_id
stringlengths
2
7
title
stringlengths
1
88
partition
stringclasses
3 values
text
stringlengths
31
13.1k
language
stringclasses
1 value
meta_information
dict
q3900
with_inverse
train
def with_inverse(points, noise): """ Smooths a set of points It smooths them twice, once in given order, another one in the reverse order. The the first half of the results will be taken from the reverse order and the second half from the normal order. Args: points (:obj:`list` of :obj:`Point`) noise (float): Expected noise, the higher it is the more the path will be smoothed. Returns: :obj:`list` of :obj:`Point` """ # noise_sample = 20 n_points = len(points)/2 break_point = n_points points_part =
python
{ "resource": "" }
q3901
temporal_segmentation
train
def temporal_segmentation(segments, min_time): """ Segments based on time distant points Args: segments (:obj:`list` of :obj:`list` of :obj:`Point`): segment points min_time (int): minimum required time for segmentation """ final_segments = [] for segment in segments: final_segments.append([])
python
{ "resource": "" }
q3902
correct_segmentation
train
def correct_segmentation(segments, clusters, min_time): """ Corrects the predicted segmentation This process prevents over segmentation Args: segments (:obj:`list` of :obj:`list` of :obj:`Point`): segments to correct min_time (int): minimum required time for segmentation """ # segments = [points for points in segments if len(points) > 1] result_segments = [] prev_segment = None for i, segment in enumerate(segments):
python
{ "resource": "" }
q3903
spatiotemporal_segmentation
train
def spatiotemporal_segmentation(points, eps, min_time): """ Splits a set of points into multiple sets of points based on spatio-temporal stays DBSCAN is used to predict possible segmentations, furthermore we check to see if each clusters is big enough in time (>=min_time). If that's the case than the segmentation is considered valid. When segmenting, the last point of the ith segment will be the same of the (i-1)th segment. Segments are identified through clusters. The last point of a clusters, that comes after a sub-segment A, will be present on the sub-segment A. Args: points (:obj:`list` of :obj:`Point`): segment's points eps (float): Epsilon to feed to the DBSCAN algorithm. Maximum distance between two samples, to be considered in the same cluster. min_time (float): Minimum time of a stay Returns: :obj:`list` of :obj:`list` of :obj:`Point`: Initial set of points in different segments """ # min time / sample rate dt_average = np.median([point.dt for point in points]) min_samples = min_time / dt_average data = [point.gen3arr() for point in points] data = StandardScaler().fit_transform(data) print 'min_samples: %f' % min_samples db_cluster = DBSCAN(eps=eps, min_samples=min_samples).fit(data) labels = db_cluster.labels_ n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) segments = [[] for _ in range(n_clusters_+1)] clusters = [[] for _ in range(n_clusters_+1)] current_segment = 0
python
{ "resource": "" }
q3904
kalman_filter
train
def kalman_filter(points, noise): """ Smooths points with kalman filter See https://github.com/open-city/ikalman Args: points (:obj:`list` of :obj:`Point`): points to smooth noise (float): expected noise """ kalman = ikalman.filter(noise) for point in points:
python
{ "resource": "" }
q3905
learn_transportation_mode
train
def learn_transportation_mode(track, clf): """ Inserts transportation modes of a track into a classifier Args: track (:obj:`Track`) clf (:obj:`Classifier`) """ for segment in track.segments: tmodes = segment.transportation_modes points = segment.points features = [] labels = []
python
{ "resource": "" }
q3906
speed_difference
train
def speed_difference(points): """ Computes the speed difference between each adjacent point Args: points (:obj:`Point`)
python
{ "resource": "" }
q3907
acc_difference
train
def acc_difference(points): """ Computes the accelaration difference between each adjacent point Args: points (:obj:`Point`)
python
{ "resource": "" }
q3908
detect_changepoints
train
def detect_changepoints(points, min_time, data_processor=acc_difference): """ Detects changepoints on points that have at least a specific duration Args: points (:obj:`Point`) min_time (float): Min time that a sub-segmented, bounded by two changepoints, must have data_processor (function): Function to extract data to feed to the changepoint algorithm. Defaults to `speed_difference`
python
{ "resource": "" }
q3909
group_modes
train
def group_modes(modes): """ Groups consecutive transportation modes with same label, into one Args: modes (:obj:`list` of :obj:`dict`) Returns: :obj:`list` of :obj:`dict` """ if len(modes) > 0: previous = modes[0] grouped = [] for changep in modes[1:]: if changep['label'] != previous['label']: previous['to'] = changep['from']
python
{ "resource": "" }
q3910
speed_clustering
train
def speed_clustering(clf, points, min_time): """ Transportation mode infering, based on changepoint segmentation Args: clf (:obj:`Classifier`): Classifier to use points (:obj:`list` of :obj:`Point`) min_time (float): Min time, in seconds, before do another segmentation Returns:
python
{ "resource": "" }
q3911
distance
train
def distance(p_a, p_b): """ Euclidean distance, between two points Args: p_a (:obj:`Point`) p_b (:obj:`Point`) Returns:
python
{ "resource": "" }
