index
int64
0
100k
blob_id
stringlengths
40
40
code
stringlengths
7
7.27M
steps
listlengths
1
1.25k
error
bool
2 classes
98,800
fda3d128195e858f1ed6a5996758624e2708f458
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import django.utils.timezone from django.conf import settings class Migration(migrations.Migration): dependencies = [ ] operations = [ migrations.CreateModel( name='Account', fields=[ ('id', models.AutoField(auto_created=True, serialize=False, primary_key=True, verbose_name='ID')), ('password', models.CharField(verbose_name='password', max_length=128)), ('last_login', models.DateTimeField(default=django.utils.timezone.now, verbose_name='last login')), ('email', models.EmailField(unique=True, max_length=75)), ('username', models.CharField(verbose_name='Username', unique=True, max_length=40)), ('first_name', models.CharField(verbose_name='First name', blank=True, max_length=40)), ('last_name', models.CharField(verbose_name='Last name', blank=True, max_length=40)), ('is_premium', models.BooleanField(default=False)), ('premium_expires', models.DateTimeField(null=True)), ('is_admin', models.BooleanField(default=False)), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ], options={ 'abstract': False, }, bases=(models.Model,), ), migrations.CreateModel( name='Category', fields=[ ('id', models.AutoField(auto_created=True, serialize=False, primary_key=True, verbose_name='ID')), ('title', models.CharField(unique=True, max_length=40)), ('parent', models.ForeignKey(blank=True, null=True, to='searchsystem.Category')), ], options={ }, bases=(models.Model,), ), migrations.CreateModel( name='Place', fields=[ ('id', models.AutoField(auto_created=True, serialize=False, primary_key=True, verbose_name='ID')), ('adress', models.TextField()), ('id_google', models.CharField(max_length=255)), ('title', models.CharField(max_length=255)), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ], options={ }, bases=(models.Model,), ), migrations.CreateModel( name='PlaceCategory', fields=[ ('id', models.AutoField(auto_created=True, serialize=False, primary_key=True, verbose_name='ID')), ('category', models.ForeignKey(to='searchsystem.Category')), ('place', models.ForeignKey(to='searchsystem.Place')), ], options={ }, bases=(models.Model,), ), migrations.CreateModel( name='Review', fields=[ ('id', models.AutoField(auto_created=True, serialize=False, primary_key=True, verbose_name='ID')), ('content', models.TextField()), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ('place', models.ForeignKey(to='searchsystem.Place')), ], options={ }, bases=(models.Model,), ), migrations.CreateModel( name='UserAdd', fields=[ ('id', models.AutoField(auto_created=True, serialize=False, primary_key=True, verbose_name='ID')), ('place_id', models.ForeignKey(to='searchsystem.Place')), ('user_id', models.ForeignKey(to=settings.AUTH_USER_MODEL)), ], options={ }, bases=(models.Model,), ), migrations.AddField( model_name='place', name='author', field=models.ManyToManyField(through='searchsystem.UserAdd', to=settings.AUTH_USER_MODEL), preserve_default=True, ), migrations.AddField( model_name='place', name='categories_places', field=models.ManyToManyField(through='searchsystem.PlaceCategory', to='searchsystem.Category'), preserve_default=True, ), ]
[ "# -*- coding: utf-8 -*-\nfrom __future__ import unicode_literals\n\nfrom django.db import models, migrations\nimport django.utils.timezone\nfrom django.conf import settings\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ]\n\n operations = [\n migrations.CreateModel(\n name='Account',\n fields=[\n ('id', models.AutoField(auto_created=True, serialize=False, primary_key=True, verbose_name='ID')),\n ('password', models.CharField(verbose_name='password', max_length=128)),\n ('last_login', models.DateTimeField(default=django.utils.timezone.now, verbose_name='last login')),\n ('email', models.EmailField(unique=True, max_length=75)),\n ('username', models.CharField(verbose_name='Username', unique=True, max_length=40)),\n ('first_name', models.CharField(verbose_name='First name', blank=True, max_length=40)),\n ('last_name', models.CharField(verbose_name='Last name', blank=True, max_length=40)),\n ('is_premium', models.BooleanField(default=False)),\n ('premium_expires', models.DateTimeField(null=True)),\n ('is_admin', models.BooleanField(default=False)),\n ('created_at', models.DateTimeField(auto_now_add=True)),\n ('updated_at', models.DateTimeField(auto_now=True)),\n ],\n options={\n 'abstract': False,\n },\n bases=(models.Model,),\n ),\n migrations.CreateModel(\n name='Category',\n fields=[\n ('id', models.AutoField(auto_created=True, serialize=False, primary_key=True, verbose_name='ID')),\n ('title', models.CharField(unique=True, max_length=40)),\n ('parent', models.ForeignKey(blank=True, null=True, to='searchsystem.Category')),\n ],\n options={\n },\n bases=(models.Model,),\n ),\n migrations.CreateModel(\n name='Place',\n fields=[\n ('id', models.AutoField(auto_created=True, serialize=False, primary_key=True, verbose_name='ID')),\n ('adress', models.TextField()),\n ('id_google', models.CharField(max_length=255)),\n ('title', models.CharField(max_length=255)),\n ('created_at', models.DateTimeField(auto_now_add=True)),\n ('updated_at', models.DateTimeField(auto_now=True)),\n ],\n options={\n },\n bases=(models.Model,),\n ),\n migrations.CreateModel(\n name='PlaceCategory',\n fields=[\n ('id', models.AutoField(auto_created=True, serialize=False, primary_key=True, verbose_name='ID')),\n ('category', models.ForeignKey(to='searchsystem.Category')),\n ('place', models.ForeignKey(to='searchsystem.Place')),\n ],\n options={\n },\n bases=(models.Model,),\n ),\n migrations.CreateModel(\n name='Review',\n fields=[\n ('id', models.AutoField(auto_created=True, serialize=False, primary_key=True, verbose_name='ID')),\n ('content', models.TextField()),\n ('created_at', models.DateTimeField(auto_now_add=True)),\n ('updated_at', models.DateTimeField(auto_now=True)),\n ('place', models.ForeignKey(to='searchsystem.Place')),\n ],\n options={\n },\n bases=(models.Model,),\n ),\n migrations.CreateModel(\n name='UserAdd',\n fields=[\n ('id', models.AutoField(auto_created=True, serialize=False, primary_key=True, verbose_name='ID')),\n ('place_id', models.ForeignKey(to='searchsystem.Place')),\n ('user_id', models.ForeignKey(to=settings.AUTH_USER_MODEL)),\n ],\n options={\n },\n bases=(models.Model,),\n ),\n migrations.AddField(\n model_name='place',\n name='author',\n field=models.ManyToManyField(through='searchsystem.UserAdd', to=settings.AUTH_USER_MODEL),\n preserve_default=True,\n ),\n migrations.AddField(\n model_name='place',\n name='categories_places',\n field=models.ManyToManyField(through='searchsystem.PlaceCategory', to='searchsystem.Category'),\n preserve_default=True,\n ),\n ]\n", "from __future__ import unicode_literals\nfrom django.db import models, migrations\nimport django.utils.timezone\nfrom django.conf import settings\n\n\nclass Migration(migrations.Migration):\n dependencies = []\n operations = [migrations.CreateModel(name='Account', fields=[('id',\n models.AutoField(auto_created=True, serialize=False, primary_key=\n True, verbose_name='ID')), ('password', models.CharField(\n verbose_name='password', max_length=128)), ('last_login', models.\n DateTimeField(default=django.utils.timezone.now, verbose_name=\n 'last login')), ('email', models.EmailField(unique=True, max_length\n =75)), ('username', models.CharField(verbose_name='Username',\n unique=True, max_length=40)), ('first_name', models.CharField(\n verbose_name='First name', blank=True, max_length=40)), (\n 'last_name', models.CharField(verbose_name='Last name', blank=True,\n max_length=40)), ('is_premium', models.BooleanField(default=False)),\n ('premium_expires', models.DateTimeField(null=True)), ('is_admin',\n models.BooleanField(default=False)), ('created_at', models.\n DateTimeField(auto_now_add=True)), ('updated_at', models.\n DateTimeField(auto_now=True))], options={'abstract': False}, bases=\n (models.Model,)), migrations.CreateModel(name='Category', fields=[(\n 'id', models.AutoField(auto_created=True, serialize=False,\n primary_key=True, verbose_name='ID')), ('title', models.CharField(\n unique=True, max_length=40)), ('parent', models.ForeignKey(blank=\n True, null=True, to='searchsystem.Category'))], options={}, bases=(\n models.Model,)), migrations.CreateModel(name='Place', fields=[('id',\n models.AutoField(auto_created=True, serialize=False, primary_key=\n True, verbose_name='ID')), ('adress', models.TextField()), (\n 'id_google', models.CharField(max_length=255)), ('title', models.\n CharField(max_length=255)), ('created_at', models.DateTimeField(\n auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=\n True))], options={}, bases=(models.Model,)), migrations.CreateModel\n (name='PlaceCategory', fields=[('id', models.AutoField(auto_created\n =True, serialize=False, primary_key=True, verbose_name='ID')), (\n 'category', models.ForeignKey(to='searchsystem.Category')), (\n 'place', models.ForeignKey(to='searchsystem.Place'))], options={},\n bases=(models.Model,)), migrations.CreateModel(name='Review',\n fields=[('id', models.AutoField(auto_created=True, serialize=False,\n primary_key=True, verbose_name='ID')), ('content', models.TextField\n ()), ('created_at', models.DateTimeField(auto_now_add=True)), (\n 'updated_at', models.DateTimeField(auto_now=True)), ('place',\n models.ForeignKey(to='searchsystem.Place'))], options={}, bases=(\n models.Model,)), migrations.CreateModel(name='UserAdd', fields=[(\n 'id', models.AutoField(auto_created=True, serialize=False,\n primary_key=True, verbose_name='ID')), ('place_id', models.\n ForeignKey(to='searchsystem.Place')), ('user_id', models.ForeignKey\n (to=settings.AUTH_USER_MODEL))], options={}, bases=(models.Model,)),\n migrations.AddField(model_name='place', name='author', field=models\n .ManyToManyField(through='searchsystem.UserAdd', to=settings.\n AUTH_USER_MODEL), preserve_default=True), migrations.AddField(\n model_name='place', name='categories_places', field=models.\n ManyToManyField(through='searchsystem.PlaceCategory', to=\n 'searchsystem.Category'), preserve_default=True)]\n", "<import token>\n\n\nclass Migration(migrations.Migration):\n dependencies = []\n operations = [migrations.CreateModel(name='Account', fields=[('id',\n models.AutoField(auto_created=True, serialize=False, primary_key=\n True, verbose_name='ID')), ('password', models.CharField(\n verbose_name='password', max_length=128)), ('last_login', models.\n DateTimeField(default=django.utils.timezone.now, verbose_name=\n 'last login')), ('email', models.EmailField(unique=True, max_length\n =75)), ('username', models.CharField(verbose_name='Username',\n unique=True, max_length=40)), ('first_name', models.CharField(\n verbose_name='First name', blank=True, max_length=40)), (\n 'last_name', models.CharField(verbose_name='Last name', blank=True,\n max_length=40)), ('is_premium', models.BooleanField(default=False)),\n ('premium_expires', models.DateTimeField(null=True)), ('is_admin',\n models.BooleanField(default=False)), ('created_at', models.\n DateTimeField(auto_now_add=True)), ('updated_at', models.\n DateTimeField(auto_now=True))], options={'abstract': False}, bases=\n (models.Model,)), migrations.CreateModel(name='Category', fields=[(\n 'id', models.AutoField(auto_created=True, serialize=False,\n primary_key=True, verbose_name='ID')), ('title', models.CharField(\n unique=True, max_length=40)), ('parent', models.ForeignKey(blank=\n True, null=True, to='searchsystem.Category'))], options={}, bases=(\n models.Model,)), migrations.CreateModel(name='Place', fields=[('id',\n models.AutoField(auto_created=True, serialize=False, primary_key=\n True, verbose_name='ID')), ('adress', models.TextField()), (\n 'id_google', models.CharField(max_length=255)), ('title', models.\n CharField(max_length=255)), ('created_at', models.DateTimeField(\n auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=\n True))], options={}, bases=(models.Model,)), migrations.CreateModel\n (name='PlaceCategory', fields=[('id', models.AutoField(auto_created\n =True, serialize=False, primary_key=True, verbose_name='ID')), (\n 'category', models.ForeignKey(to='searchsystem.Category')), (\n 'place', models.ForeignKey(to='searchsystem.Place'))], options={},\n bases=(models.Model,)), migrations.CreateModel(name='Review',\n fields=[('id', models.AutoField(auto_created=True, serialize=False,\n primary_key=True, verbose_name='ID')), ('content', models.TextField\n ()), ('created_at', models.DateTimeField(auto_now_add=True)), (\n 'updated_at', models.DateTimeField(auto_now=True)), ('place',\n models.ForeignKey(to='searchsystem.Place'))], options={}, bases=(\n models.Model,)), migrations.CreateModel(name='UserAdd', fields=[(\n 'id', models.AutoField(auto_created=True, serialize=False,\n primary_key=True, verbose_name='ID')), ('place_id', models.\n ForeignKey(to='searchsystem.Place')), ('user_id', models.ForeignKey\n (to=settings.AUTH_USER_MODEL))], options={}, bases=(models.Model,)),\n migrations.AddField(model_name='place', name='author', field=models\n .ManyToManyField(through='searchsystem.UserAdd', to=settings.\n AUTH_USER_MODEL), preserve_default=True), migrations.AddField(\n model_name='place', name='categories_places', field=models.\n ManyToManyField(through='searchsystem.PlaceCategory', to=\n 'searchsystem.Category'), preserve_default=True)]\n", "<import token>\n\n\nclass Migration(migrations.Migration):\n <assignment token>\n <assignment token>\n", "<import token>\n<class token>\n" ]
false
98,801
594c923fabe64bb29a1a3aea25466cf370ff5377
import os import math import numpy as np print(math.floor(2000.543531512354))
[ "import os\nimport math\nimport numpy as np\nprint(math.floor(2000.543531512354))", "import os\nimport math\nimport numpy as np\nprint(math.floor(2000.543531512354))\n", "<import token>\nprint(math.floor(2000.543531512354))\n", "<import token>\n<code token>\n" ]
false
98,802
941bf3737775f7a207d5447b0cf74c6d35003148
from automatic_plot_helper import load_settings from automatic_plot_helper import load_top_isings from automatic_plot_helper import load_top_isings_attr from automatic_plot_helper import load_isings_from_list import numpy as np import matplotlib.pyplot as plt import matplotlib from os import makedirs, path import pickle from matplotlib.patches import Patch from matplotlib.lines import Line2D import os class SmallIsing: def __init__(self, avg_energy, time_steps_gen): self.avg_energy = avg_energy self.time_steps_gen = time_steps_gen self.norm_avg_energy = avg_energy / time_steps_gen def all_plots(sim_name_b1_fix, sim_name_b10_fix, sim_name_b1_rand, sim_name_rand, only_top_isings=20, load_previous=False): save_folder = 'save/plots_for_anna/' if not os.path.exists(save_folder): os.makedirs(save_folder) matplotlib.rcParams.update({'font.size': 30}) alpha = 0.3 s = 25 colour_b1 = 'darkorange' colour_b10 = 'royalblue' if not load_previous: attrs_gen_b10_fix = load_ising_stuff(sim_name_b10_fix, only_top_isings) attrs_gen_b1_fix = load_ising_stuff(sim_name_b1_fix, only_top_isings) attrs_gen_b10_rand = load_ising_stuff(sim_name_b10_rand, only_top_isings) attrs_gen_b1_rand = load_ising_stuff(sim_name_b1_rand, only_top_isings) loaded_plot_attrs = { 'attrs_gen_b1_fix': attrs_gen_b1_fix, 'attrs_gen_b10_fix': attrs_gen_b10_fix, 'attrs_gen_b10_rand': attrs_gen_b10_rand, 'attrs_gen_b1_rand': attrs_gen_b1_rand } try: pickle_out = open('{}loaded_plot_attrs.pickle'.format(save_folder), 'wb') pickle.dump(loaded_plot_attrs, pickle_out) pickle_out.close() except Exception: print('Could not save pickle file') else: file = open('{}/loaded_plot_attrs.pickle'.format(save_folder), 'rb') loaded_plot_attrs = pickle.load(file) file.close() attrs_gen_b10_fix = loaded_plot_attrs['attrs_gen_b10_fix'] attrs_gen_b1_fix = loaded_plot_attrs['attrs_gen_b1_fix'] attrs_gen_b10_rand = loaded_plot_attrs['attrs_gen_b10_rand'] attrs_gen_b1_rand = loaded_plot_attrs['attrs_gen_b1_rand'] # Increasing scale # attrs_gen_b10_fix = list(map(lambda x: x*1000, attrs_gen_b10_fix)) # attrs_gen_b1_fix = list(map(lambda x: x*1000, attrs_gen_b1_fix)) # attrs_gen_b10_rand = list(map(lambda x: x*1000, attrs_gen_b10_rand)) # attrs_gen_b1_rand = list(map(lambda x: x*1000, attrs_gen_b1_rand)) ylim = plot_generational_avg(attrs_gen_b10_fix, colour_b10, save_folder, 'fixed_time_steps_b10', alpha, s, get_axis=True) labels = plot_generational_avg(attrs_gen_b1_fix, colour_b1, save_folder, 'fixed_time_steps_b1', alpha, s, get_axis=False, ylim=ylim, return_labels=True) plot_generational_avg(attrs_gen_b10_rand, colour_b10, save_folder, 'random_time_steps_b10', alpha, s, get_axis=False, ylim=ylim) plot_generational_avg(attrs_gen_b1_rand, colour_b1, save_folder, 'random_time_steps_b1', alpha, s, get_axis=False, ylim=ylim, set_labels=None) plot_overlap(attrs_gen_b1_fix, attrs_gen_b10_fix, colour_b1, colour_b10, save_folder, 'Overlap_fixed_time_steps', alpha, s, ylim) plot_overlap(attrs_gen_b1_rand, attrs_gen_b10_rand, colour_b1, colour_b10, save_folder, 'Overlap_random_time_steps', alpha, s, ylim) def load_ising_stuff(sim_name, only_top_isings): isings_avg_energy_list = load_top_isings_attr(sim_name, only_top_isings, 'avg_energy') # Load this in order to have something to compute the number of time steps of current generation with # TODO Always fit this to current data format... only in latest version time steps of current generation are saved as attributes in isings #Getting number of time steps for each generation: try: # Get rid of double list (usually several individuals are in there but now only one is in there, which is why we can remove one nesting) time_steps_first_ind = load_top_isings_attr(sim_name, 1, 'time_steps') time_steps_each_gen = [time_steps[0] for time_steps in time_steps_first_ind] except Exception: energies_first_ind = load_top_isings_attr(sim_name, 1, 'energies') energies_first_ind = [energies[0] for energies in energies_first_ind] time_steps_each_gen = list(map(lambda x: len(x), energies_first_ind)) settings = load_settings(sim_name) settings['pop_size'] = only_top_isings small_isings_list = create_small_isings(isings_avg_energy_list, time_steps_each_gen) mean_attrs_generational = create_generational_avg(small_isings_list, 'norm_avg_energy') return mean_attrs_generational def create_generational_avg(isings_list, attr_name): mean_attrs_generational = [] for isings in isings_list: attrs = [] for I in isings: exec('attrs.append(I.{})'.format(attr_name)) mean_attrs_generational.append(np.mean(attrs)) return mean_attrs_generational def plot_generational_avg(y_axis, colour, save_folder, add_save_name, alpha, s, get_axis=True, ylim=None, return_labels=False, set_labels=None): x_axis = np.arange(len(y_axis)) #matplotlib.use('GTK3Cairo') plt.figure(figsize=(19, 10)) ax = plt.scatter(x_axis, y_axis, alpha=alpha, c=colour, s=s) # Replace ticks with larger numbers locs, labels = plt.yticks() if set_labels is not None: labels = set_labels for label in labels[::2]: label.set_visible(False) legend_elements = [ Line2D([0], [0], marker='o', color='w', label='Critical', markerfacecolor='darkorange', markersize=25, alpha=0.75), Line2D([0], [0], marker='o', color='w', label='Sub-critical', markerfacecolor='royalblue', markersize=25, alpha=0.75) ] plt.legend(loc="lower right", bbox_to_anchor=(0.95, 0.05), handles=legend_elements) plt.xlabel('Generation') plt.ylabel('Performance') #plt.yticks([]) if get_axis: ylim = plt.ylim() else: plt.ylim(ylim) if not path.exists(save_folder): makedirs(save_folder) save_name = '{}.png'.format(add_save_name) plt.savefig(save_folder + save_name, dpi=300) #bbox_inches='tight' plt.show() if get_axis: return ylim if return_labels: return labels def plot_overlap(y_axis_b1, y_axis_b10, colour_b1, colour_b10, save_folder, add_save_name, alpha, s, ylim): x_axis_b1 = np.arange(len(y_axis_b1)) x_axis_b10 = np.arange(len(y_axis_b10)) plt.figure(figsize=(19, 10)) plt.scatter(x_axis_b1, y_axis_b1, alpha=alpha, c=colour_b1, s=s) plot1 = plt.scatter(x_axis_b10, y_axis_b10, alpha=alpha, c=colour_b10, s=s) plt.ylim(ylim) locs, labels = plt.yticks() for label in labels[::2]: label.set_visible(False) plt.xlabel('Generation') plt.ylabel('Performance') #plt.yticks([]) legend_elements = [ Line2D([0], [0], marker='o', color='w', label='Critical', markerfacecolor=colour_b1, markersize=25, alpha=0.75), Line2D([0], [0], marker='o', color='w', label='Sub-critical', markerfacecolor=colour_b10, markersize=25, alpha=0.75) ] plt.legend(loc="lower right", bbox_to_anchor=(0.95, 0.05), handles=legend_elements) plt.savefig(save_folder+add_save_name, dpi=300) plt.show() def create_small_isings(isings_avg_energy_list, time_steps_each_gen): small_isings_list = [] for avg_energies, time_steps_gen in zip(isings_avg_energy_list, time_steps_each_gen): small_isings = [] for avg_energy in avg_energies: I_small = SmallIsing(avg_energy, time_steps_gen) small_isings.append(I_small) small_isings_list.append(small_isings) return small_isings_list if __name__ == '__main__': # sim_name_b10_fix = 'sim-20200604-235433-g_2000_-t_2000_-b_10_-dream_c_0_-nat_c_0_-ref_0_-rec_c_0_-n_energies_velocities_saved' # sim_name_b1_fix = 'sim-20200604-235424-g_2000_-t_2000_-b_1_-dream_c_0_-nat_c_0_-ref_0_-rec_c_0_-n_energies_velocities_saved' # # sim_name_b10_rand = 'sim-20200621-130735-g_2001_-ref_0_-noplt_-b_10_-dream_c_500_-c_4_-a_1990_1999_--nomutb_-n_random_time_steps_save_energies_nomutb' #'sim-20200619-173340-g_2001_-ref_0_-noplt_-b_10_-dream_c_500_-c_4_-a_1995_1996_1997_1998_1999_-n_random_time_steps_save_energies_4' # # sim_name_b1_rand = 'sim-20200619-173349-g_2001_-ref_0_-noplt_-b_1_-dream_c_500_-c_4_-a_1995_1996_1997_1998_1999_-n_random_time_steps_save_energies_4' # sim_name_b10_rand = 'sim-20200702-113213-g_10000_-rand_ts_-rand_ts_lim_100_8000_-b_10_-noplt_-n_huge_random_ts_run_ts_saved' # sim_name_b1_rand = 'sim-20200702-113206-g_10000_-rand_ts_-rand_ts_lim_100_8000_-b_1_-noplt_-n_huge_random_ts_run_ts_saved' sim_name_b1_fix = 'sim-20200715-151540-g_4000_-t_2000_-b_1_-ref_500_-rec_c_500_-n_beta_uniform_mutations_added_normal_run' sim_name_b10_fix = 'sim-20200715-151426-g_4000_-t_2000_-b_10_-ref_500_-rec_c_500_-n_beta_uniform_mutations_added_normal_run' sim_name_b1_rand = 'sim-20200715-151519-g_4000_-rand_ts_-b_1_-ref_500_-rec_c_500_-n_beta_uniform_mutations_added_normal_run' sim_name_b10_rand = 'sim-20200715-151458-g_4000_-rand_ts_-b_10_-ref_500_-rec_c_500_-n_beta_uniform_mutations_added_normal_run' #pre_folder = 'Energies_Velocities_saved_during_2d_sim_random_time_steps_cut_off_animations/' pre_folder = '' # sim_name_b10_rand = pre_folder + sim_name_b10_rand # sim_name_b1_rand = pre_folder + sim_name_b1_rand sim_name_b10_fix = pre_folder + sim_name_b10_fix sim_name_b1_fix = pre_folder + sim_name_b1_fix all_plots(sim_name_b1_fix, sim_name_b10_fix, sim_name_b1_rand, sim_name_b10_rand)
[ "from automatic_plot_helper import load_settings\nfrom automatic_plot_helper import load_top_isings\nfrom automatic_plot_helper import load_top_isings_attr\nfrom automatic_plot_helper import load_isings_from_list\nimport numpy as np\nimport matplotlib.pyplot as plt\nimport matplotlib\nfrom os import makedirs, path\nimport pickle\nfrom matplotlib.patches import Patch\nfrom matplotlib.lines import Line2D\nimport os\n\nclass SmallIsing:\n def __init__(self, avg_energy, time_steps_gen):\n self.avg_energy = avg_energy\n self.time_steps_gen = time_steps_gen\n self.norm_avg_energy = avg_energy / time_steps_gen\n\n\ndef all_plots(sim_name_b1_fix, sim_name_b10_fix, sim_name_b1_rand, sim_name_rand, only_top_isings=20,\n load_previous=False):\n\n\n save_folder = 'save/plots_for_anna/'\n if not os.path.exists(save_folder):\n os.makedirs(save_folder)\n matplotlib.rcParams.update({'font.size': 30})\n alpha = 0.3\n s = 25\n colour_b1 = 'darkorange'\n colour_b10 = 'royalblue'\n\n if not load_previous:\n attrs_gen_b10_fix = load_ising_stuff(sim_name_b10_fix, only_top_isings)\n attrs_gen_b1_fix = load_ising_stuff(sim_name_b1_fix, only_top_isings)\n attrs_gen_b10_rand = load_ising_stuff(sim_name_b10_rand, only_top_isings)\n attrs_gen_b1_rand = load_ising_stuff(sim_name_b1_rand, only_top_isings)\n\n loaded_plot_attrs = {\n 'attrs_gen_b1_fix': attrs_gen_b1_fix,\n 'attrs_gen_b10_fix': attrs_gen_b10_fix,\n 'attrs_gen_b10_rand': attrs_gen_b10_rand,\n 'attrs_gen_b1_rand': attrs_gen_b1_rand\n }\n try:\n pickle_out = open('{}loaded_plot_attrs.pickle'.format(save_folder), 'wb')\n pickle.dump(loaded_plot_attrs, pickle_out)\n pickle_out.close()\n except Exception:\n print('Could not save pickle file')\n\n else:\n\n\n\n file = open('{}/loaded_plot_attrs.pickle'.format(save_folder), 'rb')\n loaded_plot_attrs = pickle.load(file)\n file.close()\n\n attrs_gen_b10_fix = loaded_plot_attrs['attrs_gen_b10_fix']\n attrs_gen_b1_fix = loaded_plot_attrs['attrs_gen_b1_fix']\n attrs_gen_b10_rand = loaded_plot_attrs['attrs_gen_b10_rand']\n attrs_gen_b1_rand = loaded_plot_attrs['attrs_gen_b1_rand']\n\n # Increasing scale\n # attrs_gen_b10_fix = list(map(lambda x: x*1000, attrs_gen_b10_fix))\n # attrs_gen_b1_fix = list(map(lambda x: x*1000, attrs_gen_b1_fix))\n # attrs_gen_b10_rand = list(map(lambda x: x*1000, attrs_gen_b10_rand))\n # attrs_gen_b1_rand = list(map(lambda x: x*1000, attrs_gen_b1_rand))\n\n ylim = plot_generational_avg(attrs_gen_b10_fix, colour_b10, save_folder, 'fixed_time_steps_b10', alpha, s,\n get_axis=True)\n labels = plot_generational_avg(attrs_gen_b1_fix, colour_b1, save_folder, 'fixed_time_steps_b1', alpha, s, get_axis=False,\n ylim=ylim, return_labels=True)\n plot_generational_avg(attrs_gen_b10_rand, colour_b10, save_folder, 'random_time_steps_b10', alpha, s, get_axis=False,\n ylim=ylim)\n plot_generational_avg(attrs_gen_b1_rand, colour_b1, save_folder, 'random_time_steps_b1', alpha, s, get_axis=False,\n ylim=ylim, set_labels=None)\n\n plot_overlap(attrs_gen_b1_fix, attrs_gen_b10_fix, colour_b1, colour_b10, save_folder,\n 'Overlap_fixed_time_steps', alpha, s, ylim)\n plot_overlap(attrs_gen_b1_rand, attrs_gen_b10_rand, colour_b1, colour_b10, save_folder,\n 'Overlap_random_time_steps', alpha, s, ylim)\n\n\n\ndef load_ising_stuff(sim_name, only_top_isings):\n isings_avg_energy_list = load_top_isings_attr(sim_name, only_top_isings, 'avg_energy')\n\n # Load this in order to have something to compute the number of time steps of current generation with\n\n # TODO Always fit this to current data format... only in latest version time steps of current generation are saved as attributes in isings\n #Getting number of time steps for each generation:\n try:\n # Get rid of double list (usually several individuals are in there but now only one is in there, which is why we can remove one nesting)\n time_steps_first_ind = load_top_isings_attr(sim_name, 1, 'time_steps')\n time_steps_each_gen = [time_steps[0] for time_steps in time_steps_first_ind]\n except Exception:\n energies_first_ind = load_top_isings_attr(sim_name, 1, 'energies')\n energies_first_ind = [energies[0] for energies in energies_first_ind]\n time_steps_each_gen = list(map(lambda x: len(x), energies_first_ind))\n\n\n settings = load_settings(sim_name)\n settings['pop_size'] = only_top_isings\n small_isings_list = create_small_isings(isings_avg_energy_list, time_steps_each_gen)\n mean_attrs_generational = create_generational_avg(small_isings_list, 'norm_avg_energy')\n return mean_attrs_generational\n\n\n\ndef create_generational_avg(isings_list, attr_name):\n mean_attrs_generational = []\n for isings in isings_list:\n attrs = []\n for I in isings:\n exec('attrs.append(I.{})'.format(attr_name))\n mean_attrs_generational.append(np.mean(attrs))\n return mean_attrs_generational\n\n\ndef plot_generational_avg(y_axis, colour, save_folder, add_save_name, alpha, s, get_axis=True, ylim=None,\n return_labels=False, set_labels=None):\n x_axis = np.arange(len(y_axis))\n #matplotlib.use('GTK3Cairo')\n plt.figure(figsize=(19, 10))\n ax = plt.scatter(x_axis, y_axis, alpha=alpha, c=colour, s=s)\n\n # Replace ticks with larger numbers\n locs, labels = plt.yticks()\n if set_labels is not None:\n labels = set_labels\n\n for label in labels[::2]:\n label.set_visible(False)\n\n legend_elements = [\n Line2D([0], [0], marker='o', color='w', label='Critical', markerfacecolor='darkorange',\n markersize=25, alpha=0.75),\n Line2D([0], [0], marker='o', color='w', label='Sub-critical', markerfacecolor='royalblue',\n markersize=25, alpha=0.75)\n ]\n\n plt.legend(loc=\"lower right\", bbox_to_anchor=(0.95, 0.05), handles=legend_elements)\n\n plt.xlabel('Generation')\n plt.ylabel('Performance')\n #plt.yticks([])\n if get_axis:\n ylim = plt.ylim()\n else:\n plt.ylim(ylim)\n\n if not path.exists(save_folder):\n makedirs(save_folder)\n save_name = '{}.png'.format(add_save_name)\n\n plt.savefig(save_folder + save_name, dpi=300) #bbox_inches='tight'\n plt.show()\n if get_axis:\n return ylim\n if return_labels:\n return labels\n\ndef plot_overlap(y_axis_b1, y_axis_b10, colour_b1, colour_b10, save_folder, add_save_name, alpha, s, ylim):\n x_axis_b1 = np.arange(len(y_axis_b1))\n x_axis_b10 = np.arange(len(y_axis_b10))\n plt.figure(figsize=(19, 10))\n plt.scatter(x_axis_b1, y_axis_b1, alpha=alpha, c=colour_b1, s=s)\n plot1 = plt.scatter(x_axis_b10, y_axis_b10, alpha=alpha, c=colour_b10, s=s)\n plt.ylim(ylim)\n locs, labels = plt.yticks()\n for label in labels[::2]:\n label.set_visible(False)\n plt.xlabel('Generation')\n plt.ylabel('Performance')\n #plt.yticks([])\n legend_elements = [\n Line2D([0], [0], marker='o', color='w', label='Critical', markerfacecolor=colour_b1,\n markersize=25, alpha=0.75),\n Line2D([0], [0], marker='o', color='w', label='Sub-critical', markerfacecolor=colour_b10,\n markersize=25, alpha=0.75)\n ]\n\n plt.legend(loc=\"lower right\", bbox_to_anchor=(0.95, 0.05), handles=legend_elements)\n plt.savefig(save_folder+add_save_name, dpi=300)\n plt.show()\n\n\ndef create_small_isings(isings_avg_energy_list, time_steps_each_gen):\n small_isings_list = []\n for avg_energies, time_steps_gen in zip(isings_avg_energy_list, time_steps_each_gen):\n small_isings = []\n for avg_energy in avg_energies:\n I_small = SmallIsing(avg_energy, time_steps_gen)\n small_isings.append(I_small)\n small_isings_list.append(small_isings)\n return small_isings_list\n\n\nif __name__ == '__main__':\n # sim_name_b10_fix = 'sim-20200604-235433-g_2000_-t_2000_-b_10_-dream_c_0_-nat_c_0_-ref_0_-rec_c_0_-n_energies_velocities_saved'\n # sim_name_b1_fix = 'sim-20200604-235424-g_2000_-t_2000_-b_1_-dream_c_0_-nat_c_0_-ref_0_-rec_c_0_-n_energies_velocities_saved'\n # # sim_name_b10_rand = 'sim-20200621-130735-g_2001_-ref_0_-noplt_-b_10_-dream_c_500_-c_4_-a_1990_1999_--nomutb_-n_random_time_steps_save_energies_nomutb' #'sim-20200619-173340-g_2001_-ref_0_-noplt_-b_10_-dream_c_500_-c_4_-a_1995_1996_1997_1998_1999_-n_random_time_steps_save_energies_4'\n # # sim_name_b1_rand = 'sim-20200619-173349-g_2001_-ref_0_-noplt_-b_1_-dream_c_500_-c_4_-a_1995_1996_1997_1998_1999_-n_random_time_steps_save_energies_4'\n # sim_name_b10_rand = 'sim-20200702-113213-g_10000_-rand_ts_-rand_ts_lim_100_8000_-b_10_-noplt_-n_huge_random_ts_run_ts_saved'\n # sim_name_b1_rand = 'sim-20200702-113206-g_10000_-rand_ts_-rand_ts_lim_100_8000_-b_1_-noplt_-n_huge_random_ts_run_ts_saved'\n\n sim_name_b1_fix = 'sim-20200715-151540-g_4000_-t_2000_-b_1_-ref_500_-rec_c_500_-n_beta_uniform_mutations_added_normal_run'\n sim_name_b10_fix = 'sim-20200715-151426-g_4000_-t_2000_-b_10_-ref_500_-rec_c_500_-n_beta_uniform_mutations_added_normal_run'\n sim_name_b1_rand = 'sim-20200715-151519-g_4000_-rand_ts_-b_1_-ref_500_-rec_c_500_-n_beta_uniform_mutations_added_normal_run'\n sim_name_b10_rand = 'sim-20200715-151458-g_4000_-rand_ts_-b_10_-ref_500_-rec_c_500_-n_beta_uniform_mutations_added_normal_run'\n\n #pre_folder = 'Energies_Velocities_saved_during_2d_sim_random_time_steps_cut_off_animations/'\n pre_folder = ''\n\n # sim_name_b10_rand = pre_folder + sim_name_b10_rand\n # sim_name_b1_rand = pre_folder + sim_name_b1_rand\n sim_name_b10_fix = pre_folder + sim_name_b10_fix\n sim_name_b1_fix = pre_folder + sim_name_b1_fix\n all_plots(sim_name_b1_fix, sim_name_b10_fix, sim_name_b1_rand, sim_name_b10_rand)\n", "from automatic_plot_helper import load_settings\nfrom automatic_plot_helper import load_top_isings\nfrom automatic_plot_helper import load_top_isings_attr\nfrom automatic_plot_helper import load_isings_from_list\nimport numpy as np\nimport matplotlib.pyplot as plt\nimport matplotlib\nfrom os import makedirs, path\nimport pickle\nfrom matplotlib.patches import Patch\nfrom matplotlib.lines import Line2D\nimport os\n\n\nclass SmallIsing:\n\n def __init__(self, avg_energy, time_steps_gen):\n self.avg_energy = avg_energy\n self.time_steps_gen = time_steps_gen\n self.norm_avg_energy = avg_energy / time_steps_gen\n\n\ndef all_plots(sim_name_b1_fix, sim_name_b10_fix, sim_name_b1_rand,\n sim_name_rand, only_top_isings=20, load_previous=False):\n save_folder = 'save/plots_for_anna/'\n if not os.path.exists(save_folder):\n os.makedirs(save_folder)\n matplotlib.rcParams.update({'font.size': 30})\n alpha = 0.3\n s = 25\n colour_b1 = 'darkorange'\n colour_b10 = 'royalblue'\n if not load_previous:\n attrs_gen_b10_fix = load_ising_stuff(sim_name_b10_fix, only_top_isings)\n attrs_gen_b1_fix = load_ising_stuff(sim_name_b1_fix, only_top_isings)\n attrs_gen_b10_rand = load_ising_stuff(sim_name_b10_rand,\n only_top_isings)\n attrs_gen_b1_rand = load_ising_stuff(sim_name_b1_rand, only_top_isings)\n loaded_plot_attrs = {'attrs_gen_b1_fix': attrs_gen_b1_fix,\n 'attrs_gen_b10_fix': attrs_gen_b10_fix, 'attrs_gen_b10_rand':\n attrs_gen_b10_rand, 'attrs_gen_b1_rand': attrs_gen_b1_rand}\n try:\n pickle_out = open('{}loaded_plot_attrs.pickle'.format(\n save_folder), 'wb')\n pickle.dump(loaded_plot_attrs, pickle_out)\n pickle_out.close()\n except Exception:\n print('Could not save pickle file')\n else:\n file = open('{}/loaded_plot_attrs.pickle'.format(save_folder), 'rb')\n loaded_plot_attrs = pickle.load(file)\n file.close()\n attrs_gen_b10_fix = loaded_plot_attrs['attrs_gen_b10_fix']\n attrs_gen_b1_fix = loaded_plot_attrs['attrs_gen_b1_fix']\n attrs_gen_b10_rand = loaded_plot_attrs['attrs_gen_b10_rand']\n attrs_gen_b1_rand = loaded_plot_attrs['attrs_gen_b1_rand']\n ylim = plot_generational_avg(attrs_gen_b10_fix, colour_b10, save_folder,\n 'fixed_time_steps_b10', alpha, s, get_axis=True)\n labels = plot_generational_avg(attrs_gen_b1_fix, colour_b1, save_folder,\n 'fixed_time_steps_b1', alpha, s, get_axis=False, ylim=ylim,\n return_labels=True)\n plot_generational_avg(attrs_gen_b10_rand, colour_b10, save_folder,\n 'random_time_steps_b10', alpha, s, get_axis=False, ylim=ylim)\n plot_generational_avg(attrs_gen_b1_rand, colour_b1, save_folder,\n 'random_time_steps_b1', alpha, s, get_axis=False, ylim=ylim,\n set_labels=None)\n plot_overlap(attrs_gen_b1_fix, attrs_gen_b10_fix, colour_b1, colour_b10,\n save_folder, 'Overlap_fixed_time_steps', alpha, s, ylim)\n plot_overlap(attrs_gen_b1_rand, attrs_gen_b10_rand, colour_b1,\n colour_b10, save_folder, 'Overlap_random_time_steps', alpha, s, ylim)\n\n\ndef load_ising_stuff(sim_name, only_top_isings):\n isings_avg_energy_list = load_top_isings_attr(sim_name, only_top_isings,\n 'avg_energy')\n try:\n time_steps_first_ind = load_top_isings_attr(sim_name, 1, 'time_steps')\n time_steps_each_gen = [time_steps[0] for time_steps in\n time_steps_first_ind]\n except Exception:\n energies_first_ind = load_top_isings_attr(sim_name, 1, 'energies')\n energies_first_ind = [energies[0] for energies in energies_first_ind]\n time_steps_each_gen = list(map(lambda x: len(x), energies_first_ind))\n settings = load_settings(sim_name)\n settings['pop_size'] = only_top_isings\n small_isings_list = create_small_isings(isings_avg_energy_list,\n time_steps_each_gen)\n mean_attrs_generational = create_generational_avg(small_isings_list,\n 'norm_avg_energy')\n return mean_attrs_generational\n\n\ndef create_generational_avg(isings_list, attr_name):\n mean_attrs_generational = []\n for isings in isings_list:\n attrs = []\n for I in isings:\n exec('attrs.append(I.{})'.format(attr_name))\n mean_attrs_generational.append(np.mean(attrs))\n return mean_attrs_generational\n\n\ndef plot_generational_avg(y_axis, colour, save_folder, add_save_name, alpha,\n s, get_axis=True, ylim=None, return_labels=False, set_labels=None):\n x_axis = np.arange(len(y_axis))\n plt.figure(figsize=(19, 10))\n ax = plt.scatter(x_axis, y_axis, alpha=alpha, c=colour, s=s)\n locs, labels = plt.yticks()\n if set_labels is not None:\n labels = set_labels\n for label in labels[::2]:\n label.set_visible(False)\n legend_elements = [Line2D([0], [0], marker='o', color='w', label=\n 'Critical', markerfacecolor='darkorange', markersize=25, alpha=0.75\n ), Line2D([0], [0], marker='o', color='w', label='Sub-critical',\n markerfacecolor='royalblue', markersize=25, alpha=0.75)]\n plt.legend(loc='lower right', bbox_to_anchor=(0.95, 0.05), handles=\n legend_elements)\n plt.xlabel('Generation')\n plt.ylabel('Performance')\n if get_axis:\n ylim = plt.ylim()\n else:\n plt.ylim(ylim)\n if not path.exists(save_folder):\n makedirs(save_folder)\n save_name = '{}.png'.format(add_save_name)\n plt.savefig(save_folder + save_name, dpi=300)\n plt.show()\n if get_axis:\n return ylim\n if return_labels:\n return labels\n\n\ndef plot_overlap(y_axis_b1, y_axis_b10, colour_b1, colour_b10, save_folder,\n add_save_name, alpha, s, ylim):\n x_axis_b1 = np.arange(len(y_axis_b1))\n x_axis_b10 = np.arange(len(y_axis_b10))\n plt.figure(figsize=(19, 10))\n plt.scatter(x_axis_b1, y_axis_b1, alpha=alpha, c=colour_b1, s=s)\n plot1 = plt.scatter(x_axis_b10, y_axis_b10, alpha=alpha, c=colour_b10, s=s)\n plt.ylim(ylim)\n locs, labels = plt.yticks()\n for label in labels[::2]:\n label.set_visible(False)\n plt.xlabel('Generation')\n plt.ylabel('Performance')\n legend_elements = [Line2D([0], [0], marker='o', color='w', label=\n 'Critical', markerfacecolor=colour_b1, markersize=25, alpha=0.75),\n Line2D([0], [0], marker='o', color='w', label='Sub-critical',\n markerfacecolor=colour_b10, markersize=25, alpha=0.75)]\n plt.legend(loc='lower right', bbox_to_anchor=(0.95, 0.05), handles=\n legend_elements)\n plt.savefig(save_folder + add_save_name, dpi=300)\n plt.show()\n\n\ndef create_small_isings(isings_avg_energy_list, time_steps_each_gen):\n small_isings_list = []\n for avg_energies, time_steps_gen in zip(isings_avg_energy_list,\n time_steps_each_gen):\n small_isings = []\n for avg_energy in avg_energies:\n I_small = SmallIsing(avg_energy, time_steps_gen)\n small_isings.append(I_small)\n small_isings_list.append(small_isings)\n return small_isings_list\n\n\nif __name__ == '__main__':\n sim_name_b1_fix = (\n 'sim-20200715-151540-g_4000_-t_2000_-b_1_-ref_500_-rec_c_500_-n_beta_uniform_mutations_added_normal_run'\n )\n sim_name_b10_fix = (\n 'sim-20200715-151426-g_4000_-t_2000_-b_10_-ref_500_-rec_c_500_-n_beta_uniform_mutations_added_normal_run'\n )\n sim_name_b1_rand = (\n 'sim-20200715-151519-g_4000_-rand_ts_-b_1_-ref_500_-rec_c_500_-n_beta_uniform_mutations_added_normal_run'\n )\n sim_name_b10_rand = (\n 'sim-20200715-151458-g_4000_-rand_ts_-b_10_-ref_500_-rec_c_500_-n_beta_uniform_mutations_added_normal_run'\n )\n pre_folder = ''\n sim_name_b10_fix = pre_folder + sim_name_b10_fix\n sim_name_b1_fix = pre_folder + sim_name_b1_fix\n all_plots(sim_name_b1_fix, sim_name_b10_fix, sim_name_b1_rand,\n sim_name_b10_rand)\n", "<import token>\n\n\nclass SmallIsing:\n\n def __init__(self, avg_energy, time_steps_gen):\n self.avg_energy = avg_energy\n self.time_steps_gen = time_steps_gen\n self.norm_avg_energy = avg_energy / time_steps_gen\n\n\ndef all_plots(sim_name_b1_fix, sim_name_b10_fix, sim_name_b1_rand,\n sim_name_rand, only_top_isings=20, load_previous=False):\n save_folder = 'save/plots_for_anna/'\n if not os.path.exists(save_folder):\n os.makedirs(save_folder)\n matplotlib.rcParams.update({'font.size': 30})\n alpha = 0.3\n s = 25\n colour_b1 = 'darkorange'\n colour_b10 = 'royalblue'\n if not load_previous:\n attrs_gen_b10_fix = load_ising_stuff(sim_name_b10_fix, only_top_isings)\n attrs_gen_b1_fix = load_ising_stuff(sim_name_b1_fix, only_top_isings)\n attrs_gen_b10_rand = load_ising_stuff(sim_name_b10_rand,\n only_top_isings)\n attrs_gen_b1_rand = load_ising_stuff(sim_name_b1_rand, only_top_isings)\n loaded_plot_attrs = {'attrs_gen_b1_fix': attrs_gen_b1_fix,\n 'attrs_gen_b10_fix': attrs_gen_b10_fix, 'attrs_gen_b10_rand':\n attrs_gen_b10_rand, 'attrs_gen_b1_rand': attrs_gen_b1_rand}\n try:\n pickle_out = open('{}loaded_plot_attrs.pickle'.format(\n save_folder), 'wb')\n pickle.dump(loaded_plot_attrs, pickle_out)\n pickle_out.close()\n except Exception:\n print('Could not save pickle file')\n else:\n file = open('{}/loaded_plot_attrs.pickle'.format(save_folder), 'rb')\n loaded_plot_attrs = pickle.load(file)\n file.close()\n attrs_gen_b10_fix = loaded_plot_attrs['attrs_gen_b10_fix']\n attrs_gen_b1_fix = loaded_plot_attrs['attrs_gen_b1_fix']\n attrs_gen_b10_rand = loaded_plot_attrs['attrs_gen_b10_rand']\n attrs_gen_b1_rand = loaded_plot_attrs['attrs_gen_b1_rand']\n ylim = plot_generational_avg(attrs_gen_b10_fix, colour_b10, save_folder,\n 'fixed_time_steps_b10', alpha, s, get_axis=True)\n labels = plot_generational_avg(attrs_gen_b1_fix, colour_b1, save_folder,\n 'fixed_time_steps_b1', alpha, s, get_axis=False, ylim=ylim,\n return_labels=True)\n plot_generational_avg(attrs_gen_b10_rand, colour_b10, save_folder,\n 'random_time_steps_b10', alpha, s, get_axis=False, ylim=ylim)\n plot_generational_avg(attrs_gen_b1_rand, colour_b1, save_folder,\n 'random_time_steps_b1', alpha, s, get_axis=False, ylim=ylim,\n set_labels=None)\n plot_overlap(attrs_gen_b1_fix, attrs_gen_b10_fix, colour_b1, colour_b10,\n save_folder, 'Overlap_fixed_time_steps', alpha, s, ylim)\n plot_overlap(attrs_gen_b1_rand, attrs_gen_b10_rand, colour_b1,\n colour_b10, save_folder, 'Overlap_random_time_steps', alpha, s, ylim)\n\n\ndef load_ising_stuff(sim_name, only_top_isings):\n isings_avg_energy_list = load_top_isings_attr(sim_name, only_top_isings,\n 'avg_energy')\n try:\n time_steps_first_ind = load_top_isings_attr(sim_name, 1, 'time_steps')\n time_steps_each_gen = [time_steps[0] for time_steps in\n time_steps_first_ind]\n except Exception:\n energies_first_ind = load_top_isings_attr(sim_name, 1, 'energies')\n energies_first_ind = [energies[0] for energies in energies_first_ind]\n time_steps_each_gen = list(map(lambda x: len(x), energies_first_ind))\n settings = load_settings(sim_name)\n settings['pop_size'] = only_top_isings\n small_isings_list = create_small_isings(isings_avg_energy_list,\n time_steps_each_gen)\n mean_attrs_generational = create_generational_avg(small_isings_list,\n 'norm_avg_energy')\n return mean_attrs_generational\n\n\ndef create_generational_avg(isings_list, attr_name):\n mean_attrs_generational = []\n for isings in isings_list:\n attrs = []\n for I in isings:\n exec('attrs.append(I.{})'.format(attr_name))\n mean_attrs_generational.append(np.mean(attrs))\n return mean_attrs_generational\n\n\ndef plot_generational_avg(y_axis, colour, save_folder, add_save_name, alpha,\n s, get_axis=True, ylim=None, return_labels=False, set_labels=None):\n x_axis = np.arange(len(y_axis))\n plt.figure(figsize=(19, 10))\n ax = plt.scatter(x_axis, y_axis, alpha=alpha, c=colour, s=s)\n locs, labels = plt.yticks()\n if set_labels is not None:\n labels = set_labels\n for label in labels[::2]:\n label.set_visible(False)\n legend_elements = [Line2D([0], [0], marker='o', color='w', label=\n 'Critical', markerfacecolor='darkorange', markersize=25, alpha=0.75\n ), Line2D([0], [0], marker='o', color='w', label='Sub-critical',\n markerfacecolor='royalblue', markersize=25, alpha=0.75)]\n plt.legend(loc='lower right', bbox_to_anchor=(0.95, 0.05), handles=\n legend_elements)\n plt.xlabel('Generation')\n plt.ylabel('Performance')\n if get_axis:\n ylim = plt.ylim()\n else:\n plt.ylim(ylim)\n if not path.exists(save_folder):\n makedirs(save_folder)\n save_name = '{}.png'.format(add_save_name)\n plt.savefig(save_folder + save_name, dpi=300)\n plt.show()\n if get_axis:\n return ylim\n if return_labels:\n return labels\n\n\ndef plot_overlap(y_axis_b1, y_axis_b10, colour_b1, colour_b10, save_folder,\n add_save_name, alpha, s, ylim):\n x_axis_b1 = np.arange(len(y_axis_b1))\n x_axis_b10 = np.arange(len(y_axis_b10))\n plt.figure(figsize=(19, 10))\n plt.scatter(x_axis_b1, y_axis_b1, alpha=alpha, c=colour_b1, s=s)\n plot1 = plt.scatter(x_axis_b10, y_axis_b10, alpha=alpha, c=colour_b10, s=s)\n plt.ylim(ylim)\n locs, labels = plt.yticks()\n for label in labels[::2]:\n label.set_visible(False)\n plt.xlabel('Generation')\n plt.ylabel('Performance')\n legend_elements = [Line2D([0], [0], marker='o', color='w', label=\n 'Critical', markerfacecolor=colour_b1, markersize=25, alpha=0.75),\n Line2D([0], [0], marker='o', color='w', label='Sub-critical',\n markerfacecolor=colour_b10, markersize=25, alpha=0.75)]\n plt.legend(loc='lower right', bbox_to_anchor=(0.95, 0.05), handles=\n legend_elements)\n plt.savefig(save_folder + add_save_name, dpi=300)\n plt.show()\n\n\ndef create_small_isings(isings_avg_energy_list, time_steps_each_gen):\n small_isings_list = []\n for avg_energies, time_steps_gen in zip(isings_avg_energy_list,\n time_steps_each_gen):\n small_isings = []\n for avg_energy in avg_energies:\n I_small = SmallIsing(avg_energy, time_steps_gen)\n small_isings.append(I_small)\n small_isings_list.append(small_isings)\n return small_isings_list\n\n\nif __name__ == '__main__':\n sim_name_b1_fix = (\n 'sim-20200715-151540-g_4000_-t_2000_-b_1_-ref_500_-rec_c_500_-n_beta_uniform_mutations_added_normal_run'\n )\n sim_name_b10_fix = (\n 'sim-20200715-151426-g_4000_-t_2000_-b_10_-ref_500_-rec_c_500_-n_beta_uniform_mutations_added_normal_run'\n )\n sim_name_b1_rand = (\n 'sim-20200715-151519-g_4000_-rand_ts_-b_1_-ref_500_-rec_c_500_-n_beta_uniform_mutations_added_normal_run'\n )\n sim_name_b10_rand = (\n 'sim-20200715-151458-g_4000_-rand_ts_-b_10_-ref_500_-rec_c_500_-n_beta_uniform_mutations_added_normal_run'\n )\n pre_folder = ''\n sim_name_b10_fix = pre_folder + sim_name_b10_fix\n sim_name_b1_fix = pre_folder + sim_name_b1_fix\n all_plots(sim_name_b1_fix, sim_name_b10_fix, sim_name_b1_rand,\n sim_name_b10_rand)\n", "<import token>\n\n\nclass SmallIsing:\n\n def __init__(self, avg_energy, time_steps_gen):\n self.avg_energy = avg_energy\n self.time_steps_gen = time_steps_gen\n self.norm_avg_energy = avg_energy / time_steps_gen\n\n\ndef all_plots(sim_name_b1_fix, sim_name_b10_fix, sim_name_b1_rand,\n sim_name_rand, only_top_isings=20, load_previous=False):\n save_folder = 'save/plots_for_anna/'\n if not os.path.exists(save_folder):\n os.makedirs(save_folder)\n matplotlib.rcParams.update({'font.size': 30})\n alpha = 0.3\n s = 25\n colour_b1 = 'darkorange'\n colour_b10 = 'royalblue'\n if not load_previous:\n attrs_gen_b10_fix = load_ising_stuff(sim_name_b10_fix, only_top_isings)\n attrs_gen_b1_fix = load_ising_stuff(sim_name_b1_fix, only_top_isings)\n attrs_gen_b10_rand = load_ising_stuff(sim_name_b10_rand,\n only_top_isings)\n attrs_gen_b1_rand = load_ising_stuff(sim_name_b1_rand, only_top_isings)\n loaded_plot_attrs = {'attrs_gen_b1_fix': attrs_gen_b1_fix,\n 'attrs_gen_b10_fix': attrs_gen_b10_fix, 'attrs_gen_b10_rand':\n attrs_gen_b10_rand, 'attrs_gen_b1_rand': attrs_gen_b1_rand}\n try:\n pickle_out = open('{}loaded_plot_attrs.pickle'.format(\n save_folder), 'wb')\n pickle.dump(loaded_plot_attrs, pickle_out)\n pickle_out.close()\n except Exception:\n print('Could not save pickle file')\n else:\n file = open('{}/loaded_plot_attrs.pickle'.format(save_folder), 'rb')\n loaded_plot_attrs = pickle.load(file)\n file.close()\n attrs_gen_b10_fix = loaded_plot_attrs['attrs_gen_b10_fix']\n attrs_gen_b1_fix = loaded_plot_attrs['attrs_gen_b1_fix']\n attrs_gen_b10_rand = loaded_plot_attrs['attrs_gen_b10_rand']\n attrs_gen_b1_rand = loaded_plot_attrs['attrs_gen_b1_rand']\n ylim = plot_generational_avg(attrs_gen_b10_fix, colour_b10, save_folder,\n 'fixed_time_steps_b10', alpha, s, get_axis=True)\n labels = plot_generational_avg(attrs_gen_b1_fix, colour_b1, save_folder,\n 'fixed_time_steps_b1', alpha, s, get_axis=False, ylim=ylim,\n return_labels=True)\n plot_generational_avg(attrs_gen_b10_rand, colour_b10, save_folder,\n 'random_time_steps_b10', alpha, s, get_axis=False, ylim=ylim)\n plot_generational_avg(attrs_gen_b1_rand, colour_b1, save_folder,\n 'random_time_steps_b1', alpha, s, get_axis=False, ylim=ylim,\n set_labels=None)\n plot_overlap(attrs_gen_b1_fix, attrs_gen_b10_fix, colour_b1, colour_b10,\n save_folder, 'Overlap_fixed_time_steps', alpha, s, ylim)\n plot_overlap(attrs_gen_b1_rand, attrs_gen_b10_rand, colour_b1,\n colour_b10, save_folder, 'Overlap_random_time_steps', alpha, s, ylim)\n\n\ndef load_ising_stuff(sim_name, only_top_isings):\n isings_avg_energy_list = load_top_isings_attr(sim_name, only_top_isings,\n 'avg_energy')\n try:\n time_steps_first_ind = load_top_isings_attr(sim_name, 1, 'time_steps')\n time_steps_each_gen = [time_steps[0] for time_steps in\n time_steps_first_ind]\n except Exception:\n energies_first_ind = load_top_isings_attr(sim_name, 1, 'energies')\n energies_first_ind = [energies[0] for energies in energies_first_ind]\n time_steps_each_gen = list(map(lambda x: len(x), energies_first_ind))\n settings = load_settings(sim_name)\n settings['pop_size'] = only_top_isings\n small_isings_list = create_small_isings(isings_avg_energy_list,\n time_steps_each_gen)\n mean_attrs_generational = create_generational_avg(small_isings_list,\n 'norm_avg_energy')\n return mean_attrs_generational\n\n\ndef create_generational_avg(isings_list, attr_name):\n mean_attrs_generational = []\n for isings in isings_list:\n attrs = []\n for I in isings:\n exec('attrs.append(I.{})'.format(attr_name))\n mean_attrs_generational.append(np.mean(attrs))\n return mean_attrs_generational\n\n\ndef plot_generational_avg(y_axis, colour, save_folder, add_save_name, alpha,\n s, get_axis=True, ylim=None, return_labels=False, set_labels=None):\n x_axis = np.arange(len(y_axis))\n plt.figure(figsize=(19, 10))\n ax = plt.scatter(x_axis, y_axis, alpha=alpha, c=colour, s=s)\n locs, labels = plt.yticks()\n if set_labels is not None:\n labels = set_labels\n for label in labels[::2]:\n label.set_visible(False)\n legend_elements = [Line2D([0], [0], marker='o', color='w', label=\n 'Critical', markerfacecolor='darkorange', markersize=25, alpha=0.75\n ), Line2D([0], [0], marker='o', color='w', label='Sub-critical',\n markerfacecolor='royalblue', markersize=25, alpha=0.75)]\n plt.legend(loc='lower right', bbox_to_anchor=(0.95, 0.05), handles=\n legend_elements)\n plt.xlabel('Generation')\n plt.ylabel('Performance')\n if get_axis:\n ylim = plt.ylim()\n else:\n plt.ylim(ylim)\n if not path.exists(save_folder):\n makedirs(save_folder)\n save_name = '{}.png'.format(add_save_name)\n plt.savefig(save_folder + save_name, dpi=300)\n plt.show()\n if get_axis:\n return ylim\n if return_labels:\n return labels\n\n\ndef plot_overlap(y_axis_b1, y_axis_b10, colour_b1, colour_b10, save_folder,\n add_save_name, alpha, s, ylim):\n x_axis_b1 = np.arange(len(y_axis_b1))\n x_axis_b10 = np.arange(len(y_axis_b10))\n plt.figure(figsize=(19, 10))\n plt.scatter(x_axis_b1, y_axis_b1, alpha=alpha, c=colour_b1, s=s)\n plot1 = plt.scatter(x_axis_b10, y_axis_b10, alpha=alpha, c=colour_b10, s=s)\n plt.ylim(ylim)\n locs, labels = plt.yticks()\n for label in labels[::2]:\n label.set_visible(False)\n plt.xlabel('Generation')\n plt.ylabel('Performance')\n legend_elements = [Line2D([0], [0], marker='o', color='w', label=\n 'Critical', markerfacecolor=colour_b1, markersize=25, alpha=0.75),\n Line2D([0], [0], marker='o', color='w', label='Sub-critical',\n markerfacecolor=colour_b10, markersize=25, alpha=0.75)]\n plt.legend(loc='lower right', bbox_to_anchor=(0.95, 0.05), handles=\n legend_elements)\n plt.savefig(save_folder + add_save_name, dpi=300)\n plt.show()\n\n\ndef create_small_isings(isings_avg_energy_list, time_steps_each_gen):\n small_isings_list = []\n for avg_energies, time_steps_gen in zip(isings_avg_energy_list,\n time_steps_each_gen):\n small_isings = []\n for avg_energy in avg_energies:\n I_small = SmallIsing(avg_energy, time_steps_gen)\n small_isings.append(I_small)\n small_isings_list.append(small_isings)\n return small_isings_list\n\n\n<code token>\n", "<import token>\n\n\nclass SmallIsing:\n\n def __init__(self, avg_energy, time_steps_gen):\n self.avg_energy = avg_energy\n self.time_steps_gen = time_steps_gen\n self.norm_avg_energy = avg_energy / time_steps_gen\n\n\ndef all_plots(sim_name_b1_fix, sim_name_b10_fix, sim_name_b1_rand,\n sim_name_rand, only_top_isings=20, load_previous=False):\n save_folder = 'save/plots_for_anna/'\n if not os.path.exists(save_folder):\n os.makedirs(save_folder)\n matplotlib.rcParams.update({'font.size': 30})\n alpha = 0.3\n s = 25\n colour_b1 = 'darkorange'\n colour_b10 = 'royalblue'\n if not load_previous:\n attrs_gen_b10_fix = load_ising_stuff(sim_name_b10_fix, only_top_isings)\n attrs_gen_b1_fix = load_ising_stuff(sim_name_b1_fix, only_top_isings)\n attrs_gen_b10_rand = load_ising_stuff(sim_name_b10_rand,\n only_top_isings)\n attrs_gen_b1_rand = load_ising_stuff(sim_name_b1_rand, only_top_isings)\n loaded_plot_attrs = {'attrs_gen_b1_fix': attrs_gen_b1_fix,\n 'attrs_gen_b10_fix': attrs_gen_b10_fix, 'attrs_gen_b10_rand':\n attrs_gen_b10_rand, 'attrs_gen_b1_rand': attrs_gen_b1_rand}\n try:\n pickle_out = open('{}loaded_plot_attrs.pickle'.format(\n save_folder), 'wb')\n pickle.dump(loaded_plot_attrs, pickle_out)\n pickle_out.close()\n except Exception:\n print('Could not save pickle file')\n else:\n file = open('{}/loaded_plot_attrs.pickle'.format(save_folder), 'rb')\n loaded_plot_attrs = pickle.load(file)\n file.close()\n attrs_gen_b10_fix = loaded_plot_attrs['attrs_gen_b10_fix']\n attrs_gen_b1_fix = loaded_plot_attrs['attrs_gen_b1_fix']\n attrs_gen_b10_rand = loaded_plot_attrs['attrs_gen_b10_rand']\n attrs_gen_b1_rand = loaded_plot_attrs['attrs_gen_b1_rand']\n ylim = plot_generational_avg(attrs_gen_b10_fix, colour_b10, save_folder,\n 'fixed_time_steps_b10', alpha, s, get_axis=True)\n labels = plot_generational_avg(attrs_gen_b1_fix, colour_b1, save_folder,\n 'fixed_time_steps_b1', alpha, s, get_axis=False, ylim=ylim,\n return_labels=True)\n plot_generational_avg(attrs_gen_b10_rand, colour_b10, save_folder,\n 'random_time_steps_b10', alpha, s, get_axis=False, ylim=ylim)\n plot_generational_avg(attrs_gen_b1_rand, colour_b1, save_folder,\n 'random_time_steps_b1', alpha, s, get_axis=False, ylim=ylim,\n set_labels=None)\n plot_overlap(attrs_gen_b1_fix, attrs_gen_b10_fix, colour_b1, colour_b10,\n save_folder, 'Overlap_fixed_time_steps', alpha, s, ylim)\n plot_overlap(attrs_gen_b1_rand, attrs_gen_b10_rand, colour_b1,\n colour_b10, save_folder, 'Overlap_random_time_steps', alpha, s, ylim)\n\n\ndef load_ising_stuff(sim_name, only_top_isings):\n isings_avg_energy_list = load_top_isings_attr(sim_name, only_top_isings,\n 'avg_energy')\n try:\n time_steps_first_ind = load_top_isings_attr(sim_name, 1, 'time_steps')\n time_steps_each_gen = [time_steps[0] for time_steps in\n time_steps_first_ind]\n except Exception:\n energies_first_ind = load_top_isings_attr(sim_name, 1, 'energies')\n energies_first_ind = [energies[0] for energies in energies_first_ind]\n time_steps_each_gen = list(map(lambda x: len(x), energies_first_ind))\n settings = load_settings(sim_name)\n settings['pop_size'] = only_top_isings\n small_isings_list = create_small_isings(isings_avg_energy_list,\n time_steps_each_gen)\n mean_attrs_generational = create_generational_avg(small_isings_list,\n 'norm_avg_energy')\n return mean_attrs_generational\n\n\ndef create_generational_avg(isings_list, attr_name):\n mean_attrs_generational = []\n for isings in isings_list:\n attrs = []\n for I in isings:\n exec('attrs.append(I.{})'.format(attr_name))\n mean_attrs_generational.append(np.mean(attrs))\n return mean_attrs_generational\n\n\ndef plot_generational_avg(y_axis, colour, save_folder, add_save_name, alpha,\n s, get_axis=True, ylim=None, return_labels=False, set_labels=None):\n x_axis = np.arange(len(y_axis))\n plt.figure(figsize=(19, 10))\n ax = plt.scatter(x_axis, y_axis, alpha=alpha, c=colour, s=s)\n locs, labels = plt.yticks()\n if set_labels is not None:\n labels = set_labels\n for label in labels[::2]:\n label.set_visible(False)\n legend_elements = [Line2D([0], [0], marker='o', color='w', label=\n 'Critical', markerfacecolor='darkorange', markersize=25, alpha=0.75\n ), Line2D([0], [0], marker='o', color='w', label='Sub-critical',\n markerfacecolor='royalblue', markersize=25, alpha=0.75)]\n plt.legend(loc='lower right', bbox_to_anchor=(0.95, 0.05), handles=\n legend_elements)\n plt.xlabel('Generation')\n plt.ylabel('Performance')\n if get_axis:\n ylim = plt.ylim()\n else:\n plt.ylim(ylim)\n if not path.exists(save_folder):\n makedirs(save_folder)\n save_name = '{}.png'.format(add_save_name)\n plt.savefig(save_folder + save_name, dpi=300)\n plt.show()\n if get_axis:\n return ylim\n if return_labels:\n return labels\n\n\ndef plot_overlap(y_axis_b1, y_axis_b10, colour_b1, colour_b10, save_folder,\n add_save_name, alpha, s, ylim):\n x_axis_b1 = np.arange(len(y_axis_b1))\n x_axis_b10 = np.arange(len(y_axis_b10))\n plt.figure(figsize=(19, 10))\n plt.scatter(x_axis_b1, y_axis_b1, alpha=alpha, c=colour_b1, s=s)\n plot1 = plt.scatter(x_axis_b10, y_axis_b10, alpha=alpha, c=colour_b10, s=s)\n plt.ylim(ylim)\n locs, labels = plt.yticks()\n for label in labels[::2]:\n label.set_visible(False)\n plt.xlabel('Generation')\n plt.ylabel('Performance')\n legend_elements = [Line2D([0], [0], marker='o', color='w', label=\n 'Critical', markerfacecolor=colour_b1, markersize=25, alpha=0.75),\n Line2D([0], [0], marker='o', color='w', label='Sub-critical',\n markerfacecolor=colour_b10, markersize=25, alpha=0.75)]\n plt.legend(loc='lower right', bbox_to_anchor=(0.95, 0.05), handles=\n legend_elements)\n plt.savefig(save_folder + add_save_name, dpi=300)\n plt.show()\n\n\n<function token>\n<code token>\n", "<import token>\n\n\nclass SmallIsing:\n\n def __init__(self, avg_energy, time_steps_gen):\n self.avg_energy = avg_energy\n self.time_steps_gen = time_steps_gen\n self.norm_avg_energy = avg_energy / time_steps_gen\n\n\ndef all_plots(sim_name_b1_fix, sim_name_b10_fix, sim_name_b1_rand,\n sim_name_rand, only_top_isings=20, load_previous=False):\n save_folder = 'save/plots_for_anna/'\n if not os.path.exists(save_folder):\n os.makedirs(save_folder)\n matplotlib.rcParams.update({'font.size': 30})\n alpha = 0.3\n s = 25\n colour_b1 = 'darkorange'\n colour_b10 = 'royalblue'\n if not load_previous:\n attrs_gen_b10_fix = load_ising_stuff(sim_name_b10_fix, only_top_isings)\n attrs_gen_b1_fix = load_ising_stuff(sim_name_b1_fix, only_top_isings)\n attrs_gen_b10_rand = load_ising_stuff(sim_name_b10_rand,\n only_top_isings)\n attrs_gen_b1_rand = load_ising_stuff(sim_name_b1_rand, only_top_isings)\n loaded_plot_attrs = {'attrs_gen_b1_fix': attrs_gen_b1_fix,\n 'attrs_gen_b10_fix': attrs_gen_b10_fix, 'attrs_gen_b10_rand':\n attrs_gen_b10_rand, 'attrs_gen_b1_rand': attrs_gen_b1_rand}\n try:\n pickle_out = open('{}loaded_plot_attrs.pickle'.format(\n save_folder), 'wb')\n pickle.dump(loaded_plot_attrs, pickle_out)\n pickle_out.close()\n except Exception:\n print('Could not save pickle file')\n else:\n file = open('{}/loaded_plot_attrs.pickle'.format(save_folder), 'rb')\n loaded_plot_attrs = pickle.load(file)\n file.close()\n attrs_gen_b10_fix = loaded_plot_attrs['attrs_gen_b10_fix']\n attrs_gen_b1_fix = loaded_plot_attrs['attrs_gen_b1_fix']\n attrs_gen_b10_rand = loaded_plot_attrs['attrs_gen_b10_rand']\n attrs_gen_b1_rand = loaded_plot_attrs['attrs_gen_b1_rand']\n ylim = plot_generational_avg(attrs_gen_b10_fix, colour_b10, save_folder,\n 'fixed_time_steps_b10', alpha, s, get_axis=True)\n labels = plot_generational_avg(attrs_gen_b1_fix, colour_b1, save_folder,\n 'fixed_time_steps_b1', alpha, s, get_axis=False, ylim=ylim,\n return_labels=True)\n plot_generational_avg(attrs_gen_b10_rand, colour_b10, save_folder,\n 'random_time_steps_b10', alpha, s, get_axis=False, ylim=ylim)\n plot_generational_avg(attrs_gen_b1_rand, colour_b1, save_folder,\n 'random_time_steps_b1', alpha, s, get_axis=False, ylim=ylim,\n set_labels=None)\n plot_overlap(attrs_gen_b1_fix, attrs_gen_b10_fix, colour_b1, colour_b10,\n save_folder, 'Overlap_fixed_time_steps', alpha, s, ylim)\n plot_overlap(attrs_gen_b1_rand, attrs_gen_b10_rand, colour_b1,\n colour_b10, save_folder, 'Overlap_random_time_steps', alpha, s, ylim)\n\n\n<function token>\n\n\ndef create_generational_avg(isings_list, attr_name):\n mean_attrs_generational = []\n for isings in isings_list:\n attrs = []\n for I in isings:\n exec('attrs.append(I.{})'.format(attr_name))\n mean_attrs_generational.append(np.mean(attrs))\n return mean_attrs_generational\n\n\ndef plot_generational_avg(y_axis, colour, save_folder, add_save_name, alpha,\n s, get_axis=True, ylim=None, return_labels=False, set_labels=None):\n x_axis = np.arange(len(y_axis))\n plt.figure(figsize=(19, 10))\n ax = plt.scatter(x_axis, y_axis, alpha=alpha, c=colour, s=s)\n locs, labels = plt.yticks()\n if set_labels is not None:\n labels = set_labels\n for label in labels[::2]:\n label.set_visible(False)\n legend_elements = [Line2D([0], [0], marker='o', color='w', label=\n 'Critical', markerfacecolor='darkorange', markersize=25, alpha=0.75\n ), Line2D([0], [0], marker='o', color='w', label='Sub-critical',\n markerfacecolor='royalblue', markersize=25, alpha=0.75)]\n plt.legend(loc='lower right', bbox_to_anchor=(0.95, 0.05), handles=\n legend_elements)\n plt.xlabel('Generation')\n plt.ylabel('Performance')\n if get_axis:\n ylim = plt.ylim()\n else:\n plt.ylim(ylim)\n if not path.exists(save_folder):\n makedirs(save_folder)\n save_name = '{}.png'.format(add_save_name)\n plt.savefig(save_folder + save_name, dpi=300)\n plt.show()\n if get_axis:\n return ylim\n if return_labels:\n return labels\n\n\ndef plot_overlap(y_axis_b1, y_axis_b10, colour_b1, colour_b10, save_folder,\n add_save_name, alpha, s, ylim):\n x_axis_b1 = np.arange(len(y_axis_b1))\n x_axis_b10 = np.arange(len(y_axis_b10))\n plt.figure(figsize=(19, 10))\n plt.scatter(x_axis_b1, y_axis_b1, alpha=alpha, c=colour_b1, s=s)\n plot1 = plt.scatter(x_axis_b10, y_axis_b10, alpha=alpha, c=colour_b10, s=s)\n plt.ylim(ylim)\n locs, labels = plt.yticks()\n for label in labels[::2]:\n label.set_visible(False)\n plt.xlabel('Generation')\n plt.ylabel('Performance')\n legend_elements = [Line2D([0], [0], marker='o', color='w', label=\n 'Critical', markerfacecolor=colour_b1, markersize=25, alpha=0.75),\n Line2D([0], [0], marker='o', color='w', label='Sub-critical',\n markerfacecolor=colour_b10, markersize=25, alpha=0.75)]\n plt.legend(loc='lower right', bbox_to_anchor=(0.95, 0.05), handles=\n legend_elements)\n plt.savefig(save_folder + add_save_name, dpi=300)\n plt.show()\n\n\n<function token>\n<code token>\n", "<import token>\n\n\nclass SmallIsing:\n\n def __init__(self, avg_energy, time_steps_gen):\n self.avg_energy = avg_energy\n self.time_steps_gen = time_steps_gen\n self.norm_avg_energy = avg_energy / time_steps_gen\n\n\ndef all_plots(sim_name_b1_fix, sim_name_b10_fix, sim_name_b1_rand,\n sim_name_rand, only_top_isings=20, load_previous=False):\n save_folder = 'save/plots_for_anna/'\n if not os.path.exists(save_folder):\n os.makedirs(save_folder)\n matplotlib.rcParams.update({'font.size': 30})\n alpha = 0.3\n s = 25\n colour_b1 = 'darkorange'\n colour_b10 = 'royalblue'\n if not load_previous:\n attrs_gen_b10_fix = load_ising_stuff(sim_name_b10_fix, only_top_isings)\n attrs_gen_b1_fix = load_ising_stuff(sim_name_b1_fix, only_top_isings)\n attrs_gen_b10_rand = load_ising_stuff(sim_name_b10_rand,\n only_top_isings)\n attrs_gen_b1_rand = load_ising_stuff(sim_name_b1_rand, only_top_isings)\n loaded_plot_attrs = {'attrs_gen_b1_fix': attrs_gen_b1_fix,\n 'attrs_gen_b10_fix': attrs_gen_b10_fix, 'attrs_gen_b10_rand':\n attrs_gen_b10_rand, 'attrs_gen_b1_rand': attrs_gen_b1_rand}\n try:\n pickle_out = open('{}loaded_plot_attrs.pickle'.format(\n save_folder), 'wb')\n pickle.dump(loaded_plot_attrs, pickle_out)\n pickle_out.close()\n except Exception:\n print('Could not save pickle file')\n else:\n file = open('{}/loaded_plot_attrs.pickle'.format(save_folder), 'rb')\n loaded_plot_attrs = pickle.load(file)\n file.close()\n attrs_gen_b10_fix = loaded_plot_attrs['attrs_gen_b10_fix']\n attrs_gen_b1_fix = loaded_plot_attrs['attrs_gen_b1_fix']\n attrs_gen_b10_rand = loaded_plot_attrs['attrs_gen_b10_rand']\n attrs_gen_b1_rand = loaded_plot_attrs['attrs_gen_b1_rand']\n ylim = plot_generational_avg(attrs_gen_b10_fix, colour_b10, save_folder,\n 'fixed_time_steps_b10', alpha, s, get_axis=True)\n labels = plot_generational_avg(attrs_gen_b1_fix, colour_b1, save_folder,\n 'fixed_time_steps_b1', alpha, s, get_axis=False, ylim=ylim,\n return_labels=True)\n plot_generational_avg(attrs_gen_b10_rand, colour_b10, save_folder,\n 'random_time_steps_b10', alpha, s, get_axis=False, ylim=ylim)\n plot_generational_avg(attrs_gen_b1_rand, colour_b1, save_folder,\n 'random_time_steps_b1', alpha, s, get_axis=False, ylim=ylim,\n set_labels=None)\n plot_overlap(attrs_gen_b1_fix, attrs_gen_b10_fix, colour_b1, colour_b10,\n save_folder, 'Overlap_fixed_time_steps', alpha, s, ylim)\n plot_overlap(attrs_gen_b1_rand, attrs_gen_b10_rand, colour_b1,\n colour_b10, save_folder, 'Overlap_random_time_steps', alpha, s, ylim)\n\n\n<function token>\n<function token>\n\n\ndef plot_generational_avg(y_axis, colour, save_folder, add_save_name, alpha,\n s, get_axis=True, ylim=None, return_labels=False, set_labels=None):\n x_axis = np.arange(len(y_axis))\n plt.figure(figsize=(19, 10))\n ax = plt.scatter(x_axis, y_axis, alpha=alpha, c=colour, s=s)\n locs, labels = plt.yticks()\n if set_labels is not None:\n labels = set_labels\n for label in labels[::2]:\n label.set_visible(False)\n legend_elements = [Line2D([0], [0], marker='o', color='w', label=\n 'Critical', markerfacecolor='darkorange', markersize=25, alpha=0.75\n ), Line2D([0], [0], marker='o', color='w', label='Sub-critical',\n markerfacecolor='royalblue', markersize=25, alpha=0.75)]\n plt.legend(loc='lower right', bbox_to_anchor=(0.95, 0.05), handles=\n legend_elements)\n plt.xlabel('Generation')\n plt.ylabel('Performance')\n if get_axis:\n ylim = plt.ylim()\n else:\n plt.ylim(ylim)\n if not path.exists(save_folder):\n makedirs(save_folder)\n save_name = '{}.png'.format(add_save_name)\n plt.savefig(save_folder + save_name, dpi=300)\n plt.show()\n if get_axis:\n return ylim\n if return_labels:\n return labels\n\n\ndef plot_overlap(y_axis_b1, y_axis_b10, colour_b1, colour_b10, save_folder,\n add_save_name, alpha, s, ylim):\n x_axis_b1 = np.arange(len(y_axis_b1))\n x_axis_b10 = np.arange(len(y_axis_b10))\n plt.figure(figsize=(19, 10))\n plt.scatter(x_axis_b1, y_axis_b1, alpha=alpha, c=colour_b1, s=s)\n plot1 = plt.scatter(x_axis_b10, y_axis_b10, alpha=alpha, c=colour_b10, s=s)\n plt.ylim(ylim)\n locs, labels = plt.yticks()\n for label in labels[::2]:\n label.set_visible(False)\n plt.xlabel('Generation')\n plt.ylabel('Performance')\n legend_elements = [Line2D([0], [0], marker='o', color='w', label=\n 'Critical', markerfacecolor=colour_b1, markersize=25, alpha=0.75),\n Line2D([0], [0], marker='o', color='w', label='Sub-critical',\n markerfacecolor=colour_b10, markersize=25, alpha=0.75)]\n plt.legend(loc='lower right', bbox_to_anchor=(0.95, 0.05), handles=\n legend_elements)\n plt.savefig(save_folder + add_save_name, dpi=300)\n plt.show()\n\n\n<function token>\n<code token>\n", "<import token>\n\n\nclass SmallIsing:\n\n def __init__(self, avg_energy, time_steps_gen):\n self.avg_energy = avg_energy\n self.time_steps_gen = time_steps_gen\n self.norm_avg_energy = avg_energy / time_steps_gen\n\n\ndef all_plots(sim_name_b1_fix, sim_name_b10_fix, sim_name_b1_rand,\n sim_name_rand, only_top_isings=20, load_previous=False):\n save_folder = 'save/plots_for_anna/'\n if not os.path.exists(save_folder):\n os.makedirs(save_folder)\n matplotlib.rcParams.update({'font.size': 30})\n alpha = 0.3\n s = 25\n colour_b1 = 'darkorange'\n colour_b10 = 'royalblue'\n if not load_previous:\n attrs_gen_b10_fix = load_ising_stuff(sim_name_b10_fix, only_top_isings)\n attrs_gen_b1_fix = load_ising_stuff(sim_name_b1_fix, only_top_isings)\n attrs_gen_b10_rand = load_ising_stuff(sim_name_b10_rand,\n only_top_isings)\n attrs_gen_b1_rand = load_ising_stuff(sim_name_b1_rand, only_top_isings)\n loaded_plot_attrs = {'attrs_gen_b1_fix': attrs_gen_b1_fix,\n 'attrs_gen_b10_fix': attrs_gen_b10_fix, 'attrs_gen_b10_rand':\n attrs_gen_b10_rand, 'attrs_gen_b1_rand': attrs_gen_b1_rand}\n try:\n pickle_out = open('{}loaded_plot_attrs.pickle'.format(\n save_folder), 'wb')\n pickle.dump(loaded_plot_attrs, pickle_out)\n pickle_out.close()\n except Exception:\n print('Could not save pickle file')\n else:\n file = open('{}/loaded_plot_attrs.pickle'.format(save_folder), 'rb')\n loaded_plot_attrs = pickle.load(file)\n file.close()\n attrs_gen_b10_fix = loaded_plot_attrs['attrs_gen_b10_fix']\n attrs_gen_b1_fix = loaded_plot_attrs['attrs_gen_b1_fix']\n attrs_gen_b10_rand = loaded_plot_attrs['attrs_gen_b10_rand']\n attrs_gen_b1_rand = loaded_plot_attrs['attrs_gen_b1_rand']\n ylim = plot_generational_avg(attrs_gen_b10_fix, colour_b10, save_folder,\n 'fixed_time_steps_b10', alpha, s, get_axis=True)\n labels = plot_generational_avg(attrs_gen_b1_fix, colour_b1, save_folder,\n 'fixed_time_steps_b1', alpha, s, get_axis=False, ylim=ylim,\n return_labels=True)\n plot_generational_avg(attrs_gen_b10_rand, colour_b10, save_folder,\n 'random_time_steps_b10', alpha, s, get_axis=False, ylim=ylim)\n plot_generational_avg(attrs_gen_b1_rand, colour_b1, save_folder,\n 'random_time_steps_b1', alpha, s, get_axis=False, ylim=ylim,\n set_labels=None)\n plot_overlap(attrs_gen_b1_fix, attrs_gen_b10_fix, colour_b1, colour_b10,\n save_folder, 'Overlap_fixed_time_steps', alpha, s, ylim)\n plot_overlap(attrs_gen_b1_rand, attrs_gen_b10_rand, colour_b1,\n colour_b10, save_folder, 'Overlap_random_time_steps', alpha, s, ylim)\n\n\n<function token>\n<function token>\n\n\ndef plot_generational_avg(y_axis, colour, save_folder, add_save_name, alpha,\n s, get_axis=True, ylim=None, return_labels=False, set_labels=None):\n x_axis = np.arange(len(y_axis))\n plt.figure(figsize=(19, 10))\n ax = plt.scatter(x_axis, y_axis, alpha=alpha, c=colour, s=s)\n locs, labels = plt.yticks()\n if set_labels is not None:\n labels = set_labels\n for label in labels[::2]:\n label.set_visible(False)\n legend_elements = [Line2D([0], [0], marker='o', color='w', label=\n 'Critical', markerfacecolor='darkorange', markersize=25, alpha=0.75\n ), Line2D([0], [0], marker='o', color='w', label='Sub-critical',\n markerfacecolor='royalblue', markersize=25, alpha=0.75)]\n plt.legend(loc='lower right', bbox_to_anchor=(0.95, 0.05), handles=\n legend_elements)\n plt.xlabel('Generation')\n plt.ylabel('Performance')\n if get_axis:\n ylim = plt.ylim()\n else:\n plt.ylim(ylim)\n if not path.exists(save_folder):\n makedirs(save_folder)\n save_name = '{}.png'.format(add_save_name)\n plt.savefig(save_folder + save_name, dpi=300)\n plt.show()\n if get_axis:\n return ylim\n if return_labels:\n return labels\n\n\n<function token>\n<function token>\n<code token>\n", "<import token>\n\n\nclass SmallIsing:\n\n def __init__(self, avg_energy, time_steps_gen):\n self.avg_energy = avg_energy\n self.time_steps_gen = time_steps_gen\n self.norm_avg_energy = avg_energy / time_steps_gen\n\n\ndef all_plots(sim_name_b1_fix, sim_name_b10_fix, sim_name_b1_rand,\n sim_name_rand, only_top_isings=20, load_previous=False):\n save_folder = 'save/plots_for_anna/'\n if not os.path.exists(save_folder):\n os.makedirs(save_folder)\n matplotlib.rcParams.update({'font.size': 30})\n alpha = 0.3\n s = 25\n colour_b1 = 'darkorange'\n colour_b10 = 'royalblue'\n if not load_previous:\n attrs_gen_b10_fix = load_ising_stuff(sim_name_b10_fix, only_top_isings)\n attrs_gen_b1_fix = load_ising_stuff(sim_name_b1_fix, only_top_isings)\n attrs_gen_b10_rand = load_ising_stuff(sim_name_b10_rand,\n only_top_isings)\n attrs_gen_b1_rand = load_ising_stuff(sim_name_b1_rand, only_top_isings)\n loaded_plot_attrs = {'attrs_gen_b1_fix': attrs_gen_b1_fix,\n 'attrs_gen_b10_fix': attrs_gen_b10_fix, 'attrs_gen_b10_rand':\n attrs_gen_b10_rand, 'attrs_gen_b1_rand': attrs_gen_b1_rand}\n try:\n pickle_out = open('{}loaded_plot_attrs.pickle'.format(\n save_folder), 'wb')\n pickle.dump(loaded_plot_attrs, pickle_out)\n pickle_out.close()\n except Exception:\n print('Could not save pickle file')\n else:\n file = open('{}/loaded_plot_attrs.pickle'.format(save_folder), 'rb')\n loaded_plot_attrs = pickle.load(file)\n file.close()\n attrs_gen_b10_fix = loaded_plot_attrs['attrs_gen_b10_fix']\n attrs_gen_b1_fix = loaded_plot_attrs['attrs_gen_b1_fix']\n attrs_gen_b10_rand = loaded_plot_attrs['attrs_gen_b10_rand']\n attrs_gen_b1_rand = loaded_plot_attrs['attrs_gen_b1_rand']\n ylim = plot_generational_avg(attrs_gen_b10_fix, colour_b10, save_folder,\n 'fixed_time_steps_b10', alpha, s, get_axis=True)\n labels = plot_generational_avg(attrs_gen_b1_fix, colour_b1, save_folder,\n 'fixed_time_steps_b1', alpha, s, get_axis=False, ylim=ylim,\n return_labels=True)\n plot_generational_avg(attrs_gen_b10_rand, colour_b10, save_folder,\n 'random_time_steps_b10', alpha, s, get_axis=False, ylim=ylim)\n plot_generational_avg(attrs_gen_b1_rand, colour_b1, save_folder,\n 'random_time_steps_b1', alpha, s, get_axis=False, ylim=ylim,\n set_labels=None)\n plot_overlap(attrs_gen_b1_fix, attrs_gen_b10_fix, colour_b1, colour_b10,\n save_folder, 'Overlap_fixed_time_steps', alpha, s, ylim)\n plot_overlap(attrs_gen_b1_rand, attrs_gen_b10_rand, colour_b1,\n colour_b10, save_folder, 'Overlap_random_time_steps', alpha, s, ylim)\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<code token>\n", "<import token>\n\n\nclass SmallIsing:\n\n def __init__(self, avg_energy, time_steps_gen):\n self.avg_energy = avg_energy\n self.time_steps_gen = time_steps_gen\n self.norm_avg_energy = avg_energy / time_steps_gen\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<code token>\n", "<import token>\n\n\nclass SmallIsing:\n <function token>\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<code token>\n", "<import token>\n<class token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<code token>\n" ]
false
98,803
5cfc18ad52fa8a07914c7b57ff975301481efffc
from tensorflow.keras.layers import Layer import numpy as np import pandas as pd import tensorflow # class ts_stddev(Layer): # def __init__(self, **kwargs): # self.window = 10 # self.stride = 10 # self.features_num = 8 # self.backward_len = 30 # self.logging = False # self.input_data_shape = (None, self.features_num, self.backward_len, 1) # super(ts_stddev, self).__init__(**kwargs) # # def call(self, inputs, **kwargs): # assert inputs.shape[1:] == self.input_data_shape[1:] # arr = inputs.numpy() # arr_r10 = np.roll(arr, shift=self.window, axis=2) # # temp_dict = dict() # for num in range(int(self.backward_len / self.stride)): # arr_trim = arr_r10[:, :, num * self.stride:(num + 1) * self.stride, :] # arr_std10 = np.std(arr_trim, axis=2) # arr_std10_re = np.reshape(arr_std10, (arr_std10.shape[0], arr_std10.shape[1], 1, arr_std10.shape[2])) # if self.logging: # print(num) # print(arr_trim.shape) # print(arr_std10.shape) # print(arr_std10_re.shape) # print(arr_trim[0, :, :, 0].shape) # print(pd.DataFrame(arr_trim[0, :, :, 0])) # print(np.std(arr_trim[0, :, :, 0], axis=1)) # temp_dict[num] = arr_std10_re # # total_num = int(self.backward_len / self.stride) # temp_list = [temp_dict[num] for num in range(1, total_num)] # temp_list.append(temp_dict[0]) # # result = np.concatenate(tuple(temp_list), axis=2) # return result # # def compute_output_shape(self, input_shape): # return input_shape[0], input_shape[1], int(input_shape[2] / self.stride), input_shape[3] class ts_zscore(Layer): def __init__(self, **kwargs): self.window = 10 self.stride = 10 self.features_num = 8 self.backward_len = 30 self.logging = False self.input_data_shape = (None, self.features_num, self.backward_len, 1) super(ts_zscore, self).__init__(**kwargs) def np_func(self,inputs): assert inputs.shape[1:] == self.input_data_shape[1:] arr = inputs.numpy() arr_r10 = np.roll(arr, shift=self.window, axis=2) temp_dict = dict() for num in range(int(self.backward_len / self.stride)): arr_trim = arr_r10[:, :, num * self.stride:(num + 1) * self.stride, :] arr_mean10 = np.mean(arr_trim, axis=2) arr_std10 = np.std(arr_trim, axis=2) arr_zscore10 = arr_mean10 / arr_std10 arr_zscore10_re = np.reshape(arr_zscore10, (arr_zscore10.shape[0], arr_zscore10.shape[1], 1, arr_zscore10.shape[2])) if self.logging: print(num) print(arr_trim.shape) print(arr_std10.shape) print(arr_zscore10_re.shape) print(arr_trim[0, :, :, 0].shape) print(pd.DataFrame(arr_trim[0, :, :, 0])) print(np.std(arr_trim[0, :, :, 0], axis=1)) temp_dict[num] = arr_zscore10_re total_num = int(self.backward_len / self.stride) temp_list = [temp_dict[num] for num in range(1, total_num)] temp_list.append(temp_dict[0]) result = np.concatenate(tuple(temp_list), axis=2) return result def call(self, inputs, **kwargs): return self.np_func(inputs) def compute_output_shape(self, input_shape): return input_shape[0], input_shape[1], int(input_shape[2] / self.stride), input_shape[3] # class ts_return(Layer): # def __init__(self, **kwargs): # self.window = 10 # self.stride = 10 # self.features_num = 8 # self.backward_len = 30 # self.logging = False # self.input_data_shape = (None, self.features_num, self.backward_len, 1) # super(ts_return, self).__init__(**kwargs) # # def call(self, inputs, **kwargs): # assert inputs.shape[1:] == self.input_data_shape[1:] # # arr = inputs.numpy() # arr_r10 = np.roll(arr, shift=self.window, axis=2) # # temp_dict = dict() # for num in range(int(self.backward_len / self.stride)): # arr_trim = arr_r10[:, :, num * self.stride:(num + 1) * self.stride, :] # arr_head10 = arr_trim[:, :, [0], :] # arr_tail10 = arr_trim[:, :, [-1], :] # arr_ret10 = arr_tail10 / arr_head10 - 1 # # arr_zscore10_re = np.reshape(arr_ret10, # # (arr_ret10.shape[0], arr_ret10.shape[1], 1, arr_ret10.shape[2])) # # arr_ret10_re = arr_ret10 # if self.logging: # print(num) # print(arr_trim.shape) # print(arr_ret10_re.shape) # print(arr_trim[0, :, :, 0].shape) # print(pd.DataFrame(arr_trim[0, :, :, 0])) # print(np.std(arr_trim[0, :, :, 0], axis=1)) # temp_dict[num] = arr_ret10_re # # total_num = int(self.backward_len / self.stride) # temp_list = [temp_dict[num] for num in range(1, total_num)] # temp_list.append(temp_dict[0]) # # result = np.concatenate(tuple(temp_list), axis=2) # return result # # def compute_output_shape(self, input_shape): # return input_shape[0], input_shape[1], int(input_shape[2] / self.stride), input_shape[3] # class ts_decaylinear(Layer): # def __init__(self, **kwargs): # self.window = 10 # self.stride = 10 # self.features_num = 8 # self.backward_len = 30 # self.logging = False # self.input_data_shape = (None, self.features_num, self.backward_len, 1) # super(ts_decaylinear, self).__init__(**kwargs) # # def call(self, inputs, **kwargs): # assert inputs.shape[1:] == self.input_data_shape[1:] # # arr = inputs.numpy() # arr_r10 = np.roll(arr, shift=self.window, axis=2) # # 生成长度为30的权重向量 # weight_arr = np.array(range(1, 1 + self.stride)) # weight_arr = weight_arr / weight_arr.sum() # weight_arr2d = np.expand_dims(weight_arr, axis=0) # weight_arr2d = np.repeat(weight_arr2d, repeats=self.features_num, axis=0) # weight_arr3d = np.expand_dims(weight_arr2d, axis=0) # weight_arr3d = np.repeat(weight_arr3d, repeats=inputs.shape[0], axis=0) # weight_arr4d = np.reshape(weight_arr3d, # newshape=(inputs.shape[0], weight_arr3d.shape[1], weight_arr3d.shape[2], 1)) # # temp_dict = dict() # for num in range(int(self.backward_len / self.stride)): # arr_trim = arr_r10[:, :, num * self.stride:(num + 1) * self.stride, :] # assert arr_trim.shape == weight_arr4d.shape # arr_weight = arr_trim * weight_arr4d # arr_wsum = arr_weight.sum(axis=2) # # arr_ret10_re = np.reshape(arr_wsum, newshape=(arr_wsum.shape[0], arr_wsum.shape[1], arr_wsum.shape[2], 1)) # if self.logging: # print(num) # print(arr_trim.shape) # print(arr_ret10_re.shape) # print(arr_trim[0, :, :, 0].shape) # print(pd.DataFrame(arr_trim[0, :, :, 0])) # print(np.std(arr_trim[0, :, :, 0], axis=1)) # temp_dict[num] = arr_ret10_re # # total_num = int(self.backward_len / self.stride) # temp_list = [temp_dict[num] for num in range(1, total_num)] # temp_list.append(temp_dict[0]) # # result = np.concatenate(tuple(temp_list), axis=2) # return result # # def compute_output_shape(self, input_shape): # return input_shape[0], input_shape[1], int(input_shape[2] / self.stride), input_shape[3]
[ "from tensorflow.keras.layers import Layer\nimport numpy as np\nimport pandas as pd\nimport tensorflow\n\n# class ts_stddev(Layer):\n# def __init__(self, **kwargs):\n# self.window = 10\n# self.stride = 10\n# self.features_num = 8\n# self.backward_len = 30\n# self.logging = False\n# self.input_data_shape = (None, self.features_num, self.backward_len, 1)\n# super(ts_stddev, self).__init__(**kwargs)\n#\n# def call(self, inputs, **kwargs):\n# assert inputs.shape[1:] == self.input_data_shape[1:]\n# arr = inputs.numpy()\n# arr_r10 = np.roll(arr, shift=self.window, axis=2)\n#\n# temp_dict = dict()\n# for num in range(int(self.backward_len / self.stride)):\n# arr_trim = arr_r10[:, :, num * self.stride:(num + 1) * self.stride, :]\n# arr_std10 = np.std(arr_trim, axis=2)\n# arr_std10_re = np.reshape(arr_std10, (arr_std10.shape[0], arr_std10.shape[1], 1, arr_std10.shape[2]))\n# if self.logging:\n# print(num)\n# print(arr_trim.shape)\n# print(arr_std10.shape)\n# print(arr_std10_re.shape)\n# print(arr_trim[0, :, :, 0].shape)\n# print(pd.DataFrame(arr_trim[0, :, :, 0]))\n# print(np.std(arr_trim[0, :, :, 0], axis=1))\n# temp_dict[num] = arr_std10_re\n#\n# total_num = int(self.backward_len / self.stride)\n# temp_list = [temp_dict[num] for num in range(1, total_num)]\n# temp_list.append(temp_dict[0])\n#\n# result = np.concatenate(tuple(temp_list), axis=2)\n# return result\n#\n# def compute_output_shape(self, input_shape):\n# return input_shape[0], input_shape[1], int(input_shape[2] / self.stride), input_shape[3]\n\n\nclass ts_zscore(Layer):\n def __init__(self, **kwargs):\n self.window = 10\n self.stride = 10\n self.features_num = 8\n self.backward_len = 30\n self.logging = False\n self.input_data_shape = (None, self.features_num, self.backward_len, 1)\n super(ts_zscore, self).__init__(**kwargs)\n\n def np_func(self,inputs):\n assert inputs.shape[1:] == self.input_data_shape[1:]\n arr = inputs.numpy()\n arr_r10 = np.roll(arr, shift=self.window, axis=2)\n\n temp_dict = dict()\n for num in range(int(self.backward_len / self.stride)):\n arr_trim = arr_r10[:, :, num * self.stride:(num + 1) * self.stride, :]\n arr_mean10 = np.mean(arr_trim, axis=2)\n arr_std10 = np.std(arr_trim, axis=2)\n arr_zscore10 = arr_mean10 / arr_std10\n arr_zscore10_re = np.reshape(arr_zscore10,\n (arr_zscore10.shape[0], arr_zscore10.shape[1], 1, arr_zscore10.shape[2]))\n if self.logging:\n print(num)\n print(arr_trim.shape)\n print(arr_std10.shape)\n print(arr_zscore10_re.shape)\n print(arr_trim[0, :, :, 0].shape)\n print(pd.DataFrame(arr_trim[0, :, :, 0]))\n print(np.std(arr_trim[0, :, :, 0], axis=1))\n temp_dict[num] = arr_zscore10_re\n\n total_num = int(self.backward_len / self.stride)\n temp_list = [temp_dict[num] for num in range(1, total_num)]\n temp_list.append(temp_dict[0])\n\n result = np.concatenate(tuple(temp_list), axis=2)\n return result\n\n def call(self, inputs, **kwargs):\n return self.np_func(inputs)\n\n\n def compute_output_shape(self, input_shape):\n return input_shape[0], input_shape[1], int(input_shape[2] / self.stride), input_shape[3]\n\n\n# class ts_return(Layer):\n# def __init__(self, **kwargs):\n# self.window = 10\n# self.stride = 10\n# self.features_num = 8\n# self.backward_len = 30\n# self.logging = False\n# self.input_data_shape = (None, self.features_num, self.backward_len, 1)\n# super(ts_return, self).__init__(**kwargs)\n#\n# def call(self, inputs, **kwargs):\n# assert inputs.shape[1:] == self.input_data_shape[1:]\n#\n# arr = inputs.numpy()\n# arr_r10 = np.roll(arr, shift=self.window, axis=2)\n#\n# temp_dict = dict()\n# for num in range(int(self.backward_len / self.stride)):\n# arr_trim = arr_r10[:, :, num * self.stride:(num + 1) * self.stride, :]\n# arr_head10 = arr_trim[:, :, [0], :]\n# arr_tail10 = arr_trim[:, :, [-1], :]\n# arr_ret10 = arr_tail10 / arr_head10 - 1\n# # arr_zscore10_re = np.reshape(arr_ret10,\n# # (arr_ret10.shape[0], arr_ret10.shape[1], 1, arr_ret10.shape[2]))\n#\n# arr_ret10_re = arr_ret10\n# if self.logging:\n# print(num)\n# print(arr_trim.shape)\n# print(arr_ret10_re.shape)\n# print(arr_trim[0, :, :, 0].shape)\n# print(pd.DataFrame(arr_trim[0, :, :, 0]))\n# print(np.std(arr_trim[0, :, :, 0], axis=1))\n# temp_dict[num] = arr_ret10_re\n#\n# total_num = int(self.backward_len / self.stride)\n# temp_list = [temp_dict[num] for num in range(1, total_num)]\n# temp_list.append(temp_dict[0])\n#\n# result = np.concatenate(tuple(temp_list), axis=2)\n# return result\n#\n# def compute_output_shape(self, input_shape):\n# return input_shape[0], input_shape[1], int(input_shape[2] / self.stride), input_shape[3]\n\n\n# class ts_decaylinear(Layer):\n# def __init__(self, **kwargs):\n# self.window = 10\n# self.stride = 10\n# self.features_num = 8\n# self.backward_len = 30\n# self.logging = False\n# self.input_data_shape = (None, self.features_num, self.backward_len, 1)\n# super(ts_decaylinear, self).__init__(**kwargs)\n#\n# def call(self, inputs, **kwargs):\n# assert inputs.shape[1:] == self.input_data_shape[1:]\n#\n# arr = inputs.numpy()\n# arr_r10 = np.roll(arr, shift=self.window, axis=2)\n# # 生成长度为30的权重向量\n# weight_arr = np.array(range(1, 1 + self.stride))\n# weight_arr = weight_arr / weight_arr.sum()\n# weight_arr2d = np.expand_dims(weight_arr, axis=0)\n# weight_arr2d = np.repeat(weight_arr2d, repeats=self.features_num, axis=0)\n# weight_arr3d = np.expand_dims(weight_arr2d, axis=0)\n# weight_arr3d = np.repeat(weight_arr3d, repeats=inputs.shape[0], axis=0)\n# weight_arr4d = np.reshape(weight_arr3d,\n# newshape=(inputs.shape[0], weight_arr3d.shape[1], weight_arr3d.shape[2], 1))\n#\n# temp_dict = dict()\n# for num in range(int(self.backward_len / self.stride)):\n# arr_trim = arr_r10[:, :, num * self.stride:(num + 1) * self.stride, :]\n# assert arr_trim.shape == weight_arr4d.shape\n# arr_weight = arr_trim * weight_arr4d\n# arr_wsum = arr_weight.sum(axis=2)\n#\n# arr_ret10_re = np.reshape(arr_wsum, newshape=(arr_wsum.shape[0], arr_wsum.shape[1], arr_wsum.shape[2], 1))\n# if self.logging:\n# print(num)\n# print(arr_trim.shape)\n# print(arr_ret10_re.shape)\n# print(arr_trim[0, :, :, 0].shape)\n# print(pd.DataFrame(arr_trim[0, :, :, 0]))\n# print(np.std(arr_trim[0, :, :, 0], axis=1))\n# temp_dict[num] = arr_ret10_re\n#\n# total_num = int(self.backward_len / self.stride)\n# temp_list = [temp_dict[num] for num in range(1, total_num)]\n# temp_list.append(temp_dict[0])\n#\n# result = np.concatenate(tuple(temp_list), axis=2)\n# return result\n#\n# def compute_output_shape(self, input_shape):\n# return input_shape[0], input_shape[1], int(input_shape[2] / self.stride), input_shape[3]\n", "from tensorflow.keras.layers import Layer\nimport numpy as np\nimport pandas as pd\nimport tensorflow\n\n\nclass ts_zscore(Layer):\n\n def __init__(self, **kwargs):\n self.window = 10\n self.stride = 10\n self.features_num = 8\n self.backward_len = 30\n self.logging = False\n self.input_data_shape = None, self.features_num, self.backward_len, 1\n super(ts_zscore, self).__init__(**kwargs)\n\n def np_func(self, inputs):\n assert inputs.shape[1:] == self.input_data_shape[1:]\n arr = inputs.numpy()\n arr_r10 = np.roll(arr, shift=self.window, axis=2)\n temp_dict = dict()\n for num in range(int(self.backward_len / self.stride)):\n arr_trim = arr_r10[:, :, num * self.stride:(num + 1) * self.\n stride, :]\n arr_mean10 = np.mean(arr_trim, axis=2)\n arr_std10 = np.std(arr_trim, axis=2)\n arr_zscore10 = arr_mean10 / arr_std10\n arr_zscore10_re = np.reshape(arr_zscore10, (arr_zscore10.shape[\n 0], arr_zscore10.shape[1], 1, arr_zscore10.shape[2]))\n if self.logging:\n print(num)\n print(arr_trim.shape)\n print(arr_std10.shape)\n print(arr_zscore10_re.shape)\n print(arr_trim[0, :, :, 0].shape)\n print(pd.DataFrame(arr_trim[0, :, :, 0]))\n print(np.std(arr_trim[0, :, :, 0], axis=1))\n temp_dict[num] = arr_zscore10_re\n total_num = int(self.backward_len / self.stride)\n temp_list = [temp_dict[num] for num in range(1, total_num)]\n temp_list.append(temp_dict[0])\n result = np.concatenate(tuple(temp_list), axis=2)\n return result\n\n def call(self, inputs, **kwargs):\n return self.np_func(inputs)\n\n def compute_output_shape(self, input_shape):\n return input_shape[0], input_shape[1], int(input_shape[2] / self.stride\n ), input_shape[3]\n", "<import token>\n\n\nclass ts_zscore(Layer):\n\n def __init__(self, **kwargs):\n self.window = 10\n self.stride = 10\n self.features_num = 8\n self.backward_len = 30\n self.logging = False\n self.input_data_shape = None, self.features_num, self.backward_len, 1\n super(ts_zscore, self).__init__(**kwargs)\n\n def np_func(self, inputs):\n assert inputs.shape[1:] == self.input_data_shape[1:]\n arr = inputs.numpy()\n arr_r10 = np.roll(arr, shift=self.window, axis=2)\n temp_dict = dict()\n for num in range(int(self.backward_len / self.stride)):\n arr_trim = arr_r10[:, :, num * self.stride:(num + 1) * self.\n stride, :]\n arr_mean10 = np.mean(arr_trim, axis=2)\n arr_std10 = np.std(arr_trim, axis=2)\n arr_zscore10 = arr_mean10 / arr_std10\n arr_zscore10_re = np.reshape(arr_zscore10, (arr_zscore10.shape[\n 0], arr_zscore10.shape[1], 1, arr_zscore10.shape[2]))\n if self.logging:\n print(num)\n print(arr_trim.shape)\n print(arr_std10.shape)\n print(arr_zscore10_re.shape)\n print(arr_trim[0, :, :, 0].shape)\n print(pd.DataFrame(arr_trim[0, :, :, 0]))\n print(np.std(arr_trim[0, :, :, 0], axis=1))\n temp_dict[num] = arr_zscore10_re\n total_num = int(self.backward_len / self.stride)\n temp_list = [temp_dict[num] for num in range(1, total_num)]\n temp_list.append(temp_dict[0])\n result = np.concatenate(tuple(temp_list), axis=2)\n return result\n\n def call(self, inputs, **kwargs):\n return self.np_func(inputs)\n\n def compute_output_shape(self, input_shape):\n return input_shape[0], input_shape[1], int(input_shape[2] / self.stride\n ), input_shape[3]\n", "<import token>\n\n\nclass ts_zscore(Layer):\n\n def __init__(self, **kwargs):\n self.window = 10\n self.stride = 10\n self.features_num = 8\n self.backward_len = 30\n self.logging = False\n self.input_data_shape = None, self.features_num, self.backward_len, 1\n super(ts_zscore, self).__init__(**kwargs)\n <function token>\n\n def call(self, inputs, **kwargs):\n return self.np_func(inputs)\n\n def compute_output_shape(self, input_shape):\n return input_shape[0], input_shape[1], int(input_shape[2] / self.stride\n ), input_shape[3]\n", "<import token>\n\n\nclass ts_zscore(Layer):\n\n def __init__(self, **kwargs):\n self.window = 10\n self.stride = 10\n self.features_num = 8\n self.backward_len = 30\n self.logging = False\n self.input_data_shape = None, self.features_num, self.backward_len, 1\n super(ts_zscore, self).__init__(**kwargs)\n <function token>\n\n def call(self, inputs, **kwargs):\n return self.np_func(inputs)\n <function token>\n", "<import token>\n\n\nclass ts_zscore(Layer):\n\n def __init__(self, **kwargs):\n self.window = 10\n self.stride = 10\n self.features_num = 8\n self.backward_len = 30\n self.logging = False\n self.input_data_shape = None, self.features_num, self.backward_len, 1\n super(ts_zscore, self).__init__(**kwargs)\n <function token>\n <function token>\n <function token>\n", "<import token>\n\n\nclass ts_zscore(Layer):\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n<class token>\n" ]
false
98,804
df2ab2a69c9de9a7fc0746d379765051f37cd794
from abc import ABCMeta, abstractmethod class NetworkInput(object): __metaclass__ = ABCMeta def __init__(self): pass @abstractmethod def val(self, t): """ """ pass
[ "from abc import ABCMeta, abstractmethod\n\nclass NetworkInput(object):\n\n\t__metaclass__ = ABCMeta\n\n\tdef __init__(self):\n\t\tpass\n\n\t@abstractmethod\n\tdef val(self, t):\n\t\t\"\"\" \"\"\"\n\t\tpass\n", "from abc import ABCMeta, abstractmethod\n\n\nclass NetworkInput(object):\n __metaclass__ = ABCMeta\n\n def __init__(self):\n pass\n\n @abstractmethod\n def val(self, t):\n \"\"\" \"\"\"\n pass\n", "<import token>\n\n\nclass NetworkInput(object):\n __metaclass__ = ABCMeta\n\n def __init__(self):\n pass\n\n @abstractmethod\n def val(self, t):\n \"\"\" \"\"\"\n pass\n", "<import token>\n\n\nclass NetworkInput(object):\n <assignment token>\n\n def __init__(self):\n pass\n\n @abstractmethod\n def val(self, t):\n \"\"\" \"\"\"\n pass\n", "<import token>\n\n\nclass NetworkInput(object):\n <assignment token>\n\n def __init__(self):\n pass\n <function token>\n", "<import token>\n\n\nclass NetworkInput(object):\n <assignment token>\n <function token>\n <function token>\n", "<import token>\n<class token>\n" ]
false
98,805
17b7049a636097f489b381f11d471e0e58116cf5
import re import pandas as pd import json from pprint import pprint # df = pd.read_json('./tweet_json.backup.txt', lines=True) # print(df.shape) # print(df['text'].isnull().sum()) # print(df[0]) with open('./tweet_json.backup.txt', 'r') as f: tweets = [json.loads(t) for t in f.readlines()] with open('./emojis.txt', 'r') as f: emojis = f.read().split(',') def extract_emojis(text): ''' Extracts emojis from text. ''' return [e for e in emojis if e in text] dataset = [] for i, t in enumerate(tweets): text = t['extended_tweet']['full_text'] if t['truncated'] else t['text'] # Remove line breaks text = text.replace('\n', ' ').replace('\r', ' ') # Remove links text = re.sub(r'http\S+', '', text) # Extract emojis emos = extract_emojis(text) # Remove non alphanumerics but leave spaces text = re.sub(r'([^\s\w]|_)+', '', text) print(text, emos, len(emos)) print('---------------------------------------------') if emos: dataset.append({ 'text': text, 'emojis': ','.join(emos) }) # print(text) if i > 20: break with open('tweet_emoji_dataset.txt', 'w+', encoding='utf8') as f: for d in dataset: j = json.dumps(d, ensure_ascii=False) f.write(j + '\n')
[ "import re\nimport pandas as pd\nimport json\nfrom pprint import pprint\n\n# df = pd.read_json('./tweet_json.backup.txt', lines=True)\n# print(df.shape)\n# print(df['text'].isnull().sum())\n# print(df[0])\n\nwith open('./tweet_json.backup.txt', 'r') as f:\n tweets = [json.loads(t) for t in f.readlines()]\n\nwith open('./emojis.txt', 'r') as f:\n emojis = f.read().split(',')\n\ndef extract_emojis(text):\n ''' Extracts emojis from text. '''\n return [e for e in emojis if e in text]\n\ndataset = []\nfor i, t in enumerate(tweets):\n text = t['extended_tweet']['full_text'] if t['truncated'] else t['text']\n\n # Remove line breaks\n text = text.replace('\\n', ' ').replace('\\r', ' ')\n\n # Remove links\n text = re.sub(r'http\\S+', '', text)\n\n # Extract emojis\n emos = extract_emojis(text)\n\n # Remove non alphanumerics but leave spaces\n text = re.sub(r'([^\\s\\w]|_)+', '', text)\n print(text, emos, len(emos))\n print('---------------------------------------------')\n\n if emos:\n dataset.append({\n 'text': text,\n 'emojis': ','.join(emos)\n })\n\n # print(text)\n if i > 20:\n break\n\nwith open('tweet_emoji_dataset.txt', 'w+', encoding='utf8') as f:\n for d in dataset:\n j = json.dumps(d, ensure_ascii=False)\n f.write(j + '\\n')\n", "import re\nimport pandas as pd\nimport json\nfrom pprint import pprint\nwith open('./tweet_json.backup.txt', 'r') as f:\n tweets = [json.loads(t) for t in f.readlines()]\nwith open('./emojis.txt', 'r') as f:\n emojis = f.read().split(',')\n\n\ndef extract_emojis(text):\n \"\"\" Extracts emojis from text. \"\"\"\n return [e for e in emojis if e in text]\n\n\ndataset = []\nfor i, t in enumerate(tweets):\n text = t['extended_tweet']['full_text'] if t['truncated'] else t['text']\n text = text.replace('\\n', ' ').replace('\\r', ' ')\n text = re.sub('http\\\\S+', '', text)\n emos = extract_emojis(text)\n text = re.sub('([^\\\\s\\\\w]|_)+', '', text)\n print(text, emos, len(emos))\n print('---------------------------------------------')\n if emos:\n dataset.append({'text': text, 'emojis': ','.join(emos)})\n if i > 20:\n break\nwith open('tweet_emoji_dataset.txt', 'w+', encoding='utf8') as f:\n for d in dataset:\n j = json.dumps(d, ensure_ascii=False)\n f.write(j + '\\n')\n", "<import token>\nwith open('./tweet_json.backup.txt', 'r') as f:\n tweets = [json.loads(t) for t in f.readlines()]\nwith open('./emojis.txt', 'r') as f:\n emojis = f.read().split(',')\n\n\ndef extract_emojis(text):\n \"\"\" Extracts emojis from text. \"\"\"\n return [e for e in emojis if e in text]\n\n\ndataset = []\nfor i, t in enumerate(tweets):\n text = t['extended_tweet']['full_text'] if t['truncated'] else t['text']\n text = text.replace('\\n', ' ').replace('\\r', ' ')\n text = re.sub('http\\\\S+', '', text)\n emos = extract_emojis(text)\n text = re.sub('([^\\\\s\\\\w]|_)+', '', text)\n print(text, emos, len(emos))\n print('---------------------------------------------')\n if emos:\n dataset.append({'text': text, 'emojis': ','.join(emos)})\n if i > 20:\n break\nwith open('tweet_emoji_dataset.txt', 'w+', encoding='utf8') as f:\n for d in dataset:\n j = json.dumps(d, ensure_ascii=False)\n f.write(j + '\\n')\n", "<import token>\nwith open('./tweet_json.backup.txt', 'r') as f:\n tweets = [json.loads(t) for t in f.readlines()]\nwith open('./emojis.txt', 'r') as f:\n emojis = f.read().split(',')\n\n\ndef extract_emojis(text):\n \"\"\" Extracts emojis from text. \"\"\"\n return [e for e in emojis if e in text]\n\n\n<assignment token>\nfor i, t in enumerate(tweets):\n text = t['extended_tweet']['full_text'] if t['truncated'] else t['text']\n text = text.replace('\\n', ' ').replace('\\r', ' ')\n text = re.sub('http\\\\S+', '', text)\n emos = extract_emojis(text)\n text = re.sub('([^\\\\s\\\\w]|_)+', '', text)\n print(text, emos, len(emos))\n print('---------------------------------------------')\n if emos:\n dataset.append({'text': text, 'emojis': ','.join(emos)})\n if i > 20:\n break\nwith open('tweet_emoji_dataset.txt', 'w+', encoding='utf8') as f:\n for d in dataset:\n j = json.dumps(d, ensure_ascii=False)\n f.write(j + '\\n')\n", "<import token>\n<code token>\n\n\ndef extract_emojis(text):\n \"\"\" Extracts emojis from text. \"\"\"\n return [e for e in emojis if e in text]\n\n\n<assignment token>\n<code token>\n", "<import token>\n<code token>\n<function token>\n<assignment token>\n<code token>\n" ]
false
98,806
a6dc34eddd9ad46dc36f9cf644c27fc248383724
from pyspark.sql import SparkSession from pyspark.sql.types import StructType, IntegerType, StringType, StructField schema = StructType( [ StructField("id", IntegerType(), False), StructField("first_name", StringType(), True), StructField("last_name", StringType(), False) ] ) def main(args): mode = args[0] spark = SparkSession.builder.appName("Test_parquet").master("local").getOrCreate() df = spark.read.parquet(r"C:\Users\Saurabh Singh\Downloads\userdata1.parquet") \ .select("id", "first_name", "last_name").rdd if len(mode) == 1: print("Mode B") df2 = spark.read.parquet(r"C:\Users\Saurabh Singh\Downloads\userdata1.parquet") else: print("Mode A") df2 = spark.createDataFrame(df, schema=schema) df2.printSchema() df2.show() spark.stop() if __name__ == '__main__': x=input("Please Enter:") main('')
[ "from pyspark.sql import SparkSession\nfrom pyspark.sql.types import StructType, IntegerType, StringType, StructField\n\nschema = StructType(\n [\n StructField(\"id\", IntegerType(), False),\n StructField(\"first_name\", StringType(), True),\n StructField(\"last_name\", StringType(), False)\n ]\n)\n\n\ndef main(args):\n mode = args[0]\n spark = SparkSession.builder.appName(\"Test_parquet\").master(\"local\").getOrCreate()\n df = spark.read.parquet(r\"C:\\Users\\Saurabh Singh\\Downloads\\userdata1.parquet\") \\\n .select(\"id\", \"first_name\", \"last_name\").rdd\n\n if len(mode) == 1:\n print(\"Mode B\")\n df2 = spark.read.parquet(r\"C:\\Users\\Saurabh Singh\\Downloads\\userdata1.parquet\")\n else:\n print(\"Mode A\")\n df2 = spark.createDataFrame(df, schema=schema)\n\n df2.printSchema()\n df2.show()\n spark.stop()\n\n\nif __name__ == '__main__':\n x=input(\"Please Enter:\")\n main('')\n", "from pyspark.sql import SparkSession\nfrom pyspark.sql.types import StructType, IntegerType, StringType, StructField\nschema = StructType([StructField('id', IntegerType(), False), StructField(\n 'first_name', StringType(), True), StructField('last_name', StringType(\n ), False)])\n\n\ndef main(args):\n mode = args[0]\n spark = SparkSession.builder.appName('Test_parquet').master('local'\n ).getOrCreate()\n df = spark.read.parquet(\n 'C:\\\\Users\\\\Saurabh Singh\\\\Downloads\\\\userdata1.parquet').select('id',\n 'first_name', 'last_name').rdd\n if len(mode) == 1:\n print('Mode B')\n df2 = spark.read.parquet(\n 'C:\\\\Users\\\\Saurabh Singh\\\\Downloads\\\\userdata1.parquet')\n else:\n print('Mode A')\n df2 = spark.createDataFrame(df, schema=schema)\n df2.printSchema()\n df2.show()\n spark.stop()\n\n\nif __name__ == '__main__':\n x = input('Please Enter:')\n main('')\n", "<import token>\nschema = StructType([StructField('id', IntegerType(), False), StructField(\n 'first_name', StringType(), True), StructField('last_name', StringType(\n ), False)])\n\n\ndef main(args):\n mode = args[0]\n spark = SparkSession.builder.appName('Test_parquet').master('local'\n ).getOrCreate()\n df = spark.read.parquet(\n 'C:\\\\Users\\\\Saurabh Singh\\\\Downloads\\\\userdata1.parquet').select('id',\n 'first_name', 'last_name').rdd\n if len(mode) == 1:\n print('Mode B')\n df2 = spark.read.parquet(\n 'C:\\\\Users\\\\Saurabh Singh\\\\Downloads\\\\userdata1.parquet')\n else:\n print('Mode A')\n df2 = spark.createDataFrame(df, schema=schema)\n df2.printSchema()\n df2.show()\n spark.stop()\n\n\nif __name__ == '__main__':\n x = input('Please Enter:')\n main('')\n", "<import token>\n<assignment token>\n\n\ndef main(args):\n mode = args[0]\n spark = SparkSession.builder.appName('Test_parquet').master('local'\n ).getOrCreate()\n df = spark.read.parquet(\n 'C:\\\\Users\\\\Saurabh Singh\\\\Downloads\\\\userdata1.parquet').select('id',\n 'first_name', 'last_name').rdd\n if len(mode) == 1:\n print('Mode B')\n df2 = spark.read.parquet(\n 'C:\\\\Users\\\\Saurabh Singh\\\\Downloads\\\\userdata1.parquet')\n else:\n print('Mode A')\n df2 = spark.createDataFrame(df, schema=schema)\n df2.printSchema()\n df2.show()\n spark.stop()\n\n\nif __name__ == '__main__':\n x = input('Please Enter:')\n main('')\n", "<import token>\n<assignment token>\n\n\ndef main(args):\n mode = args[0]\n spark = SparkSession.builder.appName('Test_parquet').master('local'\n ).getOrCreate()\n df = spark.read.parquet(\n 'C:\\\\Users\\\\Saurabh Singh\\\\Downloads\\\\userdata1.parquet').select('id',\n 'first_name', 'last_name').rdd\n if len(mode) == 1:\n print('Mode B')\n df2 = spark.read.parquet(\n 'C:\\\\Users\\\\Saurabh Singh\\\\Downloads\\\\userdata1.parquet')\n else:\n print('Mode A')\n df2 = spark.createDataFrame(df, schema=schema)\n df2.printSchema()\n df2.show()\n spark.stop()\n\n\n<code token>\n", "<import token>\n<assignment token>\n<function token>\n<code token>\n" ]
false
98,807
52cad58f2cfaad31208cea7f18205c79f2cf22e6
import operator def comparator(a, b): if a[1] > b[1]: return -1; elif a[1] == b[1]: if a[0] > b[0]: return 1 else: return -1 else: return 1 if __name__ == '__main__': # Read the input and split it out. input = open('input.txt', 'r') rooms = [x.strip() for x in input.readlines()] infos = [[x, x[: -11], x[-10:-7], x[-6:-1]] for x in rooms] # info[0] = original # info[1] = encrypted # info[2] = sector # info[3] = checksum sector_count = 0 for info in infos: print info # Establish the count of each letter. counts = {} for x in info[1]: if x == '-': continue counts[x] = info[1].count(x) print counts # Sort first by the count. We then need to sort # alphabetically to break ties. Use our custom # comparator to achieve this. sorted_counts = sorted(counts.items(), cmp=comparator) print sorted_counts # Now look into the checksum and check to see that # the characters appear in order. Assume the room # is legit until proven otherwise. valid = True for x in info[3]: tuple = sorted_counts.pop(0) if tuple[0] != x: print "Wanted " + x + " but found " + tuple[0] valid = False break; # Now we know if the room is valid or not. print "Valid: " + str(valid) if valid: sector_count += int(info[2]) print "Sector sum: " + str(sector_count)
[ "import operator\n\ndef comparator(a, b):\n if a[1] > b[1]:\n return -1;\n elif a[1] == b[1]:\n if a[0] > b[0]:\n return 1\n else:\n return -1\n else:\n return 1\n\nif __name__ == '__main__':\n # Read the input and split it out.\n input = open('input.txt', 'r')\n rooms = [x.strip() for x in input.readlines()]\n infos = [[x, x[: -11], x[-10:-7], x[-6:-1]] for x in rooms]\n\n # info[0] = original\n # info[1] = encrypted\n # info[2] = sector\n # info[3] = checksum\n\n sector_count = 0\n for info in infos:\n print info\n # Establish the count of each letter.\n counts = {}\n for x in info[1]:\n if x == '-':\n continue\n counts[x] = info[1].count(x)\n print counts\n\n # Sort first by the count. We then need to sort\n # alphabetically to break ties. Use our custom\n # comparator to achieve this.\n sorted_counts = sorted(counts.items(), cmp=comparator)\n print sorted_counts\n\n # Now look into the checksum and check to see that\n # the characters appear in order. Assume the room\n # is legit until proven otherwise.\n valid = True\n for x in info[3]:\n tuple = sorted_counts.pop(0)\n if tuple[0] != x:\n print \"Wanted \" + x + \" but found \" + tuple[0]\n valid = False\n break;\n\n # Now we know if the room is valid or not.\n print \"Valid: \" + str(valid)\n if valid:\n sector_count += int(info[2])\n print \"Sector sum: \" + str(sector_count)\n\n" ]
true
98,808
02de12373fd346ae9c8fe97f137e7b5dfb85d3ca
import pickle import chess.pgn import sys f = open("lichess_db_standard_rated_2021-06.pgn") out = open("headers.pckl","wb") #Grab just 5min games count = 0 flip = 0 while f: g = chess.pgn.read_headers(f) if not g : break #skip unrated try: g["WhiteRatingDiff"] except: continue if g["TimeControl"] == '300+0': count += 1 if count % 2000 : if flip: print('.', end='') else: print(":",end='') sys.stdout.flush() pickle.dump(g, out) print("games found : ", count)
[ "import pickle\r\nimport chess.pgn\r\nimport sys\r\n\r\n\r\nf = open(\"lichess_db_standard_rated_2021-06.pgn\")\r\nout = open(\"headers.pckl\",\"wb\")\r\n#Grab just 5min games\r\ncount = 0\r\nflip = 0\r\nwhile f:\r\n g = chess.pgn.read_headers(f)\r\n if not g : break\r\n #skip unrated\r\n try:\r\n g[\"WhiteRatingDiff\"]\r\n except:\r\n continue \r\n if g[\"TimeControl\"] == '300+0':\r\n count += 1\r\n if count % 2000 :\r\n if flip:\r\n print('.', end='')\r\n else:\r\n print(\":\",end='')\r\n sys.stdout.flush()\r\n pickle.dump(g, out)\r\nprint(\"games found : \", count)", "import pickle\nimport chess.pgn\nimport sys\nf = open('lichess_db_standard_rated_2021-06.pgn')\nout = open('headers.pckl', 'wb')\ncount = 0\nflip = 0\nwhile f:\n g = chess.pgn.read_headers(f)\n if not g:\n break\n try:\n g['WhiteRatingDiff']\n except:\n continue\n if g['TimeControl'] == '300+0':\n count += 1\n if count % 2000:\n if flip:\n print('.', end='')\n else:\n print(':', end='')\n sys.stdout.flush()\n pickle.dump(g, out)\nprint('games found : ', count)\n", "<import token>\nf = open('lichess_db_standard_rated_2021-06.pgn')\nout = open('headers.pckl', 'wb')\ncount = 0\nflip = 0\nwhile f:\n g = chess.pgn.read_headers(f)\n if not g:\n break\n try:\n g['WhiteRatingDiff']\n except:\n continue\n if g['TimeControl'] == '300+0':\n count += 1\n if count % 2000:\n if flip:\n print('.', end='')\n else:\n print(':', end='')\n sys.stdout.flush()\n pickle.dump(g, out)\nprint('games found : ', count)\n", "<import token>\n<assignment token>\nwhile f:\n g = chess.pgn.read_headers(f)\n if not g:\n break\n try:\n g['WhiteRatingDiff']\n except:\n continue\n if g['TimeControl'] == '300+0':\n count += 1\n if count % 2000:\n if flip:\n print('.', end='')\n else:\n print(':', end='')\n sys.stdout.flush()\n pickle.dump(g, out)\nprint('games found : ', count)\n", "<import token>\n<assignment token>\n<code token>\n" ]
false
98,809
4f5f52d15c98066ac504ac3fd2697aee58089c12
# -*- coding: utf-8 -*- import chainer import chainer.links as L import chainer.functions as F from chainer import Chain class LSTMNet(Chain): def __init__(self, n_unit, n_out): super(LSTMNet, self).__init__() with self.init_scope(): self.fc1 = L.Linear(None, n_unit) self.lstm = L.LSTM(None, n_unit) self.fc2 = L.Linear(None, n_out) def reset_state(self): self.lstm.reset_state() def __call__(self, x): h = self.fc1(x) h = self.lstm(h) return self.fc2(h) class NStepLSTMNet(Chain): def __init__(self, n_layer, n_unit, n_out): super(NStepLSTMNet, self).__init__() with self.init_scope(): self.fc1 = L.Linear(None, n_unit) self.lstm = L.NStepLSTM(n_layers=n_layer, in_size=n_unit, out_size=n_unit, dropout=0.) self.fc2 = L.Linear(None, n_out) self.n_layer = n_layer self.n_unit = n_unit def __call__(self, x): xp = chainer.cuda.get_array_module(x[0].data) cx = F.concat(x, axis=0) cx = cx.reshape(-1, 1) ex = self.fc1(cx) x_len = [len(x_) for x_ in x] x_section = xp.cumsum(x_len[:-1]) exs = F.split_axis(ex, x_section, 0, force_tuple=True) _, _, h = self.lstm(None, None, exs) ch = F.concat(h, axis=0) ch = ch.reshape(-1, self.n_unit) eh = self.fc2(ch) eh = eh.reshape(-1, ) h_len = [len(h_) for h_ in h] h_section = xp.cumsum(h_len[:-1]) ehs = F.split_axis(eh, h_section, 0, force_tuple=True) return ehs
[ "# -*- coding: utf-8 -*-\nimport chainer\nimport chainer.links as L\nimport chainer.functions as F\nfrom chainer import Chain\n\n\nclass LSTMNet(Chain):\n\n def __init__(self, n_unit, n_out):\n super(LSTMNet, self).__init__()\n with self.init_scope():\n self.fc1 = L.Linear(None, n_unit)\n self.lstm = L.LSTM(None, n_unit)\n self.fc2 = L.Linear(None, n_out)\n\n def reset_state(self):\n self.lstm.reset_state()\n\n def __call__(self, x):\n h = self.fc1(x)\n h = self.lstm(h)\n return self.fc2(h)\n \n\nclass NStepLSTMNet(Chain):\n\n def __init__(self, n_layer, n_unit, n_out):\n super(NStepLSTMNet, self).__init__()\n with self.init_scope():\n self.fc1 = L.Linear(None, n_unit)\n self.lstm = L.NStepLSTM(n_layers=n_layer, in_size=n_unit, out_size=n_unit, dropout=0.)\n self.fc2 = L.Linear(None, n_out)\n\n self.n_layer = n_layer\n self.n_unit = n_unit\n\n def __call__(self, x):\n xp = chainer.cuda.get_array_module(x[0].data)\n\n cx = F.concat(x, axis=0)\n cx = cx.reshape(-1, 1)\n\n ex = self.fc1(cx)\n\n x_len = [len(x_) for x_ in x]\n x_section = xp.cumsum(x_len[:-1])\n exs = F.split_axis(ex, x_section, 0, force_tuple=True)\n\n _, _, h = self.lstm(None, None, exs)\n\n ch = F.concat(h, axis=0)\n ch = ch.reshape(-1, self.n_unit)\n\n eh = self.fc2(ch)\n eh = eh.reshape(-1, )\n\n h_len = [len(h_) for h_ in h]\n h_section = xp.cumsum(h_len[:-1])\n ehs = F.split_axis(eh, h_section, 0, force_tuple=True)\n\n return ehs\n\n", "import chainer\nimport chainer.links as L\nimport chainer.functions as F\nfrom chainer import Chain\n\n\nclass LSTMNet(Chain):\n\n def __init__(self, n_unit, n_out):\n super(LSTMNet, self).__init__()\n with self.init_scope():\n self.fc1 = L.Linear(None, n_unit)\n self.lstm = L.LSTM(None, n_unit)\n self.fc2 = L.Linear(None, n_out)\n\n def reset_state(self):\n self.lstm.reset_state()\n\n def __call__(self, x):\n h = self.fc1(x)\n h = self.lstm(h)\n return self.fc2(h)\n\n\nclass NStepLSTMNet(Chain):\n\n def __init__(self, n_layer, n_unit, n_out):\n super(NStepLSTMNet, self).__init__()\n with self.init_scope():\n self.fc1 = L.Linear(None, n_unit)\n self.lstm = L.NStepLSTM(n_layers=n_layer, in_size=n_unit,\n out_size=n_unit, dropout=0.0)\n self.fc2 = L.Linear(None, n_out)\n self.n_layer = n_layer\n self.n_unit = n_unit\n\n def __call__(self, x):\n xp = chainer.cuda.get_array_module(x[0].data)\n cx = F.concat(x, axis=0)\n cx = cx.reshape(-1, 1)\n ex = self.fc1(cx)\n x_len = [len(x_) for x_ in x]\n x_section = xp.cumsum(x_len[:-1])\n exs = F.split_axis(ex, x_section, 0, force_tuple=True)\n _, _, h = self.lstm(None, None, exs)\n ch = F.concat(h, axis=0)\n ch = ch.reshape(-1, self.n_unit)\n eh = self.fc2(ch)\n eh = eh.reshape(-1)\n h_len = [len(h_) for h_ in h]\n h_section = xp.cumsum(h_len[:-1])\n ehs = F.split_axis(eh, h_section, 0, force_tuple=True)\n return ehs\n", "<import token>\n\n\nclass LSTMNet(Chain):\n\n def __init__(self, n_unit, n_out):\n super(LSTMNet, self).__init__()\n with self.init_scope():\n self.fc1 = L.Linear(None, n_unit)\n self.lstm = L.LSTM(None, n_unit)\n self.fc2 = L.Linear(None, n_out)\n\n def reset_state(self):\n self.lstm.reset_state()\n\n def __call__(self, x):\n h = self.fc1(x)\n h = self.lstm(h)\n return self.fc2(h)\n\n\nclass NStepLSTMNet(Chain):\n\n def __init__(self, n_layer, n_unit, n_out):\n super(NStepLSTMNet, self).__init__()\n with self.init_scope():\n self.fc1 = L.Linear(None, n_unit)\n self.lstm = L.NStepLSTM(n_layers=n_layer, in_size=n_unit,\n out_size=n_unit, dropout=0.0)\n self.fc2 = L.Linear(None, n_out)\n self.n_layer = n_layer\n self.n_unit = n_unit\n\n def __call__(self, x):\n xp = chainer.cuda.get_array_module(x[0].data)\n cx = F.concat(x, axis=0)\n cx = cx.reshape(-1, 1)\n ex = self.fc1(cx)\n x_len = [len(x_) for x_ in x]\n x_section = xp.cumsum(x_len[:-1])\n exs = F.split_axis(ex, x_section, 0, force_tuple=True)\n _, _, h = self.lstm(None, None, exs)\n ch = F.concat(h, axis=0)\n ch = ch.reshape(-1, self.n_unit)\n eh = self.fc2(ch)\n eh = eh.reshape(-1)\n h_len = [len(h_) for h_ in h]\n h_section = xp.cumsum(h_len[:-1])\n ehs = F.split_axis(eh, h_section, 0, force_tuple=True)\n return ehs\n", "<import token>\n\n\nclass LSTMNet(Chain):\n\n def __init__(self, n_unit, n_out):\n super(LSTMNet, self).__init__()\n with self.init_scope():\n self.fc1 = L.Linear(None, n_unit)\n self.lstm = L.LSTM(None, n_unit)\n self.fc2 = L.Linear(None, n_out)\n\n def reset_state(self):\n self.lstm.reset_state()\n <function token>\n\n\nclass NStepLSTMNet(Chain):\n\n def __init__(self, n_layer, n_unit, n_out):\n super(NStepLSTMNet, self).__init__()\n with self.init_scope():\n self.fc1 = L.Linear(None, n_unit)\n self.lstm = L.NStepLSTM(n_layers=n_layer, in_size=n_unit,\n out_size=n_unit, dropout=0.0)\n self.fc2 = L.Linear(None, n_out)\n self.n_layer = n_layer\n self.n_unit = n_unit\n\n def __call__(self, x):\n xp = chainer.cuda.get_array_module(x[0].data)\n cx = F.concat(x, axis=0)\n cx = cx.reshape(-1, 1)\n ex = self.fc1(cx)\n x_len = [len(x_) for x_ in x]\n x_section = xp.cumsum(x_len[:-1])\n exs = F.split_axis(ex, x_section, 0, force_tuple=True)\n _, _, h = self.lstm(None, None, exs)\n ch = F.concat(h, axis=0)\n ch = ch.reshape(-1, self.n_unit)\n eh = self.fc2(ch)\n eh = eh.reshape(-1)\n h_len = [len(h_) for h_ in h]\n h_section = xp.cumsum(h_len[:-1])\n ehs = F.split_axis(eh, h_section, 0, force_tuple=True)\n return ehs\n", "<import token>\n\n\nclass LSTMNet(Chain):\n\n def __init__(self, n_unit, n_out):\n super(LSTMNet, self).__init__()\n with self.init_scope():\n self.fc1 = L.Linear(None, n_unit)\n self.lstm = L.LSTM(None, n_unit)\n self.fc2 = L.Linear(None, n_out)\n <function token>\n <function token>\n\n\nclass NStepLSTMNet(Chain):\n\n def __init__(self, n_layer, n_unit, n_out):\n super(NStepLSTMNet, self).__init__()\n with self.init_scope():\n self.fc1 = L.Linear(None, n_unit)\n self.lstm = L.NStepLSTM(n_layers=n_layer, in_size=n_unit,\n out_size=n_unit, dropout=0.0)\n self.fc2 = L.Linear(None, n_out)\n self.n_layer = n_layer\n self.n_unit = n_unit\n\n def __call__(self, x):\n xp = chainer.cuda.get_array_module(x[0].data)\n cx = F.concat(x, axis=0)\n cx = cx.reshape(-1, 1)\n ex = self.fc1(cx)\n x_len = [len(x_) for x_ in x]\n x_section = xp.cumsum(x_len[:-1])\n exs = F.split_axis(ex, x_section, 0, force_tuple=True)\n _, _, h = self.lstm(None, None, exs)\n ch = F.concat(h, axis=0)\n ch = ch.reshape(-1, self.n_unit)\n eh = self.fc2(ch)\n eh = eh.reshape(-1)\n h_len = [len(h_) for h_ in h]\n h_section = xp.cumsum(h_len[:-1])\n ehs = F.split_axis(eh, h_section, 0, force_tuple=True)\n return ehs\n", "<import token>\n\n\nclass LSTMNet(Chain):\n <function token>\n <function token>\n <function token>\n\n\nclass NStepLSTMNet(Chain):\n\n def __init__(self, n_layer, n_unit, n_out):\n super(NStepLSTMNet, self).__init__()\n with self.init_scope():\n self.fc1 = L.Linear(None, n_unit)\n self.lstm = L.NStepLSTM(n_layers=n_layer, in_size=n_unit,\n out_size=n_unit, dropout=0.0)\n self.fc2 = L.Linear(None, n_out)\n self.n_layer = n_layer\n self.n_unit = n_unit\n\n def __call__(self, x):\n xp = chainer.cuda.get_array_module(x[0].data)\n cx = F.concat(x, axis=0)\n cx = cx.reshape(-1, 1)\n ex = self.fc1(cx)\n x_len = [len(x_) for x_ in x]\n x_section = xp.cumsum(x_len[:-1])\n exs = F.split_axis(ex, x_section, 0, force_tuple=True)\n _, _, h = self.lstm(None, None, exs)\n ch = F.concat(h, axis=0)\n ch = ch.reshape(-1, self.n_unit)\n eh = self.fc2(ch)\n eh = eh.reshape(-1)\n h_len = [len(h_) for h_ in h]\n h_section = xp.cumsum(h_len[:-1])\n ehs = F.split_axis(eh, h_section, 0, force_tuple=True)\n return ehs\n", "<import token>\n<class token>\n\n\nclass NStepLSTMNet(Chain):\n\n def __init__(self, n_layer, n_unit, n_out):\n super(NStepLSTMNet, self).__init__()\n with self.init_scope():\n self.fc1 = L.Linear(None, n_unit)\n self.lstm = L.NStepLSTM(n_layers=n_layer, in_size=n_unit,\n out_size=n_unit, dropout=0.0)\n self.fc2 = L.Linear(None, n_out)\n self.n_layer = n_layer\n self.n_unit = n_unit\n\n def __call__(self, x):\n xp = chainer.cuda.get_array_module(x[0].data)\n cx = F.concat(x, axis=0)\n cx = cx.reshape(-1, 1)\n ex = self.fc1(cx)\n x_len = [len(x_) for x_ in x]\n x_section = xp.cumsum(x_len[:-1])\n exs = F.split_axis(ex, x_section, 0, force_tuple=True)\n _, _, h = self.lstm(None, None, exs)\n ch = F.concat(h, axis=0)\n ch = ch.reshape(-1, self.n_unit)\n eh = self.fc2(ch)\n eh = eh.reshape(-1)\n h_len = [len(h_) for h_ in h]\n h_section = xp.cumsum(h_len[:-1])\n ehs = F.split_axis(eh, h_section, 0, force_tuple=True)\n return ehs\n", "<import token>\n<class token>\n\n\nclass NStepLSTMNet(Chain):\n\n def __init__(self, n_layer, n_unit, n_out):\n super(NStepLSTMNet, self).__init__()\n with self.init_scope():\n self.fc1 = L.Linear(None, n_unit)\n self.lstm = L.NStepLSTM(n_layers=n_layer, in_size=n_unit,\n out_size=n_unit, dropout=0.0)\n self.fc2 = L.Linear(None, n_out)\n self.n_layer = n_layer\n self.n_unit = n_unit\n <function token>\n", "<import token>\n<class token>\n\n\nclass NStepLSTMNet(Chain):\n <function token>\n <function token>\n", "<import token>\n<class token>\n<class token>\n" ]
false
98,810
2bf1a2e57ddaaccb1971794f8145418e5c1d5c7c
class Solution(object): def init(self): self.result = [] self.dcheck = set() def threeSum(self,nums,target,init): nl = len(nums) # print nums for j in range(nl): if init + nums[j] * 3 > target: return l,r = j+1,nl-1 while l < r: # print init,nums[j],nums[l],nums[r] sum4 = nums[j] + nums[l] + nums[r] + init if sum4 == target: t = tuple([init,nums[j],nums[l],nums[r]]) if t not in self.dcheck: self.result.append([init,nums[j],nums[l],nums[r]]) self.dcheck.add(t) l += 1 elif sum4 < target: l += 1 elif sum4 > target: r -= 1 def fourSum(self, nums,target): """ :type nums: List[int] :rtype: List[List[int]] """ self.init() nums = sorted(nums) l = len(nums) if 0 < l < 4: return self.result for i in range(l): if nums[i] * 4 > target: break self.threeSum(nums[i+1:],target,nums[i]) return self.result if __name__ == '__main__': s = Solution() print s.fourSum([-1,0,1,2,-1,-4],-1) # print s.fourSum([-3,-2,-1,0,0,1,2,3],0)
