_id
stringlengths
2
7
title
stringlengths
1
88
partition
stringclasses
3 values
text
stringlengths
31
13.1k
language
stringclasses
1 value
meta_information
dict
q3800
AsciiFormatter.format
train
def format(self, model: AssetAllocationModel, full: bool = False): """ Returns the view-friendly output of the aa model """ self.full = full # Header output = f"Asset Allocation model, total: {model.currency} {model.total_amount:,.2f}\n" # Column Headers for column in self.columns: name = column['name'] if not self.full and name == "loc.cur.": # Skip local currency if not displaying stocks. continue width
python
{ "resource": "" }
q3801
AsciiFormatter.__format_row
train
def __format_row(self, row: AssetAllocationViewModel): """ display-format one row Formats one Asset Class record """ output = "" index = 0 # Name value = row.name # Indent according to depth. for _ in range(0, row.depth): value = f" {value}" output += self.append_text_column(value, index) # Set Allocation value = "" index += 1 if row.set_allocation > 0: value = f"{row.set_allocation:.2f}" output += self.append_num_column(value, index) # Current Allocation value = "" index += 1 if row.curr_allocation > Decimal(0): value = f"{row.curr_allocation:.2f}" output += self.append_num_column(value, index) # Allocation difference, percentage value = "" index += 1 if row.alloc_diff_perc.copy_abs() > Decimal(0): value = f"{row.alloc_diff_perc:.0f} %" output += self.append_num_column(value, index) # Allocated value index += 1 value = "" if row.set_value: value = f"{row.set_value:,.0f}" output += self.append_num_column(value, index) # Current Value index += 1 value = f"{row.curr_value:,.0f}" output += self.append_num_column(value,
python
{ "resource": "" }
q3802
AssetClassMapper.map_entity
train
def map_entity(self, entity: dal.AssetClass): """ maps data from entity -> object """ obj = model.AssetClass() obj.id = entity.id obj.parent_id = entity.parentid obj.name = entity.name obj.allocation = entity.allocation obj.sort_order = entity.sortorder
python
{ "resource": "" }
q3803
ModelMapper.map_to_linear
train
def map_to_linear(self, with_stocks: bool=False): """ Maps the tree to a linear representation suitable for display """ result = [] for ac in self.model.classes:
python
{ "resource": "" }
q3804
ModelMapper.__get_ac_tree
train
def __get_ac_tree(self, ac: model.AssetClass, with_stocks: bool): """ formats the ac tree - entity with child elements """ output = [] output.append(self.__get_ac_row(ac)) for child in ac.classes: output += self.__get_ac_tree(child, with_stocks) if with_stocks: for stock in ac.stocks: row = None if isinstance(stock, Stock):
python
{ "resource": "" }
q3805
ModelMapper.__get_ac_row
train
def __get_ac_row(self, ac: model.AssetClass) -> AssetAllocationViewModel: """ Formats one Asset Class record """ view_model = AssetAllocationViewModel() view_model.depth = ac.depth # Name view_model.name = ac.name view_model.set_allocation = ac.allocation view_model.curr_allocation = ac.curr_alloc view_model.diff_allocation = ac.alloc_diff view_model.alloc_diff_perc = ac.alloc_diff_perc
python
{ "resource": "" }
q3806
AppAggregate.create_asset_class
train
def create_asset_class(self, item: AssetClass): """ Inserts the record """
python
{ "resource": "" }
q3807
AppAggregate.add_stock_to_class
train
def add_stock_to_class(self, assetclass_id: int, symbol: str): """ Add a stock link to an asset class """ assert isinstance(symbol, str) assert isinstance(assetclass_id, int)
python
{ "resource": "" }
q3808
AppAggregate.delete
train
def delete(self, id: int): """ Delete asset class """ assert isinstance(id, int) self.open_session()
python
{ "resource": "" }
q3809
AppAggregate.find_unallocated_holdings
train
def find_unallocated_holdings(self): """ Identifies any holdings that are not included in asset allocation """ # Get linked securities session = self.open_session() linked_entities = session.query(AssetClassStock).all() linked = [] # linked = map(lambda x: f"{x.symbol}", linked_entities) for item in linked_entities: linked.append(item.symbol) # Get all securities with balance > 0. from .stocks import StocksInfo stocks = StocksInfo() stocks.logger = self.logger holdings = stocks.get_symbols_with_positive_balances()