q3912
point_line_distance
train
def point_line_distance(point, start, end): """ Distance from a point to a line, formed by two points Args: point (:obj:`Point`) start (:obj:`Point`): line point end (:obj:`Point`): line point Returns: float: distance to line, in degrees """ if start == end: return distance(point, start) else:
python
{ "resource": "" }
q3913
drp
train
def drp(points, epsilon): """ Douglas ramer peucker Based on https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm Args: points (:obj:`list` of :obj:`Point`) epsilon (float): drp threshold Returns: :obj:`list` of :obj:`Point` """ dmax = 0.0 index = 0 for i in range(1, len(points)-1):
python
{ "resource": "" }
q3914
td_sp
train
def td_sp(points, speed_threshold): """ Top-Down Speed-Based Trajectory Compression Algorithm Detailed in https://www.itc.nl/library/Papers_2003/peer_ref_conf/meratnia_new.pdf Args: points (:obj:`list` of :obj:`Point`): trajectory or part of it speed_threshold (float): max speed error, in km/h Returns: :obj:`list` of :obj:`Point`, compressed trajectory """ if len(points) <= 2: return points else: max_speed_threshold = 0 found_index = 0 for i in range(1, len(points)-1): dt1 = time_dist(points[i], points[i-1]) if dt1 == 0: dt1 = 0.000000001 vim = loc_dist(points[i], points[i-1]) / dt1 dt2 = time_dist(points[i+1], points[i]) if dt2 == 0: dt2 = 0.000000001 vi_ = loc_dist(points[i+1], points[i]) / dt2
python
{ "resource": "" }
q3915
td_tr
train
def td_tr(points, dist_threshold): """ Top-Down Time-Ratio Trajectory Compression Algorithm Detailed in https://www.itc.nl/library/Papers_2003/peer_ref_conf/meratnia_new.pdf Args: points (:obj:`list` of :obj:`Point`): trajectory or part of it dist_threshold (float): max distance error, in meters Returns: :obj:`list` of :obj:`Point`, compressed trajectory """ if len(points) <= 2: return points else: max_dist_threshold = 0 found_index = 0 delta_e = time_dist(points[-1], points[0]) * I_3600 d_lat = points[-1].lat - points[0].lat d_lon = points[-1].lon - points[0].lon for i in range(1, len(points)-1): delta_i = time_dist(points[i], points[0]) * I_3600 di_de = delta_i / delta_e point = Point( points[0].lat + d_lat * di_de, points[0].lon + d_lon * di_de,
python
{ "resource": "" }
q3916
spt
train
def spt(points, max_dist_error, max_speed_error): """ A combination of both `td_sp` and `td_tr` Detailed in, Spatiotemporal Compression Techniques for Moving Point Objects, Nirvana Meratnia and Rolf A. de By, 2004, in Advances in Database Technology - EDBT 2004: 9th International Conference on Extending Database Technology, Heraklion, Crete, Greece, March 14-18, 2004 Args: points (:obj:`list` of :obj:`Point`) max_dist_error (float): max distance error, in meters max_speed_error (float): max speed error, in km/h Returns: :obj:`list` of :obj:`Point` """ if len(points) <= 2: return points else: is_error = False e = 1 while e < len(points) and not is_error: i = 1 while i < e and not is_error: delta_e = time_dist(points[e], points[0]) * I_3600 delta_i = time_dist(points[i], points[0]) * I_3600 di_de = 0 if delta_e != 0: di_de = delta_i / delta_e d_lat = points[e].lat - points[0].lat d_lon = points[e].lon - points[0].lon point = Point( points[0].lat + d_lat * di_de, points[0].lon + d_lon * di_de, None ) dt1 = time_dist(points[i], points[i-1]) if dt1 == 0:
python
{ "resource": "" }
q3917
Track.generate_name
train
def generate_name(self, name_format=DEFAULT_FILE_NAME_FORMAT): """ Generates a name for the track The name is generated based on the date of the first point of the track, or in case it doesn't exist, "EmptyTrack" Args:
python
{ "resource": "" }
q3918
Track.smooth
train
def smooth(self, strategy, noise): """ In-place smoothing of segments Returns:
python
{ "resource": "" }
q3919
Track.segment
train
def segment(self, eps, min_time): """In-place segmentation of segments Spatio-temporal segmentation of each segment The number of segments may increse after this step Returns: This track """ new_segments = []
python
{ "resource": "" }
q3920
Track.simplify
train
def simplify(self, eps, max_dist_error, max_speed_error, topology_only=False): """ In-place simplification of segments Args: max_dist_error (float): Min distance error, in meters max_speed_error (float): Min speed error, in km/h topology_only: Boolean, optional. True to keep the topology, neglecting velocity and time accuracy (use common Douglas-Ramen-Peucker). False (default) to simplify segments keeping
python
{ "resource": "" }
q3921
Track.infer_transportation_mode
train
def infer_transportation_mode(self, clf, min_time): """In-place transportation mode inferring of segments Returns: This track """
python
{ "resource": "" }
q3922
Track.to_trip
train
def to_trip( self, smooth, smooth_strategy, smooth_noise, seg, seg_eps, seg_min_time, simplify, simplify_max_dist_error, simplify_max_speed_error ): """In-place, transformation of a track into a trip A trip is a more accurate depiction of reality than a track. For a track to become a trip it need to go through the following steps: + noise removal + smoothing + spatio-temporal segmentation + simplification At the end of these steps we have a less noisy, track that has less points, but that holds the same information. It's required that each segment has their metrics calculated or has been preprocessed. Args: name: An optional string with the name of the trip. If none is given, one will be generated by generateName Returns: This