[ "class Solution(object):\n \n def init(self):\n self.result = []\n self.dcheck = set()\n \n def threeSum(self,nums,target,init):\n nl = len(nums)\n# print nums\n for j in range(nl):\n if init + nums[j] * 3 > target:\n return \n l,r = j+1,nl-1\n while l < r: \n# print init,nums[j],nums[l],nums[r]\n sum4 = nums[j] + nums[l] + nums[r] + init\n if sum4 == target:\n t = tuple([init,nums[j],nums[l],nums[r]]) \n if t not in self.dcheck:\n self.result.append([init,nums[j],nums[l],nums[r]])\n self.dcheck.add(t)\n l += 1\n elif sum4 < target:\n l += 1\n elif sum4 > target:\n r -= 1\n \n def fourSum(self, nums,target):\n \"\"\"\n :type nums: List[int]\n :rtype: List[List[int]]\n \"\"\"\n self.init()\n nums = sorted(nums)\n l = len(nums)\n if 0 < l < 4:\n return self.result\n for i in range(l):\n if nums[i] * 4 > target:\n break\n self.threeSum(nums[i+1:],target,nums[i])\n return self.result\n \nif __name__ == '__main__':\n s = Solution()\n print s.fourSum([-1,0,1,2,-1,-4],-1)\n# print s.fourSum([-3,-2,-1,0,0,1,2,3],0)\n " ]
true
98,811
1f3e1f94823386408b0e224e637e121c9a0dc58f
#!/usr/bin/env python ## asegura que se ejecute como codigo de python ## Nodo G, recibe de D y envia a H #Los nodos E,F,G funcionan de manera parecida en la recepcion de los datos #se importan las librerias import rospy from std_msgs.msg import String from std_msgs.msg import Float32 from std_msgs.msg import Char #incializacion del publisher pub = rospy.Publisher('CharG', String, queue_size=1) rta=""; #callback toma el dato string y lo separa para hallar el valor bajo medio y alto enviado mediante split() def callback(data): global rta; dato= data.data partes= dato.split('/') bajo=float((partes[0])) medio=float((partes[1])) alto=float((partes[2])) #opciones para respuesta baja if bajo>alto and bajo> medio: rta='b' #opciones para alto' if medio< alto and bajo<alto : rta= 'a' #opciones para medio if (medio>alto and medio> bajo) or (bajo==medio and medio>alto) or (alto==medio and medio>bajo) : rta= 'm' #funcion talker, inicializa el nodo, el subscriber y publica a rta def talker(): global rta; rospy.init_node('NodoG', anonymous=True) rospy.Subscriber('FuzzyD', String, callback) while not rospy.is_shutdown(): rate = rospy.Rate(0.5) #0.5z rospy.loginfo(rta) pub.publish(rta) rate.sleep() if __name__ == '__main__': try: talker() except rospy.ROSInterruptException: pass
[ "#!/usr/bin/env python\n## asegura que se ejecute como codigo de python\n\n## Nodo G, recibe de D y envia a H\n#Los nodos E,F,G funcionan de manera parecida en la recepcion de los datos\n\n#se importan las librerias\nimport rospy\nfrom std_msgs.msg import String\nfrom std_msgs.msg import Float32\nfrom std_msgs.msg import Char\n\n#incializacion del publisher\npub = rospy.Publisher('CharG', String, queue_size=1) \nrta=\"\";\n\n#callback toma el dato string y lo separa para hallar el valor bajo medio y alto enviado mediante split()\ndef callback(data):\n\n global rta;\n dato= data.data\n partes= dato.split('/')\n bajo=float((partes[0]))\n\n medio=float((partes[1]))\n\n alto=float((partes[2]))\n\n\n\n#opciones para respuesta baja\n if bajo>alto and bajo> medio:\n\trta='b'\n#opciones para alto'\n if medio< alto and bajo<alto :\n\trta= 'a'\n#opciones para medio\n if (medio>alto and medio> bajo) or (bajo==medio and medio>alto) or (alto==medio and medio>bajo) :\n rta= 'm'\n\n \n\n#funcion talker, inicializa el nodo, el subscriber y publica a rta\ndef talker():\n global rta;\n rospy.init_node('NodoG', anonymous=True) \n rospy.Subscriber('FuzzyD', String, callback) \n while not rospy.is_shutdown(): \n\trate = rospy.Rate(0.5) #0.5z\n\trospy.loginfo(rta)\n\tpub.publish(rta)\n\trate.sleep() \n\n\n\n\n \nif __name__ == '__main__':\n try:\n talker()\n except rospy.ROSInterruptException:\n pass\n \n" ]
true
98,812
e0f71ab448bc2d15ab4811cf987e4e63a75e7cd2
""" """ class Solution(object): def findNthDigit(self, n): """ :type n: int :rtype: int """ digitType = 1 digitNum= 9 while n > digitType * digitNum: n = n - digitType * digitNum digitType += 1 digitNum *= 10 n -= 1 realNum = (n/digitType) + 10 ** (digitType - 1) return int(str(realNum)[n % digitType]) if __name__ == '__main__': sol = Solution() assert sol.findNthDigit(13) == 1 assert sol.findNthDigit(3) == 3
[ "\"\"\"\n\n\"\"\"\n\nclass Solution(object):\n def findNthDigit(self, n):\n \"\"\"\n :type n: int\n :rtype: int\n \"\"\"\n digitType = 1\n digitNum= 9\n while n > digitType * digitNum:\n n = n - digitType * digitNum\n digitType += 1\n digitNum *= 10\n n -= 1\n realNum = (n/digitType) + 10 ** (digitType - 1)\n return int(str(realNum)[n % digitType])\n\nif __name__ == '__main__':\n sol = Solution()\n assert sol.findNthDigit(13) == 1\n assert sol.findNthDigit(3) == 3", "<docstring token>\n\n\nclass Solution(object):\n\n def findNthDigit(self, n):\n \"\"\"\n :type n: int\n :rtype: int\n \"\"\"\n digitType = 1\n digitNum = 9\n while n > digitType * digitNum:\n n = n - digitType * digitNum\n digitType += 1\n digitNum *= 10\n n -= 1\n realNum = n / digitType + 10 ** (digitType - 1)\n return int(str(realNum)[n % digitType])\n\n\nif __name__ == '__main__':\n sol = Solution()\n assert sol.findNthDigit(13) == 1\n assert sol.findNthDigit(3) == 3\n", "<docstring token>\n\n\nclass Solution(object):\n\n def findNthDigit(self, n):\n \"\"\"\n :type n: int\n :rtype: int\n \"\"\"\n digitType = 1\n digitNum = 9\n while n > digitType * digitNum:\n n = n - digitType * digitNum\n digitType += 1\n digitNum *= 10\n n -= 1\n realNum = n / digitType + 10 ** (digitType - 1)\n return int(str(realNum)[n % digitType])\n\n\n<code token>\n", "<docstring token>\n\n\nclass Solution(object):\n <function token>\n\n\n<code token>\n", "<docstring token>\n<class token>\n<code token>\n" ]
false
98,813
09a48c3b7ebb7c89dd23035b7c22aa4dd3109f89
from .pca import pca from .phate import phate from .tsne import tsne from .umap import umap
[ "from .pca import pca\nfrom .phate import phate\nfrom .tsne import tsne\nfrom .umap import umap\n", "<import token>\n" ]
false
98,814
d19d4857f0526af65acb804be3b5fc3370b0bb71
import argparse import torch from torch.autograd import Variable from torchvision.utils import save_image import numpy as np from model import * import os import torch.backends.cudnn as cudnn import time import utils import dataset import math from ripser import ripser from persim import plot_diagrams from pylab import subplot import matplotlib.pyplot as plt parser = argparse.ArgumentParser(description='PyTorch Cycle Domain Adaptation Training') parser.add_argument('--dataset', default='mnist', type=str, help='source dataset') parser.add_argument('-j', '--workers', default=4, type=int, metavar='N', help='number of data loading workers (default: 4)') parser.add_argument('--epoch', default=90, type=int, metavar='N', help='number of total epoch to run') parser.add_argument('--decay-epoch', default=30, type=int, metavar='N', help='epoch from which to start lr decay') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('--maxN', type=int, default=80, help='Maximum Buffer Size') parser.add_argument('-b', '--batch-size', default=128, type=int, metavar='N', help='mini-batch size (default: 256)') parser.add_argument('--lr', '--learning-rate', default=1e-4, type=float, metavar='LR', help='initial learning rate') parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum') parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float, metavar='W', help='weight decay (default: 1e-4)') parser.add_argument('--b1', type=float, default=0.5, help='adam: decay of first order momentum of gradient') parser.add_argument('--b2', type=float, default=0.999, help='adam: decay of first order momentum of gradient') parser.add_argument('--latent-size', type=int, default=64, help='dimension of latent z') parser.add_argument('--h', type=int, default=400, help='dimension of hidden layer') parser.add_argument('--img-size', type=int, default=28, help='input image width, height size') parser.add_argument('--dir', default='./', type=str, help='default save directory') parser.add_argument('--gpu', default='0', type=str, help='Multi GPU ids to use.') source_prediction_max_result = [] target_prediction_max_result = [] best_prec_result = torch.tensor(0, dtype=torch.float32) args = parser.parse_args() os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu torch.manual_seed(args.seed) cuda = True if torch.cuda.is_available() else False FloatTensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor LongTensor = torch.cuda.LongTensor if cuda else torch.LongTensor criterion_BCE = torch.nn.BCELoss(reduction='sum') criterion = torch.nn.CrossEntropyLoss() def loss_function(x_hat, x, mu, log_var): BCE = criterion_BCE(x_hat.view(x_hat.size(0), -1), x.view(x.size(0), -1)) KLD = -0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp()) return BCE + KLD, BCE.item(), KLD.item() class Memory(object): def __init__(self, args): self.N = args.maxN # size of ALL Buffer self.index = 0 self.z = torch.zeros([self.N, args.latent_size], device="cpu", dtype=torch.float32) def Insert_memory(self, z): # Actual Function if self.index >= self.N: self.index = 0 self.z[self.index] = z.data del(z) self.index = self.index + 1 def calc_TDA(self, epoch, cls_num): path = utils.make_directory(os.path.join(utils.default_model_dir, 'tda_total', str(cls_num))) path2 = utils.make_directory(os.path.join(utils.default_model_dir, 'tda_sub', str(cls_num))) dgms = ripser(self.z.data, maxdim=3)['dgms'] plot_diagrams(dgms) plt.savefig('{}/{}_total.png'.format(path, epoch)) plt.clf() if len(dgms[0]) is not 0: plot_diagrams(dgms, plot_only=[0], ax=subplot(221)) if len(dgms[1]) is not 0: plot_diagrams(dgms, plot_only=[1], ax=subplot(222)) if len(dgms[2]) is not 0: plot_diagrams(dgms, plot_only=[2], ax=subplot(223)) if len(dgms[3]) is not 0: plot_diagrams(dgms, plot_only=[3], ax=subplot(224)) plt.savefig('{}/{}_sub.png'.format(path2, epoch)) plt.clf() class MemorySet(object): def __init__(self, args): self.clsN = 10 self.Set = [] for i in range(self.clsN): self.Set.append(Memory(args=args)) def Batch_Insert(self, z, y): for i in range(z.size(0)): label = y[i] data = z[i] self.Set[label].Insert_memory(data) def calc_TDAs(self, epoch): for i in range(self.clsN): self.Set[i].calc_TDA(epoch, i) Memory = MemorySet(args=args) def main(): global args, best_prec_result start_epoch = 0 utils.default_model_dir = args.dir start_time = time.time() train_loader, test_loader, ch, wh = dataset_selector(args.dataset) sample = extract_sample(train_loader) state_info = utils.model_optim_state_info() state_info.model_init(Img=[ch, wh], H=args.h, latent_size=args.latent_size, num_class=10) state_info.model_cuda_init() state_info.weight_init() state_info.optimizer_init(args) if cuda: print("USE", torch.cuda.device_count(), "GPUs!") cudnn.benchmark = True state_info.learning_scheduler_init(args) for epoch in range(start_epoch, args.epoch): train(state_info, train_loader, epoch) test(state_info, test_loader, sample, epoch) state_info.learning_step() now = time.gmtime(time.time() - start_time) utils.print_log('{} hours {} mins {} secs for training'.format(now.tm_hour, now.tm_min, now.tm_sec)) def train(state_info, train_loader, epoch): # all utils.print_log('Type, Epoch, Batch, loss, BCE, KLD') state_info.set_train_mode() correct = torch.tensor(0, dtype=torch.float32) total = torch.tensor(0, dtype=torch.float32) for it, (x, y) in enumerate(train_loader): x, y = to_var(x, FloatTensor), to_var(y, LongTensor) x_hat, mu, log_var, z = state_info.forward(x) # Train state_info.optim_VAE.zero_grad() loss, BCE, KLD = loss_function(x_hat, x, mu, log_var) loss.backward(retain_graph=True) state_info.optim_VAE.step() # mapping info of <y, cls_output> print if it % 10 == 0: utils.print_log('Train, {}, {}, {:.6f}, {:.6f}, {:.6f}' .format(epoch, it, loss.item(), BCE, KLD)) print('Train, {}, {}, {:.6f}, {:.6f}, {:.6f}' .format(epoch, it, loss.item(), BCE, KLD)) utils.print_log('') def test(state_info, test_loader, sample, epoch): global Memory for it, (x, y) in enumerate(test_loader): x, y = to_var(x, FloatTensor), to_var(y, LongTensor) x_hat, mu, log_var, z = state_info.forward(x) Memory.Batch_Insert(z, y) Memory.calc_TDAs(epoch) make_sample_image(state_info, sample, epoch) utils.print_log('') def make_sample_image(state_info, sample, epoch): """Saves a grid of generated digits ranging from 0 to n_classes""" img_path = utils.make_directory(os.path.join(utils.default_model_dir, 'image')) sample_hat, _, _, _ = state_info.forward(sample) sample, sample_hat = to_data(sample), to_data(sample_hat) image = merge_images(sample, sample_hat) save_image(image.data, os.path.join(img_path, '%d.png' % epoch), normalize=True) def merge_images(sources, targets, row=10): _, _, h, w = sources.shape merged = np.zeros([3, row*h, row*w*2]) for idx, (s, t) in enumerate(zip(sources, targets)): i = idx // row j = idx % row if i is row: break merged[:, i*h:(i+1)*h, (j*2)*h:(j*2+1)*h] = s merged[:, i*h:(i+1)*h, (j*2+1)*h:(j*2+2)*h] = t return torch.from_numpy(merged) def dataset_selector(data): if data == 'mnist': return dataset.MNIST_loader(img_size=args.img_size) elif data == 'svhn': return dataset.SVHN_loader(img_size=32) elif data == "usps": return dataset.usps_loader(img_size=args.img_size) elif data == "mnistm": return dataset.MNIST_M_loader(img_size=args.img_size) def to_data(x): """Converts variable to numpy.""" if torch.cuda.is_available(): x = x.cpu() return x.data.numpy() def to_var(x, dtype): return Variable(x.type(dtype)) def extract_sample(train_loader): for step, (sample, _) in enumerate(train_loader): sample = to_var(sample, FloatTensor) break; return sample if __name__=='__main__': main()
[ "import argparse\nimport torch\nfrom torch.autograd import Variable\nfrom torchvision.utils import save_image\nimport numpy as np\nfrom model import *\nimport os\nimport torch.backends.cudnn as cudnn\nimport time\nimport utils\nimport dataset\nimport math\n\nfrom ripser import ripser\nfrom persim import plot_diagrams\nfrom pylab import subplot\nimport matplotlib.pyplot as plt\n\nparser = argparse.ArgumentParser(description='PyTorch Cycle Domain Adaptation Training')\nparser.add_argument('--dataset', default='mnist', type=str, help='source dataset')\nparser.add_argument('-j', '--workers', default=4, type=int, metavar='N', help='number of data loading workers (default: 4)')\nparser.add_argument('--epoch', default=90, type=int, metavar='N', help='number of total epoch to run')\nparser.add_argument('--decay-epoch', default=30, type=int, metavar='N', help='epoch from which to start lr decay')\nparser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)')\nparser.add_argument('--maxN', type=int, default=80, help='Maximum Buffer Size')\nparser.add_argument('-b', '--batch-size', default=128, type=int, metavar='N', help='mini-batch size (default: 256)')\nparser.add_argument('--lr', '--learning-rate', default=1e-4, type=float, metavar='LR', help='initial learning rate')\nparser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum')\nparser.add_argument('--weight-decay', '--wd', default=1e-4, type=float, metavar='W', help='weight decay (default: 1e-4)')\nparser.add_argument('--b1', type=float, default=0.5, help='adam: decay of first order momentum of gradient')\nparser.add_argument('--b2', type=float, default=0.999, help='adam: decay of first order momentum of gradient')\nparser.add_argument('--latent-size', type=int, default=64, help='dimension of latent z')\nparser.add_argument('--h', type=int, default=400, help='dimension of hidden layer')\nparser.add_argument('--img-size', type=int, default=28, help='input image width, height size')\n\nparser.add_argument('--dir', default='./', type=str, help='default save directory')\nparser.add_argument('--gpu', default='0', type=str, help='Multi GPU ids to use.')\n\nsource_prediction_max_result = []\ntarget_prediction_max_result = []\nbest_prec_result = torch.tensor(0, dtype=torch.float32)\n\nargs = parser.parse_args()\n\nos.environ[\"CUDA_VISIBLE_DEVICES\"] = args.gpu\ntorch.manual_seed(args.seed)\n\ncuda = True if torch.cuda.is_available() else False\nFloatTensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor\nLongTensor = torch.cuda.LongTensor if cuda else torch.LongTensor\n\ncriterion_BCE = torch.nn.BCELoss(reduction='sum')\ncriterion = torch.nn.CrossEntropyLoss()\n\ndef loss_function(x_hat, x, mu, log_var):\n BCE = criterion_BCE(x_hat.view(x_hat.size(0), -1), x.view(x.size(0), -1))\n KLD = -0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp())\n return BCE + KLD, BCE.item(), KLD.item()\n\nclass Memory(object):\n def __init__(self, args):\n self.N = args.maxN # size of ALL Buffer\n self.index = 0\n self.z = torch.zeros([self.N, args.latent_size], device=\"cpu\", dtype=torch.float32)\n\n def Insert_memory(self, z): # Actual Function\n if self.index >= self.N:\n self.index = 0\n self.z[self.index] = z.data\n del(z)\n self.index = self.index + 1\n\n def calc_TDA(self, epoch, cls_num):\n path = utils.make_directory(os.path.join(utils.default_model_dir, 'tda_total', str(cls_num)))\n path2 = utils.make_directory(os.path.join(utils.default_model_dir, 'tda_sub', str(cls_num)))\n dgms = ripser(self.z.data, maxdim=3)['dgms']\n plot_diagrams(dgms)\n plt.savefig('{}/{}_total.png'.format(path, epoch))\n plt.clf()\n if len(dgms[0]) is not 0:\n plot_diagrams(dgms, plot_only=[0], ax=subplot(221))\n if len(dgms[1]) is not 0:\n plot_diagrams(dgms, plot_only=[1], ax=subplot(222))\n if len(dgms[2]) is not 0:\n plot_diagrams(dgms, plot_only=[2], ax=subplot(223))\n if len(dgms[3]) is not 0:\n plot_diagrams(dgms, plot_only=[3], ax=subplot(224))\n plt.savefig('{}/{}_sub.png'.format(path2, epoch))\n plt.clf()\n\nclass MemorySet(object):\n def __init__(self, args):\n self.clsN = 10\n self.Set = []\n for i in range(self.clsN):\n self.Set.append(Memory(args=args))\n\n def Batch_Insert(self, z, y):\n for i in range(z.size(0)):\n label = y[i]\n data = z[i]\n self.Set[label].Insert_memory(data)\n\n def calc_TDAs(self, epoch):\n for i in range(self.clsN):\n self.Set[i].calc_TDA(epoch, i)\n\nMemory = MemorySet(args=args)\n\ndef main():\n global args, best_prec_result\n \n start_epoch = 0\n utils.default_model_dir = args.dir\n start_time = time.time()\n\n train_loader, test_loader, ch, wh = dataset_selector(args.dataset)\n sample = extract_sample(train_loader)\n\n state_info = utils.model_optim_state_info()\n state_info.model_init(Img=[ch, wh], H=args.h, latent_size=args.latent_size, num_class=10)\n state_info.model_cuda_init()\n state_info.weight_init()\n state_info.optimizer_init(args)\n\n if cuda:\n print(\"USE\", torch.cuda.device_count(), \"GPUs!\")\n cudnn.benchmark = True\n\n state_info.learning_scheduler_init(args)\n\n for epoch in range(start_epoch, args.epoch):\n \n train(state_info, train_loader, epoch)\n test(state_info, test_loader, sample, epoch)\n\n state_info.learning_step() \n\n now = time.gmtime(time.time() - start_time)\n utils.print_log('{} hours {} mins {} secs for training'.format(now.tm_hour, now.tm_min, now.tm_sec))\n\ndef train(state_info, train_loader, epoch): # all \n\n utils.print_log('Type, Epoch, Batch, loss, BCE, KLD')\n state_info.set_train_mode()\n correct = torch.tensor(0, dtype=torch.float32)\n total = torch.tensor(0, dtype=torch.float32)\n\n for it, (x, y) in enumerate(train_loader):\n\n x, y = to_var(x, FloatTensor), to_var(y, LongTensor)\n x_hat, mu, log_var, z = state_info.forward(x)\n \n # Train \n state_info.optim_VAE.zero_grad()\n loss, BCE, KLD = loss_function(x_hat, x, mu, log_var)\n loss.backward(retain_graph=True)\n state_info.optim_VAE.step()\n\n # mapping info of <y, cls_output> print\n if it % 10 == 0:\n utils.print_log('Train, {}, {}, {:.6f}, {:.6f}, {:.6f}'\n .format(epoch, it, loss.item(), BCE, KLD))\n print('Train, {}, {}, {:.6f}, {:.6f}, {:.6f}'\n .format(epoch, it, loss.item(), BCE, KLD))\n\n utils.print_log('')\n\ndef test(state_info, test_loader, sample, epoch):\n global Memory\n for it, (x, y) in enumerate(test_loader):\n x, y = to_var(x, FloatTensor), to_var(y, LongTensor)\n x_hat, mu, log_var, z = state_info.forward(x)\n Memory.Batch_Insert(z, y)\n\n Memory.calc_TDAs(epoch)\n\n make_sample_image(state_info, sample, epoch)\n utils.print_log('')\n\ndef make_sample_image(state_info, sample, epoch):\n \"\"\"Saves a grid of generated digits ranging from 0 to n_classes\"\"\"\n\n img_path = utils.make_directory(os.path.join(utils.default_model_dir, 'image'))\n sample_hat, _, _, _ = state_info.forward(sample)\n sample, sample_hat = to_data(sample), to_data(sample_hat)\n image = merge_images(sample, sample_hat)\n save_image(image.data, os.path.join(img_path, '%d.png' % epoch), normalize=True)\n\ndef merge_images(sources, targets, row=10):\n _, _, h, w = sources.shape\n merged = np.zeros([3, row*h, row*w*2])\n for idx, (s, t) in enumerate(zip(sources, targets)):\n i = idx // row\n j = idx % row\n if i is row:\n break\n merged[:, i*h:(i+1)*h, (j*2)*h:(j*2+1)*h] = s\n merged[:, i*h:(i+1)*h, (j*2+1)*h:(j*2+2)*h] = t\n\n return torch.from_numpy(merged)\n\ndef dataset_selector(data):\n if data == 'mnist':\n return dataset.MNIST_loader(img_size=args.img_size)\n elif data == 'svhn':\n return dataset.SVHN_loader(img_size=32)\n elif data == \"usps\":\n return dataset.usps_loader(img_size=args.img_size)\n elif data == \"mnistm\":\n return dataset.MNIST_M_loader(img_size=args.img_size)\n\ndef to_data(x):\n \"\"\"Converts variable to numpy.\"\"\"\n if torch.cuda.is_available():\n x = x.cpu()\n return x.data.numpy()\n\ndef to_var(x, dtype):\n return Variable(x.type(dtype))\n\ndef extract_sample(train_loader):\n\n for step, (sample, _) in enumerate(train_loader):\n sample = to_var(sample, FloatTensor)\n break;\n return sample\n\nif __name__=='__main__':\n main()", "import argparse\nimport torch\nfrom torch.autograd import Variable\nfrom torchvision.utils import save_image\nimport numpy as np\nfrom model import *\nimport os\nimport torch.backends.cudnn as cudnn\nimport time\nimport utils\nimport dataset\nimport math\nfrom ripser import ripser\nfrom persim import plot_diagrams\nfrom pylab import subplot\nimport matplotlib.pyplot as plt\nparser = argparse.ArgumentParser(description=\n 'PyTorch Cycle Domain Adaptation Training')\nparser.add_argument('--dataset', default='mnist', type=str, help=\n 'source dataset')\nparser.add_argument('-j', '--workers', default=4, type=int, metavar='N',\n help='number of data loading workers (default: 4)')\nparser.add_argument('--epoch', default=90, type=int, metavar='N', help=\n 'number of total epoch to run')\nparser.add_argument('--decay-epoch', default=30, type=int, metavar='N',\n help='epoch from which to start lr decay')\nparser.add_argument('--seed', type=int, default=1, metavar='S', help=\n 'random seed (default: 1)')\nparser.add_argument('--maxN', type=int, default=80, help='Maximum Buffer Size')\nparser.add_argument('-b', '--batch-size', default=128, type=int, metavar=\n 'N', help='mini-batch size (default: 256)')\nparser.add_argument('--lr', '--learning-rate', default=0.0001, type=float,\n metavar='LR', help='initial learning rate')\nparser.add_argument('--momentum', default=0.9, type=float, metavar='M',\n help='momentum')\nparser.add_argument('--weight-decay', '--wd', default=0.0001, type=float,\n metavar='W', help='weight decay (default: 1e-4)')\nparser.add_argument('--b1', type=float, default=0.5, help=\n 'adam: decay of first order momentum of gradient')\nparser.add_argument('--b2', type=float, default=0.999, help=\n 'adam: decay of first order momentum of gradient')\nparser.add_argument('--latent-size', type=int, default=64, help=\n 'dimension of latent z')\nparser.add_argument('--h', type=int, default=400, help=\n 'dimension of hidden layer')\nparser.add_argument('--img-size', type=int, default=28, help=\n 'input image width, height size')\nparser.add_argument('--dir', default='./', type=str, help=\n 'default save directory')\nparser.add_argument('--gpu', default='0', type=str, help=\n 'Multi GPU ids to use.')\nsource_prediction_max_result = []\ntarget_prediction_max_result = []\nbest_prec_result = torch.tensor(0, dtype=torch.float32)\nargs = parser.parse_args()\nos.environ['CUDA_VISIBLE_DEVICES'] = args.gpu\ntorch.manual_seed(args.seed)\ncuda = True if torch.cuda.is_available() else False\nFloatTensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor\nLongTensor = torch.cuda.LongTensor if cuda else torch.LongTensor\ncriterion_BCE = torch.nn.BCELoss(reduction='sum')\ncriterion = torch.nn.CrossEntropyLoss()\n\n\ndef loss_function(x_hat, x, mu, log_var):\n BCE = criterion_BCE(x_hat.view(x_hat.size(0), -1), x.view(x.size(0), -1))\n KLD = -0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp())\n return BCE + KLD, BCE.item(), KLD.item()\n\n\nclass Memory(object):\n\n def __init__(self, args):\n self.N = args.maxN\n self.index = 0\n self.z = torch.zeros([self.N, args.latent_size], device='cpu',\n dtype=torch.float32)\n\n def Insert_memory(self, z):\n if self.index >= self.N:\n self.index = 0\n self.z[self.index] = z.data\n del z\n self.index = self.index + 1\n\n def calc_TDA(self, epoch, cls_num):\n path = utils.make_directory(os.path.join(utils.default_model_dir,\n 'tda_total', str(cls_num)))\n path2 = utils.make_directory(os.path.join(utils.default_model_dir,\n 'tda_sub', str(cls_num)))\n dgms = ripser(self.z.data, maxdim=3)['dgms']\n plot_diagrams(dgms)\n plt.savefig('{}/{}_total.png'.format(path, epoch))\n plt.clf()\n if len(dgms[0]) is not 0:\n plot_diagrams(dgms, plot_only=[0], ax=subplot(221))\n if len(dgms[1]) is not 0:\n plot_diagrams(dgms, plot_only=[1], ax=subplot(222))\n if len(dgms[2]) is not 0:\n plot_diagrams(dgms, plot_only=[2], ax=subplot(223))\n if len(dgms[3]) is not 0:\n plot_diagrams(dgms, plot_only=[3], ax=subplot(224))\n plt.savefig('{}/{}_sub.png'.format(path2, epoch))\n plt.clf()\n\n\nclass MemorySet(object):\n\n def __init__(self, args):\n self.clsN = 10\n self.Set = []\n for i in range(self.clsN):\n self.Set.append(Memory(args=args))\n\n def Batch_Insert(self, z, y):\n for i in range(z.size(0)):\n label = y[i]\n data = z[i]\n self.Set[label].Insert_memory(data)\n\n def calc_TDAs(self, epoch):\n for i in range(self.clsN):\n self.Set[i].calc_TDA(epoch, i)\n\n\nMemory = MemorySet(args=args)\n\n\ndef main():\n global args, best_prec_result\n start_epoch = 0\n utils.default_model_dir = args.dir\n start_time = time.time()\n train_loader, test_loader, ch, wh = dataset_selector(args.dataset)\n sample = extract_sample(train_loader)\n state_info = utils.model_optim_state_info()\n state_info.model_init(Img=[ch, wh], H=args.h, latent_size=args.\n latent_size, num_class=10)\n state_info.model_cuda_init()\n state_info.weight_init()\n state_info.optimizer_init(args)\n if cuda:\n print('USE', torch.cuda.device_count(), 'GPUs!')\n cudnn.benchmark = True\n state_info.learning_scheduler_init(args)\n for epoch in range(start_epoch, args.epoch):\n train(state_info, train_loader, epoch)\n test(state_info, test_loader, sample, epoch)\n state_info.learning_step()\n now = time.gmtime(time.time() - start_time)\n utils.print_log('{} hours {} mins {} secs for training'.format(now.\n tm_hour, now.tm_min, now.tm_sec))\n\n\ndef train(state_info, train_loader, epoch):\n utils.print_log('Type, Epoch, Batch, loss, BCE, KLD')\n state_info.set_train_mode()\n correct = torch.tensor(0, dtype=torch.float32)\n total = torch.tensor(0, dtype=torch.float32)\n for it, (x, y) in enumerate(train_loader):\n x, y = to_var(x, FloatTensor), to_var(y, LongTensor)\n x_hat, mu, log_var, z = state_info.forward(x)\n state_info.optim_VAE.zero_grad()\n loss, BCE, KLD = loss_function(x_hat, x, mu, log_var)\n loss.backward(retain_graph=True)\n state_info.optim_VAE.step()\n if it % 10 == 0:\n utils.print_log('Train, {}, {}, {:.6f}, {:.6f}, {:.6f}'.format(\n epoch, it, loss.item(), BCE, KLD))\n print('Train, {}, {}, {:.6f}, {:.6f}, {:.6f}'.format(epoch, it,\n loss.item(), BCE, KLD))\n utils.print_log('')\n\n\ndef test(state_info, test_loader, sample, epoch):\n global Memory\n for it, (x, y) in enumerate(test_loader):\n x, y = to_var(x, FloatTensor), to_var(y, LongTensor)\n x_hat, mu, log_var, z = state_info.forward(x)\n Memory.Batch_Insert(z, y)\n Memory.calc_TDAs(epoch)\n make_sample_image(state_info, sample, epoch)\n utils.print_log('')\n\n\ndef make_sample_image(state_info, sample, epoch):\n \"\"\"Saves a grid of generated digits ranging from 0 to n_classes\"\"\"\n img_path = utils.make_directory(os.path.join(utils.default_model_dir,\n 'image'))\n sample_hat, _, _, _ = state_info.forward(sample)\n sample, sample_hat = to_data(sample), to_data(sample_hat)\n image = merge_images(sample, sample_hat)\n save_image(image.data, os.path.join(img_path, '%d.png' % epoch),\n normalize=True)\n\n\ndef merge_images(sources, targets, row=10):\n _, _, h, w = sources.shape\n merged = np.zeros([3, row * h, row * w * 2])\n for idx, (s, t) in enumerate(zip(sources, targets)):\n i = idx // row\n j = idx % row\n if i is row:\n break\n merged[:, i * h:(i + 1) * h, j * 2 * h:(j * 2 + 1) * h] = s\n merged[:, i * h:(i + 1) * h, (j * 2 + 1) * h:(j * 2 + 2) * h] = t\n return torch.from_numpy(merged)\n\n\ndef dataset_selector(data):\n if data == 'mnist':\n return dataset.MNIST_loader(img_size=args.img_size)\n elif data == 'svhn':\n return dataset.SVHN_loader(img_size=32)\n elif data == 'usps':\n return dataset.usps_loader(img_size=args.img_size)\n elif data == 'mnistm':\n return dataset.MNIST_M_loader(img_size=args.img_size)\n\n\ndef to_data(x):\n \"\"\"Converts variable to numpy.\"\"\"\n if torch.cuda.is_available():\n x = x.cpu()\n return x.data.numpy()\n\n\ndef to_var(x, dtype):\n return Variable(x.type(dtype))\n\n\ndef extract_sample(train_loader):\n for step, (sample, _) in enumerate(train_loader):\n sample = to_var(sample, FloatTensor)\n break\n return sample\n\n\nif __name__ == '__main__':\n main()\n", "<import token>\nparser = argparse.ArgumentParser(description=\n 'PyTorch Cycle Domain Adaptation Training')\nparser.add_argument('--dataset', default='mnist', type=str, help=\n 'source dataset')\nparser.add_argument('-j', '--workers', default=4, type=int, metavar='N',\n help='number of data loading workers (default: 4)')\nparser.add_argument('--epoch', default=90, type=int, metavar='N', help=\n 'number of total epoch to run')\nparser.add_argument('--decay-epoch', default=30, type=int, metavar='N',\n help='epoch from which to start lr decay')\nparser.add_argument('--seed', type=int, default=1, metavar='S', help=\n 'random seed (default: 1)')\nparser.add_argument('--maxN', type=int, default=80, help='Maximum Buffer Size')\nparser.add_argument('-b', '--batch-size', default=128, type=int, metavar=\n 'N', help='mini-batch size (default: 256)')\nparser.add_argument('--lr', '--learning-rate', default=0.0001, type=float,\n metavar='LR', help='initial learning rate')\nparser.add_argument('--momentum', default=0.9, type=float, metavar='M',\n help='momentum')\nparser.add_argument('--weight-decay', '--wd', default=0.0001, type=float,\n metavar='W', help='weight decay (default: 1e-4)')\nparser.add_argument('--b1', type=float, default=0.5, help=\n 'adam: decay of first order momentum of gradient')\nparser.add_argument('--b2', type=float, default=0.999, help=\n 'adam: decay of first order momentum of gradient')\nparser.add_argument('--latent-size', type=int, default=64, help=\n 'dimension of latent z')\nparser.add_argument('--h', type=int, default=400, help=\n 'dimension of hidden layer')\nparser.add_argument('--img-size', type=int, default=28, help=\n 'input image width, height size')\nparser.add_argument('--dir', default='./', type=str, help=\n 'default save directory')\nparser.add_argument('--gpu', default='0', type=str, help=\n 'Multi GPU ids to use.')\nsource_prediction_max_result = []\ntarget_prediction_max_result = []\nbest_prec_result = torch.tensor(0, dtype=torch.float32)\nargs = parser.parse_args()\nos.environ['CUDA_VISIBLE_DEVICES'] = args.gpu\ntorch.manual_seed(args.seed)\ncuda = True if torch.cuda.is_available() else False\nFloatTensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor\nLongTensor = torch.cuda.LongTensor if cuda else torch.LongTensor\ncriterion_BCE = torch.nn.BCELoss(reduction='sum')\ncriterion = torch.nn.CrossEntropyLoss()\n\n\ndef loss_function(x_hat, x, mu, log_var):\n BCE = criterion_BCE(x_hat.view(x_hat.size(0), -1), x.view(x.size(0), -1))\n KLD = -0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp())\n return BCE + KLD, BCE.item(), KLD.item()\n\n\nclass Memory(object):\n\n def __init__(self, args):\n self.N = args.maxN\n self.index = 0\n self.z = torch.zeros([self.N, args.latent_size], device='cpu',\n dtype=torch.float32)\n\n def Insert_memory(self, z):\n if self.index >= self.N:\n self.index = 0\n self.z[self.index] = z.data\n del z\n self.index = self.index + 1\n\n def calc_TDA(self, epoch, cls_num):\n path = utils.make_directory(os.path.join(utils.default_model_dir,\n 'tda_total', str(cls_num)))\n path2 = utils.make_directory(os.path.join(utils.default_model_dir,\n 'tda_sub', str(cls_num)))\n dgms = ripser(self.z.data, maxdim=3)['dgms']\n plot_diagrams(dgms)\n plt.savefig('{}/{}_total.png'.format(path, epoch))\n plt.clf()\n if len(dgms[0]) is not 0:\n plot_diagrams(dgms, plot_only=[0], ax=subplot(221))\n if len(dgms[1]) is not 0:\n plot_diagrams(dgms, plot_only=[1], ax=subplot(222))\n if len(dgms[2]) is not 0:\n plot_diagrams(dgms, plot_only=[2], ax=subplot(223))\n if len(dgms[3]) is not 0:\n plot_diagrams(dgms, plot_only=[3], ax=subplot(224))\n plt.savefig('{}/{}_sub.png'.format(path2, epoch))\n plt.clf()\n\n\nclass MemorySet(object):\n\n def __init__(self, args):\n self.clsN = 10\n self.Set = []\n for i in range(self.clsN):\n self.Set.append(Memory(args=args))\n\n def Batch_Insert(self, z, y):\n for i in range(z.size(0)):\n label = y[i]\n data = z[i]\n self.Set[label].Insert_memory(data)\n\n def calc_TDAs(self, epoch):\n for i in range(self.clsN):\n self.Set[i].calc_TDA(epoch, i)\n\n\nMemory = MemorySet(args=args)\n\n\ndef main():\n global args, best_prec_result\n start_epoch = 0\n utils.default_model_dir = args.dir\n start_time = time.time()\n train_loader, test_loader, ch, wh = dataset_selector(args.dataset)\n sample = extract_sample(train_loader)\n state_info = utils.model_optim_state_info()\n state_info.model_init(Img=[ch, wh], H=args.h, latent_size=args.\n latent_size, num_class=10)\n state_info.model_cuda_init()\n state_info.weight_init()\n state_info.optimizer_init(args)\n if cuda:\n print('USE', torch.cuda.device_count(), 'GPUs!')\n cudnn.benchmark = True\n state_info.learning_scheduler_init(args)\n for epoch in range(start_epoch, args.epoch):\n train(state_info, train_loader, epoch)\n test(state_info, test_loader, sample, epoch)\n state_info.learning_step()\n now = time.gmtime(time.time() - start_time)\n utils.print_log('{} hours {} mins {} secs for training'.format(now.\n tm_hour, now.tm_min, now.tm_sec))\n\n\ndef train(state_info, train_loader, epoch):\n utils.print_log('Type, Epoch, Batch, loss, BCE, KLD')\n state_info.set_train_mode()\n correct = torch.tensor(0, dtype=torch.float32)\n total = torch.tensor(0, dtype=torch.float32)\n for it, (x, y) in enumerate(train_loader):\n x, y = to_var(x, FloatTensor), to_var(y, LongTensor)\n x_hat, mu, log_var, z = state_info.forward(x)\n state_info.optim_VAE.zero_grad()\n loss, BCE, KLD = loss_function(x_hat, x, mu, log_var)\n loss.backward(retain_graph=True)\n state_info.optim_VAE.step()\n if it % 10 == 0:\n utils.print_log('Train, {}, {}, {:.6f}, {:.6f}, {:.6f}'.format(\n epoch, it, loss.item(), BCE, KLD))\n print('Train, {}, {}, {:.6f}, {:.6f}, {:.6f}'.format(epoch, it,\n loss.item(), BCE, KLD))\n utils.print_log('')\n\n\ndef test(state_info, test_loader, sample, epoch):\n global Memory\n for it, (x, y) in enumerate(test_loader):\n x, y = to_var(x, FloatTensor), to_var(y, LongTensor)\n x_hat, mu, log_var, z = state_info.forward(x)\n Memory.Batch_Insert(z, y)\n Memory.calc_TDAs(epoch)\n make_sample_image(state_info, sample, epoch)\n utils.print_log('')\n\n\ndef make_sample_image(state_info, sample, epoch):\n \"\"\"Saves a grid of generated digits ranging from 0 to n_classes\"\"\"\n img_path = utils.make_directory(os.path.join(utils.default_model_dir,\n 'image'))\n sample_hat, _, _, _ = state_info.forward(sample)\n sample, sample_hat = to_data(sample), to_data(sample_hat)\n image = merge_images(sample, sample_hat)\n save_image(image.data, os.path.join(img_path, '%d.png' % epoch),\n normalize=True)\n\n\ndef merge_images(sources, targets, row=10):\n _, _, h, w = sources.shape\n merged = np.zeros([3, row * h, row * w * 2])\n for idx, (s, t) in enumerate(zip(sources, targets)):\n i = idx // row\n j = idx % row\n if i is row:\n break\n merged[:, i * h:(i + 1) * h, j * 2 * h:(j * 2 + 1) * h] = s\n merged[:, i * h:(i + 1) * h, (j * 2 + 1) * h:(j * 2 + 2) * h] = t\n return torch.from_numpy(merged)\n\n\ndef dataset_selector(data):\n if data == 'mnist':\n return dataset.MNIST_loader(img_size=args.img_size)\n elif data == 'svhn':\n return dataset.SVHN_loader(img_size=32)\n elif data == 'usps':\n return dataset.usps_loader(img_size=args.img_size)\n elif data == 'mnistm':\n return dataset.MNIST_M_loader(img_size=args.img_size)\n\n\ndef to_data(x):\n \"\"\"Converts variable to numpy.\"\"\"\n if torch.cuda.is_available():\n x = x.cpu()\n return x.data.numpy()\n\n\ndef to_var(x, dtype):\n return Variable(x.type(dtype))\n\n\ndef extract_sample(train_loader):\n for step, (sample, _) in enumerate(train_loader):\n sample = to_var(sample, FloatTensor)\n break\n return sample\n\n\nif __name__ == '__main__':\n main()\n", "<import token>\n<assignment token>\nparser.add_argument('--dataset', default='mnist', type=str, help=\n 'source dataset')\nparser.add_argument('-j', '--workers', default=4, type=int, metavar='N',\n help='number of data loading workers (default: 4)')\nparser.add_argument('--epoch', default=90, type=int, metavar='N', help=\n 'number of total epoch to run')\nparser.add_argument('--decay-epoch', default=30, type=int, metavar='N',\n help='epoch from which to start lr decay')\nparser.add_argument('--seed', type=int, default=1, metavar='S', help=\n 'random seed (default: 1)')\nparser.add_argument('--maxN', type=int, default=80, help='Maximum Buffer Size')\nparser.add_argument('-b', '--batch-size', default=128, type=int, metavar=\n 'N', help='mini-batch size (default: 256)')\nparser.add_argument('--lr', '--learning-rate', default=0.0001, type=float,\n metavar='LR', help='initial learning rate')\nparser.add_argument('--momentum', default=0.9, type=float, metavar='M',\n help='momentum')\nparser.add_argument('--weight-decay', '--wd', default=0.0001, type=float,\n metavar='W', help='weight decay (default: 1e-4)')\nparser.add_argument('--b1', type=float, default=0.5, help=\n 'adam: decay of first order momentum of gradient')\nparser.add_argument('--b2', type=float, default=0.999, help=\n 'adam: decay of first order momentum of gradient')\nparser.add_argument('--latent-size', type=int, default=64, help=\n 'dimension of latent z')\nparser.add_argument('--h', type=int, default=400, help=\n 'dimension of hidden layer')\nparser.add_argument('--img-size', type=int, default=28, help=\n 'input image width, height size')\nparser.add_argument('--dir', default='./', type=str, help=\n 'default save directory')\nparser.add_argument('--gpu', default='0', type=str, help=\n 'Multi GPU ids to use.')\n<assignment token>\ntorch.manual_seed(args.seed)\n<assignment token>\n\n\ndef loss_function(x_hat, x, mu, log_var):\n BCE = criterion_BCE(x_hat.view(x_hat.size(0), -1), x.view(x.size(0), -1))\n KLD = -0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp())\n return BCE + KLD, BCE.item(), KLD.item()\n\n\nclass Memory(object):\n\n def __init__(self, args):\n self.N = args.maxN\n self.index = 0\n self.z = torch.zeros([self.N, args.latent_size], device='cpu',\n dtype=torch.float32)\n\n def Insert_memory(self, z):\n if self.index >= self.N:\n self.index = 0\n self.z[self.index] = z.data\n del z\n self.index = self.index + 1\n\n def calc_TDA(self, epoch, cls_num):\n path = utils.make_directory(os.path.join(utils.default_model_dir,\n 'tda_total', str(cls_num)))\n path2 = utils.make_directory(os.path.join(utils.default_model_dir,\n 'tda_sub', str(cls_num)))\n dgms = ripser(self.z.data, maxdim=3)['dgms']\n plot_diagrams(dgms)\n plt.savefig('{}/{}_total.png'.format(path, epoch))\n plt.clf()\n if len(dgms[0]) is not 0:\n plot_diagrams(dgms, plot_only=[0], ax=subplot(221))\n if len(dgms[1]) is not 0:\n plot_diagrams(dgms, plot_only=[1], ax=subplot(222))\n if len(dgms[2]) is not 0:\n plot_diagrams(dgms, plot_only=[2], ax=subplot(223))\n if len(dgms[3]) is not 0:\n plot_diagrams(dgms, plot_only=[3], ax=subplot(224))\n plt.savefig('{}/{}_sub.png'.format(path2, epoch))\n plt.clf()\n\n\nclass MemorySet(object):\n\n def __init__(self, args):\n self.clsN = 10\n self.Set = []\n for i in range(self.clsN):\n self.Set.append(Memory(args=args))\n\n def Batch_Insert(self, z, y):\n for i in range(z.size(0)):\n label = y[i]\n data = z[i]\n self.Set[label].Insert_memory(data)\n\n def calc_TDAs(self, epoch):\n for i in range(self.clsN):\n self.Set[i].calc_TDA(epoch, i)\n\n\n<assignment token>\n\n\ndef main():\n global args, best_prec_result\n start_epoch = 0\n utils.default_model_dir = args.dir\n start_time = time.time()\n train_loader, test_loader, ch, wh = dataset_selector(args.dataset)\n sample = extract_sample(train_loader)\n state_info = utils.model_optim_state_info()\n state_info.model_init(Img=[ch, wh], H=args.h, latent_size=args.\n latent_size, num_class=10)\n state_info.model_cuda_init()\n state_info.weight_init()\n state_info.optimizer_init(args)\n if cuda:\n print('USE', torch.cuda.device_count(), 'GPUs!')\n cudnn.benchmark = True\n state_info.learning_scheduler_init(args)\n for epoch in range(start_epoch, args.epoch):\n train(state_info, train_loader, epoch)\n test(state_info, test_loader, sample, epoch)\n state_info.learning_step()\n now = time.gmtime(time.time() - start_time)\n utils.print_log('{} hours {} mins {} secs for training'.format(now.\n tm_hour, now.tm_min, now.tm_sec))\n\n\ndef train(state_info, train_loader, epoch):\n utils.print_log('Type, Epoch, Batch, loss, BCE, KLD')\n state_info.set_train_mode()\n correct = torch.tensor(0, dtype=torch.float32)\n total = torch.tensor(0, dtype=torch.float32)\n for it, (x, y) in enumerate(train_loader):\n x, y = to_var(x, FloatTensor), to_var(y, LongTensor)\n x_hat, mu, log_var, z = state_info.forward(x)\n state_info.optim_VAE.zero_grad()\n loss, BCE, KLD = loss_function(x_hat, x, mu, log_var)\n loss.backward(retain_graph=True)\n state_info.optim_VAE.step()\n if it % 10 == 0:\n utils.print_log('Train, {}, {}, {:.6f}, {:.6f}, {:.6f}'.format(\n epoch, it, loss.item(), BCE, KLD))\n print('Train, {}, {}, {:.6f}, {:.6f}, {:.6f}'.format(epoch, it,\n loss.item(), BCE, KLD))\n utils.print_log('')\n\n\ndef test(state_info, test_loader, sample, epoch):\n global Memory\n for it, (x, y) in enumerate(test_loader):\n x, y = to_var(x, FloatTensor), to_var(y, LongTensor)\n x_hat, mu, log_var, z = state_info.forward(x)\n Memory.Batch_Insert(z, y)\n Memory.calc_TDAs(epoch)\n make_sample_image(state_info, sample, epoch)\n utils.print_log('')\n\n\ndef make_sample_image(state_info, sample, epoch):\n \"\"\"Saves a grid of generated digits ranging from 0 to n_classes\"\"\"\n img_path = utils.make_directory(os.path.join(utils.default_model_dir,\n 'image'))\n sample_hat, _, _, _ = state_info.forward(sample)\n sample, sample_hat = to_data(sample), to_data(sample_hat)\n image = merge_images(sample, sample_hat)\n save_image(image.data, os.path.join(img_path, '%d.png' % epoch),\n normalize=True)\n\n\ndef merge_images(sources, targets, row=10):\n _, _, h, w = sources.shape\n merged = np.zeros([3, row * h, row * w * 2])\n for idx, (s, t) in enumerate(zip(sources, targets)):\n i = idx // row\n j = idx % row\n if i is row:\n break\n merged[:, i * h:(i + 1) * h, j * 2 * h:(j * 2 + 1) * h] = s\n merged[:, i * h:(i + 1) * h, (j * 2 + 1) * h:(j * 2 + 2) * h] = t\n return torch.from_numpy(merged)\n\n\ndef dataset_selector(data):\n if data == 'mnist':\n return dataset.MNIST_loader(img_size=args.img_size)\n elif data == 'svhn':\n return dataset.SVHN_loader(img_size=32)\n elif data == 'usps':\n return dataset.usps_loader(img_size=args.img_size)\n elif data == 'mnistm':\n return dataset.MNIST_M_loader(img_size=args.img_size)\n\n\ndef to_data(x):\n \"\"\"Converts variable to numpy.\"\"\"\n if torch.cuda.is_available():\n x = x.cpu()\n return x.data.numpy()\n\n\ndef to_var(x, dtype):\n return Variable(x.type(dtype))\n\n\ndef extract_sample(train_loader):\n for step, (sample, _) in enumerate(train_loader):\n sample = to_var(sample, FloatTensor)\n break\n return sample\n\n\nif __name__ == '__main__':\n main()\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n\n\ndef loss_function(x_hat, x, mu, log_var):\n BCE = criterion_BCE(x_hat.view(x_hat.size(0), -1), x.view(x.size(0), -1))\n KLD = -0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp())\n return BCE + KLD, BCE.item(), KLD.item()\n\n\nclass Memory(object):\n\n def __init__(self, args):\n self.N = args.maxN\n self.index = 0\n self.z = torch.zeros([self.N, args.latent_size], device='cpu',\n dtype=torch.float32)\n\n def Insert_memory(self, z):\n if self.index >= self.N:\n self.index = 0\n self.z[self.index] = z.data\n del z\n self.index = self.index + 1\n\n def calc_TDA(self, epoch, cls_num):\n path = utils.make_directory(os.path.join(utils.default_model_dir,\n 'tda_total', str(cls_num)))\n path2 = utils.make_directory(os.path.join(utils.default_model_dir,\n 'tda_sub', str(cls_num)))\n dgms = ripser(self.z.data, maxdim=3)['dgms']\n plot_diagrams(dgms)\n plt.savefig('{}/{}_total.png'.format(path, epoch))\n plt.clf()\n if len(dgms[0]) is not 0:\n plot_diagrams(dgms, plot_only=[0], ax=subplot(221))\n if len(dgms[1]) is not 0:\n plot_diagrams(dgms, plot_only=[1], ax=subplot(222))\n if len(dgms[2]) is not 0:\n plot_diagrams(dgms, plot_only=[2], ax=subplot(223))\n if len(dgms[3]) is not 0:\n plot_diagrams(dgms, plot_only=[3], ax=subplot(224))\n plt.savefig('{}/{}_sub.png'.format(path2, epoch))\n plt.clf()\n\n\nclass MemorySet(object):\n\n def __init__(self, args):\n self.clsN = 10\n self.Set = []\n for i in range(self.clsN):\n self.Set.append(Memory(args=args))\n\n def Batch_Insert(self, z, y):\n for i in range(z.size(0)):\n label = y[i]\n data = z[i]\n self.Set[label].Insert_memory(data)\n\n def calc_TDAs(self, epoch):\n for i in range(self.clsN):\n self.Set[i].calc_TDA(epoch, i)\n\n\n<assignment token>\n\n\ndef main():\n global args, best_prec_result\n start_epoch = 0\n utils.default_model_dir = args.dir\n start_time = time.time()\n train_loader, test_loader, ch, wh = dataset_selector(args.dataset)\n sample = extract_sample(train_loader)\n state_info = utils.model_optim_state_info()\n state_info.model_init(Img=[ch, wh], H=args.h, latent_size=args.\n latent_size, num_class=10)\n state_info.model_cuda_init()\n state_info.weight_init()\n state_info.optimizer_init(args)\n if cuda:\n print('USE', torch.cuda.device_count(), 'GPUs!')\n cudnn.benchmark = True\n state_info.learning_scheduler_init(args)\n for epoch in range(start_epoch, args.epoch):\n train(state_info, train_loader, epoch)\n test(state_info, test_loader, sample, epoch)\n state_info.learning_step()\n now = time.gmtime(time.time() - start_time)\n utils.print_log('{} hours {} mins {} secs for training'.format(now.\n tm_hour, now.tm_min, now.tm_sec))\n\n\ndef train(state_info, train_loader, epoch):\n utils.print_log('Type, Epoch, Batch, loss, BCE, KLD')\n state_info.set_train_mode()\n correct = torch.tensor(0, dtype=torch.float32)\n total = torch.tensor(0, dtype=torch.float32)\n for it, (x, y) in enumerate(train_loader):\n x, y = to_var(x, FloatTensor), to_var(y, LongTensor)\n x_hat, mu, log_var, z = state_info.forward(x)\n state_info.optim_VAE.zero_grad()\n loss, BCE, KLD = loss_function(x_hat, x, mu, log_var)\n loss.backward(retain_graph=True)\n state_info.optim_VAE.step()\n if it % 10 == 0:\n utils.print_log('Train, {}, {}, {:.6f}, {:.6f}, {:.6f}'.format(\n epoch, it, loss.item(), BCE, KLD))\n print('Train, {}, {}, {:.6f}, {:.6f}, {:.6f}'.format(epoch, it,\n loss.item(), BCE, KLD))\n utils.print_log('')\n\n\ndef test(state_info, test_loader, sample, epoch):\n global Memory\n for it, (x, y) in enumerate(test_loader):\n x, y = to_var(x, FloatTensor), to_var(y, LongTensor)\n x_hat, mu, log_var, z = state_info.forward(x)\n Memory.Batch_Insert(z, y)\n Memory.calc_TDAs(epoch)\n make_sample_image(state_info, sample, epoch)\n utils.print_log('')\n\n\ndef make_sample_image(state_info, sample, epoch):\n \"\"\"Saves a grid of generated digits ranging from 0 to n_classes\"\"\"\n img_path = utils.make_directory(os.path.join(utils.default_model_dir,\n 'image'))\n sample_hat, _, _, _ = state_info.forward(sample)\n sample, sample_hat = to_data(sample), to_data(sample_hat)\n image = merge_images(sample, sample_hat)\n save_image(image.data, os.path.join(img_path, '%d.png' % epoch),\n normalize=True)\n\n\ndef merge_images(sources, targets, row=10):\n _, _, h, w = sources.shape\n merged = np.zeros([3, row * h, row * w * 2])\n for idx, (s, t) in enumerate(zip(sources, targets)):\n i = idx // row\n j = idx % row\n if i is row:\n break\n merged[:, i * h:(i + 1) * h, j * 2 * h:(j * 2 + 1) * h] = s\n merged[:, i * h:(i + 1) * h, (j * 2 + 1) * h:(j * 2 + 2) * h] = t\n return torch.from_numpy(merged)\n\n\ndef dataset_selector(data):\n if data == 'mnist':\n return dataset.MNIST_loader(img_size=args.img_size)\n elif data == 'svhn':\n return dataset.SVHN_loader(img_size=32)\n elif data == 'usps':\n return dataset.usps_loader(img_size=args.img_size)\n elif data == 'mnistm':\n return dataset.MNIST_M_loader(img_size=args.img_size)\n\n\ndef to_data(x):\n \"\"\"Converts variable to numpy.\"\"\"\n if torch.cuda.is_available():\n x = x.cpu()\n return x.data.numpy()\n\n\ndef to_var(x, dtype):\n return Variable(x.type(dtype))\n\n\ndef extract_sample(train_loader):\n for step, (sample, _) in enumerate(train_loader):\n sample = to_var(sample, FloatTensor)\n break\n return sample\n\n\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<function token>\n\n\nclass Memory(object):\n\n def __init__(self, args):\n self.N = args.maxN\n self.index = 0\n self.z = torch.zeros([self.N, args.latent_size], device='cpu',\n dtype=torch.float32)\n\n def Insert_memory(self, z):\n if self.index >= self.N:\n self.index = 0\n self.z[self.index] = z.data\n del z\n self.index = self.index + 1\n\n def calc_TDA(self, epoch, cls_num):\n path = utils.make_directory(os.path.join(utils.default_model_dir,\n 'tda_total', str(cls_num)))\n path2 = utils.make_directory(os.path.join(utils.default_model_dir,\n 'tda_sub', str(cls_num)))\n dgms = ripser(self.z.data, maxdim=3)['dgms']\n plot_diagrams(dgms)\n plt.savefig('{}/{}_total.png'.format(path, epoch))\n plt.clf()\n if len(dgms[0]) is not 0:\n plot_diagrams(dgms, plot_only=[0], ax=subplot(221))\n if len(dgms[1]) is not 0:\n plot_diagrams(dgms, plot_only=[1], ax=subplot(222))\n if len(dgms[2]) is not 0:\n plot_diagrams(dgms, plot_only=[2], ax=subplot(223))\n if len(dgms[3]) is not 0:\n plot_diagrams(dgms, plot_only=[3], ax=subplot(224))\n plt.savefig('{}/{}_sub.png'.format(path2, epoch))\n plt.clf()\n\n\nclass MemorySet(object):\n\n def __init__(self, args):\n self.clsN = 10\n self.Set = []\n for i in range(self.clsN):\n self.Set.append(Memory(args=args))\n\n def Batch_Insert(self, z, y):\n for i in range(z.size(0)):\n label = y[i]\n data = z[i]\n self.Set[label].Insert_memory(data)\n\n def calc_TDAs(self, epoch):\n for i in range(self.clsN):\n self.Set[i].calc_TDA(epoch, i)\n\n\n<assignment token>\n\n\ndef main():\n global args, best_prec_result\n start_epoch = 0\n utils.default_model_dir = args.dir\n start_time = time.time()\n train_loader, test_loader, ch, wh = dataset_selector(args.dataset)\n sample = extract_sample(train_loader)\n state_info = utils.model_optim_state_info()\n state_info.model_init(Img=[ch, wh], H=args.h, latent_size=args.\n latent_size, num_class=10)\n state_info.model_cuda_init()\n state_info.weight_init()\n state_info.optimizer_init(args)\n if cuda:\n print('USE', torch.cuda.device_count(), 'GPUs!')\n cudnn.benchmark = True\n state_info.learning_scheduler_init(args)\n for epoch in range(start_epoch, args.epoch):\n train(state_info, train_loader, epoch)\n test(state_info, test_loader, sample, epoch)\n state_info.learning_step()\n now = time.gmtime(time.time() - start_time)\n utils.print_log('{} hours {} mins {} secs for training'.format(now.\n tm_hour, now.tm_min, now.tm_sec))\n\n\ndef train(state_info, train_loader, epoch):\n utils.print_log('Type, Epoch, Batch, loss, BCE, KLD')\n state_info.set_train_mode()\n correct = torch.tensor(0, dtype=torch.float32)\n total = torch.tensor(0, dtype=torch.float32)\n for it, (x, y) in enumerate(train_loader):\n x, y = to_var(x, FloatTensor), to_var(y, LongTensor)\n x_hat, mu, log_var, z = state_info.forward(x)\n state_info.optim_VAE.zero_grad()\n loss, BCE, KLD = loss_function(x_hat, x, mu, log_var)\n loss.backward(retain_graph=True)\n state_info.optim_VAE.step()\n if it % 10 == 0:\n utils.print_log('Train, {}, {}, {:.6f}, {:.6f}, {:.6f}'.format(\n epoch, it, loss.item(), BCE, KLD))\n print('Train, {}, {}, {:.6f}, {:.6f}, {:.6f}'.format(epoch, it,\n loss.item(), BCE, KLD))\n utils.print_log('')\n\n\ndef test(state_info, test_loader, sample, epoch):\n global Memory\n for it, (x, y) in enumerate(test_loader):\n x, y = to_var(x, FloatTensor), to_var(y, LongTensor)\n x_hat, mu, log_var, z = state_info.forward(x)\n Memory.Batch_Insert(z, y)\n Memory.calc_TDAs(epoch)\n make_sample_image(state_info, sample, epoch)\n utils.print_log('')\n\n\ndef make_sample_image(state_info, sample, epoch):\n \"\"\"Saves a grid of generated digits ranging from 0 to n_classes\"\"\"\n img_path = utils.make_directory(os.path.join(utils.default_model_dir,\n 'image'))\n sample_hat, _, _, _ = state_info.forward(sample)\n sample, sample_hat = to_data(sample), to_data(sample_hat)\n image = merge_images(sample, sample_hat)\n save_image(image.data, os.path.join(img_path, '%d.png' % epoch),\n normalize=True)\n\n\ndef merge_images(sources, targets, row=10):\n _, _, h, w = sources.shape\n merged = np.zeros([3, row * h, row * w * 2])\n for idx, (s, t) in enumerate(zip(sources, targets)):\n i = idx // row\n j = idx % row\n if i is row:\n break\n merged[:, i * h:(i + 1) * h, j * 2 * h:(j * 2 + 1) * h] = s\n merged[:, i * h:(i + 1) * h, (j * 2 + 1) * h:(j * 2 + 2) * h] = t\n return torch.from_numpy(merged)\n\n\ndef dataset_selector(data):\n if data == 'mnist':\n return dataset.MNIST_loader(img_size=args.img_size)\n elif data == 'svhn':\n return dataset.SVHN_loader(img_size=32)\n elif data == 'usps':\n return dataset.usps_loader(img_size=args.img_size)\n elif data == 'mnistm':\n return dataset.MNIST_M_loader(img_size=args.img_size)\n\n\ndef to_data(x):\n \"\"\"Converts variable to numpy.\"\"\"\n if torch.cuda.is_available():\n x = x.cpu()\n return x.data.numpy()\n\n\ndef to_var(x, dtype):\n return Variable(x.type(dtype))\n\n\ndef extract_sample(train_loader):\n for step, (sample, _) in enumerate(train_loader):\n sample = to_var(sample, FloatTensor)\n break\n return sample\n\n\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<function token>\n\n\nclass Memory(object):\n\n def __init__(self, args):\n self.N = args.maxN\n self.index = 0\n self.z = torch.zeros([self.N, args.latent_size], device='cpu',\n dtype=torch.float32)\n\n def Insert_memory(self, z):\n if self.index >= self.N:\n self.index = 0\n self.z[self.index] = z.data\n del z\n self.index = self.index + 1\n\n def calc_TDA(self, epoch, cls_num):\n path = utils.make_directory(os.path.join(utils.default_model_dir,\n 'tda_total', str(cls_num)))\n path2 = utils.make_directory(os.path.join(utils.default_model_dir,\n 'tda_sub', str(cls_num)))\n dgms = ripser(self.z.data, maxdim=3)['dgms']\n plot_diagrams(dgms)\n plt.savefig('{}/{}_total.png'.format(path, epoch))\n plt.clf()\n if len(dgms[0]) is not 0:\n plot_diagrams(dgms, plot_only=[0], ax=subplot(221))\n if len(dgms[1]) is not 0:\n plot_diagrams(dgms, plot_only=[1], ax=subplot(222))\n if len(dgms[2]) is not 0:\n plot_diagrams(dgms, plot_only=[2], ax=subplot(223))\n if len(dgms[3]) is not 0:\n plot_diagrams(dgms, plot_only=[3], ax=subplot(224))\n plt.savefig('{}/{}_sub.png'.format(path2, epoch))\n plt.clf()\n\n\nclass MemorySet(object):\n\n def __init__(self, args):\n self.clsN = 10\n self.Set = []\n for i in range(self.clsN):\n self.Set.append(Memory(args=args))\n\n def Batch_Insert(self, z, y):\n for i in range(z.size(0)):\n label = y[i]\n data = z[i]\n self.Set[label].Insert_memory(data)\n\n def calc_TDAs(self, epoch):\n for i in range(self.clsN):\n self.Set[i].calc_TDA(epoch, i)\n\n\n<assignment token>\n\n\ndef main():\n global args, best_prec_result\n start_epoch = 0\n utils.default_model_dir = args.dir\n start_time = time.time()\n train_loader, test_loader, ch, wh = dataset_selector(args.dataset)\n sample = extract_sample(train_loader)\n state_info = utils.model_optim_state_info()\n state_info.model_init(Img=[ch, wh], H=args.h, latent_size=args.\n latent_size, num_class=10)\n state_info.model_cuda_init()\n state_info.weight_init()\n state_info.optimizer_init(args)\n if cuda:\n print('USE', torch.cuda.device_count(), 'GPUs!')\n cudnn.benchmark = True\n state_info.learning_scheduler_init(args)\n for epoch in range(start_epoch, args.epoch):\n train(state_info, train_loader, epoch)\n test(state_info, test_loader, sample, epoch)\n state_info.learning_step()\n now = time.gmtime(time.time() - start_time)\n utils.print_log('{} hours {} mins {} secs for training'.format(now.\n tm_hour, now.tm_min, now.tm_sec))\n\n\ndef train(state_info, train_loader, epoch):\n utils.print_log('Type, Epoch, Batch, loss, BCE, KLD')\n state_info.set_train_mode()\n correct = torch.tensor(0, dtype=torch.float32)\n total = torch.tensor(0, dtype=torch.float32)\n for it, (x, y) in enumerate(train_loader):\n x, y = to_var(x, FloatTensor), to_var(y, LongTensor)\n x_hat, mu, log_var, z = state_info.forward(x)\n state_info.optim_VAE.zero_grad()\n loss, BCE, KLD = loss_function(x_hat, x, mu, log_var)\n loss.backward(retain_graph=True)\n state_info.optim_VAE.step()\n if it % 10 == 0:\n utils.print_log('Train, {}, {}, {:.6f}, {:.6f}, {:.6f}'.format(\n epoch, it, loss.item(), BCE, KLD))\n print('Train, {}, {}, {:.6f}, {:.6f}, {:.6f}'.format(epoch, it,\n loss.item(), BCE, KLD))\n utils.print_log('')\n\n\ndef test(state_info, test_loader, sample, epoch):\n global Memory\n for it, (x, y) in enumerate(test_loader):\n x, y = to_var(x, FloatTensor), to_var(y, LongTensor)\n x_hat, mu, log_var, z = state_info.forward(x)\n Memory.Batch_Insert(z, y)\n Memory.calc_TDAs(epoch)\n make_sample_image(state_info, sample, epoch)\n utils.print_log('')\n\n\ndef make_sample_image(state_info, sample, epoch):\n \"\"\"Saves a grid of generated digits ranging from 0 to n_classes\"\"\"\n img_path = utils.make_directory(os.path.join(utils.default_model_dir,\n 'image'))\n sample_hat, _, _, _ = state_info.forward(sample)\n sample, sample_hat = to_data(sample), to_data(sample_hat)\n image = merge_images(sample, sample_hat)\n save_image(image.data, os.path.join(img_path, '%d.png' % epoch),\n normalize=True)\n\n\n<function token>\n\n\ndef dataset_selector(data):\n if data == 'mnist':\n return dataset.MNIST_loader(img_size=args.img_size)\n elif data == 'svhn':\n return dataset.SVHN_loader(img_size=32)\n elif data == 'usps':\n return dataset.usps_loader(img_size=args.img_size)\n elif data == 'mnistm':\n return dataset.MNIST_M_loader(img_size=args.img_size)\n\n\ndef to_data(x):\n \"\"\"Converts variable to numpy.\"\"\"\n if torch.cuda.is_available():\n x = x.cpu()\n return x.data.numpy()\n\n\ndef to_var(x, dtype):\n return Variable(x.type(dtype))\n\n\ndef extract_sample(train_loader):\n for step, (sample, _) in enumerate(train_loader):\n sample = to_var(sample, FloatTensor)\n break\n return sample\n\n\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<function token>\n\n\nclass Memory(object):\n\n def __init__(self, args):\n self.N = args.maxN\n self.index = 0\n self.z = torch.zeros([self.N, args.latent_size], device='cpu',\n dtype=torch.float32)\n\n def Insert_memory(self, z):\n if self.index >= self.N:\n self.index = 0\n self.z[self.index] = z.data\n del z\n self.index = self.index + 1\n\n def calc_TDA(self, epoch, cls_num):\n path = utils.make_directory(os.path.join(utils.default_model_dir,\n 'tda_total', str(cls_num)))\n path2 = utils.make_directory(os.path.join(utils.default_model_dir,\n 'tda_sub', str(cls_num)))\n dgms = ripser(self.z.data, maxdim=3)['dgms']\n plot_diagrams(dgms)\n plt.savefig('{}/{}_total.png'.format(path, epoch))\n plt.clf()\n if len(dgms[0]) is not 0:\n plot_diagrams(dgms, plot_only=[0], ax=subplot(221))\n if len(dgms[1]) is not 0:\n plot_diagrams(dgms, plot_only=[1], ax=subplot(222))\n if len(dgms[2]) is not 0:\n plot_diagrams(dgms, plot_only=[2], ax=subplot(223))\n if len(dgms[3]) is not 0:\n plot_diagrams(dgms, plot_only=[3], ax=subplot(224))\n plt.savefig('{}/{}_sub.png'.format(path2, epoch))\n plt.clf()\n\n\nclass MemorySet(object):\n\n def __init__(self, args):\n self.clsN = 10\n self.Set = []\n for i in range(self.clsN):\n self.Set.append(Memory(args=args))\n\n def Batch_Insert(self, z, y):\n for i in range(z.size(0)):\n label = y[i]\n data = z[i]\n self.Set[label].Insert_memory(data)\n\n def calc_TDAs(self, epoch):\n for i in range(self.clsN):\n self.Set[i].calc_TDA(epoch, i)\n\n\n<assignment token>\n\n\ndef main():\n global args, best_prec_result\n start_epoch = 0\n utils.default_model_dir = args.dir\n start_time = time.time()\n train_loader, test_loader, ch, wh = dataset_selector(args.dataset)\n sample = extract_sample(train_loader)\n state_info = utils.model_optim_state_info()\n state_info.model_init(Img=[ch, wh], H=args.h, latent_size=args.\n latent_size, num_class=10)\n state_info.model_cuda_init()\n state_info.weight_init()\n state_info.optimizer_init(args)\n if cuda:\n print('USE', torch.cuda.device_count(), 'GPUs!')\n cudnn.benchmark = True\n state_info.learning_scheduler_init(args)\n for epoch in range(start_epoch, args.epoch):\n train(state_info, train_loader, epoch)\n test(state_info, test_loader, sample, epoch)\n state_info.learning_step()\n now = time.gmtime(time.time() - start_time)\n utils.print_log('{} hours {} mins {} secs for training'.format(now.\n tm_hour, now.tm_min, now.tm_sec))\n\n\ndef train(state_info, train_loader, epoch):\n utils.print_log('Type, Epoch, Batch, loss, BCE, KLD')\n state_info.set_train_mode()\n correct = torch.tensor(0, dtype=torch.float32)\n total = torch.tensor(0, dtype=torch.float32)\n for it, (x, y) in enumerate(train_loader):\n x, y = to_var(x, FloatTensor), to_var(y, LongTensor)\n x_hat, mu, log_var, z = state_info.forward(x)\n state_info.optim_VAE.zero_grad()\n loss, BCE, KLD = loss_function(x_hat, x, mu, log_var)\n loss.backward(retain_graph=True)\n state_info.optim_VAE.step()\n if it % 10 == 0:\n utils.print_log('Train, {}, {}, {:.6f}, {:.6f}, {:.6f}'.format(\n epoch, it, loss.item(), BCE, KLD))\n print('Train, {}, {}, {:.6f}, {:.6f}, {:.6f}'.format(epoch, it,\n loss.item(), BCE, KLD))\n utils.print_log('')\n\n\ndef test(state_info, test_loader, sample, epoch):\n global Memory\n for it, (x, y) in enumerate(test_loader):\n x, y = to_var(x, FloatTensor), to_var(y, LongTensor)\n x_hat, mu, log_var, z = state_info.forward(x)\n Memory.Batch_Insert(z, y)\n Memory.calc_TDAs(epoch)\n make_sample_image(state_info, sample, epoch)\n utils.print_log('')\n\n\n<function token>\n<function token>\n\n\ndef dataset_selector(data):\n if data == 'mnist':\n return dataset.MNIST_loader(img_size=args.img_size)\n elif data == 'svhn':\n return dataset.SVHN_loader(img_size=32)\n elif data == 'usps':\n return dataset.usps_loader(img_size=args.img_size)\n elif data == 'mnistm':\n return dataset.MNIST_M_loader(img_size=args.img_size)\n\n\ndef to_data(x):\n \"\"\"Converts variable to numpy.\"\"\"\n if torch.cuda.is_available():\n x = x.cpu()\n return x.data.numpy()\n\n\ndef to_var(x, dtype):\n return Variable(x.type(dtype))\n\n\ndef extract_sample(train_loader):\n for step, (sample, _) in enumerate(train_loader):\n sample = to_var(sample, FloatTensor)\n break\n return sample\n\n\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<function token>\n\n\nclass Memory(object):\n\n def __init__(self, args):\n self.N = args.maxN\n self.index = 0\n self.z = torch.zeros([self.N, args.latent_size], device='cpu',\n dtype=torch.float32)\n\n def Insert_memory(self, z):\n if self.index >= self.N:\n self.index = 0\n self.z[self.index] = z.data\n del z\n self.index = self.index + 1\n\n def calc_TDA(self, epoch, cls_num):\n path = utils.make_directory(os.path.join(utils.default_model_dir,\n 'tda_total', str(cls_num)))\n path2 = utils.make_directory(os.path.join(utils.default_model_dir,\n 'tda_sub', str(cls_num)))\n dgms = ripser(self.z.data, maxdim=3)['dgms']\n plot_diagrams(dgms)\n plt.savefig('{}/{}_total.png'.format(path, epoch))\n plt.clf()\n if len(dgms[0]) is not 0:\n plot_diagrams(dgms, plot_only=[0], ax=subplot(221))\n if len(dgms[1]) is not 0:\n plot_diagrams(dgms, plot_only=[1], ax=subplot(222))\n if len(dgms[2]) is not 0:\n plot_diagrams(dgms, plot_only=[2], ax=subplot(223))\n if len(dgms[3]) is not 0:\n plot_diagrams(dgms, plot_only=[3], ax=subplot(224))\n plt.savefig('{}/{}_sub.png'.format(path2, epoch))\n plt.clf()\n\n\nclass MemorySet(object):\n\n def __init__(self, args):\n self.clsN = 10\n self.Set = []\n for i in range(self.clsN):\n self.Set.append(Memory(args=args))\n\n def Batch_Insert(self, z, y):\n for i in range(z.size(0)):\n label = y[i]\n data = z[i]\n self.Set[label].Insert_memory(data)\n\n def calc_TDAs(self, epoch):\n for i in range(self.clsN):\n self.Set[i].calc_TDA(epoch, i)\n\n\n<assignment token>\n\n\ndef main():\n global args, best_prec_result\n start_epoch = 0\n utils.default_model_dir = args.dir\n start_time = time.time()\n train_loader, test_loader, ch, wh = dataset_selector(args.dataset)\n sample = extract_sample(train_loader)\n state_info = utils.model_optim_state_info()\n state_info.model_init(Img=[ch, wh], H=args.h, latent_size=args.\n latent_size, num_class=10)\n state_info.model_cuda_init()\n state_info.weight_init()\n state_info.optimizer_init(args)\n if cuda:\n print('USE', torch.cuda.device_count(), 'GPUs!')\n cudnn.benchmark = True\n state_info.learning_scheduler_init(args)\n for epoch in range(start_epoch, args.epoch):\n train(state_info, train_loader, epoch)\n test(state_info, test_loader, sample, epoch)\n state_info.learning_step()\n now = time.gmtime(time.time() - start_time)\n utils.print_log('{} hours {} mins {} secs for training'.format(now.\n tm_hour, now.tm_min, now.tm_sec))\n\n\ndef train(state_info, train_loader, epoch):\n utils.print_log('Type, Epoch, Batch, loss, BCE, KLD')\n state_info.set_train_mode()\n correct = torch.tensor(0, dtype=torch.float32)\n total = torch.tensor(0, dtype=torch.float32)\n for it, (x, y) in enumerate(train_loader):\n x, y = to_var(x, FloatTensor), to_var(y, LongTensor)\n x_hat, mu, log_var, z = state_info.forward(x)\n state_info.optim_VAE.zero_grad()\n loss, BCE, KLD = loss_function(x_hat, x, mu, log_var)\n loss.backward(retain_graph=True)\n state_info.optim_VAE.step()\n if it % 10 == 0:\n utils.print_log('Train, {}, {}, {:.6f}, {:.6f}, {:.6f}'.format(\n epoch, it, loss.item(), BCE, KLD))\n print('Train, {}, {}, {:.6f}, {:.6f}, {:.6f}'.format(epoch, it,\n loss.item(), BCE, KLD))\n utils.print_log('')\n\n\ndef test(state_info, test_loader, sample, epoch):\n global Memory\n for it, (x, y) in enumerate(test_loader):\n x, y = to_var(x, FloatTensor), to_var(y, LongTensor)\n x_hat, mu, log_var, z = state_info.forward(x)\n Memory.Batch_Insert(z, y)\n Memory.calc_TDAs(epoch)\n make_sample_image(state_info, sample, epoch)\n utils.print_log('')\n\n\n<function token>\n<function token>\n\n\ndef dataset_selector(data):\n if data == 'mnist':\n return dataset.MNIST_loader(img_size=args.img_size)\n elif data == 'svhn':\n return dataset.SVHN_loader(img_size=32)\n elif data == 'usps':\n return dataset.usps_loader(img_size=args.img_size)\n elif data == 'mnistm':\n return dataset.MNIST_M_loader(img_size=args.img_size)\n\n\ndef to_data(x):\n \"\"\"Converts variable to numpy.\"\"\"\n if torch.cuda.is_available():\n x = x.cpu()\n return x.data.numpy()\n\n\ndef to_var(x, dtype):\n return Variable(x.type(dtype))\n\n\n<function token>\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<function token>\n\n\nclass Memory(object):\n\n def __init__(self, args):\n self.N = args.maxN\n self.index = 0\n self.z = torch.zeros([self.N, args.latent_size], device='cpu',\n dtype=torch.float32)\n\n def Insert_memory(self, z):\n if self.index >= self.N:\n self.index = 0\n self.z[self.index] = z.data\n del z\n self.index = self.index + 1\n\n def calc_TDA(self, epoch, cls_num):\n path = utils.make_directory(os.path.join(utils.default_model_dir,\n 'tda_total', str(cls_num)))\n path2 = utils.make_directory(os.path.join(utils.default_model_dir,\n 'tda_sub', str(cls_num)))\n dgms = ripser(self.z.data, maxdim=3)['dgms']\n plot_diagrams(dgms)\n plt.savefig('{}/{}_total.png'.format(path, epoch))\n plt.clf()\n if len(dgms[0]) is not 0:\n plot_diagrams(dgms, plot_only=[0], ax=subplot(221))\n if len(dgms[1]) is not 0:\n plot_diagrams(dgms, plot_only=[1], ax=subplot(222))\n if len(dgms[2]) is not 0:\n plot_diagrams(dgms, plot_only=[2], ax=subplot(223))\n if len(dgms[3]) is not 0:\n plot_diagrams(dgms, plot_only=[3], ax=subplot(224))\n plt.savefig('{}/{}_sub.png'.format(path2, epoch))\n plt.clf()\n\n\nclass MemorySet(object):\n\n def __init__(self, args):\n self.clsN = 10\n self.Set = []\n for i in range(self.clsN):\n self.Set.append(Memory(args=args))\n\n def Batch_Insert(self, z, y):\n for i in range(z.size(0)):\n label = y[i]\n data = z[i]\n self.Set[label].Insert_memory(data)\n\n def calc_TDAs(self, epoch):\n for i in range(self.clsN):\n self.Set[i].calc_TDA(epoch, i)\n\n\n<assignment token>\n\n\ndef main():\n global args, best_prec_result\n start_epoch = 0\n utils.default_model_dir = args.dir\n start_time = time.time()\n train_loader, test_loader, ch, wh = dataset_selector(args.dataset)\n sample = extract_sample(train_loader)\n state_info = utils.model_optim_state_info()\n state_info.model_init(Img=[ch, wh], H=args.h, latent_size=args.\n latent_size, num_class=10)\n state_info.model_cuda_init()\n state_info.weight_init()\n state_info.optimizer_init(args)\n if cuda:\n print('USE', torch.cuda.device_count(), 'GPUs!')\n cudnn.benchmark = True\n state_info.learning_scheduler_init(args)\n for epoch in range(start_epoch, args.epoch):\n train(state_info, train_loader, epoch)\n test(state_info, test_loader, sample, epoch)\n state_info.learning_step()\n now = time.gmtime(time.time() - start_time)\n utils.print_log('{} hours {} mins {} secs for training'.format(now.\n tm_hour, now.tm_min, now.tm_sec))\n\n\ndef train(state_info, train_loader, epoch):\n utils.print_log('Type, Epoch, Batch, loss, BCE, KLD')\n state_info.set_train_mode()\n correct = torch.tensor(0, dtype=torch.float32)\n total = torch.tensor(0, dtype=torch.float32)\n for it, (x, y) in enumerate(train_loader):\n x, y = to_var(x, FloatTensor), to_var(y, LongTensor)\n x_hat, mu, log_var, z = state_info.forward(x)\n state_info.optim_VAE.zero_grad()\n loss, BCE, KLD = loss_function(x_hat, x, mu, log_var)\n loss.backward(retain_graph=True)\n state_info.optim_VAE.step()\n if it % 10 == 0:\n utils.print_log('Train, {}, {}, {:.6f}, {:.6f}, {:.6f}'.format(\n epoch, it, loss.item(), BCE, KLD))\n print('Train, {}, {}, {:.6f}, {:.6f}, {:.6f}'.format(epoch, it,\n loss.item(), BCE, KLD))\n utils.print_log('')\n\n\ndef test(state_info, test_loader, sample, epoch):\n global Memory\n for it, (x, y) in enumerate(test_loader):\n x, y = to_var(x, FloatTensor), to_var(y, LongTensor)\n x_hat, mu, log_var, z = state_info.forward(x)\n Memory.Batch_Insert(z, y)\n Memory.calc_TDAs(epoch)\n make_sample_image(state_info, sample, epoch)\n utils.print_log('')\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef to_data(x):\n \"\"\"Converts variable to numpy.\"\"\"\n if torch.cuda.is_available():\n x = x.cpu()\n return x.data.numpy()\n\n\ndef to_var(x, dtype):\n return Variable(x.type(dtype))\n\n\n<function token>\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<function token>\n\n\nclass Memory(object):\n\n def __init__(self, args):\n self.N = args.maxN\n self.index = 0\n self.z = torch.zeros([self.N, args.latent_size], device='cpu',\n dtype=torch.float32)\n\n def Insert_memory(self, z):\n if self.index >= self.N:\n self.index = 0\n self.z[self.index] = z.data\n del z\n self.index = self.index + 1\n\n def calc_TDA(self, epoch, cls_num):\n path = utils.make_directory(os.path.join(utils.default_model_dir,\n 'tda_total', str(cls_num)))\n path2 = utils.make_directory(os.path.join(utils.default_model_dir,\n 'tda_sub', str(cls_num)))\n dgms = ripser(self.z.data, maxdim=3)['dgms']\n plot_diagrams(dgms)\n plt.savefig('{}/{}_total.png'.format(path, epoch))\n plt.clf()\n if len(dgms[0]) is not 0:\n plot_diagrams(dgms, plot_only=[0], ax=subplot(221))\n if len(dgms[1]) is not 0:\n plot_diagrams(dgms, plot_only=[1], ax=subplot(222))\n if len(dgms[2]) is not 0:\n plot_diagrams(dgms, plot_only=[2], ax=subplot(223))\n if len(dgms[3]) is not 0:\n plot_diagrams(dgms, plot_only=[3], ax=subplot(224))\n plt.savefig('{}/{}_sub.png'.format(path2, epoch))\n plt.clf()\n\n\nclass MemorySet(object):\n\n def __init__(self, args):\n self.clsN = 10\n self.Set = []\n for i in range(self.clsN):\n self.Set.append(Memory(args=args))\n\n def Batch_Insert(self, z, y):\n for i in range(z.size(0)):\n label = y[i]\n data = z[i]\n self.Set[label].Insert_memory(data)\n\n def calc_TDAs(self, epoch):\n for i in range(self.clsN):\n self.Set[i].calc_TDA(epoch, i)\n\n\n<assignment token>\n<function token>\n\n\ndef train(state_info, train_loader, epoch):\n utils.print_log('Type, Epoch, Batch, loss, BCE, KLD')\n state_info.set_train_mode()\n correct = torch.tensor(0, dtype=torch.float32)\n total = torch.tensor(0, dtype=torch.float32)\n for it, (x, y) in enumerate(train_loader):\n x, y = to_var(x, FloatTensor), to_var(y, LongTensor)\n x_hat, mu, log_var, z = state_info.forward(x)\n state_info.optim_VAE.zero_grad()\n loss, BCE, KLD = loss_function(x_hat, x, mu, log_var)\n loss.backward(retain_graph=True)\n state_info.optim_VAE.step()\n if it % 10 == 0:\n utils.print_log('Train, {}, {}, {:.6f}, {:.6f}, {:.6f}'.format(\n epoch, it, loss.item(), BCE, KLD))\n print('Train, {}, {}, {:.6f}, {:.6f}, {:.6f}'.format(epoch, it,\n loss.item(), BCE, KLD))\n utils.print_log('')\n\n\ndef test(state_info, test_loader, sample, epoch):\n global Memory\n for it, (x, y) in enumerate(test_loader):\n x, y = to_var(x, FloatTensor), to_var(y, LongTensor)\n x_hat, mu, log_var, z = state_info.forward(x)\n Memory.Batch_Insert(z, y)\n Memory.calc_TDAs(epoch)\n make_sample_image(state_info, sample, epoch)\n utils.print_log('')\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef to_data(x):\n \"\"\"Converts variable to numpy.\"\"\"\n if torch.cuda.is_available():\n x = x.cpu()\n return x.data.numpy()\n\n\ndef to_var(x, dtype):\n return Variable(x.type(dtype))\n\n\n<function token>\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<function token>\n\n\nclass Memory(object):\n\n def __init__(self, args):\n self.N = args.maxN\n self.index = 0\n self.z = torch.zeros([self.N, args.latent_size], device='cpu',\n dtype=torch.float32)\n\n def Insert_memory(self, z):\n if self.index >= self.N:\n self.index = 0\n self.z[self.index] = z.data\n del z\n self.index = self.index + 1\n\n def calc_TDA(self, epoch, cls_num):\n path = utils.make_directory(os.path.join(utils.default_model_dir,\n 'tda_total', str(cls_num)))\n path2 = utils.make_directory(os.path.join(utils.default_model_dir,\n 'tda_sub', str(cls_num)))\n dgms = ripser(self.z.data, maxdim=3)['dgms']\n plot_diagrams(dgms)\n plt.savefig('{}/{}_total.png'.format(path, epoch))\n plt.clf()\n if len(dgms[0]) is not 0:\n plot_diagrams(dgms, plot_only=[0], ax=subplot(221))\n if len(dgms[1]) is not 0:\n plot_diagrams(dgms, plot_only=[1], ax=subplot(222))\n if len(dgms[2]) is not 0:\n plot_diagrams(dgms, plot_only=[2], ax=subplot(223))\n if len(dgms[3]) is not 0:\n plot_diagrams(dgms, plot_only=[3], ax=subplot(224))\n plt.savefig('{}/{}_sub.png'.format(path2, epoch))\n plt.clf()\n\n\nclass MemorySet(object):\n\n def __init__(self, args):\n self.clsN = 10\n self.Set = []\n for i in range(self.clsN):\n self.Set.append(Memory(args=args))\n\n def Batch_Insert(self, z, y):\n for i in range(z.size(0)):\n label = y[i]\n data = z[i]\n self.Set[label].Insert_memory(data)\n\n def calc_TDAs(self, epoch):\n for i in range(self.clsN):\n self.Set[i].calc_TDA(epoch, i)\n\n\n<assignment token>\n<function token>\n<function token>\n\n\ndef test(state_info, test_loader, sample, epoch):\n global Memory\n for it, (x, y) in enumerate(test_loader):\n x, y = to_var(x, FloatTensor), to_var(y, LongTensor)\n x_hat, mu, log_var, z = state_info.forward(x)\n Memory.Batch_Insert(z, y)\n Memory.calc_TDAs(epoch)\n make_sample_image(state_info, sample, epoch)\n utils.print_log('')\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef to_data(x):\n \"\"\"Converts variable to numpy.\"\"\"\n if torch.cuda.is_available():\n x = x.cpu()\n return x.data.numpy()\n\n\ndef to_var(x, dtype):\n return Variable(x.type(dtype))\n\n\n<function token>\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<function token>\n\n\nclass Memory(object):\n\n def __init__(self, args):\n self.N = args.maxN\n self.index = 0\n self.z = torch.zeros([self.N, args.latent_size], device='cpu',\n dtype=torch.float32)\n\n def Insert_memory(self, z):\n if self.index >= self.N:\n self.index = 0\n self.z[self.index] = z.data\n del z\n self.index = self.index + 1\n\n def calc_TDA(self, epoch, cls_num):\n path = utils.make_directory(os.path.join(utils.default_model_dir,\n 'tda_total', str(cls_num)))\n path2 = utils.make_directory(os.path.join(utils.default_model_dir,\n 'tda_sub', str(cls_num)))\n dgms = ripser(self.z.data, maxdim=3)['dgms']\n plot_diagrams(dgms)\n plt.savefig('{}/{}_total.png'.format(path, epoch))\n plt.clf()\n if len(dgms[0]) is not 0:\n plot_diagrams(dgms, plot_only=[0], ax=subplot(221))\n if len(dgms[1]) is not 0:\n plot_diagrams(dgms, plot_only=[1], ax=subplot(222))\n if len(dgms[2]) is not 0:\n plot_diagrams(dgms, plot_only=[2], ax=subplot(223))\n if len(dgms[3]) is not 0:\n plot_diagrams(dgms, plot_only=[3], ax=subplot(224))\n plt.savefig('{}/{}_sub.png'.format(path2, epoch))\n plt.clf()\n\n\nclass MemorySet(object):\n\n def __init__(self, args):\n self.clsN = 10\n self.Set = []\n for i in range(self.clsN):\n self.Set.append(Memory(args=args))\n\n def Batch_Insert(self, z, y):\n for i in range(z.size(0)):\n label = y[i]\n data = z[i]\n self.Set[label].Insert_memory(data)\n\n def calc_TDAs(self, epoch):\n for i in range(self.clsN):\n self.Set[i].calc_TDA(epoch, i)\n\n\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef to_data(x):\n \"\"\"Converts variable to numpy.\"\"\"\n if torch.cuda.is_available():\n x = x.cpu()\n return x.data.numpy()\n\n\ndef to_var(x, dtype):\n return Variable(x.type(dtype))\n\n\n<function token>\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<function token>\n\n\nclass Memory(object):\n\n def __init__(self, args):\n self.N = args.maxN\n self.index = 0\n self.z = torch.zeros([self.N, args.latent_size], device='cpu',\n dtype=torch.float32)\n\n def Insert_memory(self, z):\n if self.index >= self.N:\n self.index = 0\n self.z[self.index] = z.data\n del z\n self.index = self.index + 1\n\n def calc_TDA(self, epoch, cls_num):\n path = utils.make_directory(os.path.join(utils.default_model_dir,\n 'tda_total', str(cls_num)))\n path2 = utils.make_directory(os.path.join(utils.default_model_dir,\n 'tda_sub', str(cls_num)))\n dgms = ripser(self.z.data, maxdim=3)['dgms']\n plot_diagrams(dgms)\n plt.savefig('{}/{}_total.png'.format(path, epoch))\n plt.clf()\n if len(dgms[0]) is not 0:\n plot_diagrams(dgms, plot_only=[0], ax=subplot(221))\n if len(dgms[1]) is not 0:\n plot_diagrams(dgms, plot_only=[1], ax=subplot(222))\n if len(dgms[2]) is not 0:\n plot_diagrams(dgms, plot_only=[2], ax=subplot(223))\n if len(dgms[3]) is not 0:\n plot_diagrams(dgms, plot_only=[3], ax=subplot(224))\n plt.savefig('{}/{}_sub.png'.format(path2, epoch))\n plt.clf()\n\n\nclass MemorySet(object):\n\n def __init__(self, args):\n self.clsN = 10\n self.Set = []\n for i in range(self.clsN):\n self.Set.append(Memory(args=args))\n\n def Batch_Insert(self, z, y):\n for i in range(z.size(0)):\n label = y[i]\n data = z[i]\n self.Set[label].Insert_memory(data)\n\n def calc_TDAs(self, epoch):\n for i in range(self.clsN):\n self.Set[i].calc_TDA(epoch, i)\n\n\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef to_var(x, dtype):\n return Variable(x.type(dtype))\n\n\n<function token>\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<function token>\n\n\nclass Memory(object):\n\n def __init__(self, args):\n self.N = args.maxN\n self.index = 0\n self.z = torch.zeros([self.N, args.latent_size], device='cpu',\n dtype=torch.float32)\n\n def Insert_memory(self, z):\n if self.index >= self.N:\n self.index = 0\n self.z[self.index] = z.data\n del z\n self.index = self.index + 1\n\n def calc_TDA(self, epoch, cls_num):\n path = utils.make_directory(os.path.join(utils.default_model_dir,\n 'tda_total', str(cls_num)))\n path2 = utils.make_directory(os.path.join(utils.default_model_dir,\n 'tda_sub', str(cls_num)))\n dgms = ripser(self.z.data, maxdim=3)['dgms']\n plot_diagrams(dgms)\n plt.savefig('{}/{}_total.png'.format(path, epoch))\n plt.clf()\n if len(dgms[0]) is not 0:\n plot_diagrams(dgms, plot_only=[0], ax=subplot(221))\n if len(dgms[1]) is not 0:\n plot_diagrams(dgms, plot_only=[1], ax=subplot(222))\n if len(dgms[2]) is not 0:\n plot_diagrams(dgms, plot_only=[2], ax=subplot(223))\n if len(dgms[3]) is not 0:\n plot_diagrams(dgms, plot_only=[3], ax=subplot(224))\n plt.savefig('{}/{}_sub.png'.format(path2, epoch))\n plt.clf()\n\n\nclass MemorySet(object):\n\n def __init__(self, args):\n self.clsN = 10\n self.Set = []\n for i in range(self.clsN):\n self.Set.append(Memory(args=args))\n\n def Batch_Insert(self, z, y):\n for i in range(z.size(0)):\n label = y[i]\n data = z[i]\n self.Set[label].Insert_memory(data)\n\n def calc_TDAs(self, epoch):\n for i in range(self.clsN):\n self.Set[i].calc_TDA(epoch, i)\n\n\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<function token>\n\n\nclass Memory(object):\n\n def __init__(self, args):\n self.N = args.maxN\n self.index = 0\n self.z = torch.zeros([self.N, args.latent_size], device='cpu',\n dtype=torch.float32)\n <function token>\n\n def calc_TDA(self, epoch, cls_num):\n path = utils.make_directory(os.path.join(utils.default_model_dir,\n 'tda_total', str(cls_num)))\n path2 = utils.make_directory(os.path.join(utils.default_model_dir,\n 'tda_sub', str(cls_num)))\n dgms = ripser(self.z.data, maxdim=3)['dgms']\n plot_diagrams(dgms)\n plt.savefig('{}/{}_total.png'.format(path, epoch))\n plt.clf()\n if len(dgms[0]) is not 0:\n plot_diagrams(dgms, plot_only=[0], ax=subplot(221))\n if len(dgms[1]) is not 0:\n plot_diagrams(dgms, plot_only=[1], ax=subplot(222))\n if len(dgms[2]) is not 0:\n plot_diagrams(dgms, plot_only=[2], ax=subplot(223))\n if len(dgms[3]) is not 0:\n plot_diagrams(dgms, plot_only=[3], ax=subplot(224))\n plt.savefig('{}/{}_sub.png'.format(path2, epoch))\n plt.clf()\n\n\nclass MemorySet(object):\n\n def __init__(self, args):\n self.clsN = 10\n self.Set = []\n for i in range(self.clsN):\n self.Set.append(Memory(args=args))\n\n def Batch_Insert(self, z, y):\n for i in range(z.size(0)):\n label = y[i]\n data = z[i]\n self.Set[label].Insert_memory(data)\n\n def calc_TDAs(self, epoch):\n for i in range(self.clsN):\n self.Set[i].calc_TDA(epoch, i)\n\n\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<function token>\n\n\nclass Memory(object):\n <function token>\n <function token>\n\n def calc_TDA(self, epoch, cls_num):\n path = utils.make_directory(os.path.join(utils.default_model_dir,\n 'tda_total', str(cls_num)))\n path2 = utils.make_directory(os.path.join(utils.default_model_dir,\n 'tda_sub', str(cls_num)))\n dgms = ripser(self.z.data, maxdim=3)['dgms']\n plot_diagrams(dgms)\n plt.savefig('{}/{}_total.png'.format(path, epoch))\n plt.clf()\n if len(dgms[0]) is not 0:\n plot_diagrams(dgms, plot_only=[0], ax=subplot(221))\n if len(dgms[1]) is not 0:\n plot_diagrams(dgms, plot_only=[1], ax=subplot(222))\n if len(dgms[2]) is not 0:\n plot_diagrams(dgms, plot_only=[2], ax=subplot(223))\n if len(dgms[3]) is not 0:\n plot_diagrams(dgms, plot_only=[3], ax=subplot(224))\n plt.savefig('{}/{}_sub.png'.format(path2, epoch))\n plt.clf()\n\n\nclass MemorySet(object):\n\n def __init__(self, args):\n self.clsN = 10\n self.Set = []\n for i in range(self.clsN):\n self.Set.append(Memory(args=args))\n\n def Batch_Insert(self, z, y):\n for i in range(z.size(0)):\n label = y[i]\n data = z[i]\n self.Set[label].Insert_memory(data)\n\n def calc_TDAs(self, epoch):\n for i in range(self.clsN):\n self.Set[i].calc_TDA(epoch, i)\n\n\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<function token>\n\n\nclass Memory(object):\n <function token>\n <function token>\n <function token>\n\n\nclass MemorySet(object):\n\n def __init__(self, args):\n self.clsN = 10\n self.Set = []\n for i in range(self.clsN):\n self.Set.append(Memory(args=args))\n\n def Batch_Insert(self, z, y):\n for i in range(z.size(0)):\n label = y[i]\n data = z[i]\n self.Set[label].Insert_memory(data)\n\n def calc_TDAs(self, epoch):\n for i in range(self.clsN):\n self.Set[i].calc_TDA(epoch, i)\n\n\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<function token>\n<class token>\n\n\nclass MemorySet(object):\n\n def __init__(self, args):\n self.clsN = 10\n self.Set = []\n for i in range(self.clsN):\n self.Set.append(Memory(args=args))\n\n def Batch_Insert(self, z, y):\n for i in range(z.size(0)):\n label = y[i]\n data = z[i]\n self.Set[label].Insert_memory(data)\n\n def calc_TDAs(self, epoch):\n for i in range(self.clsN):\n self.Set[i].calc_TDA(epoch, i)\n\n\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<function token>\n<class token>\n\n\nclass MemorySet(object):\n\n def __init__(self, args):\n self.clsN = 10\n self.Set = []\n for i in range(self.clsN):\n self.Set.append(Memory(args=args))\n <function token>\n\n def calc_TDAs(self, epoch):\n for i in range(self.clsN):\n self.Set[i].calc_TDA(epoch, i)\n\n\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<function token>\n<class token>\n\n\nclass MemorySet(object):\n\n def __init__(self, args):\n self.clsN = 10\n self.Set = []\n for i in range(self.clsN):\n self.Set.append(Memory(args=args))\n <function token>\n <function token>\n\n\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<function token>\n<class token>\n\n\nclass MemorySet(object):\n <function token>\n <function token>\n <function token>\n\n\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<function token>\n<class token>\n<class token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<code token>\n" ]
false
98,815
c6080852e7d66e241ddcd40becd8fa4873f1bdf6
import sys input = sys.stdin.buffer.readline Q = int(input()) Query = [] for _ in range(Q): N, M = map(int, input().split()) graph = [[] for _ in range(N)] for _ in range(M): a, b = map(int, input().split()) graph[a-1].append(b-1) Query.append((N, M, graph)) for N, M, graph in Query: Delete = [False]*N Seq = [0]*N for i in range(N): if Seq[i] >= 2: Delete[i] = True Seq[i] = -1 for p in graph[i]: Seq[p] = max(Seq[i] + 1, Seq[p]) ans = [] for i in range(N): if Delete[i]: ans.append(i+1) print(len(ans)) print(*ans)
[ "import sys\ninput = sys.stdin.buffer.readline\n\n\nQ = int(input())\nQuery = []\nfor _ in range(Q):\n N, M = map(int, input().split())\n graph = [[] for _ in range(N)]\n for _ in range(M):\n a, b = map(int, input().split())\n graph[a-1].append(b-1)\n Query.append((N, M, graph))\n\nfor N, M, graph in Query:\n Delete = [False]*N\n Seq = [0]*N\n for i in range(N):\n if Seq[i] >= 2:\n Delete[i] = True\n Seq[i] = -1\n for p in graph[i]:\n Seq[p] = max(Seq[i] + 1, Seq[p])\n ans = []\n for i in range(N):\n if Delete[i]:\n ans.append(i+1)\n print(len(ans))\n print(*ans)", "import sys\ninput = sys.stdin.buffer.readline\nQ = int(input())\nQuery = []\nfor _ in range(Q):\n N, M = map(int, input().split())\n graph = [[] for _ in range(N)]\n for _ in range(M):\n a, b = map(int, input().split())\n graph[a - 1].append(b - 1)\n Query.append((N, M, graph))\nfor N, M, graph in Query:\n Delete = [False] * N\n Seq = [0] * N\n for i in range(N):\n if Seq[i] >= 2:\n Delete[i] = True\n Seq[i] = -1\n for p in graph[i]:\n Seq[p] = max(Seq[i] + 1, Seq[p])\n ans = []\n for i in range(N):\n if Delete[i]:\n ans.append(i + 1)\n print(len(ans))\n print(*ans)\n", "<import token>\ninput = sys.stdin.buffer.readline\nQ = int(input())\nQuery = []\nfor _ in range(Q):\n N, M = map(int, input().split())\n graph = [[] for _ in range(N)]\n for _ in range(M):\n a, b = map(int, input().split())\n graph[a - 1].append(b - 1)\n Query.append((N, M, graph))\nfor N, M, graph in Query:\n Delete = [False] * N\n Seq = [0] * N\n for i in range(N):\n if Seq[i] >= 2:\n Delete[i] = True\n Seq[i] = -1\n for p in graph[i]:\n Seq[p] = max(Seq[i] + 1, Seq[p])\n ans = []\n for i in range(N):\n if Delete[i]:\n ans.append(i + 1)\n print(len(ans))\n print(*ans)\n", "<import token>\n<assignment token>\nfor _ in range(Q):\n N, M = map(int, input().split())\n graph = [[] for _ in range(N)]\n for _ in range(M):\n a, b = map(int, input().split())\n graph[a - 1].append(b - 1)\n Query.append((N, M, graph))\nfor N, M, graph in Query:\n Delete = [False] * N\n Seq = [0] * N\n for i in range(N):\n if Seq[i] >= 2:\n Delete[i] = True\n Seq[i] = -1\n for p in graph[i]:\n Seq[p] = max(Seq[i] + 1, Seq[p])\n ans = []\n for i in range(N):\n if Delete[i]:\n ans.append(i + 1)\n print(len(ans))\n print(*ans)\n", "<import token>\n<assignment token>\n<code token>\n" ]
false
98,816
ad13c22192b85b18eb43c73144b96a229a1bdf26
import json import os from ewiis3_python_scripts import MODEL_EVALUATION_FILE_PATH, MODEL_DIR def store_model_selection(best_models, customer): model_evaluations = load_model_selection() model_evaluations[customer] = best_models with open(MODEL_EVALUATION_FILE_PATH, 'w') as fp: json.dump(model_evaluations, fp) def load_model_selection(): approach_calculations = {} if os.path.isfile(MODEL_EVALUATION_FILE_PATH): approach_calculations = json.load(open(MODEL_EVALUATION_FILE_PATH)) return approach_calculations def check_for_model_existence(model_path): return os.path.isfile(model_path) def build_model_save_path(game_id, target, type, model_name): return '{}{}_{}_{}_{}.pkl'.format(MODEL_DIR, game_id, target, type, model_name)
[ "import json\nimport os\n\nfrom ewiis3_python_scripts import MODEL_EVALUATION_FILE_PATH, MODEL_DIR\n\n\ndef store_model_selection(best_models, customer):\n model_evaluations = load_model_selection()\n model_evaluations[customer] = best_models\n with open(MODEL_EVALUATION_FILE_PATH, 'w') as fp:\n json.dump(model_evaluations, fp)\n\n\ndef load_model_selection():\n approach_calculations = {}\n if os.path.isfile(MODEL_EVALUATION_FILE_PATH):\n approach_calculations = json.load(open(MODEL_EVALUATION_FILE_PATH))\n return approach_calculations\n\n\ndef check_for_model_existence(model_path):\n return os.path.isfile(model_path)\n\n\ndef build_model_save_path(game_id, target, type, model_name):\n return '{}{}_{}_{}_{}.pkl'.format(MODEL_DIR, game_id, target, type, model_name)\n", "import json\nimport os\nfrom ewiis3_python_scripts import MODEL_EVALUATION_FILE_PATH, MODEL_DIR\n\n\ndef store_model_selection(best_models, customer):\n model_evaluations = load_model_selection()\n model_evaluations[customer] = best_models\n with open(MODEL_EVALUATION_FILE_PATH, 'w') as fp:\n json.dump(model_evaluations, fp)\n\n\ndef load_model_selection():\n approach_calculations = {}\n if os.path.isfile(MODEL_EVALUATION_FILE_PATH):\n approach_calculations = json.load(open(MODEL_EVALUATION_FILE_PATH))\n return approach_calculations\n\n\ndef check_for_model_existence(model_path):\n return os.path.isfile(model_path)\n\n\ndef build_model_save_path(game_id, target, type, model_name):\n return '{}{}_{}_{}_{}.pkl'.format(MODEL_DIR, game_id, target, type,\n model_name)\n", "<import token>\n\n\ndef store_model_selection(best_models, customer):\n model_evaluations = load_model_selection()\n model_evaluations[customer] = best_models\n with open(MODEL_EVALUATION_FILE_PATH, 'w') as fp:\n json.dump(model_evaluations, fp)\n\n\ndef load_model_selection():\n approach_calculations = {}\n if os.path.isfile(MODEL_EVALUATION_FILE_PATH):\n approach_calculations = json.load(open(MODEL_EVALUATION_FILE_PATH))\n return approach_calculations\n\n\ndef check_for_model_existence(model_path):\n return os.path.isfile(model_path)\n\n\ndef build_model_save_path(game_id, target, type, model_name):\n return '{}{}_{}_{}_{}.pkl'.format(MODEL_DIR, game_id, target, type,\n model_name)\n", "<import token>\n\n\ndef store_model_selection(best_models, customer):\n model_evaluations = load_model_selection()\n model_evaluations[customer] = best_models\n with open(MODEL_EVALUATION_FILE_PATH, 'w') as fp:\n json.dump(model_evaluations, fp)\n\n\ndef load_model_selection():\n approach_calculations = {}\n if os.path.isfile(MODEL_EVALUATION_FILE_PATH):\n approach_calculations = json.load(open(MODEL_EVALUATION_FILE_PATH))\n return approach_calculations\n\n\n<function token>\n\n\ndef build_model_save_path(game_id, target, type, model_name):\n return '{}{}_{}_{}_{}.pkl'.format(MODEL_DIR, game_id, target, type,\n model_name)\n", "<import token>\n<function token>\n\n\ndef load_model_selection():\n approach_calculations = {}\n if os.path.isfile(MODEL_EVALUATION_FILE_PATH):\n approach_calculations = json.load(open(MODEL_EVALUATION_FILE_PATH))\n return approach_calculations\n\n\n<function token>\n\n\ndef build_model_save_path(game_id, target, type, model_name):\n return '{}{}_{}_{}_{}.pkl'.format(MODEL_DIR, game_id, target, type,\n model_name)\n", "<import token>\n<function token>\n\n\ndef load_model_selection():\n approach_calculations = {}\n if os.path.isfile(MODEL_EVALUATION_FILE_PATH):\n approach_calculations = json.load(open(MODEL_EVALUATION_FILE_PATH))\n return approach_calculations\n\n\n<function token>\n<function token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<function token>\n" ]
false
98,817
9dd19432e1f9bbc60d19a4b9029b919f5329046a
import time import colorama from colorama import Fore from termcolor import colored as color print(color(""" How to use?! {Coded by avinoire} {Dead_Lucifer\'s materials}""","red")) time.sleep(0.5) while True: time.sleep(0.1) print(color(""" [1] How to use? [2] Authors [3] Exit""","cyan")) anv = input(f"""{Fore.RED}$ {Fore.CYAN}""") if anv == "2": time.sleep(0.7) print(f""" {Fore.MAGENTA}A {Fore.GREEN}u {Fore.RED}T {Fore.CYAN}h {Fore.YELLOW}O {Fore.MAGENTA}r {Fore.RED}S {Fore.GREEN}""") print(color("""This programm was written by AviNoire. Material provided by Dead_Lucifer. Check Telegramm by tags: [Avinoire] - @avinoire [Lucifer] - @Dead_Lucifer_666 ""","cyan")) time.sleep(1) elif anv == "1": time.sleep(0.7) print(f""" {Fore.RED}Inscruction step by step. {Fore.GREEN}1) start VPN {Fore.GREEN}2) trigger bigbomb.py (bigbomb.py) {Fore.GREEN}3) write your\'s bot token ( my should create it in @BotFather on Telegram ) and your Telegram id {Fore.GREEN}4) go to your bot into Telegram and push Start {Fore.GREEN}5) You will Menu on russian language {Fore.GREEN}6) push \'Бомбер\' {Fore.GREEN}7) Enter phone number {Fore.GREEN}8) Relax""") time.sleep(1) elif anv == "3": break else: print(color("{---Unknown Command---}","red"))
[ "import time\nimport colorama\nfrom colorama import Fore\nfrom termcolor import colored as color\n\nprint(color(\"\"\"\n How to use?!\n {Coded by avinoire}\n {Dead_Lucifer\\'s materials}\"\"\",\"red\"))\ntime.sleep(0.5)\nwhile True:\n\ttime.sleep(0.1)\n\tprint(color(\"\"\"\n[1] How to use?\n[2] Authors\n[3] Exit\"\"\",\"cyan\"))\n\tanv = input(f\"\"\"{Fore.RED}$ {Fore.CYAN}\"\"\")\n\tif anv == \"2\":\n\t\ttime.sleep(0.7)\n\t\tprint(f\"\"\"\n\t\t\t {Fore.MAGENTA}A {Fore.GREEN}u {Fore.RED}T {Fore.CYAN}h {Fore.YELLOW}O {Fore.MAGENTA}r {Fore.RED}S {Fore.GREEN}\"\"\")\n\t\tprint(color(\"\"\"This programm was written by AviNoire. Material provided by Dead_Lucifer.\n Check Telegramm by tags:\n [Avinoire] - @avinoire\n [Lucifer] - @Dead_Lucifer_666 \"\"\",\"cyan\"))\n\t\ttime.sleep(1)\n\telif anv == \"1\":\n\t\ttime.sleep(0.7)\n\t\tprint(f\"\"\"\n{Fore.RED}Inscruction step by step.\n\n{Fore.GREEN}1) start VPN\n\n{Fore.GREEN}2) trigger bigbomb.py (bigbomb.py)\n\n{Fore.GREEN}3) write your\\'s bot token ( my should create it in @BotFather on Telegram ) and your Telegram id\n\n{Fore.GREEN}4) go to your bot into Telegram and push Start\n\n{Fore.GREEN}5) You will Menu on russian language\n\n{Fore.GREEN}6) push \\'Бомбер\\'\n\n{Fore.GREEN}7) Enter phone number\n\n{Fore.GREEN}8) Relax\"\"\")\n\t\ttime.sleep(1)\n\telif anv == \"3\":\n\t\tbreak\n\telse:\n\t\tprint(color(\"{---Unknown Command---}\",\"red\"))\n", "import time\nimport colorama\nfrom colorama import Fore\nfrom termcolor import colored as color\nprint(color(\n \"\"\"\n How to use?!\n {Coded by avinoire}\n {Dead_Lucifer's materials}\"\"\"\n , 'red'))\ntime.sleep(0.5)\nwhile True:\n time.sleep(0.1)\n print(color('\\n[1] How to use?\\n[2] Authors\\n[3] Exit', 'cyan'))\n anv = input(f'{Fore.RED}$ {Fore.CYAN}')\n if anv == '2':\n time.sleep(0.7)\n print(\n f\"\"\"\n\t\t\t {Fore.MAGENTA}A {Fore.GREEN}u {Fore.RED}T {Fore.CYAN}h {Fore.YELLOW}O {Fore.MAGENTA}r {Fore.RED}S {Fore.GREEN}\"\"\"\n )\n print(color(\n \"\"\"This programm was written by AviNoire. Material provided by Dead_Lucifer.\n Check Telegramm by tags:\n [Avinoire] - @avinoire\n [Lucifer] - @Dead_Lucifer_666 \"\"\"\n , 'cyan'))\n time.sleep(1)\n elif anv == '1':\n time.sleep(0.7)\n print(\n f\"\"\"\n{Fore.RED}Inscruction step by step.\n\n{Fore.GREEN}1) start VPN\n\n{Fore.GREEN}2) trigger bigbomb.py (bigbomb.py)\n\n{Fore.GREEN}3) write your's bot token ( my should create it in @BotFather on Telegram ) and your Telegram id\n\n{Fore.GREEN}4) go to your bot into Telegram and push Start\n\n{Fore.GREEN}5) You will Menu on russian language\n\n{Fore.GREEN}6) push 'Бомбер'\n\n{Fore.GREEN}7) Enter phone number\n\n{Fore.GREEN}8) Relax\"\"\"\n )\n time.sleep(1)\n elif anv == '3':\n break\n else:\n print(color('{---Unknown Command---}', 'red'))\n", "<import token>\nprint(color(\n \"\"\"\n How to use?!\n {Coded by avinoire}\n {Dead_Lucifer's materials}\"\"\"\n , 'red'))\ntime.sleep(0.5)\nwhile True:\n time.sleep(0.1)\n print(color('\\n[1] How to use?\\n[2] Authors\\n[3] Exit', 'cyan'))\n anv = input(f'{Fore.RED}$ {Fore.CYAN}')\n if anv == '2':\n time.sleep(0.7)\n print(\n f\"\"\"\n\t\t\t {Fore.MAGENTA}A {Fore.GREEN}u {Fore.RED}T {Fore.CYAN}h {Fore.YELLOW}O {Fore.MAGENTA}r {Fore.RED}S {Fore.GREEN}\"\"\"\n )\n print(color(\n \"\"\"This programm was written by AviNoire. Material provided by Dead_Lucifer.\n Check Telegramm by tags:\n [Avinoire] - @avinoire\n [Lucifer] - @Dead_Lucifer_666 \"\"\"\n , 'cyan'))\n time.sleep(1)\n elif anv == '1':\n time.sleep(0.7)\n print(\n f\"\"\"\n{Fore.RED}Inscruction step by step.\n\n{Fore.GREEN}1) start VPN\n\n{Fore.GREEN}2) trigger bigbomb.py (bigbomb.py)\n\n{Fore.GREEN}3) write your's bot token ( my should create it in @BotFather on Telegram ) and your Telegram id\n\n{Fore.GREEN}4) go to your bot into Telegram and push Start\n\n{Fore.GREEN}5) You will Menu on russian language\n\n{Fore.GREEN}6) push 'Бомбер'\n\n{Fore.GREEN}7) Enter phone number\n\n{Fore.GREEN}8) Relax\"\"\"\n )\n time.sleep(1)\n elif anv == '3':\n break\n else:\n print(color('{---Unknown Command---}', 'red'))\n", "<import token>\n<code token>\n" ]
false
98,818
f5c521432524315e698ff9578c33498d8016ed82
# -*- coding: utf-8 -*- """ Created on Wed Mar 28 00:03:13 2018 @author: amitangshu """ import keras from keras.models import Model from keras.layers import Dense, Dropout, Activation, Flatten, Input from keras.layers import Conv2D, MaxPooling2D from keras.layers import DepthwiseConv2D BASE_WEIGHT_PATH = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.6/' def MobileNet(input_shape=None, alpha=1.0, depth_multiplier=1, dropout=1e-3, include_top=True, weights='imagenet', input_tensor=None, pooling=None, classes=1000, output_dim): """ Define model architecture. # Arguments img_width: Target image widht. img_height: Target image height. img_channels: Target image channels. output_dim: Dimension of model output. # Returns model: A Model instance. """ # Input img_input = Input(shape=(img_height, img_width, img_channels)) x1 = Conv2D(32, (5, 5), strides=[2,2], padding='same')(img_input) x1 = MaxPooling2D(pool_size=(3, 3), strides=[2,2])(x1) # First residual block x2=DepthwiseConv2D((3, 3), padding='valid', depth_multiplier=depth_multiplier, strides=strides, use_bias=False, name='conv_dw_%d' % block_id)(x1) x2 = keras.layers.normalization.BatchNormalization()(x2) x2 = Activation('relu')(x2) x2 = Conv2D((1, 1), padding='same', use_bias=False, strides=(1, 1), name='conv_pw_%d' % block_id)(x2) x2 = keras.layers.normalization.BatchNormalization()(x2) x2 = Activation('relu')(x2) x3 = Flatten()(x2) x3 = Activation('relu')(x3) x3 = Dropout(0.5)(x3) # Steering channel steer = Dense(output_dim)(x3) # Collision channel coll = Dense(output_dim)(x3) coll = Activation('sigmoid')(coll) # Define steering-collision model model = Model(inputs=[img_input], outputs=[steer, coll]) print(model.summary()) return model
[ "# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Wed Mar 28 00:03:13 2018\n\n@author: amitangshu\n\"\"\"\nimport keras\nfrom keras.models import Model\nfrom keras.layers import Dense, Dropout, Activation, Flatten, Input\nfrom keras.layers import Conv2D, MaxPooling2D\nfrom keras.layers import DepthwiseConv2D\n\n\n\nBASE_WEIGHT_PATH = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.6/'\n\n\n\n\n\ndef MobileNet(input_shape=None,\n alpha=1.0,\n depth_multiplier=1,\n dropout=1e-3,\n include_top=True,\n weights='imagenet',\n input_tensor=None,\n pooling=None,\n classes=1000,\n output_dim):\n \"\"\"\n Define model architecture.\n \n # Arguments\n img_width: Target image widht.\n img_height: Target image height.\n img_channels: Target image channels.\n output_dim: Dimension of model output.\n \n # Returns\n model: A Model instance.\n \"\"\"\n\n # Input\n img_input = Input(shape=(img_height, img_width, img_channels))\n\n x1 = Conv2D(32, (5, 5), strides=[2,2], padding='same')(img_input)\n x1 = MaxPooling2D(pool_size=(3, 3), strides=[2,2])(x1)\n\n # First residual block\n x2=DepthwiseConv2D((3, 3),\n padding='valid',\n depth_multiplier=depth_multiplier,\n strides=strides,\n use_bias=False,\n name='conv_dw_%d' % block_id)(x1)\n x2 = keras.layers.normalization.BatchNormalization()(x2)\n x2 = Activation('relu')(x2)\n x2 = Conv2D((1, 1),\n padding='same',\n use_bias=False,\n strides=(1, 1),\n name='conv_pw_%d' % block_id)(x2)\n\n x2 = keras.layers.normalization.BatchNormalization()(x2)\n x2 = Activation('relu')(x2)\n \n x3 = Flatten()(x2)\n x3 = Activation('relu')(x3)\n x3 = Dropout(0.5)(x3)\n\n # Steering channel\n steer = Dense(output_dim)(x3)\n\n # Collision channel\n coll = Dense(output_dim)(x3)\n coll = Activation('sigmoid')(coll)\n\n # Define steering-collision model\n model = Model(inputs=[img_input], outputs=[steer, coll])\n print(model.summary())\n\n return model\n\n" ]
true
98,819
a8a48a003a0135ae0a5bd16a9c896d537035253b
from blackbox.handlers.databases import MariaDB from blackbox.handlers.databases._base import BlackboxDatabase class MySQL(MariaDB, BlackboxDatabase): """A Database handler that will do a mysqldump for MySQL, backing up all tables.""" pass
[ "from blackbox.handlers.databases import MariaDB\nfrom blackbox.handlers.databases._base import BlackboxDatabase\n\n\nclass MySQL(MariaDB, BlackboxDatabase):\n \"\"\"A Database handler that will do a mysqldump for MySQL, backing up all tables.\"\"\"\n\n pass\n", "from blackbox.handlers.databases import MariaDB\nfrom blackbox.handlers.databases._base import BlackboxDatabase\n\n\nclass MySQL(MariaDB, BlackboxDatabase):\n \"\"\"A Database handler that will do a mysqldump for MySQL, backing up all tables.\"\"\"\n pass\n", "<import token>\n\n\nclass MySQL(MariaDB, BlackboxDatabase):\n \"\"\"A Database handler that will do a mysqldump for MySQL, backing up all tables.\"\"\"\n pass\n", "<import token>\n\n\nclass MySQL(MariaDB, BlackboxDatabase):\n <docstring token>\n pass\n", "<import token>\n<class token>\n" ]
false
98,820
c577ae40fcf61da72dea68a448ff44a6968d7892
lb=int(input("enter lower bound: ")) ub=int(input("enter upper bound: ")) print("Displaying numbers in asending order") i=lb while(i<=ub): print(i,end=",") i=i+1 # To go to the next line print() print("Displaying numbers in desending order") i=ub while(i>=lb): print(i,end=",") i=i-1
[ "lb=int(input(\"enter lower bound: \"))\nub=int(input(\"enter upper bound: \"))\n\nprint(\"Displaying numbers in asending order\")\ni=lb\nwhile(i<=ub):\n print(i,end=\",\")\n i=i+1\n\n# To go to the next line\nprint()\n\nprint(\"Displaying numbers in desending order\")\ni=ub\nwhile(i>=lb):\n print(i,end=\",\")\n i=i-1\n\n \n ", "lb = int(input('enter lower bound: '))\nub = int(input('enter upper bound: '))\nprint('Displaying numbers in asending order')\ni = lb\nwhile i <= ub:\n print(i, end=',')\n i = i + 1\nprint()\nprint('Displaying numbers in desending order')\ni = ub\nwhile i >= lb:\n print(i, end=',')\n i = i - 1\n", "<assignment token>\nprint('Displaying numbers in asending order')\n<assignment token>\nwhile i <= ub:\n print(i, end=',')\n i = i + 1\nprint()\nprint('Displaying numbers in desending order')\n<assignment token>\nwhile i >= lb:\n print(i, end=',')\n i = i - 1\n", "<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n" ]
false
98,821
c017ae6a50f60f0f54c9462eba39e5353cb6d59c
import random from random_word import RandomWords word_list = ["laptop", "magazine", "phone", "clarify", "abbreviate", "lucky", "luxury", "example", "absurd", "subway", "syndrome"] stages = [ ''' +---+ | | O | /|\ | / \ | | ========= ''' , ''' +---+ | | O | /|\ | / | | ========= ''' , ''' +---+ | | O | /| | | | ========= ''' , ''' +---+ | | O | | | | | ========= ''' , ''' +---+ | | O | | | | ========= ''' , ''' +---+ | | | | | | ========= '''] # Choosing random word from word list def blanks_(word_length): display_blanks = [] for _ in range(word_length): display_blanks += "_" return display_blanks # Ask user to guess a letter def user_guess(): user_guess_ = input("Guess a letter: ") return user_guess_.lower() # Check if user guessed word matches the chosen word def main(): # r = RandomWords() # word_list = r.get_random_words() chosen_word = random.choice(word_list) word_length = len(chosen_word) blanks = blanks_(word_length) print(blanks) lives = 6 word_guess_end = False while not word_guess_end: guess = user_guess() for position in range(word_length): letter = chosen_word[position] if letter == guess: blanks[position] = letter print(blanks) if guess not in chosen_word: lives = lives - 1 print(stages[lives]) if lives == 0: word_guess_end = True print("You lose") print("The word is : ", chosen_word) if "_" not in blanks: word_guess_end = True print("You win!!") if __name__ == "__main__": print( ''' _ | | | |__ __ _ _ __ __ _ _ __ ___ __ _ _ __ | '_ \ / _` | '_ \ / _` | '_ ` _ \ / _` | '_ \ | | | | (_| | | | | (_| | | | | | | (_| | | | | |_| |_|\__,_|_| |_|\__, |_| |_| |_|\__,_|_| |_| __/ | |___/ ''' ) print("You have 6 lives") main()
[ "import random\r\nfrom random_word import RandomWords\r\n\r\nword_list = [\"laptop\", \"magazine\", \"phone\", \"clarify\", \"abbreviate\", \"lucky\", \"luxury\", \"example\", \"absurd\",\r\n \"subway\", \"syndrome\"]\r\n\r\n\r\nstages = [ '''\r\n +---+\r\n | |\r\n O |\r\n /|\\ |\r\n / \\ |\r\n |\r\n========= \r\n''' , '''\r\n\r\n +---+\r\n | |\r\n O |\r\n /|\\ |\r\n / |\r\n |\r\n========= \r\n''' , '''\r\n\r\n +---+\r\n | |\r\n O |\r\n /| |\r\n |\r\n |\r\n========= \r\n''' , '''\r\n\r\n +---+\r\n | |\r\n O |\r\n | |\r\n |\r\n |\r\n========= \r\n''' , '''\r\n\r\n +---+\r\n | |\r\n O |\r\n |\r\n |\r\n |\r\n========= \r\n''' , '''\r\n\r\n +---+\r\n | | \r\n |\r\n |\r\n |\r\n |\r\n========= \r\n''']\r\n# Choosing random word from word list\r\n\r\n\r\ndef blanks_(word_length):\r\n display_blanks = []\r\n for _ in range(word_length):\r\n display_blanks += \"_\"\r\n return display_blanks\r\n\r\n\r\n# Ask user to guess a letter\r\n\r\ndef user_guess():\r\n user_guess_ = input(\"Guess a letter: \")\r\n return user_guess_.lower()\r\n\r\n# Check if user guessed word matches the chosen word\r\n\r\n\r\ndef main():\r\n # r = RandomWords()\r\n # word_list = r.get_random_words()\r\n chosen_word = random.choice(word_list)\r\n word_length = len(chosen_word)\r\n blanks = blanks_(word_length)\r\n print(blanks)\r\n lives = 6\r\n word_guess_end = False\r\n\r\n while not word_guess_end:\r\n guess = user_guess()\r\n for position in range(word_length):\r\n letter = chosen_word[position]\r\n if letter == guess:\r\n blanks[position] = letter\r\n print(blanks)\r\n\r\n if guess not in chosen_word:\r\n lives = lives - 1\r\n print(stages[lives])\r\n if lives == 0:\r\n word_guess_end = True\r\n print(\"You lose\")\r\n print(\"The word is : \", chosen_word)\r\n\r\n if \"_\" not in blanks:\r\n word_guess_end = True\r\n print(\"You win!!\")\r\n\r\n\r\nif __name__ == \"__main__\":\r\n print( ''' \r\n _ \r\n| | \r\n| |__ __ _ _ __ __ _ _ __ ___ __ _ _ __ \r\n| '_ \\ / _` | '_ \\ / _` | '_ ` _ \\ / _` | '_ \\ \r\n| | | | (_| | | | | (_| | | | | | | (_| | | | |\r\n|_| |_|\\__,_|_| |_|\\__, |_| |_| |_|\\__,_|_| |_|\r\n __/ | \r\n |___/ \r\n''' )\r\n\r\n print(\"You have 6 lives\")\r\n main()\r\n", "import random\nfrom random_word import RandomWords\nword_list = ['laptop', 'magazine', 'phone', 'clarify', 'abbreviate',\n 'lucky', 'luxury', 'example', 'absurd', 'subway', 'syndrome']\nstages = [\n \"\"\"\n +---+\n | |\n O |\n /|\\\\ |\n / \\\\ |\n |\n========= \n\"\"\",\n \"\"\"\n\n +---+\n | |\n O |\n /|\\\\ |\n / |\n |\n========= \n\"\"\",\n \"\"\"\n\n +---+\n | |\n O |\n /| |\n |\n |\n========= \n\"\"\",\n \"\"\"\n\n +---+\n | |\n O |\n | |\n |\n |\n========= \n\"\"\",\n \"\"\"\n\n +---+\n | |\n O |\n |\n |\n |\n========= \n\"\"\",\n \"\"\"\n\n +---+\n | | \n |\n |\n |\n |\n========= \n\"\"\"]\n\n\ndef blanks_(word_length):\n display_blanks = []\n for _ in range(word_length):\n display_blanks += '_'\n return display_blanks\n\n\ndef user_guess():\n user_guess_ = input('Guess a letter: ')\n return user_guess_.lower()\n\n\ndef main():\n chosen_word = random.choice(word_list)\n word_length = len(chosen_word)\n blanks = blanks_(word_length)\n print(blanks)\n lives = 6\n word_guess_end = False\n while not word_guess_end:\n guess = user_guess()\n for position in range(word_length):\n letter = chosen_word[position]\n if letter == guess:\n blanks[position] = letter\n print(blanks)\n if guess not in chosen_word:\n lives = lives - 1\n print(stages[lives])\n if lives == 0:\n word_guess_end = True\n print('You lose')\n print('The word is : ', chosen_word)\n if '_' not in blanks:\n word_guess_end = True\n print('You win!!')\n\n\nif __name__ == '__main__':\n print(\n \"\"\" \n _ \n| | \n| |__ __ _ _ __ __ _ _ __ ___ __ _ _ __ \n| '_ \\\\ / _` | '_ \\\\ / _` | '_ ` _ \\\\ / _` | '_ \\\\ \n| | | | (_| | | | | (_| | | | | | | (_| | | | |\n|_| |_|\\\\__,_|_| |_|\\\\__, |_| |_| |_|\\\\__,_|_| |_|\n __/ | \n |___/ \n\"\"\"\n )\n print('You have 6 lives')\n main()\n", "<import token>\nword_list = ['laptop', 'magazine', 'phone', 'clarify', 'abbreviate',\n 'lucky', 'luxury', 'example', 'absurd', 'subway', 'syndrome']\nstages = [\n \"\"\"\n +---+\n | |\n O |\n /|\\\\ |\n / \\\\ |\n |\n========= \n\"\"\",\n \"\"\"\n\n +---+\n | |\n O |\n /|\\\\ |\n / |\n |\n========= \n\"\"\",\n \"\"\"\n\n +---+\n | |\n O |\n /| |\n |\n |\n========= \n\"\"\",\n \"\"\"\n\n +---+\n | |\n O |\n | |\n |\n |\n========= \n\"\"\",\n \"\"\"\n\n +---+\n | |\n O |\n |\n |\n |\n========= \n\"\"\",\n \"\"\"\n\n +---+\n | | \n |\n |\n |\n |\n========= \n\"\"\"]\n\n\ndef blanks_(word_length):\n display_blanks = []\n for _ in range(word_length):\n display_blanks += '_'\n return display_blanks\n\n\ndef user_guess():\n user_guess_ = input('Guess a letter: ')\n return user_guess_.lower()\n\n\ndef main():\n chosen_word = random.choice(word_list)\n word_length = len(chosen_word)\n blanks = blanks_(word_length)\n print(blanks)\n lives = 6\n word_guess_end = False\n while not word_guess_end:\n guess = user_guess()\n for position in range(word_length):\n letter = chosen_word[position]\n if letter == guess:\n blanks[position] = letter\n print(blanks)\n if guess not in chosen_word:\n lives = lives - 1\n print(stages[lives])\n if lives == 0:\n word_guess_end = True\n print('You lose')\n print('The word is : ', chosen_word)\n if '_' not in blanks:\n word_guess_end = True\n print('You win!!')\n\n\nif __name__ == '__main__':\n print(\n \"\"\" \n _ \n| | \n| |__ __ _ _ __ __ _ _ __ ___ __ _ _ __ \n| '_ \\\\ / _` | '_ \\\\ / _` | '_ ` _ \\\\ / _` | '_ \\\\ \n| | | | (_| | | | | (_| | | | | | | (_| | | | |\n|_| |_|\\\\__,_|_| |_|\\\\__, |_| |_| |_|\\\\__,_|_| |_|\n __/ | \n |___/ \n\"\"\"\n )\n print('You have 6 lives')\n main()\n", "<import token>\n<assignment token>\n\n\ndef blanks_(word_length):\n display_blanks = []\n for _ in range(word_length):\n display_blanks += '_'\n return display_blanks\n\n\ndef user_guess():\n user_guess_ = input('Guess a letter: ')\n return user_guess_.lower()\n\n\ndef main():\n chosen_word = random.choice(word_list)\n word_length = len(chosen_word)\n blanks = blanks_(word_length)\n print(blanks)\n lives = 6\n word_guess_end = False\n while not word_guess_end:\n guess = user_guess()\n for position in range(word_length):\n letter = chosen_word[position]\n if letter == guess:\n blanks[position] = letter\n print(blanks)\n if guess not in chosen_word:\n lives = lives - 1\n print(stages[lives])\n if lives == 0:\n word_guess_end = True\n print('You lose')\n print('The word is : ', chosen_word)\n if '_' not in blanks:\n word_guess_end = True\n print('You win!!')\n\n\nif __name__ == '__main__':\n print(\n \"\"\" \n _ \n| | \n| |__ __ _ _ __ __ _ _ __ ___ __ _ _ __ \n| '_ \\\\ / _` | '_ \\\\ / _` | '_ ` _ \\\\ / _` | '_ \\\\ \n| | | | (_| | | | | (_| | | | | | | (_| | | | |\n|_| |_|\\\\__,_|_| |_|\\\\__, |_| |_| |_|\\\\__,_|_| |_|\n __/ | \n |___/ \n\"\"\"\n )\n print('You have 6 lives')\n main()\n", "<import token>\n<assignment token>\n\n\ndef blanks_(word_length):\n display_blanks = []\n for _ in range(word_length):\n display_blanks += '_'\n return display_blanks\n\n\ndef user_guess():\n user_guess_ = input('Guess a letter: ')\n return user_guess_.lower()\n\n\ndef main():\n chosen_word = random.choice(word_list)\n word_length = len(chosen_word)\n blanks = blanks_(word_length)\n print(blanks)\n lives = 6\n word_guess_end = False\n while not word_guess_end:\n guess = user_guess()\n for position in range(word_length):\n letter = chosen_word[position]\n if letter == guess:\n blanks[position] = letter\n print(blanks)\n if guess not in chosen_word:\n lives = lives - 1\n print(stages[lives])\n if lives == 0:\n word_guess_end = True\n print('You lose')\n print('The word is : ', chosen_word)\n if '_' not in blanks:\n word_guess_end = True\n print('You win!!')\n\n\n<code token>\n", "<import token>\n<assignment token>\n\n\ndef blanks_(word_length):\n display_blanks = []\n for _ in range(word_length):\n display_blanks += '_'\n return display_blanks\n\n\n<function token>\n\n\ndef main():\n chosen_word = random.choice(word_list)\n word_length = len(chosen_word)\n blanks = blanks_(word_length)\n print(blanks)\n lives = 6\n word_guess_end = False\n while not word_guess_end:\n guess = user_guess()\n for position in range(word_length):\n letter = chosen_word[position]\n if letter == guess:\n blanks[position] = letter\n print(blanks)\n if guess not in chosen_word:\n lives = lives - 1\n print(stages[lives])\n if lives == 0:\n word_guess_end = True\n print('You lose')\n print('The word is : ', chosen_word)\n if '_' not in blanks:\n word_guess_end = True\n print('You win!!')\n\n\n<code token>\n", "<import token>\n<assignment token>\n\n\ndef blanks_(word_length):\n display_blanks = []\n for _ in range(word_length):\n display_blanks += '_'\n return display_blanks\n\n\n<function token>\n<function token>\n<code token>\n", "<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<code token>\n" ]
false
98,822
bc0b7883331bb020bc2665208e06b49b6d2df700