python
{ "resource": "" }
q3810
AppAggregate.get
train
def get(self, id: int) -> AssetClass: """ Loads Asset Class """ self.open_session() item
python
{ "resource": "" }
q3811
AppAggregate.open_session
train
def open_session(self): """ Opens a db session and returns it """ from .dal import get_session cfg = Config() cfg.logger = self.logger
python
{ "resource": "" }
q3812
AppAggregate.get_asset_allocation
train
def get_asset_allocation(self): """ Creates and populates the Asset Allocation model. The main function of the app. """ # load from db # TODO set the base currency base_currency = "EUR" loader = AssetAllocationLoader(base_currency=base_currency) loader.logger = self.logger model = loader.load_tree_from_db() model.validate() # securities # read stock links loader.load_stock_links() # read stock quantities from GnuCash loader.load_stock_quantity() # Load cash balances loader.load_cash_balances()
python
{ "resource": "" }
q3813
AppAggregate.validate_model
train
def validate_model(self): """ Validate the model """ model: AssetAllocationModel = self.get_asset_allocation_model() model.logger = self.logger valid = model.validate() if valid:
python
{ "resource": "" }
q3814
AppAggregate.export_symbols
train
def export_symbols(self): """ Exports all used symbols """ session = self.open_session() links = session.query(AssetClassStock).order_by( AssetClassStock.symbol).all() output = [] for link in links: output.append(link.symbol
python
{ "resource": "" }
q3815
Config.__read_config
train
def __read_config(self, file_path: str): """ Read the config file """ if not os.path.exists(file_path): raise FileNotFoundError("File path not found: %s", file_path) # check if file exists if not os.path.isfile(file_path):
python
{ "resource": "" }
q3816
Config.__create_user_config
train
def __create_user_config(self): """ Copy the config template into user's directory """ src_path = self.__get_config_template_path() src = os.path.abspath(src_path) if not os.path.exists(src): log(ERROR, "Config template not found %s", src) raise FileNotFoundError()
python
{ "resource": "" }
q3817
set
train
def set(aadb, cur): """ Sets the values in the config file """ cfg = Config() edited = False if aadb: cfg.set(ConfigKeys.asset_allocation_database_path, aadb) print(f"The database has been set to {aadb}.") edited = True if cur:
python
{ "resource": "" }
q3818
get
train
def get(aadb: str): """ Retrieves a value from config """ if (aadb): cfg = Config() value = cfg.get(ConfigKeys.asset_allocation_database_path)
python
{ "resource": "" }
q3819
_AssetBase.fullname
train
def fullname(self): """ includes the full path with parent names """ prefix = "" if self.parent: if self.parent.fullname: prefix = self.parent.fullname + ":" else:
python
{ "resource": "" }
q3820
Stock.asset_class
train
def asset_class(self) -> str: """ Returns the full asset class path for this stock """ result = self.parent.name if self.parent else "" # Iterate to the top asset class and add names. cursor = self.parent
python
{ "resource": "" }
q3821
AssetClass.child_allocation
train
def child_allocation(self): """ The sum of all child asset classes' allocations """ sum = Decimal(0) if self.classes: for child in self.classes: sum += child.child_allocation
python
{ "resource": "" }
q3822
AssetAllocationModel.get_class_by_id
train
def get_class_by_id(self, ac_id: int) -> AssetClass: """ Finds the asset class by id """ assert isinstance(ac_id, int) # iterate recursively for ac in self.asset_classes:
python
{ "resource": "" }
q3823
AssetAllocationModel.get_cash_asset_class
train
def get_cash_asset_class(self) -> AssetClass: """ Find the cash asset class by name. """ for ac in self.asset_classes:
python
{ "resource": "" }
q3824
AssetAllocationModel.validate
train
def validate(self) -> bool: """ Validate that the values match. Incomplete! """ # Asset class allocation should match the sum of children's allocations. # Each group should be compared. sum = Decimal(0) # Go through each asset class, not just the top level. for ac in self.asset_classes: if ac.classes: # get the sum of all the children's allocations child_alloc_sum = ac.child_allocation # compare to set allocation if ac.allocation != child_alloc_sum: message = f"The sum of child allocations {child_alloc_sum:.2f} invalid for {ac}!" self.logger.warning(message) print(message) return False #
