask token>\n\n\ndef df_index_gen(f, table=False):\n f.loc[:, 'table_id'] = f.apply(lambda x: '+'.join([x['locator'], x[\n 'dataset_id']]), axis=1)\n if not table:\n f.loc[:, 'field_id'] = f.apply(lambda x: x['field_id'].split(':')[-\n 1], axis=1)\n f = f.drop(columns=['locator', 'dataset_id']).set_index('table_id')\n return f\n\n\ndef load_tmp_df(load_path, tmp_path, name, table=False):\n start = time.time()\n pkl_file = join(tmp_path, '{}.pkl'.format(name))\n if os.path.exists(pkl_file):\n print('{} pickle file found, loading...'.format(pkl_file))\n df = pd.read_pickle(pkl_file)\n else:\n print('{} pickle file not found, creating...'.format(pkl_file))\n df = pd.read_csv(join(load_path, '{}.csv'.format(name)))\n df = df_index_gen(df, table)\n df.to_pickle(pkl_file)\n print('{} Load complete. Time {}'.format(name, time.time() - start))\n return df\n\n\ndef logSumExpTensor(vec):\n batch_size = vec.size()[0]\n vec = vec.view(batch_size, -1)\n max_score = torch.max(vec, 1)[0]\n max_score_broadcast = max_score.view(-1, 1).expand(-1, vec.size()[1])\n return max_score + torch.log(torch.sum(torch.exp(vec -\n max_score_broadcast), 1))\n\n\ndef logNormalizeTensor(a):\n denom = logSumExpTensor(a)\n if len(a.size()) == 2:\n denom = denom.view(-1, 1).expand(-1, a.size()[1])\n elif len(a.size()) == 3:\n denom = denom.view(a.size()[0], 1, 1).expand(-1, a.size()[1], a.\n size()[2])\n return a - denom\n\n\ndef logNormalize(a):\n denom = np.logaddexp.reduce(a, 1)\n return (a.transpose() - denom).transpose()\n\n\ndef logDot(a, b):\n max_a = np.amax(a)\n max_b = np.amax(b)\n C = np.dot(np.exp(a - max_a), np.exp(b - max_b))\n np.log(C, out=C)\n C += max_a + max_b\n return C\n", "step-4": "import os\nfrom os.path import join\nimport json\nimport pandas as pd\nimport time\nimport numpy as np\nimport torch\n\n\ndef str2bool(v):\n if isinstance(v, bool):\n return v\n if v.lower() in ('yes', 'true', 't', 'y', '1'):\n return True\n elif v.lower() in ('no', 'false', 'f', 'n', '0'):\n return False\n else:\n raise argparse.ArgumentTypeError('Boolean value expected.')\n\n\ndef str_or_none(v):\n if v is None:\n return None\n if v.lower() == 'none':\n return None\n else:\n return v\n\n\ndef dic2name(dic):\n return '_'.join(['{}-{}'.format(k, dic[k]) for k in sorted(dic)])\n\n\ndef name2dic(s):\n return {x.split('-')[0]: x.split('-')[1] for x in s.split('_')}\n\n\ndef get_valid_types(TYPENAME):\n with open(join(os.environ['BASEPATH'], 'configs', 'types.json'), 'r'\n ) as typefile:\n valid_types = json.load(typefile)[TYPENAME]\n return valid_types\n\n\ndef df_index_gen(f, table=False):\n f.loc[:, 'table_id'] = f.apply(lambda x: '+'.join([x['locator'], x[\n 'dataset_id']]), axis=1)\n if not table:\n f.loc[:, 'field_id'] = f.apply(lambda x: x['field_id'].split(':')[-\n 1], axis=1)\n f = f.drop(columns=['locator', 'dataset_id']).set_index('table_id')\n return f\n\n\ndef load_tmp_df(load_path, tmp_path, name, table=False):\n start = time.time()\n pkl_file = join(tmp_path, '{}.pkl'.format(name))\n if os.path.exists(pkl_file):\n print('{} pickle file found, loading...'.format(pkl_file))\n df = pd.read_pickle(pkl_file)\n else:\n print('{} pickle file not found, creating...'.format(pkl_file))\n df = pd.read_csv(join(load_path, '{}.csv'.format(name)))\n df = df_index_gen(df, table)\n df.to_pickle(pkl_file)\n print('{} Load complete. Time {}'.format(name, time.time() - start))\n return df\n\n\ndef logSumExpTensor(vec):\n batch_size = vec.size()[0]\n vec = vec.view(batch_size, -1)\n max_score = torch.max(vec, 1)[0]\n max_score_broadcast = max_score.view(-1, 1).expand(-1, vec.size()[1])\n return max_score + torch.log(torch.sum(torch.exp(vec -\n max_score_broadcast), 1))\n\n\ndef logNormalizeTensor(a):\n denom = logSumExpTensor(a)\n if len(a.size()) == 2:\n denom = denom.view(-1, 1).expand(-1, a.size()[1])\n elif len(a.size()) == 3:\n denom = denom.view(a.size()[0], 1, 1).expand(-1, a.size()[1], a.\n size()[2])\n return a - denom\n\n\ndef logNormalize(a):\n denom = np.logaddexp.reduce(a, 1)\n return (a.transpose() - denom).transpose()\n\n\ndef logDot(a, b):\n max_a = np.amax(a)\n max_b = np.amax(b)\n C = np.dot(np.exp(a - max_a), np.exp(b - max_b))\n np.log(C, out=C)\n C += max_a + max_b\n return C\n", "step-5": "import os\nfrom os.path import join\nimport json\nimport pandas as pd\nimport time\nimport numpy as np\nimport torch \n\ndef str2bool(v):\n # convert string to boolean type for argparser input\n if isinstance(v, bool):\n return v\n if v.lower() in ('yes', 'true', 't', 'y', '1'):\n return True\n elif v.lower() in ('no', 'false', 'f', 'n', '0'):\n return False\n else:\n raise argparse.ArgumentTypeError('Boolean value expected.')\n\n\ndef str_or_none(v):\n # convert string to boolean type for argparser input\n if v is None:\n return None\n if v.lower() == 'none':\n return None\n else:\n return v\n\n# helper functions for LDA arguments\ndef dic2name(dic):\n return '_'.join([\"{}-{}\".format(k, dic[k]) for k in sorted(dic)])\n\ndef name2dic(s):\n return {x.split('-')[0]:x.split('-')[1] for x in s.split('_')}\n\n\ndef get_valid_types(TYPENAME):\n\n with open(join(os.environ['BASEPATH'], 'configs', 'types.json'), 'r') as typefile: \n valid_types = json.load(typefile)[TYPENAME]\n return valid_types\n\n\ndef df_index_gen(f, table=False):\n # merge locator and dataset_id to genearte index table_id\n f.loc[:,'table_id'] = f.apply(lambda x: '+'.join([x['locator'], x['dataset_id']]), axis = 1)\n if not table:\n f.loc[:,'field_id'] = f.apply(lambda x: x['field_id'].split(\":\")[-1], axis = 1)\n f = f.drop(columns=['locator', 'dataset_id']).set_index('table_id')\n return f\n\n\n# load dataframe from pickle or create pickle file\ndef load_tmp_df(load_path, tmp_path, name, table=False):\n start = time.time()\n pkl_file = join(tmp_path, \"{}.pkl\".format(name))\n if os.path.exists(pkl_file):\n print(\"{} pickle file found, loading...\".format(pkl_file))\n df = pd.read_pickle(pkl_file)\n else:\n #process and save pkl\n print(\"{} pickle file not found, creating...\".format(pkl_file))\n df = pd.read_csv(join(load_path, \"{}.csv\".format(name)))\n\n df = df_index_gen(df, table)\n df.to_pickle(pkl_file)\n print(\"{} Load complete. Time {}\".format(name, time.time()-start))\n return df\n\ndef logSumExpTensor(vec):\n # vec -> 16, tag_size\n batch_size = vec.size()[0]\n vec = vec.view(batch_size, -1)\n max_score = torch.max(vec, 1)[0]\n max_score_broadcast = max_score.view(-1, 1).expand(-1, vec.size()[1])\n return max_score + \\\n torch.log(torch.sum(torch.exp(vec - max_score_broadcast), 1))\n\ndef logNormalizeTensor(a):\n\n denom = logSumExpTensor(a)\n if len(a.size())==2:\n denom = denom.view(-1, 1).expand(-1, a.size()[1])\n elif len(a.size())==3:\n denom = denom.view(a.size()[0], 1, 1).expand(-1, a.size()[1], a.size()[2])\n return (a-denom)\n\ndef logNormalize(a):\n\n denom = np.logaddexp.reduce(a, 1)\n return (a.transpose()- denom).transpose()\n\ndef logDot(a, b):\n\n # numeric stable way of calculating log (e^a, e^b)\n max_a = np.amax(a)\n max_b = np.amax(b)\n\n C = np.dot(np.exp(a - max_a), np.exp(b - max_b))\n np.log(C, out=C)\n # else:\n # np.log(C + 1e-300, out=C)\n\n C += max_a + max_b\n\n return C\n", "step-ids": [ 5, 8, 9, 12, 13 ] }
[ 5, 8, 9, 12, 13 ]
''' Условие Дано два числа a и b. Выведите гипотенузу треугольника с заданными катетами. ''' import math a = int(input()) b = int(input()) print(math.sqrt(a * a + b * b))
normal
{ "blob_id": "c0348fc5f51e6f7a191fea6d0e3cb84c60b03e22", "index": 597, "step-1": "'''\nУсловие\nДано два числа a и b. Выведите гипотенузу треугольника с заданными катетами.\n'''\nimport math\na = int(input())\nb = int(input())\nprint(math.sqrt(a * a + b * b))", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
#!/usr/bin/env python3 import cgitb import sys from auth import is_admin cgitb.enable() sys.stdout.write('Content-Type: application/octet-stream\n\n') sys.stdout.write('yes' if is_admin() else 'no') sys.stdout.flush()
normal
{ "blob_id": "be9972d899a167a8ca2728960e55cda538793cc5", "index": 1576, "step-1": "<mask token>\n", "step-2": "<mask token>\ncgitb.enable()\nsys.stdout.write('Content-Type: application/octet-stream\\n\\n')\nsys.stdout.write('yes' if is_admin() else 'no')\nsys.stdout.flush()\n", "step-3": "import cgitb\nimport sys\nfrom auth import is_admin\ncgitb.enable()\nsys.stdout.write('Content-Type: application/octet-stream\\n\\n')\nsys.stdout.write('yes' if is_admin() else 'no')\nsys.stdout.flush()\n", "step-4": "#!/usr/bin/env python3\nimport cgitb\nimport sys\n\nfrom auth import is_admin\n\ncgitb.enable()\nsys.stdout.write('Content-Type: application/octet-stream\\n\\n')\nsys.stdout.write('yes' if is_admin() else 'no')\nsys.stdout.flush()\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
# Generated by Django 3.2.7 on 2021-10-01 06:43 from django.db import migrations import django_resized.forms import event.models.event import event.models.event_agenda class Migration(migrations.Migration): dependencies = [ ('event', '0009_auto_20211001_0406'), ] operations = [ migrations.AlterField( model_name='event', name='map', field=django_resized.forms.ResizedImageField(blank=True, crop=None, force_format='JPEG', help_text='Mapa del evento', keep_meta=True, null=True, quality=90, size=[1920, 1080], upload_to=event.models.event.event_pictures, verbose_name='Mapa'), ), migrations.AlterField( model_name='eventagenda', name='map', field=django_resized.forms.ResizedImageField(blank=True, crop=None, force_format='JPEG', help_text='Mapa de la exposicion', keep_meta=True, null=True, quality=90, size=[1920, 1080], upload_to=event.models.event_agenda.event_pictures, verbose_name='Mapa'), ), ]
normal
{ "blob_id": "d0a053faccecddc84a9556aec3dff691b171df96", "index": 9977, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Migration(migrations.Migration):\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Migration(migrations.Migration):\n dependencies = [('event', '0009_auto_20211001_0406')]\n operations = [migrations.AlterField(model_name='event', name='map',\n field=django_resized.forms.ResizedImageField(blank=True, crop=None,\n force_format='JPEG', help_text='Mapa del evento', keep_meta=True,\n null=True, quality=90, size=[1920, 1080], upload_to=event.models.\n event.event_pictures, verbose_name='Mapa')), migrations.AlterField(\n model_name='eventagenda', name='map', field=django_resized.forms.\n ResizedImageField(blank=True, crop=None, force_format='JPEG',\n help_text='Mapa de la exposicion', keep_meta=True, null=True,\n quality=90, size=[1920, 1080], upload_to=event.models.event_agenda.\n event_pictures, verbose_name='Mapa'))]\n", "step-4": "from django.db import migrations\nimport django_resized.forms\nimport event.models.event\nimport event.models.event_agenda\n\n\nclass Migration(migrations.Migration):\n dependencies = [('event', '0009_auto_20211001_0406')]\n operations = [migrations.AlterField(model_name='event', name='map',\n field=django_resized.forms.ResizedImageField(blank=True, crop=None,\n force_format='JPEG', help_text='Mapa del evento', keep_meta=True,\n null=True, quality=90, size=[1920, 1080], upload_to=event.models.\n event.event_pictures, verbose_name='Mapa')), migrations.AlterField(\n model_name='eventagenda', name='map', field=django_resized.forms.\n ResizedImageField(blank=True, crop=None, force_format='JPEG',\n help_text='Mapa de la exposicion', keep_meta=True, null=True,\n quality=90, size=[1920, 1080], upload_to=event.models.event_agenda.\n event_pictures, verbose_name='Mapa'))]\n", "step-5": "# Generated by Django 3.2.7 on 2021-10-01 06:43\n\nfrom django.db import migrations\nimport django_resized.forms\nimport event.models.event\nimport event.models.event_agenda\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('event', '0009_auto_20211001_0406'),\n ]\n\n operations = [\n migrations.AlterField(\n model_name='event',\n name='map',\n field=django_resized.forms.ResizedImageField(blank=True, crop=None, force_format='JPEG', help_text='Mapa del evento', keep_meta=True, null=True, quality=90, size=[1920, 1080], upload_to=event.models.event.event_pictures, verbose_name='Mapa'),\n ),\n migrations.AlterField(\n model_name='eventagenda',\n name='map',\n field=django_resized.forms.ResizedImageField(blank=True, crop=None, force_format='JPEG', help_text='Mapa de la exposicion', keep_meta=True, null=True, quality=90, size=[1920, 1080], upload_to=event.models.event_agenda.event_pictures, verbose_name='Mapa'),\n ),\n ]\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
a,b,c,d=map(int,input().split()) ans=0 if a>=0: if c>=0: ans=b*d elif d>=0: ans=b*d else: ans=a*d elif b>=0: if c>=0: ans=b*d elif d>=0: ans=max(b*d,a*c) else: ans=a*c else: if c>=0: ans=b*c elif d>=0: ans=a*c else: ans=a*c print(ans)
normal
{ "blob_id": "be37a7596850050af58f735e60bdf13594715caf", "index": 4928, "step-1": "<mask token>\n", "step-2": "<mask token>\nif a >= 0:\n if c >= 0:\n ans = b * d\n elif d >= 0:\n ans = b * d\n else:\n ans = a * d\nelif b >= 0:\n if c >= 0:\n ans = b * d\n elif d >= 0:\n ans = max(b * d, a * c)\n else:\n ans = a * c\nelif c >= 0:\n ans = b * c\nelif d >= 0:\n ans = a * c\nelse:\n ans = a * c\nprint(ans)\n", "step-3": "a, b, c, d = map(int, input().split())\nans = 0\nif a >= 0:\n if c >= 0:\n ans = b * d\n elif d >= 0:\n ans = b * d\n else:\n ans = a * d\nelif b >= 0:\n if c >= 0:\n ans = b * d\n elif d >= 0:\n ans = max(b * d, a * c)\n else:\n ans = a * c\nelif c >= 0:\n ans = b * c\nelif d >= 0:\n ans = a * c\nelse:\n ans = a * c\nprint(ans)\n", "step-4": "a,b,c,d=map(int,input().split())\nans=0\nif a>=0:\n if c>=0:\n ans=b*d\n elif d>=0:\n ans=b*d\n else:\n ans=a*d\nelif b>=0:\n if c>=0:\n ans=b*d\n elif d>=0:\n ans=max(b*d,a*c)\n else:\n ans=a*c\nelse:\n if c>=0:\n ans=b*c\n elif d>=0:\n ans=a*c\n else:\n ans=a*c\nprint(ans)", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
#This script reads through a Voyager import log and outputs duplicate bib IDs as well as the IDs of bibs, mfhds, and items created. #import regular expressions and openpyxl import re import openpyxl # prompt for file names fname = input("Enter input file, including extension: ") fout = input("Enter output file, without extension: ") fh = open(fname, "r") # set up lists duplicates = [["Duplicate Bib ID"]] bibs = [["Bib ID"]] mfhds = [["MFHD ID"]] items = [["Item ID"]] # create and open workbook with two sheets wb1=openpyxl.Workbook() ws1=wb1.active ws1.title = "Duplicate Bibs" ws2 = wb1.create_sheet(index=1, title="IDs Added") # read through file, extract the line after the line starting with BibID & rank and write to lists with fh as f: lines = f.readlines() n_lines = len(lines) for i, line in enumerate (lines) : line = line.rstrip() if line.startswith(" BibID & rank") and \ n_lines > i + 2 and lines[i + 2].startswith("") : bibline = re.findall(r'\d+\s-\s', lines[i+1]) dupeid = re.findall(r'\d+', str(bibline)) duplicates.append(dupeid) elif line.startswith(" Adding Bib") : line = re.findall(r'\d+',str(line)) bibs.append(line) elif line.startswith("MFHD_ID ") : line = re.findall(r'\d+',str(line)) mfhds.append(line) elif line.startswith("ITEM_ID ") : line = re.findall(r'\d+',str(line)) items.append(line) else : continue # write the lists to columns in the spreadsheet and save for row in duplicates: ws1.append(row) for r in range(0,len(bibs)): ws2.cell(row=r+1,column=1).value=bibs[r][0] for r in range(0,len(mfhds)): ws2.cell(row=r+1,column=2).value=mfhds[r][0] for r in range(0,len(items)): ws2.cell(row=r+1,column=3).value=items[r][0] wb1.save(fout + ".xlsx")
normal
{ "blob_id": "fc06d8a26a99c16a4b38ad0b4bbb28a1dc522991", "index": 6902, "step-1": "<mask token>\n", "step-2": "<mask token>\nwith fh as f:\n lines = f.readlines()\n n_lines = len(lines)\n for i, line in enumerate(lines):\n line = line.rstrip()\n if line.startswith('\\tBibID & rank') and n_lines > i + 2 and lines[\n i + 2].startswith(''):\n bibline = re.findall('\\\\d+\\\\s-\\\\s', lines[i + 1])\n dupeid = re.findall('\\\\d+', str(bibline))\n duplicates.append(dupeid)\n elif line.startswith('\\tAdding Bib'):\n line = re.findall('\\\\d+', str(line))\n bibs.append(line)\n elif line.startswith('MFHD_ID '):\n line = re.findall('\\\\d+', str(line))\n mfhds.append(line)\n elif line.startswith('ITEM_ID '):\n line = re.findall('\\\\d+', str(line))\n items.append(line)\n else:\n continue\nfor row in duplicates:\n ws1.append(row)\nfor r in range(0, len(bibs)):\n ws2.cell(row=r + 1, column=1).value = bibs[r][0]\nfor r in range(0, len(mfhds)):\n ws2.cell(row=r + 1, column=2).value = mfhds[r][0]\nfor r in range(0, len(items)):\n ws2.cell(row=r + 1, column=3).value = items[r][0]\nwb1.save(fout + '.xlsx')\n", "step-3": "<mask token>\nfname = input('Enter input file, including extension: ')\nfout = input('Enter output file, without extension: ')\nfh = open(fname, 'r')\nduplicates = [['Duplicate Bib ID']]\nbibs = [['Bib ID']]\nmfhds = [['MFHD ID']]\nitems = [['Item ID']]\nwb1 = openpyxl.Workbook()\nws1 = wb1.active\nws1.title = 'Duplicate Bibs'\nws2 = wb1.create_sheet(index=1, title='IDs Added')\nwith fh as f:\n lines = f.readlines()\n n_lines = len(lines)\n for i, line in enumerate(lines):\n line = line.rstrip()\n if line.startswith('\\tBibID & rank') and n_lines > i + 2 and lines[\n i + 2].startswith(''):\n bibline = re.findall('\\\\d+\\\\s-\\\\s', lines[i + 1])\n dupeid = re.findall('\\\\d+', str(bibline))\n duplicates.append(dupeid)\n elif line.startswith('\\tAdding Bib'):\n line = re.findall('\\\\d+', str(line))\n bibs.append(line)\n elif line.startswith('MFHD_ID '):\n line = re.findall('\\\\d+', str(line))\n mfhds.append(line)\n elif line.startswith('ITEM_ID '):\n line = re.findall('\\\\d+', str(line))\n items.append(line)\n else:\n continue\nfor row in duplicates:\n ws1.append(row)\nfor r in range(0, len(bibs)):\n ws2.cell(row=r + 1, column=1).value = bibs[r][0]\nfor r in range(0, len(mfhds)):\n ws2.cell(row=r + 1, column=2).value = mfhds[r][0]\nfor r in range(0, len(items)):\n ws2.cell(row=r + 1, column=3).value = items[r][0]\nwb1.save(fout + '.xlsx')\n", "step-4": "import re\nimport openpyxl\nfname = input('Enter input file, including extension: ')\nfout = input('Enter output file, without extension: ')\nfh = open(fname, 'r')\nduplicates = [['Duplicate Bib ID']]\nbibs = [['Bib ID']]\nmfhds = [['MFHD ID']]\nitems = [['Item ID']]\nwb1 = openpyxl.Workbook()\nws1 = wb1.active\nws1.title = 'Duplicate Bibs'\nws2 = wb1.create_sheet(index=1, title='IDs Added')\nwith fh as f:\n lines = f.readlines()\n n_lines = len(lines)\n for i, line in enumerate(lines):\n line = line.rstrip()\n if line.startswith('\\tBibID & rank') and n_lines > i + 2 and lines[\n i + 2].startswith(''):\n bibline = re.findall('\\\\d+\\\\s-\\\\s', lines[i + 1])\n dupeid = re.findall('\\\\d+', str(bibline))\n duplicates.append(dupeid)\n elif line.startswith('\\tAdding Bib'):\n line = re.findall('\\\\d+', str(line))\n bibs.append(line)\n elif line.startswith('MFHD_ID '):\n line = re.findall('\\\\d+', str(line))\n mfhds.append(line)\n elif line.startswith('ITEM_ID '):\n line = re.findall('\\\\d+', str(line))\n items.append(line)\n else:\n continue\nfor row in duplicates:\n ws1.append(row)\nfor r in range(0, len(bibs)):\n ws2.cell(row=r + 1, column=1).value = bibs[r][0]\nfor r in range(0, len(mfhds)):\n ws2.cell(row=r + 1, column=2).value = mfhds[r][0]\nfor r in range(0, len(items)):\n ws2.cell(row=r + 1, column=3).value = items[r][0]\nwb1.save(fout + '.xlsx')\n", "step-5": "#This script reads through a Voyager import log and outputs duplicate bib IDs as well as the IDs of bibs, mfhds, and items created.\n\n#import regular expressions and openpyxl\nimport re\nimport openpyxl\n\n# prompt for file names\nfname = input(\"Enter input file, including extension: \")\nfout = input(\"Enter output file, without extension: \")\nfh = open(fname, \"r\")\n\n# set up lists\nduplicates = [[\"Duplicate Bib ID\"]]\nbibs = [[\"Bib ID\"]]\nmfhds = [[\"MFHD ID\"]]\nitems = [[\"Item ID\"]]\n\n# create and open workbook with two sheets\nwb1=openpyxl.Workbook()\nws1=wb1.active\nws1.title = \"Duplicate Bibs\"\nws2 = wb1.create_sheet(index=1, title=\"IDs Added\")\n\n# read through file, extract the line after the line starting with BibID & rank and write to lists\nwith fh as f:\n lines = f.readlines()\n n_lines = len(lines)\n for i, line in enumerate (lines) :\n line = line.rstrip()\n if line.startswith(\"\tBibID & rank\") and \\\n n_lines > i + 2 and lines[i + 2].startswith(\"\") :\n bibline = re.findall(r'\\d+\\s-\\s', lines[i+1])\n dupeid = re.findall(r'\\d+', str(bibline))\n duplicates.append(dupeid)\n elif line.startswith(\"\tAdding Bib\") :\n line = re.findall(r'\\d+',str(line))\n bibs.append(line)\n elif line.startswith(\"MFHD_ID \") :\n line = re.findall(r'\\d+',str(line))\n mfhds.append(line)\n elif line.startswith(\"ITEM_ID \") :\n line = re.findall(r'\\d+',str(line))\n items.append(line)\n else :\n continue\n\n# write the lists to columns in the spreadsheet and save\nfor row in duplicates:\n ws1.append(row)\nfor r in range(0,len(bibs)):\n ws2.cell(row=r+1,column=1).value=bibs[r][0]\nfor r in range(0,len(mfhds)):\n ws2.cell(row=r+1,column=2).value=mfhds[r][0]\nfor r in range(0,len(items)):\n ws2.cell(row=r+1,column=3).value=items[r][0]\nwb1.save(fout + \".xlsx\")\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from .settings import * # Heroku Configurations # Parse database configuration from $DATABASE_URL import dj_database_url DATABASES = {'default': dj_database_url.config()} # Honor the 'X-Forwarded-Proto' header for request.is_secure() SECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTO', 'https') # loading local_settings.py try: from .local_settings import * except Exception as e: pass # ALLAUTH configuration # Specific the login method to use ACCOUNT_USERNAME_REQUIRED = False # ACCOUNT_AUTHENTICATION_METHOD = "username", "email", "username_email" # Determines the e-mail verification method during signup – choose one of “mandatory”, “optional”, or “none”. # When set to “mandatory” the user is blocked from logging in until the email address is verified. # Choose “optional” or “none” to allow logins with an unverified e-mail address. # In case of “optional”, the e-mail verification mail is still sent, # whereas in case of “none” no e-mail verification mails are sent. ACCOUNT_EMAIL_VERIFICATION = "none" # Determines whether or not the user is automatically logged out by a mere GET request. # See documentation for the LogoutView for details. ACCOUNT_LOGOUT_ON_GET = False # Request e-mail address from 3rd import party account provider? # E.g. using OpenID AX, or the Facebook “email” permission. SOCIALACCOUNT_QUERY_EMAIL = True # Dictionary containing provider specific settings. SOCIALACCOUNT_PROVIDERS = { 'facebook': { # we use facebook js_sdk instead od oauth2 'METHOD': 'js_sdk', 'SCOPE': ['email', 'public_profile', 'user_friends'], # using AUTH_PARAMS to pass along other parametees # to the FB.login JS SDK call 'AUTH_PARAMS': {'auth_type': 'reauthenticate'}, # field are fetch from the import Graph API 'FIELDS': ['first_name', 'last_name', 'email', 'birthday'], # JS SDK return a short-lived token suitable for client-side use. 'EXCHANGE_TOKEN': True, # Chose the current active language of the request 'LOCALE_FUNC': 'path.to.callable', 'VERIFIED_EMAIL': False, # Facebook Graph API version 'VERSION': 'v2.7' }, 'linkedin': { 'SCOPE': ['r_emailaddress'], 'PROFILE_FIELDS': [ 'id', 'first-name', 'last-name', 'email-address', 'public-profile-url' ] } } # login redirect url LOGIN_REDIRECT_URL = "/blog/jobs" # Default settings BOOTSTRAP3 = { # The URL to the jQuery JavaScript file 'jquery_url': '//code.jquery.com/jquery.min.js', # The Bootstrap base URL 'base_url': '//maxcdn.bootstrapcdn.com/bootstrap/3.3.7/', # The complete URL to the Bootstrap CSS file (None means derive it from base_url) 'css_url': None, # The complete URL to the Bootstrap CSS file (None means no theme) 'theme_url': None, # The complete URL to the Bootstrap JavaScript file (None means derive it from base_url) 'javascript_url': None, # Put JavaScript in the HEAD section of the HTML document (only relevant if you use bootstrap3.html) 'javascript_in_head': False, # Include jQuery with Bootstrap JavaScript (affects django-bootstrap3 template tags) 'include_jquery': False, # Label class to use in horizontal forms 'horizontal_label_class': 'col-md-3', # Field class to use in horizontal forms 'horizontal_field_class': 'col-md-9', # Set HTML required attribute on required fields 'set_required': True, # Set HTML disabled attribute on disabled fields 'set_disabled': False, # Set placeholder attributes to label if no placeholder is provided 'set_placeholder': True, # Class to indicate required (better to set this in your Django form) 'required_css_class': '', # Class to indicate error (better to set this in your Django form) 'error_css_class': 'has-error', # Class to indicate success, meaning the field has valid input (better to set this in your Django form) 'success_css_class': 'has-success', # Renderers (only set these if you have studied the source and understand the inner workings) 'formset_renderers':{ 'default': 'bootstrap3.renderers.FormsetRenderer', }, 'form_renderers': { 'default': 'bootstrap3.renderers.FormRenderer', }, 'field_renderers': { 'default': 'bootstrap3.renderers.FieldRenderer', 'inline': 'bootstrap3.renderers.InlineFieldRenderer', }, } # Axes Configurations # Number of login attempts allowed before a record is created for the failed logins. AXES_LOGIN_FAILURE_LIMIT = 3 # After the number os allowed login attempts are exceeded, should we lock this IP (and optinal user agend)? AXES_LOCK_OUT_AT_FAILURE = True # If True, lock out / log based on an IP address AND a user agent. This means requests from different import user # agents but from the import same IP are treated differently. AXES_USE_USER_AGENT = True # Defines a period of inactivity after which old failed login attempts will be forgotten. You can set to a # python timedelta object or an integer, if you set it to be integer it will represent a number of hours AXES_COOLOFF_TIME = 50 # Specifies a logging mechanism for axes to use AXES_LOCKOUT_TEMPLATE = 'axes.watch_login' # Specifies a template to render when a user is locked out. Template receives cooloff_time and failure_limit as # context variables AXES_LOCKOUT_TEMPLATE = None # Specifies a URL to redirect to on lockout. If both AXES_LOCKOUT_TEMPLATE and AXES_LOCKOUT_URL are set, the template # will be used AXES_LOCKOUT_URL = None # If Truem you'll see slightly more logging for Axes AXES_VERBOSE = True # The name of the for field that contains your usernames # AXES_USERNAME_FORM_FIELD = username # If True prevents to login from IP import under particular user if attempts limit exceed, otherwise lock out based on # IP. Default: False AXES_LOCK_OUT_BY_COMBINATION_USER_AND_IP = False # Crispy forms will use BOOTSTRAP3 TEMPLATE PACK CRISPY_TEMPLATE_PACK = "bootstrap3" # Signal Admins Configurations ADMINS = ( ("Petar Pilipovic", "[email protected]"), ) # RESTframework Permission classes configuration REST_FRAMEWORK = { "DEFAULT_PERMISSION_CLASSES": [ "rest_framework.permissions.DjangoModelPermissionsOrAnonReadOnly" ] }
normal
{ "blob_id": "8bb86cae3387a0d4ce5987f3e3c458c8298174e0", "index": 7342, "step-1": "<mask token>\n", "step-2": "<mask token>\ntry:\n from .local_settings import *\nexcept Exception as e:\n pass\n<mask token>\n", "step-3": "<mask token>\nDATABASES = {'default': dj_database_url.config()}\nSECURE_PROXY_SSL_HEADER = 'HTTP_X_FORWARDED_PROTO', 'https'\ntry:\n from .local_settings import *\nexcept Exception as e:\n pass\nACCOUNT_USERNAME_REQUIRED = False\nACCOUNT_EMAIL_VERIFICATION = 'none'\nACCOUNT_LOGOUT_ON_GET = False\nSOCIALACCOUNT_QUERY_EMAIL = True\nSOCIALACCOUNT_PROVIDERS = {'facebook': {'METHOD': 'js_sdk', 'SCOPE': [\n 'email', 'public_profile', 'user_friends'], 'AUTH_PARAMS': {'auth_type':\n 'reauthenticate'}, 'FIELDS': ['first_name', 'last_name', 'email',\n 'birthday'], 'EXCHANGE_TOKEN': True, 'LOCALE_FUNC': 'path.to.callable',\n 'VERIFIED_EMAIL': False, 'VERSION': 'v2.7'}, 'linkedin': {'SCOPE': [\n 'r_emailaddress'], 'PROFILE_FIELDS': ['id', 'first-name', 'last-name',\n 'email-address', 'public-profile-url']}}\nLOGIN_REDIRECT_URL = '/blog/jobs'\nBOOTSTRAP3 = {'jquery_url': '//code.jquery.com/jquery.min.js', 'base_url':\n '//maxcdn.bootstrapcdn.com/bootstrap/3.3.7/', 'css_url': None,\n 'theme_url': None, 'javascript_url': None, 'javascript_in_head': False,\n 'include_jquery': False, 'horizontal_label_class': 'col-md-3',\n 'horizontal_field_class': 'col-md-9', 'set_required': True,\n 'set_disabled': False, 'set_placeholder': True, 'required_css_class':\n '', 'error_css_class': 'has-error', 'success_css_class': 'has-success',\n 'formset_renderers': {'default': 'bootstrap3.renderers.FormsetRenderer'\n }, 'form_renderers': {'default': 'bootstrap3.renderers.FormRenderer'},\n 'field_renderers': {'default': 'bootstrap3.renderers.FieldRenderer',\n 'inline': 'bootstrap3.renderers.InlineFieldRenderer'}}\nAXES_LOGIN_FAILURE_LIMIT = 3\nAXES_LOCK_OUT_AT_FAILURE = True\nAXES_USE_USER_AGENT = True\nAXES_COOLOFF_TIME = 50\nAXES_LOCKOUT_TEMPLATE = 'axes.watch_login'\nAXES_LOCKOUT_TEMPLATE = None\nAXES_LOCKOUT_URL = None\nAXES_VERBOSE = True\nAXES_LOCK_OUT_BY_COMBINATION_USER_AND_IP = False\nCRISPY_TEMPLATE_PACK = 'bootstrap3'\nADMINS = ('Petar Pilipovic', '[email protected]'),\nREST_FRAMEWORK = {'DEFAULT_PERMISSION_CLASSES': [\n 'rest_framework.permissions.DjangoModelPermissionsOrAnonReadOnly']}\n", "step-4": "from .settings import *\nimport dj_database_url\nDATABASES = {'default': dj_database_url.config()}\nSECURE_PROXY_SSL_HEADER = 'HTTP_X_FORWARDED_PROTO', 'https'\ntry:\n from .local_settings import *\nexcept Exception as e:\n pass\nACCOUNT_USERNAME_REQUIRED = False\nACCOUNT_EMAIL_VERIFICATION = 'none'\nACCOUNT_LOGOUT_ON_GET = False\nSOCIALACCOUNT_QUERY_EMAIL = True\nSOCIALACCOUNT_PROVIDERS = {'facebook': {'METHOD': 'js_sdk', 'SCOPE': [\n 'email', 'public_profile', 'user_friends'], 'AUTH_PARAMS': {'auth_type':\n 'reauthenticate'}, 'FIELDS': ['first_name', 'last_name', 'email',\n 'birthday'], 'EXCHANGE_TOKEN': True, 'LOCALE_FUNC': 'path.to.callable',\n 'VERIFIED_EMAIL': False, 'VERSION': 'v2.7'}, 'linkedin': {'SCOPE': [\n 'r_emailaddress'], 'PROFILE_FIELDS': ['id', 'first-name', 'last-name',\n 'email-address', 'public-profile-url']}}\nLOGIN_REDIRECT_URL = '/blog/jobs'\nBOOTSTRAP3 = {'jquery_url': '//code.jquery.com/jquery.min.js', 'base_url':\n '//maxcdn.bootstrapcdn.com/bootstrap/3.3.7/', 'css_url': None,\n 'theme_url': None, 'javascript_url': None, 'javascript_in_head': False,\n 'include_jquery': False, 'horizontal_label_class': 'col-md-3',\n 'horizontal_field_class': 'col-md-9', 'set_required': True,\n 'set_disabled': False, 'set_placeholder': True, 'required_css_class':\n '', 'error_css_class': 'has-error', 'success_css_class': 'has-success',\n 'formset_renderers': {'default': 'bootstrap3.renderers.FormsetRenderer'\n }, 'form_renderers': {'default': 'bootstrap3.renderers.FormRenderer'},\n 'field_renderers': {'default': 'bootstrap3.renderers.FieldRenderer',\n 'inline': 'bootstrap3.renderers.InlineFieldRenderer'}}\nAXES_LOGIN_FAILURE_LIMIT = 3\nAXES_LOCK_OUT_AT_FAILURE = True\nAXES_USE_USER_AGENT = True\nAXES_COOLOFF_TIME = 50\nAXES_LOCKOUT_TEMPLATE = 'axes.watch_login'\nAXES_LOCKOUT_TEMPLATE = None\nAXES_LOCKOUT_URL = None\nAXES_VERBOSE = True\nAXES_LOCK_OUT_BY_COMBINATION_USER_AND_IP = False\nCRISPY_TEMPLATE_PACK = 'bootstrap3'\nADMINS = ('Petar Pilipovic', '[email protected]'),\nREST_FRAMEWORK = {'DEFAULT_PERMISSION_CLASSES': [\n 'rest_framework.permissions.DjangoModelPermissionsOrAnonReadOnly']}\n", "step-5": "from .settings import *\n\n\n\n# Heroku Configurations\n# Parse database configuration from $DATABASE_URL\nimport dj_database_url\n\nDATABASES = {'default': dj_database_url.config()}\n\n# Honor the 'X-Forwarded-Proto' header for request.is_secure()\nSECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTO', 'https')\n\n# loading local_settings.py\ntry:\n from .local_settings import *\nexcept Exception as e:\n pass\n\n# ALLAUTH configuration\n\n\n# Specific the login method to use\nACCOUNT_USERNAME_REQUIRED = False\n# ACCOUNT_AUTHENTICATION_METHOD = \"username\", \"email\", \"username_email\"\n\n# Determines the e-mail verification method during signup – choose one of “mandatory”, “optional”, or “none”.\n# When set to “mandatory” the user is blocked from logging in until the email address is verified.\n# Choose “optional” or “none” to allow logins with an unverified e-mail address.\n# In case of “optional”, the e-mail verification mail is still sent,\n# whereas in case of “none” no e-mail verification mails are sent.\nACCOUNT_EMAIL_VERIFICATION = \"none\"\n\n# Determines whether or not the user is automatically logged out by a mere GET request.\n# See documentation for the LogoutView for details.\nACCOUNT_LOGOUT_ON_GET = False\n\n# Request e-mail address from 3rd import party account provider?\n# E.g. using OpenID AX, or the Facebook “email” permission.\nSOCIALACCOUNT_QUERY_EMAIL = True\n\n# Dictionary containing provider specific settings.\nSOCIALACCOUNT_PROVIDERS = {\n 'facebook': {\n # we use facebook js_sdk instead od oauth2\n 'METHOD': 'js_sdk',\n 'SCOPE': ['email', 'public_profile', 'user_friends'],\n # using AUTH_PARAMS to pass along other parametees\n # to the FB.login JS SDK call\n 'AUTH_PARAMS': {'auth_type': 'reauthenticate'},\n # field are fetch from the import Graph API\n 'FIELDS': ['first_name', 'last_name', 'email', 'birthday'],\n # JS SDK return a short-lived token suitable for client-side use.\n 'EXCHANGE_TOKEN': True,\n # Chose the current active language of the request\n 'LOCALE_FUNC': 'path.to.callable',\n 'VERIFIED_EMAIL': False,\n # Facebook Graph API version\n 'VERSION': 'v2.7'\n },\n 'linkedin': {\n 'SCOPE': ['r_emailaddress'],\n 'PROFILE_FIELDS': [\n 'id',\n 'first-name',\n 'last-name',\n 'email-address',\n 'public-profile-url'\n ]\n }\n}\n\n# login redirect url\nLOGIN_REDIRECT_URL = \"/blog/jobs\"\n\n# Default settings\nBOOTSTRAP3 = {\n\n # The URL to the jQuery JavaScript file\n 'jquery_url': '//code.jquery.com/jquery.min.js',\n\n # The Bootstrap base URL\n 'base_url': '//maxcdn.bootstrapcdn.com/bootstrap/3.3.7/',\n\n # The complete URL to the Bootstrap CSS file (None means derive it from base_url)\n 'css_url': None,\n\n # The complete URL to the Bootstrap CSS file (None means no theme)\n 'theme_url': None,\n\n # The complete URL to the Bootstrap JavaScript file (None means derive it from base_url)\n 'javascript_url': None,\n\n # Put JavaScript in the HEAD section of the HTML document (only relevant if you use bootstrap3.html)\n 'javascript_in_head': False,\n\n # Include jQuery with Bootstrap JavaScript (affects django-bootstrap3 template tags)\n 'include_jquery': False,\n\n # Label class to use in horizontal forms\n 'horizontal_label_class': 'col-md-3',\n\n # Field class to use in horizontal forms\n 'horizontal_field_class': 'col-md-9',\n\n # Set HTML required attribute on required fields\n 'set_required': True,\n\n # Set HTML disabled attribute on disabled fields\n 'set_disabled': False,\n\n # Set placeholder attributes to label if no placeholder is provided\n 'set_placeholder': True,\n\n # Class to indicate required (better to set this in your Django form)\n 'required_css_class': '',\n\n # Class to indicate error (better to set this in your Django form)\n 'error_css_class': 'has-error',\n\n # Class to indicate success, meaning the field has valid input (better to set this in your Django form)\n 'success_css_class': 'has-success',\n\n # Renderers (only set these if you have studied the source and understand the inner workings)\n 'formset_renderers':{\n 'default': 'bootstrap3.renderers.FormsetRenderer',\n },\n 'form_renderers': {\n 'default': 'bootstrap3.renderers.FormRenderer',\n },\n 'field_renderers': {\n 'default': 'bootstrap3.renderers.FieldRenderer',\n 'inline': 'bootstrap3.renderers.InlineFieldRenderer',\n },\n}\n\n# Axes Configurations\n# Number of login attempts allowed before a record is created for the failed logins.\nAXES_LOGIN_FAILURE_LIMIT = 3\n\n# After the number os allowed login attempts are exceeded, should we lock this IP (and optinal user agend)?\nAXES_LOCK_OUT_AT_FAILURE = True\n\n# If True, lock out / log based on an IP address AND a user agent. This means requests from different import user\n# agents but from the import same IP are treated differently.\nAXES_USE_USER_AGENT = True\n\n# Defines a period of inactivity after which old failed login attempts will be forgotten. You can set to a\n# python timedelta object or an integer, if you set it to be integer it will represent a number of hours\nAXES_COOLOFF_TIME = 50\n\n# Specifies a logging mechanism for axes to use\nAXES_LOCKOUT_TEMPLATE = 'axes.watch_login'\n\n# Specifies a template to render when a user is locked out. Template receives cooloff_time and failure_limit as\n# context variables\nAXES_LOCKOUT_TEMPLATE = None\n\n# Specifies a URL to redirect to on lockout. If both AXES_LOCKOUT_TEMPLATE and AXES_LOCKOUT_URL are set, the template\n# will be used\nAXES_LOCKOUT_URL = None\n\n# If Truem you'll see slightly more logging for Axes\nAXES_VERBOSE = True\n\n# The name of the for field that contains your usernames\n# AXES_USERNAME_FORM_FIELD = username\n\n# If True prevents to login from IP import under particular user if attempts limit exceed, otherwise lock out based on\n# IP. Default: False\nAXES_LOCK_OUT_BY_COMBINATION_USER_AND_IP = False\n\n# Crispy forms will use BOOTSTRAP3 TEMPLATE PACK\nCRISPY_TEMPLATE_PACK = \"bootstrap3\"\n\n# Signal Admins Configurations\nADMINS = (\n (\"Petar Pilipovic\", \"[email protected]\"),\n)\n\n# RESTframework Permission classes configuration\nREST_FRAMEWORK = {\n \"DEFAULT_PERMISSION_CLASSES\": [\n \"rest_framework.permissions.DjangoModelPermissionsOrAnonReadOnly\"\n ]\n}\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
K = input() mat = "".join(raw_input() for i in xrange(4)) print ("YES", "NO")[max(mat.count(str(i)) for i in xrange(1, 10)) > K*2]
normal
{ "blob_id": "879f7503f7f427f92109024b4646d1dc7f15d63d", "index": 2153, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint('YES', 'NO')[max(mat.count(str(i)) for i in xrange(1, 10)) > K * 2]\n", "step-3": "K = input()\nmat = ''.join(raw_input() for i in xrange(4))\nprint('YES', 'NO')[max(mat.count(str(i)) for i in xrange(1, 10)) > K * 2]\n", "step-4": "K = input()\nmat = \"\".join(raw_input() for i in xrange(4))\nprint (\"YES\", \"NO\")[max(mat.count(str(i)) for i in xrange(1, 10)) > K*2]\n\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
from typing import Any, Optional from aiogram import types from aiogram.dispatcher.middlewares import BaseMiddleware from scene_manager.loader.loader import Loader from scene_manager.utils import content_type_checker class ScenesMiddleware(BaseMiddleware): def __init__(self, *, loader: Optional[Loader] = None, default_scene_name: Optional[str] = None): self._default_scene_name = default_scene_name or "start" self._loader = loader or Loader.get_current() if self._loader is None: self._loader = Loader() if not self._loader.is_scenes_loaded: self._loader.load_scenes() self._storage = self._loader.data_storage super().__init__() async def on_post_process_message(self, message: types.Message, results: tuple, data: dict): if data: return user_scene_name = await self._get_scene_name(message) for scene_model in self._loader.handlers_storage.get_message_scene(user_scene_name): if content_type_checker(message, scene_model.config.get("content_types")): await scene_model.handler(message) else: otherwise_handler = scene_model.config.get("otherwise_handler") if otherwise_handler is not None: await otherwise_handler(message) async def on_post_process_callback_query( self, callback_query: types.CallbackQuery, results: tuple, data: dict ): if data: return user_scene_name = await self._get_scene_name(callback_query) for scene_model in self._loader.handlers_storage.get_callback_query_scene(user_scene_name): await scene_model.handler(callback_query) async def _get_scene_name(self, ctx) -> Any: user_id = ctx.from_user.id user_scene = await self._storage.get(user_id) if user_scene is None: await self._storage.put(user_id, self._default_scene_name) user_scene = self._default_scene_name return user_scene
normal
{ "blob_id": "11db76cba3dd76cad0d660a0e189d3e4c465071b", "index": 8836, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass ScenesMiddleware(BaseMiddleware):\n <mask token>\n\n async def on_post_process_message(self, message: types.Message, results:\n tuple, data: dict):\n if data:\n return\n user_scene_name = await self._get_scene_name(message)\n for scene_model in self._loader.handlers_storage.get_message_scene(\n user_scene_name):\n if content_type_checker(message, scene_model.config.get(\n 'content_types')):\n await scene_model.handler(message)\n else:\n otherwise_handler = scene_model.config.get('otherwise_handler')\n if otherwise_handler is not None:\n await otherwise_handler(message)\n\n async def on_post_process_callback_query(self, callback_query: types.\n CallbackQuery, results: tuple, data: dict):\n if data:\n return\n user_scene_name = await self._get_scene_name(callback_query)\n for scene_model in self._loader.handlers_storage.get_callback_query_scene(\n user_scene_name):\n await scene_model.handler(callback_query)\n\n async def _get_scene_name(self, ctx) ->Any:\n user_id = ctx.from_user.id\n user_scene = await self._storage.get(user_id)\n if user_scene is None:\n await self._storage.put(user_id, self._default_scene_name)\n user_scene = self._default_scene_name\n return user_scene\n", "step-3": "<mask token>\n\n\nclass ScenesMiddleware(BaseMiddleware):\n\n def __init__(self, *, loader: Optional[Loader]=None, default_scene_name:\n Optional[str]=None):\n self._default_scene_name = default_scene_name or 'start'\n self._loader = loader or Loader.get_current()\n if self._loader is None:\n self._loader = Loader()\n if not self._loader.is_scenes_loaded:\n self._loader.load_scenes()\n self._storage = self._loader.data_storage\n super().__init__()\n\n async def on_post_process_message(self, message: types.Message, results:\n tuple, data: dict):\n if data:\n return\n user_scene_name = await self._get_scene_name(message)\n for scene_model in self._loader.handlers_storage.get_message_scene(\n user_scene_name):\n if content_type_checker(message, scene_model.config.get(\n 'content_types')):\n await scene_model.handler(message)\n else:\n otherwise_handler = scene_model.config.get('otherwise_handler')\n if otherwise_handler is not None:\n await otherwise_handler(message)\n\n async def on_post_process_callback_query(self, callback_query: types.\n CallbackQuery, results: tuple, data: dict):\n if data:\n return\n user_scene_name = await self._get_scene_name(callback_query)\n for scene_model in self._loader.handlers_storage.get_callback_query_scene(\n user_scene_name):\n await scene_model.handler(callback_query)\n\n async def _get_scene_name(self, ctx) ->Any:\n user_id = ctx.from_user.id\n user_scene = await self._storage.get(user_id)\n if user_scene is None:\n await self._storage.put(user_id, self._default_scene_name)\n user_scene = self._default_scene_name\n return user_scene\n", "step-4": "from typing import Any, Optional\nfrom aiogram import types\nfrom aiogram.dispatcher.middlewares import BaseMiddleware\nfrom scene_manager.loader.loader import Loader\nfrom scene_manager.utils import content_type_checker\n\n\nclass ScenesMiddleware(BaseMiddleware):\n\n def __init__(self, *, loader: Optional[Loader]=None, default_scene_name:\n Optional[str]=None):\n self._default_scene_name = default_scene_name or 'start'\n self._loader = loader or Loader.get_current()\n if self._loader is None:\n self._loader = Loader()\n if not self._loader.is_scenes_loaded:\n self._loader.load_scenes()\n self._storage = self._loader.data_storage\n super().__init__()\n\n async def on_post_process_message(self, message: types.Message, results:\n tuple, data: dict):\n if data:\n return\n user_scene_name = await self._get_scene_name(message)\n for scene_model in self._loader.handlers_storage.get_message_scene(\n user_scene_name):\n if content_type_checker(message, scene_model.config.get(\n 'content_types')):\n await scene_model.handler(message)\n else:\n otherwise_handler = scene_model.config.get('otherwise_handler')\n if otherwise_handler is not None:\n await otherwise_handler(message)\n\n async def on_post_process_callback_query(self, callback_query: types.\n CallbackQuery, results: tuple, data: dict):\n if data:\n return\n user_scene_name = await self._get_scene_name(callback_query)\n for scene_model in self._loader.handlers_storage.get_callback_query_scene(\n user_scene_name):\n await scene_model.handler(callback_query)\n\n async def _get_scene_name(self, ctx) ->Any:\n user_id = ctx.from_user.id\n user_scene = await self._storage.get(user_id)\n if user_scene is None:\n await self._storage.put(user_id, self._default_scene_name)\n user_scene = self._default_scene_name\n return user_scene\n", "step-5": "from typing import Any, Optional\n\nfrom aiogram import types\nfrom aiogram.dispatcher.middlewares import BaseMiddleware\n\nfrom scene_manager.loader.loader import Loader\nfrom scene_manager.utils import content_type_checker\n\n\nclass ScenesMiddleware(BaseMiddleware):\n def __init__(self, *, loader: Optional[Loader] = None, default_scene_name: Optional[str] = None):\n self._default_scene_name = default_scene_name or \"start\"\n self._loader = loader or Loader.get_current()\n if self._loader is None:\n self._loader = Loader()\n if not self._loader.is_scenes_loaded:\n self._loader.load_scenes()\n self._storage = self._loader.data_storage\n super().__init__()\n\n async def on_post_process_message(self, message: types.Message, results: tuple, data: dict):\n if data:\n return\n user_scene_name = await self._get_scene_name(message)\n for scene_model in self._loader.handlers_storage.get_message_scene(user_scene_name):\n if content_type_checker(message, scene_model.config.get(\"content_types\")):\n await scene_model.handler(message)\n else:\n otherwise_handler = scene_model.config.get(\"otherwise_handler\")\n if otherwise_handler is not None:\n await otherwise_handler(message)\n\n async def on_post_process_callback_query(\n self, callback_query: types.CallbackQuery, results: tuple, data: dict\n ):\n if data:\n return\n user_scene_name = await self._get_scene_name(callback_query)\n for scene_model in self._loader.handlers_storage.get_callback_query_scene(user_scene_name):\n await scene_model.handler(callback_query)\n\n async def _get_scene_name(self, ctx) -> Any:\n user_id = ctx.from_user.id\n user_scene = await self._storage.get(user_id)\n if user_scene is None:\n await self._storage.put(user_id, self._default_scene_name)\n user_scene = self._default_scene_name\n return user_scene\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
''' Encontrar el valor mas alto el mas rapido, el mas lento para eso son los algoritmos de optimizacion Para eso debemos pensar en una funcion que queramos maximizar o minimizar Se aplican mas que todo para empresas como despegar, en donde se pueden generar buenas empresas Empresas a la optimizacion #############################################33 Traveling Sales Man Cual es la ruta mas eficiente para recorrer todas las ciudades Resolver el algoritmo de sales man Turing Prize '''
normal
{ "blob_id": "7163be250ae3a22931de037cb6896c2e6d5f00a8", "index": 584, "step-1": "<mask token>\n", "step-2": "'''\n Encontrar el valor mas alto el mas rapido, el mas lento\n para eso son los algoritmos de optimizacion\n Para eso debemos pensar en una funcion que queramos maximizar o minimizar\n Se aplican mas que todo para empresas como despegar, en donde se pueden generar buenas empresas\n Empresas a la optimizacion \n #############################################33\n Traveling Sales Man\n Cual es la ruta mas eficiente para recorrer todas las ciudades\n Resolver el algoritmo de sales man \n Turing Prize\n'''\n", "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0, 1 ] }
[ 0, 1 ]
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** from .. import _utilities import typing # Export this package's modules as members: from .authority import * from .ca_pool import * from .ca_pool_iam_binding import * from .ca_pool_iam_member import * from .ca_pool_iam_policy import * from .certificate import * from .certificate_template import * from .certificate_template_iam_binding import * from .certificate_template_iam_member import * from .certificate_template_iam_policy import * from .get_authority import * from .get_ca_pool_iam_policy import * from .get_certificate_template_iam_policy import * from ._inputs import * from . import outputs
normal
{ "blob_id": "4ca4d4bd684802b056417be4ee3d7d10e8f5dc85", "index": 8842, "step-1": "<mask token>\n", "step-2": "from .. import _utilities\nimport typing\nfrom .authority import *\nfrom .ca_pool import *\nfrom .ca_pool_iam_binding import *\nfrom .ca_pool_iam_member import *\nfrom .ca_pool_iam_policy import *\nfrom .certificate import *\nfrom .certificate_template import *\nfrom .certificate_template_iam_binding import *\nfrom .certificate_template_iam_member import *\nfrom .certificate_template_iam_policy import *\nfrom .get_authority import *\nfrom .get_ca_pool_iam_policy import *\nfrom .get_certificate_template_iam_policy import *\nfrom ._inputs import *\nfrom . import outputs\n", "step-3": "# coding=utf-8\n# *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. ***\n# *** Do not edit by hand unless you're certain you know what you are doing! ***\n\nfrom .. import _utilities\nimport typing\n# Export this package's modules as members:\nfrom .authority import *\nfrom .ca_pool import *\nfrom .ca_pool_iam_binding import *\nfrom .ca_pool_iam_member import *\nfrom .ca_pool_iam_policy import *\nfrom .certificate import *\nfrom .certificate_template import *\nfrom .certificate_template_iam_binding import *\nfrom .certificate_template_iam_member import *\nfrom .certificate_template_iam_policy import *\nfrom .get_authority import *\nfrom .get_ca_pool_iam_policy import *\nfrom .get_certificate_template_iam_policy import *\nfrom ._inputs import *\nfrom . import outputs\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
import flask import flask_sqlalchemy app = flask.Flask(__name__) app.config.from_pyfile('settings.py') db = flask_sqlalchemy.SQLAlchemy(app)
normal
{ "blob_id": "2ed0ae48e8fec2c92effcbb3e495a1a9f4636c27", "index": 6777, "step-1": "<mask token>\n", "step-2": "<mask token>\napp.config.from_pyfile('settings.py')\n<mask token>\n", "step-3": "<mask token>\napp = flask.Flask(__name__)\napp.config.from_pyfile('settings.py')\ndb = flask_sqlalchemy.SQLAlchemy(app)\n", "step-4": "import flask\nimport flask_sqlalchemy\napp = flask.Flask(__name__)\napp.config.from_pyfile('settings.py')\ndb = flask_sqlalchemy.SQLAlchemy(app)\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
import re import datetime from django import forms from django.utils.translation import ugettext as _ from vcg.util.forms import mobile_number_validation from vcg.company_management.models import ConfigurationContact, ConfigurationLogo, ConfigurationHomepage, ConfigurationLocation class ConfigurationContactForm(forms.ModelForm): class Meta: model = ConfigurationContact def __init__(self, *args, **kwargs): super(ConfigurationContactForm, self).__init__(*args, **kwargs) self.fields['company'].widget.attrs['class'] = 'form-dropdownfield' self.fields['name_of_institution'].widget.attrs['class'] = 'form-text' self.fields['email_external'].widget.attrs['class'] = 'form-text' self.fields['country_code_external'].widget.attrs['class'] = 'form-text-small' self.fields['phone_number_external'].widget.attrs['class'] = 'form-text-phone' self.fields['email_internal'].widget.attrs['class'] = 'form-text' self.fields['country_code_internal'].widget.attrs['class'] = 'form-text-small' self.fields['phone_number_internal'].widget.attrs['class'] = 'form-text-phone' if 'instance' in kwargs: self.id = kwargs['instance'].id else: self.id = "" def clean(self): phone_number_external = self.cleaned_data.get("phone_number_external") country_code_external = self.cleaned_data.get("country_code_external") phone_number_internal = self.cleaned_data.get("phone_number_internal") country_code_internal = self.cleaned_data.get("country_code_internal") if phone_number_external and not country_code_external: raise forms.ValidationError(_('External Country code Field is required .')) if country_code_external and not phone_number_external: raise forms.ValidationError(_('External Phone Number Field is required .')) if phone_number_internal and not country_code_internal: raise forms.ValidationError(_('Internal Country code Field is required .')) if country_code_internal and not phone_number_internal: raise forms.ValidationError(_('Internal Phone Number Field is required .')) return self.cleaned_data def clean_name_of_institution(self): name_of_institution = self.cleaned_data['name_of_institution'] if name_of_institution: if len(name_of_institution) < 3: raise forms.ValidationError(_('Enter minimum 3 characters.')) elif re.match(r'^[\s]*$', name_of_institution): raise forms.ValidationError(_("Enter a valid name.")) return name_of_institution def clean_country_code_external(self): country_code_external = self.cleaned_data['country_code_external'] if country_code_external: if len(str(country_code_external)) > 5: raise forms.ValidationError(_('maximum 5 characters.')) return country_code_external def clean_phone_number_external(self): phone_number_external = self.cleaned_data['phone_number_external'] if phone_number_external: phone_number_external = mobile_number_validation(phone_number_external) if not phone_number_external: raise forms.ValidationError(_("Enter a valid contact number")) return phone_number_external def clean_country_code_internal(self): country_code_internal = self.cleaned_data['country_code_internal'] if country_code_internal: if len(str(country_code_internal)) > 5: raise forms.ValidationError(_('maximum 5 characters.')) return country_code_internal def clean_phone_number_internal(self): phone_number_internal = self.cleaned_data['phone_number_internal'] if phone_number_internal: phone_number_internal = mobile_number_validation(phone_number_internal) if not phone_number_internal: raise forms.ValidationError(_("Enter a valid contact number")) return phone_number_internal class ConfigurationLogoForm(forms.ModelForm): class Meta: model = ConfigurationLogo def __init__(self, *args, **kwargs): super(ConfigurationLogoForm, self).__init__(*args, **kwargs) if 'instance' in kwargs: self.id = kwargs['instance'].id else: self.id = "" class ConfigurationHomepageForm(forms.ModelForm): class Meta: model = ConfigurationHomepage def __init__(self, *args, **kwargs): super(ConfigurationHomepageForm, self).__init__(*args, **kwargs) self.fields['company'].widget.attrs['class'] = 'form-dropdownfield' self.fields['header'].widget.attrs['class'] = 'form-text' self.fields['introduction'].widget.attrs['class'] = 'form-textarea' if 'instance' in kwargs: self.id = kwargs['instance'].id else: self.id = "" def clean_header(self): header = self.cleaned_data['header'] if header: if len(header) < 3: raise forms.ValidationError(_('Enter minimum 3 characters.')) elif re.match(r'^[\s]*$', header): raise forms.ValidationError(_("Enter a valid name.")) return header def clean_introduction(self): introduction = self.cleaned_data['introduction'] if introduction: if len(introduction) < 10: raise forms.ValidationError(_('Enter minimum 10 characters.')) elif re.match(r'^[\s]*$', introduction): raise forms.ValidationError(_("Enter a valid address.")) return introduction class ConfigurationLocationForm(forms.ModelForm): class Meta: model = ConfigurationLocation def __init__(self, *args, **kwargs): super(ConfigurationLocationForm, self).__init__(*args, **kwargs) self.fields['company'].widget.attrs['class'] = 'form-dropdownfield' self.fields['country'].widget.attrs['class'] = 'form-dropdownfield' self.fields['continent'].widget.attrs['class'] = 'form-dropdownfield' if 'instance' in kwargs: self.id = kwargs['instance'].id else: self.id = ""
normal
{ "blob_id": "f6f1cd95e4aaa5e434c3cf3cff0d46b45fc7b830", "index": 6190, "step-1": "<mask token>\n\n\nclass ConfigurationContactForm(forms.ModelForm):\n\n\n class Meta:\n model = ConfigurationContact\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def clean_phone_number_external(self):\n phone_number_external = self.cleaned_data['phone_number_external']\n if phone_number_external:\n phone_number_external = mobile_number_validation(\n phone_number_external)\n if not phone_number_external:\n raise forms.ValidationError(_('Enter a valid contact number'))\n return phone_number_external\n <mask token>\n\n def clean_phone_number_internal(self):\n phone_number_internal = self.cleaned_data['phone_number_internal']\n if phone_number_internal:\n phone_number_internal = mobile_number_validation(\n phone_number_internal)\n if not phone_number_internal:\n raise forms.ValidationError(_('Enter a valid contact number'))\n return phone_number_internal\n\n\nclass ConfigurationLogoForm(forms.ModelForm):\n\n\n class Meta:\n model = ConfigurationLogo\n\n def __init__(self, *args, **kwargs):\n super(ConfigurationLogoForm, self).__init__(*args, **kwargs)\n if 'instance' in kwargs:\n self.id = kwargs['instance'].id\n else:\n self.id = ''\n\n\nclass ConfigurationHomepageForm(forms.ModelForm):\n\n\n class Meta:\n model = ConfigurationHomepage\n\n def __init__(self, *args, **kwargs):\n super(ConfigurationHomepageForm, self).__init__(*args, **kwargs)\n self.fields['company'].widget.attrs['class'] = 'form-dropdownfield'\n self.fields['header'].widget.attrs['class'] = 'form-text'\n self.fields['introduction'].widget.attrs['class'] = 'form-textarea'\n if 'instance' in kwargs:\n self.id = kwargs['instance'].id\n else:\n self.id = ''\n\n def clean_header(self):\n header = self.cleaned_data['header']\n if header:\n if len(header) < 3:\n raise forms.ValidationError(_('Enter minimum 3 characters.'))\n elif re.match('^[\\\\s]*$', header):\n raise forms.ValidationError(_('Enter a valid name.'))\n return header\n\n def clean_introduction(self):\n introduction = self.cleaned_data['introduction']\n if introduction:\n if len(introduction) < 10:\n raise forms.ValidationError(_('Enter minimum 10 characters.'))\n elif re.match('^[\\\\s]*$', introduction):\n raise forms.ValidationError(_('Enter a valid address.'))\n return introduction\n\n\nclass ConfigurationLocationForm(forms.ModelForm):\n\n\n class Meta:\n model = ConfigurationLocation\n\n def __init__(self, *args, **kwargs):\n super(ConfigurationLocationForm, self).__init__(*args, **kwargs)\n self.fields['company'].widget.attrs['class'] = 'form-dropdownfield'\n self.fields['country'].widget.attrs['class'] = 'form-dropdownfield'\n self.fields['continent'].widget.attrs['class'] = 'form-dropdownfield'\n if 'instance' in kwargs:\n self.id = kwargs['instance'].id\n else:\n self.id = ''\n", "step-2": "<mask token>\n\n\nclass ConfigurationContactForm(forms.ModelForm):\n\n\n class Meta:\n model = ConfigurationContact\n <mask token>\n <mask token>\n\n def clean_name_of_institution(self):\n name_of_institution = self.cleaned_data['name_of_institution']\n if name_of_institution:\n if len(name_of_institution) < 3:\n raise forms.ValidationError(_('Enter minimum 3 characters.'))\n elif re.match('^[\\\\s]*$', name_of_institution):\n raise forms.ValidationError(_('Enter a valid name.'))\n return name_of_institution\n\n def clean_country_code_external(self):\n country_code_external = self.cleaned_data['country_code_external']\n if country_code_external:\n if len(str(country_code_external)) > 5:\n raise forms.ValidationError(_('maximum 5 characters.'))\n return country_code_external\n\n def clean_phone_number_external(self):\n phone_number_external = self.cleaned_data['phone_number_external']\n if phone_number_external:\n phone_number_external = mobile_number_validation(\n phone_number_external)\n if not phone_number_external:\n raise forms.ValidationError(_('Enter a valid contact number'))\n return phone_number_external\n <mask token>\n\n def clean_phone_number_internal(self):\n phone_number_internal = self.cleaned_data['phone_number_internal']\n if phone_number_internal:\n phone_number_internal = mobile_number_validation(\n phone_number_internal)\n if not phone_number_internal:\n raise forms.ValidationError(_('Enter a valid contact number'))\n return phone_number_internal\n\n\nclass ConfigurationLogoForm(forms.ModelForm):\n\n\n class Meta:\n model = ConfigurationLogo\n\n def __init__(self, *args, **kwargs):\n super(ConfigurationLogoForm, self).__init__(*args, **kwargs)\n if 'instance' in kwargs:\n self.id = kwargs['instance'].id\n else:\n self.id = ''\n\n\nclass ConfigurationHomepageForm(forms.ModelForm):\n\n\n class Meta:\n model = ConfigurationHomepage\n\n def __init__(self, *args, **kwargs):\n super(ConfigurationHomepageForm, self).__init__(*args, **kwargs)\n self.fields['company'].widget.attrs['class'] = 'form-dropdownfield'\n self.fields['header'].widget.attrs['class'] = 'form-text'\n self.fields['introduction'].widget.attrs['class'] = 'form-textarea'\n if 'instance' in kwargs:\n self.id = kwargs['instance'].id\n else:\n self.id = ''\n\n def clean_header(self):\n header = self.cleaned_data['header']\n if header:\n if len(header) < 3:\n raise forms.ValidationError(_('Enter minimum 3 characters.'))\n elif re.match('^[\\\\s]*$', header):\n raise forms.ValidationError(_('Enter a valid name.'))\n return header\n\n def clean_introduction(self):\n introduction = self.cleaned_data['introduction']\n if introduction:\n if len(introduction) < 10:\n raise forms.ValidationError(_('Enter minimum 10 characters.'))\n elif re.match('^[\\\\s]*$', introduction):\n raise forms.ValidationError(_('Enter a valid address.'))\n return introduction\n\n\nclass ConfigurationLocationForm(forms.ModelForm):\n\n\n class Meta:\n model = ConfigurationLocation\n\n def __init__(self, *args, **kwargs):\n super(ConfigurationLocationForm, self).__init__(*args, **kwargs)\n self.fields['company'].widget.attrs['class'] = 'form-dropdownfield'\n self.fields['country'].widget.attrs['class'] = 'form-dropdownfield'\n self.fields['continent'].widget.attrs['class'] = 'form-dropdownfield'\n if 'instance' in kwargs:\n self.id = kwargs['instance'].id\n else:\n self.id = ''\n", "step-3": "<mask token>\n\n\nclass ConfigurationContactForm(forms.ModelForm):\n\n\n class Meta:\n model = ConfigurationContact\n <mask token>\n\n def clean(self):\n phone_number_external = self.cleaned_data.get('phone_number_external')\n country_code_external = self.cleaned_data.get('country_code_external')\n phone_number_internal = self.cleaned_data.get('phone_number_internal')\n country_code_internal = self.cleaned_data.get('country_code_internal')\n if phone_number_external and not country_code_external:\n raise forms.ValidationError(_(\n 'External Country code Field is required .'))\n if country_code_external and not phone_number_external:\n raise forms.ValidationError(_(\n 'External Phone Number Field is required .'))\n if phone_number_internal and not country_code_internal:\n raise forms.ValidationError(_(\n 'Internal Country code Field is required .'))\n if country_code_internal and not phone_number_internal:\n raise forms.ValidationError(_(\n 'Internal Phone Number Field is required .'))\n return self.cleaned_data\n\n def clean_name_of_institution(self):\n name_of_institution = self.cleaned_data['name_of_institution']\n if name_of_institution:\n if len(name_of_institution) < 3:\n raise forms.ValidationError(_('Enter minimum 3 characters.'))\n elif re.match('^[\\\\s]*$', name_of_institution):\n raise forms.ValidationError(_('Enter a valid name.'))\n return name_of_institution\n\n def clean_country_code_external(self):\n country_code_external = self.cleaned_data['country_code_external']\n if country_code_external:\n if len(str(country_code_external)) > 5:\n raise forms.ValidationError(_('maximum 5 characters.'))\n return country_code_external\n\n def clean_phone_number_external(self):\n phone_number_external = self.cleaned_data['phone_number_external']\n if phone_number_external:\n phone_number_external = mobile_number_validation(\n phone_number_external)\n if not phone_number_external:\n raise forms.ValidationError(_('Enter a valid contact number'))\n return phone_number_external\n\n def clean_country_code_internal(self):\n country_code_internal = self.cleaned_data['country_code_internal']\n if country_code_internal:\n if len(str(country_code_internal)) > 5:\n raise forms.ValidationError(_('maximum 5 characters.'))\n return country_code_internal\n\n def clean_phone_number_internal(self):\n phone_number_internal = self.cleaned_data['phone_number_internal']\n if phone_number_internal:\n phone_number_internal = mobile_number_validation(\n phone_number_internal)\n if not phone_number_internal:\n raise forms.ValidationError(_('Enter a valid contact number'))\n return phone_number_internal\n\n\nclass ConfigurationLogoForm(forms.ModelForm):\n\n\n class Meta:\n model = ConfigurationLogo\n\n def __init__(self, *args, **kwargs):\n super(ConfigurationLogoForm, self).__init__(*args, **kwargs)\n if 'instance' in kwargs:\n self.id = kwargs['instance'].id\n else:\n self.id = ''\n\n\nclass ConfigurationHomepageForm(forms.ModelForm):\n\n\n class Meta:\n model = ConfigurationHomepage\n\n def __init__(self, *args, **kwargs):\n super(ConfigurationHomepageForm, self).__init__(*args, **kwargs)\n self.fields['company'].widget.attrs['class'] = 'form-dropdownfield'\n self.fields['header'].widget.attrs['class'] = 'form-text'\n self.fields['introduction'].widget.attrs['class'] = 'form-textarea'\n if 'instance' in kwargs:\n self.id = kwargs['instance'].id\n else:\n self.id = ''\n\n def clean_header(self):\n header = self.cleaned_data['header']\n if header:\n if len(header) < 3:\n raise forms.ValidationError(_('Enter minimum 3 characters.'))\n elif re.match('^[\\\\s]*$', header):\n raise forms.ValidationError(_('Enter a valid name.'))\n return header\n\n def clean_introduction(self):\n introduction = self.cleaned_data['introduction']\n if introduction:\n if len(introduction) < 10:\n raise forms.ValidationError(_('Enter minimum 10 characters.'))\n elif re.match('^[\\\\s]*$', introduction):\n raise forms.ValidationError(_('Enter a valid address.'))\n return introduction\n\n\nclass ConfigurationLocationForm(forms.ModelForm):\n\n\n class Meta:\n model = ConfigurationLocation\n\n def __init__(self, *args, **kwargs):\n super(ConfigurationLocationForm, self).__init__(*args, **kwargs)\n self.fields['company'].widget.attrs['class'] = 'form-dropdownfield'\n self.fields['country'].widget.attrs['class'] = 'form-dropdownfield'\n self.fields['continent'].widget.attrs['class'] = 'form-dropdownfield'\n if 'instance' in kwargs:\n self.id = kwargs['instance'].id\n else:\n self.id = ''\n", "step-4": "<mask token>\n\n\nclass ConfigurationContactForm(forms.ModelForm):\n\n\n class Meta:\n model = ConfigurationContact\n\n def __init__(self, *args, **kwargs):\n super(ConfigurationContactForm, self).__init__(*args, **kwargs)\n self.fields['company'].widget.attrs['class'] = 'form-dropdownfield'\n self.fields['name_of_institution'].widget.attrs['class'] = 'form-text'\n self.fields['email_external'].widget.attrs['class'] = 'form-text'\n self.fields['country_code_external'].widget.attrs['class'\n ] = 'form-text-small'\n self.fields['phone_number_external'].widget.attrs['class'\n ] = 'form-text-phone'\n self.fields['email_internal'].widget.attrs['class'] = 'form-text'\n self.fields['country_code_internal'].widget.attrs['class'\n ] = 'form-text-small'\n self.fields['phone_number_internal'].widget.attrs['class'\n ] = 'form-text-phone'\n if 'instance' in kwargs:\n self.id = kwargs['instance'].id\n else:\n self.id = ''\n\n def clean(self):\n phone_number_external = self.cleaned_data.get('phone_number_external')\n country_code_external = self.cleaned_data.get('country_code_external')\n phone_number_internal = self.cleaned_data.get('phone_number_internal')\n country_code_internal = self.cleaned_data.get('country_code_internal')\n if phone_number_external and not country_code_external:\n raise forms.ValidationError(_(\n 'External Country code Field is required .'))\n if country_code_external and not phone_number_external:\n raise forms.ValidationError(_(\n 'External Phone Number Field is required .'))\n if phone_number_internal and not country_code_internal:\n raise forms.ValidationError(_(\n 'Internal Country code Field is required .'))\n if country_code_internal and not phone_number_internal:\n raise forms.ValidationError(_(\n 'Internal Phone Number Field is required .'))\n return self.cleaned_data\n\n def clean_name_of_institution(self):\n name_of_institution = self.cleaned_data['name_of_institution']\n if name_of_institution:\n if len(name_of_institution) < 3:\n raise forms.ValidationError(_('Enter minimum 3 characters.'))\n elif re.match('^[\\\\s]*$', name_of_institution):\n raise forms.ValidationError(_('Enter a valid name.'))\n return name_of_institution\n\n def clean_country_code_external(self):\n country_code_external = self.cleaned_data['country_code_external']\n if country_code_external:\n if len(str(country_code_external)) > 5:\n raise forms.ValidationError(_('maximum 5 characters.'))\n return country_code_external\n\n def clean_phone_number_external(self):\n phone_number_external = self.cleaned_data['phone_number_external']\n if phone_number_external:\n phone_number_external = mobile_number_validation(\n phone_number_external)\n if not phone_number_external:\n raise forms.ValidationError(_('Enter a valid contact number'))\n return phone_number_external\n\n def clean_country_code_internal(self):\n country_code_internal = self.cleaned_data['country_code_internal']\n if country_code_internal:\n if len(str(country_code_internal)) > 5:\n raise forms.ValidationError(_('maximum 5 characters.'))\n return country_code_internal\n\n def clean_phone_number_internal(self):\n phone_number_internal = self.cleaned_data['phone_number_internal']\n if phone_number_internal:\n phone_number_internal = mobile_number_validation(\n phone_number_internal)\n if not phone_number_internal:\n raise forms.ValidationError(_('Enter a valid contact number'))\n return phone_number_internal\n\n\nclass ConfigurationLogoForm(forms.ModelForm):\n\n\n class Meta:\n model = ConfigurationLogo\n\n def __init__(self, *args, **kwargs):\n super(ConfigurationLogoForm, self).__init__(*args, **kwargs)\n if 'instance' in kwargs:\n self.id = kwargs['instance'].id\n else:\n self.id = ''\n\n\nclass ConfigurationHomepageForm(forms.ModelForm):\n\n\n class Meta:\n model = ConfigurationHomepage\n\n def __init__(self, *args, **kwargs):\n super(ConfigurationHomepageForm, self).__init__(*args, **kwargs)\n self.fields['company'].widget.attrs['class'] = 'form-dropdownfield'\n self.fields['header'].widget.attrs['class'] = 'form-text'\n self.fields['introduction'].widget.attrs['class'] = 'form-textarea'\n if 'instance' in kwargs:\n self.id = kwargs['instance'].id\n else:\n self.id = ''\n\n def clean_header(self):\n header = self.cleaned_data['header']\n if header:\n if len(header) < 3:\n raise forms.ValidationError(_('Enter minimum 3 characters.'))\n elif re.match('^[\\\\s]*$', header):\n raise forms.ValidationError(_('Enter a valid name.'))\n return header\n\n def clean_introduction(self):\n introduction = self.cleaned_data['introduction']\n if introduction:\n if len(introduction) < 10:\n raise forms.ValidationError(_('Enter minimum 10 characters.'))\n elif re.match('^[\\\\s]*$', introduction):\n raise forms.ValidationError(_('Enter a valid address.'))\n return introduction\n\n\nclass ConfigurationLocationForm(forms.ModelForm):\n\n\n class Meta:\n model = ConfigurationLocation\n\n def __init__(self, *args, **kwargs):\n super(ConfigurationLocationForm, self).__init__(*args, **kwargs)\n self.fields['company'].widget.attrs['class'] = 'form-dropdownfield'\n self.fields['country'].widget.attrs['class'] = 'form-dropdownfield'\n self.fields['continent'].widget.attrs['class'] = 'form-dropdownfield'\n if 'instance' in kwargs:\n self.id = kwargs['instance'].id\n else:\n self.id = ''\n", "step-5": "import re \nimport datetime\n\nfrom django import forms\nfrom django.utils.translation import ugettext as _\n\nfrom vcg.util.forms import mobile_number_validation\nfrom vcg.company_management.models import ConfigurationContact, ConfigurationLogo, ConfigurationHomepage, ConfigurationLocation\n\nclass ConfigurationContactForm(forms.ModelForm):\n class Meta:\n model = ConfigurationContact\n \n def __init__(self, *args, **kwargs):\n super(ConfigurationContactForm, self).__init__(*args, **kwargs)\n \n self.fields['company'].widget.attrs['class'] = 'form-dropdownfield'\n self.fields['name_of_institution'].widget.attrs['class'] = 'form-text'\n self.fields['email_external'].widget.attrs['class'] = 'form-text'\n self.fields['country_code_external'].widget.attrs['class'] = 'form-text-small'\n self.fields['phone_number_external'].widget.attrs['class'] = 'form-text-phone'\n self.fields['email_internal'].widget.attrs['class'] = 'form-text'\n self.fields['country_code_internal'].widget.attrs['class'] = 'form-text-small'\n self.fields['phone_number_internal'].widget.attrs['class'] = 'form-text-phone'\n\n if 'instance' in kwargs:\n self.id = kwargs['instance'].id\n else:\n self.id = \"\" \n def clean(self):\n phone_number_external = self.cleaned_data.get(\"phone_number_external\")\n country_code_external = self.cleaned_data.get(\"country_code_external\")\n \n phone_number_internal = self.cleaned_data.get(\"phone_number_internal\")\n country_code_internal = self.cleaned_data.get(\"country_code_internal\")\n \n if phone_number_external and not country_code_external:\n raise forms.ValidationError(_('External Country code Field is required .')) \n if country_code_external and not phone_number_external:\n raise forms.ValidationError(_('External Phone Number Field is required .')) \n\n if phone_number_internal and not country_code_internal:\n raise forms.ValidationError(_('Internal Country code Field is required .')) \n if country_code_internal and not phone_number_internal:\n raise forms.ValidationError(_('Internal Phone Number Field is required .')) \n \n return self.cleaned_data \n \n def clean_name_of_institution(self):\n name_of_institution = self.cleaned_data['name_of_institution']\n if name_of_institution:\n if len(name_of_institution) < 3:\n raise forms.ValidationError(_('Enter minimum 3 characters.'))\n elif re.match(r'^[\\s]*$', name_of_institution):\n raise forms.ValidationError(_(\"Enter a valid name.\"))\n return name_of_institution \n\n def clean_country_code_external(self):\n country_code_external = self.cleaned_data['country_code_external']\n if country_code_external:\n if len(str(country_code_external)) > 5:\n raise forms.ValidationError(_('maximum 5 characters.'))\n return country_code_external \n \n def clean_phone_number_external(self):\n phone_number_external = self.cleaned_data['phone_number_external']\n if phone_number_external:\n phone_number_external = mobile_number_validation(phone_number_external)\n if not phone_number_external:\n raise forms.ValidationError(_(\"Enter a valid contact number\"))\n return phone_number_external \n\n def clean_country_code_internal(self):\n country_code_internal = self.cleaned_data['country_code_internal']\n if country_code_internal:\n if len(str(country_code_internal)) > 5:\n raise forms.ValidationError(_('maximum 5 characters.'))\n return country_code_internal \n \n def clean_phone_number_internal(self):\n phone_number_internal = self.cleaned_data['phone_number_internal']\n if phone_number_internal:\n phone_number_internal = mobile_number_validation(phone_number_internal)\n if not phone_number_internal:\n raise forms.ValidationError(_(\"Enter a valid contact number\"))\n return phone_number_internal \n\nclass ConfigurationLogoForm(forms.ModelForm):\n class Meta:\n model = ConfigurationLogo\n \n def __init__(self, *args, **kwargs):\n super(ConfigurationLogoForm, self).__init__(*args, **kwargs)\n \n if 'instance' in kwargs:\n self.id = kwargs['instance'].id\n else:\n self.id = \"\" \n \nclass ConfigurationHomepageForm(forms.ModelForm):\n class Meta:\n model = ConfigurationHomepage\n \n def __init__(self, *args, **kwargs):\n super(ConfigurationHomepageForm, self).__init__(*args, **kwargs)\n \n self.fields['company'].widget.attrs['class'] = 'form-dropdownfield'\n self.fields['header'].widget.attrs['class'] = 'form-text'\n self.fields['introduction'].widget.attrs['class'] = 'form-textarea'\n \n if 'instance' in kwargs:\n self.id = kwargs['instance'].id\n else:\n self.id = \"\"\n\n def clean_header(self):\n header = self.cleaned_data['header']\n if header:\n if len(header) < 3:\n raise forms.ValidationError(_('Enter minimum 3 characters.'))\n elif re.match(r'^[\\s]*$', header):\n raise forms.ValidationError(_(\"Enter a valid name.\"))\n return header\n\n def clean_introduction(self):\n introduction = self.cleaned_data['introduction']\n if introduction:\n if len(introduction) < 10:\n raise forms.ValidationError(_('Enter minimum 10 characters.'))\n elif re.match(r'^[\\s]*$', introduction):\n raise forms.ValidationError(_(\"Enter a valid address.\"))\n return introduction \n \nclass ConfigurationLocationForm(forms.ModelForm):\n class Meta:\n model = ConfigurationLocation\n \n def __init__(self, *args, **kwargs):\n super(ConfigurationLocationForm, self).__init__(*args, **kwargs)\n \n self.fields['company'].widget.attrs['class'] = 'form-dropdownfield'\n self.fields['country'].widget.attrs['class'] = 'form-dropdownfield'\n self.fields['continent'].widget.attrs['class'] = 'form-dropdownfield'\n \n if 'instance' in kwargs:\n self.id = kwargs['instance'].id\n else:\n self.id = \"\" ", "step-ids": [ 11, 13, 15, 16, 18 ] }
[ 11, 13, 15, 16, 18 ]
# -*- coding: utf-8 -*- from django.shortcuts import render_to_response from django.views.generic import TemplateView from django.core.context_processors import csrf from django.template import RequestContext from django.views.generic import DetailView, ListView , CreateView , UpdateView , DeleteView , FormView , View from .models import Contact from django.core.urlresolvers import reverse_lazy from django.http import HttpResponse from django.shortcuts import render_to_response # Create your views here. #def home(request): # posts = Post.objects.all() # contexto = {'posts' : ''} # return render_to_response("home.html" , contexto) class Home(TemplateView): def get(self, request , *args , **kwargs): return render_to_response('home.html') class AddContact(CreateView): model = Contact success_url = reverse_lazy('home') # return render_to_response("home.html" , contexto) class ListContact(ListView): model = Contact
normal
{ "blob_id": "8a3694f96203ae8d1e306e1c9a5a47bfe26abeb1", "index": 5178, "step-1": "<mask token>\n\n\nclass ListContact(ListView):\n model = Contact\n", "step-2": "<mask token>\n\n\nclass AddContact(CreateView):\n model = Contact\n success_url = reverse_lazy('home')\n\n\nclass ListContact(ListView):\n model = Contact\n", "step-3": "<mask token>\n\n\nclass Home(TemplateView):\n <mask token>\n\n\nclass AddContact(CreateView):\n model = Contact\n success_url = reverse_lazy('home')\n\n\nclass ListContact(ListView):\n model = Contact\n", "step-4": "<mask token>\n\n\nclass Home(TemplateView):\n\n def get(self, request, *args, **kwargs):\n return render_to_response('home.html')\n\n\nclass AddContact(CreateView):\n model = Contact\n success_url = reverse_lazy('home')\n\n\nclass ListContact(ListView):\n model = Contact\n", "step-5": "# -*- coding: utf-8 -*-\nfrom django.shortcuts import render_to_response\nfrom django.views.generic import TemplateView\nfrom django.core.context_processors import csrf\nfrom django.template import RequestContext\nfrom django.views.generic import DetailView, ListView , CreateView , UpdateView , DeleteView , FormView , View\nfrom .models import Contact\nfrom django.core.urlresolvers import reverse_lazy\nfrom django.http import HttpResponse\nfrom django.shortcuts import render_to_response\n\n# Create your views here.\n\n#def home(request):\n # posts = Post.objects.all()\n# contexto = {'posts' : ''}\n# return render_to_response(\"home.html\" , contexto)\n\n\n\nclass Home(TemplateView):\n def get(self, request , *args , **kwargs):\n return render_to_response('home.html')\n\n\nclass AddContact(CreateView):\n model = Contact\n success_url = reverse_lazy('home')\n # return render_to_response(\"home.html\" , contexto)\n\nclass ListContact(ListView):\n model = Contact\n\n", "step-ids": [ 2, 4, 5, 6, 8 ] }
[ 2, 4, 5, 6, 8 ]
from django.db import models import eav from django.utils import timezone class RiskType(models.Model): """A model class used for storing data about risk types """ name = models.CharField(max_length=255) created = models.DateTimeField(default=timezone.now) modified = models.DateTimeField(auto_now=True) class Meta: ordering = ('name',) def __str__(self): return self.name eav.register(RiskType)
normal
{ "blob_id": "635b75bc12718bccdfb9d04a54476c93fa4685ce", "index": 4661, "step-1": "<mask token>\n\n\nclass RiskType(models.Model):\n <mask token>\n name = models.CharField(max_length=255)\n created = models.DateTimeField(default=timezone.now)\n modified = models.DateTimeField(auto_now=True)\n\n\n class Meta:\n ordering = 'name',\n\n def __str__(self):\n return self.name\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass RiskType(models.Model):\n \"\"\"A model class used for storing data\n about risk types\n \"\"\"\n name = models.CharField(max_length=255)\n created = models.DateTimeField(default=timezone.now)\n modified = models.DateTimeField(auto_now=True)\n\n\n class Meta:\n ordering = 'name',\n\n def __str__(self):\n return self.name\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass RiskType(models.Model):\n \"\"\"A model class used for storing data\n about risk types\n \"\"\"\n name = models.CharField(max_length=255)\n created = models.DateTimeField(default=timezone.now)\n modified = models.DateTimeField(auto_now=True)\n\n\n class Meta:\n ordering = 'name',\n\n def __str__(self):\n return self.name\n\n\neav.register(RiskType)\n", "step-4": "from django.db import models\nimport eav\nfrom django.utils import timezone\n\n\nclass RiskType(models.Model):\n \"\"\"A model class used for storing data\n about risk types\n \"\"\"\n name = models.CharField(max_length=255)\n created = models.DateTimeField(default=timezone.now)\n modified = models.DateTimeField(auto_now=True)\n\n\n class Meta:\n ordering = 'name',\n\n def __str__(self):\n return self.name\n\n\neav.register(RiskType)\n", "step-5": "from django.db import models\nimport eav\nfrom django.utils import timezone\n\n\nclass RiskType(models.Model):\n \"\"\"A model class used for storing data\n about risk types\n \"\"\"\n name = models.CharField(max_length=255)\n created = models.DateTimeField(default=timezone.now)\n modified = models.DateTimeField(auto_now=True)\n\n class Meta:\n ordering = ('name',)\n\n def __str__(self):\n return self.name\n\n\neav.register(RiskType)\n", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
NUM_CLASSES = 31 AUDIO_SR = 16000 AUDIO_LENGTH = 16000 LIBROSA_AUDIO_LENGTH = 22050 EPOCHS = 25 categories = { 'stop': 0, 'nine': 1, 'off': 2, 'four': 3, 'right': 4, 'eight': 5, 'one': 6, 'bird': 7, 'dog': 8, 'no': 9, 'on': 10, 'seven': 11, 'cat': 12, 'left': 13, 'three': 14, 'tree': 15, 'bed': 16, 'zero': 17, 'happy': 18, 'sheila': 19, 'five': 20, 'down': 21, 'marvin': 22, 'six': 23, 'up': 24, 'wow': 25, 'house': 26, 'go': 27, 'yes': 28, 'two': 29, '_background_noise_': 30, } inv_categories = { 0: 'stop', 1: 'nine', 2: 'off', 3: 'four', 4: 'right', 5: 'eight', 6: 'one', 7: 'bird', 8: 'dog', 9: 'no', 10: 'on', 11: 'seven', 12: 'cat', 13: 'left', 14: 'three', 15: 'tree', 16: 'bed', 17: 'zero', 18: 'happy', 19: 'sheila', 20: 'five', 21: 'down', 22: 'marvin', 23: 'six', 24: 'up', 25: 'wow', 26: 'house', 27: 'go', 28: 'yes', 29: 'two', 30: '_background_noise_' } # Marvin model INPUT_SHAPE = (99, 40) TARGET_SHAPE = (99, 40, 1) PARSE_PARAMS = (0.025, 0.01, 40) filters = [16, 32, 64, 128, 256] DROPOUT = 0.25 KERNEL_SIZE = (3, 3) POOL_SIZE = (2, 2) DENSE_1 = 512 DENSE_2 = 256 BATCH_SIZE = 128 PATIENCE = 5 LEARNING_RATE = 0.001
normal
{ "blob_id": "6a9e18cde94258b01a37f459eceaac58118b4976", "index": 5813, "step-1": "<mask token>\n", "step-2": "NUM_CLASSES = 31\nAUDIO_SR = 16000\nAUDIO_LENGTH = 16000\nLIBROSA_AUDIO_LENGTH = 22050\nEPOCHS = 25\ncategories = {'stop': 0, 'nine': 1, 'off': 2, 'four': 3, 'right': 4,\n 'eight': 5, 'one': 6, 'bird': 7, 'dog': 8, 'no': 9, 'on': 10, 'seven': \n 11, 'cat': 12, 'left': 13, 'three': 14, 'tree': 15, 'bed': 16, 'zero': \n 17, 'happy': 18, 'sheila': 19, 'five': 20, 'down': 21, 'marvin': 22,\n 'six': 23, 'up': 24, 'wow': 25, 'house': 26, 'go': 27, 'yes': 28, 'two':\n 29, '_background_noise_': 30}\ninv_categories = {(0): 'stop', (1): 'nine', (2): 'off', (3): 'four', (4):\n 'right', (5): 'eight', (6): 'one', (7): 'bird', (8): 'dog', (9): 'no',\n (10): 'on', (11): 'seven', (12): 'cat', (13): 'left', (14): 'three', (\n 15): 'tree', (16): 'bed', (17): 'zero', (18): 'happy', (19): 'sheila',\n (20): 'five', (21): 'down', (22): 'marvin', (23): 'six', (24): 'up', (\n 25): 'wow', (26): 'house', (27): 'go', (28): 'yes', (29): 'two', (30):\n '_background_noise_'}\nINPUT_SHAPE = 99, 40\nTARGET_SHAPE = 99, 40, 1\nPARSE_PARAMS = 0.025, 0.01, 40\nfilters = [16, 32, 64, 128, 256]\nDROPOUT = 0.25\nKERNEL_SIZE = 3, 3\nPOOL_SIZE = 2, 2\nDENSE_1 = 512\nDENSE_2 = 256\nBATCH_SIZE = 128\nPATIENCE = 5\nLEARNING_RATE = 0.001\n", "step-3": "NUM_CLASSES = 31\n\nAUDIO_SR = 16000\nAUDIO_LENGTH = 16000\nLIBROSA_AUDIO_LENGTH = 22050\n\nEPOCHS = 25\n\ncategories = {\n 'stop': 0,\n 'nine': 1,\n 'off': 2,\n 'four': 3,\n 'right': 4,\n 'eight': 5,\n 'one': 6,\n 'bird': 7,\n 'dog': 8,\n 'no': 9,\n 'on': 10,\n 'seven': 11,\n 'cat': 12,\n 'left': 13,\n 'three': 14,\n 'tree': 15,\n 'bed': 16,\n 'zero': 17,\n 'happy': 18,\n 'sheila': 19,\n 'five': 20,\n 'down': 21,\n 'marvin': 22,\n 'six': 23,\n 'up': 24,\n 'wow': 25,\n 'house': 26,\n 'go': 27,\n 'yes': 28,\n 'two': 29,\n '_background_noise_': 30,\n}\n\n\ninv_categories = {\n 0: 'stop',\n 1: 'nine',\n 2: 'off',\n 3: 'four',\n 4: 'right',\n 5: 'eight',\n 6: 'one',\n 7: 'bird',\n 8: 'dog',\n 9: 'no',\n 10: 'on',\n 11: 'seven',\n 12: 'cat',\n 13: 'left',\n 14: 'three',\n 15: 'tree',\n 16: 'bed',\n 17: 'zero',\n 18: 'happy',\n 19: 'sheila',\n 20: 'five',\n 21: 'down',\n 22: 'marvin',\n 23: 'six',\n 24: 'up',\n 25: 'wow',\n 26: 'house',\n 27: 'go',\n 28: 'yes',\n 29: 'two',\n 30: '_background_noise_'\n }\n\n# Marvin model\nINPUT_SHAPE = (99, 40)\nTARGET_SHAPE = (99, 40, 1)\nPARSE_PARAMS = (0.025, 0.01, 40)\nfilters = [16, 32, 64, 128, 256]\n\nDROPOUT = 0.25\nKERNEL_SIZE = (3, 3)\nPOOL_SIZE = (2, 2)\nDENSE_1 = 512\nDENSE_2 = 256\n\nBATCH_SIZE = 128\nPATIENCE = 5\nLEARNING_RATE = 0.001\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
""" Utilities used by other modules. """ import csv import datetime import hashlib import json import re import string import subprocess import uuid import xml.etree.ElementTree as ET from alta import ConfigurationFromYamlFile from pkg_resources import resource_filename from ..__details__ import __appname__ from appdirs import * from comoda import ensure_dir from shutil import copyfile SAMPLES_WITHOUT_BARCODES = [2, 8] DEFAULT_INDEX_CYCLES = dict(index='8', index1='8') PROGRESS_STATUS = dict(COMPLETED='completed', STARTED='started', TODO='todo') class IEMRunInfoReader: """ Illumina Experimental Manager RunInfo xml reader. """ def __init__(self, f): self.xml_file = f self.tree = ET.parse(self.xml_file) self.root = self.tree.getroot() def get_reads(self): reads = [r.attrib for r in self.root.iter('Read')] return reads def get_indexed_reads(self): reads = self.get_reads() return filter(lambda item: item["IsIndexedRead"] == "Y", reads) def get_index_cycles(self): indexed_reads = self.get_indexed_reads() return dict( index=next((item['NumCycles'] for item in indexed_reads if item["IsIndexedRead"] == "Y" and item['Number'] == "2"), None), index1=next((item['NumCycles'] for item in indexed_reads if item["IsIndexedRead"] == "Y" and item['Number'] != "2"), None)) @staticmethod def get_default_index_cycles(): return DEFAULT_INDEX_CYCLES def set_index_cycles(self, index_cycles, write=True): for read in self.root.iter('Read'): if read.attrib["IsIndexedRead"] == "Y": if read.attrib['Number'] == '2': read.attrib.update(NumCycles=index_cycles.get('index', DEFAULT_INDEX_CYCLES['index'])) else: read.attrib.update(NumCycles=index_cycles.get('index', DEFAULT_INDEX_CYCLES['index'])) if write: self.tree.write(self.xml_file) def is_paired_end_sequencing(self): reads = self.get_reads() reads = filter(lambda item: item["IsIndexedRead"] == "N", reads) if len(reads) == 1: return False return True class LogBook: """ Logbook manager """ def __init__(self, filename): self.filename = filename self.logfile = None self.logbook = dict() def dump(self): a = [] if not os.path.isfile(self.filename): a.append(self.logbook) with open(self.filename, mode='w') as f: f.write(json.dumps(a, indent=4, sort_keys=True, default=str)) else: with open(self.filename) as feedsjson: feeds = json.load(feedsjson) feeds.append(self.logbook) with open(self.filename, mode='w') as f: f.write(json.dumps(feeds, indent=4, sort_keys=True, default=str)) def start(self, task_name, args=None): self.logbook.update(task_name=task_name) self.logbook.update(args=args) self.logbook.update(start_time=datetime.datetime.now()) def end(self): self.logbook.update(end_time=datetime.datetime.now()) execution_time = self.logbook.get('end_time') - self.logbook.get('start_time') self.logbook.update(execution_time=execution_time) self.dump() class IEMSampleSheetReader(csv.DictReader): """ Illumina Experimental Manager SampleSheet reader. """ def __init__(self, f): csv.DictReader.__init__(self, f, delimiter=',') self.header = '' self.data = '' first_line = f.readline() if not first_line.startswith('[Header]'): raise ValueError('%s is not an IEM samplesheet'.format(f.name)) header = [first_line.strip()] l = f.readline() while not l.startswith('[Data]'): header.append(l.strip()) # ms-dos l = f.readline() else: header.append(l.strip()) self.header = header self.data = csv.DictReader(f.readlines(), delimiter=',') def barcodes_have_the_same_size(self): return False if self.get_barcode_mask() is None else True def get_body(self, label='Sample_Name', new_value='', replace=True): def sanitize(mystr): """ Sanitize string in accordance with Illumina's documentation bcl2fastq2 Conversion Software v2.17 Guide """ retainlist = "_-" return re.sub(r'[^\w' + retainlist + ']', '_', mystr) body = [] for i in self.header: body.append(i) body.append('\n') body.append(string.join(self.data.fieldnames, ',')) body.append('\n') to_be_sanitized = ['Sample_Project', 'Sample_Name'] for row in self.data: for f in self.data.fieldnames: if replace and f == label: body.append(new_value) else: if f in to_be_sanitized and row[f]: body.append(sanitize(row[f])) else: body.append(row[f]) body.append(',') body.append('\n') return body def get_barcode_mask(self): barcodes_mask = dict() for row in self.data: index = len(row['index']) if 'index' in row else None index1 = None if 'index1' in row or 'index2' in row: index1 = len(row['index2']) if 'index2' in row else len(row['index1']) if row['Lane'] not in barcodes_mask: barcodes_mask[row['Lane']] = dict( index=index, index1=index1, ) else: if index != barcodes_mask[row['Lane']]['index'] or index1 != barcodes_mask[row['Lane']]['index1']: return None return barcodes_mask class WeightedPath(object): def __init__(self, path, weight): self.path = path self.weight = weight def __repr__(self): return '{}: {} {}'.format(self.__class__.__name__, self.path, self.weight) def __cmp__(self, other): if hasattr(other, 'weight'): return self.weight.__cmp__(other.weight) def get_conf(logger, config_file_from_cli=None, profile=None): profiles = {'presta': 'presta_config.yml', 'celery': 'celery_config.yml'} default_config_file_label = profiles.get(profile, profiles['presta']) config_file_path = config_file_setup(logger, default_config_file_label, cf_from_cli=config_file_from_cli) # Load YAML configuration file return ConfigurationFromYamlFile(config_file_path) def path_exists(path, logger, force=True): def file_missing(path, logger, force): msg = "path - {} - doesn't exists".format(path) if force: logger.error(msg) sys.exit() logger.warning(msg) return False return True if os.path.exists(os.path.expanduser(path)) else file_missing(path, logger, force) def sanitize_filename(filename): valid_chars = "-_.%s%s" % (string.ascii_letters, string.digits) return ''.join(c for c in filename if c in valid_chars) def format_dataset_filename(sample_label, lane=None, read=None, ext=None, uid=False): filename = sanitize_filename(sample_label) if read: filename = '_'.join( [filename, lane, read]) if lane else '_'.join( [filename, read]) if uid: filename = '.'.join([filename, str(uuid.uuid4())]) if ext: filename = '.'.join([filename, ext]) return sanitize_filename(filename) def config_file_setup(logger, cf_label, cf_from_cli=None): """ Create a config file if does not exists, copying it from the package default into the user_config_dir. Return a configuration file path from cli args if present, otherwise return a path from the user_config_dir :param logger: logger :param cf_label: label of the configuration file (required) :param cf_from_cli: path to configuration file from cli arg :return: Path """ presta_config_dir = os.path.join(user_config_dir(__appname__)) config_file_from_home = os.path.join(presta_config_dir, cf_label) if not path_exists(config_file_from_home, logger, force=False): logger.info('Creating config path {}'.format(presta_config_dir)) ensure_dir(presta_config_dir) config_file_path = '/'.join(['config', cf_label]) config_file_from_package = resource_filename(__appname__, config_file_path) copyfile(config_file_from_package, config_file_from_home) config_file_paths = [] if cf_from_cli and path_exists(cf_from_cli, logger, force=False): config_file_paths.append(WeightedPath(cf_from_cli, 0)) if path_exists(config_file_from_home, logger, force=False): config_file_paths.append(WeightedPath(config_file_from_home, 1)) logger.debug("config file paths: {}".format(config_file_paths)) config_file_path = sorted(config_file_paths)[0].path logger.info('Reading configuration from {}'.format(config_file_path)) return config_file_path def touch(path, logger): try: with open(path, 'a'): os.utime(path, None) except IOError as e: logger.error("While touching {} file: {}".format(path, e.strerror)) def read_chunks(file_handle, chunk_size=8192): while True: data = file_handle.read(chunk_size) if not data: break yield data def get_md5(file_handle): hasher = hashlib.md5() for chunk in read_chunks(file_handle): hasher.update(chunk) return hasher.hexdigest() def check_progress_status(root_path, started_file, completed_file): localroot, dirnames, filenames = os.walk(root_path).next() if started_file not in filenames: return PROGRESS_STATUS.get('TODO') elif completed_file not in filenames: return PROGRESS_STATUS.get('STARTED') else: started_file = os.path.join(root_path, started_file) completed_file = os.path.join(root_path, completed_file) if os.path.getmtime(started_file) > os.path.getmtime(completed_file): return PROGRESS_STATUS.get('STARTED') return PROGRESS_STATUS.get('COMPLETED') def runJob(cmd, logger): try: # subprocess.check_output(cmd) process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) output = process.communicate()[0] ret = process.wait() return True except subprocess.CalledProcessError as e: logger.info(e) if e.output: logger.info("command output: %s", e.output) else: logger.info("no command output available") return False