"""The Geodataframe adapter implementation.""" import logging import warnings from os.path import join from pathlib import Path from typing import NewType, Union import geopandas as gpd import numpy as np from shapely.geometry import box from .. import io from .data_adapter import DataAdapter logger = logging.getLogger(__name__) __all__ = ["GeoDataFrameAdapter", "GeoDataframeSource"] GeoDataframeSource = NewType("GeoDataframeSource", Union[str, Path]) class GeoDataFrameAdapter(DataAdapter): """The Geodataframe adapter implementation.""" _DEFAULT_DRIVER = "vector" _DRIVERS = { "xy": "xy", "csv": "csv", "parquet": "parquet", "xls": "xls", "xlsx": "xlsx", } def __init__( self, path: str, driver: str = None, filesystem: str = "local", crs: Union[int, str, dict] = None, nodata: Union[dict, float, int] = None, rename: dict = {}, unit_mult: dict = {}, unit_add: dict = {}, meta: dict = {}, attrs: dict = {}, driver_kwargs: dict = {}, name: str = "", # optional for now catalog_name: str = "", # optional for now provider=None, version=None, **kwargs, ): """Initiate data adapter for geospatial vector data. This object contains all properties required to read supported files into a single unified :py:func:`geopandas.GeoDataFrame`. In addition it keeps meta data to be able to reproduce which data is used. Parameters ---------- path: str, Path Path to data source. If the dataset consists of multiple files, the path may contain {variable} placeholders as well as path search pattern using a '*' wildcard. driver: {'vector', 'vector_table'}, optional Driver to read files with, for 'vector' :py:func:`~geopandas.read_file`, for {'vector_table'} :py:func:`hydromt.io.open_vector_from_table` By default the driver is inferred from the file extension and falls back to 'vector' if unknown. filesystem: {'local', 'gcs', 's3'}, optional Filesystem where the data is stored (local, cloud, http etc.). By default, local. crs: int, dict, or str, optional Coordinate Reference System. Accepts EPSG codes (int or str); proj (str or dict) or wkt (str). Only used if the data has no native CRS. nodata: dictionary, float, int, optional Missing value number. Only used if the data has no native missing value. Nodata values can be differentiated between variables using a dictionary. rename: dict, optional Mapping of native data source variable to output source variable name as required by hydroMT. unit_mult, unit_add: dict, optional Scaling multiplication and addition to change to map from the native data unit to the output data unit as required by hydroMT. meta: dict, optional Metadata information of dataset, prefably containing the following keys: {'source_version', 'source_url', 'source_license', 'paper_ref', 'paper_doi', 'category'} placeholders: dict, optional Placeholders to expand yaml entry to multiple entries (name and path) based on placeholder values attrs: dict, optional Additional attributes relating to data variables. For instance unit or long name of the variable. driver_kwargs, dict, optional Additional key-word arguments passed to the driver. name, catalog_name: str, optional Name of the dataset and catalog, optional for now. """ if kwargs: warnings.warn( "Passing additional keyword arguments to be used by the " "GeoDataFrameAdapter driver is deprecated and will be removed " "in a future version. Please use 'driver_kwargs' instead.", DeprecationWarning, ) driver_kwargs.update(kwargs) super().__init__( path=path, driver=driver, filesystem=filesystem, nodata=nodata, rename=rename, unit_mult=unit_mult, unit_add=unit_add, meta=meta, attrs=attrs, driver_kwargs=driver_kwargs, name=name, catalog_name=catalog_name, provider=provider, version=version, ) self.crs = crs def to_file( self, data_root, data_name, bbox=None, driver=None, variables=None, logger=logger, **kwargs, ): """Save a data slice to file. Parameters ---------- data_root : str, Path Path to output folder data_name : str Name of output file without extension. bbox : array-like of floats (xmin, ymin, xmax, ymax) bounding box of area of interest. driver : str, optional Driver to write file, e.g.: 'GPKG', 'ESRI Shapefile' or any fiona data type, by default None variables : list of str, optional Names of GeoDataset variables to return. By default all dataset variables are returned. logger : logger object, optional The logger object used for logging messages. If not provided, the default logger will be used. **kwargs Additional keyword arguments that are passed to the geopandas driver. Returns ------- fn_out: str Absolute path to output file driver: str Name of driver to read data with, see :py:func:`~hydromt.data_catalog.DataCatalog.get_geodataframe` """ kwargs.pop("time_tuple", None) gdf = self.get_data(bbox=bbox, variables=variables, logger=logger) if gdf.index.size == 0: return None, None, None read_kwargs = {} if driver is None: _lst = ["csv", "parquet", "xls", "xlsx", "xy", "vector_table"] driver = "csv" if self.driver in _lst else "GPKG" # always write netcdf if driver == "csv": fn_out = join(data_root, f"{data_name}.csv") if not np.all(gdf.geometry.type == "Point"): raise ValueError( f"{data_name} contains other geometries than 'Point' " "which cannot be written to csv." ) gdf["x"], gdf["y"] = gdf.geometry.x, gdf.geometry.y gdf.drop(columns="geometry").to_csv(fn_out, **kwargs) read_kwargs["index_col"] = 0 elif driver == "parquet": fn_out = join(data_root, f"{data_name}.parquet") if not np.all(gdf.geometry.type == "Point"): raise ValueError( f"{data_name} contains other geometries than 'Point' " "which cannot be written to parquet." ) gdf["x"], gdf["y"] = gdf.geometry.x, gdf.geometry.y gdf.drop(columns="geometry").to_parquet(fn_out, **kwargs) else: driver_extensions = { "ESRI Shapefile": ".shp", } ext = driver_extensions.get(driver, driver).lower() fn_out = join(data_root, f"{data_name}.{ext}") gdf.to_file(fn_out, driver=driver, **kwargs) driver = "vector" return fn_out, driver, read_kwargs def get_data( self, bbox=None, geom=None, predicate="intersects", buffer=0, logger=logger, variables=None, # **kwargs, # this is not used, for testing only ): """Return a clipped and unified GeoDataFrame (vector). For a detailed description see: :py:func:`~hydromt.data_catalog.DataCatalog.get_geodataframe` """ # If variable is string, convert to list if variables: variables = np.atleast_1d(variables).tolist() if "storage_options" in self.driver_kwargs: # not sure if storage options can be passed to fiona.open() # for now throw NotImplemented Error raise NotImplementedError( "Remote file storage_options not implemented for GeoDataFrame" ) _ = self.resolve_paths() # throw nice error if data not found kwargs = self.driver_kwargs.copy() # parse geom, bbox and buffer arguments clip_str = "" if geom is None and bbox is not None: # convert bbox to geom with crs EPGS:4326 to apply buffer later geom = gpd.GeoDataFrame(geometry=[box(*bbox)], crs=4326) clip_str = " and clip to bbox (epsg:4326)" elif geom is not None: clip_str = f" and clip to geom (epsg:{geom.crs.to_epsg():d})" if geom is not None: # make sure geom is projected > buffer in meters! if geom.crs.is_geographic and buffer > 0: geom = geom.to_crs(3857) geom = geom.buffer(buffer) # a buffer with zero fixes some topology errors bbox_str = ", ".join([f"{c:.3f}" for c in geom.total_bounds]) clip_str = f"{clip_str} [{bbox_str}]" if kwargs.pop("within", False): # for backward compatibility predicate = "contains" # read and clip logger.info(f"GeoDataFrame: Read {self.driver} data{clip_str}.") if self.driver in [ "csv", "parquet", "xls", "xlsx", "xy", "vector", "vector_table", ]: # "csv", "xls", "xlsx", "xy" deprecated use vector_table instead. # specific driver should be added to open_vector kwargs if "driver" not in kwargs and self.driver in ["csv", "xls", "xlsx", "xy"]: warnings.warn( "using the driver setting is deprecated. Please use" "vector_table instead." ) kwargs.update(driver=self.driver) # Check if file-object is required because of additional options gdf = io.open_vector( self.path, crs=self.crs, geom=geom, predicate=predicate, **kwargs ) else: raise ValueError(f"GeoDataFrame: driver {self.driver} unknown.") # rename and select columns if self.rename: rename = {k: v for k, v in self.rename.items() if k in gdf.columns} gdf = gdf.rename(columns=rename) if variables is not None: if np.any([var not in gdf.columns for var in variables]): raise ValueError(f"GeoDataFrame: Not all variables found: {variables}") if "geometry" not in variables: # always keep geometry column variables = variables + ["geometry"] gdf = gdf.loc[:, variables] # nodata and unit conversion for numeric data if gdf.index.size == 0: logger.warning(f"GeoDataFrame: No data within spatial domain {self.path}.") else: # parse nodata values cols = gdf.select_dtypes([np.number]).columns if self.nodata is not None and len(cols) > 0: if not isinstance(self.nodata, dict): nodata = {c: self.nodata for c in cols} else: nodata = self.nodata for c in cols: mv = nodata.get(c, None) if mv is not None: is_nodata = np.isin(gdf[c], np.atleast_1d(mv)) gdf[c] = np.where(is_nodata, np.nan, gdf[c]) # unit conversion unit_names = list(self.unit_mult.keys()) + list(self.unit_add.keys()) unit_names = [k for k in unit_names if k in gdf.columns] if len(unit_names) > 0: logger.debug( f"GeoDataFrame: Convert units for {len(unit_names)} columns." ) for name in list(set(unit_names)): # unique m = self.unit_mult.get(name, 1) a = self.unit_add.get(name, 0) gdf[name] = gdf[name] * m + a # set meta data gdf.attrs.update(self.meta) # set column attributes for col in self.attrs: if col in gdf.columns: gdf[col].attrs.update(**self.attrs[col]) return gdf
[ "\"\"\"The Geodataframe adapter implementation.\"\"\"\nimport logging\nimport warnings\nfrom os.path import join\nfrom pathlib import Path\nfrom typing import NewType, Union\n\nimport geopandas as gpd\nimport numpy as np\nfrom shapely.geometry import box\n\nfrom .. import io\nfrom .data_adapter import DataAdapter\n\nlogger = logging.getLogger(__name__)\n\n__all__ = [\"GeoDataFrameAdapter\", \"GeoDataframeSource\"]\n\nGeoDataframeSource = NewType(\"GeoDataframeSource\", Union[str, Path])\n\n\nclass GeoDataFrameAdapter(DataAdapter):\n\n \"\"\"The Geodataframe adapter implementation.\"\"\"\n\n _DEFAULT_DRIVER = \"vector\"\n _DRIVERS = {\n \"xy\": \"xy\",\n \"csv\": \"csv\",\n \"parquet\": \"parquet\",\n \"xls\": \"xls\",\n \"xlsx\": \"xlsx\",\n }\n\n def __init__(\n self,\n path: str,\n driver: str = None,\n filesystem: str = \"local\",\n crs: Union[int, str, dict] = None,\n nodata: Union[dict, float, int] = None,\n rename: dict = {},\n unit_mult: dict = {},\n unit_add: dict = {},\n meta: dict = {},\n attrs: dict = {},\n driver_kwargs: dict = {},\n name: str = \"\", # optional for now\n catalog_name: str = \"\", # optional for now\n provider=None,\n version=None,\n **kwargs,\n ):\n \"\"\"Initiate data adapter for geospatial vector data.\n\n This object contains all properties required to read supported files into\n a single unified :py:func:`geopandas.GeoDataFrame`.\n In addition it keeps meta data to be able to reproduce which data is used.\n\n Parameters\n ----------\n path: str, Path\n Path to data source. If the dataset consists of multiple files, the path may\n contain {variable} placeholders as well as path\n search pattern using a '*' wildcard.\n driver: {'vector', 'vector_table'}, optional\n Driver to read files with, for 'vector' :py:func:`~geopandas.read_file`,\n for {'vector_table'} :py:func:`hydromt.io.open_vector_from_table`\n By default the driver is inferred from the file extension and falls back to\n 'vector' if unknown.\n filesystem: {'local', 'gcs', 's3'}, optional\n Filesystem where the data is stored (local, cloud, http etc.).\n By default, local.\n crs: int, dict, or str, optional\n Coordinate Reference System. Accepts EPSG codes (int or str);\n proj (str or dict) or wkt (str). Only used if the data has no native CRS.\n nodata: dictionary, float, int, optional\n Missing value number. Only used if the data has no native missing value.\n Nodata values can be differentiated between variables using a dictionary.\n rename: dict, optional\n Mapping of native data source variable to output source variable name as\n required by hydroMT.\n unit_mult, unit_add: dict, optional\n Scaling multiplication and addition to change to map from the native\n data unit to the output data unit as required by hydroMT.\n meta: dict, optional\n Metadata information of dataset, prefably containing the following keys:\n {'source_version', 'source_url', 'source_license',\n 'paper_ref', 'paper_doi', 'category'}\n placeholders: dict, optional\n Placeholders to expand yaml entry to multiple entries (name and path)\n based on placeholder values\n attrs: dict, optional\n Additional attributes relating to data variables. For instance unit\n or long name of the variable.\n driver_kwargs, dict, optional\n Additional key-word arguments passed to the driver.\n name, catalog_name: str, optional\n Name of the dataset and catalog, optional for now.\n \"\"\"\n if kwargs:\n warnings.warn(\n \"Passing additional keyword arguments to be used by the \"\n \"GeoDataFrameAdapter driver is deprecated and will be removed \"\n \"in a future version. Please use 'driver_kwargs' instead.\",\n DeprecationWarning,\n )\n driver_kwargs.update(kwargs)\n super().__init__(\n path=path,\n driver=driver,\n filesystem=filesystem,\n nodata=nodata,\n rename=rename,\n unit_mult=unit_mult,\n unit_add=unit_add,\n meta=meta,\n attrs=attrs,\n driver_kwargs=driver_kwargs,\n name=name,\n catalog_name=catalog_name,\n provider=provider,\n version=version,\n )\n self.crs = crs\n\n def to_file(\n self,\n data_root,\n data_name,\n bbox=None,\n driver=None,\n variables=None,\n logger=logger,\n **kwargs,\n ):\n \"\"\"Save a data slice to file.\n\n Parameters\n ----------\n data_root : str, Path\n Path to output folder\n data_name : str\n Name of output file without extension.\n bbox : array-like of floats\n (xmin, ymin, xmax, ymax) bounding box of area of interest.\n driver : str, optional\n Driver to write file, e.g.: 'GPKG', 'ESRI Shapefile' or any fiona data type,\n by default None\n variables : list of str, optional\n Names of GeoDataset variables to return. By default all dataset variables\n are returned.\n logger : logger object, optional\n The logger object used for logging messages. If not provided, the default\n logger will be used.\n **kwargs\n Additional keyword arguments that are passed to the geopandas driver.\n\n Returns\n -------\n fn_out: str\n Absolute path to output file\n driver: str\n Name of driver to read data with, see\n :py:func:`~hydromt.data_catalog.DataCatalog.get_geodataframe`\n \"\"\"\n kwargs.pop(\"time_tuple\", None)\n gdf = self.get_data(bbox=bbox, variables=variables, logger=logger)\n if gdf.index.size == 0:\n return None, None, None\n\n read_kwargs = {}\n if driver is None:\n _lst = [\"csv\", \"parquet\", \"xls\", \"xlsx\", \"xy\", \"vector_table\"]\n driver = \"csv\" if self.driver in _lst else \"GPKG\"\n # always write netcdf\n if driver == \"csv\":\n fn_out = join(data_root, f\"{data_name}.csv\")\n if not np.all(gdf.geometry.type == \"Point\"):\n raise ValueError(\n f\"{data_name} contains other geometries than 'Point' \"\n \"which cannot be written to csv.\"\n )\n gdf[\"x\"], gdf[\"y\"] = gdf.geometry.x, gdf.geometry.y\n gdf.drop(columns=\"geometry\").to_csv(fn_out, **kwargs)\n read_kwargs[\"index_col\"] = 0\n elif driver == \"parquet\":\n fn_out = join(data_root, f\"{data_name}.parquet\")\n if not np.all(gdf.geometry.type == \"Point\"):\n raise ValueError(\n f\"{data_name} contains other geometries than 'Point' \"\n \"which cannot be written to parquet.\"\n )\n gdf[\"x\"], gdf[\"y\"] = gdf.geometry.x, gdf.geometry.y\n gdf.drop(columns=\"geometry\").to_parquet(fn_out, **kwargs)\n else:\n driver_extensions = {\n \"ESRI Shapefile\": \".shp\",\n }\n ext = driver_extensions.get(driver, driver).lower()\n fn_out = join(data_root, f\"{data_name}.{ext}\")\n gdf.to_file(fn_out, driver=driver, **kwargs)\n driver = \"vector\"\n\n return fn_out, driver, read_kwargs\n\n def get_data(\n self,\n bbox=None,\n geom=None,\n predicate=\"intersects\",\n buffer=0,\n logger=logger,\n variables=None,\n # **kwargs, # this is not used, for testing only\n ):\n \"\"\"Return a clipped and unified GeoDataFrame (vector).\n\n For a detailed description see:\n :py:func:`~hydromt.data_catalog.DataCatalog.get_geodataframe`\n \"\"\"\n # If variable is string, convert to list\n if variables:\n variables = np.atleast_1d(variables).tolist()\n\n if \"storage_options\" in self.driver_kwargs:\n # not sure if storage options can be passed to fiona.open()\n # for now throw NotImplemented Error\n raise NotImplementedError(\n \"Remote file storage_options not implemented for GeoDataFrame\"\n )\n _ = self.resolve_paths() # throw nice error if data not found\n\n kwargs = self.driver_kwargs.copy()\n # parse geom, bbox and buffer arguments\n clip_str = \"\"\n if geom is None and bbox is not None:\n # convert bbox to geom with crs EPGS:4326 to apply buffer later\n geom = gpd.GeoDataFrame(geometry=[box(*bbox)], crs=4326)\n clip_str = \" and clip to bbox (epsg:4326)\"\n elif geom is not None:\n clip_str = f\" and clip to geom (epsg:{geom.crs.to_epsg():d})\"\n if geom is not None:\n # make sure geom is projected > buffer in meters!\n if geom.crs.is_geographic and buffer > 0:\n geom = geom.to_crs(3857)\n geom = geom.buffer(buffer) # a buffer with zero fixes some topology errors\n bbox_str = \", \".join([f\"{c:.3f}\" for c in geom.total_bounds])\n clip_str = f\"{clip_str} [{bbox_str}]\"\n if kwargs.pop(\"within\", False): # for backward compatibility\n predicate = \"contains\"\n\n # read and clip\n logger.info(f\"GeoDataFrame: Read {self.driver} data{clip_str}.\")\n if self.driver in [\n \"csv\",\n \"parquet\",\n \"xls\",\n \"xlsx\",\n \"xy\",\n \"vector\",\n \"vector_table\",\n ]:\n # \"csv\", \"xls\", \"xlsx\", \"xy\" deprecated use vector_table instead.\n # specific driver should be added to open_vector kwargs\n if \"driver\" not in kwargs and self.driver in [\"csv\", \"xls\", \"xlsx\", \"xy\"]:\n warnings.warn(\n \"using the driver setting is deprecated. Please use\"\n \"vector_table instead.\"\n )\n\n kwargs.update(driver=self.driver)\n # Check if file-object is required because of additional options\n gdf = io.open_vector(\n self.path, crs=self.crs, geom=geom, predicate=predicate, **kwargs\n )\n else:\n raise ValueError(f\"GeoDataFrame: driver {self.driver} unknown.\")\n\n # rename and select columns\n if self.rename:\n rename = {k: v for k, v in self.rename.items() if k in gdf.columns}\n gdf = gdf.rename(columns=rename)\n if variables is not None:\n if np.any([var not in gdf.columns for var in variables]):\n raise ValueError(f\"GeoDataFrame: Not all variables found: {variables}\")\n if \"geometry\" not in variables: # always keep geometry column\n variables = variables + [\"geometry\"]\n gdf = gdf.loc[:, variables]\n\n # nodata and unit conversion for numeric data\n if gdf.index.size == 0:\n logger.warning(f\"GeoDataFrame: No data within spatial domain {self.path}.\")\n else:\n # parse nodata values\n cols = gdf.select_dtypes([np.number]).columns\n if self.nodata is not None and len(cols) > 0:\n if not isinstance(self.nodata, dict):\n nodata = {c: self.nodata for c in cols}\n else:\n nodata = self.nodata\n for c in cols:\n mv = nodata.get(c, None)\n if mv is not None:\n is_nodata = np.isin(gdf[c], np.atleast_1d(mv))\n gdf[c] = np.where(is_nodata, np.nan, gdf[c])\n\n # unit conversion\n unit_names = list(self.unit_mult.keys()) + list(self.unit_add.keys())\n unit_names = [k for k in unit_names if k in gdf.columns]\n if len(unit_names) > 0:\n logger.debug(\n f\"GeoDataFrame: Convert units for {len(unit_names)} columns.\"\n )\n for name in list(set(unit_names)): # unique\n m = self.unit_mult.get(name, 1)\n a = self.unit_add.get(name, 0)\n gdf[name] = gdf[name] * m + a\n\n # set meta data\n gdf.attrs.update(self.meta)\n\n # set column attributes\n for col in self.attrs:\n if col in gdf.columns:\n gdf[col].attrs.update(**self.attrs[col])\n return gdf\n", "<docstring token>\nimport logging\nimport warnings\nfrom os.path import join\nfrom pathlib import Path\nfrom typing import NewType, Union\nimport geopandas as gpd\nimport numpy as np\nfrom shapely.geometry import box\nfrom .. import io\nfrom .data_adapter import DataAdapter\nlogger = logging.getLogger(__name__)\n__all__ = ['GeoDataFrameAdapter', 'GeoDataframeSource']\nGeoDataframeSource = NewType('GeoDataframeSource', Union[str, Path])\n\n\nclass GeoDataFrameAdapter(DataAdapter):\n \"\"\"The Geodataframe adapter implementation.\"\"\"\n _DEFAULT_DRIVER = 'vector'\n _DRIVERS = {'xy': 'xy', 'csv': 'csv', 'parquet': 'parquet', 'xls':\n 'xls', 'xlsx': 'xlsx'}\n\n def __init__(self, path: str, driver: str=None, filesystem: str='local',\n crs: Union[int, str, dict]=None, nodata: Union[dict, float, int]=\n None, rename: dict={}, unit_mult: dict={}, unit_add: dict={}, meta:\n dict={}, attrs: dict={}, driver_kwargs: dict={}, name: str='',\n catalog_name: str='', provider=None, version=None, **kwargs):\n \"\"\"Initiate data adapter for geospatial vector data.\n\n This object contains all properties required to read supported files into\n a single unified :py:func:`geopandas.GeoDataFrame`.\n In addition it keeps meta data to be able to reproduce which data is used.\n\n Parameters\n ----------\n path: str, Path\n Path to data source. If the dataset consists of multiple files, the path may\n contain {variable} placeholders as well as path\n search pattern using a '*' wildcard.\n driver: {'vector', 'vector_table'}, optional\n Driver to read files with, for 'vector' :py:func:`~geopandas.read_file`,\n for {'vector_table'} :py:func:`hydromt.io.open_vector_from_table`\n By default the driver is inferred from the file extension and falls back to\n 'vector' if unknown.\n filesystem: {'local', 'gcs', 's3'}, optional\n Filesystem where the data is stored (local, cloud, http etc.).\n By default, local.\n crs: int, dict, or str, optional\n Coordinate Reference System. Accepts EPSG codes (int or str);\n proj (str or dict) or wkt (str). Only used if the data has no native CRS.\n nodata: dictionary, float, int, optional\n Missing value number. Only used if the data has no native missing value.\n Nodata values can be differentiated between variables using a dictionary.\n rename: dict, optional\n Mapping of native data source variable to output source variable name as\n required by hydroMT.\n unit_mult, unit_add: dict, optional\n Scaling multiplication and addition to change to map from the native\n data unit to the output data unit as required by hydroMT.\n meta: dict, optional\n Metadata information of dataset, prefably containing the following keys:\n {'source_version', 'source_url', 'source_license',\n 'paper_ref', 'paper_doi', 'category'}\n placeholders: dict, optional\n Placeholders to expand yaml entry to multiple entries (name and path)\n based on placeholder values\n attrs: dict, optional\n Additional attributes relating to data variables. For instance unit\n or long name of the variable.\n driver_kwargs, dict, optional\n Additional key-word arguments passed to the driver.\n name, catalog_name: str, optional\n Name of the dataset and catalog, optional for now.\n \"\"\"\n if kwargs:\n warnings.warn(\n \"Passing additional keyword arguments to be used by the GeoDataFrameAdapter driver is deprecated and will be removed in a future version. Please use 'driver_kwargs' instead.\"\n , DeprecationWarning)\n driver_kwargs.update(kwargs)\n super().__init__(path=path, driver=driver, filesystem=filesystem,\n nodata=nodata, rename=rename, unit_mult=unit_mult, unit_add=\n unit_add, meta=meta, attrs=attrs, driver_kwargs=driver_kwargs,\n name=name, catalog_name=catalog_name, provider=provider,\n version=version)\n self.crs = crs\n\n def to_file(self, data_root, data_name, bbox=None, driver=None,\n variables=None, logger=logger, **kwargs):\n \"\"\"Save a data slice to file.\n\n Parameters\n ----------\n data_root : str, Path\n Path to output folder\n data_name : str\n Name of output file without extension.\n bbox : array-like of floats\n (xmin, ymin, xmax, ymax) bounding box of area of interest.\n driver : str, optional\n Driver to write file, e.g.: 'GPKG', 'ESRI Shapefile' or any fiona data type,\n by default None\n variables : list of str, optional\n Names of GeoDataset variables to return. By default all dataset variables\n are returned.\n logger : logger object, optional\n The logger object used for logging messages. If not provided, the default\n logger will be used.\n **kwargs\n Additional keyword arguments that are passed to the geopandas driver.\n\n Returns\n -------\n fn_out: str\n Absolute path to output file\n driver: str\n Name of driver to read data with, see\n :py:func:`~hydromt.data_catalog.DataCatalog.get_geodataframe`\n \"\"\"\n kwargs.pop('time_tuple', None)\n gdf = self.get_data(bbox=bbox, variables=variables, logger=logger)\n if gdf.index.size == 0:\n return None, None, None\n read_kwargs = {}\n if driver is None:\n _lst = ['csv', 'parquet', 'xls', 'xlsx', 'xy', 'vector_table']\n driver = 'csv' if self.driver in _lst else 'GPKG'\n if driver == 'csv':\n fn_out = join(data_root, f'{data_name}.csv')\n if not np.all(gdf.geometry.type == 'Point'):\n raise ValueError(\n f\"{data_name} contains other geometries than 'Point' which cannot be written to csv.\"\n )\n gdf['x'], gdf['y'] = gdf.geometry.x, gdf.geometry.y\n gdf.drop(columns='geometry').to_csv(fn_out, **kwargs)\n read_kwargs['index_col'] = 0\n elif driver == 'parquet':\n fn_out = join(data_root, f'{data_name}.parquet')\n if not np.all(gdf.geometry.type == 'Point'):\n raise ValueError(\n f\"{data_name} contains other geometries than 'Point' which cannot be written to parquet.\"\n )\n gdf['x'], gdf['y'] = gdf.geometry.x, gdf.geometry.y\n gdf.drop(columns='geometry').to_parquet(fn_out, **kwargs)\n else:\n driver_extensions = {'ESRI Shapefile': '.shp'}\n ext = driver_extensions.get(driver, driver).lower()\n fn_out = join(data_root, f'{data_name}.{ext}')\n gdf.to_file(fn_out, driver=driver, **kwargs)\n driver = 'vector'\n return fn_out, driver, read_kwargs\n\n def get_data(self, bbox=None, geom=None, predicate='intersects', buffer\n =0, logger=logger, variables=None):\n \"\"\"Return a clipped and unified GeoDataFrame (vector).\n\n For a detailed description see:\n :py:func:`~hydromt.data_catalog.DataCatalog.get_geodataframe`\n \"\"\"\n if variables:\n variables = np.atleast_1d(variables).tolist()\n if 'storage_options' in self.driver_kwargs:\n raise NotImplementedError(\n 'Remote file storage_options not implemented for GeoDataFrame')\n _ = self.resolve_paths()\n kwargs = self.driver_kwargs.copy()\n clip_str = ''\n if geom is None and bbox is not None:\n geom = gpd.GeoDataFrame(geometry=[box(*bbox)], crs=4326)\n clip_str = ' and clip to bbox (epsg:4326)'\n elif geom is not None:\n clip_str = f' and clip to geom (epsg:{geom.crs.to_epsg():d})'\n if geom is not None:\n if geom.crs.is_geographic and buffer > 0:\n geom = geom.to_crs(3857)\n geom = geom.buffer(buffer)\n bbox_str = ', '.join([f'{c:.3f}' for c in geom.total_bounds])\n clip_str = f'{clip_str} [{bbox_str}]'\n if kwargs.pop('within', False):\n predicate = 'contains'\n logger.info(f'GeoDataFrame: Read {self.driver} data{clip_str}.')\n if self.driver in ['csv', 'parquet', 'xls', 'xlsx', 'xy', 'vector',\n 'vector_table']:\n if 'driver' not in kwargs and self.driver in ['csv', 'xls',\n 'xlsx', 'xy']:\n warnings.warn(\n 'using the driver setting is deprecated. Please usevector_table instead.'\n )\n kwargs.update(driver=self.driver)\n gdf = io.open_vector(self.path, crs=self.crs, geom=geom,\n predicate=predicate, **kwargs)\n else:\n raise ValueError(f'GeoDataFrame: driver {self.driver} unknown.')\n if self.rename:\n rename = {k: v for k, v in self.rename.items() if k in gdf.columns}\n gdf = gdf.rename(columns=rename)\n if variables is not None:\n if np.any([(var not in gdf.columns) for var in variables]):\n raise ValueError(\n f'GeoDataFrame: Not all variables found: {variables}')\n if 'geometry' not in variables:\n variables = variables + ['geometry']\n gdf = gdf.loc[:, variables]\n if gdf.index.size == 0:\n logger.warning(\n f'GeoDataFrame: No data within spatial domain {self.path}.')\n else:\n cols = gdf.select_dtypes([np.number]).columns\n if self.nodata is not None and len(cols) > 0:\n if not isinstance(self.nodata, dict):\n nodata = {c: self.nodata for c in cols}\n else:\n nodata = self.nodata\n for c in cols:\n mv = nodata.get(c, None)\n if mv is not None:\n is_nodata = np.isin(gdf[c], np.atleast_1d(mv))\n gdf[c] = np.where(is_nodata, np.nan, gdf[c])\n unit_names = list(self.unit_mult.keys()) + list(self.unit_add.\n keys())\n unit_names = [k for k in unit_names if k in gdf.columns]\n if len(unit_names) > 0:\n logger.debug(\n f'GeoDataFrame: Convert units for {len(unit_names)} columns.'\n )\n for name in list(set(unit_names)):\n m = self.unit_mult.get(name, 1)\n a = self.unit_add.get(name, 0)\n gdf[name] = gdf[name] * m + a\n gdf.attrs.update(self.meta)\n for col in self.attrs:\n if col in gdf.columns:\n gdf[col].attrs.update(**self.attrs[col])\n return gdf\n", "<docstring token>\n<import token>\nlogger = logging.getLogger(__name__)\n__all__ = ['GeoDataFrameAdapter', 'GeoDataframeSource']\nGeoDataframeSource = NewType('GeoDataframeSource', Union[str, Path])\n\n\nclass GeoDataFrameAdapter(DataAdapter):\n \"\"\"The Geodataframe adapter implementation.\"\"\"\n _DEFAULT_DRIVER = 'vector'\n _DRIVERS = {'xy': 'xy', 'csv': 'csv', 'parquet': 'parquet', 'xls':\n 'xls', 'xlsx': 'xlsx'}\n\n def __init__(self, path: str, driver: str=None, filesystem: str='local',\n crs: Union[int, str, dict]=None, nodata: Union[dict, float, int]=\n None, rename: dict={}, unit_mult: dict={}, unit_add: dict={}, meta:\n dict={}, attrs: dict={}, driver_kwargs: dict={}, name: str='',\n catalog_name: str='', provider=None, version=None, **kwargs):\n \"\"\"Initiate data adapter for geospatial vector data.\n\n This object contains all properties required to read supported files into\n a single unified :py:func:`geopandas.GeoDataFrame`.\n In addition it keeps meta data to be able to reproduce which data is used.\n\n Parameters\n ----------\n path: str, Path\n Path to data source. If the dataset consists of multiple files, the path may\n contain {variable} placeholders as well as path\n search pattern using a '*' wildcard.\n driver: {'vector', 'vector_table'}, optional\n Driver to read files with, for 'vector' :py:func:`~geopandas.read_file`,\n for {'vector_table'} :py:func:`hydromt.io.open_vector_from_table`\n By default the driver is inferred from the file extension and falls back to\n 'vector' if unknown.\n filesystem: {'local', 'gcs', 's3'}, optional\n Filesystem where the data is stored (local, cloud, http etc.).\n By default, local.\n crs: int, dict, or str, optional\n Coordinate Reference System. Accepts EPSG codes (int or str);\n proj (str or dict) or wkt (str). Only used if the data has no native CRS.\n nodata: dictionary, float, int, optional\n Missing value number. Only used if the data has no native missing value.\n Nodata values can be differentiated between variables using a dictionary.\n rename: dict, optional\n Mapping of native data source variable to output source variable name as\n required by hydroMT.\n unit_mult, unit_add: dict, optional\n Scaling multiplication and addition to change to map from the native\n data unit to the output data unit as required by hydroMT.\n meta: dict, optional\n Metadata information of dataset, prefably containing the following keys:\n {'source_version', 'source_url', 'source_license',\n 'paper_ref', 'paper_doi', 'category'}\n placeholders: dict, optional\n Placeholders to expand yaml entry to multiple entries (name and path)\n based on placeholder values\n attrs: dict, optional\n Additional attributes relating to data variables. For instance unit\n or long name of the variable.\n driver_kwargs, dict, optional\n Additional key-word arguments passed to the driver.\n name, catalog_name: str, optional\n Name of the dataset and catalog, optional for now.\n \"\"\"\n if kwargs:\n warnings.warn(\n \"Passing additional keyword arguments to be used by the GeoDataFrameAdapter driver is deprecated and will be removed in a future version. Please use 'driver_kwargs' instead.\"\n , DeprecationWarning)\n driver_kwargs.update(kwargs)\n super().__init__(path=path, driver=driver, filesystem=filesystem,\n nodata=nodata, rename=rename, unit_mult=unit_mult, unit_add=\n unit_add, meta=meta, attrs=attrs, driver_kwargs=driver_kwargs,\n name=name, catalog_name=catalog_name, provider=provider,\n version=version)\n self.crs = crs\n\n def to_file(self, data_root, data_name, bbox=None, driver=None,\n variables=None, logger=logger, **kwargs):\n \"\"\"Save a data slice to file.\n\n Parameters\n ----------\n data_root : str, Path\n Path to output folder\n data_name : str\n Name of output file without extension.\n bbox : array-like of floats\n (xmin, ymin, xmax, ymax) bounding box of area of interest.\n driver : str, optional\n Driver to write file, e.g.: 'GPKG', 'ESRI Shapefile' or any fiona data type,\n by default None\n variables : list of str, optional\n Names of GeoDataset variables to return. By default all dataset variables\n are returned.\n logger : logger object, optional\n The logger object used for logging messages. If not provided, the default\n logger will be used.\n **kwargs\n Additional keyword arguments that are passed to the geopandas driver.\n\n Returns\n -------\n fn_out: str\n Absolute path to output file\n driver: str\n Name of driver to read data with, see\n :py:func:`~hydromt.data_catalog.DataCatalog.get_geodataframe`\n \"\"\"\n kwargs.pop('time_tuple', None)\n gdf = self.get_data(bbox=bbox, variables=variables, logger=logger)\n if gdf.index.size == 0:\n return None, None, None\n read_kwargs = {}\n if driver is None:\n _lst = ['csv', 'parquet', 'xls', 'xlsx', 'xy', 'vector_table']\n driver = 'csv' if self.driver in _lst else 'GPKG'\n if driver == 'csv':\n fn_out = join(data_root, f'{data_name}.csv')\n if not np.all(gdf.geometry.type == 'Point'):\n raise ValueError(\n f\"{data_name} contains other geometries than 'Point' which cannot be written to csv.\"\n )\n gdf['x'], gdf['y'] = gdf.geometry.x, gdf.geometry.y\n gdf.drop(columns='geometry').to_csv(fn_out, **kwargs)\n read_kwargs['index_col'] = 0\n elif driver == 'parquet':\n fn_out = join(data_root, f'{data_name}.parquet')\n if not np.all(gdf.geometry.type == 'Point'):\n raise ValueError(\n f\"{data_name} contains other geometries than 'Point' which cannot be written to parquet.\"\n )\n gdf['x'], gdf['y'] = gdf.geometry.x, gdf.geometry.y\n gdf.drop(columns='geometry').to_parquet(fn_out, **kwargs)\n else:\n driver_extensions = {'ESRI Shapefile': '.shp'}\n ext = driver_extensions.get(driver, driver).lower()\n fn_out = join(data_root, f'{data_name}.{ext}')\n gdf.to_file(fn_out, driver=driver, **kwargs)\n driver = 'vector'\n return fn_out, driver, read_kwargs\n\n def get_data(self, bbox=None, geom=None, predicate='intersects', buffer\n =0, logger=logger, variables=None):\n \"\"\"Return a clipped and unified GeoDataFrame (vector).\n\n For a detailed description see:\n :py:func:`~hydromt.data_catalog.DataCatalog.get_geodataframe`\n \"\"\"\n if variables:\n variables = np.atleast_1d(variables).tolist()\n if 'storage_options' in self.driver_kwargs:\n raise NotImplementedError(\n 'Remote file storage_options not implemented for GeoDataFrame')\n _ = self.resolve_paths()\n kwargs = self.driver_kwargs.copy()\n clip_str = ''\n if geom is None and bbox is not None:\n geom = gpd.GeoDataFrame(geometry=[box(*bbox)], crs=4326)\n clip_str = ' and clip to bbox (epsg:4326)'\n elif geom is not None:\n clip_str = f' and clip to geom (epsg:{geom.crs.to_epsg():d})'\n if geom is not None:\n if geom.crs.is_geographic and buffer > 0:\n geom = geom.to_crs(3857)\n geom = geom.buffer(buffer)\n bbox_str = ', '.join([f'{c:.3f}' for c in geom.total_bounds])\n clip_str = f'{clip_str} [{bbox_str}]'\n if kwargs.pop('within', False):\n predicate = 'contains'\n logger.info(f'GeoDataFrame: Read {self.driver} data{clip_str}.')\n if self.driver in ['csv', 'parquet', 'xls', 'xlsx', 'xy', 'vector',\n 'vector_table']:\n if 'driver' not in kwargs and self.driver in ['csv', 'xls',\n 'xlsx', 'xy']:\n warnings.warn(\n 'using the driver setting is deprecated. Please usevector_table instead.'\n )\n kwargs.update(driver=self.driver)\n gdf = io.open_vector(self.path, crs=self.crs, geom=geom,\n predicate=predicate, **kwargs)\n else:\n raise ValueError(f'GeoDataFrame: driver {self.driver} unknown.')\n if self.rename:\n rename = {k: v for k, v in self.rename.items() if k in gdf.columns}\n gdf = gdf.rename(columns=rename)\n if variables is not None:\n if np.any([(var not in gdf.columns) for var in variables]):\n raise ValueError(\n f'GeoDataFrame: Not all variables found: {variables}')\n if 'geometry' not in variables:\n variables = variables + ['geometry']\n gdf = gdf.loc[:, variables]\n if gdf.index.size == 0:\n logger.warning(\n f'GeoDataFrame: No data within spatial domain {self.path}.')\n else:\n cols = gdf.select_dtypes([np.number]).columns\n if self.nodata is not None and len(cols) > 0:\n if not isinstance(self.nodata, dict):\n nodata = {c: self.nodata for c in cols}\n else:\n nodata = self.nodata\n for c in cols:\n mv = nodata.get(c, None)\n if mv is not None:\n is_nodata = np.isin(gdf[c], np.atleast_1d(mv))\n gdf[c] = np.where(is_nodata, np.nan, gdf[c])\n unit_names = list(self.unit_mult.keys()) + list(self.unit_add.\n keys())\n unit_names = [k for k in unit_names if k in gdf.columns]\n if len(unit_names) > 0:\n logger.debug(\n f'GeoDataFrame: Convert units for {len(unit_names)} columns.'\n )\n for name in list(set(unit_names)):\n m = self.unit_mult.get(name, 1)\n a = self.unit_add.get(name, 0)\n gdf[name] = gdf[name] * m + a\n gdf.attrs.update(self.meta)\n for col in self.attrs:\n if col in gdf.columns:\n gdf[col].attrs.update(**self.attrs[col])\n return gdf\n", "<docstring token>\n<import token>\n<assignment token>\n\n\nclass GeoDataFrameAdapter(DataAdapter):\n \"\"\"The Geodataframe adapter implementation.\"\"\"\n _DEFAULT_DRIVER = 'vector'\n _DRIVERS = {'xy': 'xy', 'csv': 'csv', 'parquet': 'parquet', 'xls':\n 'xls', 'xlsx': 'xlsx'}\n\n def __init__(self, path: str, driver: str=None, filesystem: str='local',\n crs: Union[int, str, dict]=None, nodata: Union[dict, float, int]=\n None, rename: dict={}, unit_mult: dict={}, unit_add: dict={}, meta:\n dict={}, attrs: dict={}, driver_kwargs: dict={}, name: str='',\n catalog_name: str='', provider=None, version=None, **kwargs):\n \"\"\"Initiate data adapter for geospatial vector data.\n\n This object contains all properties required to read supported files into\n a single unified :py:func:`geopandas.GeoDataFrame`.\n In addition it keeps meta data to be able to reproduce which data is used.\n\n Parameters\n ----------\n path: str, Path\n Path to data source. If the dataset consists of multiple files, the path may\n contain {variable} placeholders as well as path\n search pattern using a '*' wildcard.\n driver: {'vector', 'vector_table'}, optional\n Driver to read files with, for 'vector' :py:func:`~geopandas.read_file`,\n for {'vector_table'} :py:func:`hydromt.io.open_vector_from_table`\n By default the driver is inferred from the file extension and falls back to\n 'vector' if unknown.\n filesystem: {'local', 'gcs', 's3'}, optional\n Filesystem where the data is stored (local, cloud, http etc.).\n By default, local.\n crs: int, dict, or str, optional\n Coordinate Reference System. Accepts EPSG codes (int or str);\n proj (str or dict) or wkt (str). Only used if the data has no native CRS.\n nodata: dictionary, float, int, optional\n Missing value number. Only used if the data has no native missing value.\n Nodata values can be differentiated between variables using a dictionary.\n rename: dict, optional\n Mapping of native data source variable to output source variable name as\n required by hydroMT.\n unit_mult, unit_add: dict, optional\n Scaling multiplication and addition to change to map from the native\n data unit to the output data unit as required by hydroMT.\n meta: dict, optional\n Metadata information of dataset, prefably containing the following keys:\n {'source_version', 'source_url', 'source_license',\n 'paper_ref', 'paper_doi', 'category'}\n placeholders: dict, optional\n Placeholders to expand yaml entry to multiple entries (name and path)\n based on placeholder values\n attrs: dict, optional\n Additional attributes relating to data variables. For instance unit\n or long name of the variable.\n driver_kwargs, dict, optional\n Additional key-word arguments passed to the driver.\n name, catalog_name: str, optional\n Name of the dataset and catalog, optional for now.\n \"\"\"\n if kwargs:\n warnings.warn(\n \"Passing additional keyword arguments to be used by the GeoDataFrameAdapter driver is deprecated and will be removed in a future version. Please use 'driver_kwargs' instead.\"\n , DeprecationWarning)\n driver_kwargs.update(kwargs)\n super().__init__(path=path, driver=driver, filesystem=filesystem,\n nodata=nodata, rename=rename, unit_mult=unit_mult, unit_add=\n unit_add, meta=meta, attrs=attrs, driver_kwargs=driver_kwargs,\n name=name, catalog_name=catalog_name, provider=provider,\n version=version)\n self.crs = crs\n\n def to_file(self, data_root, data_name, bbox=None, driver=None,\n variables=None, logger=logger, **kwargs):\n \"\"\"Save a data slice to file.\n\n Parameters\n ----------\n data_root : str, Path\n Path to output folder\n data_name : str\n Name of output file without extension.\n bbox : array-like of floats\n (xmin, ymin, xmax, ymax) bounding box of area of interest.\n driver : str, optional\n Driver to write file, e.g.: 'GPKG', 'ESRI Shapefile' or any fiona data type,\n by default None\n variables : list of str, optional\n Names of GeoDataset variables to return. By default all dataset variables\n are returned.\n logger : logger object, optional\n The logger object used for logging messages. If not provided, the default\n logger will be used.\n **kwargs\n Additional keyword arguments that are passed to the geopandas driver.\n\n Returns\n -------\n fn_out: str\n Absolute path to output file\n driver: str\n Name of driver to read data with, see\n :py:func:`~hydromt.data_catalog.DataCatalog.get_geodataframe`\n \"\"\"\n kwargs.pop('time_tuple', None)\n gdf = self.get_data(bbox=bbox, variables=variables, logger=logger)\n if gdf.index.size == 0:\n return None, None, None\n read_kwargs = {}\n if driver is None:\n _lst = ['csv', 'parquet', 'xls', 'xlsx', 'xy', 'vector_table']\n driver = 'csv' if self.driver in _lst else 'GPKG'\n if driver == 'csv':\n fn_out = join(data_root, f'{data_name}.csv')\n if not np.all(gdf.geometry.type == 'Point'):\n raise ValueError(\n f\"{data_name} contains other geometries than 'Point' which cannot be written to csv.\"\n )\n gdf['x'], gdf['y'] = gdf.geometry.x, gdf.geometry.y\n gdf.drop(columns='geometry').to_csv(fn_out, **kwargs)\n read_kwargs['index_col'] = 0\n elif driver == 'parquet':\n fn_out = join(data_root, f'{data_name}.parquet')\n if not np.all(gdf.geometry.type == 'Point'):\n raise ValueError(\n f\"{data_name} contains other geometries than 'Point' which cannot be written to parquet.\"\n )\n gdf['x'], gdf['y'] = gdf.geometry.x, gdf.geometry.y\n gdf.drop(columns='geometry').to_parquet(fn_out, **kwargs)\n else:\n driver_extensions = {'ESRI Shapefile': '.shp'}\n ext = driver_extensions.get(driver, driver).lower()\n fn_out = join(data_root, f'{data_name}.{ext}')\n gdf.to_file(fn_out, driver=driver, **kwargs)\n driver = 'vector'\n return fn_out, driver, read_kwargs\n\n def get_data(self, bbox=None, geom=None, predicate='intersects', buffer\n =0, logger=logger, variables=None):\n \"\"\"Return a clipped and unified GeoDataFrame (vector).\n\n For a detailed description see:\n :py:func:`~hydromt.data_catalog.DataCatalog.get_geodataframe`\n \"\"\"\n if variables:\n variables = np.atleast_1d(variables).tolist()\n if 'storage_options' in self.driver_kwargs:\n raise NotImplementedError(\n 'Remote file storage_options not implemented for GeoDataFrame')\n _ = self.resolve_paths()\n kwargs = self.driver_kwargs.copy()\n clip_str = ''\n if geom is None and bbox is not None:\n geom = gpd.GeoDataFrame(geometry=[box(*bbox)], crs=4326)\n clip_str = ' and clip to bbox (epsg:4326)'\n elif geom is not None:\n clip_str = f' and clip to geom (epsg:{geom.crs.to_epsg():d})'\n if geom is not None:\n if geom.crs.is_geographic and buffer > 0:\n geom = geom.to_crs(3857)\n geom = geom.buffer(buffer)\n bbox_str = ', '.join([f'{c:.3f}' for c in geom.total_bounds])\n clip_str = f'{clip_str} [{bbox_str}]'\n if kwargs.pop('within', False):\n predicate = 'contains'\n logger.info(f'GeoDataFrame: Read {self.driver} data{clip_str}.')\n if self.driver in ['csv', 'parquet', 'xls', 'xlsx', 'xy', 'vector',\n 'vector_table']:\n if 'driver' not in kwargs and self.driver in ['csv', 'xls',\n 'xlsx', 'xy']:\n warnings.warn(\n 'using the driver setting is deprecated. Please usevector_table instead.'\n )\n kwargs.update(driver=self.driver)\n gdf = io.open_vector(self.path, crs=self.crs, geom=geom,\n predicate=predicate, **kwargs)\n else:\n raise ValueError(f'GeoDataFrame: driver {self.driver} unknown.')\n if self.rename:\n rename = {k: v for k, v in self.rename.items() if k in gdf.columns}\n gdf = gdf.rename(columns=rename)\n if variables is not None:\n if np.any([(var not in gdf.columns) for var in variables]):\n raise ValueError(\n f'GeoDataFrame: Not all variables found: {variables}')\n if 'geometry' not in variables:\n variables = variables + ['geometry']\n gdf = gdf.loc[:, variables]\n if gdf.index.size == 0:\n logger.warning(\n f'GeoDataFrame: No data within spatial domain {self.path}.')\n else:\n cols = gdf.select_dtypes([np.number]).columns\n if self.nodata is not None and len(cols) > 0:\n if not isinstance(self.nodata, dict):\n nodata = {c: self.nodata for c in cols}\n else:\n nodata = self.nodata\n for c in cols:\n mv = nodata.get(c, None)\n if mv is not None:\n is_nodata = np.isin(gdf[c], np.atleast_1d(mv))\n gdf[c] = np.where(is_nodata, np.nan, gdf[c])\n unit_names = list(self.unit_mult.keys()) + list(self.unit_add.\n keys())\n unit_names = [k for k in unit_names if k in gdf.columns]\n if len(unit_names) > 0:\n logger.debug(\n f'GeoDataFrame: Convert units for {len(unit_names)} columns.'\n )\n for name in list(set(unit_names)):\n m = self.unit_mult.get(name, 1)\n a = self.unit_add.get(name, 0)\n gdf[name] = gdf[name] * m + a\n gdf.attrs.update(self.meta)\n for col in self.attrs:\n if col in gdf.columns:\n gdf[col].attrs.update(**self.attrs[col])\n return gdf\n", "<docstring token>\n<import token>\n<assignment token>\n\n\nclass GeoDataFrameAdapter(DataAdapter):\n <docstring token>\n _DEFAULT_DRIVER = 'vector'\n _DRIVERS = {'xy': 'xy', 'csv': 'csv', 'parquet': 'parquet', 'xls':\n 'xls', 'xlsx': 'xlsx'}\n\n def __init__(self, path: str, driver: str=None, filesystem: str='local',\n crs: Union[int, str, dict]=None, nodata: Union[dict, float, int]=\n None, rename: dict={}, unit_mult: dict={}, unit_add: dict={}, meta:\n dict={}, attrs: dict={}, driver_kwargs: dict={}, name: str='',\n catalog_name: str='', provider=None, version=None, **kwargs):\n \"\"\"Initiate data adapter for geospatial vector data.\n\n This object contains all properties required to read supported files into\n a single unified :py:func:`geopandas.GeoDataFrame`.\n In addition it keeps meta data to be able to reproduce which data is used.\n\n Parameters\n ----------\n path: str, Path\n Path to data source. If the dataset consists of multiple files, the path may\n contain {variable} placeholders as well as path\n search pattern using a '*' wildcard.\n driver: {'vector', 'vector_table'}, optional\n Driver to read files with, for 'vector' :py:func:`~geopandas.read_file`,\n for {'vector_table'} :py:func:`hydromt.io.open_vector_from_table`\n By default the driver is inferred from the file extension and falls back to\n 'vector' if unknown.\n filesystem: {'local', 'gcs', 's3'}, optional\n Filesystem where the data is stored (local, cloud, http etc.).\n By default, local.\n crs: int, dict, or str, optional\n Coordinate Reference System. Accepts EPSG codes (int or str);\n proj (str or dict) or wkt (str). Only used if the data has no native CRS.\n nodata: dictionary, float, int, optional\n Missing value number. Only used if the data has no native missing value.\n Nodata values can be differentiated between variables using a dictionary.\n rename: dict, optional\n Mapping of native data source variable to output source variable name as\n required by hydroMT.\n unit_mult, unit_add: dict, optional\n Scaling multiplication and addition to change to map from the native\n data unit to the output data unit as required by hydroMT.\n meta: dict, optional\n Metadata information of dataset, prefably containing the following keys:\n {'source_version', 'source_url', 'source_license',\n 'paper_ref', 'paper_doi', 'category'}\n placeholders: dict, optional\n Placeholders to expand yaml entry to multiple entries (name and path)\n based on placeholder values\n attrs: dict, optional\n Additional attributes relating to data variables. For instance unit\n or long name of the variable.\n driver_kwargs, dict, optional\n Additional key-word arguments passed to the driver.\n name, catalog_name: str, optional\n Name of the dataset and catalog, optional for now.\n \"\"\"\n if kwargs:\n warnings.warn(\n \"Passing additional keyword arguments to be used by the GeoDataFrameAdapter driver is deprecated and will be removed in a future version. Please use 'driver_kwargs' instead.\"\n , DeprecationWarning)\n driver_kwargs.update(kwargs)\n super().__init__(path=path, driver=driver, filesystem=filesystem,\n nodata=nodata, rename=rename, unit_mult=unit_mult, unit_add=\n unit_add, meta=meta, attrs=attrs, driver_kwargs=driver_kwargs,\n name=name, catalog_name=catalog_name, provider=provider,\n version=version)\n self.crs = crs\n\n def to_file(self, data_root, data_name, bbox=None, driver=None,\n variables=None, logger=logger, **kwargs):\n \"\"\"Save a data slice to file.\n\n Parameters\n ----------\n data_root : str, Path\n Path to output folder\n data_name : str\n Name of output file without extension.\n bbox : array-like of floats\n (xmin, ymin, xmax, ymax) bounding box of area of interest.\n driver : str, optional\n Driver to write file, e.g.: 'GPKG', 'ESRI Shapefile' or any fiona data type,\n by default None\n variables : list of str, optional\n Names of GeoDataset variables to return. By default all dataset variables\n are returned.\n logger : logger object, optional\n The logger object used for logging messages. If not provided, the default\n logger will be used.\n **kwargs\n Additional keyword arguments that are passed to the geopandas driver.\n\n Returns\n -------\n fn_out: str\n Absolute path to output file\n driver: str\n Name of driver to read data with, see\n :py:func:`~hydromt.data_catalog.DataCatalog.get_geodataframe`\n \"\"\"\n kwargs.pop('time_tuple', None)\n gdf = self.get_data(bbox=bbox, variables=variables, logger=logger)\n if gdf.index.size == 0:\n return None, None, None\n read_kwargs = {}\n if driver is None:\n _lst = ['csv', 'parquet', 'xls', 'xlsx', 'xy', 'vector_table']\n driver = 'csv' if self.driver in _lst else 'GPKG'\n if driver == 'csv':\n fn_out = join(data_root, f'{data_name}.csv')\n if not np.all(gdf.geometry.type == 'Point'):\n raise ValueError(\n f\"{data_name} contains other geometries than 'Point' which cannot be written to csv.\"\n )\n gdf['x'], gdf['y'] = gdf.geometry.x, gdf.geometry.y\n gdf.drop(columns='geometry').to_csv(fn_out, **kwargs)\n read_kwargs['index_col'] = 0\n elif driver == 'parquet':\n fn_out = join(data_root, f'{data_name}.parquet')\n if not np.all(gdf.geometry.type == 'Point'):\n raise ValueError(\n f\"{data_name} contains other geometries than 'Point' which cannot be written to parquet.\"\n )\n gdf['x'], gdf['y'] = gdf.geometry.x, gdf.geometry.y\n gdf.drop(columns='geometry').to_parquet(fn_out, **kwargs)\n else:\n driver_extensions = {'ESRI Shapefile': '.shp'}\n ext = driver_extensions.get(driver, driver).lower()\n fn_out = join(data_root, f'{data_name}.{ext}')\n gdf.to_file(fn_out, driver=driver, **kwargs)\n driver = 'vector'\n return fn_out, driver, read_kwargs\n\n def get_data(self, bbox=None, geom=None, predicate='intersects', buffer\n =0, logger=logger, variables=None):\n \"\"\"Return a clipped and unified GeoDataFrame (vector).\n\n For a detailed description see:\n :py:func:`~hydromt.data_catalog.DataCatalog.get_geodataframe`\n \"\"\"\n if variables:\n variables = np.atleast_1d(variables).tolist()\n if 'storage_options' in self.driver_kwargs:\n raise NotImplementedError(\n 'Remote file storage_options not implemented for GeoDataFrame')\n _ = self.resolve_paths()\n kwargs = self.driver_kwargs.copy()\n clip_str = ''\n if geom is None and bbox is not None:\n geom = gpd.GeoDataFrame(geometry=[box(*bbox)], crs=4326)\n clip_str = ' and clip to bbox (epsg:4326)'\n elif geom is not None:\n clip_str = f' and clip to geom (epsg:{geom.crs.to_epsg():d})'\n if geom is not None:\n if geom.crs.is_geographic and buffer > 0:\n geom = geom.to_crs(3857)\n geom = geom.buffer(buffer)\n bbox_str = ', '.join([f'{c:.3f}' for c in geom.total_bounds])\n clip_str = f'{clip_str} [{bbox_str}]'\n if kwargs.pop('within', False):\n predicate = 'contains'\n logger.info(f'GeoDataFrame: Read {self.driver} data{clip_str}.')\n if self.driver in ['csv', 'parquet', 'xls', 'xlsx', 'xy', 'vector',\n 'vector_table']:\n if 'driver' not in kwargs and self.driver in ['csv', 'xls',\n 'xlsx', 'xy']:\n warnings.warn(\n 'using the driver setting is deprecated. Please usevector_table instead.'\n )\n kwargs.update(driver=self.driver)\n gdf = io.open_vector(self.path, crs=self.crs, geom=geom,\n predicate=predicate, **kwargs)\n else:\n raise ValueError(f'GeoDataFrame: driver {self.driver} unknown.')\n if self.rename:\n rename = {k: v for k, v in self.rename.items() if k in gdf.columns}\n gdf = gdf.rename(columns=rename)\n if variables is not None:\n if np.any([(var not in gdf.columns) for var in variables]):\n raise ValueError(\n f'GeoDataFrame: Not all variables found: {variables}')\n if 'geometry' not in variables:\n variables = variables + ['geometry']\n gdf = gdf.loc[:, variables]\n if gdf.index.size == 0:\n logger.warning(\n f'GeoDataFrame: No data within spatial domain {self.path}.')\n else:\n cols = gdf.select_dtypes([np.number]).columns\n if self.nodata is not None and len(cols) > 0:\n if not isinstance(self.nodata, dict):\n nodata = {c: self.nodata for c in cols}\n else:\n nodata = self.nodata\n for c in cols:\n mv = nodata.get(c, None)\n if mv is not None:\n is_nodata = np.isin(gdf[c], np.atleast_1d(mv))\n gdf[c] = np.where(is_nodata, np.nan, gdf[c])\n unit_names = list(self.unit_mult.keys()) + list(self.unit_add.\n keys())\n unit_names = [k for k in unit_names if k in gdf.columns]\n if len(unit_names) > 0:\n logger.debug(\n f'GeoDataFrame: Convert units for {len(unit_names)} columns.'\n )\n for name in list(set(unit_names)):\n m = self.unit_mult.get(name, 1)\n a = self.unit_add.get(name, 0)\n gdf[name] = gdf[name] * m + a\n gdf.attrs.update(self.meta)\n for col in self.attrs:\n if col in gdf.columns:\n gdf[col].attrs.update(**self.attrs[col])\n return gdf\n", "<docstring token>\n<import token>\n<assignment token>\n\n\nclass GeoDataFrameAdapter(DataAdapter):\n <docstring token>\n <assignment token>\n <assignment token>\n\n def __init__(self, path: str, driver: str=None, filesystem: str='local',\n crs: Union[int, str, dict]=None, nodata: Union[dict, float, int]=\n None, rename: dict={}, unit_mult: dict={}, unit_add: dict={}, meta:\n dict={}, attrs: dict={}, driver_kwargs: dict={}, name: str='',\n catalog_name: str='', provider=None, version=None, **kwargs):\n \"\"\"Initiate data adapter for geospatial vector data.\n\n This object contains all properties required to read supported files into\n a single unified :py:func:`geopandas.GeoDataFrame`.\n In addition it keeps meta data to be able to reproduce which data is used.\n\n Parameters\n ----------\n path: str, Path\n Path to data source. If the dataset consists of multiple files, the path may\n contain {variable} placeholders as well as path\n search pattern using a '*' wildcard.\n driver: {'vector', 'vector_table'}, optional\n Driver to read files with, for 'vector' :py:func:`~geopandas.read_file`,\n for {'vector_table'} :py:func:`hydromt.io.open_vector_from_table`\n By default the driver is inferred from the file extension and falls back to\n 'vector' if unknown.\n filesystem: {'local', 'gcs', 's3'}, optional\n Filesystem where the data is stored (local, cloud, http etc.).\n By default, local.\n crs: int, dict, or str, optional\n Coordinate Reference System. Accepts EPSG codes (int or str);\n proj (str or dict) or wkt (str). Only used if the data has no native CRS.\n nodata: dictionary, float, int, optional\n Missing value number. Only used if the data has no native missing value.\n Nodata values can be differentiated between variables using a dictionary.\n rename: dict, optional\n Mapping of native data source variable to output source variable name as\n required by hydroMT.\n unit_mult, unit_add: dict, optional\n Scaling multiplication and addition to change to map from the native\n data unit to the output data unit as required by hydroMT.\n meta: dict, optional\n Metadata information of dataset, prefably containing the following keys:\n {'source_version', 'source_url', 'source_license',\n 'paper_ref', 'paper_doi', 'category'}\n placeholders: dict, optional\n Placeholders to expand yaml entry to multiple entries (name and path)\n based on placeholder values\n attrs: dict, optional\n Additional attributes relating to data variables. For instance unit\n or long name of the variable.\n driver_kwargs, dict, optional\n Additional key-word arguments passed to the driver.\n name, catalog_name: str, optional\n Name of the dataset and catalog, optional for now.\n \"\"\"\n if kwargs:\n warnings.warn(\n \"Passing additional keyword arguments to be used by the GeoDataFrameAdapter driver is deprecated and will be removed in a future version. Please use 'driver_kwargs' instead.\"\n , DeprecationWarning)\n driver_kwargs.update(kwargs)\n super().__init__(path=path, driver=driver, filesystem=filesystem,\n nodata=nodata, rename=rename, unit_mult=unit_mult, unit_add=\n unit_add, meta=meta, attrs=attrs, driver_kwargs=driver_kwargs,\n name=name, catalog_name=catalog_name, provider=provider,\n version=version)\n self.crs = crs\n\n def to_file(self, data_root, data_name, bbox=None, driver=None,\n variables=None, logger=logger, **kwargs):\n \"\"\"Save a data slice to file.\n\n Parameters\n ----------\n data_root : str, Path\n Path to output folder\n data_name : str\n Name of output file without extension.\n bbox : array-like of floats\n (xmin, ymin, xmax, ymax) bounding box of area of interest.\n driver : str, optional\n Driver to write file, e.g.: 'GPKG', 'ESRI Shapefile' or any fiona data type,\n by default None\n variables : list of str, optional\n Names of GeoDataset variables to return. By default all dataset variables\n are returned.\n logger : logger object, optional\n The logger object used for logging messages. If not provided, the default\n logger will be used.\n **kwargs\n Additional keyword arguments that are passed to the geopandas driver.\n\n Returns\n -------\n fn_out: str\n Absolute path to output file\n driver: str\n Name of driver to read data with, see\n :py:func:`~hydromt.data_catalog.DataCatalog.get_geodataframe`\n \"\"\"\n kwargs.pop('time_tuple', None)\n gdf = self.get_data(bbox=bbox, variables=variables, logger=logger)\n if gdf.index.size == 0:\n return None, None, None\n read_kwargs = {}\n if driver is None:\n _lst = ['csv', 'parquet', 'xls', 'xlsx', 'xy', 'vector_table']\n driver = 'csv' if self.driver in _lst else 'GPKG'\n if driver == 'csv':\n fn_out = join(data_root, f'{data_name}.csv')\n if not np.all(gdf.geometry.type == 'Point'):\n raise ValueError(\n f\"{data_name} contains other geometries than 'Point' which cannot be written to csv.\"\n )\n gdf['x'], gdf['y'] = gdf.geometry.x, gdf.geometry.y\n gdf.drop(columns='geometry').to_csv(fn_out, **kwargs)\n read_kwargs['index_col'] = 0\n elif driver == 'parquet':\n fn_out = join(data_root, f'{data_name}.parquet')\n if not np.all(gdf.geometry.type == 'Point'):\n raise ValueError(\n f\"{data_name} contains other geometries than 'Point' which cannot be written to parquet.\"\n )\n gdf['x'], gdf['y'] = gdf.geometry.x, gdf.geometry.y\n gdf.drop(columns='geometry').to_parquet(fn_out, **kwargs)\n else:\n driver_extensions = {'ESRI Shapefile': '.shp'}\n ext = driver_extensions.get(driver, driver).lower()\n fn_out = join(data_root, f'{data_name}.{ext}')\n gdf.to_file(fn_out, driver=driver, **kwargs)\n driver = 'vector'\n return fn_out, driver, read_kwargs\n\n def get_data(self, bbox=None, geom=None, predicate='intersects', buffer\n =0, logger=logger, variables=None):\n \"\"\"Return a clipped and unified GeoDataFrame (vector).\n\n For a detailed description see:\n :py:func:`~hydromt.data_catalog.DataCatalog.get_geodataframe`\n \"\"\"\n if variables:\n variables = np.atleast_1d(variables).tolist()\n if 'storage_options' in self.driver_kwargs:\n raise NotImplementedError(\n 'Remote file storage_options not implemented for GeoDataFrame')\n _ = self.resolve_paths()\n kwargs = self.driver_kwargs.copy()\n clip_str = ''\n if geom is None and bbox is not None:\n geom = gpd.GeoDataFrame(geometry=[box(*bbox)], crs=4326)\n clip_str = ' and clip to bbox (epsg:4326)'\n elif geom is not None:\n clip_str = f' and clip to geom (epsg:{geom.crs.to_epsg():d})'\n if geom is not None:\n if geom.crs.is_geographic and buffer > 0:\n geom = geom.to_crs(3857)\n geom = geom.buffer(buffer)\n bbox_str = ', '.join([f'{c:.3f}' for c in geom.total_bounds])\n clip_str = f'{clip_str} [{bbox_str}]'\n if kwargs.pop('within', False):\n predicate = 'contains'\n logger.info(f'GeoDataFrame: Read {self.driver} data{clip_str}.')\n if self.driver in ['csv', 'parquet', 'xls', 'xlsx', 'xy', 'vector',\n 'vector_table']:\n if 'driver' not in kwargs and self.driver in ['csv', 'xls',\n 'xlsx', 'xy']:\n warnings.warn(\n 'using the driver setting is deprecated. Please usevector_table instead.'\n )\n kwargs.update(driver=self.driver)\n gdf = io.open_vector(self.path, crs=self.crs, geom=geom,\n predicate=predicate, **kwargs)\n else:\n raise ValueError(f'GeoDataFrame: driver {self.driver} unknown.')\n if self.rename:\n rename = {k: v for k, v in self.rename.items() if k in gdf.columns}\n gdf = gdf.rename(columns=rename)\n if variables is not None:\n if np.any([(var not in gdf.columns) for var in variables]):\n raise ValueError(\n f'GeoDataFrame: Not all variables found: {variables}')\n if 'geometry' not in variables:\n variables = variables + ['geometry']\n gdf = gdf.loc[:, variables]\n if gdf.index.size == 0:\n logger.warning(\n f'GeoDataFrame: No data within spatial domain {self.path}.')\n else:\n cols = gdf.select_dtypes([np.number]).columns\n if self.nodata is not None and len(cols) > 0:\n if not isinstance(self.nodata, dict):\n nodata = {c: self.nodata for c in cols}\n else:\n nodata = self.nodata\n for c in cols:\n mv = nodata.get(c, None)\n if mv is not None:\n is_nodata = np.isin(gdf[c], np.atleast_1d(mv))\n gdf[c] = np.where(is_nodata, np.nan, gdf[c])\n unit_names = list(self.unit_mult.keys()) + list(self.unit_add.\n keys())\n unit_names = [k for k in unit_names if k in gdf.columns]\n if len(unit_names) > 0:\n logger.debug(\n f'GeoDataFrame: Convert units for {len(unit_names)} columns.'\n )\n for name in list(set(unit_names)):\n m = self.unit_mult.get(name, 1)\n a = self.unit_add.get(name, 0)\n gdf[name] = gdf[name] * m + a\n gdf.attrs.update(self.meta)\n for col in self.attrs:\n if col in gdf.columns:\n gdf[col].attrs.update(**self.attrs[col])\n return gdf\n", "<docstring token>\n<import token>\n<assignment token>\n\n\nclass GeoDataFrameAdapter(DataAdapter):\n <docstring token>\n <assignment token>\n <assignment token>\n\n def __init__(self, path: str, driver: str=None, filesystem: str='local',\n crs: Union[int, str, dict]=None, nodata: Union[dict, float, int]=\n None, rename: dict={}, unit_mult: dict={}, unit_add: dict={}, meta:\n dict={}, attrs: dict={}, driver_kwargs: dict={}, name: str='',\n catalog_name: str='', provider=None, version=None, **kwargs):\n \"\"\"Initiate data adapter for geospatial vector data.\n\n This object contains all properties required to read supported files into\n a single unified :py:func:`geopandas.GeoDataFrame`.\n In addition it keeps meta data to be able to reproduce which data is used.\n\n Parameters\n ----------\n path: str, Path\n Path to data source. If the dataset consists of multiple files, the path may\n contain {variable} placeholders as well as path\n search pattern using a '*' wildcard.\n driver: {'vector', 'vector_table'}, optional\n Driver to read files with, for 'vector' :py:func:`~geopandas.read_file`,\n for {'vector_table'} :py:func:`hydromt.io.open_vector_from_table`\n By default the driver is inferred from the file extension and falls back to\n 'vector' if unknown.\n filesystem: {'local', 'gcs', 's3'}, optional\n Filesystem where the data is stored (local, cloud, http etc.).\n By default, local.\n crs: int, dict, or str, optional\n Coordinate Reference System. Accepts EPSG codes (int or str);\n proj (str or dict) or wkt (str). Only used if the data has no native CRS.\n nodata: dictionary, float, int, optional\n Missing value number. Only used if the data has no native missing value.\n Nodata values can be differentiated between variables using a dictionary.\n rename: dict, optional\n Mapping of native data source variable to output source variable name as\n required by hydroMT.\n unit_mult, unit_add: dict, optional\n Scaling multiplication and addition to change to map from the native\n data unit to the output data unit as required by hydroMT.\n meta: dict, optional\n Metadata information of dataset, prefably containing the following keys:\n {'source_version', 'source_url', 'source_license',\n 'paper_ref', 'paper_doi', 'category'}\n placeholders: dict, optional\n Placeholders to expand yaml entry to multiple entries (name and path)\n based on placeholder values\n attrs: dict, optional\n Additional attributes relating to data variables. For instance unit\n or long name of the variable.\n driver_kwargs, dict, optional\n Additional key-word arguments passed to the driver.\n name, catalog_name: str, optional\n Name of the dataset and catalog, optional for now.\n \"\"\"\n if kwargs:\n warnings.warn(\n \"Passing additional keyword arguments to be used by the GeoDataFrameAdapter driver is deprecated and will be removed in a future version. Please use 'driver_kwargs' instead.\"\n , DeprecationWarning)\n driver_kwargs.update(kwargs)\n super().__init__(path=path, driver=driver, filesystem=filesystem,\n nodata=nodata, rename=rename, unit_mult=unit_mult, unit_add=\n unit_add, meta=meta, attrs=attrs, driver_kwargs=driver_kwargs,\n name=name, catalog_name=catalog_name, provider=provider,\n version=version)\n self.crs = crs\n <function token>\n\n def get_data(self, bbox=None, geom=None, predicate='intersects', buffer\n =0, logger=logger, variables=None):\n \"\"\"Return a clipped and unified GeoDataFrame (vector).\n\n For a detailed description see:\n :py:func:`~hydromt.data_catalog.DataCatalog.get_geodataframe`\n \"\"\"\n if variables:\n variables = np.atleast_1d(variables).tolist()\n if 'storage_options' in self.driver_kwargs:\n raise NotImplementedError(\n 'Remote file storage_options not implemented for GeoDataFrame')\n _ = self.resolve_paths()\n kwargs = self.driver_kwargs.copy()\n clip_str = ''\n if geom is None and bbox is not None:\n geom = gpd.GeoDataFrame(geometry=[box(*bbox)], crs=4326)\n clip_str = ' and clip to bbox (epsg:4326)'\n elif geom is not None:\n clip_str = f' and clip to geom (epsg:{geom.crs.to_epsg():d})'\n if geom is not None:\n if geom.crs.is_geographic and buffer > 0:\n geom = geom.to_crs(3857)\n geom = geom.buffer(buffer)\n bbox_str = ', '.join([f'{c:.3f}' for c in geom.total_bounds])\n clip_str = f'{clip_str} [{bbox_str}]'\n if kwargs.pop('within', False):\n predicate = 'contains'\n logger.info(f'GeoDataFrame: Read {self.driver} data{clip_str}.')\n if self.driver in ['csv', 'parquet', 'xls', 'xlsx', 'xy', 'vector',\n 'vector_table']:\n if 'driver' not in kwargs and self.driver in ['csv', 'xls',\n 'xlsx', 'xy']:\n warnings.warn(\n 'using the driver setting is deprecated. Please usevector_table instead.'\n )\n kwargs.update(driver=self.driver)\n gdf = io.open_vector(self.path, crs=self.crs, geom=geom,\n predicate=predicate, **kwargs)\n else:\n raise ValueError(f'GeoDataFrame: driver {self.driver} unknown.')\n if self.rename:\n rename = {k: v for k, v in self.rename.items() if k in gdf.columns}\n gdf = gdf.rename(columns=rename)\n if variables is not None:\n if np.any([(var not in gdf.columns) for var in variables]):\n raise ValueError(\n f'GeoDataFrame: Not all variables found: {variables}')\n if 'geometry' not in variables:\n variables = variables + ['geometry']\n gdf = gdf.loc[:, variables]\n if gdf.index.size == 0:\n logger.warning(\n f'GeoDataFrame: No data within spatial domain {self.path}.')\n else:\n cols = gdf.select_dtypes([np.number]).columns\n if self.nodata is not None and len(cols) > 0:\n if not isinstance(self.nodata, dict):\n nodata = {c: self.nodata for c in cols}\n else:\n nodata = self.nodata\n for c in cols:\n mv = nodata.get(c, None)\n if mv is not None:\n is_nodata = np.isin(gdf[c], np.atleast_1d(mv))\n gdf[c] = np.where(is_nodata, np.nan, gdf[c])\n unit_names = list(self.unit_mult.keys()) + list(self.unit_add.\n keys())\n unit_names = [k for k in unit_names if k in gdf.columns]\n if len(unit_names) > 0:\n logger.debug(\n f'GeoDataFrame: Convert units for {len(unit_names)} columns.'\n )\n for name in list(set(unit_names)):\n m = self.unit_mult.get(name, 1)\n a = self.unit_add.get(name, 0)\n gdf[name] = gdf[name] * m + a\n gdf.attrs.update(self.meta)\n for col in self.attrs:\n if col in gdf.columns:\n gdf[col].attrs.update(**self.attrs[col])\n return gdf\n", "<docstring token>\n<import token>\n<assignment token>\n\n\nclass GeoDataFrameAdapter(DataAdapter):\n <docstring token>\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n\n def get_data(self, bbox=None, geom=None, predicate='intersects', buffer\n =0, logger=logger, variables=None):\n \"\"\"Return a clipped and unified GeoDataFrame (vector).\n\n For a detailed description see:\n :py:func:`~hydromt.data_catalog.DataCatalog.get_geodataframe`\n \"\"\"\n if variables:\n variables = np.atleast_1d(variables).tolist()\n if 'storage_options' in self.driver_kwargs:\n raise NotImplementedError(\n 'Remote file storage_options not implemented for GeoDataFrame')\n _ = self.resolve_paths()\n kwargs = self.driver_kwargs.copy()\n clip_str = ''\n if geom is None and bbox is not None:\n geom = gpd.GeoDataFrame(geometry=[box(*bbox)], crs=4326)\n clip_str = ' and clip to bbox (epsg:4326)'\n elif geom is not None:\n clip_str = f' and clip to geom (epsg:{geom.crs.to_epsg():d})'\n if geom is not None:\n if geom.crs.is_geographic and buffer > 0:\n geom = geom.to_crs(3857)\n geom = geom.buffer(buffer)\n bbox_str = ', '.join([f'{c:.3f}' for c in geom.total_bounds])\n clip_str = f'{clip_str} [{bbox_str}]'\n if kwargs.pop('within', False):\n predicate = 'contains'\n logger.info(f'GeoDataFrame: Read {self.driver} data{clip_str}.')\n if self.driver in ['csv', 'parquet', 'xls', 'xlsx', 'xy', 'vector',\n 'vector_table']:\n if 'driver' not in kwargs and self.driver in ['csv', 'xls',\n 'xlsx', 'xy']:\n warnings.warn(\n 'using the driver setting is deprecated. Please usevector_table instead.'\n )\n kwargs.update(driver=self.driver)\n gdf = io.open_vector(self.path, crs=self.crs, geom=geom,\n predicate=predicate, **kwargs)\n else:\n raise ValueError(f'GeoDataFrame: driver {self.driver} unknown.')\n if self.rename:\n rename = {k: v for k, v in self.rename.items() if k in gdf.columns}\n gdf = gdf.rename(columns=rename)\n if variables is not None:\n if np.any([(var not in gdf.columns) for var in variables]):\n raise ValueError(\n f'GeoDataFrame: Not all variables found: {variables}')\n if 'geometry' not in variables:\n variables = variables + ['geometry']\n gdf = gdf.loc[:, variables]\n if gdf.index.size == 0:\n logger.warning(\n f'GeoDataFrame: No data within spatial domain {self.path}.')\n else:\n cols = gdf.select_dtypes([np.number]).columns\n if self.nodata is not None and len(cols) > 0:\n if not isinstance(self.nodata, dict):\n nodata = {c: self.nodata for c in cols}\n else:\n nodata = self.nodata\n for c in cols:\n mv = nodata.get(c, None)\n if mv is not None:\n is_nodata = np.isin(gdf[c], np.atleast_1d(mv))\n gdf[c] = np.where(is_nodata, np.nan, gdf[c])\n unit_names = list(self.unit_mult.keys()) + list(self.unit_add.\n keys())\n unit_names = [k for k in unit_names if k in gdf.columns]\n if len(unit_names) > 0:\n logger.debug(\n f'GeoDataFrame: Convert units for {len(unit_names)} columns.'\n )\n for name in list(set(unit_names)):\n m = self.unit_mult.get(name, 1)\n a = self.unit_add.get(name, 0)\n gdf[name] = gdf[name] * m + a\n gdf.attrs.update(self.meta)\n for col in self.attrs:\n if col in gdf.columns:\n gdf[col].attrs.update(**self.attrs[col])\n return gdf\n", "<docstring token>\n<import token>\n<assignment token>\n\n\nclass GeoDataFrameAdapter(DataAdapter):\n <docstring token>\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n <function token>\n", "<docstring token>\n<import token>\n<assignment token>\n<class token>\n" ]
false
98,823
9a7c343e701a1e66530467b609cf1cc69761bf71
from crosswalk.authentication import AuthenticatedView from crosswalk.models import Domain, Entity from crosswalk.serializers import EntitySerializer from crosswalk.utils import import_class from django.core.exceptions import ObjectDoesNotExist from rest_framework import status from rest_framework.response import Response class BestMatch(AuthenticatedView): def post(self, request, domain): """ Get the best matched entity for a given query. If the entity is an alias of another entity, the aliased entity is returned. """ data = request.data.copy() query_field = data.get("query_field") query_value = data.get("query_value") return_canonical = data.get("return_canonical", True) block_attrs = data.get("block_attrs", {}) scorer_class = data.get("scorer", "fuzzywuzzy.default_process") try: scorer = import_class("crosswalk.scorers.{}".format(scorer_class)) except ImportError: return Response( "Invalid scorer.", status=status.HTTP_400_BAD_REQUEST ) try: domain = Domain.objects.get(slug=domain) except ObjectDoesNotExist: return Response( "Domain not found.", status=status.HTTP_404_NOT_FOUND ) entities = Entity.objects.filter(domain=domain) entities = entities.filter(attributes__contains=block_attrs) if entities.count() == 0: return Response({}, status=status.HTTP_200_OK) entity_values = [e.attributes[query_field] for e in entities] match, score = scorer(query_value, entity_values) entity = entities.filter( **{"attributes__{}".format(query_field): match} ).first() aliased = False if return_canonical: while entity.alias_for: aliased = True entity = entity.alias_for return Response( { "entity": EntitySerializer(entity).data, "match_score": score, "aliased": aliased, }, status=status.HTTP_200_OK, )
[ "from crosswalk.authentication import AuthenticatedView\nfrom crosswalk.models import Domain, Entity\nfrom crosswalk.serializers import EntitySerializer\nfrom crosswalk.utils import import_class\nfrom django.core.exceptions import ObjectDoesNotExist\nfrom rest_framework import status\nfrom rest_framework.response import Response\n\n\nclass BestMatch(AuthenticatedView):\n def post(self, request, domain):\n \"\"\"\n Get the best matched entity for a given query.\n\n If the entity is an alias of another entity, the aliased entity is\n returned.\n \"\"\"\n data = request.data.copy()\n query_field = data.get(\"query_field\")\n query_value = data.get(\"query_value\")\n return_canonical = data.get(\"return_canonical\", True)\n block_attrs = data.get(\"block_attrs\", {})\n scorer_class = data.get(\"scorer\", \"fuzzywuzzy.default_process\")\n\n try:\n scorer = import_class(\"crosswalk.scorers.{}\".format(scorer_class))\n except ImportError:\n return Response(\n \"Invalid scorer.\", status=status.HTTP_400_BAD_REQUEST\n )\n\n try:\n domain = Domain.objects.get(slug=domain)\n except ObjectDoesNotExist:\n return Response(\n \"Domain not found.\", status=status.HTTP_404_NOT_FOUND\n )\n\n entities = Entity.objects.filter(domain=domain)\n entities = entities.filter(attributes__contains=block_attrs)\n\n if entities.count() == 0:\n return Response({}, status=status.HTTP_200_OK)\n\n entity_values = [e.attributes[query_field] for e in entities]\n\n match, score = scorer(query_value, entity_values)\n\n entity = entities.filter(\n **{\"attributes__{}\".format(query_field): match}\n ).first()\n\n aliased = False\n\n if return_canonical:\n while entity.alias_for:\n aliased = True\n entity = entity.alias_for\n\n return Response(\n {\n \"entity\": EntitySerializer(entity).data,\n \"match_score\": score,\n \"aliased\": aliased,\n },\n status=status.HTTP_200_OK,\n )\n", "from crosswalk.authentication import AuthenticatedView\nfrom crosswalk.models import Domain, Entity\nfrom crosswalk.serializers import EntitySerializer\nfrom crosswalk.utils import import_class\nfrom django.core.exceptions import ObjectDoesNotExist\nfrom rest_framework import status\nfrom rest_framework.response import Response\n\n\nclass BestMatch(AuthenticatedView):\n\n def post(self, request, domain):\n \"\"\"\n Get the best matched entity for a given query.\n\n If the entity is an alias of another entity, the aliased entity is\n returned.\n \"\"\"\n data = request.data.copy()\n query_field = data.get('query_field')\n query_value = data.get('query_value')\n return_canonical = data.get('return_canonical', True)\n block_attrs = data.get('block_attrs', {})\n scorer_class = data.get('scorer', 'fuzzywuzzy.default_process')\n try:\n scorer = import_class('crosswalk.scorers.{}'.format(scorer_class))\n except ImportError:\n return Response('Invalid scorer.', status=status.\n HTTP_400_BAD_REQUEST)\n try:\n domain = Domain.objects.get(slug=domain)\n except ObjectDoesNotExist:\n return Response('Domain not found.', status=status.\n HTTP_404_NOT_FOUND)\n entities = Entity.objects.filter(domain=domain)\n entities = entities.filter(attributes__contains=block_attrs)\n if entities.count() == 0:\n return Response({}, status=status.HTTP_200_OK)\n entity_values = [e.attributes[query_field] for e in entities]\n match, score = scorer(query_value, entity_values)\n entity = entities.filter(**{'attributes__{}'.format(query_field):\n match}).first()\n aliased = False\n if return_canonical:\n while entity.alias_for:\n aliased = True\n entity = entity.alias_for\n return Response({'entity': EntitySerializer(entity).data,\n 'match_score': score, 'aliased': aliased}, status=status.\n HTTP_200_OK)\n", "<import token>\n\n\nclass BestMatch(AuthenticatedView):\n\n def post(self, request, domain):\n \"\"\"\n Get the best matched entity for a given query.\n\n If the entity is an alias of another entity, the aliased entity is\n returned.\n \"\"\"\n data = request.data.copy()\n query_field = data.get('query_field')\n query_value = data.get('query_value')\n return_canonical = data.get('return_canonical', True)\n block_attrs = data.get('block_attrs', {})\n scorer_class = data.get('scorer', 'fuzzywuzzy.default_process')\n try:\n scorer = import_class('crosswalk.scorers.{}'.format(scorer_class))\n except ImportError:\n return Response('Invalid scorer.', status=status.\n HTTP_400_BAD_REQUEST)\n try:\n domain = Domain.objects.get(slug=domain)\n except ObjectDoesNotExist:\n return Response('Domain not found.', status=status.\n HTTP_404_NOT_FOUND)\n entities = Entity.objects.filter(domain=domain)\n entities = entities.filter(attributes__contains=block_attrs)\n if entities.count() == 0:\n return Response({}, status=status.HTTP_200_OK)\n entity_values = [e.attributes[query_field] for e in entities]\n match, score = scorer(query_value, entity_values)\n entity = entities.filter(**{'attributes__{}'.format(query_field):\n match}).first()\n aliased = False\n if return_canonical:\n while entity.alias_for:\n aliased = True\n entity = entity.alias_for\n return Response({'entity': EntitySerializer(entity).data,\n 'match_score': score, 'aliased': aliased}, status=status.\n HTTP_200_OK)\n", "<import token>\n\n\nclass BestMatch(AuthenticatedView):\n <function token>\n", "<import token>\n<class token>\n" ]
false
98,824
91b0b52e36b21acc2e6a1a3c4db20131d590540a
#TODO: fix volume bar not going to zero #TODO: replace zero volume with mute if supported under Debian #TODO: add animation options (e.g. slide in, fade in, etc.) #TODO: add numbers to the bar #TODO: add support for Windows/Mac (e.g. scroll support) #TODO: allow bar to be attached to different sides #TODO: allow customization of bar thickness #TODO: make bar opacity adapt to darkness/brightness of background #TODO: modifier key makes scroll change channel pan instead # DEPENDENCIES: # (all working with most recent versions as of 04/12/2018) # sudo apt install python3-tk # sudo apt install python3-dbus # maybe? # sudo apt install libasound2-dev # pip3 install pyalsaaudio --user # pip3 install plyer --user # pip3 install psutil --user # BUILTIN MODULES # import sys import time # used for delays import math from _thread import start_new_thread # used to run functions in parallel import tkinter as Tk from subprocess import call from os.path import realpath # SITE PACKAGES # from plyer import notification import alsaaudio as al # LOCAL MODULES import volux.temperatures as temps from volux.dp_datatools import LivePercentage, clamp from volux.VolumeAssistant import VolumeAssistant from volux.VolumeBar import VolumeBar ### ---- PREFERENCES ---- ### program_title = "volux" program_icon = realpath('icon.png') sound_device = "Master" default_mixer_name = "Master" default_opacity = 0.5 outside_zone_opacity = 0.1 bar_height = 5 ### ---- SETUP STUFF ---- ### VolAs = VolumeAssistant() # initialise a Volume Assistant object VolBar = VolumeBar() coreWatch = temps.CoreWatch(temps.get_cores()) # start watching cores for temperature issues ### DEFINE STATES class VolumeMode: def __init__(self):pass def enter(self): VolBar.mode = VolBar.modes['volume'] VolAs.mixer.setmute(0) def vacate(self): VolBar.mode = VolBar.modes['unknown'] class MuteMode: def __init__(self): pass def enter(self): VolBar.mode = VolBar.modes['muted'] VolAs.mixer.setmute(1) def vacate(self): VolBar.mode = VolBar.modes['unknown'] class BrightnessMode: def __init__(self): pass def enter(self): VolBar.mode = VolBar.modes['brightness'] def vacate(self): VolBar.mode = VolBar.modes['unknown'] if VolAs.ismuted() == True: return(MuteMode) elif VolAs.ismuted() == False: return(VolumeMode) else: raise TypeError("_ismuted should be a bool value") ### DEFINE STATE MANAGER class StateManager: def __init__(self,initial_state): self.state = initial_state def change_state(self,new_state): # request to change states self.state().vacate() new_state().enter() self.state = new_state ### CREATE A STATE MANAGER sm = StateManager(VolumeMode) ### ---- TKINTER STUFF BEGINS ---- ### root = Tk.Tk() class Window(Tk.Frame): def __init__(self,master=None): Tk.Frame.__init__(self,master) self.master = master self._init_objects() self._init_window() self._open_message() def _init_objects(self): self.displaySize = VolAs._get_display_size(root) # max size of the percentage bar in pixels self.barWidth = LivePercentage(0,self.displaySize['x']) # set width of bar def _init_window(self): m = self.master m.title("Please submit an issue to Github if you see this!") self.barHeight = bar_height # set height of bar self._update_bar() barContainer = Tk.Frame(m) barContainer.configure(background="BLACK") barContainer.pack(fill=Tk.BOTH,expand=1) self.bar = Tk.Frame(barContainer) # create the bar self._update_bar() # update bar values def _adjust_bar(event,movement): if type(movement) == int: # if movement is an integer #self.barMode = self.barModes['volume'] notchMultiplier = 5 # impact of a single scroll notch on percentage newVol = VolAs.volume + movement*notchMultiplier VolAs.volume = clamp(newVol,0,100) else: raise TypeError("Value should be an integer! Not sure what happened!") self._update_bar() # update the bar's graphical appearance self._update_volume() # update the system volume #TODO: support for Windows/Mac scrolling def _scroll_up(event): if sm.state == VolumeMode: _adjust_bar(event,+1) elif sm.state == BrightnessMode: _brightness_up() elif sm.state == MuteMode: sm.change_state(VolumeMode) self._update_bar() def _scroll_down(event): if sm.state == VolumeMode: _adjust_bar(event,-1) elif sm.state == BrightnessMode: _brightness_down() elif sm.state == MuteMode: sm.change_state(VolumeMode) self._update_bar() def _middle_click(event): if sm.state == VolumeMode: # if unmuted sm.change_state(MuteMode) # change to muted self._update_bar() elif sm.state == MuteMode: # if unmuted sm.change_state(VolumeMode) # change to muted self._update_bar() def _key_pressed(event): print("key pressed",event.key) def _key_released(event): print("key released",event.key) def _brightness_up(): print("WIP:"+"UP") def _brightness_down(): print("WIP:"+"DOWN") def _right_click(event): if sm.state == BrightnessMode: sm.change_state(sm.state().vacate()) else: sm.change_state(BrightnessMode) self._update_bar() #print("brightness mode!") def _brightness_mode_off(): sm.state_change(sm.state.vacate()) self.barMode = self.barModes['default'] self._update_bar() print("brightness mode off!") self.bar.pack(fill=Tk.Y,ipadx=5,ipady=5,side=Tk.LEFT) m.bind("<MouseWheel>",_adjust_bar) m.bind("<Button-2>",_middle_click) m.bind("<Button-4>",_scroll_up) m.bind("<Button-5>",_scroll_down) m.bind("<Button-3>",_right_click) m.bind("<Control-Button-4>",_brightness_up) m.bind("<Control-Button-5>",_brightness_down) m.bind("<Double-Button-3>",self._exit_app) barContainer.bind("<Enter>",self._mouse_entered) barContainer.bind("<Leave>",self._mouse_left) def _update_loop(self,ms_per_loop=1000): root.lift() # ensure window on top of others self._update_bar() # update bar graphics self.after(ms_per_loop,self._update_loop) # repeat _update_loop() def _update_bar(self): modeColor = VolBar.mode.color # set background based on mode color self.barWidth.setPerc(VolAs.volume) # set the width as a percentage newWidth = self.barWidth.getNum() # get a numerical version of the percentage self.bar.configure(background=modeColor,width=str(newWidth)) # update the bar with these settings def _update_volume(self): try: self.mixer.setvolume(VolAs.volume) except: call(["amixer","sset",str(VolAs.device),str(VolAs.volume)+"%","-q"]) def _update_mute(self): muted = self.mixer.getmute() if muted[0] == True: self.mixer.setmute(0) elif muted[0] == False: self.mixer.setmute(1) else: raise Exception("mixer's .getmute()[0] method should return True or False!") def _mouse_entered(self,event): root.wm_attributes("-alpha",default_opacity) def _mouse_left(self,event): root.wm_attributes("-alpha",outside_zone_opacity) def _open_message(self): notification.notify( title=program_title, message="{} launched!".format(program_title), app_name=program_title, app_icon=program_icon, timeout=5) def _exit_app(self,event): notification.notify( title=program_title, message="{} now closing...".format(program_title), app_name=program_title, app_icon=program_icon, timeout=10) exit() app = Window(root) dispSize = VolAs._get_display_size(root) overlay_w = dispSize['x'] overlay_h = app.barHeight windowOffsets = {'x': 0, 'y': dispSize['y']-app.barHeight} root.geometry("{}x{}+{}+{}".format(overlay_w,overlay_h, windowOffsets['x'],windowOffsets['y'])) # define the size of the window root.attributes("-topmost",True) # force window to stay on top (doesn't work in full screen applications) root.overrideredirect(1) # remove frame of window root.wait_visibility(root) # required for window transparency root.wm_attributes("-alpha",outside_zone_opacity) # make window transparent root.title(program_title) print(sys.argv[0]) if '__main__.py' in sys.argv[0]: app._update_loop() # must be before main loop root.mainloop()
[ "#TODO: fix volume bar not going to zero\n#TODO: replace zero volume with mute if supported under Debian\n#TODO: add animation options (e.g. slide in, fade in, etc.)\n#TODO: add numbers to the bar\n#TODO: add support for Windows/Mac (e.g. scroll support)\n#TODO: allow bar to be attached to different sides\n#TODO: allow customization of bar thickness\n#TODO: make bar opacity adapt to darkness/brightness of background\n#TODO: modifier key makes scroll change channel pan instead\n\n# DEPENDENCIES:\n# (all working with most recent versions as of 04/12/2018)\n# sudo apt install python3-tk\n# sudo apt install python3-dbus # maybe?\n# sudo apt install libasound2-dev\n# pip3 install pyalsaaudio --user\n# pip3 install plyer --user\n# pip3 install psutil --user\n\n# BUILTIN MODULES #\nimport sys\nimport time # used for delays\nimport math\nfrom _thread import start_new_thread # used to run functions in parallel\nimport tkinter as Tk\nfrom subprocess import call\nfrom os.path import realpath\n# SITE PACKAGES #\nfrom plyer import notification\nimport alsaaudio as al\n# LOCAL MODULES\nimport volux.temperatures as temps\nfrom volux.dp_datatools import LivePercentage, clamp\nfrom volux.VolumeAssistant import VolumeAssistant\nfrom volux.VolumeBar import VolumeBar\n### ---- PREFERENCES ---- ###\nprogram_title = \"volux\"\nprogram_icon = realpath('icon.png')\nsound_device = \"Master\"\ndefault_mixer_name = \"Master\"\ndefault_opacity = 0.5\noutside_zone_opacity = 0.1\nbar_height = 5\n### ---- SETUP STUFF ---- ###\nVolAs = VolumeAssistant() # initialise a Volume Assistant object\nVolBar = VolumeBar()\ncoreWatch = temps.CoreWatch(temps.get_cores()) # start watching cores for temperature issues\n\n### DEFINE STATES\nclass VolumeMode:\n def __init__(self):pass\n def enter(self):\n VolBar.mode = VolBar.modes['volume']\n VolAs.mixer.setmute(0)\n def vacate(self):\n VolBar.mode = VolBar.modes['unknown']\nclass MuteMode:\n def __init__(self): pass\n def enter(self):\n VolBar.mode = VolBar.modes['muted']\n VolAs.mixer.setmute(1)\n def vacate(self):\n VolBar.mode = VolBar.modes['unknown']\nclass BrightnessMode:\n def __init__(self): pass\n def enter(self):\n VolBar.mode = VolBar.modes['brightness']\n def vacate(self):\n VolBar.mode = VolBar.modes['unknown']\n if VolAs.ismuted() == True:\n return(MuteMode)\n elif VolAs.ismuted() == False:\n return(VolumeMode)\n else: raise TypeError(\"_ismuted should be a bool value\")\n### DEFINE STATE MANAGER\nclass StateManager:\n def __init__(self,initial_state):\n self.state = initial_state\n def change_state(self,new_state): # request to change states\n self.state().vacate()\n new_state().enter()\n self.state = new_state\n### CREATE A STATE MANAGER\nsm = StateManager(VolumeMode)\n\n### ---- TKINTER STUFF BEGINS ---- ###\nroot = Tk.Tk()\nclass Window(Tk.Frame):\n def __init__(self,master=None):\n Tk.Frame.__init__(self,master)\n self.master = master\n self._init_objects()\n self._init_window()\n self._open_message()\n def _init_objects(self):\n self.displaySize = VolAs._get_display_size(root) # max size of the percentage bar in pixels\n self.barWidth = LivePercentage(0,self.displaySize['x']) # set width of bar\n def _init_window(self):\n m = self.master\n m.title(\"Please submit an issue to Github if you see this!\")\n self.barHeight = bar_height # set height of bar self._update_bar()\n barContainer = Tk.Frame(m)\n barContainer.configure(background=\"BLACK\")\n barContainer.pack(fill=Tk.BOTH,expand=1)\n self.bar = Tk.Frame(barContainer) # create the bar\n self._update_bar() # update bar values\n def _adjust_bar(event,movement):\n if type(movement) == int: # if movement is an integer\n #self.barMode = self.barModes['volume']\n notchMultiplier = 5 # impact of a single scroll notch on percentage\n newVol = VolAs.volume + movement*notchMultiplier\n VolAs.volume = clamp(newVol,0,100)\n else: raise TypeError(\"Value should be an integer! Not sure what happened!\")\n self._update_bar() # update the bar's graphical appearance\n self._update_volume() # update the system volume\n #TODO: support for Windows/Mac scrolling\n def _scroll_up(event):\n if sm.state == VolumeMode:\n _adjust_bar(event,+1)\n elif sm.state == BrightnessMode:\n _brightness_up()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n def _scroll_down(event):\n if sm.state == VolumeMode:\n _adjust_bar(event,-1)\n elif sm.state == BrightnessMode:\n _brightness_down()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n def _middle_click(event):\n if sm.state == VolumeMode: # if unmuted\n sm.change_state(MuteMode) # change to muted\n self._update_bar()\n elif sm.state == MuteMode: # if unmuted\n sm.change_state(VolumeMode) # change to muted\n self._update_bar()\n def _key_pressed(event):\n print(\"key pressed\",event.key)\n def _key_released(event):\n print(\"key released\",event.key)\n def _brightness_up(): print(\"WIP:\"+\"UP\")\n def _brightness_down(): print(\"WIP:\"+\"DOWN\")\n def _right_click(event):\n if sm.state == BrightnessMode:\n sm.change_state(sm.state().vacate())\n else:\n sm.change_state(BrightnessMode)\n self._update_bar()\n #print(\"brightness mode!\")\n def _brightness_mode_off():\n sm.state_change(sm.state.vacate())\n self.barMode = self.barModes['default']\n self._update_bar()\n print(\"brightness mode off!\")\n self.bar.pack(fill=Tk.Y,ipadx=5,ipady=5,side=Tk.LEFT)\n m.bind(\"<MouseWheel>\",_adjust_bar)\n m.bind(\"<Button-2>\",_middle_click)\n m.bind(\"<Button-4>\",_scroll_up)\n m.bind(\"<Button-5>\",_scroll_down)\n m.bind(\"<Button-3>\",_right_click)\n m.bind(\"<Control-Button-4>\",_brightness_up)\n m.bind(\"<Control-Button-5>\",_brightness_down)\n m.bind(\"<Double-Button-3>\",self._exit_app)\n barContainer.bind(\"<Enter>\",self._mouse_entered)\n barContainer.bind(\"<Leave>\",self._mouse_left)\n def _update_loop(self,ms_per_loop=1000):\n root.lift() # ensure window on top of others\n self._update_bar() # update bar graphics\n self.after(ms_per_loop,self._update_loop) # repeat _update_loop()\n def _update_bar(self):\n modeColor = VolBar.mode.color # set background based on mode color\n self.barWidth.setPerc(VolAs.volume) # set the width as a percentage\n newWidth = self.barWidth.getNum() # get a numerical version of the percentage\n self.bar.configure(background=modeColor,width=str(newWidth)) # update the bar with these settings\n def _update_volume(self):\n try: self.mixer.setvolume(VolAs.volume)\n except: call([\"amixer\",\"sset\",str(VolAs.device),str(VolAs.volume)+\"%\",\"-q\"])\n def _update_mute(self):\n muted = self.mixer.getmute()\n if muted[0] == True: self.mixer.setmute(0)\n elif muted[0] == False: self.mixer.setmute(1)\n else: raise Exception(\"mixer's .getmute()[0] method should return True or False!\")\n def _mouse_entered(self,event): root.wm_attributes(\"-alpha\",default_opacity)\n def _mouse_left(self,event): root.wm_attributes(\"-alpha\",outside_zone_opacity)\n def _open_message(self):\n notification.notify(\n title=program_title,\n message=\"{} launched!\".format(program_title),\n app_name=program_title,\n app_icon=program_icon,\n timeout=5)\n def _exit_app(self,event):\n notification.notify(\n title=program_title,\n message=\"{} now closing...\".format(program_title),\n app_name=program_title,\n app_icon=program_icon,\n timeout=10)\n exit()\n \napp = Window(root)\ndispSize = VolAs._get_display_size(root)\noverlay_w = dispSize['x']\noverlay_h = app.barHeight\nwindowOffsets = {'x': 0,\n 'y': dispSize['y']-app.barHeight}\nroot.geometry(\"{}x{}+{}+{}\".format(overlay_w,overlay_h,\n windowOffsets['x'],windowOffsets['y'])) # define the size of the window\nroot.attributes(\"-topmost\",True) # force window to stay on top (doesn't work in full screen applications)\nroot.overrideredirect(1) # remove frame of window\nroot.wait_visibility(root) # required for window transparency\nroot.wm_attributes(\"-alpha\",outside_zone_opacity) # make window transparent\nroot.title(program_title)\n\nprint(sys.argv[0])\nif '__main__.py' in sys.argv[0]:\n app._update_loop() # must be before main loop\n root.mainloop()\n", "import sys\nimport time\nimport math\nfrom _thread import start_new_thread\nimport tkinter as Tk\nfrom subprocess import call\nfrom os.path import realpath\nfrom plyer import notification\nimport alsaaudio as al\nimport volux.temperatures as temps\nfrom volux.dp_datatools import LivePercentage, clamp\nfrom volux.VolumeAssistant import VolumeAssistant\nfrom volux.VolumeBar import VolumeBar\nprogram_title = 'volux'\nprogram_icon = realpath('icon.png')\nsound_device = 'Master'\ndefault_mixer_name = 'Master'\ndefault_opacity = 0.5\noutside_zone_opacity = 0.1\nbar_height = 5\nVolAs = VolumeAssistant()\nVolBar = VolumeBar()\ncoreWatch = temps.CoreWatch(temps.get_cores())\n\n\nclass VolumeMode:\n\n def __init__(self):\n pass\n\n def enter(self):\n VolBar.mode = VolBar.modes['volume']\n VolAs.mixer.setmute(0)\n\n def vacate(self):\n VolBar.mode = VolBar.modes['unknown']\n\n\nclass MuteMode:\n\n def __init__(self):\n pass\n\n def enter(self):\n VolBar.mode = VolBar.modes['muted']\n VolAs.mixer.setmute(1)\n\n def vacate(self):\n VolBar.mode = VolBar.modes['unknown']\n\n\nclass BrightnessMode:\n\n def __init__(self):\n pass\n\n def enter(self):\n VolBar.mode = VolBar.modes['brightness']\n\n def vacate(self):\n VolBar.mode = VolBar.modes['unknown']\n if VolAs.ismuted() == True:\n return MuteMode\n elif VolAs.ismuted() == False:\n return VolumeMode\n else:\n raise TypeError('_ismuted should be a bool value')\n\n\nclass StateManager:\n\n def __init__(self, initial_state):\n self.state = initial_state\n\n def change_state(self, new_state):\n self.state().vacate()\n new_state().enter()\n self.state = new_state\n\n\nsm = StateManager(VolumeMode)\nroot = Tk.Tk()\n\n\nclass Window(Tk.Frame):\n\n def __init__(self, master=None):\n Tk.Frame.__init__(self, master)\n self.master = master\n self._init_objects()\n self._init_window()\n self._open_message()\n\n def _init_objects(self):\n self.displaySize = VolAs._get_display_size(root)\n self.barWidth = LivePercentage(0, self.displaySize['x'])\n\n def _init_window(self):\n m = self.master\n m.title('Please submit an issue to Github if you see this!')\n self.barHeight = bar_height\n barContainer = Tk.Frame(m)\n barContainer.configure(background='BLACK')\n barContainer.pack(fill=Tk.BOTH, expand=1)\n self.bar = Tk.Frame(barContainer)\n self._update_bar()\n\n def _adjust_bar(event, movement):\n if type(movement) == int:\n notchMultiplier = 5\n newVol = VolAs.volume + movement * notchMultiplier\n VolAs.volume = clamp(newVol, 0, 100)\n else:\n raise TypeError(\n 'Value should be an integer! Not sure what happened!')\n self._update_bar()\n self._update_volume()\n\n def _scroll_up(event):\n if sm.state == VolumeMode:\n _adjust_bar(event, +1)\n elif sm.state == BrightnessMode:\n _brightness_up()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _scroll_down(event):\n if sm.state == VolumeMode:\n _adjust_bar(event, -1)\n elif sm.state == BrightnessMode:\n _brightness_down()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _middle_click(event):\n if sm.state == VolumeMode:\n sm.change_state(MuteMode)\n self._update_bar()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _key_pressed(event):\n print('key pressed', event.key)\n\n def _key_released(event):\n print('key released', event.key)\n\n def _brightness_up():\n print('WIP:' + 'UP')\n\n def _brightness_down():\n print('WIP:' + 'DOWN')\n\n def _right_click(event):\n if sm.state == BrightnessMode:\n sm.change_state(sm.state().vacate())\n else:\n sm.change_state(BrightnessMode)\n self._update_bar()\n\n def _brightness_mode_off():\n sm.state_change(sm.state.vacate())\n self.barMode = self.barModes['default']\n self._update_bar()\n print('brightness mode off!')\n self.bar.pack(fill=Tk.Y, ipadx=5, ipady=5, side=Tk.LEFT)\n m.bind('<MouseWheel>', _adjust_bar)\n m.bind('<Button-2>', _middle_click)\n m.bind('<Button-4>', _scroll_up)\n m.bind('<Button-5>', _scroll_down)\n m.bind('<Button-3>', _right_click)\n m.bind('<Control-Button-4>', _brightness_up)\n m.bind('<Control-Button-5>', _brightness_down)\n m.bind('<Double-Button-3>', self._exit_app)\n barContainer.bind('<Enter>', self._mouse_entered)\n barContainer.bind('<Leave>', self._mouse_left)\n\n def _update_loop(self, ms_per_loop=1000):\n root.lift()\n self._update_bar()\n self.after(ms_per_loop, self._update_loop)\n\n def _update_bar(self):\n modeColor = VolBar.mode.color\n self.barWidth.setPerc(VolAs.volume)\n newWidth = self.barWidth.getNum()\n self.bar.configure(background=modeColor, width=str(newWidth))\n\n def _update_volume(self):\n try:\n self.mixer.setvolume(VolAs.volume)\n except:\n call(['amixer', 'sset', str(VolAs.device), str(VolAs.volume) +\n '%', '-q'])\n\n def _update_mute(self):\n muted = self.mixer.getmute()\n if muted[0] == True:\n self.mixer.setmute(0)\n elif muted[0] == False:\n self.mixer.setmute(1)\n else:\n raise Exception(\n \"mixer's .getmute()[0] method should return True or False!\")\n\n def _mouse_entered(self, event):\n root.wm_attributes('-alpha', default_opacity)\n\n def _mouse_left(self, event):\n root.wm_attributes('-alpha', outside_zone_opacity)\n\n def _open_message(self):\n notification.notify(title=program_title, message='{} launched!'.\n format(program_title), app_name=program_title, app_icon=\n program_icon, timeout=5)\n\n def _exit_app(self, event):\n notification.notify(title=program_title, message=\n '{} now closing...'.format(program_title), app_name=\n program_title, app_icon=program_icon, timeout=10)\n exit()\n\n\napp = Window(root)\ndispSize = VolAs._get_display_size(root)\noverlay_w = dispSize['x']\noverlay_h = app.barHeight\nwindowOffsets = {'x': 0, 'y': dispSize['y'] - app.barHeight}\nroot.geometry('{}x{}+{}+{}'.format(overlay_w, overlay_h, windowOffsets['x'],\n windowOffsets['y']))\nroot.attributes('-topmost', True)\nroot.overrideredirect(1)\nroot.wait_visibility(root)\nroot.wm_attributes('-alpha', outside_zone_opacity)\nroot.title(program_title)\nprint(sys.argv[0])\nif '__main__.py' in sys.argv[0]:\n app._update_loop()\n root.mainloop()\n", "<import token>\nprogram_title = 'volux'\nprogram_icon = realpath('icon.png')\nsound_device = 'Master'\ndefault_mixer_name = 'Master'\ndefault_opacity = 0.5\noutside_zone_opacity = 0.1\nbar_height = 5\nVolAs = VolumeAssistant()\nVolBar = VolumeBar()\ncoreWatch = temps.CoreWatch(temps.get_cores())\n\n\nclass VolumeMode:\n\n def __init__(self):\n pass\n\n def enter(self):\n VolBar.mode = VolBar.modes['volume']\n VolAs.mixer.setmute(0)\n\n def vacate(self):\n VolBar.mode = VolBar.modes['unknown']\n\n\nclass MuteMode:\n\n def __init__(self):\n pass\n\n def enter(self):\n VolBar.mode = VolBar.modes['muted']\n VolAs.mixer.setmute(1)\n\n def vacate(self):\n VolBar.mode = VolBar.modes['unknown']\n\n\nclass BrightnessMode:\n\n def __init__(self):\n pass\n\n def enter(self):\n VolBar.mode = VolBar.modes['brightness']\n\n def vacate(self):\n VolBar.mode = VolBar.modes['unknown']\n if VolAs.ismuted() == True:\n return MuteMode\n elif VolAs.ismuted() == False:\n return VolumeMode\n else:\n raise TypeError('_ismuted should be a bool value')\n\n\nclass StateManager:\n\n def __init__(self, initial_state):\n self.state = initial_state\n\n def change_state(self, new_state):\n self.state().vacate()\n new_state().enter()\n self.state = new_state\n\n\nsm = StateManager(VolumeMode)\nroot = Tk.Tk()\n\n\nclass Window(Tk.Frame):\n\n def __init__(self, master=None):\n Tk.Frame.__init__(self, master)\n self.master = master\n self._init_objects()\n self._init_window()\n self._open_message()\n\n def _init_objects(self):\n self.displaySize = VolAs._get_display_size(root)\n self.barWidth = LivePercentage(0, self.displaySize['x'])\n\n def _init_window(self):\n m = self.master\n m.title('Please submit an issue to Github if you see this!')\n self.barHeight = bar_height\n barContainer = Tk.Frame(m)\n barContainer.configure(background='BLACK')\n barContainer.pack(fill=Tk.BOTH, expand=1)\n self.bar = Tk.Frame(barContainer)\n self._update_bar()\n\n def _adjust_bar(event, movement):\n if type(movement) == int:\n notchMultiplier = 5\n newVol = VolAs.volume + movement * notchMultiplier\n VolAs.volume = clamp(newVol, 0, 100)\n else:\n raise TypeError(\n 'Value should be an integer! Not sure what happened!')\n self._update_bar()\n self._update_volume()\n\n def _scroll_up(event):\n if sm.state == VolumeMode:\n _adjust_bar(event, +1)\n elif sm.state == BrightnessMode:\n _brightness_up()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _scroll_down(event):\n if sm.state == VolumeMode:\n _adjust_bar(event, -1)\n elif sm.state == BrightnessMode:\n _brightness_down()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _middle_click(event):\n if sm.state == VolumeMode:\n sm.change_state(MuteMode)\n self._update_bar()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _key_pressed(event):\n print('key pressed', event.key)\n\n def _key_released(event):\n print('key released', event.key)\n\n def _brightness_up():\n print('WIP:' + 'UP')\n\n def _brightness_down():\n print('WIP:' + 'DOWN')\n\n def _right_click(event):\n if sm.state == BrightnessMode:\n sm.change_state(sm.state().vacate())\n else:\n sm.change_state(BrightnessMode)\n self._update_bar()\n\n def _brightness_mode_off():\n sm.state_change(sm.state.vacate())\n self.barMode = self.barModes['default']\n self._update_bar()\n print('brightness mode off!')\n self.bar.pack(fill=Tk.Y, ipadx=5, ipady=5, side=Tk.LEFT)\n m.bind('<MouseWheel>', _adjust_bar)\n m.bind('<Button-2>', _middle_click)\n m.bind('<Button-4>', _scroll_up)\n m.bind('<Button-5>', _scroll_down)\n m.bind('<Button-3>', _right_click)\n m.bind('<Control-Button-4>', _brightness_up)\n m.bind('<Control-Button-5>', _brightness_down)\n m.bind('<Double-Button-3>', self._exit_app)\n barContainer.bind('<Enter>', self._mouse_entered)\n barContainer.bind('<Leave>', self._mouse_left)\n\n def _update_loop(self, ms_per_loop=1000):\n root.lift()\n self._update_bar()\n self.after(ms_per_loop, self._update_loop)\n\n def _update_bar(self):\n modeColor = VolBar.mode.color\n self.barWidth.setPerc(VolAs.volume)\n newWidth = self.barWidth.getNum()\n self.bar.configure(background=modeColor, width=str(newWidth))\n\n def _update_volume(self):\n try:\n self.mixer.setvolume(VolAs.volume)\n except:\n call(['amixer', 'sset', str(VolAs.device), str(VolAs.volume) +\n '%', '-q'])\n\n def _update_mute(self):\n muted = self.mixer.getmute()\n if muted[0] == True:\n self.mixer.setmute(0)\n elif muted[0] == False:\n self.mixer.setmute(1)\n else:\n raise Exception(\n \"mixer's .getmute()[0] method should return True or False!\")\n\n def _mouse_entered(self, event):\n root.wm_attributes('-alpha', default_opacity)\n\n def _mouse_left(self, event):\n root.wm_attributes('-alpha', outside_zone_opacity)\n\n def _open_message(self):\n notification.notify(title=program_title, message='{} launched!'.\n format(program_title), app_name=program_title, app_icon=\n program_icon, timeout=5)\n\n def _exit_app(self, event):\n notification.notify(title=program_title, message=\n '{} now closing...'.format(program_title), app_name=\n program_title, app_icon=program_icon, timeout=10)\n exit()\n\n\napp = Window(root)\ndispSize = VolAs._get_display_size(root)\noverlay_w = dispSize['x']\noverlay_h = app.barHeight\nwindowOffsets = {'x': 0, 'y': dispSize['y'] - app.barHeight}\nroot.geometry('{}x{}+{}+{}'.format(overlay_w, overlay_h, windowOffsets['x'],\n windowOffsets['y']))\nroot.attributes('-topmost', True)\nroot.overrideredirect(1)\nroot.wait_visibility(root)\nroot.wm_attributes('-alpha', outside_zone_opacity)\nroot.title(program_title)\nprint(sys.argv[0])\nif '__main__.py' in sys.argv[0]:\n app._update_loop()\n root.mainloop()\n", "<import token>\n<assignment token>\n\n\nclass VolumeMode:\n\n def __init__(self):\n pass\n\n def enter(self):\n VolBar.mode = VolBar.modes['volume']\n VolAs.mixer.setmute(0)\n\n def vacate(self):\n VolBar.mode = VolBar.modes['unknown']\n\n\nclass MuteMode:\n\n def __init__(self):\n pass\n\n def enter(self):\n VolBar.mode = VolBar.modes['muted']\n VolAs.mixer.setmute(1)\n\n def vacate(self):\n VolBar.mode = VolBar.modes['unknown']\n\n\nclass BrightnessMode:\n\n def __init__(self):\n pass\n\n def enter(self):\n VolBar.mode = VolBar.modes['brightness']\n\n def vacate(self):\n VolBar.mode = VolBar.modes['unknown']\n if VolAs.ismuted() == True:\n return MuteMode\n elif VolAs.ismuted() == False:\n return VolumeMode\n else:\n raise TypeError('_ismuted should be a bool value')\n\n\nclass StateManager:\n\n def __init__(self, initial_state):\n self.state = initial_state\n\n def change_state(self, new_state):\n self.state().vacate()\n new_state().enter()\n self.state = new_state\n\n\n<assignment token>\n\n\nclass Window(Tk.Frame):\n\n def __init__(self, master=None):\n Tk.Frame.__init__(self, master)\n self.master = master\n self._init_objects()\n self._init_window()\n self._open_message()\n\n def _init_objects(self):\n self.displaySize = VolAs._get_display_size(root)\n self.barWidth = LivePercentage(0, self.displaySize['x'])\n\n def _init_window(self):\n m = self.master\n m.title('Please submit an issue to Github if you see this!')\n self.barHeight = bar_height\n barContainer = Tk.Frame(m)\n barContainer.configure(background='BLACK')\n barContainer.pack(fill=Tk.BOTH, expand=1)\n self.bar = Tk.Frame(barContainer)\n self._update_bar()\n\n def _adjust_bar(event, movement):\n if type(movement) == int:\n notchMultiplier = 5\n newVol = VolAs.volume + movement * notchMultiplier\n VolAs.volume = clamp(newVol, 0, 100)\n else:\n raise TypeError(\n 'Value should be an integer! Not sure what happened!')\n self._update_bar()\n self._update_volume()\n\n def _scroll_up(event):\n if sm.state == VolumeMode:\n _adjust_bar(event, +1)\n elif sm.state == BrightnessMode:\n _brightness_up()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _scroll_down(event):\n if sm.state == VolumeMode:\n _adjust_bar(event, -1)\n elif sm.state == BrightnessMode:\n _brightness_down()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _middle_click(event):\n if sm.state == VolumeMode:\n sm.change_state(MuteMode)\n self._update_bar()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _key_pressed(event):\n print('key pressed', event.key)\n\n def _key_released(event):\n print('key released', event.key)\n\n def _brightness_up():\n print('WIP:' + 'UP')\n\n def _brightness_down():\n print('WIP:' + 'DOWN')\n\n def _right_click(event):\n if sm.state == BrightnessMode:\n sm.change_state(sm.state().vacate())\n else:\n sm.change_state(BrightnessMode)\n self._update_bar()\n\n def _brightness_mode_off():\n sm.state_change(sm.state.vacate())\n self.barMode = self.barModes['default']\n self._update_bar()\n print('brightness mode off!')\n self.bar.pack(fill=Tk.Y, ipadx=5, ipady=5, side=Tk.LEFT)\n m.bind('<MouseWheel>', _adjust_bar)\n m.bind('<Button-2>', _middle_click)\n m.bind('<Button-4>', _scroll_up)\n m.bind('<Button-5>', _scroll_down)\n m.bind('<Button-3>', _right_click)\n m.bind('<Control-Button-4>', _brightness_up)\n m.bind('<Control-Button-5>', _brightness_down)\n m.bind('<Double-Button-3>', self._exit_app)\n barContainer.bind('<Enter>', self._mouse_entered)\n barContainer.bind('<Leave>', self._mouse_left)\n\n def _update_loop(self, ms_per_loop=1000):\n root.lift()\n self._update_bar()\n self.after(ms_per_loop, self._update_loop)\n\n def _update_bar(self):\n modeColor = VolBar.mode.color\n self.barWidth.setPerc(VolAs.volume)\n newWidth = self.barWidth.getNum()\n self.bar.configure(background=modeColor, width=str(newWidth))\n\n def _update_volume(self):\n try:\n self.mixer.setvolume(VolAs.volume)\n except:\n call(['amixer', 'sset', str(VolAs.device), str(VolAs.volume) +\n '%', '-q'])\n\n def _update_mute(self):\n muted = self.mixer.getmute()\n if muted[0] == True:\n self.mixer.setmute(0)\n elif muted[0] == False:\n self.mixer.setmute(1)\n else:\n raise Exception(\n \"mixer's .getmute()[0] method should return True or False!\")\n\n def _mouse_entered(self, event):\n root.wm_attributes('-alpha', default_opacity)\n\n def _mouse_left(self, event):\n root.wm_attributes('-alpha', outside_zone_opacity)\n\n def _open_message(self):\n notification.notify(title=program_title, message='{} launched!'.\n format(program_title), app_name=program_title, app_icon=\n program_icon, timeout=5)\n\n def _exit_app(self, event):\n notification.notify(title=program_title, message=\n '{} now closing...'.format(program_title), app_name=\n program_title, app_icon=program_icon, timeout=10)\n exit()\n\n\n<assignment token>\nroot.geometry('{}x{}+{}+{}'.format(overlay_w, overlay_h, windowOffsets['x'],\n windowOffsets['y']))\nroot.attributes('-topmost', True)\nroot.overrideredirect(1)\nroot.wait_visibility(root)\nroot.wm_attributes('-alpha', outside_zone_opacity)\nroot.title(program_title)\nprint(sys.argv[0])\nif '__main__.py' in sys.argv[0]:\n app._update_loop()\n root.mainloop()\n", "<import token>\n<assignment token>\n\n\nclass VolumeMode:\n\n def __init__(self):\n pass\n\n def enter(self):\n VolBar.mode = VolBar.modes['volume']\n VolAs.mixer.setmute(0)\n\n def vacate(self):\n VolBar.mode = VolBar.modes['unknown']\n\n\nclass MuteMode:\n\n def __init__(self):\n pass\n\n def enter(self):\n VolBar.mode = VolBar.modes['muted']\n VolAs.mixer.setmute(1)\n\n def vacate(self):\n VolBar.mode = VolBar.modes['unknown']\n\n\nclass BrightnessMode:\n\n def __init__(self):\n pass\n\n def enter(self):\n VolBar.mode = VolBar.modes['brightness']\n\n def vacate(self):\n VolBar.mode = VolBar.modes['unknown']\n if VolAs.ismuted() == True:\n return MuteMode\n elif VolAs.ismuted() == False:\n return VolumeMode\n else:\n raise TypeError('_ismuted should be a bool value')\n\n\nclass StateManager:\n\n def __init__(self, initial_state):\n self.state = initial_state\n\n def change_state(self, new_state):\n self.state().vacate()\n new_state().enter()\n self.state = new_state\n\n\n<assignment token>\n\n\nclass Window(Tk.Frame):\n\n def __init__(self, master=None):\n Tk.Frame.__init__(self, master)\n self.master = master\n self._init_objects()\n self._init_window()\n self._open_message()\n\n def _init_objects(self):\n self.displaySize = VolAs._get_display_size(root)\n self.barWidth = LivePercentage(0, self.displaySize['x'])\n\n def _init_window(self):\n m = self.master\n m.title('Please submit an issue to Github if you see this!')\n self.barHeight = bar_height\n barContainer = Tk.Frame(m)\n barContainer.configure(background='BLACK')\n barContainer.pack(fill=Tk.BOTH, expand=1)\n self.bar = Tk.Frame(barContainer)\n self._update_bar()\n\n def _adjust_bar(event, movement):\n if type(movement) == int:\n notchMultiplier = 5\n newVol = VolAs.volume + movement * notchMultiplier\n VolAs.volume = clamp(newVol, 0, 100)\n else:\n raise TypeError(\n 'Value should be an integer! Not sure what happened!')\n self._update_bar()\n self._update_volume()\n\n def _scroll_up(event):\n if sm.state == VolumeMode:\n _adjust_bar(event, +1)\n elif sm.state == BrightnessMode:\n _brightness_up()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _scroll_down(event):\n if sm.state == VolumeMode:\n _adjust_bar(event, -1)\n elif sm.state == BrightnessMode:\n _brightness_down()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _middle_click(event):\n if sm.state == VolumeMode:\n sm.change_state(MuteMode)\n self._update_bar()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _key_pressed(event):\n print('key pressed', event.key)\n\n def _key_released(event):\n print('key released', event.key)\n\n def _brightness_up():\n print('WIP:' + 'UP')\n\n def _brightness_down():\n print('WIP:' + 'DOWN')\n\n def _right_click(event):\n if sm.state == BrightnessMode:\n sm.change_state(sm.state().vacate())\n else:\n sm.change_state(BrightnessMode)\n self._update_bar()\n\n def _brightness_mode_off():\n sm.state_change(sm.state.vacate())\n self.barMode = self.barModes['default']\n self._update_bar()\n print('brightness mode off!')\n self.bar.pack(fill=Tk.Y, ipadx=5, ipady=5, side=Tk.LEFT)\n m.bind('<MouseWheel>', _adjust_bar)\n m.bind('<Button-2>', _middle_click)\n m.bind('<Button-4>', _scroll_up)\n m.bind('<Button-5>', _scroll_down)\n m.bind('<Button-3>', _right_click)\n m.bind('<Control-Button-4>', _brightness_up)\n m.bind('<Control-Button-5>', _brightness_down)\n m.bind('<Double-Button-3>', self._exit_app)\n barContainer.bind('<Enter>', self._mouse_entered)\n barContainer.bind('<Leave>', self._mouse_left)\n\n def _update_loop(self, ms_per_loop=1000):\n root.lift()\n self._update_bar()\n self.after(ms_per_loop, self._update_loop)\n\n def _update_bar(self):\n modeColor = VolBar.mode.color\n self.barWidth.setPerc(VolAs.volume)\n newWidth = self.barWidth.getNum()\n self.bar.configure(background=modeColor, width=str(newWidth))\n\n def _update_volume(self):\n try:\n self.mixer.setvolume(VolAs.volume)\n except:\n call(['amixer', 'sset', str(VolAs.device), str(VolAs.volume) +\n '%', '-q'])\n\n def _update_mute(self):\n muted = self.mixer.getmute()\n if muted[0] == True:\n self.mixer.setmute(0)\n elif muted[0] == False:\n self.mixer.setmute(1)\n else:\n raise Exception(\n \"mixer's .getmute()[0] method should return True or False!\")\n\n def _mouse_entered(self, event):\n root.wm_attributes('-alpha', default_opacity)\n\n def _mouse_left(self, event):\n root.wm_attributes('-alpha', outside_zone_opacity)\n\n def _open_message(self):\n notification.notify(title=program_title, message='{} launched!'.\n format(program_title), app_name=program_title, app_icon=\n program_icon, timeout=5)\n\n def _exit_app(self, event):\n notification.notify(title=program_title, message=\n '{} now closing...'.format(program_title), app_name=\n program_title, app_icon=program_icon, timeout=10)\n exit()\n\n\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass VolumeMode:\n <function token>\n\n def enter(self):\n VolBar.mode = VolBar.modes['volume']\n VolAs.mixer.setmute(0)\n\n def vacate(self):\n VolBar.mode = VolBar.modes['unknown']\n\n\nclass MuteMode:\n\n def __init__(self):\n pass\n\n def enter(self):\n VolBar.mode = VolBar.modes['muted']\n VolAs.mixer.setmute(1)\n\n def vacate(self):\n VolBar.mode = VolBar.modes['unknown']\n\n\nclass BrightnessMode:\n\n def __init__(self):\n pass\n\n def enter(self):\n VolBar.mode = VolBar.modes['brightness']\n\n def vacate(self):\n VolBar.mode = VolBar.modes['unknown']\n if VolAs.ismuted() == True:\n return MuteMode\n elif VolAs.ismuted() == False:\n return VolumeMode\n else:\n raise TypeError('_ismuted should be a bool value')\n\n\nclass StateManager:\n\n def __init__(self, initial_state):\n self.state = initial_state\n\n def change_state(self, new_state):\n self.state().vacate()\n new_state().enter()\n self.state = new_state\n\n\n<assignment token>\n\n\nclass Window(Tk.Frame):\n\n def __init__(self, master=None):\n Tk.Frame.__init__(self, master)\n self.master = master\n self._init_objects()\n self._init_window()\n self._open_message()\n\n def _init_objects(self):\n self.displaySize = VolAs._get_display_size(root)\n self.barWidth = LivePercentage(0, self.displaySize['x'])\n\n def _init_window(self):\n m = self.master\n m.title('Please submit an issue to Github if you see this!')\n self.barHeight = bar_height\n barContainer = Tk.Frame(m)\n barContainer.configure(background='BLACK')\n barContainer.pack(fill=Tk.BOTH, expand=1)\n self.bar = Tk.Frame(barContainer)\n self._update_bar()\n\n def _adjust_bar(event, movement):\n if type(movement) == int:\n notchMultiplier = 5\n newVol = VolAs.volume + movement * notchMultiplier\n VolAs.volume = clamp(newVol, 0, 100)\n else:\n raise TypeError(\n 'Value should be an integer! Not sure what happened!')\n self._update_bar()\n self._update_volume()\n\n def _scroll_up(event):\n if sm.state == VolumeMode:\n _adjust_bar(event, +1)\n elif sm.state == BrightnessMode:\n _brightness_up()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _scroll_down(event):\n if sm.state == VolumeMode:\n _adjust_bar(event, -1)\n elif sm.state == BrightnessMode:\n _brightness_down()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _middle_click(event):\n if sm.state == VolumeMode:\n sm.change_state(MuteMode)\n self._update_bar()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _key_pressed(event):\n print('key pressed', event.key)\n\n def _key_released(event):\n print('key released', event.key)\n\n def _brightness_up():\n print('WIP:' + 'UP')\n\n def _brightness_down():\n print('WIP:' + 'DOWN')\n\n def _right_click(event):\n if sm.state == BrightnessMode:\n sm.change_state(sm.state().vacate())\n else:\n sm.change_state(BrightnessMode)\n self._update_bar()\n\n def _brightness_mode_off():\n sm.state_change(sm.state.vacate())\n self.barMode = self.barModes['default']\n self._update_bar()\n print('brightness mode off!')\n self.bar.pack(fill=Tk.Y, ipadx=5, ipady=5, side=Tk.LEFT)\n m.bind('<MouseWheel>', _adjust_bar)\n m.bind('<Button-2>', _middle_click)\n m.bind('<Button-4>', _scroll_up)\n m.bind('<Button-5>', _scroll_down)\n m.bind('<Button-3>', _right_click)\n m.bind('<Control-Button-4>', _brightness_up)\n m.bind('<Control-Button-5>', _brightness_down)\n m.bind('<Double-Button-3>', self._exit_app)\n barContainer.bind('<Enter>', self._mouse_entered)\n barContainer.bind('<Leave>', self._mouse_left)\n\n def _update_loop(self, ms_per_loop=1000):\n root.lift()\n self._update_bar()\n self.after(ms_per_loop, self._update_loop)\n\n def _update_bar(self):\n modeColor = VolBar.mode.color\n self.barWidth.setPerc(VolAs.volume)\n newWidth = self.barWidth.getNum()\n self.bar.configure(background=modeColor, width=str(newWidth))\n\n def _update_volume(self):\n try:\n self.mixer.setvolume(VolAs.volume)\n except:\n call(['amixer', 'sset', str(VolAs.device), str(VolAs.volume) +\n '%', '-q'])\n\n def _update_mute(self):\n muted = self.mixer.getmute()\n if muted[0] == True:\n self.mixer.setmute(0)\n elif muted[0] == False:\n self.mixer.setmute(1)\n else:\n raise Exception(\n \"mixer's .getmute()[0] method should return True or False!\")\n\n def _mouse_entered(self, event):\n root.wm_attributes('-alpha', default_opacity)\n\n def _mouse_left(self, event):\n root.wm_attributes('-alpha', outside_zone_opacity)\n\n def _open_message(self):\n notification.notify(title=program_title, message='{} launched!'.\n format(program_title), app_name=program_title, app_icon=\n program_icon, timeout=5)\n\n def _exit_app(self, event):\n notification.notify(title=program_title, message=\n '{} now closing...'