python
{ "resource": "" }
q3923
Track.infer_transportation_modes
train
def infer_transportation_modes(self, dt_threshold=10): """In-place transportation inferring of segments Returns: This track """ self.segments = [
python
{ "resource": "" }
q3924
Track.infer_location
train
def infer_location( self, location_query, max_distance, google_key, foursquare_client_id, foursquare_client_secret, limit ): """In-place location inferring of segments Returns: This track """ self.segments = [ segment.infer_location(
python
{ "resource": "" }
q3925
Track.to_json
train
def to_json(self): """Converts track to a JSON serializable format Returns: Map with the name, and segments of the track. """ return { 'name': self.name,
python
{ "resource": "" }
q3926
Track.merge_and_fit
train
def merge_and_fit(self, track, pairings): """ Merges another track with this one, ordering the points based on a distance heuristic Args: track (:obj:`Track`): Track to merge with pairings Returns: :obj:`Segment`: self """ for (self_seg_index, track_seg_index, _) in pairings: self_s = self.segments[self_seg_index] ss_start = self_s.points[0] track_s = track.segments[track_seg_index] tt_start = track_s.points[0]
python
{ "resource": "" }
q3927
Track.get_point_index
train
def get_point_index(self, point): """ Gets of the closest first point Args: point (:obj:`Point`) Returns: (int, int): Segment id and point index in that segment """ for i, segment in enumerate(self.segments):
python
{ "resource": "" }
q3928
Track.bounds
train
def bounds(self, thr=0): """ Gets the bounds of this segment Returns: (float, float, float, float): Bounds, with min latitude, min longitude, max latitude and max longitude """ min_lat = float("inf") min_lon = float("inf")
python
{ "resource": "" }
q3929
Track.similarity
train
def similarity(self, track): """ Compares two tracks based on their topology This method compares the given track against this instance. It only verifies if given track is close to this one, not the other way arround Args: track (:obj:`Track`) Returns: Two-tuple with global similarity between tracks and an array the similarity between segments """ idx = index.Index() i = 0 for i, segment in enumerate(self.segments):
python
{ "resource": "" }
q3930
Track.to_gpx
train
def to_gpx(self): """Converts track to a GPX format Uses GPXPY library as an intermediate format Returns: A string with the GPX/XML track """ gpx_segments = [] for segment in self.segments: gpx_points = [] for point in segment.points: time = '' if point.time: iso_time = point.time.isoformat().split('.')[0] time = '<time>%s</time>' % iso_time gpx_points.append( u'<trkpt lat="%f" lon="%f">%s</trkpt>' % (point.lat, point.lon, time) ) points = u'\n\t\t\t'.join(gpx_points)
python
{ "resource": "" }
q3931
Track.timezone
train
def timezone(self, timezone=0): """ Sets the timezone of the entire track Args: timezone (int): Timezone hour delta """ tz_dt = timedelta(hours=timezone) for segment in self.segments:
python
{ "resource": "" }
q3932
Track.to_life
train
def to_life(self): """Converts track to LIFE format """ buff = "--%s\n" % self.segments[0].points[0].time.strftime("%Y_%m_%d") # buff += "--" + day # buff += "UTC+s" # if needed def military_time(time): """ Converts time to military time Args: time (:obj:`datetime.datetime`) Returns: str: Time in the format 1245 (12 hours and 45 minutes) """ return time.strftime("%H%M") def stay(buff, start, end, place): """ Creates a stay representation Args: start (:obj:`datetime.datetime` or str) end (:obj:`datetime.datetime` or str) place (:obj:`Location`) Returns: str """ if not isinstance(start, str): start = military_time(start) if not isinstance(end, str): end = military_time(end) return "%s\n%s-%s: %s" % (buff, start, end, place.label) def trip(buff, segment): """ Creates a trip representation Args: buff (str): buffer segment (:obj:`Segment`) Returns: str: buffer and trip representation """ trip = "%s-%s: %s -> %s" % ( military_time(segment.points[0].time), military_time(segment.points[-1].time), segment.location_from.label, segment.location_to.label ) t_modes = segment.transportation_modes if len(t_modes) == 1: trip = "%s [%s]" % (trip, t_modes[0]['label']) elif len(t_modes) > 1: modes = [] for mode in t_modes: trip_from = military_time(segment.points[mode['from']].time)
python
{ "resource": "" }
q3933
Track.from_gpx
train
def from_gpx(file_path): """ Creates a Track from a GPX file. No preprocessing is done. Arguments: file_path (str): file path and name to the GPX file Return: :obj:`list` of :obj:`Track` """ gpx = gpxpy.parse(open(file_path, 'r')) file_name = basename(file_path) tracks = [] for i, track in enumerate(gpx.tracks): segments = [] for segment in track.segments:
python
{ "resource": "" }
q3934
Track.from_json
train
def from_json(json): """Creates a Track from a JSON file. No preprocessing is done. Arguments: json: map with the keys: name (optional) and segments. Return: A track instance
python
{ "resource": "" }
q3935
line
train
def line(p1, p2): """Creates a line from two points From http://stackoverflow.com/a/20679579 Args: p1 ([float, float]): x and y coordinates
python
{ "resource": "" }
q3936
intersection
train