normal
{ "blob_id": "b16c847912944e0563492d35768b5b5bf3a506c7", "index": 1569, "step-1": "<mask token>\n\n\nclass IEMRunInfoReader:\n \"\"\"\n Illumina Experimental Manager RunInfo xml reader.\n \"\"\"\n\n def __init__(self, f):\n self.xml_file = f\n self.tree = ET.parse(self.xml_file)\n self.root = self.tree.getroot()\n\n def get_reads(self):\n reads = [r.attrib for r in self.root.iter('Read')]\n return reads\n\n def get_indexed_reads(self):\n reads = self.get_reads()\n return filter(lambda item: item['IsIndexedRead'] == 'Y', reads)\n\n def get_index_cycles(self):\n indexed_reads = self.get_indexed_reads()\n return dict(index=next((item['NumCycles'] for item in indexed_reads if\n item['IsIndexedRead'] == 'Y' and item['Number'] == '2'), None),\n index1=next((item['NumCycles'] for item in indexed_reads if \n item['IsIndexedRead'] == 'Y' and item['Number'] != '2'), None))\n\n @staticmethod\n def get_default_index_cycles():\n return DEFAULT_INDEX_CYCLES\n\n def set_index_cycles(self, index_cycles, write=True):\n for read in self.root.iter('Read'):\n if read.attrib['IsIndexedRead'] == 'Y':\n if read.attrib['Number'] == '2':\n read.attrib.update(NumCycles=index_cycles.get('index',\n DEFAULT_INDEX_CYCLES['index']))\n else:\n read.attrib.update(NumCycles=index_cycles.get('index',\n DEFAULT_INDEX_CYCLES['index']))\n if write:\n self.tree.write(self.xml_file)\n\n def is_paired_end_sequencing(self):\n reads = self.get_reads()\n reads = filter(lambda item: item['IsIndexedRead'] == 'N', reads)\n if len(reads) == 1:\n return False\n return True\n\n\nclass LogBook:\n \"\"\"\n Logbook manager\n \"\"\"\n\n def __init__(self, filename):\n self.filename = filename\n self.logfile = None\n self.logbook = dict()\n\n def dump(self):\n a = []\n if not os.path.isfile(self.filename):\n a.append(self.logbook)\n with open(self.filename, mode='w') as f:\n f.write(json.dumps(a, indent=4, sort_keys=True, default=str))\n else:\n with open(self.filename) as feedsjson:\n feeds = json.load(feedsjson)\n feeds.append(self.logbook)\n with open(self.filename, mode='w') as f:\n f.write(json.dumps(feeds, indent=4, sort_keys=True, default\n =str))\n\n def start(self, task_name, args=None):\n self.logbook.update(task_name=task_name)\n self.logbook.update(args=args)\n self.logbook.update(start_time=datetime.datetime.now())\n\n def end(self):\n self.logbook.update(end_time=datetime.datetime.now())\n execution_time = self.logbook.get('end_time') - self.logbook.get(\n 'start_time')\n self.logbook.update(execution_time=execution_time)\n self.dump()\n\n\nclass IEMSampleSheetReader(csv.DictReader):\n \"\"\"\n Illumina Experimental Manager SampleSheet reader.\n \"\"\"\n\n def __init__(self, f):\n csv.DictReader.__init__(self, f, delimiter=',')\n self.header = ''\n self.data = ''\n first_line = f.readline()\n if not first_line.startswith('[Header]'):\n raise ValueError('%s is not an IEM samplesheet'.format(f.name))\n header = [first_line.strip()]\n l = f.readline()\n while not l.startswith('[Data]'):\n header.append(l.strip())\n l = f.readline()\n else:\n header.append(l.strip())\n self.header = header\n self.data = csv.DictReader(f.readlines(), delimiter=',')\n\n def barcodes_have_the_same_size(self):\n return False if self.get_barcode_mask() is None else True\n\n def get_body(self, label='Sample_Name', new_value='', replace=True):\n\n def sanitize(mystr):\n \"\"\"\n Sanitize string in accordance with Illumina's documentation\n bcl2fastq2 Conversion Software v2.17 Guide\n \"\"\"\n retainlist = '_-'\n return re.sub('[^\\\\w' + retainlist + ']', '_', mystr)\n body = []\n for i in self.header:\n body.append(i)\n body.append('\\n')\n body.append(string.join(self.data.fieldnames, ','))\n body.append('\\n')\n to_be_sanitized = ['Sample_Project', 'Sample_Name']\n for row in self.data:\n for f in self.data.fieldnames:\n if replace and f == label:\n body.append(new_value)\n elif f in to_be_sanitized and row[f]:\n body.append(sanitize(row[f]))\n else:\n body.append(row[f])\n body.append(',')\n body.append('\\n')\n return body\n\n def get_barcode_mask(self):\n barcodes_mask = dict()\n for row in self.data:\n index = len(row['index']) if 'index' in row else None\n index1 = None\n if 'index1' in row or 'index2' in row:\n index1 = len(row['index2']) if 'index2' in row else len(row\n ['index1'])\n if row['Lane'] not in barcodes_mask:\n barcodes_mask[row['Lane']] = dict(index=index, index1=index1)\n elif index != barcodes_mask[row['Lane']]['index'\n ] or index1 != barcodes_mask[row['Lane']]['index1']:\n return None\n return barcodes_mask\n\n\nclass WeightedPath(object):\n\n def __init__(self, path, weight):\n self.path = path\n self.weight = weight\n\n def __repr__(self):\n return '{}: {} {}'.format(self.__class__.__name__, self.path, self.\n weight)\n\n def __cmp__(self, other):\n if hasattr(other, 'weight'):\n return self.weight.__cmp__(other.weight)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass IEMRunInfoReader:\n \"\"\"\n Illumina Experimental Manager RunInfo xml reader.\n \"\"\"\n\n def __init__(self, f):\n self.xml_file = f\n self.tree = ET.parse(self.xml_file)\n self.root = self.tree.getroot()\n\n def get_reads(self):\n reads = [r.attrib for r in self.root.iter('Read')]\n return reads\n\n def get_indexed_reads(self):\n reads = self.get_reads()\n return filter(lambda item: item['IsIndexedRead'] == 'Y', reads)\n\n def get_index_cycles(self):\n indexed_reads = self.get_indexed_reads()\n return dict(index=next((item['NumCycles'] for item in indexed_reads if\n item['IsIndexedRead'] == 'Y' and item['Number'] == '2'), None),\n index1=next((item['NumCycles'] for item in indexed_reads if \n item['IsIndexedRead'] == 'Y' and item['Number'] != '2'), None))\n\n @staticmethod\n def get_default_index_cycles():\n return DEFAULT_INDEX_CYCLES\n\n def set_index_cycles(self, index_cycles, write=True):\n for read in self.root.iter('Read'):\n if read.attrib['IsIndexedRead'] == 'Y':\n if read.attrib['Number'] == '2':\n read.attrib.update(NumCycles=index_cycles.get('index',\n DEFAULT_INDEX_CYCLES['index']))\n else:\n read.attrib.update(NumCycles=index_cycles.get('index',\n DEFAULT_INDEX_CYCLES['index']))\n if write:\n self.tree.write(self.xml_file)\n\n def is_paired_end_sequencing(self):\n reads = self.get_reads()\n reads = filter(lambda item: item['IsIndexedRead'] == 'N', reads)\n if len(reads) == 1:\n return False\n return True\n\n\nclass LogBook:\n \"\"\"\n Logbook manager\n \"\"\"\n\n def __init__(self, filename):\n self.filename = filename\n self.logfile = None\n self.logbook = dict()\n\n def dump(self):\n a = []\n if not os.path.isfile(self.filename):\n a.append(self.logbook)\n with open(self.filename, mode='w') as f:\n f.write(json.dumps(a, indent=4, sort_keys=True, default=str))\n else:\n with open(self.filename) as feedsjson:\n feeds = json.load(feedsjson)\n feeds.append(self.logbook)\n with open(self.filename, mode='w') as f:\n f.write(json.dumps(feeds, indent=4, sort_keys=True, default\n =str))\n\n def start(self, task_name, args=None):\n self.logbook.update(task_name=task_name)\n self.logbook.update(args=args)\n self.logbook.update(start_time=datetime.datetime.now())\n\n def end(self):\n self.logbook.update(end_time=datetime.datetime.now())\n execution_time = self.logbook.get('end_time') - self.logbook.get(\n 'start_time')\n self.logbook.update(execution_time=execution_time)\n self.dump()\n\n\nclass IEMSampleSheetReader(csv.DictReader):\n \"\"\"\n Illumina Experimental Manager SampleSheet reader.\n \"\"\"\n\n def __init__(self, f):\n csv.DictReader.__init__(self, f, delimiter=',')\n self.header = ''\n self.data = ''\n first_line = f.readline()\n if not first_line.startswith('[Header]'):\n raise ValueError('%s is not an IEM samplesheet'.format(f.name))\n header = [first_line.strip()]\n l = f.readline()\n while not l.startswith('[Data]'):\n header.append(l.strip())\n l = f.readline()\n else:\n header.append(l.strip())\n self.header = header\n self.data = csv.DictReader(f.readlines(), delimiter=',')\n\n def barcodes_have_the_same_size(self):\n return False if self.get_barcode_mask() is None else True\n\n def get_body(self, label='Sample_Name', new_value='', replace=True):\n\n def sanitize(mystr):\n \"\"\"\n Sanitize string in accordance with Illumina's documentation\n bcl2fastq2 Conversion Software v2.17 Guide\n \"\"\"\n retainlist = '_-'\n return re.sub('[^\\\\w' + retainlist + ']', '_', mystr)\n body = []\n for i in self.header:\n body.append(i)\n body.append('\\n')\n body.append(string.join(self.data.fieldnames, ','))\n body.append('\\n')\n to_be_sanitized = ['Sample_Project', 'Sample_Name']\n for row in self.data:\n for f in self.data.fieldnames:\n if replace and f == label:\n body.append(new_value)\n elif f in to_be_sanitized and row[f]:\n body.append(sanitize(row[f]))\n else:\n body.append(row[f])\n body.append(',')\n body.append('\\n')\n return body\n\n def get_barcode_mask(self):\n barcodes_mask = dict()\n for row in self.data:\n index = len(row['index']) if 'index' in row else None\n index1 = None\n if 'index1' in row or 'index2' in row:\n index1 = len(row['index2']) if 'index2' in row else len(row\n ['index1'])\n if row['Lane'] not in barcodes_mask:\n barcodes_mask[row['Lane']] = dict(index=index, index1=index1)\n elif index != barcodes_mask[row['Lane']]['index'\n ] or index1 != barcodes_mask[row['Lane']]['index1']:\n return None\n return barcodes_mask\n\n\nclass WeightedPath(object):\n\n def __init__(self, path, weight):\n self.path = path\n self.weight = weight\n\n def __repr__(self):\n return '{}: {} {}'.format(self.__class__.__name__, self.path, self.\n weight)\n\n def __cmp__(self, other):\n if hasattr(other, 'weight'):\n return self.weight.__cmp__(other.weight)\n\n\n<mask token>\n\n\ndef format_dataset_filename(sample_label, lane=None, read=None, ext=None,\n uid=False):\n filename = sanitize_filename(sample_label)\n if read:\n filename = '_'.join([filename, lane, read]) if lane else '_'.join([\n filename, read])\n if uid:\n filename = '.'.join([filename, str(uuid.uuid4())])\n if ext:\n filename = '.'.join([filename, ext])\n return sanitize_filename(filename)\n\n\n<mask token>\n\n\ndef touch(path, logger):\n try:\n with open(path, 'a'):\n os.utime(path, None)\n except IOError as e:\n logger.error('While touching {} file: {}'.format(path, e.strerror))\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass IEMRunInfoReader:\n \"\"\"\n Illumina Experimental Manager RunInfo xml reader.\n \"\"\"\n\n def __init__(self, f):\n self.xml_file = f\n self.tree = ET.parse(self.xml_file)\n self.root = self.tree.getroot()\n\n def get_reads(self):\n reads = [r.attrib for r in self.root.iter('Read')]\n return reads\n\n def get_indexed_reads(self):\n reads = self.get_reads()\n return filter(lambda item: item['IsIndexedRead'] == 'Y', reads)\n\n def get_index_cycles(self):\n indexed_reads = self.get_indexed_reads()\n return dict(index=next((item['NumCycles'] for item in indexed_reads if\n item['IsIndexedRead'] == 'Y' and item['Number'] == '2'), None),\n index1=next((item['NumCycles'] for item in indexed_reads if \n item['IsIndexedRead'] == 'Y' and item['Number'] != '2'), None))\n\n @staticmethod\n def get_default_index_cycles():\n return DEFAULT_INDEX_CYCLES\n\n def set_index_cycles(self, index_cycles, write=True):\n for read in self.root.iter('Read'):\n if read.attrib['IsIndexedRead'] == 'Y':\n if read.attrib['Number'] == '2':\n read.attrib.update(NumCycles=index_cycles.get('index',\n DEFAULT_INDEX_CYCLES['index']))\n else:\n read.attrib.update(NumCycles=index_cycles.get('index',\n DEFAULT_INDEX_CYCLES['index']))\n if write:\n self.tree.write(self.xml_file)\n\n def is_paired_end_sequencing(self):\n reads = self.get_reads()\n reads = filter(lambda item: item['IsIndexedRead'] == 'N', reads)\n if len(reads) == 1:\n return False\n return True\n\n\nclass LogBook:\n \"\"\"\n Logbook manager\n \"\"\"\n\n def __init__(self, filename):\n self.filename = filename\n self.logfile = None\n self.logbook = dict()\n\n def dump(self):\n a = []\n if not os.path.isfile(self.filename):\n a.append(self.logbook)\n with open(self.filename, mode='w') as f:\n f.write(json.dumps(a, indent=4, sort_keys=True, default=str))\n else:\n with open(self.filename) as feedsjson:\n feeds = json.load(feedsjson)\n feeds.append(self.logbook)\n with open(self.filename, mode='w') as f:\n f.write(json.dumps(feeds, indent=4, sort_keys=True, default\n =str))\n\n def start(self, task_name, args=None):\n self.logbook.update(task_name=task_name)\n self.logbook.update(args=args)\n self.logbook.update(start_time=datetime.datetime.now())\n\n def end(self):\n self.logbook.update(end_time=datetime.datetime.now())\n execution_time = self.logbook.get('end_time') - self.logbook.get(\n 'start_time')\n self.logbook.update(execution_time=execution_time)\n self.dump()\n\n\nclass IEMSampleSheetReader(csv.DictReader):\n \"\"\"\n Illumina Experimental Manager SampleSheet reader.\n \"\"\"\n\n def __init__(self, f):\n csv.DictReader.__init__(self, f, delimiter=',')\n self.header = ''\n self.data = ''\n first_line = f.readline()\n if not first_line.startswith('[Header]'):\n raise ValueError('%s is not an IEM samplesheet'.format(f.name))\n header = [first_line.strip()]\n l = f.readline()\n while not l.startswith('[Data]'):\n header.append(l.strip())\n l = f.readline()\n else:\n header.append(l.strip())\n self.header = header\n self.data = csv.DictReader(f.readlines(), delimiter=',')\n\n def barcodes_have_the_same_size(self):\n return False if self.get_barcode_mask() is None else True\n\n def get_body(self, label='Sample_Name', new_value='', replace=True):\n\n def sanitize(mystr):\n \"\"\"\n Sanitize string in accordance with Illumina's documentation\n bcl2fastq2 Conversion Software v2.17 Guide\n \"\"\"\n retainlist = '_-'\n return re.sub('[^\\\\w' + retainlist + ']', '_', mystr)\n body = []\n for i in self.header:\n body.append(i)\n body.append('\\n')\n body.append(string.join(self.data.fieldnames, ','))\n body.append('\\n')\n to_be_sanitized = ['Sample_Project', 'Sample_Name']\n for row in self.data:\n for f in self.data.fieldnames:\n if replace and f == label:\n body.append(new_value)\n elif f in to_be_sanitized and row[f]:\n body.append(sanitize(row[f]))\n else:\n body.append(row[f])\n body.append(',')\n body.append('\\n')\n return body\n\n def get_barcode_mask(self):\n barcodes_mask = dict()\n for row in self.data:\n index = len(row['index']) if 'index' in row else None\n index1 = None\n if 'index1' in row or 'index2' in row:\n index1 = len(row['index2']) if 'index2' in row else len(row\n ['index1'])\n if row['Lane'] not in barcodes_mask:\n barcodes_mask[row['Lane']] = dict(index=index, index1=index1)\n elif index != barcodes_mask[row['Lane']]['index'\n ] or index1 != barcodes_mask[row['Lane']]['index1']:\n return None\n return barcodes_mask\n\n\nclass WeightedPath(object):\n\n def __init__(self, path, weight):\n self.path = path\n self.weight = weight\n\n def __repr__(self):\n return '{}: {} {}'.format(self.__class__.__name__, self.path, self.\n weight)\n\n def __cmp__(self, other):\n if hasattr(other, 'weight'):\n return self.weight.__cmp__(other.weight)\n\n\n<mask token>\n\n\ndef format_dataset_filename(sample_label, lane=None, read=None, ext=None,\n uid=False):\n filename = sanitize_filename(sample_label)\n if read:\n filename = '_'.join([filename, lane, read]) if lane else '_'.join([\n filename, read])\n if uid:\n filename = '.'.join([filename, str(uuid.uuid4())])\n if ext:\n filename = '.'.join([filename, ext])\n return sanitize_filename(filename)\n\n\ndef config_file_setup(logger, cf_label, cf_from_cli=None):\n \"\"\"\n Create a config file if does not exists, copying it from the package\n default into the user_config_dir.\n Return a configuration file path from cli args if present, otherwise return\n a path from the user_config_dir\n :param logger: logger\n :param cf_label: label of the configuration file (required)\n :param cf_from_cli: path to configuration file from cli arg\n :return: Path\n \"\"\"\n presta_config_dir = os.path.join(user_config_dir(__appname__))\n config_file_from_home = os.path.join(presta_config_dir, cf_label)\n if not path_exists(config_file_from_home, logger, force=False):\n logger.info('Creating config path {}'.format(presta_config_dir))\n ensure_dir(presta_config_dir)\n config_file_path = '/'.join(['config', cf_label])\n config_file_from_package = resource_filename(__appname__,\n config_file_path)\n copyfile(config_file_from_package, config_file_from_home)\n config_file_paths = []\n if cf_from_cli and path_exists(cf_from_cli, logger, force=False):\n config_file_paths.append(WeightedPath(cf_from_cli, 0))\n if path_exists(config_file_from_home, logger, force=False):\n config_file_paths.append(WeightedPath(config_file_from_home, 1))\n logger.debug('config file paths: {}'.format(config_file_paths))\n config_file_path = sorted(config_file_paths)[0].path\n logger.info('Reading configuration from {}'.format(config_file_path))\n return config_file_path\n\n\ndef touch(path, logger):\n try:\n with open(path, 'a'):\n os.utime(path, None)\n except IOError as e:\n logger.error('While touching {} file: {}'.format(path, e.strerror))\n\n\n<mask token>\n", "step-4": "<mask token>\nSAMPLES_WITHOUT_BARCODES = [2, 8]\nDEFAULT_INDEX_CYCLES = dict(index='8', index1='8')\nPROGRESS_STATUS = dict(COMPLETED='completed', STARTED='started', TODO='todo')\n\n\nclass IEMRunInfoReader:\n \"\"\"\n Illumina Experimental Manager RunInfo xml reader.\n \"\"\"\n\n def __init__(self, f):\n self.xml_file = f\n self.tree = ET.parse(self.xml_file)\n self.root = self.tree.getroot()\n\n def get_reads(self):\n reads = [r.attrib for r in self.root.iter('Read')]\n return reads\n\n def get_indexed_reads(self):\n reads = self.get_reads()\n return filter(lambda item: item['IsIndexedRead'] == 'Y', reads)\n\n def get_index_cycles(self):\n indexed_reads = self.get_indexed_reads()\n return dict(index=next((item['NumCycles'] for item in indexed_reads if\n item['IsIndexedRead'] == 'Y' and item['Number'] == '2'), None),\n index1=next((item['NumCycles'] for item in indexed_reads if \n item['IsIndexedRead'] == 'Y' and item['Number'] != '2'), None))\n\n @staticmethod\n def get_default_index_cycles():\n return DEFAULT_INDEX_CYCLES\n\n def set_index_cycles(self, index_cycles, write=True):\n for read in self.root.iter('Read'):\n if read.attrib['IsIndexedRead'] == 'Y':\n if read.attrib['Number'] == '2':\n read.attrib.update(NumCycles=index_cycles.get('index',\n DEFAULT_INDEX_CYCLES['index']))\n else:\n read.attrib.update(NumCycles=index_cycles.get('index',\n DEFAULT_INDEX_CYCLES['index']))\n if write:\n self.tree.write(self.xml_file)\n\n def is_paired_end_sequencing(self):\n reads = self.get_reads()\n reads = filter(lambda item: item['IsIndexedRead'] == 'N', reads)\n if len(reads) == 1:\n return False\n return True\n\n\nclass LogBook:\n \"\"\"\n Logbook manager\n \"\"\"\n\n def __init__(self, filename):\n self.filename = filename\n self.logfile = None\n self.logbook = dict()\n\n def dump(self):\n a = []\n if not os.path.isfile(self.filename):\n a.append(self.logbook)\n with open(self.filename, mode='w') as f:\n f.write(json.dumps(a, indent=4, sort_keys=True, default=str))\n else:\n with open(self.filename) as feedsjson:\n feeds = json.load(feedsjson)\n feeds.append(self.logbook)\n with open(self.filename, mode='w') as f:\n f.write(json.dumps(feeds, indent=4, sort_keys=True, default\n =str))\n\n def start(self, task_name, args=None):\n self.logbook.update(task_name=task_name)\n self.logbook.update(args=args)\n self.logbook.update(start_time=datetime.datetime.now())\n\n def end(self):\n self.logbook.update(end_time=datetime.datetime.now())\n execution_time = self.logbook.get('end_time') - self.logbook.get(\n 'start_time')\n self.logbook.update(execution_time=execution_time)\n self.dump()\n\n\nclass IEMSampleSheetReader(csv.DictReader):\n \"\"\"\n Illumina Experimental Manager SampleSheet reader.\n \"\"\"\n\n def __init__(self, f):\n csv.DictReader.__init__(self, f, delimiter=',')\n self.header = ''\n self.data = ''\n first_line = f.readline()\n if not first_line.startswith('[Header]'):\n raise ValueError('%s is not an IEM samplesheet'.format(f.name))\n header = [first_line.strip()]\n l = f.readline()\n while not l.startswith('[Data]'):\n header.append(l.strip())\n l = f.readline()\n else:\n header.append(l.strip())\n self.header = header\n self.data = csv.DictReader(f.readlines(), delimiter=',')\n\n def barcodes_have_the_same_size(self):\n return False if self.get_barcode_mask() is None else True\n\n def get_body(self, label='Sample_Name', new_value='', replace=True):\n\n def sanitize(mystr):\n \"\"\"\n Sanitize string in accordance with Illumina's documentation\n bcl2fastq2 Conversion Software v2.17 Guide\n \"\"\"\n retainlist = '_-'\n return re.sub('[^\\\\w' + retainlist + ']', '_', mystr)\n body = []\n for i in self.header:\n body.append(i)\n body.append('\\n')\n body.append(string.join(self.data.fieldnames, ','))\n body.append('\\n')\n to_be_sanitized = ['Sample_Project', 'Sample_Name']\n for row in self.data:\n for f in self.data.fieldnames:\n if replace and f == label:\n body.append(new_value)\n elif f in to_be_sanitized and row[f]:\n body.append(sanitize(row[f]))\n else:\n body.append(row[f])\n body.append(',')\n body.append('\\n')\n return body\n\n def get_barcode_mask(self):\n barcodes_mask = dict()\n for row in self.data:\n index = len(row['index']) if 'index' in row else None\n index1 = None\n if 'index1' in row or 'index2' in row:\n index1 = len(row['index2']) if 'index2' in row else len(row\n ['index1'])\n if row['Lane'] not in barcodes_mask:\n barcodes_mask[row['Lane']] = dict(index=index, index1=index1)\n elif index != barcodes_mask[row['Lane']]['index'\n ] or index1 != barcodes_mask[row['Lane']]['index1']:\n return None\n return barcodes_mask\n\n\nclass WeightedPath(object):\n\n def __init__(self, path, weight):\n self.path = path\n self.weight = weight\n\n def __repr__(self):\n return '{}: {} {}'.format(self.__class__.__name__, self.path, self.\n weight)\n\n def __cmp__(self, other):\n if hasattr(other, 'weight'):\n return self.weight.__cmp__(other.weight)\n\n\ndef get_conf(logger, config_file_from_cli=None, profile=None):\n profiles = {'presta': 'presta_config.yml', 'celery': 'celery_config.yml'}\n default_config_file_label = profiles.get(profile, profiles['presta'])\n config_file_path = config_file_setup(logger, default_config_file_label,\n cf_from_cli=config_file_from_cli)\n return ConfigurationFromYamlFile(config_file_path)\n\n\ndef path_exists(path, logger, force=True):\n\n def file_missing(path, logger, force):\n msg = \"path - {} - doesn't exists\".format(path)\n if force:\n logger.error(msg)\n sys.exit()\n logger.warning(msg)\n return False\n return True if os.path.exists(os.path.expanduser(path)) else file_missing(\n path, logger, force)\n\n\ndef sanitize_filename(filename):\n valid_chars = '-_.%s%s' % (string.ascii_letters, string.digits)\n return ''.join(c for c in filename if c in valid_chars)\n\n\ndef format_dataset_filename(sample_label, lane=None, read=None, ext=None,\n uid=False):\n filename = sanitize_filename(sample_label)\n if read:\n filename = '_'.join([filename, lane, read]) if lane else '_'.join([\n filename, read])\n if uid:\n filename = '.'.join([filename, str(uuid.uuid4())])\n if ext:\n filename = '.'.join([filename, ext])\n return sanitize_filename(filename)\n\n\ndef config_file_setup(logger, cf_label, cf_from_cli=None):\n \"\"\"\n Create a config file if does not exists, copying it from the package\n default into the user_config_dir.\n Return a configuration file path from cli args if present, otherwise return\n a path from the user_config_dir\n :param logger: logger\n :param cf_label: label of the configuration file (required)\n :param cf_from_cli: path to configuration file from cli arg\n :return: Path\n \"\"\"\n presta_config_dir = os.path.join(user_config_dir(__appname__))\n config_file_from_home = os.path.join(presta_config_dir, cf_label)\n if not path_exists(config_file_from_home, logger, force=False):\n logger.info('Creating config path {}'.format(presta_config_dir))\n ensure_dir(presta_config_dir)\n config_file_path = '/'.join(['config', cf_label])\n config_file_from_package = resource_filename(__appname__,\n config_file_path)\n copyfile(config_file_from_package, config_file_from_home)\n config_file_paths = []\n if cf_from_cli and path_exists(cf_from_cli, logger, force=False):\n config_file_paths.append(WeightedPath(cf_from_cli, 0))\n if path_exists(config_file_from_home, logger, force=False):\n config_file_paths.append(WeightedPath(config_file_from_home, 1))\n logger.debug('config file paths: {}'.format(config_file_paths))\n config_file_path = sorted(config_file_paths)[0].path\n logger.info('Reading configuration from {}'.format(config_file_path))\n return config_file_path\n\n\ndef touch(path, logger):\n try:\n with open(path, 'a'):\n os.utime(path, None)\n except IOError as e:\n logger.error('While touching {} file: {}'.format(path, e.strerror))\n\n\ndef read_chunks(file_handle, chunk_size=8192):\n while True:\n data = file_handle.read(chunk_size)\n if not data:\n break\n yield data\n\n\ndef get_md5(file_handle):\n hasher = hashlib.md5()\n for chunk in read_chunks(file_handle):\n hasher.update(chunk)\n return hasher.hexdigest()\n\n\ndef check_progress_status(root_path, started_file, completed_file):\n localroot, dirnames, filenames = os.walk(root_path).next()\n if started_file not in filenames:\n return PROGRESS_STATUS.get('TODO')\n elif completed_file not in filenames:\n return PROGRESS_STATUS.get('STARTED')\n else:\n started_file = os.path.join(root_path, started_file)\n completed_file = os.path.join(root_path, completed_file)\n if os.path.getmtime(started_file) > os.path.getmtime(completed_file):\n return PROGRESS_STATUS.get('STARTED')\n return PROGRESS_STATUS.get('COMPLETED')\n\n\ndef runJob(cmd, logger):\n try:\n process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=\n subprocess.STDOUT)\n output = process.communicate()[0]\n ret = process.wait()\n return True\n except subprocess.CalledProcessError as e:\n logger.info(e)\n if e.output:\n logger.info('command output: %s', e.output)\n else:\n logger.info('no command output available')\n return False\n", "step-5": "\"\"\"\nUtilities used by other modules.\n\"\"\"\n\nimport csv\nimport datetime\nimport hashlib\nimport json\nimport re\nimport string\nimport subprocess\nimport uuid\n\nimport xml.etree.ElementTree as ET\nfrom alta import ConfigurationFromYamlFile\nfrom pkg_resources import resource_filename\nfrom ..__details__ import __appname__\nfrom appdirs import *\nfrom comoda import ensure_dir\nfrom shutil import copyfile\n\n\nSAMPLES_WITHOUT_BARCODES = [2, 8]\nDEFAULT_INDEX_CYCLES = dict(index='8', index1='8')\nPROGRESS_STATUS = dict(COMPLETED='completed', STARTED='started', TODO='todo')\n\n\nclass IEMRunInfoReader:\n \"\"\"\n Illumina Experimental Manager RunInfo xml reader.\n \"\"\"\n\n def __init__(self, f):\n self.xml_file = f\n self.tree = ET.parse(self.xml_file)\n self.root = self.tree.getroot()\n\n def get_reads(self):\n reads = [r.attrib for r in self.root.iter('Read')]\n return reads\n\n def get_indexed_reads(self):\n reads = self.get_reads()\n return filter(lambda item: item[\"IsIndexedRead\"] == \"Y\", reads)\n\n def get_index_cycles(self):\n indexed_reads = self.get_indexed_reads()\n return dict(\n index=next((item['NumCycles'] for item in indexed_reads\n if item[\"IsIndexedRead\"] == \"Y\" and item['Number'] == \"2\"), None),\n index1=next((item['NumCycles'] for item in indexed_reads\n if item[\"IsIndexedRead\"] == \"Y\" and item['Number'] != \"2\"), None))\n\n @staticmethod\n def get_default_index_cycles():\n return DEFAULT_INDEX_CYCLES\n\n def set_index_cycles(self, index_cycles, write=True):\n\n for read in self.root.iter('Read'):\n if read.attrib[\"IsIndexedRead\"] == \"Y\":\n if read.attrib['Number'] == '2':\n read.attrib.update(NumCycles=index_cycles.get('index', DEFAULT_INDEX_CYCLES['index']))\n else:\n read.attrib.update(NumCycles=index_cycles.get('index', DEFAULT_INDEX_CYCLES['index']))\n if write:\n self.tree.write(self.xml_file)\n\n def is_paired_end_sequencing(self):\n reads = self.get_reads()\n reads = filter(lambda item: item[\"IsIndexedRead\"] == \"N\", reads)\n\n if len(reads) == 1:\n return False\n\n return True\n\n\nclass LogBook:\n \"\"\"\n Logbook manager\n \"\"\"\n\n def __init__(self, filename):\n self.filename = filename\n self.logfile = None\n self.logbook = dict()\n\n def dump(self):\n a = []\n if not os.path.isfile(self.filename):\n a.append(self.logbook)\n with open(self.filename, mode='w') as f:\n f.write(json.dumps(a, indent=4, sort_keys=True, default=str))\n else:\n with open(self.filename) as feedsjson:\n feeds = json.load(feedsjson)\n\n feeds.append(self.logbook)\n with open(self.filename, mode='w') as f:\n f.write(json.dumps(feeds, indent=4, sort_keys=True, default=str))\n\n def start(self, task_name, args=None):\n self.logbook.update(task_name=task_name)\n self.logbook.update(args=args)\n self.logbook.update(start_time=datetime.datetime.now())\n\n def end(self):\n self.logbook.update(end_time=datetime.datetime.now())\n execution_time = self.logbook.get('end_time') - self.logbook.get('start_time')\n self.logbook.update(execution_time=execution_time)\n self.dump()\n\n\nclass IEMSampleSheetReader(csv.DictReader):\n \"\"\"\n Illumina Experimental Manager SampleSheet reader.\n \"\"\"\n\n def __init__(self, f):\n csv.DictReader.__init__(self, f, delimiter=',')\n self.header = ''\n self.data = ''\n\n first_line = f.readline()\n if not first_line.startswith('[Header]'):\n raise ValueError('%s is not an IEM samplesheet'.format(f.name))\n header = [first_line.strip()]\n l = f.readline()\n while not l.startswith('[Data]'):\n header.append(l.strip()) # ms-dos\n l = f.readline()\n else:\n header.append(l.strip())\n self.header = header\n\n self.data = csv.DictReader(f.readlines(), delimiter=',')\n\n def barcodes_have_the_same_size(self):\n return False if self.get_barcode_mask() is None else True\n\n def get_body(self, label='Sample_Name', new_value='', replace=True):\n def sanitize(mystr):\n \"\"\"\n Sanitize string in accordance with Illumina's documentation\n bcl2fastq2 Conversion Software v2.17 Guide\n \"\"\"\n retainlist = \"_-\"\n return re.sub(r'[^\\w' + retainlist + ']', '_', mystr)\n\n body = []\n for i in self.header:\n body.append(i)\n body.append('\\n')\n body.append(string.join(self.data.fieldnames, ','))\n body.append('\\n')\n\n to_be_sanitized = ['Sample_Project', 'Sample_Name']\n\n for row in self.data:\n for f in self.data.fieldnames:\n if replace and f == label:\n body.append(new_value)\n else:\n if f in to_be_sanitized and row[f]:\n body.append(sanitize(row[f]))\n else:\n body.append(row[f])\n body.append(',')\n body.append('\\n')\n\n return body\n\n def get_barcode_mask(self):\n barcodes_mask = dict()\n\n for row in self.data:\n index = len(row['index']) if 'index' in row else None\n index1 = None\n\n if 'index1' in row or 'index2' in row:\n index1 = len(row['index2']) if 'index2' in row else len(row['index1'])\n\n if row['Lane'] not in barcodes_mask:\n barcodes_mask[row['Lane']] = dict(\n index=index,\n index1=index1,\n )\n else:\n if index != barcodes_mask[row['Lane']]['index'] or index1 != barcodes_mask[row['Lane']]['index1']:\n return None\n\n return barcodes_mask\n\n\nclass WeightedPath(object):\n def __init__(self, path, weight):\n self.path = path\n self.weight = weight\n\n def __repr__(self):\n return '{}: {} {}'.format(self.__class__.__name__,\n self.path,\n self.weight)\n\n def __cmp__(self, other):\n if hasattr(other, 'weight'):\n return self.weight.__cmp__(other.weight)\n\n\ndef get_conf(logger, config_file_from_cli=None, profile=None):\n profiles = {'presta': 'presta_config.yml',\n 'celery': 'celery_config.yml'}\n default_config_file_label = profiles.get(profile, profiles['presta'])\n\n config_file_path = config_file_setup(logger, default_config_file_label,\n cf_from_cli=config_file_from_cli)\n\n # Load YAML configuration file\n return ConfigurationFromYamlFile(config_file_path)\n\n\ndef path_exists(path, logger, force=True):\n def file_missing(path, logger, force):\n msg = \"path - {} - doesn't exists\".format(path)\n if force:\n logger.error(msg)\n sys.exit()\n logger.warning(msg)\n return False\n\n return True if os.path.exists(os.path.expanduser(path)) else file_missing(path,\n logger,\n force)\n\n\ndef sanitize_filename(filename):\n valid_chars = \"-_.%s%s\" % (string.ascii_letters, string.digits)\n return ''.join(c for c in filename if c in valid_chars)\n\n\ndef format_dataset_filename(sample_label, lane=None, read=None, ext=None, uid=False):\n filename = sanitize_filename(sample_label)\n\n if read:\n filename = '_'.join(\n [filename, lane, read]) if lane else '_'.join(\n [filename, read])\n\n if uid:\n filename = '.'.join([filename, str(uuid.uuid4())])\n\n if ext:\n filename = '.'.join([filename, ext])\n\n return sanitize_filename(filename)\n\n\ndef config_file_setup(logger, cf_label, cf_from_cli=None):\n \"\"\"\n Create a config file if does not exists, copying it from the package\n default into the user_config_dir.\n Return a configuration file path from cli args if present, otherwise return\n a path from the user_config_dir\n :param logger: logger\n :param cf_label: label of the configuration file (required)\n :param cf_from_cli: path to configuration file from cli arg\n :return: Path\n \"\"\"\n presta_config_dir = os.path.join(user_config_dir(__appname__))\n config_file_from_home = os.path.join(presta_config_dir, cf_label)\n\n if not path_exists(config_file_from_home, logger, force=False):\n logger.info('Creating config path {}'.format(presta_config_dir))\n ensure_dir(presta_config_dir)\n config_file_path = '/'.join(['config', cf_label])\n config_file_from_package = resource_filename(__appname__,\n config_file_path)\n copyfile(config_file_from_package, config_file_from_home)\n\n config_file_paths = []\n if cf_from_cli and path_exists(cf_from_cli, logger, force=False):\n config_file_paths.append(WeightedPath(cf_from_cli, 0))\n if path_exists(config_file_from_home, logger, force=False):\n config_file_paths.append(WeightedPath(config_file_from_home, 1))\n\n logger.debug(\"config file paths: {}\".format(config_file_paths))\n\n config_file_path = sorted(config_file_paths)[0].path\n logger.info('Reading configuration from {}'.format(config_file_path))\n return config_file_path\n\n\ndef touch(path, logger):\n try:\n with open(path, 'a'):\n os.utime(path, None)\n except IOError as e:\n logger.error(\"While touching {} file: {}\".format(path, e.strerror))\n\n\ndef read_chunks(file_handle, chunk_size=8192):\n while True:\n data = file_handle.read(chunk_size)\n if not data:\n break\n yield data\n\n\ndef get_md5(file_handle):\n hasher = hashlib.md5()\n for chunk in read_chunks(file_handle):\n hasher.update(chunk)\n return hasher.hexdigest()\n\n\ndef check_progress_status(root_path, started_file, completed_file):\n localroot, dirnames, filenames = os.walk(root_path).next()\n\n if started_file not in filenames:\n return PROGRESS_STATUS.get('TODO')\n elif completed_file not in filenames:\n return PROGRESS_STATUS.get('STARTED')\n else:\n started_file = os.path.join(root_path, started_file)\n completed_file = os.path.join(root_path, completed_file)\n\n if os.path.getmtime(started_file) > os.path.getmtime(completed_file):\n return PROGRESS_STATUS.get('STARTED')\n\n return PROGRESS_STATUS.get('COMPLETED')\n\n\ndef runJob(cmd, logger):\n try:\n # subprocess.check_output(cmd)\n process = subprocess.Popen(cmd,\n stdout=subprocess.PIPE,\n stderr=subprocess.STDOUT)\n output = process.communicate()[0]\n ret = process.wait()\n return True\n except subprocess.CalledProcessError as e:\n logger.info(e)\n if e.output:\n logger.info(\"command output: %s\", e.output)\n else:\n logger.info(\"no command output available\")\n return False\n\n", "step-ids": [ 25, 27, 28, 36, 38 ] }
[ 25, 27, 28, 36, 38 ]
# -*- coding: utf-8 -*- import pytest from bravado.client import ResourceDecorator from bravado.client import SwaggerClient def test_resource_exists(petstore_client): assert type(petstore_client.pet) == ResourceDecorator def test_resource_not_found(petstore_client): with pytest.raises(AttributeError) as excinfo: petstore_client.foo assert 'foo not found' in str(excinfo.value) @pytest.fixture def client_tags_with_spaces(): return SwaggerClient.from_spec({ 'swagger': '2.0', 'info': { 'version': '', 'title': 'API' }, 'paths': { '/ping': { 'get': { 'operationId': 'ping', 'responses': { '200': { 'description': 'ping' } }, 'tags': [ 'my tag' ] } } } }) def test_get_resource(client_tags_with_spaces): assert type(client_tags_with_spaces._get_resource('my tag')) == ResourceDecorator
normal
{ "blob_id": "5ee1d8ef7ec4b191e0789ceb9c6dd2d58af526a0", "index": 7875, "step-1": "<mask token>\n\n\ndef test_resource_not_found(petstore_client):\n with pytest.raises(AttributeError) as excinfo:\n petstore_client.foo\n assert 'foo not found' in str(excinfo.value)\n\n\[email protected]\ndef client_tags_with_spaces():\n return SwaggerClient.from_spec({'swagger': '2.0', 'info': {'version':\n '', 'title': 'API'}, 'paths': {'/ping': {'get': {'operationId':\n 'ping', 'responses': {'200': {'description': 'ping'}}, 'tags': [\n 'my tag']}}}})\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef test_resource_exists(petstore_client):\n assert type(petstore_client.pet) == ResourceDecorator\n\n\ndef test_resource_not_found(petstore_client):\n with pytest.raises(AttributeError) as excinfo:\n petstore_client.foo\n assert 'foo not found' in str(excinfo.value)\n\n\[email protected]\ndef client_tags_with_spaces():\n return SwaggerClient.from_spec({'swagger': '2.0', 'info': {'version':\n '', 'title': 'API'}, 'paths': {'/ping': {'get': {'operationId':\n 'ping', 'responses': {'200': {'description': 'ping'}}, 'tags': [\n 'my tag']}}}})\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef test_resource_exists(petstore_client):\n assert type(petstore_client.pet) == ResourceDecorator\n\n\ndef test_resource_not_found(petstore_client):\n with pytest.raises(AttributeError) as excinfo:\n petstore_client.foo\n assert 'foo not found' in str(excinfo.value)\n\n\[email protected]\ndef client_tags_with_spaces():\n return SwaggerClient.from_spec({'swagger': '2.0', 'info': {'version':\n '', 'title': 'API'}, 'paths': {'/ping': {'get': {'operationId':\n 'ping', 'responses': {'200': {'description': 'ping'}}, 'tags': [\n 'my tag']}}}})\n\n\ndef test_get_resource(client_tags_with_spaces):\n assert type(client_tags_with_spaces._get_resource('my tag')\n ) == ResourceDecorator\n", "step-4": "import pytest\nfrom bravado.client import ResourceDecorator\nfrom bravado.client import SwaggerClient\n\n\ndef test_resource_exists(petstore_client):\n assert type(petstore_client.pet) == ResourceDecorator\n\n\ndef test_resource_not_found(petstore_client):\n with pytest.raises(AttributeError) as excinfo:\n petstore_client.foo\n assert 'foo not found' in str(excinfo.value)\n\n\[email protected]\ndef client_tags_with_spaces():\n return SwaggerClient.from_spec({'swagger': '2.0', 'info': {'version':\n '', 'title': 'API'}, 'paths': {'/ping': {'get': {'operationId':\n 'ping', 'responses': {'200': {'description': 'ping'}}, 'tags': [\n 'my tag']}}}})\n\n\ndef test_get_resource(client_tags_with_spaces):\n assert type(client_tags_with_spaces._get_resource('my tag')\n ) == ResourceDecorator\n", "step-5": "# -*- coding: utf-8 -*-\nimport pytest\n\nfrom bravado.client import ResourceDecorator\nfrom bravado.client import SwaggerClient\n\n\ndef test_resource_exists(petstore_client):\n assert type(petstore_client.pet) == ResourceDecorator\n\n\ndef test_resource_not_found(petstore_client):\n with pytest.raises(AttributeError) as excinfo:\n petstore_client.foo\n assert 'foo not found' in str(excinfo.value)\n\n\[email protected]\ndef client_tags_with_spaces():\n return SwaggerClient.from_spec({\n 'swagger': '2.0',\n 'info': {\n 'version': '',\n 'title': 'API'\n },\n 'paths': {\n '/ping': {\n 'get': {\n 'operationId': 'ping',\n 'responses': {\n '200': {\n 'description': 'ping'\n }\n },\n 'tags': [\n 'my tag'\n ]\n }\n }\n }\n })\n\n\ndef test_get_resource(client_tags_with_spaces):\n assert type(client_tags_with_spaces._get_resource('my tag')) == ResourceDecorator\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
""" Stirng - Liste - Dosya - Fonksiyon yazıyoruz. - Bu fonksiyon iki parametre alacak. (dosya, string) 1. sorun : Dosyanın içinde string var ise True döndürecek yok ise False 2. sorun : Dosyanın içinde string bulunursa ilk bulunduğu konumu return edecek 3. sorun : Dosyanın içerisinde yazdığımız strinng kaç kere var onu liste halinde return eden fonksiyon """ def fonkString(text, string): if string in text: print("TRUE") print(text.index(string), ". sirada ilk", string, "bulundu") print(text.count(string),"tane",string, "var") liste = [] for i in range(len(text)): if(text[i] == string): liste.append(i) for x in liste: print(x) else: print("FALSE") fonkString("Programlama laboratuvari calisma sorulari dosya string liste kullanma ", "m")
normal
{ "blob_id": "0d3cc85cd18ee197b24c8b01b71afe82110bfad2", "index": 3487, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef fonkString(text, string):\n if string in text:\n print('TRUE')\n print(text.index(string), '. sirada ilk', string, 'bulundu')\n print(text.count(string), 'tane', string, 'var')\n liste = []\n for i in range(len(text)):\n if text[i] == string:\n liste.append(i)\n for x in liste:\n print(x)\n else:\n print('FALSE')\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef fonkString(text, string):\n if string in text:\n print('TRUE')\n print(text.index(string), '. sirada ilk', string, 'bulundu')\n print(text.count(string), 'tane', string, 'var')\n liste = []\n for i in range(len(text)):\n if text[i] == string:\n liste.append(i)\n for x in liste:\n print(x)\n else:\n print('FALSE')\n\n\nfonkString(\n 'Programlama laboratuvari calisma sorulari dosya string liste kullanma ',\n 'm')\n", "step-4": "\"\"\"\nStirng - Liste - Dosya\n - Fonksiyon yazıyoruz.\n - Bu fonksiyon iki parametre alacak. (dosya, string)\n 1. sorun : Dosyanın içinde string var ise True döndürecek yok ise False \n 2. sorun : Dosyanın içinde string bulunursa ilk bulunduğu konumu return edecek\n 3. sorun : Dosyanın içerisinde yazdığımız strinng kaç kere var onu liste halinde return eden fonksiyon\n \n\"\"\"\n\ndef fonkString(text, string):\n if string in text:\n print(\"TRUE\")\n print(text.index(string), \". sirada ilk\", string, \"bulundu\")\n print(text.count(string),\"tane\",string, \"var\")\n\n liste = []\n\n for i in range(len(text)):\n if(text[i] == string):\n liste.append(i)\n for x in liste:\n print(x)\n else:\n print(\"FALSE\")\n\nfonkString(\"Programlama laboratuvari calisma sorulari dosya string liste kullanma \", \"m\")\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
from django.shortcuts import render, get_object_or_404, redirect from django.contrib.contenttypes.models import ContentType from User.forms import EditProfileForm from User import forms from django.db.models import Q from django.contrib import messages from django.urls import reverse from django.http import HttpResponseRedirect from posts.forms import * # Create your views here. from .models import Post from comments.models import * from comments.forms import * def post_create(request): form = PostForm(request.POST or None, request.FILES or None) if request.method == "POST": user= request.POST.get("user") title = request.POST.get("title") content = request.POST.get("content") PostStudent.objects.create(user=user, title=title,content=content) messages.success(request, "Successfully Posted") #if form.is_valid(): #instance = form.save(commit=False) #instance.save() context = { "form": form, } return render(request, "post/create_post.html", context) def temp_post(request): return render(request, 'post/Posts.html', {}) def temp_allpost(request): obj = Post.objects.all() context = {'obj': obj} return render(request, 'post/All_Post.html', context) def allpoststudents(request): if not request.user.is_staff or request.user.is_staff: obj = PostStudent.objects.all().order_by("-timestamp") query = request.GET.get("q") if query: obj = obj.filter( Q(title__icontains=query)| Q(content__icontains=query)| Q(user__icontains=query)| Q(timestamp__icontains=query) ).distinct() context = {'obj': obj} return render(request, 'post/All_Post_Students.html', context) def post_update(request, id=None): instance = get_object_or_404(Post, id=id) form = PostForm(request.POST or None, instance=instance) if form.is_valid(): instance = form.save(commit=False) instance.save() messages.success(request, "<a href='#'>Item </a>Saved", extra_tags='html_safe') return HttpResponseRedirect(instance.get_absolute_url()) context = { "title": instance.title, "instance": instance, "form": form, } return render(request, "post/create_post.html", context) def post_details(request, id=None): instance = get_object_or_404(Post, id=id) content_type = ContentType.objects.get_for_model(Post) obj_id = instance.id comments = Comment.objects.filter(content_type=content_type, object_id=obj_id) initial_data = { "content_type": content_type, "object_id": instance.id } form = CommentForm(request.POST or None, initial= initial_data) if form.is_valid(): c_type = form.cleaned_data.get("content_type") content_type = ContentType.objects.get(model=c_type) obj_id = form.cleaned_data.get("object_id") content_data = form.cleaned_data.get("content") parent_obj = None try: parent_id = int(request.POST.get("parent_id")) except: parent_id = None if parent_id: parent_qs = Comment.objects.filter(id=parent_id) if parent_qs.exists(): parent_obj = parent_qs.first() new_comment, created = Comment.objects.get_or_create( user = request.user, content_type = content_type, object_id = obj_id, content = content_data, parent = parent_obj, ) context = { "title":instance.title, "instance":instance, "comments": comments, "form": form, "obj_id": obj_id, } return render(request, "post/Posts.html", context) def post_details_student(request, id=None): instance = get_object_or_404(PostStudent, id=id) content_type = ContentType.objects.get_for_model(PostStudent) obj_id = instance.id comments = CommentStudent.objects.filter(content_type=content_type, object_id=obj_id) initial_data = { "content_type": content_type, "object_id": instance.id } form = CommentForm(request.POST or None, initial=initial_data) if form.is_valid(): c_type = form.cleaned_data.get("content_type") content_type = ContentType.objects.get(model=c_type) obj_id = form.cleaned_data.get("object_id") content_data = form.cleaned_data.get("content") parent_obj = None try: parent_id = int(request.POST.get("parent_id")) except: parent_id = None if parent_id: parent_qs = Comment.objects.filter(id=parent_id) if parent_qs.exists(): parent_obj = parent_qs.first() new_comment, created = CommentStudent.objects.get_or_create( user=request.user, content_type=content_type, object_id=obj_id, content=content_data, parent=parent_obj, ) context = { "title": instance.title, "instance": instance, "comments": comments, "form": form, "obj_id": obj_id, } return render(request, "post/post_details_student.html", context) def post_delete(request, id=None): instance = get_object_or_404(PostStudent, id=id) instance.delete() messages.success(request, "Successfully deleted") return render(request, 'post/All_Post_Students.html', {})
normal
{ "blob_id": "e9fab2bb49cfda00b8cfedafab0009f691d11ec9", "index": 9924, "step-1": "<mask token>\n\n\ndef post_create(request):\n form = PostForm(request.POST or None, request.FILES or None)\n if request.method == 'POST':\n user = request.POST.get('user')\n title = request.POST.get('title')\n content = request.POST.get('content')\n PostStudent.objects.create(user=user, title=title, content=content)\n messages.success(request, 'Successfully Posted')\n context = {'form': form}\n return render(request, 'post/create_post.html', context)\n\n\ndef temp_post(request):\n return render(request, 'post/Posts.html', {})\n\n\n<mask token>\n\n\ndef allpoststudents(request):\n if not request.user.is_staff or request.user.is_staff:\n obj = PostStudent.objects.all().order_by('-timestamp')\n query = request.GET.get('q')\n if query:\n obj = obj.filter(Q(title__icontains=query) | Q(content__icontains=\n query) | Q(user__icontains=query) | Q(timestamp__icontains=query)\n ).distinct()\n context = {'obj': obj}\n return render(request, 'post/All_Post_Students.html', context)\n\n\n<mask token>\n\n\ndef post_details(request, id=None):\n instance = get_object_or_404(Post, id=id)\n content_type = ContentType.objects.get_for_model(Post)\n obj_id = instance.id\n comments = Comment.objects.filter(content_type=content_type, object_id=\n obj_id)\n initial_data = {'content_type': content_type, 'object_id': instance.id}\n form = CommentForm(request.POST or None, initial=initial_data)\n if form.is_valid():\n c_type = form.cleaned_data.get('content_type')\n content_type = ContentType.objects.get(model=c_type)\n obj_id = form.cleaned_data.get('object_id')\n content_data = form.cleaned_data.get('content')\n parent_obj = None\n try:\n parent_id = int(request.POST.get('parent_id'))\n except:\n parent_id = None\n if parent_id:\n parent_qs = Comment.objects.filter(id=parent_id)\n if parent_qs.exists():\n parent_obj = parent_qs.first()\n new_comment, created = Comment.objects.get_or_create(user=request.\n user, content_type=content_type, object_id=obj_id, content=\n content_data, parent=parent_obj)\n context = {'title': instance.title, 'instance': instance, 'comments':\n comments, 'form': form, 'obj_id': obj_id}\n return render(request, 'post/Posts.html', context)\n\n\ndef post_details_student(request, id=None):\n instance = get_object_or_404(PostStudent, id=id)\n content_type = ContentType.objects.get_for_model(PostStudent)\n obj_id = instance.id\n comments = CommentStudent.objects.filter(content_type=content_type,\n object_id=obj_id)\n initial_data = {'content_type': content_type, 'object_id': instance.id}\n form = CommentForm(request.POST or None, initial=initial_data)\n if form.is_valid():\n c_type = form.cleaned_data.get('content_type')\n content_type = ContentType.objects.get(model=c_type)\n obj_id = form.cleaned_data.get('object_id')\n content_data = form.cleaned_data.get('content')\n parent_obj = None\n try:\n parent_id = int(request.POST.get('parent_id'))\n except:\n parent_id = None\n if parent_id:\n parent_qs = Comment.objects.filter(id=parent_id)\n if parent_qs.exists():\n parent_obj = parent_qs.first()\n new_comment, created = CommentStudent.objects.get_or_create(user=\n request.user, content_type=content_type, object_id=obj_id,\n content=content_data, parent=parent_obj)\n context = {'title': instance.title, 'instance': instance, 'comments':\n comments, 'form': form, 'obj_id': obj_id}\n return render(request, 'post/post_details_student.html', context)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef post_create(request):\n form = PostForm(request.POST or None, request.FILES or None)\n if request.method == 'POST':\n user = request.POST.get('user')\n title = request.POST.get('title')\n content = request.POST.get('content')\n PostStudent.objects.create(user=user, title=title, content=content)\n messages.success(request, 'Successfully Posted')\n context = {'form': form}\n return render(request, 'post/create_post.html', context)\n\n\ndef temp_post(request):\n return render(request, 'post/Posts.html', {})\n\n\n<mask token>\n\n\ndef allpoststudents(request):\n if not request.user.is_staff or request.user.is_staff:\n obj = PostStudent.objects.all().order_by('-timestamp')\n query = request.GET.get('q')\n if query:\n obj = obj.filter(Q(title__icontains=query) | Q(content__icontains=\n query) | Q(user__icontains=query) | Q(timestamp__icontains=query)\n ).distinct()\n context = {'obj': obj}\n return render(request, 'post/All_Post_Students.html', context)\n\n\ndef post_update(request, id=None):\n instance = get_object_or_404(Post, id=id)\n form = PostForm(request.POST or None, instance=instance)\n if form.is_valid():\n instance = form.save(commit=False)\n instance.save()\n messages.success(request, \"<a href='#'>Item </a>Saved\", extra_tags=\n 'html_safe')\n return HttpResponseRedirect(instance.get_absolute_url())\n context = {'title': instance.title, 'instance': instance, 'form': form}\n return render(request, 'post/create_post.html', context)\n\n\ndef post_details(request, id=None):\n instance = get_object_or_404(Post, id=id)\n content_type = ContentType.objects.get_for_model(Post)\n obj_id = instance.id\n comments = Comment.objects.filter(content_type=content_type, object_id=\n obj_id)\n initial_data = {'content_type': content_type, 'object_id': instance.id}\n form = CommentForm(request.POST or None, initial=initial_data)\n if form.is_valid():\n c_type = form.cleaned_data.get('content_type')\n content_type = ContentType.objects.get(model=c_type)\n obj_id = form.cleaned_data.get('object_id')\n content_data = form.cleaned_data.get('content')\n parent_obj = None\n try:\n parent_id = int(request.POST.get('parent_id'))\n except:\n parent_id = None\n if parent_id:\n parent_qs = Comment.objects.filter(id=parent_id)\n if parent_qs.exists():\n parent_obj = parent_qs.first()\n new_comment, created = Comment.objects.get_or_create(user=request.\n user, content_type=content_type, object_id=obj_id, content=\n content_data, parent=parent_obj)\n context = {'title': instance.title, 'instance': instance, 'comments':\n comments, 'form': form, 'obj_id': obj_id}\n return render(request, 'post/Posts.html', context)\n\n\ndef post_details_student(request, id=None):\n instance = get_object_or_404(PostStudent, id=id)\n content_type = ContentType.objects.get_for_model(PostStudent)\n obj_id = instance.id\n comments = CommentStudent.objects.filter(content_type=content_type,\n object_id=obj_id)\n initial_data = {'content_type': content_type, 'object_id': instance.id}\n form = CommentForm(request.POST or None, initial=initial_data)\n if form.is_valid():\n c_type = form.cleaned_data.get('content_type')\n content_type = ContentType.objects.get(model=c_type)\n obj_id = form.cleaned_data.get('object_id')\n content_data = form.cleaned_data.get('content')\n parent_obj = None\n try:\n parent_id = int(request.POST.get('parent_id'))\n except:\n parent_id = None\n if parent_id:\n parent_qs = Comment.objects.filter(id=parent_id)\n if parent_qs.exists():\n parent_obj = parent_qs.first()\n new_comment, created = CommentStudent.objects.get_or_create(user=\n request.user, content_type=content_type, object_id=obj_id,\n content=content_data, parent=parent_obj)\n context = {'title': instance.title, 'instance': instance, 'comments':\n comments, 'form': form, 'obj_id': obj_id}\n return render(request, 'post/post_details_student.html', context)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef post_create(request):\n form = PostForm(request.POST or None, request.FILES or None)\n if request.method == 'POST':\n user = request.POST.get('user')\n title = request.POST.get('title')\n content = request.POST.get('content')\n PostStudent.objects.create(user=user, title=title, content=content)\n messages.success(request, 'Successfully Posted')\n context = {'form': form}\n return render(request, 'post/create_post.html', context)\n\n\ndef temp_post(request):\n return render(request, 'post/Posts.html', {})\n\n\n<mask token>\n\n\ndef allpoststudents(request):\n if not request.user.is_staff or request.user.is_staff:\n obj = PostStudent.objects.all().order_by('-timestamp')\n query = request.GET.get('q')\n if query:\n obj = obj.filter(Q(title__icontains=query) | Q(content__icontains=\n query) | Q(user__icontains=query) | Q(timestamp__icontains=query)\n ).distinct()\n context = {'obj': obj}\n return render(request, 'post/All_Post_Students.html', context)\n\n\ndef post_update(request, id=None):\n instance = get_object_or_404(Post, id=id)\n form = PostForm(request.POST or None, instance=instance)\n if form.is_valid():\n instance = form.save(commit=False)\n instance.save()\n messages.success(request, \"<a href='#'>Item </a>Saved\", extra_tags=\n 'html_safe')\n return HttpResponseRedirect(instance.get_absolute_url())\n context = {'title': instance.title, 'instance': instance, 'form': form}\n return render(request, 'post/create_post.html', context)\n\n\ndef post_details(request, id=None):\n instance = get_object_or_404(Post, id=id)\n content_type = ContentType.objects.get_for_model(Post)\n obj_id = instance.id\n comments = Comment.objects.filter(content_type=content_type, object_id=\n obj_id)\n initial_data = {'content_type': content_type, 'object_id': instance.id}\n form = CommentForm(request.POST or None, initial=initial_data)\n if form.is_valid():\n c_type = form.cleaned_data.get('content_type')\n content_type = ContentType.objects.get(model=c_type)\n obj_id = form.cleaned_data.get('object_id')\n content_data = form.cleaned_data.get('content')\n parent_obj = None\n try:\n parent_id = int(request.POST.get('parent_id'))\n except:\n parent_id = None\n if parent_id:\n parent_qs = Comment.objects.filter(id=parent_id)\n if parent_qs.exists():\n parent_obj = parent_qs.first()\n new_comment, created = Comment.objects.get_or_create(user=request.\n user, content_type=content_type, object_id=obj_id, content=\n content_data, parent=parent_obj)\n context = {'title': instance.title, 'instance': instance, 'comments':\n comments, 'form': form, 'obj_id': obj_id}\n return render(request, 'post/Posts.html', context)\n\n\ndef post_details_student(request, id=None):\n instance = get_object_or_404(PostStudent, id=id)\n content_type = ContentType.objects.get_for_model(PostStudent)\n obj_id = instance.id\n comments = CommentStudent.objects.filter(content_type=content_type,\n object_id=obj_id)\n initial_data = {'content_type': content_type, 'object_id': instance.id}\n form = CommentForm(request.POST or None, initial=initial_data)\n if form.is_valid():\n c_type = form.cleaned_data.get('content_type')\n content_type = ContentType.objects.get(model=c_type)\n obj_id = form.cleaned_data.get('object_id')\n content_data = form.cleaned_data.get('content')\n parent_obj = None\n try:\n parent_id = int(request.POST.get('parent_id'))\n except:\n parent_id = None\n if parent_id:\n parent_qs = Comment.objects.filter(id=parent_id)\n if parent_qs.exists():\n parent_obj = parent_qs.first()\n new_comment, created = CommentStudent.objects.get_or_create(user=\n request.user, content_type=content_type, object_id=obj_id,\n content=content_data, parent=parent_obj)\n context = {'title': instance.title, 'instance': instance, 'comments':\n comments, 'form': form, 'obj_id': obj_id}\n return render(request, 'post/post_details_student.html', context)\n\n\ndef post_delete(request, id=None):\n instance = get_object_or_404(PostStudent, id=id)\n instance.delete()\n messages.success(request, 'Successfully deleted')\n return render(request, 'post/All_Post_Students.html', {})\n", "step-4": "<mask token>\n\n\ndef post_create(request):\n form = PostForm(request.POST or None, request.FILES or None)\n if request.method == 'POST':\n user = request.POST.get('user')\n title = request.POST.get('title')\n content = request.POST.get('content')\n PostStudent.objects.create(user=user, title=title, content=content)\n messages.success(request, 'Successfully Posted')\n context = {'form': form}\n return render(request, 'post/create_post.html', context)\n\n\ndef temp_post(request):\n return render(request, 'post/Posts.html', {})\n\n\ndef temp_allpost(request):\n obj = Post.objects.all()\n context = {'obj': obj}\n return render(request, 'post/All_Post.html', context)\n\n\ndef allpoststudents(request):\n if not request.user.is_staff or request.user.is_staff:\n obj = PostStudent.objects.all().order_by('-timestamp')\n query = request.GET.get('q')\n if query:\n obj = obj.filter(Q(title__icontains=query) | Q(content__icontains=\n query) | Q(user__icontains=query) | Q(timestamp__icontains=query)\n ).distinct()\n context = {'obj': obj}\n return render(request, 'post/All_Post_Students.html', context)\n\n\ndef post_update(request, id=None):\n instance = get_object_or_404(Post, id=id)\n form = PostForm(request.POST or None, instance=instance)\n if form.is_valid():\n instance = form.save(commit=False)\n instance.save()\n messages.success(request, \"<a href='#'>Item </a>Saved\", extra_tags=\n 'html_safe')\n return HttpResponseRedirect(instance.get_absolute_url())\n context = {'title': instance.title, 'instance': instance, 'form': form}\n return render(request, 'post/create_post.html', context)\n\n\ndef post_details(request, id=None):\n instance = get_object_or_404(Post, id=id)\n content_type = ContentType.objects.get_for_model(Post)\n obj_id = instance.id\n comments = Comment.objects.filter(content_type=content_type, object_id=\n obj_id)\n initial_data = {'content_type': content_type, 'object_id': instance.id}\n form = CommentForm(request.POST or None, initial=initial_data)\n if form.is_valid():\n c_type = form.cleaned_data.get('content_type')\n content_type = ContentType.objects.get(model=c_type)\n obj_id = form.cleaned_data.get('object_id')\n content_data = form.cleaned_data.get('content')\n parent_obj = None\n try:\n parent_id = int(request.POST.get('parent_id'))\n except:\n parent_id = None\n if parent_id:\n parent_qs = Comment.objects.filter(id=parent_id)\n if parent_qs.exists():\n parent_obj = parent_qs.first()\n new_comment, created = Comment.objects.get_or_create(user=request.\n user, content_type=content_type, object_id=obj_id, content=\n content_data, parent=parent_obj)\n context = {'title': instance.title, 'instance': instance, 'comments':\n comments, 'form': form, 'obj_id': obj_id}\n return render(request, 'post/Posts.html', context)\n\n\ndef post_details_student(request, id=None):\n instance = get_object_or_404(PostStudent, id=id)\n content_type = ContentType.objects.get_for_model(PostStudent)\n obj_id = instance.id\n comments = CommentStudent.objects.filter(content_type=content_type,\n object_id=obj_id)\n initial_data = {'content_type': content_type, 'object_id': instance.id}\n form = CommentForm(request.POST or None, initial=initial_data)\n if form.is_valid():\n c_type = form.cleaned_data.get('content_type')\n content_type = ContentType.objects.get(model=c_type)\n obj_id = form.cleaned_data.get('object_id')\n content_data = form.cleaned_data.get('content')\n parent_obj = None\n try:\n parent_id = int(request.POST.get('parent_id'))\n except:\n parent_id = None\n if parent_id:\n parent_qs = Comment.objects.filter(id=parent_id)\n if parent_qs.exists():\n parent_obj = parent_qs.first()\n new_comment, created = CommentStudent.objects.get_or_create(user=\n request.user, content_type=content_type, object_id=obj_id,\n content=content_data, parent=parent_obj)\n context = {'title': instance.title, 'instance': instance, 'comments':\n comments, 'form': form, 'obj_id': obj_id}\n return render(request, 'post/post_details_student.html', context)\n\n\ndef post_delete(request, id=None):\n instance = get_object_or_404(PostStudent, id=id)\n instance.delete()\n messages.success(request, 'Successfully deleted')\n return render(request, 'post/All_Post_Students.html', {})\n", "step-5": "from django.shortcuts import render, get_object_or_404, redirect\nfrom django.contrib.contenttypes.models import ContentType\nfrom User.forms import EditProfileForm\nfrom User import forms\nfrom django.db.models import Q\nfrom django.contrib import messages\nfrom django.urls import reverse\nfrom django.http import HttpResponseRedirect\nfrom posts.forms import *\n\n\n# Create your views here.\nfrom .models import Post\nfrom comments.models import *\nfrom comments.forms import *\n\n\ndef post_create(request):\n form = PostForm(request.POST or None, request.FILES or None)\n if request.method == \"POST\":\n user= request.POST.get(\"user\")\n title = request.POST.get(\"title\")\n content = request.POST.get(\"content\")\n PostStudent.objects.create(user=user, title=title,content=content)\n messages.success(request, \"Successfully Posted\")\n #if form.is_valid():\n #instance = form.save(commit=False)\n #instance.save()\n context = {\n \"form\": form,\n\n }\n return render(request, \"post/create_post.html\", context)\n\n\ndef temp_post(request):\n return render(request, 'post/Posts.html', {})\n\n\ndef temp_allpost(request):\n obj = Post.objects.all()\n context = {'obj': obj}\n return render(request, 'post/All_Post.html', context)\n\n\ndef allpoststudents(request):\n if not request.user.is_staff or request.user.is_staff:\n obj = PostStudent.objects.all().order_by(\"-timestamp\")\n query = request.GET.get(\"q\")\n if query:\n obj = obj.filter(\n Q(title__icontains=query)|\n Q(content__icontains=query)|\n Q(user__icontains=query)|\n Q(timestamp__icontains=query)\n ).distinct()\n context = {'obj': obj}\n return render(request, 'post/All_Post_Students.html', context)\n\n\ndef post_update(request, id=None):\n instance = get_object_or_404(Post, id=id)\n form = PostForm(request.POST or None, instance=instance)\n if form.is_valid():\n instance = form.save(commit=False)\n instance.save()\n messages.success(request, \"<a href='#'>Item </a>Saved\", extra_tags='html_safe')\n return HttpResponseRedirect(instance.get_absolute_url())\n\n context = {\n \"title\": instance.title,\n \"instance\": instance,\n \"form\": form,\n }\n return render(request, \"post/create_post.html\", context)\n\n\ndef post_details(request, id=None):\n instance = get_object_or_404(Post, id=id)\n content_type = ContentType.objects.get_for_model(Post)\n obj_id = instance.id\n comments = Comment.objects.filter(content_type=content_type, object_id=obj_id)\n initial_data = {\n \"content_type\": content_type,\n \"object_id\": instance.id\n }\n form = CommentForm(request.POST or None, initial= initial_data)\n if form.is_valid():\n c_type = form.cleaned_data.get(\"content_type\")\n content_type = ContentType.objects.get(model=c_type)\n obj_id = form.cleaned_data.get(\"object_id\")\n content_data = form.cleaned_data.get(\"content\")\n parent_obj = None\n try:\n parent_id = int(request.POST.get(\"parent_id\"))\n except:\n parent_id = None\n\n if parent_id:\n parent_qs = Comment.objects.filter(id=parent_id)\n if parent_qs.exists():\n parent_obj = parent_qs.first()\n\n new_comment, created = Comment.objects.get_or_create(\n user = request.user,\n content_type = content_type,\n object_id = obj_id,\n content = content_data,\n parent = parent_obj,\n )\n\n\n\n context = {\n \"title\":instance.title,\n \"instance\":instance,\n \"comments\": comments,\n \"form\": form,\n \"obj_id\": obj_id,\n }\n return render(request, \"post/Posts.html\", context)\n\n\ndef post_details_student(request, id=None):\n instance = get_object_or_404(PostStudent, id=id)\n content_type = ContentType.objects.get_for_model(PostStudent)\n obj_id = instance.id\n comments = CommentStudent.objects.filter(content_type=content_type, object_id=obj_id)\n initial_data = {\n \"content_type\": content_type,\n \"object_id\": instance.id\n }\n form = CommentForm(request.POST or None, initial=initial_data)\n if form.is_valid():\n c_type = form.cleaned_data.get(\"content_type\")\n content_type = ContentType.objects.get(model=c_type)\n obj_id = form.cleaned_data.get(\"object_id\")\n content_data = form.cleaned_data.get(\"content\")\n parent_obj = None\n try:\n parent_id = int(request.POST.get(\"parent_id\"))\n except:\n parent_id = None\n\n if parent_id:\n parent_qs = Comment.objects.filter(id=parent_id)\n if parent_qs.exists():\n parent_obj = parent_qs.first()\n\n new_comment, created = CommentStudent.objects.get_or_create(\n user=request.user,\n content_type=content_type,\n object_id=obj_id,\n content=content_data,\n parent=parent_obj,\n )\n\n context = {\n \"title\": instance.title,\n \"instance\": instance,\n \"comments\": comments,\n \"form\": form,\n \"obj_id\": obj_id,\n }\n return render(request, \"post/post_details_student.html\", context)\n\n\ndef post_delete(request, id=None):\n instance = get_object_or_404(PostStudent, id=id)\n instance.delete()\n messages.success(request, \"Successfully deleted\")\n return render(request, 'post/All_Post_Students.html', {})\n", "step-ids": [ 5, 6, 7, 8, 10 ] }
[ 5, 6, 7, 8, 10 ]
#!/usr/bin/env python # coding=utf-8 operators = ['-', '~', '++', '--', '*', '!', '/', '*', '%', '+', '-', '>', '>=', '<', '<=', '==', '!=', '&&', '||', '='] types = ['int ', 'double ', 'float ', 'char '] toDelete = types + ['struct '] toRepleace = [('printf(', 'print('), ('++', ' += 1'), ('--', ' -= 1'), ('/*', "'''"), ('*/', "'''"), ('//','#'), ('&&', 'and'), ('||', 'or')] def isDigit(c): return c > '0' and c < '9' def isChar(c): return (c > 'a' and c < 'z') or (c > 'A' and c < 'Z') def isOperator(c): return c in operators def isDefun(line): return '(' in line and ')' in line and sum([i in line for i in toDelete]) def isDefStruct(line): return 'struct ' in line and len(line.split(' ')) == 2 def isUseStruct(line): return 'struct ' in line and len(line.split(' ')) == 3 def isClarify(line): return sum([line.startswith(i) for i in types]) and '=' not in line def isPoint(line): index = line.index('*') if '*' in line else -1 return index != -1 and len(line) > (index + 1) and isChar(line[index + 1]) and \ (sum([line.startswith(i) for i in types]) or '=' in line) def isList(line): return sum([line.startswith(i) for i in types]) and '[' in line and ']' in line def parseInt(s, start=0): tmp = '' while start < len(s): if isDigit(s[start]): tmp += s[start] elif len(tmp): break start += 1 return int(tmp), start - len(tmp) def parseVar(s, start=0): tmp = '' while start < len(s): if isChar(s[start]): tmp += s[start] elif isDigit(s[start]) and len(tmp): break start += 1 return tmp, start - len(tmp) def parseOperator(s, start=0): tmp = '' while start < len(s): if not isDigit(s[start]) and not isChar(s[start]) and s[start] != ' ': tmp += s[start] elif len(tmp) and isOperator(tmp): return tmp, start - len(tmp) else: tmp = '' start += 1 def main1(filename, output=None): with open(filename, 'r') as f: lines = f.readlines() if not output: output = filename + '.py' f = open(output, 'w') indent = '' instruct = False inFor = '' for line in lines: line = line.lstrip(' ').rstrip(';\n') if line.startswith('#'): continue if '{' in line: if instruct: f.write(indent + '{\n') indent += ' ' elif '}' in line: if inFor: f.write('%s%s\n' % (indent, inFor)) inFor = '' indent = indent[:-4] if instruct: instruct = False f.write(indent + '}\n') # indent = indent[:-4] else: s = indent if line.startswith('//'): s += '{}' elif isDefun(line): s += 'def {}:' elif isUseStruct(line): l = line.split(' ')[1:] s += ('{} = [{}.copy() for i in range({})]' '').format(l[1][:l[1].index('[')], l[0], parseInt(l[1], l[1].index('['))[0]) s += '{}' line = '' elif isDefStruct(line): # indent += ' ' # s += 'class {}:\n' + indent + 'def __init__(self):' s += '{} = \\' instruct = True elif 'if' in line or 'while ' in line: s += '{}:' elif 'printf' in line and '%' in line: s += '{})' first_comma = line.index(',') line = line[:first_comma] + ' % (' + line[first_comma + 2:] elif 'for' in line: line = line[3:].replace('(', '').replace(')', '').strip() line = [l.strip() for l in line.split(';')] if line[0] and line[1]: s += '%s\n%swhile %s:{}' % (line[0], s, line[1]) if not line[0] and line[1]: s += 'while %s:{}' % (line[1]) if line[0] and not line[1]: s += '%s\n%swhile 1:{}' % (line[0], s) if not line[0] and not line[1]: s += 'while 1:{}' inFor = line[2] line = '' elif instruct: # s += 'self.{} = None' s += '"{}": None,' elif isClarify(line): s += '# Clarify `{}` is skiped' else: s += '{}' if isPoint(line): index = -1 for i in range(line.count('*')): index = line.index('*', index + 1) if isChar(line[index + 1]): line = line[:index] + 'p_' + line[index + 1:] s = s.format(line.strip()) for i, j in toRepleace: while i in s: s = s.replace(i, j) if not s.strip().startswith('#'): for i in toDelete: while i in s: s = s.replace(i, '') f.write(s + '\n') f.write('if __name__ == "__main__":\n main()') f.close() def main2(filename, output=None): with open(filename, 'r') as f: lines = f.readlines() if not output: output = filename + '.py' f = open(output, 'w') rst = [] for line in lines: line = line.lstrip(' ').rstrip(';\n') if line.startswith('#'): continue f.close() if __name__ == '__main__': main1('test.c', output='replace.py') # main2('test.c', output='list.py')
normal
{ "blob_id": "082e3350c5827ff2ca909084f2d6a206ae21a7e6", "index": 3240, "step-1": "<mask token>\n\n\ndef isChar(c):\n return c > 'a' and c < 'z' or c > 'A' and c < 'Z'\n\n\ndef isOperator(c):\n return c in operators\n\n\ndef isDefun(line):\n return '(' in line and ')' in line and sum([(i in line) for i in toDelete])\n\n\ndef isDefStruct(line):\n return 'struct ' in line and len(line.split(' ')) == 2\n\n\ndef isUseStruct(line):\n return 'struct ' in line and len(line.split(' ')) == 3\n\n\n<mask token>\n\n\ndef isPoint(line):\n index = line.index('*') if '*' in line else -1\n return index != -1 and len(line) > index + 1 and isChar(line[index + 1]\n ) and (sum([line.startswith(i) for i in types]) or '=' in line)\n\n\ndef isList(line):\n return sum([line.startswith(i) for i in types]\n ) and '[' in line and ']' in line\n\n\n<mask token>\n\n\ndef parseVar(s, start=0):\n tmp = ''\n while start < len(s):\n if isChar(s[start]):\n tmp += s[start]\n elif isDigit(s[start]) and len(tmp):\n break\n start += 1\n return tmp, start - len(tmp)\n\n\ndef parseOperator(s, start=0):\n tmp = ''\n while start < len(s):\n if not isDigit(s[start]) and not isChar(s[start]) and s[start] != ' ':\n tmp += s[start]\n elif len(tmp) and isOperator(tmp):\n return tmp, start - len(tmp)\n else:\n tmp = ''\n start += 1\n\n\n<mask token>\n\n\ndef main2(filename, output=None):\n with open(filename, 'r') as f:\n lines = f.readlines()\n if not output:\n output = filename + '.py'\n f = open(output, 'w')\n rst = []\n for line in lines:\n line = line.lstrip(' ').rstrip(';\\n')\n if line.startswith('#'):\n continue\n f.close()\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef isChar(c):\n return c > 'a' and c < 'z' or c > 'A' and c < 'Z'\n\n\ndef isOperator(c):\n return c in operators\n\n\ndef isDefun(line):\n return '(' in line and ')' in line and sum([(i in line) for i in toDelete])\n\n\ndef isDefStruct(line):\n return 'struct ' in line and len(line.split(' ')) == 2\n\n\ndef isUseStruct(line):\n return 'struct ' in line and len(line.split(' ')) == 3\n\n\n<mask token>\n\n\ndef isPoint(line):\n index = line.index('*') if '*' in line else -1\n return index != -1 and len(line) > index + 1 and isChar(line[index + 1]\n ) and (sum([line.startswith(i) for i in types]) or '=' in line)\n\n\ndef isList(line):\n return sum([line.startswith(i) for i in types]\n ) and '[' in line and ']' in line\n\n\ndef parseInt(s, start=0):\n tmp = ''\n while start < len(s):\n if isDigit(s[start]):\n tmp += s[start]\n elif len(tmp):\n break\n start += 1\n return int(tmp), start - len(tmp)\n\n\ndef parseVar(s, start=0):\n tmp = ''\n while start < len(s):\n if isChar(s[start]):\n tmp += s[start]\n elif isDigit(s[start]) and len(tmp):\n break\n start += 1\n return tmp, start - len(tmp)\n\n\ndef parseOperator(s, start=0):\n tmp = ''\n while start < len(s):\n if not isDigit(s[start]) and not isChar(s[start]) and s[start] != ' ':\n tmp += s[start]\n elif len(tmp) and isOperator(tmp):\n return tmp, start - len(tmp)\n else:\n tmp = ''\n start += 1\n\n\ndef main1(filename, output=None):\n with open(filename, 'r') as f:\n lines = f.readlines()\n if not output:\n output = filename + '.py'\n f = open(output, 'w')\n indent = ''\n instruct = False\n inFor = ''\n for line in lines:\n line = line.lstrip(' ').rstrip(';\\n')\n if line.startswith('#'):\n continue\n if '{' in line:\n if instruct:\n f.write(indent + '{\\n')\n indent += ' '\n elif '}' in line:\n if inFor:\n f.write('%s%s\\n' % (indent, inFor))\n inFor = ''\n indent = indent[:-4]\n if instruct:\n instruct = False\n f.write(indent + '}\\n')\n else:\n s = indent\n if line.startswith('//'):\n s += '{}'\n elif isDefun(line):\n s += 'def {}:'\n elif isUseStruct(line):\n l = line.split(' ')[1:]\n s += '{} = [{}.copy() for i in range({})]'.format(l[1][:l[1\n ].index('[')], l[0], parseInt(l[1], l[1].index('['))[0])\n s += '{}'\n line = ''\n elif isDefStruct(line):\n s += '{} = \\\\'\n instruct = True\n elif 'if' in line or 'while ' in line:\n s += '{}:'\n elif 'printf' in line and '%' in line:\n s += '{})'\n first_comma = line.index(',')\n line = line[:first_comma] + ' % (' + line[first_comma + 2:]\n elif 'for' in line:\n line = line[3:].replace('(', '').replace(')', '').strip()\n line = [l.strip() for l in line.split(';')]\n if line[0] and line[1]:\n s += '%s\\n%swhile %s:{}' % (line[0], s, line[1])\n if not line[0] and line[1]:\n s += 'while %s:{}' % line[1]\n if line[0] and not line[1]:\n s += '%s\\n%swhile 1:{}' % (line[0], s)\n if not line[0] and not line[1]:\n s += 'while 1:{}'\n inFor = line[2]\n line = ''\n elif instruct:\n s += '\"{}\": None,'\n elif isClarify(line):\n s += '# Clarify `{}` is skiped'\n else:\n s += '{}'\n if isPoint(line):\n index = -1\n for i in range(line.count('*')):\n index = line.index('*', index + 1)\n if isChar(line[index + 1]):\n line = line[:index] + 'p_' + line[index + 1:]\n s = s.format(line.strip())\n for i, j in toRepleace:\n while i in s:\n s = s.replace(i, j)\n if not s.strip().startswith('#'):\n for i in toDelete:\n while i in s:\n s = s.replace(i, '')\n f.write(s + '\\n')\n f.write(\"\"\"if __name__ == \"__main__\":\n main()\"\"\")\n f.close()\n\n\ndef main2(filename, output=None):\n with open(filename, 'r') as f:\n lines = f.readlines()\n if not output:\n output = filename + '.py'\n f = open(output, 'w')\n rst = []\n for line in lines:\n line = line.lstrip(' ').rstrip(';\\n')\n if line.startswith('#'):\n continue\n f.close()\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef isDigit(c):\n return c > '0' and c < '9'\n\n\ndef isChar(c):\n return c > 'a' and c < 'z' or c > 'A' and c < 'Z'\n\n\ndef isOperator(c):\n return c in operators\n\n\ndef isDefun(line):\n return '(' in line and ')' in line and sum([(i in line) for i in toDelete])\n\n\ndef isDefStruct(line):\n return 'struct ' in line and len(line.split(' ')) == 2\n\n\ndef isUseStruct(line):\n return 'struct ' in line and len(line.split(' ')) == 3\n\n\ndef isClarify(line):\n return sum([line.startswith(i) for i in types]) and '=' not in line\n\n\ndef isPoint(line):\n index = line.index('*') if '*' in line else -1\n return index != -1 and len(line) > index + 1 and isChar(line[index + 1]\n ) and (sum([line.startswith(i) for i in types]) or '=' in line)\n\n\ndef isList(line):\n return sum([line.startswith(i) for i in types]\n ) and '[' in line and ']' in line\n\n\ndef parseInt(s, start=0):\n tmp = ''\n while start < len(s):\n if isDigit(s[start]):\n tmp += s[start]\n elif len(tmp):\n break\n start += 1\n return int(tmp), start - len(tmp)\n\n\ndef parseVar(s, start=0):\n tmp = ''\n while start < len(s):\n if isChar(s[start]):\n tmp += s[start]\n elif isDigit(s[start]) and len(tmp):\n break\n start += 1\n return tmp, start - len(tmp)\n\n\ndef parseOperator(s, start=0):\n tmp = ''\n while start < len(s):\n if not isDigit(s[start]) and not isChar(s[start]) and s[start] != ' ':\n tmp += s[start]\n elif len(tmp) and isOperator(tmp):\n return tmp, start - len(tmp)\n else:\n tmp = ''\n start += 1\n\n\ndef main1(filename, output=None):\n with open(filename, 'r') as f:\n lines = f.readlines()\n if not output:\n output = filename + '.py'\n f = open(output, 'w')\n indent = ''\n instruct = False\n inFor = ''\n for line in lines:\n line = line.lstrip(' ').rstrip(';\\n')\n if line.startswith('#'):\n continue\n if '{' in line:\n if instruct:\n f.write(indent + '{\\n')\n indent += ' '\n elif '}' in line:\n if inFor:\n f.write('%s%s\\n' % (indent, inFor))\n inFor = ''\n indent = indent[:-4]\n if instruct:\n instruct = False\n f.write(indent + '}\\n')\n else:\n s = indent\n if line.startswith('//'):\n s += '{}'\n elif isDefun(line):\n s += 'def {}:'\n elif isUseStruct(line):\n l = line.split(' ')[1:]\n s += '{} = [{}.copy() for i in range({})]'.format(l[1][:l[1\n ].index('[')], l[0], parseInt(l[1], l[1].index('['))[0])\n s += '{}'\n line = ''\n elif isDefStruct(line):\n s += '{} = \\\\'\n instruct = True\n elif 'if' in line or 'while ' in line:\n s += '{}:'\n elif 'printf' in line and '%' in line:\n s += '{})'\n first_comma = line.index(',')\n line = line[:first_comma] + ' % (' + line[first_comma + 2:]\n elif 'for' in line:\n line = line[3:].replace('(', '').replace(')', '').strip()\n line = [l.strip() for l in line.split(';')]\n if line[0] and line[1]:\n s += '%s\\n%swhile %s:{}' % (line[0], s, line[1])\n if not line[0] and line[1]:\n s += 'while %s:{}' % line[1]\n if line[0] and not line[1]:\n s += '%s\\n%swhile 1:{}' % (line[0], s)\n if not line[0] and not line[1]:\n s += 'while 1:{}'\n inFor = line[2]\n line = ''\n elif instruct:\n s += '\"{}\": None,'\n elif isClarify(line):\n s += '# Clarify `{}` is skiped'\n else:\n s += '{}'\n if isPoint(line):\n index = -1\n for i in range(line.count('*')):\n index = line.index('*', index + 1)\n if isChar(line[index + 1]):\n line = line[:index] + 'p_' + line[index + 1:]\n s = s.format(line.strip())\n for i, j in toRepleace:\n while i in s:\n s = s.replace(i, j)\n if not s.strip().startswith('#'):\n for i in toDelete:\n while i in s:\n s = s.replace(i, '')\n f.write(s + '\\n')\n f.write(\"\"\"if __name__ == \"__main__\":\n main()\"\"\")\n f.close()\n\n\ndef main2(filename, output=None):\n with open(filename, 'r') as f:\n lines = f.readlines()\n if not output:\n output = filename + '.py'\n f = open(output, 'w')\n rst = []\n for line in lines:\n line = line.lstrip(' ').rstrip(';\\n')\n if line.startswith('#'):\n continue\n f.close()\n\n\nif __name__ == '__main__':\n main1('test.c', output='replace.py')\n", "step-4": "operators = ['-', '~', '++', '--', '*', '!', '/', '*', '%', '+', '-', '>',\n '>=', '<', '<=', '==', '!=', '&&', '||', '=']\ntypes = ['int ', 'double ', 'float ', 'char ']\ntoDelete = types + ['struct ']\ntoRepleace = [('printf(', 'print('), ('++', ' += 1'), ('--', ' -= 1'), (\n '/*', \"'''\"), ('*/', \"'''\"), ('//', '#'), ('&&', 'and'), ('||', 'or')]\n\n\ndef isDigit(c):\n return c > '0' and c < '9'\n\n\ndef isChar(c):\n return c > 'a' and c < 'z' or c > 'A' and c < 'Z'\n\n\ndef isOperator(c):\n return c in operators\n\n\ndef isDefun(line):\n return '(' in line and ')' in line and sum([(i in line) for i in toDelete])\n\n\ndef isDefStruct(line):\n return 'struct ' in line and len(line.split(' ')) == 2\n\n\ndef isUseStruct(line):\n return 'struct ' in line and len(line.split(' ')) == 3\n\n\ndef isClarify(line):\n return sum([line.startswith(i) for i in types]) and '=' not in line\n\n\ndef isPoint(line):\n index = line.index('*') if '*' in line else -1\n return index != -1 and len(line) > index + 1 and isChar(line[index + 1]\n ) and (sum([line.startswith(i) for i in types]) or '=' in line)\n\n\ndef isList(line):\n return sum([line.startswith(i) for i in types]\n ) and '[' in line and ']' in line\n\n\ndef parseInt(s, start=0):\n tmp = ''\n while start < len(s):\n if isDigit(s[start]):\n tmp += s[start]\n elif len(tmp):\n break\n start += 1\n return int(tmp), start - len(tmp)\n\n\ndef parseVar(s, start=0):\n tmp = ''\n while start < len(s):\n if isChar(s[start]):\n tmp += s[start]\n elif isDigit(s[start]) and len(tmp):\n break\n start += 1\n return tmp, start - len(tmp)\n\n\ndef parseOperator(s, start=0):\n tmp = ''\n while start < len(s):\n if not isDigit(s[start]) and not isChar(s[start]) and s[start] != ' ':\n tmp += s[start]\n elif len(tmp) and isOperator(tmp):\n return tmp, start - len(tmp)\n else:\n tmp = ''\n start += 1\n\n\ndef main1(filename, output=None):\n with open(filename, 'r') as f:\n lines = f.readlines()\n if not output:\n output = filename + '.py'\n f = open(output, 'w')\n indent = ''\n instruct = False\n inFor = ''\n for line in lines:\n line = line.lstrip(' ').rstrip(';\\n')\n if line.startswith('#'):\n continue\n if '{' in line:\n if instruct:\n f.write(indent + '{\\n')\n indent += ' '\n elif '}' in line:\n if inFor:\n f.write('%s%s\\n' % (indent, inFor))\n inFor = ''\n indent = indent[:-4]\n if instruct:\n instruct = False\n f.write(indent + '}\\n')\n else:\n s = indent\n if line.startswith('//'):\n s += '{}'\n elif isDefun(line):\n s += 'def {}:'\n elif isUseStruct(line):\n l = line.split(' ')[1:]\n s += '{} = [{}.copy() for i in range({})]'.format(l[1][:l[1\n ].index('[')], l[0], parseInt(l[1], l[1].index('['))[0])\n s += '{}'\n line = ''\n elif isDefStruct(line):\n s += '{} = \\\\'\n instruct = True\n elif 'if' in line or 'while ' in line:\n s += '{}:'\n elif 'printf' in line and '%' in line:\n s += '{})'\n first_comma = line.index(',')\n line = line[:first_comma] + ' % (' + line[first_comma + 2:]\n elif 'for' in line:\n line = line[3:].replace('(', '').replace(')', '').strip()\n line = [l.strip() for l in line.split(';')]\n if line[0] and line[1]:\n s += '%s\\n%swhile %s:{}' % (line[0], s, line[1])\n if not line[0] and line[1]:\n s += 'while %s:{}' % line[1]\n if line[0] and not line[1]:\n s += '%s\\n%swhile 1:{}' % (line[0], s)\n if not line[0] and not line[1]:\n s += 'while 1:{}'\n inFor = line[2]\n line = ''\n elif instruct:\n s += '\"{}\": None,'\n elif isClarify(line):\n s += '# Clarify `{}` is skiped'\n else:\n s += '{}'\n if isPoint(line):\n index = -1\n for i in range(line.count('*')):\n index = line.index('*', index + 1)\n if isChar(line[index + 1]):\n line = line[:index] + 'p_' + line[index + 1:]\n s = s.format(line.strip())\n for i, j in toRepleace:\n while i in s:\n s = s.replace(i, j)\n if not s.strip().startswith('#'):\n for i in toDelete:\n while i in s:\n s = s.replace(i, '')\n f.write(s + '\\n')\n f.write(\"\"\"if __name__ == \"__main__\":\n main()\"\"\")\n f.close()\n\n\ndef main2(filename, output=None):\n with open(filename, 'r') as f:\n lines = f.readlines()\n if not output:\n output = filename + '.py'\n f = open(output, 'w')\n rst = []\n for line in lines:\n line = line.lstrip(' ').rstrip(';\\n')\n if line.startswith('#'):\n continue\n f.close()\n\n\nif __name__ == '__main__':\n main1('test.c', output='replace.py')\n", "step-5": "#!/usr/bin/env python\n# coding=utf-8\n\noperators = ['-', '~', '++', '--', '*', '!', '/', '*', '%', '+', '-', \n '>', '>=', '<', '<=', '==', '!=', '&&', '||', '=']\ntypes = ['int ', 'double ', 'float ', 'char ']\ntoDelete = types + ['struct ']\ntoRepleace = [('printf(', 'print('), ('++', ' += 1'), ('--', ' -= 1'),\n ('/*', \"'''\"), ('*/', \"'''\"), ('//','#'),\n ('&&', 'and'), ('||', 'or')]\n\ndef isDigit(c):\n return c > '0' and c < '9'\n\ndef isChar(c):\n return (c > 'a' and c < 'z') or (c > 'A' and c < 'Z')\n\ndef isOperator(c):\n return c in operators\n\ndef isDefun(line):\n return '(' in line and ')' in line and sum([i in line for i in toDelete])\n\ndef isDefStruct(line):\n return 'struct ' in line and len(line.split(' ')) == 2\n\ndef isUseStruct(line):\n return 'struct ' in line and len(line.split(' ')) == 3\n\ndef isClarify(line):\n return sum([line.startswith(i) for i in types]) and '=' not in line\n\ndef isPoint(line):\n index = line.index('*') if '*' in line else -1\n return index != -1 and len(line) > (index + 1) and isChar(line[index + 1]) and \\\n (sum([line.startswith(i) for i in types]) or '=' in line)\n \n\ndef isList(line):\n return sum([line.startswith(i) for i in types]) and '[' in line and ']' in line\n\ndef parseInt(s, start=0):\n tmp = ''\n while start < len(s):\n if isDigit(s[start]):\n tmp += s[start]\n elif len(tmp):\n break\n start += 1\n return int(tmp), start - len(tmp)\n\ndef parseVar(s, start=0):\n tmp = ''\n while start < len(s):\n if isChar(s[start]):\n tmp += s[start]\n elif isDigit(s[start]) and len(tmp):\n break\n start += 1\n return tmp, start - len(tmp)\n\ndef parseOperator(s, start=0):\n tmp = ''\n while start < len(s):\n if not isDigit(s[start]) and not isChar(s[start]) and s[start] != ' ':\n tmp += s[start]\n elif len(tmp) and isOperator(tmp):\n return tmp, start - len(tmp)\n else:\n tmp = ''\n start += 1\n \ndef main1(filename, output=None):\n with open(filename, 'r') as f:\n lines = f.readlines()\n if not output:\n output = filename + '.py'\n f = open(output, 'w')\n indent = ''\n instruct = False\n inFor = ''\n for line in lines:\n line = line.lstrip(' ').rstrip(';\\n')\n if line.startswith('#'):\n continue\n if '{' in line:\n if instruct:\n f.write(indent + '{\\n')\n indent += ' '\n elif '}' in line:\n if inFor:\n f.write('%s%s\\n' % (indent, inFor))\n inFor = ''\n indent = indent[:-4]\n if instruct:\n instruct = False\n f.write(indent + '}\\n')\n# indent = indent[:-4]\n else:\n s = indent\n if line.startswith('//'):\n s += '{}'\n elif isDefun(line):\n s += 'def {}:'\n elif isUseStruct(line):\n l = line.split(' ')[1:]\n s += ('{} = [{}.copy() for i in range({})]'\n '').format(l[1][:l[1].index('[')],\n l[0], parseInt(l[1], l[1].index('['))[0])\n s += '{}'\n line = ''\n elif isDefStruct(line):\n# indent += ' '\n# s += 'class {}:\\n' + indent + 'def __init__(self):'\n s += '{} = \\\\'\n instruct = True\n elif 'if' in line or 'while ' in line:\n s += '{}:'\n elif 'printf' in line and '%' in line:\n s += '{})'\n first_comma = line.index(',')\n line = line[:first_comma] + ' % (' + line[first_comma + 2:]\n elif 'for' in line:\n line = line[3:].replace('(', '').replace(')', '').strip()\n line = [l.strip() for l in line.split(';')]\n if line[0] and line[1]:\n s += '%s\\n%swhile %s:{}' % (line[0], s, line[1])\n if not line[0] and line[1]:\n s += 'while %s:{}' % (line[1])\n if line[0] and not line[1]:\n s += '%s\\n%swhile 1:{}' % (line[0], s)\n if not line[0] and not line[1]:\n s += 'while 1:{}'\n inFor = line[2]\n line = ''\n elif instruct:\n# s += 'self.{} = None'\n s += '\"{}\": None,'\n elif isClarify(line):\n s += '# Clarify `{}` is skiped'\n else:\n s += '{}'\n if isPoint(line):\n index = -1\n for i in range(line.count('*')):\n index = line.index('*', index + 1)\n if isChar(line[index + 1]):\n line = line[:index] + 'p_' + line[index + 1:]\n s = s.format(line.strip())\n for i, j in toRepleace:\n while i in s:\n s = s.replace(i, j)\n if not s.strip().startswith('#'):\n for i in toDelete:\n while i in s:\n s = s.replace(i, '')\n f.write(s + '\\n')\n f.write('if __name__ == \"__main__\":\\n main()')\n f.close()\n \ndef main2(filename, output=None):\n with open(filename, 'r') as f:\n lines = f.readlines()\n if not output:\n output = filename + '.py'\n f = open(output, 'w')\n rst = []\n for line in lines:\n line = line.lstrip(' ').rstrip(';\\n')\n if line.startswith('#'):\n continue\n \n \n f.close() \n \nif __name__ == '__main__':\n main1('test.c', output='replace.py')\n# main2('test.c', output='list.py')\n ", "step-ids": [ 10, 12, 15, 16, 17 ] }
[ 10, 12, 15, 16, 17 ]
from translit import convert_input def openfile(name): f = open(name, 'r', encoding = 'utf-8') text = f.readlines() f.close() return text def makedict(text): A = [] for line in text: if 'lex:' in line: a = [] a.append(line[6:].replace('\n','')) elif 'gramm:' in line: a.append(line[8:].replace('\n','')) elif 'trans_ru:' in line: a.append(line[11:].replace('\n','')) A.append(a) return A def writefile(name, text): fw = open(name, 'w', encoding = 'utf-8') fw.write(text) fw.close() #alf = 'абвгдежзийклмнопрстуфхцчшыьёюяӧӝӟӵ' #trans = list('abvgdežzijklmnoprstufxcčšə') #trans.append('ə̂') #trans.append('ə̈əɤ') def dictionary(): A = [] for i in ['ADJ', 'IMIT', 'N', 'N_persn', 'NRel', 'PRO', 'unchangeable', 'V']: A += makedict(openfile('udm_lexemes_{}.txt'.format(i))) transl = [] for el in A: a = [] a.append(convert_input(el[0], 'cyr')) a += el transl.append(a) return transl def dict_split(transl): D = {k:[] for k in ['N', 'IMIT', 'V']} row = '%s\t%s\t%s\t%s\n' for line in dictionary(): parts = [] if line[2] == 'N' or 'ADJ' in line[2]: parts.append(line[2]) elif 'N-persn' in line[2] or 'N,' in line[2]: parts.append('N') elif 'V,' in line[2]: parts.append('V') if 'ADV' in line[2]: parts.append('ADV') if 'POST' in line[2]: parts.append('POST') if 'PRO' in line[2]: parts.append('PRO') if 'NUM' in line[2]: parts.append('NUM') if 'INTRJ' in line[2]: parts.append('INTRJ') if 'CNJ' in line[2]: parts.append('CNJ') if 'IMIT' in line[2]: parts.append('IMIT') if 'PART' in line[2]: parts.append('PART') if 'N' in parts or 'ADJ' in parts or 'ADV' in parts or 'POST' in parts or 'PRO' in parts or 'NUM' in parts or 'PRAED' in parts or 'INTRJ' in parts or 'CNJ' in parts or 'PART' in parts: D['N'].append(row % (line[0], line[1], ', '.join(parts), line[3])) if 'V' in parts or 'PRAED' in parts: D['V'].append(row % (line[0], line[1], ', '.join(parts), line[3])) if 'IMIT' in parts: D['IMIT'].append(row % (line[0], line[1], ', '.join(parts), line[3])) return D def main(): D = dict_split(dictionary()) for k in D: D[k] = set(D[k]) fw = open('udmlex_' + k + '.tsv', 'w', encoding = 'utf-8') fw.write(''.join(D[k])) fw.close() if __name__ == '__main__': main()
normal