python
{ "resource": "" }
q3825
AssetAllocationModel.calculate_set_values
train
def calculate_set_values(self): """ Calculate the expected totals based on set allocations """ for ac in self.asset_classes:
python
{ "resource": "" }
q3826
AssetAllocationModel.calculate_current_allocation
train
def calculate_current_allocation(self): """ Calculates the current allocation % based on the value """ for ac in self.asset_classes:
python
{ "resource": "" }
q3827
AssetAllocationModel.calculate_current_value
train
def calculate_current_value(self): """ Add all the stock values and assign to the asset classes """ # must be recursive total = Decimal(0) for ac in self.classes:
python
{ "resource": "" }
q3828
AssetAllocationModel.__calculate_current_value
train
def __calculate_current_value(self, asset_class: AssetClass): """ Calculate totals for asset class by adding all the children values """ # Is this the final asset class, the one with stocks? if asset_class.stocks: # add all the stocks stocks_sum = Decimal(0) for stock in asset_class.stocks: # recalculate into base currency! stocks_sum += stock.value_in_base_currency asset_class.curr_value = stocks_sum
python
{ "resource": "" }
q3829
CurrencyConverter.load_currency
train
def load_currency(self, mnemonic: str): """ load the latest rate for the given mnemonic; expressed in the base currency """ # , base_currency: str <= ignored for now. if self.rate and self.rate.currency == mnemonic:
python
{ "resource": "" }
q3830
show
train
def show(format, full): """ Print current allocation to the console. """ # load asset allocation app = AppAggregate() app.logger = logger model = app.get_asset_allocation() if format == "ascii": formatter = AsciiFormatter() elif format == "html": formatter = HtmlFormatter
python
{ "resource": "" }
q3831
AssetAllocationLoader.load_cash_balances
train
def load_cash_balances(self): """ Loads cash balances from GnuCash book and recalculates into the default currency """ from gnucash_portfolio.accounts import AccountsAggregate, AccountAggregate cfg = self.__get_config() cash_root_name = cfg.get(ConfigKeys.cash_root) # Load cash from all accounts under the root.
python
{ "resource": "" }
q3832
AssetAllocationLoader.__store_cash_balances_per_currency
train
def __store_cash_balances_per_currency(self, cash_balances): """ Store balance per currency as Stock records under Cash class """ cash = self.model.get_cash_asset_class() for cur_symbol in cash_balances:
python
{ "resource": "" }
q3833
AssetAllocationLoader.load_tree_from_db
train
def load_tree_from_db(self) -> AssetAllocationModel: """ Reads the asset allocation data only, and constructs the AA tree """ self.model = AssetAllocationModel() # currency self.model.currency = self.__get_config().get(ConfigKeys.default_currency) # Asset Classes db = self.__get_session() first_level = ( db.query(dal.AssetClass) .filter(dal.AssetClass.parentid == None) .order_by(dal.AssetClass.sortorder) .all() )
python
{ "resource": "" }
q3834
AssetAllocationLoader.load_stock_links
train
def load_stock_links(self): """ Read stock links into the model """ links = self.__get_session().query(dal.AssetClassStock).all() for entity in links: # log(DEBUG, f"adding {entity.symbol} to {entity.assetclassid}") # mapping stock: Stock = Stock(entity.symbol) # find parent classes by id and
python
{ "resource": "" }
q3835
AssetAllocationLoader.load_stock_quantity
train
def load_stock_quantity(self): """ Loads quantities for all stocks """ info = StocksInfo(self.config) for stock in self.model.stocks:
python
{ "resource": "" }
q3836
AssetAllocationLoader.load_stock_prices
train
def load_stock_prices(self): """ Load latest prices for securities """ from pricedb import SecuritySymbol info = StocksInfo(self.config) for item in self.model.stocks: symbol = SecuritySymbol("", "") symbol.parse(item.symbol) price: PriceModel = info.load_latest_price(symbol) if not price: # Use a dummy price of 1, effectively keeping the original amount. price = PriceModel()
python
{ "resource": "" }
q3837
AssetAllocationLoader.recalculate_stock_values_into_base
train