.format(program_title), app_name=\n program_title, app_icon=program_icon, timeout=10)\n exit()\n\n\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass VolumeMode:\n <function token>\n <function token>\n\n def vacate(self):\n VolBar.mode = VolBar.modes['unknown']\n\n\nclass MuteMode:\n\n def __init__(self):\n pass\n\n def enter(self):\n VolBar.mode = VolBar.modes['muted']\n VolAs.mixer.setmute(1)\n\n def vacate(self):\n VolBar.mode = VolBar.modes['unknown']\n\n\nclass BrightnessMode:\n\n def __init__(self):\n pass\n\n def enter(self):\n VolBar.mode = VolBar.modes['brightness']\n\n def vacate(self):\n VolBar.mode = VolBar.modes['unknown']\n if VolAs.ismuted() == True:\n return MuteMode\n elif VolAs.ismuted() == False:\n return VolumeMode\n else:\n raise TypeError('_ismuted should be a bool value')\n\n\nclass StateManager:\n\n def __init__(self, initial_state):\n self.state = initial_state\n\n def change_state(self, new_state):\n self.state().vacate()\n new_state().enter()\n self.state = new_state\n\n\n<assignment token>\n\n\nclass Window(Tk.Frame):\n\n def __init__(self, master=None):\n Tk.Frame.__init__(self, master)\n self.master = master\n self._init_objects()\n self._init_window()\n self._open_message()\n\n def _init_objects(self):\n self.displaySize = VolAs._get_display_size(root)\n self.barWidth = LivePercentage(0, self.displaySize['x'])\n\n def _init_window(self):\n m = self.master\n m.title('Please submit an issue to Github if you see this!')\n self.barHeight = bar_height\n barContainer = Tk.Frame(m)\n barContainer.configure(background='BLACK')\n barContainer.pack(fill=Tk.BOTH, expand=1)\n self.bar = Tk.Frame(barContainer)\n self._update_bar()\n\n def _adjust_bar(event, movement):\n if type(movement) == int:\n notchMultiplier = 5\n newVol = VolAs.volume + movement * notchMultiplier\n VolAs.volume = clamp(newVol, 0, 100)\n else:\n raise TypeError(\n 'Value should be an integer! Not sure what happened!')\n self._update_bar()\n self._update_volume()\n\n def _scroll_up(event):\n if sm.state == VolumeMode:\n _adjust_bar(event, +1)\n elif sm.state == BrightnessMode:\n _brightness_up()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _scroll_down(event):\n if sm.state == VolumeMode:\n _adjust_bar(event, -1)\n elif sm.state == BrightnessMode:\n _brightness_down()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _middle_click(event):\n if sm.state == VolumeMode:\n sm.change_state(MuteMode)\n self._update_bar()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _key_pressed(event):\n print('key pressed', event.key)\n\n def _key_released(event):\n print('key released', event.key)\n\n def _brightness_up():\n print('WIP:' + 'UP')\n\n def _brightness_down():\n print('WIP:' + 'DOWN')\n\n def _right_click(event):\n if sm.state == BrightnessMode:\n sm.change_state(sm.state().vacate())\n else:\n sm.change_state(BrightnessMode)\n self._update_bar()\n\n def _brightness_mode_off():\n sm.state_change(sm.state.vacate())\n self.barMode = self.barModes['default']\n self._update_bar()\n print('brightness mode off!')\n self.bar.pack(fill=Tk.Y, ipadx=5, ipady=5, side=Tk.LEFT)\n m.bind('<MouseWheel>', _adjust_bar)\n m.bind('<Button-2>', _middle_click)\n m.bind('<Button-4>', _scroll_up)\n m.bind('<Button-5>', _scroll_down)\n m.bind('<Button-3>', _right_click)\n m.bind('<Control-Button-4>', _brightness_up)\n m.bind('<Control-Button-5>', _brightness_down)\n m.bind('<Double-Button-3>', self._exit_app)\n barContainer.bind('<Enter>', self._mouse_entered)\n barContainer.bind('<Leave>', self._mouse_left)\n\n def _update_loop(self, ms_per_loop=1000):\n root.lift()\n self._update_bar()\n self.after(ms_per_loop, self._update_loop)\n\n def _update_bar(self):\n modeColor = VolBar.mode.color\n self.barWidth.setPerc(VolAs.volume)\n newWidth = self.barWidth.getNum()\n self.bar.configure(background=modeColor, width=str(newWidth))\n\n def _update_volume(self):\n try:\n self.mixer.setvolume(VolAs.volume)\n except:\n call(['amixer', 'sset', str(VolAs.device), str(VolAs.volume) +\n '%', '-q'])\n\n def _update_mute(self):\n muted = self.mixer.getmute()\n if muted[0] == True:\n self.mixer.setmute(0)\n elif muted[0] == False:\n self.mixer.setmute(1)\n else:\n raise Exception(\n \"mixer's .getmute()[0] method should return True or False!\")\n\n def _mouse_entered(self, event):\n root.wm_attributes('-alpha', default_opacity)\n\n def _mouse_left(self, event):\n root.wm_attributes('-alpha', outside_zone_opacity)\n\n def _open_message(self):\n notification.notify(title=program_title, message='{} launched!'.\n format(program_title), app_name=program_title, app_icon=\n program_icon, timeout=5)\n\n def _exit_app(self, event):\n notification.notify(title=program_title, message=\n '{} now closing...'.format(program_title), app_name=\n program_title, app_icon=program_icon, timeout=10)\n exit()\n\n\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass VolumeMode:\n <function token>\n <function token>\n <function token>\n\n\nclass MuteMode:\n\n def __init__(self):\n pass\n\n def enter(self):\n VolBar.mode = VolBar.modes['muted']\n VolAs.mixer.setmute(1)\n\n def vacate(self):\n VolBar.mode = VolBar.modes['unknown']\n\n\nclass BrightnessMode:\n\n def __init__(self):\n pass\n\n def enter(self):\n VolBar.mode = VolBar.modes['brightness']\n\n def vacate(self):\n VolBar.mode = VolBar.modes['unknown']\n if VolAs.ismuted() == True:\n return MuteMode\n elif VolAs.ismuted() == False:\n return VolumeMode\n else:\n raise TypeError('_ismuted should be a bool value')\n\n\nclass StateManager:\n\n def __init__(self, initial_state):\n self.state = initial_state\n\n def change_state(self, new_state):\n self.state().vacate()\n new_state().enter()\n self.state = new_state\n\n\n<assignment token>\n\n\nclass Window(Tk.Frame):\n\n def __init__(self, master=None):\n Tk.Frame.__init__(self, master)\n self.master = master\n self._init_objects()\n self._init_window()\n self._open_message()\n\n def _init_objects(self):\n self.displaySize = VolAs._get_display_size(root)\n self.barWidth = LivePercentage(0, self.displaySize['x'])\n\n def _init_window(self):\n m = self.master\n m.title('Please submit an issue to Github if you see this!')\n self.barHeight = bar_height\n barContainer = Tk.Frame(m)\n barContainer.configure(background='BLACK')\n barContainer.pack(fill=Tk.BOTH, expand=1)\n self.bar = Tk.Frame(barContainer)\n self._update_bar()\n\n def _adjust_bar(event, movement):\n if type(movement) == int:\n notchMultiplier = 5\n newVol = VolAs.volume + movement * notchMultiplier\n VolAs.volume = clamp(newVol, 0, 100)\n else:\n raise TypeError(\n 'Value should be an integer! Not sure what happened!')\n self._update_bar()\n self._update_volume()\n\n def _scroll_up(event):\n if sm.state == VolumeMode:\n _adjust_bar(event, +1)\n elif sm.state == BrightnessMode:\n _brightness_up()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _scroll_down(event):\n if sm.state == VolumeMode:\n _adjust_bar(event, -1)\n elif sm.state == BrightnessMode:\n _brightness_down()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _middle_click(event):\n if sm.state == VolumeMode:\n sm.change_state(MuteMode)\n self._update_bar()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _key_pressed(event):\n print('key pressed', event.key)\n\n def _key_released(event):\n print('key released', event.key)\n\n def _brightness_up():\n print('WIP:' + 'UP')\n\n def _brightness_down():\n print('WIP:' + 'DOWN')\n\n def _right_click(event):\n if sm.state == BrightnessMode:\n sm.change_state(sm.state().vacate())\n else:\n sm.change_state(BrightnessMode)\n self._update_bar()\n\n def _brightness_mode_off():\n sm.state_change(sm.state.vacate())\n self.barMode = self.barModes['default']\n self._update_bar()\n print('brightness mode off!')\n self.bar.pack(fill=Tk.Y, ipadx=5, ipady=5, side=Tk.LEFT)\n m.bind('<MouseWheel>', _adjust_bar)\n m.bind('<Button-2>', _middle_click)\n m.bind('<Button-4>', _scroll_up)\n m.bind('<Button-5>', _scroll_down)\n m.bind('<Button-3>', _right_click)\n m.bind('<Control-Button-4>', _brightness_up)\n m.bind('<Control-Button-5>', _brightness_down)\n m.bind('<Double-Button-3>', self._exit_app)\n barContainer.bind('<Enter>', self._mouse_entered)\n barContainer.bind('<Leave>', self._mouse_left)\n\n def _update_loop(self, ms_per_loop=1000):\n root.lift()\n self._update_bar()\n self.after(ms_per_loop, self._update_loop)\n\n def _update_bar(self):\n modeColor = VolBar.mode.color\n self.barWidth.setPerc(VolAs.volume)\n newWidth = self.barWidth.getNum()\n self.bar.configure(background=modeColor, width=str(newWidth))\n\n def _update_volume(self):\n try:\n self.mixer.setvolume(VolAs.volume)\n except:\n call(['amixer', 'sset', str(VolAs.device), str(VolAs.volume) +\n '%', '-q'])\n\n def _update_mute(self):\n muted = self.mixer.getmute()\n if muted[0] == True:\n self.mixer.setmute(0)\n elif muted[0] == False:\n self.mixer.setmute(1)\n else:\n raise Exception(\n \"mixer's .getmute()[0] method should return True or False!\")\n\n def _mouse_entered(self, event):\n root.wm_attributes('-alpha', default_opacity)\n\n def _mouse_left(self, event):\n root.wm_attributes('-alpha', outside_zone_opacity)\n\n def _open_message(self):\n notification.notify(title=program_title, message='{} launched!'.\n format(program_title), app_name=program_title, app_icon=\n program_icon, timeout=5)\n\n def _exit_app(self, event):\n notification.notify(title=program_title, message=\n '{} now closing...'.format(program_title), app_name=\n program_title, app_icon=program_icon, timeout=10)\n exit()\n\n\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<class token>\n\n\nclass MuteMode:\n\n def __init__(self):\n pass\n\n def enter(self):\n VolBar.mode = VolBar.modes['muted']\n VolAs.mixer.setmute(1)\n\n def vacate(self):\n VolBar.mode = VolBar.modes['unknown']\n\n\nclass BrightnessMode:\n\n def __init__(self):\n pass\n\n def enter(self):\n VolBar.mode = VolBar.modes['brightness']\n\n def vacate(self):\n VolBar.mode = VolBar.modes['unknown']\n if VolAs.ismuted() == True:\n return MuteMode\n elif VolAs.ismuted() == False:\n return VolumeMode\n else:\n raise TypeError('_ismuted should be a bool value')\n\n\nclass StateManager:\n\n def __init__(self, initial_state):\n self.state = initial_state\n\n def change_state(self, new_state):\n self.state().vacate()\n new_state().enter()\n self.state = new_state\n\n\n<assignment token>\n\n\nclass Window(Tk.Frame):\n\n def __init__(self, master=None):\n Tk.Frame.__init__(self, master)\n self.master = master\n self._init_objects()\n self._init_window()\n self._open_message()\n\n def _init_objects(self):\n self.displaySize = VolAs._get_display_size(root)\n self.barWidth = LivePercentage(0, self.displaySize['x'])\n\n def _init_window(self):\n m = self.master\n m.title('Please submit an issue to Github if you see this!')\n self.barHeight = bar_height\n barContainer = Tk.Frame(m)\n barContainer.configure(background='BLACK')\n barContainer.pack(fill=Tk.BOTH, expand=1)\n self.bar = Tk.Frame(barContainer)\n self._update_bar()\n\n def _adjust_bar(event, movement):\n if type(movement) == int:\n notchMultiplier = 5\n newVol = VolAs.volume + movement * notchMultiplier\n VolAs.volume = clamp(newVol, 0, 100)\n else:\n raise TypeError(\n 'Value should be an integer! Not sure what happened!')\n self._update_bar()\n self._update_volume()\n\n def _scroll_up(event):\n if sm.state == VolumeMode:\n _adjust_bar(event, +1)\n elif sm.state == BrightnessMode:\n _brightness_up()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _scroll_down(event):\n if sm.state == VolumeMode:\n _adjust_bar(event, -1)\n elif sm.state == BrightnessMode:\n _brightness_down()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _middle_click(event):\n if sm.state == VolumeMode:\n sm.change_state(MuteMode)\n self._update_bar()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _key_pressed(event):\n print('key pressed', event.key)\n\n def _key_released(event):\n print('key released', event.key)\n\n def _brightness_up():\n print('WIP:' + 'UP')\n\n def _brightness_down():\n print('WIP:' + 'DOWN')\n\n def _right_click(event):\n if sm.state == BrightnessMode:\n sm.change_state(sm.state().vacate())\n else:\n sm.change_state(BrightnessMode)\n self._update_bar()\n\n def _brightness_mode_off():\n sm.state_change(sm.state.vacate())\n self.barMode = self.barModes['default']\n self._update_bar()\n print('brightness mode off!')\n self.bar.pack(fill=Tk.Y, ipadx=5, ipady=5, side=Tk.LEFT)\n m.bind('<MouseWheel>', _adjust_bar)\n m.bind('<Button-2>', _middle_click)\n m.bind('<Button-4>', _scroll_up)\n m.bind('<Button-5>', _scroll_down)\n m.bind('<Button-3>', _right_click)\n m.bind('<Control-Button-4>', _brightness_up)\n m.bind('<Control-Button-5>', _brightness_down)\n m.bind('<Double-Button-3>', self._exit_app)\n barContainer.bind('<Enter>', self._mouse_entered)\n barContainer.bind('<Leave>', self._mouse_left)\n\n def _update_loop(self, ms_per_loop=1000):\n root.lift()\n self._update_bar()\n self.after(ms_per_loop, self._update_loop)\n\n def _update_bar(self):\n modeColor = VolBar.mode.color\n self.barWidth.setPerc(VolAs.volume)\n newWidth = self.barWidth.getNum()\n self.bar.configure(background=modeColor, width=str(newWidth))\n\n def _update_volume(self):\n try:\n self.mixer.setvolume(VolAs.volume)\n except:\n call(['amixer', 'sset', str(VolAs.device), str(VolAs.volume) +\n '%', '-q'])\n\n def _update_mute(self):\n muted = self.mixer.getmute()\n if muted[0] == True:\n self.mixer.setmute(0)\n elif muted[0] == False:\n self.mixer.setmute(1)\n else:\n raise Exception(\n \"mixer's .getmute()[0] method should return True or False!\")\n\n def _mouse_entered(self, event):\n root.wm_attributes('-alpha', default_opacity)\n\n def _mouse_left(self, event):\n root.wm_attributes('-alpha', outside_zone_opacity)\n\n def _open_message(self):\n notification.notify(title=program_title, message='{} launched!'.\n format(program_title), app_name=program_title, app_icon=\n program_icon, timeout=5)\n\n def _exit_app(self, event):\n notification.notify(title=program_title, message=\n '{} now closing...'.format(program_title), app_name=\n program_title, app_icon=program_icon, timeout=10)\n exit()\n\n\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<class token>\n\n\nclass MuteMode:\n <function token>\n\n def enter(self):\n VolBar.mode = VolBar.modes['muted']\n VolAs.mixer.setmute(1)\n\n def vacate(self):\n VolBar.mode = VolBar.modes['unknown']\n\n\nclass BrightnessMode:\n\n def __init__(self):\n pass\n\n def enter(self):\n VolBar.mode = VolBar.modes['brightness']\n\n def vacate(self):\n VolBar.mode = VolBar.modes['unknown']\n if VolAs.ismuted() == True:\n return MuteMode\n elif VolAs.ismuted() == False:\n return VolumeMode\n else:\n raise TypeError('_ismuted should be a bool value')\n\n\nclass StateManager:\n\n def __init__(self, initial_state):\n self.state = initial_state\n\n def change_state(self, new_state):\n self.state().vacate()\n new_state().enter()\n self.state = new_state\n\n\n<assignment token>\n\n\nclass Window(Tk.Frame):\n\n def __init__(self, master=None):\n Tk.Frame.__init__(self, master)\n self.master = master\n self._init_objects()\n self._init_window()\n self._open_message()\n\n def _init_objects(self):\n self.displaySize = VolAs._get_display_size(root)\n self.barWidth = LivePercentage(0, self.displaySize['x'])\n\n def _init_window(self):\n m = self.master\n m.title('Please submit an issue to Github if you see this!')\n self.barHeight = bar_height\n barContainer = Tk.Frame(m)\n barContainer.configure(background='BLACK')\n barContainer.pack(fill=Tk.BOTH, expand=1)\n self.bar = Tk.Frame(barContainer)\n self._update_bar()\n\n def _adjust_bar(event, movement):\n if type(movement) == int:\n notchMultiplier = 5\n newVol = VolAs.volume + movement * notchMultiplier\n VolAs.volume = clamp(newVol, 0, 100)\n else:\n raise TypeError(\n 'Value should be an integer! Not sure what happened!')\n self._update_bar()\n self._update_volume()\n\n def _scroll_up(event):\n if sm.state == VolumeMode:\n _adjust_bar(event, +1)\n elif sm.state == BrightnessMode:\n _brightness_up()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _scroll_down(event):\n if sm.state == VolumeMode:\n _adjust_bar(event, -1)\n elif sm.state == BrightnessMode:\n _brightness_down()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _middle_click(event):\n if sm.state == VolumeMode:\n sm.change_state(MuteMode)\n self._update_bar()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _key_pressed(event):\n print('key pressed', event.key)\n\n def _key_released(event):\n print('key released', event.key)\n\n def _brightness_up():\n print('WIP:' + 'UP')\n\n def _brightness_down():\n print('WIP:' + 'DOWN')\n\n def _right_click(event):\n if sm.state == BrightnessMode:\n sm.change_state(sm.state().vacate())\n else:\n sm.change_state(BrightnessMode)\n self._update_bar()\n\n def _brightness_mode_off():\n sm.state_change(sm.state.vacate())\n self.barMode = self.barModes['default']\n self._update_bar()\n print('brightness mode off!')\n self.bar.pack(fill=Tk.Y, ipadx=5, ipady=5, side=Tk.LEFT)\n m.bind('<MouseWheel>', _adjust_bar)\n m.bind('<Button-2>', _middle_click)\n m.bind('<Button-4>', _scroll_up)\n m.bind('<Button-5>', _scroll_down)\n m.bind('<Button-3>', _right_click)\n m.bind('<Control-Button-4>', _brightness_up)\n m.bind('<Control-Button-5>', _brightness_down)\n m.bind('<Double-Button-3>', self._exit_app)\n barContainer.bind('<Enter>', self._mouse_entered)\n barContainer.bind('<Leave>', self._mouse_left)\n\n def _update_loop(self, ms_per_loop=1000):\n root.lift()\n self._update_bar()\n self.after(ms_per_loop, self._update_loop)\n\n def _update_bar(self):\n modeColor = VolBar.mode.color\n self.barWidth.setPerc(VolAs.volume)\n newWidth = self.barWidth.getNum()\n self.bar.configure(background=modeColor, width=str(newWidth))\n\n def _update_volume(self):\n try:\n self.mixer.setvolume(VolAs.volume)\n except:\n call(['amixer', 'sset', str(VolAs.device), str(VolAs.volume) +\n '%', '-q'])\n\n def _update_mute(self):\n muted = self.mixer.getmute()\n if muted[0] == True:\n self.mixer.setmute(0)\n elif muted[0] == False:\n self.mixer.setmute(1)\n else:\n raise Exception(\n \"mixer's .getmute()[0] method should return True or False!\")\n\n def _mouse_entered(self, event):\n root.wm_attributes('-alpha', default_opacity)\n\n def _mouse_left(self, event):\n root.wm_attributes('-alpha', outside_zone_opacity)\n\n def _open_message(self):\n notification.notify(title=program_title, message='{} launched!'.\n format(program_title), app_name=program_title, app_icon=\n program_icon, timeout=5)\n\n def _exit_app(self, event):\n notification.notify(title=program_title, message=\n '{} now closing...'.format(program_title), app_name=\n program_title, app_icon=program_icon, timeout=10)\n exit()\n\n\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<class token>\n\n\nclass MuteMode:\n <function token>\n <function token>\n\n def vacate(self):\n VolBar.mode = VolBar.modes['unknown']\n\n\nclass BrightnessMode:\n\n def __init__(self):\n pass\n\n def enter(self):\n VolBar.mode = VolBar.modes['brightness']\n\n def vacate(self):\n VolBar.mode = VolBar.modes['unknown']\n if VolAs.ismuted() == True:\n return MuteMode\n elif VolAs.ismuted() == False:\n return VolumeMode\n else:\n raise TypeError('_ismuted should be a bool value')\n\n\nclass StateManager:\n\n def __init__(self, initial_state):\n self.state = initial_state\n\n def change_state(self, new_state):\n self.state().vacate()\n new_state().enter()\n self.state = new_state\n\n\n<assignment token>\n\n\nclass Window(Tk.Frame):\n\n def __init__(self, master=None):\n Tk.Frame.__init__(self, master)\n self.master = master\n self._init_objects()\n self._init_window()\n self._open_message()\n\n def _init_objects(self):\n self.displaySize = VolAs._get_display_size(root)\n self.barWidth = LivePercentage(0, self.displaySize['x'])\n\n def _init_window(self):\n m = self.master\n m.title('Please submit an issue to Github if you see this!')\n self.barHeight = bar_height\n barContainer = Tk.Frame(m)\n barContainer.configure(background='BLACK')\n barContainer.pack(fill=Tk.BOTH, expand=1)\n self.bar = Tk.Frame(barContainer)\n self._update_bar()\n\n def _adjust_bar(event, movement):\n if type(movement) == int:\n notchMultiplier = 5\n newVol = VolAs.volume + movement * notchMultiplier\n VolAs.volume = clamp(newVol, 0, 100)\n else:\n raise TypeError(\n 'Value should be an integer! Not sure what happened!')\n self._update_bar()\n self._update_volume()\n\n def _scroll_up(event):\n if sm.state == VolumeMode:\n _adjust_bar(event, +1)\n elif sm.state == BrightnessMode:\n _brightness_up()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _scroll_down(event):\n if sm.state == VolumeMode:\n _adjust_bar(event, -1)\n elif sm.state == BrightnessMode:\n _brightness_down()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _middle_click(event):\n if sm.state == VolumeMode:\n sm.change_state(MuteMode)\n self._update_bar()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _key_pressed(event):\n print('key pressed', event.key)\n\n def _key_released(event):\n print('key released', event.key)\n\n def _brightness_up():\n print('WIP:' + 'UP')\n\n def _brightness_down():\n print('WIP:' + 'DOWN')\n\n def _right_click(event):\n if sm.state == BrightnessMode:\n sm.change_state(sm.state().vacate())\n else:\n sm.change_state(BrightnessMode)\n self._update_bar()\n\n def _brightness_mode_off():\n sm.state_change(sm.state.vacate())\n self.barMode = self.barModes['default']\n self._update_bar()\n print('brightness mode off!')\n self.bar.pack(fill=Tk.Y, ipadx=5, ipady=5, side=Tk.LEFT)\n m.bind('<MouseWheel>', _adjust_bar)\n m.bind('<Button-2>', _middle_click)\n m.bind('<Button-4>', _scroll_up)\n m.bind('<Button-5>', _scroll_down)\n m.bind('<Button-3>', _right_click)\n m.bind('<Control-Button-4>', _brightness_up)\n m.bind('<Control-Button-5>', _brightness_down)\n m.bind('<Double-Button-3>', self._exit_app)\n barContainer.bind('<Enter>', self._mouse_entered)\n barContainer.bind('<Leave>', self._mouse_left)\n\n def _update_loop(self, ms_per_loop=1000):\n root.lift()\n self._update_bar()\n self.after(ms_per_loop, self._update_loop)\n\n def _update_bar(self):\n modeColor = VolBar.mode.color\n self.barWidth.setPerc(VolAs.volume)\n newWidth = self.barWidth.getNum()\n self.bar.configure(background=modeColor, width=str(newWidth))\n\n def _update_volume(self):\n try:\n self.mixer.setvolume(VolAs.volume)\n except:\n call(['amixer', 'sset', str(VolAs.device), str(VolAs.volume) +\n '%', '-q'])\n\n def _update_mute(self):\n muted = self.mixer.getmute()\n if muted[0] == True:\n self.mixer.setmute(0)\n elif muted[0] == False:\n self.mixer.setmute(1)\n else:\n raise Exception(\n \"mixer's .getmute()[0] method should return True or False!\")\n\n def _mouse_entered(self, event):\n root.wm_attributes('-alpha', default_opacity)\n\n def _mouse_left(self, event):\n root.wm_attributes('-alpha', outside_zone_opacity)\n\n def _open_message(self):\n notification.notify(title=program_title, message='{} launched!'.\n format(program_title), app_name=program_title, app_icon=\n program_icon, timeout=5)\n\n def _exit_app(self, event):\n notification.notify(title=program_title, message=\n '{} now closing...'.format(program_title), app_name=\n program_title, app_icon=program_icon, timeout=10)\n exit()\n\n\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<class token>\n\n\nclass MuteMode:\n <function token>\n <function token>\n <function token>\n\n\nclass BrightnessMode:\n\n def __init__(self):\n pass\n\n def enter(self):\n VolBar.mode = VolBar.modes['brightness']\n\n def vacate(self):\n VolBar.mode = VolBar.modes['unknown']\n if VolAs.ismuted() == True:\n return MuteMode\n elif VolAs.ismuted() == False:\n return VolumeMode\n else:\n raise TypeError('_ismuted should be a bool value')\n\n\nclass StateManager:\n\n def __init__(self, initial_state):\n self.state = initial_state\n\n def change_state(self, new_state):\n self.state().vacate()\n new_state().enter()\n self.state = new_state\n\n\n<assignment token>\n\n\nclass Window(Tk.Frame):\n\n def __init__(self, master=None):\n Tk.Frame.__init__(self, master)\n self.master = master\n self._init_objects()\n self._init_window()\n self._open_message()\n\n def _init_objects(self):\n self.displaySize = VolAs._get_display_size(root)\n self.barWidth = LivePercentage(0, self.displaySize['x'])\n\n def _init_window(self):\n m = self.master\n m.title('Please submit an issue to Github if you see this!')\n self.barHeight = bar_height\n barContainer = Tk.Frame(m)\n barContainer.configure(background='BLACK')\n barContainer.pack(fill=Tk.BOTH, expand=1)\n self.bar = Tk.Frame(barContainer)\n self._update_bar()\n\n def _adjust_bar(event, movement):\n if type(movement) == int:\n notchMultiplier = 5\n newVol = VolAs.volume + movement * notchMultiplier\n VolAs.volume = clamp(newVol, 0, 100)\n else:\n raise TypeError(\n 'Value should be an integer! Not sure what happened!')\n self._update_bar()\n self._update_volume()\n\n def _scroll_up(event):\n if sm.state == VolumeMode:\n _adjust_bar(event, +1)\n elif sm.state == BrightnessMode:\n _brightness_up()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _scroll_down(event):\n if sm.state == VolumeMode:\n _adjust_bar(event, -1)\n elif sm.state == BrightnessMode:\n _brightness_down()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _middle_click(event):\n if sm.state == VolumeMode:\n sm.change_state(MuteMode)\n self._update_bar()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _key_pressed(event):\n print('key pressed', event.key)\n\n def _key_released(event):\n print('key released', event.key)\n\n def _brightness_up():\n print('WIP:' + 'UP')\n\n def _brightness_down():\n print('WIP:' + 'DOWN')\n\n def _right_click(event):\n if sm.state == BrightnessMode:\n sm.change_state(sm.state().vacate())\n else:\n sm.change_state(BrightnessMode)\n self._update_bar()\n\n def _brightness_mode_off():\n sm.state_change(sm.state.vacate())\n self.barMode = self.barModes['default']\n self._update_bar()\n print('brightness mode off!')\n self.bar.pack(fill=Tk.Y, ipadx=5, ipady=5, side=Tk.LEFT)\n m.bind('<MouseWheel>', _adjust_bar)\n m.bind('<Button-2>', _middle_click)\n m.bind('<Button-4>', _scroll_up)\n m.bind('<Button-5>', _scroll_down)\n m.bind('<Button-3>', _right_click)\n m.bind('<Control-Button-4>', _brightness_up)\n m.bind('<Control-Button-5>', _brightness_down)\n m.bind('<Double-Button-3>', self._exit_app)\n barContainer.bind('<Enter>', self._mouse_entered)\n barContainer.bind('<Leave>', self._mouse_left)\n\n def _update_loop(self, ms_per_loop=1000):\n root.lift()\n self._update_bar()\n self.after(ms_per_loop, self._update_loop)\n\n def _update_bar(self):\n modeColor = VolBar.mode.color\n self.barWidth.setPerc(VolAs.volume)\n newWidth = self.barWidth.getNum()\n self.bar.configure(background=modeColor, width=str(newWidth))\n\n def _update_volume(self):\n try:\n self.mixer.setvolume(VolAs.volume)\n except:\n call(['amixer', 'sset', str(VolAs.device), str(VolAs.volume) +\n '%', '-q'])\n\n def _update_mute(self):\n muted = self.mixer.getmute()\n if muted[0] == True:\n self.mixer.setmute(0)\n elif muted[0] == False:\n self.mixer.setmute(1)\n else:\n raise Exception(\n \"mixer's .getmute()[0] method should return True or False!\")\n\n def _mouse_entered(self, event):\n root.wm_attributes('-alpha', default_opacity)\n\n def _mouse_left(self, event):\n root.wm_attributes('-alpha', outside_zone_opacity)\n\n def _open_message(self):\n notification.notify(title=program_title, message='{} launched!'.\n format(program_title), app_name=program_title, app_icon=\n program_icon, timeout=5)\n\n def _exit_app(self, event):\n notification.notify(title=program_title, message=\n '{} now closing...'.format(program_title), app_name=\n program_title, app_icon=program_icon, timeout=10)\n exit()\n\n\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass BrightnessMode:\n\n def __init__(self):\n pass\n\n def enter(self):\n VolBar.mode = VolBar.modes['brightness']\n\n def vacate(self):\n VolBar.mode = VolBar.modes['unknown']\n if VolAs.ismuted() == True:\n return MuteMode\n elif VolAs.ismuted() == False:\n return VolumeMode\n else:\n raise TypeError('_ismuted should be a bool value')\n\n\nclass StateManager:\n\n def __init__(self, initial_state):\n self.state = initial_state\n\n def change_state(self, new_state):\n self.state().vacate()\n new_state().enter()\n self.state = new_state\n\n\n<assignment token>\n\n\nclass Window(Tk.Frame):\n\n def __init__(self, master=None):\n Tk.Frame.__init__(self, master)\n self.master = master\n self._init_objects()\n self._init_window()\n self._open_message()\n\n def _init_objects(self):\n self.displaySize = VolAs._get_display_size(root)\n self.barWidth = LivePercentage(0, self.displaySize['x'])\n\n def _init_window(self):\n m = self.master\n m.title('Please submit an issue to Github if you see this!')\n self.barHeight = bar_height\n barContainer = Tk.Frame(m)\n barContainer.configure(background='BLACK')\n barContainer.pack(fill=Tk.BOTH, expand=1)\n self.bar = Tk.Frame(barContainer)\n self._update_bar()\n\n def _adjust_bar(event, movement):\n if type(movement) == int:\n notchMultiplier = 5\n newVol = VolAs.volume + movement * notchMultiplier\n VolAs.volume = clamp(newVol, 0, 100)\n else:\n raise TypeError(\n 'Value should be an integer! Not sure what happened!')\n self._update_bar()\n self._update_volume()\n\n def _scroll_up(event):\n if sm.state == VolumeMode:\n _adjust_bar(event, +1)\n elif sm.state == BrightnessMode:\n _brightness_up()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _scroll_down(event):\n if sm.state == VolumeMode:\n _adjust_bar(event, -1)\n elif sm.state == BrightnessMode:\n _brightness_down()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _middle_click(event):\n if sm.state == VolumeMode:\n sm.change_state(MuteMode)\n self._update_bar()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _key_pressed(event):\n print('key pressed', event.key)\n\n def _key_released(event):\n print('key released', event.key)\n\n def _brightness_up():\n print('WIP:' + 'UP')\n\n def _brightness_down():\n print('WIP:' + 'DOWN')\n\n def _right_click(event):\n if sm.state == BrightnessMode:\n sm.change_state(sm.state().vacate())\n else:\n sm.change_state(BrightnessMode)\n self._update_bar()\n\n def _brightness_mode_off():\n sm.state_change(sm.state.vacate())\n self.barMode = self.barModes['default']\n self._update_bar()\n print('brightness mode off!')\n self.bar.pack(fill=Tk.Y, ipadx=5, ipady=5, side=Tk.LEFT)\n m.bind('<MouseWheel>', _adjust_bar)\n m.bind('<Button-2>', _middle_click)\n m.bind('<Button-4>', _scroll_up)\n m.bind('<Button-5>', _scroll_down)\n m.bind('<Button-3>', _right_click)\n m.bind('<Control-Button-4>', _brightness_up)\n m.bind('<Control-Button-5>', _brightness_down)\n m.bind('<Double-Button-3>', self._exit_app)\n barContainer.bind('<Enter>', self._mouse_entered)\n barContainer.bind('<Leave>', self._mouse_left)\n\n def _update_loop(self, ms_per_loop=1000):\n root.lift()\n self._update_bar()\n self.after(ms_per_loop, self._update_loop)\n\n def _update_bar(self):\n modeColor = VolBar.mode.color\n self.barWidth.setPerc(VolAs.volume)\n newWidth = self.barWidth.getNum()\n self.bar.configure(background=modeColor, width=str(newWidth))\n\n def _update_volume(self):\n try:\n self.mixer.setvolume(VolAs.volume)\n except:\n call(['amixer', 'sset', str(VolAs.device), str(VolAs.volume) +\n '%', '-q'])\n\n def _update_mute(self):\n muted = self.mixer.getmute()\n if muted[0] == True:\n self.mixer.setmute(0)\n elif muted[0] == False:\n self.mixer.setmute(1)\n else:\n raise Exception(\n \"mixer's .getmute()[0] method should return True or False!\")\n\n def _mouse_entered(self, event):\n root.wm_attributes('-alpha', default_opacity)\n\n def _mouse_left(self, event):\n root.wm_attributes('-alpha', outside_zone_opacity)\n\n def _open_message(self):\n notification.notify(title=program_title, message='{} launched!'.\n format(program_title), app_name=program_title, app_icon=\n program_icon, timeout=5)\n\n def _exit_app(self, event):\n notification.notify(title=program_title, message=\n '{} now closing...'.format(program_title), app_name=\n program_title, app_icon=program_icon, timeout=10)\n exit()\n\n\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass BrightnessMode:\n\n def __init__(self):\n pass\n <function token>\n\n def vacate(self):\n VolBar.mode = VolBar.modes['unknown']\n if VolAs.ismuted() == True:\n return MuteMode\n elif VolAs.ismuted() == False:\n return VolumeMode\n else:\n raise TypeError('_ismuted should be a bool value')\n\n\nclass StateManager:\n\n def __init__(self, initial_state):\n self.state = initial_state\n\n def change_state(self, new_state):\n self.state().vacate()\n new_state().enter()\n self.state = new_state\n\n\n<assignment token>\n\n\nclass Window(Tk.Frame):\n\n def __init__(self, master=None):\n Tk.Frame.__init__(self, master)\n self.master = master\n self._init_objects()\n self._init_window()\n self._open_message()\n\n def _init_objects(self):\n self.displaySize = VolAs._get_display_size(root)\n self.barWidth = LivePercentage(0, self.displaySize['x'])\n\n def _init_window(self):\n m = self.master\n m.title('Please submit an issue to Github if you see this!')\n self.barHeight = bar_height\n barContainer = Tk.Frame(m)\n barContainer.configure(background='BLACK')\n barContainer.pack(fill=Tk.BOTH, expand=1)\n self.bar = Tk.Frame(barContainer)\n self._update_bar()\n\n def _adjust_bar(event, movement):\n if type(movement) == int:\n notchMultiplier = 5\n newVol = VolAs.volume + movement * notchMultiplier\n VolAs.volume = clamp(newVol, 0, 100)\n else:\n raise TypeError(\n 'Value should be an integer! Not sure what happened!')\n self._update_bar()\n self._update_volume()\n\n def _scroll_up(event):\n if sm.state == VolumeMode:\n _adjust_bar(event, +1)\n elif sm.state == BrightnessMode:\n _brightness_up()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _scroll_down(event):\n if sm.state == VolumeMode:\n _adjust_bar(event, -1)\n elif sm.state == BrightnessMode:\n _brightness_down()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _middle_click(event):\n if sm.state == VolumeMode:\n sm.change_state(MuteMode)\n self._update_bar()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _key_pressed(event):\n print('key pressed', event.key)\n\n def _key_released(event):\n print('key released', event.key)\n\n def _brightness_up():\n print('WIP:' + 'UP')\n\n def _brightness_down():\n print('WIP:' + 'DOWN')\n\n def _right_click(event):\n if sm.state == BrightnessMode:\n sm.change_state(sm.state().vacate())\n else:\n sm.change_state(BrightnessMode)\n self._update_bar()\n\n def _brightness_mode_off():\n sm.state_change(sm.state.vacate())\n self.barMode = self.barModes['default']\n self._update_bar()\n print('brightness mode off!')\n self.bar.pack(fill=Tk.Y, ipadx=5, ipady=5, side=Tk.LEFT)\n m.bind('<MouseWheel>', _adjust_bar)\n m.bind('<Button-2>', _middle_click)\n m.bind('<Button-4>', _scroll_up)\n m.bind('<Button-5>', _scroll_down)\n m.bind('<Button-3>', _right_click)\n m.bind('<Control-Button-4>', _brightness_up)\n m.bind('<Control-Button-5>', _brightness_down)\n m.bind('<Double-Button-3>', self._exit_app)\n barContainer.bind('<Enter>', self._mouse_entered)\n barContainer.bind('<Leave>', self._mouse_left)\n\n def _update_loop(self, ms_per_loop=1000):\n root.lift()\n self._update_bar()\n self.after(ms_per_loop, self._update_loop)\n\n def _update_bar(self):\n modeColor = VolBar.mode.color\n self.barWidth.setPerc(VolAs.volume)\n newWidth = self.barWidth.getNum()\n self.bar.configure(background=modeColor, width=str(newWidth))\n\n def _update_volume(self):\n try:\n self.mixer.setvolume(VolAs.volume)\n except:\n call(['amixer', 'sset', str(VolAs.device), str(VolAs.volume) +\n '%', '-q'])\n\n def _update_mute(self):\n muted = self.mixer.getmute()\n if muted[0] == True:\n self.mixer.setmute(0)\n elif muted[0] == False:\n self.mixer.setmute(1)\n else:\n raise Exception(\n \"mixer's .getmute()[0] method should return True or False!\")\n\n def _mouse_entered(self, event):\n root.wm_attributes('-alpha', default_opacity)\n\n def _mouse_left(self, event):\n root.wm_attributes('-alpha', outside_zone_opacity)\n\n def _open_message(self):\n notification.notify(title=program_title, message='{} launched!'.\n format(program_title), app_name=program_title, app_icon=\n program_icon, timeout=5)\n\n def _exit_app(self, event):\n notification.notify(title=program_title, message=\n '{} now closing...'.format(program_title), app_name=\n program_title, app_icon=program_icon, timeout=10)\n exit()\n\n\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass BrightnessMode:\n <function token>\n <function token>\n\n def vacate(self):\n VolBar.mode = VolBar.modes['unknown']\n if VolAs.ismuted() == True:\n return MuteMode\n elif VolAs.ismuted() == False:\n return VolumeMode\n else:\n raise TypeError('_ismuted should be a bool value')\n\n\nclass StateManager:\n\n def __init__(self, initial_state):\n self.state = initial_state\n\n def change_state(self, new_state):\n self.state().vacate()\n new_state().enter()\n self.state = new_state\n\n\n<assignment token>\n\n\nclass Window(Tk.Frame):\n\n def __init__(self, master=None):\n Tk.Frame.__init__(self, master)\n self.master = master\n self._init_objects()\n self._init_window()\n self._open_message()\n\n def _init_objects(self):\n self.displaySize = VolAs._get_display_size(root)\n self.barWidth = LivePercentage(0, self.displaySize['x'])\n\n def _init_window(self):\n m = self.master\n m.title('Please submit an issue to Github if you see this!')\n self.barHeight = bar_height\n barContainer = Tk.Frame(m)\n barContainer.configure(background='BLACK')\n barContainer.pack(fill=Tk.BOTH, expand=1)\n self.bar = Tk.Frame(barContainer)\n self._update_bar()\n\n def _adjust_bar(event, movement):\n if type(movement) == int:\n notchMultiplier = 5\n newVol = VolAs.volume + movement * notchMultiplier\n VolAs.volume = clamp(newVol, 0, 100)\n else:\n raise TypeError(\n 'Value should be an integer! Not sure what happened!')\n self._update_bar()\n self._update_volume()\n\n def _scroll_up(event):\n if sm.state == VolumeMode:\n _adjust_bar(event, +1)\n elif sm.state == BrightnessMode:\n _brightness_up()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _scroll_down(event):\n if sm.state == VolumeMode:\n _adjust_bar(event, -1)\n elif sm.state == BrightnessMode:\n _brightness_down()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _middle_click(event):\n if sm.state == VolumeMode:\n sm.change_state(MuteMode)\n self._update_bar()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _key_pressed(event):\n print('key pressed', event.key)\n\n def _key_released(event):\n print('key released', event.key)\n\n def _brightness_up():\n print('WIP:' + 'UP')\n\n def _brightness_down():\n print('WIP:' + 'DOWN')\n\n def _right_click(event):\n if sm.state == BrightnessMode:\n sm.change_state(sm.state().vacate())\n else:\n sm.change_state(BrightnessMode)\n self._update_bar()\n\n def _brightness_mode_off():\n sm.state_change(sm.state.vacate())\n self.barMode = self.barModes['default']\n self._update_bar()\n print('brightness mode off!')\n self.bar.pack(fill=Tk.Y, ipadx=5, ipady=5, side=Tk.LEFT)\n m.bind('<MouseWheel>', _adjust_bar)\n m.bind('<Button-2>', _middle_click)\n m.bind('<Button-4>', _scroll_up)\n m.bind('<Button-5>', _scroll_down)\n m.bind('<Button-3>', _right_click)\n m.bind('<Control-Button-4>', _brightness_up)\n m.bind('<Control-Button-5>', _brightness_down)\n m.bind('<Double-Button-3>', self._exit_app)\n barContainer.bind('<Enter>', self._mouse_entered)\n barContainer.bind('<Leave>', self._mouse_left)\n\n def _update_loop(self, ms_per_loop=1000):\n root.lift()\n self._update_bar()\n self.after(ms_per_loop, self._update_loop)\n\n def _update_bar(self):\n modeColor = VolBar.mode.color\n self.barWidth.setPerc(VolAs.volume)\n newWidth = self.barWidth.getNum()\n self.bar.configure(background=modeColor, width=str(newWidth))\n\n def _update_volume(self):\n try:\n self.mixer.setvolume(VolAs.volume)\n except:\n call(['amixer', 'sset', str(VolAs.device), str(VolAs.volume) +\n '%', '-q'])\n\n def _update_mute(self):\n muted = self.mixer.getmute()\n if muted[0] == True:\n self.mixer.setmute(0)\n elif muted[0] == False:\n self.mixer.setmute(1)\n else:\n raise Exception(\n \"mixer's .getmute()[0] method should return True or False!\")\n\n def _mouse_entered(self, event):\n root.wm_attributes('-alpha', default_opacity)\n\n def _mouse_left(self, event):\n root.wm_attributes('-alpha', outside_zone_opacity)\n\n def _open_message(self):\n notification.notify(title=program_title, message='{} launched!'.\n format(program_title), app_name=program_title, app_icon=\n program_icon, timeout=5)\n\n def _exit_app(self, event):\n notification.notify(title=program_title, message=\n '{} now closing...'.format(program_title), app_name=\n program_title, app_icon=program_icon, timeout=10)\n exit()\n\n\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass BrightnessMode:\n <function token>\n <function token>\n <function token>\n\n\nclass StateManager:\n\n def __init__(self, initial_state):\n self.state = initial_state\n\n def change_state(self, new_state):\n self.state().vacate()\n new_state().enter()\n self.state = new_state\n\n\n<assignment token>\n\n\nclass Window(Tk.Frame):\n\n def __init__(self, master=None):\n Tk.Frame.__init__(self, master)\n self.master = master\n self._init_objects()\n self._init_window()\n self._open_message()\n\n def _init_objects(self):\n self.displaySize = VolAs._get_display_size(root)\n self.barWidth = LivePercentage(0, self.displaySize['x'])\n\n def _init_window(self):\n m = self.master\n m.title('Please submit an issue to Github if you see this!')\n self.barHeight = bar_height\n barContainer = Tk.Frame(m)\n barContainer.configure(background='BLACK')\n barContainer.pack(fill=Tk.BOTH, expand=1)\n self.bar = Tk.Frame(barContainer)\n self._update_bar()\n\n def _adjust_bar(event, movement):\n if type(movement) == int:\n notchMultiplier = 5\n newVol = VolAs.volume + movement * notchMultiplier\n VolAs.volume = clamp(newVol, 0, 100)\n else:\n raise TypeError(\n 'Value should be an integer! Not sure what happened!')\n self._update_bar()\n self._update_volume()\n\n def _scroll_up(event):\n if sm.state == VolumeMode:\n _adjust_bar(event, +1)\n elif sm.state == BrightnessMode:\n _brightness_up()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _scroll_down(event):\n if sm.state == VolumeMode:\n _adjust_bar(event, -1)\n elif sm.state == BrightnessMode:\n _brightness_down()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _middle_click(event):\n if sm.state == VolumeMode:\n sm.change_state(MuteMode)\n self._update_bar()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _key_pressed(event):\n print('key pressed', event.key)\n\n def _key_released(event):\n print('key released', event.key)\n\n def _brightness_up():\n print('WIP:' + 'UP')\n\n def _brightness_down():\n print('WIP:' + 'DOWN')\n\n def _right_click(event):\n if sm.state == BrightnessMode:\n sm.change_state(sm.state().vacate())\n else:\n sm.change_state(BrightnessMode)\n self._update_bar()\n\n def _brightness_mode_off():\n sm.state_change(sm.state.vacate())\n self.barMode = self.barModes['default']\n self._update_bar()\n print('brightness mode off!')\n self.bar.pack(fill=Tk.Y, ipadx=5, ipady=5, side=Tk.LEFT)\n m.bind('<MouseWheel>', _adjust_bar)\n m.bind('<Button-2>', _middle_click)\n m.bind('<Button-4>', _scroll_up)\n m.bind('<Button-5>', _scroll_down)\n m.bind('<Button-3>', _right_click)\n m.bind('<Control-Button-4>', _brightness_up)\n m.bind('<Control-Button-5>', _brightness_down)\n m.bind('<Double-Button-3>', self._exit_app)\n barContainer.bind('<Enter>', self._mouse_entered)\n barContainer.bind('<Leave>', self._mouse_left)\n\n def _update_loop(self, ms_per_loop=1000):\n root.lift()\n self._update_bar()\n self.after(ms_per_loop, self._update_loop)\n\n def _update_bar(self):\n modeColor = VolBar.mode.color\n self.barWidth.setPerc(VolAs.volume)\n newWidth = self.barWidth.getNum()\n self.bar.configure(background=modeColor, width=str(newWidth))\n\n def _update_volume(self):\n try:\n self.mixer.setvolume(VolAs.volume)\n except:\n call(['amixer', 'sset', str(VolAs.device), str(VolAs.volume) +\n '%', '-q'])\n\n def _update_mute(self):\n muted = self.mixer.getmute()\n if muted[0] == True:\n self.mixer.setmute(0)\n elif muted[0] == False:\n self.mixer.setmute(1)\n else:\n raise Exception(\n \"mixer's .getmute()[0] method should return True or False!\")\n\n def _mouse_entered(self, event):\n root.wm_attributes('-alpha', default_opacity)\n\n def _mouse_left(self, event):\n root.wm_attributes('-alpha', outside_zone_opacity)\n\n def _open_message(self):\n notification.notify(title=program_title, message='{} launched!'.\n format(program_title), app_name=program_title, app_icon=\n program_icon, timeout=5)\n\n def _exit_app(self, event):\n notification.notify(title=program_title, message=\n '{} now closing...'.format(program_title), app_name=\n program_title, app_icon=program_icon, timeout=10)\n exit()\n\n\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n\n\nclass StateManager:\n\n def __init__(self, initial_state):\n self.state = initial_state\n\n def change_state(self, new_state):\n self.state().vacate()\n new_state().enter()\n self.state = new_state\n\n\n<assignment token>\n\n\nclass Window(Tk.Frame):\n\n def __init__(self, master=None):\n Tk.Frame.__init__(self, master)\n self.master = master\n self._init_objects()\n self._init_window()\n self._open_message()\n\n def _init_objects(self):\n self.displaySize = VolAs._get_display_size(root)\n self.barWidth = LivePercentage(0, self.displaySize['x'])\n\n def _init_window(self):\n m = self.master\n m.title('Please submit an issue to Github if you see this!')\n self.barHeight = bar_height\n barContainer = Tk.Frame(m)\n barContainer.configure(background='BLACK')\n barContainer.pack(fill=Tk.BOTH, expand=1)\n self.bar = Tk.Frame(barContainer)\n self._update_bar()\n\n def _adjust_bar(event, movement):\n if type(movement) == int:\n notchMultiplier = 5\n newVol = VolAs.volume + movement * notchMultiplier\n VolAs.volume = clamp(newVol, 0, 100)\n else:\n raise TypeError(\n 'Value should be an integer! Not sure what happened!')\n self._update_bar()\n self._update_volume()\n\n def _scroll_up(event):\n if sm.state == VolumeMode:\n _adjust_bar(event, +1)\n elif sm.state == BrightnessMode:\n _brightness_up()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _scroll_down(event):\n if sm.state == VolumeMode:\n _adjust_bar(event, -1)\n elif sm.state == BrightnessMode:\n _brightness_down()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _middle_click(event):\n if sm.state == VolumeMode:\n sm.change_state(MuteMode)\n self._update_bar()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _key_pressed(event):\n print('key pressed', event.key)\n\n def _key_released(event):\n print('key released', event.key)\n\n def _brightness_up():\n print('WIP:' + 'UP')\n\n def _brightness_down():\n print('WIP:' + 'DOWN')\n\n def _right_click(event):\n if sm.state == BrightnessMode:\n sm.change_state(sm.state().vacate())\n else:\n sm.change_state(BrightnessMode)\n self._update_bar()\n\n def _brightness_mode_off():\n sm.state_change(sm.state.vacate())\n self.barMode = self.barModes['default']\n self._update_bar()\n print('brightness mode off!')\n self.bar.pack(fill=Tk.Y, ipadx=5, ipady=5, side=Tk.LEFT)\n m.bind('<MouseWheel>', _adjust_bar)\n m.bind('<Button-2>', _middle_click)\n m.bind('<Button-4>', _scroll_up)\n m.bind('<Button-5>', _scroll_down)\n m.bind('<Button-3>', _right_click)\n m.bind('<Control-Button-4>', _brightness_up)\n m.bind('<Control-Button-5>', _brightness_down)\n m.bind('<Double-Button-3>', self._exit_app)\n barContainer.bind('<Enter>', self._mouse_entered)\n barContainer.bind('<Leave>', self._mouse_left)\n\n def _update_loop(self, ms_per_loop=1000):\n root.lift()\n self._update_bar()\n self.after(ms_per_loop, self._update_loop)\n\n def _update_bar(self):\n modeColor = VolBar.mode.color\n self.barWidth.setPerc(VolAs.volume)\n newWidth = self.barWidth.getNum()\n self.bar.configure(background=modeColor, width=str(newWidth))\n\n def _update_volume(self):\n try:\n self.mixer.setvolume(VolAs.volume)\n except:\n call(['amixer', 'sset', str(VolAs.device), str(VolAs.volume) +\n '%', '-q'])\n\n def _update_mute(self):\n muted = self.mixer.getmute()\n if muted[0] == True:\n self.mixer.setmute(0)\n elif muted[0] == False:\n self.mixer.setmute(1)\n else:\n raise Exception(\n \"mixer's .getmute()[0] method should return True or False!\")\n\n def _mouse_entered(self, event):\n root.wm_attributes('-alpha', default_opacity)\n\n def _mouse_left(self, event):\n root.wm_attributes('-alpha', outside_zone_opacity)\n\n def _open_message(self):\n notification.notify(title=program_title, message='{} launched!'.\n format(program_title), app_name=program_title, app_icon=\n program_icon, timeout=5)\n\n def _exit_app(self, event):\n notification.notify(title=program_title, message=\n '{} now closing...'.format(program_title), app_name=\n program_title, app_icon=program_icon, timeout=10)\n exit()\n\n\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n\n\nclass StateManager:\n <function token>\n\n def change_state(self, new_state):\n self.state().vacate()\n new_state().enter()\n self.state = new_state\n\n\n<assignment token>\n\n\nclass Window(Tk.Frame):\n\n def __init__(self, master=None):\n Tk.Frame.__init__(self, master)\n self.master = master\n self._init_objects()\n self._init_window()\n self._open_message()\n\n def _init_objects(self):\n self.displaySize = VolAs._get_display_size(root)\n self.barWidth = LivePercentage(0, self.displaySize['x'])\n\n def _init_window(self):\n m = self.master\n m.title('Please submit an issue to Github if you see this!')\n self.barHeight = bar_height\n barContainer = Tk.Frame(m)\n barContainer.configure(background='BLACK')\n barContainer.pack(fill=Tk.BOTH, expand=1)\n self.bar = Tk.Frame(barContainer)\n self._update_bar()\n\n def _adjust_bar(event, movement):\n if type(movement) == int:\n notchMultiplier = 5\n newVol = VolAs.volume + movement * notchMultiplier\n VolAs.volume = clamp(newVol, 0, 100)\n else:\n raise TypeError(\n 'Value should be an integer! Not sure what happened!')\n self._update_bar()\n self._update_volume()\n\n def _scroll_up(event):\n if sm.state == VolumeMode:\n _adjust_bar(event, +1)\n elif sm.state == BrightnessMode:\n _brightness_up()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _scroll_down(event):\n if sm.state == VolumeMode:\n _adjust_bar(event, -1)\n elif sm.state == BrightnessMode:\n _brightness_down()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _middle_click(event):\n if sm.state == VolumeMode:\n sm.change_state(MuteMode)\n self._update_bar()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _key_pressed(event):\n print('key pressed', event.key)\n\n def _key_released(event):\n print('key released', event.key)\n\n def _brightness_up():\n print('WIP:' + 'UP')\n\n def _brightness_down():\n print('WIP:' + 'DOWN')\n\n def _right_click(event):\n if sm.state == BrightnessMode:\n sm.change_state(sm.state().vacate())\n else:\n sm.change_state(BrightnessMode)\n self._update_bar()\n\n def _brightness_mode_off():\n sm.state_change(sm.state.vacate())\n self.barMode = self.barModes['default']\n self._update_bar()\n print('brightness mode off!')\n self.bar.pack(fill=Tk.Y, ipadx=5, ipady=5, side=Tk.LEFT)\n m.bind('<MouseWheel>', _adjust_bar)\n m.bind('<Button-2>', _middle_click)\n m.bind('<Button-4>', _scroll_up)\n m.bind('<Button-5>', _scroll_down)\n m.bind('<Button-3>', _right_click)\n m.bind('<Control-Button-4>', _brightness_up)\n m.bind('<Control-Button-5>', _brightness_down)\n m.bind('<Double-Button-3>', self._exit_app)\n barContainer.bind('<Enter>', self._mouse_entered)\n barContainer.bind('<Leave>', self._mouse_left)\n\n def _update_loop(self, ms_per_loop=1000):\n root.lift()\n self._update_bar()\n self.after(ms_per_loop, self._update_loop)\n\n def _update_bar(self):\n modeColor = VolBar.mode.color\n self.barWidth.setPerc(VolAs.volume)\n newWidth = self.barWidth.getNum()\n self.bar.configure(background=modeColor, width=str(newWidth))\n\n def _update_volume(self):\n try:\n self.mixer.setvolume(VolAs.volume)\n except:\n call(['amixer', 'sset', str(VolAs.device), str(VolAs.volume) +\n '%', '-q'])\n\n def _update_mute(self):\n muted = self.mixer.getmute()\n if muted[0] == True:\n self.mixer.setmute(0)\n elif muted[0] == False:\n self.mixer.setmute(1)\n else:\n raise Exception(\n \"mixer's .getmute()[0] method should return True or False!\")\n\n def _mouse_entered(self, event):\n root.wm_attributes('-alpha', default_opacity)\n\n def _mouse_left(self, event):\n root.wm_attributes('-alpha', outside_zone_opacity)\n\n def _open_message(self):\n notification.notify(title=program_title, message='{} launched!'.\n format(program_title), app_name=program_title, app_icon=\n program_icon, timeout=5)\n\n def _exit_app(self, event):\n notification.notify(title=program_title, message=\n '{} now closing...'.format(program_title), app_name=\n program_title, app_icon=program_icon, timeout=10)\n exit()\n\n\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n\n\nclass StateManager:\n <function token>\n <function token>\n\n\n<assignment token>\n\n\nclass Window(Tk.Frame):\n\n def __init__(self, master=None):\n Tk.Frame.__init__(self, master)\n self.master = master\n self._init_objects()\n self._init_window()\n self._open_message()\n\n def _init_objects(self):\n self.displaySize = VolAs._get_display_size(root)\n self.barWidth = LivePercentage(0, self.displaySize['x'])\n\n def _init_window(self):\n m = self.master\n m.title('Please submit an issue to Github if you see this!')\n self.barHeight = bar_height\n barContainer = Tk.Frame(m)\n barContainer.configure(background='BLACK')\n barContainer.pack(fill=Tk.BOTH, expand=1)\n self.bar = Tk.Frame(barContainer)\n self._update_bar()\n\n def _adjust_bar(event, movement):\n if type(movement) == int:\n notchMultiplier = 5\n newVol = VolAs.volume + movement * notchMultiplier\n VolAs.volume = clamp(newVol, 0, 100)\n else:\n raise TypeError(\n 'Value should be an integer! Not sure what happened!')\n self._update_bar()\n self._update_volume()\n\n def _scroll_up(event):\n if sm.state == VolumeMode:\n _adjust_bar(event, +1)\n elif sm.state == BrightnessMode:\n _brightness_up()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _scroll_down(event):\n if sm.state == VolumeMode:\n _adjust_bar(event, -1)\n elif sm.state == BrightnessMode:\n _brightness_down()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _middle_click(event):\n if sm.state == VolumeMode:\n sm.change_state(MuteMode)\n self._update_bar()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _key_pressed(event):\n print('key pressed', event.key)\n\n def _key_released(event):\n print('key released', event.key)\n\n def _brightness_up():\n print('WIP:' + 'UP')\n\n def _brightness_down():\n print('WIP:' + 'DOWN')\n\n def _right_click(event):\n if sm.state == BrightnessMode:\n sm.change_state(sm.state().vacate())\n else:\n sm.change_state(BrightnessMode)\n self._update_bar()\n\n def _brightness_mode_off():\n sm.state_change(sm.state.vacate())\n self.barMode = self.barModes['default']\n self._update_bar()\n print('brightness mode off!')\n self.bar.pack(fill=Tk.Y, ipadx=5, ipady=5, side=Tk.LEFT)\n m.bind('<MouseWheel>', _adjust_bar)\n m.bind('<Button-2>', _middle_click)\n m.bind('<Button-4>', _scroll_up)\n m.bind('<Button-5>', _scroll_down)\n m.bind('<Button-3>', _right_click)\n m.bind('<Control-Button-4>', _brightness_up)\n m.bind('<Control-Button-5>', _brightness_down)\n m.bind('<Double-Button-3>', self._exit_app)\n barContainer.bind('<Enter>', self._mouse_entered)\n barContainer.bind('<Leave>', self._mouse_left)\n\n def _update_loop(self, ms_per_loop=1000):\n root.lift()\n self._update_bar()\n self.after(ms_per_loop, self._update_loop)\n\n def _update_bar(self):\n modeColor = VolBar.mode.color\n self.barWidth.setPerc(VolAs.volume)\n newWidth = self.barWidth.getNum()\n self.bar.configure(background=modeColor, width=str(newWidth))\n\n def _update_volume(self):\n try:\n self.mixer.setvolume(VolAs.volume)\n except:\n call(['amixer', 'sset', str(VolAs.device), str(VolAs.volume) +\n '%', '-q'])\n\n def _update_mute(self):\n muted = self.mixer.getmute()\n if muted[0] == True:\n self.mixer.setmute(0)\n elif muted[0] == False:\n self.mixer.setmute(1)\n else:\n raise Exception(\n \"mixer's .getmute()[0] method should return True or False!\")\n\n def _mouse_entered(self, event):\n root.wm_attributes('-alpha', default_opacity)\n\n def _mouse_left(self, event):\n root.wm_attributes('-alpha', outside_zone_opacity)\n\n def _open_message(self):\n notification.notify(title=program_title, message='{} launched!'.\n format(program_title), app_name=program_title, app_icon=\n program_icon, timeout=5)\n\n def _exit_app(self, event):\n notification.notify(title=program_title, message=\n '{} now closing...'.format(program_title), app_name=\n program_title, app_icon=program_icon, timeout=10)\n exit()\n\n\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<assignment token>\n\n\nclass Window(Tk.Frame):\n\n def __init__(self, master=None):\n Tk.Frame.__init__(self, master)\n self.master = master\n self._init_objects()\n self._init_window()\n self._open_message()\n\n def _init_objects(self):\n self.displaySize = VolAs._get_display_size(root)\n self.barWidth = LivePercentage(0, self.displaySize['x'])\n\n def _init_window(self):\n m = self.master\n m.title('Please submit an issue to Github if you see this!')\n self.barHeight = bar_height\n barContainer = Tk.Frame(m)\n barContainer.configure(background='BLACK')\n barContainer.pack(fill=Tk.BOTH, expand=1)\n self.bar = Tk.Frame(barContainer)\n self._update_bar()\n\n def _adjust_bar(event, movement):\n if type(movement) == int:\n notchMultiplier = 5\n newVol = VolAs.volume + movement * notchMultiplier\n VolAs.volume = clamp(newVol, 0, 100)\n else:\n raise TypeError(\n 'Value should be an integer! Not sure what happened!')\n self._update_bar()\n self._update_volume()\n\n def _scroll_up(event):\n if sm.state == VolumeMode:\n _adjust_bar(event, +1)\n elif sm.state == BrightnessMode:\n _brightness_up()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _scroll_down(event):\n if sm.state == VolumeMode:\n _adjust_bar(event, -1)\n elif sm.state == BrightnessMode:\n _brightness_down()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _middle_click(event):\n if sm.state == VolumeMode:\n sm.change_state(MuteMode)\n self._update_bar()\n elif sm.state == MuteMode:\n sm.change_state(VolumeMode)\n self._update_bar()\n\n def _key_pressed(event):\n print('key pressed', event.key)\n\n def _key_released(event):\n print('key released', event.key)\n\n def _brightness_up():\n print('WIP:' + 'UP')\n\n def _brightness_down():\n print('WIP:' + 'DOWN')\n\n def _right_click(event):\n if sm.state == BrightnessMode:\n sm.change_state(sm.state().vacate())\n else:\n sm.change_state(BrightnessMode)\n self._update_bar()\n\n def _brightness_mode_off():\n sm.state_change(sm.state.vacate())\n self.barMode = self.barModes['default']\n self._update_bar()\n print('brightness mode off!')\n self.bar.pack(fill=Tk.Y, ipadx=5, ipady=5, side=Tk.LEFT)\n m.bind('<MouseWheel>', _adjust_bar)\n m.bind('<Button-2>', _middle_click)\n m.bind('<Button-4>', _scroll_up)\n m.bind('<Button-5>', _scroll_down)\n m.bind('<Button-3>', _right_click)\n m.bind('<Control-Button-4>', _brightness_up)\n m.bind('<Control-Button-5>', _brightness_down)\n m.bind('<Double-Button-3>', self._exit_app)\n barContainer.bind('<Enter>', self._mouse_entered)\n barContainer.bind('<Leave>', self._mouse_left)\n\n def _update_loop(self, ms_per_loop=1000):\n root.lift()\n self._update_bar()\n self.after(ms_per_loop, self._update_loop)\n\n def _update_bar(self):\n modeColor = VolBar.mode.color\n self.barWidth.setPerc(VolAs.volume)\n newWidth = self.barWidth.getNum()\n self.bar.configure(background=modeColor, width=str(newWidth))\n\n def _update_volume(self):\n try:\n self.mixer.setvolume(VolAs.volume)\n except:\n call(['amixer', 'sset', str(VolAs.device), str(VolAs.volume) +\n '%', '-q'])\n\n def _update_mute(self):\n muted = self.mixer.getmute()\n if muted[0] == True:\n self.mixer.setmute(0)\n elif muted[0] == False:\n self.mixer.setmute(1)\n else:\n raise Exception(\n \"mixer's .getmute()[0] method should return True or False!\")\n\n def _mouse_entered(self, event):\n root.wm_attributes('-alpha', default_opacity)\n\n def _mouse_left(self, event):\n root.wm_attributes('-alpha', outside_zone_opacity)\n\n def _open_message(self):\n notification.notify(title=program_title, message='{} launched!'.\n format(program_title), app_name=program_title, app_icon=\n program_icon, timeout=5)\n\n def _exit_app(self, event):\n notification.notify(title=program_title, message=\n '{} now closing...'.format(program_title), app_name=\n program_title, app_icon=program_icon, timeout=10)\n exit()\n\n\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<assignment token>\n\n\nclass Window(Tk.Frame):\n\n def __init__(self, master=None):\n Tk.Frame.__init__(self, master)\n self.master = master\n self._init_objects()\n self._init_window()\n self._open_message()\n\n def _init_objects(self):\n self.displaySize = VolAs._get_display_size(root)\n self.barWidth = LivePercentage(0, self.displaySize['x'])\n <function token>\n\n def _update_loop(self, ms_per_loop=1000):\n root.lift()\n self._update_bar()\n self.after(ms_per_loop, self._update_loop)\n\n def _update_bar(self):\n modeColor = VolBar.mode.color\n self.barWidth.setPerc(VolAs.volume)\n newWidth = self.barWidth.getNum()\n self.bar.configure(background=modeColor, width=str(newWidth))\n\n def _update_volume(self):\n try:\n self.mixer.setvolume(VolAs.volume)\n except:\n call(['amixer', 'sset', str(VolAs.device), str(VolAs.volume) +\n '%', '-q'])\n\n def _update_mute(self):\n muted = self.mixer.getmute()\n if muted[0] == True:\n self.mixer.setmute(0)\n elif muted[0] == False:\n self.mixer.setmute(1)\n else:\n raise Exception(\n \"mixer's .getmute()[0] method should return True or False!\")\n\n def _mouse_entered(self, event):\n root.wm_attributes('-alpha', default_opacity)\n\n def _mouse_left(self, event):\n root.wm_attributes('-alpha', outside_zone_opacity)\n\n def _open_message(self):\n notification.notify(title=program_title, message='{} launched!'.\n format(program_title), app_name=program_title, app_icon=\n program_icon, timeout=5)\n\n def _exit_app(self, event):\n notification.notify(title=program_title, message=\n '{} now closing...'.format(program_title), app_name=\n program_title, app_icon=program_icon, timeout=10)\n exit()\n\n\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<assignment token>\n\n\nclass Window(Tk.Frame):\n\n def __init__(self, master=None):\n Tk.Frame.__init__(self, master)\n self.master = master\n self._init_objects()\n self._init_window()\n self._open_message()\n\n def _init_objects(self):\n self.displaySize = VolAs._get_display_size(root)\n self.barWidth = LivePercentage(0, self.displaySize['x'])\n <function token>\n\n def _update_loop(self, ms_per_loop=1000):\n root.lift()\n self._update_bar()\n self.after(ms_per_loop, self._update_loop)\n\n def _update_bar(self):\n modeColor = VolBar.mode.color\n self.barWidth.setPerc(VolAs.volume)\n newWidth = self.barWidth.getNum()\n self.bar.configure(background=modeColor, width=str(newWidth))\n <function token>\n\n def _update_mute(self):\n muted = self.mixer.getmute()\n if muted[0] == True:\n self.mixer.setmute(0)\n elif muted[0] == False:\n self.mixer.setmute(1)\n else:\n raise Exception(\n \"mixer's .getmute()[0] method should return True or False!\")\n\n def _mouse_entered(self, event):\n root.wm_attributes('-alpha', default_opacity)\n\n def _mouse_left(self, event):\n root.wm_attributes('-alpha', outside_zone_opacity)\n\n def _open_message(self):\n notification.notify(title=program_title, message='{} launched!'.\n format(program_title), app_name=program_title, app_icon=\n program_icon, timeout=5)\n\n def _exit_app(self, event):\n notification.notify(title=program_title, message=\n '{} now closing...'.format(program_title), app_name=\n program_title, app_icon=program_icon, timeout=10)\n exit()\n\n\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<assignment token>\n\n\nclass Window(Tk.Frame):\n\n def __init__(self, master=None):\n Tk.Frame.__init__(self, master)\n self.master = master\n self._init_objects()\n self._init_window()\n self._open_message()\n <function token>\n <function token>\n\n def _update_loop(self, ms_per_loop=1000):\n root.lift()\n self._update_bar()\n self.after(ms_per_loop, self._update_loop)\n\n def _update_bar(self):\n modeColor = VolBar.mode.color\n self.barWidth.setPerc(VolAs.volume)\n newWidth = self.barWidth.getNum()\n self.bar.configure(background=modeColor, width=str(newWidth))\n <function token>\n\n def _update_mute(self):\n muted = self.mixer.getmute()\n if muted[0] == True:\n self.mixer.setmute(0)\n elif muted[0] == False:\n self.mixer.setmute(1)\n else:\n raise Exception(\n \"mixer's .getmute()[0] method should return True or False!\")\n\n def _mouse_entered(self, event):\n root.wm_attributes('-alpha', default_opacity)\n\n def _mouse_left(self, event):\n root.wm_attributes('-alpha', outside_zone_opacity)\n\n def _open_message(self):\n notification.notify(title=program_title, message='{} launched!'.\n format(program_title), app_name=program_title, app_icon=\n program_icon, timeout=5)\n\n def _exit_app(self, event):\n notification.notify(title=program_title, message=\n '{} now closing...'.format(program_title), app_name=\n program_title, app_icon=program_icon, timeout=10)\n exit()\n\n\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<assignment token>\n\n\nclass Window(Tk.Frame):\n\n def __init__(self, master=None):\n Tk.Frame.__init__(self, master)\n self.master = master\n self._init_objects()\n self._init_window()\n self._open_message()\n <function token>\n <function token>\n\n def _update_loop(self, ms_per_loop=1000):\n root.lift()\n self._update_bar()\n self.after(ms_per_loop, self._update_loop)\n\n def _update_bar(self):\n modeColor = VolBar.mode.color\n self.barWidth.setPerc(VolAs.volume)\n newWidth = self.barWidth.getNum()\n self.bar.configure(background=modeColor, width=str(newWidth))\n <function token>\n\n def _update_mute(self):\n muted = self.mixer.getmute()\n if muted[0] == True:\n self.mixer.setmute(0)\n elif muted[0] == False:\n self.mixer.setmute(1)\n else:\n raise Exception(\n \"mixer's .getmute()[0] method should return True or False!\")\n\n def _mouse_entered(self, event):\n root.wm_attributes('-alpha', default_opacity)\n <function token>\n\n def _open_message(self):\n notification.notify(title=program_title, message='{} launched!'.\n format(program_title), app_name=program_title, app_icon=\n program_icon, timeout=5)\n\n def _exit_app(self, event):\n notification.notify(title=program_title, message=\n '{} now closing...'.format(program_title), app_name=\n program_title, app_icon=program_icon, timeout=10)\n exit()\n\n\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<assignment token>\n\n\nclass Window(Tk.Frame):\n\n def __init__(self, master=None):\n Tk.Frame.__init__(self, master)\n self.master = master\n self._init_objects()\n self._init_window()\n self._open_message()\n <function token>\n <function token>\n <function token>\n\n def _update_bar(self):\n modeColor = VolBar.mode.color\n self.barWidth.setPerc(VolAs.volume)\n newWidth = self.barWidth.getNum()\n self.bar.configure(background=modeColor, width=str(newWidth))\n <function token>\n\n def _update_mute(self):\n muted = self.mixer.getmute()\n if muted[0] == True:\n self.mixer.setmute(0)\n elif muted[0] == False:\n self.mixer.setmute(1)\n else:\n raise Exception(\n \"mixer's .getmute()[0] method should return True or False!\")\n\n def _mouse_entered(self, event):\n root.wm_attributes('-alpha', default_opacity)\n <function token>\n\n def _open_message(self):\n notification.notify(title=program_title, message='{} launched!'.\n format(program_title), app_name=program_title, app_icon=\n program_icon, timeout=5)\n\n def _exit_app(self, event):\n notification.notify(title=program_title, message=\n '{} now closing...'.format(program_title), app_name=\n program_title, app_icon=program_icon, timeout=10)\n exit()\n\n\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<assignment token>\n\n\nclass Window(Tk.Frame):\n\n def __init__(self, master=None):\n Tk.Frame.__init__(self, master)\n self.master = master\n self._init_objects()\n self._init_window()\n self._open_message()\n <function token>\n <function token>\n <function token>\n\n def _update_bar(self):\n modeColor = VolBar.mode.color\n self.barWidth.setPerc(VolAs.volume)\n newWidth = self.barWidth.getNum()\n self.bar.configure(background=modeColor, width=str(newWidth))\n <function token>\n <function token>\n\n def _mouse_entered(self, event):\n root.wm_attributes('-alpha', default_opacity)\n <function token>\n\n def _open_message(self):\n notification.notify(title=program_title, message='{} launched!'.\n format(program_title), app_name=program_title, app_icon=\n program_icon, timeout=5)\n\n def _exit_app(self, event):\n notification.notify(title=program_title, message=\n '{} now closing...'.format(program_title), app_name=\n program_title, app_icon=program_icon, timeout=10)\n exit()\n\n\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<assignment token>\n\n\nclass Window(Tk.Frame):\n <function token>\n <function token>\n <function token>\n <function token>\n\n def _update_bar(self):\n modeColor = VolBar.mode.color\n self.barWidth.setPerc(VolAs.volume)\n newWidth = self.barWidth.getNum()\n self.bar.configure(background=modeColor, width=str(newWidth))\n <function token>\n <function token>\n\n def _mouse_entered(self, event):\n root.wm_attributes('-alpha', default_opacity)\n <function token>\n\n def _open_message(self):\n notification.notify(title=program_title, message='{} launched!'.\n format(program_title), app_name=program_title, app_icon=\n program_icon, timeout=5)\n\n def _exit_app(self, event):\n notification.notify(title=program_title, message=\n '{} now closing...'.format(program_title), app_name=\n program_title, app_icon=program_icon, timeout=10)\n exit()\n\n\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<assignment token>\n\n\nclass Window(Tk.Frame):\n <function token>\n <function token>\n <function token>\n <function token>\n\n def _update_bar(self):\n modeColor = VolBar.mode.color\n self.barWidth.setPerc(VolAs.volume)\n newWidth = self.barWidth.getNum()\n self.bar.configure(background=modeColor, width=str(newWidth))\n <function token>\n <function token>\n\n def _mouse_entered(self, event):\n root.wm_attributes('-alpha', default_opacity)\n <function token>\n\n def _open_message(self):\n notification.notify(title=program_title, message='{} launched!'.\n format(program_title), app_name=program_title, app_icon=\n program_icon, timeout=5)\n <function token>\n\n\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<assignment token>\n\n\nclass Window(Tk.Frame):\n <function token>\n <function token>\n <function token>\n <function token>\n\n def _update_bar(self):\n modeColor = VolBar.mode.color\n self.barWidth.setPerc(VolAs.volume)\n newWidth = self.barWidth.getNum()\n self.bar.configure(background=modeColor, width=str(newWidth))\n <function token>\n <function token>\n\n def _mouse_entered(self, event):\n root.wm_attributes('-alpha', default_opacity)\n <function token>\n <function token>\n <function token>\n\n\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<assignment token>\n\n\nclass Window(Tk.Frame):\n <function token>\n <function token>\n <function token>\n <function token>\n\n def _update_bar(self):\n modeColor = VolBar.mode.color\n self.barWidth.setPerc(VolAs.volume)\n newWidth = self.barWidth.getNum()\n self.bar.configure(background=modeColor, width=str(newWidth))\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<assignment token>\n\n\nclass Window(Tk.Frame):\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<assignment token>\n<class token>\n<assignment token>\n<code token>\n" ]
false
98,825
f80f8b6d63193e9a9007935484c7336d1dc6e983
__author__ = 'Wout & thijs' import argparse #from lda_images.lda_learner import * from lda_images.new_lda_learner import * # given a dataset and an amount of topics, train a neural network # to map image representations onto topic distribtutions def main(params): dataset = params['dataset'] topics = params['topics'] rate = params['rate'] iterations = params['iterations'] hidden_layers = params['hidden'] layers = params['layers'] pert = params['pert'] networkLearner = LDANetworkLearner(dataset, topics, rate, hidden_layers,layers, pert) networkLearner.learnNetwork(iterations) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('-d', '--dataset', dest='dataset', default='flickr30k', help='dataset: flickr8k/flickr30k') parser.add_argument('-t', '--topics', dest='topics', type=int, default=120, help='Number of topics to learn lda model') parser.add_argument('-i', '--iterations', dest='iterations', type=int, default= 1000000, help='Number of iterations for training the network') parser.add_argument('-r', '--rate', dest='rate', type=float, default=0.001, help='Training rate for the neural network') parser.add_argument('-hidden', '--hidden', dest='hidden', type=int, default=256, help='Number of hidden neurons per layer') parser.add_argument('-l', '--layers', dest='layers', type=int, default=1, help='Number of hidden layers') parser.add_argument('-pert', '--pert', dest='pert', type=int, default=0, help="=0 if you dont want to use perturbed dataset") args = parser.parse_args() params = vars(args) # convert to ordinary dict main(params)
[ "__author__ = 'Wout & thijs'\n\nimport argparse\n#from lda_images.lda_learner import *\nfrom lda_images.new_lda_learner import *\n\n# given a dataset and an amount of topics, train a neural network\n# to map image representations onto topic distribtutions\ndef main(params):\n dataset = params['dataset']\n topics = params['topics']\n rate = params['rate']\n iterations = params['iterations']\n hidden_layers = params['hidden']\n layers = params['layers']\n pert = params['pert']\n networkLearner = LDANetworkLearner(dataset, topics, rate, hidden_layers,layers, pert)\n networkLearner.learnNetwork(iterations)\n\n\nif __name__ == \"__main__\":\n parser = argparse.ArgumentParser()\n parser.add_argument('-d', '--dataset', dest='dataset', default='flickr30k', help='dataset: flickr8k/flickr30k')\n parser.add_argument('-t', '--topics', dest='topics', type=int, default=120, help='Number of topics to learn lda model')\n parser.add_argument('-i', '--iterations', dest='iterations', type=int, default= 1000000, help='Number of iterations for training the network')\n parser.add_argument('-r', '--rate', dest='rate', type=float, default=0.001, help='Training rate for the neural network')\n parser.add_argument('-hidden', '--hidden', dest='hidden', type=int, default=256, help='Number of hidden neurons per layer')\n parser.add_argument('-l', '--layers', dest='layers', type=int, default=1, help='Number of hidden layers')\n parser.add_argument('-pert', '--pert', dest='pert', type=int, default=0, help=\"=0 if you dont want to use perturbed dataset\")\n args = parser.parse_args()\n params = vars(args) # convert to ordinary dict\n main(params)\n", "__author__ = 'Wout & thijs'\nimport argparse\nfrom lda_images.new_lda_learner import *\n\n\ndef main(params):\n dataset = params['dataset']\n topics = params['topics']\n rate = params['rate']\n iterations = params['iterations']\n hidden_layers = params['hidden']\n layers = params['layers']\n pert = params['pert']\n networkLearner = LDANetworkLearner(dataset, topics, rate, hidden_layers,\n layers, pert)\n networkLearner.learnNetwork(iterations)\n\n\nif __name__ == '__main__':\n parser = argparse.ArgumentParser()\n parser.add_argument('-d', '--dataset', dest='dataset', default=\n 'flickr30k', help='dataset: flickr8k/flickr30k')\n parser.add_argument('-t', '--topics', dest='topics', type=int, default=\n 120, help='Number of topics to learn lda model')\n parser.add_argument('-i', '--iterations', dest='iterations', type=int,\n default=1000000, help='Number of iterations for training the network')\n parser.add_argument('-r', '--rate', dest='rate', type=float, default=\n 0.001, help='Training rate for the neural network')\n parser.add_argument('-hidden', '--hidden', dest='hidden', type=int,\n default=256, help='Number of hidden neurons per layer')\n parser.add_argument('-l', '--layers', dest='layers', type=int, default=\n 1, help='Number of hidden layers')\n parser.add_argument('-pert', '--pert', dest='pert', type=int, default=0,\n help='=0 if you dont want to use perturbed dataset')\n args = parser.parse_args()\n params = vars(args)\n main(params)\n", "__author__ = 'Wout & thijs'\n<import token>\n\n\ndef main(params):\n dataset = params['dataset']\n topics = params['topics']\n rate = params['rate']\n iterations = params['iterations']\n hidden_layers = params['hidden']\n layers = params['layers']\n pert = params['pert']\n networkLearner = LDANetworkLearner(dataset, topics, rate, hidden_layers,\n layers, pert)\n networkLearner.learnNetwork(iterations)\n\n\nif __name__ == '__main__':\n parser = argparse.ArgumentParser()\n parser.add_argument('-d', '--dataset', dest='dataset', default=\n 'flickr30k', help='dataset: flickr8k/flickr30k')\n parser.add_argument('-t', '--topics', dest='topics', type=int, default=\n 120, help='Number of topics to learn lda model')\n parser.add_argument('-i', '--iterations', dest='iterations', type=int,\n default=1000000, help='Number of iterations for training the network')\n parser.add_argument('-r', '--rate', dest='rate', type=float, default=\n 0.001, help='Training rate for the neural network')\n parser.add_argument('-hidden', '--hidden', dest='hidden', type=int,\n default=256, help='Number of hidden neurons per layer')\n parser.add_argument('-l', '--layers', dest='layers', type=int, default=\n 1, help='Number of hidden layers')\n parser.add_argument('-pert', '--pert', dest='pert', type=int, default=0,\n help='=0 if you dont want to use perturbed dataset')\n args = parser.parse_args()\n params = vars(args)\n main(params)\n", "<assignment token>\n<import token>\n\n\ndef main(params):\n dataset = params['dataset']\n topics = params['topics']\n rate = params['rate']\n iterations = params['iterations']\n hidden_layers = params['hidden']\n layers = params['layers']\n pert = params['pert']\n networkLearner = LDANetworkLearner(dataset, topics, rate, hidden_layers,\n layers, pert)\n networkLearner.learnNetwork(iterations)\n\n\nif __name__ == '__main__':\n parser = argparse.ArgumentParser()\n parser.add_argument('-d', '--dataset', dest='dataset', default=\n 'flickr30k', help='dataset: flickr8k/flickr30k')\n parser.add_argument('-t', '--topics', dest='topics', type=int, default=\n 120, help='Number of topics to learn lda model')\n parser.add_argument('-i', '--iterations', dest='iterations', type=int,\n default=1000000, help='Number of iterations for training the network')\n parser.add_argument('-r', '--rate', dest='rate', type=float, default=\n 0.001, help='Training rate for the neural network')\n parser.add_argument('-hidden', '--hidden', dest='hidden', type=int,\n default=256, help='Number of hidden neurons per layer')\n parser.add_argument('-l', '--layers', dest='layers', type=int, default=\n 1, help='Number of hidden layers')\n parser.add_argument('-pert', '--pert', dest='pert', type=int, default=0,\n help='=0 if you dont want to use perturbed dataset')\n args = parser.parse_args()\n params = vars(args)\n main(params)\n", "<assignment token>\n<import token>\n\n\ndef main(params):\n dataset = params['dataset']\n topics = params['topics']\n rate = params['rate']\n iterations = params['iterations']\n hidden_layers = params['hidden']\n layers = params['layers']\n pert = params['pert']\n networkLearner = LDANetworkLearner(dataset, topics, rate, hidden_layers,\n layers, pert)\n networkLearner.learnNetwork(iterations)\n\n\n<code token>\n", "<assignment token>\n<import token>\n<function token>\n<code token>\n" ]
false
98,826
8edfc752c0db06bbb65d50e707c57f6056d5e46a
from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String, Date from sqlalchemy.orm import sessionmaker from datetime import datetime, timedelta class ToDo: Base = declarative_base() class Table(Base): """The database model of a task""" # noinspection SpellCheckingInspection __tablename__ = 'task' id = Column(Integer, primary_key=True) task = Column(String, default='Unnamed task') deadline = Column(Date, default=datetime.today()) def __repr__(self): return f'{self.id}. {self.task}' def __init__(self): self.session = None self.menu_choice = '' self.init_database() def init_database(self): """Creates and initializes a database""" engine = create_engine('sqlite:///todo.db?check_same_thread=False') self.Base.metadata.create_all(engine) self.session = sessionmaker(bind=engine)() def menu(self): """Prints menu items and accepts user choice""" print('1) Today\'s tasks') print('2) Week\'s tasks') print('3) All tasks') print('4) Missed tasks') print('5) Add task') print('6) Delete task') print('0) Exit') self.menu_choice = input() def show_today_tasks(self): """Outputs all tasks for today""" today = datetime.today() tasks = self.session.query(self.Table).filter(self.Table.deadline == today.strftime('%Y-%m-%d')).all() print(f'Today {today.strftime("%d %b")}:') if tasks: for n, task in enumerate(tasks, 1): print(f'{n}. {task.task}') else: print('Nothing to do!') print() def show_weeks_tasks(self): """Outputs all tasks for next seven days""" for day in [datetime.today() + timedelta(days=i) for i in range(7)]: tasks = self.session.query(self.Table).filter(self.Table.deadline == day.strftime('%Y-%m-%d')).\ order_by(self.Table.deadline).all() print(f'{day.strftime("%A")} {day.strftime("%d %b")}:') if tasks: for n, task in enumerate(tasks, 1): print(f'{n}. {task.task}') else: print('Nothing to do!') print() def show_all_tasks(self): """Shows all tasks from the database""" tasks = self.session.query(self.Table).order_by(self.Table.deadline).all() print('All tasks:') if tasks: for n, task in enumerate(tasks, 1): print(f'{n}. {task.task}. {task.deadline.strftime("%d %b")}') else: print('Nothing to do!') print() def show_missed_tasks(self): """Shows all missed tasks from the database""" tasks = self.session.query(self.Table).filter(self.Table.deadline < datetime.today().strftime('%Y-%m-%d')).\ order_by(self.Table.deadline).all() print('Missed tasks:') if tasks: for n, task in enumerate(tasks, 1): print(f'{n}. {task.task}. {task.deadline.strftime("%d %b")}') else: print('Nothing is missed!') print() def add_task(self): """Add a task to the database""" print('Enter task') text_task = input() print('Enter deadline') new_task = self.Table(task=text_task, deadline=datetime.strptime(input(), '%Y-%m-%d')) self.session.add(new_task) self.session.commit() print('The task has been added!') print() def delete_task(self): """Delete a chosen task from the database""" tasks = self.session.query(self.Table).order_by(self.Table.deadline).all() if tasks: print('Chose the number of the task you want to delete:') for n, task in enumerate(tasks, 1): print(f'{n}. {task.task}. {task.deadline.strftime("%d %b")}') self.session.query(self.Table).filter(self.Table.id == tasks[int(input())-1].id).delete() self.session.commit() else: print('Nothing to delete!') print() def run(self): """Main logic of the program""" while True: self.menu() if self.menu_choice == '1': self.show_today_tasks() elif self.menu_choice == '2': self.show_weeks_tasks() elif self.menu_choice == '3': self.show_all_tasks() elif self.menu_choice == '4': self.show_missed_tasks() elif self.menu_choice == '5': self.add_task() elif self.menu_choice == '6': self.delete_task() else: print('Bye!') break if __name__ == '__main__': todo = ToDo() todo.run()
[ "from sqlalchemy import create_engine\nfrom sqlalchemy.ext.declarative import declarative_base\nfrom sqlalchemy import Column, Integer, String, Date\nfrom sqlalchemy.orm import sessionmaker\nfrom datetime import datetime, timedelta\n\n\nclass ToDo:\n Base = declarative_base()\n\n class Table(Base):\n \"\"\"The database model of a task\"\"\"\n # noinspection SpellCheckingInspection\n __tablename__ = 'task'\n id = Column(Integer, primary_key=True)\n task = Column(String, default='Unnamed task')\n deadline = Column(Date, default=datetime.today())\n\n def __repr__(self):\n return f'{self.id}. {self.task}'\n\n def __init__(self):\n self.session = None\n self.menu_choice = ''\n self.init_database()\n\n def init_database(self):\n \"\"\"Creates and initializes a database\"\"\"\n engine = create_engine('sqlite:///todo.db?check_same_thread=False')\n self.Base.metadata.create_all(engine)\n self.session = sessionmaker(bind=engine)()\n\n def menu(self):\n \"\"\"Prints menu items and accepts user choice\"\"\"\n print('1) Today\\'s tasks')\n print('2) Week\\'s tasks')\n print('3) All tasks')\n print('4) Missed tasks')\n print('5) Add task')\n print('6) Delete task')\n print('0) Exit')\n self.menu_choice = input()\n\n def show_today_tasks(self):\n \"\"\"Outputs all tasks for today\"\"\"\n today = datetime.today()\n tasks = self.session.query(self.Table).filter(self.Table.deadline == today.strftime('%Y-%m-%d')).all()\n print(f'Today {today.strftime(\"%d %b\")}:')\n if tasks:\n for n, task in enumerate(tasks, 1):\n print(f'{n}. {task.task}')\n else:\n print('Nothing to do!')\n print()\n\n def show_weeks_tasks(self):\n \"\"\"Outputs all tasks for next seven days\"\"\"\n for day in [datetime.today() + timedelta(days=i) for i in range(7)]:\n tasks = self.session.query(self.Table).filter(self.Table.deadline == day.strftime('%Y-%m-%d')).\\\n order_by(self.Table.deadline).all()\n print(f'{day.strftime(\"%A\")} {day.strftime(\"%d %b\")}:')\n if tasks:\n for n, task in enumerate(tasks, 1):\n print(f'{n}. {task.task}')\n else:\n print('Nothing to do!')\n print()\n\n def show_all_tasks(self):\n \"\"\"Shows all tasks from the database\"\"\"\n tasks = self.session.query(self.Table).order_by(self.Table.deadline).all()\n print('All tasks:')\n if tasks:\n for n, task in enumerate(tasks, 1):\n print(f'{n}. {task.task}. {task.deadline.strftime(\"%d %b\")}')\n else:\n print('Nothing to do!')\n print()\n\n def show_missed_tasks(self):\n \"\"\"Shows all missed tasks from the database\"\"\"\n tasks = self.session.query(self.Table).filter(self.Table.deadline < datetime.today().strftime('%Y-%m-%d')).\\\n order_by(self.Table.deadline).all()\n print('Missed tasks:')\n if tasks:\n for n, task in enumerate(tasks, 1):\n print(f'{n}. {task.task}. {task.deadline.strftime(\"%d %b\")}')\n else:\n print('Nothing is missed!')\n print()\n\n def add_task(self):\n \"\"\"Add a task to the database\"\"\"\n print('Enter task')\n text_task = input()\n print('Enter deadline')\n new_task = self.Table(task=text_task, deadline=datetime.strptime(input(), '%Y-%m-%d'))\n self.session.add(new_task)\n self.session.commit()\n print('The task has been added!')\n print()\n\n def delete_task(self):\n \"\"\"Delete a chosen task from the database\"\"\"\n tasks = self.session.query(self.Table).order_by(self.Table.deadline).all()\n if tasks:\n print('Chose the number of the task you want to delete:')\n for n, task in enumerate(tasks, 1):\n print(f'{n}. {task.task}. {task.deadline.strftime(\"%d %b\")}')\n self.session.query(self.Table).filter(self.Table.id == tasks[int(input())-1].id).delete()\n self.session.commit()\n else:\n print('Nothing to delete!')\n print()\n\n def run(self):\n \"\"\"Main logic of the program\"\"\"\n while True:\n self.menu()\n if self.menu_choice == '1':\n self.show_today_tasks()\n elif self.menu_choice == '2':\n self.show_weeks_tasks()\n elif self.menu_choice == '3':\n self.show_all_tasks()\n elif self.menu_choice == '4':\n self.show_missed_tasks()\n elif self.menu_choice == '5':\n self.add_task()\n elif self.menu_choice == '6':\n self.delete_task()\n else:\n print('Bye!')\n break\n\n\nif __name__ == '__main__':\n todo = ToDo()\n todo.run()", "from sqlalchemy import create_engine\nfrom sqlalchemy.ext.declarative import declarative_base\nfrom sqlalchemy import Column, Integer, String, Date\nfrom sqlalchemy.orm import sessionmaker\nfrom datetime import datetime, timedelta\n\n\nclass ToDo:\n Base = declarative_base()\n\n\n class Table(Base):\n \"\"\"The database model of a task\"\"\"\n __tablename__ = 'task'\n id = Column(Integer, primary_key=True)\n task = Column(String, default='Unnamed task')\n deadline = Column(Date, default=datetime.today())\n\n def __repr__(self):\n return f'{self.id}. {self.task}'\n\n def __init__(self):\n self.session = None\n self.menu_choice = ''\n self.init_database()\n\n def init_database(self):\n \"\"\"Creates and initializes a database\"\"\"\n engine = create_engine('sqlite:///todo.db?check_same_thread=False')\n self.Base.metadata.create_all(engine)\n self.session = sessionmaker(bind=engine)()\n\n def menu(self):\n \"\"\"Prints menu items and accepts user choice\"\"\"\n print(\"1) Today's tasks\")\n print(\"2) Week's tasks\")\n print('3) All tasks')\n print('4) Missed tasks')\n print('5) Add task')\n print('6) Delete task')\n print('0) Exit')\n self.menu_choice = input()\n\n def show_today_tasks(self):\n \"\"\"Outputs all tasks for today\"\"\"\n today = datetime.today()\n tasks = self.session.query(self.Table).filter(self.Table.deadline ==\n today.strftime('%Y-%m-%d')).all()\n print(f\"Today {today.strftime('%d %b')}:\")\n if tasks:\n for n, task in enumerate(tasks, 1):\n print(f'{n}. {task.task}')\n else:\n print('Nothing to do!')\n print()\n\n def show_weeks_tasks(self):\n \"\"\"Outputs all tasks for next seven days\"\"\"\n for day in [(datetime.today() + timedelta(days=i)) for i in range(7)]:\n tasks = self.session.query(self.Table).filter(self.Table.\n deadline == day.strftime('%Y-%m-%d')).order_by(self.Table.\n deadline).all()\n print(f\"{day.strftime('%A')} {day.strftime('%d %b')}:\")\n if tasks:\n for n, task in enumerate(tasks, 1):\n print(f'{n}. {task.task}')\n else:\n print('Nothing to do!')\n print()\n\n def show_all_tasks(self):\n \"\"\"Shows all tasks from the database\"\"\"\n tasks = self.session.query(self.Table).order_by(self.Table.deadline\n ).all()\n print('All tasks:')\n if tasks:\n for n, task in enumerate(tasks, 1):\n print(f\"{n}. {task.task}. {task.deadline.strftime('%d %b')}\")\n else:\n print('Nothing to do!')\n print()\n\n def show_missed_tasks(self):\n \"\"\"Shows all missed tasks from the database\"\"\"\n tasks = self.session.query(self.Table).filter(self.Table.deadline <\n datetime.today().strftime('%Y-%m-%d')).order_by(self.Table.deadline\n ).all()\n print('Missed tasks:')\n if tasks:\n for n, task in enumerate(tasks, 1):\n print(f\"{n}. {task.task}. {task.deadline.strftime('%d %b')}\")\n else:\n print('Nothing is missed!')\n print()\n\n def add_task(self):\n \"\"\"Add a task to the database\"\"\"\n print('Enter task')\n text_task = input()\n print('Enter deadline')\n new_task = self.Table(task=text_task, deadline=datetime.strptime(\n input(), '%Y-%m-%d'))\n self.session.add(new_task)\n self.session.commit()\n print('The task has been added!')\n print()\n\n def delete_task(self):\n \"\"\"Delete a chosen task from the database\"\"\"\n tasks = self.session.query(self.Table).order_by(self.Table.deadline\n ).all()\n if tasks:\n print('Chose the number of the task you want to delete:')\n for n, task in enumerate(tasks, 1):\n print(f\"{n}. {task.task}. {task.deadline.strftime('%d %b')}\")\n self.session.query(self.Table).filter(self.Table.id == tasks[\n int(input()) - 1].id).delete()\n self.session.commit()\n else:\n print('Nothing to delete!')\n print()\n\n def run(self):\n \"\"\"Main logic of the program\"\"\"\n while True:\n self.menu()\n if self.menu_choice == '1':\n self.show_today_tasks()\n elif self.menu_choice == '2':\n self.show_weeks_tasks()\n elif self.menu_choice == '3':\n self.show_all_tasks()\n elif self.menu_choice == '4':\n self.show_missed_tasks()\n elif self.menu_choice == '5':\n self.add_task()\n elif self.menu_choice == '6':\n self.delete_task()\n else:\n print('Bye!')\n break\n\n\nif __name__ == '__main__':\n todo = ToDo()\n todo.run()\n", "<import token>\n\n\nclass ToDo:\n Base = declarative_base()\n\n\n class Table(Base):\n \"\"\"The database model of a task\"\"\"\n __tablename__ = 'task'\n id = Column(Integer, primary_key=True)\n task = Column(String, default='Unnamed task')\n deadline = Column(Date, default=datetime.today())\n\n def __repr__(self):\n return f'{self.id}. {self.task}'\n\n def __init__(self):\n self.session = None\n self.menu_choice = ''\n self.init_database()\n\n def init_database(self):\n \"\"\"Creates and initializes a database\"\"\"\n engine = create_engine('sqlite:///todo.db?check_same_thread=False')\n self.Base.metadata.create_all(engine)\n self.session = sessionmaker(bind=engine)()\n\n def menu(self):\n \"\"\"Prints menu items and accepts user choice\"\"\"\n print(\"1) Today's tasks\")\n print(\"2) Week's tasks\")\n print('3) All tasks')\n print('4) Missed tasks')\n print('5) Add task')\n print('6) Delete task')\n print('0) Exit')\n self.menu_choice = input()\n\n def show_today_tasks(self):\n \"\"\"Outputs all tasks for today\"\"\"\n today = datetime.today()\n tasks = self.session.query(self.Table).filter(self.Table.deadline ==\n today.strftime('%Y-%m-%d')).all()\n print(f\"Today {today.strftime('%d %b')}:\")\n if tasks:\n for n, task in enumerate(tasks, 1):\n print(f'{n}. {task.task}')\n else:\n print('Nothing to do!')\n print()\n\n def show_weeks_tasks(self):\n \"\"\"Outputs all tasks for next seven days\"\"\"\n for day in [(datetime.today() + timedelta(days=i)) for i in range(7)]:\n tasks = self.session.query(self.Table).filter(self.Table.\n deadline == day.strftime('%Y-%m-%d')).order_by(self.Table.\n deadline).all()\n print(f\"{day.strftime('%A')} {day.strftime('%d %b')}:\")\n if tasks:\n for n, task in enumerate(tasks, 1):\n print(f'{n}. {task.task}')\n else:\n print('Nothing to do!')\n print()\n\n def show_all_tasks(self):\n \"\"\"Shows all tasks from the database\"\"\"\n tasks = self.session.query(self.Table).order_by(self.Table.deadline\n ).all()\n print('All tasks:')\n if tasks:\n for n, task in enumerate(tasks, 1):\n print(f\"{n}. {task.task}. {task.deadline.strftime('%d %b')}\")\n else:\n print('Nothing to do!')\n print()\n\n def show_missed_tasks(self):\n \"\"\"Shows all missed tasks from the database\"\"\"\n tasks = self.session.query(self.Table).filter(self.Table.deadline <\n datetime.today().strftime('%Y-%m-%d')).order_by(self.Table.deadline\n ).all()\n print('Missed tasks:')\n if tasks:\n for n, task in enumerate(tasks, 1):\n print(f\"{n}. {task.task}. {task.deadline.strftime('%d %b')}\")\n else:\n print('Nothing is missed!')\n print()\n\n def add_task(self):\n \"\"\"Add a task to the database\"\"\"\n print('Enter task')\n text_task = input()\n print('Enter deadline')\n new_task = self.Table(task=text_task, deadline=datetime.strptime(\n input(), '%Y-%m-%d'))\n self.session.add(new_task)\n self.session.commit()\n print('The task has been added!')\n print()\n\n def delete_task(self):\n \"\"\"Delete a chosen task from the database\"\"\"\n tasks = self.session.query(self.Table).order_by(self.Table.deadline\n ).all()\n if tasks:\n print('Chose the number of the task you want to delete:')\n for n, task in enumerate(tasks, 1):\n print(f\"{n}. {task.task}. {task.deadline.strftime('%d %b')}\")\n self.session.query(self.Table).filter(self.Table.id == tasks[\n int(input()) - 1].id).delete()\n self.session.commit()\n else:\n print('Nothing to delete!')\n print()\n\n def run(self):\n \"\"\"Main logic of the program\"\"\"\n while True:\n self.menu()\n if self.menu_choice == '1':\n self.show_today_tasks()\n elif self.menu_choice == '2':\n self.show_weeks_tasks()\n elif self.menu_choice == '3':\n self.show_all_tasks()\n elif self.menu_choice == '4':\n self.show_missed_tasks()\n elif self.menu_choice == '5':\n self.add_task()\n elif self.menu_choice == '6':\n self.delete_task()\n else:\n print('Bye!')\n break\n\n\nif __name__ == '__main__':\n todo = ToDo()\n todo.run()\n", "<import token>\n\n\nclass ToDo:\n Base = declarative_base()\n\n\n class Table(Base):\n \"\"\"The database model of a task\"\"\"\n __tablename__ = 'task'\n id = Column(Integer, primary_key=True)\n task = Column(String, default='Unnamed task')\n deadline = Column(Date, default=datetime.today())\n\n def __repr__(self):\n return f'{self.id}. {self.task}'\n\n def __init__(self):\n self.session = None\n self.menu_choice = ''\n self.init_database()\n\n def init_database(self):\n \"\"\"Creates and initializes a database\"\"\"\n engine = create_engine('sqlite:///todo.db?check_same_thread=False')\n self.Base.metadata.create_all(engine)\n self.session = sessionmaker(bind=engine)()\n\n def menu(self):\n \"\"\"Prints menu items and accepts user choice\"\"\"\n print(\"1) Today's tasks\")\n print(\"2) Week's tasks\")\n print('3) All tasks')\n print('4) Missed tasks')\n print('5) Add task')\n print('6) Delete task')\n print('0) Exit')\n self.menu_choice = input()\n\n def show_today_tasks(self):\n \"\"\"Outputs all tasks for today\"\"\"\n today = datetime.today()\n tasks = self.session.query(self.Table).filter(self.Table.deadline ==\n today.strftime('%Y-%m-%d')).all()\n print(f\"Today {today.strftime('%d %b')}:\")\n if tasks:\n for n, task in enumerate(tasks, 1):\n print(f'{n}. {task.task}')\n else:\n print('Nothing to do!')\n print()\n\n def show_weeks_tasks(self):\n \"\"\"Outputs all tasks for next seven days\"\"\"\n for day in [(datetime.today() + timedelta(days=i)) for i in range(7)]:\n tasks = self.session.query(self.Table).filter(self.Table.\n deadline == day.strftime('%Y-%m-%d')).order_by(self.Table.\n deadline).all()\n print(f\"{day.strftime('%A')} {day.strftime('%d %b')}:\")\n if tasks:\n for n, task in enumerate(tasks, 1):\n print(f'{n}. {task.task}')\n else:\n print('Nothing to do!')\n print()\n\n def show_all_tasks(self):\n \"\"\"Shows all tasks from the database\"\"\"\n tasks = self.session.query(self.Table).order_by(self.Table.deadline\n ).all()\n print('All tasks:')\n if tasks:\n for n, task in enumerate(tasks, 1):\n print(f\"{n}. {task.task}. {task.deadline.strftime('%d %b')}\")\n else:\n print('Nothing to do!')\n print()\n\n def show_missed_tasks(self):\n \"\"\"Shows all missed tasks from the database\"\"\"\n tasks = self.session.query(self.Table).filter(self.Table.deadline <\n datetime.today().strftime('%Y-%m-%d')).order_by(self.Table.deadline\n ).all()\n print('Missed tasks:')\n if tasks:\n for n, task in enumerate(tasks, 1):\n print(f\"{n}. {task.task}. {task.deadline.strftime('%d %b')}\")\n else:\n print('Nothing is missed!')\n print()\n\n def add_task(self):\n \"\"\"Add a task to the database\"\"\"\n print('Enter task')\n text_task = input()\n print('Enter deadline')\n new_task = self.Table(task=text_task, deadline=datetime.strptime(\n input(), '%Y-%m-%d'))\n self.session.add(new_task)\n self.session.commit()\n print('The task has been added!')\n print()\n\n def delete_task(self):\n \"\"\"Delete a chosen task from the database\"\"\"\n tasks = self.session.query(self.Table).order_by(self.Table.deadline\n ).all()\n if tasks:\n print('Chose the number of the task you want to delete:')\n for n, task in enumerate(tasks, 1):\n print(f\"{n}. {task.task}. {task.deadline.strftime('%d %b')}\")\n self.session.query(self.Table).filter(self.Table.id == tasks[\n int(input()) - 1].id).delete()\n self.session.commit()\n else:\n print('Nothing to delete!')\n print()\n\n def run(self):\n \"\"\"Main logic of the program\"\"\"\n while True:\n self.menu()\n if self.menu_choice == '1':\n self.show_today_tasks()\n elif self.menu_choice == '2':\n self.show_weeks_tasks()\n elif self.menu_choice == '3':\n self.show_all_tasks()\n elif self.menu_choice == '4':\n self.show_missed_tasks()\n elif self.menu_choice == '5':\n self.add_task()\n elif self.menu_choice == '6':\n self.delete_task()\n else:\n print('Bye!')\n break\n\n\n<code token>\n", "<import token>\n\n\nclass ToDo:\n <assignment token>\n\n\n class Table(Base):\n \"\"\"The database model of a task\"\"\"\n __tablename__ = 'task'\n id = Column(Integer, primary_key=True)\n task = Column(String, default='Unnamed task')\n deadline = Column(Date, default=datetime.today())\n\n def __repr__(self):\n return f'{self.id}. {self.task}'\n\n def __init__(self):\n self.session = None\n self.menu_choice = ''\n self.init_database()\n\n def init_database(self):\n \"\"\"Creates and initializes a database\"\"\"\n engine = create_engine('sqlite:///todo.db?check_same_thread=False')\n self.Base.metadata.create_all(engine)\n self.session = sessionmaker(bind=engine)()\n\n def menu(self):\n \"\"\"Prints menu items and accepts user choice\"\"\"\n print(\"1) Today's tasks\")\n print(\"2) Week's tasks\")\n print('3) All tasks')\n print('4) Missed tasks')\n print('5) Add task')\n print('6) Delete task')\n print('0) Exit')\n self.menu_choice = input()\n\n def show_today_tasks(self):\n \"\"\"Outputs all tasks for today\"\"\"\n today = datetime.today()\n tasks = self.session.query(self.Table).filter(self.Table.deadline ==\n today.strftime('%Y-%m-%d')).all()\n print(f\"Today {today.strftime('%d %b')}:\")\n if tasks:\n for n, task in enumerate(tasks, 1):\n print(f'{n}. {task.task}')\n else:\n print('Nothing to do!')\n print()\n\n def show_weeks_tasks(self):\n \"\"\"Outputs all tasks for next seven days\"\"\"\n for day in [(datetime.today() + timedelta(days=i)) for i in range(7)]:\n tasks = self.session.query(self.Table).filter(self.Table.\n deadline == day.strftime('%Y-%m-%d')).order_by(self.Table.\n deadline).all()\n print(f\"{day.strftime('%A')} {day.strftime('%d %b')}:\")\n if tasks:\n for n, task in enumerate(tasks, 1):\n print(f'{n}. {task.task}')\n else:\n print('Nothing to do!')\n print()\n\n def show_all_tasks(self):\n \"\"\"Shows all tasks from the database\"\"\"\n tasks = self.session.query(self.Table).order_by(self.Table.deadline\n ).all()\n print('All tasks:')\n if tasks:\n for n, task in enumerate(tasks, 1):\n print(f\"{n}. {task.task}. {task.deadline.strftime('%d %b')}\")\n else:\n print('Nothing to do!')\n print()\n\n def show_missed_tasks(self):\n \"\"\"Shows all missed tasks from the database\"\"\"\n tasks = self.session.query(self.Table).filter(self.Table.deadline <\n datetime.today().strftime('%Y-%m-%d')).order_by(self.Table.deadline\n ).all()\n print('Missed tasks:')\n if tasks:\n for n, task in enumerate(tasks, 1):\n print(f\"{n}. {task.task}. {task.deadline.strftime('%d %b')}\")\n else:\n print('Nothing is missed!')\n print()\n\n def add_task(self):\n \"\"\"Add a task to the database\"\"\"\n print('Enter task')\n text_task = input()\n print('Enter deadline')\n new_task = self.Table(task=text_task, deadline=datetime.strptime(\n input(), '%Y-%m-%d'))\n self.session.add(new_task)\n self.session.commit()\n print('The task has been added!')\n print()\n\n def delete_task(self):\n \"\"\"Delete a chosen task from the database\"\"\"\n tasks = self.session.query(self.Table).order_by(self.Table.deadline\n ).all()\n if tasks:\n print('Chose the number of the task you want to delete:')\n for n, task in enumerate(tasks, 1):\n print(f\"{n}. {task.task}. {task.deadline.strftime('%d %b')}\")\n self.session.query(self.Table).filter(self.Table.id == tasks[\n int(input()) - 1].id).delete()\n self.session.commit()\n else:\n print('Nothing to delete!')\n print()\n\n def run(self):\n \"\"\"Main logic of the program\"\"\"\n while True:\n self.menu()\n if self.menu_choice == '1':\n self.show_today_tasks()\n elif self.menu_choice == '2':\n self.show_weeks_tasks()\n elif self.menu_choice == '3':\n self.show_all_tasks()\n elif self.menu_choice == '4':\n self.show_missed_tasks()\n elif self.menu_choice == '5':\n self.add_task()\n elif self.menu_choice == '6':\n self.delete_task()\n else:\n print('Bye!')\n break\n\n\n<code token>\n", "<import token>\n\n\nclass ToDo:\n <assignment token>\n\n\n class Table(Base):\n \"\"\"The database model of a task\"\"\"\n __tablename__ = 'task'\n id = Column(Integer, primary_key=True)\n task = Column(String, default='Unnamed task')\n deadline = Column(Date, default=datetime.today())\n\n def __repr__(self):\n return f'{self.id}. {self.task}'\n\n def __init__(self):\n self.session = None\n self.menu_choice = ''\n self.init_database()\n\n def init_database(self):\n \"\"\"Creates and initializes a database\"\"\"\n engine = create_engine('sqlite:///todo.db?check_same_thread=False')\n self.Base.metadata.create_all(engine)\n self.session = sessionmaker(bind=engine)()\n\n def menu(self):\n \"\"\"Prints menu items and accepts user choice\"\"\"\n print(\"1) Today's tasks\")\n print(\"2) Week's tasks\")\n print('3) All tasks')\n print('4) Missed tasks')\n print('5) Add task')\n print('6) Delete task')\n print('0) Exit')\n self.menu_choice = input()\n\n def show_today_tasks(self):\n \"\"\"Outputs all tasks for today\"\"\"\n today = datetime.today()\n tasks = self.session.query(self.Table).filter(self.Table.deadline ==\n today.strftime('%Y-%m-%d')).all()\n print(f\"Today {today.strftime('%d %b')}:\")\n if tasks:\n for n, task in enumerate(tasks, 1):\n print(f'{n}. {task.task}')\n else:\n print('Nothing to do!')\n print()\n <function token>\n\n def show_all_tasks(self):\n \"\"\"Shows all tasks from the database\"\"\"\n tasks = self.session.query(self.Table).order_by(self.Table.deadline\n ).all()\n print('All tasks:')\n if tasks:\n for n, task in enumerate(tasks, 1):\n print(f\"{n}. {task.task}. {task.deadline.strftime('%d %b')}\")\n else:\n print('Nothing to do!')\n print()\n\n def show_missed_tasks(self):\n \"\"\"Shows all missed tasks from the database\"\"\"\n tasks = self.session.query(self.Table).filter(self.Table.deadline <\n datetime.today().strftime('%Y-%m-%d')).order_by(self.Table.deadline\n ).all()\n print('Missed tasks:')\n if tasks:\n for n, task in enumerate(tasks, 1):\n print(f\"{n}. {task.task}. {task.deadline.strftime('%d %b')}\")\n else:\n print('Nothing is missed!')\n print()\n\n def add_task(self):\n \"\"\"Add a task to the database\"\"\"\n print('Enter task')\n text_task = input()\n print('Enter deadline')\n new_task = self.Table(task=text_task, deadline=datetime.strptime(\n input(), '%Y-%m-%d'))\n self.session.add(new_task)\n self.session.commit()\n print('The task has been added!')\n print()\n\n def delete_task(self):\n \"\"\"Delete a chosen task from the database\"\"\"\n tasks = self.session.query(self.Table).order_by(self.Table.deadline\n ).all()\n if tasks:\n print('Chose the number of the task you want to delete:')\n for n, task in enumerate(tasks, 1):\n print(f\"{n}. {task.task}. {task.deadline.strftime('%d %b')}\")\n self.session.query(self.Table).filter(self.Table.id == tasks[\n int(input()) - 1].id).delete()\n self.session.commit()\n else:\n print('Nothing to delete!')\n print()\n\n def run(self):\n \"\"\"Main logic of the program\"\"\"\n while True:\n self.menu()\n if self.menu_choice == '1':\n self.show_today_tasks()\n elif self.menu_choice == '2':\n self.show_weeks_tasks()\n elif self.menu_choice == '3':\n self.show_all_tasks()\n elif self.menu_choice == '4':\n self.show_missed_tasks()\n elif self.menu_choice == '5':\n self.add_task()\n elif self.menu_choice == '6':\n self.delete_task()\n else:\n print('Bye!')\n break\n\n\n<code token>\n", "<import token>\n\n\nclass ToDo:\n <assignment token>\n\n\n class Table(Base):\n \"\"\"The database model of a task\"\"\"\n __tablename__ = 'task'\n id = Column(Integer, primary_key=True)\n task = Column(String, default='Unnamed task')\n deadline = Column(Date, default=datetime.today())\n\n def __repr__(self):\n return f'{self.id}. {self.task}'\n\n def __init__(self):\n self.session = None\n self.menu_choice = ''\n self.init_database()\n\n def init_database(self):\n \"\"\"Creates and initializes a database\"\"\"\n engine = create_engine('sqlite:///todo.db?check_same_thread=False')\n self.Base.metadata.create_all(engine)\n self.session = sessionmaker(bind=engine)()\n\n def menu(self):\n \"\"\"Prints menu items and accepts user choice\"\"\"\n print(\"1) Today's tasks\")\n print(\"2) Week's tasks\")\n print('3) All tasks')\n print('4) Missed tasks')\n print('5) Add task')\n print('6) Delete task')\n print('0) Exit')\n self.menu_choice = input()\n\n def show_today_tasks(self):\n \"\"\"Outputs all tasks for today\"\"\"\n today = datetime.today()\n tasks = self.session.query(self.Table).filter(self.Table.deadline ==\n today.strftime('%Y-%m-%d')).all()\n print(f\"Today {today.strftime('%d %b')}:\")\n if tasks:\n for n, task in enumerate(tasks, 1):\n print(f'{n}. {task.task}')\n else:\n print('Nothing to do!')\n print()\n <function token>\n\n def show_all_tasks(self):\n \"\"\"Shows all tasks from the database\"\"\"\n tasks = self.session.query(self.Table).order_by(self.Table.deadline\n ).all()\n print('All tasks:')\n if tasks:\n for n, task in enumerate(tasks, 1):\n print(f\"{n}. {task.task}. {task.deadline.strftime('%d %b')}\")\n else:\n print('Nothing to do!')\n print()\n\n def show_missed_tasks(self):\n \"\"\"Shows all missed tasks from the database\"\"\"\n tasks = self.session.query(self.Table).filter(self.Table.deadline <\n datetime.today().strftime('%Y-%m-%d')).order_by(self.Table.deadline\n ).all()\n print('Missed tasks:')\n if tasks:\n for n, task in enumerate(tasks, 1):\n print(f\"{n}. {task.task}. {task.deadline.strftime('%d %b')}\")\n else:\n print('Nothing is missed!')\n print()\n <function token>\n\n def delete_task(self):\n \"\"\"Delete a chosen task from the database\"\"\"\n tasks = self.session.query(self.Table).order_by(self.Table.deadline\n ).all()\n if tasks:\n print('Chose the number of the task you want to delete:')\n for n, task in enumerate(tasks, 1):\n print(f\"{n}. {task.task}. {task.deadline.strftime('%d %b')}\")\n self.session.query(self.Table).filter(self.Table.id == tasks[\n int(input()) - 1].id).delete()\n self.session.commit()\n else:\n print('Nothing to delete!')\n print()\n\n def run(self):\n \"\"\"Main logic of the program\"\"\"\n while True:\n self.menu()\n if self.menu_choice == '1':\n self.show_today_tasks()\n elif self.menu_choice == '2':\n self.show_weeks_tasks()\n elif self.menu_choice == '3':\n self.show_all_tasks()\n elif self.menu_choice == '4':\n self.show_missed_tasks()\n elif self.menu_choice == '5':\n self.add_task()\n elif self.menu_choice == '6':\n self.delete_task()\n else:\n print('Bye!')\n break\n\n\n<code token>\n", "<import token>\n\n\nclass ToDo:\n <assignment token>\n\n\n class Table(Base):\n \"\"\"The database model of a task\"\"\"\n __tablename__ = 'task'\n id = Column(Integer, primary_key=True)\n task = Column(String, default='Unnamed task')\n deadline = Column(Date, default=datetime.today())\n\n def __repr__(self):\n return f'{self.id}. {self.task}'\n\n def __init__(self):\n self.session = None\n self.menu_choice = ''\n self.init_database()\n\n def init_database(self):\n \"\"\"Creates and initializes a database\"\"\"\n engine = create_engine('sqlite:///todo.db?check_same_thread=False')\n self.Base.metadata.create_all(engine)\n self.session = sessionmaker(bind=engine)()\n\n def menu(self):\n \"\"\"Prints menu items and accepts user choice\"\"\"\n print(\"1) Today's tasks\")\n print(\"2) Week's tasks\")\n print('3) All tasks')\n print('4) Missed tasks')\n print('5) Add task')\n print('6) Delete task')\n print('0) Exit')\n self.menu_choice = input()\n\n def show_today_tasks(self):\n \"\"\"Outputs all tasks for today\"\"\"\n today = datetime.today()\n tasks = self.session.query(self.Table).filter(self.Table.deadline ==\n today.strftime('%Y-%m-%d')).all()\n print(f\"Today {today.strftime('%d %b')}:\")\n if tasks:\n for n, task in enumerate(tasks, 1):\n print(f'{n}. {task.task}')\n else:\n print('Nothing to do!')\n print()\n <function token>\n\n def show_all_tasks(self):\n \"\"\"Shows all tasks from the database\"\"\"\n tasks = self.session.query(self.Table).order_by(self.Table.deadline\n ).all()\n print('All tasks:')\n if tasks:\n for n, task in enumerate(tasks, 1):\n print(f\"{n}. {task.task}. {task.deadline.strftime('%d %b')}\")\n else:\n print('Nothing to do!')\n print()\n <function token>\n <function token>\n\n def delete_task(self):\n \"\"\"Delete a chosen task from the database\"\"\"\n tasks = self.session.query(self.Table).order_by(self.Table.deadline\n ).all()\n if tasks:\n print('Chose the number of the task you want to delete:')\n for n, task in enumerate(tasks, 1):\n print(f\"{n}. {task.task}. {task.deadline.strftime('%d %b')}\")\n self.session.query(self.Table).filter(self.Table.id == tasks[\n int(input()) - 1].id).delete()\n self.session.commit()\n else:\n print('Nothing to delete!')\n print()\n\n def run(self):\n \"\"\"Main logic of the program\"\"\"\n while True:\n self.menu()\n if self.menu_choice == '1':\n self.show_today_tasks()\n elif self.menu_choice == '2':\n self.show_weeks_tasks()\n elif self.menu_choice == '3':\n self.show_all_tasks()\n elif self.menu_choice == '4':\n self.show_missed_tasks()\n elif self.menu_choice == '5':\n self.add_task()\n elif self.menu_choice == '6':\n self.delete_task()\n else:\n print('Bye!')\n break\n\n\n<code token>\n", "<import token>\n\n\nclass ToDo:\n <assignment token>\n\n\n class Table(Base):\n \"\"\"The database model of a task\"\"\"\n __tablename__ = 'task'\n id = Column(Integer, primary_key=True)\n task = Column(String, default='Unnamed task')\n deadline = Column(Date, default=datetime.today())\n\n def __repr__(self):\n return f'{self.id}. {self.task}'\n\n def __init__(self):\n self.session = None\n self.menu_choice = ''\n self.init_database()\n <function token>\n\n def menu(self):\n \"\"\"Prints menu items and accepts user choice\"\"\"\n print(\"1) Today's tasks\")\n print(\"2) Week's tasks\")\n print('3) All tasks')\n print('4) Missed tasks')\n print('5) Add task')\n print('6) Delete task')\n print('0) Exit')\n self.menu_choice = input()\n\n def show_today_tasks(self):\n \"\"\"Outputs all tasks for today\"\"\"\n today = datetime.today()\n tasks = self.session.query(self.Table).filter(self.Table.deadline ==\n today.strftime('%Y-%m-%d')).all()\n print(f\"Today {today.strftime('%d %b')}:\")\n if tasks:\n for n, task in enumerate(tasks, 1):\n print(f'{n}. {task.task}')\n else:\n print('Nothing to do!')\n print()\n <function token>\n\n def show_all_tasks(self):\n \"\"\"Shows all tasks from the database\"\"\"\n tasks = self.session.query(self.Table).order_by(self.Table.deadline\n ).all()\n print('All tasks:')\n if tasks:\n for n, task in enumerate(tasks, 1):\n print(f\"{n}. {task.task}. {task.deadline.strftime('%d %b')}\")\n else:\n print('Nothing to do!')\n print()\n <function token>\n <function token>\n\n def delete_task(self):\n \"\"\"Delete a chosen task from the database\"\"\"\n tasks = self.session.query(self.Table).order_by(self.Table.deadline\n ).all()\n if tasks:\n print('Chose the number of the task you want to delete:')\n for n, task in enumerate(tasks, 1):\n print(f\"{n}. {task.task}. {task.deadline.strftime('%d %b')}\")\n self.session.query(self.Table).filter(self.Table.id == tasks[\n int(input()) - 1].id).delete()\n self.session.commit()\n else:\n print('Nothing to delete!')\n print()\n\n def run(self):\n \"\"\"Main logic of the program\"\"\"\n while True:\n self.menu()\n if self.menu_choice == '1':\n self.show_today_tasks()\n elif self.menu_choice == '2':\n self.show_weeks_tasks()\n elif self.menu_choice == '3':\n self.show_all_tasks()\n elif self.menu_choice == '4':\n self.show_missed_tasks()\n elif self.menu_choice == '5':\n self.add_task()\n elif self.menu_choice == '6':\n self.delete_task()\n else:\n print('Bye!')\n break\n\n\n<code token>\n", "<import token>\n\n\nclass ToDo:\n <assignment token>\n\n\n class Table(Base):\n \"\"\"The database model of a task\"\"\"\n __tablename__ = 'task'\n id = Column(Integer, primary_key=True)\n task = Column(String, default='Unnamed task')\n deadline = Column(Date, default=datetime.today())\n\n def __repr__(self):\n return f'{self.id}. {self.task}'\n\n def __init__(self):\n self.session = None\n self.menu_choice = ''\n self.init_database()\n <function token>\n\n def menu(self):\n \"\"\"Prints menu items and accepts user choice\"\"\"\n print(\"1) Today's tasks\")\n print(\"2) Week's tasks\")\n print('3) All tasks')\n print('4) Missed tasks')\n print('5) Add task')\n print('6) Delete task')\n print('0) Exit')\n self.menu_choice = input()\n\n def show_today_tasks(self):\n \"\"\"Outputs all tasks for today\"\"\"\n today = datetime.today()\n tasks = self.session.query(self.Table).filter(self.Table.deadline ==\n today.strftime('%Y-%m-%d')).all()\n print(f\"Today {today.strftime('%d %b')}:\")\n if tasks:\n for n, task in enumerate(tasks, 1):\n print(f'{n}. {task.task}')\n else:\n print('Nothing to do!')\n print()\n <function token>\n <function token>\n <function token>\n <function token>\n\n def delete_task(self):\n \"\"\"Delete a chosen task from the database\"\"\"\n tasks = self.session.query(self.Table).order_by(self.Table.deadline\n ).all()\n if tasks:\n print('Chose the number of the task you want to delete:')\n for n, task in enumerate(tasks, 1):\n print(f\"{n}. {task.task}. {task.deadline.strftime('%d %b')}\")\n self.session.query(self.Table).filter(self.Table.id == tasks[\n int(input()) - 1].id).delete()\n self.session.commit()\n else:\n print('Nothing to delete!')\n print()\n\n def run(self):\n \"\"\"Main logic of the program\"\"\"\n while True:\n self.menu()\n if self.menu_choice == '1':\n self.show_today_tasks()\n elif self.menu_choice == '2':\n self.show_weeks_tasks()\n elif self.menu_choice == '3':\n self.show_all_tasks()\n elif self.menu_choice == '4':\n self.show_missed_tasks()\n elif self.menu_choice == '5':\n self.add_task()\n elif self.menu_choice == '6':\n self.delete_task()\n else:\n print('Bye!')\n break\n\n\n<code token>\n", "<import token>\n\n\nclass ToDo:\n <assignment token>\n\n\n class Table(Base):\n \"\"\"The database model of a task\"\"\"\n __tablename__ = 'task'\n id = Column(Integer, primary_key=True)\n task = Column(String, default='Unnamed task')\n deadline = Column(Date, default=datetime.today())\n\n def __repr__(self):\n return f'{self.id}. {self.task}'\n\n def __init__(self):\n self.session = None\n self.menu_choice = ''\n self.init_database()\n <function token>\n\n def menu(self):\n \"\"\"Prints menu items and accepts user choice\"\"\"\n print(\"1) Today's tasks\")\n print(\"2) Week's tasks\")\n print('3) All tasks')\n print('4) Missed tasks')\n print('5) Add task')\n print('6) Delete task')\n print('0) Exit')\n self.menu_choice = input()\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def delete_task(self):\n \"\"\"Delete a chosen task from the database\"\"\"\n tasks = self.session.query(self.Table).order_by(self.Table.deadline\n ).all()\n if tasks:\n print('Chose the number of the task you want to delete:')\n for n, task in enumerate(tasks, 1):\n print(f\"{n}. {task.task}. {task.deadline.strftime('%d %b')}\")\n self.session.query(self.Table).filter(self.Table.id == tasks[\n int(input()) - 1].id).delete()\n self.session.commit()\n else:\n print('Nothing to delete!')\n print()\n\n def run(self):\n \"\"\"Main logic of the program\"\"\"\n while True:\n self.menu()\n if self.menu_choice == '1':\n self.show_today_tasks()\n elif self.menu_choice == '2':\n self.show_weeks_tasks()\n elif self.menu_choice == '3':\n self.show_all_tasks()\n elif self.menu_choice == '4':\n self.show_missed_tasks()\n elif self.menu_choice == '5':\n self.add_task()\n elif self.menu_choice == '6':\n self.delete_task()\n else:\n print('Bye!')\n break\n\n\n<code token>\n", "<import token>\n\n\nclass ToDo:\n <assignment token>\n\n\n class Table(Base):\n \"\"\"The database model of a task\"\"\"\n __tablename__ = 'task'\n id = Column(Integer, primary_key=True)\n task = Column(String, default='Unnamed task')\n deadline = Column(Date, default=datetime.today())\n\n def __repr__(self):\n return f'{self.id}. {self.task}'\n\n def __init__(self):\n self.session = None\n self.menu_choice = ''\n self.init_database()\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def delete_task(self):\n \"\"\"Delete a chosen task from the database\"\"\"\n tasks = self.session.query(self.Table).order_by(self.Table.deadline\n ).all()\n if tasks:\n print('Chose the number of the task you want to delete:')\n for n, task in enumerate(tasks, 1):\n print(f\"{n}. {task.task}. {task.deadline.strftime('%d %b')}\")\n self.session.query(self.Table).filter(self.Table.id == tasks[\n int(input()) - 1].id).delete()\n self.session.commit()\n else:\n print('Nothing to delete!')\n print()\n\n def run(self):\n \"\"\"Main logic of the program\"\"\"\n while True:\n self.menu()\n if self.menu_choice == '1':\n self.show_today_tasks()\n elif self.menu_choice == '2':\n self.show_weeks_tasks()\n elif self.menu_choice == '3':\n self.show_all_tasks()\n elif self.menu_choice == '4':\n self.show_missed_tasks()\n elif self.menu_choice == '5':\n self.add_task()\n elif self.menu_choice == '6':\n self.delete_task()\n else:\n print('Bye!')\n break\n\n\n<code token>\n", "<import token>\n\n\nclass ToDo:\n <assignment token>\n\n\n class Table(Base):\n \"\"\"The database model of a task\"\"\"\n __tablename__ = 'task'\n id = Column(Integer, primary_key=True)\n task = Column(String, default='Unnamed task')\n deadline = Column(Date, default=datetime.today())\n\n def __repr__(self):\n return f'{self.id}. {self.task}'\n\n def __init__(self):\n self.session = None\n self.menu_choice = ''\n self.init_database()\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def delete_task(self):\n \"\"\"Delete a chosen task from the database\"\"\"\n tasks = self.session.query(self.Table).order_by(self.Table.deadline\n ).all()\n if tasks:\n print('Chose the number of the task you want to delete:')\n for n, task in enumerate(tasks, 1):\n print(f\"{n}. {task.task}. {task.deadline.strftime('%d %b')}\")\n self.session.query(self.Table).filter(self.Table.id == tasks[\n int(input()) - 1].id).delete()\n self.session.commit()\n else:\n print('Nothing to delete!')\n print()\n <function token>\n\n\n<code token>\n", "<import token>\n\n\nclass ToDo:\n <assignment token>\n\n\n class Table(Base):\n \"\"\"The database model of a task\"\"\"\n __tablename__ = 'task'\n id = Column(Integer, primary_key=True)\n task = Column(String, default='Unnamed task')\n deadline = Column(Date, default=datetime.today())\n\n def __repr__(self):\n return f'{self.id}. {self.task}'\n\n def __init__(self):\n self.session = None\n self.menu_choice = ''\n self.init_database()\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\n<code token>\n", "<import token>\n\n\nclass ToDo:\n <assignment token>\n\n\n class Table(Base):\n \"\"\"The database model of a task\"\"\"\n __tablename__ = 'task'\n id = Column(Integer, primary_key=True)\n task = Column(String, default='Unnamed task')\n deadline = Column(Date, default=datetime.today())\n\n def __repr__(self):\n return f'{self.id}. {self.task}'\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\n<code token>\n", "<import token>\n<class token>\n<code token>\n" ]