{ "blob_id": "29e54a9ec0d65965645ac4aabf8c247a8857a25f", "index": 3778, "step-1": "<mask token>\n\n\ndef openfile(name):\n f = open(name, 'r', encoding='utf-8')\n text = f.readlines()\n f.close()\n return text\n\n\ndef makedict(text):\n A = []\n for line in text:\n if 'lex:' in line:\n a = []\n a.append(line[6:].replace('\\n', ''))\n elif 'gramm:' in line:\n a.append(line[8:].replace('\\n', ''))\n elif 'trans_ru:' in line:\n a.append(line[11:].replace('\\n', ''))\n A.append(a)\n return A\n\n\n<mask token>\n\n\ndef dictionary():\n A = []\n for i in ['ADJ', 'IMIT', 'N', 'N_persn', 'NRel', 'PRO', 'unchangeable', 'V'\n ]:\n A += makedict(openfile('udm_lexemes_{}.txt'.format(i)))\n transl = []\n for el in A:\n a = []\n a.append(convert_input(el[0], 'cyr'))\n a += el\n transl.append(a)\n return transl\n\n\ndef dict_split(transl):\n D = {k: [] for k in ['N', 'IMIT', 'V']}\n row = '%s\\t%s\\t%s\\t%s\\n'\n for line in dictionary():\n parts = []\n if line[2] == 'N' or 'ADJ' in line[2]:\n parts.append(line[2])\n elif 'N-persn' in line[2] or 'N,' in line[2]:\n parts.append('N')\n elif 'V,' in line[2]:\n parts.append('V')\n if 'ADV' in line[2]:\n parts.append('ADV')\n if 'POST' in line[2]:\n parts.append('POST')\n if 'PRO' in line[2]:\n parts.append('PRO')\n if 'NUM' in line[2]:\n parts.append('NUM')\n if 'INTRJ' in line[2]:\n parts.append('INTRJ')\n if 'CNJ' in line[2]:\n parts.append('CNJ')\n if 'IMIT' in line[2]:\n parts.append('IMIT')\n if 'PART' in line[2]:\n parts.append('PART')\n if ('N' in parts or 'ADJ' in parts or 'ADV' in parts or 'POST' in\n parts or 'PRO' in parts or 'NUM' in parts or 'PRAED' in parts or\n 'INTRJ' in parts or 'CNJ' in parts or 'PART' in parts):\n D['N'].append(row % (line[0], line[1], ', '.join(parts), line[3]))\n if 'V' in parts or 'PRAED' in parts:\n D['V'].append(row % (line[0], line[1], ', '.join(parts), line[3]))\n if 'IMIT' in parts:\n D['IMIT'].append(row % (line[0], line[1], ', '.join(parts),\n line[3]))\n return D\n\n\ndef main():\n D = dict_split(dictionary())\n for k in D:\n D[k] = set(D[k])\n fw = open('udmlex_' + k + '.tsv', 'w', encoding='utf-8')\n fw.write(''.join(D[k]))\n fw.close()\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef openfile(name):\n f = open(name, 'r', encoding='utf-8')\n text = f.readlines()\n f.close()\n return text\n\n\ndef makedict(text):\n A = []\n for line in text:\n if 'lex:' in line:\n a = []\n a.append(line[6:].replace('\\n', ''))\n elif 'gramm:' in line:\n a.append(line[8:].replace('\\n', ''))\n elif 'trans_ru:' in line:\n a.append(line[11:].replace('\\n', ''))\n A.append(a)\n return A\n\n\ndef writefile(name, text):\n fw = open(name, 'w', encoding='utf-8')\n fw.write(text)\n fw.close()\n\n\ndef dictionary():\n A = []\n for i in ['ADJ', 'IMIT', 'N', 'N_persn', 'NRel', 'PRO', 'unchangeable', 'V'\n ]:\n A += makedict(openfile('udm_lexemes_{}.txt'.format(i)))\n transl = []\n for el in A:\n a = []\n a.append(convert_input(el[0], 'cyr'))\n a += el\n transl.append(a)\n return transl\n\n\ndef dict_split(transl):\n D = {k: [] for k in ['N', 'IMIT', 'V']}\n row = '%s\\t%s\\t%s\\t%s\\n'\n for line in dictionary():\n parts = []\n if line[2] == 'N' or 'ADJ' in line[2]:\n parts.append(line[2])\n elif 'N-persn' in line[2] or 'N,' in line[2]:\n parts.append('N')\n elif 'V,' in line[2]:\n parts.append('V')\n if 'ADV' in line[2]:\n parts.append('ADV')\n if 'POST' in line[2]:\n parts.append('POST')\n if 'PRO' in line[2]:\n parts.append('PRO')\n if 'NUM' in line[2]:\n parts.append('NUM')\n if 'INTRJ' in line[2]:\n parts.append('INTRJ')\n if 'CNJ' in line[2]:\n parts.append('CNJ')\n if 'IMIT' in line[2]:\n parts.append('IMIT')\n if 'PART' in line[2]:\n parts.append('PART')\n if ('N' in parts or 'ADJ' in parts or 'ADV' in parts or 'POST' in\n parts or 'PRO' in parts or 'NUM' in parts or 'PRAED' in parts or\n 'INTRJ' in parts or 'CNJ' in parts or 'PART' in parts):\n D['N'].append(row % (line[0], line[1], ', '.join(parts), line[3]))\n if 'V' in parts or 'PRAED' in parts:\n D['V'].append(row % (line[0], line[1], ', '.join(parts), line[3]))\n if 'IMIT' in parts:\n D['IMIT'].append(row % (line[0], line[1], ', '.join(parts),\n line[3]))\n return D\n\n\ndef main():\n D = dict_split(dictionary())\n for k in D:\n D[k] = set(D[k])\n fw = open('udmlex_' + k + '.tsv', 'w', encoding='utf-8')\n fw.write(''.join(D[k]))\n fw.close()\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef openfile(name):\n f = open(name, 'r', encoding='utf-8')\n text = f.readlines()\n f.close()\n return text\n\n\ndef makedict(text):\n A = []\n for line in text:\n if 'lex:' in line:\n a = []\n a.append(line[6:].replace('\\n', ''))\n elif 'gramm:' in line:\n a.append(line[8:].replace('\\n', ''))\n elif 'trans_ru:' in line:\n a.append(line[11:].replace('\\n', ''))\n A.append(a)\n return A\n\n\ndef writefile(name, text):\n fw = open(name, 'w', encoding='utf-8')\n fw.write(text)\n fw.close()\n\n\ndef dictionary():\n A = []\n for i in ['ADJ', 'IMIT', 'N', 'N_persn', 'NRel', 'PRO', 'unchangeable', 'V'\n ]:\n A += makedict(openfile('udm_lexemes_{}.txt'.format(i)))\n transl = []\n for el in A:\n a = []\n a.append(convert_input(el[0], 'cyr'))\n a += el\n transl.append(a)\n return transl\n\n\ndef dict_split(transl):\n D = {k: [] for k in ['N', 'IMIT', 'V']}\n row = '%s\\t%s\\t%s\\t%s\\n'\n for line in dictionary():\n parts = []\n if line[2] == 'N' or 'ADJ' in line[2]:\n parts.append(line[2])\n elif 'N-persn' in line[2] or 'N,' in line[2]:\n parts.append('N')\n elif 'V,' in line[2]:\n parts.append('V')\n if 'ADV' in line[2]:\n parts.append('ADV')\n if 'POST' in line[2]:\n parts.append('POST')\n if 'PRO' in line[2]:\n parts.append('PRO')\n if 'NUM' in line[2]:\n parts.append('NUM')\n if 'INTRJ' in line[2]:\n parts.append('INTRJ')\n if 'CNJ' in line[2]:\n parts.append('CNJ')\n if 'IMIT' in line[2]:\n parts.append('IMIT')\n if 'PART' in line[2]:\n parts.append('PART')\n if ('N' in parts or 'ADJ' in parts or 'ADV' in parts or 'POST' in\n parts or 'PRO' in parts or 'NUM' in parts or 'PRAED' in parts or\n 'INTRJ' in parts or 'CNJ' in parts or 'PART' in parts):\n D['N'].append(row % (line[0], line[1], ', '.join(parts), line[3]))\n if 'V' in parts or 'PRAED' in parts:\n D['V'].append(row % (line[0], line[1], ', '.join(parts), line[3]))\n if 'IMIT' in parts:\n D['IMIT'].append(row % (line[0], line[1], ', '.join(parts),\n line[3]))\n return D\n\n\ndef main():\n D = dict_split(dictionary())\n for k in D:\n D[k] = set(D[k])\n fw = open('udmlex_' + k + '.tsv', 'w', encoding='utf-8')\n fw.write(''.join(D[k]))\n fw.close()\n\n\nif __name__ == '__main__':\n main()\n", "step-4": "from translit import convert_input\n\n\ndef openfile(name):\n f = open(name, 'r', encoding='utf-8')\n text = f.readlines()\n f.close()\n return text\n\n\ndef makedict(text):\n A = []\n for line in text:\n if 'lex:' in line:\n a = []\n a.append(line[6:].replace('\\n', ''))\n elif 'gramm:' in line:\n a.append(line[8:].replace('\\n', ''))\n elif 'trans_ru:' in line:\n a.append(line[11:].replace('\\n', ''))\n A.append(a)\n return A\n\n\ndef writefile(name, text):\n fw = open(name, 'w', encoding='utf-8')\n fw.write(text)\n fw.close()\n\n\ndef dictionary():\n A = []\n for i in ['ADJ', 'IMIT', 'N', 'N_persn', 'NRel', 'PRO', 'unchangeable', 'V'\n ]:\n A += makedict(openfile('udm_lexemes_{}.txt'.format(i)))\n transl = []\n for el in A:\n a = []\n a.append(convert_input(el[0], 'cyr'))\n a += el\n transl.append(a)\n return transl\n\n\ndef dict_split(transl):\n D = {k: [] for k in ['N', 'IMIT', 'V']}\n row = '%s\\t%s\\t%s\\t%s\\n'\n for line in dictionary():\n parts = []\n if line[2] == 'N' or 'ADJ' in line[2]:\n parts.append(line[2])\n elif 'N-persn' in line[2] or 'N,' in line[2]:\n parts.append('N')\n elif 'V,' in line[2]:\n parts.append('V')\n if 'ADV' in line[2]:\n parts.append('ADV')\n if 'POST' in line[2]:\n parts.append('POST')\n if 'PRO' in line[2]:\n parts.append('PRO')\n if 'NUM' in line[2]:\n parts.append('NUM')\n if 'INTRJ' in line[2]:\n parts.append('INTRJ')\n if 'CNJ' in line[2]:\n parts.append('CNJ')\n if 'IMIT' in line[2]:\n parts.append('IMIT')\n if 'PART' in line[2]:\n parts.append('PART')\n if ('N' in parts or 'ADJ' in parts or 'ADV' in parts or 'POST' in\n parts or 'PRO' in parts or 'NUM' in parts or 'PRAED' in parts or\n 'INTRJ' in parts or 'CNJ' in parts or 'PART' in parts):\n D['N'].append(row % (line[0], line[1], ', '.join(parts), line[3]))\n if 'V' in parts or 'PRAED' in parts:\n D['V'].append(row % (line[0], line[1], ', '.join(parts), line[3]))\n if 'IMIT' in parts:\n D['IMIT'].append(row % (line[0], line[1], ', '.join(parts),\n line[3]))\n return D\n\n\ndef main():\n D = dict_split(dictionary())\n for k in D:\n D[k] = set(D[k])\n fw = open('udmlex_' + k + '.tsv', 'w', encoding='utf-8')\n fw.write(''.join(D[k]))\n fw.close()\n\n\nif __name__ == '__main__':\n main()\n", "step-5": "from translit import convert_input\r\n\r\ndef openfile(name):\r\n f = open(name, 'r', encoding = 'utf-8')\r\n text = f.readlines()\r\n f.close()\r\n return text\r\n\r\ndef makedict(text):\r\n A = []\r\n for line in text:\r\n if 'lex:' in line:\r\n a = []\r\n a.append(line[6:].replace('\\n',''))\r\n elif 'gramm:' in line:\r\n a.append(line[8:].replace('\\n',''))\r\n elif 'trans_ru:' in line:\r\n a.append(line[11:].replace('\\n',''))\r\n A.append(a)\r\n return A\r\n\r\ndef writefile(name, text):\r\n fw = open(name, 'w', encoding = 'utf-8')\r\n fw.write(text) \r\n fw.close()\r\n\r\n#alf = 'абвгдежзийклмнопрстуфхцчшыьёюяӧӝӟӵ'\r\n#trans = list('abvgdežzijklmnoprstufxcčšə')\r\n#trans.append('ə̂')\r\n#trans.append('ə̈əɤ')\r\n\r\ndef dictionary():\r\n A = []\r\n for i in ['ADJ', 'IMIT', 'N', 'N_persn', 'NRel', 'PRO', 'unchangeable', 'V']:\r\n A += makedict(openfile('udm_lexemes_{}.txt'.format(i)))\r\n transl = []\r\n for el in A:\r\n a = []\r\n a.append(convert_input(el[0], 'cyr'))\r\n a += el\r\n transl.append(a)\r\n return transl\r\n\r\ndef dict_split(transl):\r\n D = {k:[] for k in ['N', 'IMIT', 'V']}\r\n row = '%s\\t%s\\t%s\\t%s\\n'\r\n for line in dictionary():\r\n parts = []\r\n if line[2] == 'N' or 'ADJ' in line[2]:\r\n parts.append(line[2])\r\n elif 'N-persn' in line[2] or 'N,' in line[2]:\r\n parts.append('N')\r\n elif 'V,' in line[2]: \r\n parts.append('V')\r\n if 'ADV' in line[2]:\r\n parts.append('ADV')\r\n if 'POST' in line[2]:\r\n parts.append('POST')\r\n if 'PRO' in line[2]:\r\n parts.append('PRO')\r\n if 'NUM' in line[2]:\r\n parts.append('NUM')\r\n if 'INTRJ' in line[2]:\r\n parts.append('INTRJ')\r\n if 'CNJ' in line[2]:\r\n parts.append('CNJ')\r\n if 'IMIT' in line[2]:\r\n parts.append('IMIT')\r\n if 'PART' in line[2]:\r\n parts.append('PART')\r\n if 'N' in parts or 'ADJ' in parts or 'ADV' in parts or 'POST' in parts or 'PRO' in parts or 'NUM' in parts or 'PRAED' in parts or 'INTRJ' in parts or 'CNJ' in parts or 'PART' in parts:\r\n D['N'].append(row % (line[0], line[1], ', '.join(parts), line[3]))\r\n if 'V' in parts or 'PRAED' in parts:\r\n D['V'].append(row % (line[0], line[1], ', '.join(parts), line[3]))\r\n if 'IMIT' in parts:\r\n D['IMIT'].append(row % (line[0], line[1], ', '.join(parts), line[3]))\r\n return D\r\n\r\ndef main():\r\n D = dict_split(dictionary()) \r\n for k in D:\r\n D[k] = set(D[k])\r\n fw = open('udmlex_' + k + '.tsv', 'w', encoding = 'utf-8')\r\n fw.write(''.join(D[k]))\r\n fw.close()\r\n\r\nif __name__ == '__main__':\r\n main()\r\n", "step-ids": [ 5, 6, 7, 8, 9 ] }
[ 5, 6, 7, 8, 9 ]
import sys, os class Extractor: def __init__(self, prefix=''): self.variables = {} self.prefix = os.path.basename(prefix) ''' Returns the variable name if a variable with the value <value> is found. ''' def find_variable_name(self, value): for var, val in self.variables.items(): if value == val: return var ''' Scans a list of <lines> containing CSS and returns a list of strings containing the rendered LESS version. ''' def scan(self, lines): yield "@import '%s_variables.less'\n\n" %self.prefix for line in lines: found_prop = False for prop in ('background-color', 'background', 'color'): if prop in line: found_prop = True value = line.split(':')[1].strip().replace('}', '') if not (value in self.variables.values()): self.variables['@var%i' %(len(self.variables) + 1)] = value yield line.replace(value, self.find_variable_name(value) + ';') if not found_prop: yield line ''' Returns the output for the variables.less file as a list of strings ''' def get_variables(self): for var, val in self.variables.items(): yield var + ': ' + val if __name__ == '__main__': if len(sys.argv) > 1: for path in sys.argv[1:]: name = '.'.join(path.split('.')[:-1]) extractor = Extractor(name) read = open(path) write = open(name + '.less', 'w') variables = open(name + '_variables.less', 'w') try: for line in extractor.scan(read.readlines()): write.write(line) for line in extractor.get_variables(): variables.write(line + os.linesep) finally: variables.close() write.close() read.close() else: print('usage: python extract.py [file]')
normal
{ "blob_id": "dffcaf47ec8e0daa940e7047f11681ef3eabc772", "index": 8591, "step-1": "<mask token>\n\n\nclass Extractor:\n\n def __init__(self, prefix=''):\n self.variables = {}\n self.prefix = os.path.basename(prefix)\n <mask token>\n\n def find_variable_name(self, value):\n for var, val in self.variables.items():\n if value == val:\n return var\n <mask token>\n\n def scan(self, lines):\n yield \"@import '%s_variables.less'\\n\\n\" % self.prefix\n for line in lines:\n found_prop = False\n for prop in ('background-color', 'background', 'color'):\n if prop in line:\n found_prop = True\n value = line.split(':')[1].strip().replace('}', '')\n if not value in self.variables.values():\n self.variables['@var%i' % (len(self.variables) + 1)\n ] = value\n yield line.replace(value, self.find_variable_name(value\n ) + ';')\n if not found_prop:\n yield line\n <mask token>\n <mask token>\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass Extractor:\n\n def __init__(self, prefix=''):\n self.variables = {}\n self.prefix = os.path.basename(prefix)\n \"\"\"\n Returns the variable name if a variable with\n the value <value> is found.\n \"\"\"\n\n def find_variable_name(self, value):\n for var, val in self.variables.items():\n if value == val:\n return var\n \"\"\"\n Scans a list of <lines> containing CSS and\n returns a list of strings containing the\n rendered LESS version.\n \"\"\"\n\n def scan(self, lines):\n yield \"@import '%s_variables.less'\\n\\n\" % self.prefix\n for line in lines:\n found_prop = False\n for prop in ('background-color', 'background', 'color'):\n if prop in line:\n found_prop = True\n value = line.split(':')[1].strip().replace('}', '')\n if not value in self.variables.values():\n self.variables['@var%i' % (len(self.variables) + 1)\n ] = value\n yield line.replace(value, self.find_variable_name(value\n ) + ';')\n if not found_prop:\n yield line\n \"\"\"\n Returns the output for the variables.less\n file as a list of strings\n \"\"\"\n\n def get_variables(self):\n for var, val in self.variables.items():\n yield var + ': ' + val\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass Extractor:\n\n def __init__(self, prefix=''):\n self.variables = {}\n self.prefix = os.path.basename(prefix)\n \"\"\"\n Returns the variable name if a variable with\n the value <value> is found.\n \"\"\"\n\n def find_variable_name(self, value):\n for var, val in self.variables.items():\n if value == val:\n return var\n \"\"\"\n Scans a list of <lines> containing CSS and\n returns a list of strings containing the\n rendered LESS version.\n \"\"\"\n\n def scan(self, lines):\n yield \"@import '%s_variables.less'\\n\\n\" % self.prefix\n for line in lines:\n found_prop = False\n for prop in ('background-color', 'background', 'color'):\n if prop in line:\n found_prop = True\n value = line.split(':')[1].strip().replace('}', '')\n if not value in self.variables.values():\n self.variables['@var%i' % (len(self.variables) + 1)\n ] = value\n yield line.replace(value, self.find_variable_name(value\n ) + ';')\n if not found_prop:\n yield line\n \"\"\"\n Returns the output for the variables.less\n file as a list of strings\n \"\"\"\n\n def get_variables(self):\n for var, val in self.variables.items():\n yield var + ': ' + val\n\n\nif __name__ == '__main__':\n if len(sys.argv) > 1:\n for path in sys.argv[1:]:\n name = '.'.join(path.split('.')[:-1])\n extractor = Extractor(name)\n read = open(path)\n write = open(name + '.less', 'w')\n variables = open(name + '_variables.less', 'w')\n try:\n for line in extractor.scan(read.readlines()):\n write.write(line)\n for line in extractor.get_variables():\n variables.write(line + os.linesep)\n finally:\n variables.close()\n write.close()\n read.close()\n else:\n print('usage: python extract.py [file]')\n", "step-4": "import sys, os\n\n\nclass Extractor:\n\n def __init__(self, prefix=''):\n self.variables = {}\n self.prefix = os.path.basename(prefix)\n \"\"\"\n Returns the variable name if a variable with\n the value <value> is found.\n \"\"\"\n\n def find_variable_name(self, value):\n for var, val in self.variables.items():\n if value == val:\n return var\n \"\"\"\n Scans a list of <lines> containing CSS and\n returns a list of strings containing the\n rendered LESS version.\n \"\"\"\n\n def scan(self, lines):\n yield \"@import '%s_variables.less'\\n\\n\" % self.prefix\n for line in lines:\n found_prop = False\n for prop in ('background-color', 'background', 'color'):\n if prop in line:\n found_prop = True\n value = line.split(':')[1].strip().replace('}', '')\n if not value in self.variables.values():\n self.variables['@var%i' % (len(self.variables) + 1)\n ] = value\n yield line.replace(value, self.find_variable_name(value\n ) + ';')\n if not found_prop:\n yield line\n \"\"\"\n Returns the output for the variables.less\n file as a list of strings\n \"\"\"\n\n def get_variables(self):\n for var, val in self.variables.items():\n yield var + ': ' + val\n\n\nif __name__ == '__main__':\n if len(sys.argv) > 1:\n for path in sys.argv[1:]:\n name = '.'.join(path.split('.')[:-1])\n extractor = Extractor(name)\n read = open(path)\n write = open(name + '.less', 'w')\n variables = open(name + '_variables.less', 'w')\n try:\n for line in extractor.scan(read.readlines()):\n write.write(line)\n for line in extractor.get_variables():\n variables.write(line + os.linesep)\n finally:\n variables.close()\n write.close()\n read.close()\n else:\n print('usage: python extract.py [file]')\n", "step-5": "import sys, os\n\nclass Extractor:\n def __init__(self, prefix=''):\n self.variables = {}\n self.prefix = os.path.basename(prefix)\n \n '''\n Returns the variable name if a variable with\n the value <value> is found.\n '''\n def find_variable_name(self, value):\n for var, val in self.variables.items():\n if value == val:\n return var\n \n '''\n Scans a list of <lines> containing CSS and\n returns a list of strings containing the\n rendered LESS version.\n '''\n def scan(self, lines):\n yield \"@import '%s_variables.less'\\n\\n\" %self.prefix\n for line in lines:\n found_prop = False\n for prop in ('background-color', 'background', 'color'):\n if prop in line:\n found_prop = True\n value = line.split(':')[1].strip().replace('}', '')\n if not (value in self.variables.values()):\n self.variables['@var%i' %(len(self.variables) + 1)] = value\n yield line.replace(value, self.find_variable_name(value) + ';')\n if not found_prop:\n yield line\n\n '''\n Returns the output for the variables.less\n file as a list of strings\n '''\n def get_variables(self):\n for var, val in self.variables.items():\n yield var + ': ' + val \n \n\nif __name__ == '__main__':\n if len(sys.argv) > 1:\n for path in sys.argv[1:]:\n name = '.'.join(path.split('.')[:-1])\n extractor = Extractor(name)\n read = open(path)\n write = open(name + '.less', 'w')\n variables = open(name + '_variables.less', 'w')\n try:\n for line in extractor.scan(read.readlines()):\n write.write(line)\n for line in extractor.get_variables():\n variables.write(line + os.linesep)\n finally:\n variables.close()\n write.close()\n read.close() \n \n else:\n print('usage: python extract.py [file]')\n \n\n", "step-ids": [ 4, 6, 7, 8, 9 ] }
[ 4, 6, 7, 8, 9 ]
import time if __name__ == '__main__': for i in range(10): print('here %s' % i) time.sleep(1) print('TEST SUCEEDED')
normal
{ "blob_id": "a159f9f9cc06bb9d22f84781fb2fc664ea204b64", "index": 6856, "step-1": "<mask token>\n", "step-2": "<mask token>\nif __name__ == '__main__':\n for i in range(10):\n print('here %s' % i)\n time.sleep(1)\n print('TEST SUCEEDED')\n", "step-3": "import time\nif __name__ == '__main__':\n for i in range(10):\n print('here %s' % i)\n time.sleep(1)\n print('TEST SUCEEDED')\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
import discord import requests import math from keys import GITHUB_DISCORD_TOKEN, GITHUB_FORTNITE_API_KEY client = discord.Client() # Constant DISCORD_TOKEN = GITHUB_DISCORD_TOKEN FORTNITE_API_KEY = GITHUB_FORTNITE_API_KEY LIST = ['Verified'] VERIFIED = 4 # Return the current season squad K/D of the fortnite player def get_ratio(username): try: print(username) link = 'https://api.fortnitetracker.com/v1/profile/pc/' + username response = requests.get(link, headers={'TRN-Api-Key': FORTNITE_API_KEY}) if response.status_code == 200: collection = response.json() if 'error' in collection: return "-1" else: ratio = collection['stats']['curr_p9']['kd']['value'] return ratio print("Invalid username") return "-1" else: print("Error parsing data.") return "-2" except KeyError: print("Error finding data. KeyError was returned.") return "-3" @client.event async def on_message(message): # we do not want the bot to reply to itself if message.author == client.user: return # The command !patch return a link with the lastest patch note if message.content.startswith('!patch'): await message.channel.send('Latest patch notes: https://www.epicgames.com/fortnite/en-US/patch-notes/') # The command !help explains the one function if message.content.startswith('!help'): embed = discord.Embed(colour=discord.Colour(0x8e2626), url="https://github.com/af1/kdFortniteDiscordBot",) embed.set_author(name="Verify Bot Help", icon_url="") embed.add_field(name="Set your Discord nickname to be exacly the same as your Epic Games player name. Then type: !verify", value="You can change your nickname by typing \"/nick *YourEpicIGN*\". The bot looks at your squad K/D for the current season, so if you have no games played yet, the bot won\'t be able to verify you.", inline=False) await message.channel.send(embed=embed) # The command !verify return attribute a rank according to the K/D of the user if message.content.startswith("!verify"): for list in LIST: roles = discord.utils.get(message.guild.roles, name=list) username = '{0.author.display_name}'.format(message) ratio = float(get_ratio(username)) msgRatio = str(ratio) msgVerified = str(VERIFIED) print(ratio) if ratio == -1.0: embed = discord.Embed(colour=discord.Colour(0x8e2626), url="https://github.com/af1/kdFortniteDiscordBot",) embed.set_author(name="Verify " + message.author.display_name, icon_url=message.author.avatar_url) embed.add_field(name="Fortnite player **" + message.author.display_name + "** not found.", value="\nYour Discord nickname and IGN must be exactly the same. Change your Discord nickname to your IGN and try again.", inline=False) await message.channel.send(embed=embed) elif ratio == -2.0: embed = discord.Embed(colour=discord.Colour(0x8e2626), url="https://github.com/af1/kdFortniteDiscordBot",) embed.set_author(name="Verify " + message.author.display_name, icon_url=message.author.avatar_url) embed.add_field(name="Data not found.", value="Fortnite Tracker is down. Please try again shortly.", inline=False) await message.channel.send(embed=embed) elif ratio == -3.0: embed = discord.Embed(colour=discord.Colour(0x8e2626), url="https://github.com/af1/kdFortniteDiscordBot",) embed.set_author(name="Verify " + message.author.display_name, icon_url=message.author.avatar_url) embed.add_field(name="No stats found for squad mode in the current season.", value="Play some games and try again.", inline=False) await message.channel.send(embed=embed) elif ratio > 0 and ratio < VERIFIED: print("🚫") print("-") embed = discord.Embed(colour=discord.Colour(0x45278e), url="https://github.com/af1/kdFortniteDiscordBot",) embed.set_author(name="Verify " + message.author.display_name, icon_url=message.author.avatar_url) embed.add_field(name=message.author.display_name + " does not have over a " + msgVerified + " K/D.", value="Current season squads K/D: **" + msgRatio + "**", inline=False) await message.channel.send(embed=embed) elif ratio >= VERIFIED: print("✅") print("-") role = discord.utils.get(message.guild.roles, name=LIST[0]) embed = discord.Embed(colour=discord.Colour(0x45278e), url="https://github.com/af1/kdFortniteDiscordBot",) embed.set_author(name="Verify " + message.author.display_name, icon_url=message.author.avatar_url) embed.add_field(name=message.author.display_name + " has over a " + msgVerified + " K/D. Verified!", value="Current season squads K/D: **" + msgRatio + "**", inline=False) user=message.author await message.channel.send(embed=embed) await user.add_roles(role) @client.event async def on_ready(): print("-") print("Logged in as: " + client.user.name) print("With Client User ID: " + str(client.user.id)) print("Verified set to: " + str(VERIFIED)) print("-") client.run(DISCORD_TOKEN)
normal
{ "blob_id": "6c6a49dfced680fe034cbbc2fa28d57d2aa1273e", "index": 8973, "step-1": "<mask token>\n\n\ndef get_ratio(username):\n try:\n print(username)\n link = 'https://api.fortnitetracker.com/v1/profile/pc/' + username\n response = requests.get(link, headers={'TRN-Api-Key': FORTNITE_API_KEY}\n )\n if response.status_code == 200:\n collection = response.json()\n if 'error' in collection:\n return '-1'\n else:\n ratio = collection['stats']['curr_p9']['kd']['value']\n return ratio\n print('Invalid username')\n return '-1'\n else:\n print('Error parsing data.')\n return '-2'\n except KeyError:\n print('Error finding data. KeyError was returned.')\n return '-3'\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef get_ratio(username):\n try:\n print(username)\n link = 'https://api.fortnitetracker.com/v1/profile/pc/' + username\n response = requests.get(link, headers={'TRN-Api-Key': FORTNITE_API_KEY}\n )\n if response.status_code == 200:\n collection = response.json()\n if 'error' in collection:\n return '-1'\n else:\n ratio = collection['stats']['curr_p9']['kd']['value']\n return ratio\n print('Invalid username')\n return '-1'\n else:\n print('Error parsing data.')\n return '-2'\n except KeyError:\n print('Error finding data. KeyError was returned.')\n return '-3'\n\n\[email protected]\nasync def on_message(message):\n if message.author == client.user:\n return\n if message.content.startswith('!patch'):\n await message.channel.send(\n 'Latest patch notes: https://www.epicgames.com/fortnite/en-US/patch-notes/'\n )\n if message.content.startswith('!help'):\n embed = discord.Embed(colour=discord.Colour(9315878), url=\n 'https://github.com/af1/kdFortniteDiscordBot')\n embed.set_author(name='Verify Bot Help', icon_url='')\n embed.add_field(name=\n 'Set your Discord nickname to be exacly the same as your Epic Games player name. Then type: !verify'\n , value=\n 'You can change your nickname by typing \"/nick *YourEpicIGN*\". The bot looks at your squad K/D for the current season, so if you have no games played yet, the bot won\\'t be able to verify you.'\n , inline=False)\n await message.channel.send(embed=embed)\n if message.content.startswith('!verify'):\n for list in LIST:\n roles = discord.utils.get(message.guild.roles, name=list)\n username = '{0.author.display_name}'.format(message)\n ratio = float(get_ratio(username))\n msgRatio = str(ratio)\n msgVerified = str(VERIFIED)\n print(ratio)\n if ratio == -1.0:\n embed = discord.Embed(colour=discord.Colour(9315878), url=\n 'https://github.com/af1/kdFortniteDiscordBot')\n embed.set_author(name='Verify ' + message.author.display_name,\n icon_url=message.author.avatar_url)\n embed.add_field(name='Fortnite player **' + message.author.\n display_name + '** not found.', value=\n \"\"\"\nYour Discord nickname and IGN must be exactly the same. Change your Discord nickname to your IGN and try again.\"\"\"\n , inline=False)\n await message.channel.send(embed=embed)\n elif ratio == -2.0:\n embed = discord.Embed(colour=discord.Colour(9315878), url=\n 'https://github.com/af1/kdFortniteDiscordBot')\n embed.set_author(name='Verify ' + message.author.display_name,\n icon_url=message.author.avatar_url)\n embed.add_field(name='Data not found.', value=\n 'Fortnite Tracker is down. Please try again shortly.',\n inline=False)\n await message.channel.send(embed=embed)\n elif ratio == -3.0:\n embed = discord.Embed(colour=discord.Colour(9315878), url=\n 'https://github.com/af1/kdFortniteDiscordBot')\n embed.set_author(name='Verify ' + message.author.display_name,\n icon_url=message.author.avatar_url)\n embed.add_field(name=\n 'No stats found for squad mode in the current season.',\n value='Play some games and try again.', inline=False)\n await message.channel.send(embed=embed)\n elif ratio > 0 and ratio < VERIFIED:\n print('🚫')\n print('-')\n embed = discord.Embed(colour=discord.Colour(4532110), url=\n 'https://github.com/af1/kdFortniteDiscordBot')\n embed.set_author(name='Verify ' + message.author.display_name,\n icon_url=message.author.avatar_url)\n embed.add_field(name=message.author.display_name +\n ' does not have over a ' + msgVerified + ' K/D.', value=\n 'Current season squads K/D: **' + msgRatio + '**', inline=False\n )\n await message.channel.send(embed=embed)\n elif ratio >= VERIFIED:\n print('✅')\n print('-')\n role = discord.utils.get(message.guild.roles, name=LIST[0])\n embed = discord.Embed(colour=discord.Colour(4532110), url=\n 'https://github.com/af1/kdFortniteDiscordBot')\n embed.set_author(name='Verify ' + message.author.display_name,\n icon_url=message.author.avatar_url)\n embed.add_field(name=message.author.display_name +\n ' has over a ' + msgVerified + ' K/D. Verified!', value=\n 'Current season squads K/D: **' + msgRatio + '**', inline=False\n )\n user = message.author\n await message.channel.send(embed=embed)\n await user.add_roles(role)\n\n\[email protected]\nasync def on_ready():\n print('-')\n print('Logged in as: ' + client.user.name)\n print('With Client User ID: ' + str(client.user.id))\n print('Verified set to: ' + str(VERIFIED))\n print('-')\n\n\nclient.run(DISCORD_TOKEN)\n", "step-3": "<mask token>\nclient = discord.Client()\nDISCORD_TOKEN = GITHUB_DISCORD_TOKEN\nFORTNITE_API_KEY = GITHUB_FORTNITE_API_KEY\nLIST = ['Verified']\nVERIFIED = 4\n\n\ndef get_ratio(username):\n try:\n print(username)\n link = 'https://api.fortnitetracker.com/v1/profile/pc/' + username\n response = requests.get(link, headers={'TRN-Api-Key': FORTNITE_API_KEY}\n )\n if response.status_code == 200:\n collection = response.json()\n if 'error' in collection:\n return '-1'\n else:\n ratio = collection['stats']['curr_p9']['kd']['value']\n return ratio\n print('Invalid username')\n return '-1'\n else:\n print('Error parsing data.')\n return '-2'\n except KeyError:\n print('Error finding data. KeyError was returned.')\n return '-3'\n\n\[email protected]\nasync def on_message(message):\n if message.author == client.user:\n return\n if message.content.startswith('!patch'):\n await message.channel.send(\n 'Latest patch notes: https://www.epicgames.com/fortnite/en-US/patch-notes/'\n )\n if message.content.startswith('!help'):\n embed = discord.Embed(colour=discord.Colour(9315878), url=\n 'https://github.com/af1/kdFortniteDiscordBot')\n embed.set_author(name='Verify Bot Help', icon_url='')\n embed.add_field(name=\n 'Set your Discord nickname to be exacly the same as your Epic Games player name. Then type: !verify'\n , value=\n 'You can change your nickname by typing \"/nick *YourEpicIGN*\". The bot looks at your squad K/D for the current season, so if you have no games played yet, the bot won\\'t be able to verify you.'\n , inline=False)\n await message.channel.send(embed=embed)\n if message.content.startswith('!verify'):\n for list in LIST:\n roles = discord.utils.get(message.guild.roles, name=list)\n username = '{0.author.display_name}'.format(message)\n ratio = float(get_ratio(username))\n msgRatio = str(ratio)\n msgVerified = str(VERIFIED)\n print(ratio)\n if ratio == -1.0:\n embed = discord.Embed(colour=discord.Colour(9315878), url=\n 'https://github.com/af1/kdFortniteDiscordBot')\n embed.set_author(name='Verify ' + message.author.display_name,\n icon_url=message.author.avatar_url)\n embed.add_field(name='Fortnite player **' + message.author.\n display_name + '** not found.', value=\n \"\"\"\nYour Discord nickname and IGN must be exactly the same. Change your Discord nickname to your IGN and try again.\"\"\"\n , inline=False)\n await message.channel.send(embed=embed)\n elif ratio == -2.0:\n embed = discord.Embed(colour=discord.Colour(9315878), url=\n 'https://github.com/af1/kdFortniteDiscordBot')\n embed.set_author(name='Verify ' + message.author.display_name,\n icon_url=message.author.avatar_url)\n embed.add_field(name='Data not found.', value=\n 'Fortnite Tracker is down. Please try again shortly.',\n inline=False)\n await message.channel.send(embed=embed)\n elif ratio == -3.0:\n embed = discord.Embed(colour=discord.Colour(9315878), url=\n 'https://github.com/af1/kdFortniteDiscordBot')\n embed.set_author(name='Verify ' + message.author.display_name,\n icon_url=message.author.avatar_url)\n embed.add_field(name=\n 'No stats found for squad mode in the current season.',\n value='Play some games and try again.', inline=False)\n await message.channel.send(embed=embed)\n elif ratio > 0 and ratio < VERIFIED:\n print('🚫')\n print('-')\n embed = discord.Embed(colour=discord.Colour(4532110), url=\n 'https://github.com/af1/kdFortniteDiscordBot')\n embed.set_author(name='Verify ' + message.author.display_name,\n icon_url=message.author.avatar_url)\n embed.add_field(name=message.author.display_name +\n ' does not have over a ' + msgVerified + ' K/D.', value=\n 'Current season squads K/D: **' + msgRatio + '**', inline=False\n )\n await message.channel.send(embed=embed)\n elif ratio >= VERIFIED:\n print('✅')\n print('-')\n role = discord.utils.get(message.guild.roles, name=LIST[0])\n embed = discord.Embed(colour=discord.Colour(4532110), url=\n 'https://github.com/af1/kdFortniteDiscordBot')\n embed.set_author(name='Verify ' + message.author.display_name,\n icon_url=message.author.avatar_url)\n embed.add_field(name=message.author.display_name +\n ' has over a ' + msgVerified + ' K/D. Verified!', value=\n 'Current season squads K/D: **' + msgRatio + '**', inline=False\n )\n user = message.author\n await message.channel.send(embed=embed)\n await user.add_roles(role)\n\n\[email protected]\nasync def on_ready():\n print('-')\n print('Logged in as: ' + client.user.name)\n print('With Client User ID: ' + str(client.user.id))\n print('Verified set to: ' + str(VERIFIED))\n print('-')\n\n\nclient.run(DISCORD_TOKEN)\n", "step-4": "import discord\nimport requests\nimport math\nfrom keys import GITHUB_DISCORD_TOKEN, GITHUB_FORTNITE_API_KEY\nclient = discord.Client()\nDISCORD_TOKEN = GITHUB_DISCORD_TOKEN\nFORTNITE_API_KEY = GITHUB_FORTNITE_API_KEY\nLIST = ['Verified']\nVERIFIED = 4\n\n\ndef get_ratio(username):\n try:\n print(username)\n link = 'https://api.fortnitetracker.com/v1/profile/pc/' + username\n response = requests.get(link, headers={'TRN-Api-Key': FORTNITE_API_KEY}\n )\n if response.status_code == 200:\n collection = response.json()\n if 'error' in collection:\n return '-1'\n else:\n ratio = collection['stats']['curr_p9']['kd']['value']\n return ratio\n print('Invalid username')\n return '-1'\n else:\n print('Error parsing data.')\n return '-2'\n except KeyError:\n print('Error finding data. KeyError was returned.')\n return '-3'\n\n\[email protected]\nasync def on_message(message):\n if message.author == client.user:\n return\n if message.content.startswith('!patch'):\n await message.channel.send(\n 'Latest patch notes: https://www.epicgames.com/fortnite/en-US/patch-notes/'\n )\n if message.content.startswith('!help'):\n embed = discord.Embed(colour=discord.Colour(9315878), url=\n 'https://github.com/af1/kdFortniteDiscordBot')\n embed.set_author(name='Verify Bot Help', icon_url='')\n embed.add_field(name=\n 'Set your Discord nickname to be exacly the same as your Epic Games player name. Then type: !verify'\n , value=\n 'You can change your nickname by typing \"/nick *YourEpicIGN*\". The bot looks at your squad K/D for the current season, so if you have no games played yet, the bot won\\'t be able to verify you.'\n , inline=False)\n await message.channel.send(embed=embed)\n if message.content.startswith('!verify'):\n for list in LIST:\n roles = discord.utils.get(message.guild.roles, name=list)\n username = '{0.author.display_name}'.format(message)\n ratio = float(get_ratio(username))\n msgRatio = str(ratio)\n msgVerified = str(VERIFIED)\n print(ratio)\n if ratio == -1.0:\n embed = discord.Embed(colour=discord.Colour(9315878), url=\n 'https://github.com/af1/kdFortniteDiscordBot')\n embed.set_author(name='Verify ' + message.author.display_name,\n icon_url=message.author.avatar_url)\n embed.add_field(name='Fortnite player **' + message.author.\n display_name + '** not found.', value=\n \"\"\"\nYour Discord nickname and IGN must be exactly the same. Change your Discord nickname to your IGN and try again.\"\"\"\n , inline=False)\n await message.channel.send(embed=embed)\n elif ratio == -2.0:\n embed = discord.Embed(colour=discord.Colour(9315878), url=\n 'https://github.com/af1/kdFortniteDiscordBot')\n embed.set_author(name='Verify ' + message.author.display_name,\n icon_url=message.author.avatar_url)\n embed.add_field(name='Data not found.', value=\n 'Fortnite Tracker is down. Please try again shortly.',\n inline=False)\n await message.channel.send(embed=embed)\n elif ratio == -3.0:\n embed = discord.Embed(colour=discord.Colour(9315878), url=\n 'https://github.com/af1/kdFortniteDiscordBot')\n embed.set_author(name='Verify ' + message.author.display_name,\n icon_url=message.author.avatar_url)\n embed.add_field(name=\n 'No stats found for squad mode in the current season.',\n value='Play some games and try again.', inline=False)\n await message.channel.send(embed=embed)\n elif ratio > 0 and ratio < VERIFIED:\n print('🚫')\n print('-')\n embed = discord.Embed(colour=discord.Colour(4532110), url=\n 'https://github.com/af1/kdFortniteDiscordBot')\n embed.set_author(name='Verify ' + message.author.display_name,\n icon_url=message.author.avatar_url)\n embed.add_field(name=message.author.display_name +\n ' does not have over a ' + msgVerified + ' K/D.', value=\n 'Current season squads K/D: **' + msgRatio + '**', inline=False\n )\n await message.channel.send(embed=embed)\n elif ratio >= VERIFIED:\n print('✅')\n print('-')\n role = discord.utils.get(message.guild.roles, name=LIST[0])\n embed = discord.Embed(colour=discord.Colour(4532110), url=\n 'https://github.com/af1/kdFortniteDiscordBot')\n embed.set_author(name='Verify ' + message.author.display_name,\n icon_url=message.author.avatar_url)\n embed.add_field(name=message.author.display_name +\n ' has over a ' + msgVerified + ' K/D. Verified!', value=\n 'Current season squads K/D: **' + msgRatio + '**', inline=False\n )\n user = message.author\n await message.channel.send(embed=embed)\n await user.add_roles(role)\n\n\[email protected]\nasync def on_ready():\n print('-')\n print('Logged in as: ' + client.user.name)\n print('With Client User ID: ' + str(client.user.id))\n print('Verified set to: ' + str(VERIFIED))\n print('-')\n\n\nclient.run(DISCORD_TOKEN)\n", "step-5": "import discord\nimport requests\nimport math\nfrom keys import GITHUB_DISCORD_TOKEN, GITHUB_FORTNITE_API_KEY\n\nclient = discord.Client()\n\n# Constant\nDISCORD_TOKEN = GITHUB_DISCORD_TOKEN\nFORTNITE_API_KEY = GITHUB_FORTNITE_API_KEY\n\nLIST = ['Verified']\nVERIFIED = 4\n\n# Return the current season squad K/D of the fortnite player\ndef get_ratio(username):\n try:\n print(username)\n link = 'https://api.fortnitetracker.com/v1/profile/pc/' + username\n response = requests.get(link, headers={'TRN-Api-Key': FORTNITE_API_KEY})\n if response.status_code == 200:\n collection = response.json()\n if 'error' in collection:\n return \"-1\"\n else:\n ratio = collection['stats']['curr_p9']['kd']['value']\n return ratio\n print(\"Invalid username\")\n return \"-1\"\n else:\n print(\"Error parsing data.\")\n return \"-2\"\n except KeyError:\n print(\"Error finding data. KeyError was returned.\")\n return \"-3\"\n\[email protected]\nasync def on_message(message):\n # we do not want the bot to reply to itself\n if message.author == client.user:\n return\n # The command !patch return a link with the lastest patch note\n if message.content.startswith('!patch'):\n await message.channel.send('Latest patch notes: https://www.epicgames.com/fortnite/en-US/patch-notes/')\n # The command !help explains the one function\n if message.content.startswith('!help'):\n embed = discord.Embed(colour=discord.Colour(0x8e2626), url=\"https://github.com/af1/kdFortniteDiscordBot\",)\n embed.set_author(name=\"Verify Bot Help\", icon_url=\"\")\n embed.add_field(name=\"Set your Discord nickname to be exacly the same as your Epic Games player name. Then type: !verify\", value=\"You can change your nickname by typing \\\"/nick *YourEpicIGN*\\\". The bot looks at your squad K/D for the current season, so if you have no games played yet, the bot won\\'t be able to verify you.\", inline=False)\n await message.channel.send(embed=embed)\n # The command !verify return attribute a rank according to the K/D of the user\n if message.content.startswith(\"!verify\"):\n for list in LIST:\n roles = discord.utils.get(message.guild.roles, name=list)\n username = '{0.author.display_name}'.format(message)\n ratio = float(get_ratio(username))\n msgRatio = str(ratio)\n msgVerified = str(VERIFIED)\n print(ratio)\n if ratio == -1.0:\n embed = discord.Embed(colour=discord.Colour(0x8e2626), url=\"https://github.com/af1/kdFortniteDiscordBot\",)\n embed.set_author(name=\"Verify \" + message.author.display_name, icon_url=message.author.avatar_url)\n embed.add_field(name=\"Fortnite player **\" + message.author.display_name + \"** not found.\", value=\"\\nYour Discord nickname and IGN must be exactly the same. Change your Discord nickname to your IGN and try again.\", inline=False)\n await message.channel.send(embed=embed)\n elif ratio == -2.0:\n embed = discord.Embed(colour=discord.Colour(0x8e2626), url=\"https://github.com/af1/kdFortniteDiscordBot\",)\n embed.set_author(name=\"Verify \" + message.author.display_name, icon_url=message.author.avatar_url)\n embed.add_field(name=\"Data not found.\", value=\"Fortnite Tracker is down. Please try again shortly.\", inline=False)\n await message.channel.send(embed=embed)\n elif ratio == -3.0:\n embed = discord.Embed(colour=discord.Colour(0x8e2626), url=\"https://github.com/af1/kdFortniteDiscordBot\",)\n embed.set_author(name=\"Verify \" + message.author.display_name, icon_url=message.author.avatar_url)\n embed.add_field(name=\"No stats found for squad mode in the current season.\", value=\"Play some games and try again.\", inline=False)\n await message.channel.send(embed=embed)\n elif ratio > 0 and ratio < VERIFIED:\n print(\"🚫\")\n print(\"-\")\n embed = discord.Embed(colour=discord.Colour(0x45278e), url=\"https://github.com/af1/kdFortniteDiscordBot\",)\n embed.set_author(name=\"Verify \" + message.author.display_name, icon_url=message.author.avatar_url)\n embed.add_field(name=message.author.display_name + \" does not have over a \" + msgVerified + \" K/D.\", value=\"Current season squads K/D: **\" + msgRatio + \"**\", inline=False)\n await message.channel.send(embed=embed)\n elif ratio >= VERIFIED:\n print(\"✅\")\n print(\"-\")\n role = discord.utils.get(message.guild.roles, name=LIST[0])\n embed = discord.Embed(colour=discord.Colour(0x45278e), url=\"https://github.com/af1/kdFortniteDiscordBot\",)\n embed.set_author(name=\"Verify \" + message.author.display_name, icon_url=message.author.avatar_url)\n embed.add_field(name=message.author.display_name + \" has over a \" + msgVerified + \" K/D. Verified!\", value=\"Current season squads K/D: **\" + msgRatio + \"**\", inline=False)\n user=message.author\n await message.channel.send(embed=embed)\n await user.add_roles(role) \n \[email protected]\nasync def on_ready():\n print(\"-\")\n print(\"Logged in as: \" + client.user.name)\n print(\"With Client User ID: \" + str(client.user.id))\n print(\"Verified set to: \" + str(VERIFIED))\n print(\"-\")\n\nclient.run(DISCORD_TOKEN)\n\n\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
"""Module containing class `Station`.""" from zoneinfo import ZoneInfo import datetime from vesper.util.named import Named class Station(Named): """Recording station.""" def __init__( self, name, long_name, time_zone_name, latitude=None, longitude=None, elevation=None): super().__init__(name) self._long_name = long_name self._time_zone = ZoneInfo(time_zone_name) self._latitude = latitude self._longitude = longitude self._elevation = elevation @property def long_name(self): return self._long_name @property def time_zone(self): return self._time_zone @property def latitude(self): return self._latitude @property def longitude(self): return self._longitude @property def elevation(self): return self._elevation def get_night(self, time): """ Gets the station-local night that includes the specified time. :Parameters: time : `datetime` the time whose night is to be gotten. The time may be either naive or aware. If the time is naive, it is assumed to be in the station's time zone. :Returns: the station-local night that includes the specified time, a `date`. The station-local night of a time is the starting date of the local 24-hour period starting at noon that contains the time. """ if time.tzinfo is not None: # time is aware # convert time to station time zone time = time.astimezone(self.time_zone) if time.hour < 12: time -= datetime.timedelta(hours=12) return time.date()
normal
{ "blob_id": "ad09880b9e06a129b9623be2a086ebcc8dc55c2c", "index": 9079, "step-1": "<mask token>\n\n\nclass Station(Named):\n <mask token>\n\n def __init__(self, name, long_name, time_zone_name, latitude=None,\n longitude=None, elevation=None):\n super().__init__(name)\n self._long_name = long_name\n self._time_zone = ZoneInfo(time_zone_name)\n self._latitude = latitude\n self._longitude = longitude\n self._elevation = elevation\n <mask token>\n\n @property\n def time_zone(self):\n return self._time_zone\n\n @property\n def latitude(self):\n return self._latitude\n\n @property\n def longitude(self):\n return self._longitude\n\n @property\n def elevation(self):\n return self._elevation\n <mask token>\n", "step-2": "<mask token>\n\n\nclass Station(Named):\n <mask token>\n\n def __init__(self, name, long_name, time_zone_name, latitude=None,\n longitude=None, elevation=None):\n super().__init__(name)\n self._long_name = long_name\n self._time_zone = ZoneInfo(time_zone_name)\n self._latitude = latitude\n self._longitude = longitude\n self._elevation = elevation\n <mask token>\n\n @property\n def time_zone(self):\n return self._time_zone\n\n @property\n def latitude(self):\n return self._latitude\n\n @property\n def longitude(self):\n return self._longitude\n\n @property\n def elevation(self):\n return self._elevation\n\n def get_night(self, time):\n \"\"\"\n Gets the station-local night that includes the specified time.\n \n :Parameters:\n time : `datetime`\n the time whose night is to be gotten.\n \n The time may be either naive or aware. If the time\n is naive, it is assumed to be in the station's\n time zone.\n \n :Returns:\n the station-local night that includes the specified time, a `date`.\n \n The station-local night of a time is the starting date of the\n local 24-hour period starting at noon that contains the time.\n \"\"\"\n if time.tzinfo is not None:\n time = time.astimezone(self.time_zone)\n if time.hour < 12:\n time -= datetime.timedelta(hours=12)\n return time.date()\n", "step-3": "<mask token>\n\n\nclass Station(Named):\n \"\"\"Recording station.\"\"\"\n\n def __init__(self, name, long_name, time_zone_name, latitude=None,\n longitude=None, elevation=None):\n super().__init__(name)\n self._long_name = long_name\n self._time_zone = ZoneInfo(time_zone_name)\n self._latitude = latitude\n self._longitude = longitude\n self._elevation = elevation\n\n @property\n def long_name(self):\n return self._long_name\n\n @property\n def time_zone(self):\n return self._time_zone\n\n @property\n def latitude(self):\n return self._latitude\n\n @property\n def longitude(self):\n return self._longitude\n\n @property\n def elevation(self):\n return self._elevation\n\n def get_night(self, time):\n \"\"\"\n Gets the station-local night that includes the specified time.\n \n :Parameters:\n time : `datetime`\n the time whose night is to be gotten.\n \n The time may be either naive or aware. If the time\n is naive, it is assumed to be in the station's\n time zone.\n \n :Returns:\n the station-local night that includes the specified time, a `date`.\n \n The station-local night of a time is the starting date of the\n local 24-hour period starting at noon that contains the time.\n \"\"\"\n if time.tzinfo is not None:\n time = time.astimezone(self.time_zone)\n if time.hour < 12:\n time -= datetime.timedelta(hours=12)\n return time.date()\n", "step-4": "<mask token>\nfrom zoneinfo import ZoneInfo\nimport datetime\nfrom vesper.util.named import Named\n\n\nclass Station(Named):\n \"\"\"Recording station.\"\"\"\n\n def __init__(self, name, long_name, time_zone_name, latitude=None,\n longitude=None, elevation=None):\n super().__init__(name)\n self._long_name = long_name\n self._time_zone = ZoneInfo(time_zone_name)\n self._latitude = latitude\n self._longitude = longitude\n self._elevation = elevation\n\n @property\n def long_name(self):\n return self._long_name\n\n @property\n def time_zone(self):\n return self._time_zone\n\n @property\n def latitude(self):\n return self._latitude\n\n @property\n def longitude(self):\n return self._longitude\n\n @property\n def elevation(self):\n return self._elevation\n\n def get_night(self, time):\n \"\"\"\n Gets the station-local night that includes the specified time.\n \n :Parameters:\n time : `datetime`\n the time whose night is to be gotten.\n \n The time may be either naive or aware. If the time\n is naive, it is assumed to be in the station's\n time zone.\n \n :Returns:\n the station-local night that includes the specified time, a `date`.\n \n The station-local night of a time is the starting date of the\n local 24-hour period starting at noon that contains the time.\n \"\"\"\n if time.tzinfo is not None:\n time = time.astimezone(self.time_zone)\n if time.hour < 12:\n time -= datetime.timedelta(hours=12)\n return time.date()\n", "step-5": "\"\"\"Module containing class `Station`.\"\"\"\n\n\nfrom zoneinfo import ZoneInfo\nimport datetime\n\nfrom vesper.util.named import Named\n\n\nclass Station(Named):\n \n \"\"\"Recording station.\"\"\"\n \n \n def __init__(\n self, name, long_name, time_zone_name,\n latitude=None, longitude=None, elevation=None):\n \n super().__init__(name)\n self._long_name = long_name\n self._time_zone = ZoneInfo(time_zone_name)\n self._latitude = latitude\n self._longitude = longitude\n self._elevation = elevation\n \n \n @property\n def long_name(self):\n return self._long_name\n \n \n @property\n def time_zone(self):\n return self._time_zone\n \n \n @property\n def latitude(self):\n return self._latitude\n \n \n @property\n def longitude(self):\n return self._longitude\n \n \n @property\n def elevation(self):\n return self._elevation\n \n \n def get_night(self, time):\n \n \"\"\"\n Gets the station-local night that includes the specified time.\n \n :Parameters:\n time : `datetime`\n the time whose night is to be gotten.\n \n The time may be either naive or aware. If the time\n is naive, it is assumed to be in the station's\n time zone.\n \n :Returns:\n the station-local night that includes the specified time, a `date`.\n \n The station-local night of a time is the starting date of the\n local 24-hour period starting at noon that contains the time.\n \"\"\"\n \n if time.tzinfo is not None:\n # time is aware\n \n # convert time to station time zone\n time = time.astimezone(self.time_zone)\n \n if time.hour < 12:\n time -= datetime.timedelta(hours=12)\n \n return time.date()\n", "step-ids": [ 6, 7, 9, 10, 11 ] }
[ 6, 7, 9, 10, 11 ]
import csv import glob import random import sys from math import ceil, floor from os.path import basename, exists, dirname, isfile import numpy as np import keras from keras import Model, Input, regularizers from keras.layers import TimeDistributed, LSTMCell, Reshape, Dense, Lambda, Dropout, Concatenate from keras.callbacks import ModelCheckpoint, TensorBoard, LearningRateScheduler from keras.optimizers import Adam, SGD from sklearn.metrics import confusion_matrix, accuracy_score # , classification_report from sklearn.preprocessing import LabelBinarizer from tqdm import tqdm from Dataset.Dataset_Utils.augmenter import NoAug from Dataset.Dataset_Utils.datagen import DataGenerator as DataGen from Dataset.Dataset_Utils.dataset_tools import print_cm from Models.model_sharma import SharmaNet from audio_classifier import AudioClassifier, from_arff_to_feture from frames_classifier import FramesClassifier from test_models import * classes = ["Angry", "Disgust", "Fear", "Happy", "Neutral", "Sad", "Surprise"] def my_model(): r1, r2 = regularizers.l2(1e-5), regularizers.l2(1e-5) frame_input = Input(shape=(16, 1024)) audio_input = Input(shape=(16, 1582)) x = Concatenate(name='fusion1')([frame_input, audio_input]) x = TimeDistributed(Dense(100, activation='tanh', kernel_regularizer=r1, name='ff_logit_lstm'))(x) x = TimeDistributed(Dropout(0.5))(x) x = TimeDistributed(Dense(7, activation='softmax', kernel_regularizer=r2, name='ff_logit'))(x) x = Lambda(lambda y: tf.reduce_mean(y, axis=1))(x) return Model([audio_input, frame_input], x) class VideoClassifier: def __init__(self, train_mode="late_fusion", video_model_path=None, time_step=16, base_path="/user/vlongobardi/AFEW/aligned/", feature_name="emobase2010_100", stride=1): self.time_step = time_step self.train_mode = train_mode self.feature_name = feature_name self.classes = classes self.lb = LabelBinarizer() self.lb.fit_transform(np.array(classes)) self.feature_num = 1582 self.offset = ceil(int(self.feature_name.split("_")[1]) / 2 / 40) self.stride = stride if video_model_path is not None: try: self.model = my_model() self.model.load_weights(video_model_path) print("VideoClassifier loaded successfully", video_model_path) except: print("Exception") else: t_files = glob.glob(base_path + "Train" + "/*/*csv") v_files = glob.glob(base_path + "Val" + "/*/*csv") self.csv_fusion = self.generate_feature(t_files, v_files) self.do_training() def do_training(self): skips = 0 iters = 1 bs = 16 ep = 150 opts = ["SGD"]#, "Adam"] lrs = [0.01] models = [my_model] models_name = [x.__name__ for x in models] for index, model in enumerate(models): for opt in opts: for lr in lrs: for iteration in range(iters): if skips > 0: skips -= 1 continue train_infos = { "iteration": iteration, "model_name": models_name[index], "batch_size": bs, "epoch": ep, "lr": lr, "opt": opt } print( "\n\n################################################################################\n" "############################## ITERATION " + str(iteration + 1) + " of " + str(iters) + " ###########################\n######################################################" + " ########################\nepochs:", ep, "batch_size:", bs, "\nmodel:", models_name[index], "in", models_name, "\nopt:", opt, "in", opts, "\nlr:", lr, "in", lrs) train_infos["generator1"] = self.early_gen_train train_infos["generator2"] = self.early_gen_new_val t_files, v_files = self.csv_fusion["train"], self.csv_fusion["val"] m = model() self.train(t_files, v_files, train_infos, m) def generate_feature(self, t_files, v_files): if not exists('features_path_early_fusion_train_' + self.feature_name + '.csv'): print("\n##### GENERATING CSV FOR EARLY FUSION... #####") csv_early_fusion = { "train": self._generate_data_for_early_fusion(t_files, "train"), "val": self._generate_data_for_early_fusion(v_files, "val") } print("\n##### CSV GENERATED! #####") else: csv_early_fusion = {} for name in ["train", "val"]: csv_early_fusion[name] = self.load_early_csv(name) return csv_early_fusion def load_early_csv(self, dataset): csv_early_fusion = {} print("Opening csv: features_path_early_fusion_" + dataset + "_" + self.feature_name + '.csv') with open('features_path_early_fusion_' + dataset + "_" + self.feature_name + '.csv', 'r') as f: f.readline() csv_reader = csv.reader(f) for clip_id, ground_truth, frame_label, audio_label in csv_reader: if clip_id not in csv_early_fusion: csv_early_fusion[clip_id] = [] csv_early_fusion[clip_id].append([ground_truth, frame_label, audio_label]) return csv_early_fusion def _generate_data_for_early_fusion(self, files, name): # '/user/vlongobardi/AFEW/aligned/Train/Angry/012738600.csv' # '/user/vlongobardi/early_feature/framefeature/Train/Angry/012738600_0.dat' # '/user/vlongobardi/early_feature/emobase2010_600/Train/Angry/012738600_0.arff' if "full" in self.feature_name: frame_to_discard = 0 else: window_size = int(self.feature_name.split("_")[1]) frame_to_discard = ceil(window_size / 2 / 40) my_csv = {} for file in tqdm(files): clip_id_temp = file.split(".")[0] base_path = clip_id_temp.replace("AFEW/aligned", "early_feature/framefeature") + "*" frames_features_path = glob.glob(base_path) audio_features_path = glob.glob( base_path.replace("early_feature/framefeature", "early_feature/" + self.feature_name)) frames_features_path.sort(key=lambda x: int(x.split("_")[-1].split(".")[0])) if "full" not in self.feature_name: audio_features_path.sort(key=lambda x: int(x.split("_")[-1].split(".")[0])) ground_truth = basename(dirname(clip_id_temp)) clip_id = basename(clip_id_temp) # discard video frames based on window size frames_features_path = frames_features_path[frame_to_discard:] if len(frames_features_path) < 16: continue # print("FRAME TOO FEW SAMPLES:", len(frames_features_path), clip_id) if len(audio_features_path) < 16 and "full" not in self.feature_name: continue # print("AUDIO TOO FEW SAMPLES:", len(audio_features_path), clip_id) for index, frame in enumerate(frames_features_path): if clip_id not in my_csv.keys(): my_csv[clip_id] = [] if "full" not in self.feature_name: my_csv[clip_id].append([ground_truth, frame, audio_features_path[index]]) else: my_csv[clip_id].append([ground_truth, frame, audio_features_path[0]]) with open('features_path_early_fusion_' + name + "_" + self.feature_name + '.csv', 'w') as f: f.write("clip_id, ground_truth, frame_label, audio_label\n") for key in my_csv: for line in my_csv[key]: f.write(key + "," + line[0] + "," + line[1] + "," + line[2] + "\n") return my_csv def early_gen_train(self, list_files, batch_size): c = 0 clip_ids = list(self.csv_fusion["train"].keys()) random.shuffle(clip_ids) while True: labels = [] features = [np.zeros((batch_size, self.time_step, self.feature_num)).astype('float'), np.zeros((batch_size, self.time_step, 1024)).astype('float')] for i in range(c, c + batch_size): clip_id = clip_ids[i] video_info = self.csv_fusion["train"][clip_id] ground_truth = video_info[0][0] # first_frame_num = int(video_info[0][1].split("_")[-1].split(".")[0]) start = random.randint(0, len(video_info) - self.time_step) for index, elem in enumerate(video_info[start:self.time_step + start]): _, frame_path, audio_path = elem if not isfile(frame_path): start += 1 if start >= len(video_info): raise continue frame_feature = np.load(frame_path) features[0][i - c][index] = np.array(from_arff_to_feture(audio_path)).reshape(self.feature_num, ) features[1][i - c][index] = frame_feature.reshape(1024, ) labels.append(ground_truth) c += batch_size if c + batch_size > len(clip_ids): c = 0 random.shuffle(clip_ids) labels = self.lb.transform(np.array(labels)).reshape((batch_size, 7)) yield features, labels def early_gen_new_val(self, list_files, batch_size, mode="val", stride=1): """ stride 50% sul su tutti i file """ c = 0 labels = features = [] clip_ids = list(list_files.keys()) while True: for clip_id in tqdm(clip_ids): video_info = list_files[clip_id] ground_truth = video_info[0][0] for start in range(0, len(video_info) - self.time_step, self.time_step // stride): if c == 0: labels = [] features = [np.zeros((batch_size, self.time_step, self.feature_num)).astype('float'), np.zeros((batch_size, self.time_step, 1024)).astype('float')] for index, elem in enumerate(video_info[start:self.time_step + start]): _, frame_path, audio_path = elem frame_feature = np.load(frame_path) features[0][c][index] = np.array(from_arff_to_feture(audio_path)).reshape( self.feature_num, ) features[1][c][index] = frame_feature.reshape(1024, ) labels.append(ground_truth) c += 1 if c == batch_size: c = 0 labels = self.lb.transform(np.array(labels)).reshape((batch_size, 7)) yield features, labels if mode == "eval": break def early_gen_test_clip(self, list_files, clip_id, stride=1): """ stride su singolo file, quindi va richiamato per ogni file """ ground_truth = list_files[0][0] start = 0 end = len(list_files) - self.time_step while True: labels = [] features = [np.zeros((1, self.time_step, self.feature_num)).astype('float'), np.zeros((1, self.time_step, 1024)).astype('float')] for index, elem in enumerate(list_files[start:start + self.time_step]): _, frame_path, audio_path = elem frame_feature = np.load(frame_path) features[0][0][index] = np.array(from_arff_to_feture(audio_path)).reshape(self.feature_num, ) features[1][0][index] = frame_feature.reshape(1024, ) labels.append(ground_truth) start += self.time_step // stride if start >= end: break labels = self.lb.transform(np.array(labels)).reshape((1, 7)) yield features, labels def get_validation_dim(self): if self.stride == 2: if "full" in self.feature_name: return 141 elif "600" in self.feature_name: return 0 elif "300" in self.feature_name: return 114 elif "100" in self.feature_name: return 128 elif self.stride == 1: if "full" in self.feature_name: return 76 elif "600" in self.feature_name: return 0 elif "300" in self.feature_name: return 63 elif "100" in self.feature_name: return 69 elif self.stride == self.time_step: return 0 def train(self, train_files, val_files, train_data, model): if train_data["opt"] == "Adam": optimizer = Adam(lr=train_data["lr"]) else: optimizer = SGD(lr=train_data["lr"]) model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy']) model.summary() train_gen = train_data["generator1"](train_files, train_data["batch_size"]) no_of_training_images = len(train_files) no_of_val_images = self.get_validation_dim() print("no_of_val_images:", no_of_val_images) val_gen = train_data["generator2"](val_files, train_data["batch_size"]) # stride = 1, no overlapping # stride = 2, overlapping: 50% # stride = time_step, stride: 1 model_name = "_lr" + str(train_data["lr"]) + "_Opt" + train_data["opt"] + "_Model" + str( train_data["model_name"]) + "_Feature" + self.feature_name + "_" + str( train_data["iteration"]) + "_" + self.train_mode # + "_modelType" + str(self.model_type) model_name += "stride" + str(self.stride) model_name += ".h5" def custom_scheduler(epoch): if epoch < 50: print(0.1) return 0.1 if epoch < 100: print(0.01) return 0.01 if epoch < 125: print(0.001) return 0.001 else: print(0.0001) return 0.0001 #print(0.1 / 10 ** (floor(epoch / 40) + 1)) #return 0.1 / 10 ** (floor(epoch / 40) + 1) class CheckValCMCallback(keras.callbacks.Callback): def __init__(self, m, dim, validation_files, epoch): super().__init__() self.vc = m self.dim = dim self.val_files = validation_files self.epoch = epoch self.accs = [] def on_epoch_end(self, epoch, logs=None): csv_fusion = self.vc.load_early_csv("val") # gen = self.vc.early_gen_new_val(csv_fusion, 16, "eval") # predictions = [] # ground_truths = [] # for x in gen: # ground_truths.append(self.vc.lb.inverse_transform(x[1])[0]) # pred = self.model.predict(x[0]) # pred = self.vc.lb.inverse_transform(pred) # predictions.append(pred[0]) # self.vc.print_stats(ground_truths, predictions, "Video" + str(epoch)) gen = self.vc.early_gen_new_val(csv_fusion, 16, "eval") acc = self.model.evaluate_generator(gen, self.dim, workers=0) self.accs.append(acc) print("Evaluate:", acc) if self.epoch == epoch + 1: print("Validation_Accuracy =", self.accs) cb = [ModelCheckpoint( filepath=str( "weights_new_fusion/videoModel__t{accuracy:.4f}_epoch{epoch:02d}" + model_name), monitor="val_accuracy", save_weights_only=True), TensorBoard(log_dir="NewFusionLogs_sched/" + self.train_mode + "/" + self.feature_name, write_graph=True, write_images=True)] cb += [LearningRateScheduler(custom_scheduler)] #cb += [CheckValCMCallback(self, no_of_val_images, val_files, train_data["epoch"])] history = model.fit_generator(train_gen, validation_data=val_gen, epochs=train_data["epoch"], steps_per_epoch=(no_of_training_images * 2 // train_data["batch_size"]), validation_steps=(no_of_val_images), workers=0, verbose=1, callbacks=cb) print("\n\nTrain_Accuracy =", history.history['accuracy']) print("\nVal_Accuracy =", history.history['val_accuracy']) print("\n\nTrain_Loss =", history.history['loss']) print("\nVal_Loss =", history.history['val_loss']) def print_stats(self, ground_truths, predictions, name): cm = confusion_matrix(ground_truths, predictions, self.classes) print("###" + name + " Results###\n") # print_cm(cm, self.classes) # print("\n\n") print_cm(np.around(cm.astype('float') / cm.sum(axis=1)[:, np.newaxis], decimals=3), self.classes) print("\n\n") print("Accuracy score: ", accuracy_score(ground_truths, predictions), "\n\n") # print("Report") # print(classification_report(ground_truths, predictions)) print("#################################################################end###\n\n\n") def print_confusion_matrix(self, stride=1): """ IMPLEMENT FOR EARLY FUSION MISSING """ csv_fusion = {} predictions = [] ground_truths = [] if self.train_mode == "early_fusion": csv_fusion = self.load_early_csv("val") print("CSV loaded", len(csv_fusion)) gen = self.early_gen_new_val(csv_fusion, 1, "eval", stride) for x in gen: ground_truths.append(self.lb.inverse_transform(x[1])[0]) pred = self.model.predict(x[0]) pred = self.lb.inverse_transform(pred) predictions.append(pred[0]) # print("\ngt, pred", self.lb.inverse_transform(x[1]), pred) self.print_stats(ground_truths, predictions, "Video") else: with open('lables_late_fusion' + self.feature_name + '.csv', 'r') as f: f.readline() csv_reader = csv.reader(f) for row in csv_reader: csv_fusion[row[0]] = [row[1], row[2], row[3]] a_p = [] f_p = [] files = glob.glob("/user/vlongobardi/late_feature/" + self.feature_name + "/*/*csv") for file in files: clip_id = basename(file).split(".")[0] ground_truth, frame_pred, audio_pred = csv_fusion[clip_id] sample = np.append(self.lb.transform(np.array([audio_pred])), self.lb.transform(np.array([frame_pred]))) pred = self.model.predict(sample.reshape((1, 14))) pred = self.lb.inverse_transform(pred)[0] predictions.append(pred) a_p.append(audio_pred) f_p.append(frame_pred) ground_truths.append(ground_truth) self.print_stats(ground_truths, predictions, "Video") self.print_stats(ground_truths, a_p, "Audio") self.print_stats(ground_truths, f_p, "Frame") if __name__ == "__main__": if sys.argv[1] == "late": print("LATE") model_path = [ "audio_models/audioModel_0.2285_epoch135_lr0.1_OptSGD_Modela_model7_Featureemobase2010_100_3.h5", "audio_models/audioModel_0.2650_epoch01_lr0.01_OptSGD_Modela_model7_Featureemobase2010_300_2.h5", "audio_models/audioModel_0.2865_epoch13_lr0.001_OptSGD_Modela_model7_Featureemobase2010_600_0.h5", "audio_models/audioModel_0.3668_epoch67_lr0.001_OptSGD_Modela_model7_Featureemobase2010_full_2.h5" ] for mp in model_path: vc = VideoClassifier(train_mode="late_fusion", audio_model_path=mp) elif sys.argv[1] == "early": # mt = int(sys.argv[2]) print("EARLY") # , Model_type:", mt) arff_paths = {"e1": "emobase2010_100", "i1": "IS09_emotion_100", "e3": "emobase2010_300", "i3": "IS09_emotion_300", "e6": "emobase2010_600", "i6": "IS09_emotion_600", "ef": "emobase2010_full", "if": "IS09_emotion_full"} vc = VideoClassifier(train_mode="early_fusion", feature_name=arff_paths[sys.argv[2]]) # , model_type=mt)
normal
{ "blob_id": "c925bed2f4d8120e156caebbe8e6bf9d6a51ee37", "index": 3330, "step-1": "<mask token>\n\n\nclass VideoClassifier:\n\n def __init__(self, train_mode='late_fusion', video_model_path=None,\n time_step=16, base_path='/user/vlongobardi/AFEW/aligned/',\n feature_name='emobase2010_100', stride=1):\n self.time_step = time_step\n self.train_mode = train_mode\n self.feature_name = feature_name\n self.classes = classes\n self.lb = LabelBinarizer()\n self.lb.fit_transform(np.array(classes))\n self.feature_num = 1582\n self.offset = ceil(int(self.feature_name.split('_')[1]) / 2 / 40)\n self.stride = stride\n if video_model_path is not None:\n try:\n self.model = my_model()\n self.model.load_weights(video_model_path)\n print('VideoClassifier loaded successfully', video_model_path)\n except:\n print('Exception')\n else:\n t_files = glob.glob(base_path + 'Train' + '/*/*csv')\n v_files = glob.glob(base_path + 'Val' + '/*/*csv')\n self.csv_fusion = self.generate_feature(t_files, v_files)\n self.do_training()\n <mask token>\n <mask token>\n\n def load_early_csv(self, dataset):\n csv_early_fusion = {}\n print('Opening csv: features_path_early_fusion_' + dataset + '_' +\n self.feature_name + '.csv')\n with open('features_path_early_fusion_' + dataset + '_' + self.\n feature_name + '.csv', 'r') as f:\n f.readline()\n csv_reader = csv.reader(f)\n for clip_id, ground_truth, frame_label, audio_label in csv_reader:\n if clip_id not in csv_early_fusion:\n csv_early_fusion[clip_id] = []\n csv_early_fusion[clip_id].append([ground_truth, frame_label,\n audio_label])\n return csv_early_fusion\n <mask token>\n\n def early_gen_train(self, list_files, batch_size):\n c = 0\n clip_ids = list(self.csv_fusion['train'].keys())\n random.shuffle(clip_ids)\n while True:\n labels = []\n features = [np.zeros((batch_size, self.time_step, self.\n feature_num)).astype('float'), np.zeros((batch_size, self.\n time_step, 1024)).astype('float')]\n for i in range(c, c + batch_size):\n clip_id = clip_ids[i]\n video_info = self.csv_fusion['train'][clip_id]\n ground_truth = video_info[0][0]\n start = random.randint(0, len(video_info) - self.time_step)\n for index, elem in enumerate(video_info[start:self.\n time_step + start]):\n _, frame_path, audio_path = elem\n if not isfile(frame_path):\n start += 1\n if start >= len(video_info):\n raise\n continue\n frame_feature = np.load(frame_path)\n features[0][i - c][index] = np.array(from_arff_to_feture\n (audio_path)).reshape(self.feature_num)\n features[1][i - c][index] = frame_feature.reshape(1024)\n labels.append(ground_truth)\n c += batch_size\n if c + batch_size > len(clip_ids):\n c = 0\n random.shuffle(clip_ids)\n labels = self.lb.transform(np.array(labels)).reshape((\n batch_size, 7))\n yield features, labels\n <mask token>\n <mask token>\n\n def get_validation_dim(self):\n if self.stride == 2:\n if 'full' in self.feature_name:\n return 141\n elif '600' in self.feature_name:\n return 0\n elif '300' in self.feature_name:\n return 114\n elif '100' in self.feature_name:\n return 128\n elif self.stride == 1:\n if 'full' in self.feature_name:\n return 76\n elif '600' in self.feature_name:\n return 0\n elif '300' in self.feature_name:\n return 63\n elif '100' in self.feature_name:\n return 69\n elif self.stride == self.time_step:\n return 0\n\n def train(self, train_files, val_files, train_data, model):\n if train_data['opt'] == 'Adam':\n optimizer = Adam(lr=train_data['lr'])\n else:\n optimizer = SGD(lr=train_data['lr'])\n model.compile(optimizer=optimizer, loss='categorical_crossentropy',\n metrics=['accuracy'])\n model.summary()\n train_gen = train_data['generator1'](train_files, train_data[\n 'batch_size'])\n no_of_training_images = len(train_files)\n no_of_val_images = self.get_validation_dim()\n print('no_of_val_images:', no_of_val_images)\n val_gen = train_data['generator2'](val_files, train_data['batch_size'])\n model_name = '_lr' + str(train_data['lr']) + '_Opt' + train_data['opt'\n ] + '_Model' + str(train_data['model_name']\n ) + '_Feature' + self.feature_name + '_' + str(train_data[\n 'iteration']) + '_' + self.train_mode\n model_name += 'stride' + str(self.stride)\n model_name += '.h5'\n\n def custom_scheduler(epoch):\n if epoch < 50:\n print(0.1)\n return 0.1\n if epoch < 100:\n print(0.01)\n return 0.01\n if epoch < 125:\n print(0.001)\n return 0.001\n else:\n print(0.0001)\n return 0.0001\n\n\n class CheckValCMCallback(keras.callbacks.Callback):\n\n def __init__(self, m, dim, validation_files, epoch):\n super().__init__()\n self.vc = m\n self.dim = dim\n self.val_files = validation_files\n self.epoch = epoch\n self.accs = []\n\n def on_epoch_end(self, epoch, logs=None):\n csv_fusion = self.vc.load_early_csv('val')\n gen = self.vc.early_gen_new_val(csv_fusion, 16, 'eval')\n acc = self.model.evaluate_generator(gen, self.dim, workers=0)\n self.accs.append(acc)\n print('Evaluate:', acc)\n if self.epoch == epoch + 1:\n print('Validation_Accuracy =', self.accs)\n cb = [ModelCheckpoint(filepath=str(\n 'weights_new_fusion/videoModel__t{accuracy:.4f}_epoch{epoch:02d}' +\n model_name), monitor='val_accuracy', save_weights_only=True),\n TensorBoard(log_dir='NewFusionLogs_sched/' + self.train_mode +\n '/' + self.feature_name, write_graph=True, write_images=True)]\n cb += [LearningRateScheduler(custom_scheduler)]\n history = model.fit_generator(train_gen, validation_data=val_gen,\n epochs=train_data['epoch'], steps_per_epoch=\n no_of_training_images * 2 // train_data['batch_size'],\n validation_steps=no_of_val_images, workers=0, verbose=1,\n callbacks=cb)\n print('\\n\\nTrain_Accuracy =', history.history['accuracy'])\n print('\\nVal_Accuracy =', history.history['val_accuracy'])\n print('\\n\\nTrain_Loss =', history.history['loss'])\n print('\\nVal_Loss =', history.history['val_loss'])\n <mask token>\n\n def print_confusion_matrix(self, stride=1):\n \"\"\" IMPLEMENT FOR EARLY FUSION MISSING \"\"\"\n csv_fusion = {}\n predictions = []\n ground_truths = []\n if self.train_mode == 'early_fusion':\n csv_fusion = self.load_early_csv('val')\n print('CSV loaded', len(csv_fusion))\n gen = self.early_gen_new_val(csv_fusion, 1, 'eval', stride)\n for x in gen:\n ground_truths.append(self.lb.inverse_transform(x[1])[0])\n pred = self.model.predict(x[0])\n pred = self.lb.inverse_transform(pred)\n predictions.append(pred[0])\n self.print_stats(ground_truths, predictions, 'Video')\n else:\n with open('lables_late_fusion' + self.feature_name + '.csv', 'r'\n ) as f:\n f.readline()\n csv_reader = csv.reader(f)\n for row in csv_reader:\n csv_fusion[row[0]] = [row[1], row[2], row[3]]\n a_p = []\n f_p = []\n files = glob.glob('/user/vlongobardi/late_feature/' + self.\n feature_name + '/*/*csv')\n for file in files:\n clip_id = basename(file).split('.')[0]\n ground_truth, frame_pred, audio_pred = csv_fusion[clip_id]\n sample = np.append(self.lb.transform(np.array([audio_pred])\n ), self.lb.transform(np.array([frame_pred])))\n pred = self.model.predict(sample.reshape((1, 14)))\n pred = self.lb.inverse_transform(pred)[0]\n predictions.append(pred)\n a_p.append(audio_pred)\n f_p.append(frame_pred)\n ground_truths.append(ground_truth)\n self.print_stats(ground_truths, predictions, 'Video')\n self.print_stats(ground_truths, a_p, 'Audio')\n self.print_stats(ground_truths, f_p, 'Frame')\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass VideoClassifier:\n\n def __init__(self, train_mode='late_fusion', video_model_path=None,\n time_step=16, base_path='/user/vlongobardi/AFEW/aligned/',\n feature_name='emobase2010_100', stride=1):\n self.time_step = time_step\n self.train_mode = train_mode\n self.feature_name = feature_name\n self.classes = classes\n self.lb = LabelBinarizer()\n self.lb.fit_transform(np.array(classes))\n self.feature_num = 1582\n self.offset = ceil(int(self.feature_name.split('_')[1]) / 2 / 40)\n self.stride = stride\n if video_model_path is not None:\n try:\n self.model = my_model()\n self.model.load_weights(video_model_path)\n print('VideoClassifier loaded successfully', video_model_path)\n except:\n print('Exception')\n else:\n t_files = glob.glob(base_path + 'Train' + '/*/*csv')\n v_files = glob.glob(base_path + 'Val' + '/*/*csv')\n self.csv_fusion = self.generate_feature(t_files, v_files)\n self.do_training()\n <mask token>\n <mask token>\n\n def load_early_csv(self, dataset):\n csv_early_fusion = {}\n print('Opening csv: features_path_early_fusion_' + dataset + '_' +\n self.feature_name + '.csv')\n with open('features_path_early_fusion_' + dataset + '_' + self.\n feature_name + '.csv', 'r') as f:\n f.readline()\n csv_reader = csv.reader(f)\n for clip_id, ground_truth, frame_label, audio_label in csv_reader:\n if clip_id not in csv_early_fusion:\n csv_early_fusion[clip_id] = []\n csv_early_fusion[clip_id].append([ground_truth, frame_label,\n audio_label])\n return csv_early_fusion\n\n def _generate_data_for_early_fusion(self, files, name):\n if 'full' in self.feature_name:\n frame_to_discard = 0\n else:\n window_size = int(self.feature_name.split('_')[1])\n frame_to_discard = ceil(window_size / 2 / 40)\n my_csv = {}\n for file in tqdm(files):\n clip_id_temp = file.split('.')[0]\n base_path = clip_id_temp.replace('AFEW/aligned',\n 'early_feature/framefeature') + '*'\n frames_features_path = glob.glob(base_path)\n audio_features_path = glob.glob(base_path.replace(\n 'early_feature/framefeature', 'early_feature/' + self.\n feature_name))\n frames_features_path.sort(key=lambda x: int(x.split('_')[-1].\n split('.')[0]))\n if 'full' not in self.feature_name:\n audio_features_path.sort(key=lambda x: int(x.split('_')[-1]\n .split('.')[0]))\n ground_truth = basename(dirname(clip_id_temp))\n clip_id = basename(clip_id_temp)\n frames_features_path = frames_features_path[frame_to_discard:]\n if len(frames_features_path) < 16:\n continue\n if len(audio_features_path\n ) < 16 and 'full' not in self.feature_name:\n continue\n for index, frame in enumerate(frames_features_path):\n if clip_id not in my_csv.keys():\n my_csv[clip_id] = []\n if 'full' not in self.feature_name:\n my_csv[clip_id].append([ground_truth, frame,\n audio_features_path[index]])\n else:\n my_csv[clip_id].append([ground_truth, frame,\n audio_features_path[0]])\n with open('features_path_early_fusion_' + name + '_' + self.\n feature_name + '.csv', 'w') as f:\n f.write('clip_id, ground_truth, frame_label, audio_label\\n')\n for key in my_csv:\n for line in my_csv[key]:\n f.write(key + ',' + line[0] + ',' + line[1] + ',' +\n line[2] + '\\n')\n return my_csv\n\n def early_gen_train(self, list_files, batch_size):\n c = 0\n clip_ids = list(self.csv_fusion['train'].keys())\n random.shuffle(clip_ids)\n while True:\n labels = []\n features = [np.zeros((batch_size, self.time_step, self.\n feature_num)).astype('float'), np.zeros((batch_size, self.\n time_step, 1024)).astype('float')]\n for i in range(c, c + batch_size):\n clip_id = clip_ids[i]\n video_info = self.csv_fusion['train'][clip_id]\n ground_truth = video_info[0][0]\n start = random.randint(0, len(video_info) - self.time_step)\n for index, elem in enumerate(video_info[start:self.\n time_step + start]):\n _, frame_path, audio_path = elem\n if not isfile(frame_path):\n start += 1\n if start >= len(video_info):\n raise\n continue\n frame_feature = np.load(frame_path)\n features[0][i - c][index] = np.array(from_arff_to_feture\n (audio_path)).reshape(self.feature_num)\n features[1][i - c][index] = frame_feature.reshape(1024)\n labels.append(ground_truth)\n c += batch_size\n if c + batch_size > len(clip_ids):\n c = 0\n random.shuffle(clip_ids)\n labels = self.lb.transform(np.array(labels)).reshape((\n batch_size, 7))\n yield features, labels\n\n def early_gen_new_val(self, list_files, batch_size, mode='val', stride=1):\n \"\"\" stride 50% sul su tutti i file \"\"\"\n c = 0\n labels = features = []\n clip_ids = list(list_files.keys())\n while True:\n for clip_id in tqdm(clip_ids):\n video_info = list_files[clip_id]\n ground_truth = video_info[0][0]\n for start in range(0, len(video_info) - self.time_step, \n self.time_step // stride):\n if c == 0:\n labels = []\n features = [np.zeros((batch_size, self.time_step,\n self.feature_num)).astype('float'), np.zeros((\n batch_size, self.time_step, 1024)).astype('float')]\n for index, elem in enumerate(video_info[start:self.\n time_step + start]):\n _, frame_path, audio_path = elem\n frame_feature = np.load(frame_path)\n features[0][c][index] = np.array(from_arff_to_feture\n (audio_path)).reshape(self.feature_num)\n features[1][c][index] = frame_feature.reshape(1024)\n labels.append(ground_truth)\n c += 1\n if c == batch_size:\n c = 0\n labels = self.lb.transform(np.array(labels)).reshape((\n batch_size, 7))\n yield features, labels\n if mode == 'eval':\n break\n\n def early_gen_test_clip(self, list_files, clip_id, stride=1):\n \"\"\" stride su singolo file, quindi va richiamato per ogni file \"\"\"\n ground_truth = list_files[0][0]\n start = 0\n end = len(list_files) - self.time_step\n while True:\n labels = []\n features = [np.zeros((1, self.time_step, self.feature_num)).\n astype('float'), np.zeros((1, self.time_step, 1024)).astype\n ('float')]\n for index, elem in enumerate(list_files[start:start + self.\n time_step]):\n _, frame_path, audio_path = elem\n frame_feature = np.load(frame_path)\n features[0][0][index] = np.array(from_arff_to_feture(\n audio_path)).reshape(self.feature_num)\n features[1][0][index] = frame_feature.reshape(1024)\n labels.append(ground_truth)\n start += self.time_step // stride\n if start >= end:\n break\n labels = self.lb.transform(np.array(labels)).reshape((1, 7))\n yield features, labels\n\n def get_validation_dim(self):\n if self.stride == 2:\n if 'full' in self.feature_name:\n return 141\n elif '600' in self.feature_name:\n return 0\n elif '300' in self.feature_name:\n return 114\n elif '100' in self.feature_name:\n return 128\n elif self.stride == 1:\n if 'full' in self.feature_name:\n return 76\n elif '600' in self.feature_name:\n return 0\n elif '300' in self.feature_name:\n return 63\n elif '100' in self.feature_name:\n return 69\n elif self.stride == self.time_step:\n return 0\n\n def train(self, train_files, val_files, train_data, model):\n if train_data['opt'] == 'Adam':\n optimizer = Adam(lr=train_data['lr'])\n else:\n optimizer = SGD(lr=train_data['lr'])\n model.compile(optimizer=optimizer, loss='categorical_crossentropy',\n metrics=['accuracy'])\n model.summary()\n train_gen = train_data['generator1'](train_files, train_data[\n 'batch_size'])\n no_of_training_images = len(train_files)\n no_of_val_images = self.get_validation_dim()\n print('no_of_val_images:', no_of_val_images)\n val_gen = train_data['generator2'](val_files, train_data['batch_size'])\n model_name = '_lr' + str(train_data['lr']) + '_Opt' + train_data['opt'\n ] + '_Model' + str(train_data['model_name']\n ) + '_Feature' + self.feature_name + '_' + str(train_data[\n 'iteration']) + '_' + self.train_mode\n model_name += 'stride' + str(self.stride)\n model_name += '.h5'\n\n def custom_scheduler(epoch):\n if epoch < 50:\n print(0.1)\n return 0.1\n if epoch < 100:\n print(0.01)\n return 0.01\n if epoch < 125:\n print(0.001)\n return 0.001\n else:\n print(0.0001)\n return 0.0001\n\n\n class CheckValCMCallback(keras.callbacks.Callback):\n\n def __init__(self, m, dim, validation_files, epoch):\n super().__init__()\n self.vc = m\n self.dim = dim\n self.val_files = validation_files\n self.epoch = epoch\n self.accs = []\n\n def on_epoch_end(self, epoch, logs=None):\n csv_fusion = self.vc.load_early_csv('val')\n gen = self.vc.early_gen_new_val(csv_fusion, 16, 'eval')\n acc = self.model.evaluate_generator(gen, self.dim, workers=0)\n self.accs.append(acc)\n print('Evaluate:', acc)\n if self.epoch == epoch + 1:\n print('Validation_Accuracy =', self.accs)\n cb = [ModelCheckpoint(filepath=str(\n 'weights_new_fusion/videoModel__t{accuracy:.4f}_epoch{epoch:02d}' +\n model_name), monitor='val_accuracy', save_weights_only=True),\n TensorBoard(log_dir='NewFusionLogs_sched/' + self.train_mode +\n '/' + self.feature_name, write_graph=True, write_images=True)]\n cb += [LearningRateScheduler(custom_scheduler)]\n history = model.fit_generator(train_gen, validation_data=val_gen,\n epochs=train_data['epoch'], steps_per_epoch=\n no_of_training_images * 2 // train_data['batch_size'],\n validation_steps=no_of_val_images, workers=0, verbose=1,\n callbacks=cb)\n print('\\n\\nTrain_Accuracy =', history.history['accuracy'])\n print('\\nVal_Accuracy =', history.history['val_accuracy'])\n print('\\n\\nTrain_Loss =', history.history['loss'])\n print('\\nVal_Loss =', history.history['val_loss'])\n\n def print_stats(self, ground_truths, predictions, name):\n cm = confusion_matrix(ground_truths, predictions, self.classes)\n print('###' + name + ' Results###\\n')\n print_cm(np.around(cm.astype('float') / cm.sum(axis=1)[:, np.\n newaxis], decimals=3), self.classes)\n print('\\n\\n')\n print('Accuracy score: ', accuracy_score(ground_truths, predictions\n ), '\\n\\n')\n print(\n '#################################################################end###\\n\\n\\n'\n )\n\n def print_confusion_matrix(self, stride=1):\n \"\"\" IMPLEMENT FOR EARLY FUSION MISSING \"\"\"\n csv_fusion = {}\n predictions = []\n ground_truths = []\n if self.train_mode == 'early_fusion':\n csv_fusion = self.load_early_csv('val')\n print('CSV loaded', len(csv_fusion))\n gen = self.early_gen_new_val(csv_fusion, 1, 'eval', stride)\n for x in gen:\n ground_truths.append(self.lb.inverse_transform(x[1])[0])\n pred = self.model.predict(x[0])\n pred = self.lb.inverse_transform(pred)\n predictions.append(pred[0])\n self.print_stats(ground_truths, predictions, 'Video')\n else:\n with open('lables_late_fusion' + self.feature_name + '.csv', 'r'\n ) as f:\n f.readline()\n csv_reader = csv.reader(f)\n for row in csv_reader:\n csv_fusion[row[0]] = [row[1], row[2], row[3]]\n a_p = []\n f_p = []\n files = glob.glob('/user/vlongobardi/late_feature/' + self.\n feature_name + '/*/*csv')\n for file in files:\n clip_id = basename(file).split('.')[0]\n ground_truth, frame_pred, audio_pred = csv_fusion[clip_id]\n sample = np.append(self.lb.transform(np.array([audio_pred])\n ), self.lb.transform(np.array([frame_pred])))\n pred = self.model.predict(sample.reshape((1, 14)))\n pred = self.lb.inverse_transform(pred)[0]\n predictions.append(pred)\n a_p.append(audio_pred)\n f_p.append(frame_pred)\n ground_truths.append(ground_truth)\n self.print_stats(ground_truths, predictions, 'Video')\n self.print_stats(ground_truths, a_p, 'Audio')\n self.print_stats(ground_truths, f_p, 'Frame')\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass VideoClassifier:\n\n def __init__(self, train_mode='late_fusion', video_model_path=None,\n time_step=16, base_path='/user/vlongobardi/AFEW/aligned/',\n feature_name='emobase2010_100', stride=1):\n self.time_step = time_step\n self.train_mode = train_mode\n self.feature_name = feature_name\n self.classes = classes\n self.lb = LabelBinarizer()\n self.lb.fit_transform(np.array(classes))\n self.feature_num = 1582\n self.offset = ceil(int(self.feature_name.split('_')[1]) / 2 / 40)\n self.stride = stride\n if video_model_path is not None:\n try:\n self.model = my_model()\n self.model.load_weights(video_model_path)\n print('VideoClassifier loaded successfully', video_model_path)\n except:\n print('Exception')\n else:\n t_files = glob.glob(base_path + 'Train' + '/*/*csv')\n v_files = glob.glob(base_path + 'Val' + '/*/*csv')\n self.csv_fusion = self.generate_feature(t_files, v_files)\n self.do_training()\n\n def do_training(self):\n skips = 0\n iters = 1\n bs = 16\n ep = 150\n opts = ['SGD']\n lrs = [0.01]\n models = [my_model]\n models_name = [x.__name__ for x in models]\n for index, model in enumerate(models):\n for opt in opts:\n for lr in lrs:\n for iteration in range(iters):\n if skips > 0:\n skips -= 1\n continue\n train_infos = {'iteration': iteration, 'model_name':\n models_name[index], 'batch_size': bs, 'epoch':\n ep, 'lr': lr, 'opt': opt}\n print(\n \"\"\"\n\n################################################################################\n############################## ITERATION \"\"\"\n + str(iteration + 1) + ' of ' + str(iters) +\n \"\"\" ###########################\n######################################################\"\"\"\n + \"\"\" ########################\nepochs:\"\"\", ep,\n 'batch_size:', bs, '\\nmodel:', models_name[\n index], 'in', models_name, '\\nopt:', opt, 'in',\n opts, '\\nlr:', lr, 'in', lrs)\n train_infos['generator1'] = self.early_gen_train\n train_infos['generator2'] = self.early_gen_new_val\n t_files, v_files = self.csv_fusion['train'\n ], self.csv_fusion['val']\n m = model()\n self.train(t_files, v_files, train_infos, m)\n\n def generate_feature(self, t_files, v_files):\n if not exists('features_path_early_fusion_train_' + self.\n feature_name + '.csv'):\n print('\\n##### GENERATING CSV FOR EARLY FUSION... #####')\n csv_early_fusion = {'train': self.\n _generate_data_for_early_fusion(t_files, 'train'), 'val':\n self._generate_data_for_early_fusion(v_files, 'val')}\n print('\\n##### CSV GENERATED! #####')\n else:\n csv_early_fusion = {}\n for name in ['train', 'val']:\n csv_early_fusion[name] = self.load_early_csv(name)\n return csv_early_fusion\n\n def load_early_csv(self, dataset):\n csv_early_fusion = {}\n print('Opening csv: features_path_early_fusion_' + dataset + '_' +\n self.feature_name + '.csv')\n with open('features_path_early_fusion_' + dataset + '_' + self.\n feature_name + '.csv', 'r') as f:\n f.readline()\n csv_reader = csv.reader(f)\n for clip_id, ground_truth, frame_label, audio_label in csv_reader:\n if clip_id not in csv_early_fusion:\n csv_early_fusion[clip_id] = []\n csv_early_fusion[clip_id].append([ground_truth, frame_label,\n audio_label])\n return csv_early_fusion\n\n def _generate_data_for_early_fusion(self, files, name):\n if 'full' in self.feature_name:\n frame_to_discard = 0\n else:\n window_size = int(self.feature_name.split('_')[1])\n frame_to_discard = ceil(window_size / 2 / 40)\n my_csv = {}\n for file in tqdm(files):\n clip_id_temp = file.split('.')[0]\n base_path = clip_id_temp.replace('AFEW/aligned',\n 'early_feature/framefeature') + '*'\n frames_features_path = glob.glob(base_path)\n audio_features_path = glob.glob(base_path.replace(\n 'early_feature/framefeature', 'early_feature/' + self.\n feature_name))\n frames_features_path.sort(key=lambda x: int(x.split('_')[-1].\n split('.')[0]))\n if 'full' not in self.feature_name:\n audio_features_path.sort(key=lambda x: int(x.split('_')[-1]\n .split('.')[0]))\n ground_truth = basename(dirname(clip_id_temp))\n clip_id = basename(clip_id_temp)\n frames_features_path = frames_features_path[frame_to_discard:]\n if len(frames_features_path) < 16:\n continue\n if len(audio_features_path\n ) < 16 and 'full' not in self.feature_name:\n continue\n for index, frame in enumerate(frames_features_path):\n if clip_id not in my_csv.keys():\n my_csv[clip_id] = []\n if 'full' not in self.feature_name:\n my_csv[clip_id].append([ground_truth, frame,\n audio_features_path[index]])\n else:\n my_csv[clip_id].append([ground_truth, frame,\n audio_features_path[0]])\n with open('features_path_early_fusion_' + name + '_' + self.\n feature_name + '.csv', 'w') as f:\n f.write('clip_id, ground_truth, frame_label, audio_label\\n')\n for key in my_csv:\n for line in my_csv[key]:\n f.write(key + ',' + line[0] + ',' + line[1] + ',' +\n line[2] + '\\n')\n return my_csv\n\n def early_gen_train(self, list_files, batch_size):\n c = 0\n clip_ids = list(self.csv_fusion['train'].keys())\n random.shuffle(clip_ids)\n while True:\n labels = []\n features = [np.zeros((batch_size, self.time_step, self.\n feature_num)).astype('float'), np.zeros((batch_size, self.\n time_step, 1024)).astype('float')]\n for i in range(c, c + batch_size):\n clip_id = clip_ids[i]\n video_info = self.csv_fusion['train'][clip_id]\n ground_truth = video_info[0][0]\n start = random.randint(0, len(video_info) - self.time_step)\n for index, elem in enumerate(video_info[start:self.\n time_step + start]):\n _, frame_path, audio_path = elem\n if not isfile(frame_path):\n start += 1\n if start >= len(video_info):\n raise\n continue\n frame_feature = np.load(frame_path)\n features[0][i - c][index] = np.array(from_arff_to_feture\n (audio_path)).reshape(self.feature_num)\n features[1][i - c][index] = frame_feature.reshape(1024)\n labels.append(ground_truth)\n c += batch_size\n if c + batch_size > len(clip_ids):\n c = 0\n random.shuffle(clip_ids)\n labels = self.lb.transform(np.array(labels)).reshape((\n batch_size, 7))\n yield features, labels\n\n def early_gen_new_val(self, list_files, batch_size, mode='val', stride=1):\n \"\"\" stride 50% sul su tutti i file \"\"\"\n c = 0\n labels = features = []\n clip_ids = list(list_files.keys())\n while True:\n for clip_id in tqdm(clip_ids):\n video_info = list_files[clip_id]\n ground_truth = video_info[0][0]\n for start in range(0, len(video_info) - self.time_step, \n self.time_step // stride):\n if c == 0:\n labels = []\n features = [np.zeros((batch_size, self.time_step,\n self.feature_num)).astype('float'), np.zeros((\n batch_size, self.time_step, 1024)).astype('float')]\n for index, elem in enumerate(video_info[start:self.\n time_step + start]):\n _, frame_path, audio_path = elem\n frame_feature = np.load(frame_path)\n features[0][c][index] = np.array(from_arff_to_feture\n (audio_path)).reshape(self.feature_num)\n features[1][c][index] = frame_feature.reshape(1024)\n labels.append(ground_truth)\n c += 1\n if c == batch_size:\n c = 0\n labels = self.lb.transform(np.array(labels)).reshape((\n batch_size, 7))\n yield features, labels\n if mode == 'eval':\n break\n\n def early_gen_test_clip(self, list_files, clip_id, stride=1):\n \"\"\" stride su singolo file, quindi va richiamato per ogni file \"\"\"\n ground_truth = list_files[0][0]\n start = 0\n end = len(list_files) - self.time_step\n while True:\n labels = []\n features = [np.zeros((1, self.time_step, self.feature_num)).\n astype('float'), np.zeros((1, self.time_step, 1024)).astype\n ('float')]\n for index, elem in enumerate(list_files[start:start + self.\n time_step]):\n _, frame_path, audio_path = elem\n frame_feature = np.load(frame_path)\n features[0][0][index] = np.array(from_arff_to_feture(\n audio_path)).reshape(self.feature_num)\n features[1][0][index] = frame_feature.reshape(1024)\n labels.append(ground_truth)\n start += self.time_step // stride\n if start >= end:\n break\n labels = self.lb.transform(np.array(labels)).reshape((1, 7))\n yield features, labels\n\n def get_validation_dim(self):\n if self.stride == 2:\n if 'full' in self.feature_name:\n return 141\n elif '600' in self.feature_name:\n return 0\n elif '300' in self.feature_name:\n return 114\n elif '100' in self.feature_name:\n return 128\n elif self.stride == 1:\n if 'full' in self.feature_name:\n return 76\n elif '600' in self.feature_name:\n return 0\n elif '300' in self.feature_name:\n return 63\n elif '100' in self.feature_name:\n return 69\n elif self.stride == self.time_step:\n return 0\n\n def train(self, train_files, val_files, train_data, model):\n if train_data['opt'] == 'Adam':\n optimizer = Adam(lr=train_data['lr'])\n else:\n optimizer = SGD(lr=train_data['lr'])\n model.compile(optimizer=optimizer, loss='categorical_crossentropy',\n metrics=['accuracy'])\n model.summary()\n train_gen = train_data['generator1'](train_files, train_data[\n 'batch_size'])\n no_of_training_images = len(train_files)\n no_of_val_images = self.get_validation_dim()\n print('no_of_val_images:', no_of_val_images)\n val_gen = train_data['generator2'](val_files, train_data['batch_size'])\n model_name = '_lr' + str(train_data['lr']) + '_Opt' + train_data['opt'\n ] + '_Model' + str(train_data['model_name']\n ) + '_Feature' + self.feature_name + '_' + str(train_data[\n 'iteration']) + '_' + self.train_mode\n model_name += 'stride' + str(self.stride)\n model_name += '.h5'\n\n def custom_scheduler(epoch):\n if epoch < 50:\n print(0.1)\n return 0.1\n if epoch < 100:\n print(0.01)\n return 0.01\n if epoch < 125:\n print(0.001)\n return 0.001\n else:\n print(0.0001)\n return 0.0001\n\n\n class CheckValCMCallback(keras.callbacks.Callback):\n\n def __init__(self, m, dim, validation_files, epoch):\n super().__init__()\n self.vc = m\n self.dim = dim\n self.val_files = validation_files\n self.epoch = epoch\n self.accs = []\n\n def on_epoch_end(self, epoch, logs=None):\n csv_fusion = self.vc.load_early_csv('val')\n gen = self.vc.early_gen_new_val(csv_fusion, 16, 'eval')\n acc = self.model.evaluate_generator(gen, self.dim, workers=0)\n self.accs.append(acc)\n print('Evaluate:', acc)\n if self.epoch == epoch + 1:\n print('Validation_Accuracy =', self.accs)\n cb = [ModelCheckpoint(filepath=str(\n 'weights_new_fusion/videoModel__t{accuracy:.4f}_epoch{epoch:02d}' +\n model_name), monitor='val_accuracy', save_weights_only=True),\n TensorBoard(log_dir='NewFusionLogs_sched/' + self.train_mode +\n '/' + self.feature_name, write_graph=True, write_images=True)]\n cb += [LearningRateScheduler(custom_scheduler)]\n history = model.fit_generator(train_gen, validation_data=val_gen,\n epochs=train_data['epoch'], steps_per_epoch=\n no_of_training_images * 2 // train_data['batch_size'],\n validation_steps=no_of_val_images, workers=0, verbose=1,\n callbacks=cb)\n print('\\n\\nTrain_Accuracy =', history.history['accuracy'])\n print('\\nVal_Accuracy =', history.history['val_accuracy'])\n print('\\n\\nTrain_Loss =', history.history['loss'])\n print('\\nVal_Loss =', history.history['val_loss'])\n\n def print_stats(self, ground_truths, predictions, name):\n cm = confusion_matrix(ground_truths, predictions, self.classes)\n print('###' + name + ' Results###\\n')\n print_cm(np.around(cm.astype('float') / cm.sum(axis=1)[:, np.\n newaxis], decimals=3), self.classes)\n print('\\n\\n')\n print('Accuracy score: ', accuracy_score(ground_truths, predictions\n ), '\\n\\n')\n print(\n '#################################################################end###\\n\\n\\n'\n )\n\n def print_confusion_matrix(self, stride=1):\n \"\"\" IMPLEMENT FOR EARLY FUSION MISSING \"\"\"\n csv_fusion = {}\n predictions = []\n ground_truths = []\n if self.train_mode == 'early_fusion':\n csv_fusion = self.load_early_csv('val')\n print('CSV loaded', len(csv_fusion))\n gen = self.early_gen_new_val(csv_fusion, 1, 'eval', stride)\n for x in gen:\n ground_truths.append(self.lb.inverse_transform(x[1])[0])\n pred = self.model.predict(x[0])\n pred = self.lb.inverse_transform(pred)\n predictions.append(pred[0])\n self.print_stats(ground_truths, predictions, 'Video')\n else:\n with open('lables_late_fusion' + self.feature_name + '.csv', 'r'\n ) as f:\n f.readline()\n csv_reader = csv.reader(f)\n for row in csv_reader:\n csv_fusion[row[0]] = [row[1], row[2], row[3]]\n a_p = []\n f_p = []\n files = glob.glob('/user/vlongobardi/late_feature/' + self.