def intersection(L1, L2): """Intersects two line segments Args: L1 ([float, float]): x and y coordinates L2 ([float, float]): x and y coordinates Returns: bool: if they intersect (float, float): x and y of intersection, if they do """ D = L1[0] * L2[1] - L1[1] *
python
{ "resource": "" }
q3937
closest_point
train
def closest_point(a, b, p): """Finds closest point in a line segment Args: a ([float, float]): x and y coordinates. Line start b ([float, float]): x and y coordinates. Line end p ([float, float]): x and y coordinates. Point to find in the segment Returns: (float, float): x and y coordinates of the closest point """ ap = [p[0]-a[0], p[1]-a[1]] ab
python
{ "resource": "" }
q3938
distance_to_line
train
def distance_to_line(a, b, p): """Closest distance between a line segment and a point Args: a ([float, float]): x and y coordinates. Line start
python
{ "resource": "" }
q3939
distance_similarity
train
def distance_similarity(a, b, p, T=CLOSE_DISTANCE_THRESHOLD): """Computes the distance similarity between a line segment and a point Args: a ([float, float]): x and y coordinates. Line start b ([float, float]): x and y coordinates. Line end p ([float, float]): x and y coordinates. Point to compute the distance Returns:
python
{ "resource": "" }
q3940
line_distance_similarity
train
def line_distance_similarity(p1a, p1b, p2a, p2b, T=CLOSE_DISTANCE_THRESHOLD): """Line distance similarity between two line segments Args: p1a ([float, float]): x and y coordinates. Line A start p1b ([float, float]): x and y coordinates. Line A end p2a ([float, float]): x and y coordinates. Line B start p2b ([float, float]): x and y coordinates.
python
{ "resource": "" }
q3941
line_similarity
train
def line_similarity(p1a, p1b, p2a, p2b, T=CLOSE_DISTANCE_THRESHOLD): """Similarity between two lines Args: p1a ([float, float]): x and y coordinates. Line A start p1b ([float, float]): x and y coordinates. Line A end p2a ([float, float]): x and y coordinates. Line B start p2b ([float, float]): x and y coordinates. Line B end Returns:
python
{ "resource": "" }
q3942
bounding_box_from
train
def bounding_box_from(points, i, i1, thr): """Creates bounding box for a line segment Args: points (:obj:`list` of :obj:`Point`) i (int): Line segment start, index in points array i1 (int): Line segment end, index in points array Returns: (float, float, float, float): with bounding box min x, min y, max x and max y
python
{ "resource": "" }
q3943
segment_similarity
train
def segment_similarity(A, B, T=CLOSE_DISTANCE_THRESHOLD): """Computes the similarity between two segments Args: A (:obj:`Segment`) B (:obj:`Segment`) Returns: float: between 0 and 1. Where 1 is very similar and 0 is completely different """ l_a = len(A.points) l_b = len(B.points) idx = index.Index() dex = 0 for i in range(l_a-1): idx.insert(dex, bounding_box_from(A.points, i, i+1, T), obj=[A.points[i], A.points[i+1]]) dex = dex + 1 prox_acc = [] for i in range(l_b-1): ti = B.points[i].gen2arr() ti1 = B.points[i+1].gen2arr() bb = bounding_box_from(B.points, i, i+1, T) intersects = idx.intersection(bb, objects=True) n_prox = [] i_prox = 0 a = 0 for x in intersects: a = a + 1
python
{ "resource": "" }
q3944
sort_segment_points
train
def sort_segment_points(Aps, Bps): """Takes two line segments and sorts all their points, so that they form a continuous path Args: Aps: Array of tracktotrip.Point Bps: Array of tracktotrip.Point Returns: Array with points ordered """ mid = [] j = 0 mid.append(Aps[0]) for i in range(len(Aps)-1): dist = distance_tt_point(Aps[i], Aps[i+1]) for m in range(j, len(Bps)): distm = distance_tt_point(Aps[i], Bps[m]) if dist > distm:
python
{ "resource": "" }
q3945
distance
train
def distance(latitude_1, longitude_1, elevation_1, latitude_2, longitude_2, elevation_2, haversine=None): """ Distance between two points """ # If points too distant -- compute haversine distance: if haversine or (abs(latitude_1 - latitude_2) > .2 or abs(longitude_1 - longitude_2) > .2): return haversine_distance(latitude_1, longitude_1, latitude_2, longitude_2) coef = math.cos(latitude_1 / 180. * math.pi) #pylint: disable=invalid-name x = latitude_1 - latitude_2
python
{ "resource": "" }
q3946
Point.distance
train
def distance(self, other): """ Distance between points Args: other (:obj:`Point`) Returns: float: Distance in km """
python
{ "resource": "" }
q3947
Point.compute_metrics
train
def compute_metrics(self, previous): """ Computes the metrics of this point Computes and updates the dt, vel and acc attributes. Args: previous (:obj:`Point`): Point before Returns: :obj:`Point`: Self """ delta_t = self.time_difference(previous) delta_x = self.distance(previous) vel = 0 delta_v = 0 acc = 0 if delta_t != 0:
python
{ "resource": "" }
q3948
Point.from_gpx
train
def from_gpx(gpx_track_point): """ Creates a point from GPX representation Arguments: gpx_track_point (:obj:`gpxpy.GPXTrackPoint`) Returns: :obj:`Point` """
python
{ "resource": "" }
q3949
Point.to_json
train
def to_json(self): """ Creates a JSON serializable representation of this instance Returns: :obj:`dict`: For example, { "lat": 9.3470298, "lon": 3.79274, "time": "2016-07-15T15:27:53.574110" } """
python
{ "resource": "" }
q3950
Point.from_json
train
def from_json(json): """ Creates Point instance from JSON representation Args: json (:obj:`dict`): Must have at least the following keys: lat (float), lon (float), time (string in iso format). Example, { "lat": 9.3470298, "lon": 3.79274, "time": "2016-07-15T15:27:53.574110"