def recalculate_stock_values_into_base(self): """ Loads the exchange rates and recalculates stock holding values into base currency """ from .currency import CurrencyConverter conv = CurrencyConverter() cash = self.model.get_cash_asset_class() for stock in self.model.stocks: if stock.currency != self.base_currency: # Recalculate into base currency conv.load_currency(stock.currency)
python
{ "resource": "" }
q3838
AssetAllocationLoader.__map_entity
train
def __map_entity(self, entity: dal.AssetClass) -> AssetClass: """ maps the entity onto
python
{ "resource": "" }
q3839
AssetAllocationLoader.__get_session
train
def __get_session(self): """ Opens a db session """ db_path = self.__get_config().get(ConfigKeys.asset_allocation_database_path)
python
{ "resource": "" }
q3840
AssetAllocationLoader.__load_asset_class
train
def __load_asset_class(self, ac_id: int): """ Loads Asset Class entity """ # open database db = self.__get_session()
python
{ "resource": "" }
q3841
get_session
train
def get_session(db_path: str): """ Creates and opens a database session """ # cfg = Config() # db_path = cfg.get(ConfigKeys.asset_allocation_database_path) # connection con_str = "sqlite:///"
python
{ "resource": "" }
q3842
add
train
def add(name): """ Add new Asset Class """ item = AssetClass() item.name = name app = AppAggregate()
python
{ "resource": "" }
q3843
edit
train
def edit(id: int, parent: int, alloc: Decimal): """ Edit asset class """ saved = False # load app = AppAggregate() item = app.get(id) if not item: raise KeyError("Asset Class with id %s not found.", id) if parent: assert parent != id, "Parent can not be set to self." # TODO check if parent exists? item.parentid = parent saved = True # click.echo(f"parent set to {parent}") if alloc: assert
python
{ "resource": "" }
q3844
my_list
train
def my_list(): """ Lists all asset classes """ session = AppAggregate().open_session()
python
{ "resource": "" }
q3845
tree
train
def tree(): """ Display a tree of asset classes """ session = AppAggregate().open_session() classes = session.query(AssetClass).all() # Get the root classes root = [] for ac in classes: if ac.parentid is None: root.append(ac) #
python
{ "resource": "" }
q3846
print_item_with_children
train
def print_item_with_children(ac, classes, level): """ Print the given item and all children
python
{ "resource": "" }
q3847
print_children_recursively
train
def print_children_recursively(all_items, for_item, level): """ Print asset classes recursively """ children = [child for child in all_items if child.parentid == for_item.id] for child in children: #message = f"{for_item.name}({for_item.id}) is a parent to {child.name}({child.id})" indent = " " * level * 2 id_col =
python
{ "resource": "" }
q3848
print_row
train
def print_row(*argv): """ Print one row of data """ #for i in range(0, len(argv)): # row += f"{argv[i]}" # columns
python
{ "resource": "" }
q3849
render_html
train
def render_html(input_text, **context): """ A module-level convenience method that creates a default bbcode parser, and renders the input string as HTML. """
python
{ "resource": "" }
q3850
Parser.add_simple_formatter
train
def add_simple_formatter(self, tag_name, format_string, **kwargs): """ Installs a formatter that takes the tag options dictionary, puts a value key in it, and uses it as a format dictionary to the given format
python
{ "resource": "" }
q3851
Parser._newline_tokenize
train
def _newline_tokenize(self, data): """ Given a string that does not contain any tags, this function will return a list of NEWLINE and DATA tokens such that if you concatenate their data, you will have the original string. """ parts = data.split('\n') tokens = [] for num, part in enumerate(parts): if part:
python
{ "resource": "" }
q3852
Parser._link_replace
train
def _link_replace(self, match, **context): """ Callback for re.sub to replace link text with markup. Turns out using a callback function is actually faster than using backrefs, plus this lets us provide a hook for user customization. linker_takes_context=True means that the linker gets passed context like a standard format function. """ url = match.group(0) if self.linker: if self.linker_takes_context: return self.linker(url, context)
python
{ "resource": "" }
q3853
Parser._transform
train