\n feature_name + '/*/*csv')\n for file in files:\n clip_id = basename(file).split('.')[0]\n ground_truth, frame_pred, audio_pred = csv_fusion[clip_id]\n sample = np.append(self.lb.transform(np.array([audio_pred])\n ), self.lb.transform(np.array([frame_pred])))\n pred = self.model.predict(sample.reshape((1, 14)))\n pred = self.lb.inverse_transform(pred)[0]\n predictions.append(pred)\n a_p.append(audio_pred)\n f_p.append(frame_pred)\n ground_truths.append(ground_truth)\n self.print_stats(ground_truths, predictions, 'Video')\n self.print_stats(ground_truths, a_p, 'Audio')\n self.print_stats(ground_truths, f_p, 'Frame')\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\ndef my_model():\n r1, r2 = regularizers.l2(1e-05), regularizers.l2(1e-05)\n frame_input = Input(shape=(16, 1024))\n audio_input = Input(shape=(16, 1582))\n x = Concatenate(name='fusion1')([frame_input, audio_input])\n x = TimeDistributed(Dense(100, activation='tanh', kernel_regularizer=r1,\n name='ff_logit_lstm'))(x)\n x = TimeDistributed(Dropout(0.5))(x)\n x = TimeDistributed(Dense(7, activation='softmax', kernel_regularizer=\n r2, name='ff_logit'))(x)\n x = Lambda(lambda y: tf.reduce_mean(y, axis=1))(x)\n return Model([audio_input, frame_input], x)\n\n\nclass VideoClassifier:\n\n def __init__(self, train_mode='late_fusion', video_model_path=None,\n time_step=16, base_path='/user/vlongobardi/AFEW/aligned/',\n feature_name='emobase2010_100', stride=1):\n self.time_step = time_step\n self.train_mode = train_mode\n self.feature_name = feature_name\n self.classes = classes\n self.lb = LabelBinarizer()\n self.lb.fit_transform(np.array(classes))\n self.feature_num = 1582\n self.offset = ceil(int(self.feature_name.split('_')[1]) / 2 / 40)\n self.stride = stride\n if video_model_path is not None:\n try:\n self.model = my_model()\n self.model.load_weights(video_model_path)\n print('VideoClassifier loaded successfully', video_model_path)\n except:\n print('Exception')\n else:\n t_files = glob.glob(base_path + 'Train' + '/*/*csv')\n v_files = glob.glob(base_path + 'Val' + '/*/*csv')\n self.csv_fusion = self.generate_feature(t_files, v_files)\n self.do_training()\n\n def do_training(self):\n skips = 0\n iters = 1\n bs = 16\n ep = 150\n opts = ['SGD']\n lrs = [0.01]\n models = [my_model]\n models_name = [x.__name__ for x in models]\n for index, model in enumerate(models):\n for opt in opts:\n for lr in lrs:\n for iteration in range(iters):\n if skips > 0:\n skips -= 1\n continue\n train_infos = {'iteration': iteration, 'model_name':\n models_name[index], 'batch_size': bs, 'epoch':\n ep, 'lr': lr, 'opt': opt}\n print(\n \"\"\"\n\n################################################################################\n############################## ITERATION \"\"\"\n + str(iteration + 1) + ' of ' + str(iters) +\n \"\"\" ###########################\n######################################################\"\"\"\n + \"\"\" ########################\nepochs:\"\"\", ep,\n 'batch_size:', bs, '\\nmodel:', models_name[\n index], 'in', models_name, '\\nopt:', opt, 'in',\n opts, '\\nlr:', lr, 'in', lrs)\n train_infos['generator1'] = self.early_gen_train\n train_infos['generator2'] = self.early_gen_new_val\n t_files, v_files = self.csv_fusion['train'\n ], self.csv_fusion['val']\n m = model()\n self.train(t_files, v_files, train_infos, m)\n\n def generate_feature(self, t_files, v_files):\n if not exists('features_path_early_fusion_train_' + self.\n feature_name + '.csv'):\n print('\\n##### GENERATING CSV FOR EARLY FUSION... #####')\n csv_early_fusion = {'train': self.\n _generate_data_for_early_fusion(t_files, 'train'), 'val':\n self._generate_data_for_early_fusion(v_files, 'val')}\n print('\\n##### CSV GENERATED! #####')\n else:\n csv_early_fusion = {}\n for name in ['train', 'val']:\n csv_early_fusion[name] = self.load_early_csv(name)\n return csv_early_fusion\n\n def load_early_csv(self, dataset):\n csv_early_fusion = {}\n print('Opening csv: features_path_early_fusion_' + dataset + '_' +\n self.feature_name + '.csv')\n with open('features_path_early_fusion_' + dataset + '_' + self.\n feature_name + '.csv', 'r') as f:\n f.readline()\n csv_reader = csv.reader(f)\n for clip_id, ground_truth, frame_label, audio_label in csv_reader:\n if clip_id not in csv_early_fusion:\n csv_early_fusion[clip_id] = []\n csv_early_fusion[clip_id].append([ground_truth, frame_label,\n audio_label])\n return csv_early_fusion\n\n def _generate_data_for_early_fusion(self, files, name):\n if 'full' in self.feature_name:\n frame_to_discard = 0\n else:\n window_size = int(self.feature_name.split('_')[1])\n frame_to_discard = ceil(window_size / 2 / 40)\n my_csv = {}\n for file in tqdm(files):\n clip_id_temp = file.split('.')[0]\n base_path = clip_id_temp.replace('AFEW/aligned',\n 'early_feature/framefeature') + '*'\n frames_features_path = glob.glob(base_path)\n audio_features_path = glob.glob(base_path.replace(\n 'early_feature/framefeature', 'early_feature/' + self.\n feature_name))\n frames_features_path.sort(key=lambda x: int(x.split('_')[-1].\n split('.')[0]))\n if 'full' not in self.feature_name:\n audio_features_path.sort(key=lambda x: int(x.split('_')[-1]\n .split('.')[0]))\n ground_truth = basename(dirname(clip_id_temp))\n clip_id = basename(clip_id_temp)\n frames_features_path = frames_features_path[frame_to_discard:]\n if len(frames_features_path) < 16:\n continue\n if len(audio_features_path\n ) < 16 and 'full' not in self.feature_name:\n continue\n for index, frame in enumerate(frames_features_path):\n if clip_id not in my_csv.keys():\n my_csv[clip_id] = []\n if 'full' not in self.feature_name:\n my_csv[clip_id].append([ground_truth, frame,\n audio_features_path[index]])\n else:\n my_csv[clip_id].append([ground_truth, frame,\n audio_features_path[0]])\n with open('features_path_early_fusion_' + name + '_' + self.\n feature_name + '.csv', 'w') as f:\n f.write('clip_id, ground_truth, frame_label, audio_label\\n')\n for key in my_csv:\n for line in my_csv[key]:\n f.write(key + ',' + line[0] + ',' + line[1] + ',' +\n line[2] + '\\n')\n return my_csv\n\n def early_gen_train(self, list_files, batch_size):\n c = 0\n clip_ids = list(self.csv_fusion['train'].keys())\n random.shuffle(clip_ids)\n while True:\n labels = []\n features = [np.zeros((batch_size, self.time_step, self.\n feature_num)).astype('float'), np.zeros((batch_size, self.\n time_step, 1024)).astype('float')]\n for i in range(c, c + batch_size):\n clip_id = clip_ids[i]\n video_info = self.csv_fusion['train'][clip_id]\n ground_truth = video_info[0][0]\n start = random.randint(0, len(video_info) - self.time_step)\n for index, elem in enumerate(video_info[start:self.\n time_step + start]):\n _, frame_path, audio_path = elem\n if not isfile(frame_path):\n start += 1\n if start >= len(video_info):\n raise\n continue\n frame_feature = np.load(frame_path)\n features[0][i - c][index] = np.array(from_arff_to_feture\n (audio_path)).reshape(self.feature_num)\n features[1][i - c][index] = frame_feature.reshape(1024)\n labels.append(ground_truth)\n c += batch_size\n if c + batch_size > len(clip_ids):\n c = 0\n random.shuffle(clip_ids)\n labels = self.lb.transform(np.array(labels)).reshape((\n batch_size, 7))\n yield features, labels\n\n def early_gen_new_val(self, list_files, batch_size, mode='val', stride=1):\n \"\"\" stride 50% sul su tutti i file \"\"\"\n c = 0\n labels = features = []\n clip_ids = list(list_files.keys())\n while True:\n for clip_id in tqdm(clip_ids):\n video_info = list_files[clip_id]\n ground_truth = video_info[0][0]\n for start in range(0, len(video_info) - self.time_step, \n self.time_step // stride):\n if c == 0:\n labels = []\n features = [np.zeros((batch_size, self.time_step,\n self.feature_num)).astype('float'), np.zeros((\n batch_size, self.time_step, 1024)).astype('float')]\n for index, elem in enumerate(video_info[start:self.\n time_step + start]):\n _, frame_path, audio_path = elem\n frame_feature = np.load(frame_path)\n features[0][c][index] = np.array(from_arff_to_feture\n (audio_path)).reshape(self.feature_num)\n features[1][c][index] = frame_feature.reshape(1024)\n labels.append(ground_truth)\n c += 1\n if c == batch_size:\n c = 0\n labels = self.lb.transform(np.array(labels)).reshape((\n batch_size, 7))\n yield features, labels\n if mode == 'eval':\n break\n\n def early_gen_test_clip(self, list_files, clip_id, stride=1):\n \"\"\" stride su singolo file, quindi va richiamato per ogni file \"\"\"\n ground_truth = list_files[0][0]\n start = 0\n end = len(list_files) - self.time_step\n while True:\n labels = []\n features = [np.zeros((1, self.time_step, self.feature_num)).\n astype('float'), np.zeros((1, self.time_step, 1024)).astype\n ('float')]\n for index, elem in enumerate(list_files[start:start + self.\n time_step]):\n _, frame_path, audio_path = elem\n frame_feature = np.load(frame_path)\n features[0][0][index] = np.array(from_arff_to_feture(\n audio_path)).reshape(self.feature_num)\n features[1][0][index] = frame_feature.reshape(1024)\n labels.append(ground_truth)\n start += self.time_step // stride\n if start >= end:\n break\n labels = self.lb.transform(np.array(labels)).reshape((1, 7))\n yield features, labels\n\n def get_validation_dim(self):\n if self.stride == 2:\n if 'full' in self.feature_name:\n return 141\n elif '600' in self.feature_name:\n return 0\n elif '300' in self.feature_name:\n return 114\n elif '100' in self.feature_name:\n return 128\n elif self.stride == 1:\n if 'full' in self.feature_name:\n return 76\n elif '600' in self.feature_name:\n return 0\n elif '300' in self.feature_name:\n return 63\n elif '100' in self.feature_name:\n return 69\n elif self.stride == self.time_step:\n return 0\n\n def train(self, train_files, val_files, train_data, model):\n if train_data['opt'] == 'Adam':\n optimizer = Adam(lr=train_data['lr'])\n else:\n optimizer = SGD(lr=train_data['lr'])\n model.compile(optimizer=optimizer, loss='categorical_crossentropy',\n metrics=['accuracy'])\n model.summary()\n train_gen = train_data['generator1'](train_files, train_data[\n 'batch_size'])\n no_of_training_images = len(train_files)\n no_of_val_images = self.get_validation_dim()\n print('no_of_val_images:', no_of_val_images)\n val_gen = train_data['generator2'](val_files, train_data['batch_size'])\n model_name = '_lr' + str(train_data['lr']) + '_Opt' + train_data['opt'\n ] + '_Model' + str(train_data['model_name']\n ) + '_Feature' + self.feature_name + '_' + str(train_data[\n 'iteration']) + '_' + self.train_mode\n model_name += 'stride' + str(self.stride)\n model_name += '.h5'\n\n def custom_scheduler(epoch):\n if epoch < 50:\n print(0.1)\n return 0.1\n if epoch < 100:\n print(0.01)\n return 0.01\n if epoch < 125:\n print(0.001)\n return 0.001\n else:\n print(0.0001)\n return 0.0001\n\n\n class CheckValCMCallback(keras.callbacks.Callback):\n\n def __init__(self, m, dim, validation_files, epoch):\n super().__init__()\n self.vc = m\n self.dim = dim\n self.val_files = validation_files\n self.epoch = epoch\n self.accs = []\n\n def on_epoch_end(self, epoch, logs=None):\n csv_fusion = self.vc.load_early_csv('val')\n gen = self.vc.early_gen_new_val(csv_fusion, 16, 'eval')\n acc = self.model.evaluate_generator(gen, self.dim, workers=0)\n self.accs.append(acc)\n print('Evaluate:', acc)\n if self.epoch == epoch + 1:\n print('Validation_Accuracy =', self.accs)\n cb = [ModelCheckpoint(filepath=str(\n 'weights_new_fusion/videoModel__t{accuracy:.4f}_epoch{epoch:02d}' +\n model_name), monitor='val_accuracy', save_weights_only=True),\n TensorBoard(log_dir='NewFusionLogs_sched/' + self.train_mode +\n '/' + self.feature_name, write_graph=True, write_images=True)]\n cb += [LearningRateScheduler(custom_scheduler)]\n history = model.fit_generator(train_gen, validation_data=val_gen,\n epochs=train_data['epoch'], steps_per_epoch=\n no_of_training_images * 2 // train_data['batch_size'],\n validation_steps=no_of_val_images, workers=0, verbose=1,\n callbacks=cb)\n print('\\n\\nTrain_Accuracy =', history.history['accuracy'])\n print('\\nVal_Accuracy =', history.history['val_accuracy'])\n print('\\n\\nTrain_Loss =', history.history['loss'])\n print('\\nVal_Loss =', history.history['val_loss'])\n\n def print_stats(self, ground_truths, predictions, name):\n cm = confusion_matrix(ground_truths, predictions, self.classes)\n print('###' + name + ' Results###\\n')\n print_cm(np.around(cm.astype('float') / cm.sum(axis=1)[:, np.\n newaxis], decimals=3), self.classes)\n print('\\n\\n')\n print('Accuracy score: ', accuracy_score(ground_truths, predictions\n ), '\\n\\n')\n print(\n '#################################################################end###\\n\\n\\n'\n )\n\n def print_confusion_matrix(self, stride=1):\n \"\"\" IMPLEMENT FOR EARLY FUSION MISSING \"\"\"\n csv_fusion = {}\n predictions = []\n ground_truths = []\n if self.train_mode == 'early_fusion':\n csv_fusion = self.load_early_csv('val')\n print('CSV loaded', len(csv_fusion))\n gen = self.early_gen_new_val(csv_fusion, 1, 'eval', stride)\n for x in gen:\n ground_truths.append(self.lb.inverse_transform(x[1])[0])\n pred = self.model.predict(x[0])\n pred = self.lb.inverse_transform(pred)\n predictions.append(pred[0])\n self.print_stats(ground_truths, predictions, 'Video')\n else:\n with open('lables_late_fusion' + self.feature_name + '.csv', 'r'\n ) as f:\n f.readline()\n csv_reader = csv.reader(f)\n for row in csv_reader:\n csv_fusion[row[0]] = [row[1], row[2], row[3]]\n a_p = []\n f_p = []\n files = glob.glob('/user/vlongobardi/late_feature/' + self.\n feature_name + '/*/*csv')\n for file in files:\n clip_id = basename(file).split('.')[0]\n ground_truth, frame_pred, audio_pred = csv_fusion[clip_id]\n sample = np.append(self.lb.transform(np.array([audio_pred])\n ), self.lb.transform(np.array([frame_pred])))\n pred = self.model.predict(sample.reshape((1, 14)))\n pred = self.lb.inverse_transform(pred)[0]\n predictions.append(pred)\n a_p.append(audio_pred)\n f_p.append(frame_pred)\n ground_truths.append(ground_truth)\n self.print_stats(ground_truths, predictions, 'Video')\n self.print_stats(ground_truths, a_p, 'Audio')\n self.print_stats(ground_truths, f_p, 'Frame')\n\n\n<mask token>\n", "step-5": "import csv\nimport glob\nimport random\nimport sys\nfrom math import ceil, floor\nfrom os.path import basename, exists, dirname, isfile\n\nimport numpy as np\nimport keras\nfrom keras import Model, Input, regularizers\nfrom keras.layers import TimeDistributed, LSTMCell, Reshape, Dense, Lambda, Dropout, Concatenate\nfrom keras.callbacks import ModelCheckpoint, TensorBoard, LearningRateScheduler\nfrom keras.optimizers import Adam, SGD\nfrom sklearn.metrics import confusion_matrix, accuracy_score # , classification_report\nfrom sklearn.preprocessing import LabelBinarizer\nfrom tqdm import tqdm\n\nfrom Dataset.Dataset_Utils.augmenter import NoAug\nfrom Dataset.Dataset_Utils.datagen import DataGenerator as DataGen\nfrom Dataset.Dataset_Utils.dataset_tools import print_cm\nfrom Models.model_sharma import SharmaNet\nfrom audio_classifier import AudioClassifier, from_arff_to_feture\nfrom frames_classifier import FramesClassifier\nfrom test_models import *\n\nclasses = [\"Angry\", \"Disgust\", \"Fear\", \"Happy\", \"Neutral\", \"Sad\", \"Surprise\"]\n\n\ndef my_model():\n r1, r2 = regularizers.l2(1e-5), regularizers.l2(1e-5)\n frame_input = Input(shape=(16, 1024))\n audio_input = Input(shape=(16, 1582))\n x = Concatenate(name='fusion1')([frame_input, audio_input])\n x = TimeDistributed(Dense(100, activation='tanh', kernel_regularizer=r1, name='ff_logit_lstm'))(x)\n x = TimeDistributed(Dropout(0.5))(x)\n x = TimeDistributed(Dense(7, activation='softmax', kernel_regularizer=r2, name='ff_logit'))(x)\n x = Lambda(lambda y: tf.reduce_mean(y, axis=1))(x)\n return Model([audio_input, frame_input], x)\n\n\nclass VideoClassifier:\n\n def __init__(self, train_mode=\"late_fusion\", video_model_path=None, time_step=16,\n base_path=\"/user/vlongobardi/AFEW/aligned/\", feature_name=\"emobase2010_100\", stride=1):\n self.time_step = time_step\n self.train_mode = train_mode\n self.feature_name = feature_name\n self.classes = classes\n self.lb = LabelBinarizer()\n self.lb.fit_transform(np.array(classes))\n self.feature_num = 1582\n self.offset = ceil(int(self.feature_name.split(\"_\")[1]) / 2 / 40)\n self.stride = stride\n\n if video_model_path is not None:\n try:\n self.model = my_model()\n self.model.load_weights(video_model_path)\n print(\"VideoClassifier loaded successfully\", video_model_path)\n except:\n print(\"Exception\")\n else:\n t_files = glob.glob(base_path + \"Train\" + \"/*/*csv\")\n v_files = glob.glob(base_path + \"Val\" + \"/*/*csv\")\n self.csv_fusion = self.generate_feature(t_files, v_files)\n self.do_training()\n\n def do_training(self):\n skips = 0\n iters = 1\n bs = 16\n ep = 150\n opts = [\"SGD\"]#, \"Adam\"]\n lrs = [0.01]\n models = [my_model]\n models_name = [x.__name__ for x in models]\n for index, model in enumerate(models):\n for opt in opts:\n for lr in lrs:\n for iteration in range(iters):\n\n if skips > 0:\n skips -= 1\n continue\n\n train_infos = {\n \"iteration\": iteration, \"model_name\": models_name[index],\n \"batch_size\": bs, \"epoch\": ep, \"lr\": lr, \"opt\": opt\n }\n\n print(\n \"\\n\\n################################################################################\\n\"\n \"############################## ITERATION \" + str(iteration + 1) + \" of \" + str(iters) +\n \" ###########################\\n######################################################\" +\n \" ########################\\nepochs:\", ep, \"batch_size:\", bs, \"\\nmodel:\", models_name[index],\n \"in\", models_name, \"\\nopt:\", opt, \"in\", opts, \"\\nlr:\", lr, \"in\", lrs)\n\n train_infos[\"generator1\"] = self.early_gen_train\n train_infos[\"generator2\"] = self.early_gen_new_val\n t_files, v_files = self.csv_fusion[\"train\"], self.csv_fusion[\"val\"]\n m = model()\n\n self.train(t_files, v_files, train_infos, m)\n\n def generate_feature(self, t_files, v_files):\n if not exists('features_path_early_fusion_train_' + self.feature_name + '.csv'):\n print(\"\\n##### GENERATING CSV FOR EARLY FUSION... #####\")\n csv_early_fusion = {\n \"train\": self._generate_data_for_early_fusion(t_files, \"train\"),\n \"val\": self._generate_data_for_early_fusion(v_files, \"val\")\n }\n print(\"\\n##### CSV GENERATED! #####\")\n else:\n csv_early_fusion = {}\n for name in [\"train\", \"val\"]:\n csv_early_fusion[name] = self.load_early_csv(name)\n return csv_early_fusion\n\n def load_early_csv(self, dataset):\n csv_early_fusion = {}\n print(\"Opening csv: features_path_early_fusion_\" + dataset + \"_\" + self.feature_name + '.csv')\n with open('features_path_early_fusion_' + dataset + \"_\" + self.feature_name + '.csv', 'r') as f:\n f.readline()\n csv_reader = csv.reader(f)\n for clip_id, ground_truth, frame_label, audio_label in csv_reader:\n if clip_id not in csv_early_fusion:\n csv_early_fusion[clip_id] = []\n csv_early_fusion[clip_id].append([ground_truth, frame_label, audio_label])\n return csv_early_fusion\n\n def _generate_data_for_early_fusion(self, files, name):\n # '/user/vlongobardi/AFEW/aligned/Train/Angry/012738600.csv'\n # '/user/vlongobardi/early_feature/framefeature/Train/Angry/012738600_0.dat'\n # '/user/vlongobardi/early_feature/emobase2010_600/Train/Angry/012738600_0.arff'\n if \"full\" in self.feature_name:\n frame_to_discard = 0\n else:\n window_size = int(self.feature_name.split(\"_\")[1])\n frame_to_discard = ceil(window_size / 2 / 40)\n my_csv = {}\n for file in tqdm(files):\n clip_id_temp = file.split(\".\")[0]\n base_path = clip_id_temp.replace(\"AFEW/aligned\", \"early_feature/framefeature\") + \"*\"\n frames_features_path = glob.glob(base_path)\n audio_features_path = glob.glob(\n base_path.replace(\"early_feature/framefeature\", \"early_feature/\" + self.feature_name))\n frames_features_path.sort(key=lambda x: int(x.split(\"_\")[-1].split(\".\")[0]))\n if \"full\" not in self.feature_name:\n audio_features_path.sort(key=lambda x: int(x.split(\"_\")[-1].split(\".\")[0]))\n ground_truth = basename(dirname(clip_id_temp))\n clip_id = basename(clip_id_temp)\n\n # discard video frames based on window size\n frames_features_path = frames_features_path[frame_to_discard:]\n if len(frames_features_path) < 16:\n continue\n # print(\"FRAME TOO FEW SAMPLES:\", len(frames_features_path), clip_id)\n if len(audio_features_path) < 16 and \"full\" not in self.feature_name:\n continue\n # print(\"AUDIO TOO FEW SAMPLES:\", len(audio_features_path), clip_id)\n for index, frame in enumerate(frames_features_path):\n if clip_id not in my_csv.keys():\n my_csv[clip_id] = []\n if \"full\" not in self.feature_name:\n my_csv[clip_id].append([ground_truth, frame, audio_features_path[index]])\n else:\n my_csv[clip_id].append([ground_truth, frame, audio_features_path[0]])\n with open('features_path_early_fusion_' + name + \"_\" + self.feature_name + '.csv', 'w') as f:\n f.write(\"clip_id, ground_truth, frame_label, audio_label\\n\")\n for key in my_csv:\n for line in my_csv[key]:\n f.write(key + \",\" + line[0] + \",\" + line[1] + \",\" + line[2] + \"\\n\")\n return my_csv\n\n def early_gen_train(self, list_files, batch_size):\n c = 0\n clip_ids = list(self.csv_fusion[\"train\"].keys())\n random.shuffle(clip_ids)\n while True:\n labels = []\n features = [np.zeros((batch_size, self.time_step, self.feature_num)).astype('float'),\n np.zeros((batch_size, self.time_step, 1024)).astype('float')]\n for i in range(c, c + batch_size):\n clip_id = clip_ids[i]\n video_info = self.csv_fusion[\"train\"][clip_id]\n ground_truth = video_info[0][0]\n\n # first_frame_num = int(video_info[0][1].split(\"_\")[-1].split(\".\")[0])\n start = random.randint(0, len(video_info) - self.time_step)\n for index, elem in enumerate(video_info[start:self.time_step + start]):\n _, frame_path, audio_path = elem\n if not isfile(frame_path):\n start += 1\n if start >= len(video_info):\n raise\n continue\n frame_feature = np.load(frame_path)\n features[0][i - c][index] = np.array(from_arff_to_feture(audio_path)).reshape(self.feature_num, )\n features[1][i - c][index] = frame_feature.reshape(1024, )\n labels.append(ground_truth)\n c += batch_size\n if c + batch_size > len(clip_ids):\n c = 0\n random.shuffle(clip_ids)\n labels = self.lb.transform(np.array(labels)).reshape((batch_size, 7))\n yield features, labels\n\n def early_gen_new_val(self, list_files, batch_size, mode=\"val\", stride=1):\n \"\"\" stride 50% sul su tutti i file \"\"\"\n c = 0\n labels = features = []\n clip_ids = list(list_files.keys())\n while True:\n for clip_id in tqdm(clip_ids):\n video_info = list_files[clip_id]\n ground_truth = video_info[0][0]\n\n for start in range(0, len(video_info) - self.time_step, self.time_step // stride):\n if c == 0:\n labels = []\n features = [np.zeros((batch_size, self.time_step, self.feature_num)).astype('float'),\n np.zeros((batch_size, self.time_step, 1024)).astype('float')]\n for index, elem in enumerate(video_info[start:self.time_step + start]):\n _, frame_path, audio_path = elem\n frame_feature = np.load(frame_path)\n features[0][c][index] = np.array(from_arff_to_feture(audio_path)).reshape(\n self.feature_num, )\n features[1][c][index] = frame_feature.reshape(1024, )\n labels.append(ground_truth)\n\n c += 1\n if c == batch_size:\n c = 0\n labels = self.lb.transform(np.array(labels)).reshape((batch_size, 7))\n yield features, labels\n if mode == \"eval\":\n break\n\n def early_gen_test_clip(self, list_files, clip_id, stride=1):\n \"\"\" stride su singolo file, quindi va richiamato per ogni file \"\"\"\n ground_truth = list_files[0][0]\n start = 0\n end = len(list_files) - self.time_step\n while True:\n labels = []\n features = [np.zeros((1, self.time_step, self.feature_num)).astype('float'),\n np.zeros((1, self.time_step, 1024)).astype('float')]\n for index, elem in enumerate(list_files[start:start + self.time_step]):\n _, frame_path, audio_path = elem\n frame_feature = np.load(frame_path)\n features[0][0][index] = np.array(from_arff_to_feture(audio_path)).reshape(self.feature_num, )\n features[1][0][index] = frame_feature.reshape(1024, )\n labels.append(ground_truth)\n start += self.time_step // stride\n if start >= end:\n break\n labels = self.lb.transform(np.array(labels)).reshape((1, 7))\n yield features, labels\n\n def get_validation_dim(self):\n if self.stride == 2:\n if \"full\" in self.feature_name:\n return 141\n elif \"600\" in self.feature_name:\n return 0\n elif \"300\" in self.feature_name:\n return 114\n elif \"100\" in self.feature_name:\n return 128\n elif self.stride == 1:\n if \"full\" in self.feature_name:\n return 76\n elif \"600\" in self.feature_name:\n return 0\n elif \"300\" in self.feature_name:\n return 63\n elif \"100\" in self.feature_name:\n return 69\n elif self.stride == self.time_step:\n return 0\n\n def train(self, train_files, val_files, train_data, model):\n if train_data[\"opt\"] == \"Adam\":\n optimizer = Adam(lr=train_data[\"lr\"])\n else:\n optimizer = SGD(lr=train_data[\"lr\"])\n\n model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])\n model.summary()\n\n train_gen = train_data[\"generator1\"](train_files, train_data[\"batch_size\"])\n no_of_training_images = len(train_files)\n\n no_of_val_images = self.get_validation_dim()\n print(\"no_of_val_images:\", no_of_val_images)\n val_gen = train_data[\"generator2\"](val_files, train_data[\"batch_size\"])\n\n # stride = 1, no overlapping\n # stride = 2, overlapping: 50%\n # stride = time_step, stride: 1\n\n model_name = \"_lr\" + str(train_data[\"lr\"]) + \"_Opt\" + train_data[\"opt\"] + \"_Model\" + str(\n train_data[\"model_name\"]) + \"_Feature\" + self.feature_name + \"_\" + str(\n train_data[\"iteration\"]) + \"_\" + self.train_mode # + \"_modelType\" + str(self.model_type)\n model_name += \"stride\" + str(self.stride)\n model_name += \".h5\"\n\n def custom_scheduler(epoch):\n if epoch < 50:\n print(0.1)\n return 0.1\n if epoch < 100:\n print(0.01)\n return 0.01\n if epoch < 125:\n print(0.001)\n return 0.001\n else:\n print(0.0001)\n return 0.0001\n #print(0.1 / 10 ** (floor(epoch / 40) + 1))\n #return 0.1 / 10 ** (floor(epoch / 40) + 1)\n\n class CheckValCMCallback(keras.callbacks.Callback):\n def __init__(self, m, dim, validation_files, epoch):\n super().__init__()\n self.vc = m\n self.dim = dim\n self.val_files = validation_files\n self.epoch = epoch\n self.accs = []\n\n def on_epoch_end(self, epoch, logs=None):\n csv_fusion = self.vc.load_early_csv(\"val\")\n # gen = self.vc.early_gen_new_val(csv_fusion, 16, \"eval\")\n # predictions = []\n # ground_truths = []\n # for x in gen:\n # ground_truths.append(self.vc.lb.inverse_transform(x[1])[0])\n # pred = self.model.predict(x[0])\n # pred = self.vc.lb.inverse_transform(pred)\n # predictions.append(pred[0])\n # self.vc.print_stats(ground_truths, predictions, \"Video\" + str(epoch))\n gen = self.vc.early_gen_new_val(csv_fusion, 16, \"eval\")\n acc = self.model.evaluate_generator(gen, self.dim, workers=0)\n self.accs.append(acc)\n print(\"Evaluate:\", acc)\n\n if self.epoch == epoch + 1:\n print(\"Validation_Accuracy =\", self.accs)\n\n cb = [ModelCheckpoint(\n filepath=str(\n \"weights_new_fusion/videoModel__t{accuracy:.4f}_epoch{epoch:02d}\" + model_name),\n monitor=\"val_accuracy\", save_weights_only=True),\n TensorBoard(log_dir=\"NewFusionLogs_sched/\" + self.train_mode + \"/\" + self.feature_name, write_graph=True,\n write_images=True)]\n cb += [LearningRateScheduler(custom_scheduler)]\n #cb += [CheckValCMCallback(self, no_of_val_images, val_files, train_data[\"epoch\"])]\n history = model.fit_generator(train_gen,\n validation_data=val_gen,\n epochs=train_data[\"epoch\"],\n steps_per_epoch=(no_of_training_images * 2 // train_data[\"batch_size\"]),\n validation_steps=(no_of_val_images),\n workers=0, verbose=1, callbacks=cb)\n print(\"\\n\\nTrain_Accuracy =\", history.history['accuracy'])\n print(\"\\nVal_Accuracy =\", history.history['val_accuracy'])\n print(\"\\n\\nTrain_Loss =\", history.history['loss'])\n print(\"\\nVal_Loss =\", history.history['val_loss'])\n\n def print_stats(self, ground_truths, predictions, name):\n cm = confusion_matrix(ground_truths, predictions, self.classes)\n print(\"###\" + name + \" Results###\\n\")\n # print_cm(cm, self.classes)\n # print(\"\\n\\n\")\n print_cm(np.around(cm.astype('float') / cm.sum(axis=1)[:, np.newaxis], decimals=3), self.classes)\n print(\"\\n\\n\")\n print(\"Accuracy score: \", accuracy_score(ground_truths, predictions), \"\\n\\n\")\n # print(\"Report\")\n # print(classification_report(ground_truths, predictions))\n print(\"#################################################################end###\\n\\n\\n\")\n\n def print_confusion_matrix(self, stride=1):\n \"\"\" IMPLEMENT FOR EARLY FUSION MISSING \"\"\"\n csv_fusion = {}\n predictions = []\n ground_truths = []\n if self.train_mode == \"early_fusion\":\n csv_fusion = self.load_early_csv(\"val\")\n print(\"CSV loaded\", len(csv_fusion))\n gen = self.early_gen_new_val(csv_fusion, 1, \"eval\", stride)\n for x in gen:\n ground_truths.append(self.lb.inverse_transform(x[1])[0])\n pred = self.model.predict(x[0])\n pred = self.lb.inverse_transform(pred)\n predictions.append(pred[0])\n # print(\"\\ngt, pred\", self.lb.inverse_transform(x[1]), pred)\n self.print_stats(ground_truths, predictions, \"Video\")\n else:\n with open('lables_late_fusion' + self.feature_name + '.csv', 'r') as f:\n f.readline()\n csv_reader = csv.reader(f)\n for row in csv_reader:\n csv_fusion[row[0]] = [row[1], row[2], row[3]]\n a_p = []\n f_p = []\n files = glob.glob(\"/user/vlongobardi/late_feature/\" + self.feature_name + \"/*/*csv\")\n for file in files:\n clip_id = basename(file).split(\".\")[0]\n ground_truth, frame_pred, audio_pred = csv_fusion[clip_id]\n sample = np.append(self.lb.transform(np.array([audio_pred])), self.lb.transform(np.array([frame_pred])))\n pred = self.model.predict(sample.reshape((1, 14)))\n pred = self.lb.inverse_transform(pred)[0]\n predictions.append(pred)\n a_p.append(audio_pred)\n f_p.append(frame_pred)\n ground_truths.append(ground_truth)\n\n self.print_stats(ground_truths, predictions, \"Video\")\n self.print_stats(ground_truths, a_p, \"Audio\")\n self.print_stats(ground_truths, f_p, \"Frame\")\n\n\nif __name__ == \"__main__\":\n if sys.argv[1] == \"late\":\n print(\"LATE\")\n model_path = [\n \"audio_models/audioModel_0.2285_epoch135_lr0.1_OptSGD_Modela_model7_Featureemobase2010_100_3.h5\",\n \"audio_models/audioModel_0.2650_epoch01_lr0.01_OptSGD_Modela_model7_Featureemobase2010_300_2.h5\",\n \"audio_models/audioModel_0.2865_epoch13_lr0.001_OptSGD_Modela_model7_Featureemobase2010_600_0.h5\",\n \"audio_models/audioModel_0.3668_epoch67_lr0.001_OptSGD_Modela_model7_Featureemobase2010_full_2.h5\"\n ]\n for mp in model_path:\n vc = VideoClassifier(train_mode=\"late_fusion\", audio_model_path=mp)\n elif sys.argv[1] == \"early\":\n # mt = int(sys.argv[2])\n print(\"EARLY\") # , Model_type:\", mt)\n arff_paths = {\"e1\": \"emobase2010_100\", \"i1\": \"IS09_emotion_100\",\n \"e3\": \"emobase2010_300\", \"i3\": \"IS09_emotion_300\",\n \"e6\": \"emobase2010_600\", \"i6\": \"IS09_emotion_600\",\n \"ef\": \"emobase2010_full\", \"if\": \"IS09_emotion_full\"}\n vc = VideoClassifier(train_mode=\"early_fusion\", feature_name=arff_paths[sys.argv[2]]) # , model_type=mt)\n", "step-ids": [ 7, 11, 13, 14, 18 ] }
[ 7, 11, 13, 14, 18 ]
#!/usr/bin/env python from distutils.core import setup setup( name='RBM', version='0.0.1', description='Restricted Boltzmann Machines', long_description='README', install_requires=['numpy','pandas'], )
normal
{ "blob_id": "fab7ee8a7336ba2c044adce4cc8483af78b775ba", "index": 1827, "step-1": "<mask token>\n", "step-2": "<mask token>\nsetup(name='RBM', version='0.0.1', description=\n 'Restricted Boltzmann Machines', long_description='README',\n install_requires=['numpy', 'pandas'])\n", "step-3": "from distutils.core import setup\nsetup(name='RBM', version='0.0.1', description=\n 'Restricted Boltzmann Machines', long_description='README',\n install_requires=['numpy', 'pandas'])\n", "step-4": "#!/usr/bin/env python\n\nfrom distutils.core import setup\n\nsetup(\n name='RBM',\n version='0.0.1',\n description='Restricted Boltzmann Machines',\n long_description='README',\n install_requires=['numpy','pandas'],\n)\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
#!/usr/bin/env python import psycopg2 DBNAME = "news" query1 = """ select title, count(*) as numOfViews from articles,log where concat('/article/', articles.slug) = log.path group by title order by numOfViews desc limit 3; """ query2 = """ select authors.name, count(*) as numOfViews from articles, authors, log where articles.author = authors.id and concat('/article/', articles.slug) = log.path group by authors.name order by numOfViews desc ; """ query3 = """ select innerQuery.badDay, ROUND((100.0*innerQuery.err/innerQuery.total),3) as error from (select date_trunc('day', time) as badDay, count(*) as total, sum(case when status!='200 OK' then 1 else 0 end) as err from log group by badDay) as innerQuery where round((100.0*innerQuery.err/innerQuery.total),3) >1; """ result = '' def get_data(query): """ fetch data from database """ db = psycopg2.connect(database=DBNAME) c = db.cursor() c.execute(query) data = c.fetchall() db.close() return data def fileWrite(content): """ write result to result.txt """ file = open('./result.txt', 'w') file.write(content) file.close() def appendToResult(content, isError=False): """ formating db result to readable text """ global result if(isError): for c in content: result += c[0].strftime("%Y-%m-%d") + ' - ' + str(c[1]) + '% error' else: for c in content: result += c[0] + ' - ' + str(c[1]) + ' views \n' fileWrite(result) if __name__ == '__main__': result += '\n1. What are the most popular three articles of all time?\n\n' appendToResult(get_data(query1)) result += ' \n2. Who are the most popular article authors of all time?\n\n' appendToResult(get_data(query2)) result += '''\n3. On which days did more than 1% of requests lead to errors?\n\n''' appendToResult(get_data(query3), True) print(result) fileWrite(result)
normal
{ "blob_id": "612a3d168a09fc26530b95d258cbb4de6728419d", "index": 3721, "step-1": "<mask token>\n\n\ndef fileWrite(content):\n \"\"\" write result to result.txt \"\"\"\n file = open('./result.txt', 'w')\n file.write(content)\n file.close()\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef get_data(query):\n \"\"\" fetch data from database \"\"\"\n db = psycopg2.connect(database=DBNAME)\n c = db.cursor()\n c.execute(query)\n data = c.fetchall()\n db.close()\n return data\n\n\ndef fileWrite(content):\n \"\"\" write result to result.txt \"\"\"\n file = open('./result.txt', 'w')\n file.write(content)\n file.close()\n\n\n<mask token>\n", "step-3": "<mask token>\nDBNAME = 'news'\nquery1 = \"\"\"\nselect title, count(*) as numOfViews from articles,log\nwhere concat('/article/', articles.slug) = log.path\ngroup by title order by numOfViews desc limit 3;\n\"\"\"\nquery2 = \"\"\"\nselect authors.name, count(*) as numOfViews\nfrom articles, authors, log\nwhere articles.author = authors.id\nand concat('/article/', articles.slug) = log.path\ngroup by authors.name order by numOfViews desc ;\n\"\"\"\nquery3 = \"\"\"\n select innerQuery.badDay, ROUND((100.0*innerQuery.err/innerQuery.total),3)\n as error from (select date_trunc('day', time) as badDay,\n count(*) as total,\n sum(case when status!='200 OK' then 1 else 0 end) as err\n from log\n group by badDay) as innerQuery\n where round((100.0*innerQuery.err/innerQuery.total),3) >1;\n \"\"\"\nresult = ''\n\n\ndef get_data(query):\n \"\"\" fetch data from database \"\"\"\n db = psycopg2.connect(database=DBNAME)\n c = db.cursor()\n c.execute(query)\n data = c.fetchall()\n db.close()\n return data\n\n\ndef fileWrite(content):\n \"\"\" write result to result.txt \"\"\"\n file = open('./result.txt', 'w')\n file.write(content)\n file.close()\n\n\ndef appendToResult(content, isError=False):\n \"\"\" formating db result to readable text \"\"\"\n global result\n if isError:\n for c in content:\n result += c[0].strftime('%Y-%m-%d') + ' - ' + str(c[1]) + '% error'\n else:\n for c in content:\n result += c[0] + ' - ' + str(c[1]) + ' views \\n'\n fileWrite(result)\n\n\nif __name__ == '__main__':\n result += '\\n1. What are the most popular three articles of all time?\\n\\n'\n appendToResult(get_data(query1))\n result += ' \\n2. Who are the most popular article authors of all time?\\n\\n'\n appendToResult(get_data(query2))\n result += (\n '\\n3. On which days did more than\\n 1% of requests lead to errors?\\n\\n'\n )\n appendToResult(get_data(query3), True)\n print(result)\n fileWrite(result)\n", "step-4": "import psycopg2\nDBNAME = 'news'\nquery1 = \"\"\"\nselect title, count(*) as numOfViews from articles,log\nwhere concat('/article/', articles.slug) = log.path\ngroup by title order by numOfViews desc limit 3;\n\"\"\"\nquery2 = \"\"\"\nselect authors.name, count(*) as numOfViews\nfrom articles, authors, log\nwhere articles.author = authors.id\nand concat('/article/', articles.slug) = log.path\ngroup by authors.name order by numOfViews desc ;\n\"\"\"\nquery3 = \"\"\"\n select innerQuery.badDay, ROUND((100.0*innerQuery.err/innerQuery.total),3)\n as error from (select date_trunc('day', time) as badDay,\n count(*) as total,\n sum(case when status!='200 OK' then 1 else 0 end) as err\n from log\n group by badDay) as innerQuery\n where round((100.0*innerQuery.err/innerQuery.total),3) >1;\n \"\"\"\nresult = ''\n\n\ndef get_data(query):\n \"\"\" fetch data from database \"\"\"\n db = psycopg2.connect(database=DBNAME)\n c = db.cursor()\n c.execute(query)\n data = c.fetchall()\n db.close()\n return data\n\n\ndef fileWrite(content):\n \"\"\" write result to result.txt \"\"\"\n file = open('./result.txt', 'w')\n file.write(content)\n file.close()\n\n\ndef appendToResult(content, isError=False):\n \"\"\" formating db result to readable text \"\"\"\n global result\n if isError:\n for c in content:\n result += c[0].strftime('%Y-%m-%d') + ' - ' + str(c[1]) + '% error'\n else:\n for c in content:\n result += c[0] + ' - ' + str(c[1]) + ' views \\n'\n fileWrite(result)\n\n\nif __name__ == '__main__':\n result += '\\n1. What are the most popular three articles of all time?\\n\\n'\n appendToResult(get_data(query1))\n result += ' \\n2. Who are the most popular article authors of all time?\\n\\n'\n appendToResult(get_data(query2))\n result += (\n '\\n3. On which days did more than\\n 1% of requests lead to errors?\\n\\n'\n )\n appendToResult(get_data(query3), True)\n print(result)\n fileWrite(result)\n", "step-5": "#!/usr/bin/env python\n\nimport psycopg2\n\nDBNAME = \"news\"\n\nquery1 = \"\"\"\nselect title, count(*) as numOfViews from articles,log\nwhere concat('/article/', articles.slug) = log.path\ngroup by title order by numOfViews desc limit 3;\n\"\"\"\nquery2 = \"\"\"\nselect authors.name, count(*) as numOfViews\nfrom articles, authors, log\nwhere articles.author = authors.id\nand concat('/article/', articles.slug) = log.path\ngroup by authors.name order by numOfViews desc ;\n\"\"\"\nquery3 = \"\"\"\n select innerQuery.badDay, ROUND((100.0*innerQuery.err/innerQuery.total),3)\n as error from (select date_trunc('day', time) as badDay,\n count(*) as total,\n sum(case when status!='200 OK' then 1 else 0 end) as err\n from log\n group by badDay) as innerQuery\n where round((100.0*innerQuery.err/innerQuery.total),3) >1;\n \"\"\"\nresult = ''\n\n\ndef get_data(query):\n \"\"\" fetch data from database \"\"\"\n db = psycopg2.connect(database=DBNAME)\n c = db.cursor()\n c.execute(query)\n data = c.fetchall()\n db.close()\n return data\n\n\ndef fileWrite(content):\n \"\"\" write result to result.txt \"\"\"\n file = open('./result.txt', 'w')\n file.write(content)\n file.close()\n\n\ndef appendToResult(content, isError=False):\n \"\"\" formating db result to readable text \"\"\"\n global result\n if(isError):\n for c in content:\n result += c[0].strftime(\"%Y-%m-%d\") + ' - ' + str(c[1]) + '% error'\n else:\n for c in content:\n result += c[0] + ' - ' + str(c[1]) + ' views \\n'\n fileWrite(result)\n\n\nif __name__ == '__main__':\n result += '\\n1. What are the most popular three articles of all time?\\n\\n'\n appendToResult(get_data(query1))\n result += ' \\n2. Who are the most popular article authors of all time?\\n\\n'\n appendToResult(get_data(query2))\n result += '''\\n3. On which days did more than\n 1% of requests lead to errors?\\n\\n'''\n appendToResult(get_data(query3), True)\n print(result)\n fileWrite(result)\n", "step-ids": [ 1, 2, 5, 6, 7 ] }
[ 1, 2, 5, 6, 7 ]
def getGC(st): n = 0 for char in st: if char == 'C' or char == 'G': n += 1 return n while True: try: DNA = input() ln = int(input()) maxLen = 0 subDNA = '' for i in range(len(DNA) - ln + 1): sub = DNA[i:i + ln] if getGC(sub) > maxLen: maxLen = getGC(sub) subDNA = sub print(subDNA) except: break
normal
{ "blob_id": "afe63f94c7107cf79e57f695df8543e0786a155f", "index": 6556, "step-1": "<mask token>\n", "step-2": "def getGC(st):\n n = 0\n for char in st:\n if char == 'C' or char == 'G':\n n += 1\n return n\n\n\n<mask token>\n", "step-3": "def getGC(st):\n n = 0\n for char in st:\n if char == 'C' or char == 'G':\n n += 1\n return n\n\n\nwhile True:\n try:\n DNA = input()\n ln = int(input())\n maxLen = 0\n subDNA = ''\n for i in range(len(DNA) - ln + 1):\n sub = DNA[i:i + ln]\n if getGC(sub) > maxLen:\n maxLen = getGC(sub)\n subDNA = sub\n print(subDNA)\n except:\n break\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
from django.contrib import admin from .models import Sport from .models import Action admin.site.register(Sport) admin.site.register(Action)
normal
{ "blob_id": "ab38371ee3941e214344497b7e56786908a9b3d1", "index": 2236, "step-1": "<mask token>\n", "step-2": "<mask token>\nadmin.site.register(Sport)\nadmin.site.register(Action)\n", "step-3": "from django.contrib import admin\nfrom .models import Sport\nfrom .models import Action\nadmin.site.register(Sport)\nadmin.site.register(Action)\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
import logging from pathlib import Path import numpy as np import torch import re import json from helpers import init_helper, data_helper, vsumm_helper, bbox_helper from modules.model_zoo import get_model logger = logging.getLogger() def evaluate(model, val_loader, nms_thresh, device): model.eval() stats = data_helper.AverageMeter('fscore', 'diversity') json_file = [] with torch.no_grad(): for test_key, seq, gt, cps, n_frames, nfps, picks, user_summary, name in val_loader: seq_len = len(seq) seq_torch = torch.from_numpy(seq).unsqueeze(0).to(device) pred_cls, pred_bboxes = model.predict(seq_torch) pred_bboxes = np.clip(pred_bboxes, 0, seq_len).round().astype(np.int32) pred_cls, pred_bboxes = bbox_helper.nms(pred_cls, pred_bboxes, nms_thresh) pred_summ, score = vsumm_helper.bbox2summary( seq_len, pred_cls, pred_bboxes, cps, n_frames, nfps, picks) eval_metric = 'avg' if 'tvsum' in test_key else 'max' fscore = vsumm_helper.get_summ_f1score( pred_summ, user_summary, eval_metric) pred_arr, pred_seg = convert_array(pred_summ, nfps) pred_summ = vsumm_helper.downsample_summ(pred_summ) json_file.append({"video":str(name), "gt": convert_array_2(gt), "pred_score": convert_array_2(score), "user_anno":convert_user(user_summary), "fscore": float(fscore), "pred_sum": convert_array_2(pred_summ)}) diversity = vsumm_helper.get_summ_diversity(pred_summ, seq) stats.update(fscore=fscore, diversity=diversity) return stats.fscore, stats.diversity, json_file def convert_user(arr): res = [] for i in arr: temp = [] for a in i: temp.append(a.item()) res.append(temp) return res def convert_array_2(arr): res = [] for i in arr: res.append(i.item()) return res def convert_array(user, nfps): user_arr = [] shots_arr = [] for b in user: user_arr.append(1 if b else 0) shots_arr.append(nfps[0].item()) for i in range(1, len(nfps)): shots_arr.append(shots_arr[i-1] + nfps[i].item()) return user_arr, shots_arr def get_file_name(name): arr = re.split("[\\/]", name) print(arr) return arr[-1] def main(): args = init_helper.get_arguments() init_helper.init_logger(args.model_dir, args.log_file) init_helper.set_random_seed(args.seed) logger.info(vars(args)) model = get_model(args.model, **vars(args)) model = model.eval().to(args.device) f = [] for split_path in args.splits: split_path = Path(split_path) splits = data_helper.load_yaml(split_path) stats = data_helper.AverageMeter('fscore', 'diversity') for split_idx, split in enumerate(splits): ckpt_path = data_helper.get_ckpt_path(args.model_dir, split_path, split_idx) state_dict = torch.load(str(ckpt_path), map_location=lambda storage, loc: storage) model.load_state_dict(state_dict) val_set = data_helper.VideoDataset(split['test_keys']) val_loader = data_helper.DataLoader(val_set, shuffle=False) fscore, diversity, json_file = evaluate(model, val_loader, args.nms_thresh, args.device) f += json_file stats.update(fscore=fscore, diversity=diversity) logger.info(f'{split_path.stem} split {split_idx}: diversity: ' f'{diversity:.4f}, F-score: {fscore:.4f}') logger.info(f'{split_path.stem}: diversity: {stats.diversity:.4f}, ' f'F-score: {stats.fscore:.4f}') # with open('aftvsum.json', 'w') as fout: # json.dump(f, fout) if __name__ == '__main__': main()
normal
{ "blob_id": "dd3419f42a3b1aafd1d4f5d88189fb3c6bd0c67e", "index": 4233, "step-1": "<mask token>\n\n\ndef evaluate(model, val_loader, nms_thresh, device):\n model.eval()\n stats = data_helper.AverageMeter('fscore', 'diversity')\n json_file = []\n with torch.no_grad():\n for test_key, seq, gt, cps, n_frames, nfps, picks, user_summary, name in val_loader:\n seq_len = len(seq)\n seq_torch = torch.from_numpy(seq).unsqueeze(0).to(device)\n pred_cls, pred_bboxes = model.predict(seq_torch)\n pred_bboxes = np.clip(pred_bboxes, 0, seq_len).round().astype(np\n .int32)\n pred_cls, pred_bboxes = bbox_helper.nms(pred_cls, pred_bboxes,\n nms_thresh)\n pred_summ, score = vsumm_helper.bbox2summary(seq_len, pred_cls,\n pred_bboxes, cps, n_frames, nfps, picks)\n eval_metric = 'avg' if 'tvsum' in test_key else 'max'\n fscore = vsumm_helper.get_summ_f1score(pred_summ, user_summary,\n eval_metric)\n pred_arr, pred_seg = convert_array(pred_summ, nfps)\n pred_summ = vsumm_helper.downsample_summ(pred_summ)\n json_file.append({'video': str(name), 'gt': convert_array_2(gt),\n 'pred_score': convert_array_2(score), 'user_anno':\n convert_user(user_summary), 'fscore': float(fscore),\n 'pred_sum': convert_array_2(pred_summ)})\n diversity = vsumm_helper.get_summ_diversity(pred_summ, seq)\n stats.update(fscore=fscore, diversity=diversity)\n return stats.fscore, stats.diversity, json_file\n\n\ndef convert_user(arr):\n res = []\n for i in arr:\n temp = []\n for a in i:\n temp.append(a.item())\n res.append(temp)\n return res\n\n\n<mask token>\n\n\ndef get_file_name(name):\n arr = re.split('[\\\\/]', name)\n print(arr)\n return arr[-1]\n\n\ndef main():\n args = init_helper.get_arguments()\n init_helper.init_logger(args.model_dir, args.log_file)\n init_helper.set_random_seed(args.seed)\n logger.info(vars(args))\n model = get_model(args.model, **vars(args))\n model = model.eval().to(args.device)\n f = []\n for split_path in args.splits:\n split_path = Path(split_path)\n splits = data_helper.load_yaml(split_path)\n stats = data_helper.AverageMeter('fscore', 'diversity')\n for split_idx, split in enumerate(splits):\n ckpt_path = data_helper.get_ckpt_path(args.model_dir,\n split_path, split_idx)\n state_dict = torch.load(str(ckpt_path), map_location=lambda\n storage, loc: storage)\n model.load_state_dict(state_dict)\n val_set = data_helper.VideoDataset(split['test_keys'])\n val_loader = data_helper.DataLoader(val_set, shuffle=False)\n fscore, diversity, json_file = evaluate(model, val_loader, args\n .nms_thresh, args.device)\n f += json_file\n stats.update(fscore=fscore, diversity=diversity)\n logger.info(\n f'{split_path.stem} split {split_idx}: diversity: {diversity:.4f}, F-score: {fscore:.4f}'\n )\n logger.info(\n f'{split_path.stem}: diversity: {stats.diversity:.4f}, F-score: {stats.fscore:.4f}'\n )\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef evaluate(model, val_loader, nms_thresh, device):\n model.eval()\n stats = data_helper.AverageMeter('fscore', 'diversity')\n json_file = []\n with torch.no_grad():\n for test_key, seq, gt, cps, n_frames, nfps, picks, user_summary, name in val_loader:\n seq_len = len(seq)\n seq_torch = torch.from_numpy(seq).unsqueeze(0).to(device)\n pred_cls, pred_bboxes = model.predict(seq_torch)\n pred_bboxes = np.clip(pred_bboxes, 0, seq_len).round().astype(np\n .int32)\n pred_cls, pred_bboxes = bbox_helper.nms(pred_cls, pred_bboxes,\n nms_thresh)\n pred_summ, score = vsumm_helper.bbox2summary(seq_len, pred_cls,\n pred_bboxes, cps, n_frames, nfps, picks)\n eval_metric = 'avg' if 'tvsum' in test_key else 'max'\n fscore = vsumm_helper.get_summ_f1score(pred_summ, user_summary,\n eval_metric)\n pred_arr, pred_seg = convert_array(pred_summ, nfps)\n pred_summ = vsumm_helper.downsample_summ(pred_summ)\n json_file.append({'video': str(name), 'gt': convert_array_2(gt),\n 'pred_score': convert_array_2(score), 'user_anno':\n convert_user(user_summary), 'fscore': float(fscore),\n 'pred_sum': convert_array_2(pred_summ)})\n diversity = vsumm_helper.get_summ_diversity(pred_summ, seq)\n stats.update(fscore=fscore, diversity=diversity)\n return stats.fscore, stats.diversity, json_file\n\n\ndef convert_user(arr):\n res = []\n for i in arr:\n temp = []\n for a in i:\n temp.append(a.item())\n res.append(temp)\n return res\n\n\n<mask token>\n\n\ndef convert_array(user, nfps):\n user_arr = []\n shots_arr = []\n for b in user:\n user_arr.append(1 if b else 0)\n shots_arr.append(nfps[0].item())\n for i in range(1, len(nfps)):\n shots_arr.append(shots_arr[i - 1] + nfps[i].item())\n return user_arr, shots_arr\n\n\ndef get_file_name(name):\n arr = re.split('[\\\\/]', name)\n print(arr)\n return arr[-1]\n\n\ndef main():\n args = init_helper.get_arguments()\n init_helper.init_logger(args.model_dir, args.log_file)\n init_helper.set_random_seed(args.seed)\n logger.info(vars(args))\n model = get_model(args.model, **vars(args))\n model = model.eval().to(args.device)\n f = []\n for split_path in args.splits:\n split_path = Path(split_path)\n splits = data_helper.load_yaml(split_path)\n stats = data_helper.AverageMeter('fscore', 'diversity')\n for split_idx, split in enumerate(splits):\n ckpt_path = data_helper.get_ckpt_path(args.model_dir,\n split_path, split_idx)\n state_dict = torch.load(str(ckpt_path), map_location=lambda\n storage, loc: storage)\n model.load_state_dict(state_dict)\n val_set = data_helper.VideoDataset(split['test_keys'])\n val_loader = data_helper.DataLoader(val_set, shuffle=False)\n fscore, diversity, json_file = evaluate(model, val_loader, args\n .nms_thresh, args.device)\n f += json_file\n stats.update(fscore=fscore, diversity=diversity)\n logger.info(\n f'{split_path.stem} split {split_idx}: diversity: {diversity:.4f}, F-score: {fscore:.4f}'\n )\n logger.info(\n f'{split_path.stem}: diversity: {stats.diversity:.4f}, F-score: {stats.fscore:.4f}'\n )\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef evaluate(model, val_loader, nms_thresh, device):\n model.eval()\n stats = data_helper.AverageMeter('fscore', 'diversity')\n json_file = []\n with torch.no_grad():\n for test_key, seq, gt, cps, n_frames, nfps, picks, user_summary, name in val_loader:\n seq_len = len(seq)\n seq_torch = torch.from_numpy(seq).unsqueeze(0).to(device)\n pred_cls, pred_bboxes = model.predict(seq_torch)\n pred_bboxes = np.clip(pred_bboxes, 0, seq_len).round().astype(np\n .int32)\n pred_cls, pred_bboxes = bbox_helper.nms(pred_cls, pred_bboxes,\n nms_thresh)\n pred_summ, score = vsumm_helper.bbox2summary(seq_len, pred_cls,\n pred_bboxes, cps, n_frames, nfps, picks)\n eval_metric = 'avg' if 'tvsum' in test_key else 'max'\n fscore = vsumm_helper.get_summ_f1score(pred_summ, user_summary,\n eval_metric)\n pred_arr, pred_seg = convert_array(pred_summ, nfps)\n pred_summ = vsumm_helper.downsample_summ(pred_summ)\n json_file.append({'video': str(name), 'gt': convert_array_2(gt),\n 'pred_score': convert_array_2(score), 'user_anno':\n convert_user(user_summary), 'fscore': float(fscore),\n 'pred_sum': convert_array_2(pred_summ)})\n diversity = vsumm_helper.get_summ_diversity(pred_summ, seq)\n stats.update(fscore=fscore, diversity=diversity)\n return stats.fscore, stats.diversity, json_file\n\n\ndef convert_user(arr):\n res = []\n for i in arr:\n temp = []\n for a in i:\n temp.append(a.item())\n res.append(temp)\n return res\n\n\ndef convert_array_2(arr):\n res = []\n for i in arr:\n res.append(i.item())\n return res\n\n\ndef convert_array(user, nfps):\n user_arr = []\n shots_arr = []\n for b in user:\n user_arr.append(1 if b else 0)\n shots_arr.append(nfps[0].item())\n for i in range(1, len(nfps)):\n shots_arr.append(shots_arr[i - 1] + nfps[i].item())\n return user_arr, shots_arr\n\n\ndef get_file_name(name):\n arr = re.split('[\\\\/]', name)\n print(arr)\n return arr[-1]\n\n\ndef main():\n args = init_helper.get_arguments()\n init_helper.init_logger(args.model_dir, args.log_file)\n init_helper.set_random_seed(args.seed)\n logger.info(vars(args))\n model = get_model(args.model, **vars(args))\n model = model.eval().to(args.device)\n f = []\n for split_path in args.splits:\n split_path = Path(split_path)\n splits = data_helper.load_yaml(split_path)\n stats = data_helper.AverageMeter('fscore', 'diversity')\n for split_idx, split in enumerate(splits):\n ckpt_path = data_helper.get_ckpt_path(args.model_dir,\n split_path, split_idx)\n state_dict = torch.load(str(ckpt_path), map_location=lambda\n storage, loc: storage)\n model.load_state_dict(state_dict)\n val_set = data_helper.VideoDataset(split['test_keys'])\n val_loader = data_helper.DataLoader(val_set, shuffle=False)\n fscore, diversity, json_file = evaluate(model, val_loader, args\n .nms_thresh, args.device)\n f += json_file\n stats.update(fscore=fscore, diversity=diversity)\n logger.info(\n f'{split_path.stem} split {split_idx}: diversity: {diversity:.4f}, F-score: {fscore:.4f}'\n )\n logger.info(\n f'{split_path.stem}: diversity: {stats.diversity:.4f}, F-score: {stats.fscore:.4f}'\n )\n\n\nif __name__ == '__main__':\n main()\n", "step-4": "<mask token>\nlogger = logging.getLogger()\n\n\ndef evaluate(model, val_loader, nms_thresh, device):\n model.eval()\n stats = data_helper.AverageMeter('fscore', 'diversity')\n json_file = []\n with torch.no_grad():\n for test_key, seq, gt, cps, n_frames, nfps, picks, user_summary, name in val_loader:\n seq_len = len(seq)\n seq_torch = torch.from_numpy(seq).unsqueeze(0).to(device)\n pred_cls, pred_bboxes = model.predict(seq_torch)\n pred_bboxes = np.clip(pred_bboxes, 0, seq_len).round().astype(np\n .int32)\n pred_cls, pred_bboxes = bbox_helper.nms(pred_cls, pred_bboxes,\n nms_thresh)\n pred_summ, score = vsumm_helper.bbox2summary(seq_len, pred_cls,\n pred_bboxes, cps, n_frames, nfps, picks)\n eval_metric = 'avg' if 'tvsum' in test_key else 'max'\n fscore = vsumm_helper.get_summ_f1score(pred_summ, user_summary,\n eval_metric)\n pred_arr, pred_seg = convert_array(pred_summ, nfps)\n pred_summ = vsumm_helper.downsample_summ(pred_summ)\n json_file.append({'video': str(name), 'gt': convert_array_2(gt),\n 'pred_score': convert_array_2(score), 'user_anno':\n convert_user(user_summary), 'fscore': float(fscore),\n 'pred_sum': convert_array_2(pred_summ)})\n diversity = vsumm_helper.get_summ_diversity(pred_summ, seq)\n stats.update(fscore=fscore, diversity=diversity)\n return stats.fscore, stats.diversity, json_file\n\n\ndef convert_user(arr):\n res = []\n for i in arr:\n temp = []\n for a in i:\n temp.append(a.item())\n res.append(temp)\n return res\n\n\ndef convert_array_2(arr):\n res = []\n for i in arr:\n res.append(i.item())\n return res\n\n\ndef convert_array(user, nfps):\n user_arr = []\n shots_arr = []\n for b in user:\n user_arr.append(1 if b else 0)\n shots_arr.append(nfps[0].item())\n for i in range(1, len(nfps)):\n shots_arr.append(shots_arr[i - 1] + nfps[i].item())\n return user_arr, shots_arr\n\n\ndef get_file_name(name):\n arr = re.split('[\\\\/]', name)\n print(arr)\n return arr[-1]\n\n\ndef main():\n args = init_helper.get_arguments()\n init_helper.init_logger(args.model_dir, args.log_file)\n init_helper.set_random_seed(args.seed)\n logger.info(vars(args))\n model = get_model(args.model, **vars(args))\n model = model.eval().to(args.device)\n f = []\n for split_path in args.splits:\n split_path = Path(split_path)\n splits = data_helper.load_yaml(split_path)\n stats = data_helper.AverageMeter('fscore', 'diversity')\n for split_idx, split in enumerate(splits):\n ckpt_path = data_helper.get_ckpt_path(args.model_dir,\n split_path, split_idx)\n state_dict = torch.load(str(ckpt_path), map_location=lambda\n storage, loc: storage)\n model.load_state_dict(state_dict)\n val_set = data_helper.VideoDataset(split['test_keys'])\n val_loader = data_helper.DataLoader(val_set, shuffle=False)\n fscore, diversity, json_file = evaluate(model, val_loader, args\n .nms_thresh, args.device)\n f += json_file\n stats.update(fscore=fscore, diversity=diversity)\n logger.info(\n f'{split_path.stem} split {split_idx}: diversity: {diversity:.4f}, F-score: {fscore:.4f}'\n )\n logger.info(\n f'{split_path.stem}: diversity: {stats.diversity:.4f}, F-score: {stats.fscore:.4f}'\n )\n\n\nif __name__ == '__main__':\n main()\n", "step-5": "import logging\nfrom pathlib import Path\n\nimport numpy as np\nimport torch\nimport re\nimport json\n\nfrom helpers import init_helper, data_helper, vsumm_helper, bbox_helper\nfrom modules.model_zoo import get_model\n\nlogger = logging.getLogger()\n\n\ndef evaluate(model, val_loader, nms_thresh, device):\n model.eval()\n stats = data_helper.AverageMeter('fscore', 'diversity')\n json_file = []\n with torch.no_grad():\n for test_key, seq, gt, cps, n_frames, nfps, picks, user_summary, name in val_loader:\n seq_len = len(seq)\n seq_torch = torch.from_numpy(seq).unsqueeze(0).to(device)\n pred_cls, pred_bboxes = model.predict(seq_torch)\n pred_bboxes = np.clip(pred_bboxes, 0, seq_len).round().astype(np.int32)\n\n pred_cls, pred_bboxes = bbox_helper.nms(pred_cls, pred_bboxes, nms_thresh)\n pred_summ, score = vsumm_helper.bbox2summary(\n seq_len, pred_cls, pred_bboxes, cps, n_frames, nfps, picks)\n eval_metric = 'avg' if 'tvsum' in test_key else 'max'\n fscore = vsumm_helper.get_summ_f1score(\n pred_summ, user_summary, eval_metric)\n pred_arr, pred_seg = convert_array(pred_summ, nfps)\n pred_summ = vsumm_helper.downsample_summ(pred_summ)\n json_file.append({\"video\":str(name), \"gt\": convert_array_2(gt), \n \"pred_score\": convert_array_2(score), \n \"user_anno\":convert_user(user_summary),\n \"fscore\": float(fscore),\n \"pred_sum\": convert_array_2(pred_summ)})\n diversity = vsumm_helper.get_summ_diversity(pred_summ, seq)\n stats.update(fscore=fscore, diversity=diversity)\n\n return stats.fscore, stats.diversity, json_file\n\ndef convert_user(arr):\n res = []\n for i in arr:\n temp = []\n for a in i:\n temp.append(a.item())\n res.append(temp)\n return res\n\ndef convert_array_2(arr):\n res = []\n for i in arr:\n res.append(i.item())\n return res\n\ndef convert_array(user, nfps):\n user_arr = []\n shots_arr = []\n for b in user:\n user_arr.append(1 if b else 0)\n shots_arr.append(nfps[0].item())\n for i in range(1, len(nfps)):\n shots_arr.append(shots_arr[i-1] + nfps[i].item())\n return user_arr, shots_arr\n\ndef get_file_name(name):\n arr = re.split(\"[\\\\/]\", name)\n print(arr)\n return arr[-1]\n\n\ndef main():\n args = init_helper.get_arguments()\n\n init_helper.init_logger(args.model_dir, args.log_file)\n init_helper.set_random_seed(args.seed)\n\n logger.info(vars(args))\n model = get_model(args.model, **vars(args))\n model = model.eval().to(args.device)\n f = []\n for split_path in args.splits:\n split_path = Path(split_path)\n splits = data_helper.load_yaml(split_path)\n\n stats = data_helper.AverageMeter('fscore', 'diversity')\n\n for split_idx, split in enumerate(splits):\n ckpt_path = data_helper.get_ckpt_path(args.model_dir, split_path, split_idx)\n state_dict = torch.load(str(ckpt_path),\n map_location=lambda storage, loc: storage)\n model.load_state_dict(state_dict)\n\n val_set = data_helper.VideoDataset(split['test_keys'])\n val_loader = data_helper.DataLoader(val_set, shuffle=False)\n fscore, diversity, json_file = evaluate(model, val_loader, args.nms_thresh, args.device)\n f += json_file\n stats.update(fscore=fscore, diversity=diversity)\n\n logger.info(f'{split_path.stem} split {split_idx}: diversity: '\n f'{diversity:.4f}, F-score: {fscore:.4f}')\n\n logger.info(f'{split_path.stem}: diversity: {stats.diversity:.4f}, '\n f'F-score: {stats.fscore:.4f}')\n # with open('aftvsum.json', 'w') as fout:\n # json.dump(f, fout)\n\nif __name__ == '__main__':\n main()\n", "step-ids": [ 4, 5, 7, 8, 10 ] }
[ 4, 5, 7, 8, 10 ]
# Author: Sam Erickson # Date: 2/23/2016 # # Program Description: This program gives the integer coefficients x,y to the # equation ax+by=gcd(a,b) given by the extended Euclidean Algorithm. def extendedEuclid(a,b): """ Preconditions - a and b are both positive integers. Posconditions - The equation for ax+by=gcd(a,b) has been returned where x and y are solved. Input - a : int, b : int Output - ax+by=gcd(a,b) : string """ b,a=max(a,b),min(a,b) # Format of euclidList is for back-substitution euclidList=[[b%a,1,b,-1*(b//a),a]] while b%a>0: b,a=a,b%a euclidList.append([b%a,1,b,-1*(b//a),a]) if len(euclidList)>1: euclidList.pop() euclidList=euclidList[::-1] for i in range(1,len(euclidList)): euclidList[i][1]*=euclidList[i-1][3] euclidList[i][3]*=euclidList[i-1][3] euclidList[i][3]+=euclidList[i-1][1] expr=euclidList[len(euclidList)-1] strExpr=str(expr[1])+"*"+str(expr[2])+" + "+str(expr[3])+"*"+str(expr[4]) \ +" = "+str(euclidList[0][0]) return strExpr
normal
{ "blob_id": "36e5b0f40b8016f39120f839766db0ac518c9bed", "index": 4712, "step-1": "<mask token>\n", "step-2": "def extendedEuclid(a, b):\n \"\"\"\n Preconditions - a and b are both positive integers.\n Posconditions - The equation for ax+by=gcd(a,b) has been returned where\n x and y are solved.\n Input - a : int, b : int\n Output - ax+by=gcd(a,b) : string\n \"\"\"\n b, a = max(a, b), min(a, b)\n euclidList = [[b % a, 1, b, -1 * (b // a), a]]\n while b % a > 0:\n b, a = a, b % a\n euclidList.append([b % a, 1, b, -1 * (b // a), a])\n if len(euclidList) > 1:\n euclidList.pop()\n euclidList = euclidList[::-1]\n for i in range(1, len(euclidList)):\n euclidList[i][1] *= euclidList[i - 1][3]\n euclidList[i][3] *= euclidList[i - 1][3]\n euclidList[i][3] += euclidList[i - 1][1]\n expr = euclidList[len(euclidList) - 1]\n strExpr = str(expr[1]) + '*' + str(expr[2]) + ' + ' + str(expr[3]\n ) + '*' + str(expr[4]) + ' = ' + str(euclidList[0][0])\n return strExpr\n", "step-3": "# Author: Sam Erickson\n# Date: 2/23/2016\n#\n# Program Description: This program gives the integer coefficients x,y to the\n# equation ax+by=gcd(a,b) given by the extended Euclidean Algorithm. \n\ndef extendedEuclid(a,b):\n \"\"\"\n Preconditions - a and b are both positive integers.\n Posconditions - The equation for ax+by=gcd(a,b) has been returned where\n x and y are solved.\n Input - a : int, b : int\n Output - ax+by=gcd(a,b) : string\n \"\"\"\n b,a=max(a,b),min(a,b)\n # Format of euclidList is for back-substitution\n euclidList=[[b%a,1,b,-1*(b//a),a]]\n while b%a>0:\n b,a=a,b%a \n euclidList.append([b%a,1,b,-1*(b//a),a])\n if len(euclidList)>1:\n euclidList.pop()\n euclidList=euclidList[::-1]\n for i in range(1,len(euclidList)):\n euclidList[i][1]*=euclidList[i-1][3]\n euclidList[i][3]*=euclidList[i-1][3]\n euclidList[i][3]+=euclidList[i-1][1]\n \n expr=euclidList[len(euclidList)-1]\n strExpr=str(expr[1])+\"*\"+str(expr[2])+\" + \"+str(expr[3])+\"*\"+str(expr[4]) \\\n +\" = \"+str(euclidList[0][0])\n return strExpr\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
# -*- coding: utf-8 -*- """Labeled entry widget. The goal of these widgets is twofold: to make it easier for developers to implement dialogs with compound widgets, and to naturally standardize the user interface presented to the user. """ import logging import seamm_widgets as sw import tkinter as tk import tkinter.ttk as ttk logger = logging.getLogger(__name__) options = { "entry": { "class_": "class_", "cursor": "cursor", "exportselection": "exportselection", "font": "font", "invalidcommand": "invalidcommand", "justify": "justify", "show": "show", "style": "style", "takefocus": "takefocus", "variable": "textvariable", "validate": "validate", "validatecommand": "validatecommand", "width": "width", "xscrollcommand": "xscrollcommand", }, } class LabeledEntry(sw.LabeledWidget): def __init__(self, parent, *args, **kwargs): """Initialize the instance""" class_ = kwargs.pop("class_", "MLabeledEntry") super().__init__(parent, class_=class_) interior = self.interior # entry justify = kwargs.pop("justify", tk.LEFT) entrywidth = kwargs.pop("width", 15) self.entry = ttk.Entry(interior, justify=justify, width=entrywidth) self.entry.grid(row=0, column=0, sticky=tk.EW) # interior frame self.interior = ttk.Frame(interior) self.interior.grid(row=0, column=1, sticky=tk.NSEW) interior.columnconfigure(0, weight=1) self.config(**kwargs) @property def value(self): return self.get() @value.setter def value(self, value): self.set(value) def show(self, *args): """Show only the specified subwidgets. 'all' or no arguments reverts to showing all""" super().show(*args) show_all = len(args) == 0 or args[0] == "all" if show_all or "entry" in args: self.entry.grid(row=0, column=0, sticky=tk.EW) else: self.entry.grid_forget() def set(self, value): """Set the value of the entry widget""" self.entry.delete(0, tk.END) if value is None: return self.entry.insert(0, value) def get(self): """return the current value""" value = self.entry.get() return value def config(self, **kwargs): """Set the configuration of the megawidget""" # our options that we deal with entry = options["entry"] # cannot modify kwargs while iterating over it... keys = [*kwargs.keys()] for k in keys: if k in entry: v = kwargs.pop(k) self.entry.config(**{entry[k]: v}) # having removed our options, pass rest to parent super().config(**kwargs)
normal
{ "blob_id": "111186f1d45b9cf3bf9065c7fa83a8f3f796bbe1", "index": 5841, "step-1": "<mask token>\n\n\nclass LabeledEntry(sw.LabeledWidget):\n <mask token>\n\n @property\n def value(self):\n return self.get()\n <mask token>\n\n def show(self, *args):\n \"\"\"Show only the specified subwidgets.\n 'all' or no arguments reverts to showing all\"\"\"\n super().show(*args)\n show_all = len(args) == 0 or args[0] == 'all'\n if show_all or 'entry' in args:\n self.entry.grid(row=0, column=0, sticky=tk.EW)\n else:\n self.entry.grid_forget()\n <mask token>\n\n def get(self):\n \"\"\"return the current value\"\"\"\n value = self.entry.get()\n return value\n\n def config(self, **kwargs):\n \"\"\"Set the configuration of the megawidget\"\"\"\n entry = options['entry']\n keys = [*kwargs.keys()]\n for k in keys:\n if k in entry:\n v = kwargs.pop(k)\n self.entry.config(**{entry[k]: v})\n super().config(**kwargs)\n", "step-2": "<mask token>\n\n\nclass LabeledEntry(sw.LabeledWidget):\n <mask token>\n\n @property\n def value(self):\n return self.get()\n <mask token>\n\n def show(self, *args):\n \"\"\"Show only the specified subwidgets.\n 'all' or no arguments reverts to showing all\"\"\"\n super().show(*args)\n show_all = len(args) == 0 or args[0] == 'all'\n if show_all or 'entry' in args:\n self.entry.grid(row=0, column=0, sticky=tk.EW)\n else:\n self.entry.grid_forget()\n\n def set(self, value):\n \"\"\"Set the value of the entry widget\"\"\"\n self.entry.delete(0, tk.END)\n if value is None:\n return\n self.entry.insert(0, value)\n\n def get(self):\n \"\"\"return the current value\"\"\"\n value = self.entry.get()\n return value\n\n def config(self, **kwargs):\n \"\"\"Set the configuration of the megawidget\"\"\"\n entry = options['entry']\n keys = [*kwargs.keys()]\n for k in keys:\n if k in entry:\n v = kwargs.pop(k)\n self.entry.config(**{entry[k]: v})\n super().config(**kwargs)\n", "step-3": "<mask token>\n\n\nclass LabeledEntry(sw.LabeledWidget):\n\n def __init__(self, parent, *args, **kwargs):\n \"\"\"Initialize the instance\"\"\"\n class_ = kwargs.pop('class_', 'MLabeledEntry')\n super().__init__(parent, class_=class_)\n interior = self.interior\n justify = kwargs.pop('justify', tk.LEFT)\n entrywidth = kwargs.pop('width', 15)\n self.entry = ttk.Entry(interior, justify=justify, width=entrywidth)\n self.entry.grid(row=0, column=0, sticky=tk.EW)\n self.interior = ttk.Frame(interior)\n self.interior.grid(row=0, column=1, sticky=tk.NSEW)\n interior.columnconfigure(0, weight=1)\n self.config(**kwargs)\n\n @property\n def value(self):\n return self.get()\n\n @value.setter\n def value(self, value):\n self.set(value)\n\n def show(self, *args):\n \"\"\"Show only the specified subwidgets.\n 'all' or no arguments reverts to showing all\"\"\"\n super().show(*args)\n show_all = len(args) == 0 or args[0] == 'all'\n if show_all or 'entry' in args:\n self.entry.grid(row=0, column=0, sticky=tk.EW)\n else:\n self.entry.grid_forget()\n\n def set(self, value):\n \"\"\"Set the value of the entry widget\"\"\"\n self.entry.delete(0, tk.END)\n if value is None:\n return\n self.entry.insert(0, value)\n\n def get(self):\n \"\"\"return the current value\"\"\"\n value = self.entry.get()\n return value\n\n def config(self, **kwargs):\n \"\"\"Set the configuration of the megawidget\"\"\"\n entry = options['entry']\n keys = [*kwargs.keys()]\n for k in keys:\n if k in entry:\n v = kwargs.pop(k)\n self.entry.config(**{entry[k]: v})\n super().config(**kwargs)\n", "step-4": "<mask token>\nlogger = logging.getLogger(__name__)\noptions = {'entry': {'class_': 'class_', 'cursor': 'cursor',\n 'exportselection': 'exportselection', 'font': 'font', 'invalidcommand':\n 'invalidcommand', 'justify': 'justify', 'show': 'show', 'style':\n 'style', 'takefocus': 'takefocus', 'variable': 'textvariable',\n 'validate': 'validate', 'validatecommand': 'validatecommand', 'width':\n 'width', 'xscrollcommand': 'xscrollcommand'}}\n\n\nclass LabeledEntry(sw.LabeledWidget):\n\n def __init__(self, parent, *args, **kwargs):\n \"\"\"Initialize the instance\"\"\"\n class_ = kwargs.pop('class_', 'MLabeledEntry')\n super().__init__(parent, class_=class_)\n interior = self.interior\n justify = kwargs.pop('justify', tk.LEFT)\n entrywidth = kwargs.pop('width', 15)\n self.entry = ttk.Entry(interior, justify=justify, width=entrywidth)\n self.entry.grid(row=0, column=0, sticky=tk.EW)\n self.interior = ttk.Frame(interior)\n self.interior.grid(row=0, column=1, sticky=tk.NSEW)\n interior.columnconfigure(0, weight=1)\n self.config(**kwargs)\n\n @property\n def value(self):\n return self.get()\n\n @value.setter\n def value(self, value):\n self.set(value)\n\n def show(self, *args):\n \"\"\"Show only the specified subwidgets.\n 'all' or no arguments reverts to showing all\"\"\"\n super().show(*args)\n show_all = len(args) == 0 or args[0] == 'all'\n if show_all or 'entry' in args:\n self.entry.grid(row=0, column=0, sticky=tk.EW)\n else:\n self.entry.grid_forget()\n\n def set(self, value):\n \"\"\"Set the value of the entry widget\"\"\"\n self.entry.delete(0, tk.END)\n if value is None:\n return\n self.entry.insert(0, value)\n\n def get(self):\n \"\"\"return the current value\"\"\"\n value = self.entry.get()\n return value\n\n def config(self, **kwargs):\n \"\"\"Set the configuration of the megawidget\"\"\"\n entry = options['entry']\n keys = [*kwargs.keys()]\n for k in keys:\n if k in entry:\n v = kwargs.pop(k)\n self.entry.config(**{entry[k]: v})\n super().config(**kwargs)\n", "step-5": "# -*- coding: utf-8 -*-\n\n\"\"\"Labeled entry widget.\n\nThe goal of these widgets is twofold: to make it easier for developers\nto implement dialogs with compound widgets, and to naturally\nstandardize the user interface presented to the user.\n\"\"\"\n\nimport logging\nimport seamm_widgets as sw\nimport tkinter as tk\nimport tkinter.ttk as ttk\n\nlogger = logging.getLogger(__name__)\n\noptions = {\n \"entry\": {\n \"class_\": \"class_\",\n \"cursor\": \"cursor\",\n \"exportselection\": \"exportselection\",\n \"font\": \"font\",\n \"invalidcommand\": \"invalidcommand\",\n \"justify\": \"justify\",\n \"show\": \"show\",\n \"style\": \"style\",\n \"takefocus\": \"takefocus\",\n \"variable\": \"textvariable\",\n \"validate\": \"validate\",\n \"validatecommand\": \"validatecommand\",\n \"width\": \"width\",\n \"xscrollcommand\": \"xscrollcommand\",\n },\n}\n\n\nclass LabeledEntry(sw.LabeledWidget):\n def __init__(self, parent, *args, **kwargs):\n \"\"\"Initialize the instance\"\"\"\n class_ = kwargs.pop(\"class_\", \"MLabeledEntry\")\n super().__init__(parent, class_=class_)\n\n interior = self.interior\n\n # entry\n justify = kwargs.pop(\"justify\", tk.LEFT)\n entrywidth = kwargs.pop(\"width\", 15)\n\n self.entry = ttk.Entry(interior, justify=justify, width=entrywidth)\n self.entry.grid(row=0, column=0, sticky=tk.EW)\n\n # interior frame\n self.interior = ttk.Frame(interior)\n self.interior.grid(row=0, column=1, sticky=tk.NSEW)\n\n interior.columnconfigure(0, weight=1)\n\n self.config(**kwargs)\n\n @property\n def value(self):\n return self.get()\n\n @value.setter\n def value(self, value):\n self.set(value)\n\n def show(self, *args):\n \"\"\"Show only the specified subwidgets.\n 'all' or no arguments reverts to showing all\"\"\"\n\n super().show(*args)\n\n show_all = len(args) == 0 or args[0] == \"all\"\n\n if show_all or \"entry\" in args:\n self.entry.grid(row=0, column=0, sticky=tk.EW)\n else:\n self.entry.grid_forget()\n\n def set(self, value):\n \"\"\"Set the value of the entry widget\"\"\"\n\n self.entry.delete(0, tk.END)\n if value is None:\n return\n\n self.entry.insert(0, value)\n\n def get(self):\n \"\"\"return the current value\"\"\"\n value = self.entry.get()\n return value\n\n def config(self, **kwargs):\n \"\"\"Set the configuration of the megawidget\"\"\"\n\n # our options that we deal with\n entry = options[\"entry\"]\n\n # cannot modify kwargs while iterating over it...\n keys = [*kwargs.keys()]\n for k in keys:\n if k in entry:\n v = kwargs.pop(k)\n self.entry.config(**{entry[k]: v})\n\n # having removed our options, pass rest to parent\n super().config(**kwargs)\n", "step-ids": [ 5, 6, 8, 9, 11 ] }
[ 5, 6, 8, 9, 11 ]
from __future__ import print_function import os import shutil import pymake import flopy # set up paths dstpth = os.path.join('temp') if not os.path.exists(dstpth): os.makedirs(dstpth) mp6pth = os.path.join(dstpth, 'Modpath_7_1_000') expth = os.path.join(mp6pth, 'examples') exe_name = 'mp7' srcpth = os.path.join(mp6pth, 'source') target = os.path.join(dstpth, exe_name) def compile_code(): # Remove the existing modpath6 directory if it exists if os.path.isdir(mp6pth): shutil.rmtree(mp6pth) # Download the MODFLOW-2005 distribution url = "https://water.usgs.gov/ogw/modpath/Modpath_7_1_000.zip" pymake.download_and_unzip(url, pth=dstpth) # modify source files that prevent compiling with gfortran pth = os.path.join(srcpth, 'utl7u1.f') if os.path.isfile(pth): os.remove(pth) fname1 = os.path.join(srcpth, 'ModpathSubCellData.f90') f = open(fname1, 'r') fname2 = os.path.join(srcpth, 'ModpathSubCellData_mod.f90') f2 = open(fname2, 'w') for line in f: line = line.replace('location.', 'location%') f2.write(line) f.close() f2.close() os.remove(fname1) os.rename(fname2, fname1) fname1 = os.path.join(srcpth, 'ModpathCellData.f90') f = open(fname1, 'r') fname2 = os.path.join(srcpth, 'ModpathCellData_mod.f90') f2 = open(fname2, 'w') for line in f: line = line.replace('dimension(grid%GetCellCount())', 'dimension(:)') line = line.replace('dimension(grid%GetReducedConnectionCount())', 'dimension(:)') f2.write(line) f.close() f2.close() os.remove(fname1) os.rename(fname2, fname1) fname1 = os.path.join(srcpth, 'MPath7.f90') f = open(fname1, 'r') fname2 = os.path.join(srcpth, 'MPath7_mod.f90') f2 = open(fname2, 'w') for line in f: line = line.replace("form='binary', access='stream'", "form='unformatted', access='stream'") f2.write(line) f.close() f2.close() os.remove(fname1) os.rename(fname2, fname1) # allow line lengths greater than 132 columns fflags = 'ffree-line-length-512' # make modpath 7 pymake.main(srcpth, target, 'gfortran', 'gcc', makeclean=True, expedite=False, dryrun=False, double=False, debug=False, fflags=fflags) assert os.path.isfile(target), 'Target does not exist.' def get_simfiles(): dirs = [name for name in os.listdir(expth) if os.path.isdir(os.path.join(expth, name))] simfiles = [] for d in dirs: pth = os.path.join(expth, d, 'original') simfiles += [os.path.join(pth, f) for f in os.listdir(pth) if f.endswith('.mpsim')] return simfiles def replace_files(): dirs = [name for name in os.listdir(expth) if os.path.isdir(os.path.join(expth, name))] # rename a few files for linux replace_files = ['example_1.BUD', 'Zones_layer_3.txt', 'Retardation_layer_1.txt'] for d in dirs: pth = os.path.join(expth, d, 'original') for rf in replace_files: fname1 = os.path.join(pth, rf) if rf in os.listdir(pth): fname2 = os.path.join(pth, 'temp') print('copy {} to {}'.format(os.path.basename(fname1), os.path.basename(fname2))) shutil.copy(fname1, fname2) print('deleting {}'.format(os.path.basename(fname1))) os.remove(fname1) fname1 = os.path.join(pth, rf.lower()) print('rename {} to {}'.format(os.path.basename(fname2), os.path.basename(fname1))) os.rename(fname2, fname1) def run_modpath7(fn): # run the model print('running model...{}'.format(fn)) exe = os.path.abspath(target) fpth = os.path.basename(fn) model_ws = os.path.dirname(fn) success, buff = flopy.run_model(exe, fpth, model_ws=model_ws, silent=False) assert success, 'could not run...{}'.format(os.path.basename(fn)) return def clean_up(): # clean up print('Removing folder ' + mp6pth) shutil.rmtree(mp6pth) print('Removing ' + target) os.remove(target) return def test_compile(): # compile MODPATH 7 compile_code() def test_modpath7(): simfiles = get_simfiles() replace_files() for fn in simfiles: yield run_modpath7, fn def test_clean_up(): yield clean_up if __name__ == "__main__": compile_code() simfiles = get_simfiles() replace_files() for fn in simfiles: run_modpath7(fn) clean_up()
normal
{ "blob_id": "ddaba7a8b53072da36224dd4618696ebf0e9a4e4", "index": 1015, "step-1": "<mask token>\n\n\ndef compile_code():\n if os.path.isdir(mp6pth):\n shutil.rmtree(mp6pth)\n url = 'https://water.usgs.gov/ogw/modpath/Modpath_7_1_000.zip'\n pymake.download_and_unzip(url, pth=dstpth)\n pth = os.path.join(srcpth, 'utl7u1.f')\n if os.path.isfile(pth):\n os.remove(pth)\n fname1 = os.path.join(srcpth, 'ModpathSubCellData.f90')\n f = open(fname1, 'r')\n fname2 = os.path.join(srcpth, 'ModpathSubCellData_mod.f90')\n f2 = open(fname2, 'w')\n for line in f:\n line = line.replace('location.', 'location%')\n f2.write(line)\n f.close()\n f2.close()\n os.remove(fname1)\n os.rename(fname2, fname1)\n fname1 = os.path.join(srcpth, 'ModpathCellData.f90')\n f = open(fname1, 'r')\n fname2 = os.path.join(srcpth, 'ModpathCellData_mod.f90')\n f2 = open(fname2, 'w')\n for line in f:\n line = line.replace('dimension(grid%GetCellCount())', 'dimension(:)')\n line = line.replace('dimension(grid%GetReducedConnectionCount())',\n 'dimension(:)')\n f2.write(line)\n f.close()\n f2.close()\n os.remove(fname1)\n os.rename(fname2, fname1)\n fname1 = os.path.join(srcpth, 'MPath7.f90')\n f = open(fname1, 'r')\n fname2 = os.path.join(srcpth, 'MPath7_mod.f90')\n f2 = open(fname2, 'w')\n for line in f:\n line = line.replace(\"form='binary', access='stream'\",\n \"form='unformatted', access='stream'\")\n f2.write(line)\n f.close()\n f2.close()\n os.remove(fname1)\n os.rename(fname2, fname1)\n fflags = 'ffree-line-length-512'\n pymake.main(srcpth, target, 'gfortran', 'gcc', makeclean=True, expedite\n =False, dryrun=False, double=False, debug=False, fflags=fflags)\n assert os.path.isfile(target), 'Target does not exist.'\n\n\n<mask token>\n\n\ndef replace_files():\n dirs = [name for name in os.listdir(expth) if os.path.isdir(os.path.\n join(expth, name))]\n replace_files = ['example_1.BUD', 'Zones_layer_3.txt',\n 'Retardation_layer_1.txt']\n for d in dirs:\n pth = os.path.join(expth, d, 'original')\n for rf in replace_files:\n fname1 = os.path.join(pth, rf)\n if rf in os.listdir(pth):\n fname2 = os.path.join(pth, 'temp')\n print('copy {} to {}'.format(os.path.basename(fname1), os.\n path.basename(fname2)))\n shutil.copy(fname1, fname2)\n print('deleting {}'.format(os.path.basename(fname1)))\n os.remove(fname1)\n fname1 = os.path.join(pth, rf.lower())\n print('rename {} to {}'.format(os.path.basename(fname2), os\n .path.basename(fname1)))\n os.rename(fname2, fname1)\n\n\ndef run_modpath7(fn):\n print('running model...{}'.format(fn))\n exe = os.path.abspath(target)\n fpth = os.path.basename(fn)\n model_ws = os.path.dirname(fn)\n success, buff = flopy.run_model(exe, fpth, model_ws=model_ws, silent=False)\n assert success, 'could not run...{}'.format(os.path.basename(fn))\n return\n\n\ndef clean_up():\n print('Removing folder ' + mp6pth)\n shutil.rmtree(mp6pth)\n print('Removing ' + target)\n os.remove(target)\n return\n\n\ndef test_compile():\n compile_code()\n\n\ndef test_modpath7():\n simfiles = get_simfiles()\n replace_files()\n for fn in simfiles:\n yield run_modpath7, fn\n\n\ndef test_clean_up():\n yield clean_up\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef compile_code():\n if os.path.isdir(mp6pth):\n shutil.rmtree(mp6pth)\n url = 'https://water.usgs.gov/ogw/modpath/Modpath_7_1_000.zip'\n pymake.download_and_unzip(url, pth=dstpth)\n pth = os.path.join(srcpth, 'utl7u1.f')\n if os.path.isfile(pth):\n os.remove(pth)\n fname1 = os.path.join(srcpth, 'ModpathSubCellData.f90')\n f = open(fname1, 'r')\n fname2 = os.path.join(srcpth, 'ModpathSubCellData_mod.f90')\n f2 = open(fname2, 'w')\n for line in f:\n line = line.replace('location.', 'location%')\n f2.write(line)\n f.close()\n f2.close()\n os.remove(fname1)\n os.rename(fname2, fname1)\n fname1 = os.path.join(srcpth, 'ModpathCellData.f90')\n f = open(fname1, 'r')\n fname2 = os.path.join(srcpth, 'ModpathCellData_mod.f90')\n f2 = open(fname2, 'w')\n for line in f:\n line = line.replace('dimension(grid%GetCellCount())', 'dimension(:)')\n line = line.replace('dimension(grid%GetReducedConnectionCount())',\n 'dimension(:)')\n f2.write(line)\n f.close()\n f2.close()\n os.remove(fname1)\n os.rename(fname2, fname1)\n fname1 = os.path.join(srcpth, 'MPath7.f90')\n f = open(fname1, 'r')\n fname2 = os.path.join(srcpth, 'MPath7_mod.f90')\n f2 = open(fname2, 'w')\n for line in f:\n line = line.replace(\"form='binary', access='stream'\",\n \"form='unformatted', access='stream'\")\n f2.write(line)\n f.close()\n f2.close()\n os.remove(fname1)\n os.rename(fname2, fname1)\n fflags = 'ffree-line-length-512'\n pymake.main(srcpth, target, 'gfortran', 'gcc', makeclean=True, expedite\n =False, dryrun=False, double=False, debug=False, fflags=fflags)\n assert os.path.isfile(target), 'Target does not exist.'\n\n\ndef get_simfiles():\n dirs = [name for name in os.listdir(expth) if os.path.isdir(os.path.\n join(expth, name))]\n simfiles = []\n for d in dirs:\n pth = os.path.join(expth, d, 'original')\n simfiles += [os.path.join(pth, f) for f in os.listdir(pth) if f.\n endswith('.mpsim')]\n return simfiles\n\n\ndef replace_files():\n dirs = [name for name in os.listdir(expth) if os.path.isdir(os.path.\n join(expth, name))]\n replace_files = ['example_1.BUD', 'Zones_layer_3.txt',\n 'Retardation_layer_1.txt']\n for d in dirs:\n pth = os.path.join(expth, d, 'original')\n for rf in replace_files:\n fname1 = os.path.join(pth, rf)\n if rf in os.listdir(pth):\n fname2 = os.path.join(pth, 'temp')\n print('copy {} to {}'.format(os.path.basename(fname1), os.\n path.basename(fname2)))\n shutil.copy(fname1, fname2)\n print('deleting {}'.format(os.path.basename(fname1)))\n os.remove(fname1)\n fname1 = os.path.join(pth, rf.lower())\n print('rename {} to {}'.format(os.path.basename(fname2), os\n .path.basename(fname1)))\n os.rename(fname2, fname1)\n\n\ndef run_modpath7(fn):\n print('running model...{}'.format(fn))\n exe = os.path.abspath(target)\n fpth = os.path.basename(fn)\n model_ws = os.path.dirname(fn)\n success, buff = flopy.run_model(exe, fpth, model_ws=model_ws, silent=False)\n assert success, 'could not run...{}'.format(os.path.basename(fn))\n return\n\n\ndef clean_up():\n print('Removing folder ' + mp6pth)\n shutil.rmtree(mp6pth)\n print('Removing ' + target)\n os.remove(target)\n return\n\n\ndef test_compile():\n compile_code()\n\n\ndef test_modpath7():\n simfiles = get_simfiles()\n replace_files()\n for fn in simfiles:\n yield run_modpath7, fn\n\n\ndef test_clean_up():\n yield clean_up\n\n\n<mask token>\n", "step-3": "<mask token>\nif not os.path.exists(dstpth):\n os.makedirs(dstpth)\n<mask token>\n\n\ndef compile_code():\n if os.path.isdir(mp6pth):\n shutil.rmtree(mp6pth)\n url = 'https://water.usgs.gov/ogw/modpath/Modpath_7_1_000.zip'\n pymake.download_and_unzip(url, pth=dstpth)\n pth = os.path.join(srcpth, 'utl7u1.f')\n if os.path.isfile(pth):\n os.remove(pth)\n fname1 = os.path.join(srcpth, 'ModpathSubCellData.f90')\n f = open(fname1, 'r')\n fname2 = os.path.join(srcpth, 'ModpathSubCellData_mod.f90')\n f2 = open(fname2, 'w')\n for line in f:\n line = line.replace('location.', 'location%')\n f2.write(line)\n f.close()\n f2.close()\n os.remove(fname1)\n os.rename(fname2, fname1)\n fname1 = os.path.join(srcpth, 'ModpathCellData.f90')\n f = open(fname1, 'r')\n fname2 = os.path.join(srcpth, 'ModpathCellData_mod.f90')\n f2 = open(fname2, 'w')\n for line in f:\n line = line.replace('dimension(grid%GetCellCount())', 'dimension(:)')\n line = line.replace('dimension(grid%GetReducedConnectionCount())',\n 'dimension(:)')\n f2.write(line)\n f.close()\n f2.close()\n os.remove(fname1)\n os.rename(fname2, fname1)\n fname1 = os.path.join(srcpth, 'MPath7.f90')\n f = open(fname1, 'r')\n fname2 = os.path.join(srcpth, 'MPath7_mod.f90')\n f2 = open(fname2, 'w')\n for line in f:\n line = line.replace(\"form='binary', access='stream'\",\n \"form='unformatted', access='stream'\")\n f2.write(line)\n f.close()\n f2.close()\n os.remove(fname1)\n os.rename(fname2, fname1)\n fflags = 'ffree-line-length-512'\n pymake.main(srcpth, target, 'gfortran', 'gcc', makeclean=True, expedite\n =False, dryrun=False, double=False, debug=False, fflags=fflags)\n assert os.path.isfile(target), 'Target does not exist.'\n\n\ndef get_simfiles():\n dirs = [name for name in os.listdir(expth) if os.path.isdir(os.path.\n join(expth, name))]\n simfiles = []\n for d in dirs:\n pth = os.path.join(expth, d, 'original')\n simfiles += [os.path.join(pth, f) for f in os.listdir(pth) if f.\n endswith('.mpsim')]\n return simfiles\n\n\ndef replace_files():\n dirs = [name for name in os.listdir(expth) if os.path.isdir(os.path.\n join(expth, name))]\n replace_files = ['example_1.BUD', 'Zones_layer_3.txt',\n 'Retardation_layer_1.txt']\n for d in dirs:\n pth = os.path.join(expth, d, 'original')\n for rf in replace_files:\n fname1 = os.path.join(pth, rf)\n if rf in os.listdir(pth):\n fname2 = os.path.join(pth, 'temp')\n print('copy {} to {}'.format(os.path.basename(fname1), os.\n path.basename(fname2)))\n shutil.copy(fname1, fname2)\n print('deleting {}'.format(os.path.basename(fname1)))\n os.remove(fname1)\n fname1 = os.path.join(pth, rf.lower())\n print('rename {} to {}'.format(os.path.basename(fname2), os\n .path.basename(fname1)))\n os.rename(fname2, fname1)\n\n\ndef run_modpath7(fn):\n print('running model...{}'.format(fn))\n exe = os.path.abspath(target)\n fpth = os.path.basename(fn)\n model_ws = os.path.dirname(fn)\n success, buff = flopy.run_model(exe, fpth, model_ws=model_ws, silent=False)\n assert success, 'could not run...{}'.format(os.path.basename(fn))\n return\n\n\ndef clean_up():\n print('Removing folder ' + mp6pth)\n shutil.rmtree(mp6pth)\n print('Removing ' + target)\n os.remove(target)\n return\n\n\ndef test_compile():\n compile_code()\n\n\ndef test_modpath7():\n simfiles = get_simfiles()\n replace_files()\n for fn in simfiles:\n yield run_modpath7, fn\n\n\ndef test_clean_up():\n yield clean_up\n\n\nif __name__ == '__main__':\n compile_code()\n simfiles = get_simfiles()\n replace_files()\n for fn in simfiles:\n run_modpath7(fn)\n clean_up()\n", "step-4": "from __future__ import print_function\nimport os\nimport shutil\nimport pymake\nimport flopy\ndstpth = os.path.join('temp')\nif not os.path.exists(dstpth):\n os.makedirs(dstpth)\nmp6pth = os.path.join(dstpth, 'Modpath_7_1_000')\nexpth = os.path.join(mp6pth, 'examples')\nexe_name = 'mp7'\nsrcpth = os.path.join(mp6pth, 'source')\ntarget = os.path.join(dstpth, exe_name)\n\n\ndef compile_code():\n if os.path.isdir(mp6pth):\n shutil.rmtree(mp6pth)\n url = 'https://water.usgs.gov/ogw/modpath/Modpath_7_1_000.zip'\n pymake.download_and_unzip(url, pth=dstpth)\n pth = os.path.join(srcpth, 'utl7u1.f')\n if os.path.isfile(pth):\n os.remove(pth)\n fname1 = os.path.join(srcpth, 'ModpathSubCellData.f90')\n f = open(fname1, 'r')\n fname2 = os.path.join(srcpth, 'ModpathSubCellData_mod.f90')\n f2 = open(fname2, 'w')\n for line in f:\n line = line.replace('location.', 'location%')\n f2.write(line)\n f.close()\n f2.close()\n os.remove(fname1)\n os.rename(fname2, fname1)\n fname1 = os.path.join(srcpth, 'ModpathCellData.f90')\n f = open(fname1, 'r')\n fname2 = os.path.join(srcpth, 'ModpathCellData_mod.f90')\n f2 = open(fname2, 'w')\n for line in f:\n line = line.replace('dimension(grid%GetCellCount())', 'dimension(:)')\n line = line.replace('dimension(grid%GetReducedConnectionCount())',\n 'dimension(:)')\n f2.write(line)\n f.close()\n f2.close()\n os.remove(fname1)\n os.rename(fname2, fname1)\n fname1 = os.path.join(srcpth, 'MPath7.f90')\n f = open(fname1, 'r')\n fname2 = os.path.join(srcpth, 'MPath7_mod.f90')\n f2 = open(fname2, 'w')\n for line in f:\n line = line.replace(\"form='binary', access='stream'\",\n \"form='unformatted', access='stream'\")\n f2.write(line)\n f.close()\n f2.close()\n os.remove(fname1)\n os.rename(fname2, fname1)\n fflags = 'ffree-line-length-512'\n pymake.main(srcpth, target, 'gfortran', 'gcc', makeclean=True, expedite\n =False, dryrun=False, double=False, debug=False, fflags=fflags)\n assert os.path.isfile(target), 'Target does not exist.'\n\n\ndef get_simfiles():\n dirs = [name for name in os.listdir(expth) if os.path.isdir(os.path.\n join(expth, name))]\n simfiles = []\n for d in dirs:\n pth = os.path.join(expth, d, 'original')\n simfiles += [os.path.join(pth, f) for f in os.listdir(pth) if f.\n endswith('.mpsim')]\n return simfiles\n\n\ndef replace_files():\n dirs = [name for name in os.listdir(expth) if os.path.isdir(os.path.\n join(expth, name))]\n replace_files = ['example_1.BUD', 'Zones_layer_3.txt',\n 'Retardation_layer_1.txt']\n for d in dirs:\n pth = os.path.join(expth, d, 'original')\n for rf in replace_files:\n fname1 = os.path.join(pth, rf)\n if rf in os.listdir(pth):\n fname2 = os.path.join(pth, 'temp')\n print('copy {} to {}'.format(os.path.basename(fname1), os.\n path.basename(fname2)))\n shutil.copy(fname1, fname2)\n print('deleting {}'.format(os.path.basename(fname1)))\n os.remove(fname1)\n fname1 = os.path.join(pth, rf.lower())\n print('rename {} to {}'.format(os.path.basename(fname2), os\n .path.basename(fname1)))\n os.rename(fname2, fname1)\n\n\ndef run_modpath7(fn):\n print('running model...{}'.format(fn))\n exe = os.path.abspath(target)\n fpth = os.path.basename(fn)\n model_ws = os.path.dirname(fn)\n success, buff = flopy.run_model(exe, fpth, model_ws=model_ws, silent=False)\n assert success, 'could not run...{}'.format(os.path.basename(fn))\n return\n\n\ndef clean_up():\n print('Removing folder ' + mp6pth)\n shutil.rmtree(mp6pth)\n print('Removing ' + target)\n os.remove(target)\n return\n\n\ndef test_compile():\n compile_code()\n\n\ndef test_modpath7():\n simfiles = get_simfiles()\n replace_files()\n for fn in simfiles:\n yield run_modpath7, fn\n\n\ndef test_clean_up():\n yield clean_up\n\n\nif __name__ == '__main__':\n compile_code()\n simfiles = get_simfiles()\n replace_files()\n for fn in simfiles:\n run_modpath7(fn)\n clean_up()\n", "step-5": "from __future__ import print_function\nimport os\nimport shutil\nimport pymake\nimport flopy\n\n# set up paths\ndstpth = os.path.join('temp')\nif not os.path.exists(dstpth):\n os.makedirs(dstpth)\nmp6pth = os.path.join(dstpth, 'Modpath_7_1_000')\nexpth = os.path.join(mp6pth, 'examples')\n\nexe_name = 'mp7'\nsrcpth = os.path.join(mp6pth, 'source')\ntarget = os.path.join(dstpth, exe_name)\n\n\ndef compile_code():\n # Remove the existing modpath6 directory if it exists\n if os.path.isdir(mp6pth):\n shutil.rmtree(mp6pth)\n\n # Download the MODFLOW-2005 distribution\n url = \"https://water.usgs.gov/ogw/modpath/Modpath_7_1_000.zip\"\n pymake.download_and_unzip(url, pth=dstpth)\n\n # modify source files that prevent compiling with gfortran\n pth = os.path.join(srcpth, 'utl7u1.f')\n if os.path.isfile(pth):\n os.remove(pth)\n\n fname1 = os.path.join(srcpth, 'ModpathSubCellData.f90')\n f = open(fname1, 'r')\n fname2 = os.path.join(srcpth, 'ModpathSubCellData_mod.f90')\n f2 = open(fname2, 'w')\n for line in f:\n line = line.replace('location.', 'location%')\n f2.write(line)\n f.close()\n f2.close()\n os.remove(fname1)\n os.rename(fname2, fname1)\n\n fname1 = os.path.join(srcpth, 'ModpathCellData.f90')\n f = open(fname1, 'r')\n fname2 = os.path.join(srcpth, 'ModpathCellData_mod.f90')\n f2 = open(fname2, 'w')\n for line in f:\n line = line.replace('dimension(grid%GetCellCount())', 'dimension(:)')\n line = line.replace('dimension(grid%GetReducedConnectionCount())',\n 'dimension(:)')\n f2.write(line)\n f.close()\n f2.close()\n os.remove(fname1)\n os.rename(fname2, fname1)\n\n fname1 = os.path.join(srcpth, 'MPath7.f90')\n f = open(fname1, 'r')\n fname2 = os.path.join(srcpth, 'MPath7_mod.f90')\n f2 = open(fname2, 'w')\n for line in f:\n line = line.replace(\"form='binary', access='stream'\",\n \"form='unformatted', access='stream'\")\n f2.write(line)\n f.close()\n f2.close()\n os.remove(fname1)\n os.rename(fname2, fname1)\n\n # allow line lengths greater than 132 columns\n fflags = 'ffree-line-length-512'\n\n # make modpath 7\n pymake.main(srcpth, target, 'gfortran', 'gcc', makeclean=True,\n expedite=False, dryrun=False, double=False, debug=False,\n fflags=fflags)\n\n assert os.path.isfile(target), 'Target does not exist.'\n\n\ndef get_simfiles():\n dirs = [name for name in os.listdir(expth) if\n os.path.isdir(os.path.join(expth, name))]\n simfiles = []\n for d in dirs:\n pth = os.path.join(expth, d, 'original')\n simfiles += [os.path.join(pth, f) for f in os.listdir(pth) if\n f.endswith('.mpsim')]\n return simfiles\n\ndef replace_files():\n dirs = [name for name in os.listdir(expth) if\n os.path.isdir(os.path.join(expth, name))]\n # rename a few files for linux\n replace_files = ['example_1.BUD', 'Zones_layer_3.txt',\n 'Retardation_layer_1.txt']\n for d in dirs:\n pth = os.path.join(expth, d, 'original')\n for rf in replace_files:\n fname1 = os.path.join(pth, rf)\n if rf in os.listdir(pth):\n fname2 = os.path.join(pth, 'temp')\n print('copy {} to {}'.format(os.path.basename(fname1),\n os.path.basename(fname2)))\n shutil.copy(fname1, fname2)\n print('deleting {}'.format(os.path.basename(fname1)))\n os.remove(fname1)\n fname1 = os.path.join(pth, rf.lower())\n print('rename {} to {}'.format(os.path.basename(fname2),\n os.path.basename(fname1)))\n os.rename(fname2, fname1)\n\ndef run_modpath7(fn):\n # run the model\n print('running model...{}'.format(fn))\n exe = os.path.abspath(target)\n fpth = os.path.basename(fn)\n model_ws = os.path.dirname(fn)\n success, buff = flopy.run_model(exe, fpth, model_ws=model_ws, silent=False)\n assert success, 'could not run...{}'.format(os.path.basename(fn))\n return\n\n\ndef clean_up():\n # clean up\n print('Removing folder ' + mp6pth)\n shutil.rmtree(mp6pth)\n print('Removing ' + target)\n os.remove(target)\n return\n\n\ndef test_compile():\n # compile MODPATH 7\n compile_code()\n\n\ndef test_modpath7():\n simfiles = get_simfiles()\n replace_files()\n for fn in simfiles:\n yield run_modpath7, fn\n\n\ndef test_clean_up():\n yield clean_up\n\n\nif __name__ == \"__main__\":\n compile_code()\n simfiles = get_simfiles()\n replace_files()\n for fn in simfiles:\n run_modpath7(fn)\n clean_up()\n", "step-ids": [ 7, 8, 9, 11, 12 ] }