python
{ "resource": "" }
q3951
compute_centroid
train
def compute_centroid(points): """ Computes the centroid of set of points Args: points (:obj:`list` of :obj:`Point`) Returns: :obj:`Point`
python
{ "resource": "" }
q3952
update_location_centroid
train
def update_location_centroid(point, cluster, max_distance, min_samples): """ Updates the centroid of a location cluster with another point Args: point (:obj:`Point`): Point to add to the cluster cluster (:obj:`list` of :obj:`Point`): Location cluster max_distance (float): Max neighbour distance min_samples (int): Minimum number of samples Returns: (:obj:`Point`, :obj:`list` of :obj:`Point`): Tuple with the location centroid and new point cluster (given cluster + given point) """ cluster.append(point) points = [p.gen2arr() for p in cluster] # Estimates the epsilon eps = estimate_meters_to_deg(max_distance, precision=6) p_cluster = DBSCAN(eps=eps, min_samples=min_samples) p_cluster.fit(points) clusters = {} for i, label in enumerate(p_cluster.labels_): if label in clusters.keys():
python
{ "resource": "" }
q3953
query_foursquare
train
def query_foursquare(point, max_distance, client_id, client_secret): """ Queries Squarespace API for a location Args: point (:obj:`Point`): Point location to query max_distance (float): Search radius, in meters client_id (str): Valid Foursquare client id client_secret (str): Valid Foursquare client secret Returns: :obj:`list` of :obj:`dict`: List of locations with the following format: { 'label': 'Coffee house', 'distance': 19, 'types': 'Commerce', 'suggestion_type': 'FOURSQUARE' } """
python
{ "resource": "" }
q3954
query_google
train
def query_google(point, max_distance, key): """ Queries google maps API for a location Args: point (:obj:`Point`): Point location to query max_distance (float): Search radius, in meters key (str): Valid google maps api key Returns: :obj:`list` of :obj:`dict`: List of locations with the following format: { 'label': 'Coffee house', 'types': 'Commerce', 'suggestion_type': 'GOOGLE' } """ if not key: return [] if from_cache(GG_CACHE, point,
python
{ "resource": "" }
q3955
estimate_meters_to_deg
train
def estimate_meters_to_deg(meters, precision=PRECISION_PERSON): """ Meters to degrees estimation See https://en.wikipedia.org/wiki/Decimal_degrees Args: meters (float) precision (float) Returns:
python
{ "resource": "" }
q3956
isostr_to_datetime
train
def isostr_to_datetime(dt_str): """ Converts iso formated text string into a datetime object Args: dt_str (str): ISO formated text string Returns:
python
{ "resource": "" }
q3957
Classifier.__learn_labels
train
def __learn_labels(self, labels): """ Learns new labels, this method is intended for internal use Args: labels (:obj:`list` of :obj:`str`): Labels to learn """ if self.feature_length > 0:
python
{ "resource": "" }
q3958
Classifier.learn
train
def learn(self, features, labels): """ Fits the classifier If it's state is empty, the classifier is fitted, if not the classifier is partially fitted. See sklearn's SGDClassifier fit and partial_fit methods. Args: features (:obj:`list` of :obj:`list` of :obj:`float`) labels (:obj:`list` of :obj:`str`): Labels for each set of features. New features are learnt. """ labels = np.ravel(labels) self.__learn_labels(labels) if len(labels) == 0:
python
{ "resource": "" }
q3959
Classifier.predict
train
def predict(self, features, verbose=False): """ Probability estimates of each feature See sklearn's SGDClassifier predict and predict_proba methods. Args: features (:obj:`list` of :obj:`list` of :obj:`float`) verbose: Boolean, optional. If true returns an array where each element is a dictionary, where keys are labels and values are the respective probabilities. Defaults to False. Returns: Array of array of numbers, or array of dictionaries if verbose i True
python
{ "resource": "" }
q3960
FromCSVTablesGenerator.source_loader
train
def source_loader(self, source_paths, create_missing_tables=True): """Load source from 3 csv files. First file should contain global settings: * ``native_lagnauge,languages`` header on first row * appropriate values on following rows Example:: native_lagnauge,languages ru,ru ,en Second file should contain templates: * ``template_name,probability,genders,template`` header on first row * appropriate values on following rows (separate values with semicolon ";" in template column) Example:: template_name,probability,genders,template male_1,5,m,prefixes;male_suffixes baby_1,1,m;f,prefixes;descriptive Third file should contain tables with values for template slugs in all languages: * first row should contain slugs with language code after colon for each * appropriate values on following rows. Multiple forms may be specified using semicolon as separator Example:: prefixes:ru,prefixes:en,male_suffixes:ru,male_suffixes:en,descriptive:ru,descriptive:en Бж,Bzh,пра,pra,быстряк;быстряку,fasty дон;дону,don,Иван;Ивану,Ivan,Иванов;Иванову,Ivanov Note: you may use slugs without ":lang_code" suffix in csv header of tables file. Such headers will be treated as headers for native language If tables are missing for some slug then it is automatically created with values equeal to slug itself. So you may use some slugs without specifying tables data for them. Example for apostrophe
python
{ "resource": "" }
q3961