def _transform(self, data, escape_html, replace_links, replace_cosmetic, transform_newlines, **context): """ Transforms the input string based on the options specified, taking into account whether the option is enabled globally for this parser. """ url_matches = {} if self.replace_links and replace_links: # If we're replacing links in the text (i.e. not those in [url] tags) then we need to be # careful to pull them out before doing any escaping or cosmetic replacement. pos = 0 while True: match = _url_re.search(data, pos) if not match: break # Replace any link with a token that we can substitute back in after replacements. token = '{{ bbcode-link-%s }}' % len(url_matches) url_matches[token] = self._link_replace(match, **context) start, end = match.span() data = data[:start] + token + data[end:]
python
{ "resource": "" }
q3854
Parser.format
train
def format(self, data, **context): """ Formats the input text using any installed renderers. Any context keyword arguments given here will be passed along to the render functions as a context dictionary. """ tokens = self.tokenize(data) full_context =
python
{ "resource": "" }
q3855
Parser.strip
train
def strip(self, data, strip_newlines=False): """ Strips out any tags from the input text, using the same tokenization as the formatter. """ text = [] for token_type, tag_name, tag_opts, token_text in self.tokenize(data): if token_type == self.TOKEN_DATA:
python
{ "resource": "" }
q3856
mode_in_range
train
def mode_in_range(a, axis=0, tol=1E-3): """Find the mode of values to within a certain range""" a_trunc = a // tol vals, counts = mode(a_trunc, axis) mask
python
{ "resource": "" }
q3857
PeriodicModeler.score_frequency_grid
train
def score_frequency_grid(self, f0, df, N): """Compute the score on a frequency grid. Some models can compute results faster if the inputs are passed in this manner. Parameters ---------- f0, df, N : (float, float, int) parameters describing the frequency grid freq = f0 + df * arange(N)
python
{ "resource": "" }
q3858
PeriodicModeler.periodogram_auto
train
def periodogram_auto(self, oversampling=5, nyquist_factor=3, return_periods=True): """Compute the periodogram on an automatically-determined grid This function uses heuristic arguments to choose a suitable frequency grid for the data. Note that depending on the data window function, the model may be sensitive to periodicity at higher frequencies than this function returns! The final number of frequencies will be Nf = oversampling * nyquist_factor * len(t) / 2
python
{ "resource": "" }
q3859
PeriodicModeler.score
train
def score(self, periods=None): """Compute the periodogram for the given period or periods Parameters ---------- periods : float or array_like Array of periods at which to compute the periodogram.
python
{ "resource": "" }
q3860
PeriodicModeler.best_period
train
def best_period(self): """Lazy evaluation of the best period given the model""" if self._best_period is None:
python
{ "resource": "" }
q3861
PeriodicModeler.find_best_periods
train
def find_best_periods(self, n_periods=5, return_scores=False): """Find the top several best periods for the model"""
python
{ "resource": "" }
q3862
LeastSquaresMixin._construct_X_M
train
def _construct_X_M(self, omega, **kwargs): """Construct the weighted normal matrix of the problem""" X = self._construct_X(omega, weighted=True, **kwargs) M = np.dot(X.T, X) if getattr(self, 'regularization', None) is not None: diag = M.ravel(order='K')[::M.shape[0] + 1] if
python
{ "resource": "" }
q3863
LombScargle._construct_X
train
def _construct_X(self, omega, weighted=True, **kwargs): """Construct the design matrix for the problem""" t = kwargs.get('t', self.t) dy = kwargs.get('dy', self.dy) fit_offset = kwargs.get('fit_offset', self.fit_offset) if fit_offset: offsets = [np.ones(len(t))] else: offsets = [] cols = sum(([np.sin((i + 1) * omega * t),
python
{ "resource": "" }
q3864
BaseTemplateModeler._interpolated_template
train
def _interpolated_template(self, templateid): """Return an interpolator for the given template""" phase, y = self._get_template_by_id(templateid) # double-check that phase ranges from 0 to 1 assert phase.min() >= 0 assert phase.max() <= 1 # at the start and end points, we need to add ~5 points to make sure