false
98,827
b1293088e5b8947c717b97d3c81c600a2a31cb24
from django.conf.urls import url from . import views urlpatterns = [ url(r'^register_user/$', views.register_user, name='register_user'), url(r'^confirmation/$', views.confirmation, name='confirmation'), url(r'^$', views.index, name='index'), ]
[ "from django.conf.urls import url\n\nfrom . import views\n\n\nurlpatterns = [\n url(r'^register_user/$', views.register_user, name='register_user'),\n url(r'^confirmation/$', views.confirmation, name='confirmation'),\n url(r'^$', views.index, name='index'),\n]\n", "from django.conf.urls import url\nfrom . import views\nurlpatterns = [url('^register_user/$', views.register_user, name=\n 'register_user'), url('^confirmation/$', views.confirmation, name=\n 'confirmation'), url('^$', views.index, name='index')]\n", "<import token>\nurlpatterns = [url('^register_user/$', views.register_user, name=\n 'register_user'), url('^confirmation/$', views.confirmation, name=\n 'confirmation'), url('^$', views.index, name='index')]\n", "<import token>\n<assignment token>\n" ]
false
98,828
1d7dbc3646a9fae0f5c438094d471a65192e0cfb
from PIL import Image from PIL.ImageDraw import Draw#ImageDraw #Подключим необходимые библиотеки. from PySide2 import QtGui import math as mh class Oper(object): # Функция нахождения яркости пикселя def brightness(self,x, y): R, G, B = self.pix[x, y] return sum([R, G, B]) // 3 # 0 is dark (black) and 255 is bright (white) # Функция изменения цвета def changeColor(self,alpha, maska, x, y): for i in [x - 2, x - 1, x]: for j in [y - 3, y - 2, y - 1]: self.picture[i][j] = alpha # ************************************** # Оператор Робертса def operRoberts(self,matrix, x, y): Gx = matrix[x + 1][y + 1] - matrix[x][y] Gy = matrix[x + 1][y] - matrix[x][y + 1] # G = np.sqrt(sum([Gx ** 2, Gy ** 2])) G = mh.fabs(Gx) + mh.fabs(Gy) return G # ************************************** # ************************************** # Оператор Собеля def operSobel(self,matrix, x, y): Gx = (matrix[x + 1][y - 1] + 2 * matrix[x + 1][y] + matrix[x + 1][y + 1]) - ( matrix[x - 1][y - 1] + 2 * matrix[x - 1][y] + matrix[x - 1][y + 1]) Gy = (matrix[x - 1][y + 1] + 2 * matrix[x][y + 1] + matrix[x + 1][y + 1]) - ( matrix[x - 1][y - 1] + 2 * matrix[x][y - 1] + matrix[x + 1][y - 1]) G = mh.sqrt(sum([Gx ** 2, Gy ** 2])) return G # ************************************** # ************************************** # Оператор Лапласа def operLaplas(self, matrix, x, y): Gx = 4 * matrix[x][y] - matrix[x - 1][y] - matrix[x][y - 1] - matrix[x][y + 1] - matrix[x + 1][y] Gy = 8 * matrix[x][y] - matrix[x - 1][y - 1] - matrix[x - 1][y] - matrix[x - 1][y + 1] - matrix[x][y - 1] - \ matrix[x][y + 1] - matrix[x + 1][y - 1] - matrix[x + 1][y] - matrix[x + 1][y + 1] G = mh.sqrt(sum([Gx ** 2, Gy ** 2])) return G # ************************************** # Функция выбора оператора def choiceOper(self, num): if (num == 1): self.changeColor(self.operLaplas(self.mask, 1, 1), self.mask, self._wid, self._hei) elif (num == 2): self.changeColor(self.operRoberts(self.mask, 1, 1), self.mask, self._wid, self._hei) elif(num == 3): self.changeColor(self.operSobel(self.mask, 1, 1), self.mask, self._wid,self._hei) def mainInOper(self, pict, num): self.image = pict#pict#Открываем изображение. self.width = self.image.size[0] #Определяем ширину. self.height = self.image.size[1] #Определяем высоту. self.mask = []#Маска со значениями яркости пикселя self.picture = []#Массив для записи градиентов точек # Маска 3х3 for j in range(3): mask2 = [] for i in range(3): mask2.append(0) self.mask.append(mask2) # Вспомогательный массив, который хранит яркости пикселей для нового изображения for j in range(self.width): picture2 = [] for i in range(self.height): picture2.append(0) self.picture.append(picture2) # Подгонка изображения для матрицы 3х3 if (self.width%3 != 0 and self.height%3 != 0): self.imag = self.image.crop((0,0,self.width - self.width%3, self.height - self.height%3)) elif (self.width%3 != 0): self.imag = self.image.crop((0, 0, self.width - self.width%3, self.height)) elif (self.height%3 != 0): self.imag = self.image.crop((0, 0, self.width, self.height - self.height % 3)) else: self.imag = self.image self.draw = Draw(self.imag)#Создаем инструмент для рисования. self.width = self.imag.size[0] #Определяем ширину. self.height = self.imag.size[1] #Определяем высоту. self.pix = self.imag.load() #Выгружаем значения пикселей. print(self.imag.size) # Размер изображения self._hei = 0 # Индекс для прохода по длине self._wid = 0 # Индекс для прохода по ширине self._i_wid = 0 # Индекс для прохода по ширине по маске (3x3) # Обход изображения применяя к нему маску выбранного оператора while self._wid < self.width: self._j_hei = 0 # Индекс для прохода по длне по маске (3x3) while self._hei < self.height and self._j_hei < 3: self.mask[self._i_wid][self._j_hei] = self.brightness(self._wid, self._hei) # записываем значение яркости пикселя в маску self._j_hei += 1 self._hei += 1 if (self._i_wid == 2): if (self._hei == self.height): # alph = math.atan(operRoberts(mask, 1, 1)) - угол self.choiceOper(num) self._hei = 0; self._i_wid = 0 self._wid += 1 else: self.choiceOper(num) # alph = math.atan(operRoberts(mask, 1, 1)) - угол self._i_wid = 0 self._wid -= 2 else: self._hei -= 3 self._i_wid += 1 self._wid += 1 if (self._hei == self.height): self._hei = 0 #Перерисовывание изображения новыми пикселями for i in range(self.width): for j in range(self.height): self.draw.point((i, j), (int(self.picture[i][j]), int(self.picture[i][j]), int(self.picture[i][j]))) # (a, b, c)) return self.imag # self.pixel = QtGui.QImage(pict) # # self.painter = QtGui.QPainter() # # Перерисовывание изображения новыми пикселями # # for i in range(self.width): # # for j in range(self.height): # # self.painter.setPen(QtGui.QColor(int(self.picture[i][j]), int(self.picture[i][j]), int(self.picture[i][j]))) # # self.painter.drawImage(i, j,self.pix) # # return self.painter # for i in range(self.width): # for j in range(self.height): # print(self.picture[i][j]) # self.pixel.setPixel(i,j,0)#int(self.picture[i][j])) # return self.pixel
[ "from PIL import Image\nfrom PIL.ImageDraw import Draw#ImageDraw #Подключим необходимые библиотеки.\nfrom PySide2 import QtGui\nimport math as mh\n\nclass Oper(object):\n # Функция нахождения яркости пикселя\n def brightness(self,x, y):\n R, G, B = self.pix[x, y]\n return sum([R, G, B]) // 3 # 0 is dark (black) and 255 is bright (white)\n\n # Функция изменения цвета\n def changeColor(self,alpha, maska, x, y):\n for i in [x - 2, x - 1, x]:\n for j in [y - 3, y - 2, y - 1]:\n self.picture[i][j] = alpha\n\n # **************************************\n # Оператор Робертса\n def operRoberts(self,matrix, x, y):\n Gx = matrix[x + 1][y + 1] - matrix[x][y]\n Gy = matrix[x + 1][y] - matrix[x][y + 1]\n # G = np.sqrt(sum([Gx ** 2, Gy ** 2]))\n G = mh.fabs(Gx) + mh.fabs(Gy)\n return G\n\n # **************************************\n\n # **************************************\n # Оператор Собеля\n def operSobel(self,matrix, x, y):\n Gx = (matrix[x + 1][y - 1] + 2 * matrix[x + 1][y] + matrix[x + 1][y + 1]) - (\n matrix[x - 1][y - 1] + 2 * matrix[x - 1][y] + matrix[x - 1][y + 1])\n Gy = (matrix[x - 1][y + 1] + 2 * matrix[x][y + 1] + matrix[x + 1][y + 1]) - (\n matrix[x - 1][y - 1] + 2 * matrix[x][y - 1] + matrix[x + 1][y - 1])\n G = mh.sqrt(sum([Gx ** 2, Gy ** 2]))\n return G\n\n # **************************************\n\n # **************************************\n # Оператор Лапласа\n def operLaplas(self, matrix, x, y):\n Gx = 4 * matrix[x][y] - matrix[x - 1][y] - matrix[x][y - 1] - matrix[x][y + 1] - matrix[x + 1][y]\n Gy = 8 * matrix[x][y] - matrix[x - 1][y - 1] - matrix[x - 1][y] - matrix[x - 1][y + 1] - matrix[x][y - 1] - \\\n matrix[x][y + 1] - matrix[x + 1][y - 1] - matrix[x + 1][y] - matrix[x + 1][y + 1]\n G = mh.sqrt(sum([Gx ** 2, Gy ** 2]))\n return G\n\n # **************************************\n\n # Функция выбора оператора\n def choiceOper(self, num):\n if (num == 1):\n self.changeColor(self.operLaplas(self.mask, 1, 1), self.mask, self._wid, self._hei)\n elif (num == 2):\n self.changeColor(self.operRoberts(self.mask, 1, 1), self.mask, self._wid, self._hei)\n elif(num == 3):\n self.changeColor(self.operSobel(self.mask, 1, 1), self.mask, self._wid,self._hei)\n\n\n def mainInOper(self, pict, num):\n\n self.image = pict#pict#Открываем изображение.\n self.width = self.image.size[0] #Определяем ширину.\n self.height = self.image.size[1] #Определяем высоту.\n self.mask = []#Маска со значениями яркости пикселя\n self.picture = []#Массив для записи градиентов точек\n\n # Маска 3х3\n for j in range(3):\n mask2 = []\n for i in range(3):\n mask2.append(0)\n self.mask.append(mask2)\n\n # Вспомогательный массив, который хранит яркости пикселей для нового изображения\n for j in range(self.width):\n picture2 = []\n for i in range(self.height):\n picture2.append(0)\n self.picture.append(picture2)\n\n # Подгонка изображения для матрицы 3х3\n if (self.width%3 != 0 and self.height%3 != 0):\n self.imag = self.image.crop((0,0,self.width - self.width%3, self.height - self.height%3))\n elif (self.width%3 != 0):\n self.imag = self.image.crop((0, 0, self.width - self.width%3, self.height))\n elif (self.height%3 != 0):\n self.imag = self.image.crop((0, 0, self.width, self.height - self.height % 3))\n else:\n self.imag = self.image\n\n self.draw = Draw(self.imag)#Создаем инструмент для рисования.\n self.width = self.imag.size[0] #Определяем ширину.\n self.height = self.imag.size[1] #Определяем высоту.\n self.pix = self.imag.load() #Выгружаем значения пикселей.\n\n print(self.imag.size) # Размер изображения\n self._hei = 0 # Индекс для прохода по длине\n self._wid = 0 # Индекс для прохода по ширине\n self._i_wid = 0 # Индекс для прохода по ширине по маске (3x3)\n\n # Обход изображения применяя к нему маску выбранного оператора\n while self._wid < self.width:\n self._j_hei = 0 # Индекс для прохода по длне по маске (3x3)\n while self._hei < self.height and self._j_hei < 3:\n self.mask[self._i_wid][self._j_hei] = self.brightness(self._wid, self._hei) # записываем значение яркости пикселя в маску\n self._j_hei += 1\n self._hei += 1\n if (self._i_wid == 2):\n if (self._hei == self.height):\n # alph = math.atan(operRoberts(mask, 1, 1)) - угол\n self.choiceOper(num)\n self._hei = 0;\n self._i_wid = 0\n self._wid += 1\n else:\n self.choiceOper(num)\n # alph = math.atan(operRoberts(mask, 1, 1)) - угол\n self._i_wid = 0\n self._wid -= 2\n else:\n self._hei -= 3\n self._i_wid += 1\n self._wid += 1\n\n if (self._hei == self.height):\n self._hei = 0\n\n #Перерисовывание изображения новыми пикселями\n for i in range(self.width):\n for j in range(self.height):\n self.draw.point((i, j), (int(self.picture[i][j]), int(self.picture[i][j]), int(self.picture[i][j]))) # (a, b, c))\n return self.imag\n\n\n # self.pixel = QtGui.QImage(pict)\n #\n # self.painter = QtGui.QPainter()\n # # Перерисовывание изображения новыми пикселями\n # # for i in range(self.width):\n # # for j in range(self.height):\n # # self.painter.setPen(QtGui.QColor(int(self.picture[i][j]), int(self.picture[i][j]), int(self.picture[i][j])))\n # # self.painter.drawImage(i, j,self.pix)\n # # return self.painter\n # for i in range(self.width):\n # for j in range(self.height):\n # print(self.picture[i][j])\n # self.pixel.setPixel(i,j,0)#int(self.picture[i][j]))\n # return self.pixel\n\n\n\n\n\n", "from PIL import Image\nfrom PIL.ImageDraw import Draw\nfrom PySide2 import QtGui\nimport math as mh\n\n\nclass Oper(object):\n\n def brightness(self, x, y):\n R, G, B = self.pix[x, y]\n return sum([R, G, B]) // 3\n\n def changeColor(self, alpha, maska, x, y):\n for i in [x - 2, x - 1, x]:\n for j in [y - 3, y - 2, y - 1]:\n self.picture[i][j] = alpha\n\n def operRoberts(self, matrix, x, y):\n Gx = matrix[x + 1][y + 1] - matrix[x][y]\n Gy = matrix[x + 1][y] - matrix[x][y + 1]\n G = mh.fabs(Gx) + mh.fabs(Gy)\n return G\n\n def operSobel(self, matrix, x, y):\n Gx = matrix[x + 1][y - 1] + 2 * matrix[x + 1][y] + matrix[x + 1][y + 1\n ] - (matrix[x - 1][y - 1] + 2 * matrix[x - 1][y] + matrix[x - 1\n ][y + 1])\n Gy = matrix[x - 1][y + 1] + 2 * matrix[x][y + 1] + matrix[x + 1][y + 1\n ] - (matrix[x - 1][y - 1] + 2 * matrix[x][y - 1] + matrix[x + 1\n ][y - 1])\n G = mh.sqrt(sum([Gx ** 2, Gy ** 2]))\n return G\n\n def operLaplas(self, matrix, x, y):\n Gx = 4 * matrix[x][y] - matrix[x - 1][y] - matrix[x][y - 1] - matrix[x\n ][y + 1] - matrix[x + 1][y]\n Gy = 8 * matrix[x][y] - matrix[x - 1][y - 1] - matrix[x - 1][y\n ] - matrix[x - 1][y + 1] - matrix[x][y - 1] - matrix[x][y + 1\n ] - matrix[x + 1][y - 1] - matrix[x + 1][y] - matrix[x + 1][y + 1]\n G = mh.sqrt(sum([Gx ** 2, Gy ** 2]))\n return G\n\n def choiceOper(self, num):\n if num == 1:\n self.changeColor(self.operLaplas(self.mask, 1, 1), self.mask,\n self._wid, self._hei)\n elif num == 2:\n self.changeColor(self.operRoberts(self.mask, 1, 1), self.mask,\n self._wid, self._hei)\n elif num == 3:\n self.changeColor(self.operSobel(self.mask, 1, 1), self.mask,\n self._wid, self._hei)\n\n def mainInOper(self, pict, num):\n self.image = pict\n self.width = self.image.size[0]\n self.height = self.image.size[1]\n self.mask = []\n self.picture = []\n for j in range(3):\n mask2 = []\n for i in range(3):\n mask2.append(0)\n self.mask.append(mask2)\n for j in range(self.width):\n picture2 = []\n for i in range(self.height):\n picture2.append(0)\n self.picture.append(picture2)\n if self.width % 3 != 0 and self.height % 3 != 0:\n self.imag = self.image.crop((0, 0, self.width - self.width % 3,\n self.height - self.height % 3))\n elif self.width % 3 != 0:\n self.imag = self.image.crop((0, 0, self.width - self.width % 3,\n self.height))\n elif self.height % 3 != 0:\n self.imag = self.image.crop((0, 0, self.width, self.height - \n self.height % 3))\n else:\n self.imag = self.image\n self.draw = Draw(self.imag)\n self.width = self.imag.size[0]\n self.height = self.imag.size[1]\n self.pix = self.imag.load()\n print(self.imag.size)\n self._hei = 0\n self._wid = 0\n self._i_wid = 0\n while self._wid < self.width:\n self._j_hei = 0\n while self._hei < self.height and self._j_hei < 3:\n self.mask[self._i_wid][self._j_hei] = self.brightness(self.\n _wid, self._hei)\n self._j_hei += 1\n self._hei += 1\n if self._i_wid == 2:\n if self._hei == self.height:\n self.choiceOper(num)\n self._hei = 0\n self._i_wid = 0\n self._wid += 1\n else:\n self.choiceOper(num)\n self._i_wid = 0\n self._wid -= 2\n else:\n self._hei -= 3\n self._i_wid += 1\n self._wid += 1\n if self._hei == self.height:\n self._hei = 0\n for i in range(self.width):\n for j in range(self.height):\n self.draw.point((i, j), (int(self.picture[i][j]), int(self.\n picture[i][j]), int(self.picture[i][j])))\n return self.imag\n", "<import token>\n\n\nclass Oper(object):\n\n def brightness(self, x, y):\n R, G, B = self.pix[x, y]\n return sum([R, G, B]) // 3\n\n def changeColor(self, alpha, maska, x, y):\n for i in [x - 2, x - 1, x]:\n for j in [y - 3, y - 2, y - 1]:\n self.picture[i][j] = alpha\n\n def operRoberts(self, matrix, x, y):\n Gx = matrix[x + 1][y + 1] - matrix[x][y]\n Gy = matrix[x + 1][y] - matrix[x][y + 1]\n G = mh.fabs(Gx) + mh.fabs(Gy)\n return G\n\n def operSobel(self, matrix, x, y):\n Gx = matrix[x + 1][y - 1] + 2 * matrix[x + 1][y] + matrix[x + 1][y + 1\n ] - (matrix[x - 1][y - 1] + 2 * matrix[x - 1][y] + matrix[x - 1\n ][y + 1])\n Gy = matrix[x - 1][y + 1] + 2 * matrix[x][y + 1] + matrix[x + 1][y + 1\n ] - (matrix[x - 1][y - 1] + 2 * matrix[x][y - 1] + matrix[x + 1\n ][y - 1])\n G = mh.sqrt(sum([Gx ** 2, Gy ** 2]))\n return G\n\n def operLaplas(self, matrix, x, y):\n Gx = 4 * matrix[x][y] - matrix[x - 1][y] - matrix[x][y - 1] - matrix[x\n ][y + 1] - matrix[x + 1][y]\n Gy = 8 * matrix[x][y] - matrix[x - 1][y - 1] - matrix[x - 1][y\n ] - matrix[x - 1][y + 1] - matrix[x][y - 1] - matrix[x][y + 1\n ] - matrix[x + 1][y - 1] - matrix[x + 1][y] - matrix[x + 1][y + 1]\n G = mh.sqrt(sum([Gx ** 2, Gy ** 2]))\n return G\n\n def choiceOper(self, num):\n if num == 1:\n self.changeColor(self.operLaplas(self.mask, 1, 1), self.mask,\n self._wid, self._hei)\n elif num == 2:\n self.changeColor(self.operRoberts(self.mask, 1, 1), self.mask,\n self._wid, self._hei)\n elif num == 3:\n self.changeColor(self.operSobel(self.mask, 1, 1), self.mask,\n self._wid, self._hei)\n\n def mainInOper(self, pict, num):\n self.image = pict\n self.width = self.image.size[0]\n self.height = self.image.size[1]\n self.mask = []\n self.picture = []\n for j in range(3):\n mask2 = []\n for i in range(3):\n mask2.append(0)\n self.mask.append(mask2)\n for j in range(self.width):\n picture2 = []\n for i in range(self.height):\n picture2.append(0)\n self.picture.append(picture2)\n if self.width % 3 != 0 and self.height % 3 != 0:\n self.imag = self.image.crop((0, 0, self.width - self.width % 3,\n self.height - self.height % 3))\n elif self.width % 3 != 0:\n self.imag = self.image.crop((0, 0, self.width - self.width % 3,\n self.height))\n elif self.height % 3 != 0:\n self.imag = self.image.crop((0, 0, self.width, self.height - \n self.height % 3))\n else:\n self.imag = self.image\n self.draw = Draw(self.imag)\n self.width = self.imag.size[0]\n self.height = self.imag.size[1]\n self.pix = self.imag.load()\n print(self.imag.size)\n self._hei = 0\n self._wid = 0\n self._i_wid = 0\n while self._wid < self.width:\n self._j_hei = 0\n while self._hei < self.height and self._j_hei < 3:\n self.mask[self._i_wid][self._j_hei] = self.brightness(self.\n _wid, self._hei)\n self._j_hei += 1\n self._hei += 1\n if self._i_wid == 2:\n if self._hei == self.height:\n self.choiceOper(num)\n self._hei = 0\n self._i_wid = 0\n self._wid += 1\n else:\n self.choiceOper(num)\n self._i_wid = 0\n self._wid -= 2\n else:\n self._hei -= 3\n self._i_wid += 1\n self._wid += 1\n if self._hei == self.height:\n self._hei = 0\n for i in range(self.width):\n for j in range(self.height):\n self.draw.point((i, j), (int(self.picture[i][j]), int(self.\n picture[i][j]), int(self.picture[i][j])))\n return self.imag\n", "<import token>\n\n\nclass Oper(object):\n\n def brightness(self, x, y):\n R, G, B = self.pix[x, y]\n return sum([R, G, B]) // 3\n\n def changeColor(self, alpha, maska, x, y):\n for i in [x - 2, x - 1, x]:\n for j in [y - 3, y - 2, y - 1]:\n self.picture[i][j] = alpha\n\n def operRoberts(self, matrix, x, y):\n Gx = matrix[x + 1][y + 1] - matrix[x][y]\n Gy = matrix[x + 1][y] - matrix[x][y + 1]\n G = mh.fabs(Gx) + mh.fabs(Gy)\n return G\n\n def operSobel(self, matrix, x, y):\n Gx = matrix[x + 1][y - 1] + 2 * matrix[x + 1][y] + matrix[x + 1][y + 1\n ] - (matrix[x - 1][y - 1] + 2 * matrix[x - 1][y] + matrix[x - 1\n ][y + 1])\n Gy = matrix[x - 1][y + 1] + 2 * matrix[x][y + 1] + matrix[x + 1][y + 1\n ] - (matrix[x - 1][y - 1] + 2 * matrix[x][y - 1] + matrix[x + 1\n ][y - 1])\n G = mh.sqrt(sum([Gx ** 2, Gy ** 2]))\n return G\n\n def operLaplas(self, matrix, x, y):\n Gx = 4 * matrix[x][y] - matrix[x - 1][y] - matrix[x][y - 1] - matrix[x\n ][y + 1] - matrix[x + 1][y]\n Gy = 8 * matrix[x][y] - matrix[x - 1][y - 1] - matrix[x - 1][y\n ] - matrix[x - 1][y + 1] - matrix[x][y - 1] - matrix[x][y + 1\n ] - matrix[x + 1][y - 1] - matrix[x + 1][y] - matrix[x + 1][y + 1]\n G = mh.sqrt(sum([Gx ** 2, Gy ** 2]))\n return G\n <function token>\n\n def mainInOper(self, pict, num):\n self.image = pict\n self.width = self.image.size[0]\n self.height = self.image.size[1]\n self.mask = []\n self.picture = []\n for j in range(3):\n mask2 = []\n for i in range(3):\n mask2.append(0)\n self.mask.append(mask2)\n for j in range(self.width):\n picture2 = []\n for i in range(self.height):\n picture2.append(0)\n self.picture.append(picture2)\n if self.width % 3 != 0 and self.height % 3 != 0:\n self.imag = self.image.crop((0, 0, self.width - self.width % 3,\n self.height - self.height % 3))\n elif self.width % 3 != 0:\n self.imag = self.image.crop((0, 0, self.width - self.width % 3,\n self.height))\n elif self.height % 3 != 0:\n self.imag = self.image.crop((0, 0, self.width, self.height - \n self.height % 3))\n else:\n self.imag = self.image\n self.draw = Draw(self.imag)\n self.width = self.imag.size[0]\n self.height = self.imag.size[1]\n self.pix = self.imag.load()\n print(self.imag.size)\n self._hei = 0\n self._wid = 0\n self._i_wid = 0\n while self._wid < self.width:\n self._j_hei = 0\n while self._hei < self.height and self._j_hei < 3:\n self.mask[self._i_wid][self._j_hei] = self.brightness(self.\n _wid, self._hei)\n self._j_hei += 1\n self._hei += 1\n if self._i_wid == 2:\n if self._hei == self.height:\n self.choiceOper(num)\n self._hei = 0\n self._i_wid = 0\n self._wid += 1\n else:\n self.choiceOper(num)\n self._i_wid = 0\n self._wid -= 2\n else:\n self._hei -= 3\n self._i_wid += 1\n self._wid += 1\n if self._hei == self.height:\n self._hei = 0\n for i in range(self.width):\n for j in range(self.height):\n self.draw.point((i, j), (int(self.picture[i][j]), int(self.\n picture[i][j]), int(self.picture[i][j])))\n return self.imag\n", "<import token>\n\n\nclass Oper(object):\n <function token>\n\n def changeColor(self, alpha, maska, x, y):\n for i in [x - 2, x - 1, x]:\n for j in [y - 3, y - 2, y - 1]:\n self.picture[i][j] = alpha\n\n def operRoberts(self, matrix, x, y):\n Gx = matrix[x + 1][y + 1] - matrix[x][y]\n Gy = matrix[x + 1][y] - matrix[x][y + 1]\n G = mh.fabs(Gx) + mh.fabs(Gy)\n return G\n\n def operSobel(self, matrix, x, y):\n Gx = matrix[x + 1][y - 1] + 2 * matrix[x + 1][y] + matrix[x + 1][y + 1\n ] - (matrix[x - 1][y - 1] + 2 * matrix[x - 1][y] + matrix[x - 1\n ][y + 1])\n Gy = matrix[x - 1][y + 1] + 2 * matrix[x][y + 1] + matrix[x + 1][y + 1\n ] - (matrix[x - 1][y - 1] + 2 * matrix[x][y - 1] + matrix[x + 1\n ][y - 1])\n G = mh.sqrt(sum([Gx ** 2, Gy ** 2]))\n return G\n\n def operLaplas(self, matrix, x, y):\n Gx = 4 * matrix[x][y] - matrix[x - 1][y] - matrix[x][y - 1] - matrix[x\n ][y + 1] - matrix[x + 1][y]\n Gy = 8 * matrix[x][y] - matrix[x - 1][y - 1] - matrix[x - 1][y\n ] - matrix[x - 1][y + 1] - matrix[x][y - 1] - matrix[x][y + 1\n ] - matrix[x + 1][y - 1] - matrix[x + 1][y] - matrix[x + 1][y + 1]\n G = mh.sqrt(sum([Gx ** 2, Gy ** 2]))\n return G\n <function token>\n\n def mainInOper(self, pict, num):\n self.image = pict\n self.width = self.image.size[0]\n self.height = self.image.size[1]\n self.mask = []\n self.picture = []\n for j in range(3):\n mask2 = []\n for i in range(3):\n mask2.append(0)\n self.mask.append(mask2)\n for j in range(self.width):\n picture2 = []\n for i in range(self.height):\n picture2.append(0)\n self.picture.append(picture2)\n if self.width % 3 != 0 and self.height % 3 != 0:\n self.imag = self.image.crop((0, 0, self.width - self.width % 3,\n self.height - self.height % 3))\n elif self.width % 3 != 0:\n self.imag = self.image.crop((0, 0, self.width - self.width % 3,\n self.height))\n elif self.height % 3 != 0:\n self.imag = self.image.crop((0, 0, self.width, self.height - \n self.height % 3))\n else:\n self.imag = self.image\n self.draw = Draw(self.imag)\n self.width = self.imag.size[0]\n self.height = self.imag.size[1]\n self.pix = self.imag.load()\n print(self.imag.size)\n self._hei = 0\n self._wid = 0\n self._i_wid = 0\n while self._wid < self.width:\n self._j_hei = 0\n while self._hei < self.height and self._j_hei < 3:\n self.mask[self._i_wid][self._j_hei] = self.brightness(self.\n _wid, self._hei)\n self._j_hei += 1\n self._hei += 1\n if self._i_wid == 2:\n if self._hei == self.height:\n self.choiceOper(num)\n self._hei = 0\n self._i_wid = 0\n self._wid += 1\n else:\n self.choiceOper(num)\n self._i_wid = 0\n self._wid -= 2\n else:\n self._hei -= 3\n self._i_wid += 1\n self._wid += 1\n if self._hei == self.height:\n self._hei = 0\n for i in range(self.width):\n for j in range(self.height):\n self.draw.point((i, j), (int(self.picture[i][j]), int(self.\n picture[i][j]), int(self.picture[i][j])))\n return self.imag\n", "<import token>\n\n\nclass Oper(object):\n <function token>\n\n def changeColor(self, alpha, maska, x, y):\n for i in [x - 2, x - 1, x]:\n for j in [y - 3, y - 2, y - 1]:\n self.picture[i][j] = alpha\n\n def operRoberts(self, matrix, x, y):\n Gx = matrix[x + 1][y + 1] - matrix[x][y]\n Gy = matrix[x + 1][y] - matrix[x][y + 1]\n G = mh.fabs(Gx) + mh.fabs(Gy)\n return G\n\n def operSobel(self, matrix, x, y):\n Gx = matrix[x + 1][y - 1] + 2 * matrix[x + 1][y] + matrix[x + 1][y + 1\n ] - (matrix[x - 1][y - 1] + 2 * matrix[x - 1][y] + matrix[x - 1\n ][y + 1])\n Gy = matrix[x - 1][y + 1] + 2 * matrix[x][y + 1] + matrix[x + 1][y + 1\n ] - (matrix[x - 1][y - 1] + 2 * matrix[x][y - 1] + matrix[x + 1\n ][y - 1])\n G = mh.sqrt(sum([Gx ** 2, Gy ** 2]))\n return G\n\n def operLaplas(self, matrix, x, y):\n Gx = 4 * matrix[x][y] - matrix[x - 1][y] - matrix[x][y - 1] - matrix[x\n ][y + 1] - matrix[x + 1][y]\n Gy = 8 * matrix[x][y] - matrix[x - 1][y - 1] - matrix[x - 1][y\n ] - matrix[x - 1][y + 1] - matrix[x][y - 1] - matrix[x][y + 1\n ] - matrix[x + 1][y - 1] - matrix[x + 1][y] - matrix[x + 1][y + 1]\n G = mh.sqrt(sum([Gx ** 2, Gy ** 2]))\n return G\n <function token>\n <function token>\n", "<import token>\n\n\nclass Oper(object):\n <function token>\n\n def changeColor(self, alpha, maska, x, y):\n for i in [x - 2, x - 1, x]:\n for j in [y - 3, y - 2, y - 1]:\n self.picture[i][j] = alpha\n\n def operRoberts(self, matrix, x, y):\n Gx = matrix[x + 1][y + 1] - matrix[x][y]\n Gy = matrix[x + 1][y] - matrix[x][y + 1]\n G = mh.fabs(Gx) + mh.fabs(Gy)\n return G\n <function token>\n\n def operLaplas(self, matrix, x, y):\n Gx = 4 * matrix[x][y] - matrix[x - 1][y] - matrix[x][y - 1] - matrix[x\n ][y + 1] - matrix[x + 1][y]\n Gy = 8 * matrix[x][y] - matrix[x - 1][y - 1] - matrix[x - 1][y\n ] - matrix[x - 1][y + 1] - matrix[x][y - 1] - matrix[x][y + 1\n ] - matrix[x + 1][y - 1] - matrix[x + 1][y] - matrix[x + 1][y + 1]\n G = mh.sqrt(sum([Gx ** 2, Gy ** 2]))\n return G\n <function token>\n <function token>\n", "<import token>\n\n\nclass Oper(object):\n <function token>\n\n def changeColor(self, alpha, maska, x, y):\n for i in [x - 2, x - 1, x]:\n for j in [y - 3, y - 2, y - 1]:\n self.picture[i][j] = alpha\n\n def operRoberts(self, matrix, x, y):\n Gx = matrix[x + 1][y + 1] - matrix[x][y]\n Gy = matrix[x + 1][y] - matrix[x][y + 1]\n G = mh.fabs(Gx) + mh.fabs(Gy)\n return G\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n\n\nclass Oper(object):\n <function token>\n <function token>\n\n def operRoberts(self, matrix, x, y):\n Gx = matrix[x + 1][y + 1] - matrix[x][y]\n Gy = matrix[x + 1][y] - matrix[x][y + 1]\n G = mh.fabs(Gx) + mh.fabs(Gy)\n return G\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n\n\nclass Oper(object):\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n<class token>\n" ]
false
98,829
28cb8a214669ce49a7050b09c6e6eb7757cc0e0f
# --------------------------- FUNCIONES -------------------------- # declara la funcion, despues de def va el nombre de la función # debe de estar identado despues de :, es decir 4 espacios # ----------------PROGRAMA: devuelve las dos primeras y dos últimas letras de una palabra-------------- def mix(pal): if len(pal) > 4: mix1 = pal [0:2] + pal [-2:] print(mix1) if len(pal) <= 4: print('invalid input') mix(input('Ingrese una palabra: ')) # ------------------------PROGRAMA: devuelve el año nacimiento y cumpleaños # 100--------------------- def age_hundred(): name = input('Escribe tu nombre: ') age = int(input('escribe tu edad: ')) year = 2019 + (100 - age) birth = 2019 - age print('\n'f'Hola {name}, naciste en {birth}, tu cumpleaños 100 sera en el año {year}') age_hundred() #--------------PROGRAMA: devuelve los números pares y dice cuantos hay en una lista---------------------- #lista de números nums = input('Ingresa los números separados por comas:') #convetir el input en una lista lista = list(int(n) for n in nums.split(',')) #iniciar el conteo count, count2 = 0, 0 #describir las condiciones de pares e impares for n in lista: if n %2 == 0: count += 1 print(n) else: count += 1 print(n) print(f'Tenemos {count} números pares y {count2} números impares') #------------------- SEGUNDA OPCION DE CODIGO---------------- nums = input('Ingresa los números separados por comas:') lista = list(int(n) for n in nums.split(',')) impar =[] par = [] for i in lista: if i %2 == 0: par.append(i) else: impar.append(i) print ('la lista de numeros pares es: ', par) print ('La lista de numeros impares es: ', impar) #-------------------- FUNCION : mayor entre tres números------------------------ def mayor_num(num1,num2,num3): if num1 >= num2 and num1 >= num3: return num1 if num2 >= num3 and num2>=num3 : return num2 else: return num3 print(mayor_num(100,34,5)) #-------------------- FUNCION : reemplazar vocales para una determinada frase------------------------ def encriptar(frase,caracter): encriptada ='' # variable vacia que crea la frase dada, recordar que un string no es modificable # se mete a frase y si es consonante se va a else y me guarda la letra en encriptada, si es vocal se va a if y me escribe #lo que llevo en encriptada y me anexa una x. for letra in frase: if letra.lower() in 'aeiouáéíúó': if letra.isupper(): encriptada = encriptada + caracter.upper() else: encriptada = encriptada + caracter else: encriptada = encriptada + letra return encriptada while True: texto = input('Ingresa una frase:\n') caracter_elegido = input('Elige el carácter que deseas:\n') print(encriptar(texto, caracter_elegido)) opcion = input('''\n Ingresa (1) para encriptar otra frase o (2) para salir del programa: >''') if opcion == '2': break if opcion =='1': print('---------o--------\n') # no es necesario agregar el == 1 ya que como es un ciclo infinito, se tiene que si es distinto de 2 se vuelve a # repetir, es la unica condicion que si es 2 entonces se cierre #------------------- FRASE AL REVES ------------------------- def reverse(): user=input('type anything here') b = user.split() c = b[::-1] #se usa [inicio fin y salto] si el salto es engativo se recorre hacia atras, : significa que es desde inicio a fin d = " ".join(c) print(d) #------------------- DUPLICADOS ------------------------- # Write a function that takes a list and returns a new list that contains # all the elements of the first list minus duplicates. def lista_duplicate(): lista = input('ingresa una lista de cosas:').split() print(lista) y = [] for letra in lista: if letra not in y: y.append(letra) print(y) #------------------- PASSWORD LENGHT GENERATOR ------------------------- # generate a password with length "passlen" with no duplicate characters in the password import string import random def pw_gen(size = 8, chars=string.ascii_letters + string.digits + string.punctuation): return ''.join(random.choice(chars) for _ in range(size)) #print(pw_gen(int(input('How many characters in your password?')))) def pwd(): pwd = "" count = 0 length = int(input("How many characters would you like in your password? ")) while count != length: # significa != no igual, mientras count sea distinto a length upper = [random.choice(string.ascii_uppercase)] lower = [random.choice(string.ascii_lowercase)] num = [random.choice(string.digits)] symbol = [random.choice(string.punctuation)] everything = upper + lower + num + symbol pwd += random.choice(everything) count += 1 continue if count == length: print(pwd) #------------------- PASSWORD LENGHT GENERATOR ------------------------- # tells if a number is prime and returns the divisor list def prime_number(): # range function only works with integers, we import the module numpy to work with floats range # the function arange (start, stop, step) import numpy # para simplicidad trabajaremos con enteros number = int(input('enter your number: ')) listRange = list(range(1, number + 1)) divisorList = [] for numb in listRange: if number % numb == 0: divisorList.append(numb) if len(divisorList) == 2: print(f'{number} is prime, only has {divisorList} as divisors') else: print(f'{number} is not a prime number and the divisors are {divisorList}') prime_number() # ---------------------- BUSQUEDA BINARIA---------------------------------------------- lista = [0, 88, 72, 21, 14, 16, 90, 35, 47, 6, 68, 12, 10, 54, 41] lista.sort() # organiza la lista de menor a mayor # buscar el punto medioo # comprobar que el punto medio es el numero buscado # numero menor, disminuimos el final # numero menor aumentamos el inicio def busqueda_binaria(valor): inicio = 0 final = len(lista)- 1 # el ultimo indice, acordarse que la lista comienza en 0 while inicio<=final: puntero = (inicio + final)//2 # // parte entera de la division if valor ==lista[puntero]: return puntero elif valor > lista[puntero]: inicio = puntero + 1 else: final = puntero - 1 return None def buscar_valor(valor): res_busqueda = busqueda_binaria(valor) if res_busqueda is None: return f'el valor {valor} no se encontro ' else: return f'el numero {valor} se encuentra en la posicion {res_busqueda}' while True: respuesta = int(input('escribe el numero que deseas buscar: ')) print(buscar_valor(respuesta)) opcion = input('''\n Ingresa (1) buscar otro numero o (2) para salir del programa: >''') if opcion == '2': break if opcion =='1': print('---------o--------\n') #------------------------------- TIC TAC TOE SQUARE ------------------------ def print_lines(a): print(" ---" * a) print("| " * (a + 1)) def print_lines2(a): print(" ---" * a) def draw_board(x): y=x while(y): if x>=1: print_lines(y) x-=1 elif x==0: print_lines2(y) break print("hello user!!!! welcome ") x=int(input("Enter the size of board u want to draw---> ")) draw_board(x)
[ "# --------------------------- FUNCIONES --------------------------\n\n# declara la funcion, despues de def va el nombre de la función\n# debe de estar identado despues de :, es decir 4 espacios\n\n# ----------------PROGRAMA: devuelve las dos primeras y dos últimas letras de una palabra--------------\n\n\ndef mix(pal):\n if len(pal) > 4:\n mix1 = pal [0:2] + pal [-2:]\n print(mix1)\n\n if len(pal) <= 4:\n print('invalid input')\n\nmix(input('Ingrese una palabra: '))\n\n\n# ------------------------PROGRAMA: devuelve el año nacimiento y cumpleaños # 100---------------------\n\ndef age_hundred():\n name = input('Escribe tu nombre: ')\n age = int(input('escribe tu edad: '))\n year = 2019 + (100 - age)\n birth = 2019 - age\n\n print('\\n'f'Hola {name}, naciste en {birth}, tu cumpleaños 100 sera en el año {year}')\n\nage_hundred()\n\n\n\n#--------------PROGRAMA: devuelve los números pares y dice cuantos hay en una lista----------------------\n\n\n#lista de números\nnums = input('Ingresa los números separados por comas:')\n\n\n#convetir el input en una lista\nlista = list(int(n) for n in nums.split(','))\n\n#iniciar el conteo\ncount, count2 = 0, 0\n\n#describir las condiciones de pares e impares\nfor n in lista:\n if n %2 == 0:\n count += 1\n print(n)\n else:\n count += 1\n print(n)\n\nprint(f'Tenemos {count} números pares y {count2} números impares')\n\n#------------------- SEGUNDA OPCION DE CODIGO----------------\n\nnums = input('Ingresa los números separados por comas:')\nlista = list(int(n) for n in nums.split(','))\n\nimpar =[]\npar = []\n\nfor i in lista:\n if i %2 == 0:\n par.append(i)\n else:\n impar.append(i)\n\nprint ('la lista de numeros pares es: ', par)\nprint ('La lista de numeros impares es: ', impar)\n\n#-------------------- FUNCION : mayor entre tres números------------------------\n\ndef mayor_num(num1,num2,num3):\n if num1 >= num2 and num1 >= num3:\n return num1\n if num2 >= num3 and num2>=num3 :\n return num2\n else:\n return num3\n\nprint(mayor_num(100,34,5))\n\n#-------------------- FUNCION : reemplazar vocales para una determinada frase------------------------\n\n\ndef encriptar(frase,caracter):\n encriptada ='' # variable vacia que crea la frase dada, recordar que un string no es modificable\n\n # se mete a frase y si es consonante se va a else y me guarda la letra en encriptada, si es vocal se va a if y me escribe\n #lo que llevo en encriptada y me anexa una x.\n\n for letra in frase:\n if letra.lower() in 'aeiouáéíúó':\n if letra.isupper():\n encriptada = encriptada + caracter.upper()\n else:\n encriptada = encriptada + caracter\n else:\n encriptada = encriptada + letra\n return encriptada\n\n\nwhile True:\n texto = input('Ingresa una frase:\\n')\n caracter_elegido = input('Elige el carácter que deseas:\\n')\n print(encriptar(texto, caracter_elegido))\n opcion = input('''\\n Ingresa (1) para encriptar otra frase o (2) para salir del programa: \n >''')\n if opcion == '2':\n break\n if opcion =='1':\n print('---------o--------\\n')\n\n# no es necesario agregar el == 1 ya que como es un ciclo infinito, se tiene que si es distinto de 2 se vuelve a\n# repetir, es la unica condicion que si es 2 entonces se cierre\n\n#------------------- FRASE AL REVES -------------------------\n\ndef reverse():\n user=input('type anything here')\n b = user.split()\n c = b[::-1] #se usa [inicio fin y salto] si el salto es engativo se recorre hacia atras, : significa que es desde inicio a fin \n d = \" \".join(c)\n print(d)\n\n#------------------- DUPLICADOS -------------------------\n\n# Write a function that takes a list and returns a new list that contains\n# all the elements of the first list minus duplicates.\ndef lista_duplicate():\n lista = input('ingresa una lista de cosas:').split()\n print(lista)\n y = []\n for letra in lista:\n if letra not in y:\n y.append(letra)\n print(y)\n\n#------------------- PASSWORD LENGHT GENERATOR -------------------------\n# generate a password with length \"passlen\" with no duplicate characters in the password\n\nimport string\nimport random\ndef pw_gen(size = 8, chars=string.ascii_letters + string.digits + string.punctuation):\n\n\treturn ''.join(random.choice(chars) for _ in range(size))\n\n#print(pw_gen(int(input('How many characters in your password?'))))\n\ndef pwd():\n pwd = \"\"\n count = 0\n length = int(input(\"How many characters would you like in your password? \"))\n\n while count != length: # significa != no igual, mientras count sea distinto a length\n upper = [random.choice(string.ascii_uppercase)]\n lower = [random.choice(string.ascii_lowercase)]\n num = [random.choice(string.digits)]\n symbol = [random.choice(string.punctuation)]\n everything = upper + lower + num + symbol\n pwd += random.choice(everything)\n count += 1\n continue\n if count == length:\n print(pwd)\n\n#------------------- PASSWORD LENGHT GENERATOR -------------------------\n# tells if a number is prime and returns the divisor list\n\ndef prime_number():\n\n # range function only works with integers, we import the module numpy to work with floats range\n # the function arange (start, stop, step)\n import numpy\n # para simplicidad trabajaremos con enteros\n\n number = int(input('enter your number: '))\n listRange = list(range(1, number + 1))\n\n divisorList = []\n for numb in listRange:\n if number % numb == 0:\n divisorList.append(numb)\n\n if len(divisorList) == 2:\n print(f'{number} is prime, only has {divisorList} as divisors')\n else:\n print(f'{number} is not a prime number and the divisors are {divisorList}')\n\nprime_number()\n\n# ---------------------- BUSQUEDA BINARIA----------------------------------------------\n\nlista = [0, 88, 72, 21, 14, 16, 90, 35, 47, 6, 68, 12, 10, 54, 41]\nlista.sort() # organiza la lista de menor a mayor\n\n# buscar el punto medioo\n# comprobar que el punto medio es el numero buscado\n# numero menor, disminuimos el final\n# numero menor aumentamos el inicio\n\n\ndef busqueda_binaria(valor):\n inicio = 0\n final = len(lista)- 1 # el ultimo indice, acordarse que la lista comienza en 0\n\n while inicio<=final:\n puntero = (inicio + final)//2 # // parte entera de la division\n if valor ==lista[puntero]:\n return puntero\n elif valor > lista[puntero]:\n inicio = puntero + 1\n else:\n final = puntero - 1\n return None\n\ndef buscar_valor(valor):\n res_busqueda = busqueda_binaria(valor)\n if res_busqueda is None:\n return f'el valor {valor} no se encontro '\n else:\n return f'el numero {valor} se encuentra en la posicion {res_busqueda}'\n\n\nwhile True:\n respuesta = int(input('escribe el numero que deseas buscar: '))\n print(buscar_valor(respuesta))\n opcion = input('''\\n Ingresa (1) buscar otro numero o (2) para salir del programa: \n >''')\n if opcion == '2':\n break\n if opcion =='1':\n print('---------o--------\\n')\n\n#------------------------------- TIC TAC TOE SQUARE ------------------------\ndef print_lines(a):\n print(\" ---\" * a)\n print(\"| \" * (a + 1))\ndef print_lines2(a):\n print(\" ---\" * a)\ndef draw_board(x):\n y=x\n while(y):\n if x>=1:\n print_lines(y)\n x-=1\n elif x==0:\n print_lines2(y)\n break\n\nprint(\"hello user!!!! welcome \")\nx=int(input(\"Enter the size of board u want to draw---> \"))\ndraw_board(x)\n\n\n\n\n", "def mix(pal):\n if len(pal) > 4:\n mix1 = pal[0:2] + pal[-2:]\n print(mix1)\n if len(pal) <= 4:\n print('invalid input')\n\n\nmix(input('Ingrese una palabra: '))\n\n\ndef age_hundred():\n name = input('Escribe tu nombre: ')\n age = int(input('escribe tu edad: '))\n year = 2019 + (100 - age)\n birth = 2019 - age\n print(\n f'\\nHola {name}, naciste en {birth}, tu cumpleaños 100 sera en el año {year}'\n )\n\n\nage_hundred()\nnums = input('Ingresa los números separados por comas:')\nlista = list(int(n) for n in nums.split(','))\ncount, count2 = 0, 0\nfor n in lista:\n if n % 2 == 0:\n count += 1\n print(n)\n else:\n count += 1\n print(n)\nprint(f'Tenemos {count} números pares y {count2} números impares')\nnums = input('Ingresa los números separados por comas:')\nlista = list(int(n) for n in nums.split(','))\nimpar = []\npar = []\nfor i in lista:\n if i % 2 == 0:\n par.append(i)\n else:\n impar.append(i)\nprint('la lista de numeros pares es: ', par)\nprint('La lista de numeros impares es: ', impar)\n\n\ndef mayor_num(num1, num2, num3):\n if num1 >= num2 and num1 >= num3:\n return num1\n if num2 >= num3 and num2 >= num3:\n return num2\n else:\n return num3\n\n\nprint(mayor_num(100, 34, 5))\n\n\ndef encriptar(frase, caracter):\n encriptada = ''\n for letra in frase:\n if letra.lower() in 'aeiouáéíúó':\n if letra.isupper():\n encriptada = encriptada + caracter.upper()\n else:\n encriptada = encriptada + caracter\n else:\n encriptada = encriptada + letra\n return encriptada\n\n\nwhile True:\n texto = input('Ingresa una frase:\\n')\n caracter_elegido = input('Elige el carácter que deseas:\\n')\n print(encriptar(texto, caracter_elegido))\n opcion = input(\n \"\"\"\n Ingresa (1) para encriptar otra frase o (2) para salir del programa: \n >\"\"\"\n )\n if opcion == '2':\n break\n if opcion == '1':\n print('---------o--------\\n')\n\n\ndef reverse():\n user = input('type anything here')\n b = user.split()\n c = b[::-1]\n d = ' '.join(c)\n print(d)\n\n\ndef lista_duplicate():\n lista = input('ingresa una lista de cosas:').split()\n print(lista)\n y = []\n for letra in lista:\n if letra not in y:\n y.append(letra)\n print(y)\n\n\nimport string\nimport random\n\n\ndef pw_gen(size=8, chars=string.ascii_letters + string.digits + string.\n punctuation):\n return ''.join(random.choice(chars) for _ in range(size))\n\n\ndef pwd():\n pwd = ''\n count = 0\n length = int(input('How many characters would you like in your password? ')\n )\n while count != length:\n upper = [random.choice(string.ascii_uppercase)]\n lower = [random.choice(string.ascii_lowercase)]\n num = [random.choice(string.digits)]\n symbol = [random.choice(string.punctuation)]\n everything = upper + lower + num + symbol\n pwd += random.choice(everything)\n count += 1\n continue\n if count == length:\n print(pwd)\n\n\ndef prime_number():\n import numpy\n number = int(input('enter your number: '))\n listRange = list(range(1, number + 1))\n divisorList = []\n for numb in listRange:\n if number % numb == 0:\n divisorList.append(numb)\n if len(divisorList) == 2:\n print(f'{number} is prime, only has {divisorList} as divisors')\n else:\n print(\n f'{number} is not a prime number and the divisors are {divisorList}'\n )\n\n\nprime_number()\nlista = [0, 88, 72, 21, 14, 16, 90, 35, 47, 6, 68, 12, 10, 54, 41]\nlista.sort()\n\n\ndef busqueda_binaria(valor):\n inicio = 0\n final = len(lista) - 1\n while inicio <= final:\n puntero = (inicio + final) // 2\n if valor == lista[puntero]:\n return puntero\n elif valor > lista[puntero]:\n inicio = puntero + 1\n else:\n final = puntero - 1\n return None\n\n\ndef buscar_valor(valor):\n res_busqueda = busqueda_binaria(valor)\n if res_busqueda is None:\n return f'el valor {valor} no se encontro '\n else:\n return f'el numero {valor} se encuentra en la posicion {res_busqueda}'\n\n\nwhile True:\n respuesta = int(input('escribe el numero que deseas buscar: '))\n print(buscar_valor(respuesta))\n opcion = input(\n '\\n Ingresa (1) buscar otro numero o (2) para salir del programa: \\n >'\n )\n if opcion == '2':\n break\n if opcion == '1':\n print('---------o--------\\n')\n\n\ndef print_lines(a):\n print(' ---' * a)\n print('| ' * (a + 1))\n\n\ndef print_lines2(a):\n print(' ---' * a)\n\n\ndef draw_board(x):\n y = x\n while y:\n if x >= 1:\n print_lines(y)\n x -= 1\n elif x == 0:\n print_lines2(y)\n break\n\n\nprint('hello user!!!! welcome ')\nx = int(input('Enter the size of board u want to draw---> '))\ndraw_board(x)\n", "def mix(pal):\n if len(pal) > 4:\n mix1 = pal[0:2] + pal[-2:]\n print(mix1)\n if len(pal) <= 4:\n print('invalid input')\n\n\nmix(input('Ingrese una palabra: '))\n\n\ndef age_hundred():\n name = input('Escribe tu nombre: ')\n age = int(input('escribe tu edad: '))\n year = 2019 + (100 - age)\n birth = 2019 - age\n print(\n f'\\nHola {name}, naciste en {birth}, tu cumpleaños 100 sera en el año {year}'\n )\n\n\nage_hundred()\nnums = input('Ingresa los números separados por comas:')\nlista = list(int(n) for n in nums.split(','))\ncount, count2 = 0, 0\nfor n in lista:\n if n % 2 == 0:\n count += 1\n print(n)\n else:\n count += 1\n print(n)\nprint(f'Tenemos {count} números pares y {count2} números impares')\nnums = input('Ingresa los números separados por comas:')\nlista = list(int(n) for n in nums.split(','))\nimpar = []\npar = []\nfor i in lista:\n if i % 2 == 0:\n par.append(i)\n else:\n impar.append(i)\nprint('la lista de numeros pares es: ', par)\nprint('La lista de numeros impares es: ', impar)\n\n\ndef mayor_num(num1, num2, num3):\n if num1 >= num2 and num1 >= num3:\n return num1\n if num2 >= num3 and num2 >= num3:\n return num2\n else:\n return num3\n\n\nprint(mayor_num(100, 34, 5))\n\n\ndef encriptar(frase, caracter):\n encriptada = ''\n for letra in frase:\n if letra.lower() in 'aeiouáéíúó':\n if letra.isupper():\n encriptada = encriptada + caracter.upper()\n else:\n encriptada = encriptada + caracter\n else:\n encriptada = encriptada + letra\n return encriptada\n\n\nwhile True:\n texto = input('Ingresa una frase:\\n')\n caracter_elegido = input('Elige el carácter que deseas:\\n')\n print(encriptar(texto, caracter_elegido))\n opcion = input(\n \"\"\"\n Ingresa (1) para encriptar otra frase o (2) para salir del programa: \n >\"\"\"\n )\n if opcion == '2':\n break\n if opcion == '1':\n print('---------o--------\\n')\n\n\ndef reverse():\n user = input('type anything here')\n b = user.split()\n c = b[::-1]\n d = ' '.join(c)\n print(d)\n\n\ndef lista_duplicate():\n lista = input('ingresa una lista de cosas:').split()\n print(lista)\n y = []\n for letra in lista:\n if letra not in y:\n y.append(letra)\n print(y)\n\n\n<import token>\n\n\ndef pw_gen(size=8, chars=string.ascii_letters + string.digits + string.\n punctuation):\n return ''.join(random.choice(chars) for _ in range(size))\n\n\ndef pwd():\n pwd = ''\n count = 0\n length = int(input('How many characters would you like in your password? ')\n )\n while count != length:\n upper = [random.choice(string.ascii_uppercase)]\n lower = [random.choice(string.ascii_lowercase)]\n num = [random.choice(string.digits)]\n symbol = [random.choice(string.punctuation)]\n everything = upper + lower + num + symbol\n pwd += random.choice(everything)\n count += 1\n continue\n if count == length:\n print(pwd)\n\n\ndef prime_number():\n import numpy\n number = int(input('enter your number: '))\n listRange = list(range(1, number + 1))\n divisorList = []\n for numb in listRange:\n if number % numb == 0:\n divisorList.append(numb)\n if len(divisorList) == 2:\n print(f'{number} is prime, only has {divisorList} as divisors')\n else:\n print(\n f'{number} is not a prime number and the divisors are {divisorList}'\n )\n\n\nprime_number()\nlista = [0, 88, 72, 21, 14, 16, 90, 35, 47, 6, 68, 12, 10, 54, 41]\nlista.sort()\n\n\ndef busqueda_binaria(valor):\n inicio = 0\n final = len(lista) - 1\n while inicio <= final:\n puntero = (inicio + final) // 2\n if valor == lista[puntero]:\n return puntero\n elif valor > lista[puntero]:\n inicio = puntero + 1\n else:\n final = puntero - 1\n return None\n\n\ndef buscar_valor(valor):\n res_busqueda = busqueda_binaria(valor)\n if res_busqueda is None:\n return f'el valor {valor} no se encontro '\n else:\n return f'el numero {valor} se encuentra en la posicion {res_busqueda}'\n\n\nwhile True:\n respuesta = int(input('escribe el numero que deseas buscar: '))\n print(buscar_valor(respuesta))\n opcion = input(\n '\\n Ingresa (1) buscar otro numero o (2) para salir del programa: \\n >'\n )\n if opcion == '2':\n break\n if opcion == '1':\n print('---------o--------\\n')\n\n\ndef print_lines(a):\n print(' ---' * a)\n print('| ' * (a + 1))\n\n\ndef print_lines2(a):\n print(' ---' * a)\n\n\ndef draw_board(x):\n y = x\n while y:\n if x >= 1:\n print_lines(y)\n x -= 1\n elif x == 0:\n print_lines2(y)\n break\n\n\nprint('hello user!!!! welcome ')\nx = int(input('Enter the size of board u want to draw---> '))\ndraw_board(x)\n", "def mix(pal):\n if len(pal) > 4:\n mix1 = pal[0:2] + pal[-2:]\n print(mix1)\n if len(pal) <= 4:\n print('invalid input')\n\n\nmix(input('Ingrese una palabra: '))\n\n\ndef age_hundred():\n name = input('Escribe tu nombre: ')\n age = int(input('escribe tu edad: '))\n year = 2019 + (100 - age)\n birth = 2019 - age\n print(\n f'\\nHola {name}, naciste en {birth}, tu cumpleaños 100 sera en el año {year}'\n )\n\n\nage_hundred()\n<assignment token>\nfor n in lista:\n if n % 2 == 0:\n count += 1\n print(n)\n else:\n count += 1\n print(n)\nprint(f'Tenemos {count} números pares y {count2} números impares')\n<assignment token>\nfor i in lista:\n if i % 2 == 0:\n par.append(i)\n else:\n impar.append(i)\nprint('la lista de numeros pares es: ', par)\nprint('La lista de numeros impares es: ', impar)\n\n\ndef mayor_num(num1, num2, num3):\n if num1 >= num2 and num1 >= num3:\n return num1\n if num2 >= num3 and num2 >= num3:\n return num2\n else:\n return num3\n\n\nprint(mayor_num(100, 34, 5))\n\n\ndef encriptar(frase, caracter):\n encriptada = ''\n for letra in frase:\n if letra.lower() in 'aeiouáéíúó':\n if letra.isupper():\n encriptada = encriptada + caracter.upper()\n else:\n encriptada = encriptada + caracter\n else:\n encriptada = encriptada + letra\n return encriptada\n\n\nwhile True:\n texto = input('Ingresa una frase:\\n')\n caracter_elegido = input('Elige el carácter que deseas:\\n')\n print(encriptar(texto, caracter_elegido))\n opcion = input(\n \"\"\"\n Ingresa (1) para encriptar otra frase o (2) para salir del programa: \n >\"\"\"\n )\n if opcion == '2':\n break\n if opcion == '1':\n print('---------o--------\\n')\n\n\ndef reverse():\n user = input('type anything here')\n b = user.split()\n c = b[::-1]\n d = ' '.join(c)\n print(d)\n\n\ndef lista_duplicate():\n lista = input('ingresa una lista de cosas:').split()\n print(lista)\n y = []\n for letra in lista:\n if letra not in y:\n y.append(letra)\n print(y)\n\n\n<import token>\n\n\ndef pw_gen(size=8, chars=string.ascii_letters + string.digits + string.\n punctuation):\n return ''.join(random.choice(chars) for _ in range(size))\n\n\ndef pwd():\n pwd = ''\n count = 0\n length = int(input('How many characters would you like in your password? ')\n )\n while count != length:\n upper = [random.choice(string.ascii_uppercase)]\n lower = [random.choice(string.ascii_lowercase)]\n num = [random.choice(string.digits)]\n symbol = [random.choice(string.punctuation)]\n everything = upper + lower + num + symbol\n pwd += random.choice(everything)\n count += 1\n continue\n if count == length:\n print(pwd)\n\n\ndef prime_number():\n import numpy\n number = int(input('enter your number: '))\n listRange = list(range(1, number + 1))\n divisorList = []\n for numb in listRange:\n if number % numb == 0:\n divisorList.append(numb)\n if len(divisorList) == 2:\n print(f'{number} is prime, only has {divisorList} as divisors')\n else:\n print(\n f'{number} is not a prime number and the divisors are {divisorList}'\n )\n\n\nprime_number()\n<assignment token>\nlista.sort()\n\n\ndef busqueda_binaria(valor):\n inicio = 0\n final = len(lista) - 1\n while inicio <= final:\n puntero = (inicio + final) // 2\n if valor == lista[puntero]:\n return puntero\n elif valor > lista[puntero]:\n inicio = puntero + 1\n else:\n final = puntero - 1\n return None\n\n\ndef buscar_valor(valor):\n res_busqueda = busqueda_binaria(valor)\n if res_busqueda is None:\n return f'el valor {valor} no se encontro '\n else:\n return f'el numero {valor} se encuentra en la posicion {res_busqueda}'\n\n\nwhile True:\n respuesta = int(input('escribe el numero que deseas buscar: '))\n print(buscar_valor(respuesta))\n opcion = input(\n '\\n Ingresa (1) buscar otro numero o (2) para salir del programa: \\n >'\n )\n if opcion == '2':\n break\n if opcion == '1':\n print('---------o--------\\n')\n\n\ndef print_lines(a):\n print(' ---' * a)\n print('| ' * (a + 1))\n\n\ndef print_lines2(a):\n print(' ---' * a)\n\n\ndef draw_board(x):\n y = x\n while y:\n if x >= 1:\n print_lines(y)\n x -= 1\n elif x == 0:\n print_lines2(y)\n break\n\n\nprint('hello user!!!! welcome ')\n<assignment token>\ndraw_board(x)\n", "def mix(pal):\n if len(pal) > 4:\n mix1 = pal[0:2] + pal[-2:]\n print(mix1)\n if len(pal) <= 4:\n print('invalid input')\n\n\n<code token>\n\n\ndef age_hundred():\n name = input('Escribe tu nombre: ')\n age = int(input('escribe tu edad: '))\n year = 2019 + (100 - age)\n birth = 2019 - age\n print(\n f'\\nHola {name}, naciste en {birth}, tu cumpleaños 100 sera en el año {year}'\n )\n\n\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n\n\ndef mayor_num(num1, num2, num3):\n if num1 >= num2 and num1 >= num3:\n return num1\n if num2 >= num3 and num2 >= num3:\n return num2\n else:\n return num3\n\n\n<code token>\n\n\ndef encriptar(frase, caracter):\n encriptada = ''\n for letra in frase:\n if letra.lower() in 'aeiouáéíúó':\n if letra.isupper():\n encriptada = encriptada + caracter.upper()\n else:\n encriptada = encriptada + caracter\n else:\n encriptada = encriptada + letra\n return encriptada\n\n\n<code token>\n\n\ndef reverse():\n user = input('type anything here')\n b = user.split()\n c = b[::-1]\n d = ' '.join(c)\n print(d)\n\n\ndef lista_duplicate():\n lista = input('ingresa una lista de cosas:').split()\n print(lista)\n y = []\n for letra in lista:\n if letra not in y:\n y.append(letra)\n print(y)\n\n\n<import token>\n\n\ndef pw_gen(size=8, chars=string.ascii_letters + string.digits + string.\n punctuation):\n return ''.join(random.choice(chars) for _ in range(size))\n\n\ndef pwd():\n pwd = ''\n count = 0\n length = int(input('How many characters would you like in your password? ')\n )\n while count != length:\n upper = [random.choice(string.ascii_uppercase)]\n lower = [random.choice(string.ascii_lowercase)]\n num = [random.choice(string.digits)]\n symbol = [random.choice(string.punctuation)]\n everything = upper + lower + num + symbol\n pwd += random.choice(everything)\n count += 1\n continue\n if count == length:\n print(pwd)\n\n\ndef prime_number():\n import numpy\n number = int(input('enter your number: '))\n listRange = list(range(1, number + 1))\n divisorList = []\n for numb in listRange:\n if number % numb == 0:\n divisorList.append(numb)\n if len(divisorList) == 2:\n print(f'{number} is prime, only has {divisorList} as divisors')\n else:\n print(\n f'{number} is not a prime number and the divisors are {divisorList}'\n )\n\n\n<code token>\n<assignment token>\n<code token>\n\n\ndef busqueda_binaria(valor):\n inicio = 0\n final = len(lista) - 1\n while inicio <= final:\n puntero = (inicio + final) // 2\n if valor == lista[puntero]:\n return puntero\n elif valor > lista[puntero]:\n inicio = puntero + 1\n else:\n final = puntero - 1\n return None\n\n\ndef buscar_valor(valor):\n res_busqueda = busqueda_binaria(valor)\n if res_busqueda is None:\n return f'el valor {valor} no se encontro '\n else:\n return f'el numero {valor} se encuentra en la posicion {res_busqueda}'\n\n\n<code token>\n\n\ndef print_lines(a):\n print(' ---' * a)\n print('| ' * (a + 1))\n\n\ndef print_lines2(a):\n print(' ---' * a)\n\n\ndef draw_board(x):\n y = x\n while y:\n if x >= 1:\n print_lines(y)\n x -= 1\n elif x == 0:\n print_lines2(y)\n break\n\n\n<code token>\n<assignment token>\n<code token>\n", "def mix(pal):\n if len(pal) > 4:\n mix1 = pal[0:2] + pal[-2:]\n print(mix1)\n if len(pal) <= 4:\n print('invalid input')\n\n\n<code token>\n\n\ndef age_hundred():\n name = input('Escribe tu nombre: ')\n age = int(input('escribe tu edad: '))\n year = 2019 + (100 - age)\n birth = 2019 - age\n print(\n f'\\nHola {name}, naciste en {birth}, tu cumpleaños 100 sera en el año {year}'\n )\n\n\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n\n\ndef mayor_num(num1, num2, num3):\n if num1 >= num2 and num1 >= num3:\n return num1\n if num2 >= num3 and num2 >= num3:\n return num2\n else:\n return num3\n\n\n<code token>\n\n\ndef encriptar(frase, caracter):\n encriptada = ''\n for letra in frase:\n if letra.lower() in 'aeiouáéíúó':\n if letra.isupper():\n encriptada = encriptada + caracter.upper()\n else:\n encriptada = encriptada + caracter\n else:\n encriptada = encriptada + letra\n return encriptada\n\n\n<code token>\n\n\ndef reverse():\n user = input('type anything here')\n b = user.split()\n c = b[::-1]\n d = ' '.join(c)\n print(d)\n\n\ndef lista_duplicate():\n lista = input('ingresa una lista de cosas:').split()\n print(lista)\n y = []\n for letra in lista:\n if letra not in y:\n y.append(letra)\n print(y)\n\n\n<import token>\n\n\ndef pw_gen(size=8, chars=string.ascii_letters + string.digits + string.\n punctuation):\n return ''.join(random.choice(chars) for _ in range(size))\n\n\ndef pwd():\n pwd = ''\n count = 0\n length = int(input('How many characters would you like in your password? ')\n )\n while count != length:\n upper = [random.choice(string.ascii_uppercase)]\n lower = [random.choice(string.ascii_lowercase)]\n num = [random.choice(string.digits)]\n symbol = [random.choice(string.punctuation)]\n everything = upper + lower + num + symbol\n pwd += random.choice(everything)\n count += 1\n continue\n if count == length:\n print(pwd)\n\n\ndef prime_number():\n import numpy\n number = int(input('enter your number: '))\n listRange = list(range(1, number + 1))\n divisorList = []\n for numb in listRange:\n if number % numb == 0:\n divisorList.append(numb)\n if len(divisorList) == 2:\n print(f'{number} is prime, only has {divisorList} as divisors')\n else:\n print(\n f'{number} is not a prime number and the divisors are {divisorList}'\n )\n\n\n<code token>\n<assignment token>\n<code token>\n\n\ndef busqueda_binaria(valor):\n inicio = 0\n final = len(lista) - 1\n while inicio <= final:\n puntero = (inicio + final) // 2\n if valor == lista[puntero]:\n return puntero\n elif valor > lista[puntero]:\n inicio = puntero + 1\n else:\n final = puntero - 1\n return None\n\n\ndef buscar_valor(valor):\n res_busqueda = busqueda_binaria(valor)\n if res_busqueda is None:\n return f'el valor {valor} no se encontro '\n else:\n return f'el numero {valor} se encuentra en la posicion {res_busqueda}'\n\n\n<code token>\n\n\ndef print_lines(a):\n print(' ---' * a)\n print('| ' * (a + 1))\n\n\ndef print_lines2(a):\n print(' ---' * a)\n\n\n<function token>\n<code token>\n<assignment token>\n<code token>\n", "def mix(pal):\n if len(pal) > 4:\n mix1 = pal[0:2] + pal[-2:]\n print(mix1)\n if len(pal) <= 4:\n print('invalid input')\n\n\n<code token>\n\n\ndef age_hundred():\n name = input('Escribe tu nombre: ')\n age = int(input('escribe tu edad: '))\n year = 2019 + (100 - age)\n birth = 2019 - age\n print(\n f'\\nHola {name}, naciste en {birth}, tu cumpleaños 100 sera en el año {year}'\n )\n\n\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n\n\ndef mayor_num(num1, num2, num3):\n if num1 >= num2 and num1 >= num3:\n return num1\n if num2 >= num3 and num2 >= num3:\n return num2\n else:\n return num3\n\n\n<code token>\n\n\ndef encriptar(frase, caracter):\n encriptada = ''\n for letra in frase:\n if letra.lower() in 'aeiouáéíúó':\n if letra.isupper():\n encriptada = encriptada + caracter.upper()\n else:\n encriptada = encriptada + caracter\n else:\n encriptada = encriptada + letra\n return encriptada\n\n\n<code token>\n\n\ndef reverse():\n user = input('type anything here')\n b = user.split()\n c = b[::-1]\n d = ' '.join(c)\n print(d)\n\n\ndef lista_duplicate():\n lista = input('ingresa una lista de cosas:').split()\n print(lista)\n y = []\n for letra in lista:\n if letra not in y:\n y.append(letra)\n print(y)\n\n\n<import token>\n\n\ndef pw_gen(size=8, chars=string.ascii_letters + string.digits + string.\n punctuation):\n return ''.join(random.choice(chars) for _ in range(size))\n\n\ndef pwd():\n pwd = ''\n count = 0\n length = int(input('How many characters would you like in your password? ')\n )\n while count != length:\n upper = [random.choice(string.ascii_uppercase)]\n lower = [random.choice(string.ascii_lowercase)]\n num = [random.choice(string.digits)]\n symbol = [random.choice(string.punctuation)]\n everything = upper + lower + num + symbol\n pwd += random.choice(everything)\n count += 1\n continue\n if count == length:\n print(pwd)\n\n\ndef prime_number():\n import numpy\n number = int(input('enter your number: '))\n listRange = list(range(1, number + 1))\n divisorList = []\n for numb in listRange:\n if number % numb == 0:\n divisorList.append(numb)\n if len(divisorList) == 2:\n print(f'{number} is prime, only has {divisorList} as divisors')\n else:\n print(\n f'{number} is not a prime number and the divisors are {divisorList}'\n )\n\n\n<code token>\n<assignment token>\n<code token>\n\n\ndef busqueda_binaria(valor):\n inicio = 0\n final = len(lista) - 1\n while inicio <= final:\n puntero = (inicio + final) // 2\n if valor == lista[puntero]:\n return puntero\n elif valor > lista[puntero]:\n inicio = puntero + 1\n else:\n final = puntero - 1\n return None\n\n\ndef buscar_valor(valor):\n res_busqueda = busqueda_binaria(valor)\n if res_busqueda is None:\n return f'el valor {valor} no se encontro '\n else:\n return f'el numero {valor} se encuentra en la posicion {res_busqueda}'\n\n\n<code token>\n<function token>\n\n\ndef print_lines2(a):\n print(' ---' * a)\n\n\n<function token>\n<code token>\n<assignment token>\n<code token>\n", "def mix(pal):\n if len(pal) > 4:\n mix1 = pal[0:2] + pal[-2:]\n print(mix1)\n if len(pal) <= 4:\n print('invalid input')\n\n\n<code token>\n\n\ndef age_hundred():\n name = input('Escribe tu nombre: ')\n age = int(input('escribe tu edad: '))\n year = 2019 + (100 - age)\n birth = 2019 - age\n print(\n f'\\nHola {name}, naciste en {birth}, tu cumpleaños 100 sera en el año {year}'\n )\n\n\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<function token>\n<code token>\n\n\ndef encriptar(frase, caracter):\n encriptada = ''\n for letra in frase:\n if letra.lower() in 'aeiouáéíúó':\n if letra.isupper():\n encriptada = encriptada + caracter.upper()\n else:\n encriptada = encriptada + caracter\n else:\n encriptada = encriptada + letra\n return encriptada\n\n\n<code token>\n\n\ndef reverse():\n user = input('type anything here')\n b = user.split()\n c = b[::-1]\n d = ' '.join(c)\n print(d)\n\n\ndef lista_duplicate():\n lista = input('ingresa una lista de cosas:').split()\n print(lista)\n y = []\n for letra in lista:\n if letra not in y:\n y.append(letra)\n print(y)\n\n\n<import token>\n\n\ndef pw_gen(size=8, chars=string.ascii_letters + string.digits + string.\n punctuation):\n return ''.join(random.choice(chars) for _ in range(size))\n\n\ndef pwd():\n pwd = ''\n count = 0\n length = int(input('How many characters would you like in your password? ')\n )\n while count != length:\n upper = [random.choice(string.ascii_uppercase)]\n lower = [random.choice(string.ascii_lowercase)]\n num = [random.choice(string.digits)]\n symbol = [random.choice(string.punctuation)]\n everything = upper + lower + num + symbol\n pwd += random.choice(everything)\n count += 1\n continue\n if count == length:\n print(pwd)\n\n\ndef prime_number():\n import numpy\n number = int(input('enter your number: '))\n listRange = list(range(1, number + 1))\n divisorList = []\n for numb in listRange:\n if number % numb == 0:\n divisorList.append(numb)\n if len(divisorList) == 2:\n print(f'{number} is prime, only has {divisorList} as divisors')\n else:\n print(\n f'{number} is not a prime number and the divisors are {divisorList}'\n )\n\n\n<code token>\n<assignment token>\n<code token>\n\n\ndef busqueda_binaria(valor):\n inicio = 0\n final = len(lista) - 1\n while inicio <= final:\n puntero = (inicio + final) // 2\n if valor == lista[puntero]:\n return puntero\n elif valor > lista[puntero]:\n inicio = puntero + 1\n else:\n final = puntero - 1\n return None\n\n\ndef buscar_valor(valor):\n res_busqueda = busqueda_binaria(valor)\n if res_busqueda is None:\n return f'el valor {valor} no se encontro '\n else:\n return f'el numero {valor} se encuentra en la posicion {res_busqueda}'\n\n\n<code token>\n<function token>\n\n\ndef print_lines2(a):\n print(' ---' * a)\n\n\n<function token>\n<code token>\n<assignment token>\n<code token>\n", "def mix(pal):\n if len(pal) > 4:\n mix1 = pal[0:2] + pal[-2:]\n print(mix1)\n if len(pal) <= 4:\n print('invalid input')\n\n\n<code token>\n\n\ndef age_hundred():\n name = input('Escribe tu nombre: ')\n age = int(input('escribe tu edad: '))\n year = 2019 + (100 - age)\n birth = 2019 - age\n print(\n f'\\nHola {name}, naciste en {birth}, tu cumpleaños 100 sera en el año {year}'\n )\n\n\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<function token>\n<code token>\n\n\ndef encriptar(frase, caracter):\n encriptada = ''\n for letra in frase:\n if letra.lower() in 'aeiouáéíúó':\n if letra.isupper():\n encriptada = encriptada + caracter.upper()\n else:\n encriptada = encriptada + caracter\n else:\n encriptada = encriptada + letra\n return encriptada\n\n\n<code token>\n\n\ndef reverse():\n user = input('type anything here')\n b = user.split()\n c = b[::-1]\n d = ' '.join(c)\n print(d)\n\n\ndef lista_duplicate():\n lista = input('ingresa una lista de cosas:').split()\n print(lista)\n y = []\n for letra in lista:\n if letra not in y:\n y.append(letra)\n print(y)\n\n\n<import token>\n\n\ndef pw_gen(size=8, chars=string.ascii_letters + string.digits + string.\n punctuation):\n return ''.join(random.choice(chars) for _ in range(size))\n\n\ndef pwd():\n pwd = ''\n count = 0\n length = int(input('How many characters would you like in your password? ')\n )\n while count != length:\n upper = [random.choice(string.ascii_uppercase)]\n lower = [random.choice(string.ascii_lowercase)]\n num = [random.choice(string.digits)]\n symbol = [random.choice(string.punctuation)]\n everything = upper + lower + num + symbol\n pwd += random.choice(everything)\n count += 1\n continue\n if count == length:\n print(pwd)\n\n\ndef prime_number():\n import numpy\n number = int(input('enter your number: '))\n listRange = list(range(1, number + 1))\n divisorList = []\n for numb in listRange:\n if number % numb == 0:\n divisorList.append(numb)\n if len(divisorList) == 2:\n print(f'{number} is prime, only has {divisorList} as divisors')\n else:\n print(\n f'{number} is not a prime number and the divisors are {divisorList}'\n )\n\n\n<code token>\n<assignment token>\n<code token>\n<function token>\n\n\ndef buscar_valor(valor):\n res_busqueda = busqueda_binaria(valor)\n if res_busqueda is None:\n return f'el valor {valor} no se encontro '\n else:\n return f'el numero {valor} se encuentra en la posicion {res_busqueda}'\n\n\n<code token>\n<function token>\n\n\ndef print_lines2(a):\n print(' ---' * a)\n\n\n<function token>\n<code token>\n<assignment token>\n<code token>\n", "def mix(pal):\n if len(pal) > 4:\n mix1 = pal[0:2] + pal[-2:]\n print(mix1)\n if len(pal) <= 4:\n print('invalid input')\n\n\n<code token>\n\n\ndef age_hundred():\n name = input('Escribe tu nombre: ')\n age = int(input('escribe tu edad: '))\n year = 2019 + (100 - age)\n birth = 2019 - age\n print(\n f'\\nHola {name}, naciste en {birth}, tu cumpleaños 100 sera en el año {year}'\n )\n\n\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<function token>\n<code token>\n\n\ndef encriptar(frase, caracter):\n encriptada = ''\n for letra in frase:\n if letra.lower() in 'aeiouáéíúó':\n if letra.isupper():\n encriptada = encriptada + caracter.upper()\n else:\n encriptada = encriptada + caracter\n else:\n encriptada = encriptada + letra\n return encriptada\n\n\n<code token>\n<function token>\n\n\ndef lista_duplicate():\n lista = input('ingresa una lista de cosas:').split()\n print(lista)\n y = []\n for letra in lista:\n if letra not in y:\n y.append(letra)\n print(y)\n\n\n<import token>\n\n\ndef pw_gen(size=8, chars=string.ascii_letters + string.digits + string.\n punctuation):\n return ''.join(random.choice(chars) for _ in range(size))\n\n\ndef pwd():\n pwd = ''\n count = 0\n length = int(input('How many characters would you like in your password? ')\n )\n while count != length:\n upper = [random.choice(string.ascii_uppercase)]\n lower = [random.choice(string.ascii_lowercase)]\n num = [random.choice(string.digits)]\n symbol = [random.choice(string.punctuation)]\n everything = upper + lower + num + symbol\n pwd += random.choice(everything)\n count += 1\n continue\n if count == length:\n print(pwd)\n\n\ndef prime_number():\n import numpy\n number = int(input('enter your number: '))\n listRange = list(range(1, number + 1))\n divisorList = []\n for numb in listRange:\n if number % numb == 0:\n divisorList.append(numb)\n if len(divisorList) == 2:\n print(f'{number} is prime, only has {divisorList} as divisors')\n else:\n print(\n f'{number} is not a prime number and the divisors are {divisorList}'\n )\n\n\n<code token>\n<assignment token>\n<code token>\n<function token>\n\n\ndef buscar_valor(valor):\n res_busqueda = busqueda_binaria(valor)\n if res_busqueda is None:\n return f'el valor {valor} no se encontro '\n else:\n return f'el numero {valor} se encuentra en la posicion {res_busqueda}'\n\n\n<code token>\n<function token>\n\n\ndef print_lines2(a):\n print(' ---' * a)\n\n\n<function token>\n<code token>\n<assignment token>\n<code token>\n", "def mix(pal):\n if len(pal) > 4:\n mix1 = pal[0:2] + pal[-2:]\n print(mix1)\n if len(pal) <= 4:\n print('invalid input')\n\n\n<code token>\n\n\ndef age_hundred():\n name = input('Escribe tu nombre: ')\n age = int(input('escribe tu edad: '))\n year = 2019 + (100 - age)\n birth = 2019 - age\n print(\n f'\\nHola {name}, naciste en {birth}, tu cumpleaños 100 sera en el año {year}'\n )\n\n\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<function token>\n<code token>\n\n\ndef encriptar(frase, caracter):\n encriptada = ''\n for letra in frase:\n if letra.lower() in 'aeiouáéíúó':\n if letra.isupper():\n encriptada = encriptada + caracter.upper()\n else:\n encriptada = encriptada + caracter\n else:\n encriptada = encriptada + letra\n return encriptada\n\n\n<code token>\n<function token>\n\n\ndef lista_duplicate():\n lista = input('ingresa una lista de cosas:').split()\n print(lista)\n y = []\n for letra in lista:\n if letra not in y:\n y.append(letra)\n print(y)\n\n\n<import token>\n\n\ndef pw_gen(size=8, chars=string.ascii_letters + string.digits + string.\n punctuation):\n return ''.join(random.choice(chars) for _ in range(size))\n\n\ndef pwd():\n pwd = ''\n count = 0\n length = int(input('How many characters would you like in your password? ')\n )\n while count != length:\n upper = [random.choice(string.ascii_uppercase)]\n lower = [random.choice(string.ascii_lowercase)]\n num = [random.choice(string.digits)]\n symbol = [random.choice(string.punctuation)]\n everything = upper + lower + num + symbol\n pwd += random.choice(everything)\n count += 1\n continue\n if count == length:\n print(pwd)\n\n\n<function token>\n<code token>\n<assignment token>\n<code token>\n<function token>\n\n\ndef buscar_valor(valor):\n res_busqueda = busqueda_binaria(valor)\n if res_busqueda is None:\n return f'el valor {valor} no se encontro '\n else:\n return f'el numero {valor} se encuentra en la posicion {res_busqueda}'\n\n\n<code token>\n<function token>\n\n\ndef print_lines2(a):\n print(' ---' * a)\n\n\n<function token>\n<code token>\n<assignment token>\n<code token>\n", "def mix(pal):\n if len(pal) > 4:\n mix1 = pal[0:2] + pal[-2:]\n print(mix1)\n if len(pal) <= 4:\n print('invalid input')\n\n\n<code token>\n\n\ndef age_hundred():\n name = input('Escribe tu nombre: ')\n age = int(input('escribe tu edad: '))\n year = 2019 + (100 - age)\n birth = 2019 - age\n print(\n f'\\nHola {name}, naciste en {birth}, tu cumpleaños 100 sera en el año {year}'\n )\n\n\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<function token>\n<code token>\n\n\ndef encriptar(frase, caracter):\n encriptada = ''\n for letra in frase:\n if letra.lower() in 'aeiouáéíúó':\n if letra.isupper():\n encriptada = encriptada + caracter.upper()\n else:\n encriptada = encriptada + caracter\n else:\n encriptada = encriptada + letra\n return encriptada\n\n\n<code token>\n<function token>\n<function token>\n<import token>\n\n\ndef pw_gen(size=8, chars=string.ascii_letters + string.digits + string.\n punctuation):\n return ''.join(random.choice(chars) for _ in range(size))\n\n\ndef pwd():\n pwd = ''\n count = 0\n length = int(input('How many characters would you like in your password? ')\n )\n while count != length:\n upper = [random.choice(string.ascii_uppercase)]\n lower = [random.choice(string.ascii_lowercase)]\n num = [random.choice(string.digits)]\n symbol = [random.choice(string.punctuation)]\n everything = upper + lower + num + symbol\n pwd += random.choice(everything)\n count += 1\n continue\n if count == length:\n print(pwd)\n\n\n<function token>\n<code token>\n<assignment token>\n<code token>\n<function token>\n\n\ndef buscar_valor(valor):\n res_busqueda = busqueda_binaria(valor)\n if res_busqueda is None:\n return f'el valor {valor} no se encontro '\n else:\n return f'el numero {valor} se encuentra en la posicion {res_busqueda}'\n\n\n<code token>\n<function token>\n\n\ndef print_lines2(a):\n print(' ---' * a)\n\n\n<function token>\n<code token>\n<assignment token>\n<code token>\n", "<function token>\n<code token>\n\n\ndef age_hundred():\n name = input('Escribe tu nombre: ')\n age = int(input('escribe tu edad: '))\n year = 2019 + (100 - age)\n birth = 2019 - age\n print(\n f'\\nHola {name}, naciste en {birth}, tu cumpleaños 100 sera en el año {year}'\n )\n\n\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<function token>\n<code token>\n\n\ndef encriptar(frase, caracter):\n encriptada = ''\n for letra in frase:\n if letra.lower() in 'aeiouáéíúó':\n if letra.isupper():\n encriptada = encriptada + caracter.upper()\n else:\n encriptada = encriptada + caracter\n else:\n encriptada = encriptada + letra\n return encriptada\n\n\n<code token>\n<function token>\n<function token>\n<import token>\n\n\ndef pw_gen(size=8, chars=string.ascii_letters + string.digits + string.\n punctuation):\n return ''.join(random.choice(chars) for _ in range(size))\n\n\ndef pwd():\n pwd = ''\n count = 0\n length = int(input('How many characters would you like in your password? ')\n )\n while count != length:\n upper = [random.choice(string.ascii_uppercase)]\n lower = [random.choice(string.ascii_lowercase)]\n num = [random.choice(string.digits)]\n symbol = [random.choice(string.punctuation)]\n everything = upper + lower + num + symbol\n pwd += random.choice(everything)\n count += 1\n continue\n if count == length:\n print(pwd)\n\n\n<function token>\n<code token>\n<assignment token>\n<code token>\n<function token>\n\n\ndef buscar_valor(valor):\n res_busqueda = busqueda_binaria(valor)\n if res_busqueda is None:\n return f'el valor {valor} no se encontro '\n else:\n return f'el numero {valor} se encuentra en la posicion {res_busqueda}'\n\n\n<code token>\n<function token>\n\n\ndef print_lines2(a):\n print(' ---' * a)\n\n\n<function token>\n<code token>\n<assignment token>\n<code token>\n", "<function token>\n<code token>\n\n\ndef age_hundred():\n name = input('Escribe tu nombre: ')\n age = int(input('escribe tu edad: '))\n year = 2019 + (100 - age)\n birth = 2019 - age\n print(\n f'\\nHola {name}, naciste en {birth}, tu cumpleaños 100 sera en el año {year}'\n )\n\n\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<function token>\n<code token>\n\n\ndef encriptar(frase, caracter):\n encriptada = ''\n for letra in frase:\n if letra.lower() in 'aeiouáéíúó':\n if letra.isupper():\n encriptada = encriptada + caracter.upper()\n else:\n encriptada = encriptada + caracter\n else:\n encriptada = encriptada + letra\n return encriptada\n\n\n<code token>\n<function token>\n<function token>\n<import token>\n\n\ndef pw_gen(size=8, chars=string.ascii_letters + string.digits + string.\n punctuation):\n return ''.join(random.choice(chars) for _ in range(size))\n\n\n<function token>\n<function token>\n<code token>\n<assignment token>\n<code token>\n<function token>\n\n\ndef buscar_valor(valor):\n res_busqueda = busqueda_binaria(valor)\n if res_busqueda is None:\n return f'el valor {valor} no se encontro '\n else:\n return f'el numero {valor} se encuentra en la posicion {res_busqueda}'\n\n\n<code token>\n<function token>\n\n\ndef print_lines2(a):\n print(' ---' * a)\n\n\n<function token>\n<code token>\n<assignment token>\n<code token>\n", "<function token>\n<code token>\n<function token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<function token>\n<code token>\n\n\ndef encriptar(frase, caracter):\n encriptada = ''\n for letra in frase:\n if letra.lower() in 'aeiouáéíúó':\n if letra.isupper():\n encriptada = encriptada + caracter.upper()\n else:\n encriptada = encriptada + caracter\n else:\n encriptada = encriptada + letra\n return encriptada\n\n\n<code token>\n<function token>\n<function token>\n<import token>\n\n\ndef pw_gen(size=8, chars=string.ascii_letters + string.digits + string.\n punctuation):\n return ''.join(random.choice(chars) for _ in range(size))\n\n\n<function token>\n<function token>\n<code token>\n<assignment token>\n<code token>\n<function token>\n\n\ndef buscar_valor(valor):\n res_busqueda = busqueda_binaria(valor)\n if res_busqueda is None:\n return f'el valor {valor} no se encontro '\n else:\n return f'el numero {valor} se encuentra en la posicion {res_busqueda}'\n\n\n<code token>\n<function token>\n\n\ndef print_lines2(a):\n print(' ---' * a)\n\n\n<function token>\n<code token>\n<assignment token>\n<code token>\n", "<function token>\n<code token>\n<function token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<function token>\n<code token>\n\n\ndef encriptar(frase, caracter):\n encriptada = ''\n for letra in frase:\n if letra.lower() in 'aeiouáéíúó':\n if letra.isupper():\n encriptada = encriptada + caracter.upper()\n else:\n encriptada = encriptada + caracter\n else:\n encriptada = encriptada + letra\n return encriptada\n\n\n<code token>\n<function token>\n<function token>\n<import token>\n\n\ndef pw_gen(size=8, chars=string.ascii_letters + string.digits + string.\n punctuation):\n return ''.join(random.choice(chars) for _ in range(size))\n\n\n<function token>\n<function token>\n<code token>\n<assignment token>\n<code token>\n<function token>\n<function token>\n<code token>\n<function token>\n\n\ndef print_lines2(a):\n print(' ---' * a)\n\n\n<function token>\n<code token>\n<assignment token>\n<code token>\n", "<function token>\n<code token>\n<function token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<function token>\n<code token>\n\n\ndef encriptar(frase, caracter):\n encriptada = ''\n for letra in frase:\n if letra.lower() in 'aeiouáéíúó':\n if letra.isupper():\n encriptada = encriptada + caracter.upper()\n else:\n encriptada = encriptada + caracter\n else:\n encriptada = encriptada + letra\n return encriptada\n\n\n<code token>\n<function token>\n<function token>\n<import token>\n<function token>\n<function token>\n<function token>\n<code token>\n<assignment token>\n<code token>\n<function token>\n<function token>\n<code token>\n<function token>\n\n\ndef print_lines2(a):\n print(' ---' * a)\n\n\n<function token>\n<code token>\n<assignment token>\n<code token>\n", "<function token>\n<code token>\n<function token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<function token>\n<code token>\n\n\ndef encriptar(frase, caracter):\n encriptada = ''\n for letra in frase:\n if letra.lower() in 'aeiouáéíúó':\n if letra.isupper():\n encriptada = encriptada + caracter.upper()\n else:\n encriptada = encriptada + caracter\n else:\n encriptada = encriptada + letra\n return encriptada\n\n\n<code token>\n<function token>\n<function token>\n<import token>\n<function token>\n<function token>\n<function token>\n<code token>\n<assignment token>\n<code token>\n<function token>\n<function token>\n<code token>\n<function token>\n<function token>\n<function token>\n<code token>\n<assignment token>\n<code token>\n", "<function token>\n<code token>\n<function token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<function token>\n<code token>\n<function token>\n<code token>\n<function token>\n<function token>\n<import token>\n<function token>\n<function token>\n<function token>\n<code token>\n<assignment token>\n<code token>\n<function token>\n<function token>\n<code token>\n<function token>\n<function token>\n<function token>\n<code token>\n<assignment token>\n<code token>\n" ]
false
98,830
a31c66e48778d1c7b160ce5579f8ca92852de261
import arrow import ctime import glob import os # article images are stored on file system. Items expire from DB after 30 days # clean up articles after 31 # NOTE: ctime is last modification time, not creation time, could cause problems img_files = glob.glob('/home/ubuntu/images/') for img in img_files: time_modified = os.path.getctime(img) if arrow.utcnow().timestamp - time_modified > 2678400: # 31 days os.remove(img)
[ "import arrow\nimport ctime\nimport glob\nimport os\n\n# article images are stored on file system. Items expire from DB after 30 days\n# clean up articles after 31\n\n# NOTE: ctime is last modification time, not creation time, could cause problems\n\nimg_files = glob.glob('/home/ubuntu/images/')\n\nfor img in img_files:\n time_modified = os.path.getctime(img)\n if arrow.utcnow().timestamp - time_modified > 2678400: # 31 days\n os.remove(img)\n", "import arrow\nimport ctime\nimport glob\nimport os\nimg_files = glob.glob('/home/ubuntu/images/')\nfor img in img_files:\n time_modified = os.path.getctime(img)\n if arrow.utcnow().timestamp - time_modified > 2678400:\n os.remove(img)\n", "<import token>\nimg_files = glob.glob('/home/ubuntu/images/')\nfor img in img_files:\n time_modified = os.path.getctime(img)\n if arrow.utcnow().timestamp - time_modified > 2678400:\n os.remove(img)\n", "<import token>\n<assignment token>\nfor img in img_files:\n time_modified = os.path.getctime(img)\n if arrow.utcnow().timestamp - time_modified > 2678400:\n os.remove(img)\n", "<import token>\n<assignment token>\n<code token>\n" ]
false
98,831
967b84e33d24322ad4f084d925f92b0755b5961d
import os import subprocess import logbook logger = logbook.Logger('connman-dispatcher') def is_executable(path): return all([os.path.isfile(path), os.access(path, os.X_OK)]) def execute_scripts_in_dirs(paths, state): for path in sorted(paths): if os.path.exists(path) and os.path.isdir(path): execute_scripts_in_dir(path, state) def execute_scripts_in_dir(path, state): for script in sorted(os.listdir(path)): full_scirpt_path = os.path.join(path, script) if os.path.exists(full_scirpt_path): if is_executable(full_scirpt_path): logger.info('executing: %s %s' % (full_scirpt_path, state)) subprocess.Popen([full_scirpt_path, state]) else: logger.error('%s is not executable file' % full_scirpt_path)
[ "import os\nimport subprocess\nimport logbook\nlogger = logbook.Logger('connman-dispatcher')\n\n\ndef is_executable(path):\n return all([os.path.isfile(path), os.access(path, os.X_OK)])\n\ndef execute_scripts_in_dirs(paths, state):\n for path in sorted(paths):\n if os.path.exists(path) and os.path.isdir(path):\n execute_scripts_in_dir(path, state)\n\ndef execute_scripts_in_dir(path, state):\n for script in sorted(os.listdir(path)):\n full_scirpt_path = os.path.join(path, script)\n if os.path.exists(full_scirpt_path):\n if is_executable(full_scirpt_path):\n logger.info('executing: %s %s' % (full_scirpt_path, state))\n subprocess.Popen([full_scirpt_path, state])\n else:\n logger.error('%s is not executable file' % full_scirpt_path)\n\n", "import os\nimport subprocess\nimport logbook\nlogger = logbook.Logger('connman-dispatcher')\n\n\ndef is_executable(path):\n return all([os.path.isfile(path), os.access(path, os.X_OK)])\n\n\ndef execute_scripts_in_dirs(paths, state):\n for path in sorted(paths):\n if os.path.exists(path) and os.path.isdir(path):\n execute_scripts_in_dir(path, state)\n\n\ndef execute_scripts_in_dir(path, state):\n for script in sorted(os.listdir(path)):\n full_scirpt_path = os.path.join(path, script)\n if os.path.exists(full_scirpt_path):\n if is_executable(full_scirpt_path):\n logger.info('executing: %s %s' % (full_scirpt_path, state))\n subprocess.Popen([full_scirpt_path, state])\n else:\n logger.error('%s is not executable file' % full_scirpt_path)\n", "<import token>\nlogger = logbook.Logger('connman-dispatcher')\n\n\ndef is_executable(path):\n return all([os.path.isfile(path), os.access(path, os.X_OK)])\n\n\ndef execute_scripts_in_dirs(paths, state):\n for path in sorted(paths):\n if os.path.exists(path) and os.path.isdir(path):\n execute_scripts_in_dir(path, state)\n\n\ndef execute_scripts_in_dir(path, state):\n for script in sorted(os.listdir(path)):\n full_scirpt_path = os.path.join(path, script)\n if os.path.exists(full_scirpt_path):\n if is_executable(full_scirpt_path):\n logger.info('executing: %s %s' % (full_scirpt_path, state))\n subprocess.Popen([full_scirpt_path, state])\n else:\n logger.error('%s is not executable file' % full_scirpt_path)\n", "<import token>\n<assignment token>\n\n\ndef is_executable(path):\n return all([os.path.isfile(path), os.access(path, os.X_OK)])\n\n\ndef execute_scripts_in_dirs(paths, state):\n for path in sorted(paths):\n if os.path.exists(path) and os.path.isdir(path):\n execute_scripts_in_dir(path, state)\n\n\ndef execute_scripts_in_dir(path, state):\n for script in sorted(os.listdir(path)):\n full_scirpt_path = os.path.join(path, script)\n if os.path.exists(full_scirpt_path):\n if is_executable(full_scirpt_path):\n logger.info('executing: %s %s' % (full_scirpt_path, state))\n subprocess.Popen([full_scirpt_path, state])\n else:\n logger.error('%s is not executable file' % full_scirpt_path)\n", "<import token>\n<assignment token>\n\n\ndef is_executable(path):\n return all([os.path.isfile(path), os.access(path, os.X_OK)])\n\n\n<function token>\n\n\ndef execute_scripts_in_dir(path, state):\n for script in sorted(os.listdir(path)):\n full_scirpt_path = os.path.join(path, script)\n if os.path.exists(full_scirpt_path):\n if is_executable(full_scirpt_path):\n logger.info('executing: %s %s' % (full_scirpt_path, state))\n subprocess.Popen([full_scirpt_path, state])\n else:\n logger.error('%s is not executable file' % full_scirpt_path)\n", "<import token>\n<assignment token>\n\n\ndef is_executable(path):\n return all([os.path.isfile(path), os.access(path, os.X_OK)])\n\n\n<function token>\n<function token>\n", "<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n" ]
false
98,832
04e00ddcb0d179e5c3f06d8ac82461f9b413d638
""" This class implements experiment_07 We create and save one model for first occurance of each day of the week in month of September for each num_drivers value """ from __future__ import division import os import logging from pathos.pools import ProcessPool import multiprocessing as mp from copy import deepcopy from jobs.rl_training import RunRLTrainingJob from data.data_exporter import DataExporter class Experiment07(object): """ Experiment07 class """ def __init__(self, config_): """ Constructor :param config_: :return: """ self.config = config_ self.data_exporter = DataExporter(self.config) self.logger = logging.getLogger("cuda_logger") self.expt_name = "expt_07" self.config['RL_parameters']['experiment'] = self.expt_name @staticmethod def run_rl_training(config): rl_trainer = RunRLTrainingJob(config) data = rl_trainer.run() return data def run(self): """ Run experiment """ days = [ 'Sunday_00_', 'Monday_00_', 'Tuesday_00_', 'Wednesday_00_', 'Thursday_00_', 'Friday_00_', 'Saturday_00_', 'Sunday_01_', 'Monday_01_', 'Tuesday_01_', 'Wednesday_01_', 'Thursday_01_', 'Friday_01_', 'Saturday_01_', 'Sunday_02_', 'Monday_02_', 'Tuesday_02_', 'Wednesday_02_', 'Thursday_02_', 'Friday_02_', 'Saturday_02_', 'Sunday_03_', 'Monday_03_', 'Tuesday_03_', 'Wednesday_03_', 'Thursday_03_', 'Friday_03_', 'Saturday_03_', 'Sunday_04_', 'Monday_04_', 'Tuesday_04_', 'Wednesday_04_', 'Thursday_04_', 'Friday_04_', 'Saturday_04_' ] num_drivers = [4000, 5000, 6000, 7000, 8000, 9000, 10000] imbalance_thresholds = [2] # Create a pool of processes num_processes = mp.cpu_count() self.logger.info("Processes: {}".format(num_processes)) pool = ProcessPool(nodes=num_processes) configs = [] count = 0 for d in num_drivers: for threshold in imbalance_thresholds: for day in days: self.config['RL_parameters']['num_drivers'] = d self.config['RL_parameters']['num_strategic_drivers'] = d self.config['RL_parameters']['imbalance_threshold'] = threshold self.config['RL_parameters']['experiment'] = self.expt_name + "_" + str(count) if os.path.isfile(self.config['app']['DATA_DIR'] + 'city_states/' + day + 'city_states.dill'): self.config['RL_parameters']['city_states_filename'] = day + 'city_states.dill' self.config['RL_parameters']['best_model_filename'] = ( day + str(d) + '_' + str(threshold) + '_model.dill') configs.append(deepcopy(self.config)) count += 1 self.logger.info("Starting expt_07") results = pool.amap(self.run_rl_training, configs).get() pool.close() pool.join() pool.clear() self.logger.info("Finished expt_07")
[ "\"\"\"\nThis class implements experiment_07\nWe create and save one model for first occurance of each day of the week in month of September\nfor each num_drivers value\n\"\"\"\n\nfrom __future__ import division\nimport os\nimport logging\nfrom pathos.pools import ProcessPool\nimport multiprocessing as mp\nfrom copy import deepcopy\nfrom jobs.rl_training import RunRLTrainingJob\nfrom data.data_exporter import DataExporter\n\n\nclass Experiment07(object):\n \"\"\"\n Experiment07 class\n \"\"\"\n\n def __init__(self, config_):\n \"\"\"\n Constructor\n :param config_:\n :return:\n \"\"\"\n self.config = config_\n self.data_exporter = DataExporter(self.config)\n self.logger = logging.getLogger(\"cuda_logger\")\n self.expt_name = \"expt_07\"\n self.config['RL_parameters']['experiment'] = self.expt_name\n\n @staticmethod\n def run_rl_training(config):\n rl_trainer = RunRLTrainingJob(config)\n data = rl_trainer.run()\n return data\n\n def run(self):\n \"\"\"\n Run experiment\n \"\"\"\n days = [\n 'Sunday_00_', 'Monday_00_', 'Tuesday_00_', 'Wednesday_00_', 'Thursday_00_', 'Friday_00_', 'Saturday_00_',\n 'Sunday_01_', 'Monday_01_', 'Tuesday_01_', 'Wednesday_01_', 'Thursday_01_', 'Friday_01_', 'Saturday_01_',\n 'Sunday_02_', 'Monday_02_', 'Tuesday_02_', 'Wednesday_02_', 'Thursday_02_', 'Friday_02_', 'Saturday_02_',\n 'Sunday_03_', 'Monday_03_', 'Tuesday_03_', 'Wednesday_03_', 'Thursday_03_', 'Friday_03_', 'Saturday_03_',\n 'Sunday_04_', 'Monday_04_', 'Tuesday_04_', 'Wednesday_04_', 'Thursday_04_', 'Friday_04_', 'Saturday_04_'\n ]\n\n num_drivers = [4000, 5000, 6000, 7000, 8000, 9000, 10000]\n\n imbalance_thresholds = [2]\n\n # Create a pool of processes\n num_processes = mp.cpu_count()\n self.logger.info(\"Processes: {}\".format(num_processes))\n pool = ProcessPool(nodes=num_processes)\n\n configs = []\n count = 0\n\n for d in num_drivers:\n for threshold in imbalance_thresholds:\n for day in days:\n self.config['RL_parameters']['num_drivers'] = d\n self.config['RL_parameters']['num_strategic_drivers'] = d\n\n self.config['RL_parameters']['imbalance_threshold'] = threshold\n self.config['RL_parameters']['experiment'] = self.expt_name + \"_\" + str(count)\n if os.path.isfile(self.config['app']['DATA_DIR'] + 'city_states/' + day + 'city_states.dill'):\n self.config['RL_parameters']['city_states_filename'] = day + 'city_states.dill'\n self.config['RL_parameters']['best_model_filename'] = (\n day + str(d) + '_' + str(threshold) + '_model.dill')\n configs.append(deepcopy(self.config))\n count += 1\n\n self.logger.info(\"Starting expt_07\")\n\n results = pool.amap(self.run_rl_training, configs).get()\n pool.close()\n pool.join()\n pool.clear()\n\n self.logger.info(\"Finished expt_07\")\n", "<docstring token>\nfrom __future__ import division\nimport os\nimport logging\nfrom pathos.pools import ProcessPool\nimport multiprocessing as mp\nfrom copy import deepcopy\nfrom jobs.rl_training import RunRLTrainingJob\nfrom data.data_exporter import DataExporter\n\n\nclass Experiment07(object):\n \"\"\"\n Experiment07 class\n \"\"\"\n\n def __init__(self, config_):\n \"\"\"\n Constructor\n :param config_:\n :return:\n \"\"\"\n self.config = config_\n self.data_exporter = DataExporter(self.config)\n self.logger = logging.getLogger('cuda_logger')\n self.expt_name = 'expt_07'\n self.config['RL_parameters']['experiment'] = self.expt_name\n\n @staticmethod\n def run_rl_training(config):\n rl_trainer = RunRLTrainingJob(config)\n data = rl_trainer.run()\n return data\n\n def run(self):\n \"\"\"\n Run experiment\n \"\"\"\n days = ['Sunday_00_', 'Monday_00_', 'Tuesday_00_', 'Wednesday_00_',\n 'Thursday_00_', 'Friday_00_', 'Saturday_00_', 'Sunday_01_',\n 'Monday_01_', 'Tuesday_01_', 'Wednesday_01_', 'Thursday_01_',\n 'Friday_01_', 'Saturday_01_', 'Sunday_02_', 'Monday_02_',\n 'Tuesday_02_', 'Wednesday_02_', 'Thursday_02_', 'Friday_02_',\n 'Saturday_02_', 'Sunday_03_', 'Monday_03_', 'Tuesday_03_',\n 'Wednesday_03_', 'Thursday_03_', 'Friday_03_', 'Saturday_03_',\n 'Sunday_04_', 'Monday_04_', 'Tuesday_04_', 'Wednesday_04_',\n 'Thursday_04_', 'Friday_04_', 'Saturday_04_']\n num_drivers = [4000, 5000, 6000, 7000, 8000, 9000, 10000]\n imbalance_thresholds = [2]\n num_processes = mp.cpu_count()\n self.logger.info('Processes: {}'.format(num_processes))\n pool = ProcessPool(nodes=num_processes)\n configs = []\n count = 0\n for d in num_drivers:\n for threshold in imbalance_thresholds:\n for day in days:\n self.config['RL_parameters']['num_drivers'] = d\n self.config['RL_parameters']['num_strategic_drivers'] = d\n self.config['RL_parameters']['imbalance_threshold'\n ] = threshold\n self.config['RL_parameters']['experiment'\n ] = self.expt_name + '_' + str(count)\n if os.path.isfile(self.config['app']['DATA_DIR'] +\n 'city_states/' + day + 'city_states.dill'):\n self.config['RL_parameters']['city_states_filename'\n ] = day + 'city_states.dill'\n self.config['RL_parameters']['best_model_filename'\n ] = day + str(d) + '_' + str(threshold\n ) + '_model.dill'\n configs.append(deepcopy(self.config))\n count += 1\n self.logger.info('Starting expt_07')\n results = pool.amap(self.run_rl_training, configs).get()\n pool.close()\n pool.join()\n pool.clear()\n self.logger.info('Finished expt_07')\n", "<docstring token>\n<import token>\n\n\nclass Experiment07(object):\n \"\"\"\n Experiment07 class\n \"\"\"\n\n def __init__(self, config_):\n \"\"\"\n Constructor\n :param config_:\n :return:\n \"\"\"\n self.config = config_\n self.data_exporter = DataExporter(self.config)\n self.logger = logging.getLogger('cuda_logger')\n self.expt_name = 'expt_07'\n self.config['RL_parameters']['experiment'] = self.expt_name\n\n @staticmethod\n def run_rl_training(config):\n rl_trainer = RunRLTrainingJob(config)\n data = rl_trainer.run()\n return data\n\n def run(self):\n \"\"\"\n Run experiment\n \"\"\"\n days = ['Sunday_00_', 'Monday_00_', 'Tuesday_00_', 'Wednesday_00_',\n 'Thursday_00_', 'Friday_00_', 'Saturday_00_', 'Sunday_01_',\n 'Monday_01_', 'Tuesday_01_', 'Wednesday_01_', 'Thursday_01_',\n 'Friday_01_', 'Saturday_01_', 'Sunday_02_', 'Monday_02_',\n 'Tuesday_02_', 'Wednesday_02_', 'Thursday_02_', 'Friday_02_',\n 'Saturday_02_', 'Sunday_03_', 'Monday_03_', 'Tuesday_03_',\n 'Wednesday_03_', 'Thursday_03_', 'Friday_03_', 'Saturday_03_',\n 'Sunday_04_', 'Monday_04_', 'Tuesday_04_', 'Wednesday_04_',\n 'Thursday_04_', 'Friday_04_', 'Saturday_04_']\n num_drivers = [4000, 5000, 6000, 7000, 8000, 9000, 10000]\n imbalance_thresholds = [2]\n num_processes = mp.cpu_count()\n self.logger.info('Processes: {}'.format(num_processes))\n pool = ProcessPool(nodes=num_processes)\n configs = []\n count = 0\n for d in num_drivers:\n for threshold in imbalance_thresholds:\n for day in days:\n self.config['RL_parameters']['num_drivers'] = d\n self.config['RL_parameters']['num_strategic_drivers'] = d\n self.config['RL_parameters']['imbalance_threshold'\n ] = threshold\n self.config['RL_parameters']['experiment'\n ] = self.expt_name + '_' + str(count)\n if os.path.isfile(self.config['app']['DATA_DIR'] +\n 'city_states/' + day + 'city_states.dill'):\n self.config['RL_parameters']['city_states_filename'\n ] = day + 'city_states.dill'\n self.config['RL_parameters']['best_model_filename'\n ] = day + str(d) + '_' + str(threshold\n ) + '_model.dill'\n configs.append(deepcopy(self.config))\n count += 1\n self.logger.info('Starting expt_07')\n results = pool.amap(self.run_rl_training, configs).get()\n pool.close()\n pool.join()\n pool.clear()\n self.logger.info('Finished expt_07')\n", "<docstring token>\n<import token>\n\n\nclass Experiment07(object):\n <docstring token>\n\n def __init__(self, config_):\n \"\"\"\n Constructor\n :param config_:\n :return:\n \"\"\"\n self.config = config_\n self.data_exporter = DataExporter(self.config)\n self.logger = logging.getLogger('cuda_logger')\n self.expt_name = 'expt_07'\n self.config['RL_parameters']['experiment'] = self.expt_name\n\n @staticmethod\n def run_rl_training(config):\n rl_trainer = RunRLTrainingJob(config)\n data = rl_trainer.run()\n return data\n\n def run(self):\n \"\"\"\n Run experiment\n \"\"\"\n days = ['Sunday_00_', 'Monday_00_', 'Tuesday_00_', 'Wednesday_00_',\n 'Thursday_00_', 'Friday_00_', 'Saturday_00_', 'Sunday_01_',\n 'Monday_01_', 'Tuesday_01_', 'Wednesday_01_', 'Thursday_01_',\n 'Friday_01_', 'Saturday_01_', 'Sunday_02_', 'Monday_02_',\n 'Tuesday_02_', 'Wednesday_02_', 'Thursday_02_', 'Friday_02_',\n 'Saturday_02_', 'Sunday_03_', 'Monday_03_', 'Tuesday_03_',\n 'Wednesday_03_', 'Thursday_03_', 'Friday_03_', 'Saturday_03_',\n 'Sunday_04_', 'Monday_04_', 'Tuesday_04_', 'Wednesday_04_',\n 'Thursday_04_', 'Friday_04_', 'Saturday_04_']\n num_drivers = [4000, 5000, 6000, 7000, 8000, 9000, 10000]\n imbalance_thresholds = [2]\n num_processes = mp.cpu_count()\n self.logger.info('Processes: {}'.format(num_processes))\n pool = ProcessPool(nodes=num_processes)\n configs = []\n count = 0\n for d in num_drivers:\n for threshold in imbalance_thresholds:\n for day in days:\n self.config['RL_parameters']['num_drivers'] = d\n self.config['RL_parameters']['num_strategic_drivers'] = d\n self.config['RL_parameters']['imbalance_threshold'\n ] = threshold\n self.config['RL_parameters']['experiment'\n ] = self.expt_name + '_' + str(count)\n if os.path.isfile(self.config['app']['DATA_DIR'] +\n 'city_states/' + day + 'city_states.dill'):\n self.config['RL_parameters']['city_states_filename'\n ] = day + 'city_states.dill'\n self.config['RL_parameters']['best_model_filename'\n ] = day + str(d) + '_' + str(threshold\n ) + '_model.dill'\n configs.append(deepcopy(self.config))\n count += 1\n self.logger.info('Starting expt_07')\n results = pool.amap(self.run_rl_training, configs).get()\n pool.close()\n pool.join()\n pool.clear()\n self.logger.info('Finished expt_07')\n", "<docstring token>\n<import token>\n\n\nclass Experiment07(object):\n <docstring token>\n <function token>\n\n @staticmethod\n def run_rl_training(config):\n rl_trainer = RunRLTrainingJob(config)\n data = rl_trainer.run()\n return data\n\n def run(self):\n \"\"\"\n Run experiment\n \"\"\"\n days = ['Sunday_00_', 'Monday_00_', 'Tuesday_00_', 'Wednesday_00_',\n 'Thursday_00_', 'Friday_00_', 'Saturday_00_', 'Sunday_01_',\n 'Monday_01_', 'Tuesday_01_', 'Wednesday_01_', 'Thursday_01_',\n 'Friday_01_', 'Saturday_01_', 'Sunday_02_', 'Monday_02_',\n 'Tuesday_02_', 'Wednesday_02_', 'Thursday_02_', 'Friday_02_',\n 'Saturday_02_', 'Sunday_03_', 'Monday_03_', 'Tuesday_03_',\n 'Wednesday_03_', 'Thursday_03_', 'Friday_03_', 'Saturday_03_',\n 'Sunday_04_', 'Monday_04_', 'Tuesday_04_', 'Wednesday_04_',\n 'Thursday_04_', 'Friday_04_', 'Saturday_04_']\n num_drivers = [4000, 5000, 6000, 7000, 8000, 9000, 10000]\n imbalance_thresholds = [2]\n num_processes = mp.cpu_count()\n self.logger.info('Processes: {}'.format(num_processes))\n pool = ProcessPool(nodes=num_processes)\n configs = []\n count = 0\n for d in num_drivers:\n for threshold in imbalance_thresholds:\n for day in days:\n self.config['RL_parameters']['num_drivers'] = d\n self.config['RL_parameters']['num_strategic_drivers'] = d\n self.config['RL_parameters']['imbalance_threshold'\n ] = threshold\n self.config['RL_parameters']['experiment'\n ] = self.expt_name + '_' + str(count)\n if os.path.isfile(self.config['app']['DATA_DIR'] +\n 'city_states/' + day + 'city_states.dill'):\n self.config['RL_parameters']['city_states_filename'\n ] = day + 'city_states.dill'\n self.config['RL_parameters']['best_model_filename'\n ] = day + str(d) + '_' + str(threshold\n ) + '_model.dill'\n configs.append(deepcopy(self.config))\n count += 1\n self.logger.info('Starting expt_07')\n results = pool.amap(self.run_rl_training, configs).get()\n pool.close()\n pool.join()\n pool.clear()\n self.logger.info('Finished expt_07')\n", "<docstring token>\n<import token>\n\n\nclass Experiment07(object):\n <docstring token>\n <function token>\n\n @staticmethod\n def run_rl_training(config):\n rl_trainer = RunRLTrainingJob(config)\n data = rl_trainer.run()\n return data\n <function token>\n", "<docstring token>\n<import token>\n\n\nclass Experiment07(object):\n <docstring token>\n <function token>\n <function token>\n <function token>\n", "<docstring token>\n<import token>\n<class token>\n" ]
false
98,833
9a1da2b69658d4724996d42bbe791595c6e1950a
import schedule import time import schedule import time def job(message='stuff'): print("I'm working on:", message) schedule.every(5).seconds.do(job) while True: schedule.run_pending() time.sleep(1)
[ "import schedule\r\nimport time\r\nimport schedule\r\nimport time\r\n\r\ndef job(message='stuff'):\r\n print(\"I'm working on:\", message)\r\n\r\nschedule.every(5).seconds.do(job)\r\n\r\nwhile True:\r\n schedule.run_pending()\r\n time.sleep(1)\r\n", "import schedule\nimport time\nimport schedule\nimport time\n\n\ndef job(message='stuff'):\n print(\"I'm working on:\", message)\n\n\nschedule.every(5).seconds.do(job)\nwhile True:\n schedule.run_pending()\n time.sleep(1)\n", "<import token>\n\n\ndef job(message='stuff'):\n print(\"I'm working on:\", message)\n\n\nschedule.every(5).seconds.do(job)\nwhile True:\n schedule.run_pending()\n time.sleep(1)\n", "<import token>\n\n\ndef job(message='stuff'):\n print(\"I'm working on:\", message)\n\n\n<code token>\n", "<import token>\n<function token>\n<code token>\n" ]
false
98,834
5a69814b887874cb39d2beb8ff2695ecf643a87f
class BlankClass(object): '''This is a Blank class for CS162.''' pass t = BlankClass() class ClassWithAttr(object): x1 = 1 x2 = 2 my_attr = ClassWithAttr() my_attr.x3 = 3
[ "class BlankClass(object):\n '''This is a Blank class for CS162.'''\n pass\nt = BlankClass()\n\nclass ClassWithAttr(object):\n x1 = 1\n x2 = 2\n\nmy_attr = ClassWithAttr()\nmy_attr.x3 = 3\n\n", "class BlankClass(object):\n \"\"\"This is a Blank class for CS162.\"\"\"\n pass\n\n\nt = BlankClass()\n\n\nclass ClassWithAttr(object):\n x1 = 1\n x2 = 2\n\n\nmy_attr = ClassWithAttr()\nmy_attr.x3 = 3\n", "class BlankClass(object):\n \"\"\"This is a Blank class for CS162.\"\"\"\n pass\n\n\n<assignment token>\n\n\nclass ClassWithAttr(object):\n x1 = 1\n x2 = 2\n\n\n<assignment token>\n", "class BlankClass(object):\n <docstring token>\n pass\n\n\n<assignment token>\n\n\nclass ClassWithAttr(object):\n x1 = 1\n x2 = 2\n\n\n<assignment token>\n", "<class token>\n<assignment token>\n\n\nclass ClassWithAttr(object):\n x1 = 1\n x2 = 2\n\n\n<assignment token>\n", "<class token>\n<assignment token>\n\n\nclass ClassWithAttr(object):\n <assignment token>\n <assignment token>\n\n\n<assignment token>\n", "<class token>\n<assignment token>\n<class token>\n<assignment token>\n" ]
false
98,835
75ae1a5a186cd39eda2a5b79cb35187f5523ad2f
#!/usr/bin/python from re import sub import numpy as np import pandas as pd import os from . import private from . import synth from . import weedout from . import rundir_num MOOG_path = '{}/.pymoog/moog_nosm/moog_nosm_NOV2019/'.format(os.environ['HOME']) MOOG_run_path = '{}/.pymoog/rundir/'.format(os.environ['HOME']) MOOG_file_path = '{}/.pymoog/files/'.format(os.environ['HOME']) ## Convert the element column to element specics def save_linelist(linelist_all, sub_ll_name, wav_start=None, wav_end=None, header=None, negative=False): ''' Save the linelist in MOOG format into specified position. Parameters ---------- linelist_all : pandas.Dataframe The Dataframe of linelist in MOOG format sub_ll_name : str The name of the line list to be saved into. wav_start : float Start wavelength of the line list. end_start : float End wavelength of the line list. type : str, = 'vald' Type of the line list. Now only 'vald' is supported. negative : bool Switch to permit negative wavelength. ''' # Crop the line list according to wavelength, if needed. if not(negative): index = linelist_all['wavelength'] > 0 else: index = np.abs(linelist_all['wavelength']) >= 0 if wav_start != None: index = index & (linelist_all['wavelength'] > wav_start) if wav_end != None: index = index & (linelist_all['wavelength'] < wav_end) sub_linelist = linelist_all[index] sub_linelist.reset_index(drop=True, inplace=True) # Judge if the length of the line list is 0; if so raise an error. if len(sub_linelist) == 0: raise ValueError('The length of line list is 0. Consider enalrge the wavelength or check the input line list.') # Decidcde which format to save the linelist according to C6 value. if np.any(abs(sub_linelist['C6'].values) > 1e-25): output_format = '%10.3f%10.5f%10.4f%10.3f%10.3f%10.3f%10.3f' elif np.any(abs(sub_linelist['C6'].values) < 1e-25): output_format = '%10.3f%10.5f%10.4f%10.3f%10.2E%10.3f%10.3f' # Remove the last column if no EW values. if len(sub_linelist.columns) == 6: output_format = output_format[:-6] np.savetxt(sub_ll_name, np.array(sub_linelist), fmt=output_format) run_status = private.subprocess.run(['sed', '-i', 's/nan/ /g', sub_ll_name]) if header == None: header = 'Linelist' run_status = private.subprocess.run(['sed', '-i', '1 i\{}'.format(header), sub_ll_name]) def read_linelist(linelist_name, loggf_cut=None, mode='ascii'): ''' Read the post-processed linelist. Parameters ---------- linelist_name : str The MOOG format line list loggf_cut : float, optional Cut on loggf (only save for the lines with loggf > loggf_cut) mode : str, default 'ascii' Reading mode for reading line-list. The efficiency of 'npy' mode is much higher than 'ascii' mode. ''' available_line_list = ['ges', 'ges_hfs_iso', 'ges_nohfs_noiso', 'vald_3000_24000', 'vald_winered', 'mb99_j', 'mb99_k', 'apogee', 'kurucz', 'kurucz_winered'] if linelist_name[-5:] != '.list' and linelist_name in available_line_list: # Read built-in line list if linelist_name == 'ges': linelist_name = 'ges_hfs_iso' if mode == 'npy': linelist_name = MOOG_file_path + 'linelist/{}/{}.npy'.format(linelist_name.split('_')[0], linelist_name) elif mode == 'ascii': linelist_name = MOOG_file_path + 'linelist/{}/{}.list'.format(linelist_name.split('_')[0], linelist_name) else: raise ValueError('mode must be "npy" or "ascii".') elif linelist_name[-5:] == '.list': pass else: raise ValueError("Built in line list type not recognized. Please use one of the following:\n 'ges', 'ges_hfs_iso', 'ges_nohfs_noiso', 'vald_3000_24000', 'vald_winered', 'mb99_j', 'mb99_k', 'kurucz', 'kurucz_winered' or 'apogee'.") if mode == 'npy': linelist_array = np.load(linelist_name, allow_pickle=True) linelist = pd.DataFrame(linelist_array, columns=['wavelength', 'id', 'EP', 'loggf', 'C6', 'D0', 'EW']) elif mode == 'ascii': linelist = pd.read_fwf(linelist_name, colspecs=[(0,11), (11,21), (21,31), (31,41), (41,51), (51,61), (61,71)], names=['wavelength', 'id', 'EP', 'loggf', 'C6', 'D0', 'EW'], skiprows=1) # MOOG seems to crash if there is line with EP larger than 50eV, so they are removed. # Need to be test for other line lists linelist = linelist[(linelist['EP'] <= 50)] if loggf_cut != None: linelist = linelist[(linelist['loggf'] >= loggf_cut)] linelist.reset_index(drop=True, inplace=True) return linelist def find_lines(linelist_keep, linelist_all): line_index_keep = [] for i in linelist_keep.index: indice = (np.abs(linelist_all['wavelength'] - linelist_keep.loc[i, 'wavelength']) < 0.001) for col in ['id', 'EP', 'loggf']: indice = indice & (np.abs(linelist_all[col] - linelist_keep.loc[i, col]) < 0.001) if len(linelist_all[indice]) == 0: raise ValueError('No match line found.') line_index_keep.append(linelist_all[indice].index.values[0]) return line_index_keep def find_single_dominant_line(line_wav_input, teff, logg, fe_h, resolution, r_d_blend_thre=0.1, line_list='ges', weedout_switch=False, search_half_width=0.5, linelist_serach=False, abun_change=None): # Establish the linelist linelist_all = read_linelist(line_list) linelist_all = linelist_all[np.abs(linelist_all['wavelength']-line_wav_input) < search_half_width] # Calculate the blending ratio s = synth.synth(teff, logg, fe_h, line_wav_input-search_half_width-1, line_wav_input+search_half_width+1, resolution, line_list=line_list) s.prepare_file(abun_change=abun_change) # Whole spectra s.run_moog() s.read_spectra(unlock=False) wav_all, flux_all = s.wav, s.flux # weedout lines if weedout_switch != False: w = weedout.weedout(teff, logg, fe_h, line_wav_input-search_half_width, line_wav_input+search_half_width, line_list=line_list) w.prepare_file() w.run_moog() # Target line exclude if weedout_switch: linelist_keep = read_linelist(w.rundir_path + 'keep.list') else: linelist_keep = linelist_all # Unlock runs s.unlock() if weedout_switch != False: w.unlock() line_index_keep = find_lines(linelist_keep, linelist_all) r_blend_depth_list = [] for line_index in line_index_keep: s = synth.synth(teff, logg, fe_h, line_wav_input-search_half_width-1, line_wav_input+search_half_width+1, resolution, line_list='ges') s.prepare_file(abun_change=abun_change) linelist_exclude = linelist_all.drop(line_index).reset_index(drop=True) save_linelist(linelist_exclude, s.rundir_path + 'line.list') s.run_moog() s.read_spectra(unlock=False) wav_exclude, flux_exclude = s.wav, s.flux # Target line only linelist_target = linelist_all.loc[line_index:line_index].reset_index(drop=True) line_wavlength = linelist_target.loc[0, 'wavelength'] line_loggf = linelist_target.loc[0, 'loggf'] line_EP = linelist_target.loc[0, 'EP'] if abun_change is not None: s.prepare_file(abun_change=abun_change) else: s.prepare_file() save_linelist(linelist_target, s.rundir_path + 'line.list') s.run_moog() s.read_spectra() wav_target, flux_target = s.wav, s.flux # Calculate the EW and blending fraction EW = (np.sum(1-flux_all)*0.02 - np.sum(1-flux_exclude)*0.02) * 1000 depth = 1 - np.min(flux_all[np.abs(wav_all-line_wavlength) <= 0.03]) r_blend_depth = (1-flux_exclude[np.argmin(np.abs(wav_exclude-line_wavlength))]) / (1-flux_all[np.argmin(np.abs(wav_all-line_wavlength))]) r_blend_depth_list.append(r_blend_depth) linelist_keep['r_blend_depth'] = r_blend_depth_list if len(line_index_keep) > 0: try: target_line_index = np.abs(linelist_keep.loc[linelist_keep['r_blend_depth'] < 0.1, 'wavelength'] - line_wav_input).sort_values().index[0] target_line = linelist_keep.loc[target_line_index:target_line_index].reset_index(drop=True) except IndexError: # No dominant line is found target_line = pd.DataFrame(np.array([np.nan]*8)).T target_line.columns = ['wavelength', 'id', 'EP', 'loggf', 'C6', 'D0', 'EW', 'r_blend_depth'] else: # No line is found target_line = pd.DataFrame(np.array([np.nan]*8)).T target_line.columns = ['wavelength', 'id', 'EP', 'loggf', 'C6', 'D0', 'EW', 'r_blend_depth'] if linelist_serach: return target_line, linelist_keep else: return target_line