[ 7, 8, 9, 11, 12 ]
# Generated by Django 3.0.10 on 2020-12-19 15:07 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ("wagtailadmin", "0001_create_admin_access_permissions"), ] operations = [ migrations.CreateModel( name="Admin", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ], options={ "permissions": [("access_admin", "Can access Wagtail admin")], "managed": False, "default_permissions": [], }, ), ]
normal
{ "blob_id": "52a4213a1729e25f96faebc5fd4f299017446c5a", "index": 6370, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Migration(migrations.Migration):\n <mask token>\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Migration(migrations.Migration):\n initial = True\n dependencies = [('wagtailadmin', '0001_create_admin_access_permissions')]\n operations = [migrations.CreateModel(name='Admin', fields=[('id',\n models.AutoField(auto_created=True, primary_key=True, serialize=\n False, verbose_name='ID'))], options={'permissions': [(\n 'access_admin', 'Can access Wagtail admin')], 'managed': False,\n 'default_permissions': []})]\n", "step-4": "from django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n initial = True\n dependencies = [('wagtailadmin', '0001_create_admin_access_permissions')]\n operations = [migrations.CreateModel(name='Admin', fields=[('id',\n models.AutoField(auto_created=True, primary_key=True, serialize=\n False, verbose_name='ID'))], options={'permissions': [(\n 'access_admin', 'Can access Wagtail admin')], 'managed': False,\n 'default_permissions': []})]\n", "step-5": "# Generated by Django 3.0.10 on 2020-12-19 15:07\n\nfrom django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n\n initial = True\n\n dependencies = [\n (\"wagtailadmin\", \"0001_create_admin_access_permissions\"),\n ]\n\n operations = [\n migrations.CreateModel(\n name=\"Admin\",\n fields=[\n (\n \"id\",\n models.AutoField(\n auto_created=True,\n primary_key=True,\n serialize=False,\n verbose_name=\"ID\",\n ),\n ),\n ],\n options={\n \"permissions\": [(\"access_admin\", \"Can access Wagtail admin\")],\n \"managed\": False,\n \"default_permissions\": [],\n },\n ),\n ]\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from django.urls import reverse from django.utils.translation import get_language from drf_dynamic_fields import DynamicFieldsMixin from geotrek.api.v2.serializers import AttachmentSerializer from mapentity.serializers import MapentityGeojsonModelSerializer from rest_framework import serializers as rest_serializers from rest_framework_gis import fields as rest_gis_fields from rest_framework_gis.serializers import GeoFeatureModelSerializer from geotrek.common.serializers import PictogramSerializerMixin, TranslatedModelSerializer from . import models as sensitivity_models class RuleSerializer(PictogramSerializerMixin, rest_serializers.ModelSerializer): class Meta: model = sensitivity_models.Rule fields = ('id', 'code', 'name', 'pictogram', 'description', 'url') class SportPracticeSerializer(TranslatedModelSerializer): class Meta: model = sensitivity_models.SportPractice fields = ('id', 'name') class SpeciesSerializer(TranslatedModelSerializer, PictogramSerializerMixin): practices = SportPracticeSerializer(many=True) period = rest_serializers.SerializerMethodField() def get_period(self, obj): return [getattr(obj, 'period{:02}'.format(p)) for p in range(1, 13)] class Meta: model = sensitivity_models.Species fields = ['id', 'name', 'practices', 'url', 'pictogram', 'period'] class SensitiveAreaSerializer(DynamicFieldsMixin, rest_serializers.ModelSerializer): category = rest_serializers.CharField(source='category_display') structure = rest_serializers.SlugRelatedField('name', read_only=True) species = rest_serializers.CharField(source='species_display') class Meta: model = sensitivity_models.SensitiveArea fields = "__all__" class SensitiveAreaGeojsonSerializer(MapentityGeojsonModelSerializer): radius = rest_serializers.IntegerField() class Meta(MapentityGeojsonModelSerializer.Meta): model = sensitivity_models.SensitiveArea fields = ['id', 'species', 'radius', 'published'] class SensitiveAreaAPISerializer(TranslatedModelSerializer): species = SpeciesSerializer() kml_url = rest_serializers.SerializerMethodField() attachments = AttachmentSerializer(many=True) rules = RuleSerializer(many=True) def get_kml_url(self, obj): return reverse('sensitivity:sensitivearea_kml_detail', kwargs={'lang': get_language(), 'pk': obj.pk}) class Meta: model = sensitivity_models.SensitiveArea fields = ('id', 'species', 'description', 'contact', 'published', 'publication_date', 'kml_url', 'attachments', 'rules') class SensitiveAreaAPIGeojsonSerializer(GeoFeatureModelSerializer, SensitiveAreaAPISerializer): # Annotated geom field with API_SRID geom2d_transformed = rest_gis_fields.GeometryField(read_only=True, precision=7) class Meta(SensitiveAreaAPISerializer.Meta): geo_field = 'geom2d_transformed' fields = SensitiveAreaAPISerializer.Meta.fields + ('geom2d_transformed', )
normal
{ "blob_id": "dfd5915428dc8f15fb61c5d81f22dfecfe29af15", "index": 6409, "step-1": "<mask token>\n\n\nclass SpeciesSerializer(TranslatedModelSerializer, PictogramSerializerMixin):\n <mask token>\n <mask token>\n <mask token>\n\n\n class Meta:\n model = sensitivity_models.Species\n fields = ['id', 'name', 'practices', 'url', 'pictogram', 'period']\n\n\nclass SensitiveAreaSerializer(DynamicFieldsMixin, rest_serializers.\n ModelSerializer):\n category = rest_serializers.CharField(source='category_display')\n structure = rest_serializers.SlugRelatedField('name', read_only=True)\n species = rest_serializers.CharField(source='species_display')\n\n\n class Meta:\n model = sensitivity_models.SensitiveArea\n fields = '__all__'\n\n\nclass SensitiveAreaGeojsonSerializer(MapentityGeojsonModelSerializer):\n radius = rest_serializers.IntegerField()\n\n\n class Meta(MapentityGeojsonModelSerializer.Meta):\n model = sensitivity_models.SensitiveArea\n fields = ['id', 'species', 'radius', 'published']\n\n\nclass SensitiveAreaAPISerializer(TranslatedModelSerializer):\n species = SpeciesSerializer()\n kml_url = rest_serializers.SerializerMethodField()\n attachments = AttachmentSerializer(many=True)\n rules = RuleSerializer(many=True)\n\n def get_kml_url(self, obj):\n return reverse('sensitivity:sensitivearea_kml_detail', kwargs={\n 'lang': get_language(), 'pk': obj.pk})\n\n\n class Meta:\n model = sensitivity_models.SensitiveArea\n fields = ('id', 'species', 'description', 'contact', 'published',\n 'publication_date', 'kml_url', 'attachments', 'rules')\n\n\nclass SensitiveAreaAPIGeojsonSerializer(GeoFeatureModelSerializer,\n SensitiveAreaAPISerializer):\n geom2d_transformed = rest_gis_fields.GeometryField(read_only=True,\n precision=7)\n\n\n class Meta(SensitiveAreaAPISerializer.Meta):\n geo_field = 'geom2d_transformed'\n fields = SensitiveAreaAPISerializer.Meta.fields + ('geom2d_transformed'\n ,)\n", "step-2": "<mask token>\n\n\nclass SpeciesSerializer(TranslatedModelSerializer, PictogramSerializerMixin):\n <mask token>\n <mask token>\n\n def get_period(self, obj):\n return [getattr(obj, 'period{:02}'.format(p)) for p in range(1, 13)]\n\n\n class Meta:\n model = sensitivity_models.Species\n fields = ['id', 'name', 'practices', 'url', 'pictogram', 'period']\n\n\nclass SensitiveAreaSerializer(DynamicFieldsMixin, rest_serializers.\n ModelSerializer):\n category = rest_serializers.CharField(source='category_display')\n structure = rest_serializers.SlugRelatedField('name', read_only=True)\n species = rest_serializers.CharField(source='species_display')\n\n\n class Meta:\n model = sensitivity_models.SensitiveArea\n fields = '__all__'\n\n\nclass SensitiveAreaGeojsonSerializer(MapentityGeojsonModelSerializer):\n radius = rest_serializers.IntegerField()\n\n\n class Meta(MapentityGeojsonModelSerializer.Meta):\n model = sensitivity_models.SensitiveArea\n fields = ['id', 'species', 'radius', 'published']\n\n\nclass SensitiveAreaAPISerializer(TranslatedModelSerializer):\n species = SpeciesSerializer()\n kml_url = rest_serializers.SerializerMethodField()\n attachments = AttachmentSerializer(many=True)\n rules = RuleSerializer(many=True)\n\n def get_kml_url(self, obj):\n return reverse('sensitivity:sensitivearea_kml_detail', kwargs={\n 'lang': get_language(), 'pk': obj.pk})\n\n\n class Meta:\n model = sensitivity_models.SensitiveArea\n fields = ('id', 'species', 'description', 'contact', 'published',\n 'publication_date', 'kml_url', 'attachments', 'rules')\n\n\nclass SensitiveAreaAPIGeojsonSerializer(GeoFeatureModelSerializer,\n SensitiveAreaAPISerializer):\n geom2d_transformed = rest_gis_fields.GeometryField(read_only=True,\n precision=7)\n\n\n class Meta(SensitiveAreaAPISerializer.Meta):\n geo_field = 'geom2d_transformed'\n fields = SensitiveAreaAPISerializer.Meta.fields + ('geom2d_transformed'\n ,)\n", "step-3": "<mask token>\n\n\nclass SpeciesSerializer(TranslatedModelSerializer, PictogramSerializerMixin):\n practices = SportPracticeSerializer(many=True)\n period = rest_serializers.SerializerMethodField()\n\n def get_period(self, obj):\n return [getattr(obj, 'period{:02}'.format(p)) for p in range(1, 13)]\n\n\n class Meta:\n model = sensitivity_models.Species\n fields = ['id', 'name', 'practices', 'url', 'pictogram', 'period']\n\n\nclass SensitiveAreaSerializer(DynamicFieldsMixin, rest_serializers.\n ModelSerializer):\n category = rest_serializers.CharField(source='category_display')\n structure = rest_serializers.SlugRelatedField('name', read_only=True)\n species = rest_serializers.CharField(source='species_display')\n\n\n class Meta:\n model = sensitivity_models.SensitiveArea\n fields = '__all__'\n\n\nclass SensitiveAreaGeojsonSerializer(MapentityGeojsonModelSerializer):\n radius = rest_serializers.IntegerField()\n\n\n class Meta(MapentityGeojsonModelSerializer.Meta):\n model = sensitivity_models.SensitiveArea\n fields = ['id', 'species', 'radius', 'published']\n\n\nclass SensitiveAreaAPISerializer(TranslatedModelSerializer):\n species = SpeciesSerializer()\n kml_url = rest_serializers.SerializerMethodField()\n attachments = AttachmentSerializer(many=True)\n rules = RuleSerializer(many=True)\n\n def get_kml_url(self, obj):\n return reverse('sensitivity:sensitivearea_kml_detail', kwargs={\n 'lang': get_language(), 'pk': obj.pk})\n\n\n class Meta:\n model = sensitivity_models.SensitiveArea\n fields = ('id', 'species', 'description', 'contact', 'published',\n 'publication_date', 'kml_url', 'attachments', 'rules')\n\n\nclass SensitiveAreaAPIGeojsonSerializer(GeoFeatureModelSerializer,\n SensitiveAreaAPISerializer):\n geom2d_transformed = rest_gis_fields.GeometryField(read_only=True,\n precision=7)\n\n\n class Meta(SensitiveAreaAPISerializer.Meta):\n geo_field = 'geom2d_transformed'\n fields = SensitiveAreaAPISerializer.Meta.fields + ('geom2d_transformed'\n ,)\n", "step-4": "<mask token>\n\n\nclass SportPracticeSerializer(TranslatedModelSerializer):\n\n\n class Meta:\n model = sensitivity_models.SportPractice\n fields = 'id', 'name'\n\n\nclass SpeciesSerializer(TranslatedModelSerializer, PictogramSerializerMixin):\n practices = SportPracticeSerializer(many=True)\n period = rest_serializers.SerializerMethodField()\n\n def get_period(self, obj):\n return [getattr(obj, 'period{:02}'.format(p)) for p in range(1, 13)]\n\n\n class Meta:\n model = sensitivity_models.Species\n fields = ['id', 'name', 'practices', 'url', 'pictogram', 'period']\n\n\nclass SensitiveAreaSerializer(DynamicFieldsMixin, rest_serializers.\n ModelSerializer):\n category = rest_serializers.CharField(source='category_display')\n structure = rest_serializers.SlugRelatedField('name', read_only=True)\n species = rest_serializers.CharField(source='species_display')\n\n\n class Meta:\n model = sensitivity_models.SensitiveArea\n fields = '__all__'\n\n\nclass SensitiveAreaGeojsonSerializer(MapentityGeojsonModelSerializer):\n radius = rest_serializers.IntegerField()\n\n\n class Meta(MapentityGeojsonModelSerializer.Meta):\n model = sensitivity_models.SensitiveArea\n fields = ['id', 'species', 'radius', 'published']\n\n\nclass SensitiveAreaAPISerializer(TranslatedModelSerializer):\n species = SpeciesSerializer()\n kml_url = rest_serializers.SerializerMethodField()\n attachments = AttachmentSerializer(many=True)\n rules = RuleSerializer(many=True)\n\n def get_kml_url(self, obj):\n return reverse('sensitivity:sensitivearea_kml_detail', kwargs={\n 'lang': get_language(), 'pk': obj.pk})\n\n\n class Meta:\n model = sensitivity_models.SensitiveArea\n fields = ('id', 'species', 'description', 'contact', 'published',\n 'publication_date', 'kml_url', 'attachments', 'rules')\n\n\nclass SensitiveAreaAPIGeojsonSerializer(GeoFeatureModelSerializer,\n SensitiveAreaAPISerializer):\n geom2d_transformed = rest_gis_fields.GeometryField(read_only=True,\n precision=7)\n\n\n class Meta(SensitiveAreaAPISerializer.Meta):\n geo_field = 'geom2d_transformed'\n fields = SensitiveAreaAPISerializer.Meta.fields + ('geom2d_transformed'\n ,)\n", "step-5": "from django.urls import reverse\nfrom django.utils.translation import get_language\nfrom drf_dynamic_fields import DynamicFieldsMixin\nfrom geotrek.api.v2.serializers import AttachmentSerializer\nfrom mapentity.serializers import MapentityGeojsonModelSerializer\nfrom rest_framework import serializers as rest_serializers\nfrom rest_framework_gis import fields as rest_gis_fields\nfrom rest_framework_gis.serializers import GeoFeatureModelSerializer\n\nfrom geotrek.common.serializers import PictogramSerializerMixin, TranslatedModelSerializer\nfrom . import models as sensitivity_models\n\n\nclass RuleSerializer(PictogramSerializerMixin, rest_serializers.ModelSerializer):\n\n class Meta:\n model = sensitivity_models.Rule\n fields = ('id', 'code', 'name', 'pictogram', 'description', 'url')\n\n\nclass SportPracticeSerializer(TranslatedModelSerializer):\n class Meta:\n model = sensitivity_models.SportPractice\n fields = ('id', 'name')\n\n\nclass SpeciesSerializer(TranslatedModelSerializer, PictogramSerializerMixin):\n practices = SportPracticeSerializer(many=True)\n period = rest_serializers.SerializerMethodField()\n\n def get_period(self, obj):\n return [getattr(obj, 'period{:02}'.format(p)) for p in range(1, 13)]\n\n class Meta:\n model = sensitivity_models.Species\n fields = ['id', 'name', 'practices', 'url', 'pictogram', 'period']\n\n\nclass SensitiveAreaSerializer(DynamicFieldsMixin, rest_serializers.ModelSerializer):\n category = rest_serializers.CharField(source='category_display')\n structure = rest_serializers.SlugRelatedField('name', read_only=True)\n species = rest_serializers.CharField(source='species_display')\n\n class Meta:\n model = sensitivity_models.SensitiveArea\n fields = \"__all__\"\n\n\nclass SensitiveAreaGeojsonSerializer(MapentityGeojsonModelSerializer):\n radius = rest_serializers.IntegerField()\n\n class Meta(MapentityGeojsonModelSerializer.Meta):\n model = sensitivity_models.SensitiveArea\n fields = ['id', 'species', 'radius', 'published']\n\n\nclass SensitiveAreaAPISerializer(TranslatedModelSerializer):\n species = SpeciesSerializer()\n kml_url = rest_serializers.SerializerMethodField()\n attachments = AttachmentSerializer(many=True)\n rules = RuleSerializer(many=True)\n\n def get_kml_url(self, obj):\n return reverse('sensitivity:sensitivearea_kml_detail', kwargs={'lang': get_language(), 'pk': obj.pk})\n\n class Meta:\n model = sensitivity_models.SensitiveArea\n fields = ('id', 'species', 'description', 'contact', 'published', 'publication_date', 'kml_url', 'attachments', 'rules')\n\n\nclass SensitiveAreaAPIGeojsonSerializer(GeoFeatureModelSerializer, SensitiveAreaAPISerializer):\n # Annotated geom field with API_SRID\n geom2d_transformed = rest_gis_fields.GeometryField(read_only=True, precision=7)\n\n class Meta(SensitiveAreaAPISerializer.Meta):\n geo_field = 'geom2d_transformed'\n fields = SensitiveAreaAPISerializer.Meta.fields + ('geom2d_transformed', )\n", "step-ids": [ 10, 11, 12, 13, 16 ] }
[ 10, 11, 12, 13, 16 ]
import os , sys , time print(""" ███████████████████████████████ █ █ █═╬═════════════════════════╬═█ █ ║░░░░░░░░░░░░░░░░░░░░░░░░░║ █ █ ║░░░░Wi-fi Fucker Tool░░░░║ █ █ ║░░░░░░░░░░░░░░░░░░░░░░░░░║ █ █ ║░░░░░coded by arda6░░░░░░║ █ █ ║░░░░░░░░░░░░░░░░░░░░░░░░░║ █ █ ║░░░░░░░░░░░░░░░░░░░░░░░░░║ █ █ ║░░░░░░░░░░░░░░░░░░░░░░░░░║ █ █ ║░░░░░░░░░░░░░░░░░░░░░░░░░║ █ █═╬═════════════════════════╬═█ █ █ ███████████████████████████████ """) pla = sys.platform if pla == "win32": win = "Windows" print(" [!] Your Platform is " +win+ "\n") elif pla == "darwin": mac = "MacOs" print(" [+] Your Platform is " +mac+ "\n") elif pla == "linux": mac = "Linux" print(" [+] Your Platform is " +mac+"\n") if pla == "win32": print(" [!] Not Suitable For Tool Windows \n") time.sleep(3) exit(" [#] https://www.github/arda6") print("") print(""" 1) Wep Cracking 2) Wpa2 Cracking 3) Deauth Attack """) soru = input("root@eyll:~# ") if soru == '1': os.system("python3 main.py") exit() elif soru == '2': os.system("python3 wpa2.py") elif soru == '3': os.system("python3 attack.py")
normal
{ "blob_id": "15eb205e6bd36844fdfc8c05efbc3a3d584c122d", "index": 7238, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint(\n \"\"\"\n\n ███████████████████████████████\n █ █\n █═╬═════════════════════════╬═█\n █ ║░░░░░░░░░░░░░░░░░░░░░░░░░║ █\n █ ║░░░░Wi-fi Fucker Tool░░░░║ █\n █ ║░░░░░░░░░░░░░░░░░░░░░░░░░║ █\n █ ║░░░░░coded by arda6░░░░░░║ █\n █ ║░░░░░░░░░░░░░░░░░░░░░░░░░║ █\n █ ║░░░░░░░░░░░░░░░░░░░░░░░░░║ █\n █ ║░░░░░░░░░░░░░░░░░░░░░░░░░║ █\n █ ║░░░░░░░░░░░░░░░░░░░░░░░░░║ █\n █═╬═════════════════════════╬═█\n █ █\n ███████████████████████████████\n\n\n\"\"\"\n )\n<mask token>\nif pla == 'win32':\n win = 'Windows'\n print(' [!] Your Platform is ' + win + '\\n')\nelif pla == 'darwin':\n mac = 'MacOs'\n print(' [+] Your Platform is ' + mac + '\\n')\nelif pla == 'linux':\n mac = 'Linux'\n print(' [+] Your Platform is ' + mac + '\\n')\nif pla == 'win32':\n print(' [!] Not Suitable For Tool Windows \\n')\n time.sleep(3)\n exit(' [#] https://www.github/arda6')\nprint('')\nprint(\"\"\"\n\n 1) Wep Cracking\n 2) Wpa2 Cracking\n 3) Deauth Attack\n \n\"\"\")\n<mask token>\nif soru == '1':\n os.system('python3 main.py')\n exit()\nelif soru == '2':\n os.system('python3 wpa2.py')\nelif soru == '3':\n os.system('python3 attack.py')\n", "step-3": "<mask token>\nprint(\n \"\"\"\n\n ███████████████████████████████\n █ █\n █═╬═════════════════════════╬═█\n █ ║░░░░░░░░░░░░░░░░░░░░░░░░░║ █\n █ ║░░░░Wi-fi Fucker Tool░░░░║ █\n █ ║░░░░░░░░░░░░░░░░░░░░░░░░░║ █\n █ ║░░░░░coded by arda6░░░░░░║ █\n █ ║░░░░░░░░░░░░░░░░░░░░░░░░░║ █\n █ ║░░░░░░░░░░░░░░░░░░░░░░░░░║ █\n █ ║░░░░░░░░░░░░░░░░░░░░░░░░░║ █\n █ ║░░░░░░░░░░░░░░░░░░░░░░░░░║ █\n █═╬═════════════════════════╬═█\n █ █\n ███████████████████████████████\n\n\n\"\"\"\n )\npla = sys.platform\nif pla == 'win32':\n win = 'Windows'\n print(' [!] Your Platform is ' + win + '\\n')\nelif pla == 'darwin':\n mac = 'MacOs'\n print(' [+] Your Platform is ' + mac + '\\n')\nelif pla == 'linux':\n mac = 'Linux'\n print(' [+] Your Platform is ' + mac + '\\n')\nif pla == 'win32':\n print(' [!] Not Suitable For Tool Windows \\n')\n time.sleep(3)\n exit(' [#] https://www.github/arda6')\nprint('')\nprint(\"\"\"\n\n 1) Wep Cracking\n 2) Wpa2 Cracking\n 3) Deauth Attack\n \n\"\"\")\nsoru = input('root@eyll:~# ')\nif soru == '1':\n os.system('python3 main.py')\n exit()\nelif soru == '2':\n os.system('python3 wpa2.py')\nelif soru == '3':\n os.system('python3 attack.py')\n", "step-4": "import os, sys, time\nprint(\n \"\"\"\n\n ███████████████████████████████\n █ █\n █═╬═════════════════════════╬═█\n █ ║░░░░░░░░░░░░░░░░░░░░░░░░░║ █\n █ ║░░░░Wi-fi Fucker Tool░░░░║ █\n █ ║░░░░░░░░░░░░░░░░░░░░░░░░░║ █\n █ ║░░░░░coded by arda6░░░░░░║ █\n █ ║░░░░░░░░░░░░░░░░░░░░░░░░░║ █\n █ ║░░░░░░░░░░░░░░░░░░░░░░░░░║ █\n █ ║░░░░░░░░░░░░░░░░░░░░░░░░░║ █\n █ ║░░░░░░░░░░░░░░░░░░░░░░░░░║ █\n █═╬═════════════════════════╬═█\n █ █\n ███████████████████████████████\n\n\n\"\"\"\n )\npla = sys.platform\nif pla == 'win32':\n win = 'Windows'\n print(' [!] Your Platform is ' + win + '\\n')\nelif pla == 'darwin':\n mac = 'MacOs'\n print(' [+] Your Platform is ' + mac + '\\n')\nelif pla == 'linux':\n mac = 'Linux'\n print(' [+] Your Platform is ' + mac + '\\n')\nif pla == 'win32':\n print(' [!] Not Suitable For Tool Windows \\n')\n time.sleep(3)\n exit(' [#] https://www.github/arda6')\nprint('')\nprint(\"\"\"\n\n 1) Wep Cracking\n 2) Wpa2 Cracking\n 3) Deauth Attack\n \n\"\"\")\nsoru = input('root@eyll:~# ')\nif soru == '1':\n os.system('python3 main.py')\n exit()\nelif soru == '2':\n os.system('python3 wpa2.py')\nelif soru == '3':\n os.system('python3 attack.py')\n", "step-5": "import os , sys , time\r\nprint(\"\"\"\r\n\r\n ███████████████████████████████\r\n █ █\r\n █═╬═════════════════════════╬═█\r\n █ ║░░░░░░░░░░░░░░░░░░░░░░░░░║ █\r\n █ ║░░░░Wi-fi Fucker Tool░░░░║ █\r\n █ ║░░░░░░░░░░░░░░░░░░░░░░░░░║ █\r\n █ ║░░░░░coded by arda6░░░░░░║ █\r\n █ ║░░░░░░░░░░░░░░░░░░░░░░░░░║ █\r\n █ ║░░░░░░░░░░░░░░░░░░░░░░░░░║ █\r\n █ ║░░░░░░░░░░░░░░░░░░░░░░░░░║ █\r\n █ ║░░░░░░░░░░░░░░░░░░░░░░░░░║ █\r\n █═╬═════════════════════════╬═█\r\n █ █\r\n ███████████████████████████████\r\n\r\n\r\n\"\"\")\r\npla = sys.platform\r\nif pla == \"win32\":\r\n win = \"Windows\"\r\n print(\" [!] Your Platform is \" +win+ \"\\n\")\r\nelif pla == \"darwin\":\r\n mac = \"MacOs\"\r\n print(\" [+] Your Platform is \" +mac+ \"\\n\")\r\nelif pla == \"linux\":\r\n mac = \"Linux\"\r\n print(\" [+] Your Platform is \" +mac+\"\\n\")\r\nif pla == \"win32\":\r\n print(\" [!] Not Suitable For Tool Windows \\n\")\r\n time.sleep(3)\r\n exit(\" [#] https://www.github/arda6\")\r\nprint(\"\")\r\nprint(\"\"\"\r\n\r\n 1) Wep Cracking\r\n 2) Wpa2 Cracking\r\n 3) Deauth Attack\r\n \r\n\"\"\")\r\n\r\nsoru = input(\"root@eyll:~# \")\r\nif soru == '1':\r\n os.system(\"python3 main.py\")\r\n exit()\r\nelif soru == '2':\r\n os.system(\"python3 wpa2.py\")\r\nelif soru == '3':\r\n os.system(\"python3 attack.py\")\r\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
""" Data pre-processing """ import os import corenlp import numpy as np import ujson as json from tqdm import tqdm from collections import Counter from bilm import dump_token_embeddings import sys sys.path.append('../..') from LIB.utils import save def process(json_file, outpur_dir, exclude_titles=None, include_titles=None): """ :param json_file: original data in json format :param outpur_dir: the output directory of pre-processed data :param exclude_titles: article titles to exclude :param include_titles: article titles to include """ para_file = "{}/paras".format(outpur_dir) question_file = "{}/questions".format(outpur_dir) sent_file = "{}/sents".format(outpur_dir) answer_file = "{}/answers".format(outpur_dir) print("Generating {} raw data...".format(json_file)) max_sent, max_sent_len, max_que_len, max_ans_len = 0, 0, 0, 0 with open(json_file, "r") as fh, corenlp.CoreNLPClient(annotators="tokenize ssplit pos ner".split(), endpoint="http://localhost:9099", timeout=50000) as client: source = json.load(fh) for article in tqdm(source["data"]): title = article["title"] if include_titles and title not in include_titles: continue if exclude_titles and title in exclude_titles: continue for para in article["paragraphs"]: paragraphs, questions, answers, sents, ids = [], [], [], [], [] paragraphs_pos, questions_pos, answers_pos, sents_pos = [], [], [], [] paragraphs_ner, questions_ner, answers_ner, sents_ner = [], [], [], [] answers_index, sents_index = [], [] # paragraph context = para["context"] if not context.strip(): continue ann_para = client.annotate(context) max_sent = max(max_sent, len(ann_para.sentence)) max_sent_len = max(max_sent_len, max(map(lambda x: len(x.token), ann_para.sentence))) ann_para_tokens, paragraph_tokens, paragraph_pos, paragraph_ner = [], [], [], [] for sent in ann_para.sentence: for token in sent.token: ann_para_tokens.append(token) paragraph_tokens.append(token.word) paragraph_pos.append(token.pos) paragraph_ner.append(token.ner) # questions for qa in para["qas"]: # question ques = qa["question"] id = qa["id"] if not ques.strip(): continue ann_que = client.annotate(ques) max_que_len = max(max_que_len, len(ann_que.sentence[0].token)) question_tokens, question_pos, question_ner = [], [], [] for sent in ann_que.sentence: for token in sent.token: question_tokens.append(token.word) question_pos.append(token.pos) question_ner.append(token.ner) # answer all_answer_tokens, all_answer_pos, all_answer_ner, all_answer_index = [], [], [], [] all_sent_tokens, all_sent_pos, all_sent_ner, all_sent_index = [], [], [], [] for answer in qa["answers"]: answer_text = answer["text"] if not answer_text.strip(): continue ann_ans = client.annotate(answer_text) answer_tokens, answer_pos, answer_ner = [], [], [] for sent in ann_ans.sentence: for token in sent.token: answer_tokens.append(token.word) answer_pos.append(token.pos) answer_ner.append(token.ner) all_answer_tokens.append(' '.join(answer_tokens)) all_answer_pos.append(' '.join(answer_pos)) all_answer_ner.append(' '.join(answer_ner)) answer_start = answer['answer_start'] answer_end = answer_start + len(answer_text) # sentence sentence = [] for sent in ann_para.sentence: if sent.characterOffsetBegin <= answer_start <= sent.characterOffsetEnd or \ sent.characterOffsetBegin <= answer_end <= sent.characterOffsetEnd: sentence.append(sent) sentence = [token for sent in sentence for token in sent.token] sentence_tokens = [token.word for token in sentence] sentence_pos = [token.pos for token in sentence] sentence_ner = [token.ner for token in sentence] all_sent_tokens.append(' '.join(sentence_tokens)) all_sent_pos.append(' '.join(sentence_pos)) all_sent_ner.append(' '.join(sentence_ner)) # sentence index y1_sent = sentence[0].tokenBeginIndex y2_sent = sentence[-1].tokenBeginIndex # answer index y1_ans = None for i, token in enumerate(sentence): if token.beginChar - 1 <= answer_start <= token.endChar: y1_ans = sentence[0].tokenBeginIndex + i try: assert y1_ans != None except: continue y2_ans = y1_ans + len(answer_tokens) - 1 all_answer_index.append("{},{}".format(y1_ans, y2_ans)) all_sent_index.append("{},{}".format(y1_sent, y2_sent)) paragraphs.append(' '.join(paragraph_tokens)) paragraphs_pos.append(' '.join(paragraph_pos)) paragraphs_ner.append(' '.join(paragraph_ner)) questions.append(' '.join(question_tokens)) questions_pos.append(' '.join(question_pos)) questions_ner.append(' '.join(question_ner)) answers.append('\t'.join(all_answer_tokens)) answers_pos.append('\t'.join(all_answer_pos)) answers_ner.append('\t'.join(all_answer_ner)) answers_index.append('\t'.join(all_answer_index)) sents.append('\t'.join(all_sent_tokens)) sents_pos.append('\t'.join(all_sent_pos)) sents_ner.append('\t'.join(all_sent_ner)) sents_index.append('\t'.join(all_sent_index)) ids.append(id) # save para with open("{}.tok".format(para_file), 'a') as f: f.write('\n'.join(paragraphs) + '\n') with open("{}.pos".format(para_file), 'a') as f: f.write('\n'.join(paragraphs_pos) + '\n') with open("{}.ner".format(para_file), 'a') as f: f.write('\n'.join(paragraphs_ner) + '\n') with open("{}.id".format(para_file), 'a') as f: f.write('\n'.join(ids) + '\n') # save question with open("{}.tok".format(question_file), 'a') as f: f.write('\n'.join(questions) + '\n') with open("{}.pos".format(question_file), 'a') as f: f.write('\n'.join(questions_pos) + '\n') with open("{}.ner".format(question_file), 'a') as f: f.write('\n'.join(questions_ner) + '\n') # save answer with open("{}.tok".format(answer_file), 'a') as f: f.write('\n'.join(answers) + '\n') with open("{}.pos".format(answer_file), 'a') as f: f.write('\n'.join(answers_pos) + '\n') with open("{}.ner".format(answer_file), 'a') as f: f.write('\n'.join(answers_ner) + '\n') with open("{}.index".format(answer_file), 'a') as f: f.write("\n".join(answers_index) + '\n') # save sent with open("{}.tok".format(sent_file), 'a') as f: f.write('\n'.join(sents) + '\n') with open("{}.pos".format(sent_file), 'a') as f: f.write('\n'.join(sents_pos) + '\n') with open("{}.ner".format(sent_file), 'a') as f: f.write('\n'.join(sents_ner) + '\n') with open("{}.index".format(sent_file), 'a') as f: f.write("\n".join(sents_index) + '\n') # get BIO labels label(para_file, answer_file) def label(para_file, answer_file): # get the answer BIO label for paragraph max_node = 0 with open("{}.tok".format(para_file), 'r') as fp, open("{}.label".format(para_file), 'a') as fl, \ open("{}.index".format(answer_file), 'r') as fa: while True: para = fp.readline() if not para: break words = [p for p in para.strip().split(' ')] max_node = max(len(words), max_node) answer = fa.readline() labels = [] try: start, end = map(int, answer.split('\t')[0].split(',')) for i in range(len(words)): if start <= i <= end: # answer words if i == start: labels.append('B') else: labels.append('I') else: # non answer words labels.append('O') except: pass fl.write(' '.join(labels) + '\n') return max_node def get_data(train_json, dev_json, test_title_file, output_dir): test_titles = open(test_title_file, 'r').readlines() test_titles = set([line.strip() for line in test_titles]) process(train_json, "{}/train/".format(output_dir), exclude_titles=test_titles) process(dev_json, "{}/dev/".format(output_dir)) process(train_json, "{}/test/".format(output_dir), include_titles=test_titles) def get_word_embedding(counter, emb_file, emb_size, vocab_size, vec_size, vocab_file): """ get word embedding matrix from glove """ print("Generating word embedding...") # load word embeddings embedding_dict = {} with open(emb_file, "r", encoding="utf-8") as fh: for line in tqdm(fh, total=emb_size): array = line.split() word = "".join(array[0:-vec_size]) vector = list(map(float, array[-vec_size:])) embedding_dict[word] = vector TRANSLATE = { "-lsb-": "[", "-rsb-": "]", "-lrb-": "(", "-rrb-": ")", "-lcb-": "{", "-rcb-": "}", "-LSB-": "[", "-RSB-": "]", "-LRB-": "(", "-RRB-": ")", "-LCB-": "{", "-RCB-": "}" } SPECIAL_TOKENS = ["<NULL>", "<UNK>", "<S>", "</S>"] words = list(map(lambda x: x[0], sorted(counter.items(), key=lambda x: x[1], reverse=True))) words = SPECIAL_TOKENS + words if vocab_size > 0: words = words[:vocab_size] with open(vocab_file, 'w') as f: f.write('\n'.join(words[1:])) embedding = np.random.normal(scale=0.1, size=(len(words), vec_size)) word2idx_dict = {} unknown_count = 0 for i, word in enumerate(words): word2idx_dict[word] = i if word in TRANSLATE: word = TRANSLATE[word] done = False for w in (word, word.lower(), word.upper(), word.capitalize()): if w in embedding_dict: embedding[i] = embedding_dict[w] done = True break if not done: unknown_count += 1 return embedding, word2idx_dict, unknown_count def get_tag_embedding(counter, data_type, vec_size): """ get pos/ner/label tags' embedding matrix """ print("Generating {} tag embedding...".format(data_type)) SPECIAL_TOKENS = ["<NULL>", "<UNK>"] tags = list(map(lambda x: x[0], sorted(counter.items(), key=lambda x: x[1], reverse=True))) tags = SPECIAL_TOKENS + tags embedding = np.random.normal(scale=0.1, size=(len(tags), vec_size)) word2idx_dict = {w: i for i, w in enumerate(tags)} return embedding, word2idx_dict def get_vocab(config): print("Get the vocabulary...") word_counter, char_counter = Counter(), Counter() pos_counter, ner_counter, label_counter = Counter(), Counter(), Counter() files = [(config.train_para_file, config.train_question_file), (config.dev_para_file, config.dev_question_file)] for para_file, que_file in files: with open("{}.tok".format(para_file), 'r') as fp, open("{}.tok".format(que_file), 'r') as fq, \ open("{}.pos".format(para_file), 'r') as fpp, open("{}.pos".format(que_file), 'r') as fqp, \ open("{}.ner".format(para_file), 'r') as fpn, open("{}.ner".format(que_file), 'r') as fqn, \ open("{}.label".format(para_file), 'r') as fpl: while True: para, question = fp.readline(), fq.readline() pos, que_pos = fpp.readline(), fqp.readline() ner, que_ner = fpn.readline(), fqn.readline() label = fpl.readline() if not question or not para: break if config.lower_word: para = para.lower() question = question.lower() para_tokens = para.strip().split(' ') que_tokens = question.strip().split(' ') pos_tags = pos.strip().split(' ') ner_tags = ner.strip().split(' ') que_pos_tags = que_pos.strip().split(' ') que_ner_tags = que_ner.strip().split(' ') labels = label.strip().split(' ') for token in para_tokens + que_tokens: word_counter[token] += 1 for char in list(token): char_counter[char] += 1 for pos_tag in pos_tags + que_pos_tags: pos_counter[pos_tag] += 1 for ner_tag in ner_tags + que_ner_tags: ner_counter[ner_tag] += 1 for label in labels: label_counter[label] += 1 word_emb_mat, word2idx_dict, unk_num = get_word_embedding(word_counter, emb_file=config.glove_word_file, emb_size=config.glove_word_size, vocab_size=config.vocab_size_limit, vec_size=config.glove_dim, vocab_file=config.vocab_file) char_emb_mat, char2idx_dict = get_tag_embedding(char_counter, "char", vec_size=config.char_dim) pos_emb_mat, pos2idx_dict = get_tag_embedding(pos_counter, "pos", vec_size=config.pos_dim) ner_emb_mat, ner2idx_dict = get_tag_embedding(ner_counter, "ner", vec_size=config.ner_dim) label_emb_mat, label2idx_dict = get_tag_embedding(label_counter, "label", vec_size=config.label_dim) print("{} out of {} are not in glove".format(unk_num, len(word2idx_dict))) print("{} chars".format(char_emb_mat.shape[0])) print("{} pos tags, {} ner tags, {} answer labels, {} chars".format( pos_emb_mat.shape[0], ner_emb_mat.shape[0], label_emb_mat.shape[0], char_emb_mat.shape[0])) save(config.word_emb_file, word_emb_mat, message="word embedding") save(config.char_emb_file, char_emb_mat, message="char embedding") save(config.pos_emb_file, pos_emb_mat, message="pos embedding") save(config.ner_emb_file, ner_emb_mat, message="ner embedding") save(config.label_emb_file, label_emb_mat, message="label embedding") save(config.word_dictionary, word2idx_dict, message="word dictionary") save(config.char_dictionary, char2idx_dict, message="char dictionary") save(config.pos_dictionary, pos2idx_dict, message="pos dictionary") save(config.ner_dictionary, ner2idx_dict, message="ner dictionary") save(config.label_dictionary, label2idx_dict, message="label dictionary") print("Dump elmo word embedding...") token_embedding_file = config.embedding_file dump_token_embeddings( config.vocab_file, config.elmo_options_file, config.elmo_weight_file, token_embedding_file ) if __name__ == '__main__': # process data os.system("mkdir data; mkdir data/processed; mkdir data/processed/train; " "mkdir data/processed/dev; mkdir data/processed/test") get_data("../../LIB/squad/train-v1.1.json", "../../LIB/squad/dev-v1.1.json", "../../LIB/squad/doclist-test.txt", "data/processed")
normal
{ "blob_id": "0c37806f0a7c0976711edd685fd64d2616147cb6", "index": 4623, "step-1": "<mask token>\n\n\ndef process(json_file, outpur_dir, exclude_titles=None, include_titles=None):\n \"\"\"\n :param json_file: original data in json format\n :param outpur_dir: the output directory of pre-processed data\n :param exclude_titles: article titles to exclude\n :param include_titles: article titles to include\n \"\"\"\n para_file = '{}/paras'.format(outpur_dir)\n question_file = '{}/questions'.format(outpur_dir)\n sent_file = '{}/sents'.format(outpur_dir)\n answer_file = '{}/answers'.format(outpur_dir)\n print('Generating {} raw data...'.format(json_file))\n max_sent, max_sent_len, max_que_len, max_ans_len = 0, 0, 0, 0\n with open(json_file, 'r') as fh, corenlp.CoreNLPClient(annotators=\n 'tokenize ssplit pos ner'.split(), endpoint='http://localhost:9099',\n timeout=50000) as client:\n source = json.load(fh)\n for article in tqdm(source['data']):\n title = article['title']\n if include_titles and title not in include_titles:\n continue\n if exclude_titles and title in exclude_titles:\n continue\n for para in article['paragraphs']:\n paragraphs, questions, answers, sents, ids = [], [], [], [], []\n paragraphs_pos, questions_pos, answers_pos, sents_pos = [], [\n ], [], []\n paragraphs_ner, questions_ner, answers_ner, sents_ner = [], [\n ], [], []\n answers_index, sents_index = [], []\n context = para['context']\n if not context.strip():\n continue\n ann_para = client.annotate(context)\n max_sent = max(max_sent, len(ann_para.sentence))\n max_sent_len = max(max_sent_len, max(map(lambda x: len(x.\n token), ann_para.sentence)))\n (ann_para_tokens, paragraph_tokens, paragraph_pos,\n paragraph_ner) = [], [], [], []\n for sent in ann_para.sentence:\n for token in sent.token:\n ann_para_tokens.append(token)\n paragraph_tokens.append(token.word)\n paragraph_pos.append(token.pos)\n paragraph_ner.append(token.ner)\n for qa in para['qas']:\n ques = qa['question']\n id = qa['id']\n if not ques.strip():\n continue\n ann_que = client.annotate(ques)\n max_que_len = max(max_que_len, len(ann_que.sentence[0].\n token))\n question_tokens, question_pos, question_ner = [], [], []\n for sent in ann_que.sentence:\n for token in sent.token:\n question_tokens.append(token.word)\n question_pos.append(token.pos)\n question_ner.append(token.ner)\n (all_answer_tokens, all_answer_pos, all_answer_ner,\n all_answer_index) = [], [], [], []\n (all_sent_tokens, all_sent_pos, all_sent_ner,\n all_sent_index) = [], [], [], []\n for answer in qa['answers']:\n answer_text = answer['text']\n if not answer_text.strip():\n continue\n ann_ans = client.annotate(answer_text)\n answer_tokens, answer_pos, answer_ner = [], [], []\n for sent in ann_ans.sentence:\n for token in sent.token:\n answer_tokens.append(token.word)\n answer_pos.append(token.pos)\n answer_ner.append(token.ner)\n all_answer_tokens.append(' '.join(answer_tokens))\n all_answer_pos.append(' '.join(answer_pos))\n all_answer_ner.append(' '.join(answer_ner))\n answer_start = answer['answer_start']\n answer_end = answer_start + len(answer_text)\n sentence = []\n for sent in ann_para.sentence:\n if (sent.characterOffsetBegin <= answer_start <=\n sent.characterOffsetEnd or sent.\n characterOffsetBegin <= answer_end <= sent.\n characterOffsetEnd):\n sentence.append(sent)\n sentence = [token for sent in sentence for token in\n sent.token]\n sentence_tokens = [token.word for token in sentence]\n sentence_pos = [token.pos for token in sentence]\n sentence_ner = [token.ner for token in sentence]\n all_sent_tokens.append(' '.join(sentence_tokens))\n all_sent_pos.append(' '.join(sentence_pos))\n all_sent_ner.append(' '.join(sentence_ner))\n y1_sent = sentence[0].tokenBeginIndex\n y2_sent = sentence[-1].tokenBeginIndex\n y1_ans = None\n for i, token in enumerate(sentence):\n if (token.beginChar - 1 <= answer_start <=\n token.endChar):\n y1_ans = sentence[0].tokenBeginIndex + i\n try:\n assert y1_ans != None\n except:\n continue\n y2_ans = y1_ans + len(answer_tokens) - 1\n all_answer_index.append('{},{}'.format(y1_ans, y2_ans))\n all_sent_index.append('{},{}'.format(y1_sent, y2_sent))\n paragraphs.append(' '.join(paragraph_tokens))\n paragraphs_pos.append(' '.join(paragraph_pos))\n paragraphs_ner.append(' '.join(paragraph_ner))\n questions.append(' '.join(question_tokens))\n questions_pos.append(' '.join(question_pos))\n questions_ner.append(' '.join(question_ner))\n answers.append('\\t'.join(all_answer_tokens))\n answers_pos.append('\\t'.join(all_answer_pos))\n answers_ner.append('\\t'.join(all_answer_ner))\n answers_index.append('\\t'.join(all_answer_index))\n sents.append('\\t'.join(all_sent_tokens))\n sents_pos.append('\\t'.join(all_sent_pos))\n sents_ner.append('\\t'.join(all_sent_ner))\n sents_index.append('\\t'.join(all_sent_index))\n ids.append(id)\n with open('{}.tok'.format(para_file), 'a') as f:\n f.write('\\n'.join(paragraphs) + '\\n')\n with open('{}.pos'.format(para_file), 'a') as f:\n f.write('\\n'.join(paragraphs_pos) + '\\n')\n with open('{}.ner'.format(para_file), 'a') as f:\n f.write('\\n'.join(paragraphs_ner) + '\\n')\n with open('{}.id'.format(para_file), 'a') as f:\n f.write('\\n'.join(ids) + '\\n')\n with open('{}.tok'.format(question_file), 'a') as f:\n f.write('\\n'.join(questions) + '\\n')\n with open('{}.pos'.format(question_file), 'a') as f:\n f.write('\\n'.join(questions_pos) + '\\n')\n with open('{}.ner'.format(question_file), 'a') as f:\n f.write('\\n'.join(questions_ner) + '\\n')\n with open('{}.tok'.format(answer_file), 'a') as f:\n f.write('\\n'.join(answers) + '\\n')\n with open('{}.pos'.format(answer_file), 'a') as f:\n f.write('\\n'.join(answers_pos) + '\\n')\n with open('{}.ner'.format(answer_file), 'a') as f:\n f.write('\\n'.join(answers_ner) + '\\n')\n with open('{}.index'.format(answer_file), 'a') as f:\n f.write('\\n'.join(answers_index) + '\\n')\n with open('{}.tok'.format(sent_file), 'a') as f:\n f.write('\\n'.join(sents) + '\\n')\n with open('{}.pos'.format(sent_file), 'a') as f:\n f.write('\\n'.join(sents_pos) + '\\n')\n with open('{}.ner'.format(sent_file), 'a') as f:\n f.write('\\n'.join(sents_ner) + '\\n')\n with open('{}.index'.format(sent_file), 'a') as f:\n f.write('\\n'.join(sents_index) + '\\n')\n label(para_file, answer_file)\n\n\n<mask token>\n\n\ndef get_data(train_json, dev_json, test_title_file, output_dir):\n test_titles = open(test_title_file, 'r').readlines()\n test_titles = set([line.strip() for line in test_titles])\n process(train_json, '{}/train/'.format(output_dir), exclude_titles=\n test_titles)\n process(dev_json, '{}/dev/'.format(output_dir))\n process(train_json, '{}/test/'.format(output_dir), include_titles=\n test_titles)\n\n\ndef get_word_embedding(counter, emb_file, emb_size, vocab_size, vec_size,\n vocab_file):\n \"\"\"\n get word embedding matrix from glove\n \"\"\"\n print('Generating word embedding...')\n embedding_dict = {}\n with open(emb_file, 'r', encoding='utf-8') as fh:\n for line in tqdm(fh, total=emb_size):\n array = line.split()\n word = ''.join(array[0:-vec_size])\n vector = list(map(float, array[-vec_size:]))\n embedding_dict[word] = vector\n TRANSLATE = {'-lsb-': '[', '-rsb-': ']', '-lrb-': '(', '-rrb-': ')',\n '-lcb-': '{', '-rcb-': '}', '-LSB-': '[', '-RSB-': ']', '-LRB-':\n '(', '-RRB-': ')', '-LCB-': '{', '-RCB-': '}'}\n SPECIAL_TOKENS = ['<NULL>', '<UNK>', '<S>', '</S>']\n words = list(map(lambda x: x[0], sorted(counter.items(), key=lambda x:\n x[1], reverse=True)))\n words = SPECIAL_TOKENS + words\n if vocab_size > 0:\n words = words[:vocab_size]\n with open(vocab_file, 'w') as f:\n f.write('\\n'.join(words[1:]))\n embedding = np.random.normal(scale=0.1, size=(len(words), vec_size))\n word2idx_dict = {}\n unknown_count = 0\n for i, word in enumerate(words):\n word2idx_dict[word] = i\n if word in TRANSLATE:\n word = TRANSLATE[word]\n done = False\n for w in (word, word.lower(), word.upper(), word.capitalize()):\n if w in embedding_dict:\n embedding[i] = embedding_dict[w]\n done = True\n break\n if not done:\n unknown_count += 1\n return embedding, word2idx_dict, unknown_count\n\n\ndef get_tag_embedding(counter, data_type, vec_size):\n \"\"\"\n get pos/ner/label tags' embedding matrix\n \"\"\"\n print('Generating {} tag embedding...'.format(data_type))\n SPECIAL_TOKENS = ['<NULL>', '<UNK>']\n tags = list(map(lambda x: x[0], sorted(counter.items(), key=lambda x: x\n [1], reverse=True)))\n tags = SPECIAL_TOKENS + tags\n embedding = np.random.normal(scale=0.1, size=(len(tags), vec_size))\n word2idx_dict = {w: i for i, w in enumerate(tags)}\n return embedding, word2idx_dict\n\n\ndef get_vocab(config):\n print('Get the vocabulary...')\n word_counter, char_counter = Counter(), Counter()\n pos_counter, ner_counter, label_counter = Counter(), Counter(), Counter()\n files = [(config.train_para_file, config.train_question_file), (config.\n dev_para_file, config.dev_question_file)]\n for para_file, que_file in files:\n with open('{}.tok'.format(para_file), 'r') as fp, open('{}.tok'.\n format(que_file), 'r') as fq, open('{}.pos'.format(para_file), 'r'\n ) as fpp, open('{}.pos'.format(que_file), 'r') as fqp, open(\n '{}.ner'.format(para_file), 'r') as fpn, open('{}.ner'.format(\n que_file), 'r') as fqn, open('{}.label'.format(para_file), 'r'\n ) as fpl:\n while True:\n para, question = fp.readline(), fq.readline()\n pos, que_pos = fpp.readline(), fqp.readline()\n ner, que_ner = fpn.readline(), fqn.readline()\n label = fpl.readline()\n if not question or not para:\n break\n if config.lower_word:\n para = para.lower()\n question = question.lower()\n para_tokens = para.strip().split(' ')\n que_tokens = question.strip().split(' ')\n pos_tags = pos.strip().split(' ')\n ner_tags = ner.strip().split(' ')\n que_pos_tags = que_pos.strip().split(' ')\n que_ner_tags = que_ner.strip().split(' ')\n labels = label.strip().split(' ')\n for token in (para_tokens + que_tokens):\n word_counter[token] += 1\n for char in list(token):\n char_counter[char] += 1\n for pos_tag in (pos_tags + que_pos_tags):\n pos_counter[pos_tag] += 1\n for ner_tag in (ner_tags + que_ner_tags):\n ner_counter[ner_tag] += 1\n for label in labels:\n label_counter[label] += 1\n word_emb_mat, word2idx_dict, unk_num = get_word_embedding(word_counter,\n emb_file=config.glove_word_file, emb_size=config.glove_word_size,\n vocab_size=config.vocab_size_limit, vec_size=config.glove_dim,\n vocab_file=config.vocab_file)\n char_emb_mat, char2idx_dict = get_tag_embedding(char_counter, 'char',\n vec_size=config.char_dim)\n pos_emb_mat, pos2idx_dict = get_tag_embedding(pos_counter, 'pos',\n vec_size=config.pos_dim)\n ner_emb_mat, ner2idx_dict = get_tag_embedding(ner_counter, 'ner',\n vec_size=config.ner_dim)\n label_emb_mat, label2idx_dict = get_tag_embedding(label_counter,\n 'label', vec_size=config.label_dim)\n print('{} out of {} are not in glove'.format(unk_num, len(word2idx_dict)))\n print('{} chars'.format(char_emb_mat.shape[0]))\n print('{} pos tags, {} ner tags, {} answer labels, {} chars'.format(\n pos_emb_mat.shape[0], ner_emb_mat.shape[0], label_emb_mat.shape[0],\n char_emb_mat.shape[0]))\n save(config.word_emb_file, word_emb_mat, message='word embedding')\n save(config.char_emb_file, char_emb_mat, message='char embedding')\n save(config.pos_emb_file, pos_emb_mat, message='pos embedding')\n save(config.ner_emb_file, ner_emb_mat, message='ner embedding')\n save(config.label_emb_file, label_emb_mat, message='label embedding')\n save(config.word_dictionary, word2idx_dict, message='word dictionary')\n save(config.char_dictionary, char2idx_dict, message='char dictionary')\n save(config.pos_dictionary, pos2idx_dict, message='pos dictionary')\n save(config.ner_dictionary, ner2idx_dict, message='ner dictionary')\n save(config.label_dictionary, label2idx_dict, message='label dictionary')\n print('Dump elmo word embedding...')\n token_embedding_file = config.embedding_file\n dump_token_embeddings(config.vocab_file, config.elmo_options_file,\n config.elmo_weight_file, token_embedding_file)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef process(json_file, outpur_dir, exclude_titles=None, include_titles=None):\n \"\"\"\n :param json_file: original data in json format\n :param outpur_dir: the output directory of pre-processed data\n :param exclude_titles: article titles to exclude\n :param include_titles: article titles to include\n \"\"\"\n para_file = '{}/paras'.format(outpur_dir)\n question_file = '{}/questions'.format(outpur_dir)\n sent_file = '{}/sents'.format(outpur_dir)\n answer_file = '{}/answers'.format(outpur_dir)\n print('Generating {} raw data...'.format(json_file))\n max_sent, max_sent_len, max_que_len, max_ans_len = 0, 0, 0, 0\n with open(json_file, 'r') as fh, corenlp.CoreNLPClient(annotators=\n 'tokenize ssplit pos ner'.split(), endpoint='http://localhost:9099',\n timeout=50000) as client:\n source = json.load(fh)\n for article in tqdm(source['data']):\n title = article['title']\n if include_titles and title not in include_titles:\n continue\n if exclude_titles and title in exclude_titles:\n continue\n for para in article['paragraphs']:\n paragraphs, questions, answers, sents, ids = [], [], [], [], []\n paragraphs_pos, questions_pos, answers_pos, sents_pos = [], [\n ], [], []\n paragraphs_ner, questions_ner, answers_ner, sents_ner = [], [\n ], [], []\n answers_index, sents_index = [], []\n context = para['context']\n if not context.strip():\n continue\n ann_para = client.annotate(context)\n max_sent = max(max_sent, len(ann_para.sentence))\n max_sent_len = max(max_sent_len, max(map(lambda x: len(x.\n token), ann_para.sentence)))\n (ann_para_tokens, paragraph_tokens, paragraph_pos,\n paragraph_ner) = [], [], [], []\n for sent in ann_para.sentence:\n for token in sent.token:\n ann_para_tokens.append(token)\n paragraph_tokens.append(token.word)\n paragraph_pos.append(token.pos)\n paragraph_ner.append(token.ner)\n for qa in para['qas']:\n ques = qa['question']\n id = qa['id']\n if not ques.strip():\n continue\n ann_que = client.annotate(ques)\n max_que_len = max(max_que_len, len(ann_que.sentence[0].\n token))\n question_tokens, question_pos, question_ner = [], [], []\n for sent in ann_que.sentence:\n for token in sent.token:\n question_tokens.append(token.word)\n question_pos.append(token.pos)\n question_ner.append(token.ner)\n (all_answer_tokens, all_answer_pos, all_answer_ner,\n all_answer_index) = [], [], [], []\n (all_sent_tokens, all_sent_pos, all_sent_ner,\n all_sent_index) = [], [], [], []\n for answer in qa['answers']:\n answer_text = answer['text']\n if not answer_text.strip():\n continue\n ann_ans = client.annotate(answer_text)\n answer_tokens, answer_pos, answer_ner = [], [], []\n for sent in ann_ans.sentence:\n for token in sent.token:\n answer_tokens.append(token.word)\n answer_pos.append(token.pos)\n answer_ner.append(token.ner)\n all_answer_tokens.append(' '.join(answer_tokens))\n all_answer_pos.append(' '.join(answer_pos))\n all_answer_ner.append(' '.join(answer_ner))\n answer_start = answer['answer_start']\n answer_end = answer_start + len(answer_text)\n sentence = []\n for sent in ann_para.sentence:\n if (sent.characterOffsetBegin <= answer_start <=\n sent.characterOffsetEnd or sent.\n characterOffsetBegin <= answer_end <= sent.\n characterOffsetEnd):\n sentence.append(sent)\n sentence = [token for sent in sentence for token in\n sent.token]\n sentence_tokens = [token.word for token in sentence]\n sentence_pos = [token.pos for token in sentence]\n sentence_ner = [token.ner for token in sentence]\n all_sent_tokens.append(' '.join(sentence_tokens))\n all_sent_pos.append(' '.join(sentence_pos))\n all_sent_ner.append(' '.join(sentence_ner))\n y1_sent = sentence[0].tokenBeginIndex\n y2_sent = sentence[-1].tokenBeginIndex\n y1_ans = None\n for i, token in enumerate(sentence):\n if (token.beginChar - 1 <= answer_start <=\n token.endChar):\n y1_ans = sentence[0].tokenBeginIndex + i\n try:\n assert y1_ans != None\n except:\n continue\n y2_ans = y1_ans + len(answer_tokens) - 1\n all_answer_index.append('{},{}'.format(y1_ans, y2_ans))\n all_sent_index.append('{},{}'.format(y1_sent, y2_sent))\n paragraphs.append(' '.join(paragraph_tokens))\n paragraphs_pos.append(' '.join(paragraph_pos))\n paragraphs_ner.append(' '.join(paragraph_ner))\n questions.append(' '.join(question_tokens))\n questions_pos.append(' '.join(question_pos))\n questions_ner.append(' '.join(question_ner))\n answers.append('\\t'.join(all_answer_tokens))\n answers_pos.append('\\t'.join(all_answer_pos))\n answers_ner.append('\\t'.join(all_answer_ner))\n answers_index.append('\\t'.join(all_answer_index))\n sents.append('\\t'.join(all_sent_tokens))\n sents_pos.append('\\t'.join(all_sent_pos))\n sents_ner.append('\\t'.join(all_sent_ner))\n sents_index.append('\\t'.join(all_sent_index))\n ids.append(id)\n with open('{}.tok'.format(para_file), 'a') as f:\n f.write('\\n'.join(paragraphs) + '\\n')\n with open('{}.pos'.format(para_file), 'a') as f:\n f.write('\\n'.join(paragraphs_pos) + '\\n')\n with open('{}.ner'.format(para_file), 'a') as f:\n f.write('\\n'.join(paragraphs_ner) + '\\n')\n with open('{}.id'.format(para_file), 'a') as f:\n f.write('\\n'.join(ids) + '\\n')\n with open('{}.tok'.format(question_file), 'a') as f:\n f.write('\\n'.join(questions) + '\\n')\n with open('{}.pos'.format(question_file), 'a') as f:\n f.write('\\n'.join(questions_pos) + '\\n')\n with open('{}.ner'.format(question_file), 'a') as f:\n f.write('\\n'.join(questions_ner) + '\\n')\n with open('{}.tok'.format(answer_file), 'a') as f:\n f.write('\\n'.join(answers) + '\\n')\n with open('{}.pos'.format(answer_file), 'a') as f:\n f.write('\\n'.join(answers_pos) + '\\n')\n with open('{}.ner'.format(answer_file), 'a') as f:\n f.write('\\n'.join(answers_ner) + '\\n')\n with open('{}.index'.format(answer_file), 'a') as f:\n f.write('\\n'.join(answers_index) + '\\n')\n with open('{}.tok'.format(sent_file), 'a') as f:\n f.write('\\n'.join(sents) + '\\n')\n with open('{}.pos'.format(sent_file), 'a') as f:\n f.write('\\n'.join(sents_pos) + '\\n')\n with open('{}.ner'.format(sent_file), 'a') as f:\n f.write('\\n'.join(sents_ner) + '\\n')\n with open('{}.index'.format(sent_file), 'a') as f:\n f.write('\\n'.join(sents_index) + '\\n')\n label(para_file, answer_file)\n\n\ndef label(para_file, answer_file):\n max_node = 0\n with open('{}.tok'.format(para_file), 'r') as fp, open('{}.label'.\n format(para_file), 'a') as fl, open('{}.index'.format(answer_file), 'r'\n ) as fa:\n while True:\n para = fp.readline()\n if not para:\n break\n words = [p for p in para.strip().split(' ')]\n max_node = max(len(words), max_node)\n answer = fa.readline()\n labels = []\n try:\n start, end = map(int, answer.split('\\t')[0].split(','))\n for i in range(len(words)):\n if start <= i <= end:\n if i == start:\n labels.append('B')\n else:\n labels.append('I')\n else:\n labels.append('O')\n except:\n pass\n fl.write(' '.join(labels) + '\\n')\n return max_node\n\n\ndef get_data(train_json, dev_json, test_title_file, output_dir):\n test_titles = open(test_title_file, 'r').readlines()\n test_titles = set([line.strip() for line in test_titles])\n process(train_json, '{}/train/'.format(output_dir), exclude_titles=\n test_titles)\n process(dev_json, '{}/dev/'.format(output_dir))\n process(train_json, '{}/test/'.format(output_dir), include_titles=\n test_titles)\n\n\ndef get_word_embedding(counter, emb_file, emb_size, vocab_size, vec_size,\n vocab_file):\n \"\"\"\n get word embedding matrix from glove\n \"\"\"\n print('Generating word embedding...')\n embedding_dict = {}\n with open(emb_file, 'r', encoding='utf-8') as fh:\n for line in tqdm(fh, total=emb_size):\n array = line.split()\n word = ''.join(array[0:-vec_size])\n vector = list(map(float, array[-vec_size:]))\n embedding_dict[word] = vector\n TRANSLATE = {'-lsb-': '[', '-rsb-': ']', '-lrb-': '(', '-rrb-': ')',\n '-lcb-': '{', '-rcb-': '}', '-LSB-': '[', '-RSB-': ']', '-LRB-':\n '(', '-RRB-': ')', '-LCB-': '{', '-RCB-': '}'}\n SPECIAL_TOKENS = ['<NULL>', '<UNK>', '<S>', '</S>']\n words = list(map(lambda x: x[0], sorted(counter.items(), key=lambda x:\n x[1], reverse=True)))\n words = SPECIAL_TOKENS + words\n if vocab_size > 0:\n words = words[:vocab_size]\n with open(vocab_file, 'w') as f:\n f.write('\\n'.join(words[1:]))\n embedding = np.random.normal(scale=0.1, size=(len(words), vec_size))\n word2idx_dict = {}\n unknown_count = 0\n for i, word in enumerate(words):\n word2idx_dict[word] = i\n if word in TRANSLATE:\n word = TRANSLATE[word]\n done = False\n for w in (word, word.lower(), word.upper(), word.capitalize()):\n if w in embedding_dict:\n embedding[i] = embedding_dict[w]\n done = True\n break\n if not done:\n unknown_count += 1\n return embedding, word2idx_dict, unknown_count\n\n\ndef get_tag_embedding(counter, data_type, vec_size):\n \"\"\"\n get pos/ner/label tags' embedding matrix\n \"\"\"\n print('Generating {} tag embedding...'.format(data_type))\n SPECIAL_TOKENS = ['<NULL>', '<UNK>']\n tags = list(map(lambda x: x[0], sorted(counter.items(), key=lambda x: x\n [1], reverse=True)))\n tags = SPECIAL_TOKENS + tags\n embedding = np.random.normal(scale=0.1, size=(len(tags), vec_size))\n word2idx_dict = {w: i for i, w in enumerate(tags)}\n return embedding, word2idx_dict\n\n\ndef get_vocab(config):\n print('Get the vocabulary...')\n word_counter, char_counter = Counter(), Counter()\n pos_counter, ner_counter, label_counter = Counter(), Counter(), Counter()\n files = [(config.train_para_file, config.train_question_file), (config.\n dev_para_file, config.dev_question_file)]\n for para_file, que_file in files:\n with open('{}.tok'.format(para_file), 'r') as fp, open('{}.tok'.\n format(que_file), 'r') as fq, open('{}.pos'.format(para_file), 'r'\n ) as fpp, open('{}.pos'.format(que_file), 'r') as fqp, open(\n '{}.ner'.format(para_file), 'r') as fpn, open('{}.ner'.format(\n que_file), 'r') as fqn, open('{}.label'.format(para_file), 'r'\n ) as fpl:\n while True:\n para, question = fp.readline(), fq.readline()\n pos, que_pos = fpp.readline(), fqp.readline()\n ner, que_ner = fpn.readline(), fqn.readline()\n label = fpl.readline()\n if not question or not para:\n break\n if config.lower_word:\n para = para.lower()\n question = question.lower()\n para_tokens = para.strip().split(' ')\n que_tokens = question.strip().split(' ')\n pos_tags = pos.strip().split(' ')\n ner_tags = ner.strip().split(' ')\n que_pos_tags = que_pos.strip().split(' ')\n que_ner_tags = que_ner.strip().split(' ')\n labels = label.strip().split(' ')\n for token in (para_tokens + que_tokens):\n word_counter[token] += 1\n for char in list(token):\n char_counter[char] += 1\n for pos_tag in (pos_tags + que_pos_tags):\n pos_counter[pos_tag] += 1\n for ner_tag in (ner_tags + que_ner_tags):\n ner_counter[ner_tag] += 1\n for label in labels:\n label_counter[label] += 1\n word_emb_mat, word2idx_dict, unk_num = get_word_embedding(word_counter,\n emb_file=config.glove_word_file, emb_size=config.glove_word_size,\n vocab_size=config.vocab_size_limit, vec_size=config.glove_dim,\n vocab_file=config.vocab_file)\n char_emb_mat, char2idx_dict = get_tag_embedding(char_counter, 'char',\n vec_size=config.char_dim)\n pos_emb_mat, pos2idx_dict = get_tag_embedding(pos_counter, 'pos',\n vec_size=config.pos_dim)\n ner_emb_mat, ner2idx_dict = get_tag_embedding(ner_counter, 'ner',\n vec_size=config.ner_dim)\n label_emb_mat, label2idx_dict = get_tag_embedding(label_counter,\n 'label', vec_size=config.label_dim)\n print('{} out of {} are not in glove'.format(unk_num, len(word2idx_dict)))\n print('{} chars'.format(char_emb_mat.shape[0]))\n print('{} pos tags, {} ner tags, {} answer labels, {} chars'.format(\n pos_emb_mat.shape[0], ner_emb_mat.shape[0], label_emb_mat.shape[0],\n char_emb_mat.shape[0]))\n save(config.word_emb_file, word_emb_mat, message='word embedding')\n save(config.char_emb_file, char_emb_mat, message='char embedding')\n save(config.pos_emb_file, pos_emb_mat, message='pos embedding')\n save(config.ner_emb_file, ner_emb_mat, message='ner embedding')\n save(config.label_emb_file, label_emb_mat, message='label embedding')\n save(config.word_dictionary, word2idx_dict, message='word dictionary')\n save(config.char_dictionary, char2idx_dict, message='char dictionary')\n save(config.pos_dictionary, pos2idx_dict, message='pos dictionary')\n save(config.ner_dictionary, ner2idx_dict, message='ner dictionary')\n save(config.label_dictionary, label2idx_dict, message='label dictionary')\n print('Dump elmo word embedding...')\n token_embedding_file = config.embedding_file\n dump_token_embeddings(config.vocab_file, config.elmo_options_file,\n config.elmo_weight_file, token_embedding_file)\n\n\n<mask token>\n", "step-3": "<mask token>\nsys.path.append('../..')\n<mask token>\n\n\ndef process(json_file, outpur_dir, exclude_titles=None, include_titles=None):\n \"\"\"\n :param json_file: original data in json format\n :param outpur_dir: the output directory of pre-processed data\n :param exclude_titles: article titles to exclude\n :param include_titles: article titles to include\n \"\"\"\n para_file = '{}/paras'.format(outpur_dir)\n question_file = '{}/questions'.format(outpur_dir)\n sent_file = '{}/sents'.format(outpur_dir)\n answer_file = '{}/answers'.format(outpur_dir)\n print('Generating {} raw data...'.format(json_file))\n max_sent, max_sent_len, max_que_len, max_ans_len = 0, 0, 0, 0\n with open(json_file, 'r') as fh, corenlp.CoreNLPClient(annotators=\n 'tokenize ssplit pos ner'.split(), endpoint='http://localhost:9099',\n timeout=50000) as client:\n source = json.load(fh)\n for article in tqdm(source['data']):\n title = article['title']\n if include_titles and title not in include_titles:\n continue\n if exclude_titles and title in exclude_titles:\n continue\n for para in article['paragraphs']:\n paragraphs, questions, answers, sents, ids = [], [], [], [], []\n paragraphs_pos, questions_pos, answers_pos, sents_pos = [], [\n ], [], []\n paragraphs_ner, questions_ner, answers_ner, sents_ner = [], [\n ], [], []\n answers_index, sents_index = [], []\n context = para['context']\n if not context.strip():\n continue\n ann_para = client.annotate(context)\n max_sent = max(max_sent, len(ann_para.sentence))\n max_sent_len = max(max_sent_len, max(map(lambda x: len(x.\n token), ann_para.sentence)))\n (ann_para_tokens, paragraph_tokens, paragraph_pos,\n paragraph_ner) = [], [], [], []\n for sent in ann_para.sentence:\n for token in sent.token:\n ann_para_tokens.append(token)\n paragraph_tokens.append(token.word)\n paragraph_pos.append(token.pos)\n paragraph_ner.append(token.ner)\n for qa in para['qas']:\n ques = qa['question']\n id = qa['id']\n if not ques.strip():\n continue\n ann_que = client.annotate(ques)\n max_que_len = max(max_que_len, len(ann_que.sentence[0].\n token))\n question_tokens, question_pos, question_ner = [], [], []\n for sent in ann_que.sentence:\n for token in sent.token:\n question_tokens.append(token.word)\n question_pos.append(token.pos)\n question_ner.append(token.ner)\n (all_answer_tokens, all_answer_pos, all_answer_ner,\n all_answer_index) = [], [], [], []\n (all_sent_tokens, all_sent_pos, all_sent_ner,\n all_sent_index) = [], [], [], []\n for answer in qa['answers']:\n answer_text = answer['text']\n if not answer_text.strip():\n continue\n ann_ans = client.annotate(answer_text)\n answer_tokens, answer_pos, answer_ner = [], [], []\n for sent in ann_ans.sentence:\n for token in sent.token:\n answer_tokens.append(token.word)\n answer_pos.append(token.pos)\n answer_ner.append(token.ner)\n all_answer_tokens.append(' '.join(answer_tokens))\n all_answer_pos.append(' '.join(answer_pos))\n all_answer_ner.append(' '.join(answer_ner))\n answer_start = answer['answer_start']\n answer_end = answer_start + len(answer_text)\n sentence = []\n for sent in ann_para.sentence:\n if (sent.characterOffsetBegin <= answer_start <=\n sent.characterOffsetEnd or sent.\n characterOffsetBegin <= answer_end <= sent.\n characterOffsetEnd):\n sentence.append(sent)\n sentence = [token for sent in sentence for token in\n sent.token]\n sentence_tokens = [token.word for token in sentence]\n sentence_pos = [token.pos for token in sentence]\n sentence_ner = [token.ner for token in sentence]\n all_sent_tokens.append(' '.join(sentence_tokens))\n all_sent_pos.append(' '.join(sentence_pos))\n all_sent_ner.append(' '.join(sentence_ner))\n y1_sent = sentence[0].tokenBeginIndex\n y2_sent = sentence[-1].tokenBeginIndex\n y1_ans = None\n for i, token in enumerate(sentence):\n if (token.beginChar - 1 <= answer_start <=\n token.endChar):\n y1_ans = sentence[0].tokenBeginIndex + i\n try:\n assert y1_ans != None\n except:\n continue\n y2_ans = y1_ans + len(answer_tokens) - 1\n all_answer_index.append('{},{}'.format(y1_ans, y2_ans))\n all_sent_index.append('{},{}'.format(y1_sent, y2_sent))\n paragraphs.append(' '.join(paragraph_tokens))\n paragraphs_pos.append(' '.join(paragraph_pos))\n paragraphs_ner.append(' '.join(paragraph_ner))\n questions.append(' '.join(question_tokens))\n questions_pos.append(' '.join(question_pos))\n questions_ner.append(' '.join(question_ner))\n answers.append('\\t'.join(all_answer_tokens))\n answers_pos.append('\\t'.join(all_answer_pos))\n answers_ner.append('\\t'.join(all_answer_ner))\n answers_index.append('\\t'.join(all_answer_index))\n sents.append('\\t'.join(all_sent_tokens))\n sents_pos.append('\\t'.join(all_sent_pos))\n sents_ner.append('\\t'.join(all_sent_ner))\n sents_index.append('\\t'.join(all_sent_index))\n ids.append(id)\n with open('{}.tok'.format(para_file), 'a') as f:\n f.write('\\n'.join(paragraphs) + '\\n')\n with open('{}.pos'.format(para_file), 'a') as f:\n f.write('\\n'.join(paragraphs_pos) + '\\n')\n with open('{}.ner'.format(para_file), 'a') as f:\n f.write('\\n'.join(paragraphs_ner) + '\\n')\n with open('{}.id'.format(para_file), 'a') as f:\n f.write('\\n'.join(ids) + '\\n')\n with open('{}.tok'.format(question_file), 'a') as f:\n f.write('\\n'.join(questions) + '\\n')\n with open('{}.pos'.format(question_file), 'a') as f:\n f.write('\\n'.join(questions_pos) + '\\n')\n with open('{}.ner'.format(question_file), 'a') as f:\n f.write('\\n'.join(questions_ner) + '\\n')\n with open('{}.tok'.format(answer_file), 'a') as f:\n f.write('\\n'.join(answers) + '\\n')\n with open('{}.pos'.format(answer_file), 'a') as f:\n f.write('\\n'.join(answers_pos) + '\\n')\n with open('{}.ner'.format(answer_file), 'a') as f:\n f.write('\\n'.join(answers_ner) + '\\n')\n with open('{}.index'.format(answer_file), 'a') as f:\n f.write('\\n'.join(answers_index) + '\\n')\n with open('{}.tok'.format(sent_file), 'a') as f:\n f.write('\\n'.join(sents) + '\\n')\n with open('{}.pos'.format(sent_file), 'a') as f:\n f.write('\\n'.join(sents_pos) + '\\n')\n with open('{}.ner'.format(sent_file), 'a') as f:\n f.write('\\n'.join(sents_ner) + '\\n')\n with open('{}.index'.format(sent_file), 'a') as f:\n f.write('\\n'.join(sents_index) + '\\n')\n label(para_file, answer_file)\n\n\ndef label(para_file, answer_file):\n max_node = 0\n with open('{}.tok'.format(para_file), 'r') as fp, open('{}.label'.\n format(para_file), 'a') as fl, open('{}.index'.format(answer_file), 'r'\n ) as fa:\n while True:\n para = fp.readline()\n if not para:\n break\n words = [p for p in para.strip().split(' ')]\n max_node = max(len(words), max_node)\n answer = fa.readline()\n labels = []\n try:\n start, end = map(int, answer.split('\\t')[0].split(','))\n for i in range(len(words)):\n if start <= i <= end:\n if i == start:\n labels.append('B')\n else:\n labels.append('I')\n else:\n labels.append('O')\n except:\n pass\n fl.write(' '.join(labels) + '\\n')\n return max_node\n\n\ndef get_data(train_json, dev_json, test_title_file, output_dir):\n test_titles = open(test_title_file, 'r').readlines()\n test_titles = set([line.strip() for line in test_titles])\n process(train_json, '{}/train/'.format(output_dir), exclude_titles=\n test_titles)\n process(dev_json, '{}/dev/'.format(output_dir))\n process(train_json, '{}/test/'.format(output_dir), include_titles=\n test_titles)\n\n\ndef get_word_embedding(counter, emb_file, emb_size, vocab_size, vec_size,\n vocab_file):\n \"\"\"\n get word embedding matrix from glove\n \"\"\"\n print('Generating word embedding...')\n embedding_dict = {}\n with open(emb_file, 'r', encoding='utf-8') as fh:\n for line in tqdm(fh, total=emb_size):\n array = line.split()\n word = ''.join(array[0:-vec_size])\n vector = list(map(float, array[-vec_size:]))\n embedding_dict[word] = vector\n TRANSLATE = {'-lsb-': '[', '-rsb-': ']', '-lrb-': '(', '-rrb-': ')',\n '-lcb-': '{', '-rcb-': '}', '-LSB-': '[', '-RSB-': ']', '-LRB-':\n '(', '-RRB-': ')', '-LCB-': '{', '-RCB-': '}'}\n SPECIAL_TOKENS = ['<NULL>', '<UNK>', '<S>', '</S>']\n words = list(map(lambda x: x[0], sorted(counter.items(), key=lambda x:\n x[1], reverse=True)))\n words = SPECIAL_TOKENS + words\n if vocab_size > 0:\n words = words[:vocab_size]\n with open(vocab_file, 'w') as f:\n f.write('\\n'.join(words[1:]))\n embedding = np.random.normal(scale=0.1, size=(len(words), vec_size))\n word2idx_dict = {}\n unknown_count = 0\n for i, word in enumerate(words):\n word2idx_dict[word] = i\n if word in TRANSLATE:\n word = TRANSLATE[word]\n done = False\n for w in (word, word.lower(), word.upper(), word.capitalize()):\n if w in embedding_dict:\n embedding[i] = embedding_dict[w]\n done = True\n break\n if not done:\n unknown_count += 1\n return embedding, word2idx_dict, unknown_count\n\n\ndef get_tag_embedding(counter, data_type, vec_size):\n \"\"\"\n get pos/ner/label tags' embedding matrix\n \"\"\"\n print('Generating {} tag embedding...'.format(data_type))\n SPECIAL_TOKENS = ['<NULL>', '<UNK>']\n tags = list(map(lambda x: x[0], sorted(counter.items(), key=lambda x: x\n [1], reverse=True)))\n tags = SPECIAL_TOKENS + tags\n embedding = np.random.normal(scale=0.1, size=(len(tags), vec_size))\n word2idx_dict = {w: i for i, w in enumerate(tags)}\n return embedding, word2idx_dict\n\n\ndef get_vocab(config):\n print('Get the vocabulary...')\n word_counter, char_counter = Counter(), Counter()\n pos_counter, ner_counter, label_counter = Counter(), Counter(), Counter()\n files = [(config.train_para_file, config.train_question_file), (config.\n dev_para_file, config.dev_question_file)]\n for para_file, que_file in files:\n with open('{}.tok'.format(para_file), 'r') as fp, open('{}.tok'.\n format(que_file), 'r') as fq, open('{}.pos'.format(para_file), 'r'\n ) as fpp, open('{}.pos'.format(que_file), 'r') as fqp, open(\n '{}.ner'.format(para_file), 'r') as fpn, open('{}.ner'.format(\n que_file), 'r') as fqn, open('{}.label'.format(para_file), 'r'\n ) as fpl:\n while True:\n para, question = fp.readline(), fq.readline()\n pos, que_pos = fpp.readline(), fqp.readline()\n ner, que_ner = fpn.readline(), fqn.readline()\n label = fpl.readline()\n if not question or not para:\n break\n if config.lower_word:\n para = para.lower()\n question = question.lower()\n para_tokens = para.strip().split(' ')\n que_tokens = question.strip().split(' ')\n pos_tags = pos.strip().split(' ')\n ner_tags = ner.strip().split(' ')\n que_pos_tags = que_pos.strip().split(' ')\n que_ner_tags = que_ner.strip().split(' ')\n labels = label.strip().split(' ')\n for token in (para_tokens + que_tokens):\n word_counter[token] += 1\n for char in list(token):\n char_counter[char] += 1\n for pos_tag in (pos_tags + que_pos_tags):\n pos_counter[pos_tag] += 1\n for ner_tag in (ner_tags + que_ner_tags):\n ner_counter[ner_tag] += 1\n for label in labels:\n label_counter[label] += 1\n word_emb_mat, word2idx_dict, unk_num = get_word_embedding(word_counter,\n emb_file=config.glove_word_file, emb_size=config.glove_word_size,\n vocab_size=config.vocab_size_limit, vec_size=config.glove_dim,\n vocab_file=config.vocab_file)\n char_emb_mat, char2idx_dict = get_tag_embedding(char_counter, 'char',\n vec_size=config.char_dim)\n pos_emb_mat, pos2idx_dict = get_tag_embedding(pos_counter, 'pos',\n vec_size=config.pos_dim)\n ner_emb_mat, ner2idx_dict = get_tag_embedding(ner_counter, 'ner',\n vec_size=config.ner_dim)\n label_emb_mat, label2idx_dict = get_tag_embedding(label_counter,\n 'label', vec_size=config.label_dim)\n print('{} out of {} are not in glove'.format(unk_num, len(word2idx_dict)))\n print('{} chars'.format(char_emb_mat.shape[0]))\n print('{} pos tags, {} ner tags, {} answer labels, {} chars'.format(\n pos_emb_mat.shape[0], ner_emb_mat.shape[0], label_emb_mat.shape[0],\n char_emb_mat.shape[0]))\n save(config.word_emb_file, word_emb_mat, message='word embedding')\n save(config.char_emb_file, char_emb_mat, message='char embedding')\n save(config.pos_emb_file, pos_emb_mat, message='pos embedding')\n save(config.ner_emb_file, ner_emb_mat, message='ner embedding')\n save(config.label_emb_file, label_emb_mat, message='label embedding')\n save(config.word_dictionary, word2idx_dict, message='word dictionary')\n save(config.char_dictionary, char2idx_dict, message='char dictionary')\n save(config.pos_dictionary, pos2idx_dict, message='pos dictionary')\n save(config.ner_dictionary, ner2idx_dict, message='ner dictionary')\n save(config.label_dictionary, label2idx_dict, message='label dictionary')\n print('Dump elmo word embedding...')\n token_embedding_file = config.embedding_file\n dump_token_embeddings(config.vocab_file, config.elmo_options_file,\n config.elmo_weight_file, token_embedding_file)\n\n\nif __name__ == '__main__':\n os.system(\n 'mkdir data; mkdir data/processed; mkdir data/processed/train; mkdir data/processed/dev; mkdir data/processed/test'\n )\n get_data('../../LIB/squad/train-v1.1.json',\n '../../LIB/squad/dev-v1.1.json', '../../LIB/squad/doclist-test.txt',\n 'data/processed')\n", "step-4": "<mask token>\nimport os\nimport corenlp\nimport numpy as np\nimport ujson as json\nfrom tqdm import tqdm\nfrom collections import Counter\nfrom bilm import dump_token_embeddings\nimport sys\nsys.path.append('../..')\nfrom LIB.utils import save\n\n\ndef process(json_file, outpur_dir, exclude_titles=None, include_titles=None):\n \"\"\"\n :param json_file: original data in json format\n :param outpur_dir: the output directory of pre-processed data\n :param exclude_titles: article titles to exclude\n :param include_titles: article titles to include\n \"\"\"\n para_file = '{}/paras'.format(outpur_dir)\n question_file = '{}/questions'.format(outpur_dir)\n sent_file = '{}/sents'.format(outpur_dir)\n answer_file = '{}/answers'.format(outpur_dir)\n print('Generating {} raw data...'.format(json_file))\n max_sent, max_sent_len, max_que_len, max_ans_len = 0, 0, 0, 0\n with open(json_file, 'r') as fh, corenlp.CoreNLPClient(annotators=\n 'tokenize ssplit pos ner'.split(), endpoint='http://localhost:9099',\n timeout=50000) as client:\n source = json.load(fh)\n for article in tqdm(source['data']):\n title = article['title']\n if include_titles and title not in include_titles:\n continue\n if exclude_titles and title in exclude_titles:\n continue\n for para in article['paragraphs']:\n paragraphs, questions, answers, sents, ids = [], [], [], [], []\n paragraphs_pos, questions_pos, answers_pos, sents_pos = [], [\n ], [], []\n paragraphs_ner, questions_ner, answers_ner, sents_ner = [], [\n ], [], []\n answers_index, sents_index = [], []\n context = para['context']\n if not context.strip():\n continue\n ann_para = client.annotate(context)\n max_sent = max(max_sent, len(ann_para.sentence))\n max_sent_len = max(max_sent_len, max(map(lambda x: len(x.\n token), ann_para.sentence)))\n (ann_para_tokens, paragraph_tokens, paragraph_pos,\n paragraph_ner) = [], [], [], []\n for sent in ann_para.sentence:\n for token in sent.token:\n ann_para_tokens.append(token)\n paragraph_tokens.append(token.word)\n paragraph_pos.append(token.pos)\n paragraph_ner.append(token.ner)\n for qa in para['qas']:\n ques = qa['question']\n id = qa['id']\n if not ques.strip():\n continue\n ann_que = client.annotate(ques)\n max_que_len = max(max_que_len, len(ann_que.sentence[0].\n token))\n question_tokens, question_pos, question_ner = [], [], []\n for sent in ann_que.sentence:\n for token in sent.token:\n question_tokens.append(token.word)\n question_pos.append(token.pos)\n question_ner.append(token.ner)\n (all_answer_tokens, all_answer_pos, all_answer_ner,\n all_answer_index) = [], [], [], []\n (all_sent_tokens, all_sent_pos, all_sent_ner,\n all_sent_index) = [], [], [], []\n for answer in qa['answers']:\n answer_text = answer['text']\n if not answer_text.strip():\n continue\n ann_ans = client.annotate(answer_text)\n answer_tokens, answer_pos, answer_ner = [], [], []\n for sent in ann_ans.sentence:\n for token in sent.token:\n answer_tokens.append(token.word)\n answer_pos.append(token.pos)\n answer_ner.append(token.ner)\n all_answer_tokens.append(' '.join(answer_tokens))\n all_answer_pos.append(' '.join(answer_pos))\n all_answer_ner.append(' '.join(answer_ner))\n answer_start = answer['answer_start']\n answer_end = answer_start + len(answer_text)\n sentence = []\n for sent in ann_para.sentence:\n if (sent.characterOffsetBegin <= answer_start <=\n sent.characterOffsetEnd or sent.\n characterOffsetBegin <= answer_end <= sent.\n characterOffsetEnd):\n sentence.append(sent)\n sentence = [token for sent in sentence for token in\n sent.token]\n sentence_tokens = [token.word for token in sentence]\n sentence_pos = [token.pos for token in sentence]\n sentence_ner = [token.ner for token in sentence]\n all_sent_tokens.append(' '.join(sentence_tokens))\n all_sent_pos.append(' '.join(sentence_pos))\n all_sent_ner.append(' '.join(sentence_ner))\n y1_sent = sentence[0].tokenBeginIndex\n y2_sent = sentence[-1].tokenBeginIndex\n y1_ans = None\n for i, token in enumerate(sentence):\n if (token.beginChar - 1 <= answer_start <=\n token.endChar):\n y1_ans = sentence[0].tokenBeginIndex + i\n try:\n assert y1_ans != None\n except:\n continue\n y2_ans = y1_ans + len(answer_tokens) - 1\n all_answer_index.append('{},{}'.format(y1_ans, y2_ans))\n all_sent_index.append('{},{}'.format(y1_sent, y2_sent))\n paragraphs.append(' '.join(paragraph_tokens))\n paragraphs_pos.append(' '.join(paragraph_pos))\n paragraphs_ner.append(' '.join(paragraph_ner))\n questions.append(' '.join(question_tokens))\n questions_pos.append(' '.join(question_pos))\n questions_ner.append(' '.join(question_ner))\n answers.append('\\t'.join(all_answer_tokens))\n answers_pos.append('\\t'.join(all_answer_pos))\n answers_ner.append('\\t'.join(all_answer_ner))\n answers_index.append('\\t'.join(all_answer_index))\n sents.append('\\t'.join(all_sent_tokens))\n sents_pos.append('\\t'.join(all_sent_pos))\n sents_ner.append('\\t'.join(all_sent_ner))\n sents_index.append('\\t'.join(all_sent_index))\n ids.append(id)\n with open('{}.tok'.format(para_file), 'a') as f:\n f.write('\\n'.join(paragraphs) + '\\n')\n with open('{}.pos'.format(para_file), 'a') as f:\n f.write('\\n'.join(paragraphs_pos) + '\\n')\n with open('{}.ner'.format(para_file), 'a') as f:\n f.write('\\n'.join(paragraphs_ner) + '\\n')\n with open('{}.id'.format(para_file), 'a') as f:\n f.write('\\n'.join(ids) + '\\n')\n with open('{}.tok'.format(question_file), 'a') as f:\n f.write('\\n'.join(questions) + '\\n')\n with open('{}.pos'.format(question_file), 'a') as f:\n f.write('\\n'.join(questions_pos) + '\\n')\n with open('{}.ner'.format(question_file), 'a') as f:\n f.write('\\n'.join(questions_ner) + '\\n')\n with open('{}.tok'.format(answer_file), 'a') as f:\n f.write('\\n'.join(answers) + '\\n')\n with open('{}.pos'.format(answer_file), 'a') as f:\n f.write('\\n'.join(answers_pos) + '\\n')\n with open('{}.ner'.format(answer_file), 'a') as f:\n f.write('\\n'.join(answers_ner) + '\\n')\n with open('{}.index'.format(answer_file), 'a') as f:\n f.write('\\n'.join(answers_index) + '\\n')\n with open('{}.tok'.format(sent_file), 'a') as f:\n f.write('\\n'.join(sents) + '\\n')\n with open('{}.pos'.format(sent_file), 'a') as f:\n f.write('\\n'.join(sents_pos) + '\\n')\n with open('{}.ner'.format(sent_file), 'a') as f:\n f.write('\\n'.join(sents_ner) + '\\n')\n with open('{}.index'.format(sent_file), 'a') as f:\n f.write('\\n'.join(sents_index) + '\\n')\n label(para_file, answer_file)\n\n\ndef label(para_file, answer_file):\n max_node = 0\n with open('{}.tok'.format(para_file), 'r') as fp, open('{}.label'.\n format(para_file), 'a') as fl, open('{}.index'.format(answer_file), 'r'\n ) as fa:\n while True:\n para = fp.readline()\n if not para:\n break\n words = [p for p in para.strip().split(' ')]\n max_node = max(len(words), max_node)\n answer = fa.readline()\n labels = []\n try:\n start, end = map(int, answer.split('\\t')[0].split(','))\n for i in range(len(words)):\n if start <= i <= end:\n if i == start:\n labels.append('B')\n else:\n labels.append('I')\n else:\n labels.append('O')\n except:\n pass\n fl.write(' '.join(labels) + '\\n')\n return max_node\n\n\ndef get_data(train_json, dev_json, test_title_file, output_dir):\n test_titles = open(test_title_file, 'r').readlines()\n test_titles = set([line.strip() for line in test_titles])\n process(train_json, '{}/train/'.format(output_dir), exclude_titles=\n test_titles)\n process(dev_json, '{}/dev/'.format(output_dir))\n process(train_json, '{}/test/'.format(output_dir), include_titles=\n test_titles)\n\n\ndef get_word_embedding(counter, emb_file, emb_size, vocab_size, vec_size,\n vocab_file):\n \"\"\"\n get word embedding matrix from glove\n \"\"\"\n print('Generating word embedding...')\n embedding_dict = {}\n with open(emb_file, 'r', encoding='utf-8') as fh:\n for line in tqdm(fh, total=emb_size):\n array = line.split()\n word = ''.join(array[0:-vec_size])\n vector = list(map(float, array[-vec_size:]))\n embedding_dict[word] = vector\n TRANSLATE = {'-lsb-': '[', '-rsb-': ']', '-lrb-': '(', '-rrb-': ')',\n '-lcb-': '{', '-rcb-': '}', '-LSB-': '[', '-RSB-': ']', '-LRB-':\n '(', '-RRB-': ')', '-LCB-': '{', '-RCB-': '}'}\n SPECIAL_TOKENS = ['<NULL>', '<UNK>', '<S>', '</S>']\n words = list(map(lambda x: x[0], sorted(counter.items(), key=lambda x:\n x[1], reverse=True)))\n words = SPECIAL_TOKENS + words\n if vocab_size > 0:\n words = words[:vocab_size]\n with open(vocab_file, 'w') as f:\n f.write('\\n'.join(words[1:]))\n embedding = np.random.normal(scale=0.1, size=(len(words), vec_size))\n word2idx_dict = {}\n unknown_count = 0\n for i, word in enumerate(words):\n word2idx_dict[word] = i\n if word in TRANSLATE:\n word = TRANSLATE[word]\n done = False\n for w in (word, word.lower(), word.upper(), word.capitalize()):\n if w in embedding_dict:\n embedding[i] = embedding_dict[w]\n done = True\n break\n if not done:\n unknown_count += 1\n return embedding, word2idx_dict, unknown_count\n\n\ndef get_tag_embedding(counter, data_type, vec_size):\n \"\"\"\n get pos/ner/label tags' embedding matrix\n \"\"\"\n print('Generating {} tag embedding...'.format(data_type))\n SPECIAL_TOKENS = ['<NULL>', '<UNK>']\n tags = list(map(lambda x: x[0], sorted(counter.items(), key=lambda x: x\n [1], reverse=True)))\n tags = SPECIAL_TOKENS + tags\n embedding = np.random.normal(scale=0.1, size=(len(tags), vec_size))\n word2idx_dict = {w: i for i, w in enumerate(tags)}\n return embedding, word2idx_dict\n\n\ndef get_vocab(config):\n print('Get the vocabulary...')\n word_counter, char_counter = Counter(), Counter()\n pos_counter, ner_counter, label_counter = Counter(), Counter(), Counter()\n files = [(config.train_para_file, config.train_question_file), (config.\n dev_para_file, config.dev_question_file)]\n for para_file, que_file in files:\n with open('{}.tok'.format(para_file), 'r') as fp, open('{}.tok'.\n format(que_file), 'r') as fq, open('{}.pos'.format(para_file), 'r'\n ) as fpp, open('{}.pos'.format(que_file), 'r') as fqp, open(\n '{}.ner'.format(para_file), 'r') as fpn, open('{}.ner'.format(\n que_file), 'r') as fqn, open('{}.label'.format(para_file), 'r'\n ) as fpl:\n while True:\n para, question = fp.readline(), fq.readline()\n pos, que_pos = fpp.readline(), fqp.readline()\n ner, que_ner = fpn.readline(), fqn.readline()\n label = fpl.readline()\n if not question or not para:\n break\n if config.lower_word:\n para = para.lower()\n question = question.lower()\n para_tokens = para.strip().split(' ')\n que_tokens = question.strip().split(' ')\n pos_tags = pos.strip().split(' ')\n ner_tags = ner.strip().split(' ')\n que_pos_tags = que_pos.strip().split(' ')\n que_ner_tags = que_ner.strip().split(' ')\n labels = label.strip().split(' ')\n for token in (para_tokens + que_tokens):\n word_counter[token] += 1\n for char in list(token):\n char_counter[char] += 1\n for pos_tag in (pos_tags + que_pos_tags):\n pos_counter[pos_tag] += 1\n for ner_tag in (ner_tags + que_ner_tags):\n ner_counter[ner_tag] += 1\n for label in labels:\n label_counter[label] += 1\n word_emb_mat, word2idx_dict, unk_num = get_word_embedding(word_counter,\n emb_file=config.glove_word_file, emb_size=config.glove_word_size,\n vocab_size=config.vocab_size_limit, vec_size=config.glove_dim,\n vocab_file=config.vocab_file)\n char_emb_mat, char2idx_dict = get_tag_embedding(char_counter, 'char',\n vec_size=config.char_dim)\n pos_emb_mat, pos2idx_dict = get_tag_embedding(pos_counter, 'pos',\n vec_size=config.pos_dim)\n ner_emb_mat, ner2idx_dict = get_tag_embedding(ner_counter, 'ner',\n vec_size=config.ner_dim)\n label_emb_mat, label2idx_dict = get_tag_embedding(label_counter,\n 'label', vec_size=config.label_dim)\n print('{} out of {} are not in glove'.format(unk_num, len(word2idx_dict)))\n print('{} chars'.format(char_emb_mat.shape[0]))\n print('{} pos tags, {} ner tags, {} answer labels, {} chars'.format(\n pos_emb_mat.shape[0], ner_emb_mat.shape[0], label_emb_mat.shape[0],\n char_emb_mat.shape[0]))\n save(config.word_emb_file, word_emb_mat, message='word embedding')\n save(config.char_emb_file, char_emb_mat, message='char embedding')\n save(config.pos_emb_file, pos_emb_mat, message='pos embedding')\n save(config.ner_emb_file, ner_emb_mat, message='ner embedding')\n save(config.label_emb_file, label_emb_mat, message='label embedding')\n save(config.word_dictionary, word2idx_dict, message='word dictionary')\n save(config.char_dictionary, char2idx_dict, message='char dictionary')\n save(config.pos_dictionary, pos2idx_dict, message='pos dictionary')\n save(config.ner_dictionary, ner2idx_dict, message='ner dictionary')\n save(config.label_dictionary, label2idx_dict, message='label dictionary')\n print('Dump elmo word embedding...')\n token_embedding_file = config.embedding_file\n dump_token_embeddings(config.vocab_file, config.elmo_options_file,\n config.elmo_weight_file, token_embedding_file)\n\n\nif __name__ == '__main__':\n os.system(\n 'mkdir data; mkdir data/processed; mkdir data/processed/train; mkdir data/processed/dev; mkdir data/processed/test'\n )\n get_data('../../LIB/squad/train-v1.1.json',\n '../../LIB/squad/dev-v1.1.json', '../../LIB/squad/doclist-test.txt',\n 'data/processed')\n", "step-5": "\"\"\"\nData pre-processing\n\"\"\"\nimport os\nimport corenlp\nimport numpy as np\nimport ujson as json\nfrom tqdm import tqdm\nfrom collections import Counter\nfrom bilm import dump_token_embeddings\nimport sys\nsys.path.append('../..')\n\nfrom LIB.utils import save\n\n\ndef process(json_file, outpur_dir, exclude_titles=None, include_titles=None):\n \"\"\"\n :param json_file: original data in json format\n :param outpur_dir: the output directory of pre-processed data\n :param exclude_titles: article titles to exclude\n :param include_titles: article titles to include\n \"\"\"\n para_file = \"{}/paras\".format(outpur_dir)\n question_file = \"{}/questions\".format(outpur_dir)\n sent_file = \"{}/sents\".format(outpur_dir)\n answer_file = \"{}/answers\".format(outpur_dir)\n print(\"Generating {} raw data...\".format(json_file))\n max_sent, max_sent_len, max_que_len, max_ans_len = 0, 0, 0, 0\n with open(json_file, \"r\") as fh, corenlp.CoreNLPClient(annotators=\"tokenize ssplit pos ner\".split(),\n endpoint=\"http://localhost:9099\", timeout=50000) as client:\n source = json.load(fh)\n for article in tqdm(source[\"data\"]):\n title = article[\"title\"]\n if include_titles and title not in include_titles:\n continue\n if exclude_titles and title in exclude_titles:\n continue\n for para in article[\"paragraphs\"]:\n paragraphs, questions, answers, sents, ids = [], [], [], [], []\n paragraphs_pos, questions_pos, answers_pos, sents_pos = [], [], [], []\n paragraphs_ner, questions_ner, answers_ner, sents_ner = [], [], [], []\n answers_index, sents_index = [], []\n # paragraph\n context = para[\"context\"]\n if not context.strip():\n continue\n ann_para = client.annotate(context)\n max_sent = max(max_sent, len(ann_para.sentence))\n max_sent_len = max(max_sent_len, max(map(lambda x: len(x.token), ann_para.sentence)))\n ann_para_tokens, paragraph_tokens, paragraph_pos, paragraph_ner = [], [], [], []\n for sent in ann_para.sentence:\n for token in sent.token:\n ann_para_tokens.append(token)\n paragraph_tokens.append(token.word)\n paragraph_pos.append(token.pos)\n paragraph_ner.append(token.ner)\n\n # questions\n for qa in para[\"qas\"]:\n # question\n ques = qa[\"question\"]\n id = qa[\"id\"]\n if not ques.strip():\n continue\n ann_que = client.annotate(ques)\n max_que_len = max(max_que_len, len(ann_que.sentence[0].token))\n question_tokens, question_pos, question_ner = [], [], []\n for sent in ann_que.sentence:\n for token in sent.token:\n question_tokens.append(token.word)\n question_pos.append(token.pos)\n question_ner.append(token.ner)\n\n # answer\n all_answer_tokens, all_answer_pos, all_answer_ner, all_answer_index = [], [], [], []\n all_sent_tokens, all_sent_pos, all_sent_ner, all_sent_index = [], [], [], []\n for answer in qa[\"answers\"]:\n answer_text = answer[\"text\"]\n if not answer_text.strip():\n continue\n ann_ans = client.annotate(answer_text)\n answer_tokens, answer_pos, answer_ner = [], [], []\n for sent in ann_ans.sentence:\n for token in sent.token:\n answer_tokens.append(token.word)\n answer_pos.append(token.pos)\n answer_ner.append(token.ner)\n all_answer_tokens.append(' '.join(answer_tokens))\n all_answer_pos.append(' '.join(answer_pos))\n all_answer_ner.append(' '.join(answer_ner))\n\n answer_start = answer['answer_start']\n answer_end = answer_start + len(answer_text)\n # sentence\n sentence = []\n for sent in ann_para.sentence:\n if sent.characterOffsetBegin <= answer_start <= sent.characterOffsetEnd or \\\n sent.characterOffsetBegin <= answer_end <= sent.characterOffsetEnd:\n sentence.append(sent)\n sentence = [token for sent in sentence for token in sent.token]\n sentence_tokens = [token.word for token in sentence]\n sentence_pos = [token.pos for token in sentence]\n sentence_ner = [token.ner for token in sentence]\n all_sent_tokens.append(' '.join(sentence_tokens))\n all_sent_pos.append(' '.join(sentence_pos))\n all_sent_ner.append(' '.join(sentence_ner))\n\n # sentence index\n y1_sent = sentence[0].tokenBeginIndex\n y2_sent = sentence[-1].tokenBeginIndex\n # answer index\n y1_ans = None\n for i, token in enumerate(sentence):\n if token.beginChar - 1 <= answer_start <= token.endChar:\n y1_ans = sentence[0].tokenBeginIndex + i\n try:\n assert y1_ans != None\n except:\n continue\n y2_ans = y1_ans + len(answer_tokens) - 1\n all_answer_index.append(\"{},{}\".format(y1_ans, y2_ans))\n all_sent_index.append(\"{},{}\".format(y1_sent, y2_sent))\n\n paragraphs.append(' '.join(paragraph_tokens))\n paragraphs_pos.append(' '.join(paragraph_pos))\n paragraphs_ner.append(' '.join(paragraph_ner))\n questions.append(' '.join(question_tokens))\n questions_pos.append(' '.join(question_pos))\n questions_ner.append(' '.join(question_ner))\n answers.append('\\t'.join(all_answer_tokens))\n answers_pos.append('\\t'.join(all_answer_pos))\n answers_ner.append('\\t'.join(all_answer_ner))\n answers_index.append('\\t'.join(all_answer_index))\n sents.append('\\t'.join(all_sent_tokens))\n sents_pos.append('\\t'.join(all_sent_pos))\n sents_ner.append('\\t'.join(all_sent_ner))\n sents_index.append('\\t'.join(all_sent_index))\n ids.append(id)\n\n # save para\n with open(\"{}.tok\".format(para_file), 'a') as f:\n f.write('\\n'.join(paragraphs) + '\\n')\n with open(\"{}.pos\".format(para_file), 'a') as f:\n f.write('\\n'.join(paragraphs_pos) + '\\n')\n with open(\"{}.ner\".format(para_file), 'a') as f:\n f.write('\\n'.join(paragraphs_ner) + '\\n')\n with open(\"{}.id\".format(para_file), 'a') as f:\n f.write('\\n'.join(ids) + '\\n')\n # save question\n with open(\"{}.tok\".format(question_file), 'a') as f:\n f.write('\\n'.join(questions) + '\\n')\n with open(\"{}.pos\".format(question_file), 'a') as f:\n f.write('\\n'.join(questions_pos) + '\\n')\n with open(\"{}.ner\".format(question_file), 'a') as f:\n f.write('\\n'.join(questions_ner) + '\\n')\n\n # save answer\n with open(\"{}.tok\".format(answer_file), 'a') as f:\n f.write('\\n'.join(answers) + '\\n')\n with open(\"{}.pos\".format(answer_file), 'a') as f:\n f.write('\\n'.join(answers_pos) + '\\n')\n with open(\"{}.ner\".format(answer_file), 'a') as f:\n f.write('\\n'.join(answers_ner) + '\\n')\n with open(\"{}.index\".format(answer_file), 'a') as f:\n f.write(\"\\n\".join(answers_index) + '\\n')\n\n # save sent\n with open(\"{}.tok\".format(sent_file), 'a') as f:\n f.write('\\n'.join(sents) + '\\n')\n with open(\"{}.pos\".format(sent_file), 'a') as f:\n f.write('\\n'.join(sents_pos) + '\\n')\n with open(\"{}.ner\".format(sent_file), 'a') as f:\n f.write('\\n'.join(sents_ner) + '\\n')\n with open(\"{}.index\".format(sent_file), 'a') as f:\n f.write(\"\\n\".join(sents_index) + '\\n')\n # get BIO labels\n label(para_file, answer_file)\n\n\ndef label(para_file, answer_file):\n # get the answer BIO label for paragraph\n max_node = 0\n with open(\"{}.tok\".format(para_file), 'r') as fp, open(\"{}.label\".format(para_file), 'a') as fl, \\\n open(\"{}.index\".format(answer_file), 'r') as fa:\n while True:\n para = fp.readline()\n if not para:\n break\n words = [p for p in para.strip().split(' ')]\n max_node = max(len(words), max_node)\n answer = fa.readline()\n labels = []\n try:\n start, end = map(int, answer.split('\\t')[0].split(','))\n for i in range(len(words)):\n if start <= i <= end:\n # answer words\n if i == start:\n labels.append('B')\n else:\n labels.append('I')\n else:\n # non answer words\n labels.append('O')\n except:\n pass\n fl.write(' '.join(labels) + '\\n')\n return max_node\n\n\ndef get_data(train_json, dev_json, test_title_file, output_dir):\n test_titles = open(test_title_file, 'r').readlines()\n test_titles = set([line.strip() for line in test_titles])\n\n process(train_json, \"{}/train/\".format(output_dir), exclude_titles=test_titles)\n process(dev_json, \"{}/dev/\".format(output_dir))\n process(train_json, \"{}/test/\".format(output_dir), include_titles=test_titles)\n\n\ndef get_word_embedding(counter, emb_file, emb_size, vocab_size, vec_size, vocab_file):\n \"\"\"\n get word embedding matrix from glove\n \"\"\"\n print(\"Generating word embedding...\")\n # load word embeddings\n embedding_dict = {}\n with open(emb_file, \"r\", encoding=\"utf-8\") as fh:\n for line in tqdm(fh, total=emb_size):\n array = line.split()\n word = \"\".join(array[0:-vec_size])\n vector = list(map(float, array[-vec_size:]))\n embedding_dict[word] = vector\n\n TRANSLATE = {\n \"-lsb-\": \"[\", \"-rsb-\": \"]\", \"-lrb-\": \"(\", \"-rrb-\": \")\", \"-lcb-\": \"{\",\n \"-rcb-\": \"}\", \"-LSB-\": \"[\", \"-RSB-\": \"]\", \"-LRB-\": \"(\", \"-RRB-\": \")\",\n \"-LCB-\": \"{\", \"-RCB-\": \"}\"\n }\n SPECIAL_TOKENS = [\"<NULL>\", \"<UNK>\", \"<S>\", \"</S>\"]\n words = list(map(lambda x: x[0], sorted(counter.items(), key=lambda x: x[1], reverse=True)))\n words = SPECIAL_TOKENS + words\n if vocab_size > 0:\n words = words[:vocab_size]\n with open(vocab_file, 'w') as f:\n f.write('\\n'.join(words[1:]))\n embedding = np.random.normal(scale=0.1, size=(len(words), vec_size))\n word2idx_dict = {}\n unknown_count = 0\n for i, word in enumerate(words):\n word2idx_dict[word] = i\n if word in TRANSLATE:\n word = TRANSLATE[word]\n done = False\n for w in (word, word.lower(), word.upper(), word.capitalize()):\n if w in embedding_dict:\n embedding[i] = embedding_dict[w]\n done = True\n break\n if not done:\n unknown_count += 1\n return embedding, word2idx_dict, unknown_count\n\n\ndef get_tag_embedding(counter, data_type, vec_size):\n \"\"\"\n get pos/ner/label tags' embedding matrix\n \"\"\"\n print(\"Generating {} tag embedding...\".format(data_type))\n SPECIAL_TOKENS = [\"<NULL>\", \"<UNK>\"]\n tags = list(map(lambda x: x[0], sorted(counter.items(), key=lambda x: x[1], reverse=True)))\n tags = SPECIAL_TOKENS + tags\n embedding = np.random.normal(scale=0.1, size=(len(tags), vec_size))\n word2idx_dict = {w: i for i, w in enumerate(tags)}\n return embedding, word2idx_dict\n\n\ndef get_vocab(config):\n print(\"Get the vocabulary...\")\n word_counter, char_counter = Counter(), Counter()\n pos_counter, ner_counter, label_counter = Counter(), Counter(), Counter()\n files = [(config.train_para_file, config.train_question_file), (config.dev_para_file, config.dev_question_file)]\n for para_file, que_file in files:\n with open(\"{}.tok\".format(para_file), 'r') as fp, open(\"{}.tok\".format(que_file), 'r') as fq, \\\n open(\"{}.pos\".format(para_file), 'r') as fpp, open(\"{}.pos\".format(que_file), 'r') as fqp, \\\n open(\"{}.ner\".format(para_file), 'r') as fpn, open(\"{}.ner\".format(que_file), 'r') as fqn, \\\n open(\"{}.label\".format(para_file), 'r') as fpl:\n while True:\n para, question = fp.readline(), fq.readline()\n pos, que_pos = fpp.readline(), fqp.readline()\n ner, que_ner = fpn.readline(), fqn.readline()\n label = fpl.readline()\n if not question or not para:\n break\n if config.lower_word:\n para = para.lower()\n question = question.lower()\n para_tokens = para.strip().split(' ')\n que_tokens = question.strip().split(' ')\n pos_tags = pos.strip().split(' ')\n ner_tags = ner.strip().split(' ')\n que_pos_tags = que_pos.strip().split(' ')\n que_ner_tags = que_ner.strip().split(' ')\n labels = label.strip().split(' ')\n for token in para_tokens + que_tokens:\n word_counter[token] += 1\n for char in list(token):\n char_counter[char] += 1\n for pos_tag in pos_tags + que_pos_tags:\n pos_counter[pos_tag] += 1\n for ner_tag in ner_tags + que_ner_tags:\n ner_counter[ner_tag] += 1\n for label in labels:\n label_counter[label] += 1\n word_emb_mat, word2idx_dict, unk_num = get_word_embedding(word_counter, emb_file=config.glove_word_file,\n emb_size=config.glove_word_size,\n vocab_size=config.vocab_size_limit,\n vec_size=config.glove_dim, vocab_file=config.vocab_file)\n char_emb_mat, char2idx_dict = get_tag_embedding(char_counter, \"char\", vec_size=config.char_dim)\n pos_emb_mat, pos2idx_dict = get_tag_embedding(pos_counter, \"pos\", vec_size=config.pos_dim)\n ner_emb_mat, ner2idx_dict = get_tag_embedding(ner_counter, \"ner\", vec_size=config.ner_dim)\n label_emb_mat, label2idx_dict = get_tag_embedding(label_counter, \"label\", vec_size=config.label_dim)\n print(\"{} out of {} are not in glove\".format(unk_num, len(word2idx_dict)))\n print(\"{} chars\".format(char_emb_mat.shape[0]))\n print(\"{} pos tags, {} ner tags, {} answer labels, {} chars\".format(\n pos_emb_mat.shape[0], ner_emb_mat.shape[0], label_emb_mat.shape[0], char_emb_mat.shape[0]))\n save(config.word_emb_file, word_emb_mat, message=\"word embedding\")\n save(config.char_emb_file, char_emb_mat, message=\"char embedding\")\n save(config.pos_emb_file, pos_emb_mat, message=\"pos embedding\")\n save(config.ner_emb_file, ner_emb_mat, message=\"ner embedding\")\n save(config.label_emb_file, label_emb_mat, message=\"label embedding\")\n save(config.word_dictionary, word2idx_dict, message=\"word dictionary\")\n save(config.char_dictionary, char2idx_dict, message=\"char dictionary\")\n save(config.pos_dictionary, pos2idx_dict, message=\"pos dictionary\")\n save(config.ner_dictionary, ner2idx_dict, message=\"ner dictionary\")\n save(config.label_dictionary, label2idx_dict, message=\"label dictionary\")\n print(\"Dump elmo word embedding...\")\n token_embedding_file = config.embedding_file\n dump_token_embeddings(\n config.vocab_file, config.elmo_options_file, config.elmo_weight_file, token_embedding_file\n )\n\n\nif __name__ == '__main__':\n # process data\n os.system(\"mkdir data; mkdir data/processed; mkdir data/processed/train; \"\n \"mkdir data/processed/dev; mkdir data/processed/test\")\n get_data(\"../../LIB/squad/train-v1.1.json\", \"../../LIB/squad/dev-v1.1.json\",\n \"../../LIB/squad/doclist-test.txt\", \"data/processed\")", "step-ids": [ 5, 6, 7, 8, 9 ] }