python
{ "resource": "" }
q3865
BaseTemplateModeler._eval_templates
train
def _eval_templates(self, period): """Evaluate the best template for the given period""" theta_best = [self._optimize(period, tmpid) for tmpid, _ in enumerate(self.templates)]
python
{ "resource": "" }
q3866
BaseTemplateModeler._model
train
def _model(self, t, theta, period, tmpid): """Compute model at t for the given parameters, period, & template""" template = self.templates[tmpid]
python
{ "resource": "" }
q3867
BaseTemplateModeler._chi2
train
def _chi2(self, theta, period, tmpid, return_gradient=False): """ Compute the chi2 for the given parameters, period, & template Optionally return the gradient for faster optimization """ template = self.templates[tmpid] phase = (self.t / period - theta[2]) % 1 model = theta[0] + theta[1] * template(phase) chi2 = (((model - self.y) / self.dy) ** 2).sum() if return_gradient: grad = 2 * (model - self.y) / self.dy ** 2 gradient = np.array([np.sum(grad),
python
{ "resource": "" }
q3868
BaseTemplateModeler._optimize
train
def _optimize(self, period, tmpid, use_gradient=True): """Optimize the model for the given period & template""" theta_0 = [self.y.min(), self.y.max() - self.y.min(), 0] result = minimize(self._chi2, theta_0, jac=bool(use_gradient),
python
{ "resource": "" }
q3869
factorial
train
def factorial(N): """Compute the factorial of N. If N <= 10, use a fast lookup table; otherwise use scipy.special.factorial """ if N < len(FACTORIALS):
python
{ "resource": "" }
q3870
RRLyraeGenerated.observed
train
def observed(self, band, corrected=True): """Return observed values in the given band Parameters ---------- band : str desired bandpass: should be one of ['u', 'g', 'r', 'i', 'z'] corrected : bool (optional) If true, correct for extinction Returns ------- t, mag, dmag : ndarrays The times, magnitudes, and magnitude errors for the specified band. """ if band not in 'ugriz': raise ValueError("band='{0}' not recognized".format(band))
python
{ "resource": "" }
q3871
RRLyraeGenerated.generated
train
def generated(self, band, t, err=None, corrected=True): """Return generated magnitudes in the specified band Parameters ---------- band : str desired bandpass: should be one of ['u', 'g', 'r', 'i', 'z'] t : array_like array of times (in days) err : float or array_like gaussian error in observations corrected : bool (optional) If true, correct for extinction Returns ------- mag : ndarray
python
{ "resource": "" }
q3872
fetch_rrlyrae
train
def fetch_rrlyrae(partial=False, **kwargs): """Fetch RR Lyrae light curves from Sesar 2010 Parameters ---------- partial : bool (optional) If true, return the partial dataset (reduced to 1 band per night) Returns ------- rrlyrae : :class:`RRLyraeLC` object This object contains pointers to the RR Lyrae data. Other Parameters ---------------- data_home : str (optional) Specify the local cache directory for the dataset. If not used, it will default to the ``astroML`` default location. url : str (optional) Specify the URL of the datasets. Defaults to webpage associated with Sesar 2010. force_download : bool (optional) If true, then force re-downloading data even if it is already cached locally. Default is False. Examples -------- >>> rrlyrae
python
{ "resource": "" }
q3873
fetch_rrlyrae_lc_params
train
def fetch_rrlyrae_lc_params(**kwargs): """Fetch data from table 2 of Sesar 2010 This table includes observationally-derived parameters for all the Sesar 2010 lightcurves. """ save_loc = _get_download_or_cache('table2.dat.gz', **kwargs) dtype = [('id', 'i'), ('type', 'S2'), ('P',
python
{ "resource": "" }
q3874
fetch_rrlyrae_fitdata
train
def fetch_rrlyrae_fitdata(**kwargs): """Fetch data from table 3 of Sesar 2010 This table includes parameters derived from template fits to all the Sesar 2010 lightcurves. """ save_loc = _get_download_or_cache('table3.dat.gz', **kwargs)
python
{ "resource": "" }
q3875
RRLyraeLC.get_lightcurve
train