[ "#!/usr/bin/python\nfrom re import sub\nimport numpy as np\nimport pandas as pd\nimport os\nfrom . import private\nfrom . import synth\nfrom . import weedout\nfrom . import rundir_num\n\nMOOG_path = '{}/.pymoog/moog_nosm/moog_nosm_NOV2019/'.format(os.environ['HOME'])\nMOOG_run_path = '{}/.pymoog/rundir/'.format(os.environ['HOME'])\nMOOG_file_path = '{}/.pymoog/files/'.format(os.environ['HOME'])\n\n## Convert the element column to element specics\n\n \ndef save_linelist(linelist_all, sub_ll_name, wav_start=None, wav_end=None, header=None, negative=False):\n '''\n Save the linelist in MOOG format into specified position.\n \n Parameters\n ----------\n linelist_all : pandas.Dataframe\n The Dataframe of linelist in MOOG format\n sub_ll_name : str\n The name of the line list to be saved into.\n wav_start : float\n Start wavelength of the line list.\n end_start : float\n End wavelength of the line list.\n type : str, = 'vald'\n Type of the line list. Now only 'vald' is supported.\n negative : bool\n Switch to permit negative wavelength. \n '''\n \n # Crop the line list according to wavelength, if needed.\n if not(negative):\n index = linelist_all['wavelength'] > 0\n else:\n index = np.abs(linelist_all['wavelength']) >= 0\n if wav_start != None:\n index = index & (linelist_all['wavelength'] > wav_start)\n if wav_end != None:\n index = index & (linelist_all['wavelength'] < wav_end) \n \n sub_linelist = linelist_all[index]\n sub_linelist.reset_index(drop=True, inplace=True)\n \n # Judge if the length of the line list is 0; if so raise an error.\n if len(sub_linelist) == 0:\n raise ValueError('The length of line list is 0. Consider enalrge the wavelength or check the input line list.')\n \n # Decidcde which format to save the linelist according to C6 value.\n if np.any(abs(sub_linelist['C6'].values) > 1e-25):\n output_format = '%10.3f%10.5f%10.4f%10.3f%10.3f%10.3f%10.3f'\n elif np.any(abs(sub_linelist['C6'].values) < 1e-25):\n output_format = '%10.3f%10.5f%10.4f%10.3f%10.2E%10.3f%10.3f'\n \n # Remove the last column if no EW values.\n if len(sub_linelist.columns) == 6:\n output_format = output_format[:-6]\n np.savetxt(sub_ll_name, np.array(sub_linelist), fmt=output_format)\n run_status = private.subprocess.run(['sed', '-i', 's/nan/ /g', sub_ll_name])\n if header == None:\n header = 'Linelist'\n run_status = private.subprocess.run(['sed', '-i', '1 i\\{}'.format(header), sub_ll_name])\n\ndef read_linelist(linelist_name, loggf_cut=None, mode='ascii'):\n '''\n Read the post-processed linelist.\n \n Parameters\n ----------\n linelist_name : str\n The MOOG format line list\n loggf_cut : float, optional\n Cut on loggf (only save for the lines with loggf > loggf_cut)\n mode : str, default 'ascii'\n Reading mode for reading line-list. The efficiency of 'npy' mode is much higher than 'ascii' mode.\n '''\n \n available_line_list = ['ges', 'ges_hfs_iso', 'ges_nohfs_noiso', 'vald_3000_24000', 'vald_winered', 'mb99_j', 'mb99_k', 'apogee', 'kurucz', 'kurucz_winered']\n \n if linelist_name[-5:] != '.list' and linelist_name in available_line_list:\n # Read built-in line list\n if linelist_name == 'ges':\n linelist_name = 'ges_hfs_iso'\n if mode == 'npy':\n linelist_name = MOOG_file_path + 'linelist/{}/{}.npy'.format(linelist_name.split('_')[0], linelist_name)\n elif mode == 'ascii':\n linelist_name = MOOG_file_path + 'linelist/{}/{}.list'.format(linelist_name.split('_')[0], linelist_name)\n else:\n raise ValueError('mode must be \"npy\" or \"ascii\".')\n elif linelist_name[-5:] == '.list':\n pass\n else:\n raise ValueError(\"Built in line list type not recognized. Please use one of the following:\\n 'ges', 'ges_hfs_iso', 'ges_nohfs_noiso', 'vald_3000_24000', 'vald_winered', 'mb99_j', 'mb99_k', 'kurucz', 'kurucz_winered' or 'apogee'.\")\n \n if mode == 'npy':\n linelist_array = np.load(linelist_name, allow_pickle=True)\n linelist = pd.DataFrame(linelist_array, columns=['wavelength', 'id', 'EP', 'loggf', 'C6', 'D0', 'EW'])\n elif mode == 'ascii':\n linelist = pd.read_fwf(linelist_name, colspecs=[(0,11), (11,21), (21,31), (31,41), (41,51), (51,61), (61,71)], names=['wavelength', 'id', 'EP', 'loggf', 'C6', 'D0', 'EW'], skiprows=1)\n # MOOG seems to crash if there is line with EP larger than 50eV, so they are removed.\n # Need to be test for other line lists\n linelist = linelist[(linelist['EP'] <= 50)]\n if loggf_cut != None:\n linelist = linelist[(linelist['loggf'] >= loggf_cut)]\n linelist.reset_index(drop=True, inplace=True)\n return linelist\n\ndef find_lines(linelist_keep, linelist_all):\n line_index_keep = []\n for i in linelist_keep.index:\n indice = (np.abs(linelist_all['wavelength'] - linelist_keep.loc[i, 'wavelength']) < 0.001)\n for col in ['id', 'EP', 'loggf']:\n indice = indice & (np.abs(linelist_all[col] - linelist_keep.loc[i, col]) < 0.001)\n if len(linelist_all[indice]) == 0:\n raise ValueError('No match line found.')\n line_index_keep.append(linelist_all[indice].index.values[0])\n return line_index_keep\n\n\ndef find_single_dominant_line(line_wav_input, teff, logg, fe_h, resolution, r_d_blend_thre=0.1, line_list='ges', weedout_switch=False, search_half_width=0.5, linelist_serach=False, abun_change=None):\n\n # Establish the linelist\n linelist_all = read_linelist(line_list)\n linelist_all = linelist_all[np.abs(linelist_all['wavelength']-line_wav_input) < search_half_width]\n\n # Calculate the blending ratio\n s = synth.synth(teff, logg, fe_h, line_wav_input-search_half_width-1, line_wav_input+search_half_width+1, resolution, line_list=line_list)\n s.prepare_file(abun_change=abun_change)\n # Whole spectra \n s.run_moog()\n s.read_spectra(unlock=False)\n wav_all, flux_all = s.wav, s.flux\n\n # weedout lines\n if weedout_switch != False:\n w = weedout.weedout(teff, logg, fe_h, line_wav_input-search_half_width, line_wav_input+search_half_width, line_list=line_list)\n w.prepare_file()\n w.run_moog()\n \n # Target line exclude\n if weedout_switch:\n linelist_keep = read_linelist(w.rundir_path + 'keep.list')\n else:\n linelist_keep = linelist_all\n \n # Unlock runs\n s.unlock()\n if weedout_switch != False:\n w.unlock()\n \n line_index_keep = find_lines(linelist_keep, linelist_all)\n\n r_blend_depth_list = []\n for line_index in line_index_keep:\n s = synth.synth(teff, logg, fe_h, line_wav_input-search_half_width-1, line_wav_input+search_half_width+1, \n resolution, line_list='ges')\n s.prepare_file(abun_change=abun_change)\n linelist_exclude = linelist_all.drop(line_index).reset_index(drop=True)\n save_linelist(linelist_exclude, s.rundir_path + 'line.list')\n s.run_moog()\n s.read_spectra(unlock=False)\n wav_exclude, flux_exclude = s.wav, s.flux\n\n # Target line only\n linelist_target = linelist_all.loc[line_index:line_index].reset_index(drop=True)\n line_wavlength = linelist_target.loc[0, 'wavelength']\n line_loggf = linelist_target.loc[0, 'loggf']\n line_EP = linelist_target.loc[0, 'EP']\n if abun_change is not None:\n s.prepare_file(abun_change=abun_change)\n else:\n s.prepare_file()\n save_linelist(linelist_target, s.rundir_path + 'line.list')\n s.run_moog()\n s.read_spectra()\n wav_target, flux_target = s.wav, s.flux\n\n # Calculate the EW and blending fraction\n EW = (np.sum(1-flux_all)*0.02 - np.sum(1-flux_exclude)*0.02) * 1000\n depth = 1 - np.min(flux_all[np.abs(wav_all-line_wavlength) <= 0.03])\n r_blend_depth = (1-flux_exclude[np.argmin(np.abs(wav_exclude-line_wavlength))]) / (1-flux_all[np.argmin(np.abs(wav_all-line_wavlength))])\n\n r_blend_depth_list.append(r_blend_depth)\n\n linelist_keep['r_blend_depth'] = r_blend_depth_list\n\n if len(line_index_keep) > 0:\n try:\n target_line_index = np.abs(linelist_keep.loc[linelist_keep['r_blend_depth'] < 0.1, 'wavelength'] - line_wav_input).sort_values().index[0]\n target_line = linelist_keep.loc[target_line_index:target_line_index].reset_index(drop=True)\n except IndexError:\n # No dominant line is found\n target_line = pd.DataFrame(np.array([np.nan]*8)).T\n target_line.columns = ['wavelength', 'id', 'EP', 'loggf', 'C6', 'D0', 'EW', 'r_blend_depth']\n else:\n # No line is found\n target_line = pd.DataFrame(np.array([np.nan]*8)).T\n target_line.columns = ['wavelength', 'id', 'EP', 'loggf', 'C6', 'D0', 'EW', 'r_blend_depth']\n\n if linelist_serach:\n return target_line, linelist_keep\n else:\n return target_line", "from re import sub\nimport numpy as np\nimport pandas as pd\nimport os\nfrom . import private\nfrom . import synth\nfrom . import weedout\nfrom . import rundir_num\nMOOG_path = '{}/.pymoog/moog_nosm/moog_nosm_NOV2019/'.format(os.environ['HOME']\n )\nMOOG_run_path = '{}/.pymoog/rundir/'.format(os.environ['HOME'])\nMOOG_file_path = '{}/.pymoog/files/'.format(os.environ['HOME'])\n\n\ndef save_linelist(linelist_all, sub_ll_name, wav_start=None, wav_end=None,\n header=None, negative=False):\n \"\"\"\n Save the linelist in MOOG format into specified position.\n \n Parameters\n ----------\n linelist_all : pandas.Dataframe\n The Dataframe of linelist in MOOG format\n sub_ll_name : str\n The name of the line list to be saved into.\n wav_start : float\n Start wavelength of the line list.\n end_start : float\n End wavelength of the line list.\n type : str, = 'vald'\n Type of the line list. Now only 'vald' is supported.\n negative : bool\n Switch to permit negative wavelength. \n \"\"\"\n if not negative:\n index = linelist_all['wavelength'] > 0\n else:\n index = np.abs(linelist_all['wavelength']) >= 0\n if wav_start != None:\n index = index & (linelist_all['wavelength'] > wav_start)\n if wav_end != None:\n index = index & (linelist_all['wavelength'] < wav_end)\n sub_linelist = linelist_all[index]\n sub_linelist.reset_index(drop=True, inplace=True)\n if len(sub_linelist) == 0:\n raise ValueError(\n 'The length of line list is 0. Consider enalrge the wavelength or check the input line list.'\n )\n if np.any(abs(sub_linelist['C6'].values) > 1e-25):\n output_format = '%10.3f%10.5f%10.4f%10.3f%10.3f%10.3f%10.3f'\n elif np.any(abs(sub_linelist['C6'].values) < 1e-25):\n output_format = '%10.3f%10.5f%10.4f%10.3f%10.2E%10.3f%10.3f'\n if len(sub_linelist.columns) == 6:\n output_format = output_format[:-6]\n np.savetxt(sub_ll_name, np.array(sub_linelist), fmt=output_format)\n run_status = private.subprocess.run(['sed', '-i', 's/nan/ /g',\n sub_ll_name])\n if header == None:\n header = 'Linelist'\n run_status = private.subprocess.run(['sed', '-i', '1 i\\\\{}'.format(\n header), sub_ll_name])\n\n\ndef read_linelist(linelist_name, loggf_cut=None, mode='ascii'):\n \"\"\"\n Read the post-processed linelist.\n \n Parameters\n ----------\n linelist_name : str\n The MOOG format line list\n loggf_cut : float, optional\n Cut on loggf (only save for the lines with loggf > loggf_cut)\n mode : str, default 'ascii'\n Reading mode for reading line-list. The efficiency of 'npy' mode is much higher than 'ascii' mode.\n \"\"\"\n available_line_list = ['ges', 'ges_hfs_iso', 'ges_nohfs_noiso',\n 'vald_3000_24000', 'vald_winered', 'mb99_j', 'mb99_k', 'apogee',\n 'kurucz', 'kurucz_winered']\n if linelist_name[-5:] != '.list' and linelist_name in available_line_list:\n if linelist_name == 'ges':\n linelist_name = 'ges_hfs_iso'\n if mode == 'npy':\n linelist_name = MOOG_file_path + 'linelist/{}/{}.npy'.format(\n linelist_name.split('_')[0], linelist_name)\n elif mode == 'ascii':\n linelist_name = MOOG_file_path + 'linelist/{}/{}.list'.format(\n linelist_name.split('_')[0], linelist_name)\n else:\n raise ValueError('mode must be \"npy\" or \"ascii\".')\n elif linelist_name[-5:] == '.list':\n pass\n else:\n raise ValueError(\n \"\"\"Built in line list type not recognized. Please use one of the following:\n 'ges', 'ges_hfs_iso', 'ges_nohfs_noiso', 'vald_3000_24000', 'vald_winered', 'mb99_j', 'mb99_k', 'kurucz', 'kurucz_winered' or 'apogee'.\"\"\"\n )\n if mode == 'npy':\n linelist_array = np.load(linelist_name, allow_pickle=True)\n linelist = pd.DataFrame(linelist_array, columns=['wavelength', 'id',\n 'EP', 'loggf', 'C6', 'D0', 'EW'])\n elif mode == 'ascii':\n linelist = pd.read_fwf(linelist_name, colspecs=[(0, 11), (11, 21),\n (21, 31), (31, 41), (41, 51), (51, 61), (61, 71)], names=[\n 'wavelength', 'id', 'EP', 'loggf', 'C6', 'D0', 'EW'], skiprows=1)\n linelist = linelist[linelist['EP'] <= 50]\n if loggf_cut != None:\n linelist = linelist[linelist['loggf'] >= loggf_cut]\n linelist.reset_index(drop=True, inplace=True)\n return linelist\n\n\ndef find_lines(linelist_keep, linelist_all):\n line_index_keep = []\n for i in linelist_keep.index:\n indice = np.abs(linelist_all['wavelength'] - linelist_keep.loc[i,\n 'wavelength']) < 0.001\n for col in ['id', 'EP', 'loggf']:\n indice = indice & (np.abs(linelist_all[col] - linelist_keep.loc\n [i, col]) < 0.001)\n if len(linelist_all[indice]) == 0:\n raise ValueError('No match line found.')\n line_index_keep.append(linelist_all[indice].index.values[0])\n return line_index_keep\n\n\ndef find_single_dominant_line(line_wav_input, teff, logg, fe_h, resolution,\n r_d_blend_thre=0.1, line_list='ges', weedout_switch=False,\n search_half_width=0.5, linelist_serach=False, abun_change=None):\n linelist_all = read_linelist(line_list)\n linelist_all = linelist_all[np.abs(linelist_all['wavelength'] -\n line_wav_input) < search_half_width]\n s = synth.synth(teff, logg, fe_h, line_wav_input - search_half_width - \n 1, line_wav_input + search_half_width + 1, resolution, line_list=\n line_list)\n s.prepare_file(abun_change=abun_change)\n s.run_moog()\n s.read_spectra(unlock=False)\n wav_all, flux_all = s.wav, s.flux\n if weedout_switch != False:\n w = weedout.weedout(teff, logg, fe_h, line_wav_input -\n search_half_width, line_wav_input + search_half_width,\n line_list=line_list)\n w.prepare_file()\n w.run_moog()\n if weedout_switch:\n linelist_keep = read_linelist(w.rundir_path + 'keep.list')\n else:\n linelist_keep = linelist_all\n s.unlock()\n if weedout_switch != False:\n w.unlock()\n line_index_keep = find_lines(linelist_keep, linelist_all)\n r_blend_depth_list = []\n for line_index in line_index_keep:\n s = synth.synth(teff, logg, fe_h, line_wav_input -\n search_half_width - 1, line_wav_input + search_half_width + 1,\n resolution, line_list='ges')\n s.prepare_file(abun_change=abun_change)\n linelist_exclude = linelist_all.drop(line_index).reset_index(drop=True)\n save_linelist(linelist_exclude, s.rundir_path + 'line.list')\n s.run_moog()\n s.read_spectra(unlock=False)\n wav_exclude, flux_exclude = s.wav, s.flux\n linelist_target = linelist_all.loc[line_index:line_index].reset_index(\n drop=True)\n line_wavlength = linelist_target.loc[0, 'wavelength']\n line_loggf = linelist_target.loc[0, 'loggf']\n line_EP = linelist_target.loc[0, 'EP']\n if abun_change is not None:\n s.prepare_file(abun_change=abun_change)\n else:\n s.prepare_file()\n save_linelist(linelist_target, s.rundir_path + 'line.list')\n s.run_moog()\n s.read_spectra()\n wav_target, flux_target = s.wav, s.flux\n EW = (np.sum(1 - flux_all) * 0.02 - np.sum(1 - flux_exclude) * 0.02\n ) * 1000\n depth = 1 - np.min(flux_all[np.abs(wav_all - line_wavlength) <= 0.03])\n r_blend_depth = (1 - flux_exclude[np.argmin(np.abs(wav_exclude -\n line_wavlength))]) / (1 - flux_all[np.argmin(np.abs(wav_all -\n line_wavlength))])\n r_blend_depth_list.append(r_blend_depth)\n linelist_keep['r_blend_depth'] = r_blend_depth_list\n if len(line_index_keep) > 0:\n try:\n target_line_index = np.abs(linelist_keep.loc[linelist_keep[\n 'r_blend_depth'] < 0.1, 'wavelength'] - line_wav_input\n ).sort_values().index[0]\n target_line = linelist_keep.loc[target_line_index:target_line_index\n ].reset_index(drop=True)\n except IndexError:\n target_line = pd.DataFrame(np.array([np.nan] * 8)).T\n target_line.columns = ['wavelength', 'id', 'EP', 'loggf', 'C6',\n 'D0', 'EW', 'r_blend_depth']\n else:\n target_line = pd.DataFrame(np.array([np.nan] * 8)).T\n target_line.columns = ['wavelength', 'id', 'EP', 'loggf', 'C6',\n 'D0', 'EW', 'r_blend_depth']\n if linelist_serach:\n return target_line, linelist_keep\n else:\n return target_line\n", "<import token>\nMOOG_path = '{}/.pymoog/moog_nosm/moog_nosm_NOV2019/'.format(os.environ['HOME']\n )\nMOOG_run_path = '{}/.pymoog/rundir/'.format(os.environ['HOME'])\nMOOG_file_path = '{}/.pymoog/files/'.format(os.environ['HOME'])\n\n\ndef save_linelist(linelist_all, sub_ll_name, wav_start=None, wav_end=None,\n header=None, negative=False):\n \"\"\"\n Save the linelist in MOOG format into specified position.\n \n Parameters\n ----------\n linelist_all : pandas.Dataframe\n The Dataframe of linelist in MOOG format\n sub_ll_name : str\n The name of the line list to be saved into.\n wav_start : float\n Start wavelength of the line list.\n end_start : float\n End wavelength of the line list.\n type : str, = 'vald'\n Type of the line list. Now only 'vald' is supported.\n negative : bool\n Switch to permit negative wavelength. \n \"\"\"\n if not negative:\n index = linelist_all['wavelength'] > 0\n else:\n index = np.abs(linelist_all['wavelength']) >= 0\n if wav_start != None:\n index = index & (linelist_all['wavelength'] > wav_start)\n if wav_end != None:\n index = index & (linelist_all['wavelength'] < wav_end)\n sub_linelist = linelist_all[index]\n sub_linelist.reset_index(drop=True, inplace=True)\n if len(sub_linelist) == 0:\n raise ValueError(\n 'The length of line list is 0. Consider enalrge the wavelength or check the input line list.'\n )\n if np.any(abs(sub_linelist['C6'].values) > 1e-25):\n output_format = '%10.3f%10.5f%10.4f%10.3f%10.3f%10.3f%10.3f'\n elif np.any(abs(sub_linelist['C6'].values) < 1e-25):\n output_format = '%10.3f%10.5f%10.4f%10.3f%10.2E%10.3f%10.3f'\n if len(sub_linelist.columns) == 6:\n output_format = output_format[:-6]\n np.savetxt(sub_ll_name, np.array(sub_linelist), fmt=output_format)\n run_status = private.subprocess.run(['sed', '-i', 's/nan/ /g',\n sub_ll_name])\n if header == None:\n header = 'Linelist'\n run_status = private.subprocess.run(['sed', '-i', '1 i\\\\{}'.format(\n header), sub_ll_name])\n\n\ndef read_linelist(linelist_name, loggf_cut=None, mode='ascii'):\n \"\"\"\n Read the post-processed linelist.\n \n Parameters\n ----------\n linelist_name : str\n The MOOG format line list\n loggf_cut : float, optional\n Cut on loggf (only save for the lines with loggf > loggf_cut)\n mode : str, default 'ascii'\n Reading mode for reading line-list. The efficiency of 'npy' mode is much higher than 'ascii' mode.\n \"\"\"\n available_line_list = ['ges', 'ges_hfs_iso', 'ges_nohfs_noiso',\n 'vald_3000_24000', 'vald_winered', 'mb99_j', 'mb99_k', 'apogee',\n 'kurucz', 'kurucz_winered']\n if linelist_name[-5:] != '.list' and linelist_name in available_line_list:\n if linelist_name == 'ges':\n linelist_name = 'ges_hfs_iso'\n if mode == 'npy':\n linelist_name = MOOG_file_path + 'linelist/{}/{}.npy'.format(\n linelist_name.split('_')[0], linelist_name)\n elif mode == 'ascii':\n linelist_name = MOOG_file_path + 'linelist/{}/{}.list'.format(\n linelist_name.split('_')[0], linelist_name)\n else:\n raise ValueError('mode must be \"npy\" or \"ascii\".')\n elif linelist_name[-5:] == '.list':\n pass\n else:\n raise ValueError(\n \"\"\"Built in line list type not recognized. Please use one of the following:\n 'ges', 'ges_hfs_iso', 'ges_nohfs_noiso', 'vald_3000_24000', 'vald_winered', 'mb99_j', 'mb99_k', 'kurucz', 'kurucz_winered' or 'apogee'.\"\"\"\n )\n if mode == 'npy':\n linelist_array = np.load(linelist_name, allow_pickle=True)\n linelist = pd.DataFrame(linelist_array, columns=['wavelength', 'id',\n 'EP', 'loggf', 'C6', 'D0', 'EW'])\n elif mode == 'ascii':\n linelist = pd.read_fwf(linelist_name, colspecs=[(0, 11), (11, 21),\n (21, 31), (31, 41), (41, 51), (51, 61), (61, 71)], names=[\n 'wavelength', 'id', 'EP', 'loggf', 'C6', 'D0', 'EW'], skiprows=1)\n linelist = linelist[linelist['EP'] <= 50]\n if loggf_cut != None:\n linelist = linelist[linelist['loggf'] >= loggf_cut]\n linelist.reset_index(drop=True, inplace=True)\n return linelist\n\n\ndef find_lines(linelist_keep, linelist_all):\n line_index_keep = []\n for i in linelist_keep.index:\n indice = np.abs(linelist_all['wavelength'] - linelist_keep.loc[i,\n 'wavelength']) < 0.001\n for col in ['id', 'EP', 'loggf']:\n indice = indice & (np.abs(linelist_all[col] - linelist_keep.loc\n [i, col]) < 0.001)\n if len(linelist_all[indice]) == 0:\n raise ValueError('No match line found.')\n line_index_keep.append(linelist_all[indice].index.values[0])\n return line_index_keep\n\n\ndef find_single_dominant_line(line_wav_input, teff, logg, fe_h, resolution,\n r_d_blend_thre=0.1, line_list='ges', weedout_switch=False,\n search_half_width=0.5, linelist_serach=False, abun_change=None):\n linelist_all = read_linelist(line_list)\n linelist_all = linelist_all[np.abs(linelist_all['wavelength'] -\n line_wav_input) < search_half_width]\n s = synth.synth(teff, logg, fe_h, line_wav_input - search_half_width - \n 1, line_wav_input + search_half_width + 1, resolution, line_list=\n line_list)\n s.prepare_file(abun_change=abun_change)\n s.run_moog()\n s.read_spectra(unlock=False)\n wav_all, flux_all = s.wav, s.flux\n if weedout_switch != False:\n w = weedout.weedout(teff, logg, fe_h, line_wav_input -\n search_half_width, line_wav_input + search_half_width,\n line_list=line_list)\n w.prepare_file()\n w.run_moog()\n if weedout_switch:\n linelist_keep = read_linelist(w.rundir_path + 'keep.list')\n else:\n linelist_keep = linelist_all\n s.unlock()\n if weedout_switch != False:\n w.unlock()\n line_index_keep = find_lines(linelist_keep, linelist_all)\n r_blend_depth_list = []\n for line_index in line_index_keep:\n s = synth.synth(teff, logg, fe_h, line_wav_input -\n search_half_width - 1, line_wav_input + search_half_width + 1,\n resolution, line_list='ges')\n s.prepare_file(abun_change=abun_change)\n linelist_exclude = linelist_all.drop(line_index).reset_index(drop=True)\n save_linelist(linelist_exclude, s.rundir_path + 'line.list')\n s.run_moog()\n s.read_spectra(unlock=False)\n wav_exclude, flux_exclude = s.wav, s.flux\n linelist_target = linelist_all.loc[line_index:line_index].reset_index(\n drop=True)\n line_wavlength = linelist_target.loc[0, 'wavelength']\n line_loggf = linelist_target.loc[0, 'loggf']\n line_EP = linelist_target.loc[0, 'EP']\n if abun_change is not None:\n s.prepare_file(abun_change=abun_change)\n else:\n s.prepare_file()\n save_linelist(linelist_target, s.rundir_path + 'line.list')\n s.run_moog()\n s.read_spectra()\n wav_target, flux_target = s.wav, s.flux\n EW = (np.sum(1 - flux_all) * 0.02 - np.sum(1 - flux_exclude) * 0.02\n ) * 1000\n depth = 1 - np.min(flux_all[np.abs(wav_all - line_wavlength) <= 0.03])\n r_blend_depth = (1 - flux_exclude[np.argmin(np.abs(wav_exclude -\n line_wavlength))]) / (1 - flux_all[np.argmin(np.abs(wav_all -\n line_wavlength))])\n r_blend_depth_list.append(r_blend_depth)\n linelist_keep['r_blend_depth'] = r_blend_depth_list\n if len(line_index_keep) > 0:\n try:\n target_line_index = np.abs(linelist_keep.loc[linelist_keep[\n 'r_blend_depth'] < 0.1, 'wavelength'] - line_wav_input\n ).sort_values().index[0]\n target_line = linelist_keep.loc[target_line_index:target_line_index\n ].reset_index(drop=True)\n except IndexError:\n target_line = pd.DataFrame(np.array([np.nan] * 8)).T\n target_line.columns = ['wavelength', 'id', 'EP', 'loggf', 'C6',\n 'D0', 'EW', 'r_blend_depth']\n else:\n target_line = pd.DataFrame(np.array([np.nan] * 8)).T\n target_line.columns = ['wavelength', 'id', 'EP', 'loggf', 'C6',\n 'D0', 'EW', 'r_blend_depth']\n if linelist_serach:\n return target_line, linelist_keep\n else:\n return target_line\n", "<import token>\n<assignment token>\n\n\ndef save_linelist(linelist_all, sub_ll_name, wav_start=None, wav_end=None,\n header=None, negative=False):\n \"\"\"\n Save the linelist in MOOG format into specified position.\n \n Parameters\n ----------\n linelist_all : pandas.Dataframe\n The Dataframe of linelist in MOOG format\n sub_ll_name : str\n The name of the line list to be saved into.\n wav_start : float\n Start wavelength of the line list.\n end_start : float\n End wavelength of the line list.\n type : str, = 'vald'\n Type of the line list. Now only 'vald' is supported.\n negative : bool\n Switch to permit negative wavelength. \n \"\"\"\n if not negative:\n index = linelist_all['wavelength'] > 0\n else:\n index = np.abs(linelist_all['wavelength']) >= 0\n if wav_start != None:\n index = index & (linelist_all['wavelength'] > wav_start)\n if wav_end != None:\n index = index & (linelist_all['wavelength'] < wav_end)\n sub_linelist = linelist_all[index]\n sub_linelist.reset_index(drop=True, inplace=True)\n if len(sub_linelist) == 0:\n raise ValueError(\n 'The length of line list is 0. Consider enalrge the wavelength or check the input line list.'\n )\n if np.any(abs(sub_linelist['C6'].values) > 1e-25):\n output_format = '%10.3f%10.5f%10.4f%10.3f%10.3f%10.3f%10.3f'\n elif np.any(abs(sub_linelist['C6'].values) < 1e-25):\n output_format = '%10.3f%10.5f%10.4f%10.3f%10.2E%10.3f%10.3f'\n if len(sub_linelist.columns) == 6:\n output_format = output_format[:-6]\n np.savetxt(sub_ll_name, np.array(sub_linelist), fmt=output_format)\n run_status = private.subprocess.run(['sed', '-i', 's/nan/ /g',\n sub_ll_name])\n if header == None:\n header = 'Linelist'\n run_status = private.subprocess.run(['sed', '-i', '1 i\\\\{}'.format(\n header), sub_ll_name])\n\n\ndef read_linelist(linelist_name, loggf_cut=None, mode='ascii'):\n \"\"\"\n Read the post-processed linelist.\n \n Parameters\n ----------\n linelist_name : str\n The MOOG format line list\n loggf_cut : float, optional\n Cut on loggf (only save for the lines with loggf > loggf_cut)\n mode : str, default 'ascii'\n Reading mode for reading line-list. The efficiency of 'npy' mode is much higher than 'ascii' mode.\n \"\"\"\n available_line_list = ['ges', 'ges_hfs_iso', 'ges_nohfs_noiso',\n 'vald_3000_24000', 'vald_winered', 'mb99_j', 'mb99_k', 'apogee',\n 'kurucz', 'kurucz_winered']\n if linelist_name[-5:] != '.list' and linelist_name in available_line_list:\n if linelist_name == 'ges':\n linelist_name = 'ges_hfs_iso'\n if mode == 'npy':\n linelist_name = MOOG_file_path + 'linelist/{}/{}.npy'.format(\n linelist_name.split('_')[0], linelist_name)\n elif mode == 'ascii':\n linelist_name = MOOG_file_path + 'linelist/{}/{}.list'.format(\n linelist_name.split('_')[0], linelist_name)\n else:\n raise ValueError('mode must be \"npy\" or \"ascii\".')\n elif linelist_name[-5:] == '.list':\n pass\n else:\n raise ValueError(\n \"\"\"Built in line list type not recognized. Please use one of the following:\n 'ges', 'ges_hfs_iso', 'ges_nohfs_noiso', 'vald_3000_24000', 'vald_winered', 'mb99_j', 'mb99_k', 'kurucz', 'kurucz_winered' or 'apogee'.\"\"\"\n )\n if mode == 'npy':\n linelist_array = np.load(linelist_name, allow_pickle=True)\n linelist = pd.DataFrame(linelist_array, columns=['wavelength', 'id',\n 'EP', 'loggf', 'C6', 'D0', 'EW'])\n elif mode == 'ascii':\n linelist = pd.read_fwf(linelist_name, colspecs=[(0, 11), (11, 21),\n (21, 31), (31, 41), (41, 51), (51, 61), (61, 71)], names=[\n 'wavelength', 'id', 'EP', 'loggf', 'C6', 'D0', 'EW'], skiprows=1)\n linelist = linelist[linelist['EP'] <= 50]\n if loggf_cut != None:\n linelist = linelist[linelist['loggf'] >= loggf_cut]\n linelist.reset_index(drop=True, inplace=True)\n return linelist\n\n\ndef find_lines(linelist_keep, linelist_all):\n line_index_keep = []\n for i in linelist_keep.index:\n indice = np.abs(linelist_all['wavelength'] - linelist_keep.loc[i,\n 'wavelength']) < 0.001\n for col in ['id', 'EP', 'loggf']:\n indice = indice & (np.abs(linelist_all[col] - linelist_keep.loc\n [i, col]) < 0.001)\n if len(linelist_all[indice]) == 0:\n raise ValueError('No match line found.')\n line_index_keep.append(linelist_all[indice].index.values[0])\n return line_index_keep\n\n\ndef find_single_dominant_line(line_wav_input, teff, logg, fe_h, resolution,\n r_d_blend_thre=0.1, line_list='ges', weedout_switch=False,\n search_half_width=0.5, linelist_serach=False, abun_change=None):\n linelist_all = read_linelist(line_list)\n linelist_all = linelist_all[np.abs(linelist_all['wavelength'] -\n line_wav_input) < search_half_width]\n s = synth.synth(teff, logg, fe_h, line_wav_input - search_half_width - \n 1, line_wav_input + search_half_width + 1, resolution, line_list=\n line_list)\n s.prepare_file(abun_change=abun_change)\n s.run_moog()\n s.read_spectra(unlock=False)\n wav_all, flux_all = s.wav, s.flux\n if weedout_switch != False:\n w = weedout.weedout(teff, logg, fe_h, line_wav_input -\n search_half_width, line_wav_input + search_half_width,\n line_list=line_list)\n w.prepare_file()\n w.run_moog()\n if weedout_switch:\n linelist_keep = read_linelist(w.rundir_path + 'keep.list')\n else:\n linelist_keep = linelist_all\n s.unlock()\n if weedout_switch != False:\n w.unlock()\n line_index_keep = find_lines(linelist_keep, linelist_all)\n r_blend_depth_list = []\n for line_index in line_index_keep:\n s = synth.synth(teff, logg, fe_h, line_wav_input -\n search_half_width - 1, line_wav_input + search_half_width + 1,\n resolution, line_list='ges')\n s.prepare_file(abun_change=abun_change)\n linelist_exclude = linelist_all.drop(line_index).reset_index(drop=True)\n save_linelist(linelist_exclude, s.rundir_path + 'line.list')\n s.run_moog()\n s.read_spectra(unlock=False)\n wav_exclude, flux_exclude = s.wav, s.flux\n linelist_target = linelist_all.loc[line_index:line_index].reset_index(\n drop=True)\n line_wavlength = linelist_target.loc[0, 'wavelength']\n line_loggf = linelist_target.loc[0, 'loggf']\n line_EP = linelist_target.loc[0, 'EP']\n if abun_change is not None:\n s.prepare_file(abun_change=abun_change)\n else:\n s.prepare_file()\n save_linelist(linelist_target, s.rundir_path + 'line.list')\n s.run_moog()\n s.read_spectra()\n wav_target, flux_target = s.wav, s.flux\n EW = (np.sum(1 - flux_all) * 0.02 - np.sum(1 - flux_exclude) * 0.02\n ) * 1000\n depth = 1 - np.min(flux_all[np.abs(wav_all - line_wavlength) <= 0.03])\n r_blend_depth = (1 - flux_exclude[np.argmin(np.abs(wav_exclude -\n line_wavlength))]) / (1 - flux_all[np.argmin(np.abs(wav_all -\n line_wavlength))])\n r_blend_depth_list.append(r_blend_depth)\n linelist_keep['r_blend_depth'] = r_blend_depth_list\n if len(line_index_keep) > 0:\n try:\n target_line_index = np.abs(linelist_keep.loc[linelist_keep[\n 'r_blend_depth'] < 0.1, 'wavelength'] - line_wav_input\n ).sort_values().index[0]\n target_line = linelist_keep.loc[target_line_index:target_line_index\n ].reset_index(drop=True)\n except IndexError:\n target_line = pd.DataFrame(np.array([np.nan] * 8)).T\n target_line.columns = ['wavelength', 'id', 'EP', 'loggf', 'C6',\n 'D0', 'EW', 'r_blend_depth']\n else:\n target_line = pd.DataFrame(np.array([np.nan] * 8)).T\n target_line.columns = ['wavelength', 'id', 'EP', 'loggf', 'C6',\n 'D0', 'EW', 'r_blend_depth']\n if linelist_serach:\n return target_line, linelist_keep\n else:\n return target_line\n", "<import token>\n<assignment token>\n\n\ndef save_linelist(linelist_all, sub_ll_name, wav_start=None, wav_end=None,\n header=None, negative=False):\n \"\"\"\n Save the linelist in MOOG format into specified position.\n \n Parameters\n ----------\n linelist_all : pandas.Dataframe\n The Dataframe of linelist in MOOG format\n sub_ll_name : str\n The name of the line list to be saved into.\n wav_start : float\n Start wavelength of the line list.\n end_start : float\n End wavelength of the line list.\n type : str, = 'vald'\n Type of the line list. Now only 'vald' is supported.\n negative : bool\n Switch to permit negative wavelength. \n \"\"\"\n if not negative:\n index = linelist_all['wavelength'] > 0\n else:\n index = np.abs(linelist_all['wavelength']) >= 0\n if wav_start != None:\n index = index & (linelist_all['wavelength'] > wav_start)\n if wav_end != None:\n index = index & (linelist_all['wavelength'] < wav_end)\n sub_linelist = linelist_all[index]\n sub_linelist.reset_index(drop=True, inplace=True)\n if len(sub_linelist) == 0:\n raise ValueError(\n 'The length of line list is 0. Consider enalrge the wavelength or check the input line list.'\n )\n if np.any(abs(sub_linelist['C6'].values) > 1e-25):\n output_format = '%10.3f%10.5f%10.4f%10.3f%10.3f%10.3f%10.3f'\n elif np.any(abs(sub_linelist['C6'].values) < 1e-25):\n output_format = '%10.3f%10.5f%10.4f%10.3f%10.2E%10.3f%10.3f'\n if len(sub_linelist.columns) == 6:\n output_format = output_format[:-6]\n np.savetxt(sub_ll_name, np.array(sub_linelist), fmt=output_format)\n run_status = private.subprocess.run(['sed', '-i', 's/nan/ /g',\n sub_ll_name])\n if header == None:\n header = 'Linelist'\n run_status = private.subprocess.run(['sed', '-i', '1 i\\\\{}'.format(\n header), sub_ll_name])\n\n\ndef read_linelist(linelist_name, loggf_cut=None, mode='ascii'):\n \"\"\"\n Read the post-processed linelist.\n \n Parameters\n ----------\n linelist_name : str\n The MOOG format line list\n loggf_cut : float, optional\n Cut on loggf (only save for the lines with loggf > loggf_cut)\n mode : str, default 'ascii'\n Reading mode for reading line-list. The efficiency of 'npy' mode is much higher than 'ascii' mode.\n \"\"\"\n available_line_list = ['ges', 'ges_hfs_iso', 'ges_nohfs_noiso',\n 'vald_3000_24000', 'vald_winered', 'mb99_j', 'mb99_k', 'apogee',\n 'kurucz', 'kurucz_winered']\n if linelist_name[-5:] != '.list' and linelist_name in available_line_list:\n if linelist_name == 'ges':\n linelist_name = 'ges_hfs_iso'\n if mode == 'npy':\n linelist_name = MOOG_file_path + 'linelist/{}/{}.npy'.format(\n linelist_name.split('_')[0], linelist_name)\n elif mode == 'ascii':\n linelist_name = MOOG_file_path + 'linelist/{}/{}.list'.format(\n linelist_name.split('_')[0], linelist_name)\n else:\n raise ValueError('mode must be \"npy\" or \"ascii\".')\n elif linelist_name[-5:] == '.list':\n pass\n else:\n raise ValueError(\n \"\"\"Built in line list type not recognized. Please use one of the following:\n 'ges', 'ges_hfs_iso', 'ges_nohfs_noiso', 'vald_3000_24000', 'vald_winered', 'mb99_j', 'mb99_k', 'kurucz', 'kurucz_winered' or 'apogee'.\"\"\"\n )\n if mode == 'npy':\n linelist_array = np.load(linelist_name, allow_pickle=True)\n linelist = pd.DataFrame(linelist_array, columns=['wavelength', 'id',\n 'EP', 'loggf', 'C6', 'D0', 'EW'])\n elif mode == 'ascii':\n linelist = pd.read_fwf(linelist_name, colspecs=[(0, 11), (11, 21),\n (21, 31), (31, 41), (41, 51), (51, 61), (61, 71)], names=[\n 'wavelength', 'id', 'EP', 'loggf', 'C6', 'D0', 'EW'], skiprows=1)\n linelist = linelist[linelist['EP'] <= 50]\n if loggf_cut != None:\n linelist = linelist[linelist['loggf'] >= loggf_cut]\n linelist.reset_index(drop=True, inplace=True)\n return linelist\n\n\n<function token>\n\n\ndef find_single_dominant_line(line_wav_input, teff, logg, fe_h, resolution,\n r_d_blend_thre=0.1, line_list='ges', weedout_switch=False,\n search_half_width=0.5, linelist_serach=False, abun_change=None):\n linelist_all = read_linelist(line_list)\n linelist_all = linelist_all[np.abs(linelist_all['wavelength'] -\n line_wav_input) < search_half_width]\n s = synth.synth(teff, logg, fe_h, line_wav_input - search_half_width - \n 1, line_wav_input + search_half_width + 1, resolution, line_list=\n line_list)\n s.prepare_file(abun_change=abun_change)\n s.run_moog()\n s.read_spectra(unlock=False)\n wav_all, flux_all = s.wav, s.flux\n if weedout_switch != False:\n w = weedout.weedout(teff, logg, fe_h, line_wav_input -\n search_half_width, line_wav_input + search_half_width,\n line_list=line_list)\n w.prepare_file()\n w.run_moog()\n if weedout_switch:\n linelist_keep = read_linelist(w.rundir_path + 'keep.list')\n else:\n linelist_keep = linelist_all\n s.unlock()\n if weedout_switch != False:\n w.unlock()\n line_index_keep = find_lines(linelist_keep, linelist_all)\n r_blend_depth_list = []\n for line_index in line_index_keep:\n s = synth.synth(teff, logg, fe_h, line_wav_input -\n search_half_width - 1, line_wav_input + search_half_width + 1,\n resolution, line_list='ges')\n s.prepare_file(abun_change=abun_change)\n linelist_exclude = linelist_all.drop(line_index).reset_index(drop=True)\n save_linelist(linelist_exclude, s.rundir_path + 'line.list')\n s.run_moog()\n s.read_spectra(unlock=False)\n wav_exclude, flux_exclude = s.wav, s.flux\n linelist_target = linelist_all.loc[line_index:line_index].reset_index(\n drop=True)\n line_wavlength = linelist_target.loc[0, 'wavelength']\n line_loggf = linelist_target.loc[0, 'loggf']\n line_EP = linelist_target.loc[0, 'EP']\n if abun_change is not None:\n s.prepare_file(abun_change=abun_change)\n else:\n s.prepare_file()\n save_linelist(linelist_target, s.rundir_path + 'line.list')\n s.run_moog()\n s.read_spectra()\n wav_target, flux_target = s.wav, s.flux\n EW = (np.sum(1 - flux_all) * 0.02 - np.sum(1 - flux_exclude) * 0.02\n ) * 1000\n depth = 1 - np.min(flux_all[np.abs(wav_all - line_wavlength) <= 0.03])\n r_blend_depth = (1 - flux_exclude[np.argmin(np.abs(wav_exclude -\n line_wavlength))]) / (1 - flux_all[np.argmin(np.abs(wav_all -\n line_wavlength))])\n r_blend_depth_list.append(r_blend_depth)\n linelist_keep['r_blend_depth'] = r_blend_depth_list\n if len(line_index_keep) > 0:\n try:\n target_line_index = np.abs(linelist_keep.loc[linelist_keep[\n 'r_blend_depth'] < 0.1, 'wavelength'] - line_wav_input\n ).sort_values().index[0]\n target_line = linelist_keep.loc[target_line_index:target_line_index\n ].reset_index(drop=True)\n except IndexError:\n target_line = pd.DataFrame(np.array([np.nan] * 8)).T\n target_line.columns = ['wavelength', 'id', 'EP', 'loggf', 'C6',\n 'D0', 'EW', 'r_blend_depth']\n else:\n target_line = pd.DataFrame(np.array([np.nan] * 8)).T\n target_line.columns = ['wavelength', 'id', 'EP', 'loggf', 'C6',\n 'D0', 'EW', 'r_blend_depth']\n if linelist_serach:\n return target_line, linelist_keep\n else:\n return target_line\n", "<import token>\n<assignment token>\n\n\ndef save_linelist(linelist_all, sub_ll_name, wav_start=None, wav_end=None,\n header=None, negative=False):\n \"\"\"\n Save the linelist in MOOG format into specified position.\n \n Parameters\n ----------\n linelist_all : pandas.Dataframe\n The Dataframe of linelist in MOOG format\n sub_ll_name : str\n The name of the line list to be saved into.\n wav_start : float\n Start wavelength of the line list.\n end_start : float\n End wavelength of the line list.\n type : str, = 'vald'\n Type of the line list. Now only 'vald' is supported.\n negative : bool\n Switch to permit negative wavelength. \n \"\"\"\n if not negative:\n index = linelist_all['wavelength'] > 0\n else:\n index = np.abs(linelist_all['wavelength']) >= 0\n if wav_start != None:\n index = index & (linelist_all['wavelength'] > wav_start)\n if wav_end != None:\n index = index & (linelist_all['wavelength'] < wav_end)\n sub_linelist = linelist_all[index]\n sub_linelist.reset_index(drop=True, inplace=True)\n if len(sub_linelist) == 0:\n raise ValueError(\n 'The length of line list is 0. Consider enalrge the wavelength or check the input line list.'\n )\n if np.any(abs(sub_linelist['C6'].values) > 1e-25):\n output_format = '%10.3f%10.5f%10.4f%10.3f%10.3f%10.3f%10.3f'\n elif np.any(abs(sub_linelist['C6'].values) < 1e-25):\n output_format = '%10.3f%10.5f%10.4f%10.3f%10.2E%10.3f%10.3f'\n if len(sub_linelist.columns) == 6:\n output_format = output_format[:-6]\n np.savetxt(sub_ll_name, np.array(sub_linelist), fmt=output_format)\n run_status = private.subprocess.run(['sed', '-i', 's/nan/ /g',\n sub_ll_name])\n if header == None:\n header = 'Linelist'\n run_status = private.subprocess.run(['sed', '-i', '1 i\\\\{}'.format(\n header), sub_ll_name])\n\n\n<function token>\n<function token>\n\n\ndef find_single_dominant_line(line_wav_input, teff, logg, fe_h, resolution,\n r_d_blend_thre=0.1, line_list='ges', weedout_switch=False,\n search_half_width=0.5, linelist_serach=False, abun_change=None):\n linelist_all = read_linelist(line_list)\n linelist_all = linelist_all[np.abs(linelist_all['wavelength'] -\n line_wav_input) < search_half_width]\n s = synth.synth(teff, logg, fe_h, line_wav_input - search_half_width - \n 1, line_wav_input + search_half_width + 1, resolution, line_list=\n line_list)\n s.prepare_file(abun_change=abun_change)\n s.run_moog()\n s.read_spectra(unlock=False)\n wav_all, flux_all = s.wav, s.flux\n if weedout_switch != False:\n w = weedout.weedout(teff, logg, fe_h, line_wav_input -\n search_half_width, line_wav_input + search_half_width,\n line_list=line_list)\n w.prepare_file()\n w.run_moog()\n if weedout_switch:\n linelist_keep = read_linelist(w.rundir_path + 'keep.list')\n else:\n linelist_keep = linelist_all\n s.unlock()\n if weedout_switch != False:\n w.unlock()\n line_index_keep = find_lines(linelist_keep, linelist_all)\n r_blend_depth_list = []\n for line_index in line_index_keep:\n s = synth.synth(teff, logg, fe_h, line_wav_input -\n search_half_width - 1, line_wav_input + search_half_width + 1,\n resolution, line_list='ges')\n s.prepare_file(abun_change=abun_change)\n linelist_exclude = linelist_all.drop(line_index).reset_index(drop=True)\n save_linelist(linelist_exclude, s.rundir_path + 'line.list')\n s.run_moog()\n s.read_spectra(unlock=False)\n wav_exclude, flux_exclude = s.wav, s.flux\n linelist_target = linelist_all.loc[line_index:line_index].reset_index(\n drop=True)\n line_wavlength = linelist_target.loc[0, 'wavelength']\n line_loggf = linelist_target.loc[0, 'loggf']\n line_EP = linelist_target.loc[0, 'EP']\n if abun_change is not None:\n s.prepare_file(abun_change=abun_change)\n else:\n s.prepare_file()\n save_linelist(linelist_target, s.rundir_path + 'line.list')\n s.run_moog()\n s.read_spectra()\n wav_target, flux_target = s.wav, s.flux\n EW = (np.sum(1 - flux_all) * 0.02 - np.sum(1 - flux_exclude) * 0.02\n ) * 1000\n depth = 1 - np.min(flux_all[np.abs(wav_all - line_wavlength) <= 0.03])\n r_blend_depth = (1 - flux_exclude[np.argmin(np.abs(wav_exclude -\n line_wavlength))]) / (1 - flux_all[np.argmin(np.abs(wav_all -\n line_wavlength))])\n r_blend_depth_list.append(r_blend_depth)\n linelist_keep['r_blend_depth'] = r_blend_depth_list\n if len(line_index_keep) > 0:\n try:\n target_line_index = np.abs(linelist_keep.loc[linelist_keep[\n 'r_blend_depth'] < 0.1, 'wavelength'] - line_wav_input\n ).sort_values().index[0]\n target_line = linelist_keep.loc[target_line_index:target_line_index\n ].reset_index(drop=True)\n except IndexError:\n target_line = pd.DataFrame(np.array([np.nan] * 8)).T\n target_line.columns = ['wavelength', 'id', 'EP', 'loggf', 'C6',\n 'D0', 'EW', 'r_blend_depth']\n else:\n target_line = pd.DataFrame(np.array([np.nan] * 8)).T\n target_line.columns = ['wavelength', 'id', 'EP', 'loggf', 'C6',\n 'D0', 'EW', 'r_blend_depth']\n if linelist_serach:\n return target_line, linelist_keep\n else:\n return target_line\n", "<import token>\n<assignment token>\n\n\ndef save_linelist(linelist_all, sub_ll_name, wav_start=None, wav_end=None,\n header=None, negative=False):\n \"\"\"\n Save the linelist in MOOG format into specified position.\n \n Parameters\n ----------\n linelist_all : pandas.Dataframe\n The Dataframe of linelist in MOOG format\n sub_ll_name : str\n The name of the line list to be saved into.\n wav_start : float\n Start wavelength of the line list.\n end_start : float\n End wavelength of the line list.\n type : str, = 'vald'\n Type of the line list. Now only 'vald' is supported.\n negative : bool\n Switch to permit negative wavelength. \n \"\"\"\n if not negative:\n index = linelist_all['wavelength'] > 0\n else:\n index = np.abs(linelist_all['wavelength']) >= 0\n if wav_start != None:\n index = index & (linelist_all['wavelength'] > wav_start)\n if wav_end != None:\n index = index & (linelist_all['wavelength'] < wav_end)\n sub_linelist = linelist_all[index]\n sub_linelist.reset_index(drop=True, inplace=True)\n if len(sub_linelist) == 0:\n raise ValueError(\n 'The length of line list is 0. Consider enalrge the wavelength or check the input line list.'\n )\n if np.any(abs(sub_linelist['C6'].values) > 1e-25):\n output_format = '%10.3f%10.5f%10.4f%10.3f%10.3f%10.3f%10.3f'\n elif np.any(abs(sub_linelist['C6'].values) < 1e-25):\n output_format = '%10.3f%10.5f%10.4f%10.3f%10.2E%10.3f%10.3f'\n if len(sub_linelist.columns) == 6:\n output_format = output_format[:-6]\n np.savetxt(sub_ll_name, np.array(sub_linelist), fmt=output_format)\n run_status = private.subprocess.run(['sed', '-i', 's/nan/ /g',\n sub_ll_name])\n if header == None:\n header = 'Linelist'\n run_status = private.subprocess.run(['sed', '-i', '1 i\\\\{}'.format(\n header), sub_ll_name])\n\n\n<function token>\n<function token>\n<function token>\n", "<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n" ]
false
98,836
4b26f9bab0eba64c747318d42a0a45b01f44a2ea
IMAGE_SIZE = 400 RADII_CHANGE = 0.13 PRESSURE_CHANGE = 11.11 FUEL_EFF_DROP = 0.2 IBM_URL = "https://us-south.ml.cloud.ibm.com" IBM_CONNECT_API_KEY = "5qs02cWZrWcw8JaCk04Fg2CK7s2TItb-d64sHuCo5NAg" ML_DEPLOYMENT = {'entity': {'asset': {'id': 'af323e8b-8fc1-4d5d-9687-659648ea835a'}, 'custom': {}, 'deployed_asset_type': 'model', 'hardware_spec': {'id': 'Not_Applicable', 'name': 'S', 'num_nodes': 1}, 'name': 'RandomForestSklearn Deployment', 'online': {}, 'space_id': '221febe8-1eee-4e50-92b3-19d97d5770e8', 'status': {'online_url': { 'url': 'https://us-south.ml.cloud.ibm.com/ml/v4/deployments/73f1fc9a-dc68-473c-8bab-14e2c4807638/predictions'}, 'state': 'ready'} }, 'metadata': {'created_at': '2021-06-18T07:41:38.641Z', 'id': '73f1fc9a-dc68-473c-8bab-14e2c4807638', 'modified_at': '2021-06-18T07:41:38.641Z', 'name': 'RandomForestSklearn Deployment', 'owner': 'IBMid-665000NICM', 'space_id': '221febe8-1eee-4e50-92b3-19d97d5770e8'}}
[ "IMAGE_SIZE = 400\n\nRADII_CHANGE = 0.13\nPRESSURE_CHANGE = 11.11\nFUEL_EFF_DROP = 0.2\n\nIBM_URL = \"https://us-south.ml.cloud.ibm.com\"\nIBM_CONNECT_API_KEY = \"5qs02cWZrWcw8JaCk04Fg2CK7s2TItb-d64sHuCo5NAg\"\n\n\nML_DEPLOYMENT = {'entity': {'asset': {'id': 'af323e8b-8fc1-4d5d-9687-659648ea835a'},\n 'custom': {},\n 'deployed_asset_type': 'model',\n 'hardware_spec': {'id': 'Not_Applicable', 'name': 'S', 'num_nodes': 1},\n 'name': 'RandomForestSklearn Deployment',\n 'online': {},\n 'space_id': '221febe8-1eee-4e50-92b3-19d97d5770e8',\n 'status': {'online_url': {\n 'url': 'https://us-south.ml.cloud.ibm.com/ml/v4/deployments/73f1fc9a-dc68-473c-8bab-14e2c4807638/predictions'},\n 'state': 'ready'}\n },\n 'metadata': {'created_at': '2021-06-18T07:41:38.641Z',\n 'id': '73f1fc9a-dc68-473c-8bab-14e2c4807638',\n 'modified_at': '2021-06-18T07:41:38.641Z',\n 'name': 'RandomForestSklearn Deployment',\n 'owner': 'IBMid-665000NICM',\n 'space_id': '221febe8-1eee-4e50-92b3-19d97d5770e8'}}\n", "IMAGE_SIZE = 400\nRADII_CHANGE = 0.13\nPRESSURE_CHANGE = 11.11\nFUEL_EFF_DROP = 0.2\nIBM_URL = 'https://us-south.ml.cloud.ibm.com'\nIBM_CONNECT_API_KEY = '5qs02cWZrWcw8JaCk04Fg2CK7s2TItb-d64sHuCo5NAg'\nML_DEPLOYMENT = {'entity': {'asset': {'id':\n 'af323e8b-8fc1-4d5d-9687-659648ea835a'}, 'custom': {},\n 'deployed_asset_type': 'model', 'hardware_spec': {'id':\n 'Not_Applicable', 'name': 'S', 'num_nodes': 1}, 'name':\n 'RandomForestSklearn Deployment', 'online': {}, 'space_id':\n '221febe8-1eee-4e50-92b3-19d97d5770e8', 'status': {'online_url': {'url':\n 'https://us-south.ml.cloud.ibm.com/ml/v4/deployments/73f1fc9a-dc68-473c-8bab-14e2c4807638/predictions'\n }, 'state': 'ready'}}, 'metadata': {'created_at':\n '2021-06-18T07:41:38.641Z', 'id':\n '73f1fc9a-dc68-473c-8bab-14e2c4807638', 'modified_at':\n '2021-06-18T07:41:38.641Z', 'name': 'RandomForestSklearn Deployment',\n 'owner': 'IBMid-665000NICM', 'space_id':\n '221febe8-1eee-4e50-92b3-19d97d5770e8'}}\n", "<assignment token>\n" ]
false
98,837
542970527a0b021ef6c85c0a9257a03024a262ed
import os import re import json import sys import math import shutil import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from skimage import exposure from PIL import Image from lib import utils def save_im(im, f_name=None): fig = plt.figure() if f_name is None: return plt.imshow(im) plt.imsave(f_name, im) plt.clf() plt.close() def voxel(vox, color=None, f_name=None): vox = vox.transpose(2, 0, 1) color = color.transpose(2, 0, 1) if color is None or len(np.unique(color)) <= 2: color = 'red' else: color_map = plt.get_cmap('coolwarm') color = color_map(color) fig = plt.figure() ax = fig.gca(projection='3d') ax.voxels(vox, facecolors=color, edgecolor='k') ax.view_init(30, 45) if f_name is None: return fig.show() fig.savefig(f_name, bbox_inches='tight') fig.clf() plt.close() def label(y, f_name=None): return voxel(np.argmax(y, axis=-1), f_name=f_name) def softmax(y_hat, f_name=None): return voxel(np.argmax(y_hat, axis=-1), y_hat[:, :, :, 1], f_name=f_name) def scaled(im, axis, f_name=None): ret_im = exposure.rescale_intensity(utils.montage(im, axis)) return save_im(ret_im, f_name) def multichannel(im, f_name=None): mulitchannel_montage = utils.montage_multichannel(im) return save_im(mulitchannel_montage, f_name) def sequence(im, f_name=None): sequence_montage = utils.montage_sequence(im) return save_im(sequence_montage, f_name) def create_video(im_list): pass
[ "import os\nimport re\nimport json\nimport sys\nimport math\nimport shutil\nimport numpy as np\nimport tensorflow as tf\nimport matplotlib.pyplot as plt\nfrom mpl_toolkits.mplot3d import Axes3D\nfrom skimage import exposure\nfrom PIL import Image\nfrom lib import utils\n\n\ndef save_im(im, f_name=None):\n fig = plt.figure()\n if f_name is None:\n return plt.imshow(im)\n plt.imsave(f_name, im)\n plt.clf()\n plt.close()\n\n\ndef voxel(vox, color=None, f_name=None):\n vox = vox.transpose(2, 0, 1)\n color = color.transpose(2, 0, 1)\n if color is None or len(np.unique(color)) <= 2:\n color = 'red'\n else:\n color_map = plt.get_cmap('coolwarm')\n color = color_map(color)\n\n fig = plt.figure()\n ax = fig.gca(projection='3d')\n ax.voxels(vox, facecolors=color, edgecolor='k')\n ax.view_init(30, 45)\n\n if f_name is None:\n return fig.show()\n\n fig.savefig(f_name, bbox_inches='tight')\n fig.clf()\n plt.close()\n\n\ndef label(y, f_name=None):\n return voxel(np.argmax(y, axis=-1), f_name=f_name)\n\n\ndef softmax(y_hat, f_name=None):\n return voxel(np.argmax(y_hat, axis=-1), y_hat[:, :, :, 1], f_name=f_name)\n\n\ndef scaled(im, axis, f_name=None):\n ret_im = exposure.rescale_intensity(utils.montage(im, axis))\n return save_im(ret_im, f_name)\n\n\ndef multichannel(im, f_name=None):\n mulitchannel_montage = utils.montage_multichannel(im)\n return save_im(mulitchannel_montage, f_name)\n\n\ndef sequence(im, f_name=None):\n sequence_montage = utils.montage_sequence(im)\n return save_im(sequence_montage, f_name)\n\n\ndef create_video(im_list):\n pass\n", "import os\nimport re\nimport json\nimport sys\nimport math\nimport shutil\nimport numpy as np\nimport tensorflow as tf\nimport matplotlib.pyplot as plt\nfrom mpl_toolkits.mplot3d import Axes3D\nfrom skimage import exposure\nfrom PIL import Image\nfrom lib import utils\n\n\ndef save_im(im, f_name=None):\n fig = plt.figure()\n if f_name is None:\n return plt.imshow(im)\n plt.imsave(f_name, im)\n plt.clf()\n plt.close()\n\n\ndef voxel(vox, color=None, f_name=None):\n vox = vox.transpose(2, 0, 1)\n color = color.transpose(2, 0, 1)\n if color is None or len(np.unique(color)) <= 2:\n color = 'red'\n else:\n color_map = plt.get_cmap('coolwarm')\n color = color_map(color)\n fig = plt.figure()\n ax = fig.gca(projection='3d')\n ax.voxels(vox, facecolors=color, edgecolor='k')\n ax.view_init(30, 45)\n if f_name is None:\n return fig.show()\n fig.savefig(f_name, bbox_inches='tight')\n fig.clf()\n plt.close()\n\n\ndef label(y, f_name=None):\n return voxel(np.argmax(y, axis=-1), f_name=f_name)\n\n\ndef softmax(y_hat, f_name=None):\n return voxel(np.argmax(y_hat, axis=-1), y_hat[:, :, :, 1], f_name=f_name)\n\n\ndef scaled(im, axis, f_name=None):\n ret_im = exposure.rescale_intensity(utils.montage(im, axis))\n return save_im(ret_im, f_name)\n\n\ndef multichannel(im, f_name=None):\n mulitchannel_montage = utils.montage_multichannel(im)\n return save_im(mulitchannel_montage, f_name)\n\n\ndef sequence(im, f_name=None):\n sequence_montage = utils.montage_sequence(im)\n return save_im(sequence_montage, f_name)\n\n\ndef create_video(im_list):\n pass\n", "<import token>\n\n\ndef save_im(im, f_name=None):\n fig = plt.figure()\n if f_name is None:\n return plt.imshow(im)\n plt.imsave(f_name, im)\n plt.clf()\n plt.close()\n\n\ndef voxel(vox, color=None, f_name=None):\n vox = vox.transpose(2, 0, 1)\n color = color.transpose(2, 0, 1)\n if color is None or len(np.unique(color)) <= 2:\n color = 'red'\n else:\n color_map = plt.get_cmap('coolwarm')\n color = color_map(color)\n fig = plt.figure()\n ax = fig.gca(projection='3d')\n ax.voxels(vox, facecolors=color, edgecolor='k')\n ax.view_init(30, 45)\n if f_name is None:\n return fig.show()\n fig.savefig(f_name, bbox_inches='tight')\n fig.clf()\n plt.close()\n\n\ndef label(y, f_name=None):\n return voxel(np.argmax(y, axis=-1), f_name=f_name)\n\n\ndef softmax(y_hat, f_name=None):\n return voxel(np.argmax(y_hat, axis=-1), y_hat[:, :, :, 1], f_name=f_name)\n\n\ndef scaled(im, axis, f_name=None):\n ret_im = exposure.rescale_intensity(utils.montage(im, axis))\n return save_im(ret_im, f_name)\n\n\ndef multichannel(im, f_name=None):\n mulitchannel_montage = utils.montage_multichannel(im)\n return save_im(mulitchannel_montage, f_name)\n\n\ndef sequence(im, f_name=None):\n sequence_montage = utils.montage_sequence(im)\n return save_im(sequence_montage, f_name)\n\n\ndef create_video(im_list):\n pass\n", "<import token>\n<function token>\n\n\ndef voxel(vox, color=None, f_name=None):\n vox = vox.transpose(2, 0, 1)\n color = color.transpose(2, 0, 1)\n if color is None or len(np.unique(color)) <= 2:\n color = 'red'\n else:\n color_map = plt.get_cmap('coolwarm')\n color = color_map(color)\n fig = plt.figure()\n ax = fig.gca(projection='3d')\n ax.voxels(vox, facecolors=color, edgecolor='k')\n ax.view_init(30, 45)\n if f_name is None:\n return fig.show()\n fig.savefig(f_name, bbox_inches='tight')\n fig.clf()\n plt.close()\n\n\ndef label(y, f_name=None):\n return voxel(np.argmax(y, axis=-1), f_name=f_name)\n\n\ndef softmax(y_hat, f_name=None):\n return voxel(np.argmax(y_hat, axis=-1), y_hat[:, :, :, 1], f_name=f_name)\n\n\ndef scaled(im, axis, f_name=None):\n ret_im = exposure.rescale_intensity(utils.montage(im, axis))\n return save_im(ret_im, f_name)\n\n\ndef multichannel(im, f_name=None):\n mulitchannel_montage = utils.montage_multichannel(im)\n return save_im(mulitchannel_montage, f_name)\n\n\ndef sequence(im, f_name=None):\n sequence_montage = utils.montage_sequence(im)\n return save_im(sequence_montage, f_name)\n\n\ndef create_video(im_list):\n pass\n", "<import token>\n<function token>\n\n\ndef voxel(vox, color=None, f_name=None):\n vox = vox.transpose(2, 0, 1)\n color = color.transpose(2, 0, 1)\n if color is None or len(np.unique(color)) <= 2:\n color = 'red'\n else:\n color_map = plt.get_cmap('coolwarm')\n color = color_map(color)\n fig = plt.figure()\n ax = fig.gca(projection='3d')\n ax.voxels(vox, facecolors=color, edgecolor='k')\n ax.view_init(30, 45)\n if f_name is None:\n return fig.show()\n fig.savefig(f_name, bbox_inches='tight')\n fig.clf()\n plt.close()\n\n\n<function token>\n\n\ndef softmax(y_hat, f_name=None):\n return voxel(np.argmax(y_hat, axis=-1), y_hat[:, :, :, 1], f_name=f_name)\n\n\ndef scaled(im, axis, f_name=None):\n ret_im = exposure.rescale_intensity(utils.montage(im, axis))\n return save_im(ret_im, f_name)\n\n\ndef multichannel(im, f_name=None):\n mulitchannel_montage = utils.montage_multichannel(im)\n return save_im(mulitchannel_montage, f_name)\n\n\ndef sequence(im, f_name=None):\n sequence_montage = utils.montage_sequence(im)\n return save_im(sequence_montage, f_name)\n\n\ndef create_video(im_list):\n pass\n", "<import token>\n<function token>\n<function token>\n<function token>\n\n\ndef softmax(y_hat, f_name=None):\n return voxel(np.argmax(y_hat, axis=-1), y_hat[:, :, :, 1], f_name=f_name)\n\n\ndef scaled(im, axis, f_name=None):\n ret_im = exposure.rescale_intensity(utils.montage(im, axis))\n return save_im(ret_im, f_name)\n\n\ndef multichannel(im, f_name=None):\n mulitchannel_montage = utils.montage_multichannel(im)\n return save_im(mulitchannel_montage, f_name)\n\n\ndef sequence(im, f_name=None):\n sequence_montage = utils.montage_sequence(im)\n return save_im(sequence_montage, f_name)\n\n\ndef create_video(im_list):\n pass\n", "<import token>\n<function token>\n<function token>\n<function token>\n\n\ndef softmax(y_hat, f_name=None):\n return voxel(np.argmax(y_hat, axis=-1), y_hat[:, :, :, 1], f_name=f_name)\n\n\n<function token>\n\n\ndef multichannel(im, f_name=None):\n mulitchannel_montage = utils.montage_multichannel(im)\n return save_im(mulitchannel_montage, f_name)\n\n\ndef sequence(im, f_name=None):\n sequence_montage = utils.montage_sequence(im)\n return save_im(sequence_montage, f_name)\n\n\ndef create_video(im_list):\n pass\n", "<import token>\n<function token>\n<function token>\n<function token>\n\n\ndef softmax(y_hat, f_name=None):\n return voxel(np.argmax(y_hat, axis=-1), y_hat[:, :, :, 1], f_name=f_name)\n\n\n<function token>\n\n\ndef multichannel(im, f_name=None):\n mulitchannel_montage = utils.montage_multichannel(im)\n return save_im(mulitchannel_montage, f_name)\n\n\ndef sequence(im, f_name=None):\n sequence_montage = utils.montage_sequence(im)\n return save_im(sequence_montage, f_name)\n\n\n<function token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef multichannel(im, f_name=None):\n mulitchannel_montage = utils.montage_multichannel(im)\n return save_im(mulitchannel_montage, f_name)\n\n\ndef sequence(im, f_name=None):\n sequence_montage = utils.montage_sequence(im)\n return save_im(sequence_montage, f_name)\n\n\n<function token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef multichannel(im, f_name=None):\n mulitchannel_montage = utils.montage_multichannel(im)\n return save_im(mulitchannel_montage, f_name)\n\n\n<function token>\n<function token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n" ]
false
98,838
6ed4ef91f1d24f30806dacec206d7fcb4a9fdba7
import os import importlib import glob all_pages = {} def load_pages(): my_path = os.path.dirname(os.path.abspath(__file__)) for mod_file in glob.glob(os.path.join(my_path, '*.py')): parent_mod, mod_name = mod_file.split('/')[-2:] mod_name, _ = os.path.splitext(mod_name) if mod_name in ('__init__', 'base', 'hel_buildings'): continue mod = importlib.import_module('.'.join([parent_mod, mod_name])) page = mod.page if page.path: all_pages[page.path] = page def get_page_for_path(path): return all_pages.get(path) def get_page_for_emission_sector(sector1, sector2): if not sector2: sector2 = None for page in all_pages.values(): if not page.emission_sector: continue if (sector1, sector2) == tuple(page.emission_sector): return page return None
[ "import os\nimport importlib\nimport glob\n\n\nall_pages = {}\n\n\ndef load_pages():\n my_path = os.path.dirname(os.path.abspath(__file__))\n for mod_file in glob.glob(os.path.join(my_path, '*.py')):\n parent_mod, mod_name = mod_file.split('/')[-2:]\n mod_name, _ = os.path.splitext(mod_name)\n if mod_name in ('__init__', 'base', 'hel_buildings'):\n continue\n\n mod = importlib.import_module('.'.join([parent_mod, mod_name]))\n page = mod.page\n if page.path:\n all_pages[page.path] = page\n\n\ndef get_page_for_path(path):\n return all_pages.get(path)\n\n\ndef get_page_for_emission_sector(sector1, sector2):\n if not sector2:\n sector2 = None\n for page in all_pages.values():\n if not page.emission_sector:\n continue\n if (sector1, sector2) == tuple(page.emission_sector):\n return page\n return None\n", "import os\nimport importlib\nimport glob\nall_pages = {}\n\n\ndef load_pages():\n my_path = os.path.dirname(os.path.abspath(__file__))\n for mod_file in glob.glob(os.path.join(my_path, '*.py')):\n parent_mod, mod_name = mod_file.split('/')[-2:]\n mod_name, _ = os.path.splitext(mod_name)\n if mod_name in ('__init__', 'base', 'hel_buildings'):\n continue\n mod = importlib.import_module('.'.join([parent_mod, mod_name]))\n page = mod.page\n if page.path:\n all_pages[page.path] = page\n\n\ndef get_page_for_path(path):\n return all_pages.get(path)\n\n\ndef get_page_for_emission_sector(sector1, sector2):\n if not sector2:\n sector2 = None\n for page in all_pages.values():\n if not page.emission_sector:\n continue\n if (sector1, sector2) == tuple(page.emission_sector):\n return page\n return None\n", "<import token>\nall_pages = {}\n\n\ndef load_pages():\n my_path = os.path.dirname(os.path.abspath(__file__))\n for mod_file in glob.glob(os.path.join(my_path, '*.py')):\n parent_mod, mod_name = mod_file.split('/')[-2:]\n mod_name, _ = os.path.splitext(mod_name)\n if mod_name in ('__init__', 'base', 'hel_buildings'):\n continue\n mod = importlib.import_module('.'.join([parent_mod, mod_name]))\n page = mod.page\n if page.path:\n all_pages[page.path] = page\n\n\ndef get_page_for_path(path):\n return all_pages.get(path)\n\n\ndef get_page_for_emission_sector(sector1, sector2):\n if not sector2:\n sector2 = None\n for page in all_pages.values():\n if not page.emission_sector:\n continue\n if (sector1, sector2) == tuple(page.emission_sector):\n return page\n return None\n", "<import token>\n<assignment token>\n\n\ndef load_pages():\n my_path = os.path.dirname(os.path.abspath(__file__))\n for mod_file in glob.glob(os.path.join(my_path, '*.py')):\n parent_mod, mod_name = mod_file.split('/')[-2:]\n mod_name, _ = os.path.splitext(mod_name)\n if mod_name in ('__init__', 'base', 'hel_buildings'):\n continue\n mod = importlib.import_module('.'.join([parent_mod, mod_name]))\n page = mod.page\n if page.path:\n all_pages[page.path] = page\n\n\ndef get_page_for_path(path):\n return all_pages.get(path)\n\n\ndef get_page_for_emission_sector(sector1, sector2):\n if not sector2:\n sector2 = None\n for page in all_pages.values():\n if not page.emission_sector:\n continue\n if (sector1, sector2) == tuple(page.emission_sector):\n return page\n return None\n", "<import token>\n<assignment token>\n\n\ndef load_pages():\n my_path = os.path.dirname(os.path.abspath(__file__))\n for mod_file in glob.glob(os.path.join(my_path, '*.py')):\n parent_mod, mod_name = mod_file.split('/')[-2:]\n mod_name, _ = os.path.splitext(mod_name)\n if mod_name in ('__init__', 'base', 'hel_buildings'):\n continue\n mod = importlib.import_module('.'.join([parent_mod, mod_name]))\n page = mod.page\n if page.path:\n all_pages[page.path] = page\n\n\ndef get_page_for_path(path):\n return all_pages.get(path)\n\n\n<function token>\n", "<import token>\n<assignment token>\n\n\ndef load_pages():\n my_path = os.path.dirname(os.path.abspath(__file__))\n for mod_file in glob.glob(os.path.join(my_path, '*.py')):\n parent_mod, mod_name = mod_file.split('/')[-2:]\n mod_name, _ = os.path.splitext(mod_name)\n if mod_name in ('__init__', 'base', 'hel_buildings'):\n continue\n mod = importlib.import_module('.'.join([parent_mod, mod_name]))\n page = mod.page\n if page.path:\n all_pages[page.path] = page\n\n\n<function token>\n<function token>\n", "<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n" ]
false
98,839
501875b5b3964dfbace8393cd78ad78927acc493
for i in 5: print i
[ "for i in 5:\n\tprint i\n" ]
true
98,840
bbf7e64d54d873ed16525c452491fb21549047cb
#! /usr/bin/env python #coding=utf-8 # there is no need to do recheck. most error are caused by time out import urllib import urllib2 import os import re import time import sys import math def getProb(phraseList): phraseListNew = list([urllib.quote(gram) for gram in phraseList]) phrasesStr = "\n".join(phraseListNew) #probStr = urllib2.urlopen(urllib2.Request('http://web-ngram.research.microsoft.com/rest/lookup.svc/bing-body/apr10/5/jp?u=6c5bffbd-e43c-44ab-8c69-acf0439a7a6b',phrasesStr)).read() #probStr = urllib2.urlopen(urllib2.Request('http://weblm.research.microsoft.com/weblm/rest.svc/bing-body/apr10/5/jp?u=6ad01338-a036-4184-acc5-380e9aad7fb4',phrasesStr)).read() try: #probStr = urllib2.urlopen(urllib2.Request('http://web-ngram.research.microsoft.com/rest/lookup.svc/bing-body/apr10/5/jp?u=6ad01338-a036-4184-acc5-380e9aad7fb4',phrasesStr)).read() #probStr = urllib2.urlopen(urllib2.Request('http://web-ngram.research.microsoft.com/rest/lookup.svc/bing-body/apr10/5/jp?u=6c5bffbd-e43c-44ab-8c69-acf0439a7a6b',phrasesStr)).read() probStr = urllib2.urlopen(urllib2.Request('http://weblm.research.microsoft.com/weblm/rest.svc/bing-body/apr10/5/jp?u=6ad01338-a036-4184-acc5-380e9aad7fb4',phrasesStr)).read() # print probStr[-10:] except:# Exception as error_detail: #time.sleep(1) #return getProb(phraseList) # print "error", error_detail #sys.exc_info()[0] return list(["-1" for i in phraseList]) probArr = probStr.strip().split("\r\n") return probArr def getProb_redmond(phraseList): phraseListNew = list([urllib.quote(gram) for gram in phraseList]) phrasesStr = "\n".join(phraseListNew) try: probStr = urllib2.urlopen(urllib2.Request('http://weblm.research.microsoft.com/weblm/rest.svc/bing-body/apr10/5/jp?u=6ad01338-a036-4184-acc5-380e9aad7fb4',phrasesStr)).read() except: return list(["-1" for i in phraseList]) probArr = probStr.split("\r\n") return probArr def getProb_beijing(phraseList): phraseListNew = list([urllib.quote(gram) for gram in phraseList]) phrasesStr = "\n".join(phraseListNew) try: probStr = urllib2.urlopen(urllib2.Request('http://msraml-s003/ngram-lm/rest.svc/bing-body/apr10/5/jp?u=6ad01338-a036-4184-acc5-380e9aad7fb4',gramStr)).read() except: return list(["-1" for i in phraseList]) probArr = probStr.split("\r\n") return probArr def getProbDebug(phraseList): probsAll = [] for i in range(0, len(phraseList)): probArr = getProb(phraseList[i]) if probArr is None: probArr = ["-1"] print "##In Debug(<10): Error: " + str(i) + "'s gram: " + str(subList) probsAll.append(probArr[0]) return probsAll ## main if __name__ == "__main__": print "Program starts at time:" + str(time.asctime()) if len(sys.argv) == 2: probFilePath = sys.argv[1] else: print "Usage: python ngramProb_recheck.py probFilePath (/home/yxqin/corpus/data_stock201504/segment/grams_qtwe/qngrams_01_prob)" print "there is no need to do recheck. most error are caused by time out" sys.exit(1) probFile = file(probFilePath) newProbFile = file(probFilePath + "_newprob", "w") print "## Reading file " + probFile.name phraseList = [] lineIdx = 0 N = 1000 # gramNum in each request contentArr = probFile.readlines() contentArr = [line[:-1] for line in contentArr] probFile.close() newContentArr = [line[:line.find(" ")].strip()+" "+line[line.find(" ")+1:] for line in contentArr] # newContentArr = [] # for i in range(len(contentArr)/N +1): # st = N*i # end = N*(i+1) # if end > len(contentArr): # end = len(contentArr) # # scoreList = [item[:item.find(" ")].strip() for item in contentArr[st:end]] # phraseList = [item[item.find(" ")+1:] for item in contentArr[st:end]] # # errorBatch = [1 for item in scoreList if item == "-1"] # if sum(errorBatch) == len(scoreList): # print "errorBatch: st, end", st, end, len(phraseList), phraseList[-5:] # probArr = [] # for j in range(10): # sub_phraseList = phraseList[j*N/10:(j+1)*N/10] # sub_probArr = getProb(sub_phraseList) # probArr.extend(sub_probArr) # # print "get prob done", probArr[:5] # if len(probArr) != len(phraseList): # print "Error! prob output number not equal phrase number" # sys.exit(0) # for j in range(st, end): # newContentArr.append(probArr[j%N] + " " + phraseList[j%N]) # else: # for idx in range(len(scoreList)): # newContentArr.append(scoreList[idx] + " " + phraseList[idx]) # if st % 10000 == 0: # print "**", st, "lines are processed.", len(newContentArr) newProbFile.write("\n".join(newContentArr)) newProbFile.close() print "## New Probs are written to file " + newProbFile.name print "Program ends at time:" + str(time.asctime())
[ "#! /usr/bin/env python\n#coding=utf-8\n\n# there is no need to do recheck. most error are caused by time out\n\nimport urllib\nimport urllib2\nimport os\nimport re\nimport time\nimport sys\nimport math\n\ndef getProb(phraseList):\n phraseListNew = list([urllib.quote(gram) for gram in phraseList])\n phrasesStr = \"\\n\".join(phraseListNew) \n #probStr = urllib2.urlopen(urllib2.Request('http://web-ngram.research.microsoft.com/rest/lookup.svc/bing-body/apr10/5/jp?u=6c5bffbd-e43c-44ab-8c69-acf0439a7a6b',phrasesStr)).read()\n #probStr = urllib2.urlopen(urllib2.Request('http://weblm.research.microsoft.com/weblm/rest.svc/bing-body/apr10/5/jp?u=6ad01338-a036-4184-acc5-380e9aad7fb4',phrasesStr)).read()\n\n try:\n #probStr = urllib2.urlopen(urllib2.Request('http://web-ngram.research.microsoft.com/rest/lookup.svc/bing-body/apr10/5/jp?u=6ad01338-a036-4184-acc5-380e9aad7fb4',phrasesStr)).read()\n #probStr = urllib2.urlopen(urllib2.Request('http://web-ngram.research.microsoft.com/rest/lookup.svc/bing-body/apr10/5/jp?u=6c5bffbd-e43c-44ab-8c69-acf0439a7a6b',phrasesStr)).read()\n probStr = urllib2.urlopen(urllib2.Request('http://weblm.research.microsoft.com/weblm/rest.svc/bing-body/apr10/5/jp?u=6ad01338-a036-4184-acc5-380e9aad7fb4',phrasesStr)).read()\n# print probStr[-10:]\n except:# Exception as error_detail:\n #time.sleep(1)\n #return getProb(phraseList)\n# print \"error\", error_detail #sys.exc_info()[0]\n\n return list([\"-1\" for i in phraseList])\n\n probArr = probStr.strip().split(\"\\r\\n\")\n return probArr\n\ndef getProb_redmond(phraseList):\n phraseListNew = list([urllib.quote(gram) for gram in phraseList])\n phrasesStr = \"\\n\".join(phraseListNew) \n try:\n probStr = urllib2.urlopen(urllib2.Request('http://weblm.research.microsoft.com/weblm/rest.svc/bing-body/apr10/5/jp?u=6ad01338-a036-4184-acc5-380e9aad7fb4',phrasesStr)).read()\n except:\n return list([\"-1\" for i in phraseList])\n probArr = probStr.split(\"\\r\\n\")\n return probArr\n\ndef getProb_beijing(phraseList):\n phraseListNew = list([urllib.quote(gram) for gram in phraseList])\n phrasesStr = \"\\n\".join(phraseListNew) \n try:\n probStr = urllib2.urlopen(urllib2.Request('http://msraml-s003/ngram-lm/rest.svc/bing-body/apr10/5/jp?u=6ad01338-a036-4184-acc5-380e9aad7fb4',gramStr)).read()\n except:\n return list([\"-1\" for i in phraseList])\n probArr = probStr.split(\"\\r\\n\")\n return probArr\n\ndef getProbDebug(phraseList):\n probsAll = []\n for i in range(0, len(phraseList)):\n probArr = getProb(phraseList[i])\n if probArr is None:\n probArr = [\"-1\"]\n print \"##In Debug(<10): Error: \" + str(i) + \"'s gram: \" + str(subList)\n probsAll.append(probArr[0])\n return probsAll \n\n## main\n\nif __name__ == \"__main__\":\n print \"Program starts at time:\" + str(time.asctime())\n\n if len(sys.argv) == 2:\n probFilePath = sys.argv[1]\n else:\n print \"Usage: python ngramProb_recheck.py probFilePath (/home/yxqin/corpus/data_stock201504/segment/grams_qtwe/qngrams_01_prob)\"\n print \"there is no need to do recheck. most error are caused by time out\"\n\n sys.exit(1)\n\n probFile = file(probFilePath)\n newProbFile = file(probFilePath + \"_newprob\", \"w\")\n\n print \"## Reading file \" + probFile.name\n phraseList = []\n lineIdx = 0\n N = 1000 # gramNum in each request\n\n contentArr = probFile.readlines()\n contentArr = [line[:-1] for line in contentArr]\n probFile.close()\n\n newContentArr = [line[:line.find(\" \")].strip()+\" \"+line[line.find(\" \")+1:] for line in contentArr]\n\n# newContentArr = []\n# for i in range(len(contentArr)/N +1):\n# st = N*i\n# end = N*(i+1)\n# if end > len(contentArr):\n# end = len(contentArr)\n#\n# scoreList = [item[:item.find(\" \")].strip() for item in contentArr[st:end]]\n# phraseList = [item[item.find(\" \")+1:] for item in contentArr[st:end]]\n#\n# errorBatch = [1 for item in scoreList if item == \"-1\"]\n# if sum(errorBatch) == len(scoreList):\n# print \"errorBatch: st, end\", st, end, len(phraseList), phraseList[-5:]\n# probArr = []\n# for j in range(10):\n# sub_phraseList = phraseList[j*N/10:(j+1)*N/10]\n# sub_probArr = getProb(sub_phraseList)\n# probArr.extend(sub_probArr)\n# \n# print \"get prob done\", probArr[:5]\n# if len(probArr) != len(phraseList):\n# print \"Error! prob output number not equal phrase number\"\n# sys.exit(0)\n# for j in range(st, end):\n# newContentArr.append(probArr[j%N] + \" \" + phraseList[j%N])\n# else:\n# for idx in range(len(scoreList)):\n# newContentArr.append(scoreList[idx] + \" \" + phraseList[idx])\n# if st % 10000 == 0:\n# print \"**\", st, \"lines are processed.\", len(newContentArr) \n\n\n newProbFile.write(\"\\n\".join(newContentArr))\n newProbFile.close()\n\n print \"## New Probs are written to file \" + newProbFile.name\n print \"Program ends at time:\" + str(time.asctime())\n\n" ]
true
98,841
218015c20c5ba5fc56591ec195d24ee1fbf4de6c
""" Exercise 2.9 """ import pylab as pl import math pl.ion() #给定初始条件,计算轨迹 class cannon_shell: def __init__(self, init_v = 0, init_theta = 0, time_step = 0): self.x = [0] self.y = [0] self.init_theta = init_theta self.vx = [init_v * math.cos(self.init_theta / 180 * math.pi) / 1000] self.vy = [init_v * math.sin(self.init_theta / 180 * math.pi) / 1000] self.dt = time_step self.C = 0 self.g = 9.8E-3 def launch(self): i = 0 while(True): self.C = 4E-2 * math.pow(1 - 6.5 * self.y[i] / 288.15, 2.5) self.x.append(self.x[i] + self.vx[i] * self.dt) self.y.append(self.y[i] + self.vy[i] * self.dt) self.vx.append(self.vx[i] - self.C * math.hypot(self.vx[i], self.vy[i]) * self.vx[i] * self.dt) self.vy.append(self.vy[i] - self.g * self.dt - self.C * math.hypot(self.vx[i], self.vy[i]) * self.vy[i] * self.dt) i += 1 if self.y[i] < 0: break #利用所得x轴两侧最近的两点近似计算曲线与x轴的交点 self.x[i] = -self.y[i-1] * (self.x[i] - self.x[i-1]) / (self.y[i] - self.y[i-1]) + self.x[i-1] self.y[i] = 0 #求给定初速度下的最大落地距离及对应发射角度 class maximum_range(cannon_shell): def find(self): max_range = 0 temp_max = 0 init_theta = 0 print("\n--------------") print("正在计算此初速度下最大落地距离,预计需几十秒,请耐心等待...\n") while(True): cannon_shell.__init__(self, user_input.init_v, init_theta, user_input.time_step) cannon_shell.launch(self) temp_max = self.x[-1] if (max_range <= temp_max): max_range = temp_max init_theta += 0.1 else: init_theta -= 0.1 break print("初速度:", user_input.init_v, "m/s") print("计算间隔:", user_input.time_step, "s") print("在此初速度下最大落地距离为: %.4f km"%max_range) print("最大落地距离对应的发射角为: %.1f °"%init_theta) #绘制运动轨迹 class show_results: def show_results_1(self): pl.figure(1) pl.title('Cannon Shell') pl.xlabel('x / $km$') pl.ylabel('y / $km$') pl.grid() pl.show() def show_results_2(self): pl.figure(1) pl.plot(self.x, self.y,label = "angle: %.1f °"%self.init_theta) pl.draw() pl.legend() print("\n初速度:", user_input.init_v, "m/s") print("计算间隔:", user_input.time_step, "s") print("发射角度:", self.init_theta, "°") print("落地距离:%.4f km"%self.x[-1], "\n") #用户输入初始值 class user_input: num_str_in = input("请输入初速度(m/s),计算间隔dt(s)的值,并用空格隔开:\n") num = [float(n) for n in num_str_in.split()] init_v = num[0] time_step = num[1] #用户输入不同的初始角度值,并输出结果曲线 class user_output: start = cannon_shell() show_results.show_results_1(start) while(True): init_theta = float(input("--------------\n输入初始角度(角度制,0~180)(输入999开始计算最大落地距离):\n")) if init_theta != 999: start = cannon_shell(user_input.init_v, init_theta, user_input.time_step) start.launch() show_results.show_results_2(start) else: break start = maximum_range(user_input.init_v, init_theta, user_input.time_step) start.find() #运行程序 user_input() user_output() end = input("\n\n\n按下回车结束程序...")
[ "\"\"\"\r\nExercise 2.9\r\n\"\"\"\r\nimport pylab as pl\r\nimport math\r\npl.ion()\r\n#给定初始条件,计算轨迹\r\nclass cannon_shell:\r\n def __init__(self, init_v = 0, init_theta = 0, time_step = 0):\r\n self.x = [0]\r\n self.y = [0]\r\n self.init_theta = init_theta\r\n self.vx = [init_v * math.cos(self.init_theta / 180 * math.pi) / 1000]\r\n self.vy = [init_v * math.sin(self.init_theta / 180 * math.pi) / 1000]\r\n self.dt = time_step\r\n self.C = 0\r\n self.g = 9.8E-3\r\n def launch(self):\r\n i = 0\r\n while(True):\r\n self.C = 4E-2 * math.pow(1 - 6.5 * self.y[i] / 288.15, 2.5)\r\n self.x.append(self.x[i] + self.vx[i] * self.dt)\r\n self.y.append(self.y[i] + self.vy[i] * self.dt)\r\n self.vx.append(self.vx[i] - self.C * math.hypot(self.vx[i], self.vy[i]) * self.vx[i] * self.dt)\r\n self.vy.append(self.vy[i] - self.g * self.dt - self.C * math.hypot(self.vx[i], self.vy[i]) * self.vy[i] * self.dt)\r\n i += 1\r\n if self.y[i] < 0:\r\n break\r\n#利用所得x轴两侧最近的两点近似计算曲线与x轴的交点\r\n self.x[i] = -self.y[i-1] * (self.x[i] - self.x[i-1]) / (self.y[i] - self.y[i-1]) + self.x[i-1]\r\n self.y[i] = 0\r\n#求给定初速度下的最大落地距离及对应发射角度\r\nclass maximum_range(cannon_shell):\r\n def find(self):\r\n max_range = 0\r\n temp_max = 0\r\n init_theta = 0\r\n print(\"\\n--------------\")\r\n print(\"正在计算此初速度下最大落地距离,预计需几十秒,请耐心等待...\\n\")\r\n while(True):\r\n cannon_shell.__init__(self, user_input.init_v, init_theta, user_input.time_step)\r\n cannon_shell.launch(self)\r\n temp_max = self.x[-1]\r\n if (max_range <= temp_max):\r\n max_range = temp_max\r\n init_theta += 0.1\r\n else:\r\n init_theta -= 0.1\r\n break\r\n print(\"初速度:\", user_input.init_v, \"m/s\")\r\n print(\"计算间隔:\", user_input.time_step, \"s\")\r\n print(\"在此初速度下最大落地距离为: %.4f km\"%max_range)\r\n print(\"最大落地距离对应的发射角为: %.1f °\"%init_theta)\r\n#绘制运动轨迹\r\nclass show_results:\r\n def show_results_1(self):\r\n pl.figure(1)\r\n pl.title('Cannon Shell')\r\n pl.xlabel('x / $km$')\r\n pl.ylabel('y / $km$')\r\n pl.grid()\r\n pl.show()\r\n def show_results_2(self):\r\n pl.figure(1)\r\n pl.plot(self.x, self.y,label = \"angle: %.1f °\"%self.init_theta)\r\n pl.draw()\r\n pl.legend()\r\n print(\"\\n初速度:\", user_input.init_v, \"m/s\")\r\n print(\"计算间隔:\", user_input.time_step, \"s\")\r\n print(\"发射角度:\", self.init_theta, \"°\")\r\n print(\"落地距离:%.4f km\"%self.x[-1], \"\\n\")\r\n#用户输入初始值\r\nclass user_input:\r\n num_str_in = input(\"请输入初速度(m/s),计算间隔dt(s)的值,并用空格隔开:\\n\")\r\n num = [float(n) for n in num_str_in.split()]\r\n init_v = num[0]\r\n time_step = num[1]\r\n#用户输入不同的初始角度值,并输出结果曲线\r\nclass user_output:\r\n start = cannon_shell()\r\n show_results.show_results_1(start)\r\n while(True):\r\n init_theta = float(input(\"--------------\\n输入初始角度(角度制,0~180)(输入999开始计算最大落地距离):\\n\"))\r\n if init_theta != 999:\r\n start = cannon_shell(user_input.init_v, init_theta, user_input.time_step)\r\n start.launch()\r\n show_results.show_results_2(start)\r\n else:\r\n break\r\n start = maximum_range(user_input.init_v, init_theta, user_input.time_step)\r\n start.find()\r\n#运行程序\r\nuser_input()\r\nuser_output()\r\nend = input(\"\\n\\n\\n按下回车结束程序...\")", "<docstring token>\nimport pylab as pl\nimport math\npl.ion()\n\n\nclass cannon_shell:\n\n def __init__(self, init_v=0, init_theta=0, time_step=0):\n self.x = [0]\n self.y = [0]\n self.init_theta = init_theta\n self.vx = [init_v * math.cos(self.init_theta / 180 * math.pi) / 1000]\n self.vy = [init_v * math.sin(self.init_theta / 180 * math.pi) / 1000]\n self.dt = time_step\n self.C = 0\n self.g = 0.0098\n\n def launch(self):\n i = 0\n while True:\n self.C = 0.04 * math.pow(1 - 6.5 * self.y[i] / 288.15, 2.5)\n self.x.append(self.x[i] + self.vx[i] * self.dt)\n self.y.append(self.y[i] + self.vy[i] * self.dt)\n self.vx.append(self.vx[i] - self.C * math.hypot(self.vx[i],\n self.vy[i]) * self.vx[i] * self.dt)\n self.vy.append(self.vy[i] - self.g * self.dt - self.C * math.\n hypot(self.vx[i], self.vy[i]) * self.vy[i] * self.dt)\n i += 1\n if self.y[i] < 0:\n break\n self.x[i] = -self.y[i - 1] * (self.x[i] - self.x[i - 1]) / (self.y[\n i] - self.y[i - 1]) + self.x[i - 1]\n self.y[i] = 0\n\n\nclass maximum_range(cannon_shell):\n\n def find(self):\n max_range = 0\n temp_max = 0\n init_theta = 0\n print('\\n--------------')\n print('正在计算此初速度下最大落地距离,预计需几十秒,请耐心等待...\\n')\n while True:\n cannon_shell.__init__(self, user_input.init_v, init_theta,\n user_input.time_step)\n cannon_shell.launch(self)\n temp_max = self.x[-1]\n if max_range <= temp_max:\n max_range = temp_max\n init_theta += 0.1\n else:\n init_theta -= 0.1\n break\n print('初速度:', user_input.init_v, 'm/s')\n print('计算间隔:', user_input.time_step, 's')\n print('在此初速度下最大落地距离为: %.4f km' % max_range)\n print('最大落地距离对应的发射角为: %.1f °' % init_theta)\n\n\nclass show_results:\n\n def show_results_1(self):\n pl.figure(1)\n pl.title('Cannon Shell')\n pl.xlabel('x / $km$')\n pl.ylabel('y / $km$')\n pl.grid()\n pl.show()\n\n def show_results_2(self):\n pl.figure(1)\n pl.plot(self.x, self.y, label='angle: %.1f °' % self.init_theta)\n pl.draw()\n pl.legend()\n print('\\n初速度:', user_input.init_v, 'm/s')\n print('计算间隔:', user_input.time_step, 's')\n print('发射角度:', self.init_theta, '°')\n print('落地距离:%.4f km' % self.x[-1], '\\n')\n\n\nclass user_input:\n num_str_in = input('请输入初速度(m/s),计算间隔dt(s)的值,并用空格隔开:\\n')\n num = [float(n) for n in num_str_in.split()]\n init_v = num[0]\n time_step = num[1]\n\n\nclass user_output:\n start = cannon_shell()\n show_results.show_results_1(start)\n while True:\n init_theta = float(input(\n '--------------\\n输入初始角度(角度制,0~180)(输入999开始计算最大落地距离):\\n'))\n if init_theta != 999:\n start = cannon_shell(user_input.init_v, init_theta, user_input.\n time_step)\n start.launch()\n show_results.show_results_2(start)\n else:\n break\n start = maximum_range(user_input.init_v, init_theta, user_input.time_step)\n start.find()\n\n\nuser_input()\nuser_output()\nend = input('\\n\\n\\n按下回车结束程序...')\n", "<docstring token>\n<import token>\npl.ion()\n\n\nclass cannon_shell:\n\n def __init__(self, init_v=0, init_theta=0, time_step=0):\n self.x = [0]\n self.y = [0]\n self.init_theta = init_theta\n self.vx = [init_v * math.cos(self.init_theta / 180 * math.pi) / 1000]\n self.vy = [init_v * math.sin(self.init_theta / 180 * math.pi) / 1000]\n self.dt = time_step\n self.C = 0\n self.g = 0.0098\n\n def launch(self):\n i = 0\n while True:\n self.C = 0.04 * math.pow(1 - 6.5 * self.y[i] / 288.15, 2.5)\n self.x.append(self.x[i] + self.vx[i] * self.dt)\n self.y.append(self.y[i] + self.vy[i] * self.dt)\n self.vx.append(self.vx[i] - self.C * math.hypot(self.vx[i],\n self.vy[i]) * self.vx[i] * self.dt)\n self.vy.append(self.vy[i] - self.g * self.dt - self.C * math.\n hypot(self.vx[i], self.vy[i]) * self.vy[i] * self.dt)\n i += 1\n if self.y[i] < 0:\n break\n self.x[i] = -self.y[i - 1] * (self.x[i] - self.x[i - 1]) / (self.y[\n i] - self.y[i - 1]) + self.x[i - 1]\n self.y[i] = 0\n\n\nclass maximum_range(cannon_shell):\n\n def find(self):\n max_range = 0\n temp_max = 0\n init_theta = 0\n print('\\n--------------')\n print('正在计算此初速度下最大落地距离,预计需几十秒,请耐心等待...\\n')\n while True:\n cannon_shell.__init__(self, user_input.init_v, init_theta,\n user_input.time_step)\n cannon_shell.launch(self)\n temp_max = self.x[-1]\n if max_range <= temp_max:\n max_range = temp_max\n init_theta += 0.1\n else:\n init_theta -= 0.1\n break\n print('初速度:', user_input.init_v, 'm/s')\n print('计算间隔:', user_input.time_step, 's')\n print('在此初速度下最大落地距离为: %.4f km' % max_range)\n print('最大落地距离对应的发射角为: %.1f °' % init_theta)\n\n\nclass show_results:\n\n def show_results_1(self):\n pl.figure(1)\n pl.title('Cannon Shell')\n pl.xlabel('x / $km$')\n pl.ylabel('y / $km$')\n pl.grid()\n pl.show()\n\n def show_results_2(self):\n pl.figure(1)\n pl.plot(self.x, self.y, label='angle: %.1f °' % self.init_theta)\n pl.draw()\n pl.legend()\n print('\\n初速度:', user_input.init_v, 'm/s')\n print('计算间隔:', user_input.time_step, 's')\n print('发射角度:', self.init_theta, '°')\n print('落地距离:%.4f km' % self.x[-1], '\\n')\n\n\nclass user_input:\n num_str_in = input('请输入初速度(m/s),计算间隔dt(s)的值,并用空格隔开:\\n')\n num = [float(n) for n in num_str_in.split()]\n init_v = num[0]\n time_step = num[1]\n\n\nclass user_output:\n start = cannon_shell()\n show_results.show_results_1(start)\n while True:\n init_theta = float(input(\n '--------------\\n输入初始角度(角度制,0~180)(输入999开始计算最大落地距离):\\n'))\n if init_theta != 999:\n start = cannon_shell(user_input.init_v, init_theta, user_input.\n time_step)\n start.launch()\n show_results.show_results_2(start)\n else:\n break\n start = maximum_range(user_input.init_v, init_theta, user_input.time_step)\n start.find()\n\n\nuser_input()\nuser_output()\nend = input('\\n\\n\\n按下回车结束程序...')\n", "<docstring token>\n<import token>\npl.ion()\n\n\nclass cannon_shell:\n\n def __init__(self, init_v=0, init_theta=0, time_step=0):\n self.x = [0]\n self.y = [0]\n self.init_theta = init_theta\n self.vx = [init_v * math.cos(self.init_theta / 180 * math.pi) / 1000]\n self.vy = [init_v * math.sin(self.init_theta / 180 * math.pi) / 1000]\n self.dt = time_step\n self.C = 0\n self.g = 0.0098\n\n def launch(self):\n i = 0\n while True:\n self.C = 0.04 * math.pow(1 - 6.5 * self.y[i] / 288.15, 2.5)\n self.x.append(self.x[i] + self.vx[i] * self.dt)\n self.y.append(self.y[i] + self.vy[i] * self.dt)\n self.vx.append(self.vx[i] - self.C * math.hypot(self.vx[i],\n self.vy[i]) * self.vx[i] * self.dt)\n self.vy.append(self.vy[i] - self.g * self.dt - self.C * math.\n hypot(self.vx[i], self.vy[i]) * self.vy[i] * self.dt)\n i += 1\n if self.y[i] < 0:\n break\n self.x[i] = -self.y[i - 1] * (self.x[i] - self.x[i - 1]) / (self.y[\n i] - self.y[i - 1]) + self.x[i - 1]\n self.y[i] = 0\n\n\nclass maximum_range(cannon_shell):\n\n def find(self):\n max_range = 0\n temp_max = 0\n init_theta = 0\n print('\\n--------------')\n print('正在计算此初速度下最大落地距离,预计需几十秒,请耐心等待...\\n')\n while True:\n cannon_shell.__init__(self, user_input.init_v, init_theta,\n user_input.time_step)\n cannon_shell.launch(self)\n temp_max = self.x[-1]\n if max_range <= temp_max:\n max_range = temp_max\n init_theta += 0.1\n else:\n init_theta -= 0.1\n break\n print('初速度:', user_input.init_v, 'm/s')\n print('计算间隔:', user_input.time_step, 's')\n print('在此初速度下最大落地距离为: %.4f km' % max_range)\n print('最大落地距离对应的发射角为: %.1f °' % init_theta)\n\n\nclass show_results:\n\n def show_results_1(self):\n pl.figure(1)\n pl.title('Cannon Shell')\n pl.xlabel('x / $km$')\n pl.ylabel('y / $km$')\n pl.grid()\n pl.show()\n\n def show_results_2(self):\n pl.figure(1)\n pl.plot(self.x, self.y, label='angle: %.1f °' % self.init_theta)\n pl.draw()\n pl.legend()\n print('\\n初速度:', user_input.init_v, 'm/s')\n print('计算间隔:', user_input.time_step, 's')\n print('发射角度:', self.init_theta, '°')\n print('落地距离:%.4f km' % self.x[-1], '\\n')\n\n\nclass user_input:\n num_str_in = input('请输入初速度(m/s),计算间隔dt(s)的值,并用空格隔开:\\n')\n num = [float(n) for n in num_str_in.split()]\n init_v = num[0]\n time_step = num[1]\n\n\nclass user_output:\n start = cannon_shell()\n show_results.show_results_1(start)\n while True:\n init_theta = float(input(\n '--------------\\n输入初始角度(角度制,0~180)(输入999开始计算最大落地距离):\\n'))\n if init_theta != 999:\n start = cannon_shell(user_input.init_v, init_theta, user_input.\n time_step)\n start.launch()\n show_results.show_results_2(start)\n else:\n break\n start = maximum_range(user_input.init_v, init_theta, user_input.time_step)\n start.find()\n\n\nuser_input()\nuser_output()\n<assignment token>\n", "<docstring token>\n<import token>\n<code token>\n\n\nclass cannon_shell:\n\n def __init__(self, init_v=0, init_theta=0, time_step=0):\n self.x = [0]\n self.y = [0]\n self.init_theta = init_theta\n self.vx = [init_v * math.cos(self.init_theta / 180 * math.pi) / 1000]\n self.vy = [init_v * math.sin(self.init_theta / 180 * math.pi) / 1000]\n self.dt = time_step\n self.C = 0\n self.g = 0.0098\n\n def launch(self):\n i = 0\n while True:\n self.C = 0.04 * math.pow(1 - 6.5 * self.y[i] / 288.15, 2.5)\n self.x.append(self.x[i] + self.vx[i] * self.dt)\n self.y.append(self.y[i] + self.vy[i] * self.dt)\n self.vx.append(self.vx[i] - self.C * math.hypot(self.vx[i],\n self.vy[i]) * self.vx[i] * self.dt)\n self.vy.append(self.vy[i] - self.g * self.dt - self.C * math.\n hypot(self.vx[i], self.vy[i]) * self.vy[i] * self.dt)\n i += 1\n if self.y[i] < 0:\n break\n self.x[i] = -self.y[i - 1] * (self.x[i] - self.x[i - 1]) / (self.y[\n i] - self.y[i - 1]) + self.x[i - 1]\n self.y[i] = 0\n\n\nclass maximum_range(cannon_shell):\n\n def find(self):\n max_range = 0\n temp_max = 0\n init_theta = 0\n print('\\n--------------')\n print('正在计算此初速度下最大落地距离,预计需几十秒,请耐心等待...\\n')\n while True:\n cannon_shell.__init__(self, user_input.init_v, init_theta,\n user_input.time_step)\n cannon_shell.launch(self)\n temp_max = self.x[-1]\n if max_range <= temp_max:\n max_range = temp_max\n init_theta += 0.1\n else:\n init_theta -= 0.1\n break\n print('初速度:', user_input.init_v, 'm/s')\n print('计算间隔:', user_input.time_step, 's')\n print('在此初速度下最大落地距离为: %.4f km' % max_range)\n print('最大落地距离对应的发射角为: %.1f °' % init_theta)\n\n\nclass show_results:\n\n def show_results_1(self):\n pl.figure(1)\n pl.title('Cannon Shell')\n pl.xlabel('x / $km$')\n pl.ylabel('y / $km$')\n pl.grid()\n pl.show()\n\n def show_results_2(self):\n pl.figure(1)\n pl.plot(self.x, self.y, label='angle: %.1f °' % self.init_theta)\n pl.draw()\n pl.legend()\n print('\\n初速度:', user_input.init_v, 'm/s')\n print('计算间隔:', user_input.time_step, 's')\n print('发射角度:', self.init_theta, '°')\n print('落地距离:%.4f km' % self.x[-1], '\\n')\n\n\nclass user_input:\n num_str_in = input('请输入初速度(m/s),计算间隔dt(s)的值,并用空格隔开:\\n')\n num = [float(n) for n in num_str_in.split()]\n init_v = num[0]\n time_step = num[1]\n\n\nclass user_output:\n start = cannon_shell()\n show_results.show_results_1(start)\n while True:\n init_theta = float(input(\n '--------------\\n输入初始角度(角度制,0~180)(输入999开始计算最大落地距离):\\n'))\n if init_theta != 999:\n start = cannon_shell(user_input.init_v, init_theta, user_input.\n time_step)\n start.launch()\n show_results.show_results_2(start)\n else:\n break\n start = maximum_range(user_input.init_v, init_theta, user_input.time_step)\n start.find()\n\n\n<code token>\n<assignment token>\n", "<docstring token>\n<import token>\n<code token>\n\n\nclass cannon_shell:\n <function token>\n\n def launch(self):\n i = 0\n while True:\n self.C = 0.04 * math.pow(1 - 6.5 * self.y[i] / 288.15, 2.5)\n self.x.append(self.x[i] + self.vx[i] * self.dt)\n self.y.append(self.y[i] + self.vy[i] * self.dt)\n self.vx.append(self.vx[i] - self.C * math.hypot(self.vx[i],\n self.vy[i]) * self.vx[i] * self.dt)\n self.vy.append(self.vy[i] - self.g * self.dt - self.C * math.\n hypot(self.vx[i], self.vy[i]) * self.vy[i] * self.dt)\n i += 1\n if self.y[i] < 0:\n break\n self.x[i] = -self.y[i - 1] * (self.x[i] - self.x[i - 1]) / (self.y[\n i] - self.y[i - 1]) + self.x[i - 1]\n self.y[i] = 0\n\n\nclass maximum_range(cannon_shell):\n\n def find(self):\n max_range = 0\n temp_max = 0\n init_theta = 0\n print('\\n--------------')\n print('正在计算此初速度下最大落地距离,预计需几十秒,请耐心等待...\\n')\n while True:\n cannon_shell.__init__(self, user_input.init_v, init_theta,\n user_input.time_step)\n cannon_shell.launch(self)\n temp_max = self.x[-1]\n if max_range <= temp_max:\n max_range = temp_max\n init_theta += 0.1\n else:\n init_theta -= 0.1\n break\n print('初速度:', user_input.init_v, 'm/s')\n print('计算间隔:', user_input.time_step, 's')\n print('在此初速度下最大落地距离为: %.4f km' % max_range)\n print('最大落地距离对应的发射角为: %.1f °' % init_theta)\n\n\nclass show_results:\n\n def show_results_1(self):\n pl.figure(1)\n pl.title('Cannon Shell')\n pl.xlabel('x / $km$')\n pl.ylabel('y / $km$')\n pl.grid()\n pl.show()\n\n def show_results_2(self):\n pl.figure(1)\n pl.plot(self.x, self.y, label='angle: %.1f °' % self.init_theta)\n pl.draw()\n pl.legend()\n print('\\n初速度:', user_input.init_v, 'm/s')\n print('计算间隔:', user_input.time_step, 's')\n print('发射角度:', self.init_theta, '°')\n print('落地距离:%.4f km' % self.x[-1], '\\n')\n\n\nclass user_input:\n num_str_in = input('请输入初速度(m/s),计算间隔dt(s)的值,并用空格隔开:\\n')\n num = [float(n) for n in num_str_in.split()]\n init_v = num[0]\n time_step = num[1]\n\n\nclass user_output:\n start = cannon_shell()\n show_results.show_results_1(start)\n while True:\n init_theta = float(input(\n '--------------\\n输入初始角度(角度制,0~180)(输入999开始计算最大落地距离):\\n'))\n if init_theta != 999:\n start = cannon_shell(user_input.init_v, init_theta, user_input.\n time_step)\n start.launch()\n show_results.show_results_2(start)\n else:\n break\n start = maximum_range(user_input.init_v, init_theta, user_input.time_step)\n start.find()\n\n\n<code token>\n<assignment token>\n", "<docstring token>\n<import token>\n<code token>\n\n\nclass cannon_shell:\n <function token>\n <function token>\n\n\nclass maximum_range(cannon_shell):\n\n def find(self):\n max_range = 0\n temp_max = 0\n init_theta = 0\n print('\\n--------------')\n print('正在计算此初速度下最大落地距离,预计需几十秒,请耐心等待...\\n')\n while True:\n cannon_shell.__init__(self, user_input.init_v, init_theta,\n user_input.time_step)\n cannon_shell.launch(self)\n temp_max = self.x[-1]\n if max_range <= temp_max:\n max_range = temp_max\n init_theta += 0.1\n else:\n init_theta -= 0.1\n break\n print('初速度:', user_input.init_v, 'm/s')\n print('计算间隔:', user_input.time_step, 's')\n print('在此初速度下最大落地距离为: %.4f km' % max_range)\n print('最大落地距离对应的发射角为: %.1f °' % init_theta)\n\n\nclass show_results:\n\n def show_results_1(self):\n pl.figure(1)\n pl.title('Cannon Shell')\n pl.xlabel('x / $km$')\n pl.ylabel('y / $km$')\n pl.grid()\n pl.show()\n\n def show_results_2(self):\n pl.figure(1)\n pl.plot(self.x, self.y, label='angle: %.1f °' % self.init_theta)\n pl.draw()\n pl.legend()\n print('\\n初速度:', user_input.init_v, 'm/s')\n print('计算间隔:', user_input.time_step, 's')\n print('发射角度:', self.init_theta, '°')\n print('落地距离:%.4f km' % self.x[-1], '\\n')\n\n\nclass user_input:\n num_str_in = input('请输入初速度(m/s),计算间隔dt(s)的值,并用空格隔开:\\n')\n num = [float(n) for n in num_str_in.split()]\n init_v = num[0]\n time_step = num[1]\n\n\nclass user_output:\n start = cannon_shell()\n show_results.show_results_1(start)\n while True:\n init_theta = float(input(\n '--------------\\n输入初始角度(角度制,0~180)(输入999开始计算最大落地距离):\\n'))\n if init_theta != 999:\n start = cannon_shell(user_input.init_v, init_theta, user_input.\n time_step)\n start.launch()\n show_results.show_results_2(start)\n else:\n break\n start = maximum_range(user_input.init_v, init_theta, user_input.time_step)\n start.find()\n\n\n<code token>\n<assignment token>\n", "<docstring token>\n<import token>\n<code token>\n<class token>\n\n\nclass maximum_range(cannon_shell):\n\n def find(self):\n max_range = 0\n temp_max = 0\n init_theta = 0\n print('\\n--------------')\n print('正在计算此初速度下最大落地距离,预计需几十秒,请耐心等待...\\n')\n while True:\n cannon_shell.__init__(self, user_input.init_v, init_theta,\n user_input.time_step)\n cannon_shell.launch(self)\n temp_max = self.x[-1]\n if max_range <= temp_max:\n max_range = temp_max\n init_theta += 0.1\n else:\n init_theta -= 0.1\n break\n print('初速度:', user_input.init_v, 'm/s')\n print('计算间隔:', user_input.time_step, 's')\n print('在此初速度下最大落地距离为: %.4f km' % max_range)\n print('最大落地距离对应的发射角为: %.1f °' % init_theta)\n\n\nclass show_results:\n\n def show_results_1(self):\n pl.figure(1)\n pl.title('Cannon Shell')\n pl.xlabel('x / $km$')\n pl.ylabel('y / $km$')\n pl.grid()\n pl.show()\n\n def show_results_2(self):\n pl.figure(1)\n pl.plot(self.x, self.y, label='angle: %.1f °' % self.init_theta)\n pl.draw()\n pl.legend()\n print('\\n初速度:', user_input.init_v, 'm/s')\n print('计算间隔:', user_input.time_step, 's')\n print('发射角度:', self.init_theta, '°')\n print('落地距离:%.4f km' % self.x[-1], '\\n')\n\n\nclass user_input:\n num_str_in = input('请输入初速度(m/s),计算间隔dt(s)的值,并用空格隔开:\\n')\n num = [float(n) for n in num_str_in.split()]\n init_v = num[0]\n time_step = num[1]\n\n\nclass user_output:\n start = cannon_shell()\n show_results.show_results_1(start)\n while True:\n init_theta = float(input(\n '--------------\\n输入初始角度(角度制,0~180)(输入999开始计算最大落地距离):\\n'))\n if init_theta != 999:\n start = cannon_shell(user_input.init_v, init_theta, user_input.\n time_step)\n start.launch()\n show_results.show_results_2(start)\n else:\n break\n start = maximum_range(user_input.init_v, init_theta, user_input.time_step)\n start.find()\n\n\n<code token>\n<assignment token>\n", "<docstring token>\n<import token>\n<code token>\n<class token>\n\n\nclass maximum_range(cannon_shell):\n <function token>\n\n\nclass show_results:\n\n def show_results_1(self):\n pl.figure(1)\n pl.title('Cannon Shell')\n pl.xlabel('x / $km$')\n pl.ylabel('y / $km$')\n pl.grid()\n pl.show()\n\n def show_results_2(self):\n pl.figure(1)\n pl.plot(self.x, self.y, label='angle: %.1f °' % self.init_theta)\n pl.draw()\n pl.legend()\n print('\\n初速度:', user_input.init_v, 'm/s')\n print('计算间隔:', user_input.time_step, 's')\n print('发射角度:', self.init_theta, '°')\n print('落地距离:%.4f km' % self.x[-1], '\\n')\n\n\nclass user_input:\n num_str_in = input('请输入初速度(m/s),计算间隔dt(s)的值,并用空格隔开:\\n')\n num = [float(n) for n in num_str_in.split()]\n init_v = num[0]\n time_step = num[1]\n\n\nclass user_output:\n start = cannon_shell()\n show_results.show_results_1(start)\n while True:\n init_theta = float(input(\n '--------------\\n输入初始角度(角度制,0~180)(输入999开始计算最大落地距离):\\n'))\n if init_theta != 999:\n start = cannon_shell(user_input.init_v, init_theta, user_input.\n time_step)\n start.launch()\n show_results.show_results_2(start)\n else:\n break\n start = maximum_range(user_input.init_v, init_theta, user_input.time_step)\n start.find()\n\n\n<code token>\n<assignment token>\n", "<docstring token>\n<import token>\n<code token>\n<class token>\n<class token>\n\n\nclass show_results:\n\n def show_results_1(self):\n pl.figure(1)\n pl.title('Cannon Shell')\n pl.xlabel('x / $km$')\n pl.ylabel('y / $km$')\n pl.grid()\n pl.show()\n\n def show_results_2(self):\n pl.figure(1)\n pl.plot(self.x, self.y, label='angle: %.1f °' % self.init_theta)\n pl.draw()\n pl.legend()\n print('\\n初速度:', user_input.init_v, 'm/s')\n print('计算间隔:', user_input.time_step, 's')\n print('发射角度:', self.init_theta, '°')\n print('落地距离:%.4f km' % self.x[-1], '\\n')\n\n\nclass user_input:\n num_str_in = input('请输入初速度(m/s),计算间隔dt(s)的值,并用空格隔开:\\n')\n num = [float(n) for n in num_str_in.split()]\n init_v = num[0]\n time_step = num[1]\n\n\nclass user_output:\n start = cannon_shell()\n show_results.show_results_1(start)\n while True:\n init_theta = float(input(\n '--------------\\n输入初始角度(角度制,0~180)(输入999开始计算最大落地距离):\\n'))\n if init_theta != 999:\n start = cannon_shell(user_input.init_v, init_theta, user_input.\n time_step)\n start.launch()\n show_results.show_results_2(start)\n else:\n break\n start = maximum_range(user_input.init_v, init_theta, user_input.time_step)\n start.find()\n\n\n<code token>\n<assignment token>\n", "<docstring token>\n<import token>\n<code token>\n<class token>\n<class token>\n\n\nclass show_results:\n <function token>\n\n def show_results_2(self):\n pl.figure(1)\n pl.plot(self.x, self.y, label='angle: %.1f °' % self.init_theta)\n pl.draw()\n pl.legend()\n print('\\n初速度:', user_input.init_v, 'm/s')\n print('计算间隔:', user_input.time_step, 's')\n print('发射角度:', self.init_theta, '°')\n print('落地距离:%.4f km' % self.x[-1], '\\n')\n\n\nclass user_input:\n num_str_in = input('请输入初速度(m/s),计算间隔dt(s)的值,并用空格隔开:\\n')\n num = [float(n) for n in num_str_in.split()]\n init_v = num[0]\n time_step = num[1]\n\n\nclass user_output:\n start = cannon_shell()\n show_results.show_results_1(start)\n while True:\n init_theta = float(input(\n '--------------\\n输入初始角度(角度制,0~180)(输入999开始计算最大落地距离):\\n'))\n if init_theta != 999:\n start = cannon_shell(user_input.init_v, init_theta, user_input.\n time_step)\n start.launch()\n show_results.show_results_2(start)\n else:\n break\n start = maximum_range(user_input.init_v, init_theta, user_input.time_step)\n start.find()\n\n\n<code token>\n<assignment token>\n", "<docstring token>\n<import token>\n<code token>\n<class token>\n<class token>\n\n\nclass show_results:\n <function token>\n <function token>\n\n\nclass user_input:\n num_str_in = input('请输入初速度(m/s),计算间隔dt(s)的值,并用空格隔开:\\n')\n num = [float(n) for n in num_str_in.split()]\n init_v = num[0]\n time_step = num[1]\n\n\nclass user_output:\n start = cannon_shell()\n show_results.show_results_1(start)\n while True:\n init_theta = float(input(\n '--------------\\n输入初始角度(角度制,0~180)(输入999开始计算最大落地距离):\\n'))\n if init_theta != 999:\n start = cannon_shell(user_input.init_v, init_theta, user_input.\n time_step)\n start.launch()\n show_results.show_results_2(start)\n else:\n break\n start = maximum_range(user_input.init_v, init_theta, user_input.time_step)\n start.find()\n\n\n<code token>\n<assignment token>\n", "<docstring token>\n<import token>\n<code token>\n<class token>\n<class token>\n<class token>\n\n\nclass user_input:\n num_str_in = input('请输入初速度(m/s),计算间隔dt(s)的值,并用空格隔开:\\n')\n num = [float(n) for n in num_str_in.split()]\n init_v = num[0]\n time_step = num[1]\n\n\nclass user_output:\n start = cannon_shell()\n show_results.show_results_1(start)\n while True:\n init_theta = float(input(\n '--------------\\n输入初始角度(角度制,0~180)(输入999开始计算最大落地距离):\\n'))\n if init_theta != 999:\n start = cannon_shell(user_input.init_v, init_theta, user_input.\n time_step)\n start.launch()\n show_results.show_results_2(start)\n else:\n break\n start = maximum_range(user_input.init_v, init_theta, user_input.time_step)\n start.find()\n\n\n<code token>\n<assignment token>\n", "<docstring token>\n<import token>\n<code token>\n<class token>\n<class token>\n<class token>\n\n\nclass user_input:\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n\nclass user_output:\n start = cannon_shell()\n show_results.show_results_1(start)\n while True:\n init_theta = float(input(\n '--------------\\n输入初始角度(角度制,0~180)(输入999开始计算最大落地距离):\\n'))\n if init_theta != 999:\n start = cannon_shell(user_input.init_v, init_theta, user_input.\n time_step)\n start.launch()\n show_results.show_results_2(start)\n else:\n break\n start = maximum_range(user_input.init_v, init_theta, user_input.time_step)\n start.find()\n\n\n<code token>\n<assignment token>\n", "<docstring token>\n<import token>\n<code token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass user_output:\n start = cannon_shell()\n show_results.show_results_1(start)\n while True:\n init_theta = float(input(\n '--------------\\n输入初始角度(角度制,0~180)(输入999开始计算最大落地距离):\\n'))\n if init_theta != 999:\n start = cannon_shell(user_input.init_v, init_theta, user_input.\n time_step)\n start.launch()\n show_results.show_results_2(start)\n else:\n break\n start = maximum_range(user_input.init_v, init_theta, user_input.time_step)\n start.find()\n\n\n<code token>\n<assignment token>\n", "<docstring token>\n<import token>\n<code token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass user_output:\n <assignment token>\n show_results.show_results_1(start)\n while True:\n init_theta = float(input(\n '--------------\\n输入初始角度(角度制,0~180)(输入999开始计算最大落地距离):\\n'))\n if init_theta != 999:\n start = cannon_shell(user_input.init_v, init_theta, user_input.\n time_step)\n start.launch()\n show_results.show_results_2(start)\n else:\n break\n <assignment token>\n start.find()\n\n\n<code token>\n<assignment token>\n", "<docstring token>\n<import token>\n<code token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<code token>\n<assignment token>\n" ]
false
98,842
b632e828149981b0bf2a1c0057105121f7d63b09
import json from aiohttp import web, ClientSession from aiohttp.test_utils import unused_port from tests.test_data.server_activity import s2s_follow class FakeServer: def __init__(self, loop): self.loop = loop self.app = web.Application() self.runner = None self.port = None self.app.router.add_get('/user', self.user_profile) self.app.router.add_post('/user/inbox', self.inbox_post) async def start(self): self.port = port = unused_port() self.runner = web.AppRunner(self.app) await self.runner.setup() site = web.TCPSite(self.runner, '127.0.0.1', port) await site.start() return port async def stop(self): await self.runner.cleanup() async def inbox_post(self, request): data = await request.json() # from pprint import pprint # pprint(data) if data["type"] == "Follow": test_follow = s2s_follow(data["actor"], data["object"], data["id"]) if not data == test_follow: raise accept = json.dumps({ "type": "Accept", "id": "id", "object": data, "actor": data["object"]}) async with ClientSession() as session: await session.post(f"{data['actor']}/inbox", data=accept) return web.json_response() async def user_profile(self, request): return web.json_response({ "inbox": f"http://127.0.0.1:{self.port}/user/inbox" })
[ "\nimport json\nfrom aiohttp import web, ClientSession\nfrom aiohttp.test_utils import unused_port\n\n\nfrom tests.test_data.server_activity import s2s_follow\n\nclass FakeServer:\n def __init__(self, loop):\n self.loop = loop\n self.app = web.Application()\n self.runner = None\n self.port = None\n self.app.router.add_get('/user', self.user_profile)\n self.app.router.add_post('/user/inbox', self.inbox_post)\n\n async def start(self):\n self.port = port = unused_port()\n self.runner = web.AppRunner(self.app)\n await self.runner.setup()\n site = web.TCPSite(self.runner, '127.0.0.1', port)\n await site.start()\n return port\n\n async def stop(self):\n await self.runner.cleanup()\n\n async def inbox_post(self, request):\n data = await request.json()\n # from pprint import pprint\n # pprint(data)\n if data[\"type\"] == \"Follow\":\n test_follow = s2s_follow(data[\"actor\"], data[\"object\"], data[\"id\"])\n if not data == test_follow:\n raise\n accept = json.dumps({\n \"type\": \"Accept\",\n \"id\": \"id\",\n \"object\": data,\n \"actor\": data[\"object\"]})\n async with ClientSession() as session:\n await session.post(f\"{data['actor']}/inbox\", data=accept)\n\n return web.json_response()\n\n async def user_profile(self, request):\n return web.json_response({\n \"inbox\": f\"http://127.0.0.1:{self.port}/user/inbox\"\n })\n\n\n", "import json\nfrom aiohttp import web, ClientSession\nfrom aiohttp.test_utils import unused_port\nfrom tests.test_data.server_activity import s2s_follow\n\n\nclass FakeServer:\n\n def __init__(self, loop):\n self.loop = loop\n self.app = web.Application()\n self.runner = None\n self.port = None\n self.app.router.add_get('/user', self.user_profile)\n self.app.router.add_post('/user/inbox', self.inbox_post)\n\n async def start(self):\n self.port = port = unused_port()\n self.runner = web.AppRunner(self.app)\n await self.runner.setup()\n site = web.TCPSite(self.runner, '127.0.0.1', port)\n await site.start()\n return port\n\n async def stop(self):\n await self.runner.cleanup()\n\n async def inbox_post(self, request):\n data = await request.json()\n if data['type'] == 'Follow':\n test_follow = s2s_follow(data['actor'], data['object'], data['id'])\n if not data == test_follow:\n raise\n accept = json.dumps({'type': 'Accept', 'id': 'id', 'object':\n data, 'actor': data['object']})\n async with ClientSession() as session:\n await session.post(f\"{data['actor']}/inbox\", data=accept)\n return web.json_response()\n\n async def user_profile(self, request):\n return web.json_response({'inbox':\n f'http://127.0.0.1:{self.port}/user/inbox'})\n", "<import token>\n\n\nclass FakeServer:\n\n def __init__(self, loop):\n self.loop = loop\n self.app = web.Application()\n self.runner = None\n self.port = None\n self.app.router.add_get('/user', self.user_profile)\n self.app.router.add_post('/user/inbox', self.inbox_post)\n\n async def start(self):\n self.port = port = unused_port()\n self.runner = web.AppRunner(self.app)\n await self.runner.setup()\n site = web.TCPSite(self.runner, '127.0.0.1', port)\n await site.start()\n return port\n\n async def stop(self):\n await self.runner.cleanup()\n\n async def inbox_post(self, request):\n data = await request.json()\n if data['type'] == 'Follow':\n test_follow = s2s_follow(data['actor'], data['object'], data['id'])\n if not data == test_follow:\n raise\n accept = json.dumps({'type': 'Accept', 'id': 'id', 'object':\n data, 'actor': data['object']})\n async with ClientSession() as session:\n await session.post(f\"{data['actor']}/inbox\", data=accept)\n return web.json_response()\n\n async def user_profile(self, request):\n return web.json_response({'inbox':\n f'http://127.0.0.1:{self.port}/user/inbox'})\n", "<import token>\n\n\nclass FakeServer:\n <function token>\n\n async def start(self):\n self.port = port = unused_port()\n self.runner = web.AppRunner(self.app)\n await self.runner.setup()\n site = web.TCPSite(self.runner, '127.0.0.1', port)\n await site.start()\n return port\n\n async def stop(self):\n await self.runner.cleanup()\n\n async def inbox_post(self, request):\n data = await request.json()\n if data['type'] == 'Follow':\n test_follow = s2s_follow(data['actor'], data['object'], data['id'])\n if not data == test_follow:\n raise\n accept = json.dumps({'type': 'Accept', 'id': 'id', 'object':\n data, 'actor': data['object']})\n async with ClientSession() as session:\n await session.post(f\"{data['actor']}/inbox\", data=accept)\n return web.json_response()\n\n async def user_profile(self, request):\n return web.json_response({'inbox':\n f'http://127.0.0.1:{self.port}/user/inbox'})\n", "<import token>\n<class token>\n" ]
false
98,843
76003407e068d7ba20cc0ae2f36e704a73bd187e
#!/usr/bin/env python3 import time import sys import schedule from gpu import check_temperature from process import check_is_running def initialise_scheduler(): schedule.every(30).seconds.do(check_temperature) while True: schedule.run_pending() time.sleep(1) def init(): if check_is_running('app_nhm.exe') and check_is_running('OpenHardwareMonitor.exe'): print('Nicehash miner and open hardware monitor found, initialising GPU monitor.') check_temperature() initialise_scheduler() else: print('Nicehash (app_nhm.exe) or Open Hardware Monitor (OpenHardwareMonitor.exe) not found in running processes, exiting.') sys.exit() # Miner go brr init()
[ "#!/usr/bin/env python3\n\nimport time\nimport sys\nimport schedule\nfrom gpu import check_temperature\nfrom process import check_is_running\n\ndef initialise_scheduler():\n schedule.every(30).seconds.do(check_temperature)\n\n while True:\n schedule.run_pending()\n time.sleep(1)\n\ndef init():\n if check_is_running('app_nhm.exe') and check_is_running('OpenHardwareMonitor.exe'):\n print('Nicehash miner and open hardware monitor found, initialising GPU monitor.')\n check_temperature()\n initialise_scheduler()\n else:\n print('Nicehash (app_nhm.exe) or Open Hardware Monitor (OpenHardwareMonitor.exe) not found in running processes, exiting.')\n sys.exit()\n\n\n# Miner go brr\ninit()", "import time\nimport sys\nimport schedule\nfrom gpu import check_temperature\nfrom process import check_is_running\n\n\ndef initialise_scheduler():\n schedule.every(30).seconds.do(check_temperature)\n while True:\n schedule.run_pending()\n time.sleep(1)\n\n\ndef init():\n if check_is_running('app_nhm.exe') and check_is_running(\n 'OpenHardwareMonitor.exe'):\n print(\n 'Nicehash miner and open hardware monitor found, initialising GPU monitor.'\n )\n check_temperature()\n initialise_scheduler()\n else:\n print(\n 'Nicehash (app_nhm.exe) or Open Hardware Monitor (OpenHardwareMonitor.exe) not found in running processes, exiting.'\n )\n sys.exit()\n\n\ninit()\n", "<import token>\n\n\ndef initialise_scheduler():\n schedule.every(30).seconds.do(check_temperature)\n while True:\n schedule.run_pending()\n time.sleep(1)\n\n\ndef init():\n if check_is_running('app_nhm.exe') and check_is_running(\n 'OpenHardwareMonitor.exe'):\n print(\n 'Nicehash miner and open hardware monitor found, initialising GPU monitor.'\n )\n check_temperature()\n initialise_scheduler()\n else:\n print(\n 'Nicehash (app_nhm.exe) or Open Hardware Monitor (OpenHardwareMonitor.exe) not found in running processes, exiting.'\n )\n sys.exit()\n\n\ninit()\n", "<import token>\n\n\ndef initialise_scheduler():\n schedule.every(30).seconds.do(check_temperature)\n while True:\n schedule.run_pending()\n time.sleep(1)\n\n\ndef init():\n if check_is_running('app_nhm.exe') and check_is_running(\n 'OpenHardwareMonitor.exe'):\n print(\n 'Nicehash miner and open hardware monitor found, initialising GPU monitor.'\n )\n check_temperature()\n initialise_scheduler()\n else:\n print(\n 'Nicehash (app_nhm.exe) or Open Hardware Monitor (OpenHardwareMonitor.exe) not found in running processes, exiting.'\n )\n sys.exit()\n\n\n<code token>\n", "<import token>\n<function token>\n\n\ndef init():\n if check_is_running('app_nhm.exe') and check_is_running(\n 'OpenHardwareMonitor.exe'):\n print(\n 'Nicehash miner and open hardware monitor found, initialising GPU monitor.'\n )\n check_temperature()\n initialise_scheduler()\n else:\n print(\n 'Nicehash (app_nhm.exe) or Open Hardware Monitor (OpenHardwareMonitor.exe) not found in running processes, exiting.'\n )\n sys.exit()\n\n\n<code token>\n", "<import token>\n<function token>\n<function token>\n<code token>\n" ]
false
98,844
a88e7dd9836d843d0d383cfbd63492d8c2846236
import sys sys.stdin = open('sosu.txt') def issosu(a, b): result = [] for i in range(a, b+1): if i == 2: result.append(i) elif i > 2: for j in range(2, int(i**0.5)+1): if not i%j: break else: result.append(i) return result a, b = map(int, input().split()) m, n = min(a, b), max(a, b) L = sorted(issosu(m,n)) t = len(L) k = L[0]+L[-1] print(t) print(k)
[ "\nimport sys\nsys.stdin = open('sosu.txt')\n\ndef issosu(a, b):\n result = []\n for i in range(a, b+1):\n if i == 2:\n result.append(i)\n elif i > 2:\n for j in range(2, int(i**0.5)+1):\n if not i%j:\n break\n else:\n result.append(i)\n return result\n\n\n\na, b = map(int, input().split())\nm, n = min(a, b), max(a, b)\n\nL = sorted(issosu(m,n))\n\nt = len(L)\nk = L[0]+L[-1]\n\nprint(t)\nprint(k)\n\n\n", "import sys\nsys.stdin = open('sosu.txt')\n\n\ndef issosu(a, b):\n result = []\n for i in range(a, b + 1):\n if i == 2:\n result.append(i)\n elif i > 2:\n for j in range(2, int(i ** 0.5) + 1):\n if not i % j:\n break\n else:\n result.append(i)\n return result\n\n\na, b = map(int, input().split())\nm, n = min(a, b), max(a, b)\nL = sorted(issosu(m, n))\nt = len(L)\nk = L[0] + L[-1]\nprint(t)\nprint(k)\n", "<import token>\nsys.stdin = open('sosu.txt')\n\n\ndef issosu(a, b):\n result = []\n for i in range(a, b + 1):\n if i == 2:\n result.append(i)\n elif i > 2:\n for j in range(2, int(i ** 0.5) + 1):\n if not i % j:\n break\n else:\n result.append(i)\n return result\n\n\na, b = map(int, input().split())\nm, n = min(a, b), max(a, b)\nL = sorted(issosu(m, n))\nt = len(L)\nk = L[0] + L[-1]\nprint(t)\nprint(k)\n", "<import token>\n<assignment token>\n\n\ndef issosu(a, b):\n result = []\n for i in range(a, b + 1):\n if i == 2:\n result.append(i)\n elif i > 2:\n for j in range(2, int(i ** 0.5) + 1):\n if not i % j:\n break\n else:\n result.append(i)\n return result\n\n\n<assignment token>\nprint(t)\nprint(k)\n", "<import token>\n<assignment token>\n\n\ndef issosu(a, b):\n result = []\n for i in range(a, b + 1):\n if i == 2:\n result.append(i)\n elif i > 2:\n for j in range(2, int(i ** 0.5) + 1):\n if not i % j:\n break\n else:\n result.append(i)\n return result\n\n\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<function token>\n<assignment token>\n<code token>\n" ]
false
98,845
6f4278dd7b7e920be6f20e017efc270f0e47ae1d
from django.shortcuts import render, get_object_or_404 from django.http import HttpResponse, HttpResponseRedirect from django.template import loader from django.urls import reverse from .models import * def index(request): question_list = Question.objects.order_by('pub_date') context = {'question_list': question_list} return render(request, 'poll/index.html', context) # Shortcut for the two lines below # template = loader.get_template('poll/index.html') # return HttpResponse(template.render(context, request)) # output = ', '.join(q.question_text for q in question_list) # return HttpResponse(output) def detail(request, question_id): question = get_object_or_404(Question, pk=question_id) context = {'question': question} return render(request, 'poll/detail.html', context) # return HttpResponse(f"You are looking at question Number {question_id}") def results(request, question_id): question = get_object_or_404(Question, pk=question_id) return render(request, 'poll/results.html', {'question': question}) def vote(request, question_id): question = get_object_or_404(Question, pk=question_id) selected_choice = question.choice_set.get(pk=request.POST['choice']) selected_choice.votes += 1 selected_choice.save() return HttpResponseRedirect(reverse('poll:results', args=(question_id,)))
[ "from django.shortcuts import render, get_object_or_404\nfrom django.http import HttpResponse, HttpResponseRedirect\nfrom django.template import loader\nfrom django.urls import reverse\n\nfrom .models import *\n\n\ndef index(request):\n question_list = Question.objects.order_by('pub_date')\n context = {'question_list': question_list}\n return render(request, 'poll/index.html', context) # Shortcut for the two lines below\n # template = loader.get_template('poll/index.html')\n # return HttpResponse(template.render(context, request))\n # output = ', '.join(q.question_text for q in question_list)\n # return HttpResponse(output)\n\n\ndef detail(request, question_id):\n question = get_object_or_404(Question, pk=question_id)\n context = {'question': question}\n return render(request, 'poll/detail.html', context)\n # return HttpResponse(f\"You are looking at question Number {question_id}\")\n\n\ndef results(request, question_id):\n question = get_object_or_404(Question, pk=question_id)\n return render(request, 'poll/results.html', {'question': question})\n\n\ndef vote(request, question_id):\n question = get_object_or_404(Question, pk=question_id)\n selected_choice = question.choice_set.get(pk=request.POST['choice'])\n\n selected_choice.votes += 1\n selected_choice.save()\n return HttpResponseRedirect(reverse('poll:results', args=(question_id,)))\n\n", "from django.shortcuts import render, get_object_or_404\nfrom django.http import HttpResponse, HttpResponseRedirect\nfrom django.template import loader\nfrom django.urls import reverse\nfrom .models import *\n\n\ndef index(request):\n question_list = Question.objects.order_by('pub_date')\n context = {'question_list': question_list}\n return render(request, 'poll/index.html', context)\n\n\ndef detail(request, question_id):\n question = get_object_or_404(Question, pk=question_id)\n context = {'question': question}\n return render(request, 'poll/detail.html', context)\n\n\ndef results(request, question_id):\n question = get_object_or_404(Question, pk=question_id)\n return render(request, 'poll/results.html', {'question': question})\n\n\ndef vote(request, question_id):\n question = get_object_or_404(Question, pk=question_id)\n selected_choice = question.choice_set.get(pk=request.POST['choice'])\n selected_choice.votes += 1\n selected_choice.save()\n return HttpResponseRedirect(reverse('poll:results', args=(question_id,)))\n", "<import token>\n\n\ndef index(request):\n question_list = Question.objects.order_by('pub_date')\n context = {'question_list': question_list}\n return render(request, 'poll/index.html', context)\n\n\ndef detail(request, question_id):\n question = get_object_or_404(Question, pk=question_id)\n context = {'question': question}\n return render(request, 'poll/detail.html', context)\n\n\ndef results(request, question_id):\n question = get_object_or_404(Question, pk=question_id)\n return render(request, 'poll/results.html', {'question': question})\n\n\ndef vote(request, question_id):\n question = get_object_or_404(Question, pk=question_id)\n selected_choice = question.choice_set.get(pk=request.POST['choice'])\n selected_choice.votes += 1\n selected_choice.save()\n return HttpResponseRedirect(reverse('poll:results', args=(question_id,)))\n", "<import token>\n\n\ndef index(request):\n question_list = Question.objects.order_by('pub_date')\n context = {'question_list': question_list}\n return render(request, 'poll/index.html', context)\n\n\ndef detail(request, question_id):\n question = get_object_or_404(Question, pk=question_id)\n context = {'question': question}\n return render(request, 'poll/detail.html', context)\n\n\ndef results(request, question_id):\n question = get_object_or_404(Question, pk=question_id)\n return render(request, 'poll/results.html', {'question': question})\n\n\n<function token>\n", "<import token>\n\n\ndef index(request):\n question_list = Question.objects.order_by('pub_date')\n context = {'question_list': question_list}\n return render(request, 'poll/index.html', context)\n\n\n<function token>\n\n\ndef results(request, question_id):\n question = get_object_or_404(Question, pk=question_id)\n return render(request, 'poll/results.html', {'question': question})\n\n\n<function token>\n", "<import token>\n\n\ndef index(request):\n question_list = Question.objects.order_by('pub_date')\n context = {'question_list': question_list}\n return render(request, 'poll/index.html', context)\n\n\n<function token>\n<function token>\n<function token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<function token>\n" ]
false
98,846
866ec87f2935cc666598535f421dba372626078d
# a small collection of custom error messages # pertaining to the CSV_Algorithms library class ColumnCount(Exception): def __init__(self, expected, found): self.message = f''' Mail Maga CSV did not have correct column count. Expected: {expected}, Found: {found} ''' class MatchingColumn(Exception): def __init__(self, fileName, offendingColumn, correctColumn): self.message = f''' Expected {fileName} to posses column {correctColumn} but instead found {offendingColumn}. Please make sure that you have uploaded the correct CSV. ''' class AcceptableFormat(Exception): def __init__(self, fileName, acceptedEncodings): self.message = f''' The uploaded file {fileName} does not conform to any of the accepted file encodings {acceptedEncodings} '''
[ "# a small collection of custom error messages \n# pertaining to the CSV_Algorithms library\n\nclass ColumnCount(Exception):\n def __init__(self, expected, found):\n self.message = f'''\n Mail Maga CSV did not have correct\n column count. \n Expected: {expected}, Found: {found}\n '''\n\nclass MatchingColumn(Exception):\n def __init__(self, fileName, offendingColumn, correctColumn):\n self.message = f'''\n Expected {fileName} to posses column {correctColumn}\n but instead found {offendingColumn}. Please make sure\n that you have uploaded the correct CSV.\n '''\n\nclass AcceptableFormat(Exception):\n def __init__(self, fileName, acceptedEncodings):\n self.message = f'''\n The uploaded file {fileName} does not conform to any \n of the accepted file encodings {acceptedEncodings}\n '''", "class ColumnCount(Exception):\n\n def __init__(self, expected, found):\n self.message = f\"\"\"\n Mail Maga CSV did not have correct\n column count. \n Expected: {expected}, Found: {found}\n \"\"\"\n\n\nclass MatchingColumn(Exception):\n\n def __init__(self, fileName, offendingColumn, correctColumn):\n self.message = f\"\"\"\n Expected {fileName} to posses column {correctColumn}\n but instead found {offendingColumn}. Please make sure\n that you have uploaded the correct CSV.\n \"\"\"\n\n\nclass AcceptableFormat(Exception):\n\n def __init__(self, fileName, acceptedEncodings):\n self.message = f\"\"\"\n The uploaded file {fileName} does not conform to any \n of the accepted file encodings {acceptedEncodings}\n \"\"\"\n", "class ColumnCount(Exception):\n <function token>\n\n\nclass MatchingColumn(Exception):\n\n def __init__(self, fileName, offendingColumn, correctColumn):\n self.message = f\"\"\"\n Expected {fileName} to posses column {correctColumn}\n but instead found {offendingColumn}. Please make sure\n that you have uploaded the correct CSV.\n \"\"\"\n\n\nclass AcceptableFormat(Exception):\n\n def __init__(self, fileName, acceptedEncodings):\n self.message = f\"\"\"\n The uploaded file {fileName} does not conform to any \n of the accepted file encodings {acceptedEncodings}\n \"\"\"\n", "<class token>\n\n\nclass MatchingColumn(Exception):\n\n def __init__(self, fileName, offendingColumn, correctColumn):\n self.message = f\"\"\"\n Expected {fileName} to posses column {correctColumn}\n but instead found {offendingColumn}. Please make sure\n that you have uploaded the correct CSV.\n \"\"\"\n\n\nclass AcceptableFormat(Exception):\n\n def __init__(self, fileName, acceptedEncodings):\n self.message = f\"\"\"\n The uploaded file {fileName} does not conform to any \n of the accepted file encodings {acceptedEncodings}\n \"\"\"\n", "<class token>\n\n\nclass MatchingColumn(Exception):\n <function token>\n\n\nclass AcceptableFormat(Exception):\n\n def __init__(self, fileName, acceptedEncodings):\n self.message = f\"\"\"\n The uploaded file {fileName} does not conform to any \n of the accepted file encodings {acceptedEncodings}\n \"\"\"\n", "<class token>\n<class token>\n\n\nclass AcceptableFormat(Exception):\n\n def __init__(self, fileName, acceptedEncodings):\n self.message = f\"\"\"\n The uploaded file {fileName} does not conform to any \n of the accepted file encodings {acceptedEncodings}\n \"\"\"\n", "<class token>\n<class token>\n\n\nclass AcceptableFormat(Exception):\n <function token>\n", "<class token>\n<class token>\n<class token>\n" ]