[ 5, 6, 7, 8, 9 ]
import seaborn as sns tips = sns.load_dataset('iris') sns.violinplot(x='species', y='sepal_length', data=tips, palette='rainbow')
normal
{ "blob_id": "274af2a0b758472ca4116f1dfa47069647babf57", "index": 8543, "step-1": "<mask token>\n", "step-2": "<mask token>\nsns.violinplot(x='species', y='sepal_length', data=tips, palette='rainbow')\n", "step-3": "<mask token>\ntips = sns.load_dataset('iris')\nsns.violinplot(x='species', y='sepal_length', data=tips, palette='rainbow')\n", "step-4": "import seaborn as sns\ntips = sns.load_dataset('iris')\nsns.violinplot(x='species', y='sepal_length', data=tips, palette='rainbow')\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
import torch import torch.nn.functional as F import csv class Net(torch.nn.Module): def __init__(self, n_feature, n_hidden, n_output): super(Net, self).__init__() self.hidden = torch.nn.Linear(n_feature, n_hidden) self.predict = torch.nn.Linear(n_hidden, n_output) def forward(self, x): h1 = F.relu(self.hidden(x)) y = self.predict(h1) return y net = Net(n_feature=40, n_hidden=10, n_output=20) net.load_state_dict(torch.load('net_data_multi.pkl')) file_test = open('dataset/test_data.csv','r') line = file_test.readline() file_out = open('result_multi.csv','w') file_out.write('caseid,midprice\n') case = 1 while case < 143: line = file_test.readline().split(',') if len(line) < 9: case += 1 while case <= 153: x = torch.FloatTensor(40).zero_() y = torch.FloatTensor(20).zero_() for ct in range(10): line = file_test.readline() if line == '': break line = line.split(',') x[ct*4] = float(line[6]) x[ct*4+1] = float(line[7])/10000 x[ct*4+2] = float(line[8]) x[ct*4+3] = float(line[9])/10000 prediction = net(x) average = 0 for k in range(10): average += prediction.data.numpy()[k] average = 1.0*average/10 file_out.write(str(case)+','+str(average)+'\n') #print(str(case)+','+str(average)+'\n') line = file_test.readline() case += 1 file_test.close() file_out.close() print('test complete')
normal
{ "blob_id": "e221553f866de8b3e175197a40982506bf8c1ef9", "index": 205, "step-1": "<mask token>\n\n\nclass Net(torch.nn.Module):\n\n def __init__(self, n_feature, n_hidden, n_output):\n super(Net, self).__init__()\n self.hidden = torch.nn.Linear(n_feature, n_hidden)\n self.predict = torch.nn.Linear(n_hidden, n_output)\n\n def forward(self, x):\n h1 = F.relu(self.hidden(x))\n y = self.predict(h1)\n return y\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass Net(torch.nn.Module):\n\n def __init__(self, n_feature, n_hidden, n_output):\n super(Net, self).__init__()\n self.hidden = torch.nn.Linear(n_feature, n_hidden)\n self.predict = torch.nn.Linear(n_hidden, n_output)\n\n def forward(self, x):\n h1 = F.relu(self.hidden(x))\n y = self.predict(h1)\n return y\n\n\n<mask token>\nnet.load_state_dict(torch.load('net_data_multi.pkl'))\n<mask token>\nfile_out.write('caseid,midprice\\n')\n<mask token>\nwhile case < 143:\n line = file_test.readline().split(',')\n if len(line) < 9:\n case += 1\nwhile case <= 153:\n x = torch.FloatTensor(40).zero_()\n y = torch.FloatTensor(20).zero_()\n for ct in range(10):\n line = file_test.readline()\n if line == '':\n break\n line = line.split(',')\n x[ct * 4] = float(line[6])\n x[ct * 4 + 1] = float(line[7]) / 10000\n x[ct * 4 + 2] = float(line[8])\n x[ct * 4 + 3] = float(line[9]) / 10000\n prediction = net(x)\n average = 0\n for k in range(10):\n average += prediction.data.numpy()[k]\n average = 1.0 * average / 10\n file_out.write(str(case) + ',' + str(average) + '\\n')\n line = file_test.readline()\n case += 1\nfile_test.close()\nfile_out.close()\nprint('test complete')\n", "step-3": "<mask token>\n\n\nclass Net(torch.nn.Module):\n\n def __init__(self, n_feature, n_hidden, n_output):\n super(Net, self).__init__()\n self.hidden = torch.nn.Linear(n_feature, n_hidden)\n self.predict = torch.nn.Linear(n_hidden, n_output)\n\n def forward(self, x):\n h1 = F.relu(self.hidden(x))\n y = self.predict(h1)\n return y\n\n\nnet = Net(n_feature=40, n_hidden=10, n_output=20)\nnet.load_state_dict(torch.load('net_data_multi.pkl'))\nfile_test = open('dataset/test_data.csv', 'r')\nline = file_test.readline()\nfile_out = open('result_multi.csv', 'w')\nfile_out.write('caseid,midprice\\n')\ncase = 1\nwhile case < 143:\n line = file_test.readline().split(',')\n if len(line) < 9:\n case += 1\nwhile case <= 153:\n x = torch.FloatTensor(40).zero_()\n y = torch.FloatTensor(20).zero_()\n for ct in range(10):\n line = file_test.readline()\n if line == '':\n break\n line = line.split(',')\n x[ct * 4] = float(line[6])\n x[ct * 4 + 1] = float(line[7]) / 10000\n x[ct * 4 + 2] = float(line[8])\n x[ct * 4 + 3] = float(line[9]) / 10000\n prediction = net(x)\n average = 0\n for k in range(10):\n average += prediction.data.numpy()[k]\n average = 1.0 * average / 10\n file_out.write(str(case) + ',' + str(average) + '\\n')\n line = file_test.readline()\n case += 1\nfile_test.close()\nfile_out.close()\nprint('test complete')\n", "step-4": "import torch\nimport torch.nn.functional as F\nimport csv\n\n\nclass Net(torch.nn.Module):\n\n def __init__(self, n_feature, n_hidden, n_output):\n super(Net, self).__init__()\n self.hidden = torch.nn.Linear(n_feature, n_hidden)\n self.predict = torch.nn.Linear(n_hidden, n_output)\n\n def forward(self, x):\n h1 = F.relu(self.hidden(x))\n y = self.predict(h1)\n return y\n\n\nnet = Net(n_feature=40, n_hidden=10, n_output=20)\nnet.load_state_dict(torch.load('net_data_multi.pkl'))\nfile_test = open('dataset/test_data.csv', 'r')\nline = file_test.readline()\nfile_out = open('result_multi.csv', 'w')\nfile_out.write('caseid,midprice\\n')\ncase = 1\nwhile case < 143:\n line = file_test.readline().split(',')\n if len(line) < 9:\n case += 1\nwhile case <= 153:\n x = torch.FloatTensor(40).zero_()\n y = torch.FloatTensor(20).zero_()\n for ct in range(10):\n line = file_test.readline()\n if line == '':\n break\n line = line.split(',')\n x[ct * 4] = float(line[6])\n x[ct * 4 + 1] = float(line[7]) / 10000\n x[ct * 4 + 2] = float(line[8])\n x[ct * 4 + 3] = float(line[9]) / 10000\n prediction = net(x)\n average = 0\n for k in range(10):\n average += prediction.data.numpy()[k]\n average = 1.0 * average / 10\n file_out.write(str(case) + ',' + str(average) + '\\n')\n line = file_test.readline()\n case += 1\nfile_test.close()\nfile_out.close()\nprint('test complete')\n", "step-5": "import torch\nimport torch.nn.functional as F\nimport csv\n\n\nclass Net(torch.nn.Module):\n\n def __init__(self, n_feature, n_hidden, n_output):\n super(Net, self).__init__()\n self.hidden = torch.nn.Linear(n_feature, n_hidden)\n self.predict = torch.nn.Linear(n_hidden, n_output)\n\n def forward(self, x):\n h1 = F.relu(self.hidden(x))\n y = self.predict(h1) \n return y\n\n\nnet = Net(n_feature=40, n_hidden=10, n_output=20)\n\nnet.load_state_dict(torch.load('net_data_multi.pkl'))\n\nfile_test = open('dataset/test_data.csv','r')\nline = file_test.readline()\n\nfile_out = open('result_multi.csv','w')\nfile_out.write('caseid,midprice\\n')\n\ncase = 1\n\nwhile case < 143:\n line = file_test.readline().split(',')\n if len(line) < 9:\n case += 1\n \nwhile case <= 153:\n x = torch.FloatTensor(40).zero_()\n y = torch.FloatTensor(20).zero_()\n\n for ct in range(10):\n line = file_test.readline()\n if line == '':\n break\n line = line.split(',')\n\n x[ct*4] = float(line[6])\n x[ct*4+1] = float(line[7])/10000\n x[ct*4+2] = float(line[8])\n x[ct*4+3] = float(line[9])/10000\n\n prediction = net(x)\n\n average = 0\n for k in range(10):\n average += prediction.data.numpy()[k]\n average = 1.0*average/10\n\n file_out.write(str(case)+','+str(average)+'\\n')\n #print(str(case)+','+str(average)+'\\n')\n\n line = file_test.readline()\n case += 1\n\nfile_test.close()\nfile_out.close()\nprint('test complete')\n", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
#!/usr/bin/env python from setuptools import setup, find_packages #if sys.argv[-1] == 'publish': # os.system('python setup.py sdist upload') # sys.exit() with open('bace/__init__.py') as fid: for line in fid: if line.startswith('__version__'): VERSION = line.strip().split()[-1][1:-1] break with open('requirements.txt') as fid: INSTALL_REQUIRES = [l.strip() for l in fid.readlines() if l] readme = open('README.md').read() doclink = """ Documentation ------------- The full documentation is at http://bace.rtfd.org.""" VERSION = '1.0.0' setup( name='bace', version=VERSION, description='bace', long_description=readme + '\n\n' + doclink + '\n\n', author='Krzysztof Joachimiak', url='https://github.com/krzjoa/bace', packages=find_packages(where='.', exclude=('tests')), package_dir={'bace': 'bace'}, include_package_data=True, install_requires=INSTALL_REQUIRES, license='MIT', zip_safe=False, keywords='bayes', classifiers=[ 'Programming Language :: Python', 'License :: OSI Approved :: MIT License', 'Development Status :: 2 - Pre-Alpha', 'Intended Audience :: Science/Research', 'Intended Audience :: Developers', 'Natural Language :: English', 'Topic :: Scientific/Engineering', ], )
normal
{ "blob_id": "d28571214805df766c2cc2f45a6b5bea88d7ac18", "index": 9371, "step-1": "<mask token>\n", "step-2": "<mask token>\nwith open('bace/__init__.py') as fid:\n for line in fid:\n if line.startswith('__version__'):\n VERSION = line.strip().split()[-1][1:-1]\n break\nwith open('requirements.txt') as fid:\n INSTALL_REQUIRES = [l.strip() for l in fid.readlines() if l]\n<mask token>\nsetup(name='bace', version=VERSION, description='bace', long_description=\n readme + '\\n\\n' + doclink + '\\n\\n', author='Krzysztof Joachimiak', url=\n 'https://github.com/krzjoa/bace', packages=find_packages(where='.',\n exclude='tests'), package_dir={'bace': 'bace'}, include_package_data=\n True, install_requires=INSTALL_REQUIRES, license='MIT', zip_safe=False,\n keywords='bayes', classifiers=['Programming Language :: Python',\n 'License :: OSI Approved :: MIT License',\n 'Development Status :: 2 - Pre-Alpha',\n 'Intended Audience :: Science/Research',\n 'Intended Audience :: Developers', 'Natural Language :: English',\n 'Topic :: Scientific/Engineering'])\n", "step-3": "<mask token>\nwith open('bace/__init__.py') as fid:\n for line in fid:\n if line.startswith('__version__'):\n VERSION = line.strip().split()[-1][1:-1]\n break\nwith open('requirements.txt') as fid:\n INSTALL_REQUIRES = [l.strip() for l in fid.readlines() if l]\nreadme = open('README.md').read()\ndoclink = \"\"\"\nDocumentation\n-------------\nThe full documentation is at http://bace.rtfd.org.\"\"\"\nVERSION = '1.0.0'\nsetup(name='bace', version=VERSION, description='bace', long_description=\n readme + '\\n\\n' + doclink + '\\n\\n', author='Krzysztof Joachimiak', url=\n 'https://github.com/krzjoa/bace', packages=find_packages(where='.',\n exclude='tests'), package_dir={'bace': 'bace'}, include_package_data=\n True, install_requires=INSTALL_REQUIRES, license='MIT', zip_safe=False,\n keywords='bayes', classifiers=['Programming Language :: Python',\n 'License :: OSI Approved :: MIT License',\n 'Development Status :: 2 - Pre-Alpha',\n 'Intended Audience :: Science/Research',\n 'Intended Audience :: Developers', 'Natural Language :: English',\n 'Topic :: Scientific/Engineering'])\n", "step-4": "from setuptools import setup, find_packages\nwith open('bace/__init__.py') as fid:\n for line in fid:\n if line.startswith('__version__'):\n VERSION = line.strip().split()[-1][1:-1]\n break\nwith open('requirements.txt') as fid:\n INSTALL_REQUIRES = [l.strip() for l in fid.readlines() if l]\nreadme = open('README.md').read()\ndoclink = \"\"\"\nDocumentation\n-------------\nThe full documentation is at http://bace.rtfd.org.\"\"\"\nVERSION = '1.0.0'\nsetup(name='bace', version=VERSION, description='bace', long_description=\n readme + '\\n\\n' + doclink + '\\n\\n', author='Krzysztof Joachimiak', url=\n 'https://github.com/krzjoa/bace', packages=find_packages(where='.',\n exclude='tests'), package_dir={'bace': 'bace'}, include_package_data=\n True, install_requires=INSTALL_REQUIRES, license='MIT', zip_safe=False,\n keywords='bayes', classifiers=['Programming Language :: Python',\n 'License :: OSI Approved :: MIT License',\n 'Development Status :: 2 - Pre-Alpha',\n 'Intended Audience :: Science/Research',\n 'Intended Audience :: Developers', 'Natural Language :: English',\n 'Topic :: Scientific/Engineering'])\n", "step-5": "#!/usr/bin/env python\nfrom setuptools import setup, find_packages\n\n#if sys.argv[-1] == 'publish':\n# os.system('python setup.py sdist upload')\n# sys.exit()\n\nwith open('bace/__init__.py') as fid:\n for line in fid:\n if line.startswith('__version__'):\n VERSION = line.strip().split()[-1][1:-1]\n break\n \nwith open('requirements.txt') as fid:\n INSTALL_REQUIRES = [l.strip() for l in fid.readlines() if l]\n\nreadme = open('README.md').read()\ndoclink = \"\"\"\nDocumentation\n-------------\nThe full documentation is at http://bace.rtfd.org.\"\"\"\n\nVERSION = '1.0.0'\n\nsetup(\n name='bace',\n version=VERSION,\n description='bace',\n long_description=readme + '\\n\\n' + doclink + '\\n\\n',\n author='Krzysztof Joachimiak',\n url='https://github.com/krzjoa/bace',\n packages=find_packages(where='.', exclude=('tests')),\n package_dir={'bace': 'bace'},\n include_package_data=True,\n install_requires=INSTALL_REQUIRES,\n license='MIT',\n zip_safe=False,\n keywords='bayes',\n classifiers=[\n 'Programming Language :: Python',\n 'License :: OSI Approved :: MIT License',\n 'Development Status :: 2 - Pre-Alpha',\n 'Intended Audience :: Science/Research',\n 'Intended Audience :: Developers',\n 'Natural Language :: English',\n 'Topic :: Scientific/Engineering',\n ],\n)\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from multiprocessing import Process, Queue def f(q): for i in range(0,100): print("come on baby") q.put([42, None, 'hello']) if __name__ == '__main__': q = Queue() p = Process(target=f, args=(q,)) p.start() for j in range(0, 2000): if j == 1800: print(q.get()) print(j) # 특징 main process 와 subprocess 가 각각 실행되다가 1800 에서 subprocess 가 실행될때까지 기다려줌 # 0 # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10 # 11 # 12 # 13 # 14 # 15 # 16 # 17 # ... # ... # 1276 # 1277 # 1278 # 1279 # 1280 # 1281 # 1282 # 1283 # 1284 # 1285 # 1286 # 1287 # 1288 # 1289 # 1290 # 1291 # 1292 # 1293 # 1294 # 1295 # come on baby # 1296 # come on baby # 1297 # come on baby # 1298 # come on baby # 1299 # come on baby # 1300 # come on baby # 1301 # come on baby # 1302 # come on baby # 1303 # 1304 # come on baby # 1305 # come on baby # 1306 # come on baby # 1307 # come on baby # 1308 # come on baby # 1309 # come on baby # 1310 # come on baby # 1311 # come on baby # 1312 # come on baby # 1313 # come on baby # 1314 # come on baby # 1315 # come on baby # 1316 # come on baby # 1317 # come on baby # 1318 # come on baby # 1319 # come on baby # 1320 # come on baby # 1321 # come on baby # 1322 # come on baby # 1323 # come on baby # 1324 # come on baby # 1325 # come on baby # 1326 # come on baby # 1327 # come on baby # 1328 # come on baby # 1329 # come on baby # 1330 # come on baby # 1331 # come on baby # 1332 # come on baby # 1333 # come on baby # 1334 # come on baby # 1335 # come on baby # 1336 # come on baby # 1337 # come on baby # 1338 # come on baby # 1339 # come on baby # 1340 # come on baby # 1341 # come on baby # 1342 # come on baby # 1343 # come on baby # 1344 # come on baby # 1345 # come on baby # 1346 # come on baby # 1347 # come on baby # 1348 # come on baby # 1349 # come on baby # 1350 # come on baby # 1351 # come on baby # 1352 # come on baby # 1353 # come on baby # 1354 # come on baby # 1355 # come on baby # 1356 # come on baby # 1357 # come on baby # 1358 # come on baby # 1359 # come on baby # 1360 # come on baby # 1361 # come on baby # 1362 # come on baby # 1363 # come on baby # 1364 # come on baby # 1365 # come on baby # 1366 # come on baby # 1367 # come on baby # 1368 # come on baby # 1369 # come on baby # 1370 # come on baby # 1371 # come on baby # 1372 # come on baby # 1373 # come on baby # 1374 # come on baby # 1375 # come on baby # 1376 # come on baby # 1377 # come on baby # 1378 # come on baby # 1379 # come on baby # 1380 # come on baby # 1381 # come on baby # 1382 # come on baby # 1383 # come on baby # 1384 # come on baby # 1385 # come on baby # 1386 # come on baby # 1387 # come on baby # 1388 # come on baby # 1389 # come on baby # 1390 # come on baby # 1391 # come on baby # 1392 # come on baby # 1393 # come on baby # 1394 # come on baby # 1395 # come on baby # 1396 # 1397 # 1398 # 1399 # 1400 # 1401 # 1402 # 1403 # 1404 # 1405 # ... # ... # 1786 # 1787 # 1788 # 1789 # 1790 # 1791 # 1792 # 1793 # 1794 # 1795 # 1796 # 1797 # 1798 # 1799 # [42, None, 'hello'] # 1800 # 1801 # 1802 # 1803 # 1804 # 1805 # 1806 # 1807 # 1808 # 1809 # ... # ... # 1989 # 1990 # 1991 # 1992 # 1993 # 1994 # 1995 # 1996 # 1997 # 1998 # 1999
normal
{ "blob_id": "c7258d77db2fe6e1470c972ddd94b2ed02f48003", "index": 3390, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef f(q):\n for i in range(0, 100):\n print('come on baby')\n q.put([42, None, 'hello'])\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef f(q):\n for i in range(0, 100):\n print('come on baby')\n q.put([42, None, 'hello'])\n\n\nif __name__ == '__main__':\n q = Queue()\n p = Process(target=f, args=(q,))\n p.start()\n for j in range(0, 2000):\n if j == 1800:\n print(q.get())\n print(j)\n", "step-4": "from multiprocessing import Process, Queue\n\n\ndef f(q):\n for i in range(0, 100):\n print('come on baby')\n q.put([42, None, 'hello'])\n\n\nif __name__ == '__main__':\n q = Queue()\n p = Process(target=f, args=(q,))\n p.start()\n for j in range(0, 2000):\n if j == 1800:\n print(q.get())\n print(j)\n", "step-5": "from multiprocessing import Process, Queue\n\ndef f(q):\n for i in range(0,100):\n print(\"come on baby\")\n q.put([42, None, 'hello'])\n\n\nif __name__ == '__main__':\n q = Queue()\n p = Process(target=f, args=(q,))\n p.start()\n for j in range(0, 2000):\n if j == 1800:\n print(q.get())\n print(j)\n\n\n# 특징 main process 와 subprocess 가 각각 실행되다가 1800 에서 subprocess 가 실행될때까지 기다려줌\n\n# 0\n# 1\n# 2\n# 3\n# 4\n# 5\n# 6\n# 7\n# 8\n# 9\n# 10\n# 11\n# 12\n# 13\n# 14\n# 15\n# 16\n# 17\n\n\n# ...\n# ...\n\n\n# 1276\n# 1277\n# 1278\n# 1279\n# 1280\n# 1281\n# 1282\n# 1283\n# 1284\n# 1285\n# 1286\n# 1287\n# 1288\n# 1289\n# 1290\n# 1291\n# 1292\n# 1293\n# 1294\n# 1295\n# come on baby\n# 1296\n# come on baby\n# 1297\n# come on baby\n# 1298\n# come on baby\n# 1299\n# come on baby\n# 1300\n# come on baby\n# 1301\n# come on baby\n# 1302\n# come on baby\n# 1303\n# 1304\n# come on baby\n# 1305\n# come on baby\n# 1306\n# come on baby\n# 1307\n# come on baby\n# 1308\n# come on baby\n# 1309\n# come on baby\n# 1310\n# come on baby\n# 1311\n# come on baby\n# 1312\n# come on baby\n# 1313\n# come on baby\n# 1314\n# come on baby\n# 1315\n# come on baby\n# 1316\n# come on baby\n# 1317\n# come on baby\n# 1318\n# come on baby\n# 1319\n# come on baby\n# 1320\n# come on baby\n# 1321\n# come on baby\n# 1322\n# come on baby\n# 1323\n# come on baby\n# 1324\n# come on baby\n# 1325\n# come on baby\n# 1326\n# come on baby\n# 1327\n# come on baby\n# 1328\n# come on baby\n# 1329\n# come on baby\n# 1330\n# come on baby\n# 1331\n# come on baby\n# 1332\n# come on baby\n# 1333\n# come on baby\n# 1334\n# come on baby\n# 1335\n# come on baby\n# 1336\n# come on baby\n# 1337\n# come on baby\n# 1338\n# come on baby\n# 1339\n# come on baby\n# 1340\n# come on baby\n# 1341\n# come on baby\n# 1342\n# come on baby\n# 1343\n# come on baby\n# 1344\n# come on baby\n# 1345\n# come on baby\n# 1346\n# come on baby\n# 1347\n# come on baby\n# 1348\n# come on baby\n# 1349\n# come on baby\n# 1350\n# come on baby\n# 1351\n# come on baby\n# 1352\n# come on baby\n# 1353\n# come on baby\n# 1354\n# come on baby\n# 1355\n# come on baby\n# 1356\n# come on baby\n# 1357\n# come on baby\n# 1358\n# come on baby\n# 1359\n# come on baby\n# 1360\n# come on baby\n# 1361\n# come on baby\n# 1362\n# come on baby\n# 1363\n# come on baby\n# 1364\n# come on baby\n# 1365\n# come on baby\n# 1366\n# come on baby\n# 1367\n# come on baby\n# 1368\n# come on baby\n# 1369\n# come on baby\n# 1370\n# come on baby\n# 1371\n# come on baby\n# 1372\n# come on baby\n# 1373\n# come on baby\n# 1374\n# come on baby\n# 1375\n# come on baby\n# 1376\n# come on baby\n# 1377\n# come on baby\n# 1378\n# come on baby\n# 1379\n# come on baby\n# 1380\n# come on baby\n# 1381\n# come on baby\n# 1382\n# come on baby\n# 1383\n# come on baby\n# 1384\n# come on baby\n# 1385\n# come on baby\n# 1386\n# come on baby\n# 1387\n# come on baby\n# 1388\n# come on baby\n# 1389\n# come on baby\n# 1390\n# come on baby\n# 1391\n# come on baby\n# 1392\n# come on baby\n# 1393\n# come on baby\n# 1394\n# come on baby\n# 1395\n# come on baby\n# 1396\n# 1397\n# 1398\n# 1399\n# 1400\n# 1401\n# 1402\n# 1403\n# 1404\n# 1405\n\n\n# ...\n# ...\n\n\n# 1786\n# 1787\n# 1788\n# 1789\n# 1790\n# 1791\n# 1792\n# 1793\n# 1794\n# 1795\n# 1796\n# 1797\n# 1798\n# 1799\n# [42, None, 'hello']\n# 1800\n# 1801\n# 1802\n# 1803\n# 1804\n# 1805\n# 1806\n# 1807\n# 1808\n# 1809\n\n\n# ...\n# ...\n\n\n# 1989\n# 1990\n# 1991\n# 1992\n# 1993\n# 1994\n# 1995\n# 1996\n# 1997\n# 1998\n# 1999\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import os import pprint import math import sys import datetime as dt from pathlib import Path import RotateCipher import ShiftCipher import TranspositionCipher def process_textfile( string_path: str, encryption_algorithm: str, algorithm_key: float, output_folderpath: str = str( Path(os.path.expandvars("$HOME")).anchor ) + r"/EncryptDecrypt/", output_filename: str = r"EncryptDecrypt.txt", to_decrypt=False, **kwargs ): encryption_algorithm = encryption_algorithm.lower() available_algorithms = ["rotate", "transposition"] if encryption_algorithm not in available_algorithms: pprint.pprint( ["Enter an algorithm from the list. Not case-sensitive.", available_algorithms] ) return None # A single dictionary may be passed as a **kwarg if it is the # ONLY KEY-WORD ARGUMENT. Else, error is thrown. lst_kwargs = list(kwargs.values()) if len(lst_kwargs) == 1 and (isinstance(lst_kwargs[0], dict)): kwargs = lst_kwargs[0] # Key in **kwargs overwrites `algorithm_key` function parameter. if "algorithm_key" in kwargs: algorithm_key = float(kwargs["algorithm_key"]) # Convert strings saying "True" or "False" to booleans. for key, value in kwargs.items(): str_value = str(value) if str_value.lower() == "False": kwargs[key] = False elif str_value.lower() == "True": kwargs[key] = True output_filename = ('/' + output_filename) if not (output_filename.endswith(".txt")): output_filename += ".txt" full_outputpath = output_folderpath + output_filename path_input = Path(string_path) # fileobj_target = open(path_input, 'r') # Only for Python 3.6 and later. fileobj_target = open(str(path_input), 'r') lst_input = fileobj_target.readlines() # str_input = '\n'.join(lst_input) str_input = "".join(lst_input) output_string = "None" print( """Started processing. Key-word arguments for %s algorithm:""" % encryption_algorithm ) pprint.pprint(kwargs) if (encryption_algorithm == "transposition") and to_decrypt is True: output_string = ''.join( TranspositionCipher.decrypt_transposition( str_input, int(algorithm_key) ) ) elif encryption_algorithm == "transposition" and not to_decrypt: output_string = ''.join( TranspositionCipher.encrypt_transposition( str_input, int(algorithm_key) ) ) elif encryption_algorithm == "rotate": warning = """ When the algorithm is set to rotate, the "to_decrypt" parameter is ignored. To decrypt, set the key-word argument shift left so that it reverses the shift direction during encryption. Ex: If the text was shifted left, i.e. values were swapped with those "higher" up on the list read from left to right, pass the key-word argument shift_left=False to decrypt. RotateCipher's methods can return a list. However, it is forced to always return a string. Passing return_list=True as a key-word argument will have no effect. The argument is not passed to RotateCipher. """ # pprint.pprint(warning) # Included literl \n and single quotes. print(warning) to_shiftleft = True if "shift_left" in kwargs: to_shiftleft = kwargs["shift_left"] process_numbers = False if "shift_numbers" in kwargs: process_numbers = kwargs["shift_numbers"] output_string = RotateCipher.rot13_e( string=str_input, shift_left=to_shiftleft, rotations=int(algorithm_key), # return_list=kwargs["return_list"], # Removed for safety. shift_numbers=process_numbers ) if not (os.path.exists(output_folderpath)): os.mkdir(output_folderpath) fileobj_output = open( full_outputpath, 'a' # Create a file and open it for writing. Append if exists. ) fileobj_output.write( "\n=====\nEncryptDecrypt Output on\n%s\n=====\n" % dt.datetime.now() ) fileobj_output.write(output_string) fileobj_output.close() print("Done processing. Output folder:\n{}".format( Path(full_outputpath) ) ) return { "output_file": Path(full_outputpath).resolve(), "output_text": output_string } def manual_test(): dict_processedtext = process_textfile( string_path=r"C:\Users\Rives\Downloads\Quizzes\Quiz 0 Overwrite Number 1.txt", encryption_algorithm="rotate", algorithm_key=1, shift_left=True ) print("Encrypt ROT1 with default values.") # pprint.pprint( # dict_processedtext # ) print(dict_processedtext["output_file"]) dict_processedtext2 = process_textfile( string_path=dict_processedtext["output_file"], encryption_algorithm="rotate", algorithm_key=1, output_folderpath=r"C:\Users\Rives\Downloads\Decryptions", output_filename="Quiz 0 Overwrite Number 1 Decrypted", shift_left=False ) print("Decrypt ROT1 with all values user-supplied.") print(dict_processedtext["output_file"]) for i in range(2): dict_processedtext3a = process_textfile( string_path=r"C:\Users\Rives\Downloads\Quizzes\Quiz 0 Overwrite Number 2.txt", encryption_algorithm="rotate", algorithm_key=1, output_folderpath=r"C:\Users\Rives\Downloads\Encryptions" ) print(dict_processedtext3a["output_file"]) dict_processedtext3b = process_textfile( string_path=dict_processedtext3a["output_file"], encryption_algorithm="rotate", algorithm_key=1, output_folderpath=r"C:\Users\Rives\Downloads\Decryptions", output_filename="Quiz 0 Overwrite Number 2 Decrypted", shift_left=False ) print(dict_processedtext3b["output_file"]) return None def main(): while True: print("Press Enter or New Line to skip entering any input.\t") task = input("Encrypt or decrypt? Encrypts by default. Press E/D.\t") algo = input("Algorithm? Uses Rotate by default.\t") algorithm_key = float(input("Key? Uses 1 by default.\t")) input_filepath = input( """Mandatory / Required. Full path of target file. Includes file name and extension.\n""") output_folder = input( "Optional. Give the path of the output folder.\n" ) output_file = input( "Optional. Default output file name is EncryptDecrypt.txt.\n") keyword_arguments = input( """Last question. Depends on algorithm. Format: "key=value,key2,value2,...". Use comma with no space as separator for two or more items.\n""" ) while len(input_filepath) == 0: input_filepath = input( """Mandatory / Required. Full path of target file. Includes file name and extension.\n""" ) dict_kwargs = dict() for pair in keyword_arguments.split(','): try: key, pair = tuple(pair.split('=')) dict_kwargs[key] = pair except ValueError: break to_decrypt = False if task.lower().startswith('d'): to_decrypt = True if len(output_folder) == 0: output_folder = str(Path.cwd().parent / r"/EncryptDecrypt/") if len(output_file) == 0: output_file = "EncryptDecrypt.txt" if len(algo) == 0: algo = "rotate" pprint.pprint( process_textfile( string_path=input_filepath, encryption_algorithm=algo, algorithm_key=algorithm_key, output_folderpath=output_folder, output_filename=output_file, to_decrypt=to_decrypt, kwargs_dict=dict_kwargs ) ) print( """Done Running. Press Q to quit, any other key to process another file.""") to_quit = input() if to_quit.lower().startswith("q"): sys.exit() else: continue # manual_test() return None if __name__ == "__main__": main() """ Notes: * The declared parameter data types in python functions are not enforced as of version 3.4. * For some reason, even if the name "key" was a parameter for process_textfile, it was being passed to rot13_e as a string. In the function process_textfile, Visual Basic also listed "key" as a string when passed to rot13_e even though the function definition specified its data type as a float and the user input for "key" was also converted to a float in the main function. This was caused by a for-loop. When VS Code followed the definition of key (F12) when it was passed to rot13_e, VS Code pointed to the temporary variable "key" in a for-loop. The parameter name was changed as a quick fix. - Adding an else clause to the for-loop did not fix it. - The for-loop declaration was funciton-level code while the call to rot13_e that bugged was inside an else-clause. The else-clause holding the call to rot13_e was also function-level, same as the for-loop declaration. The call to RotateCipher.rot13_e was assigned to output_string. """
normal
{ "blob_id": "5dccd015a90927e8d2a9c0ea4b11b24bfd4bb65e", "index": 5690, "step-1": "<mask token>\n\n\ndef manual_test():\n dict_processedtext = process_textfile(string_path=\n 'C:\\\\Users\\\\Rives\\\\Downloads\\\\Quizzes\\\\Quiz 0 Overwrite Number 1.txt',\n encryption_algorithm='rotate', algorithm_key=1, shift_left=True)\n print('Encrypt ROT1 with default values.')\n print(dict_processedtext['output_file'])\n dict_processedtext2 = process_textfile(string_path=dict_processedtext[\n 'output_file'], encryption_algorithm='rotate', algorithm_key=1,\n output_folderpath='C:\\\\Users\\\\Rives\\\\Downloads\\\\Decryptions',\n output_filename='Quiz 0 Overwrite Number 1 Decrypted', shift_left=False\n )\n print('Decrypt ROT1 with all values user-supplied.')\n print(dict_processedtext['output_file'])\n for i in range(2):\n dict_processedtext3a = process_textfile(string_path=\n 'C:\\\\Users\\\\Rives\\\\Downloads\\\\Quizzes\\\\Quiz 0 Overwrite Number 2.txt'\n , encryption_algorithm='rotate', algorithm_key=1,\n output_folderpath='C:\\\\Users\\\\Rives\\\\Downloads\\\\Encryptions')\n print(dict_processedtext3a['output_file'])\n dict_processedtext3b = process_textfile(string_path=\n dict_processedtext3a['output_file'], encryption_algorithm=\n 'rotate', algorithm_key=1, output_folderpath=\n 'C:\\\\Users\\\\Rives\\\\Downloads\\\\Decryptions', output_filename=\n 'Quiz 0 Overwrite Number 2 Decrypted', shift_left=False)\n print(dict_processedtext3b['output_file'])\n return None\n\n\ndef main():\n while True:\n print('Press Enter or New Line to skip entering any input.\\t')\n task = input('Encrypt or decrypt? Encrypts by default. Press E/D.\\t')\n algo = input('Algorithm? Uses Rotate by default.\\t')\n algorithm_key = float(input('Key? Uses 1 by default.\\t'))\n input_filepath = input(\n \"\"\"Mandatory / Required.\n Full path of target file. Includes file name and extension.\n\"\"\"\n )\n output_folder = input('Optional. Give the path of the output folder.\\n'\n )\n output_file = input(\n 'Optional. Default output file name is EncryptDecrypt.txt.\\n')\n keyword_arguments = input(\n \"\"\"Last question. Depends on algorithm.\n Format: \"key=value,key2,value2,...\".\n Use comma with no space as separator for two or more items.\n\"\"\"\n )\n while len(input_filepath) == 0:\n input_filepath = input(\n \"\"\"Mandatory / Required.\n Full path of target file.\n Includes file name and extension.\n\"\"\"\n )\n dict_kwargs = dict()\n for pair in keyword_arguments.split(','):\n try:\n key, pair = tuple(pair.split('='))\n dict_kwargs[key] = pair\n except ValueError:\n break\n to_decrypt = False\n if task.lower().startswith('d'):\n to_decrypt = True\n if len(output_folder) == 0:\n output_folder = str(Path.cwd().parent / '/EncryptDecrypt/')\n if len(output_file) == 0:\n output_file = 'EncryptDecrypt.txt'\n if len(algo) == 0:\n algo = 'rotate'\n pprint.pprint(process_textfile(string_path=input_filepath,\n encryption_algorithm=algo, algorithm_key=algorithm_key,\n output_folderpath=output_folder, output_filename=output_file,\n to_decrypt=to_decrypt, kwargs_dict=dict_kwargs))\n print(\n 'Done Running.\\n Press Q to quit, any other key to process another file.'\n )\n to_quit = input()\n if to_quit.lower().startswith('q'):\n sys.exit()\n else:\n continue\n return None\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef process_textfile(string_path: str, encryption_algorithm: str,\n algorithm_key: float, output_folderpath: str=str(Path(os.path.\n expandvars('$HOME')).anchor) + '/EncryptDecrypt/', output_filename: str\n ='EncryptDecrypt.txt', to_decrypt=False, **kwargs):\n encryption_algorithm = encryption_algorithm.lower()\n available_algorithms = ['rotate', 'transposition']\n if encryption_algorithm not in available_algorithms:\n pprint.pprint([\n 'Enter an algorithm from the list. Not case-sensitive.',\n available_algorithms])\n return None\n lst_kwargs = list(kwargs.values())\n if len(lst_kwargs) == 1 and isinstance(lst_kwargs[0], dict):\n kwargs = lst_kwargs[0]\n if 'algorithm_key' in kwargs:\n algorithm_key = float(kwargs['algorithm_key'])\n for key, value in kwargs.items():\n str_value = str(value)\n if str_value.lower() == 'False':\n kwargs[key] = False\n elif str_value.lower() == 'True':\n kwargs[key] = True\n output_filename = '/' + output_filename\n if not output_filename.endswith('.txt'):\n output_filename += '.txt'\n full_outputpath = output_folderpath + output_filename\n path_input = Path(string_path)\n fileobj_target = open(str(path_input), 'r')\n lst_input = fileobj_target.readlines()\n str_input = ''.join(lst_input)\n output_string = 'None'\n print(\n \"\"\"Started processing.\n Key-word arguments for %s algorithm:\"\"\" %\n encryption_algorithm)\n pprint.pprint(kwargs)\n if encryption_algorithm == 'transposition' and to_decrypt is True:\n output_string = ''.join(TranspositionCipher.decrypt_transposition(\n str_input, int(algorithm_key)))\n elif encryption_algorithm == 'transposition' and not to_decrypt:\n output_string = ''.join(TranspositionCipher.encrypt_transposition(\n str_input, int(algorithm_key)))\n elif encryption_algorithm == 'rotate':\n warning = \"\"\"\n When the algorithm is set to rotate, the \"to_decrypt\" parameter\n is ignored. To decrypt, set the key-word argument shift left\n so that it reverses the shift direction during encryption.\n Ex: If the text was shifted left, i.e. values were swapped\n with those \"higher\" up on the list read from left to right, pass\n the key-word argument shift_left=False to decrypt.\n\n RotateCipher's methods can return a list. However, it is\n forced to always return a string. Passing return_list=True as\n a key-word argument will have no effect. The argument is not\n passed to RotateCipher.\n \"\"\"\n print(warning)\n to_shiftleft = True\n if 'shift_left' in kwargs:\n to_shiftleft = kwargs['shift_left']\n process_numbers = False\n if 'shift_numbers' in kwargs:\n process_numbers = kwargs['shift_numbers']\n output_string = RotateCipher.rot13_e(string=str_input, shift_left=\n to_shiftleft, rotations=int(algorithm_key), shift_numbers=\n process_numbers)\n if not os.path.exists(output_folderpath):\n os.mkdir(output_folderpath)\n fileobj_output = open(full_outputpath, 'a')\n fileobj_output.write('\\n=====\\nEncryptDecrypt Output on\\n%s\\n=====\\n' %\n dt.datetime.now())\n fileobj_output.write(output_string)\n fileobj_output.close()\n print('Done processing. Output folder:\\n{}'.format(Path(full_outputpath)))\n return {'output_file': Path(full_outputpath).resolve(), 'output_text':\n output_string}\n\n\ndef manual_test():\n dict_processedtext = process_textfile(string_path=\n 'C:\\\\Users\\\\Rives\\\\Downloads\\\\Quizzes\\\\Quiz 0 Overwrite Number 1.txt',\n encryption_algorithm='rotate', algorithm_key=1, shift_left=True)\n print('Encrypt ROT1 with default values.')\n print(dict_processedtext['output_file'])\n dict_processedtext2 = process_textfile(string_path=dict_processedtext[\n 'output_file'], encryption_algorithm='rotate', algorithm_key=1,\n output_folderpath='C:\\\\Users\\\\Rives\\\\Downloads\\\\Decryptions',\n output_filename='Quiz 0 Overwrite Number 1 Decrypted', shift_left=False\n )\n print('Decrypt ROT1 with all values user-supplied.')\n print(dict_processedtext['output_file'])\n for i in range(2):\n dict_processedtext3a = process_textfile(string_path=\n 'C:\\\\Users\\\\Rives\\\\Downloads\\\\Quizzes\\\\Quiz 0 Overwrite Number 2.txt'\n , encryption_algorithm='rotate', algorithm_key=1,\n output_folderpath='C:\\\\Users\\\\Rives\\\\Downloads\\\\Encryptions')\n print(dict_processedtext3a['output_file'])\n dict_processedtext3b = process_textfile(string_path=\n dict_processedtext3a['output_file'], encryption_algorithm=\n 'rotate', algorithm_key=1, output_folderpath=\n 'C:\\\\Users\\\\Rives\\\\Downloads\\\\Decryptions', output_filename=\n 'Quiz 0 Overwrite Number 2 Decrypted', shift_left=False)\n print(dict_processedtext3b['output_file'])\n return None\n\n\ndef main():\n while True:\n print('Press Enter or New Line to skip entering any input.\\t')\n task = input('Encrypt or decrypt? Encrypts by default. Press E/D.\\t')\n algo = input('Algorithm? Uses Rotate by default.\\t')\n algorithm_key = float(input('Key? Uses 1 by default.\\t'))\n input_filepath = input(\n \"\"\"Mandatory / Required.\n Full path of target file. Includes file name and extension.\n\"\"\"\n )\n output_folder = input('Optional. Give the path of the output folder.\\n'\n )\n output_file = input(\n 'Optional. Default output file name is EncryptDecrypt.txt.\\n')\n keyword_arguments = input(\n \"\"\"Last question. Depends on algorithm.\n Format: \"key=value,key2,value2,...\".\n Use comma with no space as separator for two or more items.\n\"\"\"\n )\n while len(input_filepath) == 0:\n input_filepath = input(\n \"\"\"Mandatory / Required.\n Full path of target file.\n Includes file name and extension.\n\"\"\"\n )\n dict_kwargs = dict()\n for pair in keyword_arguments.split(','):\n try:\n key, pair = tuple(pair.split('='))\n dict_kwargs[key] = pair\n except ValueError:\n break\n to_decrypt = False\n if task.lower().startswith('d'):\n to_decrypt = True\n if len(output_folder) == 0:\n output_folder = str(Path.cwd().parent / '/EncryptDecrypt/')\n if len(output_file) == 0:\n output_file = 'EncryptDecrypt.txt'\n if len(algo) == 0:\n algo = 'rotate'\n pprint.pprint(process_textfile(string_path=input_filepath,\n encryption_algorithm=algo, algorithm_key=algorithm_key,\n output_folderpath=output_folder, output_filename=output_file,\n to_decrypt=to_decrypt, kwargs_dict=dict_kwargs))\n print(\n 'Done Running.\\n Press Q to quit, any other key to process another file.'\n )\n to_quit = input()\n if to_quit.lower().startswith('q'):\n sys.exit()\n else:\n continue\n return None\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef process_textfile(string_path: str, encryption_algorithm: str,\n algorithm_key: float, output_folderpath: str=str(Path(os.path.\n expandvars('$HOME')).anchor) + '/EncryptDecrypt/', output_filename: str\n ='EncryptDecrypt.txt', to_decrypt=False, **kwargs):\n encryption_algorithm = encryption_algorithm.lower()\n available_algorithms = ['rotate', 'transposition']\n if encryption_algorithm not in available_algorithms:\n pprint.pprint([\n 'Enter an algorithm from the list. Not case-sensitive.',\n available_algorithms])\n return None\n lst_kwargs = list(kwargs.values())\n if len(lst_kwargs) == 1 and isinstance(lst_kwargs[0], dict):\n kwargs = lst_kwargs[0]\n if 'algorithm_key' in kwargs:\n algorithm_key = float(kwargs['algorithm_key'])\n for key, value in kwargs.items():\n str_value = str(value)\n if str_value.lower() == 'False':\n kwargs[key] = False\n elif str_value.lower() == 'True':\n kwargs[key] = True\n output_filename = '/' + output_filename\n if not output_filename.endswith('.txt'):\n output_filename += '.txt'\n full_outputpath = output_folderpath + output_filename\n path_input = Path(string_path)\n fileobj_target = open(str(path_input), 'r')\n lst_input = fileobj_target.readlines()\n str_input = ''.join(lst_input)\n output_string = 'None'\n print(\n \"\"\"Started processing.\n Key-word arguments for %s algorithm:\"\"\" %\n encryption_algorithm)\n pprint.pprint(kwargs)\n if encryption_algorithm == 'transposition' and to_decrypt is True:\n output_string = ''.join(TranspositionCipher.decrypt_transposition(\n str_input, int(algorithm_key)))\n elif encryption_algorithm == 'transposition' and not to_decrypt:\n output_string = ''.join(TranspositionCipher.encrypt_transposition(\n str_input, int(algorithm_key)))\n elif encryption_algorithm == 'rotate':\n warning = \"\"\"\n When the algorithm is set to rotate, the \"to_decrypt\" parameter\n is ignored. To decrypt, set the key-word argument shift left\n so that it reverses the shift direction during encryption.\n Ex: If the text was shifted left, i.e. values were swapped\n with those \"higher\" up on the list read from left to right, pass\n the key-word argument shift_left=False to decrypt.\n\n RotateCipher's methods can return a list. However, it is\n forced to always return a string. Passing return_list=True as\n a key-word argument will have no effect. The argument is not\n passed to RotateCipher.\n \"\"\"\n print(warning)\n to_shiftleft = True\n if 'shift_left' in kwargs:\n to_shiftleft = kwargs['shift_left']\n process_numbers = False\n if 'shift_numbers' in kwargs:\n process_numbers = kwargs['shift_numbers']\n output_string = RotateCipher.rot13_e(string=str_input, shift_left=\n to_shiftleft, rotations=int(algorithm_key), shift_numbers=\n process_numbers)\n if not os.path.exists(output_folderpath):\n os.mkdir(output_folderpath)\n fileobj_output = open(full_outputpath, 'a')\n fileobj_output.write('\\n=====\\nEncryptDecrypt Output on\\n%s\\n=====\\n' %\n dt.datetime.now())\n fileobj_output.write(output_string)\n fileobj_output.close()\n print('Done processing. Output folder:\\n{}'.format(Path(full_outputpath)))\n return {'output_file': Path(full_outputpath).resolve(), 'output_text':\n output_string}\n\n\ndef manual_test():\n dict_processedtext = process_textfile(string_path=\n 'C:\\\\Users\\\\Rives\\\\Downloads\\\\Quizzes\\\\Quiz 0 Overwrite Number 1.txt',\n encryption_algorithm='rotate', algorithm_key=1, shift_left=True)\n print('Encrypt ROT1 with default values.')\n print(dict_processedtext['output_file'])\n dict_processedtext2 = process_textfile(string_path=dict_processedtext[\n 'output_file'], encryption_algorithm='rotate', algorithm_key=1,\n output_folderpath='C:\\\\Users\\\\Rives\\\\Downloads\\\\Decryptions',\n output_filename='Quiz 0 Overwrite Number 1 Decrypted', shift_left=False\n )\n print('Decrypt ROT1 with all values user-supplied.')\n print(dict_processedtext['output_file'])\n for i in range(2):\n dict_processedtext3a = process_textfile(string_path=\n 'C:\\\\Users\\\\Rives\\\\Downloads\\\\Quizzes\\\\Quiz 0 Overwrite Number 2.txt'\n , encryption_algorithm='rotate', algorithm_key=1,\n output_folderpath='C:\\\\Users\\\\Rives\\\\Downloads\\\\Encryptions')\n print(dict_processedtext3a['output_file'])\n dict_processedtext3b = process_textfile(string_path=\n dict_processedtext3a['output_file'], encryption_algorithm=\n 'rotate', algorithm_key=1, output_folderpath=\n 'C:\\\\Users\\\\Rives\\\\Downloads\\\\Decryptions', output_filename=\n 'Quiz 0 Overwrite Number 2 Decrypted', shift_left=False)\n print(dict_processedtext3b['output_file'])\n return None\n\n\ndef main():\n while True:\n print('Press Enter or New Line to skip entering any input.\\t')\n task = input('Encrypt or decrypt? Encrypts by default. Press E/D.\\t')\n algo = input('Algorithm? Uses Rotate by default.\\t')\n algorithm_key = float(input('Key? Uses 1 by default.\\t'))\n input_filepath = input(\n \"\"\"Mandatory / Required.\n Full path of target file. Includes file name and extension.\n\"\"\"\n )\n output_folder = input('Optional. Give the path of the output folder.\\n'\n )\n output_file = input(\n 'Optional. Default output file name is EncryptDecrypt.txt.\\n')\n keyword_arguments = input(\n \"\"\"Last question. Depends on algorithm.\n Format: \"key=value,key2,value2,...\".\n Use comma with no space as separator for two or more items.\n\"\"\"\n )\n while len(input_filepath) == 0:\n input_filepath = input(\n \"\"\"Mandatory / Required.\n Full path of target file.\n Includes file name and extension.\n\"\"\"\n )\n dict_kwargs = dict()\n for pair in keyword_arguments.split(','):\n try:\n key, pair = tuple(pair.split('='))\n dict_kwargs[key] = pair\n except ValueError:\n break\n to_decrypt = False\n if task.lower().startswith('d'):\n to_decrypt = True\n if len(output_folder) == 0:\n output_folder = str(Path.cwd().parent / '/EncryptDecrypt/')\n if len(output_file) == 0:\n output_file = 'EncryptDecrypt.txt'\n if len(algo) == 0:\n algo = 'rotate'\n pprint.pprint(process_textfile(string_path=input_filepath,\n encryption_algorithm=algo, algorithm_key=algorithm_key,\n output_folderpath=output_folder, output_filename=output_file,\n to_decrypt=to_decrypt, kwargs_dict=dict_kwargs))\n print(\n 'Done Running.\\n Press Q to quit, any other key to process another file.'\n )\n to_quit = input()\n if to_quit.lower().startswith('q'):\n sys.exit()\n else:\n continue\n return None\n\n\nif __name__ == '__main__':\n main()\n<mask token>\n", "step-4": "import os\nimport pprint\nimport math\nimport sys\nimport datetime as dt\nfrom pathlib import Path\nimport RotateCipher\nimport ShiftCipher\nimport TranspositionCipher\n\n\ndef process_textfile(string_path: str, encryption_algorithm: str,\n algorithm_key: float, output_folderpath: str=str(Path(os.path.\n expandvars('$HOME')).anchor) + '/EncryptDecrypt/', output_filename: str\n ='EncryptDecrypt.txt', to_decrypt=False, **kwargs):\n encryption_algorithm = encryption_algorithm.lower()\n available_algorithms = ['rotate', 'transposition']\n if encryption_algorithm not in available_algorithms:\n pprint.pprint([\n 'Enter an algorithm from the list. Not case-sensitive.',\n available_algorithms])\n return None\n lst_kwargs = list(kwargs.values())\n if len(lst_kwargs) == 1 and isinstance(lst_kwargs[0], dict):\n kwargs = lst_kwargs[0]\n if 'algorithm_key' in kwargs:\n algorithm_key = float(kwargs['algorithm_key'])\n for key, value in kwargs.items():\n str_value = str(value)\n if str_value.lower() == 'False':\n kwargs[key] = False\n elif str_value.lower() == 'True':\n kwargs[key] = True\n output_filename = '/' + output_filename\n if not output_filename.endswith('.txt'):\n output_filename += '.txt'\n full_outputpath = output_folderpath + output_filename\n path_input = Path(string_path)\n fileobj_target = open(str(path_input), 'r')\n lst_input = fileobj_target.readlines()\n str_input = ''.join(lst_input)\n output_string = 'None'\n print(\n \"\"\"Started processing.\n Key-word arguments for %s algorithm:\"\"\" %\n encryption_algorithm)\n pprint.pprint(kwargs)\n if encryption_algorithm == 'transposition' and to_decrypt is True:\n output_string = ''.join(TranspositionCipher.decrypt_transposition(\n str_input, int(algorithm_key)))\n elif encryption_algorithm == 'transposition' and not to_decrypt:\n output_string = ''.join(TranspositionCipher.encrypt_transposition(\n str_input, int(algorithm_key)))\n elif encryption_algorithm == 'rotate':\n warning = \"\"\"\n When the algorithm is set to rotate, the \"to_decrypt\" parameter\n is ignored. To decrypt, set the key-word argument shift left\n so that it reverses the shift direction during encryption.\n Ex: If the text was shifted left, i.e. values were swapped\n with those \"higher\" up on the list read from left to right, pass\n the key-word argument shift_left=False to decrypt.\n\n RotateCipher's methods can return a list. However, it is\n forced to always return a string. Passing return_list=True as\n a key-word argument will have no effect. The argument is not\n passed to RotateCipher.\n \"\"\"\n print(warning)\n to_shiftleft = True\n if 'shift_left' in kwargs:\n to_shiftleft = kwargs['shift_left']\n process_numbers = False\n if 'shift_numbers' in kwargs:\n process_numbers = kwargs['shift_numbers']\n output_string = RotateCipher.rot13_e(string=str_input, shift_left=\n to_shiftleft, rotations=int(algorithm_key), shift_numbers=\n process_numbers)\n if not os.path.exists(output_folderpath):\n os.mkdir(output_folderpath)\n fileobj_output = open(full_outputpath, 'a')\n fileobj_output.write('\\n=====\\nEncryptDecrypt Output on\\n%s\\n=====\\n' %\n dt.datetime.now())\n fileobj_output.write(output_string)\n fileobj_output.close()\n print('Done processing. Output folder:\\n{}'.format(Path(full_outputpath)))\n return {'output_file': Path(full_outputpath).resolve(), 'output_text':\n output_string}\n\n\ndef manual_test():\n dict_processedtext = process_textfile(string_path=\n 'C:\\\\Users\\\\Rives\\\\Downloads\\\\Quizzes\\\\Quiz 0 Overwrite Number 1.txt',\n encryption_algorithm='rotate', algorithm_key=1, shift_left=True)\n print('Encrypt ROT1 with default values.')\n print(dict_processedtext['output_file'])\n dict_processedtext2 = process_textfile(string_path=dict_processedtext[\n 'output_file'], encryption_algorithm='rotate', algorithm_key=1,\n output_folderpath='C:\\\\Users\\\\Rives\\\\Downloads\\\\Decryptions',\n output_filename='Quiz 0 Overwrite Number 1 Decrypted', shift_left=False\n )\n print('Decrypt ROT1 with all values user-supplied.')\n print(dict_processedtext['output_file'])\n for i in range(2):\n dict_processedtext3a = process_textfile(string_path=\n 'C:\\\\Users\\\\Rives\\\\Downloads\\\\Quizzes\\\\Quiz 0 Overwrite Number 2.txt'\n , encryption_algorithm='rotate', algorithm_key=1,\n output_folderpath='C:\\\\Users\\\\Rives\\\\Downloads\\\\Encryptions')\n print(dict_processedtext3a['output_file'])\n dict_processedtext3b = process_textfile(string_path=\n dict_processedtext3a['output_file'], encryption_algorithm=\n 'rotate', algorithm_key=1, output_folderpath=\n 'C:\\\\Users\\\\Rives\\\\Downloads\\\\Decryptions', output_filename=\n 'Quiz 0 Overwrite Number 2 Decrypted', shift_left=False)\n print(dict_processedtext3b['output_file'])\n return None\n\n\ndef main():\n while True:\n print('Press Enter or New Line to skip entering any input.\\t')\n task = input('Encrypt or decrypt? Encrypts by default. Press E/D.\\t')\n algo = input('Algorithm? Uses Rotate by default.\\t')\n algorithm_key = float(input('Key? Uses 1 by default.\\t'))\n input_filepath = input(\n \"\"\"Mandatory / Required.\n Full path of target file. Includes file name and extension.\n\"\"\"\n )\n output_folder = input('Optional. Give the path of the output folder.\\n'\n )\n output_file = input(\n 'Optional. Default output file name is EncryptDecrypt.txt.\\n')\n keyword_arguments = input(\n \"\"\"Last question. Depends on algorithm.\n Format: \"key=value,key2,value2,...\".\n Use comma with no space as separator for two or more items.\n\"\"\"\n )\n while len(input_filepath) == 0:\n input_filepath = input(\n \"\"\"Mandatory / Required.\n Full path of target file.\n Includes file name and extension.\n\"\"\"\n )\n dict_kwargs = dict()\n for pair in keyword_arguments.split(','):\n try:\n key, pair = tuple(pair.split('='))\n dict_kwargs[key] = pair\n except ValueError:\n break\n to_decrypt = False\n if task.lower().startswith('d'):\n to_decrypt = True\n if len(output_folder) == 0:\n output_folder = str(Path.cwd().parent / '/EncryptDecrypt/')\n if len(output_file) == 0:\n output_file = 'EncryptDecrypt.txt'\n if len(algo) == 0:\n algo = 'rotate'\n pprint.pprint(process_textfile(string_path=input_filepath,\n encryption_algorithm=algo, algorithm_key=algorithm_key,\n output_folderpath=output_folder, output_filename=output_file,\n to_decrypt=to_decrypt, kwargs_dict=dict_kwargs))\n print(\n 'Done Running.\\n Press Q to quit, any other key to process another file.'\n )\n to_quit = input()\n if to_quit.lower().startswith('q'):\n sys.exit()\n else:\n continue\n return None\n\n\nif __name__ == '__main__':\n main()\n<mask token>\n", "step-5": "import os\r\nimport pprint\r\nimport math\r\nimport sys\r\nimport datetime as dt\r\nfrom pathlib import Path\r\n\r\nimport RotateCipher\r\nimport ShiftCipher\r\nimport TranspositionCipher\r\n\r\n\r\ndef process_textfile(\r\n string_path: str,\r\n encryption_algorithm: str,\r\n algorithm_key: float,\r\n output_folderpath: str = str(\r\n Path(os.path.expandvars(\"$HOME\")).anchor\r\n ) + r\"/EncryptDecrypt/\",\r\n output_filename: str = r\"EncryptDecrypt.txt\",\r\n to_decrypt=False,\r\n **kwargs\r\n ):\r\n\r\n encryption_algorithm = encryption_algorithm.lower()\r\n available_algorithms = [\"rotate\", \"transposition\"]\r\n if encryption_algorithm not in available_algorithms:\r\n pprint.pprint(\r\n [\"Enter an algorithm from the list. Not case-sensitive.\",\r\n available_algorithms]\r\n )\r\n return None\r\n\r\n # A single dictionary may be passed as a **kwarg if it is the\r\n # ONLY KEY-WORD ARGUMENT. Else, error is thrown.\r\n lst_kwargs = list(kwargs.values())\r\n if len(lst_kwargs) == 1 and (isinstance(lst_kwargs[0], dict)):\r\n kwargs = lst_kwargs[0]\r\n\r\n # Key in **kwargs overwrites `algorithm_key` function parameter.\r\n if \"algorithm_key\" in kwargs:\r\n algorithm_key = float(kwargs[\"algorithm_key\"])\r\n\r\n # Convert strings saying \"True\" or \"False\" to booleans.\r\n for key, value in kwargs.items():\r\n str_value = str(value)\r\n if str_value.lower() == \"False\":\r\n kwargs[key] = False\r\n elif str_value.lower() == \"True\":\r\n kwargs[key] = True\r\n\r\n output_filename = ('/' + output_filename)\r\n if not (output_filename.endswith(\".txt\")):\r\n output_filename += \".txt\"\r\n\r\n full_outputpath = output_folderpath + output_filename\r\n path_input = Path(string_path)\r\n\r\n # fileobj_target = open(path_input, 'r') # Only for Python 3.6 and later.\r\n fileobj_target = open(str(path_input), 'r')\r\n lst_input = fileobj_target.readlines()\r\n # str_input = '\\n'.join(lst_input)\r\n str_input = \"\".join(lst_input)\r\n output_string = \"None\"\r\n\r\n print(\r\n \"\"\"Started processing.\r\n Key-word arguments for %s algorithm:\"\"\" % encryption_algorithm\r\n )\r\n pprint.pprint(kwargs)\r\n\r\n if (encryption_algorithm == \"transposition\") and to_decrypt is True:\r\n output_string = ''.join(\r\n TranspositionCipher.decrypt_transposition(\r\n str_input, int(algorithm_key)\r\n )\r\n )\r\n elif encryption_algorithm == \"transposition\" and not to_decrypt:\r\n output_string = ''.join(\r\n TranspositionCipher.encrypt_transposition(\r\n str_input, int(algorithm_key)\r\n )\r\n )\r\n elif encryption_algorithm == \"rotate\":\r\n warning = \"\"\"\r\n When the algorithm is set to rotate, the \"to_decrypt\" parameter\r\n is ignored. To decrypt, set the key-word argument shift left\r\n so that it reverses the shift direction during encryption.\r\n Ex: If the text was shifted left, i.e. values were swapped\r\n with those \"higher\" up on the list read from left to right, pass\r\n the key-word argument shift_left=False to decrypt.\r\n\r\n RotateCipher's methods can return a list. However, it is\r\n forced to always return a string. Passing return_list=True as\r\n a key-word argument will have no effect. The argument is not\r\n passed to RotateCipher.\r\n \"\"\"\r\n # pprint.pprint(warning) # Included literl \\n and single quotes.\r\n print(warning)\r\n\r\n to_shiftleft = True\r\n if \"shift_left\" in kwargs:\r\n to_shiftleft = kwargs[\"shift_left\"]\r\n\r\n process_numbers = False\r\n if \"shift_numbers\" in kwargs:\r\n process_numbers = kwargs[\"shift_numbers\"]\r\n\r\n output_string = RotateCipher.rot13_e(\r\n string=str_input,\r\n shift_left=to_shiftleft,\r\n rotations=int(algorithm_key),\r\n # return_list=kwargs[\"return_list\"], # Removed for safety.\r\n shift_numbers=process_numbers\r\n )\r\n\r\n if not (os.path.exists(output_folderpath)):\r\n os.mkdir(output_folderpath)\r\n\r\n fileobj_output = open(\r\n full_outputpath,\r\n 'a' # Create a file and open it for writing. Append if exists.\r\n )\r\n fileobj_output.write(\r\n \"\\n=====\\nEncryptDecrypt Output on\\n%s\\n=====\\n\" %\r\n dt.datetime.now()\r\n )\r\n fileobj_output.write(output_string)\r\n fileobj_output.close()\r\n print(\"Done processing. Output folder:\\n{}\".format(\r\n Path(full_outputpath)\r\n )\r\n )\r\n\r\n return {\r\n \"output_file\": Path(full_outputpath).resolve(),\r\n \"output_text\": output_string\r\n }\r\n\r\n\r\ndef manual_test():\r\n dict_processedtext = process_textfile(\r\n string_path=r\"C:\\Users\\Rives\\Downloads\\Quizzes\\Quiz 0 Overwrite Number 1.txt\",\r\n encryption_algorithm=\"rotate\",\r\n algorithm_key=1,\r\n shift_left=True\r\n )\r\n print(\"Encrypt ROT1 with default values.\")\r\n # pprint.pprint(\r\n # dict_processedtext\r\n # )\r\n print(dict_processedtext[\"output_file\"])\r\n\r\n dict_processedtext2 = process_textfile(\r\n string_path=dict_processedtext[\"output_file\"],\r\n encryption_algorithm=\"rotate\",\r\n algorithm_key=1,\r\n output_folderpath=r\"C:\\Users\\Rives\\Downloads\\Decryptions\",\r\n output_filename=\"Quiz 0 Overwrite Number 1 Decrypted\",\r\n shift_left=False\r\n )\r\n print(\"Decrypt ROT1 with all values user-supplied.\")\r\n print(dict_processedtext[\"output_file\"])\r\n\r\n for i in range(2):\r\n dict_processedtext3a = process_textfile(\r\n string_path=r\"C:\\Users\\Rives\\Downloads\\Quizzes\\Quiz 0 Overwrite Number 2.txt\",\r\n encryption_algorithm=\"rotate\",\r\n algorithm_key=1,\r\n output_folderpath=r\"C:\\Users\\Rives\\Downloads\\Encryptions\"\r\n )\r\n print(dict_processedtext3a[\"output_file\"])\r\n\r\n dict_processedtext3b = process_textfile(\r\n string_path=dict_processedtext3a[\"output_file\"],\r\n encryption_algorithm=\"rotate\",\r\n algorithm_key=1,\r\n output_folderpath=r\"C:\\Users\\Rives\\Downloads\\Decryptions\",\r\n output_filename=\"Quiz 0 Overwrite Number 2 Decrypted\",\r\n shift_left=False\r\n )\r\n print(dict_processedtext3b[\"output_file\"])\r\n\r\n return None\r\n\r\n\r\ndef main():\r\n\r\n while True:\r\n print(\"Press Enter or New Line to skip entering any input.\\t\")\r\n task = input(\"Encrypt or decrypt? Encrypts by default. Press E/D.\\t\")\r\n algo = input(\"Algorithm? Uses Rotate by default.\\t\")\r\n algorithm_key = float(input(\"Key? Uses 1 by default.\\t\"))\r\n input_filepath = input(\r\n \"\"\"Mandatory / Required.\r\n Full path of target file. Includes file name and extension.\\n\"\"\")\r\n output_folder = input(\r\n \"Optional. Give the path of the output folder.\\n\"\r\n )\r\n output_file = input(\r\n \"Optional. Default output file name is EncryptDecrypt.txt.\\n\")\r\n keyword_arguments = input(\r\n \"\"\"Last question. Depends on algorithm.\r\n Format: \"key=value,key2,value2,...\".\r\n Use comma with no space as separator for two or more items.\\n\"\"\"\r\n )\r\n\r\n while len(input_filepath) == 0:\r\n input_filepath = input(\r\n \"\"\"Mandatory / Required.\r\n Full path of target file.\r\n Includes file name and extension.\\n\"\"\"\r\n )\r\n\r\n dict_kwargs = dict()\r\n for pair in keyword_arguments.split(','):\r\n try:\r\n key, pair = tuple(pair.split('='))\r\n dict_kwargs[key] = pair\r\n except ValueError:\r\n break\r\n\r\n to_decrypt = False\r\n if task.lower().startswith('d'):\r\n to_decrypt = True\r\n\r\n if len(output_folder) == 0:\r\n output_folder = str(Path.cwd().parent / r\"/EncryptDecrypt/\")\r\n\r\n if len(output_file) == 0:\r\n output_file = \"EncryptDecrypt.txt\"\r\n\r\n if len(algo) == 0:\r\n algo = \"rotate\"\r\n\r\n pprint.pprint(\r\n process_textfile(\r\n string_path=input_filepath,\r\n encryption_algorithm=algo,\r\n algorithm_key=algorithm_key,\r\n output_folderpath=output_folder,\r\n output_filename=output_file,\r\n to_decrypt=to_decrypt,\r\n kwargs_dict=dict_kwargs\r\n )\r\n )\r\n print(\r\n \"\"\"Done Running.\r\n Press Q to quit, any other key to process another file.\"\"\")\r\n\r\n to_quit = input()\r\n if to_quit.lower().startswith(\"q\"):\r\n sys.exit()\r\n else:\r\n continue\r\n # manual_test()\r\n\r\n return None\r\n\r\n\r\nif __name__ == \"__main__\":\r\n main()\r\n\r\n\"\"\"\r\nNotes:\r\n\r\n*\r\nThe declared parameter data types in python functions are not enforced as of\r\nversion 3.4.\r\n\r\n*\r\nFor some reason, even if the name \"key\" was a parameter for process_textfile,\r\nit was being passed to rot13_e as a string. In the function process_textfile,\r\nVisual Basic also listed \"key\" as a string when passed to rot13_e even though\r\nthe function definition specified its data type as a float and the user input\r\nfor \"key\" was also converted to a float in the main function. This was caused\r\nby a for-loop. When VS Code followed the definition of key (F12) when it\r\nwas passed to rot13_e, VS Code pointed to the temporary variable \"key\" in a\r\nfor-loop. The parameter name was changed as a quick fix.\r\n\r\n- Adding an else clause to the for-loop did not fix it.\r\n- The for-loop declaration was funciton-level code while the call to rot13_e\r\nthat bugged was inside an else-clause. The else-clause holding the call to\r\nrot13_e was also function-level, same as the for-loop declaration. The call\r\nto RotateCipher.rot13_e was assigned to output_string.\r\n\"\"\"\r\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
#!/usr/bin/python # ~~~~~============== HOW TO RUN ==============~~~~~ # 1) Configure things in CONFIGURATION section # 2) Change permissions: chmod +x bot.py # 3) Run in loop: while true; do ./bot.py; sleep 1; done from __future__ import print_function import sys import socket import json import time # ~~~~~============== CONFIGURATION ==============~~~~~ # replace REPLACEME with your team name! team_name="BULBASAUR" # This variable dictates whether or not the bot is connecting to the prod # or test exchange. Be careful with this switch! test_mode = True # This setting changes which test exchange is connected to. # 0 is prod-like # 1 is slower # 2 is empty test_exchange_index=0 prod_exchange_hostname="production" port=25000 + (test_exchange_index if test_mode else 0) exchange_hostname = "test-exch-" + team_name if test_mode else prod_exchange_hostname # ~~~~~============== NETWORKING CODE ==============~~~~~ def connect(): s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((exchange_hostname, port)) return s.makefile('rw', 1) def write_to_exchange(exchange, obj): json.dump(obj, exchange) exchange.write("\n") def read_from_exchange(exchange): return json.loads(exchange.readline()) # ~~~~~============== MAIN LOOP ==============~~~~~ exchange = None orders_placed = 0 pending_orders = [] pending_buy_orders = {"BOND": 0, "VALBZ": 0, "VALE": 0, "XLF": 0} pending_sell_orders = {"BOND": 0, "VALBZ": 0, "VALE": 0, "XLF": 0} positions = {"BOND": 0, "VALBZ": 0, "VALE": 0, "XLF": 0} vale_buy_pending_id = None vale_sell_pending_id = None vale_sell = 0 vale_buy = 0 xlf_buy_pending_id = None xlf_sell_pending_id = None xlf_sell = 0 xlf_buy = 0 def main(): global exchange exchange = connect() hello() hello_from_exchange = read_from_exchange(exchange) # A common mistake people make is to call write_to_exchange() > 1 # time for every read_from_exchange() response. # Since many write messages generate marketdata, this will cause an # exponential explosion in pending messages. Please, don't do that! print("The exchange replied:", hello_from_exchange, file=sys.stderr) global positions positions["BOND"] = hello_from_exchange["symbols"][0]["position"] positions["VALE"] = hello_from_exchange["symbols"][5]["position"] positions["VALBZ"] = hello_from_exchange["symbols"][4]["position"] positions["XLF"] = hello_from_exchange["symbols"][7]["position"] add("BOND", "BUY", 999, 100 - positions["BOND"]) add("BOND", "SELL", 1001, 100 + positions["BOND"]) while (True): server_msg = read_from_exchange(exchange) buy_sell_vale() buy_sell_xlf() listen_for_fills(server_msg) listen_for_book(server_msg) listen_for_errors(server_msg) def hello(): write_to_exchange(exchange, {"type": "hello", "team": team_name.upper()}) def add(symbol, direction, price, size): # Update order id to be order placed number global orders_placed orders_placed += 1 # Add to pending orders list global pending_orders pending_orders.append(orders_placed) #if symbol == "VALE": print("Order Placed: " + str(orders_placed) + " Position: " + str(positions[symbol])+ " Size: " + str(size) + " Dir: " + direction + " Symbol: " + symbol + " Price: " + str(price) + "") # Increment Buy Orders If Necessary if (direction == "BUY"): global pending_buy_orders pending_buy_orders[symbol] += size elif (direction == "SELL"): global pending_sell_orders pending_sell_orders[symbol] += size # Add order to exchange write_to_exchange(exchange, {"type": "add", "order_id": orders_placed, "symbol": symbol, "dir":direction, "price":price, "size": size }) # read_from_exchange(exchange) def cancel(order_id): write_to_exchange(exchange, {"type": "cancel", "order_id": order_id}) def listen_for_fills(server_msg): if (server_msg["type"] == "fill"): # Get info of filled order order_num = server_msg["order_id"] symbol = server_msg["symbol"] size = server_msg["size"] direction = server_msg["dir"] global positions # Update bond order fill and buy/sell as necessary if (symbol == "BOND"): # print("Bond Order Partially Filled: " + str(order_num)) if (direction == "BUY"): pending_buy_orders[symbol] -= size add("BOND", "SELL", 1001, size) elif (direction == "SELL"): pending_sell_orders[symbol] -= size add("BOND", "BUY", 999, size) # Update Vale Order fill and hedge as necessary if (symbol == "VALE"): print("Vale Order Filled: " + str(order_num) + " " + direction + " Size: " + str(size)) if (direction == "BUY"): pending_buy_orders[symbol] -= size positions["VALE"] += size elif (direction == "SELL"): positions["VALE"] -= size pending_sell_orders[symbol] -= size if (symbol == "XLF"): print("XLF Order Filled: " + str(order_num) + " " + direction + " Size: " + str(size)) if (direction == "BUY"): pending_buy_orders[symbol] -= size positions["XLF"] += size elif (direction == "SELL"): positions["XLF"] -= size pending_sell_orders[symbol] -= size def listen_for_book(server_msg): if (server_msg["type"] == "book"): global vale_sell global vale_buy global xlf_sell global xlf_buy if (server_msg["symbol"] == "VALE"): if len(server_msg["sell"]) > 0: vale_sell = server_msg["sell"][0][0] if len(server_msg["buy"]) > 0: vale_buy = server_msg["buy"][0][0] if (server_msg["symbol"] == "XLF"): if len(server_msg["sell"]) > 0: xlf_sell = server_msg["sell"][0][0] if len(server_msg["buy"]) > 0: xlf_buy = server_msg["buy"][0][0] def buy_sell_vale(): if vale_buy > 0 and vale_sell > 0: global pending_sell_orders global pending_buy_orders if ( pending_buy_orders["VALE"] + positions["VALE"] < 10): global vale_buy_pending_id if vale_buy_pending_id: cancel(vale_buy_pending_id) pending_buy_orders["VALE"] = 0 vale_buy_pending_id = None print("Cancel VALE BUY Order: " + str(orders_placed)) time.sleep(1) num_stock = 10 - positions["VALE"] add("VALE", "BUY", vale_buy + 1, 10 - positions["VALE"]) vale_buy_pending_id = orders_placed elif (positions["VALE"] - pending_sell_orders["VALE"] > -10): global vale_sell_pending_id if vale_sell_pending_id: print("Cancel VALE Sell Order: " + str(orders_placed)) cancel(vale_sell_pending_id) pending_sell_orders["VALE"] = 0 vale_sell_pending_id = None time.sleep(1) num_stock = 10 - positions["VALE"] add("VALE", "SELL", vale_sell - 1, num_stock) vale_sell_pending_id = orders_placed def buy_sell_xlf(): if xlf_buy > 0 and xlf_sell > 0: global pending_sell_orders global pending_buy_orders if ( pending_buy_orders["XLF"] + positions["XLF"] < 100): global xlf_buy_pending_id if xlf_buy_pending_id: cancel(xlf_buy_pending_id) pending_buy_orders["XLF"] = 0 xlf_buy_pending_id = None print("Cancel XLF Order: " + str(orders_placed)) time.sleep(1) add("XLF", "BUY", xlf_buy + 1, 100 - positions["XLF"]) xlf_buy_pending_id = orders_placed elif (positions["XLF"] - pending_sell_orders["XLF"] > -100): global xlf_sell_pending_id if xlf_sell_pending_id: print("Cancel XLF Order: " + str(orders_placed)) cancel(xlf_sell_pending_id) pending_sell_orders["XLF"] = 0 xlf_sell_pending_id = None time.sleep(1) add("XLF", "SELL", xlf_sell - 1, 100 + positions["XLF"]) xlf_sell_pending_id = orders_placed def listen_for_errors(server_msg): if (server_msg["type"] == "reject"): print("ERROR: ORDER FAILED, id: " + str(server_msg["order_id"]) + " " + server_msg["error"]) if (server_msg["type"] == "error"): print("ERROR: ORDER FAILED, id: " + str(id) + " " + server_msg["error"]) if (server_msg["type"] == "ack"): print("Order Completed: " + str(server_msg["order_id"])) if (server_msg["type"] == "out"): print("Order Successfully Canceled: " + str(server_msg["order_id"])) #add("BOND", "BUY", 999, 100 - positions["BOND"]) #add("BOND", "SELL", 1001, 100 + positions["BOND"]) if __name__ == "__main__": main()
normal
{ "blob_id": "56c5c515de8490f2e3516563e037c375aba03667", "index": 3221, "step-1": "<mask token>\n\n\ndef connect():\n s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)\n s.connect((exchange_hostname, port))\n return s.makefile('rw', 1)\n\n\ndef write_to_exchange(exchange, obj):\n json.dump(obj, exchange)\n exchange.write('\\n')\n\n\n<mask token>\n\n\ndef hello():\n write_to_exchange(exchange, {'type': 'hello', 'team': team_name.upper()})\n\n\ndef add(symbol, direction, price, size):\n global orders_placed\n orders_placed += 1\n global pending_orders\n pending_orders.append(orders_placed)\n print('Order Placed: ' + str(orders_placed) + ' Position: ' + str(\n positions[symbol]) + ' Size: ' + str(size) + ' Dir: ' + direction +\n ' Symbol: ' + symbol + ' Price: ' + str(price) + '')\n if direction == 'BUY':\n global pending_buy_orders\n pending_buy_orders[symbol] += size\n elif direction == 'SELL':\n global pending_sell_orders\n pending_sell_orders[symbol] += size\n write_to_exchange(exchange, {'type': 'add', 'order_id': orders_placed,\n 'symbol': symbol, 'dir': direction, 'price': price, 'size': size})\n read_from_exchange(exchange)\n\n\n<mask token>\n\n\ndef buy_sell_xlf():\n if xlf_buy > 0 and xlf_sell > 0:\n global pending_sell_orders\n global pending_buy_orders\n if pending_buy_orders['XLF'] + positions['XLF'] < 100:\n global xlf_buy_pending_id\n if xlf_buy_pending_id:\n cancel(xlf_buy_pending_id)\n pending_buy_orders['XLF'] = 0\n xlf_buy_pending_id = None\n print('Cancel XLF Order: ' + str(orders_placed))\n time.sleep(1)\n add('XLF', 'BUY', xlf_buy + 1, 100 - positions['XLF'])\n xlf_buy_pending_id = orders_placed\n elif positions['XLF'] - pending_sell_orders['XLF'] > -100:\n global xlf_sell_pending_id\n if xlf_sell_pending_id:\n print('Cancel XLF Order: ' + str(orders_placed))\n cancel(xlf_sell_pending_id)\n pending_sell_orders['XLF'] = 0\n xlf_sell_pending_id = None\n time.sleep(1)\n add('XLF', 'SELL', xlf_sell - 1, 100 + positions['XLF'])\n xlf_sell_pending_id = orders_placed\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef connect():\n s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)\n s.connect((exchange_hostname, port))\n return s.makefile('rw', 1)\n\n\ndef write_to_exchange(exchange, obj):\n json.dump(obj, exchange)\n exchange.write('\\n')\n\n\ndef read_from_exchange(exchange):\n return json.loads(exchange.readline())\n\n\n<mask token>\n\n\ndef hello():\n write_to_exchange(exchange, {'type': 'hello', 'team': team_name.upper()})\n\n\ndef add(symbol, direction, price, size):\n global orders_placed\n orders_placed += 1\n global pending_orders\n pending_orders.append(orders_placed)\n print('Order Placed: ' + str(orders_placed) + ' Position: ' + str(\n positions[symbol]) + ' Size: ' + str(size) + ' Dir: ' + direction +\n ' Symbol: ' + symbol + ' Price: ' + str(price) + '')\n if direction == 'BUY':\n global pending_buy_orders\n pending_buy_orders[symbol] += size\n elif direction == 'SELL':\n global pending_sell_orders\n pending_sell_orders[symbol] += size\n write_to_exchange(exchange, {'type': 'add', 'order_id': orders_placed,\n 'symbol': symbol, 'dir': direction, 'price': price, 'size': size})\n read_from_exchange(exchange)\n\n\ndef cancel(order_id):\n write_to_exchange(exchange, {'type': 'cancel', 'order_id': order_id})\n\n\ndef listen_for_fills(server_msg):\n if server_msg['type'] == 'fill':\n order_num = server_msg['order_id']\n symbol = server_msg['symbol']\n size = server_msg['size']\n direction = server_msg['dir']\n global positions\n if symbol == 'BOND':\n if direction == 'BUY':\n pending_buy_orders[symbol] -= size\n add('BOND', 'SELL', 1001, size)\n elif direction == 'SELL':\n pending_sell_orders[symbol] -= size\n add('BOND', 'BUY', 999, size)\n if symbol == 'VALE':\n print('Vale Order Filled: ' + str(order_num) + ' ' + direction +\n ' Size: ' + str(size))\n if direction == 'BUY':\n pending_buy_orders[symbol] -= size\n positions['VALE'] += size\n elif direction == 'SELL':\n positions['VALE'] -= size\n pending_sell_orders[symbol] -= size\n if symbol == 'XLF':\n print('XLF Order Filled: ' + str(order_num) + ' ' + direction +\n ' Size: ' + str(size))\n if direction == 'BUY':\n pending_buy_orders[symbol] -= size\n positions['XLF'] += size\n elif direction == 'SELL':\n positions['XLF'] -= size\n pending_sell_orders[symbol] -= size\n\n\n<mask token>\n\n\ndef buy_sell_xlf():\n if xlf_buy > 0 and xlf_sell > 0:\n global pending_sell_orders\n global pending_buy_orders\n if pending_buy_orders['XLF'] + positions['XLF'] < 100:\n global xlf_buy_pending_id\n if xlf_buy_pending_id:\n cancel(xlf_buy_pending_id)\n pending_buy_orders['XLF'] = 0\n xlf_buy_pending_id = None\n print('Cancel XLF Order: ' + str(orders_placed))\n time.sleep(1)\n add('XLF', 'BUY', xlf_buy + 1, 100 - positions['XLF'])\n xlf_buy_pending_id = orders_placed\n elif positions['XLF'] - pending_sell_orders['XLF'] > -100:\n global xlf_sell_pending_id\n if xlf_sell_pending_id:\n print('Cancel XLF Order: ' + str(orders_placed))\n cancel(xlf_sell_pending_id)\n pending_sell_orders['XLF'] = 0\n xlf_sell_pending_id = None\n time.sleep(1)\n add('XLF', 'SELL', xlf_sell - 1, 100 + positions['XLF'])\n xlf_sell_pending_id = orders_placed\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef connect():\n s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)\n s.connect((exchange_hostname, port))\n return s.makefile('rw', 1)\n\n\ndef write_to_exchange(exchange, obj):\n json.dump(obj, exchange)\n exchange.write('\\n')\n\n\ndef read_from_exchange(exchange):\n return json.loads(exchange.readline())\n\n\n<mask token>\n\n\ndef hello():\n write_to_exchange(exchange, {'type': 'hello', 'team': team_name.upper()})\n\n\ndef add(symbol, direction, price, size):\n global orders_placed\n orders_placed += 1\n global pending_orders\n pending_orders.append(orders_placed)\n print('Order Placed: ' + str(orders_placed) + ' Position: ' + str(\n positions[symbol]) + ' Size: ' + str(size) + ' Dir: ' + direction +\n ' Symbol: ' + symbol + ' Price: ' + str(price) + '')\n if direction == 'BUY':\n global pending_buy_orders\n pending_buy_orders[symbol] += size\n elif direction == 'SELL':\n global pending_sell_orders\n pending_sell_orders[symbol] += size\n write_to_exchange(exchange, {'type': 'add', 'order_id': orders_placed,\n 'symbol': symbol, 'dir': direction, 'price': price, 'size': size})\n read_from_exchange(exchange)\n\n\ndef cancel(order_id):\n write_to_exchange(exchange, {'type': 'cancel', 'order_id': order_id})\n\n\ndef listen_for_fills(server_msg):\n if server_msg['type'] == 'fill':\n order_num = server_msg['order_id']\n symbol = server_msg['symbol']\n size = server_msg['size']\n direction = server_msg['dir']\n global positions\n if symbol == 'BOND':\n if direction == 'BUY':\n pending_buy_orders[symbol] -= size\n add('BOND', 'SELL', 1001, size)\n elif direction == 'SELL':\n pending_sell_orders[symbol] -= size\n add('BOND', 'BUY', 999, size)\n if symbol == 'VALE':\n print('Vale Order Filled: ' + str(order_num) + ' ' + direction +\n ' Size: ' + str(size))\n if direction == 'BUY':\n pending_buy_orders[symbol] -= size\n positions['VALE'] += size\n elif direction == 'SELL':\n positions['VALE'] -= size\n pending_sell_orders[symbol] -= size\n if symbol == 'XLF':\n print('XLF Order Filled: ' + str(order_num) + ' ' + direction +\n ' Size: ' + str(size))\n if direction == 'BUY':\n pending_buy_orders[symbol] -= size\n positions['XLF'] += size\n elif direction == 'SELL':\n positions['XLF'] -= size\n pending_sell_orders[symbol] -= size\n\n\ndef listen_for_book(server_msg):\n if server_msg['type'] == 'book':\n global vale_sell\n global vale_buy\n global xlf_sell\n global xlf_buy\n if server_msg['symbol'] == 'VALE':\n if len(server_msg['sell']) > 0:\n vale_sell = server_msg['sell'][0][0]\n if len(server_msg['buy']) > 0:\n vale_buy = server_msg['buy'][0][0]\n if server_msg['symbol'] == 'XLF':\n if len(server_msg['sell']) > 0:\n xlf_sell = server_msg['sell'][0][0]\n if len(server_msg['buy']) > 0:\n xlf_buy = server_msg['buy'][0][0]\n\n\n<mask token>\n\n\ndef buy_sell_xlf():\n if xlf_buy > 0 and xlf_sell > 0:\n global pending_sell_orders\n global pending_buy_orders\n if pending_buy_orders['XLF'] + positions['XLF'] < 100:\n global xlf_buy_pending_id\n if xlf_buy_pending_id:\n cancel(xlf_buy_pending_id)\n pending_buy_orders['XLF'] = 0\n xlf_buy_pending_id = None\n print('Cancel XLF Order: ' + str(orders_placed))\n time.sleep(1)\n add('XLF', 'BUY', xlf_buy + 1, 100 - positions['XLF'])\n xlf_buy_pending_id = orders_placed\n elif positions['XLF'] - pending_sell_orders['XLF'] > -100:\n global xlf_sell_pending_id\n if xlf_sell_pending_id:\n print('Cancel XLF Order: ' + str(orders_placed))\n cancel(xlf_sell_pending_id)\n pending_sell_orders['XLF'] = 0\n xlf_sell_pending_id = None\n time.sleep(1)\n add('XLF', 'SELL', xlf_sell - 1, 100 + positions['XLF'])\n xlf_sell_pending_id = orders_placed\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\ndef connect():\n s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)\n s.connect((exchange_hostname, port))\n return s.makefile('rw', 1)\n\n\ndef write_to_exchange(exchange, obj):\n json.dump(obj, exchange)\n exchange.write('\\n')\n\n\ndef read_from_exchange(exchange):\n return json.loads(exchange.readline())\n\n\n<mask token>\n\n\ndef hello():\n write_to_exchange(exchange, {'type': 'hello', 'team': team_name.upper()})\n\n\ndef add(symbol, direction, price, size):\n global orders_placed\n orders_placed += 1\n global pending_orders\n pending_orders.append(orders_placed)\n print('Order Placed: ' + str(orders_placed) + ' Position: ' + str(\n positions[symbol]) + ' Size: ' + str(size) + ' Dir: ' + direction +\n ' Symbol: ' + symbol + ' Price: ' + str(price) + '')\n if direction == 'BUY':\n global pending_buy_orders\n pending_buy_orders[symbol] += size\n elif direction == 'SELL':\n global pending_sell_orders\n pending_sell_orders[symbol] += size\n write_to_exchange(exchange, {'type': 'add', 'order_id': orders_placed,\n 'symbol': symbol, 'dir': direction, 'price': price, 'size': size})\n read_from_exchange(exchange)\n\n\ndef cancel(order_id):\n write_to_exchange(exchange, {'type': 'cancel', 'order_id': order_id})\n\n\ndef listen_for_fills(server_msg):\n if server_msg['type'] == 'fill':\n order_num = server_msg['order_id']\n symbol = server_msg['symbol']\n size = server_msg['size']\n direction = server_msg['dir']\n global positions\n if symbol == 'BOND':\n if direction == 'BUY':\n pending_buy_orders[symbol] -= size\n add('BOND', 'SELL', 1001, size)\n elif direction == 'SELL':\n pending_sell_orders[symbol] -= size\n add('BOND', 'BUY', 999, size)\n if symbol == 'VALE':\n print('Vale Order Filled: ' + str(order_num) + ' ' + direction +\n ' Size: ' + str(size))\n if direction == 'BUY':\n pending_buy_orders[symbol] -= size\n positions['VALE'] += size\n elif direction == 'SELL':\n positions['VALE'] -= size\n pending_sell_orders[symbol] -= size\n if symbol == 'XLF':\n print('XLF Order Filled: ' + str(order_num) + ' ' + direction +\n ' Size: ' + str(size))\n if direction == 'BUY':\n pending_buy_orders[symbol] -= size\n positions['XLF'] += size\n elif direction == 'SELL':\n positions['XLF'] -= size\n pending_sell_orders[symbol] -= size\n\n\ndef listen_for_book(server_msg):\n if server_msg['type'] == 'book':\n global vale_sell\n global vale_buy\n global xlf_sell\n global xlf_buy\n if server_msg['symbol'] == 'VALE':\n if len(server_msg['sell']) > 0:\n vale_sell = server_msg['sell'][0][0]\n if len(server_msg['buy']) > 0:\n vale_buy = server_msg['buy'][0][0]\n if server_msg['symbol'] == 'XLF':\n if len(server_msg['sell']) > 0:\n xlf_sell = server_msg['sell'][0][0]\n if len(server_msg['buy']) > 0:\n xlf_buy = server_msg['buy'][0][0]\n\n\n<mask token>\n\n\ndef buy_sell_xlf():\n if xlf_buy > 0 and xlf_sell > 0:\n global pending_sell_orders\n global pending_buy_orders\n if pending_buy_orders['XLF'] + positions['XLF'] < 100:\n global xlf_buy_pending_id\n if xlf_buy_pending_id:\n cancel(xlf_buy_pending_id)\n pending_buy_orders['XLF'] = 0\n xlf_buy_pending_id = None\n print('Cancel XLF Order: ' + str(orders_placed))\n time.sleep(1)\n add('XLF', 'BUY', xlf_buy + 1, 100 - positions['XLF'])\n xlf_buy_pending_id = orders_placed\n elif positions['XLF'] - pending_sell_orders['XLF'] > -100:\n global xlf_sell_pending_id\n if xlf_sell_pending_id:\n print('Cancel XLF Order: ' + str(orders_placed))\n cancel(xlf_sell_pending_id)\n pending_sell_orders['XLF'] = 0\n xlf_sell_pending_id = None\n time.sleep(1)\n add('XLF', 'SELL', xlf_sell - 1, 100 + positions['XLF'])\n xlf_sell_pending_id = orders_placed\n\n\ndef listen_for_errors(server_msg):\n if server_msg['type'] == 'reject':\n print('ERROR: ORDER FAILED, id: ' + str(server_msg['order_id']) +\n ' ' + server_msg['error'])\n if server_msg['type'] == 'error':\n print('ERROR: ORDER FAILED, id: ' + str(id) + ' ' + server_msg['error']\n )\n if server_msg['type'] == 'ack':\n print('Order Completed: ' + str(server_msg['order_id']))\n if server_msg['type'] == 'out':\n print('Order Successfully Canceled: ' + str(server_msg['order_id']))\n\n\n<mask token>\n", "step-5": "#!/usr/bin/python\n\n# ~~~~~============== HOW TO RUN ==============~~~~~\n# 1) Configure things in CONFIGURATION section\n# 2) Change permissions: chmod +x bot.py\n# 3) Run in loop: while true; do ./bot.py; sleep 1; done\n\nfrom __future__ import print_function\n\nimport sys\nimport socket\nimport json\nimport time\n\n# ~~~~~============== CONFIGURATION ==============~~~~~\n# replace REPLACEME with your team name!\nteam_name=\"BULBASAUR\"\n# This variable dictates whether or not the bot is connecting to the prod\n# or test exchange. Be careful with this switch!\ntest_mode = True\n\n# This setting changes which test exchange is connected to.\n# 0 is prod-like\n# 1 is slower\n# 2 is empty\ntest_exchange_index=0\nprod_exchange_hostname=\"production\"\n\nport=25000 + (test_exchange_index if test_mode else 0)\nexchange_hostname = \"test-exch-\" + team_name if test_mode else prod_exchange_hostname\n\n# ~~~~~============== NETWORKING CODE ==============~~~~~\ndef connect():\n s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)\n s.connect((exchange_hostname, port))\n return s.makefile('rw', 1)\n\ndef write_to_exchange(exchange, obj):\n json.dump(obj, exchange)\n exchange.write(\"\\n\")\n\ndef read_from_exchange(exchange):\n return json.loads(exchange.readline())\n\n\n# ~~~~~============== MAIN LOOP ==============~~~~~\nexchange = None\norders_placed = 0\npending_orders = []\npending_buy_orders = {\"BOND\": 0, \"VALBZ\": 0, \"VALE\": 0, \"XLF\": 0}\npending_sell_orders = {\"BOND\": 0, \"VALBZ\": 0, \"VALE\": 0, \"XLF\": 0}\npositions = {\"BOND\": 0, \"VALBZ\": 0, \"VALE\": 0, \"XLF\": 0}\nvale_buy_pending_id = None\nvale_sell_pending_id = None\nvale_sell = 0\nvale_buy = 0\n\nxlf_buy_pending_id = None\nxlf_sell_pending_id = None\nxlf_sell = 0\nxlf_buy = 0\n\ndef main():\n global exchange\n exchange = connect()\n hello()\n hello_from_exchange = read_from_exchange(exchange)\n # A common mistake people make is to call write_to_exchange() > 1\n # time for every read_from_exchange() response.\n # Since many write messages generate marketdata, this will cause an\n # exponential explosion in pending messages. Please, don't do that!\n print(\"The exchange replied:\", hello_from_exchange, file=sys.stderr)\n global positions\n positions[\"BOND\"] = hello_from_exchange[\"symbols\"][0][\"position\"]\n positions[\"VALE\"] = hello_from_exchange[\"symbols\"][5][\"position\"]\n positions[\"VALBZ\"] = hello_from_exchange[\"symbols\"][4][\"position\"]\n positions[\"XLF\"] = hello_from_exchange[\"symbols\"][7][\"position\"]\n\n add(\"BOND\", \"BUY\", 999, 100 - positions[\"BOND\"])\n add(\"BOND\", \"SELL\", 1001, 100 + positions[\"BOND\"])\n\n while (True):\n server_msg = read_from_exchange(exchange)\n buy_sell_vale()\n buy_sell_xlf()\n listen_for_fills(server_msg)\n listen_for_book(server_msg)\n listen_for_errors(server_msg)\n \ndef hello():\n write_to_exchange(exchange, {\"type\": \"hello\", \"team\": team_name.upper()})\n\ndef add(symbol, direction, price, size):\n # Update order id to be order placed number\n global orders_placed\n orders_placed += 1\n # Add to pending orders list\n global pending_orders\n pending_orders.append(orders_placed)\n #if symbol == \"VALE\":\n print(\"Order Placed: \" + str(orders_placed) + \" Position: \" + str(positions[symbol])+ \" Size: \" + str(size) + \" Dir: \" + direction + \" Symbol: \" + symbol + \" Price: \" + str(price) + \"\")\n\n # Increment Buy Orders If Necessary\n if (direction == \"BUY\"):\n global pending_buy_orders\n pending_buy_orders[symbol] += size\n elif (direction == \"SELL\"):\n global pending_sell_orders\n pending_sell_orders[symbol] += size\n # Add order to exchange\n write_to_exchange(exchange, {\"type\": \"add\", \"order_id\": orders_placed, \"symbol\": symbol,\n \"dir\":direction, \"price\":price, \"size\": size })\n # \n read_from_exchange(exchange)\n\ndef cancel(order_id):\n write_to_exchange(exchange, {\"type\": \"cancel\", \"order_id\": order_id}) \n\ndef listen_for_fills(server_msg):\n if (server_msg[\"type\"] == \"fill\"):\n # Get info of filled order\n order_num = server_msg[\"order_id\"]\n symbol = server_msg[\"symbol\"]\n size = server_msg[\"size\"]\n direction = server_msg[\"dir\"]\n global positions\n # Update bond order fill and buy/sell as necessary\n if (symbol == \"BOND\"):\n # print(\"Bond Order Partially Filled: \" + str(order_num))\n if (direction == \"BUY\"):\n pending_buy_orders[symbol] -= size\n add(\"BOND\", \"SELL\", 1001, size)\n elif (direction == \"SELL\"):\n pending_sell_orders[symbol] -= size\n add(\"BOND\", \"BUY\", 999, size)\n # Update Vale Order fill and hedge as necessary\n if (symbol == \"VALE\"):\n print(\"Vale Order Filled: \" + str(order_num) + \" \" + direction + \" Size: \" + str(size))\n if (direction == \"BUY\"):\n pending_buy_orders[symbol] -= size\n positions[\"VALE\"] += size\n elif (direction == \"SELL\"):\n positions[\"VALE\"] -= size\n pending_sell_orders[symbol] -= size\n if (symbol == \"XLF\"):\n print(\"XLF Order Filled: \" + str(order_num) + \" \" + direction + \" Size: \" + str(size))\n if (direction == \"BUY\"):\n pending_buy_orders[symbol] -= size\n positions[\"XLF\"] += size\n elif (direction == \"SELL\"):\n positions[\"XLF\"] -= size\n pending_sell_orders[symbol] -= size\n\ndef listen_for_book(server_msg):\n if (server_msg[\"type\"] == \"book\"):\n global vale_sell\n global vale_buy\n global xlf_sell\n global xlf_buy\n if (server_msg[\"symbol\"] == \"VALE\"):\n if len(server_msg[\"sell\"]) > 0:\n vale_sell = server_msg[\"sell\"][0][0]\n if len(server_msg[\"buy\"]) > 0:\n vale_buy = server_msg[\"buy\"][0][0]\n if (server_msg[\"symbol\"] == \"XLF\"):\n if len(server_msg[\"sell\"]) > 0:\n xlf_sell = server_msg[\"sell\"][0][0]\n if len(server_msg[\"buy\"]) > 0:\n xlf_buy = server_msg[\"buy\"][0][0]\n\ndef buy_sell_vale():\n if vale_buy > 0 and vale_sell > 0:\n global pending_sell_orders\n global pending_buy_orders\n if ( pending_buy_orders[\"VALE\"] + positions[\"VALE\"] < 10):\n global vale_buy_pending_id\n if vale_buy_pending_id:\n cancel(vale_buy_pending_id)\n pending_buy_orders[\"VALE\"] = 0\n vale_buy_pending_id = None\n print(\"Cancel VALE BUY Order: \" + str(orders_placed))\n time.sleep(1)\n num_stock = 10 - positions[\"VALE\"]\n add(\"VALE\", \"BUY\", vale_buy + 1, 10 - positions[\"VALE\"])\n\n vale_buy_pending_id = orders_placed\n elif (positions[\"VALE\"] - pending_sell_orders[\"VALE\"] > -10):\n global vale_sell_pending_id\n if vale_sell_pending_id:\n print(\"Cancel VALE Sell Order: \" + str(orders_placed))\n cancel(vale_sell_pending_id)\n pending_sell_orders[\"VALE\"] = 0\n vale_sell_pending_id = None\n time.sleep(1)\n num_stock = 10 - positions[\"VALE\"]\n add(\"VALE\", \"SELL\", vale_sell - 1, num_stock)\n vale_sell_pending_id = orders_placed\n\ndef buy_sell_xlf():\n if xlf_buy > 0 and xlf_sell > 0:\n global pending_sell_orders\n global pending_buy_orders\n if ( pending_buy_orders[\"XLF\"] + positions[\"XLF\"] < 100):\n global xlf_buy_pending_id\n if xlf_buy_pending_id:\n cancel(xlf_buy_pending_id)\n pending_buy_orders[\"XLF\"] = 0\n xlf_buy_pending_id = None\n print(\"Cancel XLF Order: \" + str(orders_placed))\n time.sleep(1)\n add(\"XLF\", \"BUY\", xlf_buy + 1, 100 - positions[\"XLF\"])\n xlf_buy_pending_id = orders_placed\n elif (positions[\"XLF\"] - pending_sell_orders[\"XLF\"] > -100):\n global xlf_sell_pending_id\n if xlf_sell_pending_id:\n print(\"Cancel XLF Order: \" + str(orders_placed))\n cancel(xlf_sell_pending_id)\n pending_sell_orders[\"XLF\"] = 0\n xlf_sell_pending_id = None\n time.sleep(1)\n add(\"XLF\", \"SELL\", xlf_sell - 1, 100 + positions[\"XLF\"])\n xlf_sell_pending_id = orders_placed\n\ndef listen_for_errors(server_msg):\n if (server_msg[\"type\"] == \"reject\"):\n print(\"ERROR: ORDER FAILED, id: \" + str(server_msg[\"order_id\"]) + \" \" + server_msg[\"error\"])\n if (server_msg[\"type\"] == \"error\"):\n print(\"ERROR: ORDER FAILED, id: \" + str(id) + \" \" + server_msg[\"error\"])\n if (server_msg[\"type\"] == \"ack\"):\n print(\"Order Completed: \" + str(server_msg[\"order_id\"]))\n if (server_msg[\"type\"] == \"out\"):\n print(\"Order Successfully Canceled: \" + str(server_msg[\"order_id\"]))\n\n #add(\"BOND\", \"BUY\", 999, 100 - positions[\"BOND\"])\n #add(\"BOND\", \"SELL\", 1001, 100 + positions[\"BOND\"])\n\nif __name__ == \"__main__\":\n main()\n", "step-ids": [ 5, 8, 9, 10, 16 ] }
[ 5, 8, 9, 10, 16 ]
import pandas as pd import matplotlib.pyplot as plt import numpy as np from sklearn.cluster import KMeans from kneed import KneeLocator #Create a panda data frame from the csv file df = pd.read_csv('ClusterPlot.csv', usecols=['V1','V2']) #Convert the panda data frame to a NumPy array arr = df.to_numpy() #Code used to visualise the data and check if the import worked correctly #Now commented out but retained for debugging. #plt.scatter(arr[:,0],arr[:,1], label='True Position') #plt.show() # Create an array to store the Sum of Squared Errors or the cluster inertia # for the k-clusters in multiple runs of the K-Means algo with different # number of clusters assumed distortions = [] for i in range(1,11): km = KMeans(n_clusters=i, init='random', n_init=10, max_iter=300, tol=1e-04, random_state=0) km.fit(arr) distortions.append(km.inertia_) # Find the elbow or knee from the plot of no. of clusters vs distortion for that # number. This algorithm locates the knee and that is used to provide the Number # of clusters to the main run of K-means algo. kn = KneeLocator(range(1,11), distortions, curve='convex', direction='decreasing') print('The number of clusters are: ' + str(kn.knee)) #plot the no. of clusters vs distortion graph and annotate the elbow point plt.plot(range(1, 11), distortions, marker='o') plt.xlabel('Number of clusters') plt.ylabel('Distortion') plt.vlines(kn.knee, plt.ylim()[0], plt.ylim()[1], linestyles='dashed') plt.show() #From the sciKitLearn clustering algorithms, the K-means clustering #algorithm is used. km = KMeans( n_clusters=kn.knee, init='random', n_init=10, max_iter=300, tol=1e-04, random_state=0 ) #Obtain the cluster labels by running the K-means algorithm with # the parameters defined above. y_km = km.fit_predict(arr) #Color Array colors = ['lightgreen','orange','lightblue','azure', 'crimson','lightpink','black','gold', 'coral', 'navy'] #Marker Array markers = ['s','o','v', '^', '<', '>', 'h', 'H', 'D', 'd'] #Plot the clusters. for i in range(0, 3): plt.scatter( arr[y_km == i, 0], arr[y_km == i, 1], s=50, c=colors[i], marker=markers[i], edgecolor='black', label='cluster ' + str(i+1) ) # Plotting the centroids for all the clusters. plt.scatter( km.cluster_centers_[:, 0], km.cluster_centers_[:, 1], s=250, marker='*', c='red', edgecolor='black', label='centroids' ) plt.legend(scatterpoints=1) plt.grid() plt.show()