def get_lightcurve(self, star_id, return_1d=True): """Get the light curves for the given ID Parameters ---------- star_id : int A valid integer star id representing an object in the dataset return_1d : boolean (default=True) Specify whether to return 1D arrays of (t, y, dy, filts) or 2D arrays of (t, y, dy) where each column is a filter. Returns ------- t, y, dy : np.ndarrays (if return_1d == False) Times, magnitudes, and magnitude errors. The shape of each array is [Nobs, 5], where the columns refer to [u,g,r,i,z] bands. Non-observations are indicated by NaN. t, y, dy, filts : np.ndarrays (if return_1d == True) Times, magnitudes, magnitude errors, and filters The shape of each array is [Nobs], and non-observations are filtered out. """ filename = '{0}/{1}.dat'.format(self.dirname, star_id) try: data = np.loadtxt(self.data.extractfile(filename)) except KeyError: raise
python
{ "resource": "" }
q3876
RRLyraeLC.get_metadata
train
def get_metadata(self, lcid): """Get the parameters derived from the fit for the given id. This is table 2 of Sesar 2010 """ if self._metadata is None: self._metadata = fetch_rrlyrae_lc_params()
python
{ "resource": "" }
q3877
RRLyraeLC.get_obsmeta
train
def get_obsmeta(self, lcid): """Get the observation metadata for the given id. This is table 3 of Sesar 2010 """ if self._obsdata is None:
python
{ "resource": "" }
q3878
RRLyraeTemplates.get_template
train
def get_template(self, template_id): """Get a particular lightcurve template Parameters ---------- template_id : str id of desired template Returns ------- phase : ndarray array of phases mag : ndarray array of normalized magnitudes """ try:
python
{ "resource": "" }
q3879
TCXParser.hr_avg
train
def hr_avg(self): """Average heart rate of the workout""" hr_data
python
{ "resource": "" }
q3880
TCXParser.ascent
train
def ascent(self): """Returns ascent of workout in meters""" total_ascent = 0.0 altitude_data = self.altitude_points() for i in range(len(altitude_data) - 1):
python
{ "resource": "" }
q3881
TCXParser.descent
train
def descent(self): """Returns descent of workout in meters""" total_descent = 0.0 altitude_data = self.altitude_points() for i in range(len(altitude_data) - 1):
python
{ "resource": "" }
q3882
keywords_special_characters
train
def keywords_special_characters(keywords): """ Confirms that the keywords don't contain special characters Args: keywords (str) Raises: django.forms.ValidationError """
python
{ "resource": "" }
q3883
image_format
train
def image_format(value): """ Confirms that the uploaded image is of supported format. Args: value (File): The file with an `image` property containing
python
{ "resource": "" }
q3884
no_company_with_insufficient_companies_house_data
train
def no_company_with_insufficient_companies_house_data(value): """ Confirms that the company number is not for for a company that Companies House does not hold information on. Args: value (string): The company
python
{ "resource": "" }
q3885
remove_liers
train
def remove_liers(points): """ Removes obvious noise points Checks time consistency, removing points that appear out of order Args: points (:obj:`list` of :obj:`Point`) Returns: :obj:`list` of :obj:`Point` """ result = [points[0]] for i in range(1, len(points) - 2): prv =
python
{ "resource": "" }
q3886
Segment.bounds
train
def bounds(self, thr=0, lower_index=0, upper_index=-1): """ Computes the bounds of the segment, or part of it Args: lower_index (int, optional): Start index. Defaults to 0 upper_index (int, optional): End index. Defaults to 0 Returns: :obj:`tuple` of :obj:`float`: Bounds of the (sub)segment, such that (min_lat, min_lon, max_lat, max_lon) """ points = self.points[lower_index:upper_index] min_lat = float("inf") min_lon = float("inf") max_lat =
python
{ "resource": "" }
q3887
Segment.smooth
train
def smooth(self, noise, strategy=INVERSE_STRATEGY): """ In-place smoothing See smooth_segment function Args: noise (float): Noise expected strategy (int): Strategy to use. Either smooth.INVERSE_STRATEGY or smooth.EXTRAPOLATE_STRATEGY
python
{ "resource": "" }
q3888
Segment.simplify
train
def simplify(self, eps, max_dist_error, max_speed_error, topology_only=False): """ In-place segment simplification See `drp` and `compression` modules Args: eps (float): Distance threshold for the `drp` function max_dist_error (float): Max distance error, in meters max_speed_error (float): Max speed error, in km/h topology_only (bool, optional): True to only keep topology, not considering times when simplifying. Defaults to False.