false
98,847
6b695c859c288046d26e6bd7966dbcca68ba27e9
from my_detector import MyDetector import sys sys.path.append("C:/Users/hliu/Desktop/DL/toolbox") import tool import lung_seg import glob import pandas as pd sys.path.append("C:/Users/hliu/Desktop/DL/models/classification") if __name__ == "__main__": weight_fp = "C:/Users/hliu/Desktop/tmp/final/mask_rcnn_pneumonia_0019_1.1470_lei.h5" image_fp = "C:/Users/hliu/Desktop/DL/dataset/Kaggle/stage_1_test_images/000db696-cf54-4385-b10b-6b16fbb3f985.dcm" my_detector = MyDetector() my_detector.load_model(weight_fp) my_detector.visualize(image_fp, show=True, min_conf=0.95)
[ "from my_detector import MyDetector\r\n\r\n\r\nimport sys\r\nsys.path.append(\"C:/Users/hliu/Desktop/DL/toolbox\")\r\nimport tool\r\nimport lung_seg\r\nimport glob\r\nimport pandas as pd\r\nsys.path.append(\"C:/Users/hliu/Desktop/DL/models/classification\")\r\n\r\n\r\n\r\nif __name__ == \"__main__\":\r\n\r\n weight_fp = \"C:/Users/hliu/Desktop/tmp/final/mask_rcnn_pneumonia_0019_1.1470_lei.h5\"\r\n image_fp = \"C:/Users/hliu/Desktop/DL/dataset/Kaggle/stage_1_test_images/000db696-cf54-4385-b10b-6b16fbb3f985.dcm\"\r\n\r\n\r\n my_detector = MyDetector()\r\n my_detector.load_model(weight_fp)\r\n my_detector.visualize(image_fp, show=True, min_conf=0.95)", "from my_detector import MyDetector\nimport sys\nsys.path.append('C:/Users/hliu/Desktop/DL/toolbox')\nimport tool\nimport lung_seg\nimport glob\nimport pandas as pd\nsys.path.append('C:/Users/hliu/Desktop/DL/models/classification')\nif __name__ == '__main__':\n weight_fp = (\n 'C:/Users/hliu/Desktop/tmp/final/mask_rcnn_pneumonia_0019_1.1470_lei.h5'\n )\n image_fp = (\n 'C:/Users/hliu/Desktop/DL/dataset/Kaggle/stage_1_test_images/000db696-cf54-4385-b10b-6b16fbb3f985.dcm'\n )\n my_detector = MyDetector()\n my_detector.load_model(weight_fp)\n my_detector.visualize(image_fp, show=True, min_conf=0.95)\n", "<import token>\nsys.path.append('C:/Users/hliu/Desktop/DL/toolbox')\n<import token>\nsys.path.append('C:/Users/hliu/Desktop/DL/models/classification')\nif __name__ == '__main__':\n weight_fp = (\n 'C:/Users/hliu/Desktop/tmp/final/mask_rcnn_pneumonia_0019_1.1470_lei.h5'\n )\n image_fp = (\n 'C:/Users/hliu/Desktop/DL/dataset/Kaggle/stage_1_test_images/000db696-cf54-4385-b10b-6b16fbb3f985.dcm'\n )\n my_detector = MyDetector()\n my_detector.load_model(weight_fp)\n my_detector.visualize(image_fp, show=True, min_conf=0.95)\n", "<import token>\n<code token>\n<import token>\n<code token>\n" ]
false
98,848
926178f100912f31d368e6399d6f7bba7d28ff31
# Generated by Django 2.2.17 on 2021-03-22 04:30 import uuid import django.db.models.deletion from django.conf import settings from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name="Column", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ( "title", models.CharField(blank=True, max_length=50, null=True), ), ("created_on", models.DateTimeField(auto_now_add=True)), ("last_modified", models.DateTimeField(auto_now=True)), ("published", models.BooleanField(default=False)), ("visible", models.BooleanField(default=True)), ("colour", models.PositiveIntegerField(null=True)), ( "column_type", models.PositiveIntegerField( choices=[ (0, "Custom Activity Column"), (1, "Out of Class (Instructor)"), (2, "Out of Class (Students)"), (3, "In Class (Instructor)"), (4, "In Class (Students)"), (10, "Custom Course Column"), (11, "Preparation"), (12, "Lesson"), (13, "Artifact"), (14, "Assessment"), (20, "Custom Program Category"), ], default=0, ), ), ("is_original", models.BooleanField(default=False)), ( "hash", models.UUIDField( default=uuid.uuid4, editable=False, unique=True ), ), ( "author", models.ForeignKey( null=True, on_delete=django.db.models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL, ), ), ( "parent_column", models.ForeignKey( null=True, on_delete=django.db.models.deletion.SET_NULL, to="course_flow.Column", ), ), ], options={ "verbose_name": "Column", "verbose_name_plural": "Columns", }, ), migrations.CreateModel( name="ColumnWorkflow", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("added_on", models.DateTimeField(auto_now_add=True)), ("rank", models.PositiveIntegerField(default=0)), ( "column", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, to="course_flow.Column", ), ), ], options={ "verbose_name": "Column-Workflow Link", "verbose_name_plural": "Column-Workflow Links", }, ), migrations.CreateModel( name="Discipline", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ( "title", models.CharField( help_text="Enter the name of a new discipline.", max_length=100, unique=True, verbose_name="Discipline name", ), ), ], options={ "verbose_name": "discipline", "verbose_name_plural": "disciplines", }, ), migrations.CreateModel( name="Node", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ( "title", models.CharField(blank=True, max_length=50, null=True), ), ( "description", models.TextField(blank=True, max_length=500, null=True), ), ("created_on", models.DateTimeField(auto_now_add=True)), ("last_modified", models.DateTimeField(auto_now=True)), ("published", models.BooleanField(default=False)), ("is_original", models.BooleanField(default=True)), ("has_autolink", models.BooleanField(default=False)), ("is_dropped", models.BooleanField(default=False)), ( "context_classification", models.PositiveIntegerField( choices=[ (0, "None"), (1, "Individual Work"), (2, "Work in Groups"), (3, "Whole Class"), (101, "Formative"), (102, "Summative"), (103, "Comprehensive"), ], default=0, ), ), ( "task_classification", models.PositiveIntegerField( choices=[ (0, "None"), (1, "Gather Information"), (2, "Discuss"), (3, "Problem Solve"), (4, "Analyze"), (5, "Assess/Review Peers"), (6, "Debate"), (7, "Game/Roleplay"), (8, "Create/Design"), (9, "Revise/Improve"), (10, "Read"), (11, "Write"), (12, "Present"), (13, "Experiment/Inquiry"), (14, "Quiz/Test"), (15, "Instructor Resource Curation"), (16, "Instructor Orchestration"), (17, "Instructor Evaluation"), (18, "Other"), (101, "Jigsaw"), (102, "Peer Instruction"), (103, "Case Studies"), (104, "Gallery Walk"), (105, "Reflective Writing"), (106, "Two-Stage Exam"), (107, "Toolkit"), (108, "One Minute Paper"), (109, "Distributed Problem Solving"), (110, "Peer Assessment"), ], default=0, ), ), ( "node_type", models.PositiveIntegerField( choices=[ (0, "Activity Node"), (1, "Course Node"), (2, "Program Node"), ], default=0, ), ), ( "time_required", models.CharField(blank=True, max_length=30, null=True), ), ( "time_units", models.PositiveIntegerField( choices=[ (0, ""), (1, "seconds"), (2, "minutes"), (3, "hours"), (4, "days"), (5, "weeks"), (6, "months"), (7, "yrs"), (8, "credits"), ], default=0, ), ), ("represents_workflow", models.BooleanField(default=False)), ( "hash", models.UUIDField( default=uuid.uuid4, editable=False, unique=True ), ), ( "author", models.ForeignKey( null=True, on_delete=django.db.models.deletion.SET_NULL, related_name="authored_nodes", to=settings.AUTH_USER_MODEL, ), ), ( "column", models.ForeignKey( null=True, on_delete=django.db.models.deletion.DO_NOTHING, to="course_flow.Column", ), ), ], ), migrations.CreateModel( name="NodeWeek", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("added_on", models.DateTimeField(auto_now_add=True)), ("rank", models.PositiveIntegerField(default=0)), ( "node", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, to="course_flow.Node", ), ), ], options={ "verbose_name": "Node-Week Link", "verbose_name_plural": "Node-Week Links", }, ), migrations.CreateModel( name="Outcome", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("title", models.CharField(max_length=500)), ("description", models.TextField(max_length=500)), ("created_on", models.DateTimeField(auto_now_add=True)), ("last_modified", models.DateTimeField(auto_now=True)), ("published", models.BooleanField(default=False)), ("is_original", models.BooleanField(default=True)), ("is_dropped", models.BooleanField(default=True)), ("depth", models.PositiveIntegerField(default=0)), ( "hash", models.UUIDField( default=uuid.uuid4, editable=False, unique=True ), ), ( "author", models.ForeignKey( null=True, on_delete=django.db.models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL, ), ), ], options={ "verbose_name": "Outcome", "verbose_name_plural": "Outcomes", }, ), migrations.CreateModel( name="OutcomeProject", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("added_on", models.DateTimeField(auto_now_add=True)), ("rank", models.PositiveIntegerField(default=0)), ( "outcome", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, to="course_flow.Outcome", ), ), ], options={ "verbose_name": "Outcome-Project Link", "verbose_name_plural": "Outcome-Project Links", }, ), migrations.CreateModel( name="Project", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ( "title", models.CharField(blank=True, max_length=50, null=True), ), ( "description", models.CharField(blank=True, max_length=500, null=True), ), ("created_on", models.DateTimeField(auto_now_add=True)), ("last_modified", models.DateTimeField(auto_now=True)), ("published", models.BooleanField(default=False)), ("is_original", models.BooleanField(default=False)), ( "author", models.ForeignKey( null=True, on_delete=django.db.models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL, ), ), ( "outcomes", models.ManyToManyField( blank=True, through="course_flow.OutcomeProject", to="course_flow.Outcome", ), ), ( "parent_project", models.ForeignKey( null=True, on_delete=django.db.models.deletion.SET_NULL, to="course_flow.Project", ), ), ], options={ "verbose_name": "Project", "verbose_name_plural": "Projects", }, ), migrations.CreateModel( name="Week", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ( "title", models.CharField(blank=True, max_length=50, null=True), ), ( "description", models.TextField(blank=True, max_length=500, null=True), ), ("created_on", models.DateTimeField(auto_now_add=True)), ("last_modified", models.DateTimeField(auto_now=True)), ("default", models.BooleanField(default=False)), ("is_original", models.BooleanField(default=True)), ("published", models.BooleanField(default=False)), ("is_strategy", models.BooleanField(default=False)), ( "hash", models.UUIDField( default=uuid.uuid4, editable=False, unique=True ), ), ( "strategy_classification", models.PositiveIntegerField( choices=[ (0, "None"), (1, "Jigsaw"), (2, "Peer Instruction"), (3, "Case Studies"), (4, "Gallery Walk"), (5, "Reflective Writing"), (6, "Two-Stage Exam"), (7, "Toolkit"), (8, "One Minute Paper"), (9, "Distributed Problem Solving"), (10, "Peer Assessment"), (11, "Other"), ], default=0, ), ), ( "week_type", models.PositiveIntegerField( choices=[(0, "Part"), (1, "Week"), (2, "Term")], default=0, ), ), ( "author", models.ForeignKey( null=True, on_delete=django.db.models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL, ), ), ( "nodes", models.ManyToManyField( blank=True, through="course_flow.NodeWeek", to="course_flow.Node", ), ), ], options={ "verbose_name": "Week", "verbose_name_plural": "Weeks", }, ), migrations.CreateModel( name="WeekWorkflow", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("added_on", models.DateTimeField(auto_now_add=True)), ("rank", models.PositiveIntegerField(default=0)), ( "week", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, to="course_flow.Week", ), ), ], options={ "verbose_name": "Week-Workflow Link", "verbose_name_plural": "Week-Workflow Links", }, ), migrations.CreateModel( name="Workflow", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ( "title", models.CharField(blank=True, max_length=50, null=True), ), ( "description", models.TextField(blank=True, max_length=500, null=True), ), ("created_on", models.DateTimeField(auto_now_add=True)), ("last_modified", models.DateTimeField(auto_now=True)), ("static", models.BooleanField(default=False)), ("published", models.BooleanField(default=False)), ("is_strategy", models.BooleanField(default=False)), ("from_saltise", models.BooleanField(default=False)), ("is_original", models.BooleanField(default=True)), ( "hash", models.UUIDField( default=uuid.uuid4, editable=False, unique=True ), ), ( "outcomes_type", models.PositiveIntegerField( choices=[(0, "Normal"), (1, "Advanced")], default=0 ), ), ( "outcomes_sort", models.PositiveIntegerField( choices=[ (0, "Time"), (1, "Category"), (2, "Task"), (3, "Context"), ], default=0, ), ), ( "columns", models.ManyToManyField( blank=True, through="course_flow.ColumnWorkflow", to="course_flow.Column", ), ), ( "parent_workflow", models.ForeignKey( null=True, on_delete=django.db.models.deletion.SET_NULL, to="course_flow.Workflow", ), ), ( "weeks", models.ManyToManyField( blank=True, through="course_flow.WeekWorkflow", to="course_flow.Week", ), ), ], ), migrations.CreateModel( name="WorkflowProject", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("added_on", models.DateTimeField(auto_now_add=True)), ("rank", models.PositiveIntegerField(default=0)), ( "project", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, to="course_flow.Project", ), ), ( "workflow", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, to="course_flow.Workflow", ), ), ], options={ "verbose_name": "Workflow-Project Link", "verbose_name_plural": "Workflow-Project Links", }, ), migrations.AddField( model_name="weekworkflow", name="workflow", field=models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, to="course_flow.Workflow", ), ), migrations.AddField( model_name="week", name="original_strategy", field=models.ForeignKey( null=True, on_delete=django.db.models.deletion.SET_NULL, to="course_flow.Workflow", ), ), migrations.AddField( model_name="week", name="parent_week", field=models.ForeignKey( null=True, on_delete=django.db.models.deletion.SET_NULL, to="course_flow.Week", ), ), migrations.AddField( model_name="project", name="workflows", field=models.ManyToManyField( blank=True, through="course_flow.WorkflowProject", to="course_flow.Workflow", ), ), migrations.CreateModel( name="OutcomeWorkflow", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("added_on", models.DateTimeField(auto_now_add=True)), ("rank", models.PositiveIntegerField(default=0)), ( "outcome", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, to="course_flow.Outcome", ), ), ( "workflow", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, to="course_flow.Workflow", ), ), ], options={ "verbose_name": "Outcome-Workflow Link", "verbose_name_plural": "Outcome-Workflow Links", }, ), migrations.AddField( model_name="outcomeproject", name="project", field=models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, to="course_flow.Project", ), ), migrations.CreateModel( name="OutcomeOutcome", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("added_on", models.DateTimeField(auto_now_add=True)), ("rank", models.PositiveIntegerField(default=0)), ( "child", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, related_name="parent_outcome_links", to="course_flow.Outcome", ), ), ( "parent", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, related_name="child_outcome_links", to="course_flow.Outcome", ), ), ], options={ "verbose_name": "Outcome-Outcome Link", "verbose_name_plural": "Outcome-Outcome Links", }, ), migrations.CreateModel( name="OutcomeNode", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("added_on", models.DateTimeField(auto_now_add=True)), ("rank", models.PositiveIntegerField(default=0)), ("degree", models.PositiveIntegerField(default=1)), ( "node", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, to="course_flow.Node", ), ), ( "outcome", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, to="course_flow.Outcome", ), ), ], options={ "verbose_name": "Outcome-Node Link", "verbose_name_plural": "Outcome-Node Links", }, ), migrations.AddField( model_name="outcome", name="children", field=models.ManyToManyField( blank=True, related_name="parent_outcomes", through="course_flow.OutcomeOutcome", to="course_flow.Outcome", ), ), migrations.AddField( model_name="outcome", name="parent_outcome", field=models.ForeignKey( null=True, on_delete=django.db.models.deletion.SET_NULL, to="course_flow.Outcome", ), ), migrations.AddField( model_name="nodeweek", name="week", field=models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, to="course_flow.Week", ), ), migrations.CreateModel( name="NodeLink", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ( "title", models.CharField(blank=True, max_length=100, null=True), ), ("published", models.BooleanField(default=False)), ( "source_port", models.PositiveIntegerField( choices=[(1, "e"), (2, "s"), (3, "w")], default=2 ), ), ( "target_port", models.PositiveIntegerField( choices=[(0, "n"), (1, "e"), (3, "w")], default=0 ), ), ("dashed", models.BooleanField(default=False)), ("created_on", models.DateTimeField(auto_now_add=True)), ("last_modified", models.DateTimeField(auto_now=True)), ("is_original", models.BooleanField(default=True)), ( "hash", models.UUIDField( default=uuid.uuid4, editable=False, unique=True ), ), ( "author", models.ForeignKey( null=True, on_delete=django.db.models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL, ), ), ( "parent_nodelink", models.ForeignKey( null=True, on_delete=django.db.models.deletion.SET_NULL, to="course_flow.NodeLink", ), ), ( "source_node", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, related_name="outgoing_links", to="course_flow.Node", ), ), ( "target_node", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, related_name="incoming_links", to="course_flow.Node", ), ), ], options={ "verbose_name": "Node Link", "verbose_name_plural": "Node Links", }, ), migrations.CreateModel( name="NodeCompletionStatus", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("is_completed", models.BooleanField(default=False)), ( "node", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, to="course_flow.Node", ), ), ( "student", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL, ), ), ], options={ "verbose_name": "Node Completion Status", "verbose_name_plural": "Node Completion Statuses", }, ), migrations.AddField( model_name="node", name="linked_workflow", field=models.ForeignKey( null=True, on_delete=django.db.models.deletion.SET_NULL, to="course_flow.Workflow", ), ), migrations.AddField( model_name="node", name="outcomes", field=models.ManyToManyField( blank=True, through="course_flow.OutcomeNode", to="course_flow.Outcome", ), ), migrations.AddField( model_name="node", name="parent_node", field=models.ForeignKey( null=True, on_delete=django.db.models.deletion.SET_NULL, to="course_flow.Node", ), ), migrations.AddField( model_name="node", name="students", field=models.ManyToManyField( blank=True, related_name="assigned_nodes", through="course_flow.NodeCompletionStatus", to=settings.AUTH_USER_MODEL, ), ), migrations.AddField( model_name="columnworkflow", name="workflow", field=models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, to="course_flow.Workflow", ), ), migrations.CreateModel( name="Program", fields=[ ( "workflow_ptr", models.OneToOneField( auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to="course_flow.Workflow", ), ), ( "author", models.ForeignKey( null=True, on_delete=django.db.models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL, ), ), ], bases=("course_flow.workflow",), ), migrations.CreateModel( name="Course", fields=[ ( "workflow_ptr", models.OneToOneField( auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to="course_flow.Workflow", ), ), ( "author", models.ForeignKey( null=True, on_delete=django.db.models.deletion.SET_NULL, related_name="authored_courses", to=settings.AUTH_USER_MODEL, ), ), ( "discipline", models.ForeignKey( null=True, on_delete=django.db.models.deletion.SET_NULL, to="course_flow.Discipline", ), ), ( "students", models.ManyToManyField( blank=True, related_name="assigned_courses", to=settings.AUTH_USER_MODEL, ), ), ], bases=("course_flow.workflow",), ), migrations.CreateModel( name="Activity", fields=[ ( "workflow_ptr", models.OneToOneField( auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to="course_flow.Workflow", ), ), ( "author", models.ForeignKey( null=True, on_delete=django.db.models.deletion.SET_NULL, related_name="authored_activities", to=settings.AUTH_USER_MODEL, ), ), ( "students", models.ManyToManyField( blank=True, related_name="assigned_activities", to=settings.AUTH_USER_MODEL, ), ), ], options={ "verbose_name": "Activity", "verbose_name_plural": "Activities", }, bases=("course_flow.workflow",), ), ]
[ "# Generated by Django 2.2.17 on 2021-03-22 04:30\n\nimport uuid\n\nimport django.db.models.deletion\nfrom django.conf import settings\nfrom django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n\n initial = True\n\n dependencies = [\n migrations.swappable_dependency(settings.AUTH_USER_MODEL),\n ]\n\n operations = [\n migrations.CreateModel(\n name=\"Column\",\n fields=[\n (\n \"id\",\n models.AutoField(\n auto_created=True,\n primary_key=True,\n serialize=False,\n verbose_name=\"ID\",\n ),\n ),\n (\n \"title\",\n models.CharField(blank=True, max_length=50, null=True),\n ),\n (\"created_on\", models.DateTimeField(auto_now_add=True)),\n (\"last_modified\", models.DateTimeField(auto_now=True)),\n (\"published\", models.BooleanField(default=False)),\n (\"visible\", models.BooleanField(default=True)),\n (\"colour\", models.PositiveIntegerField(null=True)),\n (\n \"column_type\",\n models.PositiveIntegerField(\n choices=[\n (0, \"Custom Activity Column\"),\n (1, \"Out of Class (Instructor)\"),\n (2, \"Out of Class (Students)\"),\n (3, \"In Class (Instructor)\"),\n (4, \"In Class (Students)\"),\n (10, \"Custom Course Column\"),\n (11, \"Preparation\"),\n (12, \"Lesson\"),\n (13, \"Artifact\"),\n (14, \"Assessment\"),\n (20, \"Custom Program Category\"),\n ],\n default=0,\n ),\n ),\n (\"is_original\", models.BooleanField(default=False)),\n (\n \"hash\",\n models.UUIDField(\n default=uuid.uuid4, editable=False, unique=True\n ),\n ),\n (\n \"author\",\n models.ForeignKey(\n null=True,\n on_delete=django.db.models.deletion.SET_NULL,\n to=settings.AUTH_USER_MODEL,\n ),\n ),\n (\n \"parent_column\",\n models.ForeignKey(\n null=True,\n on_delete=django.db.models.deletion.SET_NULL,\n to=\"course_flow.Column\",\n ),\n ),\n ],\n options={\n \"verbose_name\": \"Column\",\n \"verbose_name_plural\": \"Columns\",\n },\n ),\n migrations.CreateModel(\n name=\"ColumnWorkflow\",\n fields=[\n (\n \"id\",\n models.AutoField(\n auto_created=True,\n primary_key=True,\n serialize=False,\n verbose_name=\"ID\",\n ),\n ),\n (\"added_on\", models.DateTimeField(auto_now_add=True)),\n (\"rank\", models.PositiveIntegerField(default=0)),\n (\n \"column\",\n models.ForeignKey(\n on_delete=django.db.models.deletion.CASCADE,\n to=\"course_flow.Column\",\n ),\n ),\n ],\n options={\n \"verbose_name\": \"Column-Workflow Link\",\n \"verbose_name_plural\": \"Column-Workflow Links\",\n },\n ),\n migrations.CreateModel(\n name=\"Discipline\",\n fields=[\n (\n \"id\",\n models.AutoField(\n auto_created=True,\n primary_key=True,\n serialize=False,\n verbose_name=\"ID\",\n ),\n ),\n (\n \"title\",\n models.CharField(\n help_text=\"Enter the name of a new discipline.\",\n max_length=100,\n unique=True,\n verbose_name=\"Discipline name\",\n ),\n ),\n ],\n options={\n \"verbose_name\": \"discipline\",\n \"verbose_name_plural\": \"disciplines\",\n },\n ),\n migrations.CreateModel(\n name=\"Node\",\n fields=[\n (\n \"id\",\n models.AutoField(\n auto_created=True,\n primary_key=True,\n serialize=False,\n verbose_name=\"ID\",\n ),\n ),\n (\n \"title\",\n models.CharField(blank=True, max_length=50, null=True),\n ),\n (\n \"description\",\n models.TextField(blank=True, max_length=500, null=True),\n ),\n (\"created_on\", models.DateTimeField(auto_now_add=True)),\n (\"last_modified\", models.DateTimeField(auto_now=True)),\n (\"published\", models.BooleanField(default=False)),\n (\"is_original\", models.BooleanField(default=True)),\n (\"has_autolink\", models.BooleanField(default=False)),\n (\"is_dropped\", models.BooleanField(default=False)),\n (\n \"context_classification\",\n models.PositiveIntegerField(\n choices=[\n (0, \"None\"),\n (1, \"Individual Work\"),\n (2, \"Work in Groups\"),\n (3, \"Whole Class\"),\n (101, \"Formative\"),\n (102, \"Summative\"),\n (103, \"Comprehensive\"),\n ],\n default=0,\n ),\n ),\n (\n \"task_classification\",\n models.PositiveIntegerField(\n choices=[\n (0, \"None\"),\n (1, \"Gather Information\"),\n (2, \"Discuss\"),\n (3, \"Problem Solve\"),\n (4, \"Analyze\"),\n (5, \"Assess/Review Peers\"),\n (6, \"Debate\"),\n (7, \"Game/Roleplay\"),\n (8, \"Create/Design\"),\n (9, \"Revise/Improve\"),\n (10, \"Read\"),\n (11, \"Write\"),\n (12, \"Present\"),\n (13, \"Experiment/Inquiry\"),\n (14, \"Quiz/Test\"),\n (15, \"Instructor Resource Curation\"),\n (16, \"Instructor Orchestration\"),\n (17, \"Instructor Evaluation\"),\n (18, \"Other\"),\n (101, \"Jigsaw\"),\n (102, \"Peer Instruction\"),\n (103, \"Case Studies\"),\n (104, \"Gallery Walk\"),\n (105, \"Reflective Writing\"),\n (106, \"Two-Stage Exam\"),\n (107, \"Toolkit\"),\n (108, \"One Minute Paper\"),\n (109, \"Distributed Problem Solving\"),\n (110, \"Peer Assessment\"),\n ],\n default=0,\n ),\n ),\n (\n \"node_type\",\n models.PositiveIntegerField(\n choices=[\n (0, \"Activity Node\"),\n (1, \"Course Node\"),\n (2, \"Program Node\"),\n ],\n default=0,\n ),\n ),\n (\n \"time_required\",\n models.CharField(blank=True, max_length=30, null=True),\n ),\n (\n \"time_units\",\n models.PositiveIntegerField(\n choices=[\n (0, \"\"),\n (1, \"seconds\"),\n (2, \"minutes\"),\n (3, \"hours\"),\n (4, \"days\"),\n (5, \"weeks\"),\n (6, \"months\"),\n (7, \"yrs\"),\n (8, \"credits\"),\n ],\n default=0,\n ),\n ),\n (\"represents_workflow\", models.BooleanField(default=False)),\n (\n \"hash\",\n models.UUIDField(\n default=uuid.uuid4, editable=False, unique=True\n ),\n ),\n (\n \"author\",\n models.ForeignKey(\n null=True,\n on_delete=django.db.models.deletion.SET_NULL,\n related_name=\"authored_nodes\",\n to=settings.AUTH_USER_MODEL,\n ),\n ),\n (\n \"column\",\n models.ForeignKey(\n null=True,\n on_delete=django.db.models.deletion.DO_NOTHING,\n to=\"course_flow.Column\",\n ),\n ),\n ],\n ),\n migrations.CreateModel(\n name=\"NodeWeek\",\n fields=[\n (\n \"id\",\n models.AutoField(\n auto_created=True,\n primary_key=True,\n serialize=False,\n verbose_name=\"ID\",\n ),\n ),\n (\"added_on\", models.DateTimeField(auto_now_add=True)),\n (\"rank\", models.PositiveIntegerField(default=0)),\n (\n \"node\",\n models.ForeignKey(\n on_delete=django.db.models.deletion.CASCADE,\n to=\"course_flow.Node\",\n ),\n ),\n ],\n options={\n \"verbose_name\": \"Node-Week Link\",\n \"verbose_name_plural\": \"Node-Week Links\",\n },\n ),\n migrations.CreateModel(\n name=\"Outcome\",\n fields=[\n (\n \"id\",\n models.AutoField(\n auto_created=True,\n primary_key=True,\n serialize=False,\n verbose_name=\"ID\",\n ),\n ),\n (\"title\", models.CharField(max_length=500)),\n (\"description\", models.TextField(max_length=500)),\n (\"created_on\", models.DateTimeField(auto_now_add=True)),\n (\"last_modified\", models.DateTimeField(auto_now=True)),\n (\"published\", models.BooleanField(default=False)),\n (\"is_original\", models.BooleanField(default=True)),\n (\"is_dropped\", models.BooleanField(default=True)),\n (\"depth\", models.PositiveIntegerField(default=0)),\n (\n \"hash\",\n models.UUIDField(\n default=uuid.uuid4, editable=False, unique=True\n ),\n ),\n (\n \"author\",\n models.ForeignKey(\n null=True,\n on_delete=django.db.models.deletion.SET_NULL,\n to=settings.AUTH_USER_MODEL,\n ),\n ),\n ],\n options={\n \"verbose_name\": \"Outcome\",\n \"verbose_name_plural\": \"Outcomes\",\n },\n ),\n migrations.CreateModel(\n name=\"OutcomeProject\",\n fields=[\n (\n \"id\",\n models.AutoField(\n auto_created=True,\n primary_key=True,\n serialize=False,\n verbose_name=\"ID\",\n ),\n ),\n (\"added_on\", models.DateTimeField(auto_now_add=True)),\n (\"rank\", models.PositiveIntegerField(default=0)),\n (\n \"outcome\",\n models.ForeignKey(\n on_delete=django.db.models.deletion.CASCADE,\n to=\"course_flow.Outcome\",\n ),\n ),\n ],\n options={\n \"verbose_name\": \"Outcome-Project Link\",\n \"verbose_name_plural\": \"Outcome-Project Links\",\n },\n ),\n migrations.CreateModel(\n name=\"Project\",\n fields=[\n (\n \"id\",\n models.AutoField(\n auto_created=True,\n primary_key=True,\n serialize=False,\n verbose_name=\"ID\",\n ),\n ),\n (\n \"title\",\n models.CharField(blank=True, max_length=50, null=True),\n ),\n (\n \"description\",\n models.CharField(blank=True, max_length=500, null=True),\n ),\n (\"created_on\", models.DateTimeField(auto_now_add=True)),\n (\"last_modified\", models.DateTimeField(auto_now=True)),\n (\"published\", models.BooleanField(default=False)),\n (\"is_original\", models.BooleanField(default=False)),\n (\n \"author\",\n models.ForeignKey(\n null=True,\n on_delete=django.db.models.deletion.SET_NULL,\n to=settings.AUTH_USER_MODEL,\n ),\n ),\n (\n \"outcomes\",\n models.ManyToManyField(\n blank=True,\n through=\"course_flow.OutcomeProject\",\n to=\"course_flow.Outcome\",\n ),\n ),\n (\n \"parent_project\",\n models.ForeignKey(\n null=True,\n on_delete=django.db.models.deletion.SET_NULL,\n to=\"course_flow.Project\",\n ),\n ),\n ],\n options={\n \"verbose_name\": \"Project\",\n \"verbose_name_plural\": \"Projects\",\n },\n ),\n migrations.CreateModel(\n name=\"Week\",\n fields=[\n (\n \"id\",\n models.AutoField(\n auto_created=True,\n primary_key=True,\n serialize=False,\n verbose_name=\"ID\",\n ),\n ),\n (\n \"title\",\n models.CharField(blank=True, max_length=50, null=True),\n ),\n (\n \"description\",\n models.TextField(blank=True, max_length=500, null=True),\n ),\n (\"created_on\", models.DateTimeField(auto_now_add=True)),\n (\"last_modified\", models.DateTimeField(auto_now=True)),\n (\"default\", models.BooleanField(default=False)),\n (\"is_original\", models.BooleanField(default=True)),\n (\"published\", models.BooleanField(default=False)),\n (\"is_strategy\", models.BooleanField(default=False)),\n (\n \"hash\",\n models.UUIDField(\n default=uuid.uuid4, editable=False, unique=True\n ),\n ),\n (\n \"strategy_classification\",\n models.PositiveIntegerField(\n choices=[\n (0, \"None\"),\n (1, \"Jigsaw\"),\n (2, \"Peer Instruction\"),\n (3, \"Case Studies\"),\n (4, \"Gallery Walk\"),\n (5, \"Reflective Writing\"),\n (6, \"Two-Stage Exam\"),\n (7, \"Toolkit\"),\n (8, \"One Minute Paper\"),\n (9, \"Distributed Problem Solving\"),\n (10, \"Peer Assessment\"),\n (11, \"Other\"),\n ],\n default=0,\n ),\n ),\n (\n \"week_type\",\n models.PositiveIntegerField(\n choices=[(0, \"Part\"), (1, \"Week\"), (2, \"Term\")],\n default=0,\n ),\n ),\n (\n \"author\",\n models.ForeignKey(\n null=True,\n on_delete=django.db.models.deletion.SET_NULL,\n to=settings.AUTH_USER_MODEL,\n ),\n ),\n (\n \"nodes\",\n models.ManyToManyField(\n blank=True,\n through=\"course_flow.NodeWeek\",\n to=\"course_flow.Node\",\n ),\n ),\n ],\n options={\n \"verbose_name\": \"Week\",\n \"verbose_name_plural\": \"Weeks\",\n },\n ),\n migrations.CreateModel(\n name=\"WeekWorkflow\",\n fields=[\n (\n \"id\",\n models.AutoField(\n auto_created=True,\n primary_key=True,\n serialize=False,\n verbose_name=\"ID\",\n ),\n ),\n (\"added_on\", models.DateTimeField(auto_now_add=True)),\n (\"rank\", models.PositiveIntegerField(default=0)),\n (\n \"week\",\n models.ForeignKey(\n on_delete=django.db.models.deletion.CASCADE,\n to=\"course_flow.Week\",\n ),\n ),\n ],\n options={\n \"verbose_name\": \"Week-Workflow Link\",\n \"verbose_name_plural\": \"Week-Workflow Links\",\n },\n ),\n migrations.CreateModel(\n name=\"Workflow\",\n fields=[\n (\n \"id\",\n models.AutoField(\n auto_created=True,\n primary_key=True,\n serialize=False,\n verbose_name=\"ID\",\n ),\n ),\n (\n \"title\",\n models.CharField(blank=True, max_length=50, null=True),\n ),\n (\n \"description\",\n models.TextField(blank=True, max_length=500, null=True),\n ),\n (\"created_on\", models.DateTimeField(auto_now_add=True)),\n (\"last_modified\", models.DateTimeField(auto_now=True)),\n (\"static\", models.BooleanField(default=False)),\n (\"published\", models.BooleanField(default=False)),\n (\"is_strategy\", models.BooleanField(default=False)),\n (\"from_saltise\", models.BooleanField(default=False)),\n (\"is_original\", models.BooleanField(default=True)),\n (\n \"hash\",\n models.UUIDField(\n default=uuid.uuid4, editable=False, unique=True\n ),\n ),\n (\n \"outcomes_type\",\n models.PositiveIntegerField(\n choices=[(0, \"Normal\"), (1, \"Advanced\")], default=0\n ),\n ),\n (\n \"outcomes_sort\",\n models.PositiveIntegerField(\n choices=[\n (0, \"Time\"),\n (1, \"Category\"),\n (2, \"Task\"),\n (3, \"Context\"),\n ],\n default=0,\n ),\n ),\n (\n \"columns\",\n models.ManyToManyField(\n blank=True,\n through=\"course_flow.ColumnWorkflow\",\n to=\"course_flow.Column\",\n ),\n ),\n (\n \"parent_workflow\",\n models.ForeignKey(\n null=True,\n on_delete=django.db.models.deletion.SET_NULL,\n to=\"course_flow.Workflow\",\n ),\n ),\n (\n \"weeks\",\n models.ManyToManyField(\n blank=True,\n through=\"course_flow.WeekWorkflow\",\n to=\"course_flow.Week\",\n ),\n ),\n ],\n ),\n migrations.CreateModel(\n name=\"WorkflowProject\",\n fields=[\n (\n \"id\",\n models.AutoField(\n auto_created=True,\n primary_key=True,\n serialize=False,\n verbose_name=\"ID\",\n ),\n ),\n (\"added_on\", models.DateTimeField(auto_now_add=True)),\n (\"rank\", models.PositiveIntegerField(default=0)),\n (\n \"project\",\n models.ForeignKey(\n on_delete=django.db.models.deletion.CASCADE,\n to=\"course_flow.Project\",\n ),\n ),\n (\n \"workflow\",\n models.ForeignKey(\n on_delete=django.db.models.deletion.CASCADE,\n to=\"course_flow.Workflow\",\n ),\n ),\n ],\n options={\n \"verbose_name\": \"Workflow-Project Link\",\n \"verbose_name_plural\": \"Workflow-Project Links\",\n },\n ),\n migrations.AddField(\n model_name=\"weekworkflow\",\n name=\"workflow\",\n field=models.ForeignKey(\n on_delete=django.db.models.deletion.CASCADE,\n to=\"course_flow.Workflow\",\n ),\n ),\n migrations.AddField(\n model_name=\"week\",\n name=\"original_strategy\",\n field=models.ForeignKey(\n null=True,\n on_delete=django.db.models.deletion.SET_NULL,\n to=\"course_flow.Workflow\",\n ),\n ),\n migrations.AddField(\n model_name=\"week\",\n name=\"parent_week\",\n field=models.ForeignKey(\n null=True,\n on_delete=django.db.models.deletion.SET_NULL,\n to=\"course_flow.Week\",\n ),\n ),\n migrations.AddField(\n model_name=\"project\",\n name=\"workflows\",\n field=models.ManyToManyField(\n blank=True,\n through=\"course_flow.WorkflowProject\",\n to=\"course_flow.Workflow\",\n ),\n ),\n migrations.CreateModel(\n name=\"OutcomeWorkflow\",\n fields=[\n (\n \"id\",\n models.AutoField(\n auto_created=True,\n primary_key=True,\n serialize=False,\n verbose_name=\"ID\",\n ),\n ),\n (\"added_on\", models.DateTimeField(auto_now_add=True)),\n (\"rank\", models.PositiveIntegerField(default=0)),\n (\n \"outcome\",\n models.ForeignKey(\n on_delete=django.db.models.deletion.CASCADE,\n to=\"course_flow.Outcome\",\n ),\n ),\n (\n \"workflow\",\n models.ForeignKey(\n on_delete=django.db.models.deletion.CASCADE,\n to=\"course_flow.Workflow\",\n ),\n ),\n ],\n options={\n \"verbose_name\": \"Outcome-Workflow Link\",\n \"verbose_name_plural\": \"Outcome-Workflow Links\",\n },\n ),\n migrations.AddField(\n model_name=\"outcomeproject\",\n name=\"project\",\n field=models.ForeignKey(\n on_delete=django.db.models.deletion.CASCADE,\n to=\"course_flow.Project\",\n ),\n ),\n migrations.CreateModel(\n name=\"OutcomeOutcome\",\n fields=[\n (\n \"id\",\n models.AutoField(\n auto_created=True,\n primary_key=True,\n serialize=False,\n verbose_name=\"ID\",\n ),\n ),\n (\"added_on\", models.DateTimeField(auto_now_add=True)),\n (\"rank\", models.PositiveIntegerField(default=0)),\n (\n \"child\",\n models.ForeignKey(\n on_delete=django.db.models.deletion.CASCADE,\n related_name=\"parent_outcome_links\",\n to=\"course_flow.Outcome\",\n ),\n ),\n (\n \"parent\",\n models.ForeignKey(\n on_delete=django.db.models.deletion.CASCADE,\n related_name=\"child_outcome_links\",\n to=\"course_flow.Outcome\",\n ),\n ),\n ],\n options={\n \"verbose_name\": \"Outcome-Outcome Link\",\n \"verbose_name_plural\": \"Outcome-Outcome Links\",\n },\n ),\n migrations.CreateModel(\n name=\"OutcomeNode\",\n fields=[\n (\n \"id\",\n models.AutoField(\n auto_created=True,\n primary_key=True,\n serialize=False,\n verbose_name=\"ID\",\n ),\n ),\n (\"added_on\", models.DateTimeField(auto_now_add=True)),\n (\"rank\", models.PositiveIntegerField(default=0)),\n (\"degree\", models.PositiveIntegerField(default=1)),\n (\n \"node\",\n models.ForeignKey(\n on_delete=django.db.models.deletion.CASCADE,\n to=\"course_flow.Node\",\n ),\n ),\n (\n \"outcome\",\n models.ForeignKey(\n on_delete=django.db.models.deletion.CASCADE,\n to=\"course_flow.Outcome\",\n ),\n ),\n ],\n options={\n \"verbose_name\": \"Outcome-Node Link\",\n \"verbose_name_plural\": \"Outcome-Node Links\",\n },\n ),\n migrations.AddField(\n model_name=\"outcome\",\n name=\"children\",\n field=models.ManyToManyField(\n blank=True,\n related_name=\"parent_outcomes\",\n through=\"course_flow.OutcomeOutcome\",\n to=\"course_flow.Outcome\",\n ),\n ),\n migrations.AddField(\n model_name=\"outcome\",\n name=\"parent_outcome\",\n field=models.ForeignKey(\n null=True,\n on_delete=django.db.models.deletion.SET_NULL,\n to=\"course_flow.Outcome\",\n ),\n ),\n migrations.AddField(\n model_name=\"nodeweek\",\n name=\"week\",\n field=models.ForeignKey(\n on_delete=django.db.models.deletion.CASCADE,\n to=\"course_flow.Week\",\n ),\n ),\n migrations.CreateModel(\n name=\"NodeLink\",\n fields=[\n (\n \"id\",\n models.AutoField(\n auto_created=True,\n primary_key=True,\n serialize=False,\n verbose_name=\"ID\",\n ),\n ),\n (\n \"title\",\n models.CharField(blank=True, max_length=100, null=True),\n ),\n (\"published\", models.BooleanField(default=False)),\n (\n \"source_port\",\n models.PositiveIntegerField(\n choices=[(1, \"e\"), (2, \"s\"), (3, \"w\")], default=2\n ),\n ),\n (\n \"target_port\",\n models.PositiveIntegerField(\n choices=[(0, \"n\"), (1, \"e\"), (3, \"w\")], default=0\n ),\n ),\n (\"dashed\", models.BooleanField(default=False)),\n (\"created_on\", models.DateTimeField(auto_now_add=True)),\n (\"last_modified\", models.DateTimeField(auto_now=True)),\n (\"is_original\", models.BooleanField(default=True)),\n (\n \"hash\",\n models.UUIDField(\n default=uuid.uuid4, editable=False, unique=True\n ),\n ),\n (\n \"author\",\n models.ForeignKey(\n null=True,\n on_delete=django.db.models.deletion.SET_NULL,\n to=settings.AUTH_USER_MODEL,\n ),\n ),\n (\n \"parent_nodelink\",\n models.ForeignKey(\n null=True,\n on_delete=django.db.models.deletion.SET_NULL,\n to=\"course_flow.NodeLink\",\n ),\n ),\n (\n \"source_node\",\n models.ForeignKey(\n on_delete=django.db.models.deletion.CASCADE,\n related_name=\"outgoing_links\",\n to=\"course_flow.Node\",\n ),\n ),\n (\n \"target_node\",\n models.ForeignKey(\n on_delete=django.db.models.deletion.CASCADE,\n related_name=\"incoming_links\",\n to=\"course_flow.Node\",\n ),\n ),\n ],\n options={\n \"verbose_name\": \"Node Link\",\n \"verbose_name_plural\": \"Node Links\",\n },\n ),\n migrations.CreateModel(\n name=\"NodeCompletionStatus\",\n fields=[\n (\n \"id\",\n models.AutoField(\n auto_created=True,\n primary_key=True,\n serialize=False,\n verbose_name=\"ID\",\n ),\n ),\n (\"is_completed\", models.BooleanField(default=False)),\n (\n \"node\",\n models.ForeignKey(\n on_delete=django.db.models.deletion.CASCADE,\n to=\"course_flow.Node\",\n ),\n ),\n (\n \"student\",\n models.ForeignKey(\n on_delete=django.db.models.deletion.CASCADE,\n to=settings.AUTH_USER_MODEL,\n ),\n ),\n ],\n options={\n \"verbose_name\": \"Node Completion Status\",\n \"verbose_name_plural\": \"Node Completion Statuses\",\n },\n ),\n migrations.AddField(\n model_name=\"node\",\n name=\"linked_workflow\",\n field=models.ForeignKey(\n null=True,\n on_delete=django.db.models.deletion.SET_NULL,\n to=\"course_flow.Workflow\",\n ),\n ),\n migrations.AddField(\n model_name=\"node\",\n name=\"outcomes\",\n field=models.ManyToManyField(\n blank=True,\n through=\"course_flow.OutcomeNode\",\n to=\"course_flow.Outcome\",\n ),\n ),\n migrations.AddField(\n model_name=\"node\",\n name=\"parent_node\",\n field=models.ForeignKey(\n null=True,\n on_delete=django.db.models.deletion.SET_NULL,\n to=\"course_flow.Node\",\n ),\n ),\n migrations.AddField(\n model_name=\"node\",\n name=\"students\",\n field=models.ManyToManyField(\n blank=True,\n related_name=\"assigned_nodes\",\n through=\"course_flow.NodeCompletionStatus\",\n to=settings.AUTH_USER_MODEL,\n ),\n ),\n migrations.AddField(\n model_name=\"columnworkflow\",\n name=\"workflow\",\n field=models.ForeignKey(\n on_delete=django.db.models.deletion.CASCADE,\n to=\"course_flow.Workflow\",\n ),\n ),\n migrations.CreateModel(\n name=\"Program\",\n fields=[\n (\n \"workflow_ptr\",\n models.OneToOneField(\n auto_created=True,\n on_delete=django.db.models.deletion.CASCADE,\n parent_link=True,\n primary_key=True,\n serialize=False,\n to=\"course_flow.Workflow\",\n ),\n ),\n (\n \"author\",\n models.ForeignKey(\n null=True,\n on_delete=django.db.models.deletion.SET_NULL,\n to=settings.AUTH_USER_MODEL,\n ),\n ),\n ],\n bases=(\"course_flow.workflow\",),\n ),\n migrations.CreateModel(\n name=\"Course\",\n fields=[\n (\n \"workflow_ptr\",\n models.OneToOneField(\n auto_created=True,\n on_delete=django.db.models.deletion.CASCADE,\n parent_link=True,\n primary_key=True,\n serialize=False,\n to=\"course_flow.Workflow\",\n ),\n ),\n (\n \"author\",\n models.ForeignKey(\n null=True,\n on_delete=django.db.models.deletion.SET_NULL,\n related_name=\"authored_courses\",\n to=settings.AUTH_USER_MODEL,\n ),\n ),\n (\n \"discipline\",\n models.ForeignKey(\n null=True,\n on_delete=django.db.models.deletion.SET_NULL,\n to=\"course_flow.Discipline\",\n ),\n ),\n (\n \"students\",\n models.ManyToManyField(\n blank=True,\n related_name=\"assigned_courses\",\n to=settings.AUTH_USER_MODEL,\n ),\n ),\n ],\n bases=(\"course_flow.workflow\",),\n ),\n migrations.CreateModel(\n name=\"Activity\",\n fields=[\n (\n \"workflow_ptr\",\n models.OneToOneField(\n auto_created=True,\n on_delete=django.db.models.deletion.CASCADE,\n parent_link=True,\n primary_key=True,\n serialize=False,\n to=\"course_flow.Workflow\",\n ),\n ),\n (\n \"author\",\n models.ForeignKey(\n null=True,\n on_delete=django.db.models.deletion.SET_NULL,\n related_name=\"authored_activities\",\n to=settings.AUTH_USER_MODEL,\n ),\n ),\n (\n \"students\",\n models.ManyToManyField(\n blank=True,\n related_name=\"assigned_activities\",\n to=settings.AUTH_USER_MODEL,\n ),\n ),\n ],\n options={\n \"verbose_name\": \"Activity\",\n \"verbose_name_plural\": \"Activities\",\n },\n bases=(\"course_flow.workflow\",),\n ),\n ]\n", "import uuid\nimport django.db.models.deletion\nfrom django.conf import settings\nfrom django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n initial = True\n dependencies = [migrations.swappable_dependency(settings.AUTH_USER_MODEL)]\n operations = [migrations.CreateModel(name='Column', fields=[('id',\n models.AutoField(auto_created=True, primary_key=True, serialize=\n False, verbose_name='ID')), ('title', models.CharField(blank=True,\n max_length=50, null=True)), ('created_on', models.DateTimeField(\n auto_now_add=True)), ('last_modified', models.DateTimeField(\n auto_now=True)), ('published', models.BooleanField(default=False)),\n ('visible', models.BooleanField(default=True)), ('colour', models.\n PositiveIntegerField(null=True)), ('column_type', models.\n PositiveIntegerField(choices=[(0, 'Custom Activity Column'), (1,\n 'Out of Class (Instructor)'), (2, 'Out of Class (Students)'), (3,\n 'In Class (Instructor)'), (4, 'In Class (Students)'), (10,\n 'Custom Course Column'), (11, 'Preparation'), (12, 'Lesson'), (13,\n 'Artifact'), (14, 'Assessment'), (20, 'Custom Program Category')],\n default=0)), ('is_original', models.BooleanField(default=False)), (\n 'hash', models.UUIDField(default=uuid.uuid4, editable=False, unique\n =True)), ('author', models.ForeignKey(null=True, on_delete=django.\n db.models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL)), (\n 'parent_column', models.ForeignKey(null=True, on_delete=django.db.\n models.deletion.SET_NULL, to='course_flow.Column'))], options={\n 'verbose_name': 'Column', 'verbose_name_plural': 'Columns'}),\n migrations.CreateModel(name='ColumnWorkflow', fields=[('id', models\n .AutoField(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')), ('added_on', models.DateTimeField(auto_now_add\n =True)), ('rank', models.PositiveIntegerField(default=0)), (\n 'column', models.ForeignKey(on_delete=django.db.models.deletion.\n CASCADE, to='course_flow.Column'))], options={'verbose_name':\n 'Column-Workflow Link', 'verbose_name_plural':\n 'Column-Workflow Links'}), migrations.CreateModel(name='Discipline',\n fields=[('id', models.AutoField(auto_created=True, primary_key=True,\n serialize=False, verbose_name='ID')), ('title', models.CharField(\n help_text='Enter the name of a new discipline.', max_length=100,\n unique=True, verbose_name='Discipline name'))], options={\n 'verbose_name': 'discipline', 'verbose_name_plural': 'disciplines'}\n ), migrations.CreateModel(name='Node', fields=[('id', models.\n AutoField(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')), ('title', models.CharField(blank=True,\n max_length=50, null=True)), ('description', models.TextField(blank=\n True, max_length=500, null=True)), ('created_on', models.\n DateTimeField(auto_now_add=True)), ('last_modified', models.\n DateTimeField(auto_now=True)), ('published', models.BooleanField(\n default=False)), ('is_original', models.BooleanField(default=True)),\n ('has_autolink', models.BooleanField(default=False)), ('is_dropped',\n models.BooleanField(default=False)), ('context_classification',\n models.PositiveIntegerField(choices=[(0, 'None'), (1,\n 'Individual Work'), (2, 'Work in Groups'), (3, 'Whole Class'), (101,\n 'Formative'), (102, 'Summative'), (103, 'Comprehensive')], default=\n 0)), ('task_classification', models.PositiveIntegerField(choices=[(\n 0, 'None'), (1, 'Gather Information'), (2, 'Discuss'), (3,\n 'Problem Solve'), (4, 'Analyze'), (5, 'Assess/Review Peers'), (6,\n 'Debate'), (7, 'Game/Roleplay'), (8, 'Create/Design'), (9,\n 'Revise/Improve'), (10, 'Read'), (11, 'Write'), (12, 'Present'), (\n 13, 'Experiment/Inquiry'), (14, 'Quiz/Test'), (15,\n 'Instructor Resource Curation'), (16, 'Instructor Orchestration'),\n (17, 'Instructor Evaluation'), (18, 'Other'), (101, 'Jigsaw'), (102,\n 'Peer Instruction'), (103, 'Case Studies'), (104, 'Gallery Walk'),\n (105, 'Reflective Writing'), (106, 'Two-Stage Exam'), (107,\n 'Toolkit'), (108, 'One Minute Paper'), (109,\n 'Distributed Problem Solving'), (110, 'Peer Assessment')], default=\n 0)), ('node_type', models.PositiveIntegerField(choices=[(0,\n 'Activity Node'), (1, 'Course Node'), (2, 'Program Node')], default\n =0)), ('time_required', models.CharField(blank=True, max_length=30,\n null=True)), ('time_units', models.PositiveIntegerField(choices=[(0,\n ''), (1, 'seconds'), (2, 'minutes'), (3, 'hours'), (4, 'days'), (5,\n 'weeks'), (6, 'months'), (7, 'yrs'), (8, 'credits')], default=0)),\n ('represents_workflow', models.BooleanField(default=False)), (\n 'hash', models.UUIDField(default=uuid.uuid4, editable=False, unique\n =True)), ('author', models.ForeignKey(null=True, on_delete=django.\n db.models.deletion.SET_NULL, related_name='authored_nodes', to=\n settings.AUTH_USER_MODEL)), ('column', models.ForeignKey(null=True,\n on_delete=django.db.models.deletion.DO_NOTHING, to=\n 'course_flow.Column'))]), migrations.CreateModel(name='NodeWeek',\n fields=[('id', models.AutoField(auto_created=True, primary_key=True,\n serialize=False, verbose_name='ID')), ('added_on', models.\n DateTimeField(auto_now_add=True)), ('rank', models.\n PositiveIntegerField(default=0)), ('node', models.ForeignKey(\n on_delete=django.db.models.deletion.CASCADE, to='course_flow.Node')\n )], options={'verbose_name': 'Node-Week Link',\n 'verbose_name_plural': 'Node-Week Links'}), migrations.CreateModel(\n name='Outcome', fields=[('id', models.AutoField(auto_created=True,\n primary_key=True, serialize=False, verbose_name='ID')), ('title',\n models.CharField(max_length=500)), ('description', models.TextField\n (max_length=500)), ('created_on', models.DateTimeField(auto_now_add\n =True)), ('last_modified', models.DateTimeField(auto_now=True)), (\n 'published', models.BooleanField(default=False)), ('is_original',\n models.BooleanField(default=True)), ('is_dropped', models.\n BooleanField(default=True)), ('depth', models.PositiveIntegerField(\n default=0)), ('hash', models.UUIDField(default=uuid.uuid4, editable\n =False, unique=True)), ('author', models.ForeignKey(null=True,\n on_delete=django.db.models.deletion.SET_NULL, to=settings.\n AUTH_USER_MODEL))], options={'verbose_name': 'Outcome',\n 'verbose_name_plural': 'Outcomes'}), migrations.CreateModel(name=\n 'OutcomeProject', fields=[('id', models.AutoField(auto_created=True,\n primary_key=True, serialize=False, verbose_name='ID')), ('added_on',\n models.DateTimeField(auto_now_add=True)), ('rank', models.\n PositiveIntegerField(default=0)), ('outcome', models.ForeignKey(\n on_delete=django.db.models.deletion.CASCADE, to=\n 'course_flow.Outcome'))], options={'verbose_name':\n 'Outcome-Project Link', 'verbose_name_plural':\n 'Outcome-Project Links'}), migrations.CreateModel(name='Project',\n fields=[('id', models.AutoField(auto_created=True, primary_key=True,\n serialize=False, verbose_name='ID')), ('title', models.CharField(\n blank=True, max_length=50, null=True)), ('description', models.\n CharField(blank=True, max_length=500, null=True)), ('created_on',\n models.DateTimeField(auto_now_add=True)), ('last_modified', models.\n DateTimeField(auto_now=True)), ('published', models.BooleanField(\n default=False)), ('is_original', models.BooleanField(default=False)\n ), ('author', models.ForeignKey(null=True, on_delete=django.db.\n models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL)), (\n 'outcomes', models.ManyToManyField(blank=True, through=\n 'course_flow.OutcomeProject', to='course_flow.Outcome')), (\n 'parent_project', models.ForeignKey(null=True, on_delete=django.db.\n models.deletion.SET_NULL, to='course_flow.Project'))], options={\n 'verbose_name': 'Project', 'verbose_name_plural': 'Projects'}),\n migrations.CreateModel(name='Week', fields=[('id', models.AutoField\n (auto_created=True, primary_key=True, serialize=False, verbose_name\n ='ID')), ('title', models.CharField(blank=True, max_length=50, null\n =True)), ('description', models.TextField(blank=True, max_length=\n 500, null=True)), ('created_on', models.DateTimeField(auto_now_add=\n True)), ('last_modified', models.DateTimeField(auto_now=True)), (\n 'default', models.BooleanField(default=False)), ('is_original',\n models.BooleanField(default=True)), ('published', models.\n BooleanField(default=False)), ('is_strategy', models.BooleanField(\n default=False)), ('hash', models.UUIDField(default=uuid.uuid4,\n editable=False, unique=True)), ('strategy_classification', models.\n PositiveIntegerField(choices=[(0, 'None'), (1, 'Jigsaw'), (2,\n 'Peer Instruction'), (3, 'Case Studies'), (4, 'Gallery Walk'), (5,\n 'Reflective Writing'), (6, 'Two-Stage Exam'), (7, 'Toolkit'), (8,\n 'One Minute Paper'), (9, 'Distributed Problem Solving'), (10,\n 'Peer Assessment'), (11, 'Other')], default=0)), ('week_type',\n models.PositiveIntegerField(choices=[(0, 'Part'), (1, 'Week'), (2,\n 'Term')], default=0)), ('author', models.ForeignKey(null=True,\n on_delete=django.db.models.deletion.SET_NULL, to=settings.\n AUTH_USER_MODEL)), ('nodes', models.ManyToManyField(blank=True,\n through='course_flow.NodeWeek', to='course_flow.Node'))], options={\n 'verbose_name': 'Week', 'verbose_name_plural': 'Weeks'}),\n migrations.CreateModel(name='WeekWorkflow', fields=[('id', models.\n AutoField(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')), ('added_on', models.DateTimeField(auto_now_add\n =True)), ('rank', models.PositiveIntegerField(default=0)), ('week',\n models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=\n 'course_flow.Week'))], options={'verbose_name':\n 'Week-Workflow Link', 'verbose_name_plural': 'Week-Workflow Links'}\n ), migrations.CreateModel(name='Workflow', fields=[('id', models.\n AutoField(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')), ('title', models.CharField(blank=True,\n max_length=50, null=True)), ('description', models.TextField(blank=\n True, max_length=500, null=True)), ('created_on', models.\n DateTimeField(auto_now_add=True)), ('last_modified', models.\n DateTimeField(auto_now=True)), ('static', models.BooleanField(\n default=False)), ('published', models.BooleanField(default=False)),\n ('is_strategy', models.BooleanField(default=False)), (\n 'from_saltise', models.BooleanField(default=False)), ('is_original',\n models.BooleanField(default=True)), ('hash', models.UUIDField(\n default=uuid.uuid4, editable=False, unique=True)), ('outcomes_type',\n models.PositiveIntegerField(choices=[(0, 'Normal'), (1, 'Advanced')\n ], default=0)), ('outcomes_sort', models.PositiveIntegerField(\n choices=[(0, 'Time'), (1, 'Category'), (2, 'Task'), (3, 'Context')],\n default=0)), ('columns', models.ManyToManyField(blank=True, through\n ='course_flow.ColumnWorkflow', to='course_flow.Column')), (\n 'parent_workflow', models.ForeignKey(null=True, on_delete=django.db\n .models.deletion.SET_NULL, to='course_flow.Workflow')), ('weeks',\n models.ManyToManyField(blank=True, through=\n 'course_flow.WeekWorkflow', to='course_flow.Week'))]), migrations.\n CreateModel(name='WorkflowProject', fields=[('id', models.AutoField\n (auto_created=True, primary_key=True, serialize=False, verbose_name\n ='ID')), ('added_on', models.DateTimeField(auto_now_add=True)), (\n 'rank', models.PositiveIntegerField(default=0)), ('project', models\n .ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=\n 'course_flow.Project')), ('workflow', models.ForeignKey(on_delete=\n django.db.models.deletion.CASCADE, to='course_flow.Workflow'))],\n options={'verbose_name': 'Workflow-Project Link',\n 'verbose_name_plural': 'Workflow-Project Links'}), migrations.\n AddField(model_name='weekworkflow', name='workflow', field=models.\n ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=\n 'course_flow.Workflow')), migrations.AddField(model_name='week',\n name='original_strategy', field=models.ForeignKey(null=True,\n on_delete=django.db.models.deletion.SET_NULL, to=\n 'course_flow.Workflow')), migrations.AddField(model_name='week',\n name='parent_week', field=models.ForeignKey(null=True, on_delete=\n django.db.models.deletion.SET_NULL, to='course_flow.Week')),\n migrations.AddField(model_name='project', name='workflows', field=\n models.ManyToManyField(blank=True, through=\n 'course_flow.WorkflowProject', to='course_flow.Workflow')),\n migrations.CreateModel(name='OutcomeWorkflow', fields=[('id',\n models.AutoField(auto_created=True, primary_key=True, serialize=\n False, verbose_name='ID')), ('added_on', models.DateTimeField(\n auto_now_add=True)), ('rank', models.PositiveIntegerField(default=0\n )), ('outcome', models.ForeignKey(on_delete=django.db.models.\n deletion.CASCADE, to='course_flow.Outcome')), ('workflow', models.\n ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=\n 'course_flow.Workflow'))], options={'verbose_name':\n 'Outcome-Workflow Link', 'verbose_name_plural':\n 'Outcome-Workflow Links'}), migrations.AddField(model_name=\n 'outcomeproject', name='project', field=models.ForeignKey(on_delete\n =django.db.models.deletion.CASCADE, to='course_flow.Project')),\n migrations.CreateModel(name='OutcomeOutcome', fields=[('id', models\n .AutoField(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')), ('added_on', models.DateTimeField(auto_now_add\n =True)), ('rank', models.PositiveIntegerField(default=0)), ('child',\n models.ForeignKey(on_delete=django.db.models.deletion.CASCADE,\n related_name='parent_outcome_links', to='course_flow.Outcome')), (\n 'parent', models.ForeignKey(on_delete=django.db.models.deletion.\n CASCADE, related_name='child_outcome_links', to=\n 'course_flow.Outcome'))], options={'verbose_name':\n 'Outcome-Outcome Link', 'verbose_name_plural':\n 'Outcome-Outcome Links'}), migrations.CreateModel(name=\n 'OutcomeNode', fields=[('id', models.AutoField(auto_created=True,\n primary_key=True, serialize=False, verbose_name='ID')), ('added_on',\n models.DateTimeField(auto_now_add=True)), ('rank', models.\n PositiveIntegerField(default=0)), ('degree', models.\n PositiveIntegerField(default=1)), ('node', models.ForeignKey(\n on_delete=django.db.models.deletion.CASCADE, to='course_flow.Node')\n ), ('outcome', models.ForeignKey(on_delete=django.db.models.\n deletion.CASCADE, to='course_flow.Outcome'))], options={\n 'verbose_name': 'Outcome-Node Link', 'verbose_name_plural':\n 'Outcome-Node Links'}), migrations.AddField(model_name='outcome',\n name='children', field=models.ManyToManyField(blank=True,\n related_name='parent_outcomes', through=\n 'course_flow.OutcomeOutcome', to='course_flow.Outcome')),\n migrations.AddField(model_name='outcome', name='parent_outcome',\n field=models.ForeignKey(null=True, on_delete=django.db.models.\n deletion.SET_NULL, to='course_flow.Outcome')), migrations.AddField(\n model_name='nodeweek', name='week', field=models.ForeignKey(\n on_delete=django.db.models.deletion.CASCADE, to='course_flow.Week')\n ), migrations.CreateModel(name='NodeLink', fields=[('id', models.\n AutoField(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')), ('title', models.CharField(blank=True,\n max_length=100, null=True)), ('published', models.BooleanField(\n default=False)), ('source_port', models.PositiveIntegerField(\n choices=[(1, 'e'), (2, 's'), (3, 'w')], default=2)), ('target_port',\n models.PositiveIntegerField(choices=[(0, 'n'), (1, 'e'), (3, 'w')],\n default=0)), ('dashed', models.BooleanField(default=False)), (\n 'created_on', models.DateTimeField(auto_now_add=True)), (\n 'last_modified', models.DateTimeField(auto_now=True)), (\n 'is_original', models.BooleanField(default=True)), ('hash', models.\n UUIDField(default=uuid.uuid4, editable=False, unique=True)), (\n 'author', models.ForeignKey(null=True, on_delete=django.db.models.\n deletion.SET_NULL, to=settings.AUTH_USER_MODEL)), (\n 'parent_nodelink', models.ForeignKey(null=True, on_delete=django.db\n .models.deletion.SET_NULL, to='course_flow.NodeLink')), (\n 'source_node', models.ForeignKey(on_delete=django.db.models.\n deletion.CASCADE, related_name='outgoing_links', to=\n 'course_flow.Node')), ('target_node', models.ForeignKey(on_delete=\n django.db.models.deletion.CASCADE, related_name='incoming_links',\n to='course_flow.Node'))], options={'verbose_name': 'Node Link',\n 'verbose_name_plural': 'Node Links'}), migrations.CreateModel(name=\n 'NodeCompletionStatus', fields=[('id', models.AutoField(\n auto_created=True, primary_key=True, serialize=False, verbose_name=\n 'ID')), ('is_completed', models.BooleanField(default=False)), (\n 'node', models.ForeignKey(on_delete=django.db.models.deletion.\n CASCADE, to='course_flow.Node')), ('student', models.ForeignKey(\n on_delete=django.db.models.deletion.CASCADE, to=settings.\n AUTH_USER_MODEL))], options={'verbose_name':\n 'Node Completion Status', 'verbose_name_plural':\n 'Node Completion Statuses'}), migrations.AddField(model_name='node',\n name='linked_workflow', field=models.ForeignKey(null=True,\n on_delete=django.db.models.deletion.SET_NULL, to=\n 'course_flow.Workflow')), migrations.AddField(model_name='node',\n name='outcomes', field=models.ManyToManyField(blank=True, through=\n 'course_flow.OutcomeNode', to='course_flow.Outcome')), migrations.\n AddField(model_name='node', name='parent_node', field=models.\n ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL,\n to='course_flow.Node')), migrations.AddField(model_name='node',\n name='students', field=models.ManyToManyField(blank=True,\n related_name='assigned_nodes', through=\n 'course_flow.NodeCompletionStatus', to=settings.AUTH_USER_MODEL)),\n migrations.AddField(model_name='columnworkflow', name='workflow',\n field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE,\n to='course_flow.Workflow')), migrations.CreateModel(name='Program',\n fields=[('workflow_ptr', models.OneToOneField(auto_created=True,\n on_delete=django.db.models.deletion.CASCADE, parent_link=True,\n primary_key=True, serialize=False, to='course_flow.Workflow')), (\n 'author', models.ForeignKey(null=True, on_delete=django.db.models.\n deletion.SET_NULL, to=settings.AUTH_USER_MODEL))], bases=(\n 'course_flow.workflow',)), migrations.CreateModel(name='Course',\n fields=[('workflow_ptr', models.OneToOneField(auto_created=True,\n on_delete=django.db.models.deletion.CASCADE, parent_link=True,\n primary_key=True, serialize=False, to='course_flow.Workflow')), (\n 'author', models.ForeignKey(null=True, on_delete=django.db.models.\n deletion.SET_NULL, related_name='authored_courses', to=settings.\n AUTH_USER_MODEL)), ('discipline', models.ForeignKey(null=True,\n on_delete=django.db.models.deletion.SET_NULL, to=\n 'course_flow.Discipline')), ('students', models.ManyToManyField(\n blank=True, related_name='assigned_courses', to=settings.\n AUTH_USER_MODEL))], bases=('course_flow.workflow',)), migrations.\n CreateModel(name='Activity', fields=[('workflow_ptr', models.\n OneToOneField(auto_created=True, on_delete=django.db.models.\n deletion.CASCADE, parent_link=True, primary_key=True, serialize=\n False, to='course_flow.Workflow')), ('author', models.ForeignKey(\n null=True, on_delete=django.db.models.deletion.SET_NULL,\n related_name='authored_activities', to=settings.AUTH_USER_MODEL)),\n ('students', models.ManyToManyField(blank=True, related_name=\n 'assigned_activities', to=settings.AUTH_USER_MODEL))], options={\n 'verbose_name': 'Activity', 'verbose_name_plural': 'Activities'},\n bases=('course_flow.workflow',))]\n", "<import token>\n\n\nclass Migration(migrations.Migration):\n initial = True\n dependencies = [migrations.swappable_dependency(settings.AUTH_USER_MODEL)]\n operations = [migrations.CreateModel(name='Column', fields=[('id',\n models.AutoField(auto_created=True, primary_key=True, serialize=\n False, verbose_name='ID')), ('title', models.CharField(blank=True,\n max_length=50, null=True)), ('created_on', models.DateTimeField(\n auto_now_add=True)), ('last_modified', models.DateTimeField(\n auto_now=True)), ('published', models.BooleanField(default=False)),\n ('visible', models.BooleanField(default=True)), ('colour', models.\n PositiveIntegerField(null=True)), ('column_type', models.\n PositiveIntegerField(choices=[(0, 'Custom Activity Column'), (1,\n 'Out of Class (Instructor)'), (2, 'Out of Class (Students)'), (3,\n 'In Class (Instructor)'), (4, 'In Class (Students)'), (10,\n 'Custom Course Column'), (11, 'Preparation'), (12, 'Lesson'), (13,\n 'Artifact'), (14, 'Assessment'), (20, 'Custom Program Category')],\n default=0)), ('is_original', models.BooleanField(default=False)), (\n 'hash', models.UUIDField(default=uuid.uuid4, editable=False, unique\n =True)), ('author', models.ForeignKey(null=True, on_delete=django.\n db.models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL)), (\n 'parent_column', models.ForeignKey(null=True, on_delete=django.db.\n models.deletion.SET_NULL, to='course_flow.Column'))], options={\n 'verbose_name': 'Column', 'verbose_name_plural': 'Columns'}),\n migrations.CreateModel(name='ColumnWorkflow', fields=[('id', models\n .AutoField(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')), ('added_on', models.DateTimeField(auto_now_add\n =True)), ('rank', models.PositiveIntegerField(default=0)), (\n 'column', models.ForeignKey(on_delete=django.db.models.deletion.\n CASCADE, to='course_flow.Column'))], options={'verbose_name':\n 'Column-Workflow Link', 'verbose_name_plural':\n 'Column-Workflow Links'}), migrations.CreateModel(name='Discipline',\n fields=[('id', models.AutoField(auto_created=True, primary_key=True,\n serialize=False, verbose_name='ID')), ('title', models.CharField(\n help_text='Enter the name of a new discipline.', max_length=100,\n unique=True, verbose_name='Discipline name'))], options={\n 'verbose_name': 'discipline', 'verbose_name_plural': 'disciplines'}\n ), migrations.CreateModel(name='Node', fields=[('id', models.\n AutoField(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')), ('title', models.CharField(blank=True,\n max_length=50, null=True)), ('description', models.TextField(blank=\n True, max_length=500, null=True)), ('created_on', models.\n DateTimeField(auto_now_add=True)), ('last_modified', models.\n DateTimeField(auto_now=True)), ('published', models.BooleanField(\n default=False)), ('is_original', models.BooleanField(default=True)),\n ('has_autolink', models.BooleanField(default=False)), ('is_dropped',\n models.BooleanField(default=False)), ('context_classification',\n models.PositiveIntegerField(choices=[(0, 'None'), (1,\n 'Individual Work'), (2, 'Work in Groups'), (3, 'Whole Class'), (101,\n 'Formative'), (102, 'Summative'), (103, 'Comprehensive')], default=\n 0)), ('task_classification', models.PositiveIntegerField(choices=[(\n 0, 'None'), (1, 'Gather Information'), (2, 'Discuss'), (3,\n 'Problem Solve'), (4, 'Analyze'), (5, 'Assess/Review Peers'), (6,\n 'Debate'), (7, 'Game/Roleplay'), (8, 'Create/Design'), (9,\n 'Revise/Improve'), (10, 'Read'), (11, 'Write'), (12, 'Present'), (\n 13, 'Experiment/Inquiry'), (14, 'Quiz/Test'), (15,\n 'Instructor Resource Curation'), (16, 'Instructor Orchestration'),\n (17, 'Instructor Evaluation'), (18, 'Other'), (101, 'Jigsaw'), (102,\n 'Peer Instruction'), (103, 'Case Studies'), (104, 'Gallery Walk'),\n (105, 'Reflective Writing'), (106, 'Two-Stage Exam'), (107,\n 'Toolkit'), (108, 'One Minute Paper'), (109,\n 'Distributed Problem Solving'), (110, 'Peer Assessment')], default=\n 0)), ('node_type', models.PositiveIntegerField(choices=[(0,\n 'Activity Node'), (1, 'Course Node'), (2, 'Program Node')], default\n =0)), ('time_required', models.CharField(blank=True, max_length=30,\n null=True)), ('time_units', models.PositiveIntegerField(choices=[(0,\n ''), (1, 'seconds'), (2, 'minutes'), (3, 'hours'), (4, 'days'), (5,\n 'weeks'), (6, 'months'), (7, 'yrs'), (8, 'credits')], default=0)),\n ('represents_workflow', models.BooleanField(default=False)), (\n 'hash', models.UUIDField(default=uuid.uuid4, editable=False, unique\n =True)), ('author', models.ForeignKey(null=True, on_delete=django.\n db.models.deletion.SET_NULL, related_name='authored_nodes', to=\n settings.AUTH_USER_MODEL)), ('column', models.ForeignKey(null=True,\n on_delete=django.db.models.deletion.DO_NOTHING, to=\n 'course_flow.Column'))]), migrations.CreateModel(name='NodeWeek',\n fields=[('id', models.AutoField(auto_created=True, primary_key=True,\n serialize=False, verbose_name='ID')), ('added_on', models.\n DateTimeField(auto_now_add=True)), ('rank', models.\n PositiveIntegerField(default=0)), ('node', models.ForeignKey(\n on_delete=django.db.models.deletion.CASCADE, to='course_flow.Node')\n )], options={'verbose_name': 'Node-Week Link',\n 'verbose_name_plural': 'Node-Week Links'}), migrations.CreateModel(\n name='Outcome', fields=[('id', models.AutoField(auto_created=True,\n primary_key=True, serialize=False, verbose_name='ID')), ('title',\n models.CharField(max_length=500)), ('description', models.TextField\n (max_length=500)), ('created_on', models.DateTimeField(auto_now_add\n =True)), ('last_modified', models.DateTimeField(auto_now=True)), (\n 'published', models.BooleanField(default=False)), ('is_original',\n models.BooleanField(default=True)), ('is_dropped', models.\n BooleanField(default=True)), ('depth', models.PositiveIntegerField(\n default=0)), ('hash', models.UUIDField(default=uuid.uuid4, editable\n =False, unique=True)), ('author', models.ForeignKey(null=True,\n on_delete=django.db.models.deletion.SET_NULL, to=settings.\n AUTH_USER_MODEL))], options={'verbose_name': 'Outcome',\n 'verbose_name_plural': 'Outcomes'}), migrations.CreateModel(name=\n 'OutcomeProject', fields=[('id', models.AutoField(auto_created=True,\n primary_key=True, serialize=False, verbose_name='ID')), ('added_on',\n models.DateTimeField(auto_now_add=True)), ('rank', models.\n PositiveIntegerField(default=0)), ('outcome', models.ForeignKey(\n on_delete=django.db.models.deletion.CASCADE, to=\n 'course_flow.Outcome'))], options={'verbose_name':\n 'Outcome-Project Link', 'verbose_name_plural':\n 'Outcome-Project Links'}), migrations.CreateModel(name='Project',\n fields=[('id', models.AutoField(auto_created=True, primary_key=True,\n serialize=False, verbose_name='ID')), ('title', models.CharField(\n blank=True, max_length=50, null=True)), ('description', models.\n CharField(blank=True, max_length=500, null=True)), ('created_on',\n models.DateTimeField(auto_now_add=True)), ('last_modified', models.\n DateTimeField(auto_now=True)), ('published', models.BooleanField(\n default=False)), ('is_original', models.BooleanField(default=False)\n ), ('author', models.ForeignKey(null=True, on_delete=django.db.\n models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL)), (\n 'outcomes', models.ManyToManyField(blank=True, through=\n 'course_flow.OutcomeProject', to='course_flow.Outcome')), (\n 'parent_project', models.ForeignKey(null=True, on_delete=django.db.\n models.deletion.SET_NULL, to='course_flow.Project'))], options={\n 'verbose_name': 'Project', 'verbose_name_plural': 'Projects'}),\n migrations.CreateModel(name='Week', fields=[('id', models.AutoField\n (auto_created=True, primary_key=True, serialize=False, verbose_name\n ='ID')), ('title', models.CharField(blank=True, max_length=50, null\n =True)), ('description', models.TextField(blank=True, max_length=\n 500, null=True)), ('created_on', models.DateTimeField(auto_now_add=\n True)), ('last_modified', models.DateTimeField(auto_now=True)), (\n 'default', models.BooleanField(default=False)), ('is_original',\n models.BooleanField(default=True)), ('published', models.\n BooleanField(default=False)), ('is_strategy', models.BooleanField(\n default=False)), ('hash', models.UUIDField(default=uuid.uuid4,\n editable=False, unique=True)), ('strategy_classification', models.\n PositiveIntegerField(choices=[(0, 'None'), (1, 'Jigsaw'), (2,\n 'Peer Instruction'), (3, 'Case Studies'), (4, 'Gallery Walk'), (5,\n 'Reflective Writing'), (6, 'Two-Stage Exam'), (7, 'Toolkit'), (8,\n 'One Minute Paper'), (9, 'Distributed Problem Solving'), (10,\n 'Peer Assessment'), (11, 'Other')], default=0)), ('week_type',\n models.PositiveIntegerField(choices=[(0, 'Part'), (1, 'Week'), (2,\n 'Term')], default=0)), ('author', models.ForeignKey(null=True,\n on_delete=django.db.models.deletion.SET_NULL, to=settings.\n AUTH_USER_MODEL)), ('nodes', models.ManyToManyField(blank=True,\n through='course_flow.NodeWeek', to='course_flow.Node'))], options={\n 'verbose_name': 'Week', 'verbose_name_plural': 'Weeks'}),\n migrations.CreateModel(name='WeekWorkflow', fields=[('id', models.\n AutoField(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')), ('added_on', models.DateTimeField(auto_now_add\n =True)), ('rank', models.PositiveIntegerField(default=0)), ('week',\n models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=\n 'course_flow.Week'))], options={'verbose_name':\n 'Week-Workflow Link', 'verbose_name_plural': 'Week-Workflow Links'}\n ), migrations.CreateModel(name='Workflow', fields=[('id', models.\n AutoField(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')), ('title', models.CharField(blank=True,\n max_length=50, null=True)), ('description', models.TextField(blank=\n True, max_length=500, null=True)), ('created_on', models.\n DateTimeField(auto_now_add=True)), ('last_modified', models.\n DateTimeField(auto_now=True)), ('static', models.BooleanField(\n default=False)), ('published', models.BooleanField(default=False)),\n ('is_strategy', models.BooleanField(default=False)), (\n 'from_saltise', models.BooleanField(default=False)), ('is_original',\n models.BooleanField(default=True)), ('hash', models.UUIDField(\n default=uuid.uuid4, editable=False, unique=True)), ('outcomes_type',\n models.PositiveIntegerField(choices=[(0, 'Normal'), (1, 'Advanced')\n ], default=0)), ('outcomes_sort', models.PositiveIntegerField(\n choices=[(0, 'Time'), (1, 'Category'), (2, 'Task'), (3, 'Context')],\n default=0)), ('columns', models.ManyToManyField(blank=True, through\n ='course_flow.ColumnWorkflow', to='course_flow.Column')), (\n 'parent_workflow', models.ForeignKey(null=True, on_delete=django.db\n .models.deletion.SET_NULL, to='course_flow.Workflow')), ('weeks',\n models.ManyToManyField(blank=True, through=\n 'course_flow.WeekWorkflow', to='course_flow.Week'))]), migrations.\n CreateModel(name='WorkflowProject', fields=[('id', models.AutoField\n (auto_created=True, primary_key=True, serialize=False, verbose_name\n ='ID')), ('added_on', models.DateTimeField(auto_now_add=True)), (\n 'rank', models.PositiveIntegerField(default=0)), ('project', models\n .ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=\n 'course_flow.Project')), ('workflow', models.ForeignKey(on_delete=\n django.db.models.deletion.CASCADE, to='course_flow.Workflow'))],\n options={'verbose_name': 'Workflow-Project Link',\n 'verbose_name_plural': 'Workflow-Project Links'}), migrations.\n AddField(model_name='weekworkflow', name='workflow', field=models.\n ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=\n 'course_flow.Workflow')), migrations.AddField(model_name='week',\n name='original_strategy', field=models.ForeignKey(null=True,\n on_delete=django.db.models.deletion.SET_NULL, to=\n 'course_flow.Workflow')), migrations.AddField(model_name='week',\n name='parent_week', field=models.ForeignKey(null=True, on_delete=\n django.db.models.deletion.SET_NULL, to='course_flow.Week')),\n migrations.AddField(model_name='project', name='workflows', field=\n models.ManyToManyField(blank=True, through=\n 'course_flow.WorkflowProject', to='course_flow.Workflow')),\n migrations.CreateModel(name='OutcomeWorkflow', fields=[('id',\n models.AutoField(auto_created=True, primary_key=True, serialize=\n False, verbose_name='ID')), ('added_on', models.DateTimeField(\n auto_now_add=True)), ('rank', models.PositiveIntegerField(default=0\n )), ('outcome', models.ForeignKey(on_delete=django.db.models.\n deletion.CASCADE, to='course_flow.Outcome')), ('workflow', models.\n ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=\n 'course_flow.Workflow'))], options={'verbose_name':\n 'Outcome-Workflow Link', 'verbose_name_plural':\n 'Outcome-Workflow Links'}), migrations.AddField(model_name=\n 'outcomeproject', name='project', field=models.ForeignKey(on_delete\n =django.db.models.deletion.CASCADE, to='course_flow.Project')),\n migrations.CreateModel(name='OutcomeOutcome', fields=[('id', models\n .AutoField(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')), ('added_on', models.DateTimeField(auto_now_add\n =True)), ('rank', models.PositiveIntegerField(default=0)), ('child',\n models.ForeignKey(on_delete=django.db.models.deletion.CASCADE,\n related_name='parent_outcome_links', to='course_flow.Outcome')), (\n 'parent', models.ForeignKey(on_delete=django.db.models.deletion.\n CASCADE, related_name='child_outcome_links', to=\n 'course_flow.Outcome'))], options={'verbose_name':\n 'Outcome-Outcome Link', 'verbose_name_plural':\n 'Outcome-Outcome Links'}), migrations.CreateModel(name=\n 'OutcomeNode', fields=[('id', models.AutoField(auto_created=True,\n primary_key=True, serialize=False, verbose_name='ID')), ('added_on',\n models.DateTimeField(auto_now_add=True)), ('rank', models.\n PositiveIntegerField(default=0)), ('degree', models.\n PositiveIntegerField(default=1)), ('node', models.ForeignKey(\n on_delete=django.db.models.deletion.CASCADE, to='course_flow.Node')\n ), ('outcome', models.ForeignKey(on_delete=django.db.models.\n deletion.CASCADE, to='course_flow.Outcome'))], options={\n 'verbose_name': 'Outcome-Node Link', 'verbose_name_plural':\n 'Outcome-Node Links'}), migrations.AddField(model_name='outcome',\n name='children', field=models.ManyToManyField(blank=True,\n related_name='parent_outcomes', through=\n 'course_flow.OutcomeOutcome', to='course_flow.Outcome')),\n migrations.AddField(model_name='outcome', name='parent_outcome',\n field=models.ForeignKey(null=True, on_delete=django.db.models.\n deletion.SET_NULL, to='course_flow.Outcome')), migrations.AddField(\n model_name='nodeweek', name='week', field=models.ForeignKey(\n on_delete=django.db.models.deletion.CASCADE, to='course_flow.Week')\n ), migrations.CreateModel(name='NodeLink', fields=[('id', models.\n AutoField(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')), ('title', models.CharField(blank=True,\n max_length=100, null=True)), ('published', models.BooleanField(\n default=False)), ('source_port', models.PositiveIntegerField(\n choices=[(1, 'e'), (2, 's'), (3, 'w')], default=2)), ('target_port',\n models.PositiveIntegerField(choices=[(0, 'n'), (1, 'e'), (3, 'w')],\n default=0)), ('dashed', models.BooleanField(default=False)), (\n 'created_on', models.DateTimeField(auto_now_add=True)), (\n 'last_modified', models.DateTimeField(auto_now=True)), (\n 'is_original', models.BooleanField(default=True)), ('hash', models.\n UUIDField(default=uuid.uuid4, editable=False, unique=True)), (\n 'author', models.ForeignKey(null=True, on_delete=django.db.models.\n deletion.SET_NULL, to=settings.AUTH_USER_MODEL)), (\n 'parent_nodelink', models.ForeignKey(null=True, on_delete=django.db\n .models.deletion.SET_NULL, to='course_flow.NodeLink')), (\n 'source_node', models.ForeignKey(on_delete=django.db.models.\n deletion.CASCADE, related_name='outgoing_links', to=\n 'course_flow.Node')), ('target_node', models.ForeignKey(on_delete=\n django.db.models.deletion.CASCADE, related_name='incoming_links',\n to='course_flow.Node'))], options={'verbose_name': 'Node Link',\n 'verbose_name_plural': 'Node Links'}), migrations.CreateModel(name=\n 'NodeCompletionStatus', fields=[('id', models.AutoField(\n auto_created=True, primary_key=True, serialize=False, verbose_name=\n 'ID')), ('is_completed', models.BooleanField(default=False)), (\n 'node', models.ForeignKey(on_delete=django.db.models.deletion.\n CASCADE, to='course_flow.Node')), ('student', models.ForeignKey(\n on_delete=django.db.models.deletion.CASCADE, to=settings.\n AUTH_USER_MODEL))], options={'verbose_name':\n 'Node Completion Status', 'verbose_name_plural':\n 'Node Completion Statuses'}), migrations.AddField(model_name='node',\n name='linked_workflow', field=models.ForeignKey(null=True,\n on_delete=django.db.models.deletion.SET_NULL, to=\n 'course_flow.Workflow')), migrations.AddField(model_name='node',\n name='outcomes', field=models.ManyToManyField(blank=True, through=\n 'course_flow.OutcomeNode', to='course_flow.Outcome')), migrations.\n AddField(model_name='node', name='parent_node', field=models.\n ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL,\n to='course_flow.Node')), migrations.AddField(model_name='node',\n name='students', field=models.ManyToManyField(blank=True,\n related_name='assigned_nodes', through=\n 'course_flow.NodeCompletionStatus', to=settings.AUTH_USER_MODEL)),\n migrations.AddField(model_name='columnworkflow', name='workflow',\n field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE,\n to='course_flow.Workflow')), migrations.CreateModel(name='Program',\n fields=[('workflow_ptr', models.OneToOneField(auto_created=True,\n on_delete=django.db.models.deletion.CASCADE, parent_link=True,\n primary_key=True, serialize=False, to='course_flow.Workflow')), (\n 'author', models.ForeignKey(null=True, on_delete=django.db.models.\n deletion.SET_NULL, to=settings.AUTH_USER_MODEL))], bases=(\n 'course_flow.workflow',)), migrations.CreateModel(name='Course',\n fields=[('workflow_ptr', models.OneToOneField(auto_created=True,\n on_delete=django.db.models.deletion.CASCADE, parent_link=True,\n primary_key=True, serialize=False, to='course_flow.Workflow')), (\n 'author', models.ForeignKey(null=True, on_delete=django.db.models.\n deletion.SET_NULL, related_name='authored_courses', to=settings.\n AUTH_USER_MODEL)), ('discipline', models.ForeignKey(null=True,\n on_delete=django.db.models.deletion.SET_NULL, to=\n 'course_flow.Discipline')), ('students', models.ManyToManyField(\n blank=True, related_name='assigned_courses', to=settings.\n AUTH_USER_MODEL))], bases=('course_flow.workflow',)), migrations.\n CreateModel(name='Activity', fields=[('workflow_ptr', models.\n OneToOneField(auto_created=True, on_delete=django.db.models.\n deletion.CASCADE, parent_link=True, primary_key=True, serialize=\n False, to='course_flow.Workflow')), ('author', models.ForeignKey(\n null=True, on_delete=django.db.models.deletion.SET_NULL,\n related_name='authored_activities', to=settings.AUTH_USER_MODEL)),\n ('students', models.ManyToManyField(blank=True, related_name=\n 'assigned_activities', to=settings.AUTH_USER_MODEL))], options={\n 'verbose_name': 'Activity', 'verbose_name_plural': 'Activities'},\n bases=('course_flow.workflow',))]\n", "<import token>\n\n\nclass Migration(migrations.Migration):\n <assignment token>\n <assignment token>\n <assignment token>\n", "<import token>\n<class token>\n" ]
false
98,849
db9e2f017318cc1110dc15282b7ef86331c00028
from __future__ import absolute_import from dancedeets.servlets import api from . import db @api.apiroute(r'/favorites') class RsvpAjaxHandler(api.ApiHandler): def get(self): favorite_event_ids = db.get_favorite_event_ids_for_user(user_id=self.fbl.fb_uid) favorites_json = {'favorites': favorite_event_ids} self.write_json_success(favorites_json) def post(self): if self.json_body: event_id = self.json_body.get('event_id') else: event_id = self.request.get('event_id') db.add_favorite(self.fbl.fb_uid, event_id) self.write_json_success() def delete(self): if self.json_body: event_id = self.json_body.get('event_id') else: event_id = self.request.get('event_id') db.delete_favorite(self.fbl.fb_uid, event_id) self.write_json_success()
[ "from __future__ import absolute_import\n\nfrom dancedeets.servlets import api\nfrom . import db\n\n\[email protected](r'/favorites')\nclass RsvpAjaxHandler(api.ApiHandler):\n def get(self):\n favorite_event_ids = db.get_favorite_event_ids_for_user(user_id=self.fbl.fb_uid)\n favorites_json = {'favorites': favorite_event_ids}\n self.write_json_success(favorites_json)\n\n def post(self):\n if self.json_body:\n event_id = self.json_body.get('event_id')\n else:\n event_id = self.request.get('event_id')\n db.add_favorite(self.fbl.fb_uid, event_id)\n self.write_json_success()\n\n def delete(self):\n if self.json_body:\n event_id = self.json_body.get('event_id')\n else:\n event_id = self.request.get('event_id')\n db.delete_favorite(self.fbl.fb_uid, event_id)\n self.write_json_success()\n", "from __future__ import absolute_import\nfrom dancedeets.servlets import api\nfrom . import db\n\n\[email protected]('/favorites')\nclass RsvpAjaxHandler(api.ApiHandler):\n\n def get(self):\n favorite_event_ids = db.get_favorite_event_ids_for_user(user_id=\n self.fbl.fb_uid)\n favorites_json = {'favorites': favorite_event_ids}\n self.write_json_success(favorites_json)\n\n def post(self):\n if self.json_body:\n event_id = self.json_body.get('event_id')\n else:\n event_id = self.request.get('event_id')\n db.add_favorite(self.fbl.fb_uid, event_id)\n self.write_json_success()\n\n def delete(self):\n if self.json_body:\n event_id = self.json_body.get('event_id')\n else:\n event_id = self.request.get('event_id')\n db.delete_favorite(self.fbl.fb_uid, event_id)\n self.write_json_success()\n", "<import token>\n\n\[email protected]('/favorites')\nclass RsvpAjaxHandler(api.ApiHandler):\n\n def get(self):\n favorite_event_ids = db.get_favorite_event_ids_for_user(user_id=\n self.fbl.fb_uid)\n favorites_json = {'favorites': favorite_event_ids}\n self.write_json_success(favorites_json)\n\n def post(self):\n if self.json_body:\n event_id = self.json_body.get('event_id')\n else:\n event_id = self.request.get('event_id')\n db.add_favorite(self.fbl.fb_uid, event_id)\n self.write_json_success()\n\n def delete(self):\n if self.json_body:\n event_id = self.json_body.get('event_id')\n else:\n event_id = self.request.get('event_id')\n db.delete_favorite(self.fbl.fb_uid, event_id)\n self.write_json_success()\n", "<import token>\n\n\[email protected]('/favorites')\nclass RsvpAjaxHandler(api.ApiHandler):\n\n def get(self):\n favorite_event_ids = db.get_favorite_event_ids_for_user(user_id=\n self.fbl.fb_uid)\n favorites_json = {'favorites': favorite_event_ids}\n self.write_json_success(favorites_json)\n\n def post(self):\n if self.json_body:\n event_id = self.json_body.get('event_id')\n else:\n event_id = self.request.get('event_id')\n db.add_favorite(self.fbl.fb_uid, event_id)\n self.write_json_success()\n <function token>\n", "<import token>\n\n\[email protected]('/favorites')\nclass RsvpAjaxHandler(api.ApiHandler):\n <function token>\n\n def post(self):\n if self.json_body:\n event_id = self.json_body.get('event_id')\n else:\n event_id = self.request.get('event_id')\n db.add_favorite(self.fbl.fb_uid, event_id)\n self.write_json_success()\n <function token>\n", "<import token>\n\n\[email protected]('/favorites')\nclass RsvpAjaxHandler(api.ApiHandler):\n <function token>\n <function token>\n <function token>\n", "<import token>\n<class token>\n" ]
false
98,850
6a70bfb3d7d46f7bf5463eb5f852bb72c8a5c8fa
# Generated by Django 3.0 on 2020-04-07 09:46 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='JDcommodityInfo', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('productname', models.CharField(max_length=256)), ('productimg', models.CharField(max_length=128)), ('productprice', models.DecimalField(decimal_places=2, max_digits=5)), ], ), migrations.CreateModel( name='ToutiaoIInfo', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=64)), ('auther', models.CharField(max_length=16)), ('date', models.DateField()), ('img', models.CharField(max_length=128)), ('linkaddress', models.CharField(max_length=128)), ], ), ]
[ "# Generated by Django 3.0 on 2020-04-07 09:46\n\nfrom django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n\n initial = True\n\n dependencies = [\n ]\n\n operations = [\n migrations.CreateModel(\n name='JDcommodityInfo',\n fields=[\n ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),\n ('productname', models.CharField(max_length=256)),\n ('productimg', models.CharField(max_length=128)),\n ('productprice', models.DecimalField(decimal_places=2, max_digits=5)),\n ],\n ),\n migrations.CreateModel(\n name='ToutiaoIInfo',\n fields=[\n ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),\n ('title', models.CharField(max_length=64)),\n ('auther', models.CharField(max_length=16)),\n ('date', models.DateField()),\n ('img', models.CharField(max_length=128)),\n ('linkaddress', models.CharField(max_length=128)),\n ],\n ),\n ]\n", "from django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n initial = True\n dependencies = []\n operations = [migrations.CreateModel(name='JDcommodityInfo', fields=[(\n 'id', models.AutoField(auto_created=True, primary_key=True,\n serialize=False, verbose_name='ID')), ('productname', models.\n CharField(max_length=256)), ('productimg', models.CharField(\n max_length=128)), ('productprice', models.DecimalField(\n decimal_places=2, max_digits=5))]), migrations.CreateModel(name=\n 'ToutiaoIInfo', fields=[('id', models.AutoField(auto_created=True,\n primary_key=True, serialize=False, verbose_name='ID')), ('title',\n models.CharField(max_length=64)), ('auther', models.CharField(\n max_length=16)), ('date', models.DateField()), ('img', models.\n CharField(max_length=128)), ('linkaddress', models.CharField(\n max_length=128))])]\n", "<import token>\n\n\nclass Migration(migrations.Migration):\n initial = True\n dependencies = []\n operations = [migrations.CreateModel(name='JDcommodityInfo', fields=[(\n 'id', models.AutoField(auto_created=True, primary_key=True,\n serialize=False, verbose_name='ID')), ('productname', models.\n CharField(max_length=256)), ('productimg', models.CharField(\n max_length=128)), ('productprice', models.DecimalField(\n decimal_places=2, max_digits=5))]), migrations.CreateModel(name=\n 'ToutiaoIInfo', fields=[('id', models.AutoField(auto_created=True,\n primary_key=True, serialize=False, verbose_name='ID')), ('title',\n models.CharField(max_length=64)), ('auther', models.CharField(\n max_length=16)), ('date', models.DateField()), ('img', models.\n CharField(max_length=128)), ('linkaddress', models.CharField(\n max_length=128))])]\n", "<import token>\n\n\nclass Migration(migrations.Migration):\n <assignment token>\n <assignment token>\n <assignment token>\n", "<import token>\n<class token>\n" ]
false
98,851
7acf6d7e9aabdfc2911972467690a237aefd78ee
from django.urls import include, path from rest_framework.routers import SimpleRouter from adverts.api import views app_name = "adverts" ######### # Routes ######### router = SimpleRouter() router.register(r"currentadvert", views.CurrentAdvertViewSet, "currentadvert") router.register(r"advert", views.AdvertViewSet) router.register(r"adverttype", views.AdvertTypeViewSet) router.register(r"advertiser", views.AdvertiserViewSet) urlpatterns = [ path("", include(router.urls)), ]
[ "from django.urls import include, path\nfrom rest_framework.routers import SimpleRouter\n\nfrom adverts.api import views\n\napp_name = \"adverts\"\n\n#########\n# Routes\n#########\nrouter = SimpleRouter()\nrouter.register(r\"currentadvert\", views.CurrentAdvertViewSet, \"currentadvert\")\nrouter.register(r\"advert\", views.AdvertViewSet)\nrouter.register(r\"adverttype\", views.AdvertTypeViewSet)\nrouter.register(r\"advertiser\", views.AdvertiserViewSet)\n\n\nurlpatterns = [\n path(\"\", include(router.urls)),\n]\n", "from django.urls import include, path\nfrom rest_framework.routers import SimpleRouter\nfrom adverts.api import views\napp_name = 'adverts'\nrouter = SimpleRouter()\nrouter.register('currentadvert', views.CurrentAdvertViewSet, 'currentadvert')\nrouter.register('advert', views.AdvertViewSet)\nrouter.register('adverttype', views.AdvertTypeViewSet)\nrouter.register('advertiser', views.AdvertiserViewSet)\nurlpatterns = [path('', include(router.urls))]\n", "<import token>\napp_name = 'adverts'\nrouter = SimpleRouter()\nrouter.register('currentadvert', views.CurrentAdvertViewSet, 'currentadvert')\nrouter.register('advert', views.AdvertViewSet)\nrouter.register('adverttype', views.AdvertTypeViewSet)\nrouter.register('advertiser', views.AdvertiserViewSet)\nurlpatterns = [path('', include(router.urls))]\n", "<import token>\n<assignment token>\nrouter.register('currentadvert', views.CurrentAdvertViewSet, 'currentadvert')\nrouter.register('advert', views.AdvertViewSet)\nrouter.register('adverttype', views.AdvertTypeViewSet)\nrouter.register('advertiser', views.AdvertiserViewSet)\n<assignment token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n" ]
false
98,852
11736594c666051ed0bb2fe603f22e83ca531324
#!/usr/bin/python # -*- coding: utf-8 -*- # Author: Joel Palmius import bpy import json import os from bpy.props import BoolProperty, StringProperty, EnumProperty, IntProperty, CollectionProperty, FloatProperty _licenses = [] _licenses.append(("CC0", "CC0", "Creative Commons Zero", 1)) _licenses.append(("CC-BY", "CC-BY", "Creative Commons Attribution", 2)) _licenses.append(("AGPL", "AGPL", "Affero Gnu Public License (don't use unless absolutely necessary)", 3)) _licenseDescription = "Set an output license for the material. This will have no practical effect apart from being included in the written MHMAT file." _textures = [] _textures.append(("NORMALIZE", "Normalize", "Copy to a name based on MHMAT filename", 1)) _textures.append(("COPY", "Copy", "Copy without rename", 2)) _textures.append(("LINK", "Link", "Link to original location, with absolute pathname", 3)) _texturesDescription = "How do we handle texture file names and paths? Unless you know what you are doing, you will want to use normalize. This will copy all images to an appropriate location with an appropriate filename, valid for uploading to the asset repository." _litspheres = [] _litspheres.append(("leather", "leather", "Leather litsphere. This is appropriate for all clothes, not only leather.", 1)) _litspheres.append(("standard_skin", "standard skin", "Standard skin litsphere. This is appropriate for all skins.", 2)) _litspheres.append(("african", "african skin", "African skin litsphere", 3)) _litspheres.append(("asian", "asian skin", "Asian skin litsphere", 4)) _litspheres.append(("caucasian", "caucasian skin", "Caucasian skin litsphere", 5)) _litspheres.append(("toon01", "toon", "Toon skin litsphere", 6)) _litspheres.append(("eye", "eye", "Eye litsphere", 7)) _litspheres.append(("hair", "hair", "Hair litsphere", 8)) _litsphereDescription = "A litsphere texture is used for emulate lighting and reflections inside MakeHuman. It thus has no effect outside MakeHuman. For any clothing (not just leather), you will want to use the \"leather\" litsphere." def extraProperties(): # Object properties, normally set by MPFB if not hasattr(bpy.types.Object, "MhObjectType"): bpy.types.Object.MhObjectType = StringProperty(name="Object type", description="This is what type of MakeHuman object is (such as Clothes, Eyes...)", default="") if not hasattr(bpy.types.Object, "MhHuman"): bpy.types.Object.MhHuman = BoolProperty(name="Is MH Human", description="Old makeclothes property for deciding object type", default=False) bpy.types.Scene.MhMsCreateDiffuse = BoolProperty(name="Create diffuse placeholder", description="Create a placeholder for a diffuse texture", default=True) bpy.types.Scene.MhMsCreateNormal = BoolProperty(name="Create normal map placeholder", description="Create a placeholder for a normal map", default=False) bpy.types.Scene.MhMsCreateBump = BoolProperty(name="Create bump map placeholder", description="Create a placeholder for a bump map", default=False) bpy.types.Scene.MhMsOverwrite1 = BoolProperty(name="Overwrite existing (create)", description="Overwrite existing material(s) on object", default=False) bpy.types.Scene.MhMsOverwrite2 = BoolProperty(name="Overwrite existing (import)", description="Overwrite existing material(s) on object", default=False) # Metadata keys bpy.types.Object.MhMsName = StringProperty(name="Name", description="The name of this material. This will have little practical effect apart from being written to the mhmat file.", default="material") bpy.types.Object.MhMsTag = StringProperty(name="Tag", description="A category the material fits into, for example \"blond\" or \"female\". This will influence sorting and filtering in MH.", default="") bpy.types.Object.MhMsDescription = StringProperty(name="Description", description="A description of the material. It will have little practical effect apart from being written to the mhmat file.", default="") bpy.types.Object.MhMsMatLicense = bpy.props.EnumProperty(items=_licenses, name="License", description=_licenseDescription, default="CC0") bpy.types.Object.MhMsAuthor = StringProperty(name="Author", description="The author of this material. This will have little practical effect apart from being written to the mhmat file.", default="") bpy.types.Object.MhMsHomepage = StringProperty(name="Home page", description="The home page of the material, if any. This will have little practical effect apart from being written to the mhmat file.", default="") # Boolean keys bpy.types.Object.MhMsBackfaceCull = BoolProperty(name="Backface culling", description="If the back side of faces with the material should be invisible. This has no effect in exports, but may be important in MH", default=True) bpy.types.Object.MhMsCastShadows = BoolProperty(name="Cast shadows", description="If the material casts shadows. This has no effect in exports.", default=True) bpy.types.Object.MhMsReceiveShadows = BoolProperty(name="Receive shadows", description="If the material receives shadows. This has no effect in exports.", default=True) bpy.types.Object.MhMsAlphaToCoverage = BoolProperty(name="AlphaToCoverage", description="I have no idea what this does, but it might be important", default=True) bpy.types.Object.MhMsShadeless = BoolProperty(name="Shadeless", description="If the material is shadeless. It is unlikely you want this.", default=False) bpy.types.Object.MhMsWireframe = BoolProperty(name="Wireframe", description="If the material is to be rendered as a wireframe. It is unlikely you want this.", default=False) bpy.types.Object.MhMsTransparent = BoolProperty(name="Transparent", description="If the material is to be rendered as a transparent. It is unlikely you want this, as the normal approach is using the alpha channel in the diffuse texture.", default=False) bpy.types.Object.MhMsDepthless = BoolProperty(name="Depthless", description="If the material is to be rendered as having no depth. It is unlikely you want this.", default=False) bpy.types.Object.MhMsSSSEnable = BoolProperty(name="SSS Enable", description="If the material is to be rendered with sub surface scattering.", default=False) bpy.types.Object.MhMsUseLit = BoolProperty(name="Use Litsphere", description="Use the litsphere shader when rendering material in MakeHuman. This does not have any effect on materials outside MakeHuman", default=True) bpy.types.Object.MhMsWriteBlendMaterial = BoolProperty(name="Write Blend material", description="Stores the second material on the active object in a blend file", default=False) # Options bpy.types.Object.MhMsLitsphere = bpy.props.EnumProperty(items=_litspheres, name="Litsphere", description=_litsphereDescription, default="leather") bpy.types.Object.MhMsTextures = bpy.props.EnumProperty(items=_textures, name="Textures", description=_texturesDescription, default="NORMALIZE")
[ "#!/usr/bin/python\n# -*- coding: utf-8 -*-\n\n# Author: Joel Palmius\n\nimport bpy\nimport json\nimport os\nfrom bpy.props import BoolProperty, StringProperty, EnumProperty, IntProperty, CollectionProperty, FloatProperty\n\n_licenses = []\n_licenses.append((\"CC0\", \"CC0\", \"Creative Commons Zero\", 1))\n_licenses.append((\"CC-BY\", \"CC-BY\", \"Creative Commons Attribution\", 2))\n_licenses.append((\"AGPL\", \"AGPL\", \"Affero Gnu Public License (don't use unless absolutely necessary)\", 3))\n_licenseDescription = \"Set an output license for the material. This will have no practical effect apart from being included in the written MHMAT file.\"\n\n_textures = []\n_textures.append((\"NORMALIZE\", \"Normalize\", \"Copy to a name based on MHMAT filename\", 1))\n_textures.append((\"COPY\", \"Copy\", \"Copy without rename\", 2))\n_textures.append((\"LINK\", \"Link\", \"Link to original location, with absolute pathname\", 3))\n_texturesDescription = \"How do we handle texture file names and paths? Unless you know what you are doing, you will want to use normalize. This will copy all images to an appropriate location with an appropriate filename, valid for uploading to the asset repository.\"\n\n_litspheres = []\n_litspheres.append((\"leather\", \"leather\", \"Leather litsphere. This is appropriate for all clothes, not only leather.\", 1))\n_litspheres.append((\"standard_skin\", \"standard skin\", \"Standard skin litsphere. This is appropriate for all skins.\", 2))\n_litspheres.append((\"african\", \"african skin\", \"African skin litsphere\", 3))\n_litspheres.append((\"asian\", \"asian skin\", \"Asian skin litsphere\", 4))\n_litspheres.append((\"caucasian\", \"caucasian skin\", \"Caucasian skin litsphere\", 5))\n_litspheres.append((\"toon01\", \"toon\", \"Toon skin litsphere\", 6))\n_litspheres.append((\"eye\", \"eye\", \"Eye litsphere\", 7))\n_litspheres.append((\"hair\", \"hair\", \"Hair litsphere\", 8))\n_litsphereDescription = \"A litsphere texture is used for emulate lighting and reflections inside MakeHuman. It thus has no effect outside MakeHuman. For any clothing (not just leather), you will want to use the \\\"leather\\\" litsphere.\"\n\ndef extraProperties():\n\n # Object properties, normally set by MPFB\n if not hasattr(bpy.types.Object, \"MhObjectType\"):\n bpy.types.Object.MhObjectType = StringProperty(name=\"Object type\", description=\"This is what type of MakeHuman object is (such as Clothes, Eyes...)\", default=\"\")\n if not hasattr(bpy.types.Object, \"MhHuman\"):\n bpy.types.Object.MhHuman = BoolProperty(name=\"Is MH Human\", description=\"Old makeclothes property for deciding object type\", default=False)\n\n bpy.types.Scene.MhMsCreateDiffuse = BoolProperty(name=\"Create diffuse placeholder\", description=\"Create a placeholder for a diffuse texture\", default=True)\n bpy.types.Scene.MhMsCreateNormal = BoolProperty(name=\"Create normal map placeholder\", description=\"Create a placeholder for a normal map\", default=False)\n bpy.types.Scene.MhMsCreateBump = BoolProperty(name=\"Create bump map placeholder\", description=\"Create a placeholder for a bump map\", default=False)\n\n bpy.types.Scene.MhMsOverwrite1 = BoolProperty(name=\"Overwrite existing (create)\", description=\"Overwrite existing material(s) on object\", default=False)\n bpy.types.Scene.MhMsOverwrite2 = BoolProperty(name=\"Overwrite existing (import)\", description=\"Overwrite existing material(s) on object\", default=False)\n\n # Metadata keys\n bpy.types.Object.MhMsName = StringProperty(name=\"Name\", description=\"The name of this material. This will have little practical effect apart from being written to the mhmat file.\", default=\"material\")\n bpy.types.Object.MhMsTag = StringProperty(name=\"Tag\", description=\"A category the material fits into, for example \\\"blond\\\" or \\\"female\\\". This will influence sorting and filtering in MH.\", default=\"\")\n bpy.types.Object.MhMsDescription = StringProperty(name=\"Description\", description=\"A description of the material. It will have little practical effect apart from being written to the mhmat file.\", default=\"\")\n bpy.types.Object.MhMsMatLicense = bpy.props.EnumProperty(items=_licenses, name=\"License\", description=_licenseDescription, default=\"CC0\")\n bpy.types.Object.MhMsAuthor = StringProperty(name=\"Author\", description=\"The author of this material. This will have little practical effect apart from being written to the mhmat file.\", default=\"\")\n bpy.types.Object.MhMsHomepage = StringProperty(name=\"Home page\", description=\"The home page of the material, if any. This will have little practical effect apart from being written to the mhmat file.\", default=\"\")\n\n # Boolean keys\n bpy.types.Object.MhMsBackfaceCull = BoolProperty(name=\"Backface culling\", description=\"If the back side of faces with the material should be invisible. This has no effect in exports, but may be important in MH\", default=True)\n bpy.types.Object.MhMsCastShadows = BoolProperty(name=\"Cast shadows\", description=\"If the material casts shadows. This has no effect in exports.\", default=True)\n bpy.types.Object.MhMsReceiveShadows = BoolProperty(name=\"Receive shadows\", description=\"If the material receives shadows. This has no effect in exports.\", default=True)\n bpy.types.Object.MhMsAlphaToCoverage = BoolProperty(name=\"AlphaToCoverage\", description=\"I have no idea what this does, but it might be important\", default=True)\n bpy.types.Object.MhMsShadeless = BoolProperty(name=\"Shadeless\", description=\"If the material is shadeless. It is unlikely you want this.\", default=False)\n bpy.types.Object.MhMsWireframe = BoolProperty(name=\"Wireframe\", description=\"If the material is to be rendered as a wireframe. It is unlikely you want this.\", default=False)\n bpy.types.Object.MhMsTransparent = BoolProperty(name=\"Transparent\", description=\"If the material is to be rendered as a transparent. It is unlikely you want this, as the normal approach is using the alpha channel in the diffuse texture.\", default=False)\n bpy.types.Object.MhMsDepthless = BoolProperty(name=\"Depthless\", description=\"If the material is to be rendered as having no depth. It is unlikely you want this.\", default=False)\n bpy.types.Object.MhMsSSSEnable = BoolProperty(name=\"SSS Enable\", description=\"If the material is to be rendered with sub surface scattering.\", default=False)\n bpy.types.Object.MhMsUseLit = BoolProperty(name=\"Use Litsphere\", description=\"Use the litsphere shader when rendering material in MakeHuman. This does not have any effect on materials outside MakeHuman\", default=True)\n bpy.types.Object.MhMsWriteBlendMaterial = BoolProperty(name=\"Write Blend material\", description=\"Stores the second material on the active object in a blend file\", default=False)\n\n # Options\n bpy.types.Object.MhMsLitsphere = bpy.props.EnumProperty(items=_litspheres, name=\"Litsphere\", description=_litsphereDescription, default=\"leather\")\n bpy.types.Object.MhMsTextures = bpy.props.EnumProperty(items=_textures, name=\"Textures\", description=_texturesDescription, default=\"NORMALIZE\")\n", "import bpy\nimport json\nimport os\nfrom bpy.props import BoolProperty, StringProperty, EnumProperty, IntProperty, CollectionProperty, FloatProperty\n_licenses = []\n_licenses.append(('CC0', 'CC0', 'Creative Commons Zero', 1))\n_licenses.append(('CC-BY', 'CC-BY', 'Creative Commons Attribution', 2))\n_licenses.append(('AGPL', 'AGPL',\n \"Affero Gnu Public License (don't use unless absolutely necessary)\", 3))\n_licenseDescription = (\n 'Set an output license for the material. This will have no practical effect apart from being included in the written MHMAT file.'\n )\n_textures = []\n_textures.append(('NORMALIZE', 'Normalize',\n 'Copy to a name based on MHMAT filename', 1))\n_textures.append(('COPY', 'Copy', 'Copy without rename', 2))\n_textures.append(('LINK', 'Link',\n 'Link to original location, with absolute pathname', 3))\n_texturesDescription = (\n 'How do we handle texture file names and paths? Unless you know what you are doing, you will want to use normalize. This will copy all images to an appropriate location with an appropriate filename, valid for uploading to the asset repository.'\n )\n_litspheres = []\n_litspheres.append(('leather', 'leather',\n 'Leather litsphere. This is appropriate for all clothes, not only leather.'\n , 1))\n_litspheres.append(('standard_skin', 'standard skin',\n 'Standard skin litsphere. This is appropriate for all skins.', 2))\n_litspheres.append(('african', 'african skin', 'African skin litsphere', 3))\n_litspheres.append(('asian', 'asian skin', 'Asian skin litsphere', 4))\n_litspheres.append(('caucasian', 'caucasian skin',\n 'Caucasian skin litsphere', 5))\n_litspheres.append(('toon01', 'toon', 'Toon skin litsphere', 6))\n_litspheres.append(('eye', 'eye', 'Eye litsphere', 7))\n_litspheres.append(('hair', 'hair', 'Hair litsphere', 8))\n_litsphereDescription = (\n 'A litsphere texture is used for emulate lighting and reflections inside MakeHuman. It thus has no effect outside MakeHuman. For any clothing (not just leather), you will want to use the \"leather\" litsphere.'\n )\n\n\ndef extraProperties():\n if not hasattr(bpy.types.Object, 'MhObjectType'):\n bpy.types.Object.MhObjectType = StringProperty(name='Object type',\n description=\n 'This is what type of MakeHuman object is (such as Clothes, Eyes...)'\n , default='')\n if not hasattr(bpy.types.Object, 'MhHuman'):\n bpy.types.Object.MhHuman = BoolProperty(name='Is MH Human',\n description='Old makeclothes property for deciding object type',\n default=False)\n bpy.types.Scene.MhMsCreateDiffuse = BoolProperty(name=\n 'Create diffuse placeholder', description=\n 'Create a placeholder for a diffuse texture', default=True)\n bpy.types.Scene.MhMsCreateNormal = BoolProperty(name=\n 'Create normal map placeholder', description=\n 'Create a placeholder for a normal map', default=False)\n bpy.types.Scene.MhMsCreateBump = BoolProperty(name=\n 'Create bump map placeholder', description=\n 'Create a placeholder for a bump map', default=False)\n bpy.types.Scene.MhMsOverwrite1 = BoolProperty(name=\n 'Overwrite existing (create)', description=\n 'Overwrite existing material(s) on object', default=False)\n bpy.types.Scene.MhMsOverwrite2 = BoolProperty(name=\n 'Overwrite existing (import)', description=\n 'Overwrite existing material(s) on object', default=False)\n bpy.types.Object.MhMsName = StringProperty(name='Name', description=\n 'The name of this material. This will have little practical effect apart from being written to the mhmat file.'\n , default='material')\n bpy.types.Object.MhMsTag = StringProperty(name='Tag', description=\n 'A category the material fits into, for example \"blond\" or \"female\". This will influence sorting and filtering in MH.'\n , default='')\n bpy.types.Object.MhMsDescription = StringProperty(name='Description',\n description=\n 'A description of the material. It will have little practical effect apart from being written to the mhmat file.'\n , default='')\n bpy.types.Object.MhMsMatLicense = bpy.props.EnumProperty(items=\n _licenses, name='License', description=_licenseDescription, default\n ='CC0')\n bpy.types.Object.MhMsAuthor = StringProperty(name='Author', description\n =\n 'The author of this material. This will have little practical effect apart from being written to the mhmat file.'\n , default='')\n bpy.types.Object.MhMsHomepage = StringProperty(name='Home page',\n description=\n 'The home page of the material, if any. This will have little practical effect apart from being written to the mhmat file.'\n , default='')\n bpy.types.Object.MhMsBackfaceCull = BoolProperty(name=\n 'Backface culling', description=\n 'If the back side of faces with the material should be invisible. This has no effect in exports, but may be important in MH'\n , default=True)\n bpy.types.Object.MhMsCastShadows = BoolProperty(name='Cast shadows',\n description=\n 'If the material casts shadows. This has no effect in exports.',\n default=True)\n bpy.types.Object.MhMsReceiveShadows = BoolProperty(name=\n 'Receive shadows', description=\n 'If the material receives shadows. This has no effect in exports.',\n default=True)\n bpy.types.Object.MhMsAlphaToCoverage = BoolProperty(name=\n 'AlphaToCoverage', description=\n 'I have no idea what this does, but it might be important', default\n =True)\n bpy.types.Object.MhMsShadeless = BoolProperty(name='Shadeless',\n description=\n 'If the material is shadeless. It is unlikely you want this.',\n default=False)\n bpy.types.Object.MhMsWireframe = BoolProperty(name='Wireframe',\n description=\n 'If the material is to be rendered as a wireframe. It is unlikely you want this.'\n , default=False)\n bpy.types.Object.MhMsTransparent = BoolProperty(name='Transparent',\n description=\n 'If the material is to be rendered as a transparent. It is unlikely you want this, as the normal approach is using the alpha channel in the diffuse texture.'\n , default=False)\n bpy.types.Object.MhMsDepthless = BoolProperty(name='Depthless',\n description=\n 'If the material is to be rendered as having no depth. It is unlikely you want this.'\n , default=False)\n bpy.types.Object.MhMsSSSEnable = BoolProperty(name='SSS Enable',\n description=\n 'If the material is to be rendered with sub surface scattering.',\n default=False)\n bpy.types.Object.MhMsUseLit = BoolProperty(name='Use Litsphere',\n description=\n 'Use the litsphere shader when rendering material in MakeHuman. This does not have any effect on materials outside MakeHuman'\n , default=True)\n bpy.types.Object.MhMsWriteBlendMaterial = BoolProperty(name=\n 'Write Blend material', description=\n 'Stores the second material on the active object in a blend file',\n default=False)\n bpy.types.Object.MhMsLitsphere = bpy.props.EnumProperty(items=\n _litspheres, name='Litsphere', description=_litsphereDescription,\n default='leather')\n bpy.types.Object.MhMsTextures = bpy.props.EnumProperty(items=_textures,\n name='Textures', description=_texturesDescription, default='NORMALIZE')\n", "<import token>\n_licenses = []\n_licenses.append(('CC0', 'CC0', 'Creative Commons Zero', 1))\n_licenses.append(('CC-BY', 'CC-BY', 'Creative Commons Attribution', 2))\n_licenses.append(('AGPL', 'AGPL',\n \"Affero Gnu Public License (don't use unless absolutely necessary)\", 3))\n_licenseDescription = (\n 'Set an output license for the material. This will have no practical effect apart from being included in the written MHMAT file.'\n )\n_textures = []\n_textures.append(('NORMALIZE', 'Normalize',\n 'Copy to a name based on MHMAT filename', 1))\n_textures.append(('COPY', 'Copy', 'Copy without rename', 2))\n_textures.append(('LINK', 'Link',\n 'Link to original location, with absolute pathname', 3))\n_texturesDescription = (\n 'How do we handle texture file names and paths? Unless you know what you are doing, you will want to use normalize. This will copy all images to an appropriate location with an appropriate filename, valid for uploading to the asset repository.'\n )\n_litspheres = []\n_litspheres.append(('leather', 'leather',\n 'Leather litsphere. This is appropriate for all clothes, not only leather.'\n , 1))\n_litspheres.append(('standard_skin', 'standard skin',\n 'Standard skin litsphere. This is appropriate for all skins.', 2))\n_litspheres.append(('african', 'african skin', 'African skin litsphere', 3))\n_litspheres.append(('asian', 'asian skin', 'Asian skin litsphere', 4))\n_litspheres.append(('caucasian', 'caucasian skin',\n 'Caucasian skin litsphere', 5))\n_litspheres.append(('toon01', 'toon', 'Toon skin litsphere', 6))\n_litspheres.append(('eye', 'eye', 'Eye litsphere', 7))\n_litspheres.append(('hair', 'hair', 'Hair litsphere', 8))\n_litsphereDescription = (\n 'A litsphere texture is used for emulate lighting and reflections inside MakeHuman. It thus has no effect outside MakeHuman. For any clothing (not just leather), you will want to use the \"leather\" litsphere.'\n )\n\n\ndef extraProperties():\n if not hasattr(bpy.types.Object, 'MhObjectType'):\n bpy.types.Object.MhObjectType = StringProperty(name='Object type',\n description=\n 'This is what type of MakeHuman object is (such as Clothes, Eyes...)'\n , default='')\n if not hasattr(bpy.types.Object, 'MhHuman'):\n bpy.types.Object.MhHuman = BoolProperty(name='Is MH Human',\n description='Old makeclothes property for deciding object type',\n default=False)\n bpy.types.Scene.MhMsCreateDiffuse = BoolProperty(name=\n 'Create diffuse placeholder', description=\n 'Create a placeholder for a diffuse texture', default=True)\n bpy.types.Scene.MhMsCreateNormal = BoolProperty(name=\n 'Create normal map placeholder', description=\n 'Create a placeholder for a normal map', default=False)\n bpy.types.Scene.MhMsCreateBump = BoolProperty(name=\n 'Create bump map placeholder', description=\n 'Create a placeholder for a bump map', default=False)\n bpy.types.Scene.MhMsOverwrite1 = BoolProperty(name=\n 'Overwrite existing (create)', description=\n 'Overwrite existing material(s) on object', default=False)\n bpy.types.Scene.MhMsOverwrite2 = BoolProperty(name=\n 'Overwrite existing (import)', description=\n 'Overwrite existing material(s) on object', default=False)\n bpy.types.Object.MhMsName = StringProperty(name='Name', description=\n 'The name of this material. This will have little practical effect apart from being written to the mhmat file.'\n , default='material')\n bpy.types.Object.MhMsTag = StringProperty(name='Tag', description=\n 'A category the material fits into, for example \"blond\" or \"female\". This will influence sorting and filtering in MH.'\n , default='')\n bpy.types.Object.MhMsDescription = StringProperty(name='Description',\n description=\n 'A description of the material. It will have little practical effect apart from being written to the mhmat file.'\n , default='')\n bpy.types.Object.MhMsMatLicense = bpy.props.EnumProperty(items=\n _licenses, name='License', description=_licenseDescription, default\n ='CC0')\n bpy.types.Object.MhMsAuthor = StringProperty(name='Author', description\n =\n 'The author of this material. This will have little practical effect apart from being written to the mhmat file.'\n , default='')\n bpy.types.Object.MhMsHomepage = StringProperty(name='Home page',\n description=\n 'The home page of the material, if any. This will have little practical effect apart from being written to the mhmat file.'\n , default='')\n bpy.types.Object.MhMsBackfaceCull = BoolProperty(name=\n 'Backface culling', description=\n 'If the back side of faces with the material should be invisible. This has no effect in exports, but may be important in MH'\n , default=True)\n bpy.types.Object.MhMsCastShadows = BoolProperty(name='Cast shadows',\n description=\n 'If the material casts shadows. This has no effect in exports.',\n default=True)\n bpy.types.Object.MhMsReceiveShadows = BoolProperty(name=\n 'Receive shadows', description=\n 'If the material receives shadows. This has no effect in exports.',\n default=True)\n bpy.types.Object.MhMsAlphaToCoverage = BoolProperty(name=\n 'AlphaToCoverage', description=\n 'I have no idea what this does, but it might be important', default\n =True)\n bpy.types.Object.MhMsShadeless = BoolProperty(name='Shadeless',\n description=\n 'If the material is shadeless. It is unlikely you want this.',\n default=False)\n bpy.types.Object.MhMsWireframe = BoolProperty(name='Wireframe',\n description=\n 'If the material is to be rendered as a wireframe. It is unlikely you want this.'\n , default=False)\n bpy.types.Object.MhMsTransparent = BoolProperty(name='Transparent',\n description=\n 'If the material is to be rendered as a transparent. It is unlikely you want this, as the normal approach is using the alpha channel in the diffuse texture.'\n , default=False)\n bpy.types.Object.MhMsDepthless = BoolProperty(name='Depthless',\n description=\n 'If the material is to be rendered as having no depth. It is unlikely you want this.'\n , default=False)\n bpy.types.Object.MhMsSSSEnable = BoolProperty(name='SSS Enable',\n description=\n 'If the material is to be rendered with sub surface scattering.',\n default=False)\n bpy.types.Object.MhMsUseLit = BoolProperty(name='Use Litsphere',\n description=\n 'Use the litsphere shader when rendering material in MakeHuman. This does not have any effect on materials outside MakeHuman'\n , default=True)\n bpy.types.Object.MhMsWriteBlendMaterial = BoolProperty(name=\n 'Write Blend material', description=\n 'Stores the second material on the active object in a blend file',\n default=False)\n bpy.types.Object.MhMsLitsphere = bpy.props.EnumProperty(items=\n _litspheres, name='Litsphere', description=_litsphereDescription,\n default='leather')\n bpy.types.Object.MhMsTextures = bpy.props.EnumProperty(items=_textures,\n name='Textures', description=_texturesDescription, default='NORMALIZE')\n", "<import token>\n<assignment token>\n_licenses.append(('CC0', 'CC0', 'Creative Commons Zero', 1))\n_licenses.append(('CC-BY', 'CC-BY', 'Creative Commons Attribution', 2))\n_licenses.append(('AGPL', 'AGPL',\n \"Affero Gnu Public License (don't use unless absolutely necessary)\", 3))\n<assignment token>\n_textures.append(('NORMALIZE', 'Normalize',\n 'Copy to a name based on MHMAT filename', 1))\n_textures.append(('COPY', 'Copy', 'Copy without rename', 2))\n_textures.append(('LINK', 'Link',\n 'Link to original location, with absolute pathname', 3))\n<assignment token>\n_litspheres.append(('leather', 'leather',\n 'Leather litsphere. This is appropriate for all clothes, not only leather.'\n , 1))\n_litspheres.append(('standard_skin', 'standard skin',\n 'Standard skin litsphere. This is appropriate for all skins.', 2))\n_litspheres.append(('african', 'african skin', 'African skin litsphere', 3))\n_litspheres.append(('asian', 'asian skin', 'Asian skin litsphere', 4))\n_litspheres.append(('caucasian', 'caucasian skin',\n 'Caucasian skin litsphere', 5))\n_litspheres.append(('toon01', 'toon', 'Toon skin litsphere', 6))\n_litspheres.append(('eye', 'eye', 'Eye litsphere', 7))\n_litspheres.append(('hair', 'hair', 'Hair litsphere', 8))\n<assignment token>\n\n\ndef extraProperties():\n if not hasattr(bpy.types.Object, 'MhObjectType'):\n bpy.types.Object.MhObjectType = StringProperty(name='Object type',\n description=\n 'This is what type of MakeHuman object is (such as Clothes, Eyes...)'\n , default='')\n if not hasattr(bpy.types.Object, 'MhHuman'):\n bpy.types.Object.MhHuman = BoolProperty(name='Is MH Human',\n description='Old makeclothes property for deciding object type',\n default=False)\n bpy.types.Scene.MhMsCreateDiffuse = BoolProperty(name=\n 'Create diffuse placeholder', description=\n 'Create a placeholder for a diffuse texture', default=True)\n bpy.types.Scene.MhMsCreateNormal = BoolProperty(name=\n 'Create normal map placeholder', description=\n 'Create a placeholder for a normal map', default=False)\n bpy.types.Scene.MhMsCreateBump = BoolProperty(name=\n 'Create bump map placeholder', description=\n 'Create a placeholder for a bump map', default=False)\n bpy.types.Scene.MhMsOverwrite1 = BoolProperty(name=\n 'Overwrite existing (create)', description=\n 'Overwrite existing material(s) on object', default=False)\n bpy.types.Scene.MhMsOverwrite2 = BoolProperty(name=\n 'Overwrite existing (import)', description=\n 'Overwrite existing material(s) on object', default=False)\n bpy.types.Object.MhMsName = StringProperty(name='Name', description=\n 'The name of this material. This will have little practical effect apart from being written to the mhmat file.'\n , default='material')\n bpy.types.Object.MhMsTag = StringProperty(name='Tag', description=\n 'A category the material fits into, for example \"blond\" or \"female\". This will influence sorting and filtering in MH.'\n , default='')\n bpy.types.Object.MhMsDescription = StringProperty(name='Description',\n description=\n 'A description of the material. It will have little practical effect apart from being written to the mhmat file.'\n , default='')\n bpy.types.Object.MhMsMatLicense = bpy.props.EnumProperty(items=\n _licenses, name='License', description=_licenseDescription, default\n ='CC0')\n bpy.types.Object.MhMsAuthor = StringProperty(name='Author', description\n =\n 'The author of this material. This will have little practical effect apart from being written to the mhmat file.'\n , default='')\n bpy.types.Object.MhMsHomepage = StringProperty(name='Home page',\n description=\n 'The home page of the material, if any. This will have little practical effect apart from being written to the mhmat file.'\n , default='')\n bpy.types.Object.MhMsBackfaceCull = BoolProperty(name=\n 'Backface culling', description=\n 'If the back side of faces with the material should be invisible. This has no effect in exports, but may be important in MH'\n , default=True)\n bpy.types.Object.MhMsCastShadows = BoolProperty(name='Cast shadows',\n description=\n 'If the material casts shadows. This has no effect in exports.',\n default=True)\n bpy.types.Object.MhMsReceiveShadows = BoolProperty(name=\n 'Receive shadows', description=\n 'If the material receives shadows. This has no effect in exports.',\n default=True)\n bpy.types.Object.MhMsAlphaToCoverage = BoolProperty(name=\n 'AlphaToCoverage', description=\n 'I have no idea what this does, but it might be important', default\n =True)\n bpy.types.Object.MhMsShadeless = BoolProperty(name='Shadeless',\n description=\n 'If the material is shadeless. It is unlikely you want this.',\n default=False)\n bpy.types.Object.MhMsWireframe = BoolProperty(name='Wireframe',\n description=\n 'If the material is to be rendered as a wireframe. It is unlikely you want this.'\n , default=False)\n bpy.types.Object.MhMsTransparent = BoolProperty(name='Transparent',\n description=\n 'If the material is to be rendered as a transparent. It is unlikely you want this, as the normal approach is using the alpha channel in the diffuse texture.'\n , default=False)\n bpy.types.Object.MhMsDepthless = BoolProperty(name='Depthless',\n description=\n 'If the material is to be rendered as having no depth. It is unlikely you want this.'\n , default=False)\n bpy.types.Object.MhMsSSSEnable = BoolProperty(name='SSS Enable',\n description=\n 'If the material is to be rendered with sub surface scattering.',\n default=False)\n bpy.types.Object.MhMsUseLit = BoolProperty(name='Use Litsphere',\n description=\n 'Use the litsphere shader when rendering material in MakeHuman. This does not have any effect on materials outside MakeHuman'\n , default=True)\n bpy.types.Object.MhMsWriteBlendMaterial = BoolProperty(name=\n 'Write Blend material', description=\n 'Stores the second material on the active object in a blend file',\n default=False)\n bpy.types.Object.MhMsLitsphere = bpy.props.EnumProperty(items=\n _litspheres, name='Litsphere', description=_litsphereDescription,\n default='leather')\n bpy.types.Object.MhMsTextures = bpy.props.EnumProperty(items=_textures,\n name='Textures', description=_texturesDescription, default='NORMALIZE')\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n\n\ndef extraProperties():\n if not hasattr(bpy.types.Object, 'MhObjectType'):\n bpy.types.Object.MhObjectType = StringProperty(name='Object type',\n description=\n 'This is what type of MakeHuman object is (such as Clothes, Eyes...)'\n , default='')\n if not hasattr(bpy.types.Object, 'MhHuman'):\n bpy.types.Object.MhHuman = BoolProperty(name='Is MH Human',\n description='Old makeclothes property for deciding object type',\n default=False)\n bpy.types.Scene.MhMsCreateDiffuse = BoolProperty(name=\n 'Create diffuse placeholder', description=\n 'Create a placeholder for a diffuse texture', default=True)\n bpy.types.Scene.MhMsCreateNormal = BoolProperty(name=\n 'Create normal map placeholder', description=\n 'Create a placeholder for a normal map', default=False)\n bpy.types.Scene.MhMsCreateBump = BoolProperty(name=\n 'Create bump map placeholder', description=\n 'Create a placeholder for a bump map', default=False)\n bpy.types.Scene.MhMsOverwrite1 = BoolProperty(name=\n 'Overwrite existing (create)', description=\n 'Overwrite existing material(s) on object', default=False)\n bpy.types.Scene.MhMsOverwrite2 = BoolProperty(name=\n 'Overwrite existing (import)', description=\n 'Overwrite existing material(s) on object', default=False)\n bpy.types.Object.MhMsName = StringProperty(name='Name', description=\n 'The name of this material. This will have little practical effect apart from being written to the mhmat file.'\n , default='material')\n bpy.types.Object.MhMsTag = StringProperty(name='Tag', description=\n 'A category the material fits into, for example \"blond\" or \"female\". This will influence sorting and filtering in MH.'\n , default='')\n bpy.types.Object.MhMsDescription = StringProperty(name='Description',\n description=\n 'A description of the material. It will have little practical effect apart from being written to the mhmat file.'\n , default='')\n bpy.types.Object.MhMsMatLicense = bpy.props.EnumProperty(items=\n _licenses, name='License', description=_licenseDescription, default\n ='CC0')\n bpy.types.Object.MhMsAuthor = StringProperty(name='Author', description\n =\n 'The author of this material. This will have little practical effect apart from being written to the mhmat file.'\n , default='')\n bpy.types.Object.MhMsHomepage = StringProperty(name='Home page',\n description=\n 'The home page of the material, if any. This will have little practical effect apart from being written to the mhmat file.'\n , default='')\n bpy.types.Object.MhMsBackfaceCull = BoolProperty(name=\n 'Backface culling', description=\n 'If the back side of faces with the material should be invisible. This has no effect in exports, but may be important in MH'\n , default=True)\n bpy.types.Object.MhMsCastShadows = BoolProperty(name='Cast shadows',\n description=\n 'If the material casts shadows. This has no effect in exports.',\n default=True)\n bpy.types.Object.MhMsReceiveShadows = BoolProperty(name=\n 'Receive shadows', description=\n 'If the material receives shadows. This has no effect in exports.',\n default=True)\n bpy.types.Object.MhMsAlphaToCoverage = BoolProperty(name=\n 'AlphaToCoverage', description=\n 'I have no idea what this does, but it might be important', default\n =True)\n bpy.types.Object.MhMsShadeless = BoolProperty(name='Shadeless',\n description=\n 'If the material is shadeless. It is unlikely you want this.',\n default=False)\n bpy.types.Object.MhMsWireframe = BoolProperty(name='Wireframe',\n description=\n 'If the material is to be rendered as a wireframe. It is unlikely you want this.'\n , default=False)\n bpy.types.Object.MhMsTransparent = BoolProperty(name='Transparent',\n description=\n 'If the material is to be rendered as a transparent. It is unlikely you want this, as the normal approach is using the alpha channel in the diffuse texture.'\n , default=False)\n bpy.types.Object.MhMsDepthless = BoolProperty(name='Depthless',\n description=\n 'If the material is to be rendered as having no depth. It is unlikely you want this.'\n , default=False)\n bpy.types.Object.MhMsSSSEnable = BoolProperty(name='SSS Enable',\n description=\n 'If the material is to be rendered with sub surface scattering.',\n default=False)\n bpy.types.Object.MhMsUseLit = BoolProperty(name='Use Litsphere',\n description=\n 'Use the litsphere shader when rendering material in MakeHuman. This does not have any effect on materials outside MakeHuman'\n , default=True)\n bpy.types.Object.MhMsWriteBlendMaterial = BoolProperty(name=\n 'Write Blend material', description=\n 'Stores the second material on the active object in a blend file',\n default=False)\n bpy.types.Object.MhMsLitsphere = bpy.props.EnumProperty(items=\n _litspheres, name='Litsphere', description=_litsphereDescription,\n default='leather')\n bpy.types.Object.MhMsTextures = bpy.props.EnumProperty(items=_textures,\n name='Textures', description=_texturesDescription, default='NORMALIZE')\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<function token>\n" ]