normal
{ "blob_id": "09417014963172fc71b4268aafdec1405c04f34d", "index": 3472, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor i in range(1, 11):\n km = KMeans(n_clusters=i, init='random', n_init=10, max_iter=300, tol=\n 0.0001, random_state=0)\n km.fit(arr)\n distortions.append(km.inertia_)\n<mask token>\nprint('The number of clusters are: ' + str(kn.knee))\nplt.plot(range(1, 11), distortions, marker='o')\nplt.xlabel('Number of clusters')\nplt.ylabel('Distortion')\nplt.vlines(kn.knee, plt.ylim()[0], plt.ylim()[1], linestyles='dashed')\nplt.show()\n<mask token>\nfor i in range(0, 3):\n plt.scatter(arr[y_km == i, 0], arr[y_km == i, 1], s=50, c=colors[i],\n marker=markers[i], edgecolor='black', label='cluster ' + str(i + 1))\nplt.scatter(km.cluster_centers_[:, 0], km.cluster_centers_[:, 1], s=250,\n marker='*', c='red', edgecolor='black', label='centroids')\nplt.legend(scatterpoints=1)\nplt.grid()\nplt.show()\n", "step-3": "<mask token>\ndf = pd.read_csv('ClusterPlot.csv', usecols=['V1', 'V2'])\narr = df.to_numpy()\ndistortions = []\nfor i in range(1, 11):\n km = KMeans(n_clusters=i, init='random', n_init=10, max_iter=300, tol=\n 0.0001, random_state=0)\n km.fit(arr)\n distortions.append(km.inertia_)\nkn = KneeLocator(range(1, 11), distortions, curve='convex', direction=\n 'decreasing')\nprint('The number of clusters are: ' + str(kn.knee))\nplt.plot(range(1, 11), distortions, marker='o')\nplt.xlabel('Number of clusters')\nplt.ylabel('Distortion')\nplt.vlines(kn.knee, plt.ylim()[0], plt.ylim()[1], linestyles='dashed')\nplt.show()\nkm = KMeans(n_clusters=kn.knee, init='random', n_init=10, max_iter=300, tol\n =0.0001, random_state=0)\ny_km = km.fit_predict(arr)\ncolors = ['lightgreen', 'orange', 'lightblue', 'azure', 'crimson',\n 'lightpink', 'black', 'gold', 'coral', 'navy']\nmarkers = ['s', 'o', 'v', '^', '<', '>', 'h', 'H', 'D', 'd']\nfor i in range(0, 3):\n plt.scatter(arr[y_km == i, 0], arr[y_km == i, 1], s=50, c=colors[i],\n marker=markers[i], edgecolor='black', label='cluster ' + str(i + 1))\nplt.scatter(km.cluster_centers_[:, 0], km.cluster_centers_[:, 1], s=250,\n marker='*', c='red', edgecolor='black', label='centroids')\nplt.legend(scatterpoints=1)\nplt.grid()\nplt.show()\n", "step-4": "import pandas as pd\nimport matplotlib.pyplot as plt\nimport numpy as np\nfrom sklearn.cluster import KMeans\nfrom kneed import KneeLocator\ndf = pd.read_csv('ClusterPlot.csv', usecols=['V1', 'V2'])\narr = df.to_numpy()\ndistortions = []\nfor i in range(1, 11):\n km = KMeans(n_clusters=i, init='random', n_init=10, max_iter=300, tol=\n 0.0001, random_state=0)\n km.fit(arr)\n distortions.append(km.inertia_)\nkn = KneeLocator(range(1, 11), distortions, curve='convex', direction=\n 'decreasing')\nprint('The number of clusters are: ' + str(kn.knee))\nplt.plot(range(1, 11), distortions, marker='o')\nplt.xlabel('Number of clusters')\nplt.ylabel('Distortion')\nplt.vlines(kn.knee, plt.ylim()[0], plt.ylim()[1], linestyles='dashed')\nplt.show()\nkm = KMeans(n_clusters=kn.knee, init='random', n_init=10, max_iter=300, tol\n =0.0001, random_state=0)\ny_km = km.fit_predict(arr)\ncolors = ['lightgreen', 'orange', 'lightblue', 'azure', 'crimson',\n 'lightpink', 'black', 'gold', 'coral', 'navy']\nmarkers = ['s', 'o', 'v', '^', '<', '>', 'h', 'H', 'D', 'd']\nfor i in range(0, 3):\n plt.scatter(arr[y_km == i, 0], arr[y_km == i, 1], s=50, c=colors[i],\n marker=markers[i], edgecolor='black', label='cluster ' + str(i + 1))\nplt.scatter(km.cluster_centers_[:, 0], km.cluster_centers_[:, 1], s=250,\n marker='*', c='red', edgecolor='black', label='centroids')\nplt.legend(scatterpoints=1)\nplt.grid()\nplt.show()\n", "step-5": "import pandas as pd\nimport matplotlib.pyplot as plt\nimport numpy as np\nfrom sklearn.cluster import KMeans\nfrom kneed import KneeLocator\n\n#Create a panda data frame from the csv file\ndf = pd.read_csv('ClusterPlot.csv', usecols=['V1','V2'])\n\n#Convert the panda data frame to a NumPy array\narr = df.to_numpy()\n\n#Code used to visualise the data and check if the import worked correctly\n#Now commented out but retained for debugging.\n#plt.scatter(arr[:,0],arr[:,1], label='True Position')\n#plt.show()\n\n# Create an array to store the Sum of Squared Errors or the cluster inertia\n# for the k-clusters in multiple runs of the K-Means algo with different\n# number of clusters assumed\n\ndistortions = []\n\nfor i in range(1,11):\n km = KMeans(n_clusters=i, init='random',\n n_init=10, max_iter=300,\n tol=1e-04, random_state=0)\n km.fit(arr)\n distortions.append(km.inertia_)\n\n# Find the elbow or knee from the plot of no. of clusters vs distortion for that\n# number. This algorithm locates the knee and that is used to provide the Number\n# of clusters to the main run of K-means algo.\n\nkn = KneeLocator(range(1,11), distortions, curve='convex', direction='decreasing')\nprint('The number of clusters are: ' + str(kn.knee))\n\n#plot the no. of clusters vs distortion graph and annotate the elbow point\n\nplt.plot(range(1, 11), distortions, marker='o')\nplt.xlabel('Number of clusters')\nplt.ylabel('Distortion')\nplt.vlines(kn.knee, plt.ylim()[0], plt.ylim()[1], linestyles='dashed')\nplt.show()\n\n\n\n#From the sciKitLearn clustering algorithms, the K-means clustering\n#algorithm is used.\nkm = KMeans(\n n_clusters=kn.knee, init='random',\n n_init=10, max_iter=300,\n tol=1e-04, random_state=0\n)\n\n#Obtain the cluster labels by running the K-means algorithm with\n# the parameters defined above.\ny_km = km.fit_predict(arr)\n\n#Color Array\ncolors = ['lightgreen','orange','lightblue','azure', 'crimson','lightpink','black','gold', 'coral', 'navy']\n\n#Marker Array\nmarkers = ['s','o','v', '^', '<', '>', 'h', 'H', 'D', 'd']\n\n#Plot the clusters.\nfor i in range(0, 3):\n plt.scatter(\n arr[y_km == i, 0], arr[y_km == i, 1],\n s=50, c=colors[i],\n marker=markers[i], edgecolor='black',\n label='cluster ' + str(i+1)\n)\n\n# Plotting the centroids for all the clusters.\nplt.scatter(\n km.cluster_centers_[:, 0], km.cluster_centers_[:, 1],\n s=250, marker='*',\n c='red', edgecolor='black',\n label='centroids'\n)\n\nplt.legend(scatterpoints=1)\nplt.grid()\nplt.show()\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
a, b = map(int, input().split()) def mult(a, b): if a > 9 or b > 9 or a < 1 or b < 1: print(-1) else: print(a * b) mult(a, b)
normal
{ "blob_id": "991fa5f9c83a1821e62f7baacbc56a4d31982312", "index": 3681, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef mult(a, b):\n if a > 9 or b > 9 or a < 1 or b < 1:\n print(-1)\n else:\n print(a * b)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef mult(a, b):\n if a > 9 or b > 9 or a < 1 or b < 1:\n print(-1)\n else:\n print(a * b)\n\n\nmult(a, b)\n", "step-4": "a, b = map(int, input().split())\n\n\ndef mult(a, b):\n if a > 9 or b > 9 or a < 1 or b < 1:\n print(-1)\n else:\n print(a * b)\n\n\nmult(a, b)\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
import os, datetime import urllib from flask import (Flask, flash, json, jsonify, redirect, render_template, request, session, url_for) import util.database as db template_path=os.path.dirname(__file__)+"/templates" file="" if template_path!="/templates": app = Flask("__main__",template_folder=os.path.dirname(__file__)+"/templates",static_folder=os.path.dirname(__file__)+"/static") file = open(os.path.dirname(__file__)+'/data/keys.json') else: app = Flask("__main__") file = open('./data/keys.json') app.secret_key = os.urandom(32) content = file.read() keys = json.loads(content) # has a 5000 calls/day limit PIXABAY_KEY = keys['Pixabay'] PIXABAY_STUB = "https://pixabay.com/api/?key=" + PIXABAY_KEY + "&q=" #separate words with "+" @app.route('/') def home(): if "username" in session: id_num=db.search_user_list(session["username"], is_usrname=True)[0][2] finavail=db.search_finance_list(id_num) goalavail=db.search_goal_list(id_num) if finavail: session["finances"]=session["username"] if goalavail: session["goals"]=session["username"] set_goal = db.search_goal_list(id_num) print(set_goal) if set_goal != []: user_id = db.search_user_list(session['username'], is_usrname=True)[0][2] g = db.search_goal_list(user_id) b = db.search_finance_list(user_id) t = db.search_time_list(user_id) date_now = datetime.date.today() price = g perc = g delta_months = 0 if g != []: g = g[0][0] if price != []: price = price[0][1] if perc != []: perc = perc[0][2] ##function to get difference in months between 2 dates def months_between(date1,date2): if date1>date2: date1,date2=date2,date1 m1=date1.year*12+date1.month m2=date2.year*12+date2.month months=m2-m1 if date1.day>date2.day: months-=1 elif date1.day==date2.day: seconds1=date1.hour*3600+date1.minute+date1.second seconds2=date2.hour*3600+date2.minute+date2.second if seconds1>seconds2: months-=1 return months if t != []: t = t[0][0] delta_months = months_between(datetime.datetime.strptime(t,'%Y-%m-%d'), datetime.datetime.strptime(str(date_now),'%Y-%m-%d')) print(delta_months) img = db.search_image_list(user_id) if img != []: img = img[0][0] if b != []: bal = b[0][0] inc = b[0][1] print(b) print(g) print(price) print(perc) print(img) if g or price: if b: print("Used the first one") perc_complete = (delta_months * (perc / 100.0) * inc)/price print(perc_complete) if perc_complete > 1: perc_complete = 1 return render_template('home.html',fin=finavail,goal=goalavail, set_goal= set_goal, goal_name =g, goal_price=price,perc_inc = perc, image=img, bal=bal, income=inc, months= delta_months, perc_comp = perc_complete * 100 ) return render_template('home.html',fin=finavail,goal=goalavail) return render_template('home.html',fin=finavail,goal=goalavail) return render_template('home.html') @app.route('/register') def register(): return render_template('register.html') @app.route('/login') def login(): return render_template('login.html') @app.route('/auth', methods=['POST']) def auth(): user = request.form.get("user") paswrd = request.form.get('pass') if request.form.get("submit")=="Register": paswrd2 = request.form.get("pass2") print(paswrd) print(paswrd2) if paswrd != paswrd2: flash("Passwords Do Not Match") return redirect(url_for('register')) if db.register(user, paswrd): flash("Registered successfully") session['username'] = request.form['user'] else: flash("Unable to register the user") return redirect(url_for('register')) print("Username has been registered previously!") else: match=db.search_user_list(user, is_usrname=True) if len(match)>0: if match[0][1]==paswrd: session["username"]=request.form["user"] else: flash("wrong Password") return redirect(url_for('login')) else: flash("User not found") return redirect(url_for('login')) return redirect(url_for('home')) @app.route('/finances') def finance(): if 'username' not in session: flash("You must be logged in to access this page") return redirect(url_for('login')) user_id = db.search_user_list(session['username'])[0][2] items = db.search_finance_list(user_id) daily = db.search_expense_list(user_id, is_id=True) monthly = db.search_monthly_list(user_id, is_id=True) ratings = db.search_rating_list(user_id, is_id=True) print(ratings) print(f"Unlike month, this is daily: {daily}\n") w = dict([ (x[0], x[1]) for x in daily ]) s = dict([ (x[0], x[1]) for x in monthly ]) r = dict([ (x[0], x[1]) for x in ratings ]) print(f"THIS is monthly: {monthly}") print(f"THIS is s: {s}") print(f"These are the ratings: {r}") total = 0 m_total = 0 for x in w.values(): total += float(x) for x in s.values(): m_total += float(x) if items != []: bal,income,i = items[0] diction = {"Balance":bal, "Income":income} return render_template('findata.html', diction=diction, daily=w, months = s, total=total, mtotal = m_total,completed=True, ratings=r) return render_template('findata.html') @app.route('/fincalc', methods=['POST']) def calc(): if 'username' not in session: flash("You must be logged in to access this page") return redirect(url_for('login')) # print(request.form) session["finances"]=session["username"] bal = request.form['balance'][1:] monthly = request.form['monthly-inputs'] income = request.form['income'][1:] # print(request.form) s = request.form d_rates = request.form['daily-importance'] m_rates = request.form['monthly-importance'] print(d_rates) user_id = db.search_user_list(session['username'])[0][2] daily_dict = json.loads(d_rates) monthly_dict = json.loads(m_rates) print(daily_dict) print(monthly_dict) dai_im = dict([x for x in daily_dict.values()]) # {expenseName: rating, expenseName2: rating, ...} mon_im = dict([x for x in monthly_dict.values()]) file=os.path.dirname(__file__)+f'/static/ratings.csv' stringg = "{" try: with open(file) as f: # if readable, file already exists print("File found, not creating...") f.close() except Exception as e: print(e) with open(file, 'a+') as f: # creates the file print("File not found, creating...") f.write(f"ratings,id\n") f.close() for item in mon_im: db.add_rating(item, mon_im[item], user_id) stringg += "'" + item + "'" + " : " + "'" + str(mon_im[item]) + "'" + " " for item in dai_im: db.add_rating(item, dai_im[item], user_id) stringg += "'" + item + "'" + " : " + "'" + str(dai_im[item]) + "'" + " " stringg += "}," + str(user_id) + "\n" with open(file, "r") as f: lines = f.readlines() with open(file, "w") as f: for line in lines: if str(user_id) != line.strip("\n").split(",")[1]: f.write(line) f.write(stringg) f.close() daily = request.form['all-inputs'] print(f"This is daily: {monthly}") daily = json.loads(daily) # dictionary monthly = json.loads(monthly) print(f"This is daily now {monthly}") w = dict([x for x in daily.values()]) # {expense1: $$$, expense2: $$$, ...} m = dict([x for x in monthly.values()]) print(f"\nThis is calculated m:{m}\n") db.add_finances(bal, m, income, w, user_id) flash("Finances updated") return redirect(url_for('home')) @app.route('/goals') def goals(): if 'username' not in session: flash("You must be logged in to access this page") return redirect(url_for('login')) user_id = db.search_user_list(session['username'])[0][2] g = db.search_goal_list(user_id) b = db.search_finance_list(user_id) t = db.search_time_list(user_id) date_now = datetime.date.today() price = g perc = g delta_months = 0 if g != []: g = g[0][0] if price != []: price = price[0][1] if perc != []: perc = perc[0][2] ##function to get difference in months between 2 dates def months_between(date1,date2): if date1>date2: date1,date2=date2,date1 m1=date1.year*12+date1.month m2=date2.year*12+date2.month months=m2-m1 if date1.day>date2.day: months-=1 elif date1.day==date2.day: seconds1=date1.hour*3600+date1.minute+date1.second seconds2=date2.hour*3600+date2.minute+date2.second if seconds1>seconds2: months-=1 return months if t != []: t = t[0][0] delta_months = months_between(datetime.datetime.strptime(t,'%Y-%m-%d'), datetime.datetime.strptime(str(date_now),'%Y-%m-%d')) print(delta_months) img = db.search_image_list(user_id) if img != []: img = img[0][0] if b != []: bal = b[0][0] inc = b[0][1] print(b) print(g) print(price) print(perc) print(img) if g or price: if b: print("Used the first one") perc_complete = (delta_months * (perc / 100.0) * inc)/price print(perc_complete) if perc_complete > 1: perc_complete = 1 return render_template('goals.html', goal=g, goal_price=price,perc_inc = perc, image=img, bal=bal, income=inc, months= delta_months, perc_comp = perc_complete * 100 ) else: print("Used the second") return render_template('goals.html', goal=g, goal_price=price,perc_inc = perc, image=img) else: if b: return render_template('goals.html', bal=bal, income=inc) else: return render_template('goals.html') @app.route('/gcalc', methods=['POST']) def gcalc(): if 'username' not in session: flash("You must be logged in to access this page") return redirect(url_for('login')) goal_name = request.form['goal'] goal_price = request.form['goal_price'][1:] percentage = request.form['slide'] print("This is percentage:") print(percentage) print("gcalc") print(goal_name) print(goal_price) user_id = db.search_user_list(session['username'])[0][2] db.add_goals(goal_name, goal_price, percentage, user_id) a = db.search_image_list(user_id) print(a) # optimization to save on api calls if a == [] or a[0][2] != goal_name: try: l = urllib.request.urlopen(PIXABAY_STUB + goal_name.replace(' ', '+') + "&image_type=photo") p = json.loads(l.read()) img = p['hits'][0]['webformatURL'] except: return render_template('error.html', err="Cannot connect to API", fix="Try refreshing or contacting the site owner") else: img = a[0][1] db.add_images(img, goal_name, user_id) flash(f"Goal for {goal_name} at ${goal_price} has been added!") return redirect(url_for('home')) @app.route('/sankey') def sankey(): if 'username' not in session: flash("You must be logged in to access this page") return redirect(url_for('login')) user_id = db.search_user_list(session['username'])[0][2] return render_template('sankey.html',idnum=user_id) @app.route('/pie') def pie(): if 'username' not in session: flash("You must be logged in to access this page") return redirect(url_for('login')) user_id = db.search_user_list(session['username'])[0][2] return render_template('pie.html',idnum=user_id) @app.route('/area') def area(): if 'username' not in session: flash("You must be logged in to access this page") return redirect(url_for('login')) user_id = db.search_user_list(session['username'])[0][2] goal=db.search_goal_list(user_id) if goal == []: return redirect(url_for('goals')) daily=db.search_expense_list(user_id) monthly=db.search_monthly_list(user_id) dadict={} modict={} print(goal) ratings={} for names in daily: dadict[names[0]]=names[1] for names in monthly: modict[names[0]]=names[1] print(dadict,modict) percent=0 for names in db.search_rating_list(user_id): print(names) if names[0] in modict: percent=(modict[names[0]]*12)/goal[0][1] if names[0] in dadict: percent=(dadict[names[0]]*30*12)/goal[0][1] if names[1]<=6 and percent >=0.05: ratings[names[0]]=(names[1],percent) print(ratings) return render_template('area.html',idnum=user_id,ratings=ratings) @app.route('/logout') def logout(): if 'username' in session: session.pop('username') return redirect(url_for('home')) @app.route('/account') def account(): if 'username' not in session: flash("You must be logged in to access this page") return redirect(url_for('login')) # print(db.search_user_list(session['username'])) user_list = json.dumps(db.search_user_list(ret_all=True)) print(json.dumps(db.search_user_list(ret_all=True))) return render_template('accounts.html', user_list=user_list) @app.route('/update', methods=["POST"]) def update(): print('this is the updates') update_dict = request.form['all-options'] update_dict = json.loads(update_dict) print(request.form) user_ids = db.search_user_list(session['username']) user = user_ids[0][-1] print(user) db.update_user_list(update_dict['username'] or user_ids[0][0], update_dict['password'] or user_ids[0][1], user) db.reset_statistics(user, update_dict['reset']) session.pop('username') session['username'] = update_dict['username'] or user_ids[0][0] # change username in session flash("Account information updated successfully") return redirect(url_for('home')) @app.route('/del') def delete(): if 'username' not in session: flash("Woops. You can't be here") return redirect(url_for('login')) user = db.search_user_list(session['username'])[0][-1] print(user) db.update_user_list(None, None, user, rem=True) flash("User successfully removed") session.pop('username') return redirect(url_for('home')) if __name__ == "__main__": app.debug = True app.run()
normal
{ "blob_id": "5c20eefe8111d44a36e69b873a71377ee7bfa23d", "index": 6768, "step-1": "<mask token>\n\n\[email protected]('/')\ndef home():\n if 'username' in session:\n id_num = db.search_user_list(session['username'], is_usrname=True)[0][2\n ]\n finavail = db.search_finance_list(id_num)\n goalavail = db.search_goal_list(id_num)\n if finavail:\n session['finances'] = session['username']\n if goalavail:\n session['goals'] = session['username']\n set_goal = db.search_goal_list(id_num)\n print(set_goal)\n if set_goal != []:\n user_id = db.search_user_list(session['username'], is_usrname=True\n )[0][2]\n g = db.search_goal_list(user_id)\n b = db.search_finance_list(user_id)\n t = db.search_time_list(user_id)\n date_now = datetime.date.today()\n price = g\n perc = g\n delta_months = 0\n if g != []:\n g = g[0][0]\n if price != []:\n price = price[0][1]\n if perc != []:\n perc = perc[0][2]\n\n def months_between(date1, date2):\n if date1 > date2:\n date1, date2 = date2, date1\n m1 = date1.year * 12 + date1.month\n m2 = date2.year * 12 + date2.month\n months = m2 - m1\n if date1.day > date2.day:\n months -= 1\n elif date1.day == date2.day:\n seconds1 = date1.hour * 3600 + date1.minute + date1.second\n seconds2 = date2.hour * 3600 + date2.minute + date2.second\n if seconds1 > seconds2:\n months -= 1\n return months\n if t != []:\n t = t[0][0]\n delta_months = months_between(datetime.datetime.strptime(t,\n '%Y-%m-%d'), datetime.datetime.strptime(str(date_now),\n '%Y-%m-%d'))\n print(delta_months)\n img = db.search_image_list(user_id)\n if img != []:\n img = img[0][0]\n if b != []:\n bal = b[0][0]\n inc = b[0][1]\n print(b)\n print(g)\n print(price)\n print(perc)\n print(img)\n if g or price:\n if b:\n print('Used the first one')\n perc_complete = delta_months * (perc / 100.0) * inc / price\n print(perc_complete)\n if perc_complete > 1:\n perc_complete = 1\n return render_template('home.html', fin=finavail, goal=\n goalavail, set_goal=set_goal, goal_name=g,\n goal_price=price, perc_inc=perc, image=img, bal=bal,\n income=inc, months=delta_months, perc_comp=\n perc_complete * 100)\n return render_template('home.html', fin=finavail, goal=goalavail)\n return render_template('home.html', fin=finavail, goal=goalavail)\n return render_template('home.html')\n\n\n<mask token>\n\n\[email protected]('/login')\ndef login():\n return render_template('login.html')\n\n\[email protected]('/auth', methods=['POST'])\ndef auth():\n user = request.form.get('user')\n paswrd = request.form.get('pass')\n if request.form.get('submit') == 'Register':\n paswrd2 = request.form.get('pass2')\n print(paswrd)\n print(paswrd2)\n if paswrd != paswrd2:\n flash('Passwords Do Not Match')\n return redirect(url_for('register'))\n if db.register(user, paswrd):\n flash('Registered successfully')\n session['username'] = request.form['user']\n else:\n flash('Unable to register the user')\n return redirect(url_for('register'))\n print('Username has been registered previously!')\n else:\n match = db.search_user_list(user, is_usrname=True)\n if len(match) > 0:\n if match[0][1] == paswrd:\n session['username'] = request.form['user']\n else:\n flash('wrong Password')\n return redirect(url_for('login'))\n else:\n flash('User not found')\n return redirect(url_for('login'))\n return redirect(url_for('home'))\n\n\[email protected]('/finances')\ndef finance():\n if 'username' not in session:\n flash('You must be logged in to access this page')\n return redirect(url_for('login'))\n user_id = db.search_user_list(session['username'])[0][2]\n items = db.search_finance_list(user_id)\n daily = db.search_expense_list(user_id, is_id=True)\n monthly = db.search_monthly_list(user_id, is_id=True)\n ratings = db.search_rating_list(user_id, is_id=True)\n print(ratings)\n print(f'Unlike month, this is daily: {daily}\\n')\n w = dict([(x[0], x[1]) for x in daily])\n s = dict([(x[0], x[1]) for x in monthly])\n r = dict([(x[0], x[1]) for x in ratings])\n print(f'THIS is monthly: {monthly}')\n print(f'THIS is s: {s}')\n print(f'These are the ratings: {r}')\n total = 0\n m_total = 0\n for x in w.values():\n total += float(x)\n for x in s.values():\n m_total += float(x)\n if items != []:\n bal, income, i = items[0]\n diction = {'Balance': bal, 'Income': income}\n return render_template('findata.html', diction=diction, daily=w,\n months=s, total=total, mtotal=m_total, completed=True, ratings=r)\n return render_template('findata.html')\n\n\[email protected]('/fincalc', methods=['POST'])\ndef calc():\n if 'username' not in session:\n flash('You must be logged in to access this page')\n return redirect(url_for('login'))\n session['finances'] = session['username']\n bal = request.form['balance'][1:]\n monthly = request.form['monthly-inputs']\n income = request.form['income'][1:]\n s = request.form\n d_rates = request.form['daily-importance']\n m_rates = request.form['monthly-importance']\n print(d_rates)\n user_id = db.search_user_list(session['username'])[0][2]\n daily_dict = json.loads(d_rates)\n monthly_dict = json.loads(m_rates)\n print(daily_dict)\n print(monthly_dict)\n dai_im = dict([x for x in daily_dict.values()])\n mon_im = dict([x for x in monthly_dict.values()])\n file = os.path.dirname(__file__) + f'/static/ratings.csv'\n stringg = '{'\n try:\n with open(file) as f:\n print('File found, not creating...')\n f.close()\n except Exception as e:\n print(e)\n with open(file, 'a+') as f:\n print('File not found, creating...')\n f.write(f'ratings,id\\n')\n f.close()\n for item in mon_im:\n db.add_rating(item, mon_im[item], user_id)\n stringg += \"'\" + item + \"'\" + ' : ' + \"'\" + str(mon_im[item]\n ) + \"'\" + ' '\n for item in dai_im:\n db.add_rating(item, dai_im[item], user_id)\n stringg += \"'\" + item + \"'\" + ' : ' + \"'\" + str(dai_im[item]\n ) + \"'\" + ' '\n stringg += '},' + str(user_id) + '\\n'\n with open(file, 'r') as f:\n lines = f.readlines()\n with open(file, 'w') as f:\n for line in lines:\n if str(user_id) != line.strip('\\n').split(',')[1]:\n f.write(line)\n f.write(stringg)\n f.close()\n daily = request.form['all-inputs']\n print(f'This is daily: {monthly}')\n daily = json.loads(daily)\n monthly = json.loads(monthly)\n print(f'This is daily now {monthly}')\n w = dict([x for x in daily.values()])\n m = dict([x for x in monthly.values()])\n print(f'\\nThis is calculated m:{m}\\n')\n db.add_finances(bal, m, income, w, user_id)\n flash('Finances updated')\n return redirect(url_for('home'))\n\n\[email protected]('/goals')\ndef goals():\n if 'username' not in session:\n flash('You must be logged in to access this page')\n return redirect(url_for('login'))\n user_id = db.search_user_list(session['username'])[0][2]\n g = db.search_goal_list(user_id)\n b = db.search_finance_list(user_id)\n t = db.search_time_list(user_id)\n date_now = datetime.date.today()\n price = g\n perc = g\n delta_months = 0\n if g != []:\n g = g[0][0]\n if price != []:\n price = price[0][1]\n if perc != []:\n perc = perc[0][2]\n\n def months_between(date1, date2):\n if date1 > date2:\n date1, date2 = date2, date1\n m1 = date1.year * 12 + date1.month\n m2 = date2.year * 12 + date2.month\n months = m2 - m1\n if date1.day > date2.day:\n months -= 1\n elif date1.day == date2.day:\n seconds1 = date1.hour * 3600 + date1.minute + date1.second\n seconds2 = date2.hour * 3600 + date2.minute + date2.second\n if seconds1 > seconds2:\n months -= 1\n return months\n if t != []:\n t = t[0][0]\n delta_months = months_between(datetime.datetime.strptime(t,\n '%Y-%m-%d'), datetime.datetime.strptime(str(date_now), '%Y-%m-%d'))\n print(delta_months)\n img = db.search_image_list(user_id)\n if img != []:\n img = img[0][0]\n if b != []:\n bal = b[0][0]\n inc = b[0][1]\n print(b)\n print(g)\n print(price)\n print(perc)\n print(img)\n if g or price:\n if b:\n print('Used the first one')\n perc_complete = delta_months * (perc / 100.0) * inc / price\n print(perc_complete)\n if perc_complete > 1:\n perc_complete = 1\n return render_template('goals.html', goal=g, goal_price=price,\n perc_inc=perc, image=img, bal=bal, income=inc, months=\n delta_months, perc_comp=perc_complete * 100)\n else:\n print('Used the second')\n return render_template('goals.html', goal=g, goal_price=price,\n perc_inc=perc, image=img)\n elif b:\n return render_template('goals.html', bal=bal, income=inc)\n else:\n return render_template('goals.html')\n\n\[email protected]('/gcalc', methods=['POST'])\ndef gcalc():\n if 'username' not in session:\n flash('You must be logged in to access this page')\n return redirect(url_for('login'))\n goal_name = request.form['goal']\n goal_price = request.form['goal_price'][1:]\n percentage = request.form['slide']\n print('This is percentage:')\n print(percentage)\n print('gcalc')\n print(goal_name)\n print(goal_price)\n user_id = db.search_user_list(session['username'])[0][2]\n db.add_goals(goal_name, goal_price, percentage, user_id)\n a = db.search_image_list(user_id)\n print(a)\n if a == [] or a[0][2] != goal_name:\n try:\n l = urllib.request.urlopen(PIXABAY_STUB + goal_name.replace(' ',\n '+') + '&image_type=photo')\n p = json.loads(l.read())\n img = p['hits'][0]['webformatURL']\n except:\n return render_template('error.html', err=\n 'Cannot connect to API', fix=\n 'Try refreshing or contacting the site owner')\n else:\n img = a[0][1]\n db.add_images(img, goal_name, user_id)\n flash(f'Goal for {goal_name} at ${goal_price} has been added!')\n return redirect(url_for('home'))\n\n\[email protected]('/sankey')\ndef sankey():\n if 'username' not in session:\n flash('You must be logged in to access this page')\n return redirect(url_for('login'))\n user_id = db.search_user_list(session['username'])[0][2]\n return render_template('sankey.html', idnum=user_id)\n\n\[email protected]('/pie')\ndef pie():\n if 'username' not in session:\n flash('You must be logged in to access this page')\n return redirect(url_for('login'))\n user_id = db.search_user_list(session['username'])[0][2]\n return render_template('pie.html', idnum=user_id)\n\n\[email protected]('/area')\ndef area():\n if 'username' not in session:\n flash('You must be logged in to access this page')\n return redirect(url_for('login'))\n user_id = db.search_user_list(session['username'])[0][2]\n goal = db.search_goal_list(user_id)\n if goal == []:\n return redirect(url_for('goals'))\n daily = db.search_expense_list(user_id)\n monthly = db.search_monthly_list(user_id)\n dadict = {}\n modict = {}\n print(goal)\n ratings = {}\n for names in daily:\n dadict[names[0]] = names[1]\n for names in monthly:\n modict[names[0]] = names[1]\n print(dadict, modict)\n percent = 0\n for names in db.search_rating_list(user_id):\n print(names)\n if names[0] in modict:\n percent = modict[names[0]] * 12 / goal[0][1]\n if names[0] in dadict:\n percent = dadict[names[0]] * 30 * 12 / goal[0][1]\n if names[1] <= 6 and percent >= 0.05:\n ratings[names[0]] = names[1], percent\n print(ratings)\n return render_template('area.html', idnum=user_id, ratings=ratings)\n\n\[email protected]('/logout')\ndef logout():\n if 'username' in session:\n session.pop('username')\n return redirect(url_for('home'))\n\n\[email protected]('/account')\ndef account():\n if 'username' not in session:\n flash('You must be logged in to access this page')\n return redirect(url_for('login'))\n user_list = json.dumps(db.search_user_list(ret_all=True))\n print(json.dumps(db.search_user_list(ret_all=True)))\n return render_template('accounts.html', user_list=user_list)\n\n\[email protected]('/update', methods=['POST'])\ndef update():\n print('this is the updates')\n update_dict = request.form['all-options']\n update_dict = json.loads(update_dict)\n print(request.form)\n user_ids = db.search_user_list(session['username'])\n user = user_ids[0][-1]\n print(user)\n db.update_user_list(update_dict['username'] or user_ids[0][0], \n update_dict['password'] or user_ids[0][1], user)\n db.reset_statistics(user, update_dict['reset'])\n session.pop('username')\n session['username'] = update_dict['username'] or user_ids[0][0]\n flash('Account information updated successfully')\n return redirect(url_for('home'))\n\n\[email protected]('/del')\ndef delete():\n if 'username' not in session:\n flash(\"Woops. You can't be here\")\n return redirect(url_for('login'))\n user = db.search_user_list(session['username'])[0][-1]\n print(user)\n db.update_user_list(None, None, user, rem=True)\n flash('User successfully removed')\n session.pop('username')\n return redirect(url_for('home'))\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\[email protected]('/')\ndef home():\n if 'username' in session:\n id_num = db.search_user_list(session['username'], is_usrname=True)[0][2\n ]\n finavail = db.search_finance_list(id_num)\n goalavail = db.search_goal_list(id_num)\n if finavail:\n session['finances'] = session['username']\n if goalavail:\n session['goals'] = session['username']\n set_goal = db.search_goal_list(id_num)\n print(set_goal)\n if set_goal != []:\n user_id = db.search_user_list(session['username'], is_usrname=True\n )[0][2]\n g = db.search_goal_list(user_id)\n b = db.search_finance_list(user_id)\n t = db.search_time_list(user_id)\n date_now = datetime.date.today()\n price = g\n perc = g\n delta_months = 0\n if g != []:\n g = g[0][0]\n if price != []:\n price = price[0][1]\n if perc != []:\n perc = perc[0][2]\n\n def months_between(date1, date2):\n if date1 > date2:\n date1, date2 = date2, date1\n m1 = date1.year * 12 + date1.month\n m2 = date2.year * 12 + date2.month\n months = m2 - m1\n if date1.day > date2.day:\n months -= 1\n elif date1.day == date2.day:\n seconds1 = date1.hour * 3600 + date1.minute + date1.second\n seconds2 = date2.hour * 3600 + date2.minute + date2.second\n if seconds1 > seconds2:\n months -= 1\n return months\n if t != []:\n t = t[0][0]\n delta_months = months_between(datetime.datetime.strptime(t,\n '%Y-%m-%d'), datetime.datetime.strptime(str(date_now),\n '%Y-%m-%d'))\n print(delta_months)\n img = db.search_image_list(user_id)\n if img != []:\n img = img[0][0]\n if b != []:\n bal = b[0][0]\n inc = b[0][1]\n print(b)\n print(g)\n print(price)\n print(perc)\n print(img)\n if g or price:\n if b:\n print('Used the first one')\n perc_complete = delta_months * (perc / 100.0) * inc / price\n print(perc_complete)\n if perc_complete > 1:\n perc_complete = 1\n return render_template('home.html', fin=finavail, goal=\n goalavail, set_goal=set_goal, goal_name=g,\n goal_price=price, perc_inc=perc, image=img, bal=bal,\n income=inc, months=delta_months, perc_comp=\n perc_complete * 100)\n return render_template('home.html', fin=finavail, goal=goalavail)\n return render_template('home.html', fin=finavail, goal=goalavail)\n return render_template('home.html')\n\n\[email protected]('/register')\ndef register():\n return render_template('register.html')\n\n\[email protected]('/login')\ndef login():\n return render_template('login.html')\n\n\[email protected]('/auth', methods=['POST'])\ndef auth():\n user = request.form.get('user')\n paswrd = request.form.get('pass')\n if request.form.get('submit') == 'Register':\n paswrd2 = request.form.get('pass2')\n print(paswrd)\n print(paswrd2)\n if paswrd != paswrd2:\n flash('Passwords Do Not Match')\n return redirect(url_for('register'))\n if db.register(user, paswrd):\n flash('Registered successfully')\n session['username'] = request.form['user']\n else:\n flash('Unable to register the user')\n return redirect(url_for('register'))\n print('Username has been registered previously!')\n else:\n match = db.search_user_list(user, is_usrname=True)\n if len(match) > 0:\n if match[0][1] == paswrd:\n session['username'] = request.form['user']\n else:\n flash('wrong Password')\n return redirect(url_for('login'))\n else:\n flash('User not found')\n return redirect(url_for('login'))\n return redirect(url_for('home'))\n\n\[email protected]('/finances')\ndef finance():\n if 'username' not in session:\n flash('You must be logged in to access this page')\n return redirect(url_for('login'))\n user_id = db.search_user_list(session['username'])[0][2]\n items = db.search_finance_list(user_id)\n daily = db.search_expense_list(user_id, is_id=True)\n monthly = db.search_monthly_list(user_id, is_id=True)\n ratings = db.search_rating_list(user_id, is_id=True)\n print(ratings)\n print(f'Unlike month, this is daily: {daily}\\n')\n w = dict([(x[0], x[1]) for x in daily])\n s = dict([(x[0], x[1]) for x in monthly])\n r = dict([(x[0], x[1]) for x in ratings])\n print(f'THIS is monthly: {monthly}')\n print(f'THIS is s: {s}')\n print(f'These are the ratings: {r}')\n total = 0\n m_total = 0\n for x in w.values():\n total += float(x)\n for x in s.values():\n m_total += float(x)\n if items != []:\n bal, income, i = items[0]\n diction = {'Balance': bal, 'Income': income}\n return render_template('findata.html', diction=diction, daily=w,\n months=s, total=total, mtotal=m_total, completed=True, ratings=r)\n return render_template('findata.html')\n\n\[email protected]('/fincalc', methods=['POST'])\ndef calc():\n if 'username' not in session:\n flash('You must be logged in to access this page')\n return redirect(url_for('login'))\n session['finances'] = session['username']\n bal = request.form['balance'][1:]\n monthly = request.form['monthly-inputs']\n income = request.form['income'][1:]\n s = request.form\n d_rates = request.form['daily-importance']\n m_rates = request.form['monthly-importance']\n print(d_rates)\n user_id = db.search_user_list(session['username'])[0][2]\n daily_dict = json.loads(d_rates)\n monthly_dict = json.loads(m_rates)\n print(daily_dict)\n print(monthly_dict)\n dai_im = dict([x for x in daily_dict.values()])\n mon_im = dict([x for x in monthly_dict.values()])\n file = os.path.dirname(__file__) + f'/static/ratings.csv'\n stringg = '{'\n try:\n with open(file) as f:\n print('File found, not creating...')\n f.close()\n except Exception as e:\n print(e)\n with open(file, 'a+') as f:\n print('File not found, creating...')\n f.write(f'ratings,id\\n')\n f.close()\n for item in mon_im:\n db.add_rating(item, mon_im[item], user_id)\n stringg += \"'\" + item + \"'\" + ' : ' + \"'\" + str(mon_im[item]\n ) + \"'\" + ' '\n for item in dai_im:\n db.add_rating(item, dai_im[item], user_id)\n stringg += \"'\" + item + \"'\" + ' : ' + \"'\" + str(dai_im[item]\n ) + \"'\" + ' '\n stringg += '},' + str(user_id) + '\\n'\n with open(file, 'r') as f:\n lines = f.readlines()\n with open(file, 'w') as f:\n for line in lines:\n if str(user_id) != line.strip('\\n').split(',')[1]:\n f.write(line)\n f.write(stringg)\n f.close()\n daily = request.form['all-inputs']\n print(f'This is daily: {monthly}')\n daily = json.loads(daily)\n monthly = json.loads(monthly)\n print(f'This is daily now {monthly}')\n w = dict([x for x in daily.values()])\n m = dict([x for x in monthly.values()])\n print(f'\\nThis is calculated m:{m}\\n')\n db.add_finances(bal, m, income, w, user_id)\n flash('Finances updated')\n return redirect(url_for('home'))\n\n\[email protected]('/goals')\ndef goals():\n if 'username' not in session:\n flash('You must be logged in to access this page')\n return redirect(url_for('login'))\n user_id = db.search_user_list(session['username'])[0][2]\n g = db.search_goal_list(user_id)\n b = db.search_finance_list(user_id)\n t = db.search_time_list(user_id)\n date_now = datetime.date.today()\n price = g\n perc = g\n delta_months = 0\n if g != []:\n g = g[0][0]\n if price != []:\n price = price[0][1]\n if perc != []:\n perc = perc[0][2]\n\n def months_between(date1, date2):\n if date1 > date2:\n date1, date2 = date2, date1\n m1 = date1.year * 12 + date1.month\n m2 = date2.year * 12 + date2.month\n months = m2 - m1\n if date1.day > date2.day:\n months -= 1\n elif date1.day == date2.day:\n seconds1 = date1.hour * 3600 + date1.minute + date1.second\n seconds2 = date2.hour * 3600 + date2.minute + date2.second\n if seconds1 > seconds2:\n months -= 1\n return months\n if t != []:\n t = t[0][0]\n delta_months = months_between(datetime.datetime.strptime(t,\n '%Y-%m-%d'), datetime.datetime.strptime(str(date_now), '%Y-%m-%d'))\n print(delta_months)\n img = db.search_image_list(user_id)\n if img != []:\n img = img[0][0]\n if b != []:\n bal = b[0][0]\n inc = b[0][1]\n print(b)\n print(g)\n print(price)\n print(perc)\n print(img)\n if g or price:\n if b:\n print('Used the first one')\n perc_complete = delta_months * (perc / 100.0) * inc / price\n print(perc_complete)\n if perc_complete > 1:\n perc_complete = 1\n return render_template('goals.html', goal=g, goal_price=price,\n perc_inc=perc, image=img, bal=bal, income=inc, months=\n delta_months, perc_comp=perc_complete * 100)\n else:\n print('Used the second')\n return render_template('goals.html', goal=g, goal_price=price,\n perc_inc=perc, image=img)\n elif b:\n return render_template('goals.html', bal=bal, income=inc)\n else:\n return render_template('goals.html')\n\n\[email protected]('/gcalc', methods=['POST'])\ndef gcalc():\n if 'username' not in session:\n flash('You must be logged in to access this page')\n return redirect(url_for('login'))\n goal_name = request.form['goal']\n goal_price = request.form['goal_price'][1:]\n percentage = request.form['slide']\n print('This is percentage:')\n print(percentage)\n print('gcalc')\n print(goal_name)\n print(goal_price)\n user_id = db.search_user_list(session['username'])[0][2]\n db.add_goals(goal_name, goal_price, percentage, user_id)\n a = db.search_image_list(user_id)\n print(a)\n if a == [] or a[0][2] != goal_name:\n try:\n l = urllib.request.urlopen(PIXABAY_STUB + goal_name.replace(' ',\n '+') + '&image_type=photo')\n p = json.loads(l.read())\n img = p['hits'][0]['webformatURL']\n except:\n return render_template('error.html', err=\n 'Cannot connect to API', fix=\n 'Try refreshing or contacting the site owner')\n else:\n img = a[0][1]\n db.add_images(img, goal_name, user_id)\n flash(f'Goal for {goal_name} at ${goal_price} has been added!')\n return redirect(url_for('home'))\n\n\[email protected]('/sankey')\ndef sankey():\n if 'username' not in session:\n flash('You must be logged in to access this page')\n return redirect(url_for('login'))\n user_id = db.search_user_list(session['username'])[0][2]\n return render_template('sankey.html', idnum=user_id)\n\n\[email protected]('/pie')\ndef pie():\n if 'username' not in session:\n flash('You must be logged in to access this page')\n return redirect(url_for('login'))\n user_id = db.search_user_list(session['username'])[0][2]\n return render_template('pie.html', idnum=user_id)\n\n\[email protected]('/area')\ndef area():\n if 'username' not in session:\n flash('You must be logged in to access this page')\n return redirect(url_for('login'))\n user_id = db.search_user_list(session['username'])[0][2]\n goal = db.search_goal_list(user_id)\n if goal == []:\n return redirect(url_for('goals'))\n daily = db.search_expense_list(user_id)\n monthly = db.search_monthly_list(user_id)\n dadict = {}\n modict = {}\n print(goal)\n ratings = {}\n for names in daily:\n dadict[names[0]] = names[1]\n for names in monthly:\n modict[names[0]] = names[1]\n print(dadict, modict)\n percent = 0\n for names in db.search_rating_list(user_id):\n print(names)\n if names[0] in modict:\n percent = modict[names[0]] * 12 / goal[0][1]\n if names[0] in dadict:\n percent = dadict[names[0]] * 30 * 12 / goal[0][1]\n if names[1] <= 6 and percent >= 0.05:\n ratings[names[0]] = names[1], percent\n print(ratings)\n return render_template('area.html', idnum=user_id, ratings=ratings)\n\n\[email protected]('/logout')\ndef logout():\n if 'username' in session:\n session.pop('username')\n return redirect(url_for('home'))\n\n\[email protected]('/account')\ndef account():\n if 'username' not in session:\n flash('You must be logged in to access this page')\n return redirect(url_for('login'))\n user_list = json.dumps(db.search_user_list(ret_all=True))\n print(json.dumps(db.search_user_list(ret_all=True)))\n return render_template('accounts.html', user_list=user_list)\n\n\[email protected]('/update', methods=['POST'])\ndef update():\n print('this is the updates')\n update_dict = request.form['all-options']\n update_dict = json.loads(update_dict)\n print(request.form)\n user_ids = db.search_user_list(session['username'])\n user = user_ids[0][-1]\n print(user)\n db.update_user_list(update_dict['username'] or user_ids[0][0], \n update_dict['password'] or user_ids[0][1], user)\n db.reset_statistics(user, update_dict['reset'])\n session.pop('username')\n session['username'] = update_dict['username'] or user_ids[0][0]\n flash('Account information updated successfully')\n return redirect(url_for('home'))\n\n\[email protected]('/del')\ndef delete():\n if 'username' not in session:\n flash(\"Woops. You can't be here\")\n return redirect(url_for('login'))\n user = db.search_user_list(session['username'])[0][-1]\n print(user)\n db.update_user_list(None, None, user, rem=True)\n flash('User successfully removed')\n session.pop('username')\n return redirect(url_for('home'))\n\n\n<mask token>\n", "step-3": "<mask token>\nif template_path != '/templates':\n app = Flask('__main__', template_folder=os.path.dirname(__file__) +\n '/templates', static_folder=os.path.dirname(__file__) + '/static')\n file = open(os.path.dirname(__file__) + '/data/keys.json')\nelse:\n app = Flask('__main__')\n file = open('./data/keys.json')\n<mask token>\n\n\[email protected]('/')\ndef home():\n if 'username' in session:\n id_num = db.search_user_list(session['username'], is_usrname=True)[0][2\n ]\n finavail = db.search_finance_list(id_num)\n goalavail = db.search_goal_list(id_num)\n if finavail:\n session['finances'] = session['username']\n if goalavail:\n session['goals'] = session['username']\n set_goal = db.search_goal_list(id_num)\n print(set_goal)\n if set_goal != []:\n user_id = db.search_user_list(session['username'], is_usrname=True\n )[0][2]\n g = db.search_goal_list(user_id)\n b = db.search_finance_list(user_id)\n t = db.search_time_list(user_id)\n date_now = datetime.date.today()\n price = g\n perc = g\n delta_months = 0\n if g != []:\n g = g[0][0]\n if price != []:\n price = price[0][1]\n if perc != []:\n perc = perc[0][2]\n\n def months_between(date1, date2):\n if date1 > date2:\n date1, date2 = date2, date1\n m1 = date1.year * 12 + date1.month\n m2 = date2.year * 12 + date2.month\n months = m2 - m1\n if date1.day > date2.day:\n months -= 1\n elif date1.day == date2.day:\n seconds1 = date1.hour * 3600 + date1.minute + date1.second\n seconds2 = date2.hour * 3600 + date2.minute + date2.second\n if seconds1 > seconds2:\n months -= 1\n return months\n if t != []:\n t = t[0][0]\n delta_months = months_between(datetime.datetime.strptime(t,\n '%Y-%m-%d'), datetime.datetime.strptime(str(date_now),\n '%Y-%m-%d'))\n print(delta_months)\n img = db.search_image_list(user_id)\n if img != []:\n img = img[0][0]\n if b != []:\n bal = b[0][0]\n inc = b[0][1]\n print(b)\n print(g)\n print(price)\n print(perc)\n print(img)\n if g or price:\n if b:\n print('Used the first one')\n perc_complete = delta_months * (perc / 100.0) * inc / price\n print(perc_complete)\n if perc_complete > 1:\n perc_complete = 1\n return render_template('home.html', fin=finavail, goal=\n goalavail, set_goal=set_goal, goal_name=g,\n goal_price=price, perc_inc=perc, image=img, bal=bal,\n income=inc, months=delta_months, perc_comp=\n perc_complete * 100)\n return render_template('home.html', fin=finavail, goal=goalavail)\n return render_template('home.html', fin=finavail, goal=goalavail)\n return render_template('home.html')\n\n\[email protected]('/register')\ndef register():\n return render_template('register.html')\n\n\[email protected]('/login')\ndef login():\n return render_template('login.html')\n\n\[email protected]('/auth', methods=['POST'])\ndef auth():\n user = request.form.get('user')\n paswrd = request.form.get('pass')\n if request.form.get('submit') == 'Register':\n paswrd2 = request.form.get('pass2')\n print(paswrd)\n print(paswrd2)\n if paswrd != paswrd2:\n flash('Passwords Do Not Match')\n return redirect(url_for('register'))\n if db.register(user, paswrd):\n flash('Registered successfully')\n session['username'] = request.form['user']\n else:\n flash('Unable to register the user')\n return redirect(url_for('register'))\n print('Username has been registered previously!')\n else:\n match = db.search_user_list(user, is_usrname=True)\n if len(match) > 0:\n if match[0][1] == paswrd:\n session['username'] = request.form['user']\n else:\n flash('wrong Password')\n return redirect(url_for('login'))\n else:\n flash('User not found')\n return redirect(url_for('login'))\n return redirect(url_for('home'))\n\n\[email protected]('/finances')\ndef finance():\n if 'username' not in session:\n flash('You must be logged in to access this page')\n return redirect(url_for('login'))\n user_id = db.search_user_list(session['username'])[0][2]\n items = db.search_finance_list(user_id)\n daily = db.search_expense_list(user_id, is_id=True)\n monthly = db.search_monthly_list(user_id, is_id=True)\n ratings = db.search_rating_list(user_id, is_id=True)\n print(ratings)\n print(f'Unlike month, this is daily: {daily}\\n')\n w = dict([(x[0], x[1]) for x in daily])\n s = dict([(x[0], x[1]) for x in monthly])\n r = dict([(x[0], x[1]) for x in ratings])\n print(f'THIS is monthly: {monthly}')\n print(f'THIS is s: {s}')\n print(f'These are the ratings: {r}')\n total = 0\n m_total = 0\n for x in w.values():\n total += float(x)\n for x in s.values():\n m_total += float(x)\n if items != []:\n bal, income, i = items[0]\n diction = {'Balance': bal, 'Income': income}\n return render_template('findata.html', diction=diction, daily=w,\n months=s, total=total, mtotal=m_total, completed=True, ratings=r)\n return render_template('findata.html')\n\n\[email protected]('/fincalc', methods=['POST'])\ndef calc():\n if 'username' not in session:\n flash('You must be logged in to access this page')\n return redirect(url_for('login'))\n session['finances'] = session['username']\n bal = request.form['balance'][1:]\n monthly = request.form['monthly-inputs']\n income = request.form['income'][1:]\n s = request.form\n d_rates = request.form['daily-importance']\n m_rates = request.form['monthly-importance']\n print(d_rates)\n user_id = db.search_user_list(session['username'])[0][2]\n daily_dict = json.loads(d_rates)\n monthly_dict = json.loads(m_rates)\n print(daily_dict)\n print(monthly_dict)\n dai_im = dict([x for x in daily_dict.values()])\n mon_im = dict([x for x in monthly_dict.values()])\n file = os.path.dirname(__file__) + f'/static/ratings.csv'\n stringg = '{'\n try:\n with open(file) as f:\n print('File found, not creating...')\n f.close()\n except Exception as e:\n print(e)\n with open(file, 'a+') as f:\n print('File not found, creating...')\n f.write(f'ratings,id\\n')\n f.close()\n for item in mon_im:\n db.add_rating(item, mon_im[item], user_id)\n stringg += \"'\" + item + \"'\" + ' : ' + \"'\" + str(mon_im[item]\n ) + \"'\" + ' '\n for item in dai_im:\n db.add_rating(item, dai_im[item], user_id)\n stringg += \"'\" + item + \"'\" + ' : ' + \"'\" + str(dai_im[item]\n ) + \"'\" + ' '\n stringg += '},' + str(user_id) + '\\n'\n with open(file, 'r') as f:\n lines = f.readlines()\n with open(file, 'w') as f:\n for line in lines:\n if str(user_id) != line.strip('\\n').split(',')[1]:\n f.write(line)\n f.write(stringg)\n f.close()\n daily = request.form['all-inputs']\n print(f'This is daily: {monthly}')\n daily = json.loads(daily)\n monthly = json.loads(monthly)\n print(f'This is daily now {monthly}')\n w = dict([x for x in daily.values()])\n m = dict([x for x in monthly.values()])\n print(f'\\nThis is calculated m:{m}\\n')\n db.add_finances(bal, m, income, w, user_id)\n flash('Finances updated')\n return redirect(url_for('home'))\n\n\[email protected]('/goals')\ndef goals():\n if 'username' not in session:\n flash('You must be logged in to access this page')\n return redirect(url_for('login'))\n user_id = db.search_user_list(session['username'])[0][2]\n g = db.search_goal_list(user_id)\n b = db.search_finance_list(user_id)\n t = db.search_time_list(user_id)\n date_now = datetime.date.today()\n price = g\n perc = g\n delta_months = 0\n if g != []:\n g = g[0][0]\n if price != []:\n price = price[0][1]\n if perc != []:\n perc = perc[0][2]\n\n def months_between(date1, date2):\n if date1 > date2:\n date1, date2 = date2, date1\n m1 = date1.year * 12 + date1.month\n m2 = date2.year * 12 + date2.month\n months = m2 - m1\n if date1.day > date2.day:\n months -= 1\n elif date1.day == date2.day:\n seconds1 = date1.hour * 3600 + date1.minute + date1.second\n seconds2 = date2.hour * 3600 + date2.minute + date2.second\n if seconds1 > seconds2:\n months -= 1\n return months\n if t != []:\n t = t[0][0]\n delta_months = months_between(datetime.datetime.strptime(t,\n '%Y-%m-%d'), datetime.datetime.strptime(str(date_now), '%Y-%m-%d'))\n print(delta_months)\n img = db.search_image_list(user_id)\n if img != []:\n img = img[0][0]\n if b != []:\n bal = b[0][0]\n inc = b[0][1]\n print(b)\n print(g)\n print(price)\n print(perc)\n print(img)\n if g or price:\n if b:\n print('Used the first one')\n perc_complete = delta_months * (perc / 100.0) * inc / price\n print(perc_complete)\n if perc_complete > 1:\n perc_complete = 1\n return render_template('goals.html', goal=g, goal_price=price,\n perc_inc=perc, image=img, bal=bal, income=inc, months=\n delta_months, perc_comp=perc_complete * 100)\n else:\n print('Used the second')\n return render_template('goals.html', goal=g, goal_price=price,\n perc_inc=perc, image=img)\n elif b:\n return render_template('goals.html', bal=bal, income=inc)\n else:\n return render_template('goals.html')\n\n\[email protected]('/gcalc', methods=['POST'])\ndef gcalc():\n if 'username' not in session:\n flash('You must be logged in to access this page')\n return redirect(url_for('login'))\n goal_name = request.form['goal']\n goal_price = request.form['goal_price'][1:]\n percentage = request.form['slide']\n print('This is percentage:')\n print(percentage)\n print('gcalc')\n print(goal_name)\n print(goal_price)\n user_id = db.search_user_list(session['username'])[0][2]\n db.add_goals(goal_name, goal_price, percentage, user_id)\n a = db.search_image_list(user_id)\n print(a)\n if a == [] or a[0][2] != goal_name:\n try:\n l = urllib.request.urlopen(PIXABAY_STUB + goal_name.replace(' ',\n '+') + '&image_type=photo')\n p = json.loads(l.read())\n img = p['hits'][0]['webformatURL']\n except:\n return render_template('error.html', err=\n 'Cannot connect to API', fix=\n 'Try refreshing or contacting the site owner')\n else:\n img = a[0][1]\n db.add_images(img, goal_name, user_id)\n flash(f'Goal for {goal_name} at ${goal_price} has been added!')\n return redirect(url_for('home'))\n\n\[email protected]('/sankey')\ndef sankey():\n if 'username' not in session:\n flash('You must be logged in to access this page')\n return redirect(url_for('login'))\n user_id = db.search_user_list(session['username'])[0][2]\n return render_template('sankey.html', idnum=user_id)\n\n\[email protected]('/pie')\ndef pie():\n if 'username' not in session:\n flash('You must be logged in to access this page')\n return redirect(url_for('login'))\n user_id = db.search_user_list(session['username'])[0][2]\n return render_template('pie.html', idnum=user_id)\n\n\[email protected]('/area')\ndef area():\n if 'username' not in session:\n flash('You must be logged in to access this page')\n return redirect(url_for('login'))\n user_id = db.search_user_list(session['username'])[0][2]\n goal = db.search_goal_list(user_id)\n if goal == []:\n return redirect(url_for('goals'))\n daily = db.search_expense_list(user_id)\n monthly = db.search_monthly_list(user_id)\n dadict = {}\n modict = {}\n print(goal)\n ratings = {}\n for names in daily:\n dadict[names[0]] = names[1]\n for names in monthly:\n modict[names[0]] = names[1]\n print(dadict, modict)\n percent = 0\n for names in db.search_rating_list(user_id):\n print(names)\n if names[0] in modict:\n percent = modict[names[0]] * 12 / goal[0][1]\n if names[0] in dadict:\n percent = dadict[names[0]] * 30 * 12 / goal[0][1]\n if names[1] <= 6 and percent >= 0.05:\n ratings[names[0]] = names[1], percent\n print(ratings)\n return render_template('area.html', idnum=user_id, ratings=ratings)\n\n\[email protected]('/logout')\ndef logout():\n if 'username' in session:\n session.pop('username')\n return redirect(url_for('home'))\n\n\[email protected]('/account')\ndef account():\n if 'username' not in session:\n flash('You must be logged in to access this page')\n return redirect(url_for('login'))\n user_list = json.dumps(db.search_user_list(ret_all=True))\n print(json.dumps(db.search_user_list(ret_all=True)))\n return render_template('accounts.html', user_list=user_list)\n\n\[email protected]('/update', methods=['POST'])\ndef update():\n print('this is the updates')\n update_dict = request.form['all-options']\n update_dict = json.loads(update_dict)\n print(request.form)\n user_ids = db.search_user_list(session['username'])\n user = user_ids[0][-1]\n print(user)\n db.update_user_list(update_dict['username'] or user_ids[0][0], \n update_dict['password'] or user_ids[0][1], user)\n db.reset_statistics(user, update_dict['reset'])\n session.pop('username')\n session['username'] = update_dict['username'] or user_ids[0][0]\n flash('Account information updated successfully')\n return redirect(url_for('home'))\n\n\[email protected]('/del')\ndef delete():\n if 'username' not in session:\n flash(\"Woops. You can't be here\")\n return redirect(url_for('login'))\n user = db.search_user_list(session['username'])[0][-1]\n print(user)\n db.update_user_list(None, None, user, rem=True)\n flash('User successfully removed')\n session.pop('username')\n return redirect(url_for('home'))\n\n\nif __name__ == '__main__':\n app.debug = True\n app.run()\n", "step-4": "import os, datetime\nimport urllib\nfrom flask import Flask, flash, json, jsonify, redirect, render_template, request, session, url_for\nimport util.database as db\ntemplate_path = os.path.dirname(__file__) + '/templates'\nfile = ''\nif template_path != '/templates':\n app = Flask('__main__', template_folder=os.path.dirname(__file__) +\n '/templates', static_folder=os.path.dirname(__file__) + '/static')\n file = open(os.path.dirname(__file__) + '/data/keys.json')\nelse:\n app = Flask('__main__')\n file = open('./data/keys.json')\napp.secret_key = os.urandom(32)\ncontent = file.read()\nkeys = json.loads(content)\nPIXABAY_KEY = keys['Pixabay']\nPIXABAY_STUB = 'https://pixabay.com/api/?key=' + PIXABAY_KEY + '&q='\n\n\[email protected]('/')\ndef home():\n if 'username' in session:\n id_num = db.search_user_list(session['username'], is_usrname=True)[0][2\n ]\n finavail = db.search_finance_list(id_num)\n goalavail = db.search_goal_list(id_num)\n if finavail:\n session['finances'] = session['username']\n if goalavail:\n session['goals'] = session['username']\n set_goal = db.search_goal_list(id_num)\n print(set_goal)\n if set_goal != []:\n user_id = db.search_user_list(session['username'], is_usrname=True\n )[0][2]\n g = db.search_goal_list(user_id)\n b = db.search_finance_list(user_id)\n t = db.search_time_list(user_id)\n date_now = datetime.date.today()\n price = g\n perc = g\n delta_months = 0\n if g != []:\n g = g[0][0]\n if price != []:\n price = price[0][1]\n if perc != []:\n perc = perc[0][2]\n\n def months_between(date1, date2):\n if date1 > date2:\n date1, date2 = date2, date1\n m1 = date1.year * 12 + date1.month\n m2 = date2.year * 12 + date2.month\n months = m2 - m1\n if date1.day > date2.day:\n months -= 1\n elif date1.day == date2.day:\n seconds1 = date1.hour * 3600 + date1.minute + date1.second\n seconds2 = date2.hour * 3600 + date2.minute + date2.second\n if seconds1 > seconds2:\n months -= 1\n return months\n if t != []:\n t = t[0][0]\n delta_months = months_between(datetime.datetime.strptime(t,\n '%Y-%m-%d'), datetime.datetime.strptime(str(date_now),\n '%Y-%m-%d'))\n print(delta_months)\n img = db.search_image_list(user_id)\n if img != []:\n img = img[0][0]\n if b != []:\n bal = b[0][0]\n inc = b[0][1]\n print(b)\n print(g)\n print(price)\n print(perc)\n print(img)\n if g or price:\n if b:\n print('Used the first one')\n perc_complete = delta_months * (perc / 100.0) * inc / price\n print(perc_complete)\n if perc_complete > 1:\n perc_complete = 1\n return render_template('home.html', fin=finavail, goal=\n goalavail, set_goal=set_goal, goal_name=g,\n goal_price=price, perc_inc=perc, image=img, bal=bal,\n income=inc, months=delta_months, perc_comp=\n perc_complete * 100)\n return render_template('home.html', fin=finavail, goal=goalavail)\n return render_template('home.html', fin=finavail, goal=goalavail)\n return render_template('home.html')\n\n\[email protected]('/register')\ndef register():\n return render_template('register.html')\n\n\[email protected]('/login')\ndef login():\n return render_template('login.html')\n\n\[email protected]('/auth', methods=['POST'])\ndef auth():\n user = request.form.get('user')\n paswrd = request.form.get('pass')\n if request.form.get('submit') == 'Register':\n paswrd2 = request.form.get('pass2')\n print(paswrd)\n print(paswrd2)\n if paswrd != paswrd2:\n flash('Passwords Do Not Match')\n return redirect(url_for('register'))\n if db.register(user, paswrd):\n flash('Registered successfully')\n session['username'] = request.form['user']\n else:\n flash('Unable to register the user')\n return redirect(url_for('register'))\n print('Username has been registered previously!')\n else:\n match = db.search_user_list(user, is_usrname=True)\n if len(match) > 0:\n if match[0][1] == paswrd:\n session['username'] = request.form['user']\n else:\n flash('wrong Password')\n return redirect(url_for('login'))\n else:\n flash('User not found')\n return redirect(url_for('login'))\n return redirect(url_for('home'))\n\n\[email protected]('/finances')\ndef finance():\n if 'username' not in session:\n flash('You must be logged in to access this page')\n return redirect(url_for('login'))\n user_id = db.search_user_list(session['username'])[0][2]\n items = db.search_finance_list(user_id)\n daily = db.search_expense_list(user_id, is_id=True)\n monthly = db.search_monthly_list(user_id, is_id=True)\n ratings = db.search_rating_list(user_id, is_id=True)\n print(ratings)\n print(f'Unlike month, this is daily: {daily}\\n')\n w = dict([(x[0], x[1]) for x in daily])\n s = dict([(x[0], x[1]) for x in monthly])\n r = dict([(x[0], x[1]) for x in ratings])\n print(f'THIS is monthly: {monthly}')\n print(f'THIS is s: {s}')\n print(f'These are the ratings: {r}')\n total = 0\n m_total = 0\n for x in w.values():\n total += float(x)\n for x in s.values():\n m_total += float(x)\n if items != []:\n bal, income, i = items[0]\n diction = {'Balance': bal, 'Income': income}\n return render_template('findata.html', diction=diction, daily=w,\n months=s, total=total, mtotal=m_total, completed=True, ratings=r)\n return render_template('findata.html')\n\n\[email protected]('/fincalc', methods=['POST'])\ndef calc():\n if 'username' not in session:\n flash('You must be logged in to access this page')\n return redirect(url_for('login'))\n session['finances'] = session['username']\n bal = request.form['balance'][1:]\n monthly = request.form['monthly-inputs']\n income = request.form['income'][1:]\n s = request.form\n d_rates = request.form['daily-importance']\n m_rates = request.form['monthly-importance']\n print(d_rates)\n user_id = db.search_user_list(session['username'])[0][2]\n daily_dict = json.loads(d_rates)\n monthly_dict = json.loads(m_rates)\n print(daily_dict)\n print(monthly_dict)\n dai_im = dict([x for x in daily_dict.values()])\n mon_im = dict([x for x in monthly_dict.values()])\n file = os.path.dirname(__file__) + f'/static/ratings.csv'\n stringg = '{'\n try:\n with open(file) as f:\n print('File found, not creating...')\n f.close()\n except Exception as e:\n print(e)\n with open(file, 'a+') as f:\n print('File not found, creating...')\n f.write(f'ratings,id\\n')\n f.close()\n for item in mon_im:\n db.add_rating(item, mon_im[item], user_id)\n stringg += \"'\" + item + \"'\" + ' : ' + \"'\" + str(mon_im[item]\n ) + \"'\" + ' '\n for item in dai_im:\n db.add_rating(item, dai_im[item], user_id)\n stringg += \"'\" + item + \"'\" + ' : ' + \"'\" + str(dai_im[item]\n ) + \"'\" + ' '\n stringg += '},' + str(user_id) + '\\n'\n with open(file, 'r') as f:\n lines = f.readlines()\n with open(file, 'w') as f:\n for line in lines:\n if str(user_id) != line.strip('\\n').split(',')[1]:\n f.write(line)\n f.write(stringg)\n f.close()\n daily = request.form['all-inputs']\n print(f'This is daily: {monthly}')\n daily = json.loads(daily)\n monthly = json.loads(monthly)\n print(f'This is daily now {monthly}')\n w = dict([x for x in daily.values()])\n m = dict([x for x in monthly.values()])\n print(f'\\nThis is calculated m:{m}\\n')\n db.add_finances(bal, m, income, w, user_id)\n flash('Finances updated')\n return redirect(url_for('home'))\n\n\[email protected]('/goals')\ndef goals():\n if 'username' not in session:\n flash('You must be logged in to access this page')\n return redirect(url_for('login'))\n user_id = db.search_user_list(session['username'])[0][2]\n g = db.search_goal_list(user_id)\n b = db.search_finance_list(user_id)\n t = db.search_time_list(user_id)\n date_now = datetime.date.today()\n price = g\n perc = g\n delta_months = 0\n if g != []:\n g = g[0][0]\n if price != []:\n price = price[0][1]\n if perc != []:\n perc = perc[0][2]\n\n def months_between(date1, date2):\n if date1 > date2:\n date1, date2 = date2, date1\n m1 = date1.year * 12 + date1.month\n m2 = date2.year * 12 + date2.month\n months = m2 - m1\n if date1.day > date2.day:\n months -= 1\n elif date1.day == date2.day:\n seconds1 = date1.hour * 3600 + date1.minute + date1.second\n seconds2 = date2.hour * 3600 + date2.minute + date2.second\n if seconds1 > seconds2:\n months -= 1\n return months\n if t != []:\n t = t[0][0]\n delta_months = months_between(datetime.datetime.strptime(t,\n '%Y-%m-%d'), datetime.datetime.strptime(str(date_now), '%Y-%m-%d'))\n print(delta_months)\n img = db.search_image_list(user_id)\n if img != []:\n img = img[0][0]\n if b != []:\n bal = b[0][0]\n inc = b[0][1]\n print(b)\n print(g)\n print(price)\n print(perc)\n print(img)\n if g or price:\n if b:\n print('Used the first one')\n perc_complete = delta_months * (perc / 100.0) * inc / price\n print(perc_complete)\n if perc_complete > 1:\n perc_complete = 1\n return render_template('goals.html', goal=g, goal_price=price,\n perc_inc=perc, image=img, bal=bal, income=inc, months=\n delta_months, perc_comp=perc_complete * 100)\n else:\n print('Used the second')\n return render_template('goals.html', goal=g, goal_price=price,\n perc_inc=perc, image=img)\n elif b:\n return render_template('goals.html', bal=bal, income=inc)\n else:\n return render_template('goals.html')\n\n\[email protected]('/gcalc', methods=['POST'])\ndef gcalc():\n if 'username' not in session:\n flash('You must be logged in to access this page')\n return redirect(url_for('login'))\n goal_name = request.form['goal']\n goal_price = request.form['goal_price'][1:]\n percentage = request.form['slide']\n print('This is percentage:')\n print(percentage)\n print('gcalc')\n print(goal_name)\n print(goal_price)\n user_id = db.search_user_list(session['username'])[0][2]\n db.add_goals(goal_name, goal_price, percentage, user_id)\n a = db.search_image_list(user_id)\n print(a)\n if a == [] or a[0][2] != goal_name:\n try:\n l = urllib.request.urlopen(PIXABAY_STUB + goal_name.replace(' ',\n '+') + '&image_type=photo')\n p = json.loads(l.read())\n img = p['hits'][0]['webformatURL']\n except:\n return render_template('error.html', err=\n 'Cannot connect to API', fix=\n 'Try refreshing or contacting the site owner')\n else:\n img = a[0][1]\n db.add_images(img, goal_name, user_id)\n flash(f'Goal for {goal_name} at ${goal_price} has been added!')\n return redirect(url_for('home'))\n\n\[email protected]('/sankey')\ndef sankey():\n if 'username' not in session:\n flash('You must be logged in to access this page')\n return redirect(url_for('login'))\n user_id = db.search_user_list(session['username'])[0][2]\n return render_template('sankey.html', idnum=user_id)\n\n\[email protected]('/pie')\ndef pie():\n if 'username' not in session:\n flash('You must be logged in to access this page')\n return redirect(url_for('login'))\n user_id = db.search_user_list(session['username'])[0][2]\n return render_template('pie.html', idnum=user_id)\n\n\[email protected]('/area')\ndef area():\n if 'username' not in session:\n flash('You must be logged in to access this page')\n return redirect(url_for('login'))\n user_id = db.search_user_list(session['username'])[0][2]\n goal = db.search_goal_list(user_id)\n if goal == []:\n return redirect(url_for('goals'))\n daily = db.search_expense_list(user_id)\n monthly = db.search_monthly_list(user_id)\n dadict = {}\n modict = {}\n print(goal)\n ratings = {}\n for names in daily:\n dadict[names[0]] = names[1]\n for names in monthly:\n modict[names[0]] = names[1]\n print(dadict, modict)\n percent = 0\n for names in db.search_rating_list(user_id):\n print(names)\n if names[0] in modict:\n percent = modict[names[0]] * 12 / goal[0][1]\n if names[0] in dadict:\n percent = dadict[names[0]] * 30 * 12 / goal[0][1]\n if names[1] <= 6 and percent >= 0.05:\n ratings[names[0]] = names[1], percent\n print(ratings)\n return render_template('area.html', idnum=user_id, ratings=ratings)\n\n\[email protected]('/logout')\ndef logout():\n if 'username' in session:\n session.pop('username')\n return redirect(url_for('home'))\n\n\[email protected]('/account')\ndef account():\n if 'username' not in session:\n flash('You must be logged in to access this page')\n return redirect(url_for('login'))\n user_list = json.dumps(db.search_user_list(ret_all=True))\n print(json.dumps(db.search_user_list(ret_all=True)))\n return render_template('accounts.html', user_list=user_list)\n\n\[email protected]('/update', methods=['POST'])\ndef update():\n print('this is the updates')\n update_dict = request.form['all-options']\n update_dict = json.loads(update_dict)\n print(request.form)\n user_ids = db.search_user_list(session['username'])\n user = user_ids[0][-1]\n print(user)\n db.update_user_list(update_dict['username'] or user_ids[0][0], \n update_dict['password'] or user_ids[0][1], user)\n db.reset_statistics(user, update_dict['reset'])\n session.pop('username')\n session['username'] = update_dict['username'] or user_ids[0][0]\n flash('Account information updated successfully')\n return redirect(url_for('home'))\n\n\[email protected]('/del')\ndef delete():\n if 'username' not in session:\n flash(\"Woops. You can't be here\")\n return redirect(url_for('login'))\n user = db.search_user_list(session['username'])[0][-1]\n print(user)\n db.update_user_list(None, None, user, rem=True)\n flash('User successfully removed')\n session.pop('username')\n return redirect(url_for('home'))\n\n\nif __name__ == '__main__':\n app.debug = True\n app.run()\n", "step-5": "import os, datetime\r\nimport urllib\r\n\r\nfrom flask import (Flask, flash, json, jsonify, redirect, render_template,\r\n request, session, url_for)\r\n\r\nimport util.database as db\r\n\r\ntemplate_path=os.path.dirname(__file__)+\"/templates\"\r\nfile=\"\"\r\nif template_path!=\"/templates\":\r\n app = Flask(\"__main__\",template_folder=os.path.dirname(__file__)+\"/templates\",static_folder=os.path.dirname(__file__)+\"/static\")\r\n file = open(os.path.dirname(__file__)+'/data/keys.json')\r\nelse:\r\n app = Flask(\"__main__\")\r\n file = open('./data/keys.json')\r\n\r\napp.secret_key = os.urandom(32)\r\n\r\n\r\ncontent = file.read()\r\nkeys = json.loads(content)\r\n\r\n# has a 5000 calls/day limit\r\nPIXABAY_KEY = keys['Pixabay']\r\nPIXABAY_STUB = \"https://pixabay.com/api/?key=\" + PIXABAY_KEY + \"&q=\" #separate words with \"+\"\r\[email protected]('/')\r\ndef home():\r\n if \"username\" in session:\r\n id_num=db.search_user_list(session[\"username\"], is_usrname=True)[0][2]\r\n finavail=db.search_finance_list(id_num)\r\n goalavail=db.search_goal_list(id_num)\r\n if finavail:\r\n session[\"finances\"]=session[\"username\"]\r\n if goalavail:\r\n session[\"goals\"]=session[\"username\"]\r\n set_goal = db.search_goal_list(id_num)\r\n print(set_goal)\r\n if set_goal != []:\r\n user_id = db.search_user_list(session['username'], is_usrname=True)[0][2]\r\n g = db.search_goal_list(user_id)\r\n b = db.search_finance_list(user_id)\r\n t = db.search_time_list(user_id)\r\n date_now = datetime.date.today()\r\n price = g\r\n perc = g\r\n delta_months = 0\r\n if g != []:\r\n g = g[0][0]\r\n if price != []:\r\n price = price[0][1]\r\n if perc != []:\r\n perc = perc[0][2]\r\n ##function to get difference in months between 2 dates\r\n def months_between(date1,date2):\r\n if date1>date2:\r\n date1,date2=date2,date1\r\n m1=date1.year*12+date1.month\r\n m2=date2.year*12+date2.month\r\n months=m2-m1\r\n if date1.day>date2.day:\r\n months-=1\r\n elif date1.day==date2.day:\r\n seconds1=date1.hour*3600+date1.minute+date1.second\r\n seconds2=date2.hour*3600+date2.minute+date2.second\r\n if seconds1>seconds2:\r\n months-=1\r\n return months\r\n\r\n if t != []:\r\n t = t[0][0]\r\n delta_months = months_between(datetime.datetime.strptime(t,'%Y-%m-%d'), datetime.datetime.strptime(str(date_now),'%Y-%m-%d'))\r\n print(delta_months)\r\n\r\n img = db.search_image_list(user_id)\r\n if img != []:\r\n img = img[0][0]\r\n if b != []:\r\n bal = b[0][0]\r\n inc = b[0][1]\r\n print(b)\r\n print(g)\r\n print(price)\r\n print(perc)\r\n print(img)\r\n if g or price:\r\n if b:\r\n print(\"Used the first one\")\r\n perc_complete = (delta_months * (perc / 100.0) * inc)/price\r\n print(perc_complete)\r\n if perc_complete > 1:\r\n perc_complete = 1\r\n return render_template('home.html',fin=finavail,goal=goalavail, set_goal= set_goal, goal_name =g, goal_price=price,perc_inc = perc, image=img, bal=bal, income=inc, months= delta_months, perc_comp = perc_complete * 100 )\r\n return render_template('home.html',fin=finavail,goal=goalavail)\r\n return render_template('home.html',fin=finavail,goal=goalavail)\r\n return render_template('home.html')\r\n\r\[email protected]('/register')\r\ndef register():\r\n return render_template('register.html')\r\[email protected]('/login')\r\ndef login():\r\n return render_template('login.html')\r\[email protected]('/auth', methods=['POST'])\r\ndef auth():\r\n user = request.form.get(\"user\")\r\n paswrd = request.form.get('pass')\r\n if request.form.get(\"submit\")==\"Register\":\r\n paswrd2 = request.form.get(\"pass2\")\r\n print(paswrd)\r\n print(paswrd2)\r\n if paswrd != paswrd2:\r\n flash(\"Passwords Do Not Match\")\r\n return redirect(url_for('register'))\r\n if db.register(user, paswrd):\r\n flash(\"Registered successfully\")\r\n session['username'] = request.form['user']\r\n else:\r\n flash(\"Unable to register the user\")\r\n return redirect(url_for('register'))\r\n print(\"Username has been registered previously!\")\r\n else:\r\n match=db.search_user_list(user, is_usrname=True)\r\n if len(match)>0:\r\n if match[0][1]==paswrd:\r\n session[\"username\"]=request.form[\"user\"]\r\n else:\r\n flash(\"wrong Password\")\r\n return redirect(url_for('login'))\r\n else:\r\n flash(\"User not found\")\r\n return redirect(url_for('login'))\r\n return redirect(url_for('home'))\r\n\r\[email protected]('/finances')\r\ndef finance():\r\n if 'username' not in session:\r\n flash(\"You must be logged in to access this page\")\r\n return redirect(url_for('login'))\r\n user_id = db.search_user_list(session['username'])[0][2]\r\n items = db.search_finance_list(user_id)\r\n daily = db.search_expense_list(user_id, is_id=True)\r\n monthly = db.search_monthly_list(user_id, is_id=True)\r\n ratings = db.search_rating_list(user_id, is_id=True)\r\n print(ratings)\r\n print(f\"Unlike month, this is daily: {daily}\\n\")\r\n w = dict([ (x[0], x[1]) for x in daily ])\r\n s = dict([ (x[0], x[1]) for x in monthly ])\r\n r = dict([ (x[0], x[1]) for x in ratings ])\r\n print(f\"THIS is monthly: {monthly}\")\r\n print(f\"THIS is s: {s}\")\r\n print(f\"These are the ratings: {r}\")\r\n total = 0\r\n m_total = 0\r\n for x in w.values():\r\n total += float(x)\r\n for x in s.values():\r\n m_total += float(x)\r\n if items != []:\r\n bal,income,i = items[0]\r\n diction = {\"Balance\":bal, \"Income\":income}\r\n return render_template('findata.html',\r\n diction=diction,\r\n daily=w,\r\n months = s,\r\n total=total,\r\n mtotal = m_total,completed=True, ratings=r)\r\n return render_template('findata.html')\r\n\r\[email protected]('/fincalc', methods=['POST'])\r\ndef calc():\r\n if 'username' not in session:\r\n flash(\"You must be logged in to access this page\")\r\n return redirect(url_for('login'))\r\n # print(request.form)\r\n session[\"finances\"]=session[\"username\"]\r\n bal = request.form['balance'][1:]\r\n monthly = request.form['monthly-inputs']\r\n income = request.form['income'][1:]\r\n # print(request.form)\r\n s = request.form\r\n d_rates = request.form['daily-importance']\r\n m_rates = request.form['monthly-importance']\r\n print(d_rates)\r\n user_id = db.search_user_list(session['username'])[0][2]\r\n daily_dict = json.loads(d_rates)\r\n monthly_dict = json.loads(m_rates)\r\n print(daily_dict)\r\n print(monthly_dict)\r\n\r\n dai_im = dict([x for x in daily_dict.values()]) # {expenseName: rating, expenseName2: rating, ...}\r\n mon_im = dict([x for x in monthly_dict.values()])\r\n file=os.path.dirname(__file__)+f'/static/ratings.csv'\r\n stringg = \"{\"\r\n try:\r\n with open(file) as f: # if readable, file already exists\r\n print(\"File found, not creating...\")\r\n f.close()\r\n except Exception as e:\r\n print(e)\r\n with open(file, 'a+') as f: # creates the file\r\n print(\"File not found, creating...\")\r\n f.write(f\"ratings,id\\n\")\r\n f.close()\r\n for item in mon_im:\r\n db.add_rating(item, mon_im[item], user_id)\r\n stringg += \"'\" + item + \"'\" + \" : \" + \"'\" + str(mon_im[item]) + \"'\" + \" \"\r\n\r\n for item in dai_im:\r\n db.add_rating(item, dai_im[item], user_id)\r\n stringg += \"'\" + item + \"'\" + \" : \" + \"'\" + str(dai_im[item]) + \"'\" + \" \"\r\n stringg += \"},\" + str(user_id) + \"\\n\"\r\n\r\n with open(file, \"r\") as f:\r\n lines = f.readlines()\r\n with open(file, \"w\") as f:\r\n for line in lines:\r\n if str(user_id) != line.strip(\"\\n\").split(\",\")[1]:\r\n f.write(line)\r\n f.write(stringg)\r\n f.close()\r\n daily = request.form['all-inputs']\r\n print(f\"This is daily: {monthly}\")\r\n daily = json.loads(daily) # dictionary\r\n monthly = json.loads(monthly)\r\n print(f\"This is daily now {monthly}\")\r\n w = dict([x for x in daily.values()]) # {expense1: $$$, expense2: $$$, ...}\r\n m = dict([x for x in monthly.values()])\r\n print(f\"\\nThis is calculated m:{m}\\n\")\r\n db.add_finances(bal, m, income, w, user_id)\r\n flash(\"Finances updated\")\r\n return redirect(url_for('home'))\r\n\r\[email protected]('/goals')\r\ndef goals():\r\n if 'username' not in session:\r\n flash(\"You must be logged in to access this page\")\r\n return redirect(url_for('login'))\r\n user_id = db.search_user_list(session['username'])[0][2]\r\n g = db.search_goal_list(user_id)\r\n b = db.search_finance_list(user_id)\r\n t = db.search_time_list(user_id)\r\n date_now = datetime.date.today()\r\n price = g\r\n perc = g\r\n delta_months = 0\r\n if g != []:\r\n g = g[0][0]\r\n if price != []:\r\n price = price[0][1]\r\n if perc != []:\r\n perc = perc[0][2]\r\n ##function to get difference in months between 2 dates\r\n def months_between(date1,date2):\r\n if date1>date2:\r\n date1,date2=date2,date1\r\n m1=date1.year*12+date1.month\r\n m2=date2.year*12+date2.month\r\n months=m2-m1\r\n if date1.day>date2.day:\r\n months-=1\r\n elif date1.day==date2.day:\r\n seconds1=date1.hour*3600+date1.minute+date1.second\r\n seconds2=date2.hour*3600+date2.minute+date2.second\r\n if seconds1>seconds2:\r\n months-=1\r\n return months\r\n\r\n if t != []:\r\n t = t[0][0]\r\n delta_months = months_between(datetime.datetime.strptime(t,'%Y-%m-%d'), datetime.datetime.strptime(str(date_now),'%Y-%m-%d'))\r\n print(delta_months)\r\n\r\n img = db.search_image_list(user_id)\r\n if img != []:\r\n img = img[0][0]\r\n if b != []:\r\n bal = b[0][0]\r\n inc = b[0][1]\r\n print(b)\r\n print(g)\r\n print(price)\r\n print(perc)\r\n print(img)\r\n if g or price:\r\n if b:\r\n print(\"Used the first one\")\r\n perc_complete = (delta_months * (perc / 100.0) * inc)/price\r\n print(perc_complete)\r\n if perc_complete > 1:\r\n perc_complete = 1\r\n return render_template('goals.html', goal=g, goal_price=price,perc_inc = perc, image=img, bal=bal, income=inc, months= delta_months, perc_comp = perc_complete * 100 )\r\n else:\r\n print(\"Used the second\")\r\n return render_template('goals.html', goal=g, goal_price=price,perc_inc = perc, image=img)\r\n else:\r\n if b:\r\n return render_template('goals.html', bal=bal, income=inc)\r\n else:\r\n return render_template('goals.html')\r\n\r\[email protected]('/gcalc', methods=['POST'])\r\ndef gcalc():\r\n if 'username' not in session:\r\n flash(\"You must be logged in to access this page\")\r\n return redirect(url_for('login'))\r\n goal_name = request.form['goal']\r\n goal_price = request.form['goal_price'][1:]\r\n percentage = request.form['slide']\r\n print(\"This is percentage:\")\r\n print(percentage)\r\n print(\"gcalc\")\r\n print(goal_name)\r\n print(goal_price)\r\n user_id = db.search_user_list(session['username'])[0][2]\r\n db.add_goals(goal_name, goal_price, percentage, user_id)\r\n a = db.search_image_list(user_id)\r\n print(a)\r\n # optimization to save on api calls\r\n if a == [] or a[0][2] != goal_name:\r\n try:\r\n l = urllib.request.urlopen(PIXABAY_STUB + goal_name.replace(' ', '+') + \"&image_type=photo\")\r\n p = json.loads(l.read())\r\n img = p['hits'][0]['webformatURL']\r\n except:\r\n return render_template('error.html', err=\"Cannot connect to API\", fix=\"Try refreshing or contacting the site owner\")\r\n else:\r\n img = a[0][1]\r\n db.add_images(img, goal_name, user_id)\r\n flash(f\"Goal for {goal_name} at ${goal_price} has been added!\")\r\n return redirect(url_for('home'))\r\n\r\[email protected]('/sankey')\r\ndef sankey():\r\n if 'username' not in session:\r\n flash(\"You must be logged in to access this page\")\r\n return redirect(url_for('login'))\r\n user_id = db.search_user_list(session['username'])[0][2]\r\n return render_template('sankey.html',idnum=user_id)\r\[email protected]('/pie')\r\ndef pie():\r\n if 'username' not in session:\r\n flash(\"You must be logged in to access this page\")\r\n return redirect(url_for('login'))\r\n user_id = db.search_user_list(session['username'])[0][2]\r\n return render_template('pie.html',idnum=user_id)\r\[email protected]('/area')\r\ndef area():\r\n if 'username' not in session:\r\n flash(\"You must be logged in to access this page\")\r\n return redirect(url_for('login'))\r\n\r\n user_id = db.search_user_list(session['username'])[0][2]\r\n goal=db.search_goal_list(user_id)\r\n if goal == []:\r\n return redirect(url_for('goals'))\r\n daily=db.search_expense_list(user_id)\r\n monthly=db.search_monthly_list(user_id)\r\n dadict={}\r\n modict={}\r\n print(goal)\r\n ratings={}\r\n for names in daily:\r\n dadict[names[0]]=names[1]\r\n for names in monthly:\r\n modict[names[0]]=names[1]\r\n print(dadict,modict)\r\n percent=0\r\n for names in db.search_rating_list(user_id):\r\n print(names)\r\n if names[0] in modict:\r\n percent=(modict[names[0]]*12)/goal[0][1]\r\n if names[0] in dadict:\r\n percent=(dadict[names[0]]*30*12)/goal[0][1]\r\n if names[1]<=6 and percent >=0.05:\r\n ratings[names[0]]=(names[1],percent)\r\n print(ratings)\r\n return render_template('area.html',idnum=user_id,ratings=ratings)\r\[email protected]('/logout')\r\ndef logout():\r\n if 'username' in session:\r\n session.pop('username')\r\n return redirect(url_for('home'))\r\n\r\[email protected]('/account')\r\ndef account():\r\n if 'username' not in session:\r\n flash(\"You must be logged in to access this page\")\r\n return redirect(url_for('login'))\r\n # print(db.search_user_list(session['username']))\r\n user_list = json.dumps(db.search_user_list(ret_all=True))\r\n print(json.dumps(db.search_user_list(ret_all=True)))\r\n return render_template('accounts.html', user_list=user_list)\r\n\r\[email protected]('/update', methods=[\"POST\"])\r\ndef update():\r\n print('this is the updates')\r\n update_dict = request.form['all-options']\r\n update_dict = json.loads(update_dict)\r\n print(request.form)\r\n user_ids = db.search_user_list(session['username'])\r\n user = user_ids[0][-1]\r\n print(user)\r\n db.update_user_list(update_dict['username'] or user_ids[0][0], update_dict['password'] or user_ids[0][1], user)\r\n db.reset_statistics(user, update_dict['reset'])\r\n session.pop('username')\r\n session['username'] = update_dict['username'] or user_ids[0][0] # change username in session\r\n flash(\"Account information updated successfully\")\r\n return redirect(url_for('home'))\r\n\r\[email protected]('/del')\r\ndef delete():\r\n if 'username' not in session:\r\n flash(\"Woops. You can't be here\")\r\n return redirect(url_for('login'))\r\n user = db.search_user_list(session['username'])[0][-1]\r\n print(user)\r\n db.update_user_list(None, None, user, rem=True)\r\n flash(\"User successfully removed\")\r\n session.pop('username')\r\n return redirect(url_for('home'))\r\n\r\nif __name__ == \"__main__\":\r\n app.debug = True\r\n app.run()\r\n", "step-ids": [ 14, 15, 16, 18, 19 ] }
[ 14, 15, 16, 18, 19 ]
from connect_to_elasticsearch import * # returns the name of all indices in the elasticsearch server def getAllIndiciesNames(): indicies = set() for index in connect_to_elasticsearch().indices.get_alias( "*" ): indicies.add( index ) print( index ) return indicies
normal
{ "blob_id": "23c75840efd9a8fd68ac22d004bfe3b390fbe612", "index": 2314, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef getAllIndiciesNames():\n indicies = set()\n for index in connect_to_elasticsearch().indices.get_alias('*'):\n indicies.add(index)\n print(index)\n return indicies\n", "step-3": "from connect_to_elasticsearch import *\n\n\ndef getAllIndiciesNames():\n indicies = set()\n for index in connect_to_elasticsearch().indices.get_alias('*'):\n indicies.add(index)\n print(index)\n return indicies\n", "step-4": "from connect_to_elasticsearch import *\r\n\r\n\r\n# returns the name of all indices in the elasticsearch server \r\ndef getAllIndiciesNames(): \r\n indicies = set()\r\n for index in connect_to_elasticsearch().indices.get_alias( \"*\" ):\r\n indicies.add( index )\r\n print( index )\r\n return indicies\r\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
import urllib2 import urllib import json import gzip from StringIO import StringIO service_url = 'https://babelfy.io/v1/disambiguate' lang = 'EN' key = '' filehandle = open('triples/triples2.tsv') # the triples and the sentences where the triples were extracted filehandle_write = open('triples/disambiguated_triples_sentence.tsv', 'a') for line in filehandle: splitted = line.split('|') concept1 = splitted[0].strip() relation = splitted[1].strip() concept2 = splitted[2].strip() sentence = splitted[3].strip() if concept1 not in sentence: # I do this for the triples extracted where the concept might not be in the sentence but that sentence refers to the concept text = concept1+" "+sentence else: text = sentence babelnetid1 = -1 babelnetid2 = -1 params = { 'text' : text, 'lang' : lang, 'key' : key } url = service_url + '?' + urllib.urlencode(params) request = urllib2.Request(url) request.add_header('Accept-encoding', 'gzip') response = urllib2.urlopen(request) if response.info().get('Content-Encoding') == 'gzip': buf = StringIO( response.read()) f = gzip.GzipFile(fileobj=buf) data = json.loads(f.read()) # retrieving data for result in data: charFragment = result.get('charFragment') cfStart = charFragment.get('start') cfEnd = charFragment.get('end') word = text[cfStart:cfEnd+1] print(word) synsetId = result.get('babelSynsetID') to_lower = word.lower() if to_lower.startswith(concept1.lower()): babelnetid1 = synsetId if to_lower.startswith(concept2.lower()): babelnetid2 = synsetId print synsetId filehandle_write.write(concept1 + " | " + relation + " | " + concept2 + " | " + sentence+" | " + concept1+" | "+str(babelnetid1)+" | "+concept2+" | "+str(babelnetid2)) filehandle_write.write('\n')
normal
{ "blob_id": "cd9f94d55eb13f5fc9959546e89a0af8ab2ea0db", "index": 6147, "step-1": "import urllib2\nimport urllib\nimport json\nimport gzip\n\nfrom StringIO import StringIO\n\nservice_url = 'https://babelfy.io/v1/disambiguate'\nlang = 'EN'\nkey = ''\n\nfilehandle = open('triples/triples2.tsv') # the triples and the sentences where the triples were extracted\nfilehandle_write = open('triples/disambiguated_triples_sentence.tsv', 'a')\n\nfor line in filehandle:\n splitted = line.split('|')\n concept1 = splitted[0].strip()\n relation = splitted[1].strip()\n concept2 = splitted[2].strip()\n sentence = splitted[3].strip()\n if concept1 not in sentence:\n # I do this for the triples extracted where the concept might not be in the sentence but that sentence refers to the concept\n text = concept1+\" \"+sentence\n else:\n text = sentence\n babelnetid1 = -1\n babelnetid2 = -1\n params = {\n 'text' : text,\n 'lang' : lang,\n 'key' : key\n }\n\n url = service_url + '?' + urllib.urlencode(params)\n request = urllib2.Request(url)\n request.add_header('Accept-encoding', 'gzip')\n response = urllib2.urlopen(request)\n\n if response.info().get('Content-Encoding') == 'gzip':\n buf = StringIO( response.read())\n f = gzip.GzipFile(fileobj=buf)\n data = json.loads(f.read())\n # retrieving data\n for result in data:\n charFragment = result.get('charFragment')\n cfStart = charFragment.get('start')\n cfEnd = charFragment.get('end')\n word = text[cfStart:cfEnd+1]\n print(word)\n synsetId = result.get('babelSynsetID')\n to_lower = word.lower()\n if to_lower.startswith(concept1.lower()):\n babelnetid1 = synsetId\n if to_lower.startswith(concept2.lower()):\n babelnetid2 = synsetId\n\n print synsetId\n\n filehandle_write.write(concept1 + \" | \" + relation + \" | \" + concept2 + \" | \" + sentence+\" | \" + concept1+\" | \"+str(babelnetid1)+\" | \"+concept2+\" | \"+str(babelnetid2))\n filehandle_write.write('\\n')\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
import scrapy from kingfisher_scrapy.base_spiders import BigFileSpider from kingfisher_scrapy.util import components, handle_http_error class France(BigFileSpider): """ Domain France Swagger API documentation https://doc.data.gouv.fr/api/reference/ """ name = 'france' # SimpleSpider data_type = 'release_package' def start_requests(self): # A CKAN API JSON response. # Ministère de l'économie, des finances et de la relance # https://www.data.gouv.fr/fr/datasets/donnees-essentielles-de-la-commande-publique-fichiers-consolides/ url = 'https://www.data.gouv.fr/api/1/datasets/donnees-essentielles-de-la-commande-publique-fichiers' \ '-consolides/' yield scrapy.Request(url, meta={'file_name': 'page-1.json'}, callback=self.parse_list) @handle_http_error def parse_list(self, response): for resource in response.json()['resources']: description = resource['description'] if description and 'ocds' in description.lower(): yield self.build_request(resource['url'], formatter=components(-2))
normal
{ "blob_id": "369bffa21b5b8c0ca1d93da3aa30a38e2f4c82cc", "index": 9451, "step-1": "<mask token>\n\n\nclass France(BigFileSpider):\n <mask token>\n <mask token>\n <mask token>\n\n def start_requests(self):\n url = (\n 'https://www.data.gouv.fr/api/1/datasets/donnees-essentielles-de-la-commande-publique-fichiers-consolides/'\n )\n yield scrapy.Request(url, meta={'file_name': 'page-1.json'},\n callback=self.parse_list)\n\n @handle_http_error\n def parse_list(self, response):\n for resource in response.json()['resources']:\n description = resource['description']\n if description and 'ocds' in description.lower():\n yield self.build_request(resource['url'], formatter=\n components(-2))\n", "step-2": "<mask token>\n\n\nclass France(BigFileSpider):\n <mask token>\n name = 'france'\n data_type = 'release_package'\n\n def start_requests(self):\n url = (\n 'https://www.data.gouv.fr/api/1/datasets/donnees-essentielles-de-la-commande-publique-fichiers-consolides/'\n )\n yield scrapy.Request(url, meta={'file_name': 'page-1.json'},\n callback=self.parse_list)\n\n @handle_http_error\n def parse_list(self, response):\n for resource in response.json()['resources']:\n description = resource['description']\n if description and 'ocds' in description.lower():\n yield self.build_request(resource['url'], formatter=\n components(-2))\n", "step-3": "<mask token>\n\n\nclass France(BigFileSpider):\n \"\"\"\n Domain\n France\n Swagger API documentation\n https://doc.data.gouv.fr/api/reference/\n \"\"\"\n name = 'france'\n data_type = 'release_package'\n\n def start_requests(self):\n url = (\n 'https://www.data.gouv.fr/api/1/datasets/donnees-essentielles-de-la-commande-publique-fichiers-consolides/'\n )\n yield scrapy.Request(url, meta={'file_name': 'page-1.json'},\n callback=self.parse_list)\n\n @handle_http_error\n def parse_list(self, response):\n for resource in response.json()['resources']:\n description = resource['description']\n if description and 'ocds' in description.lower():\n yield self.build_request(resource['url'], formatter=\n components(-2))\n", "step-4": "import scrapy\nfrom kingfisher_scrapy.base_spiders import BigFileSpider\nfrom kingfisher_scrapy.util import components, handle_http_error\n\n\nclass France(BigFileSpider):\n \"\"\"\n Domain\n France\n Swagger API documentation\n https://doc.data.gouv.fr/api/reference/\n \"\"\"\n name = 'france'\n data_type = 'release_package'\n\n def start_requests(self):\n url = (\n 'https://www.data.gouv.fr/api/1/datasets/donnees-essentielles-de-la-commande-publique-fichiers-consolides/'\n )\n yield scrapy.Request(url, meta={'file_name': 'page-1.json'},\n callback=self.parse_list)\n\n @handle_http_error\n def parse_list(self, response):\n for resource in response.json()['resources']:\n description = resource['description']\n if description and 'ocds' in description.lower():\n yield self.build_request(resource['url'], formatter=\n components(-2))\n", "step-5": "import scrapy\n\nfrom kingfisher_scrapy.base_spiders import BigFileSpider\nfrom kingfisher_scrapy.util import components, handle_http_error\n\n\nclass France(BigFileSpider):\n \"\"\"\n Domain\n France\n Swagger API documentation\n https://doc.data.gouv.fr/api/reference/\n \"\"\"\n name = 'france'\n\n # SimpleSpider\n data_type = 'release_package'\n\n def start_requests(self):\n # A CKAN API JSON response.\n # Ministère de l'économie, des finances et de la relance\n # https://www.data.gouv.fr/fr/datasets/donnees-essentielles-de-la-commande-publique-fichiers-consolides/\n url = 'https://www.data.gouv.fr/api/1/datasets/donnees-essentielles-de-la-commande-publique-fichiers' \\\n '-consolides/'\n yield scrapy.Request(url, meta={'file_name': 'page-1.json'}, callback=self.parse_list)\n\n @handle_http_error\n def parse_list(self, response):\n for resource in response.json()['resources']:\n description = resource['description']\n if description and 'ocds' in description.lower():\n yield self.build_request(resource['url'], formatter=components(-2))\n", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
# coding: utf-8 # 2021/5/29 @ tongshiwei import logging def get_logger(): _logger = logging.getLogger("EduNLP") _logger.setLevel(logging.INFO) _logger.propagate = False ch = logging.StreamHandler() ch.setFormatter(logging.Formatter('[%(name)s, %(levelname)s] %(message)s')) ch.setLevel(logging.INFO) _logger.addHandler(ch) return _logger logger = get_logger()
normal