loader
train
def loader(): """Load image from URL, and preprocess for Resnet.""" url = request.args.get('url')
python
{ "resource": "" }
q3962
postprocessor
train
def postprocessor(prediction): """Map prediction tensor to labels.""" prediction = prediction.data.numpy()[0]
python
{ "resource": "" }
q3963
get_logger
train
def get_logger(name): """Get a logger with the specified name.""" logger = logging.getLogger(name)
python
{ "resource": "" }
q3964
make_serializable
train
def make_serializable(data): """Ensure data is serializable.""" if is_serializable(data): return data # if numpy array convert to list try: return data.tolist() except AttributeError: pass except Exception as e: logger.debug('{} exception ({}): {}'.format(type(e).__name__, e, data)) # try serializing each child element if isinstance(data, dict): return {key: make_serializable(value) for key, value in data.items()}
python
{ "resource": "" }
q3965
json_numpy_loader
train
def json_numpy_loader(): """Load data from JSON request and convert to numpy array.""" data = request.get_json()
python
{ "resource": "" }
q3966
get_bytes_to_image_callback
train
def get_bytes_to_image_callback(image_dims=(224, 224)): """Return a callback to process image bytes for ImageNet.""" from keras.preprocessing import image import numpy as np from PIL import Image from io import BytesIO def preprocess_image_bytes(data_bytes): """Process image bytes for ImageNet.""" try: img = Image.open(BytesIO(data_bytes)) # open image except OSError as e: raise ValueError('Please provide a raw image') img = img.resize(image_dims, Image.ANTIALIAS) #
python
{ "resource": "" }
q3967
exception_log_and_respond
train
def exception_log_and_respond(exception, logger, message, status_code): """Log an error and send jsonified respond.""" logger.error(message, exc_info=True) return make_response( message,
python
{ "resource": "" }
q3968
make_response
train
def make_response(message, status_code, details=None): """Make a jsonified response with specified message and status code.""" response_body = dict(message=message) if details:
python
{ "resource": "" }
q3969
ModelServer._create_prediction_endpoint
train
def _create_prediction_endpoint( self, to_numpy=True, data_loader=json_numpy_loader, preprocessor=lambda x: x, input_validation=lambda data: (True, None), postprocessor=lambda x: x, make_serializable_post=True): """Create an endpoint to serve predictions. Arguments: - input_validation (fn): takes a numpy array as input; returns True if validation passes and False otherwise - data_loader (fn): reads flask request and returns data preprocessed to be used in the `predict` method - postprocessor (fn): transforms the predictions from the `predict` method """ # copy instance variables to local scope for resource class predict = self.predict logger = self.app.logger # create restful resource class Predictions(Resource): @staticmethod def post(): # read data from API request try: data = data_loader() except Exception as e: return exception_log_and_respond(e, logger, 'Unable to fetch data', 400) try: if hasattr(preprocessor, '__iter__'): for preprocessor_step in preprocessor: data = preprocessor_step(data) else: data = preprocessor(data) # preprocess data data = np.array(data) if to_numpy else data # convert to numpy except Exception as e: return exception_log_and_respond(e, logger, 'Could not preprocess data', 400) # sanity check using user defined callback (default is no check) validation_pass, validation_reason = input_validation(data) if not validation_pass: # if validation fails, log the reason code, log the data, and send a 400 response validation_message = 'Input validation failed with reason: {}'.format(validation_reason) logger.error(validation_message)
python
{ "resource": "" }
q3970
ModelServer.serve
train
def serve(self, host='127.0.0.1', port=5000): """Serve predictions as an API endpoint.""" from meinheld import server, middleware # self.app.run(host=host, port=port)
python
{ "resource": "" }
q3971
get_model
train
def get_model(input_dim): """Create and compile simple model.""" model = Sequential() model.add(Dense(100, input_dim=input_dim, activation='sigmoid'))
python
{ "resource": "" }
q3972
validator
train
def validator(input_data): """Simple model input validator. Validator ensures the input data array is - two dimensional - has the correct number of features. """ global data # check num dims if input_data.ndim != 2: return False, 'Data should have two dimensions.' # check number of columns if input_data.shape[1] != data.data.shape[1]:
python
{ "resource": "" }
q3973
read_chd_header
train
def read_chd_header(chd_file): """ read the .chd header file created when Vision Research software saves the images in a file format other than .cine """ with open(chd_file, "rb") as f: header = { "cinefileheader": cine.CINEFILEHEADER(), "bitmapinfoheader": cine.BITMAPINFOHEADER(),
python
{ "resource": "" }
q3974
_load_module
train
def _load_module(module_name, path): '''A helper function invoked on the server to tell it to import a module.''' # TODO: handle the case that the module is already loaded try: # First try to find a non-builtin, non-frozen, non-special # module using the client's search path
python
{ "resource": "" }
q3975
byvalue
train
def byvalue(proxy): '''Return a copy of the underlying object for which the argument is a proxy.'''