python
{ "resource": "" }
q3889
Segment.compute_metrics
train
def compute_metrics(self): """ Computes metrics for each point Returns: :obj:`Segment`: self """
python
{ "resource": "" }
q3890
Segment.infer_location
train
def infer_location( self, location_query, max_distance, google_key, foursquare_client_id, foursquare_client_secret, limit ): """In-place location inferring See infer_location function Args: Returns: :obj:`Segment`: self """ self.location_from = infer_location( self.points[0], location_query, max_distance, google_key,
python
{ "resource": "" }
q3891
Segment.infer_transportation_mode
train
def infer_transportation_mode(self, clf, min_time): """In-place transportation mode inferring See infer_transportation_mode function Args: Returns: :obj:`Segment`: self
python
{ "resource": "" }
q3892
Segment.merge_and_fit
train
def merge_and_fit(self, segment): """ Merges another segment with this one, ordering the points based on a distance heuristic Args: segment (:obj:`Segment`): Segment to merge with Returns:
python
{ "resource": "" }
q3893
Segment.closest_point_to
train
def closest_point_to(self, point, thr=20.0): """ Finds the closest point in the segment to a given point Args: point (:obj:`Point`) thr (float, optional): Distance threshold, in meters, to be considered the same point. Defaults to 20.0 Returns: (int, Point): Index of the point. -1 if doesn't exist. A point is given if it's along the segment """ i = 0 point_arr = point.gen2arr() def closest_in_line(pointA, pointB): temp = closest_point(pointA.gen2arr(), pointB.gen2arr(), point_arr) return Point(temp[1], temp[0], None)
python
{ "resource": "" }
q3894
Segment.slice
train
def slice(self, start, end): """ Creates a copy of the current segment between indexes. If end > start, points are reverted Args: start (int): Start index end (int): End index Returns: :obj:`Segment` """ reverse = False if start > end: temp = start
python
{ "resource": "" }
q3895
Segment.to_json
train
def to_json(self): """ Converts segment to a JSON serializable format Returns: :obj:`dict` """ points = [point.to_json() for point in self.points] return { 'points': points, 'transportationModes': self.transportation_modes,
python
{ "resource": "" }
q3896
Segment.from_gpx
train
def from_gpx(gpx_segment): """ Creates a segment from a GPX format. No preprocessing is done. Arguments: gpx_segment (:obj:`gpxpy.GPXTrackSegment`) Return: :obj:`Segment` """
python
{ "resource": "" }
q3897
Segment.from_json
train
def from_json(json): """ Creates a segment from a JSON file. No preprocessing is done. Arguments: json (:obj:`dict`): JSON representation. See to_json. Return: :obj:`Segment` """
python
{ "resource": "" }
q3898
extrapolate_points
train
def extrapolate_points(points, n_points): """ Extrapolate a number of points, based on the first ones Args: points (:obj:`list` of :obj:`Point`) n_points (int): number of points to extrapolate Returns: :obj:`list` of :obj:`Point` """ points = points[:n_points] lat = [] lon = [] last = None for point in points: if last is not None: lat.append(last.lat-point.lat) lon.append(last.lon-point.lon) last = point dts = np.mean([p.dt for p in points])
python
{ "resource": "" }
q3899
with_extrapolation
train
def with_extrapolation(points, noise, n_points): """ Smooths a set of points, but it extrapolates some points at the beginning Args: points (:obj:`list` of :obj:`Point`) noise (float): Expected noise, the higher it is the more the path will be smoothed.
python
{ "resource": "" }