{ "blob_id": "41f71589d3fb9f5df218d8ffa0f608a890c73ad2", "index": 8486, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef get_logger():\n _logger = logging.getLogger('EduNLP')\n _logger.setLevel(logging.INFO)\n _logger.propagate = False\n ch = logging.StreamHandler()\n ch.setFormatter(logging.Formatter('[%(name)s, %(levelname)s] %(message)s'))\n ch.setLevel(logging.INFO)\n _logger.addHandler(ch)\n return _logger\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef get_logger():\n _logger = logging.getLogger('EduNLP')\n _logger.setLevel(logging.INFO)\n _logger.propagate = False\n ch = logging.StreamHandler()\n ch.setFormatter(logging.Formatter('[%(name)s, %(levelname)s] %(message)s'))\n ch.setLevel(logging.INFO)\n _logger.addHandler(ch)\n return _logger\n\n\nlogger = get_logger()\n", "step-4": "import logging\n\n\ndef get_logger():\n _logger = logging.getLogger('EduNLP')\n _logger.setLevel(logging.INFO)\n _logger.propagate = False\n ch = logging.StreamHandler()\n ch.setFormatter(logging.Formatter('[%(name)s, %(levelname)s] %(message)s'))\n ch.setLevel(logging.INFO)\n _logger.addHandler(ch)\n return _logger\n\n\nlogger = get_logger()\n", "step-5": "# coding: utf-8\n# 2021/5/29 @ tongshiwei\nimport logging\n\n\ndef get_logger():\n _logger = logging.getLogger(\"EduNLP\")\n _logger.setLevel(logging.INFO)\n _logger.propagate = False\n ch = logging.StreamHandler()\n ch.setFormatter(logging.Formatter('[%(name)s, %(levelname)s] %(message)s'))\n ch.setLevel(logging.INFO)\n _logger.addHandler(ch)\n return _logger\n\n\nlogger = get_logger()\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from flask import Flask app = Flask(__name__) import orderapi, views, models, processing if __name__=="__main__": orderapi.app.debug = True orderapi.app.run(host='0.0.0.0', port=34203) views.app.debug = True views.app.run(host='0.0.0.0', port=42720)
normal
{ "blob_id": "3218a9e82cd19bab1680079aee5f09a97992629e", "index": 6038, "step-1": "<mask token>\n", "step-2": "<mask token>\nif __name__ == '__main__':\n orderapi.app.debug = True\n orderapi.app.run(host='0.0.0.0', port=34203)\n views.app.debug = True\n views.app.run(host='0.0.0.0', port=42720)\n", "step-3": "<mask token>\napp = Flask(__name__)\n<mask token>\nif __name__ == '__main__':\n orderapi.app.debug = True\n orderapi.app.run(host='0.0.0.0', port=34203)\n views.app.debug = True\n views.app.run(host='0.0.0.0', port=42720)\n", "step-4": "from flask import Flask\napp = Flask(__name__)\nimport orderapi, views, models, processing\nif __name__ == '__main__':\n orderapi.app.debug = True\n orderapi.app.run(host='0.0.0.0', port=34203)\n views.app.debug = True\n views.app.run(host='0.0.0.0', port=42720)\n", "step-5": "from flask import Flask\napp = Flask(__name__)\nimport orderapi, views, models, processing\n\nif __name__==\"__main__\":\n orderapi.app.debug = True\n orderapi.app.run(host='0.0.0.0', port=34203)\n views.app.debug = True\n views.app.run(host='0.0.0.0', port=42720)\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import requests import os from bs4 import BeautifulSoup from urllib.parse import urljoin CURRENT_DIR = os.getcwd() DOWNLOAD_DIR = os.path.join(CURRENT_DIR, 'malware_album') os.makedirs(DOWNLOAD_DIR, exist_ok=True) url = 'http://old.vision.ece.ucsb.edu/~lakshman/malware_images/album/' class Extractor(object): """docstring for Parser""" def __init__(self, html, base_url): self.soup = BeautifulSoup(html, "html5lib") self.base_url = base_url def get_album(self): galaries = self.soup.find("div", {"id": "galleries"}) table = galaries.find("table") families = table.find_all('a', href=True) for family in families: family_name = family.text.strip() if family_name != "": yield family_name, urljoin(self.base_url, family['href']) def get_image_table(self): tables = self.soup.find('table') for td in tables.find_all('td'): image_atag = td.find('a', href=True) if image_atag is not None: yield image_atag['href'] def get_pages(self): pages = self.soup.find_all('a', href=True) seen = list() for page in pages: if page is not None: if 'index' in page['href']: page_url = page['href'] if page_url not in seen: seen.append(page_url) yield page_url def get_image_link(self): """ return downloadable image's url """ table = self.soup.find('table') image_tag = table.find('img') image_name = self.soup.find_all("b")[1].text return image_tag['src'], image_name # image = td.find_all('img') # print(image) # if image is not None: # return urljoin(self.base_url, image['src']) def fetch(image_url, image_name, folder): r = requests.get(image_url, stream=True) image_file = os.path.join(folder, image_name) with open(image_file, 'wb') as f: for chunk in r.iter_content(1024): f.write(chunk) del r def extract_image(page_html, family_url, folder): """ Extract image from page """ image_extractor = Extractor(page_html, family_url) for url in image_extractor.get_image_table(): image_page_url = urljoin(family_url, url) # print(image_page_url) imres = requests.get(image_page_url) image_page_extractor = Extractor(imres.text, image_page_url) image_src, image_name = image_page_extractor.get_image_link() image_link = urljoin(image_page_url, image_src) print(image_link, image_name) # Download image fetch(image_link, image_name, folder) def download(url): res = requests.get(url) parser = Extractor(res.text, url) # for each family, fetch image for family, family_url in parser.get_album(): family_folder = os.path.join(DOWNLOAD_DIR, family) print(family_folder) os.makedirs(family_folder) # print(os.path.join(DOWNLOAD_DIR, family_folder)) res = requests.get(family_url) if res.status_code == 200: page_extractor = Extractor(res.text, family_url) count = 1 print('Page ', count) extract_image(res.text, family_url, family_folder) # Extract on first page for page in page_extractor.get_pages(): page_url = urljoin(family_url, page) count += 1 print("Page ", count) r = requests.get(page_url) extract_image(r.text, family_url, family_folder) # print('>', image_extractor.get_image_link()) else: print('%s has status code: %s' % (family, res.status_code)) if __name__ == '__main__': download(url)
normal
{ "blob_id": "a53d7b4c93fa49fb0162138d4a262fe7a5546148", "index": 5215, "step-1": "<mask token>\n\n\nclass Extractor(object):\n \"\"\"docstring for Parser\"\"\"\n\n def __init__(self, html, base_url):\n self.soup = BeautifulSoup(html, 'html5lib')\n self.base_url = base_url\n\n def get_album(self):\n galaries = self.soup.find('div', {'id': 'galleries'})\n table = galaries.find('table')\n families = table.find_all('a', href=True)\n for family in families:\n family_name = family.text.strip()\n if family_name != '':\n yield family_name, urljoin(self.base_url, family['href'])\n\n def get_image_table(self):\n tables = self.soup.find('table')\n for td in tables.find_all('td'):\n image_atag = td.find('a', href=True)\n if image_atag is not None:\n yield image_atag['href']\n\n def get_pages(self):\n pages = self.soup.find_all('a', href=True)\n seen = list()\n for page in pages:\n if page is not None:\n if 'index' in page['href']:\n page_url = page['href']\n if page_url not in seen:\n seen.append(page_url)\n yield page_url\n\n def get_image_link(self):\n \"\"\"\n return downloadable image's url\n \"\"\"\n table = self.soup.find('table')\n image_tag = table.find('img')\n image_name = self.soup.find_all('b')[1].text\n return image_tag['src'], image_name\n\n\ndef fetch(image_url, image_name, folder):\n r = requests.get(image_url, stream=True)\n image_file = os.path.join(folder, image_name)\n with open(image_file, 'wb') as f:\n for chunk in r.iter_content(1024):\n f.write(chunk)\n del r\n\n\ndef extract_image(page_html, family_url, folder):\n \"\"\"\n Extract image from page\n \"\"\"\n image_extractor = Extractor(page_html, family_url)\n for url in image_extractor.get_image_table():\n image_page_url = urljoin(family_url, url)\n imres = requests.get(image_page_url)\n image_page_extractor = Extractor(imres.text, image_page_url)\n image_src, image_name = image_page_extractor.get_image_link()\n image_link = urljoin(image_page_url, image_src)\n print(image_link, image_name)\n fetch(image_link, image_name, folder)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass Extractor(object):\n \"\"\"docstring for Parser\"\"\"\n\n def __init__(self, html, base_url):\n self.soup = BeautifulSoup(html, 'html5lib')\n self.base_url = base_url\n\n def get_album(self):\n galaries = self.soup.find('div', {'id': 'galleries'})\n table = galaries.find('table')\n families = table.find_all('a', href=True)\n for family in families:\n family_name = family.text.strip()\n if family_name != '':\n yield family_name, urljoin(self.base_url, family['href'])\n\n def get_image_table(self):\n tables = self.soup.find('table')\n for td in tables.find_all('td'):\n image_atag = td.find('a', href=True)\n if image_atag is not None:\n yield image_atag['href']\n\n def get_pages(self):\n pages = self.soup.find_all('a', href=True)\n seen = list()\n for page in pages:\n if page is not None:\n if 'index' in page['href']:\n page_url = page['href']\n if page_url not in seen:\n seen.append(page_url)\n yield page_url\n\n def get_image_link(self):\n \"\"\"\n return downloadable image's url\n \"\"\"\n table = self.soup.find('table')\n image_tag = table.find('img')\n image_name = self.soup.find_all('b')[1].text\n return image_tag['src'], image_name\n\n\ndef fetch(image_url, image_name, folder):\n r = requests.get(image_url, stream=True)\n image_file = os.path.join(folder, image_name)\n with open(image_file, 'wb') as f:\n for chunk in r.iter_content(1024):\n f.write(chunk)\n del r\n\n\ndef extract_image(page_html, family_url, folder):\n \"\"\"\n Extract image from page\n \"\"\"\n image_extractor = Extractor(page_html, family_url)\n for url in image_extractor.get_image_table():\n image_page_url = urljoin(family_url, url)\n imres = requests.get(image_page_url)\n image_page_extractor = Extractor(imres.text, image_page_url)\n image_src, image_name = image_page_extractor.get_image_link()\n image_link = urljoin(image_page_url, image_src)\n print(image_link, image_name)\n fetch(image_link, image_name, folder)\n\n\ndef download(url):\n res = requests.get(url)\n parser = Extractor(res.text, url)\n for family, family_url in parser.get_album():\n family_folder = os.path.join(DOWNLOAD_DIR, family)\n print(family_folder)\n os.makedirs(family_folder)\n res = requests.get(family_url)\n if res.status_code == 200:\n page_extractor = Extractor(res.text, family_url)\n count = 1\n print('Page ', count)\n extract_image(res.text, family_url, family_folder)\n for page in page_extractor.get_pages():\n page_url = urljoin(family_url, page)\n count += 1\n print('Page ', count)\n r = requests.get(page_url)\n extract_image(r.text, family_url, family_folder)\n else:\n print('%s has status code: %s' % (family, res.status_code))\n\n\n<mask token>\n", "step-3": "<mask token>\nos.makedirs(DOWNLOAD_DIR, exist_ok=True)\n<mask token>\n\n\nclass Extractor(object):\n \"\"\"docstring for Parser\"\"\"\n\n def __init__(self, html, base_url):\n self.soup = BeautifulSoup(html, 'html5lib')\n self.base_url = base_url\n\n def get_album(self):\n galaries = self.soup.find('div', {'id': 'galleries'})\n table = galaries.find('table')\n families = table.find_all('a', href=True)\n for family in families:\n family_name = family.text.strip()\n if family_name != '':\n yield family_name, urljoin(self.base_url, family['href'])\n\n def get_image_table(self):\n tables = self.soup.find('table')\n for td in tables.find_all('td'):\n image_atag = td.find('a', href=True)\n if image_atag is not None:\n yield image_atag['href']\n\n def get_pages(self):\n pages = self.soup.find_all('a', href=True)\n seen = list()\n for page in pages:\n if page is not None:\n if 'index' in page['href']:\n page_url = page['href']\n if page_url not in seen:\n seen.append(page_url)\n yield page_url\n\n def get_image_link(self):\n \"\"\"\n return downloadable image's url\n \"\"\"\n table = self.soup.find('table')\n image_tag = table.find('img')\n image_name = self.soup.find_all('b')[1].text\n return image_tag['src'], image_name\n\n\ndef fetch(image_url, image_name, folder):\n r = requests.get(image_url, stream=True)\n image_file = os.path.join(folder, image_name)\n with open(image_file, 'wb') as f:\n for chunk in r.iter_content(1024):\n f.write(chunk)\n del r\n\n\ndef extract_image(page_html, family_url, folder):\n \"\"\"\n Extract image from page\n \"\"\"\n image_extractor = Extractor(page_html, family_url)\n for url in image_extractor.get_image_table():\n image_page_url = urljoin(family_url, url)\n imres = requests.get(image_page_url)\n image_page_extractor = Extractor(imres.text, image_page_url)\n image_src, image_name = image_page_extractor.get_image_link()\n image_link = urljoin(image_page_url, image_src)\n print(image_link, image_name)\n fetch(image_link, image_name, folder)\n\n\ndef download(url):\n res = requests.get(url)\n parser = Extractor(res.text, url)\n for family, family_url in parser.get_album():\n family_folder = os.path.join(DOWNLOAD_DIR, family)\n print(family_folder)\n os.makedirs(family_folder)\n res = requests.get(family_url)\n if res.status_code == 200:\n page_extractor = Extractor(res.text, family_url)\n count = 1\n print('Page ', count)\n extract_image(res.text, family_url, family_folder)\n for page in page_extractor.get_pages():\n page_url = urljoin(family_url, page)\n count += 1\n print('Page ', count)\n r = requests.get(page_url)\n extract_image(r.text, family_url, family_folder)\n else:\n print('%s has status code: %s' % (family, res.status_code))\n\n\nif __name__ == '__main__':\n download(url)\n", "step-4": "import requests\nimport os\nfrom bs4 import BeautifulSoup\nfrom urllib.parse import urljoin\nCURRENT_DIR = os.getcwd()\nDOWNLOAD_DIR = os.path.join(CURRENT_DIR, 'malware_album')\nos.makedirs(DOWNLOAD_DIR, exist_ok=True)\nurl = 'http://old.vision.ece.ucsb.edu/~lakshman/malware_images/album/'\n\n\nclass Extractor(object):\n \"\"\"docstring for Parser\"\"\"\n\n def __init__(self, html, base_url):\n self.soup = BeautifulSoup(html, 'html5lib')\n self.base_url = base_url\n\n def get_album(self):\n galaries = self.soup.find('div', {'id': 'galleries'})\n table = galaries.find('table')\n families = table.find_all('a', href=True)\n for family in families:\n family_name = family.text.strip()\n if family_name != '':\n yield family_name, urljoin(self.base_url, family['href'])\n\n def get_image_table(self):\n tables = self.soup.find('table')\n for td in tables.find_all('td'):\n image_atag = td.find('a', href=True)\n if image_atag is not None:\n yield image_atag['href']\n\n def get_pages(self):\n pages = self.soup.find_all('a', href=True)\n seen = list()\n for page in pages:\n if page is not None:\n if 'index' in page['href']:\n page_url = page['href']\n if page_url not in seen:\n seen.append(page_url)\n yield page_url\n\n def get_image_link(self):\n \"\"\"\n return downloadable image's url\n \"\"\"\n table = self.soup.find('table')\n image_tag = table.find('img')\n image_name = self.soup.find_all('b')[1].text\n return image_tag['src'], image_name\n\n\ndef fetch(image_url, image_name, folder):\n r = requests.get(image_url, stream=True)\n image_file = os.path.join(folder, image_name)\n with open(image_file, 'wb') as f:\n for chunk in r.iter_content(1024):\n f.write(chunk)\n del r\n\n\ndef extract_image(page_html, family_url, folder):\n \"\"\"\n Extract image from page\n \"\"\"\n image_extractor = Extractor(page_html, family_url)\n for url in image_extractor.get_image_table():\n image_page_url = urljoin(family_url, url)\n imres = requests.get(image_page_url)\n image_page_extractor = Extractor(imres.text, image_page_url)\n image_src, image_name = image_page_extractor.get_image_link()\n image_link = urljoin(image_page_url, image_src)\n print(image_link, image_name)\n fetch(image_link, image_name, folder)\n\n\ndef download(url):\n res = requests.get(url)\n parser = Extractor(res.text, url)\n for family, family_url in parser.get_album():\n family_folder = os.path.join(DOWNLOAD_DIR, family)\n print(family_folder)\n os.makedirs(family_folder)\n res = requests.get(family_url)\n if res.status_code == 200:\n page_extractor = Extractor(res.text, family_url)\n count = 1\n print('Page ', count)\n extract_image(res.text, family_url, family_folder)\n for page in page_extractor.get_pages():\n page_url = urljoin(family_url, page)\n count += 1\n print('Page ', count)\n r = requests.get(page_url)\n extract_image(r.text, family_url, family_folder)\n else:\n print('%s has status code: %s' % (family, res.status_code))\n\n\nif __name__ == '__main__':\n download(url)\n", "step-5": "import requests\nimport os\nfrom bs4 import BeautifulSoup\nfrom urllib.parse import urljoin\n\nCURRENT_DIR = os.getcwd()\nDOWNLOAD_DIR = os.path.join(CURRENT_DIR, 'malware_album')\n\nos.makedirs(DOWNLOAD_DIR, exist_ok=True)\n\nurl = 'http://old.vision.ece.ucsb.edu/~lakshman/malware_images/album/'\n\n\nclass Extractor(object):\n \"\"\"docstring for Parser\"\"\"\n def __init__(self, html, base_url):\n self.soup = BeautifulSoup(html, \"html5lib\")\n self.base_url = base_url\n\n def get_album(self):\n galaries = self.soup.find(\"div\", {\"id\": \"galleries\"})\n table = galaries.find(\"table\")\n families = table.find_all('a', href=True)\n for family in families:\n family_name = family.text.strip()\n if family_name != \"\":\n yield family_name, urljoin(self.base_url, family['href'])\n\n\n def get_image_table(self):\n tables = self.soup.find('table')\n for td in tables.find_all('td'):\n image_atag = td.find('a', href=True)\n if image_atag is not None:\n yield image_atag['href']\n\n def get_pages(self):\n pages = self.soup.find_all('a', href=True)\n seen = list()\n for page in pages:\n if page is not None:\n if 'index' in page['href']:\n page_url = page['href']\n if page_url not in seen:\n seen.append(page_url)\n yield page_url\n\n def get_image_link(self):\n \"\"\"\n return downloadable image's url\n \"\"\"\n table = self.soup.find('table')\n image_tag = table.find('img')\n image_name = self.soup.find_all(\"b\")[1].text\n return image_tag['src'], image_name\n\n # image = td.find_all('img')\n # print(image)\n # if image is not None:\n # return urljoin(self.base_url, image['src'])\n\n\n\ndef fetch(image_url, image_name, folder):\n r = requests.get(image_url, stream=True)\n image_file = os.path.join(folder, image_name)\n with open(image_file, 'wb') as f:\n for chunk in r.iter_content(1024):\n f.write(chunk)\n del r\n\n\ndef extract_image(page_html, family_url, folder):\n \"\"\"\n Extract image from page\n \"\"\"\n image_extractor = Extractor(page_html, family_url)\n for url in image_extractor.get_image_table():\n image_page_url = urljoin(family_url, url)\n # print(image_page_url)\n imres = requests.get(image_page_url)\n image_page_extractor = Extractor(imres.text, image_page_url)\n image_src, image_name = image_page_extractor.get_image_link()\n\n image_link = urljoin(image_page_url, image_src)\n\n print(image_link, image_name)\n # Download image\n fetch(image_link, image_name, folder)\n\n\n\ndef download(url):\n res = requests.get(url)\n parser = Extractor(res.text, url)\n # for each family, fetch image\n for family, family_url in parser.get_album():\n family_folder = os.path.join(DOWNLOAD_DIR, family)\n print(family_folder)\n os.makedirs(family_folder)\n # print(os.path.join(DOWNLOAD_DIR, family_folder))\n\n res = requests.get(family_url)\n if res.status_code == 200:\n page_extractor = Extractor(res.text, family_url)\n count = 1\n print('Page ', count)\n extract_image(res.text, family_url, family_folder) # Extract on first page\n for page in page_extractor.get_pages():\n page_url = urljoin(family_url, page)\n\n count += 1\n print(\"Page \", count)\n\n r = requests.get(page_url)\n extract_image(r.text, family_url, family_folder)\n\n\n # print('>', image_extractor.get_image_link())\n else:\n print('%s has status code: %s' % (family, res.status_code))\n\n\n\n\n\nif __name__ == '__main__':\n download(url)\n\n\n\n", "step-ids": [ 9, 10, 11, 13, 14 ] }
[ 9, 10, 11, 13, 14 ]
#ERP PROJECT import pyrebase import smtplib config = { "apiKey": "apiKey", "authDomain": "erproject-dd24e-default-rtdb.firebaseapp.com", "databaseURL": "https://erproject-dd24e-default-rtdb.firebaseio.com", "storageBucket": "erproject-dd24e-default-rtdb.appspot.com" } firebase = pyrebase.initialize_app(config) db = firebase.database() db.child("Student").push({"DAY":""}) db.child("Faculty").push({"DAY":""}) student=["s1","s2","s3","s4","s5","s6","s7","s8","s9","s10"] faculty=["f1","f2","f3","f4","f5"] st={} data,data1='','' st1={} fa={} fa1={} i=1 import schedule import time def j(): global i import pandas as pd st1.update({i:st}) data=pd.DataFrame(st1) print(data) data.to_csv('student.csv') fa1.update({i:fa}) data1=pd.DataFrame(fa1) print(data1) data1.to_csv('faculty.csv') i=i+1 while(1): schedule.every(10).seconds.do(j) schedule.run_pending() time.sleep(1) f=input("enter 's' for student,enter 'f' for faculty") f=f.upper() if(f=="S"): name=input("enter student name") if name in student: a=input("enter 'a' for absent,enter 'l' for leave,enter 'p' for present") a=a.upper() if(a=="L"): #please change sender and receiver's email id for this function to work import smtplib server =smtplib.SMTP("smtp.gmail.com",587) server.starttls() server.login("[email protected]","akki@9510") message=name+"is on leave" server.sendmail("[email protected]","[email protected]",message) a="A" st.update({name:a}) from datetime import datetime now = datetime.now() # current date and time date_time = now.strftime("%d-%m-%Y") db.child("Student").child("DAY").child(date_time).update({name:a}) if(f=="F"): name=input("enter faculty name") if name in faculty: a=input("enter 'a' for absent,enter 'l' for leave,enter 'p' for present") a=a.upper() if(a=="L"): import smtplib server =smtplib.SMTP("smtp.gmail.com",587) server.starttls() server.login("[email protected]","akki@9510") message=name+"is on leave" server.sendmail("[email protected]","[email protected]",message) a="A" fa.update({name:a}) from datetime import datetime now = datetime.now() # current date and time date_time = now.strftime("%d-%m-%Y") db.child("Faculty").child("DAY").child(date_time).update({name:a})
normal
{ "blob_id": "3e7e6d7a0137d91dc7437ff91a39d7f8faad675e", "index": 7075, "step-1": "<mask token>\n\n\ndef j():\n global i\n import pandas as pd\n st1.update({i: st})\n data = pd.DataFrame(st1)\n print(data)\n data.to_csv('student.csv')\n fa1.update({i: fa})\n data1 = pd.DataFrame(fa1)\n print(data1)\n data1.to_csv('faculty.csv')\n i = i + 1\n\n\n<mask token>\n", "step-2": "<mask token>\ndb.child('Student').push({'DAY': ''})\ndb.child('Faculty').push({'DAY': ''})\n<mask token>\n\n\ndef j():\n global i\n import pandas as pd\n st1.update({i: st})\n data = pd.DataFrame(st1)\n print(data)\n data.to_csv('student.csv')\n fa1.update({i: fa})\n data1 = pd.DataFrame(fa1)\n print(data1)\n data1.to_csv('faculty.csv')\n i = i + 1\n\n\nwhile 1:\n schedule.every(10).seconds.do(j)\n schedule.run_pending()\n time.sleep(1)\n f = input(\"enter 's' for student,enter 'f' for faculty\")\n f = f.upper()\n if f == 'S':\n name = input('enter student name')\n if name in student:\n a = input(\n \"enter 'a' for absent,enter 'l' for leave,enter 'p' for present\"\n )\n a = a.upper()\n if a == 'L':\n import smtplib\n server = smtplib.SMTP('smtp.gmail.com', 587)\n server.starttls()\n server.login('[email protected]', 'akki@9510')\n message = name + 'is on leave'\n server.sendmail('[email protected]', '[email protected]',\n message)\n a = 'A'\n st.update({name: a})\n from datetime import datetime\n now = datetime.now()\n date_time = now.strftime('%d-%m-%Y')\n db.child('Student').child('DAY').child(date_time).update({name: a})\n if f == 'F':\n name = input('enter faculty name')\n if name in faculty:\n a = input(\n \"enter 'a' for absent,enter 'l' for leave,enter 'p' for present\"\n )\n a = a.upper()\n if a == 'L':\n import smtplib\n server = smtplib.SMTP('smtp.gmail.com', 587)\n server.starttls()\n server.login('[email protected]', 'akki@9510')\n message = name + 'is on leave'\n server.sendmail('[email protected]', '[email protected]',\n message)\n a = 'A'\n fa.update({name: a})\n from datetime import datetime\n now = datetime.now()\n date_time = now.strftime('%d-%m-%Y')\n db.child('Faculty').child('DAY').child(date_time).update({name: a})\n", "step-3": "<mask token>\nconfig = {'apiKey': 'apiKey', 'authDomain':\n 'erproject-dd24e-default-rtdb.firebaseapp.com', 'databaseURL':\n 'https://erproject-dd24e-default-rtdb.firebaseio.com', 'storageBucket':\n 'erproject-dd24e-default-rtdb.appspot.com'}\nfirebase = pyrebase.initialize_app(config)\ndb = firebase.database()\ndb.child('Student').push({'DAY': ''})\ndb.child('Faculty').push({'DAY': ''})\nstudent = ['s1', 's2', 's3', 's4', 's5', 's6', 's7', 's8', 's9', 's10']\nfaculty = ['f1', 'f2', 'f3', 'f4', 'f5']\nst = {}\ndata, data1 = '', ''\nst1 = {}\nfa = {}\nfa1 = {}\ni = 1\n<mask token>\n\n\ndef j():\n global i\n import pandas as pd\n st1.update({i: st})\n data = pd.DataFrame(st1)\n print(data)\n data.to_csv('student.csv')\n fa1.update({i: fa})\n data1 = pd.DataFrame(fa1)\n print(data1)\n data1.to_csv('faculty.csv')\n i = i + 1\n\n\nwhile 1:\n schedule.every(10).seconds.do(j)\n schedule.run_pending()\n time.sleep(1)\n f = input(\"enter 's' for student,enter 'f' for faculty\")\n f = f.upper()\n if f == 'S':\n name = input('enter student name')\n if name in student:\n a = input(\n \"enter 'a' for absent,enter 'l' for leave,enter 'p' for present\"\n )\n a = a.upper()\n if a == 'L':\n import smtplib\n server = smtplib.SMTP('smtp.gmail.com', 587)\n server.starttls()\n server.login('[email protected]', 'akki@9510')\n message = name + 'is on leave'\n server.sendmail('[email protected]', '[email protected]',\n message)\n a = 'A'\n st.update({name: a})\n from datetime import datetime\n now = datetime.now()\n date_time = now.strftime('%d-%m-%Y')\n db.child('Student').child('DAY').child(date_time).update({name: a})\n if f == 'F':\n name = input('enter faculty name')\n if name in faculty:\n a = input(\n \"enter 'a' for absent,enter 'l' for leave,enter 'p' for present\"\n )\n a = a.upper()\n if a == 'L':\n import smtplib\n server = smtplib.SMTP('smtp.gmail.com', 587)\n server.starttls()\n server.login('[email protected]', 'akki@9510')\n message = name + 'is on leave'\n server.sendmail('[email protected]', '[email protected]',\n message)\n a = 'A'\n fa.update({name: a})\n from datetime import datetime\n now = datetime.now()\n date_time = now.strftime('%d-%m-%Y')\n db.child('Faculty').child('DAY').child(date_time).update({name: a})\n", "step-4": "import pyrebase\nimport smtplib\nconfig = {'apiKey': 'apiKey', 'authDomain':\n 'erproject-dd24e-default-rtdb.firebaseapp.com', 'databaseURL':\n 'https://erproject-dd24e-default-rtdb.firebaseio.com', 'storageBucket':\n 'erproject-dd24e-default-rtdb.appspot.com'}\nfirebase = pyrebase.initialize_app(config)\ndb = firebase.database()\ndb.child('Student').push({'DAY': ''})\ndb.child('Faculty').push({'DAY': ''})\nstudent = ['s1', 's2', 's3', 's4', 's5', 's6', 's7', 's8', 's9', 's10']\nfaculty = ['f1', 'f2', 'f3', 'f4', 'f5']\nst = {}\ndata, data1 = '', ''\nst1 = {}\nfa = {}\nfa1 = {}\ni = 1\nimport schedule\nimport time\n\n\ndef j():\n global i\n import pandas as pd\n st1.update({i: st})\n data = pd.DataFrame(st1)\n print(data)\n data.to_csv('student.csv')\n fa1.update({i: fa})\n data1 = pd.DataFrame(fa1)\n print(data1)\n data1.to_csv('faculty.csv')\n i = i + 1\n\n\nwhile 1:\n schedule.every(10).seconds.do(j)\n schedule.run_pending()\n time.sleep(1)\n f = input(\"enter 's' for student,enter 'f' for faculty\")\n f = f.upper()\n if f == 'S':\n name = input('enter student name')\n if name in student:\n a = input(\n \"enter 'a' for absent,enter 'l' for leave,enter 'p' for present\"\n )\n a = a.upper()\n if a == 'L':\n import smtplib\n server = smtplib.SMTP('smtp.gmail.com', 587)\n server.starttls()\n server.login('[email protected]', 'akki@9510')\n message = name + 'is on leave'\n server.sendmail('[email protected]', '[email protected]',\n message)\n a = 'A'\n st.update({name: a})\n from datetime import datetime\n now = datetime.now()\n date_time = now.strftime('%d-%m-%Y')\n db.child('Student').child('DAY').child(date_time).update({name: a})\n if f == 'F':\n name = input('enter faculty name')\n if name in faculty:\n a = input(\n \"enter 'a' for absent,enter 'l' for leave,enter 'p' for present\"\n )\n a = a.upper()\n if a == 'L':\n import smtplib\n server = smtplib.SMTP('smtp.gmail.com', 587)\n server.starttls()\n server.login('[email protected]', 'akki@9510')\n message = name + 'is on leave'\n server.sendmail('[email protected]', '[email protected]',\n message)\n a = 'A'\n fa.update({name: a})\n from datetime import datetime\n now = datetime.now()\n date_time = now.strftime('%d-%m-%Y')\n db.child('Faculty').child('DAY').child(date_time).update({name: a})\n", "step-5": "#ERP PROJECT\n\n\nimport pyrebase\nimport smtplib\n\nconfig = {\n \"apiKey\": \"apiKey\",\n \"authDomain\": \"erproject-dd24e-default-rtdb.firebaseapp.com\",\n \"databaseURL\": \"https://erproject-dd24e-default-rtdb.firebaseio.com\",\n \"storageBucket\": \"erproject-dd24e-default-rtdb.appspot.com\"\n}\n\nfirebase = pyrebase.initialize_app(config)\ndb = firebase.database()\n\ndb.child(\"Student\").push({\"DAY\":\"\"})\ndb.child(\"Faculty\").push({\"DAY\":\"\"}) \nstudent=[\"s1\",\"s2\",\"s3\",\"s4\",\"s5\",\"s6\",\"s7\",\"s8\",\"s9\",\"s10\"]\nfaculty=[\"f1\",\"f2\",\"f3\",\"f4\",\"f5\"]\nst={}\ndata,data1='',''\nst1={}\nfa={}\nfa1={}\ni=1\nimport schedule\nimport time\ndef j():\n global i\n import pandas as pd\n st1.update({i:st})\n data=pd.DataFrame(st1)\n print(data)\n data.to_csv('student.csv')\n fa1.update({i:fa})\n data1=pd.DataFrame(fa1)\n print(data1)\n data1.to_csv('faculty.csv')\n i=i+1 \nwhile(1):\n schedule.every(10).seconds.do(j)\n schedule.run_pending()\n time.sleep(1)\n f=input(\"enter 's' for student,enter 'f' for faculty\")\n f=f.upper()\n if(f==\"S\"):\n name=input(\"enter student name\")\n if name in student:\n a=input(\"enter 'a' for absent,enter 'l' for leave,enter 'p' for present\")\n a=a.upper()\n if(a==\"L\"): #please change sender and receiver's email id for this function to work \n import smtplib\n server =smtplib.SMTP(\"smtp.gmail.com\",587)\n server.starttls()\n server.login(\"[email protected]\",\"akki@9510\")\n message=name+\"is on leave\"\n server.sendmail(\"[email protected]\",\"[email protected]\",message)\n a=\"A\"\n st.update({name:a})\n from datetime import datetime\n now = datetime.now() # current date and time\n date_time = now.strftime(\"%d-%m-%Y\")\n db.child(\"Student\").child(\"DAY\").child(date_time).update({name:a})\n \n if(f==\"F\"):\n name=input(\"enter faculty name\")\n if name in faculty:\n a=input(\"enter 'a' for absent,enter 'l' for leave,enter 'p' for present\")\n a=a.upper()\n if(a==\"L\"):\n import smtplib\n server =smtplib.SMTP(\"smtp.gmail.com\",587)\n server.starttls()\n server.login(\"[email protected]\",\"akki@9510\")\n message=name+\"is on leave\"\n server.sendmail(\"[email protected]\",\"[email protected]\",message)\n a=\"A\"\n fa.update({name:a})\n from datetime import datetime\n now = datetime.now() # current date and time\n date_time = now.strftime(\"%d-%m-%Y\")\n db.child(\"Faculty\").child(\"DAY\").child(date_time).update({name:a})\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
import pandas as pd import numpy as np df = pd.DataFrame([['Hospital1', '2019-10-01'], ['Hospital2', '2019-10-01'], ['Hospital3', '2019-10-01'], ['Hospital1', '2019-10-01'], ['Hospital2', '2019-10-02'], ['Hospital3', '2019-10-02'], ['Hospital2', '2019-10-03'], ['Hospital2', '2019-10-04'], ['Hospital3', '2019-10-04'], ['Hospital3', '2019-10-05'], ['Hospital1', '2019-10-06'], ['Hospital1', '2019-10-07'], ['Hospital1', '2019-10-08']], columns=['Hospital_Name', 'Date']) df2 = pd.DataFrame([['Hospital1', 12, 15, 16, 12], ['Hospital2', 10, 17, 14, 12], ['Hospital2', 15, 20, 12, 12]], columns=['Hospital_Name', '2019-10-01', '2019-10-02', '2019-10-03', '2019-10-04']) print(pd.pivot_table(df, values='Date', index='Hospital_Name', aggfunc=np.size) ) print(df2.sum())
normal
{ "blob_id": "8d8f1f0dbb76b5c536bd1a2142bb61c51dd75075", "index": 9573, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint(pd.pivot_table(df, values='Date', index='Hospital_Name', aggfunc=np.size)\n )\nprint(df2.sum())\n", "step-3": "<mask token>\ndf = pd.DataFrame([['Hospital1', '2019-10-01'], ['Hospital2', '2019-10-01'],\n ['Hospital3', '2019-10-01'], ['Hospital1', '2019-10-01'], ['Hospital2',\n '2019-10-02'], ['Hospital3', '2019-10-02'], ['Hospital2', '2019-10-03'],\n ['Hospital2', '2019-10-04'], ['Hospital3', '2019-10-04'], ['Hospital3',\n '2019-10-05'], ['Hospital1', '2019-10-06'], ['Hospital1', '2019-10-07'],\n ['Hospital1', '2019-10-08']], columns=['Hospital_Name', 'Date'])\ndf2 = pd.DataFrame([['Hospital1', 12, 15, 16, 12], ['Hospital2', 10, 17, 14,\n 12], ['Hospital2', 15, 20, 12, 12]], columns=['Hospital_Name',\n '2019-10-01', '2019-10-02', '2019-10-03', '2019-10-04'])\nprint(pd.pivot_table(df, values='Date', index='Hospital_Name', aggfunc=np.size)\n )\nprint(df2.sum())\n", "step-4": "import pandas as pd\nimport numpy as np\ndf = pd.DataFrame([['Hospital1', '2019-10-01'], ['Hospital2', '2019-10-01'],\n ['Hospital3', '2019-10-01'], ['Hospital1', '2019-10-01'], ['Hospital2',\n '2019-10-02'], ['Hospital3', '2019-10-02'], ['Hospital2', '2019-10-03'],\n ['Hospital2', '2019-10-04'], ['Hospital3', '2019-10-04'], ['Hospital3',\n '2019-10-05'], ['Hospital1', '2019-10-06'], ['Hospital1', '2019-10-07'],\n ['Hospital1', '2019-10-08']], columns=['Hospital_Name', 'Date'])\ndf2 = pd.DataFrame([['Hospital1', 12, 15, 16, 12], ['Hospital2', 10, 17, 14,\n 12], ['Hospital2', 15, 20, 12, 12]], columns=['Hospital_Name',\n '2019-10-01', '2019-10-02', '2019-10-03', '2019-10-04'])\nprint(pd.pivot_table(df, values='Date', index='Hospital_Name', aggfunc=np.size)\n )\nprint(df2.sum())\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
no_list = {"tor:", "getblocktemplate", " ping ", " pong "} for i in range(1, 5): with open("Desktop/"+str(i)+".log", "r") as r: with open("Desktop/"+str(i)+"-clean.log", "a+") as w: for line in r: if not any(s in line for s in no_list): w.write(line)
normal
{ "blob_id": "f14a8d0d51f0baefe20b2699ffa82112dad9c38f", "index": 6582, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor i in range(1, 5):\n with open('Desktop/' + str(i) + '.log', 'r') as r:\n with open('Desktop/' + str(i) + '-clean.log', 'a+') as w:\n for line in r:\n if not any(s in line for s in no_list):\n w.write(line)\n", "step-3": "no_list = {'tor:', 'getblocktemplate', ' ping ', ' pong '}\nfor i in range(1, 5):\n with open('Desktop/' + str(i) + '.log', 'r') as r:\n with open('Desktop/' + str(i) + '-clean.log', 'a+') as w:\n for line in r:\n if not any(s in line for s in no_list):\n w.write(line)\n", "step-4": "no_list = {\"tor:\", \"getblocktemplate\", \" ping \", \" pong \"}\nfor i in range(1, 5):\n\twith open(\"Desktop/\"+str(i)+\".log\", \"r\") as r:\n\t\twith open(\"Desktop/\"+str(i)+\"-clean.log\", \"a+\") as w:\n\t\t\tfor line in r:\n\t\t\t\tif not any(s in line for s in no_list):\n\t\t\t\t\tw.write(line)\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
from floppy.node import Node, Input, Output, Tag, abstractNode @abstractNode class StringNode(Node): Tag('StringOperations') class StringAppend(StringNode): """ Creates a new node which combines two strings. These can be seperated by a delimiter. :param nodeClass: subclass object of 'Node'. :return: newly created Node instance. """ Input('First', str) Input('Second', str) Input('Delimiter', str, optional=True, default='') Output('Joined', str) def run(self): super(StringAppend, self).run() self._Joined(self._Delimiter.join([self._First, self._Second])) class ListToString(StringNode): """ Creates a new node which combines two strings. These can be seperated by a delimiter. :param nodeClass: subclass object of 'Node'. :return: newly created Node instance. """ Input('List', object, list=True) Input('Delimiter', str, optional=True, default='') Output('Joined', str) def run(self): super(ListToString, self).run() string = [] for element in self._List: string.append(str(element)) self._Joined(self._Delimiter.join(string))
normal
{ "blob_id": "1bb151171bbbb899456324056be3634e87b5c8fb", "index": 3494, "step-1": "<mask token>\n\n\nclass StringAppend(StringNode):\n <mask token>\n Input('First', str)\n Input('Second', str)\n Input('Delimiter', str, optional=True, default='')\n Output('Joined', str)\n <mask token>\n\n\nclass ListToString(StringNode):\n \"\"\"\n Creates a new node which combines two strings. These can be seperated by a delimiter.\n :param nodeClass: subclass object of 'Node'.\n :return: newly created Node instance.\n \"\"\"\n Input('List', object, list=True)\n Input('Delimiter', str, optional=True, default='')\n Output('Joined', str)\n\n def run(self):\n super(ListToString, self).run()\n string = []\n for element in self._List:\n string.append(str(element))\n self._Joined(self._Delimiter.join(string))\n", "step-2": "<mask token>\n\n\nclass StringAppend(StringNode):\n <mask token>\n Input('First', str)\n Input('Second', str)\n Input('Delimiter', str, optional=True, default='')\n Output('Joined', str)\n\n def run(self):\n super(StringAppend, self).run()\n self._Joined(self._Delimiter.join([self._First, self._Second]))\n\n\nclass ListToString(StringNode):\n \"\"\"\n Creates a new node which combines two strings. These can be seperated by a delimiter.\n :param nodeClass: subclass object of 'Node'.\n :return: newly created Node instance.\n \"\"\"\n Input('List', object, list=True)\n Input('Delimiter', str, optional=True, default='')\n Output('Joined', str)\n\n def run(self):\n super(ListToString, self).run()\n string = []\n for element in self._List:\n string.append(str(element))\n self._Joined(self._Delimiter.join(string))\n", "step-3": "<mask token>\n\n\nclass StringAppend(StringNode):\n \"\"\"\n Creates a new node which combines two strings. These can be seperated by a delimiter.\n :param nodeClass: subclass object of 'Node'.\n :return: newly created Node instance.\n \"\"\"\n Input('First', str)\n Input('Second', str)\n Input('Delimiter', str, optional=True, default='')\n Output('Joined', str)\n\n def run(self):\n super(StringAppend, self).run()\n self._Joined(self._Delimiter.join([self._First, self._Second]))\n\n\nclass ListToString(StringNode):\n \"\"\"\n Creates a new node which combines two strings. These can be seperated by a delimiter.\n :param nodeClass: subclass object of 'Node'.\n :return: newly created Node instance.\n \"\"\"\n Input('List', object, list=True)\n Input('Delimiter', str, optional=True, default='')\n Output('Joined', str)\n\n def run(self):\n super(ListToString, self).run()\n string = []\n for element in self._List:\n string.append(str(element))\n self._Joined(self._Delimiter.join(string))\n", "step-4": "from floppy.node import Node, Input, Output, Tag, abstractNode\n\n\n@abstractNode\nclass StringNode(Node):\n Tag('StringOperations')\n\n\nclass StringAppend(StringNode):\n \"\"\"\n Creates a new node which combines two strings. These can be seperated by a delimiter.\n :param nodeClass: subclass object of 'Node'.\n :return: newly created Node instance.\n \"\"\"\n Input('First', str)\n Input('Second', str)\n Input('Delimiter', str, optional=True, default='')\n Output('Joined', str)\n\n def run(self):\n super(StringAppend, self).run()\n self._Joined(self._Delimiter.join([self._First, self._Second]))\n\n\nclass ListToString(StringNode):\n \"\"\"\n Creates a new node which combines two strings. These can be seperated by a delimiter.\n :param nodeClass: subclass object of 'Node'.\n :return: newly created Node instance.\n \"\"\"\n Input('List', object, list=True)\n Input('Delimiter', str, optional=True, default='')\n Output('Joined', str)\n\n def run(self):\n super(ListToString, self).run()\n string = []\n for element in self._List:\n string.append(str(element))\n self._Joined(self._Delimiter.join(string))\n", "step-5": null, "step-ids": [ 4, 5, 6, 8 ] }
[ 4, 5, 6, 8 ]
class Point: def __init__(self,x,y): self.x=x self.y=y def __str__(self): return "({0},{1})".format(self.x,self.y) def __add__(self, other): self.x=self.x+other.x self.y=self.y+other.y return Point(self.x,self.y) p1=Point(1,2) p2=Point(3,4) print(p1) print(p2) p3=p1+p2 print(p3)
normal
{ "blob_id": "1bebd3c18742f5362d2e5f22c539f6b13ad58d2a", "index": 2873, "step-1": "class Point:\n <mask token>\n\n def __str__(self):\n return '({0},{1})'.format(self.x, self.y)\n\n def __add__(self, other):\n self.x = self.x + other.x\n self.y = self.y + other.y\n return Point(self.x, self.y)\n\n\n<mask token>\n", "step-2": "class Point:\n\n def __init__(self, x, y):\n self.x = x\n self.y = y\n\n def __str__(self):\n return '({0},{1})'.format(self.x, self.y)\n\n def __add__(self, other):\n self.x = self.x + other.x\n self.y = self.y + other.y\n return Point(self.x, self.y)\n\n\n<mask token>\n", "step-3": "class Point:\n\n def __init__(self, x, y):\n self.x = x\n self.y = y\n\n def __str__(self):\n return '({0},{1})'.format(self.x, self.y)\n\n def __add__(self, other):\n self.x = self.x + other.x\n self.y = self.y + other.y\n return Point(self.x, self.y)\n\n\n<mask token>\nprint(p1)\nprint(p2)\n<mask token>\nprint(p3)\n", "step-4": "class Point:\n\n def __init__(self, x, y):\n self.x = x\n self.y = y\n\n def __str__(self):\n return '({0},{1})'.format(self.x, self.y)\n\n def __add__(self, other):\n self.x = self.x + other.x\n self.y = self.y + other.y\n return Point(self.x, self.y)\n\n\np1 = Point(1, 2)\np2 = Point(3, 4)\nprint(p1)\nprint(p2)\np3 = p1 + p2\nprint(p3)\n", "step-5": "class Point:\r\n def __init__(self,x,y):\r\n self.x=x\r\n self.y=y\r\n\r\n def __str__(self):\r\n return \"({0},{1})\".format(self.x,self.y)\r\n\r\n def __add__(self, other):\r\n self.x=self.x+other.x\r\n self.y=self.y+other.y\r\n return Point(self.x,self.y)\r\n\r\np1=Point(1,2)\r\np2=Point(3,4)\r\nprint(p1)\r\nprint(p2)\r\np3=p1+p2\r\nprint(p3)\r\n", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
#! /usr/bin/env python3 import common, os, shutil, sys def main(): os.chdir(common.root) shutil.rmtree('shared/target', ignore_errors = True) shutil.rmtree('platform/build', ignore_errors = True) shutil.rmtree('platform/target', ignore_errors = True) shutil.rmtree('tests/target', ignore_errors = True) shutil.rmtree('examples/lwjgl/target', ignore_errors = True) shutil.rmtree('examples/kwinit/target', ignore_errors = True) shutil.rmtree('examples/jwm/target', ignore_errors = True) shutil.rmtree('examples/swt/target', ignore_errors = True) return 0 if __name__ == '__main__': sys.exit(main())
normal
{ "blob_id": "2305d0b7ec0d9e08e3f1c0cedaafa6ed60786e50", "index": 7359, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef main():\n os.chdir(common.root)\n shutil.rmtree('shared/target', ignore_errors=True)\n shutil.rmtree('platform/build', ignore_errors=True)\n shutil.rmtree('platform/target', ignore_errors=True)\n shutil.rmtree('tests/target', ignore_errors=True)\n shutil.rmtree('examples/lwjgl/target', ignore_errors=True)\n shutil.rmtree('examples/kwinit/target', ignore_errors=True)\n shutil.rmtree('examples/jwm/target', ignore_errors=True)\n shutil.rmtree('examples/swt/target', ignore_errors=True)\n return 0\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef main():\n os.chdir(common.root)\n shutil.rmtree('shared/target', ignore_errors=True)\n shutil.rmtree('platform/build', ignore_errors=True)\n shutil.rmtree('platform/target', ignore_errors=True)\n shutil.rmtree('tests/target', ignore_errors=True)\n shutil.rmtree('examples/lwjgl/target', ignore_errors=True)\n shutil.rmtree('examples/kwinit/target', ignore_errors=True)\n shutil.rmtree('examples/jwm/target', ignore_errors=True)\n shutil.rmtree('examples/swt/target', ignore_errors=True)\n return 0\n\n\nif __name__ == '__main__':\n sys.exit(main())\n", "step-4": "import common, os, shutil, sys\n\n\ndef main():\n os.chdir(common.root)\n shutil.rmtree('shared/target', ignore_errors=True)\n shutil.rmtree('platform/build', ignore_errors=True)\n shutil.rmtree('platform/target', ignore_errors=True)\n shutil.rmtree('tests/target', ignore_errors=True)\n shutil.rmtree('examples/lwjgl/target', ignore_errors=True)\n shutil.rmtree('examples/kwinit/target', ignore_errors=True)\n shutil.rmtree('examples/jwm/target', ignore_errors=True)\n shutil.rmtree('examples/swt/target', ignore_errors=True)\n return 0\n\n\nif __name__ == '__main__':\n sys.exit(main())\n", "step-5": "#! /usr/bin/env python3\nimport common, os, shutil, sys\n\ndef main():\n os.chdir(common.root)\n shutil.rmtree('shared/target', ignore_errors = True)\n shutil.rmtree('platform/build', ignore_errors = True)\n shutil.rmtree('platform/target', ignore_errors = True)\n shutil.rmtree('tests/target', ignore_errors = True)\n shutil.rmtree('examples/lwjgl/target', ignore_errors = True)\n shutil.rmtree('examples/kwinit/target', ignore_errors = True)\n shutil.rmtree('examples/jwm/target', ignore_errors = True)\n shutil.rmtree('examples/swt/target', ignore_errors = True)\n\n return 0\n\nif __name__ == '__main__':\n sys.exit(main())", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
total = totmil = cont = menor = 0 barato = ' ' print('-' * 40) print('LOJA SUPER BARATÃO') print('-' * 40) while True: produto = str(input('Nome do Produto: ')) preco = float(input('Preço: ')) cont += 1 total += preco if preco > 1000: totmil += 1 if cont == 1 or preco < menor: barato = produto menor = preco resp = ' ' while resp not in 'SN': resp = str(input('Quer continuar? [S/N]')).strip().upper()[0] if resp == 'N': break print('O total da compra foi R${:.2f}'.format(total)) print('Temos {} produtos custando mais de R$1000,00'.format(totmil)) print('O produto mais barato foi {} que custa {:.2f}'.format(barato, menor))
normal
{ "blob_id": "35b24ffa14f8b3c2040d5becc8a35721e86d8b3d", "index": 345, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint('-' * 40)\nprint('LOJA SUPER BARATÃO')\nprint('-' * 40)\nwhile True:\n produto = str(input('Nome do Produto: '))\n preco = float(input('Preço: '))\n cont += 1\n total += preco\n if preco > 1000:\n totmil += 1\n if cont == 1 or preco < menor:\n barato = produto\n menor = preco\n resp = ' '\n while resp not in 'SN':\n resp = str(input('Quer continuar? [S/N]')).strip().upper()[0]\n if resp == 'N':\n break\nprint('O total da compra foi R${:.2f}'.format(total))\nprint('Temos {} produtos custando mais de R$1000,00'.format(totmil))\nprint('O produto mais barato foi {} que custa {:.2f}'.format(barato, menor))\n", "step-3": "total = totmil = cont = menor = 0\nbarato = ' '\nprint('-' * 40)\nprint('LOJA SUPER BARATÃO')\nprint('-' * 40)\nwhile True:\n produto = str(input('Nome do Produto: '))\n preco = float(input('Preço: '))\n cont += 1\n total += preco\n if preco > 1000:\n totmil += 1\n if cont == 1 or preco < menor:\n barato = produto\n menor = preco\n resp = ' '\n while resp not in 'SN':\n resp = str(input('Quer continuar? [S/N]')).strip().upper()[0]\n if resp == 'N':\n break\nprint('O total da compra foi R${:.2f}'.format(total))\nprint('Temos {} produtos custando mais de R$1000,00'.format(totmil))\nprint('O produto mais barato foi {} que custa {:.2f}'.format(barato, menor))\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
import json from flask import Flask, request, jsonify from lib.chess_utils import run_game def create_app(): app = Flask(__name__) @app.route('/') def hello_world(): return 'Hello, World!' @app.route('/process_game', methods=['POST']) def process_game(): move_sequence = json.loads(request.data)['moves'] return jsonify(run_game(move_sequence)) return app if __name__ == '__main__': app = create_app() app.run(port=5000)
normal
{ "blob_id": "60ca8b1d7307a9d8183e3617f238efcfb9d707dd", "index": 1950, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef create_app():\n app = Flask(__name__)\n\n @app.route('/')\n def hello_world():\n return 'Hello, World!'\n\n @app.route('/process_game', methods=['POST'])\n def process_game():\n move_sequence = json.loads(request.data)['moves']\n return jsonify(run_game(move_sequence))\n return app\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef create_app():\n app = Flask(__name__)\n\n @app.route('/')\n def hello_world():\n return 'Hello, World!'\n\n @app.route('/process_game', methods=['POST'])\n def process_game():\n move_sequence = json.loads(request.data)['moves']\n return jsonify(run_game(move_sequence))\n return app\n\n\nif __name__ == '__main__':\n app = create_app()\n app.run(port=5000)\n", "step-4": "import json\nfrom flask import Flask, request, jsonify\nfrom lib.chess_utils import run_game\n\n\ndef create_app():\n app = Flask(__name__)\n\n @app.route('/')\n def hello_world():\n return 'Hello, World!'\n\n @app.route('/process_game', methods=['POST'])\n def process_game():\n move_sequence = json.loads(request.data)['moves']\n return jsonify(run_game(move_sequence))\n return app\n\n\nif __name__ == '__main__':\n app = create_app()\n app.run(port=5000)\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
from django.core.mail import send_mail from django.template.loader import render_to_string from django.utils.html import strip_tags from datetime import datetime, timedelta def sendmail(subject, template, to, context): template_str = 'app/' + template + '.html' html_msg = render_to_string(template_str, {'data': context}) plain_msg = strip_tags(html_msg) from_email = '[email protected]' send_mail(subject, plain_msg, from_email, to, html_message=html_msg)
normal
{ "blob_id": "0349a8a4841b024afd77d20ae18810645fad41cd", "index": 4883, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef sendmail(subject, template, to, context):\n template_str = 'app/' + template + '.html'\n html_msg = render_to_string(template_str, {'data': context})\n plain_msg = strip_tags(html_msg)\n from_email = '[email protected]'\n send_mail(subject, plain_msg, from_email, to, html_message=html_msg)\n", "step-3": "from django.core.mail import send_mail\nfrom django.template.loader import render_to_string\nfrom django.utils.html import strip_tags\nfrom datetime import datetime, timedelta\n\n\ndef sendmail(subject, template, to, context):\n template_str = 'app/' + template + '.html'\n html_msg = render_to_string(template_str, {'data': context})\n plain_msg = strip_tags(html_msg)\n from_email = '[email protected]'\n send_mail(subject, plain_msg, from_email, to, html_message=html_msg)\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
from rest_framework import filters from rest_framework.generics import ListAPIView from rest_framework.permissions import IsAuthenticated from rest_framework.viewsets import ModelViewSet from apis.models import Contact, Address, InvoicePosition, Country, Invoice from apis.serializers import ContactSerializer, AddressSerializer, InvoicePositionSerializer, CountrySerializer, \ InvoiceSerializer class ContactViewSet(ModelViewSet): queryset = Contact.objects.all() serializer_class = ContactSerializer filterset_fields = ['type'] permission_classes = (IsAuthenticated,) class AddressViewSet(ModelViewSet): queryset = Address.objects.all() serializer_class = AddressSerializer permission_classes = (IsAuthenticated,) class InvoicePositionViewSet(ModelViewSet): queryset = InvoicePosition.objects.all() serializer_class = InvoicePositionSerializer permission_classes = (IsAuthenticated,) class CountryListView(ListAPIView): queryset = Country.objects.all() serializer_class = CountrySerializer filter_backends = [filters.SearchFilter] search_fields = ['value'] permission_classes = (IsAuthenticated,) class InvoiceViewSet(ModelViewSet): queryset = Invoice.objects.all() serializer_class = InvoiceSerializer filter_backends = [filters.SearchFilter] search_fields = ['address__contact__name'] permission_classes = (IsAuthenticated,)
normal
{ "blob_id": "43bad38d209b5c326cb9f17ba1ae135d06320e97", "index": 145, "step-1": "<mask token>\n\n\nclass InvoicePositionViewSet(ModelViewSet):\n <mask token>\n <mask token>\n <mask token>\n\n\nclass CountryListView(ListAPIView):\n queryset = Country.objects.all()\n serializer_class = CountrySerializer\n filter_backends = [filters.SearchFilter]\n search_fields = ['value']\n permission_classes = IsAuthenticated,\n\n\nclass InvoiceViewSet(ModelViewSet):\n queryset = Invoice.objects.all()\n serializer_class = InvoiceSerializer\n filter_backends = [filters.SearchFilter]\n search_fields = ['address__contact__name']\n permission_classes = IsAuthenticated,\n", "step-2": "<mask token>\n\n\nclass InvoicePositionViewSet(ModelViewSet):\n queryset = InvoicePosition.objects.all()\n serializer_class = InvoicePositionSerializer\n permission_classes = IsAuthenticated,\n\n\nclass CountryListView(ListAPIView):\n queryset = Country.objects.all()\n serializer_class = CountrySerializer\n filter_backends = [filters.SearchFilter]\n search_fields = ['value']\n permission_classes = IsAuthenticated,\n\n\nclass InvoiceViewSet(ModelViewSet):\n queryset = Invoice.objects.all()\n serializer_class = InvoiceSerializer\n filter_backends = [filters.SearchFilter]\n search_fields = ['address__contact__name']\n permission_classes = IsAuthenticated,\n", "step-3": "<mask token>\n\n\nclass ContactViewSet(ModelViewSet):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n\nclass AddressViewSet(ModelViewSet):\n queryset = Address.objects.all()\n serializer_class = AddressSerializer\n permission_classes = IsAuthenticated,\n\n\nclass InvoicePositionViewSet(ModelViewSet):\n queryset = InvoicePosition.objects.all()\n serializer_class = InvoicePositionSerializer\n permission_classes = IsAuthenticated,\n\n\nclass CountryListView(ListAPIView):\n queryset = Country.objects.all()\n serializer_class = CountrySerializer\n filter_backends = [filters.SearchFilter]\n search_fields = ['value']\n permission_classes = IsAuthenticated,\n\n\nclass InvoiceViewSet(ModelViewSet):\n queryset = Invoice.objects.all()\n serializer_class = InvoiceSerializer\n filter_backends = [filters.SearchFilter]\n search_fields = ['address__contact__name']\n permission_classes = IsAuthenticated,\n", "step-4": "from rest_framework import filters\nfrom rest_framework.generics import ListAPIView\nfrom rest_framework.permissions import IsAuthenticated\nfrom rest_framework.viewsets import ModelViewSet\nfrom apis.models import Contact, Address, InvoicePosition, Country, Invoice\nfrom apis.serializers import ContactSerializer, AddressSerializer, InvoicePositionSerializer, CountrySerializer, InvoiceSerializer\n\n\nclass ContactViewSet(ModelViewSet):\n queryset = Contact.objects.all()\n serializer_class = ContactSerializer\n filterset_fields = ['type']\n permission_classes = IsAuthenticated,\n\n\nclass AddressViewSet(ModelViewSet):\n queryset = Address.objects.all()\n serializer_class = AddressSerializer\n permission_classes = IsAuthenticated,\n\n\nclass InvoicePositionViewSet(ModelViewSet):\n queryset = InvoicePosition.objects.all()\n serializer_class = InvoicePositionSerializer\n permission_classes = IsAuthenticated,\n\n\nclass CountryListView(ListAPIView):\n queryset = Country.objects.all()\n serializer_class = CountrySerializer\n filter_backends = [filters.SearchFilter]\n search_fields = ['value']\n permission_classes = IsAuthenticated,\n\n\nclass InvoiceViewSet(ModelViewSet):\n queryset = Invoice.objects.all()\n serializer_class = InvoiceSerializer\n filter_backends = [filters.SearchFilter]\n search_fields = ['address__contact__name']\n permission_classes = IsAuthenticated,\n", "step-5": "from rest_framework import filters\nfrom rest_framework.generics import ListAPIView\nfrom rest_framework.permissions import IsAuthenticated\nfrom rest_framework.viewsets import ModelViewSet\n\nfrom apis.models import Contact, Address, InvoicePosition, Country, Invoice\nfrom apis.serializers import ContactSerializer, AddressSerializer, InvoicePositionSerializer, CountrySerializer, \\\n InvoiceSerializer\n\n\nclass ContactViewSet(ModelViewSet):\n queryset = Contact.objects.all()\n serializer_class = ContactSerializer\n filterset_fields = ['type']\n permission_classes = (IsAuthenticated,)\n\n\nclass AddressViewSet(ModelViewSet):\n queryset = Address.objects.all()\n serializer_class = AddressSerializer\n permission_classes = (IsAuthenticated,)\n\n\nclass InvoicePositionViewSet(ModelViewSet):\n queryset = InvoicePosition.objects.all()\n serializer_class = InvoicePositionSerializer\n permission_classes = (IsAuthenticated,)\n\n\nclass CountryListView(ListAPIView):\n queryset = Country.objects.all()\n serializer_class = CountrySerializer\n filter_backends = [filters.SearchFilter]\n search_fields = ['value']\n permission_classes = (IsAuthenticated,)\n\n\nclass InvoiceViewSet(ModelViewSet):\n queryset = Invoice.objects.all()\n serializer_class = InvoiceSerializer\n filter_backends = [filters.SearchFilter]\n search_fields = ['address__contact__name']\n permission_classes = (IsAuthenticated,)\n", "step-ids": [ 5, 6, 9, 11, 12 ] }
[ 5, 6, 9, 11, 12 ]
from django.shortcuts import render from .models import Recipe, Author def index(request): recipes_list = Recipe.objects.all() return render(request, "index.html", {"data": recipes_list, "title": "Recipe Box"}) def recipeDetail(request, recipe_id): recipe_detail = Recipe.objects.filter(id=recipe_id).first() return render(request, "recipe_detail.html", {"recipe": recipe_detail}) def authorDetail(request, author_id): author = Author.objects.filter(id=author_id).first() recipes = Recipe.objects.filter(author=author_id) return render(request, "author_detail.html", {"recipes": recipes, "author": author})
normal
{ "blob_id": "f0f8ad7b65707bcf691847ccb387e4d026b405b5", "index": 6395, "step-1": "<mask token>\n\n\ndef authorDetail(request, author_id):\n author = Author.objects.filter(id=author_id).first()\n recipes = Recipe.objects.filter(author=author_id)\n return render(request, 'author_detail.html', {'recipes': recipes,\n 'author': author})\n", "step-2": "<mask token>\n\n\ndef recipeDetail(request, recipe_id):\n recipe_detail = Recipe.objects.filter(id=recipe_id).first()\n return render(request, 'recipe_detail.html', {'recipe': recipe_detail})\n\n\ndef authorDetail(request, author_id):\n author = Author.objects.filter(id=author_id).first()\n recipes = Recipe.objects.filter(author=author_id)\n return render(request, 'author_detail.html', {'recipes': recipes,\n 'author': author})\n", "step-3": "<mask token>\n\n\ndef index(request):\n recipes_list = Recipe.objects.all()\n return render(request, 'index.html', {'data': recipes_list, 'title':\n 'Recipe Box'})\n\n\ndef recipeDetail(request, recipe_id):\n recipe_detail = Recipe.objects.filter(id=recipe_id).first()\n return render(request, 'recipe_detail.html', {'recipe': recipe_detail})\n\n\ndef authorDetail(request, author_id):\n author = Author.objects.filter(id=author_id).first()\n recipes = Recipe.objects.filter(author=author_id)\n return render(request, 'author_detail.html', {'recipes': recipes,\n 'author': author})\n", "step-4": "from django.shortcuts import render\nfrom .models import Recipe, Author\n\n\ndef index(request):\n recipes_list = Recipe.objects.all()\n return render(request, 'index.html', {'data': recipes_list, 'title':\n 'Recipe Box'})\n\n\ndef recipeDetail(request, recipe_id):\n recipe_detail = Recipe.objects.filter(id=recipe_id).first()\n return render(request, 'recipe_detail.html', {'recipe': recipe_detail})\n\n\ndef authorDetail(request, author_id):\n author = Author.objects.filter(id=author_id).first()\n recipes = Recipe.objects.filter(author=author_id)\n return render(request, 'author_detail.html', {'recipes': recipes,\n 'author': author})\n", "step-5": "from django.shortcuts import render\nfrom .models import Recipe, Author\n\n\ndef index(request):\n recipes_list = Recipe.objects.all()\n return render(request, \"index.html\",\n {\"data\": recipes_list, \"title\": \"Recipe Box\"})\n\n\ndef recipeDetail(request, recipe_id):\n recipe_detail = Recipe.objects.filter(id=recipe_id).first()\n return render(request, \"recipe_detail.html\",\n {\"recipe\": recipe_detail})\n\n\ndef authorDetail(request, author_id):\n author = Author.objects.filter(id=author_id).first()\n recipes = Recipe.objects.filter(author=author_id)\n return render(request, \"author_detail.html\",\n {\"recipes\": recipes, \"author\": author})\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
from urllib.parse import quote from top_model import db from top_model.ext.flask import FlaskTopModel from top_model.filesystem import ProductPhotoCIP from top_model.webstore import Product, Labo from unrest import UnRest class Hydra(FlaskTopModel): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.config['CLIENT_ID'] = 4 self.config['BASE_IMAGE_URL'] = ( 'https://static.pharminfo.fr/images/cip/{cip}/{name}.{ext}') self.config['SQLALCHEMY_DATABASE_URI'] = ( 'pgfdw://hydra@localhost/hydra') self.config.from_envvar('MEDBOX_SETTINGS', silent=True) self.configure_db(self.config['SQLALCHEMY_DATABASE_URI']) def filter_query(query): return query.filter_by(client_id=app.config['CLIENT_ID']) app = Hydra(__name__) rest = UnRest(app, db.session) rest(Labo, only=('label',)) product_api = rest(Product, query=filter_query, only=( 'product_id', 'title', 'description', 'cip', 'resip_labo_code', 'type_product')) image_api = rest(ProductPhotoCIP, only=('cip', 'name', 'ext')) @image_api.declare('GET') def get_image(payload, cip, name, ext): result = image_api.get(payload, cip=cip) for obj in getattr(result, 'data', result)['objects']: obj['name'] = quote(obj['name']) obj['url'] = app.config['BASE_IMAGE_URL'].format(**obj) return result @product_api.declare('GET') def get_product(payload, product_id): products = ( Product.query .filter_by(cip=str(product_id)) .filter_by(client_id=app.config['CLIENT_ID']) .all()) if products: return product_api.get(payload, product_id=products[0].product_id) else: return {'objects': [], 'occurences': 0}
normal
{ "blob_id": "de3a4053b5b0d4d2d5c2dcd317e64cf9b4faeb75", "index": 562, "step-1": "<mask token>\n\n\nclass Hydra(FlaskTopModel):\n\n def __init__(self, *args, **kwargs):\n super().__init__(*args, **kwargs)\n self.config['CLIENT_ID'] = 4\n self.config['BASE_IMAGE_URL'\n ] = 'https://static.pharminfo.fr/images/cip/{cip}/{name}.{ext}'\n self.config['SQLALCHEMY_DATABASE_URI'\n ] = 'pgfdw://hydra@localhost/hydra'\n self.config.from_envvar('MEDBOX_SETTINGS', silent=True)\n self.configure_db(self.config['SQLALCHEMY_DATABASE_URI'])\n\n\n<mask token>\n\n\n@product_api.declare('GET')\ndef get_product(payload, product_id):\n products = Product.query.filter_by(cip=str(product_id)).filter_by(client_id\n =app.config['CLIENT_ID']).all()\n if products:\n return product_api.get(payload, product_id=products[0].product_id)\n else:\n return {'objects': [], 'occurences': 0}\n", "step-2": "<mask token>\n\n\nclass Hydra(FlaskTopModel):\n\n def __init__(self, *args, **kwargs):\n super().__init__(*args, **kwargs)\n self.config['CLIENT_ID'] = 4\n self.config['BASE_IMAGE_URL'\n ] = 'https://static.pharminfo.fr/images/cip/{cip}/{name}.{ext}'\n self.config['SQLALCHEMY_DATABASE_URI'\n ] = 'pgfdw://hydra@localhost/hydra'\n self.config.from_envvar('MEDBOX_SETTINGS', silent=True)\n self.configure_db(self.config['SQLALCHEMY_DATABASE_URI'])\n\n\ndef filter_query(query):\n return query.filter_by(client_id=app.config['CLIENT_ID'])\n\n\n<mask token>\nrest(Labo, only=('label',))\n<mask token>\n\n\n@image_api.declare('GET')\ndef get_image(payload, cip, name, ext):\n result = image_api.get(payload, cip=cip)\n for obj in getattr(result, 'data', result)['objects']:\n obj['name'] = quote(obj['name'])\n obj['url'] = app.config['BASE_IMAGE_URL'].format(**obj)\n return result\n\n\n@product_api.declare('GET')\ndef get_product(payload, product_id):\n products = Product.query.filter_by(cip=str(product_id)).filter_by(client_id\n =app.config['CLIENT_ID']).all()\n if products:\n return product_api.get(payload, product_id=products[0].product_id)\n else:\n return {'objects': [], 'occurences': 0}\n", "step-3": "<mask token>\n\n\nclass Hydra(FlaskTopModel):\n\n def __init__(self, *args, **kwargs):\n super().__init__(*args, **kwargs)\n self.config['CLIENT_ID'] = 4\n self.config['BASE_IMAGE_URL'\n ] = 'https://static.pharminfo.fr/images/cip/{cip}/{name}.{ext}'\n self.config['SQLALCHEMY_DATABASE_URI'\n ] = 'pgfdw://hydra@localhost/hydra'\n self.config.from_envvar('MEDBOX_SETTINGS', silent=True)\n self.configure_db(self.config['SQLALCHEMY_DATABASE_URI'])\n\n\ndef filter_query(query):\n return query.filter_by(client_id=app.config['CLIENT_ID'])\n\n\napp = Hydra(__name__)\nrest = UnRest(app, db.session)\nrest(Labo, only=('label',))\nproduct_api = rest(Product, query=filter_query, only=('product_id', 'title',\n 'description', 'cip', 'resip_labo_code', 'type_product'))\nimage_api = rest(ProductPhotoCIP, only=('cip', 'name', 'ext'))\n\n\n@image_api.declare('GET')\ndef get_image(payload, cip, name, ext):\n result = image_api.get(payload, cip=cip)\n for obj in getattr(result, 'data', result)['objects']:\n obj['name'] = quote(obj['name'])\n obj['url'] = app.config['BASE_IMAGE_URL'].format(**obj)\n return result\n\n\n@product_api.declare('GET')\ndef get_product(payload, product_id):\n products = Product.query.filter_by(cip=str(product_id)).filter_by(client_id\n =app.config['CLIENT_ID']).all()\n if products:\n return product_api.get(payload, product_id=products[0].product_id)\n else:\n return {'objects': [], 'occurences': 0}\n", "step-4": "from urllib.parse import quote\nfrom top_model import db\nfrom top_model.ext.flask import FlaskTopModel\nfrom top_model.filesystem import ProductPhotoCIP\nfrom top_model.webstore import Product, Labo\nfrom unrest import UnRest\n\n\nclass Hydra(FlaskTopModel):\n\n def __init__(self, *args, **kwargs):\n super().__init__(*args, **kwargs)\n self.config['CLIENT_ID'] = 4\n self.config['BASE_IMAGE_URL'\n ] = 'https://static.pharminfo.fr/images/cip/{cip}/{name}.{ext}'\n self.config['SQLALCHEMY_DATABASE_URI'\n ] = 'pgfdw://hydra@localhost/hydra'\n self.config.from_envvar('MEDBOX_SETTINGS', silent=True)\n self.configure_db(self.config['SQLALCHEMY_DATABASE_URI'])\n\n\ndef filter_query(query):\n return query.filter_by(client_id=app.config['CLIENT_ID'])\n\n\napp = Hydra(__name__)\nrest = UnRest(app, db.session)\nrest(Labo, only=('label',))\nproduct_api = rest(Product, query=filter_query, only=('product_id', 'title',\n 'description', 'cip', 'resip_labo_code', 'type_product'))\nimage_api = rest(ProductPhotoCIP, only=('cip', 'name', 'ext'))\n\n\n@image_api.declare('GET')\ndef get_image(payload, cip, name, ext):\n result = image_api.get(payload, cip=cip)\n for obj in getattr(result, 'data', result)['objects']:\n obj['name'] = quote(obj['name'])\n obj['url'] = app.config['BASE_IMAGE_URL'].format(**obj)\n return result\n\n\n@product_api.declare('GET')\ndef get_product(payload, product_id):\n products = Product.query.filter_by(cip=str(product_id)).filter_by(client_id\n =app.config['CLIENT_ID']).all()\n if products:\n return product_api.get(payload, product_id=products[0].product_id)\n else:\n return {'objects': [], 'occurences': 0}\n", "step-5": "from urllib.parse import quote\n\nfrom top_model import db\nfrom top_model.ext.flask import FlaskTopModel\nfrom top_model.filesystem import ProductPhotoCIP\nfrom top_model.webstore import Product, Labo\nfrom unrest import UnRest\n\n\nclass Hydra(FlaskTopModel):\n def __init__(self, *args, **kwargs):\n super().__init__(*args, **kwargs)\n self.config['CLIENT_ID'] = 4\n self.config['BASE_IMAGE_URL'] = (\n 'https://static.pharminfo.fr/images/cip/{cip}/{name}.{ext}')\n self.config['SQLALCHEMY_DATABASE_URI'] = (\n 'pgfdw://hydra@localhost/hydra')\n self.config.from_envvar('MEDBOX_SETTINGS', silent=True)\n self.configure_db(self.config['SQLALCHEMY_DATABASE_URI'])\n\n\ndef filter_query(query):\n return query.filter_by(client_id=app.config['CLIENT_ID'])\n\n\napp = Hydra(__name__)\n\n\nrest = UnRest(app, db.session)\nrest(Labo, only=('label',))\nproduct_api = rest(Product, query=filter_query, only=(\n 'product_id', 'title', 'description', 'cip', 'resip_labo_code',\n 'type_product'))\nimage_api = rest(ProductPhotoCIP, only=('cip', 'name', 'ext'))\n\n\n@image_api.declare('GET')\ndef get_image(payload, cip, name, ext):\n result = image_api.get(payload, cip=cip)\n for obj in getattr(result, 'data', result)['objects']:\n obj['name'] = quote(obj['name'])\n obj['url'] = app.config['BASE_IMAGE_URL'].format(**obj)\n return result\n\n\n@product_api.declare('GET')\ndef get_product(payload, product_id):\n products = (\n Product.query\n .filter_by(cip=str(product_id))\n .filter_by(client_id=app.config['CLIENT_ID'])\n .all())\n if products:\n return product_api.get(payload, product_id=products[0].product_id)\n else:\n return {'objects': [], 'occurences': 0}\n", "step-ids": [ 3, 6, 7, 8, 9 ] }
[ 3, 6, 7, 8, 9 ]
#!/usr/bin/env python #------------------------------------------------------------------------------- # # Circle finder. # # Rowan Leeder # #------------------------------------------------------------------------------- # # Listens on the 'scan' and 'base_scan' topics. These are the pioneers SICK # topic and Stage's scan topic respectively. # # The program strips out noise samples and attempts to match circles to the # remaining samples. # # Any circle that is found is then published on the 'circles' topic in a # circleArray message. # # The circleArray and circleEntry messages are defined in the msg\ folder. # #------------------------------------------------------------------------------- # # Compile Commands: # # First run 'rosmake' in the base directory. If you change the messages in any # way then you will have to close all ros components using the topic (basically # everything) and then recompile with rosmake. If you add a message, add an # entry to the manifest file. # # To run this program do 'rosrun circleFinder finder.py'. # # Exit with Ctrl + C. # # Listen in with 'rostopic echo circles' # # If you want to see a plot of the data, set the 'plot' variable to True. # #------------------------------------------------------------------------------- # Known Bugs: # If the laser scan covers 360 degrees then you might get two circles at the # same spot. This is becuase i haven't joined the two ends of the scan together. # This will not be an issue with the robots as they only take 180 degree scans. # Ros imports. import roslib; roslib.load_manifest('circleFinder') import rospy from sensor_msgs.msg import LaserScan from roslib.rostime import Duration # Python lib imports. import math import time # Message imports from circleFinder.msg import * # Local file imports. from placment_funcs import * from data_parser import * # plot functions are in here. Remove if you dont want and you might free up # some memory. from plot_funcs import * #------------------------------------------------------------------------------- # Function: callback # # Thread created when a laser scan is received on a listening topic and extract # and publish a specified number of circle from the data. # #------------------------------------------------------------------------------- # # args - An array of arguments. The form is: # max_dist - the maximum distance to look for circles. If a sample or # circle edge goes beyond this then it will be ignored. # max_rad - The maximum radius that a valid circle can have. # min_rad - The minimum radius that a valid circle can have. # grad_tol - The tolerance used in the prune function. # split_multi - The multiplier used in the split function # # publish - A circleArray object containing the circle data in an array of # circleEntry objects. These classes are defined in the # circleFinder/msg path. #------------------------------------------------------------------------------- def callback(data, args): tStart = time.time() pub = args[0] max_dist = args[1] max_rad = args[2] min_rad = args[3] grad_tol = args[4] split_multi = args[5] prune_lines = args[6] plot = args[7] # Get possible circle data. possibles = dataParser(data,max_dist, grad_tol, split_multi, prune_lines) # Calculate the circle info from that data. circles = [] for i in possibles: current = matchCirc(list(i), False) if current is not None: #prune out any circles that are too large or small if current[1] > max_rad or \ current[1] < min_rad or \ math.sqrt(math.pow(current[0][0],2) + math.pow(current[0][1],2)) + current[1] > max_dist: pass else: circles.append(current) # Setup circleArray and publish found circles. ret = [] for i in circles: c = circleEntry() c.x = i[0][0] c.y = i[0][1] c.distance = math.sqrt(i[0][0]*i[0][0] + i[0][1] * i[0][1]) c.theta = math.atan2(i[0][1], i[0][0]) c.radius = i[1] ret.append(c) m = circleArray() m.broadcastTime = rospy.get_rostime() m.duration = time.time() - tStart m.array = ret if not rospy.is_shutdown(): pub.publish(m) if plot: import matplotlib.pyplot as plt plotWorld(data, 30, True, 'ro') for i in circles: plotCircle((i[0])[0],(i[0])[1],i[1]) for i in possibles: for u in i: plt.plot(u[0], u[1], 'bo') plt.plot(0,0,'ro') plotAxis(8,-8,8,-8,4) plt.axis([-8,8,-8,8]) plt.show() #------------------------------------------------------------------------------- # Function: main # # Sets up the callback function and then idles. # # Program arguments are inside. # #------------------------------------------------------------------------------- if __name__ == '__main__': #print dir() # the publiser pub = rospy.Publisher("circles", circleArray) # The maximum distance from the origin that a sample point or circle edge # can be before they are considered invalid. max_dist = 7 # The maximum radius a circle can be before it is considered invalid. max_rad = 0.25 # The maximum radius a circle can be before it is considered invalid. min_rad = 0 # See the prune function in data_parser.py grad_tol = 0.3 # See the split function in data_parser.py split_multi = 2.5 # If true then an attempt to remove straight edges from the data will be # made. prune_lines = True # Plot flag. plot = False import sys if (len(sys.argv) > 1): for i in sys.argv: if i == '--plot': plot = True elif i == '--no-line-pruning': prune_lines = False args = [pub, max_dist, max_rad, min_rad, grad_tol, split_multi, prune_lines , plot] print "--------------------------------------------------------------------------------" print "Circle Finder" print print "--------------------------------------------------------------------------------" print "Command line arguments are:" print " --plot Will cause the outcome of the first scan to be plotted." print " --no-line-pruning Will prevent straight lines from being removed from the" print " scan." print print "--------------------------------------------------------------------------------" print "Starting circle finder with arguments:" print print " Publisher: " , pub print " Maximum Distance: " , max_dist print " Maximum Radius: " , max_rad print " Minimum Radius: " , min_rad print " Gradient Tolerance: " , grad_tol print " Split Multiplier: " , split_multi print " Remove Lines: " , prune_lines print " Plot: " , plot print print "--------------------------------------------------------------------------------" print "To increase speed, the listening thread is not verbose." print "Ctrl+C to exit." rospy.init_node('circles', anonymous=True) rospy.Subscriber("base_scan",LaserScan, callback, callback_args=args) rospy.Subscriber("scan",LaserScan, callback, callback_args=args) rospy.spin()
normal
{ "blob_id": "3ac02308959749b8cd264e660c3d6334fd385fd4", "index": 1114, "step-1": "#!/usr/bin/env python\n#-------------------------------------------------------------------------------\n#\n# Circle finder.\n#\n# Rowan Leeder\n#\n#-------------------------------------------------------------------------------\n#\n# Listens on the 'scan' and 'base_scan' topics. These are the pioneers SICK\n# topic and Stage's scan topic respectively.\n#\n# The program strips out noise samples and attempts to match circles to the\n# remaining samples.\n#\n# Any circle that is found is then published on the 'circles' topic in a\n# circleArray message.\n#\n# The circleArray and circleEntry messages are defined in the msg\\ folder.\n#\n#-------------------------------------------------------------------------------\n#\n# Compile Commands:\n#\n# First run 'rosmake' in the base directory. If you change the messages in any\n# way then you will have to close all ros components using the topic (basically\n# everything) and then recompile with rosmake. If you add a message, add an \n# entry to the manifest file. \n#\n# To run this program do 'rosrun circleFinder finder.py'. \n#\n# Exit with Ctrl + C.\n#\n# Listen in with 'rostopic echo circles'\n#\n# If you want to see a plot of the data, set the 'plot' variable to True.\n#\n#-------------------------------------------------------------------------------\n# Known Bugs:\n# If the laser scan covers 360 degrees then you might get two circles at the \n# same spot. This is becuase i haven't joined the two ends of the scan together.\n# This will not be an issue with the robots as they only take 180 degree scans.\n\n# Ros imports.\nimport roslib; \nroslib.load_manifest('circleFinder')\nimport rospy\nfrom sensor_msgs.msg import LaserScan\nfrom roslib.rostime import Duration \n\n# Python lib imports.\nimport math\nimport time\n\n# Message imports\nfrom circleFinder.msg import *\n\n# Local file imports.\nfrom placment_funcs import *\nfrom data_parser import *\n\n# plot functions are in here. Remove if you dont want and you might free up \n# some memory.\nfrom plot_funcs import *\n\n\n#-------------------------------------------------------------------------------\n# Function: callback\n#\n# Thread created when a laser scan is received on a listening topic and extract \n# and publish a specified number of circle from the data.\n#\n#-------------------------------------------------------------------------------\n#\n# args - An array of arguments. The form is: \n# max_dist - the maximum distance to look for circles. If a sample or \n# circle edge goes beyond this then it will be ignored.\n# max_rad - The maximum radius that a valid circle can have.\n# min_rad - The minimum radius that a valid circle can have.\n# grad_tol - The tolerance used in the prune function.\n# split_multi - The multiplier used in the split function\n#\n# publish - A circleArray object containing the circle data in an array of \n# circleEntry objects. These classes are defined in the \n# circleFinder/msg path.\n#-------------------------------------------------------------------------------\ndef callback(data, args):\n tStart = time.time()\n \n pub = args[0]\n max_dist = args[1]\n max_rad = args[2]\n min_rad = args[3]\n grad_tol = args[4]\n split_multi = args[5]\n prune_lines = args[6]\n plot = args[7]\n \n \n # Get possible circle data.\n possibles = dataParser(data,max_dist, grad_tol, split_multi, prune_lines)\n \n # Calculate the circle info from that data.\n circles = []\n for i in possibles:\n current = matchCirc(list(i), False)\n if current is not None:\n #prune out any circles that are too large or small\n if current[1] > max_rad or \\\n current[1] < min_rad or \\\n math.sqrt(math.pow(current[0][0],2) + math.pow(current[0][1],2)) + current[1] > max_dist:\n pass\n else:\n circles.append(current)\n \n # Setup circleArray and publish found circles.\n ret = []\n for i in circles:\n c = circleEntry()\n c.x = i[0][0]\n c.y = i[0][1]\n c.distance = math.sqrt(i[0][0]*i[0][0] + i[0][1] * i[0][1])\n c.theta = math.atan2(i[0][1], i[0][0])\n c.radius = i[1]\n ret.append(c)\n m = circleArray()\n m.broadcastTime = rospy.get_rostime()\n m.duration = time.time() - tStart\n m.array = ret\n if not rospy.is_shutdown():\n pub.publish(m)\n \n if plot:\n import matplotlib.pyplot as plt\n plotWorld(data, 30, True, 'ro')\n for i in circles:\n plotCircle((i[0])[0],(i[0])[1],i[1])\n for i in possibles:\n for u in i:\n plt.plot(u[0], u[1], 'bo')\n plt.plot(0,0,'ro')\n plotAxis(8,-8,8,-8,4)\n plt.axis([-8,8,-8,8])\n plt.show()\n\n\n\n#-------------------------------------------------------------------------------\n# Function: main\n#\n# Sets up the callback function and then idles.\n#\n# Program arguments are inside. \n#\n#-------------------------------------------------------------------------------\nif __name__ == '__main__':\n #print dir()\n \n # the publiser\n pub = rospy.Publisher(\"circles\", circleArray)\n \n # The maximum distance from the origin that a sample point or circle edge \n # can be before they are considered invalid.\n max_dist = 7\n \n # The maximum radius a circle can be before it is considered invalid.\n max_rad = 0.25\n \n # The maximum radius a circle can be before it is considered invalid.\n min_rad = 0\n \n # See the prune function in data_parser.py\n grad_tol = 0.3\n \n # See the split function in data_parser.py\n split_multi = 2.5\n \n # If true then an attempt to remove straight edges from the data will be \n # made.\n prune_lines = True\n \n # Plot flag.\n plot = False\n \n import sys\n if (len(sys.argv) > 1):\n for i in sys.argv:\n if i == '--plot':\n plot = True\n elif i == '--no-line-pruning':\n prune_lines = False\n \n args = [pub, max_dist, max_rad, min_rad, grad_tol, split_multi, prune_lines , plot]\n print \"--------------------------------------------------------------------------------\"\n print \"Circle Finder\"\n print\n print \"--------------------------------------------------------------------------------\"\n print \"Command line arguments are:\"\n print \" --plot Will cause the outcome of the first scan to be plotted.\"\n print \" --no-line-pruning Will prevent straight lines from being removed from the\" \n print \" scan.\"\n print\n print \"--------------------------------------------------------------------------------\"\n print \"Starting circle finder with arguments:\"\n print\n print \" Publisher: \" , pub\n print \" Maximum Distance: \" , max_dist\n print \" Maximum Radius: \" , max_rad\n print \" Minimum Radius: \" , min_rad\n print \" Gradient Tolerance: \" , grad_tol\n print \" Split Multiplier: \" , split_multi\n print \" Remove Lines: \" , prune_lines \n print \" Plot: \" , plot\n print\n print \"--------------------------------------------------------------------------------\"\n print \"To increase speed, the listening thread is not verbose.\"\n print \"Ctrl+C to exit.\"\n rospy.init_node('circles', anonymous=True)\n rospy.Subscriber(\"base_scan\",LaserScan, callback, callback_args=args)\n rospy.Subscriber(\"scan\",LaserScan, callback, callback_args=args)\n rospy.spin()\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
""" Pattern matching problem Boyer Moore algorithm First is my attempt, below is the code provided in the book Idea: Optimize brute force approach using 2 heuristics: - Looking-Glass: start searches from last character of the pattern and work backwards - Character-Jump: During testing of a pattern P, a mismatch in T[i] = c with corresponding pattern P[k] is handled: a) if C is not contained in P, shift P completely past i. b) if c is contained in P shift P until an occurrence of c gets aligned with T[i] """ def find_boyer_moore(T, P): """ return lowest index of T at which the substring P begins or -1""" n, m = len(T), len(P) if m == 0: return 0 last = {} # Using hash table for fast access for k in range(m): last[P[k]] = k i = m - 1 # i index at T, k index at P k = m - 1 # j index of last occurrence of T[i] in P while i < n: if T[i] == P[k]: # if chars are equal """ INCORRECT PART """ i -= 1 # normal iteration k -= 1 if k == 0: return i # check if Patter is complete else: # if j < k (remember k index at P) # shift i += m - (j+1) # if j > k # shift i += m - k j = last.get(T[i], -1) # -1 if item not there i += m - (min(k, j+1)) k = m - 1 return -1 def find_boyer_moore2(T, P): """ return lowest index of T at which the substring P begins or -1""" n, m = len(T), len(P) if m == 0: return 0 last = {} # Using hash table for fast access for k in range(m): last[P[k]] = k i = m - 1 # i index at T, k index at P k = m - 1 # j index of last occurrence of T[i] in P while i < n: if T[i] == P[k]: # if chars are equal if k == 0: return i # check if Patter is complete else: i -= 1 # normal iteration k -= 1 else: j = last.get(T[i], -1) # -1 if item not there i += m - (min(k, j+1)) k = m - 1 return -1 # T = "abacaabadcabacabaabb" T = "ddcbacab" P = "abacab" print(find_boyer_moore2(T, P))
normal
{ "blob_id": "c418b9b6903ebdad204a3a55f2384a94a3be0d09", "index": 5561, "step-1": "<mask token>\n\n\ndef find_boyer_moore2(T, P):\n \"\"\" return lowest index of T at which the substring P begins or -1\"\"\"\n n, m = len(T), len(P)\n if m == 0:\n return 0\n last = {}\n for k in range(m):\n last[P[k]] = k\n i = m - 1\n k = m - 1\n while i < n:\n if T[i] == P[k]:\n if k == 0:\n return i\n else:\n i -= 1\n k -= 1\n else:\n j = last.get(T[i], -1)\n i += m - min(k, j + 1)\n k = m - 1\n return -1\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef find_boyer_moore(T, P):\n \"\"\" return lowest index of T at which the substring P begins or -1\"\"\"\n n, m = len(T), len(P)\n if m == 0:\n return 0\n last = {}\n for k in range(m):\n last[P[k]] = k\n i = m - 1\n k = m - 1\n while i < n:\n if T[i] == P[k]:\n \"\"\" INCORRECT PART \"\"\"\n i -= 1\n k -= 1\n if k == 0:\n return i\n else:\n j = last.get(T[i], -1)\n i += m - min(k, j + 1)\n k = m - 1\n return -1\n\n\ndef find_boyer_moore2(T, P):\n \"\"\" return lowest index of T at which the substring P begins or -1\"\"\"\n n, m = len(T), len(P)\n if m == 0:\n return 0\n last = {}\n for k in range(m):\n last[P[k]] = k\n i = m - 1\n k = m - 1\n while i < n:\n if T[i] == P[k]:\n if k == 0:\n return i\n else:\n i -= 1\n k -= 1\n else:\n j = last.get(T[i], -1)\n i += m - min(k, j + 1)\n k = m - 1\n return -1\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef find_boyer_moore(T, P):\n \"\"\" return lowest index of T at which the substring P begins or -1\"\"\"\n n, m = len(T), len(P)\n if m == 0:\n return 0\n last = {}\n for k in range(m):\n last[P[k]] = k\n i = m - 1\n k = m - 1\n while i < n:\n if T[i] == P[k]:\n \"\"\" INCORRECT PART \"\"\"\n i -= 1\n k -= 1\n if k == 0:\n return i\n else:\n j = last.get(T[i], -1)\n i += m - min(k, j + 1)\n k = m - 1\n return -1\n\n\ndef find_boyer_moore2(T, P):\n \"\"\" return lowest index of T at which the substring P begins or -1\"\"\"\n n, m = len(T), len(P)\n if m == 0:\n return 0\n last = {}\n for k in range(m):\n last[P[k]] = k\n i = m - 1\n k = m - 1\n while i < n:\n if T[i] == P[k]:\n if k == 0:\n return i\n else:\n i -= 1\n k -= 1\n else:\n j = last.get(T[i], -1)\n i += m - min(k, j + 1)\n k = m - 1\n return -1\n\n\n<mask token>\nprint(find_boyer_moore2(T, P))\n", "step-4": "<mask token>\n\n\ndef find_boyer_moore(T, P):\n \"\"\" return lowest index of T at which the substring P begins or -1\"\"\"\n n, m = len(T), len(P)\n if m == 0:\n return 0\n last = {}\n for k in range(m):\n last[P[k]] = k\n i = m - 1\n k = m - 1\n while i < n:\n if T[i] == P[k]:\n \"\"\" INCORRECT PART \"\"\"\n i -= 1\n k -= 1\n if k == 0:\n return i\n else:\n j = last.get(T[i], -1)\n i += m - min(k, j + 1)\n k = m - 1\n return -1\n\n\ndef find_boyer_moore2(T, P):\n \"\"\" return lowest index of T at which the substring P begins or -1\"\"\"\n n, m = len(T), len(P)\n if m == 0:\n return 0\n last = {}\n for k in range(m):\n last[P[k]] = k\n i = m - 1\n k = m - 1\n while i < n:\n if T[i] == P[k]:\n if k == 0:\n return i\n else:\n i -= 1\n k -= 1\n else:\n j = last.get(T[i], -1)\n i += m - min(k, j + 1)\n k = m - 1\n return -1\n\n\nT = 'ddcbacab'\nP = 'abacab'\nprint(find_boyer_moore2(T, P))\n", "step-5": "\"\"\"\nPattern matching problem\nBoyer Moore algorithm\n\nFirst is my attempt, below is the code provided in the book\nIdea:\nOptimize brute force approach using 2 heuristics:\n- Looking-Glass: start searches from last character of the\npattern and work backwards\n- Character-Jump: During testing of a pattern P, a mismatch\nin T[i] = c with corresponding pattern P[k] is handled:\na) if C is not contained in P, shift P completely past i.\nb) if c is contained in P shift P until an occurrence of c\ngets aligned with T[i]\n\n\"\"\"\n\n\ndef find_boyer_moore(T, P):\n \"\"\" return lowest index of T at which the substring P begins or -1\"\"\"\n n, m = len(T), len(P)\n if m == 0: return 0\n last = {} # Using hash table for fast access\n for k in range(m):\n last[P[k]] = k\n i = m - 1 # i index at T, k index at P\n k = m - 1 # j index of last occurrence of T[i] in P\n while i < n:\n if T[i] == P[k]: # if chars are equal\n \"\"\" INCORRECT PART \"\"\"\n i -= 1 # normal iteration\n k -= 1\n if k == 0:\n return i # check if Patter is complete\n else:\n # if j < k (remember k index at P)\n # shift i += m - (j+1)\n # if j > k\n # shift i += m - k\n j = last.get(T[i], -1) # -1 if item not there\n i += m - (min(k, j+1))\n k = m - 1\n return -1\n\n\ndef find_boyer_moore2(T, P):\n \"\"\" return lowest index of T at which the substring P begins or -1\"\"\"\n n, m = len(T), len(P)\n if m == 0: return 0\n last = {} # Using hash table for fast access\n for k in range(m):\n last[P[k]] = k\n i = m - 1 # i index at T, k index at P\n k = m - 1 # j index of last occurrence of T[i] in P\n while i < n:\n if T[i] == P[k]: # if chars are equal\n if k == 0:\n return i # check if Patter is complete\n else:\n i -= 1 # normal iteration\n k -= 1\n else:\n j = last.get(T[i], -1) # -1 if item not there\n i += m - (min(k, j+1))\n k = m - 1\n return -1\n\n# T = \"abacaabadcabacabaabb\"\nT = \"ddcbacab\"\nP = \"abacab\"\nprint(find_boyer_moore2(T, P))", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
#usage: #crawl raw weibo text data from sina weibo users(my followees) #in total, there are 20080 weibo tweets, because there is uplimit for crawler # -*- coding: utf-8 -*- import weibo APP_KEY = 'your app_key' APP_SECRET = 'your app_secret' CALL_BACK = 'your call back url' def run(): token = "your access token gotten from call_back url" client = weibo.APIClient(APP_KEY, APP_SECRET, CALL_BACK) client.set_access_token(token,12345) followlist = client.friendships.friends.get(screen_name='蜀云Parallelli',count=200) wb_raw = open('weibo_raw_userlistweibo_big.txt','w') weiboCnt = 0 usernames = {} for fl in followlist.users: pg = 1 wbres = client.statuses.user_timeline.get(screen_name=fl.screen_name,page=pg) while (pg <= 3): wbres = client.statuses.user_timeline.get(screen_name=fl.screen_name,page=pg) if fl.screen_name not in usernames: usernames[fl.screen_name]=1 for wb in wbres.statuses: weiboCnt += 1 wb_raw.write(wb.text.encode('utf-8')+'\n') pg += 1 followlist = client.friendships.friends.get(screen_name='尹欢欢欢',count=200) for fl in followlist.users: pg = 1 if fl.screen_name in usernames: continue wbres = client.statuses.user_timeline.get(screen_name=fl.screen_name,page=pg) while (pg <= 3): wbres = client.statuses.user_timeline.get(screen_name=fl.screen_name,page=pg) if fl.screen_name not in usernames: usernames[fl.screen_name]=1 for wb in wbres.statuses: weiboCnt += 1 wb_raw.write(wb.text.encode('utf-8')+'\n') pg += 1 print weiboCnt wb_raw.close() if __name__ == "__main__": run()
normal
{ "blob_id": "8a04166e091e2da348928598b2356c8ad75dd831", "index": 5889, "step-1": "#usage:\n#crawl raw weibo text data from sina weibo users(my followees)\n#in total, there are 20080 weibo tweets, because there is uplimit for crawler\n\n# -*- coding: utf-8 -*-\nimport weibo\n\nAPP_KEY = 'your app_key'\nAPP_SECRET = 'your app_secret'\nCALL_BACK = 'your call back url'\n\ndef run():\n\ttoken = \"your access token gotten from call_back url\"\n\tclient = weibo.APIClient(APP_KEY, APP_SECRET, CALL_BACK)\n\tclient.set_access_token(token,12345)\n\n\tfollowlist = client.friendships.friends.get(screen_name='蜀云Parallelli',count=200)\n\twb_raw = open('weibo_raw_userlistweibo_big.txt','w')\n\tweiboCnt = 0\n\tusernames = {}\n\tfor fl in followlist.users:\n\t\tpg = 1\n\t\twbres = client.statuses.user_timeline.get(screen_name=fl.screen_name,page=pg)\n\t\twhile (pg <= 3):\n\t\t\twbres = client.statuses.user_timeline.get(screen_name=fl.screen_name,page=pg)\n\t\t\tif fl.screen_name not in usernames:\n\t\t\t\tusernames[fl.screen_name]=1\n\n\t\t\tfor wb in wbres.statuses:\n\t\t\t\tweiboCnt += 1\n\t\t\t\twb_raw.write(wb.text.encode('utf-8')+'\\n')\n\t\t\tpg += 1\n\tfollowlist = client.friendships.friends.get(screen_name='尹欢欢欢',count=200)\n\tfor fl in followlist.users:\n\t\tpg = 1\n\t\tif fl.screen_name in usernames: \n\t\t\tcontinue\n\t\twbres = client.statuses.user_timeline.get(screen_name=fl.screen_name,page=pg)\n\t\twhile (pg <= 3):\n\t\t\twbres = client.statuses.user_timeline.get(screen_name=fl.screen_name,page=pg)\n\t\t\tif fl.screen_name not in usernames:\n\t\t\t\tusernames[fl.screen_name]=1\n\n\t\t\tfor wb in wbres.statuses:\n\t\t\t\tweiboCnt += 1\n\t\t\t\twb_raw.write(wb.text.encode('utf-8')+'\\n')\n\t\t\tpg += 1\n\tprint weiboCnt\n\twb_raw.close()\n\t\nif __name__ == \"__main__\":\n\trun()", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
alunos = list() while True: nome = str(input('Nome: ')) nota1 = float(input('Nota 1: ')) nota2 = float(input('Nota 2: ')) media = (nota1+nota2)/2 alunos.append([nome, [nota1, nota2], media]) pergunta = str(input('Quer continuar [S/N]? ')).upper()[0] if pergunta == 'N': break print('-=' *30) print(f'{"Nº":<4}{"Nome":<10}{"Média":>8}') print('-' *30) for i, v in enumerate(alunos): print(f'{i:<4}{v[0]:<10}{v[2]:>8}') while True: print('-' *30) notas_aluno = int(input('Mostrar as notas de qual aluno? (Digite 999 para encerrar): ')) if notas_aluno == 999: print('Fim do Boletim.') break if notas_aluno <= len(alunos)-1: print(f'As notas de {alunos[notas_aluno][0]} são {alunos[notas_aluno][1]}')
normal
{ "blob_id": "8dcd4914c58a7ecafdfdd70b698ef3b7141386a6", "index": 2632, "step-1": "<mask token>\n", "step-2": "<mask token>\nwhile True:\n nome = str(input('Nome: '))\n nota1 = float(input('Nota 1: '))\n nota2 = float(input('Nota 2: '))\n media = (nota1 + nota2) / 2\n alunos.append([nome, [nota1, nota2], media])\n pergunta = str(input('Quer continuar [S/N]? ')).upper()[0]\n if pergunta == 'N':\n break\nprint('-=' * 30)\nprint(f\"{'Nº':<4}{'Nome':<10}{'Média':>8}\")\nprint('-' * 30)\nfor i, v in enumerate(alunos):\n print(f'{i:<4}{v[0]:<10}{v[2]:>8}')\nwhile True:\n print('-' * 30)\n notas_aluno = int(input(\n 'Mostrar as notas de qual aluno? (Digite 999 para encerrar): '))\n if notas_aluno == 999:\n print('Fim do Boletim.')\n break\n if notas_aluno <= len(alunos) - 1:\n print(\n f'As notas de {alunos[notas_aluno][0]} são {alunos[notas_aluno][1]}'\n )\n", "step-3": "alunos = list()\nwhile True:\n nome = str(input('Nome: '))\n nota1 = float(input('Nota 1: '))\n nota2 = float(input('Nota 2: '))\n media = (nota1 + nota2) / 2\n alunos.append([nome, [nota1, nota2], media])\n pergunta = str(input('Quer continuar [S/N]? ')).upper()[0]\n if pergunta == 'N':\n break\nprint('-=' * 30)\nprint(f\"{'Nº':<4}{'Nome':<10}{'Média':>8}\")\nprint('-' * 30)\nfor i, v in enumerate(alunos):\n print(f'{i:<4}{v[0]:<10}{v[2]:>8}')\nwhile True:\n print('-' * 30)\n notas_aluno = int(input(\n 'Mostrar as notas de qual aluno? (Digite 999 para encerrar): '))\n if notas_aluno == 999:\n print('Fim do Boletim.')\n break\n if notas_aluno <= len(alunos) - 1:\n print(\n f'As notas de {alunos[notas_aluno][0]} são {alunos[notas_aluno][1]}'\n )\n", "step-4": "alunos = list()\nwhile True:\n nome = str(input('Nome: '))\n nota1 = float(input('Nota 1: '))\n nota2 = float(input('Nota 2: '))\n media = (nota1+nota2)/2\n alunos.append([nome, [nota1, nota2], media])\n pergunta = str(input('Quer continuar [S/N]? ')).upper()[0]\n if pergunta == 'N':\n break\nprint('-=' *30)\nprint(f'{\"Nº\":<4}{\"Nome\":<10}{\"Média\":>8}')\nprint('-' *30)\nfor i, v in enumerate(alunos): \n print(f'{i:<4}{v[0]:<10}{v[2]:>8}')\nwhile True:\n print('-' *30)\n notas_aluno = int(input('Mostrar as notas de qual aluno? (Digite 999 para encerrar): '))\n if notas_aluno == 999:\n print('Fim do Boletim.')\n break\n if notas_aluno <= len(alunos)-1:\n print(f'As notas de {alunos[notas_aluno][0]} são {alunos[notas_aluno][1]}')", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]