python
{ "resource": "" }
q3976
Client.state
train
def state(self, state): '''Change the state of the client. This is one of the values defined in ClientStates.'''
python
{ "resource": "" }
q3977
Client._read_result
train
def _read_result(self, num_retries): '''Read an object from a channel, possibly retrying if the attempt is interrupted by a signal from the operating system.''' for i in range(num_retries): self._assert_alive() try: return self._result_channel.get() except IOError as ex: if ex.errno == 4: # errno=4 corresponds to "System call interrupted", # which means a signal was recieved before any data # was sent. For now I think it's safe to
python
{ "resource": "" }
q3978
Client.terminate
train
def terminate(self): '''Stop the server process and change our state to TERMINATING. Only valid if state=READY.''' logger.debug('client.terminate() called (state=%s)', self.strstate) if self.state == ClientState.WAITING_FOR_RESULT: raise ClientStateError('terimate() called while state='+self.strstate) if self.state == ClientState.TERMINATING: raise ClientStateError('terimate() called while state='+self.strstate) elif self.state in ClientState.TerminatedSet: assert not self._server_process.is_alive() return elif self.state == ClientState.READY: # Check that the process itself is still alive self._assert_alive() # Make sure the SIGCHLD signal handler doesn't throw any exceptions self.state = ClientState.TERMINATING # Do not call execute() because that function will check # whether the process is alive and throw an exception if not # TODO: can the queue itself throw exceptions?
python
{ "resource": "" }
q3979
Client.cleanup
train
def cleanup(self): '''Terminate this client if it has not already terminated.''' if self.state == ClientState.WAITING_FOR_RESULT: # There is an ongoing call to execute() # Not sure what to do here logger.warn('cleanup() called while state is WAITING_FOR_RESULT: ignoring') elif self.state == ClientState.TERMINATING: # terminate() has been called but we have not recieved SIGCHLD yet # Not sure what to do here logger.warn('cleanup() called while state is TERMINATING: ignoring') elif self.state in ClientState.TerminatedSet: # We have already terminated # TODO: should we deal with TERMINATED_ASYNC in some special way? logger.debug('cleanup() called while state is
python
{ "resource": "" }
q3980
IsolationContext.start
train
def start(self): '''Create a process in which the isolated code will be run.''' assert self._client is None logger.debug('IsolationContext[%d] starting', id(self)) # Create the queues request_queue = multiprocessing.Queue() response_queue = multiprocessing.Queue() # Launch the server process server = Server(request_queue, response_queue) # Do not
python
{ "resource": "" }
q3981
IsolationContext.load_module
train
def load_module(self, module_name, path=None): '''Import a module into this isolation context and return a proxy for it.''' self.ensure_started() if path is None: path = sys.path
python
{ "resource": "" }
q3982
_has_annotation
train
def _has_annotation(annotation, value): """ Returns a function that can be used as a predicate in get_members, that """ def matches_property_name(fun):
python
{ "resource": "" }
q3983
_get_getter_fun
train
def _get_getter_fun(object_type, # type: Type parameter, # type: Parameter private_property_name # type: str ): """ Utility method to find the overridden getter function for a given property, or generate a new one :param object_type: :param property_name: :param private_property_name: :return: """ property_name = parameter.name # -- check overridden getter for this property name overridden_getters = getmembers(object_type, predicate=_has_annotation(__GETTER_OVERRIDE_ANNOTATION, property_name)) if len(overridden_getters) > 0: if len(overridden_getters) > 1: raise DuplicateOverrideError('Getter is overridden more than once for attribute name : ' + property_name) # --use the overridden getter getter_fun = overridden_getters[0][1] # --check its signature s = signature(getter_fun) if not ('self' in s.parameters.keys() and len(s.parameters.keys()) == 1): raise IllegalGetterSignatureException('overridden getter must only have a self parameter, found ' +
python
{ "resource": "" }
q3984
_get_setter_fun
train
def _get_setter_fun(object_type, # type: Type parameter, # type: Parameter private_property_name # type: str ): """ Utility method to find the overridden setter function for a given property, or generate a new one :param object_type: :param property_name: :param property_type: :param private_property_name: :return: """ # the property will have the same name than the constructor argument property_name = parameter.name overridden_setters = getmembers(object_type, _has_annotation(__SETTER_OVERRIDE_ANNOTATION, property_name)) if len(overridden_setters) > 0: # --check that we only have one if len(overridden_setters) > 1: raise DuplicateOverrideError('Setter is overridden more than once for attribute name : %s' % property_name) # --use the overridden setter setter_fun = overridden_setters[0][1] try: # python 2 setter_fun = setter_fun.im_func except AttributeError: pass # --find the parameter name and check the signature s = signature(setter_fun) p = [attribute_name for attribute_name, param in s.parameters.items() if attribute_name is not 'self'] if len(p) != 1:
python
{ "resource": "" }
q3985
getter_override
train
def getter_override(attribute=None, # type: str f=DECORATED ): """ A decorator to indicate an overridden getter for a given attribute. If the attribute name
python
{ "resource": "" }
q3986
is_attr_selected
train
def is_attr_selected(attr_name, # type: str include=None, # type: Union[str, Tuple[str]] exclude=None # type: Union[str, Tuple[str]] ): """decide whether an action has to be performed on the attribute or not, based on its name""" if include is not None and exclude is not None: raise ValueError('Only one of \'include\' or \'exclude\' argument should be provided.') # win time by not doing this #
python
{ "resource": "" }
q3987
method_already_there
train
def method_already_there(object_type, method_name, this_class_only=False): """ Returns True if method `method_name` is already implemented by object_type, that is, its implementation differs from the one in `object`. :param object_type: :param method_name:
python
{ "resource": "" }
q3988
OrderedMultiDict.extend
train
def extend(self, *args, **kwargs): """Add key value pairs for an iterable.""" if len(args) > 1: raise TypeError('expected at most 1 arguments, got %d' % len(args)) iterable = args[0] if args else None if iterable: if isinstance(iterable, Mapping) or hasattr(iterable, 'items'): for key, value in iterable.items(): self.append(key, value) elif hasattr(iterable, 'keys'):
python
{ "resource": "" }
q3989
OrderedMultiDict.__insert_wrapper
train
def __insert_wrapper(func): """Make sure the arguments given to the insert methods are correct""" def check_func(self, key, new_item, instance=0): if key not in self.keys(): raise KeyError("%s not a key in label" % (key)) if not isinstance(new_item, (list, OrderedMultiDict)):
python
{ "resource": "" }
q3990
OrderedMultiDict._get_index_for_insert
train
def _get_index_for_insert(self, key, instance): """Get the index of the key to insert before or after""" if instance == 0: # Index method will return the first occurence of the key index = self.keys().index(key) else: occurrence = -1 for index, k in enumerate(self.keys()): if k == key: occurrence += 1 if occurrence == instance: # Found the key and the correct occurence of the key break if occurrence != instance: # Gone through the entire list of keys and the instance number # given is too high for the number of occurences of the key
python
{ "resource": "" }
q3991
OrderedMultiDict._insert_item
train
def _insert_item(self, key, new_item, instance, is_after): """Insert a new item before or after another item""" index = self._get_index_for_insert(key, instance) index = index + 1 if is_after else index self.__items = self.__items[:index] + new_item + self.__items[index:]
python
{ "resource": "" }
q3992
OrderedMultiDict.insert_after
train
def insert_after(self, key, new_item, instance=0): """Insert an item after a key"""
python
{ "resource": "" }
q3993
OrderedMultiDict.insert_before
train
def insert_before(self, key, new_item, instance=0): """Insert an item before a key"""
python
{ "resource": "" }
q3994
ByteStream.peek
train
def peek(self, n): """Returns buffered bytes without advancing the position. The argument indicates a desired minimal number of bytes;
python
{ "resource": "" }
q3995
PVLDecoder.parse_group
train
def parse_group(self, stream): """Block Name must match Block Name in paired End Group Statement if Block Name is present in End Group Statement. BeginGroupStmt ::= BeginGroupKeywd WSC AssignmentSymbol WSC BlockName StatementDelim """ self.expect_in(stream, self.begin_group_tokens) self.ensure_assignment(stream) name = self.next_token(stream) self.skip_statement_delimiter(stream)
python
{ "resource": "" }
q3996
PVLDecoder.parse_object
train
def parse_object(self, stream): """Block Name must match Block Name in paired End Object Statement if Block Name is present in End Object Statement StatementDelim. BeginObjectStmt ::= BeginObjectKeywd WSC AssignmentSymbol WSC BlockName StatementDelim """ self.expect_in(stream, self.begin_object_tokens) self.ensure_assignment(stream) name = self.next_token(stream)
python
{ "resource": "" }
q3997
DjangoFaker.varchar
train
def varchar(self, field=None): """ Returns a chunk of text, of maximum length 'max_length' """ assert field is not None, "The field parameter must be passed to the 'varchar' method." max_length = field.max_length def source():
python
{ "resource": "" }
q3998
DjangoFaker.datetime
train
def datetime(self, field=None, val=None): """ Returns a random datetime. If 'val' is passed, a datetime within two years of that date will be returned. """ if val is None: def source(): tzinfo = get_default_timezone() if settings.USE_TZ else None return datetime.fromtimestamp(randrange(1, 2100000000), tzinfo) else: def
python
{ "resource": "" }
q3999
DjangoFaker.date
train
def date(self, field=None, val=None): """ Like datetime, but truncated to be a date only """
python
{ "resource": "" }