false
98,853
7854931af9b60f22faf23ecd630bb083c8a20c43
from django.urls import path from .views import DecrementProductInCart, PlaceOrder, SignUpUser,DeleteUser,UpdateInfoUser,GetCartInfo,AddIntoCart,DeleteFromCart,PlaceOrder,CancelOrder,GetOrderInfo,LoginUser,LogoutUSer,IncrementProductInCart,DecrementProductInCart urlpatterns = [ path('api/create-user/', SignUpUser.as_view()), path('api/delete-user/', DeleteUser.as_view()), path('api/update-user/', UpdateInfoUser.as_view()), path('api/get-cart/', GetCartInfo.as_view()), path('api/add-cart/', AddIntoCart.as_view()), path('api/delete-cart/', DeleteFromCart.as_view()), path('api/place-order/', PlaceOrder.as_view()), path('api/cancel-order/', CancelOrder.as_view()), path('api/get-order/', GetOrderInfo.as_view()), path('api/login-user/', LoginUser.as_view()), path('api/logout-user/', LogoutUSer.as_view()), path('api/increment-cart-product/', IncrementProductInCart.as_view()), path('api/decrement-cart-product/', DecrementProductInCart.as_view()), ]
[ "from django.urls import path\nfrom .views import DecrementProductInCart, PlaceOrder, SignUpUser,DeleteUser,UpdateInfoUser,GetCartInfo,AddIntoCart,DeleteFromCart,PlaceOrder,CancelOrder,GetOrderInfo,LoginUser,LogoutUSer,IncrementProductInCart,DecrementProductInCart\n\n\nurlpatterns = [\n path('api/create-user/', SignUpUser.as_view()),\n path('api/delete-user/', DeleteUser.as_view()),\n path('api/update-user/', UpdateInfoUser.as_view()),\n path('api/get-cart/', GetCartInfo.as_view()),\n path('api/add-cart/', AddIntoCart.as_view()),\n path('api/delete-cart/', DeleteFromCart.as_view()),\n path('api/place-order/', PlaceOrder.as_view()),\n path('api/cancel-order/', CancelOrder.as_view()),\n path('api/get-order/', GetOrderInfo.as_view()),\n path('api/login-user/', LoginUser.as_view()),\n path('api/logout-user/', LogoutUSer.as_view()),\n path('api/increment-cart-product/', IncrementProductInCart.as_view()),\n path('api/decrement-cart-product/', DecrementProductInCart.as_view()),\n]\n", "from django.urls import path\nfrom .views import DecrementProductInCart, PlaceOrder, SignUpUser, DeleteUser, UpdateInfoUser, GetCartInfo, AddIntoCart, DeleteFromCart, PlaceOrder, CancelOrder, GetOrderInfo, LoginUser, LogoutUSer, IncrementProductInCart, DecrementProductInCart\nurlpatterns = [path('api/create-user/', SignUpUser.as_view()), path(\n 'api/delete-user/', DeleteUser.as_view()), path('api/update-user/',\n UpdateInfoUser.as_view()), path('api/get-cart/', GetCartInfo.as_view()),\n path('api/add-cart/', AddIntoCart.as_view()), path('api/delete-cart/',\n DeleteFromCart.as_view()), path('api/place-order/', PlaceOrder.as_view(\n )), path('api/cancel-order/', CancelOrder.as_view()), path(\n 'api/get-order/', GetOrderInfo.as_view()), path('api/login-user/',\n LoginUser.as_view()), path('api/logout-user/', LogoutUSer.as_view()),\n path('api/increment-cart-product/', IncrementProductInCart.as_view()),\n path('api/decrement-cart-product/', DecrementProductInCart.as_view())]\n", "<import token>\nurlpatterns = [path('api/create-user/', SignUpUser.as_view()), path(\n 'api/delete-user/', DeleteUser.as_view()), path('api/update-user/',\n UpdateInfoUser.as_view()), path('api/get-cart/', GetCartInfo.as_view()),\n path('api/add-cart/', AddIntoCart.as_view()), path('api/delete-cart/',\n DeleteFromCart.as_view()), path('api/place-order/', PlaceOrder.as_view(\n )), path('api/cancel-order/', CancelOrder.as_view()), path(\n 'api/get-order/', GetOrderInfo.as_view()), path('api/login-user/',\n LoginUser.as_view()), path('api/logout-user/', LogoutUSer.as_view()),\n path('api/increment-cart-product/', IncrementProductInCart.as_view()),\n path('api/decrement-cart-product/', DecrementProductInCart.as_view())]\n", "<import token>\n<assignment token>\n" ]
false
98,854
defc292986aed1d932d7143b7a421464875ebfcd
from keras.utils import np_utils from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D, GlobalAveragePooling2D,TimeDistributed, LSTM, Conv3D from keras.applications import VGG16 from keras import backend as K from keras import regularizers from sklearn.preprocessing import OneHotEncoder import os import numpy as np import nibabel as nib # to read nii files import shutil # for file operations import glob # use to make file list from diectory import matplotlib.pyplot as plt import cv2 # opencv library import matplotlib.image as mpimg import random from sklearn.model_selection import train_test_split import traceback import sys import keras from gen import DataGenerator classes = ['Alzheimer',"MCI", 'Normal'] # Declaring the home variables that will be used throughout the script. home_files_dir = '/home/ubuntu/Select_original_fmri/' #output_dir='/home/ubuntu/final_src/DeepNeuralnets--Alzheimer/videoclassification/' train_list=[] test_list=[] file_list=[] for class_ in classes: print ('working on ' + class_ + '...') for root, dir ,files in os.walk(os.path.join('output_array', class_)): length=len(files) print("root: ",root) if class_ == 'Alzheimer': for file_ in files: npy = np.load(root+'/'+file_) if npy.shape == (64, 64, 6720): file_list.append((npy,0)) #image data division test_list=file_list[:int(length*0.2)] train_list=file_list[len(test_list):] elif class_ == 'MCI': len2=len(file_list) for file_ in files[:25]: npy = np.load(root+'/'+file_) if npy.shape == (64, 64, 6720): file_list.append((npy,1)) #image data diision test_list +=file_list[len2:int(len2+length*0.2)] train_list += file_list[int(len2+length*0.2):] # for Normal Class else: len3=len(file_list) for file_ in files: npy = np.load(root+'/'+file_) if npy.shape == (64, 64, 6720): file_list.append((npy,2)) #image data diision test_list += file_list[len3:int(len3+length*0.2)] train_list += file_list[int(len3+length*0.2):] #print ("length of train list: ",len(train_list)) #print("length of train labels:",len(train_labels)) #print("length of test list:",len(test_list)) #print("length of test labels:",len(test_labels)) np.random.shuffle(train_list) np.random.shuffle(test_list) X_train,Y_train=zip(*train_list) X_test,Y_test=zip(*test_list) #X_train=np.array(X_train,dtype=np.uint8) #Y_train=np.array(Y_train,dtype=np.uint8) #X_test=np.array(X_test,dtype=np.uint8) #print X_test.shape #Y_test=np.array(Y_test,dtype=np.uint8) X_test = np.transpose(X_test, [0, 3, 2, 1]) #print X_train.shape #X_train = np.transpose(X_train, [0, 3, 2, 1]) #for i in X_train: # print("X train shape: ",i.shape) #print("Y label shape: ",Y_train.shape) #print("X test shape: ",X_test.shape) #print("Y test label: ",Y_test.shape) #print('done...') # Parameters params = {'dim_x': 6720, 'dim_y': 64, 'dim_z': 64, 'batch_size': 1, 'shuffle': True} training_generator = DataGenerator(**params).generate(Y_train, X_train) validation_generator = DataGenerator(**params).generate(Y_test, X_test) batch_size = 1 input_shape = [6720, 64,64] #Y_train= np_utils.to_categorical(Y_train, num_classes=3) #Y_test= np_utils.to_categorical(Y_test, num_classes=3) #np.random.shuffle(data) #print(X_train.shape) #print(Y_train.shape) #print(X_test.shape) #print(Y_test.shape) #del(train_list) #del(test_list) model = Sequential() model.add(Conv2D( 32, (3,3), activation='relu', input_shape=input_shape)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(64, (3,3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(128, (3,3), activation='relu')) model.add(Conv2D(128, (3,3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(256, (2,2), activation='relu')) model.add(Conv2D(256, (2,2), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(32)) model.add(Dropout(0.5)) model.add(Dense(3, activation='softmax')) model.summary() model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy']) print Y_train print Y_test # model.fit(X_train, Y_train,batch_size=batch_size, epochs=100,verbose=1,validation_data=(X_test, Y_test)) # Train model on dataset model.fit_generator(generator = training_generator, steps_per_epoch = len(X_train)//batch_size, epochs = 2, validation_data = validation_generator, validation_steps = len(X_test)//batch_size) Y_test= np_utils.to_categorical(Y_test, num_classes=3) print X_test[0].shape for i in range(len(X_train)-2): print i,i+1 print model.predict_classes(nX_train[i:i+1]) #score = model.evaluate(X_test, Y_test, verbose=0) json_string = model.to_json() with open("arch.json","w") as f: f.write(json_string) model.save_weights("weights.h5") #print('Test loss:', score[0]) #print('Test accuracy:', score[1])
[ "from keras.utils import np_utils\nfrom keras.models import Sequential\nfrom keras.layers import Dense, Dropout, Flatten\nfrom keras.layers import Conv2D, MaxPooling2D, GlobalAveragePooling2D,TimeDistributed, LSTM, Conv3D\nfrom keras.applications import VGG16\nfrom keras import backend as K\nfrom keras import regularizers\nfrom sklearn.preprocessing import OneHotEncoder\nimport os\nimport numpy as np\nimport nibabel as nib # to read nii files\nimport shutil # for file operations\nimport glob # use to make file list from diectory\nimport matplotlib.pyplot as plt\nimport cv2 # opencv library\nimport matplotlib.image as mpimg\nimport random\nfrom sklearn.model_selection import train_test_split \nimport traceback\nimport sys\nimport keras\nfrom gen import DataGenerator\n\nclasses = ['Alzheimer',\"MCI\", 'Normal']\n# Declaring the home variables that will be used throughout the script.\n\nhome_files_dir = '/home/ubuntu/Select_original_fmri/'\n#output_dir='/home/ubuntu/final_src/DeepNeuralnets--Alzheimer/videoclassification/'\n\n\ntrain_list=[]\ntest_list=[]\nfile_list=[]\n\nfor class_ in classes:\n print ('working on ' + class_ + '...')\n \n for root, dir ,files in os.walk(os.path.join('output_array', class_)): \n length=len(files)\n print(\"root: \",root)\n if class_ == 'Alzheimer': \n for file_ in files: \n npy = np.load(root+'/'+file_)\n if npy.shape == (64, 64, 6720): \n file_list.append((npy,0))\n #image data division\n test_list=file_list[:int(length*0.2)]\n train_list=file_list[len(test_list):]\n \n \n elif class_ == 'MCI':\n len2=len(file_list)\n for file_ in files[:25]: \n npy = np.load(root+'/'+file_)\n if npy.shape == (64, 64, 6720): \n file_list.append((npy,1))\n #image data diision\n test_list +=file_list[len2:int(len2+length*0.2)]\n train_list += file_list[int(len2+length*0.2):]\n \n \n # for Normal Class\n \n else:\n len3=len(file_list)\n for file_ in files: \n npy = np.load(root+'/'+file_)\n if npy.shape == (64, 64, 6720): \n file_list.append((npy,2))\n #image data diision\n test_list += file_list[len3:int(len3+length*0.2)]\n train_list += file_list[int(len3+length*0.2):]\n \n#print (\"length of train list: \",len(train_list))\n#print(\"length of train labels:\",len(train_labels))\n#print(\"length of test list:\",len(test_list))\n#print(\"length of test labels:\",len(test_labels))\nnp.random.shuffle(train_list)\nnp.random.shuffle(test_list)\nX_train,Y_train=zip(*train_list)\nX_test,Y_test=zip(*test_list)\n\n#X_train=np.array(X_train,dtype=np.uint8)\n#Y_train=np.array(Y_train,dtype=np.uint8)\n#X_test=np.array(X_test,dtype=np.uint8)\n#print X_test.shape\n#Y_test=np.array(Y_test,dtype=np.uint8)\nX_test = np.transpose(X_test, [0, 3, 2, 1])\n#print X_train.shape\n#X_train = np.transpose(X_train, [0, 3, 2, 1])\n\n#for i in X_train:\n \n# print(\"X train shape: \",i.shape)\n#print(\"Y label shape: \",Y_train.shape)\n#print(\"X test shape: \",X_test.shape)\n#print(\"Y test label: \",Y_test.shape)\n#print('done...')\n \n# Parameters\nparams = {'dim_x': 6720,\n 'dim_y': 64,\n 'dim_z': 64,\n 'batch_size': 1,\n 'shuffle': True}\n\ntraining_generator = DataGenerator(**params).generate(Y_train, X_train)\nvalidation_generator = DataGenerator(**params).generate(Y_test, X_test)\n \n\nbatch_size = 1\ninput_shape = [6720, 64,64]\n#Y_train= np_utils.to_categorical(Y_train, num_classes=3)\n#Y_test= np_utils.to_categorical(Y_test, num_classes=3)\n#np.random.shuffle(data)\n#print(X_train.shape)\n#print(Y_train.shape)\n#print(X_test.shape)\n#print(Y_test.shape)\n#del(train_list)\n#del(test_list)\nmodel = Sequential()\nmodel.add(Conv2D(\n 32, (3,3), activation='relu', input_shape=input_shape))\nmodel.add(MaxPooling2D(pool_size=(2, 2)))\nmodel.add(Conv2D(64, (3,3), activation='relu'))\nmodel.add(MaxPooling2D(pool_size=(2, 2)))\nmodel.add(Conv2D(128, (3,3), activation='relu'))\nmodel.add(Conv2D(128, (3,3), activation='relu'))\nmodel.add(MaxPooling2D(pool_size=(2, 2)))\nmodel.add(Conv2D(256, (2,2), activation='relu'))\nmodel.add(Conv2D(256, (2,2), activation='relu'))\nmodel.add(MaxPooling2D(pool_size=(2, 2)))\n\nmodel.add(Flatten())\nmodel.add(Dense(32))\nmodel.add(Dropout(0.5))\nmodel.add(Dense(3, activation='softmax'))\nmodel.summary()\n\nmodel.compile(loss=keras.losses.categorical_crossentropy,\n optimizer=keras.optimizers.Adadelta(),\n metrics=['accuracy'])\nprint Y_train\nprint Y_test\n# model.fit(X_train, Y_train,batch_size=batch_size, epochs=100,verbose=1,validation_data=(X_test, Y_test))\n# Train model on dataset\nmodel.fit_generator(generator = training_generator,\n steps_per_epoch = len(X_train)//batch_size,\n epochs = 2,\n validation_data = validation_generator,\n validation_steps = len(X_test)//batch_size)\nY_test= np_utils.to_categorical(Y_test, num_classes=3)\nprint X_test[0].shape\nfor i in range(len(X_train)-2):\n print i,i+1\n print model.predict_classes(nX_train[i:i+1])\n#score = model.evaluate(X_test, Y_test, verbose=0)\njson_string = model.to_json()\nwith open(\"arch.json\",\"w\") as f:\n f.write(json_string)\nmodel.save_weights(\"weights.h5\")\n#print('Test loss:', score[0])\n#print('Test accuracy:', score[1])" ]
true
98,855
12311601c53eb67b532cd375cf5eac8ca83e0da8
def gcd(a, b): while b: a, b = b, a % b return a def lcm(a, b): return a * b // gcd(a, b) while True: try: a, b = list(map(int, input().split())) print(lcm(a, b)) except: break
[ "def gcd(a, b):\n while b:\n a, b = b, a % b\n return a\n\n\ndef lcm(a, b):\n return a * b // gcd(a, b)\n\n\nwhile True:\n try:\n a, b = list(map(int, input().split()))\n print(lcm(a, b))\n except:\n break\n", "def gcd(a, b):\n while b:\n a, b = b, a % b\n return a\n\n\ndef lcm(a, b):\n return a * b // gcd(a, b)\n\n\n<code token>\n", "<function token>\n\n\ndef lcm(a, b):\n return a * b // gcd(a, b)\n\n\n<code token>\n", "<function token>\n<function token>\n<code token>\n" ]
false
98,856
f1983f3791c6038f5a697cf2b9856a62d017b016
#!/usr/bin/env python import sys, os ; sys.path.append(os.getcwd()) import unicodedata import collections import nacltaia import base91a import codecs import select import socket import time import pwd import re taias = dict() RE = 'a-zA-Z0-9^(\)\-_{\}[\]|' re_SPLIT_SPACE = re.compile(' +',re.IGNORECASE).split re_SPLIT_SPACE_COLON = re.compile(' +:?',re.IGNORECASE).split re_SPLIT_BRACKETS = re.compile('\[|]',re.IGNORECASE).split re_CRYPTOSERV = re.compile('^:['+RE+']+!nacltaia-otr@service',re.IGNORECASE).search re_NICK_PRIVMSG_NOTICE_TOPIC = re.compile('^:['+RE+']+![~'+RE+'.]+@['+RE+'.]+ +((PRIVMSG)|(NOTICE)|(TOPIC)) +['+RE+']+ +:?.*$',re.IGNORECASE).search re_CHANNEL_PRIVMSG_NOTICE_TOPIC = re.compile('^:['+RE+']+![~'+RE+'.]+@['+RE+'.]+ +((PRIVMSG)|(NOTICE)|(TOPIC)) +[#&!+]['+RE+']+ +:?.*$',re.IGNORECASE).search re_322_332 = re.compile('^:['+RE+'.]+ +((322)|(332)) +['+RE+']+ +[#&!+]['+RE+']+ ?([0-9]+)? +:?.*$',re.IGNORECASE).search re_BUFFER_CTCP_DCC = re.compile('\x01(?!ACTION )',re.IGNORECASE).sub re_BUFFER_COLOUR = re.compile('(\x03[0-9][0-9]?((?<=[0-9]),[0-9]?[0-9]?)?)|[\x02\x03\x0f\x1d\x1f]',re.IGNORECASE).sub def oksrctaia(n,taia,taia_now): if nacltaia.taia_okseconds(n,taia)<1: return 0 if nacltaia.taia_new(taia,taias[src])<1: return 1 if taia_now == taias[src] else 0 return 1 def cached(h): if h in hashcache: return 1 hashcache.append(h) return 0 def ret_322_332_msg(cmd,buffer): try: return re_SPLIT_BRACKETS(re_SPLIT_SPACE_COLON(buffer,5)[5],2)[2][1:] if cmd == '322' else re_SPLIT_SPACE_COLON(buffer,4)[4] except: return re_SPLIT_SPACE_COLON(buffer,5)[5] if cmd == '322' else re_SPLIT_SPACE_COLON(buffer,4)[4] uid, gid = pwd.getpwnam('nacltaia-otr')[2:4] os.chdir('crypto/') os.chroot(os.getcwd()) os.setgid(gid) os.setuid(uid) del uid, gid ipc=socket.socket(socket.AF_UNIX,socket.SOCK_STREAM) # contains potential race condition for n in range(0,9): if n == 8: sys.exit(128+111) try: ipc.connect('socket') del n break except: time.sleep(0.1) ipc_poll=select.poll() ipc_poll.register(ipc.fileno(),select.POLLIN|select.POLLPRI) ipc_poll=ipc_poll.poll poll=select.poll() poll.register(ipc.fileno(),select.POLLIN|select.POLLPRI) poll.register(0,select.POLLIN|select.POLLPRI) poll=poll.poll DEBUG = int(open('DEBUG','rb').read().split('\n')[0]) if os.path.exists('DEBUG') else 0 COLOUR = int(open('COLOUR','rb').read().split('\n')[0]) if os.path.exists('COLOUR') else 0 UNICODE = int(open('UNICODE','rb').read().split('\n')[0]) if os.path.exists('UNICODE') else 0 HASH_LOG = int(open('HASH_LOG','rb').read().split('\n')[0]) if os.path.exists('HASH_LOG') else 256 OK_SECONDS = int(open('OK_SECONDS','rb').read().split('\n')[0]) if os.path.exists('OK_SECONDS') else 128 NAMELESS = '\|' if os.path.exists('NAMELESS') and int(open('NAMELESS','rb').read().split('\n')[0]) else str() re_SPLIT_NAMELESS = re.compile(NAMELESS,re.IGNORECASE).split hashcache = collections.deque([],HASH_LOG) while 1: if len(poll(-1)) < 2 and ipc_poll(0): h = ipc.recv(32) if len(h) < 32: sys.exit(128+32) cached(h) continue buffer = str() while 1: byte = os.read(0,1) if byte == '': sys.exit(0) if byte == '\n': break if byte != '\r' and len(buffer)<1024: buffer += byte while ipc_poll(0): h = ipc.recv(32) if len(h) < 32: sys.exit(128+32) cached(h) if re_CRYPTOSERV(buffer): if DEBUG: os.write(2,'nacltaia-otr: error: re_CRYPTOSERV(buffer)\n') continue taia_now = nacltaia.taia_now_pack() if re_NICK_PRIVMSG_NOTICE_TOPIC(buffer): src = re_SPLIT_NAMELESS( buffer[1:].split('!',1)[0].lower() )[0] if src in os.listdir('dstkey/'): c = base91a.decode(re_SPLIT_SPACE_COLON(buffer,3)[3]) if not c: if DEBUG: os.write(2,'nacltaia-otr: error: base91a.decode(re_SPLIT_SPACE_COLON(buffer,3)[3])\n') continue n = c[:24] c = c[24:] pk = base91a.hex2bin(open('dstkey/'+src,'rb').read(64)) sk = base91a.hex2bin(open('seckey','rb').read(64)) c = nacltaia.crypto_box_open(c,n,pk,sk) if c == 0: if DEBUG: os.write(2,'nacltaia-otr: error: nacltaia.crypto_box_open(c,n,pk,sk)\n') continue m = 0 taia = n[:16] if len(c) >= 32: pk = c[:32] sk = open('tmpkey/'+src+'/sk','rb').read(32) m = nacltaia.crypto_box_open(c[32:],n,pk,sk) if open('tmpkey/'+src+'/tk','rb').read(32) != pk: open('tmpkey/'+src+'/tk','wb').write(pk) else: if DEBUG: os.write(2,'nacltaia-otr: error: len(c) < 32\n') continue if not src in taias.keys(): taias[src] = taia_now if not oksrctaia(OK_SECONDS,taia,taia_now): if DEBUG: os.write(2,'nacltaia-otr: error: oksrctaia(OK_SECONDS,taia,taia_now)\n') continue taias[src] = taia if m == 0: os.write(1,':' + buffer[1:].split('!',1)[0] + '!nacltaia-otr@service NOTICE ' + re_SPLIT_SPACE(buffer,3)[2] + ' :unable to decrypt message\a\n') continue else: buffer = ' '.join(re_SPLIT_SPACE(buffer,3)[:3]) + ' :' + m.split('\n',1)[0] elif re_CHANNEL_PRIVMSG_NOTICE_TOPIC(buffer): src = re_SPLIT_NAMELESS( buffer[1:].split('!',1)[0].lower() )[0] dst = re_SPLIT_SPACE(buffer,3)[2].lower()[1:] m = re_SPLIT_SPACE_COLON(buffer,3)[3] h = nacltaia.crypto_hash_sha256(m) if dst in os.listdir('chnkey/'): c = base91a.decode(m) if not c: if DEBUG: os.write(2,'nacltaia-otr: error: base91a.decode(m)\n') continue n = c[:24] c = c[24:] k = base91a.hex2bin(open('chnkey/'+dst,'rb').read(64)) m = nacltaia.crypto_secretbox_open(c,n,k) if m == 0: if DEBUG: os.write(2,'nacltaia-otr: error: nacltaia.crypto_secretbox_open(c,n,k)\n') continue taia = n[:16] if taia == '\x00'*16 and len(c) >= 32 + 64 + 24: pk = m[:32] m = nacltaia.crypto_sign_open(m[32:],pk) if m == 0: if DEBUG: os.write(2,'nacltaia-otr: error: nacltaia.crypto_sign_open(m[32:],pk)\n') continue if n != m[:24]: if DEBUG: os.write(2,'nacltaia-otr: error: n != m[:24]\n') continue m = m[24:] taia = n[16:] + '\x00'*8 if dst in os.listdir('unsign/') and src in os.listdir('unsign/'+dst+'/'): if pk != base91a.hex2bin(open('unsign/'+dst+'/'+src,'rb').read(64)): if DEBUG: os.write(2,'nacltaia-otr: error: pk != base91a.hex2bin(open(\'unsign/\'+dst+\'/\'+src,\'rb\').read(64))\n') continue if not src in taias.keys(): taias[src] = taia_now if not oksrctaia(OK_SECONDS,taia,taia_now): if DEBUG: os.write(2,'nacltaia-otr: error: oksrctaia(OK_SECONDS,taia,taia_now)\n') continue taias[src] = taia elif nacltaia.taia_okseconds(OK_SECONDS,taia)<1: if DEBUG: os.write(2,'nacltaia-otr: error: nacltaia.taia_okseconds(OK_SECONDS,taia)\n') continue elif cached(h): if DEBUG: os.write(2,'nacltaia-otr: error: cached(h)\n') continue elif dst in os.listdir('unsign/') and src in os.listdir('unsign/'+dst+'/'): if DEBUG: os.write(2,'nacltaia-otr: error: dst in os.listdir(\'unsign/\') and src in os.listdir(\'unsign/\'+dst+\'/\')\n') continue elif nacltaia.taia_okseconds(OK_SECONDS,taia)<1: if DEBUG: os.write(2,'nacltaia-otr: error: nacltaia.taia_okseconds(OK_SECONDS,taia)\n') continue elif cached(h): if DEBUG: os.write(2,'nacltaia-otr: error: cached(h)\n') continue buffer = ' '.join(re_SPLIT_SPACE(buffer,3)[:3]) + ' :' + m.split('\n',1)[0] elif dst in os.listdir('unsign/') and src in os.listdir('unsign/'+dst+'/'): m = base91a.decode(m) pk = m[24:56] n = m[:24] m = nacltaia.crypto_sign_open(m[56:],pk) if m == 0: if DEBUG: os.write(2,'nacltaia-otr: error: nacltaia.crypto_sign_open(m[56:],pk)\n') continue if n != m[:24]: if DEBUG: os.write(2,'nacltaia-otr: error: n != m[:24]\n') continue m = m[24:] taia = n[:16] if pk != base91a.hex2bin(open('unsign/'+dst+'/'+src,'rb').read(64)): if DEBUG: os.write(2,'nacltaia-otr: error: pk != base91a.hex2bin(open(\'unsign/\'+dst+\'/\'+src\'rb\').read(64))\n') continue if not src in taias.keys(): taias[src] = taia_now if not oksrctaia(OK_SECONDS,taia,taia_now): if DEBUG: os.write(2,'nacltaia-otr: error: oksrctaia(OK_SECONDS,taia,taia_now)\n') continue taias[src] = taia buffer = ' '.join(re_SPLIT_SPACE(buffer,3)[:3]) + ' :' + m.split('\n',1)[0] elif len(m) >= 56 + 64 and not ' ' in m: m = re_SPLIT_SPACE_COLON(buffer,3)[3] h = nacltaia.crypto_hash_sha256(m) m = base91a.decode(re_SPLIT_SPACE_COLON(buffer,3)[3]) if m[16:24] == '\x00'*8: n = m[:24] pk = m[24:56] m = nacltaia.crypto_sign_open(m[56:],pk) if m == 0: if DEBUG: os.write(2,'nacltaia-otr: error: nacltaia.crypto_sign_open(m[56:],pk)\n') continue if n != m[:24]: if DEBUG: os.write(2,'nacltaia-otr: error: n != m[:24]\n') continue m = m[24:] taia = n[:16] if nacltaia.taia_okseconds(OK_SECONDS,taia)<1: if DEBUG: os.write(2,'nacltaia-otr: error: nacltaia.taia_okseconds(OK_SECONDS,taia)\n') continue elif cached(h): if DEBUG: os.write(2,'nacltaia-otr: error: cached(h)\n') continue else: m = re_SPLIT_SPACE_COLON(buffer,3)[3] buffer = ' '.join(re_SPLIT_SPACE(buffer,3)[:3]) + ' :' + m.split('\n',1)[0] elif re_322_332(buffer): dst = re_SPLIT_SPACE(buffer,4)[3].lower()[1:] cmd = re_SPLIT_SPACE(buffer,2)[1] m = ret_322_332_msg(cmd,buffer) if dst in os.listdir('chnkey/'): c = base91a.decode(m) c = str() if c == 0 else c n = c[:24] c = c[24:] k = base91a.hex2bin(open('chnkey/'+dst,'rb').read(64)) m = nacltaia.crypto_secretbox_open(c,n,k) m = str() if m == 0 else m taia = n[:16] if len(n) >= 16 and taia == '\x00'*16: pk = m[:32] m = nacltaia.crypto_sign_open(m[32:],pk) m = str() if m == 0 else m m = m[24:] elif len(m) >= 56 + 64 and not ' ' in m: m = base91a.decode(m) if m[16:24] == '\x00'*8: pk = m[24:56] n = m[:24] m = nacltaia.crypto_sign_open(m[56:],pk) m = str() if m == 0 else m m = m[24:] else: m = ret_322_332_msg(cmd,buffer) else: m = ret_322_332_msg(cmd,buffer) if cmd == '322': try: m = '[' + re_SPLIT_BRACKETS(re_SPLIT_SPACE_COLON(buffer,5)[5],2)[1] + '] ' + m except: pass buffer = ' '.join(re_SPLIT_SPACE(buffer,5)[:5]) + ' :' + m.split('\n',1)[0] elif cmd == '332': buffer = ' '.join(re_SPLIT_SPACE(buffer,4)[:4]) + ' :' + m.split('\n',1)[0] buffer = re_BUFFER_CTCP_DCC('',buffer) + '\x01' if '\x01ACTION ' in buffer.upper() else buffer.replace('\x01','') if not COLOUR: buffer = re_BUFFER_COLOUR('',buffer) if not UNICODE: buffer = codecs.ascii_encode(unicodedata.normalize('NFKD',unicode(buffer,'utf-8','replace')),'ignore')[0] buffer = ''.join(byte for byte in buffer if 127 > ord(byte) > 31 or byte in ['\x01','\x02','\x03','\x0f','\x1d','\x1f']) os.write(1,buffer+'\n')
[ "#!/usr/bin/env python\nimport sys, os ; sys.path.append(os.getcwd())\nimport unicodedata\nimport collections\nimport nacltaia\nimport base91a\nimport codecs\nimport select\nimport socket\nimport time\nimport pwd\nimport re\n\ntaias = dict()\nRE = 'a-zA-Z0-9^(\\)\\-_{\\}[\\]|'\nre_SPLIT_SPACE = re.compile(' +',re.IGNORECASE).split\nre_SPLIT_SPACE_COLON = re.compile(' +:?',re.IGNORECASE).split\nre_SPLIT_BRACKETS = re.compile('\\[|]',re.IGNORECASE).split\nre_CRYPTOSERV = re.compile('^:['+RE+']+!nacltaia-otr@service',re.IGNORECASE).search\nre_NICK_PRIVMSG_NOTICE_TOPIC = re.compile('^:['+RE+']+![~'+RE+'.]+@['+RE+'.]+ +((PRIVMSG)|(NOTICE)|(TOPIC)) +['+RE+']+ +:?.*$',re.IGNORECASE).search\nre_CHANNEL_PRIVMSG_NOTICE_TOPIC = re.compile('^:['+RE+']+![~'+RE+'.]+@['+RE+'.]+ +((PRIVMSG)|(NOTICE)|(TOPIC)) +[#&!+]['+RE+']+ +:?.*$',re.IGNORECASE).search\nre_322_332 = re.compile('^:['+RE+'.]+ +((322)|(332)) +['+RE+']+ +[#&!+]['+RE+']+ ?([0-9]+)? +:?.*$',re.IGNORECASE).search\nre_BUFFER_CTCP_DCC = re.compile('\\x01(?!ACTION )',re.IGNORECASE).sub\nre_BUFFER_COLOUR = re.compile('(\\x03[0-9][0-9]?((?<=[0-9]),[0-9]?[0-9]?)?)|[\\x02\\x03\\x0f\\x1d\\x1f]',re.IGNORECASE).sub\n\ndef oksrctaia(n,taia,taia_now):\n if nacltaia.taia_okseconds(n,taia)<1: return 0\n if nacltaia.taia_new(taia,taias[src])<1:\n return 1 if taia_now == taias[src] else 0\n return 1\n\ndef cached(h):\n if h in hashcache: return 1\n hashcache.append(h)\n return 0\n\ndef ret_322_332_msg(cmd,buffer):\n try:\n return re_SPLIT_BRACKETS(re_SPLIT_SPACE_COLON(buffer,5)[5],2)[2][1:] if cmd == '322' else re_SPLIT_SPACE_COLON(buffer,4)[4]\n except:\n return re_SPLIT_SPACE_COLON(buffer,5)[5] if cmd == '322' else re_SPLIT_SPACE_COLON(buffer,4)[4]\n\nuid, gid = pwd.getpwnam('nacltaia-otr')[2:4]\nos.chdir('crypto/')\nos.chroot(os.getcwd())\nos.setgid(gid)\nos.setuid(uid)\ndel uid, gid\n\nipc=socket.socket(socket.AF_UNIX,socket.SOCK_STREAM) # contains potential race condition\nfor n in range(0,9):\n if n == 8: sys.exit(128+111)\n try:\n ipc.connect('socket')\n del n\n break\n except: time.sleep(0.1)\nipc_poll=select.poll()\nipc_poll.register(ipc.fileno(),select.POLLIN|select.POLLPRI)\nipc_poll=ipc_poll.poll\n\npoll=select.poll()\npoll.register(ipc.fileno(),select.POLLIN|select.POLLPRI)\npoll.register(0,select.POLLIN|select.POLLPRI)\npoll=poll.poll\n\nDEBUG = int(open('DEBUG','rb').read().split('\\n')[0]) if os.path.exists('DEBUG') else 0\nCOLOUR = int(open('COLOUR','rb').read().split('\\n')[0]) if os.path.exists('COLOUR') else 0\nUNICODE = int(open('UNICODE','rb').read().split('\\n')[0]) if os.path.exists('UNICODE') else 0\nHASH_LOG = int(open('HASH_LOG','rb').read().split('\\n')[0]) if os.path.exists('HASH_LOG') else 256\nOK_SECONDS = int(open('OK_SECONDS','rb').read().split('\\n')[0]) if os.path.exists('OK_SECONDS') else 128\nNAMELESS = '\\|' if os.path.exists('NAMELESS') and int(open('NAMELESS','rb').read().split('\\n')[0]) else str()\nre_SPLIT_NAMELESS = re.compile(NAMELESS,re.IGNORECASE).split\nhashcache = collections.deque([],HASH_LOG)\n\nwhile 1:\n\n if len(poll(-1)) < 2 and ipc_poll(0):\n h = ipc.recv(32)\n if len(h) < 32: sys.exit(128+32)\n cached(h)\n continue\n\n buffer = str()\n while 1:\n byte = os.read(0,1)\n if byte == '': sys.exit(0)\n if byte == '\\n': break\n if byte != '\\r' and len(buffer)<1024: buffer += byte\n\n while ipc_poll(0):\n h = ipc.recv(32)\n if len(h) < 32: sys.exit(128+32)\n cached(h)\n\n if re_CRYPTOSERV(buffer):\n if DEBUG: os.write(2,'nacltaia-otr: error: re_CRYPTOSERV(buffer)\\n')\n continue\n\n taia_now = nacltaia.taia_now_pack()\n\n if re_NICK_PRIVMSG_NOTICE_TOPIC(buffer):\n\n src = re_SPLIT_NAMELESS( buffer[1:].split('!',1)[0].lower() )[0]\n\n if src in os.listdir('dstkey/'):\n\n c = base91a.decode(re_SPLIT_SPACE_COLON(buffer,3)[3])\n\n if not c:\n if DEBUG: os.write(2,'nacltaia-otr: error: base91a.decode(re_SPLIT_SPACE_COLON(buffer,3)[3])\\n')\n continue\n\n n = c[:24]\n c = c[24:]\n pk = base91a.hex2bin(open('dstkey/'+src,'rb').read(64))\n sk = base91a.hex2bin(open('seckey','rb').read(64))\n c = nacltaia.crypto_box_open(c,n,pk,sk)\n\n if c == 0:\n if DEBUG: os.write(2,'nacltaia-otr: error: nacltaia.crypto_box_open(c,n,pk,sk)\\n')\n continue\n\n m = 0\n taia = n[:16]\n\n if len(c) >= 32:\n pk = c[:32]\n sk = open('tmpkey/'+src+'/sk','rb').read(32)\n m = nacltaia.crypto_box_open(c[32:],n,pk,sk)\n if open('tmpkey/'+src+'/tk','rb').read(32) != pk: open('tmpkey/'+src+'/tk','wb').write(pk)\n\n else:\n if DEBUG: os.write(2,'nacltaia-otr: error: len(c) < 32\\n')\n continue\n\n if not src in taias.keys(): taias[src] = taia_now\n\n if not oksrctaia(OK_SECONDS,taia,taia_now):\n if DEBUG: os.write(2,'nacltaia-otr: error: oksrctaia(OK_SECONDS,taia,taia_now)\\n')\n continue\n\n taias[src] = taia\n\n if m == 0:\n os.write(1,':' + buffer[1:].split('!',1)[0] + '!nacltaia-otr@service NOTICE ' + re_SPLIT_SPACE(buffer,3)[2] + ' :unable to decrypt message\\a\\n')\n continue\n\n else: buffer = ' '.join(re_SPLIT_SPACE(buffer,3)[:3]) + ' :' + m.split('\\n',1)[0]\n\n elif re_CHANNEL_PRIVMSG_NOTICE_TOPIC(buffer):\n\n src = re_SPLIT_NAMELESS( buffer[1:].split('!',1)[0].lower() )[0]\n dst = re_SPLIT_SPACE(buffer,3)[2].lower()[1:]\n m = re_SPLIT_SPACE_COLON(buffer,3)[3]\n h = nacltaia.crypto_hash_sha256(m)\n\n if dst in os.listdir('chnkey/'):\n\n c = base91a.decode(m)\n\n if not c:\n if DEBUG: os.write(2,'nacltaia-otr: error: base91a.decode(m)\\n')\n continue\n\n n = c[:24]\n c = c[24:]\n k = base91a.hex2bin(open('chnkey/'+dst,'rb').read(64))\n m = nacltaia.crypto_secretbox_open(c,n,k)\n\n if m == 0:\n if DEBUG: os.write(2,'nacltaia-otr: error: nacltaia.crypto_secretbox_open(c,n,k)\\n')\n continue\n\n taia = n[:16]\n\n if taia == '\\x00'*16 and len(c) >= 32 + 64 + 24:\n\n pk = m[:32]\n m = nacltaia.crypto_sign_open(m[32:],pk)\n\n if m == 0:\n if DEBUG: os.write(2,'nacltaia-otr: error: nacltaia.crypto_sign_open(m[32:],pk)\\n')\n continue\n\n if n != m[:24]:\n if DEBUG: os.write(2,'nacltaia-otr: error: n != m[:24]\\n')\n continue\n\n m = m[24:]\n taia = n[16:] + '\\x00'*8\n\n if dst in os.listdir('unsign/') and src in os.listdir('unsign/'+dst+'/'):\n\n if pk != base91a.hex2bin(open('unsign/'+dst+'/'+src,'rb').read(64)):\n if DEBUG: os.write(2,'nacltaia-otr: error: pk != base91a.hex2bin(open(\\'unsign/\\'+dst+\\'/\\'+src,\\'rb\\').read(64))\\n')\n continue\n\n if not src in taias.keys(): taias[src] = taia_now\n\n if not oksrctaia(OK_SECONDS,taia,taia_now):\n if DEBUG: os.write(2,'nacltaia-otr: error: oksrctaia(OK_SECONDS,taia,taia_now)\\n')\n continue\n\n taias[src] = taia\n\n elif nacltaia.taia_okseconds(OK_SECONDS,taia)<1:\n if DEBUG: os.write(2,'nacltaia-otr: error: nacltaia.taia_okseconds(OK_SECONDS,taia)\\n')\n continue\n\n elif cached(h):\n if DEBUG: os.write(2,'nacltaia-otr: error: cached(h)\\n')\n continue\n\n elif dst in os.listdir('unsign/') and src in os.listdir('unsign/'+dst+'/'):\n if DEBUG: os.write(2,'nacltaia-otr: error: dst in os.listdir(\\'unsign/\\') and src in os.listdir(\\'unsign/\\'+dst+\\'/\\')\\n')\n continue\n\n elif nacltaia.taia_okseconds(OK_SECONDS,taia)<1:\n if DEBUG: os.write(2,'nacltaia-otr: error: nacltaia.taia_okseconds(OK_SECONDS,taia)\\n')\n continue\n\n elif cached(h):\n if DEBUG: os.write(2,'nacltaia-otr: error: cached(h)\\n')\n continue\n\n buffer = ' '.join(re_SPLIT_SPACE(buffer,3)[:3]) + ' :' + m.split('\\n',1)[0]\n\n elif dst in os.listdir('unsign/') and src in os.listdir('unsign/'+dst+'/'):\n\n m = base91a.decode(m)\n pk = m[24:56]\n n = m[:24]\n m = nacltaia.crypto_sign_open(m[56:],pk)\n\n if m == 0:\n if DEBUG: os.write(2,'nacltaia-otr: error: nacltaia.crypto_sign_open(m[56:],pk)\\n')\n continue\n\n if n != m[:24]:\n if DEBUG: os.write(2,'nacltaia-otr: error: n != m[:24]\\n')\n continue\n\n m = m[24:]\n\n taia = n[:16]\n\n if pk != base91a.hex2bin(open('unsign/'+dst+'/'+src,'rb').read(64)):\n if DEBUG: os.write(2,'nacltaia-otr: error: pk != base91a.hex2bin(open(\\'unsign/\\'+dst+\\'/\\'+src\\'rb\\').read(64))\\n')\n continue\n\n if not src in taias.keys(): taias[src] = taia_now\n\n if not oksrctaia(OK_SECONDS,taia,taia_now):\n if DEBUG: os.write(2,'nacltaia-otr: error: oksrctaia(OK_SECONDS,taia,taia_now)\\n')\n continue\n\n taias[src] = taia\n\n buffer = ' '.join(re_SPLIT_SPACE(buffer,3)[:3]) + ' :' + m.split('\\n',1)[0]\n\n elif len(m) >= 56 + 64 and not ' ' in m:\n\n m = re_SPLIT_SPACE_COLON(buffer,3)[3]\n h = nacltaia.crypto_hash_sha256(m)\n m = base91a.decode(re_SPLIT_SPACE_COLON(buffer,3)[3])\n\n if m[16:24] == '\\x00'*8:\n\n n = m[:24]\n pk = m[24:56]\n\n m = nacltaia.crypto_sign_open(m[56:],pk)\n\n if m == 0:\n if DEBUG: os.write(2,'nacltaia-otr: error: nacltaia.crypto_sign_open(m[56:],pk)\\n')\n continue\n\n if n != m[:24]:\n if DEBUG: os.write(2,'nacltaia-otr: error: n != m[:24]\\n')\n continue\n\n m = m[24:]\n\n taia = n[:16]\n\n if nacltaia.taia_okseconds(OK_SECONDS,taia)<1:\n if DEBUG: os.write(2,'nacltaia-otr: error: nacltaia.taia_okseconds(OK_SECONDS,taia)\\n')\n continue\n\n elif cached(h):\n if DEBUG: os.write(2,'nacltaia-otr: error: cached(h)\\n')\n continue\n\n else: m = re_SPLIT_SPACE_COLON(buffer,3)[3]\n\n buffer = ' '.join(re_SPLIT_SPACE(buffer,3)[:3]) + ' :' + m.split('\\n',1)[0]\n\n elif re_322_332(buffer):\n\n dst = re_SPLIT_SPACE(buffer,4)[3].lower()[1:]\n cmd = re_SPLIT_SPACE(buffer,2)[1]\n m = ret_322_332_msg(cmd,buffer)\n\n if dst in os.listdir('chnkey/'):\n\n c = base91a.decode(m)\n\n c = str() if c == 0 else c\n\n n = c[:24]\n c = c[24:]\n k = base91a.hex2bin(open('chnkey/'+dst,'rb').read(64))\n m = nacltaia.crypto_secretbox_open(c,n,k)\n\n m = str() if m == 0 else m\n\n taia = n[:16]\n\n if len(n) >= 16 and taia == '\\x00'*16:\n pk = m[:32]\n m = nacltaia.crypto_sign_open(m[32:],pk)\n m = str() if m == 0 else m\n m = m[24:]\n\n elif len(m) >= 56 + 64 and not ' ' in m:\n\n m = base91a.decode(m)\n\n if m[16:24] == '\\x00'*8:\n pk = m[24:56]\n n = m[:24]\n m = nacltaia.crypto_sign_open(m[56:],pk)\n m = str() if m == 0 else m\n m = m[24:]\n\n else: m = ret_322_332_msg(cmd,buffer)\n\n else: m = ret_322_332_msg(cmd,buffer)\n\n if cmd == '322':\n\n try: m = '[' + re_SPLIT_BRACKETS(re_SPLIT_SPACE_COLON(buffer,5)[5],2)[1] + '] ' + m\n except: pass\n\n buffer = ' '.join(re_SPLIT_SPACE(buffer,5)[:5]) + ' :' + m.split('\\n',1)[0]\n\n elif cmd == '332': buffer = ' '.join(re_SPLIT_SPACE(buffer,4)[:4]) + ' :' + m.split('\\n',1)[0]\n\n buffer = re_BUFFER_CTCP_DCC('',buffer) + '\\x01' if '\\x01ACTION ' in buffer.upper() else buffer.replace('\\x01','')\n if not COLOUR: buffer = re_BUFFER_COLOUR('',buffer)\n if not UNICODE:\n buffer = codecs.ascii_encode(unicodedata.normalize('NFKD',unicode(buffer,'utf-8','replace')),'ignore')[0]\n buffer = ''.join(byte for byte in buffer if 127 > ord(byte) > 31 or byte in ['\\x01','\\x02','\\x03','\\x0f','\\x1d','\\x1f'])\n os.write(1,buffer+'\\n')\n", "import sys, os\nsys.path.append(os.getcwd())\nimport unicodedata\nimport collections\nimport nacltaia\nimport base91a\nimport codecs\nimport select\nimport socket\nimport time\nimport pwd\nimport re\ntaias = dict()\nRE = 'a-zA-Z0-9^(\\\\)\\\\-_{\\\\}[\\\\]|'\nre_SPLIT_SPACE = re.compile(' +', re.IGNORECASE).split\nre_SPLIT_SPACE_COLON = re.compile(' +:?', re.IGNORECASE).split\nre_SPLIT_BRACKETS = re.compile('\\\\[|]', re.IGNORECASE).split\nre_CRYPTOSERV = re.compile('^:[' + RE + ']+!nacltaia-otr@service', re.\n IGNORECASE).search\nre_NICK_PRIVMSG_NOTICE_TOPIC = re.compile('^:[' + RE + ']+![~' + RE +\n '.]+@[' + RE + '.]+ +((PRIVMSG)|(NOTICE)|(TOPIC)) +[' + RE +\n ']+ +:?.*$', re.IGNORECASE).search\nre_CHANNEL_PRIVMSG_NOTICE_TOPIC = re.compile('^:[' + RE + ']+![~' + RE +\n '.]+@[' + RE + '.]+ +((PRIVMSG)|(NOTICE)|(TOPIC)) +[#&!+][' + RE +\n ']+ +:?.*$', re.IGNORECASE).search\nre_322_332 = re.compile('^:[' + RE + '.]+ +((322)|(332)) +[' + RE +\n ']+ +[#&!+][' + RE + ']+ ?([0-9]+)? +:?.*$', re.IGNORECASE).search\nre_BUFFER_CTCP_DCC = re.compile('\\x01(?!ACTION )', re.IGNORECASE).sub\nre_BUFFER_COLOUR = re.compile(\n '(\\x03[0-9][0-9]?((?<=[0-9]),[0-9]?[0-9]?)?)|[\\x02\\x03\\x0f\\x1d\\x1f]',\n re.IGNORECASE).sub\n\n\ndef oksrctaia(n, taia, taia_now):\n if nacltaia.taia_okseconds(n, taia) < 1:\n return 0\n if nacltaia.taia_new(taia, taias[src]) < 1:\n return 1 if taia_now == taias[src] else 0\n return 1\n\n\ndef cached(h):\n if h in hashcache:\n return 1\n hashcache.append(h)\n return 0\n\n\ndef ret_322_332_msg(cmd, buffer):\n try:\n return re_SPLIT_BRACKETS(re_SPLIT_SPACE_COLON(buffer, 5)[5], 2)[2][1:\n ] if cmd == '322' else re_SPLIT_SPACE_COLON(buffer, 4)[4]\n except:\n return re_SPLIT_SPACE_COLON(buffer, 5)[5\n ] if cmd == '322' else re_SPLIT_SPACE_COLON(buffer, 4)[4]\n\n\nuid, gid = pwd.getpwnam('nacltaia-otr')[2:4]\nos.chdir('crypto/')\nos.chroot(os.getcwd())\nos.setgid(gid)\nos.setuid(uid)\ndel uid, gid\nipc = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)\nfor n in range(0, 9):\n if n == 8:\n sys.exit(128 + 111)\n try:\n ipc.connect('socket')\n del n\n break\n except:\n time.sleep(0.1)\nipc_poll = select.poll()\nipc_poll.register(ipc.fileno(), select.POLLIN | select.POLLPRI)\nipc_poll = ipc_poll.poll\npoll = select.poll()\npoll.register(ipc.fileno(), select.POLLIN | select.POLLPRI)\npoll.register(0, select.POLLIN | select.POLLPRI)\npoll = poll.poll\nDEBUG = int(open('DEBUG', 'rb').read().split('\\n')[0]) if os.path.exists(\n 'DEBUG') else 0\nCOLOUR = int(open('COLOUR', 'rb').read().split('\\n')[0]) if os.path.exists(\n 'COLOUR') else 0\nUNICODE = int(open('UNICODE', 'rb').read().split('\\n')[0]) if os.path.exists(\n 'UNICODE') else 0\nHASH_LOG = int(open('HASH_LOG', 'rb').read().split('\\n')[0]) if os.path.exists(\n 'HASH_LOG') else 256\nOK_SECONDS = int(open('OK_SECONDS', 'rb').read().split('\\n')[0]\n ) if os.path.exists('OK_SECONDS') else 128\nNAMELESS = '\\\\|' if os.path.exists('NAMELESS') and int(open('NAMELESS',\n 'rb').read().split('\\n')[0]) else str()\nre_SPLIT_NAMELESS = re.compile(NAMELESS, re.IGNORECASE).split\nhashcache = collections.deque([], HASH_LOG)\nwhile 1:\n if len(poll(-1)) < 2 and ipc_poll(0):\n h = ipc.recv(32)\n if len(h) < 32:\n sys.exit(128 + 32)\n cached(h)\n continue\n buffer = str()\n while 1:\n byte = os.read(0, 1)\n if byte == '':\n sys.exit(0)\n if byte == '\\n':\n break\n if byte != '\\r' and len(buffer) < 1024:\n buffer += byte\n while ipc_poll(0):\n h = ipc.recv(32)\n if len(h) < 32:\n sys.exit(128 + 32)\n cached(h)\n if re_CRYPTOSERV(buffer):\n if DEBUG:\n os.write(2, 'nacltaia-otr: error: re_CRYPTOSERV(buffer)\\n')\n continue\n taia_now = nacltaia.taia_now_pack()\n if re_NICK_PRIVMSG_NOTICE_TOPIC(buffer):\n src = re_SPLIT_NAMELESS(buffer[1:].split('!', 1)[0].lower())[0]\n if src in os.listdir('dstkey/'):\n c = base91a.decode(re_SPLIT_SPACE_COLON(buffer, 3)[3])\n if not c:\n if DEBUG:\n os.write(2,\n \"\"\"nacltaia-otr: error: base91a.decode(re_SPLIT_SPACE_COLON(buffer,3)[3])\n\"\"\"\n )\n continue\n n = c[:24]\n c = c[24:]\n pk = base91a.hex2bin(open('dstkey/' + src, 'rb').read(64))\n sk = base91a.hex2bin(open('seckey', 'rb').read(64))\n c = nacltaia.crypto_box_open(c, n, pk, sk)\n if c == 0:\n if DEBUG:\n os.write(2,\n 'nacltaia-otr: error: nacltaia.crypto_box_open(c,n,pk,sk)\\n'\n )\n continue\n m = 0\n taia = n[:16]\n if len(c) >= 32:\n pk = c[:32]\n sk = open('tmpkey/' + src + '/sk', 'rb').read(32)\n m = nacltaia.crypto_box_open(c[32:], n, pk, sk)\n if open('tmpkey/' + src + '/tk', 'rb').read(32) != pk:\n open('tmpkey/' + src + '/tk', 'wb').write(pk)\n else:\n if DEBUG:\n os.write(2, 'nacltaia-otr: error: len(c) < 32\\n')\n continue\n if not src in taias.keys():\n taias[src] = taia_now\n if not oksrctaia(OK_SECONDS, taia, taia_now):\n if DEBUG:\n os.write(2,\n 'nacltaia-otr: error: oksrctaia(OK_SECONDS,taia,taia_now)\\n'\n )\n continue\n taias[src] = taia\n if m == 0:\n os.write(1, ':' + buffer[1:].split('!', 1)[0] +\n '!nacltaia-otr@service NOTICE ' + re_SPLIT_SPACE(buffer,\n 3)[2] + \"\"\" :unable to decrypt message\u0007\n\"\"\")\n continue\n else:\n buffer = ' '.join(re_SPLIT_SPACE(buffer, 3)[:3]\n ) + ' :' + m.split('\\n', 1)[0]\n elif re_CHANNEL_PRIVMSG_NOTICE_TOPIC(buffer):\n src = re_SPLIT_NAMELESS(buffer[1:].split('!', 1)[0].lower())[0]\n dst = re_SPLIT_SPACE(buffer, 3)[2].lower()[1:]\n m = re_SPLIT_SPACE_COLON(buffer, 3)[3]\n h = nacltaia.crypto_hash_sha256(m)\n if dst in os.listdir('chnkey/'):\n c = base91a.decode(m)\n if not c:\n if DEBUG:\n os.write(2, 'nacltaia-otr: error: base91a.decode(m)\\n')\n continue\n n = c[:24]\n c = c[24:]\n k = base91a.hex2bin(open('chnkey/' + dst, 'rb').read(64))\n m = nacltaia.crypto_secretbox_open(c, n, k)\n if m == 0:\n if DEBUG:\n os.write(2,\n 'nacltaia-otr: error: nacltaia.crypto_secretbox_open(c,n,k)\\n'\n )\n continue\n taia = n[:16]\n if taia == '\\x00' * 16 and len(c) >= 32 + 64 + 24:\n pk = m[:32]\n m = nacltaia.crypto_sign_open(m[32:], pk)\n if m == 0:\n if DEBUG:\n os.write(2,\n 'nacltaia-otr: error: nacltaia.crypto_sign_open(m[32:],pk)\\n'\n )\n continue\n if n != m[:24]:\n if DEBUG:\n os.write(2, 'nacltaia-otr: error: n != m[:24]\\n')\n continue\n m = m[24:]\n taia = n[16:] + '\\x00' * 8\n if dst in os.listdir('unsign/') and src in os.listdir(\n 'unsign/' + dst + '/'):\n if pk != base91a.hex2bin(open('unsign/' + dst + '/' +\n src, 'rb').read(64)):\n if DEBUG:\n os.write(2,\n \"\"\"nacltaia-otr: error: pk != base91a.hex2bin(open('unsign/'+dst+'/'+src,'rb').read(64))\n\"\"\"\n )\n continue\n if not src in taias.keys():\n taias[src] = taia_now\n if not oksrctaia(OK_SECONDS, taia, taia_now):\n if DEBUG:\n os.write(2,\n \"\"\"nacltaia-otr: error: oksrctaia(OK_SECONDS,taia,taia_now)\n\"\"\"\n )\n continue\n taias[src] = taia\n elif nacltaia.taia_okseconds(OK_SECONDS, taia) < 1:\n if DEBUG:\n os.write(2,\n \"\"\"nacltaia-otr: error: nacltaia.taia_okseconds(OK_SECONDS,taia)\n\"\"\"\n )\n continue\n elif cached(h):\n if DEBUG:\n os.write(2, 'nacltaia-otr: error: cached(h)\\n')\n continue\n elif dst in os.listdir('unsign/') and src in os.listdir(\n 'unsign/' + dst + '/'):\n if DEBUG:\n os.write(2,\n \"\"\"nacltaia-otr: error: dst in os.listdir('unsign/') and src in os.listdir('unsign/'+dst+'/')\n\"\"\"\n )\n continue\n elif nacltaia.taia_okseconds(OK_SECONDS, taia) < 1:\n if DEBUG:\n os.write(2,\n 'nacltaia-otr: error: nacltaia.taia_okseconds(OK_SECONDS,taia)\\n'\n )\n continue\n elif cached(h):\n if DEBUG:\n os.write(2, 'nacltaia-otr: error: cached(h)\\n')\n continue\n buffer = ' '.join(re_SPLIT_SPACE(buffer, 3)[:3]) + ' :' + m.split(\n '\\n', 1)[0]\n elif dst in os.listdir('unsign/') and src in os.listdir('unsign/' +\n dst + '/'):\n m = base91a.decode(m)\n pk = m[24:56]\n n = m[:24]\n m = nacltaia.crypto_sign_open(m[56:], pk)\n if m == 0:\n if DEBUG:\n os.write(2,\n 'nacltaia-otr: error: nacltaia.crypto_sign_open(m[56:],pk)\\n'\n )\n continue\n if n != m[:24]:\n if DEBUG:\n os.write(2, 'nacltaia-otr: error: n != m[:24]\\n')\n continue\n m = m[24:]\n taia = n[:16]\n if pk != base91a.hex2bin(open('unsign/' + dst + '/' + src, 'rb'\n ).read(64)):\n if DEBUG:\n os.write(2,\n \"\"\"nacltaia-otr: error: pk != base91a.hex2bin(open('unsign/'+dst+'/'+src'rb').read(64))\n\"\"\"\n )\n continue\n if not src in taias.keys():\n taias[src] = taia_now\n if not oksrctaia(OK_SECONDS, taia, taia_now):\n if DEBUG:\n os.write(2,\n 'nacltaia-otr: error: oksrctaia(OK_SECONDS,taia,taia_now)\\n'\n )\n continue\n taias[src] = taia\n buffer = ' '.join(re_SPLIT_SPACE(buffer, 3)[:3]) + ' :' + m.split(\n '\\n', 1)[0]\n elif len(m) >= 56 + 64 and not ' ' in m:\n m = re_SPLIT_SPACE_COLON(buffer, 3)[3]\n h = nacltaia.crypto_hash_sha256(m)\n m = base91a.decode(re_SPLIT_SPACE_COLON(buffer, 3)[3])\n if m[16:24] == '\\x00' * 8:\n n = m[:24]\n pk = m[24:56]\n m = nacltaia.crypto_sign_open(m[56:], pk)\n if m == 0:\n if DEBUG:\n os.write(2,\n 'nacltaia-otr: error: nacltaia.crypto_sign_open(m[56:],pk)\\n'\n )\n continue\n if n != m[:24]:\n if DEBUG:\n os.write(2, 'nacltaia-otr: error: n != m[:24]\\n')\n continue\n m = m[24:]\n taia = n[:16]\n if nacltaia.taia_okseconds(OK_SECONDS, taia) < 1:\n if DEBUG:\n os.write(2,\n \"\"\"nacltaia-otr: error: nacltaia.taia_okseconds(OK_SECONDS,taia)\n\"\"\"\n )\n continue\n elif cached(h):\n if DEBUG:\n os.write(2, 'nacltaia-otr: error: cached(h)\\n')\n continue\n else:\n m = re_SPLIT_SPACE_COLON(buffer, 3)[3]\n buffer = ' '.join(re_SPLIT_SPACE(buffer, 3)[:3]) + ' :' + m.split(\n '\\n', 1)[0]\n elif re_322_332(buffer):\n dst = re_SPLIT_SPACE(buffer, 4)[3].lower()[1:]\n cmd = re_SPLIT_SPACE(buffer, 2)[1]\n m = ret_322_332_msg(cmd, buffer)\n if dst in os.listdir('chnkey/'):\n c = base91a.decode(m)\n c = str() if c == 0 else c\n n = c[:24]\n c = c[24:]\n k = base91a.hex2bin(open('chnkey/' + dst, 'rb').read(64))\n m = nacltaia.crypto_secretbox_open(c, n, k)\n m = str() if m == 0 else m\n taia = n[:16]\n if len(n) >= 16 and taia == '\\x00' * 16:\n pk = m[:32]\n m = nacltaia.crypto_sign_open(m[32:], pk)\n m = str() if m == 0 else m\n m = m[24:]\n elif len(m) >= 56 + 64 and not ' ' in m:\n m = base91a.decode(m)\n if m[16:24] == '\\x00' * 8:\n pk = m[24:56]\n n = m[:24]\n m = nacltaia.crypto_sign_open(m[56:], pk)\n m = str() if m == 0 else m\n m = m[24:]\n else:\n m = ret_322_332_msg(cmd, buffer)\n else:\n m = ret_322_332_msg(cmd, buffer)\n if cmd == '322':\n try:\n m = '[' + re_SPLIT_BRACKETS(re_SPLIT_SPACE_COLON(buffer, 5)\n [5], 2)[1] + '] ' + m\n except:\n pass\n buffer = ' '.join(re_SPLIT_SPACE(buffer, 5)[:5]) + ' :' + m.split(\n '\\n', 1)[0]\n elif cmd == '332':\n buffer = ' '.join(re_SPLIT_SPACE(buffer, 4)[:4]) + ' :' + m.split(\n '\\n', 1)[0]\n buffer = re_BUFFER_CTCP_DCC('', buffer\n ) + '\\x01' if '\\x01ACTION ' in buffer.upper() else buffer.replace(\n '\\x01', '')\n if not COLOUR:\n buffer = re_BUFFER_COLOUR('', buffer)\n if not UNICODE:\n buffer = codecs.ascii_encode(unicodedata.normalize('NFKD', unicode(\n buffer, 'utf-8', 'replace')), 'ignore')[0]\n buffer = ''.join(byte for byte in buffer if 127 > ord(byte) > 31 or\n byte in ['\\x01', '\\x02', '\\x03', '\\x0f', '\\x1d', '\\x1f'])\n os.write(1, buffer + '\\n')\n", "<import token>\nsys.path.append(os.getcwd())\n<import token>\ntaias = dict()\nRE = 'a-zA-Z0-9^(\\\\)\\\\-_{\\\\}[\\\\]|'\nre_SPLIT_SPACE = re.compile(' +', re.IGNORECASE).split\nre_SPLIT_SPACE_COLON = re.compile(' +:?', re.IGNORECASE).split\nre_SPLIT_BRACKETS = re.compile('\\\\[|]', re.IGNORECASE).split\nre_CRYPTOSERV = re.compile('^:[' + RE + ']+!nacltaia-otr@service', re.\n IGNORECASE).search\nre_NICK_PRIVMSG_NOTICE_TOPIC = re.compile('^:[' + RE + ']+![~' + RE +\n '.]+@[' + RE + '.]+ +((PRIVMSG)|(NOTICE)|(TOPIC)) +[' + RE +\n ']+ +:?.*$', re.IGNORECASE).search\nre_CHANNEL_PRIVMSG_NOTICE_TOPIC = re.compile('^:[' + RE + ']+![~' + RE +\n '.]+@[' + RE + '.]+ +((PRIVMSG)|(NOTICE)|(TOPIC)) +[#&!+][' + RE +\n ']+ +:?.*$', re.IGNORECASE).search\nre_322_332 = re.compile('^:[' + RE + '.]+ +((322)|(332)) +[' + RE +\n ']+ +[#&!+][' + RE + ']+ ?([0-9]+)? +:?.*$', re.IGNORECASE).search\nre_BUFFER_CTCP_DCC = re.compile('\\x01(?!ACTION )', re.IGNORECASE).sub\nre_BUFFER_COLOUR = re.compile(\n '(\\x03[0-9][0-9]?((?<=[0-9]),[0-9]?[0-9]?)?)|[\\x02\\x03\\x0f\\x1d\\x1f]',\n re.IGNORECASE).sub\n\n\ndef oksrctaia(n, taia, taia_now):\n if nacltaia.taia_okseconds(n, taia) < 1:\n return 0\n if nacltaia.taia_new(taia, taias[src]) < 1:\n return 1 if taia_now == taias[src] else 0\n return 1\n\n\ndef cached(h):\n if h in hashcache:\n return 1\n hashcache.append(h)\n return 0\n\n\ndef ret_322_332_msg(cmd, buffer):\n try:\n return re_SPLIT_BRACKETS(re_SPLIT_SPACE_COLON(buffer, 5)[5], 2)[2][1:\n ] if cmd == '322' else re_SPLIT_SPACE_COLON(buffer, 4)[4]\n except:\n return re_SPLIT_SPACE_COLON(buffer, 5)[5\n ] if cmd == '322' else re_SPLIT_SPACE_COLON(buffer, 4)[4]\n\n\nuid, gid = pwd.getpwnam('nacltaia-otr')[2:4]\nos.chdir('crypto/')\nos.chroot(os.getcwd())\nos.setgid(gid)\nos.setuid(uid)\ndel uid, gid\nipc = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)\nfor n in range(0, 9):\n if n == 8:\n sys.exit(128 + 111)\n try:\n ipc.connect('socket')\n del n\n break\n except:\n time.sleep(0.1)\nipc_poll = select.poll()\nipc_poll.register(ipc.fileno(), select.POLLIN | select.POLLPRI)\nipc_poll = ipc_poll.poll\npoll = select.poll()\npoll.register(ipc.fileno(), select.POLLIN | select.POLLPRI)\npoll.register(0, select.POLLIN | select.POLLPRI)\npoll = poll.poll\nDEBUG = int(open('DEBUG', 'rb').read().split('\\n')[0]) if os.path.exists(\n 'DEBUG') else 0\nCOLOUR = int(open('COLOUR', 'rb').read().split('\\n')[0]) if os.path.exists(\n 'COLOUR') else 0\nUNICODE = int(open('UNICODE', 'rb').read().split('\\n')[0]) if os.path.exists(\n 'UNICODE') else 0\nHASH_LOG = int(open('HASH_LOG', 'rb').read().split('\\n')[0]) if os.path.exists(\n 'HASH_LOG') else 256\nOK_SECONDS = int(open('OK_SECONDS', 'rb').read().split('\\n')[0]\n ) if os.path.exists('OK_SECONDS') else 128\nNAMELESS = '\\\\|' if os.path.exists('NAMELESS') and int(open('NAMELESS',\n 'rb').read().split('\\n')[0]) else str()\nre_SPLIT_NAMELESS = re.compile(NAMELESS, re.IGNORECASE).split\nhashcache = collections.deque([], HASH_LOG)\nwhile 1:\n if len(poll(-1)) < 2 and ipc_poll(0):\n h = ipc.recv(32)\n if len(h) < 32:\n sys.exit(128 + 32)\n cached(h)\n continue\n buffer = str()\n while 1:\n byte = os.read(0, 1)\n if byte == '':\n sys.exit(0)\n if byte == '\\n':\n break\n if byte != '\\r' and len(buffer) < 1024:\n buffer += byte\n while ipc_poll(0):\n h = ipc.recv(32)\n if len(h) < 32:\n sys.exit(128 + 32)\n cached(h)\n if re_CRYPTOSERV(buffer):\n if DEBUG:\n os.write(2, 'nacltaia-otr: error: re_CRYPTOSERV(buffer)\\n')\n continue\n taia_now = nacltaia.taia_now_pack()\n if re_NICK_PRIVMSG_NOTICE_TOPIC(buffer):\n src = re_SPLIT_NAMELESS(buffer[1:].split('!', 1)[0].lower())[0]\n if src in os.listdir('dstkey/'):\n c = base91a.decode(re_SPLIT_SPACE_COLON(buffer, 3)[3])\n if not c:\n if DEBUG:\n os.write(2,\n \"\"\"nacltaia-otr: error: base91a.decode(re_SPLIT_SPACE_COLON(buffer,3)[3])\n\"\"\"\n )\n continue\n n = c[:24]\n c = c[24:]\n pk = base91a.hex2bin(open('dstkey/' + src, 'rb').read(64))\n sk = base91a.hex2bin(open('seckey', 'rb').read(64))\n c = nacltaia.crypto_box_open(c, n, pk, sk)\n if c == 0:\n if DEBUG:\n os.write(2,\n 'nacltaia-otr: error: nacltaia.crypto_box_open(c,n,pk,sk)\\n'\n )\n continue\n m = 0\n taia = n[:16]\n if len(c) >= 32:\n pk = c[:32]\n sk = open('tmpkey/' + src + '/sk', 'rb').read(32)\n m = nacltaia.crypto_box_open(c[32:], n, pk, sk)\n if open('tmpkey/' + src + '/tk', 'rb').read(32) != pk:\n open('tmpkey/' + src + '/tk', 'wb').write(pk)\n else:\n if DEBUG:\n os.write(2, 'nacltaia-otr: error: len(c) < 32\\n')\n continue\n if not src in taias.keys():\n taias[src] = taia_now\n if not oksrctaia(OK_SECONDS, taia, taia_now):\n if DEBUG:\n os.write(2,\n 'nacltaia-otr: error: oksrctaia(OK_SECONDS,taia,taia_now)\\n'\n )\n continue\n taias[src] = taia\n if m == 0:\n os.write(1, ':' + buffer[1:].split('!', 1)[0] +\n '!nacltaia-otr@service NOTICE ' + re_SPLIT_SPACE(buffer,\n 3)[2] + \"\"\" :unable to decrypt message\u0007\n\"\"\")\n continue\n else:\n buffer = ' '.join(re_SPLIT_SPACE(buffer, 3)[:3]\n ) + ' :' + m.split('\\n', 1)[0]\n elif re_CHANNEL_PRIVMSG_NOTICE_TOPIC(buffer):\n src = re_SPLIT_NAMELESS(buffer[1:].split('!', 1)[0].lower())[0]\n dst = re_SPLIT_SPACE(buffer, 3)[2].lower()[1:]\n m = re_SPLIT_SPACE_COLON(buffer, 3)[3]\n h = nacltaia.crypto_hash_sha256(m)\n if dst in os.listdir('chnkey/'):\n c = base91a.decode(m)\n if not c:\n if DEBUG:\n os.write(2, 'nacltaia-otr: error: base91a.decode(m)\\n')\n continue\n n = c[:24]\n c = c[24:]\n k = base91a.hex2bin(open('chnkey/' + dst, 'rb').read(64))\n m = nacltaia.crypto_secretbox_open(c, n, k)\n if m == 0:\n if DEBUG:\n os.write(2,\n 'nacltaia-otr: error: nacltaia.crypto_secretbox_open(c,n,k)\\n'\n )\n continue\n taia = n[:16]\n if taia == '\\x00' * 16 and len(c) >= 32 + 64 + 24:\n pk = m[:32]\n m = nacltaia.crypto_sign_open(m[32:], pk)\n if m == 0:\n if DEBUG:\n os.write(2,\n 'nacltaia-otr: error: nacltaia.crypto_sign_open(m[32:],pk)\\n'\n )\n continue\n if n != m[:24]:\n if DEBUG:\n os.write(2, 'nacltaia-otr: error: n != m[:24]\\n')\n continue\n m = m[24:]\n taia = n[16:] + '\\x00' * 8\n if dst in os.listdir('unsign/') and src in os.listdir(\n 'unsign/' + dst + '/'):\n if pk != base91a.hex2bin(open('unsign/' + dst + '/' +\n src, 'rb').read(64)):\n if DEBUG:\n os.write(2,\n \"\"\"nacltaia-otr: error: pk != base91a.hex2bin(open('unsign/'+dst+'/'+src,'rb').read(64))\n\"\"\"\n )\n continue\n if not src in taias.keys():\n taias[src] = taia_now\n if not oksrctaia(OK_SECONDS, taia, taia_now):\n if DEBUG:\n os.write(2,\n \"\"\"nacltaia-otr: error: oksrctaia(OK_SECONDS,taia,taia_now)\n\"\"\"\n )\n continue\n taias[src] = taia\n elif nacltaia.taia_okseconds(OK_SECONDS, taia) < 1:\n if DEBUG:\n os.write(2,\n \"\"\"nacltaia-otr: error: nacltaia.taia_okseconds(OK_SECONDS,taia)\n\"\"\"\n )\n continue\n elif cached(h):\n if DEBUG:\n os.write(2, 'nacltaia-otr: error: cached(h)\\n')\n continue\n elif dst in os.listdir('unsign/') and src in os.listdir(\n 'unsign/' + dst + '/'):\n if DEBUG:\n os.write(2,\n \"\"\"nacltaia-otr: error: dst in os.listdir('unsign/') and src in os.listdir('unsign/'+dst+'/')\n\"\"\"\n )\n continue\n elif nacltaia.taia_okseconds(OK_SECONDS, taia) < 1:\n if DEBUG:\n os.write(2,\n 'nacltaia-otr: error: nacltaia.taia_okseconds(OK_SECONDS,taia)\\n'\n )\n continue\n elif cached(h):\n if DEBUG:\n os.write(2, 'nacltaia-otr: error: cached(h)\\n')\n continue\n buffer = ' '.join(re_SPLIT_SPACE(buffer, 3)[:3]) + ' :' + m.split(\n '\\n', 1)[0]\n elif dst in os.listdir('unsign/') and src in os.listdir('unsign/' +\n dst + '/'):\n m = base91a.decode(m)\n pk = m[24:56]\n n = m[:24]\n m = nacltaia.crypto_sign_open(m[56:], pk)\n if m == 0:\n if DEBUG:\n os.write(2,\n 'nacltaia-otr: error: nacltaia.crypto_sign_open(m[56:],pk)\\n'\n )\n continue\n if n != m[:24]:\n if DEBUG:\n os.write(2, 'nacltaia-otr: error: n != m[:24]\\n')\n continue\n m = m[24:]\n taia = n[:16]\n if pk != base91a.hex2bin(open('unsign/' + dst + '/' + src, 'rb'\n ).read(64)):\n if DEBUG:\n os.write(2,\n \"\"\"nacltaia-otr: error: pk != base91a.hex2bin(open('unsign/'+dst+'/'+src'rb').read(64))\n\"\"\"\n )\n continue\n if not src in taias.keys():\n taias[src] = taia_now\n if not oksrctaia(OK_SECONDS, taia, taia_now):\n if DEBUG:\n os.write(2,\n 'nacltaia-otr: error: oksrctaia(OK_SECONDS,taia,taia_now)\\n'\n )\n continue\n taias[src] = taia\n buffer = ' '.join(re_SPLIT_SPACE(buffer, 3)[:3]) + ' :' + m.split(\n '\\n', 1)[0]\n elif len(m) >= 56 + 64 and not ' ' in m:\n m = re_SPLIT_SPACE_COLON(buffer, 3)[3]\n h = nacltaia.crypto_hash_sha256(m)\n m = base91a.decode(re_SPLIT_SPACE_COLON(buffer, 3)[3])\n if m[16:24] == '\\x00' * 8:\n n = m[:24]\n pk = m[24:56]\n m = nacltaia.crypto_sign_open(m[56:], pk)\n if m == 0:\n if DEBUG:\n os.write(2,\n 'nacltaia-otr: error: nacltaia.crypto_sign_open(m[56:],pk)\\n'\n )\n continue\n if n != m[:24]:\n if DEBUG:\n os.write(2, 'nacltaia-otr: error: n != m[:24]\\n')\n continue\n m = m[24:]\n taia = n[:16]\n if nacltaia.taia_okseconds(OK_SECONDS, taia) < 1:\n if DEBUG:\n os.write(2,\n \"\"\"nacltaia-otr: error: nacltaia.taia_okseconds(OK_SECONDS,taia)\n\"\"\"\n )\n continue\n elif cached(h):\n if DEBUG:\n os.write(2, 'nacltaia-otr: error: cached(h)\\n')\n continue\n else:\n m = re_SPLIT_SPACE_COLON(buffer, 3)[3]\n buffer = ' '.join(re_SPLIT_SPACE(buffer, 3)[:3]) + ' :' + m.split(\n '\\n', 1)[0]\n elif re_322_332(buffer):\n dst = re_SPLIT_SPACE(buffer, 4)[3].lower()[1:]\n cmd = re_SPLIT_SPACE(buffer, 2)[1]\n m = ret_322_332_msg(cmd, buffer)\n if dst in os.listdir('chnkey/'):\n c = base91a.decode(m)\n c = str() if c == 0 else c\n n = c[:24]\n c = c[24:]\n k = base91a.hex2bin(open('chnkey/' + dst, 'rb').read(64))\n m = nacltaia.crypto_secretbox_open(c, n, k)\n m = str() if m == 0 else m\n taia = n[:16]\n if len(n) >= 16 and taia == '\\x00' * 16:\n pk = m[:32]\n m = nacltaia.crypto_sign_open(m[32:], pk)\n m = str() if m == 0 else m\n m = m[24:]\n elif len(m) >= 56 + 64 and not ' ' in m:\n m = base91a.decode(m)\n if m[16:24] == '\\x00' * 8:\n pk = m[24:56]\n n = m[:24]\n m = nacltaia.crypto_sign_open(m[56:], pk)\n m = str() if m == 0 else m\n m = m[24:]\n else:\n m = ret_322_332_msg(cmd, buffer)\n else:\n m = ret_322_332_msg(cmd, buffer)\n if cmd == '322':\n try:\n m = '[' + re_SPLIT_BRACKETS(re_SPLIT_SPACE_COLON(buffer, 5)\n [5], 2)[1] + '] ' + m\n except:\n pass\n buffer = ' '.join(re_SPLIT_SPACE(buffer, 5)[:5]) + ' :' + m.split(\n '\\n', 1)[0]\n elif cmd == '332':\n buffer = ' '.join(re_SPLIT_SPACE(buffer, 4)[:4]) + ' :' + m.split(\n '\\n', 1)[0]\n buffer = re_BUFFER_CTCP_DCC('', buffer\n ) + '\\x01' if '\\x01ACTION ' in buffer.upper() else buffer.replace(\n '\\x01', '')\n if not COLOUR:\n buffer = re_BUFFER_COLOUR('', buffer)\n if not UNICODE:\n buffer = codecs.ascii_encode(unicodedata.normalize('NFKD', unicode(\n buffer, 'utf-8', 'replace')), 'ignore')[0]\n buffer = ''.join(byte for byte in buffer if 127 > ord(byte) > 31 or\n byte in ['\\x01', '\\x02', '\\x03', '\\x0f', '\\x1d', '\\x1f'])\n os.write(1, buffer + '\\n')\n", "<import token>\nsys.path.append(os.getcwd())\n<import token>\n<assignment token>\n\n\ndef oksrctaia(n, taia, taia_now):\n if nacltaia.taia_okseconds(n, taia) < 1:\n return 0\n if nacltaia.taia_new(taia, taias[src]) < 1:\n return 1 if taia_now == taias[src] else 0\n return 1\n\n\ndef cached(h):\n if h in hashcache:\n return 1\n hashcache.append(h)\n return 0\n\n\ndef ret_322_332_msg(cmd, buffer):\n try:\n return re_SPLIT_BRACKETS(re_SPLIT_SPACE_COLON(buffer, 5)[5], 2)[2][1:\n ] if cmd == '322' else re_SPLIT_SPACE_COLON(buffer, 4)[4]\n except:\n return re_SPLIT_SPACE_COLON(buffer, 5)[5\n ] if cmd == '322' else re_SPLIT_SPACE_COLON(buffer, 4)[4]\n\n\n<assignment token>\nos.chdir('crypto/')\nos.chroot(os.getcwd())\nos.setgid(gid)\nos.setuid(uid)\ndel uid, gid\n<assignment token>\nfor n in range(0, 9):\n if n == 8:\n sys.exit(128 + 111)\n try:\n ipc.connect('socket')\n del n\n break\n except:\n time.sleep(0.1)\n<assignment token>\nipc_poll.register(ipc.fileno(), select.POLLIN | select.POLLPRI)\n<assignment token>\npoll.register(ipc.fileno(), select.POLLIN | select.POLLPRI)\npoll.register(0, select.POLLIN | select.POLLPRI)\n<assignment token>\nwhile 1:\n if len(poll(-1)) < 2 and ipc_poll(0):\n h = ipc.recv(32)\n if len(h) < 32:\n sys.exit(128 + 32)\n cached(h)\n continue\n buffer = str()\n while 1:\n byte = os.read(0, 1)\n if byte == '':\n sys.exit(0)\n if byte == '\\n':\n break\n if byte != '\\r' and len(buffer) < 1024:\n buffer += byte\n while ipc_poll(0):\n h = ipc.recv(32)\n if len(h) < 32:\n sys.exit(128 + 32)\n cached(h)\n if re_CRYPTOSERV(buffer):\n if DEBUG:\n os.write(2, 'nacltaia-otr: error: re_CRYPTOSERV(buffer)\\n')\n continue\n taia_now = nacltaia.taia_now_pack()\n if re_NICK_PRIVMSG_NOTICE_TOPIC(buffer):\n src = re_SPLIT_NAMELESS(buffer[1:].split('!', 1)[0].lower())[0]\n if src in os.listdir('dstkey/'):\n c = base91a.decode(re_SPLIT_SPACE_COLON(buffer, 3)[3])\n if not c:\n if DEBUG:\n os.write(2,\n \"\"\"nacltaia-otr: error: base91a.decode(re_SPLIT_SPACE_COLON(buffer,3)[3])\n\"\"\"\n )\n continue\n n = c[:24]\n c = c[24:]\n pk = base91a.hex2bin(open('dstkey/' + src, 'rb').read(64))\n sk = base91a.hex2bin(open('seckey', 'rb').read(64))\n c = nacltaia.crypto_box_open(c, n, pk, sk)\n if c == 0:\n if DEBUG:\n os.write(2,\n 'nacltaia-otr: error: nacltaia.crypto_box_open(c,n,pk,sk)\\n'\n )\n continue\n m = 0\n taia = n[:16]\n if len(c) >= 32:\n pk = c[:32]\n sk = open('tmpkey/' + src + '/sk', 'rb').read(32)\n m = nacltaia.crypto_box_open(c[32:], n, pk, sk)\n if open('tmpkey/' + src + '/tk', 'rb').read(32) != pk:\n open('tmpkey/' + src + '/tk', 'wb').write(pk)\n else:\n if DEBUG:\n os.write(2, 'nacltaia-otr: error: len(c) < 32\\n')\n continue\n if not src in taias.keys():\n taias[src] = taia_now\n if not oksrctaia(OK_SECONDS, taia, taia_now):\n if DEBUG:\n os.write(2,\n 'nacltaia-otr: error: oksrctaia(OK_SECONDS,taia,taia_now)\\n'\n )\n continue\n taias[src] = taia\n if m == 0:\n os.write(1, ':' + buffer[1:].split('!', 1)[0] +\n '!nacltaia-otr@service NOTICE ' + re_SPLIT_SPACE(buffer,\n 3)[2] + \"\"\" :unable to decrypt message\u0007\n\"\"\")\n continue\n else:\n buffer = ' '.join(re_SPLIT_SPACE(buffer, 3)[:3]\n ) + ' :' + m.split('\\n', 1)[0]\n elif re_CHANNEL_PRIVMSG_NOTICE_TOPIC(buffer):\n src = re_SPLIT_NAMELESS(buffer[1:].split('!', 1)[0].lower())[0]\n dst = re_SPLIT_SPACE(buffer, 3)[2].lower()[1:]\n m = re_SPLIT_SPACE_COLON(buffer, 3)[3]\n h = nacltaia.crypto_hash_sha256(m)\n if dst in os.listdir('chnkey/'):\n c = base91a.decode(m)\n if not c:\n if DEBUG:\n os.write(2, 'nacltaia-otr: error: base91a.decode(m)\\n')\n continue\n n = c[:24]\n c = c[24:]\n k = base91a.hex2bin(open('chnkey/' + dst, 'rb').read(64))\n m = nacltaia.crypto_secretbox_open(c, n, k)\n if m == 0:\n if DEBUG:\n os.write(2,\n 'nacltaia-otr: error: nacltaia.crypto_secretbox_open(c,n,k)\\n'\n )\n continue\n taia = n[:16]\n if taia == '\\x00' * 16 and len(c) >= 32 + 64 + 24:\n pk = m[:32]\n m = nacltaia.crypto_sign_open(m[32:], pk)\n if m == 0:\n if DEBUG:\n os.write(2,\n 'nacltaia-otr: error: nacltaia.crypto_sign_open(m[32:],pk)\\n'\n )\n continue\n if n != m[:24]:\n if DEBUG:\n os.write(2, 'nacltaia-otr: error: n != m[:24]\\n')\n continue\n m = m[24:]\n taia = n[16:] + '\\x00' * 8\n if dst in os.listdir('unsign/') and src in os.listdir(\n 'unsign/' + dst + '/'):\n if pk != base91a.hex2bin(open('unsign/' + dst + '/' +\n src, 'rb').read(64)):\n if DEBUG:\n os.write(2,\n \"\"\"nacltaia-otr: error: pk != base91a.hex2bin(open('unsign/'+dst+'/'+src,'rb').read(64))\n\"\"\"\n )\n continue\n if not src in taias.keys():\n taias[src] = taia_now\n if not oksrctaia(OK_SECONDS, taia, taia_now):\n if DEBUG:\n os.write(2,\n \"\"\"nacltaia-otr: error: oksrctaia(OK_SECONDS,taia,taia_now)\n\"\"\"\n )\n continue\n taias[src] = taia\n elif nacltaia.taia_okseconds(OK_SECONDS, taia) < 1:\n if DEBUG:\n os.write(2,\n \"\"\"nacltaia-otr: error: nacltaia.taia_okseconds(OK_SECONDS,taia)\n\"\"\"\n )\n continue\n elif cached(h):\n if DEBUG:\n os.write(2, 'nacltaia-otr: error: cached(h)\\n')\n continue\n elif dst in os.listdir('unsign/') and src in os.listdir(\n 'unsign/' + dst + '/'):\n if DEBUG:\n os.write(2,\n \"\"\"nacltaia-otr: error: dst in os.listdir('unsign/') and src in os.listdir('unsign/'+dst+'/')\n\"\"\"\n )\n continue\n elif nacltaia.taia_okseconds(OK_SECONDS, taia) < 1:\n if DEBUG:\n os.write(2,\n 'nacltaia-otr: error: nacltaia.taia_okseconds(OK_SECONDS,taia)\\n'\n )\n continue\n elif cached(h):\n if DEBUG:\n os.write(2, 'nacltaia-otr: error: cached(h)\\n')\n continue\n buffer = ' '.join(re_SPLIT_SPACE(buffer, 3)[:3]) + ' :' + m.split(\n '\\n', 1)[0]\n elif dst in os.listdir('unsign/') and src in os.listdir('unsign/' +\n dst + '/'):\n m = base91a.decode(m)\n pk = m[24:56]\n n = m[:24]\n m = nacltaia.crypto_sign_open(m[56:], pk)\n if m == 0:\n if DEBUG:\n os.write(2,\n 'nacltaia-otr: error: nacltaia.crypto_sign_open(m[56:],pk)\\n'\n )\n continue\n if n != m[:24]:\n if DEBUG:\n os.write(2, 'nacltaia-otr: error: n != m[:24]\\n')\n continue\n m = m[24:]\n taia = n[:16]\n if pk != base91a.hex2bin(open('unsign/' + dst + '/' + src, 'rb'\n ).read(64)):\n if DEBUG:\n os.write(2,\n \"\"\"nacltaia-otr: error: pk != base91a.hex2bin(open('unsign/'+dst+'/'+src'rb').read(64))\n\"\"\"\n )\n continue\n if not src in taias.keys():\n taias[src] = taia_now\n if not oksrctaia(OK_SECONDS, taia, taia_now):\n if DEBUG:\n os.write(2,\n 'nacltaia-otr: error: oksrctaia(OK_SECONDS,taia,taia_now)\\n'\n )\n continue\n taias[src] = taia\n buffer = ' '.join(re_SPLIT_SPACE(buffer, 3)[:3]) + ' :' + m.split(\n '\\n', 1)[0]\n elif len(m) >= 56 + 64 and not ' ' in m:\n m = re_SPLIT_SPACE_COLON(buffer, 3)[3]\n h = nacltaia.crypto_hash_sha256(m)\n m = base91a.decode(re_SPLIT_SPACE_COLON(buffer, 3)[3])\n if m[16:24] == '\\x00' * 8:\n n = m[:24]\n pk = m[24:56]\n m = nacltaia.crypto_sign_open(m[56:], pk)\n if m == 0:\n if DEBUG:\n os.write(2,\n 'nacltaia-otr: error: nacltaia.crypto_sign_open(m[56:],pk)\\n'\n )\n continue\n if n != m[:24]:\n if DEBUG:\n os.write(2, 'nacltaia-otr: error: n != m[:24]\\n')\n continue\n m = m[24:]\n taia = n[:16]\n if nacltaia.taia_okseconds(OK_SECONDS, taia) < 1:\n if DEBUG:\n os.write(2,\n \"\"\"nacltaia-otr: error: nacltaia.taia_okseconds(OK_SECONDS,taia)\n\"\"\"\n )\n continue\n elif cached(h):\n if DEBUG:\n os.write(2, 'nacltaia-otr: error: cached(h)\\n')\n continue\n else:\n m = re_SPLIT_SPACE_COLON(buffer, 3)[3]\n buffer = ' '.join(re_SPLIT_SPACE(buffer, 3)[:3]) + ' :' + m.split(\n '\\n', 1)[0]\n elif re_322_332(buffer):\n dst = re_SPLIT_SPACE(buffer, 4)[3].lower()[1:]\n cmd = re_SPLIT_SPACE(buffer, 2)[1]\n m = ret_322_332_msg(cmd, buffer)\n if dst in os.listdir('chnkey/'):\n c = base91a.decode(m)\n c = str() if c == 0 else c\n n = c[:24]\n c = c[24:]\n k = base91a.hex2bin(open('chnkey/' + dst, 'rb').read(64))\n m = nacltaia.crypto_secretbox_open(c, n, k)\n m = str() if m == 0 else m\n taia = n[:16]\n if len(n) >= 16 and taia == '\\x00' * 16:\n pk = m[:32]\n m = nacltaia.crypto_sign_open(m[32:], pk)\n m = str() if m == 0 else m\n m = m[24:]\n elif len(m) >= 56 + 64 and not ' ' in m:\n m = base91a.decode(m)\n if m[16:24] == '\\x00' * 8:\n pk = m[24:56]\n n = m[:24]\n m = nacltaia.crypto_sign_open(m[56:], pk)\n m = str() if m == 0 else m\n m = m[24:]\n else:\n m = ret_322_332_msg(cmd, buffer)\n else:\n m = ret_322_332_msg(cmd, buffer)\n if cmd == '322':\n try:\n m = '[' + re_SPLIT_BRACKETS(re_SPLIT_SPACE_COLON(buffer, 5)\n [5], 2)[1] + '] ' + m\n except:\n pass\n buffer = ' '.join(re_SPLIT_SPACE(buffer, 5)[:5]) + ' :' + m.split(\n '\\n', 1)[0]\n elif cmd == '332':\n buffer = ' '.join(re_SPLIT_SPACE(buffer, 4)[:4]) + ' :' + m.split(\n '\\n', 1)[0]\n buffer = re_BUFFER_CTCP_DCC('', buffer\n ) + '\\x01' if '\\x01ACTION ' in buffer.upper() else buffer.replace(\n '\\x01', '')\n if not COLOUR:\n buffer = re_BUFFER_COLOUR('', buffer)\n if not UNICODE:\n buffer = codecs.ascii_encode(unicodedata.normalize('NFKD', unicode(\n buffer, 'utf-8', 'replace')), 'ignore')[0]\n buffer = ''.join(byte for byte in buffer if 127 > ord(byte) > 31 or\n byte in ['\\x01', '\\x02', '\\x03', '\\x0f', '\\x1d', '\\x1f'])\n os.write(1, buffer + '\\n')\n", "<import token>\n<code token>\n<import token>\n<assignment token>\n\n\ndef oksrctaia(n, taia, taia_now):\n if nacltaia.taia_okseconds(n, taia) < 1:\n return 0\n if nacltaia.taia_new(taia, taias[src]) < 1:\n return 1 if taia_now == taias[src] else 0\n return 1\n\n\ndef cached(h):\n if h in hashcache:\n return 1\n hashcache.append(h)\n return 0\n\n\ndef ret_322_332_msg(cmd, buffer):\n try:\n return re_SPLIT_BRACKETS(re_SPLIT_SPACE_COLON(buffer, 5)[5], 2)[2][1:\n ] if cmd == '322' else re_SPLIT_SPACE_COLON(buffer, 4)[4]\n except:\n return re_SPLIT_SPACE_COLON(buffer, 5)[5\n ] if cmd == '322' else re_SPLIT_SPACE_COLON(buffer, 4)[4]\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n", "<import token>\n<code token>\n<import token>\n<assignment token>\n\n\ndef oksrctaia(n, taia, taia_now):\n if nacltaia.taia_okseconds(n, taia) < 1:\n return 0\n if nacltaia.taia_new(taia, taias[src]) < 1:\n return 1 if taia_now == taias[src] else 0\n return 1\n\n\ndef cached(h):\n if h in hashcache:\n return 1\n hashcache.append(h)\n return 0\n\n\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n", "<import token>\n<code token>\n<import token>\n<assignment token>\n\n\ndef oksrctaia(n, taia, taia_now):\n if nacltaia.taia_okseconds(n, taia) < 1:\n return 0\n if nacltaia.taia_new(taia, taias[src]) < 1:\n return 1 if taia_now == taias[src] else 0\n return 1\n\n\n<function token>\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n", "<import token>\n<code token>\n<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n" ]
false
98,857
19ac4344c7de6ba3581600e4cf2b934a06005656
# Copyright © 2021 Ingram Micro Inc. All rights reserved. import sys from dj_cqrs.registries import MasterRegistry from django.core.management.base import BaseCommand, CommandError from django.db import connection import ujson GET_NON_EXISTING_PKS_SQL_TEMPLATE = """ SELECT t.pk FROM ( WITH t0(pk) AS ( VALUES {values} ) SELECT * FROM t0 ) t LEFT JOIN {table} m ON m.{pk_field} = t.pk WHERE m.{pk_field} IS NULL """ class Command(BaseCommand): help = 'Diff of deleted CQRS models pks from master diff stream.' @classmethod def serialize_out(cls, package): return ujson.dumps(package) @classmethod def deserialize_in(cls, package_line): return ujson.loads(package_line) def handle(self, *args, **options): with sys.stdin as f: first_line = f.readline() model = self._get_model(first_line) self.stdout.write(first_line.strip()) with connection.cursor() as cursor: for package_line in f: master_data = self.deserialize_in(package_line) sql = GET_NON_EXISTING_PKS_SQL_TEMPLATE.format( values=','.join(["({0})".format(pk) for pk in master_data]), table=model._meta.db_table, pk_field=model._meta.pk.attname, ) cursor.execute(sql) diff_ids = [r[0] for r in cursor.fetchall()] if diff_ids: self.stdout.write(self.serialize_out(diff_ids)) self.stderr.write('PK to delete: {0}'.format(str(diff_ids))) @staticmethod def _get_model(first_line): cqrs_id = first_line.split(',')[0] model = MasterRegistry.get_model_by_cqrs_id(cqrs_id) if not model: raise CommandError('Wrong CQRS ID: {0}!'.format(cqrs_id)) return model
[ "# Copyright © 2021 Ingram Micro Inc. All rights reserved.\n\nimport sys\n\nfrom dj_cqrs.registries import MasterRegistry\n\nfrom django.core.management.base import BaseCommand, CommandError\nfrom django.db import connection\n\nimport ujson\n\n\nGET_NON_EXISTING_PKS_SQL_TEMPLATE = \"\"\"\nSELECT t.pk\nFROM (\n WITH t0(pk) AS (\n VALUES {values}\n )\n SELECT *\n FROM t0\n ) t\nLEFT JOIN {table} m ON m.{pk_field} = t.pk\nWHERE m.{pk_field} IS NULL\n\"\"\"\n\n\nclass Command(BaseCommand):\n help = 'Diff of deleted CQRS models pks from master diff stream.'\n\n @classmethod\n def serialize_out(cls, package):\n return ujson.dumps(package)\n\n @classmethod\n def deserialize_in(cls, package_line):\n return ujson.loads(package_line)\n\n def handle(self, *args, **options):\n with sys.stdin as f:\n first_line = f.readline()\n model = self._get_model(first_line)\n self.stdout.write(first_line.strip())\n\n with connection.cursor() as cursor:\n for package_line in f:\n master_data = self.deserialize_in(package_line)\n\n sql = GET_NON_EXISTING_PKS_SQL_TEMPLATE.format(\n values=','.join([\"({0})\".format(pk) for pk in master_data]),\n table=model._meta.db_table,\n pk_field=model._meta.pk.attname,\n )\n\n cursor.execute(sql)\n diff_ids = [r[0] for r in cursor.fetchall()]\n if diff_ids:\n self.stdout.write(self.serialize_out(diff_ids))\n self.stderr.write('PK to delete: {0}'.format(str(diff_ids)))\n\n @staticmethod\n def _get_model(first_line):\n cqrs_id = first_line.split(',')[0]\n model = MasterRegistry.get_model_by_cqrs_id(cqrs_id)\n\n if not model:\n raise CommandError('Wrong CQRS ID: {0}!'.format(cqrs_id))\n\n return model\n", "import sys\nfrom dj_cqrs.registries import MasterRegistry\nfrom django.core.management.base import BaseCommand, CommandError\nfrom django.db import connection\nimport ujson\nGET_NON_EXISTING_PKS_SQL_TEMPLATE = \"\"\"\nSELECT t.pk\nFROM (\n WITH t0(pk) AS (\n VALUES {values}\n )\n SELECT *\n FROM t0\n ) t\nLEFT JOIN {table} m ON m.{pk_field} = t.pk\nWHERE m.{pk_field} IS NULL\n\"\"\"\n\n\nclass Command(BaseCommand):\n help = 'Diff of deleted CQRS models pks from master diff stream.'\n\n @classmethod\n def serialize_out(cls, package):\n return ujson.dumps(package)\n\n @classmethod\n def deserialize_in(cls, package_line):\n return ujson.loads(package_line)\n\n def handle(self, *args, **options):\n with sys.stdin as f:\n first_line = f.readline()\n model = self._get_model(first_line)\n self.stdout.write(first_line.strip())\n with connection.cursor() as cursor:\n for package_line in f:\n master_data = self.deserialize_in(package_line)\n sql = GET_NON_EXISTING_PKS_SQL_TEMPLATE.format(values=\n ','.join(['({0})'.format(pk) for pk in master_data]\n ), table=model._meta.db_table, pk_field=model._meta\n .pk.attname)\n cursor.execute(sql)\n diff_ids = [r[0] for r in cursor.fetchall()]\n if diff_ids:\n self.stdout.write(self.serialize_out(diff_ids))\n self.stderr.write('PK to delete: {0}'.format(str(\n diff_ids)))\n\n @staticmethod\n def _get_model(first_line):\n cqrs_id = first_line.split(',')[0]\n model = MasterRegistry.get_model_by_cqrs_id(cqrs_id)\n if not model:\n raise CommandError('Wrong CQRS ID: {0}!'.format(cqrs_id))\n return model\n", "<import token>\nGET_NON_EXISTING_PKS_SQL_TEMPLATE = \"\"\"\nSELECT t.pk\nFROM (\n WITH t0(pk) AS (\n VALUES {values}\n )\n SELECT *\n FROM t0\n ) t\nLEFT JOIN {table} m ON m.{pk_field} = t.pk\nWHERE m.{pk_field} IS NULL\n\"\"\"\n\n\nclass Command(BaseCommand):\n help = 'Diff of deleted CQRS models pks from master diff stream.'\n\n @classmethod\n def serialize_out(cls, package):\n return ujson.dumps(package)\n\n @classmethod\n def deserialize_in(cls, package_line):\n return ujson.loads(package_line)\n\n def handle(self, *args, **options):\n with sys.stdin as f:\n first_line = f.readline()\n model = self._get_model(first_line)\n self.stdout.write(first_line.strip())\n with connection.cursor() as cursor:\n for package_line in f:\n master_data = self.deserialize_in(package_line)\n sql = GET_NON_EXISTING_PKS_SQL_TEMPLATE.format(values=\n ','.join(['({0})'.format(pk) for pk in master_data]\n ), table=model._meta.db_table, pk_field=model._meta\n .pk.attname)\n cursor.execute(sql)\n diff_ids = [r[0] for r in cursor.fetchall()]\n if diff_ids:\n self.stdout.write(self.serialize_out(diff_ids))\n self.stderr.write('PK to delete: {0}'.format(str(\n diff_ids)))\n\n @staticmethod\n def _get_model(first_line):\n cqrs_id = first_line.split(',')[0]\n model = MasterRegistry.get_model_by_cqrs_id(cqrs_id)\n if not model:\n raise CommandError('Wrong CQRS ID: {0}!'.format(cqrs_id))\n return model\n", "<import token>\n<assignment token>\n\n\nclass Command(BaseCommand):\n help = 'Diff of deleted CQRS models pks from master diff stream.'\n\n @classmethod\n def serialize_out(cls, package):\n return ujson.dumps(package)\n\n @classmethod\n def deserialize_in(cls, package_line):\n return ujson.loads(package_line)\n\n def handle(self, *args, **options):\n with sys.stdin as f:\n first_line = f.readline()\n model = self._get_model(first_line)\n self.stdout.write(first_line.strip())\n with connection.cursor() as cursor:\n for package_line in f:\n master_data = self.deserialize_in(package_line)\n sql = GET_NON_EXISTING_PKS_SQL_TEMPLATE.format(values=\n ','.join(['({0})'.format(pk) for pk in master_data]\n ), table=model._meta.db_table, pk_field=model._meta\n .pk.attname)\n cursor.execute(sql)\n diff_ids = [r[0] for r in cursor.fetchall()]\n if diff_ids:\n self.stdout.write(self.serialize_out(diff_ids))\n self.stderr.write('PK to delete: {0}'.format(str(\n diff_ids)))\n\n @staticmethod\n def _get_model(first_line):\n cqrs_id = first_line.split(',')[0]\n model = MasterRegistry.get_model_by_cqrs_id(cqrs_id)\n if not model:\n raise CommandError('Wrong CQRS ID: {0}!'.format(cqrs_id))\n return model\n", "<import token>\n<assignment token>\n\n\nclass Command(BaseCommand):\n <assignment token>\n\n @classmethod\n def serialize_out(cls, package):\n return ujson.dumps(package)\n\n @classmethod\n def deserialize_in(cls, package_line):\n return ujson.loads(package_line)\n\n def handle(self, *args, **options):\n with sys.stdin as f:\n first_line = f.readline()\n model = self._get_model(first_line)\n self.stdout.write(first_line.strip())\n with connection.cursor() as cursor:\n for package_line in f:\n master_data = self.deserialize_in(package_line)\n sql = GET_NON_EXISTING_PKS_SQL_TEMPLATE.format(values=\n ','.join(['({0})'.format(pk) for pk in master_data]\n ), table=model._meta.db_table, pk_field=model._meta\n .pk.attname)\n cursor.execute(sql)\n diff_ids = [r[0] for r in cursor.fetchall()]\n if diff_ids:\n self.stdout.write(self.serialize_out(diff_ids))\n self.stderr.write('PK to delete: {0}'.format(str(\n diff_ids)))\n\n @staticmethod\n def _get_model(first_line):\n cqrs_id = first_line.split(',')[0]\n model = MasterRegistry.get_model_by_cqrs_id(cqrs_id)\n if not model:\n raise CommandError('Wrong CQRS ID: {0}!'.format(cqrs_id))\n return model\n", "<import token>\n<assignment token>\n\n\nclass Command(BaseCommand):\n <assignment token>\n\n @classmethod\n def serialize_out(cls, package):\n return ujson.dumps(package)\n\n @classmethod\n def deserialize_in(cls, package_line):\n return ujson.loads(package_line)\n\n def handle(self, *args, **options):\n with sys.stdin as f:\n first_line = f.readline()\n model = self._get_model(first_line)\n self.stdout.write(first_line.strip())\n with connection.cursor() as cursor:\n for package_line in f:\n master_data = self.deserialize_in(package_line)\n sql = GET_NON_EXISTING_PKS_SQL_TEMPLATE.format(values=\n ','.join(['({0})'.format(pk) for pk in master_data]\n ), table=model._meta.db_table, pk_field=model._meta\n .pk.attname)\n cursor.execute(sql)\n diff_ids = [r[0] for r in cursor.fetchall()]\n if diff_ids:\n self.stdout.write(self.serialize_out(diff_ids))\n self.stderr.write('PK to delete: {0}'.format(str(\n diff_ids)))\n <function token>\n", "<import token>\n<assignment token>\n\n\nclass Command(BaseCommand):\n <assignment token>\n <function token>\n\n @classmethod\n def deserialize_in(cls, package_line):\n return ujson.loads(package_line)\n\n def handle(self, *args, **options):\n with sys.stdin as f:\n first_line = f.readline()\n model = self._get_model(first_line)\n self.stdout.write(first_line.strip())\n with connection.cursor() as cursor:\n for package_line in f:\n master_data = self.deserialize_in(package_line)\n sql = GET_NON_EXISTING_PKS_SQL_TEMPLATE.format(values=\n ','.join(['({0})'.format(pk) for pk in master_data]\n ), table=model._meta.db_table, pk_field=model._meta\n .pk.attname)\n cursor.execute(sql)\n diff_ids = [r[0] for r in cursor.fetchall()]\n if diff_ids:\n self.stdout.write(self.serialize_out(diff_ids))\n self.stderr.write('PK to delete: {0}'.format(str(\n diff_ids)))\n <function token>\n", "<import token>\n<assignment token>\n\n\nclass Command(BaseCommand):\n <assignment token>\n <function token>\n <function token>\n\n def handle(self, *args, **options):\n with sys.stdin as f:\n first_line = f.readline()\n model = self._get_model(first_line)\n self.stdout.write(first_line.strip())\n with connection.cursor() as cursor:\n for package_line in f:\n master_data = self.deserialize_in(package_line)\n sql = GET_NON_EXISTING_PKS_SQL_TEMPLATE.format(values=\n ','.join(['({0})'.format(pk) for pk in master_data]\n ), table=model._meta.db_table, pk_field=model._meta\n .pk.attname)\n cursor.execute(sql)\n diff_ids = [r[0] for r in cursor.fetchall()]\n if diff_ids:\n self.stdout.write(self.serialize_out(diff_ids))\n self.stderr.write('PK to delete: {0}'.format(str(\n diff_ids)))\n <function token>\n", "<import token>\n<assignment token>\n\n\nclass Command(BaseCommand):\n <assignment token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n<assignment token>\n<class token>\n" ]
false
98,858
def30114baa2bfb8064b0f98c9aa7bfa6d8be368
#!/usr/bin/python # remediator_python.py - version 1.55 9/13/07 # Copyright 2007, Jeffrey J. Headd and Robert Immormino # revision 1.55 - JJH 070808 - added support for DU DNA base # - JJH 070808 - added compiled RE object for HN2 RES special case # - JJH 070815 - updated name of hash dictionary file # - JJH 070823 - added support for CNS Xplor and Coot RNA names # - JJH 070908 - added REMARK 4 comment addition # - JJH 070913 - added support for left-justified RNA/DNA old names # - JJH 070913 - added support for all left-justified residue names # # SAS - corrected 22.01.2008 to fix an error: the original script stripped spaces # at the ends of all raws # SAS - corrected 04.06.2008 to fix an error: the original script did not change # coordinate lines with alter codes import sys import getopt import os import string import re masterhash="master_hash.txt" def usage(): print """ ************************************ remediator_python.py: version 1.55 8/8/07 Copyright 2007, Jeffrey J. Headd and Robert Immormino remediator.py: bug fixes by Sergei Spirin (2008) For a log of changes, view remediator.py in your favorite text editor USAGE: remediator_sas.py [--options] input_file > output_file options: --help outputs this help message --pdb takes a .pdb formatted file as input --old output file will use the PDBv2.3 naming conventions --remediated output file will use the remediated naming conventions (default) remediator is generally inteded to convert from PDBv2.3 to PDBv3.0. This changes files from the pre-wwPDB format into the wwPDB remediated format. Output is directed to standard out. EXAMPLE: remediator_sas.py --pdb --old 404D.pdb > 404D_old.pdb """ try: opts, args = getopt.getopt( sys.argv[1:], 'hpor',['help', 'pdb', 'old', 'remediated'] ) except getopt.GetoptError: usage() sys.exit() old_out = False remediated_out = False dopdb = False #dokin = False for o, a in opts: if o in ("-h", "--help"): usage() sys.exit() if o in ("-p", "--pdb"): dopdb = True #if o in ("-k", "--kin"): # dokin = True if o in ("-o", "--old"): old_out = True if o in ("-r", "--remediated"): remediated_out = True if len(args) < 1: sys.stderr.write("\n**REMEDIATOR ERROR: User must specify input filename\n") sys.exit(usage()) if len(args) > 1: sys.stderr.write("\n**REMEDIATOR ERROR: too many input files specified\n") sys.exit(usage()) #if dopdb == True and dokin == True: # usage() # sys.exit("REMEDIATOR ERROR: specify only one input file type") if old_out == True and remediated_out == True: sys.stderr.write("\n**REMEDIATOR ERROR: cannot output old and remediated names simultaneously\n") sys.exit(usage()) if dopdb == False: #print "REMEDIATOR: Assuming PDB input file" dopdb = True if old_out == False and remediated_out == False: remediated_out = True filename = args[0] assert os.path.isfile(filename),\ "\n**REMEDIATOR ERROR: cannot find %s" %(filename) basename = os.path.basename(filename) #--Build Hash Table------------------------------------------------ atom_exch = {} f = open(masterhash) #f = open("master_hash.txt") if remediated_out == True: #converting to remediated for line in f: line=line.rstrip() new, old = line.split(':') atom_exch[old] = new remark4 = "REMARK 4 REMEDIATOR VALIDATED PDB VERSION 3.0 COMPLIANT" else: #converting to old for line in f: new, old = line.split(':') atom_exch[new] = old remark4 = "REMARK 4 REMEDIATOR VALIDATED PDB VERSION 2.3 COMPLIANT" f.close() #------------------------------------------------------------------ #----PDB routine--------------------------------------------------- previous = None current = None print_line = "" remark_flag = False pdb_file = open(filename) aa_re = re.compile(' HN2 (ALA|ARG|ASN|ASP|ASX|CSE|CYS|GLN|GLU|GLX|GLY|HIS|ILE|LEU|LYS|MET|MSE|PHE|PRO|SER|THR|TRP|UNK|TYR|VAL)') for line in pdb_file: # line=line.rstrip() type_test = line[0:6] if remark_flag == False: if type_test == "REMARK": if re.search(remark4,line): remark_flag = True elif re.match('REMARK 4 REMEDIATOR',line): continue elif int('0' + line[6:10].strip()) > 4: print_line += remark4 + "\n" remark_flag = True if type_test in ("ATOM ", "HETATM", "TER ", "ANISOU", "SIGATM", "SIGUIJ", "LINK "): if remark_flag == False: print_line += remark4 + "\n" remark_flag = True #--pre-screen for CNS Xplor RNA base names and Coot RNA base names-------- if re.match(r'.{17}(GUA|ADE|CYT|THY|URI)',line): line = re.sub(r'\A(.{17})(.)..',r'\g<1> \g<2>',line) elif re.match(r'.{17}(OIP| Ar| Gr| Cr| Ur)',line): line = re.sub(r'\A(.{17}).(.).',r'\g<1> \g<2>',line) #------------------------------------------------------------------------- #REMOVED FROM THE CODE IN FAVOR OF THE GENERIC BLOCK BELOW #--pre-screen for left-justified RNA/DNA base names----------------------- #if re.match(r'.{17}(G |A |C |T |U |I )',line): # line = re.sub(r'\A(.{17})(.)\s\s',r'\g<1> \g<2>',line) #------------------------------------------------------------------------- #--make any left-justified residue names right-justified------------------ if re.match(r'.{17}([a-zA-Z]) ',line): line = re.sub(r'\A(.{17})(.)\s\s',r'\g<1> \g<2>',line) elif re.match(r'.{17}([a-zA-Z][a-zA-Z]) ',line): line = re.sub(r'\A(.{17})(..)\s',r'\g<1> \g<2>',line) #------------------------------------------------------------------------- entry = line[12:20] previous = current current = line[18:26] clean_entry = entry[0:4] + " " + entry[5:8] if atom_exch.has_key(clean_entry): line = string.replace(line,clean_entry[0:4],atom_exch[clean_entry][0:4]) if previous == None: previous = current if previous == current: print_line += line elif previous != current: if re.search(r'.\S..[A-Z ] .[ACTGIU]',print_line): if re.search(r'O2[\'|\*] .',print_line) == None: DNA_base = previous[1] if remediated_out == True: print_line = re.sub(r'(.\S..[A-Z ]) '+DNA_base+' ',r'\g<1> D'+DNA_base+' ',print_line) print_line = re.sub(r'(TER.{15}) '+DNA_base+' ',r'\g<1>D'+DNA_base+' ',print_line) elif old_out == True: print_line = re.sub(r'(.\S..[A-Z ]) D'+DNA_base+' ',r'\g<1> '+DNA_base+' ',print_line) print_line = re.sub(r'(TER.{15})D'+DNA_base+' ',r'\g<1> '+DNA_base+' ',print_line) if old_out == True: m = aa_re.search(print_line) if m: res = m.group(1) if re.search('1H '+res,print_line) or re.search('2H '+res,print_line): print_line = re.sub(' HN2 '+res,'2H '+res,print_line) # print_line=print_line.rstrip() print_line=print_line.rstrip("\r\n") print print_line # print print_line[0:-2] print_line = line pdb_file.close() if re.search(r'.\S..[A-Z ] .[ACTGIU]',print_line): if re.search(r'O2[\'|\*][A-Z ] .',print_line) == None: DNA_base = previous[1] if remediated_out == True: print_line = re.sub(r'(.\S..[A-Z ]) '+DNA_base,r'\g<1> D'+DNA_base,print_line) print_line = re.sub(r'(TER.{15}) '+DNA_base+' ',r'\g<1>D'+DNA_base+' ',print_line) elif old_out == True: print_line = re.sub(r'(.\S..[A-Z ]) D'+DNA_base,r'\g<1> '+DNA_base,print_line) print_line = re.sub(r'(TER.{15})D'+DNA_base+' ',r'\g<1> '+DNA_base+' ',print_line) if old_out == True: m = aa_re.search(print_line) if m: res = m.group(1) if re.search('1H '+res,print_line) or re.search('2H '+res,print_line): print_line = re.sub(' HN2 '+res,'2H '+res,print_line) print_line=print_line.rstrip("\r\n") print print_line
[ "#!/usr/bin/python\n# remediator_python.py - version 1.55 9/13/07\n# Copyright 2007, Jeffrey J. Headd and Robert Immormino\n\n# revision 1.55 - JJH 070808 - added support for DU DNA base\n# - JJH 070808 - added compiled RE object for HN2 RES special case\n#\t\t- JJH 070815 - updated name of hash dictionary file\n#\t\t- JJH 070823 - added support for CNS Xplor and Coot RNA names\n#\t\t- JJH 070908 - added REMARK 4 comment addition\n# - JJH 070913 - added support for left-justified RNA/DNA old names\n#\t\t- JJH 070913 - added support for all left-justified residue names\n#\n# SAS - corrected 22.01.2008 to fix an error: the original script stripped spaces \n# at the ends of all raws\n# SAS - corrected 04.06.2008 to fix an error: the original script did not change \n# coordinate lines with alter codes\n\nimport sys\nimport getopt\nimport os\nimport string\nimport re\n\nmasterhash=\"master_hash.txt\"\n\ndef usage():\n\tprint \"\"\"\n\t************************************\n\tremediator_python.py: version 1.55 8/8/07\n\tCopyright 2007, Jeffrey J. Headd and Robert Immormino\n\tremediator.py: bug fixes by Sergei Spirin (2008)\n\tFor a log of changes, view remediator.py in your favorite text editor \n\n\tUSAGE: remediator_sas.py [--options] input_file > output_file\n\n\toptions:\n\t --help\toutputs this help message\n\t --pdb\t\ttakes a .pdb formatted file as input\n\t --old\t \toutput file will use the PDBv2.3 naming conventions\n\t --remediated \toutput file will use the remediated naming conventions (default)\n\n\tremediator is generally inteded to convert from PDBv2.3 to PDBv3.0. \n\tThis changes files from the pre-wwPDB format into the wwPDB remediated format.\n\tOutput is directed to standard out.\n\n\tEXAMPLE: remediator_sas.py --pdb --old 404D.pdb > 404D_old.pdb \n \"\"\"\n\ntry:\n\topts, args = getopt.getopt( sys.argv[1:], 'hpor',['help', 'pdb', 'old', 'remediated'] )\nexcept getopt.GetoptError:\n\tusage()\n\tsys.exit()\n\nold_out = False\nremediated_out = False\ndopdb = False\n#dokin = False\n\nfor o, a in opts:\n\tif o in (\"-h\", \"--help\"):\n\t\tusage()\n\t\tsys.exit()\n\tif o in (\"-p\", \"--pdb\"):\n\t\tdopdb = True\n\t#if o in (\"-k\", \"--kin\"):\n\t#\tdokin = True\n\tif o in (\"-o\", \"--old\"):\n\t\told_out = True\n\tif o in (\"-r\", \"--remediated\"):\n\t\tremediated_out = True\n\nif len(args) < 1:\n\tsys.stderr.write(\"\\n**REMEDIATOR ERROR: User must specify input filename\\n\")\n\tsys.exit(usage())\nif len(args) > 1:\n\tsys.stderr.write(\"\\n**REMEDIATOR ERROR: too many input files specified\\n\")\n\tsys.exit(usage())\n\n#if dopdb == True and dokin == True:\n#\tusage()\n#\tsys.exit(\"REMEDIATOR ERROR: specify only one input file type\")\nif old_out == True and remediated_out == True:\n\tsys.stderr.write(\"\\n**REMEDIATOR ERROR: cannot output old and remediated names simultaneously\\n\")\n\tsys.exit(usage())\n\nif dopdb == False:\n\t#print \"REMEDIATOR: Assuming PDB input file\"\n\tdopdb = True\nif old_out == False and remediated_out == False:\n\tremediated_out = True\n\nfilename = args[0]\nassert os.path.isfile(filename),\\\n\t\"\\n**REMEDIATOR ERROR: cannot find %s\" %(filename)\nbasename = os.path.basename(filename)\n\n#--Build Hash Table------------------------------------------------\natom_exch = {}\nf = open(masterhash)\n#f = open(\"master_hash.txt\")\nif remediated_out == True: #converting to remediated\n\tfor line in f:\n\t\tline=line.rstrip()\n\t\tnew, old = line.split(':')\n\t\tatom_exch[old] = new\n\tremark4 = \"REMARK 4 REMEDIATOR VALIDATED PDB VERSION 3.0 COMPLIANT\"\nelse: #converting to old\n\tfor line in f:\n\t\tnew, old = line.split(':')\n\t\tatom_exch[new] = old\n\tremark4 = \"REMARK 4 REMEDIATOR VALIDATED PDB VERSION 2.3 COMPLIANT\"\nf.close()\n#------------------------------------------------------------------\n\n\n#----PDB routine---------------------------------------------------\n\nprevious = None\ncurrent = None\nprint_line = \"\"\nremark_flag = False\n\npdb_file = open(filename)\n\naa_re = re.compile(' HN2 (ALA|ARG|ASN|ASP|ASX|CSE|CYS|GLN|GLU|GLX|GLY|HIS|ILE|LEU|LYS|MET|MSE|PHE|PRO|SER|THR|TRP|UNK|TYR|VAL)')\n\nfor line in pdb_file:\n#\tline=line.rstrip()\n\ttype_test = line[0:6]\n\tif remark_flag == False:\n\t\tif type_test == \"REMARK\":\n\t\t\tif re.search(remark4,line):\n\t\t\t\tremark_flag = True\n\t\t\telif re.match('REMARK 4 REMEDIATOR',line):\n\t\t\t\tcontinue\n\t\t\telif int('0' + line[6:10].strip()) > 4:\n\t\t\t\tprint_line += remark4 + \"\\n\"\n\t\t\t\tremark_flag = True\n\t\t\t\n\tif type_test in (\"ATOM \", \"HETATM\", \"TER \", \"ANISOU\", \"SIGATM\", \"SIGUIJ\", \"LINK \"):\n\t\tif remark_flag == False:\n\t\t\tprint_line += remark4 + \"\\n\"\n\t\t\tremark_flag = True\n\t\t#--pre-screen for CNS Xplor RNA base names and Coot RNA base names--------\n\t\tif re.match(r'.{17}(GUA|ADE|CYT|THY|URI)',line):\n\t\t\tline = re.sub(r'\\A(.{17})(.)..',r'\\g<1> \\g<2>',line)\n\t\telif re.match(r'.{17}(OIP| Ar| Gr| Cr| Ur)',line):\n\t\t\tline = re.sub(r'\\A(.{17}).(.).',r'\\g<1> \\g<2>',line)\n\t\t#-------------------------------------------------------------------------\n\n\t\t#REMOVED FROM THE CODE IN FAVOR OF THE GENERIC BLOCK BELOW\n #--pre-screen for left-justified RNA/DNA base names-----------------------\n\t\t#if re.match(r'.{17}(G |A |C |T |U |I )',line):\n\t\t#\tline = re.sub(r'\\A(.{17})(.)\\s\\s',r'\\g<1> \\g<2>',line)\n #-------------------------------------------------------------------------\n\t\t\n\t\t#--make any left-justified residue names right-justified------------------\n\t\tif re.match(r'.{17}([a-zA-Z]) ',line):\n\t\t\tline = re.sub(r'\\A(.{17})(.)\\s\\s',r'\\g<1> \\g<2>',line)\n\t\telif re.match(r'.{17}([a-zA-Z][a-zA-Z]) ',line):\n\t\t\tline = re.sub(r'\\A(.{17})(..)\\s',r'\\g<1> \\g<2>',line)\n\t\t#-------------------------------------------------------------------------\n\t\tentry = line[12:20]\n\t\tprevious = current\n\t\tcurrent = line[18:26]\n\t\tclean_entry = entry[0:4] + \" \" + entry[5:8]\n\t\tif atom_exch.has_key(clean_entry):\n\t\t\tline = string.replace(line,clean_entry[0:4],atom_exch[clean_entry][0:4])\n\tif previous == None:\n\t\tprevious = current\n\tif previous == current:\n\t\tprint_line += line\n\telif previous != current:\n\t\tif re.search(r'.\\S..[A-Z ] .[ACTGIU]',print_line):\n\t\t\tif re.search(r'O2[\\'|\\*] .',print_line) == None:\n\t\t\t\tDNA_base = previous[1]\n\t\t\t\tif remediated_out == True:\n\t\t\t\t\tprint_line = re.sub(r'(.\\S..[A-Z ]) '+DNA_base+' ',r'\\g<1> D'+DNA_base+' ',print_line)\n\t\t\t\t\tprint_line = re.sub(r'(TER.{15}) '+DNA_base+' ',r'\\g<1>D'+DNA_base+' ',print_line)\n\t\t\t\telif old_out == True:\n\t\t\t\t\tprint_line = re.sub(r'(.\\S..[A-Z ]) D'+DNA_base+' ',r'\\g<1> '+DNA_base+' ',print_line)\n\t\t\t\t\tprint_line = re.sub(r'(TER.{15})D'+DNA_base+' ',r'\\g<1> '+DNA_base+' ',print_line)\n\t\t\n\t\tif old_out == True:\n\t\t\tm = aa_re.search(print_line)\n\t\t\tif m:\n\t\t\t\tres = m.group(1)\n\t\t\t\tif re.search('1H '+res,print_line) or re.search('2H '+res,print_line):\n\t\t\t\t\tprint_line = re.sub(' HN2 '+res,'2H '+res,print_line)\n#\t\tprint_line=print_line.rstrip()\n\t\tprint_line=print_line.rstrip(\"\\r\\n\")\n\t\tprint print_line\n#\t\tprint print_line[0:-2]\n\t\tprint_line = line\npdb_file.close()\n\nif re.search(r'.\\S..[A-Z ] .[ACTGIU]',print_line):\n\tif re.search(r'O2[\\'|\\*][A-Z ] .',print_line) == None:\n\t\tDNA_base = previous[1]\n\t\tif remediated_out == True:\n\t\t\tprint_line = re.sub(r'(.\\S..[A-Z ]) '+DNA_base,r'\\g<1> D'+DNA_base,print_line)\n\t\t\tprint_line = re.sub(r'(TER.{15}) '+DNA_base+' ',r'\\g<1>D'+DNA_base+' ',print_line)\n\t\telif old_out == True:\n\t\t\tprint_line = re.sub(r'(.\\S..[A-Z ]) D'+DNA_base,r'\\g<1> '+DNA_base,print_line)\n\t\t\tprint_line = re.sub(r'(TER.{15})D'+DNA_base+' ',r'\\g<1> '+DNA_base+' ',print_line)\n\t\n\tif old_out == True:\n\t\tm = aa_re.search(print_line)\n\t\tif m:\n\t\t\tres = m.group(1)\n\t\t\tif re.search('1H '+res,print_line) or re.search('2H '+res,print_line):\n\t\t\t\tprint_line = re.sub(' HN2 '+res,'2H '+res,print_line)\n\nprint_line=print_line.rstrip(\"\\r\\n\")\nprint print_line\n" ]
true
98,859
0d7a6ff4a3a47b3e2dacf7aecc7f3649c4ad0507
import pytest from check_market_maker import best_price def test_minimal_sell_price(): order_book = { 10.0: 5, 11.0: 5 } result = best_price(order_book) assert result == 10.0 def test_maximal_price(): order_book = { 10.0: 5, 11.0: 5 } result = best_price(order_book, is_buy_price=True) assert result == 11.0
[ "import pytest\nfrom check_market_maker import best_price\n\n\ndef test_minimal_sell_price():\n order_book = {\n 10.0: 5,\n 11.0: 5\n }\n result = best_price(order_book)\n assert result == 10.0\n\n\ndef test_maximal_price():\n order_book = {\n 10.0: 5,\n 11.0: 5\n }\n result = best_price(order_book, is_buy_price=True)\n assert result == 11.0\n", "import pytest\nfrom check_market_maker import best_price\n\n\ndef test_minimal_sell_price():\n order_book = {(10.0): 5, (11.0): 5}\n result = best_price(order_book)\n assert result == 10.0\n\n\ndef test_maximal_price():\n order_book = {(10.0): 5, (11.0): 5}\n result = best_price(order_book, is_buy_price=True)\n assert result == 11.0\n", "<import token>\n\n\ndef test_minimal_sell_price():\n order_book = {(10.0): 5, (11.0): 5}\n result = best_price(order_book)\n assert result == 10.0\n\n\ndef test_maximal_price():\n order_book = {(10.0): 5, (11.0): 5}\n result = best_price(order_book, is_buy_price=True)\n assert result == 11.0\n", "<import token>\n\n\ndef test_minimal_sell_price():\n order_book = {(10.0): 5, (11.0): 5}\n result = best_price(order_book)\n assert result == 10.0\n\n\n<function token>\n", "<import token>\n<function token>\n<function token>\n" ]
false
98,860
228bea01e8550db4de4bbdeb5add7c7e0e297e85
# Sudoku-programming import cv2 import pytesseract import imutils import re def replace_chars(text): list_of_numbers = re.findall(r'\d+', text) result_number = ''.join(list_of_numbers) return result_number def xuat(a): img = cv2.imread(path) #test.png is your original image img = imutils.resize(img, width=900, height=900) x = 0 y = -100 fontScale = 2.3 # Blue color in BGR color = (255, 0, 0) # Line thickness of 2 px thickness = 2 for un in a: print(un) for row in range(0, 9): x += 100 y = 0 for col in range (0,9): y += 100 cv2.putText(img, str(a[int((x-100)/100)][int((y-100)/100)]) , (y-80,x-30), cv2.FONT_HERSHEY_SIMPLEX, fontScale, color, thickness, cv2.LINE_AA) cv2.imshow("Bai giai Sodoku", img) cv2.waitKey() path2 = path.split(".")[0] + "_OUT.jpg" cv2.imwrite(path2, img) exit() def process(k): # print(k) while (a[int(k/9)][int(k%9)] != 0): k = k + 1 # print(k) i = int(k/9) j = k%9 # print(i, j) for x in range(1, 10): # print(x) if isOK(i, j, x): a[i][j] = x if k == lastK: # print(k, lastK) print("Bai giai:") xuat(a) break else: process(k+1) a[i][j] = 0 return 0 def isOK(i, j, x): # print(x) for t in range(0, 9): if a[i][t] == x: return False for t in range(0, 9): if a[t][j] == x: return False tmpX = i%3 tmpY = j%3 for u in range(i-tmpX, i-tmpX+3): for t in range(j-tmpY, j-tmpY+3): if a[u][t] == x: return False return True def findLastK(): for i in range(8, 0, -1): for j in range(8, 0, -1): if a[i][j] == 0: return i*9 + j return 0 print("Nhap ten anh can giai (bao gom duoi):") path = str(input()) pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe" img = cv2.imread(path) #test.png is your original image img = imutils.resize(img, width=900, height=900) x = 0 y = -100 digits = [] for i in range(0, 9): x += 100 y = 0 for j in range (0,9): y += 100 # print(x, y) crop = img[x-95:x-20, y-95:y-20] gray = cv2.cvtColor(crop, cv2.COLOR_BGR2GRAY) thresh = 255 - cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1] thresh = cv2.GaussianBlur(thresh, (3,3), 0) data = pytesseract.image_to_string(thresh, lang='eng', config='--psm 6') data = replace_chars(data.strip()).strip() if len(data) == 0: data = "0" digits.append(int(data)) # print(data) # cv2.imshow('crop', thresh) # cv2.waitKey() k = -1 a = [] b = [] # print(len(digits)) for i in range(0,9): for j in range(0, 9): k+=1 b.append(digits[k]) a.append(b) b = [] print("Sogoku:") for un in a: print(un) lastK = 0 lastK=int(findLastK()) process(0) print("De sai hoac anh khong dung yeu cau!")
[ "# Sudoku-programming\nimport cv2\nimport pytesseract\nimport imutils\nimport re\n\ndef replace_chars(text):\n list_of_numbers = re.findall(r'\\d+', text)\n result_number = ''.join(list_of_numbers)\n return result_number\n\ndef xuat(a):\n img = cv2.imread(path) #test.png is your original image\n img = imutils.resize(img, width=900, height=900)\n x = 0\n y = -100\n fontScale = 2.3 \n # Blue color in BGR \n color = (255, 0, 0) \n # Line thickness of 2 px \n thickness = 2\n for un in a:\n print(un)\n for row in range(0, 9):\n x += 100\n y = 0\n for col in range (0,9):\n y += 100\n cv2.putText(img, str(a[int((x-100)/100)][int((y-100)/100)]) , (y-80,x-30), cv2.FONT_HERSHEY_SIMPLEX, fontScale, color, thickness, cv2.LINE_AA)\n cv2.imshow(\"Bai giai Sodoku\", img)\n cv2.waitKey()\n path2 = path.split(\".\")[0] + \"_OUT.jpg\"\n cv2.imwrite(path2, img)\n exit()\n\ndef process(k):\n # print(k)\n while (a[int(k/9)][int(k%9)] != 0):\n k = k + 1\n # print(k)\n i = int(k/9)\n j = k%9\n # print(i, j)\n for x in range(1, 10):\n # print(x)\n if isOK(i, j, x):\n a[i][j] = x\n if k == lastK:\n # print(k, lastK)\n print(\"Bai giai:\")\n xuat(a)\n break\n else:\n process(k+1)\n a[i][j] = 0\n\n return 0\n\ndef isOK(i, j, x):\n # print(x)\n for t in range(0, 9):\n if a[i][t] == x:\n return False\n for t in range(0, 9):\n if a[t][j] == x:\n return False\n tmpX = i%3\n tmpY = j%3\n for u in range(i-tmpX, i-tmpX+3):\n for t in range(j-tmpY, j-tmpY+3):\n if a[u][t] == x:\n return False\n return True\n\ndef findLastK():\n for i in range(8, 0, -1):\n for j in range(8, 0, -1):\n if a[i][j] == 0:\n return i*9 + j\n return 0\n\nprint(\"Nhap ten anh can giai (bao gom duoi):\")\npath = str(input())\n\npytesseract.pytesseract.tesseract_cmd = r\"C:\\Program Files\\Tesseract-OCR\\tesseract.exe\"\nimg = cv2.imread(path) #test.png is your original image\nimg = imutils.resize(img, width=900, height=900)\nx = 0\ny = -100\n\ndigits = []\nfor i in range(0, 9):\n x += 100\n y = 0\n for j in range (0,9):\n y += 100\n # print(x, y)\n crop = img[x-95:x-20, y-95:y-20]\n gray = cv2.cvtColor(crop, cv2.COLOR_BGR2GRAY)\n thresh = 255 - cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]\n thresh = cv2.GaussianBlur(thresh, (3,3), 0)\n data = pytesseract.image_to_string(thresh, lang='eng', config='--psm 6')\n data = replace_chars(data.strip()).strip()\n if len(data) == 0:\n data = \"0\"\n digits.append(int(data))\n # print(data)\n # cv2.imshow('crop', thresh)\n # cv2.waitKey()\nk = -1\na = []\nb = []\n# print(len(digits))\nfor i in range(0,9):\n for j in range(0, 9):\n k+=1\n b.append(digits[k])\n a.append(b)\n b = []\n\nprint(\"Sogoku:\")\nfor un in a:\n print(un)\nlastK = 0\nlastK=int(findLastK())\nprocess(0)\nprint(\"De sai hoac anh khong dung yeu cau!\")\n", "import cv2\nimport pytesseract\nimport imutils\nimport re\n\n\ndef replace_chars(text):\n list_of_numbers = re.findall('\\\\d+', text)\n result_number = ''.join(list_of_numbers)\n return result_number\n\n\ndef xuat(a):\n img = cv2.imread(path)\n img = imutils.resize(img, width=900, height=900)\n x = 0\n y = -100\n fontScale = 2.3\n color = 255, 0, 0\n thickness = 2\n for un in a:\n print(un)\n for row in range(0, 9):\n x += 100\n y = 0\n for col in range(0, 9):\n y += 100\n cv2.putText(img, str(a[int((x - 100) / 100)][int((y - 100) / \n 100)]), (y - 80, x - 30), cv2.FONT_HERSHEY_SIMPLEX,\n fontScale, color, thickness, cv2.LINE_AA)\n cv2.imshow('Bai giai Sodoku', img)\n cv2.waitKey()\n path2 = path.split('.')[0] + '_OUT.jpg'\n cv2.imwrite(path2, img)\n exit()\n\n\ndef process(k):\n while a[int(k / 9)][int(k % 9)] != 0:\n k = k + 1\n i = int(k / 9)\n j = k % 9\n for x in range(1, 10):\n if isOK(i, j, x):\n a[i][j] = x\n if k == lastK:\n print('Bai giai:')\n xuat(a)\n break\n else:\n process(k + 1)\n a[i][j] = 0\n return 0\n\n\ndef isOK(i, j, x):\n for t in range(0, 9):\n if a[i][t] == x:\n return False\n for t in range(0, 9):\n if a[t][j] == x:\n return False\n tmpX = i % 3\n tmpY = j % 3\n for u in range(i - tmpX, i - tmpX + 3):\n for t in range(j - tmpY, j - tmpY + 3):\n if a[u][t] == x:\n return False\n return True\n\n\ndef findLastK():\n for i in range(8, 0, -1):\n for j in range(8, 0, -1):\n if a[i][j] == 0:\n return i * 9 + j\n return 0\n\n\nprint('Nhap ten anh can giai (bao gom duoi):')\npath = str(input())\npytesseract.pytesseract.tesseract_cmd = (\n 'C:\\\\Program Files\\\\Tesseract-OCR\\\\tesseract.exe')\nimg = cv2.imread(path)\nimg = imutils.resize(img, width=900, height=900)\nx = 0\ny = -100\ndigits = []\nfor i in range(0, 9):\n x += 100\n y = 0\n for j in range(0, 9):\n y += 100\n crop = img[x - 95:x - 20, y - 95:y - 20]\n gray = cv2.cvtColor(crop, cv2.COLOR_BGR2GRAY)\n thresh = 255 - cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV +\n cv2.THRESH_OTSU)[1]\n thresh = cv2.GaussianBlur(thresh, (3, 3), 0)\n data = pytesseract.image_to_string(thresh, lang='eng', config='--psm 6'\n )\n data = replace_chars(data.strip()).strip()\n if len(data) == 0:\n data = '0'\n digits.append(int(data))\nk = -1\na = []\nb = []\nfor i in range(0, 9):\n for j in range(0, 9):\n k += 1\n b.append(digits[k])\n a.append(b)\n b = []\nprint('Sogoku:')\nfor un in a:\n print(un)\nlastK = 0\nlastK = int(findLastK())\nprocess(0)\nprint('De sai hoac anh khong dung yeu cau!')\n", "<import token>\n\n\ndef replace_chars(text):\n list_of_numbers = re.findall('\\\\d+', text)\n result_number = ''.join(list_of_numbers)\n return result_number\n\n\ndef xuat(a):\n img = cv2.imread(path)\n img = imutils.resize(img, width=900, height=900)\n x = 0\n y = -100\n fontScale = 2.3\n color = 255, 0, 0\n thickness = 2\n for un in a:\n print(un)\n for row in range(0, 9):\n x += 100\n y = 0\n for col in range(0, 9):\n y += 100\n cv2.putText(img, str(a[int((x - 100) / 100)][int((y - 100) / \n 100)]), (y - 80, x - 30), cv2.FONT_HERSHEY_SIMPLEX,\n fontScale, color, thickness, cv2.LINE_AA)\n cv2.imshow('Bai giai Sodoku', img)\n cv2.waitKey()\n path2 = path.split('.')[0] + '_OUT.jpg'\n cv2.imwrite(path2, img)\n exit()\n\n\ndef process(k):\n while a[int(k / 9)][int(k % 9)] != 0:\n k = k + 1\n i = int(k / 9)\n j = k % 9\n for x in range(1, 10):\n if isOK(i, j, x):\n a[i][j] = x\n if k == lastK:\n print('Bai giai:')\n xuat(a)\n break\n else:\n process(k + 1)\n a[i][j] = 0\n return 0\n\n\ndef isOK(i, j, x):\n for t in range(0, 9):\n if a[i][t] == x:\n return False\n for t in range(0, 9):\n if a[t][j] == x:\n return False\n tmpX = i % 3\n tmpY = j % 3\n for u in range(i - tmpX, i - tmpX + 3):\n for t in range(j - tmpY, j - tmpY + 3):\n if a[u][t] == x:\n return False\n return True\n\n\ndef findLastK():\n for i in range(8, 0, -1):\n for j in range(8, 0, -1):\n if a[i][j] == 0:\n return i * 9 + j\n return 0\n\n\nprint('Nhap ten anh can giai (bao gom duoi):')\npath = str(input())\npytesseract.pytesseract.tesseract_cmd = (\n 'C:\\\\Program Files\\\\Tesseract-OCR\\\\tesseract.exe')\nimg = cv2.imread(path)\nimg = imutils.resize(img, width=900, height=900)\nx = 0\ny = -100\ndigits = []\nfor i in range(0, 9):\n x += 100\n y = 0\n for j in range(0, 9):\n y += 100\n crop = img[x - 95:x - 20, y - 95:y - 20]\n gray = cv2.cvtColor(crop, cv2.COLOR_BGR2GRAY)\n thresh = 255 - cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV +\n cv2.THRESH_OTSU)[1]\n thresh = cv2.GaussianBlur(thresh, (3, 3), 0)\n data = pytesseract.image_to_string(thresh, lang='eng', config='--psm 6'\n )\n data = replace_chars(data.strip()).strip()\n if len(data) == 0:\n data = '0'\n digits.append(int(data))\nk = -1\na = []\nb = []\nfor i in range(0, 9):\n for j in range(0, 9):\n k += 1\n b.append(digits[k])\n a.append(b)\n b = []\nprint('Sogoku:')\nfor un in a:\n print(un)\nlastK = 0\nlastK = int(findLastK())\nprocess(0)\nprint('De sai hoac anh khong dung yeu cau!')\n", "<import token>\n\n\ndef replace_chars(text):\n list_of_numbers = re.findall('\\\\d+', text)\n result_number = ''.join(list_of_numbers)\n return result_number\n\n\ndef xuat(a):\n img = cv2.imread(path)\n img = imutils.resize(img, width=900, height=900)\n x = 0\n y = -100\n fontScale = 2.3\n color = 255, 0, 0\n thickness = 2\n for un in a:\n print(un)\n for row in range(0, 9):\n x += 100\n y = 0\n for col in range(0, 9):\n y += 100\n cv2.putText(img, str(a[int((x - 100) / 100)][int((y - 100) / \n 100)]), (y - 80, x - 30), cv2.FONT_HERSHEY_SIMPLEX,\n fontScale, color, thickness, cv2.LINE_AA)\n cv2.imshow('Bai giai Sodoku', img)\n cv2.waitKey()\n path2 = path.split('.')[0] + '_OUT.jpg'\n cv2.imwrite(path2, img)\n exit()\n\n\ndef process(k):\n while a[int(k / 9)][int(k % 9)] != 0:\n k = k + 1\n i = int(k / 9)\n j = k % 9\n for x in range(1, 10):\n if isOK(i, j, x):\n a[i][j] = x\n if k == lastK:\n print('Bai giai:')\n xuat(a)\n break\n else:\n process(k + 1)\n a[i][j] = 0\n return 0\n\n\ndef isOK(i, j, x):\n for t in range(0, 9):\n if a[i][t] == x:\n return False\n for t in range(0, 9):\n if a[t][j] == x:\n return False\n tmpX = i % 3\n tmpY = j % 3\n for u in range(i - tmpX, i - tmpX + 3):\n for t in range(j - tmpY, j - tmpY + 3):\n if a[u][t] == x:\n return False\n return True\n\n\ndef findLastK():\n for i in range(8, 0, -1):\n for j in range(8, 0, -1):\n if a[i][j] == 0:\n return i * 9 + j\n return 0\n\n\nprint('Nhap ten anh can giai (bao gom duoi):')\n<assignment token>\nfor i in range(0, 9):\n x += 100\n y = 0\n for j in range(0, 9):\n y += 100\n crop = img[x - 95:x - 20, y - 95:y - 20]\n gray = cv2.cvtColor(crop, cv2.COLOR_BGR2GRAY)\n thresh = 255 - cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV +\n cv2.THRESH_OTSU)[1]\n thresh = cv2.GaussianBlur(thresh, (3, 3), 0)\n data = pytesseract.image_to_string(thresh, lang='eng', config='--psm 6'\n )\n data = replace_chars(data.strip()).strip()\n if len(data) == 0:\n data = '0'\n digits.append(int(data))\n<assignment token>\nfor i in range(0, 9):\n for j in range(0, 9):\n k += 1\n b.append(digits[k])\n a.append(b)\n b = []\nprint('Sogoku:')\nfor un in a:\n print(un)\n<assignment token>\nprocess(0)\nprint('De sai hoac anh khong dung yeu cau!')\n", "<import token>\n\n\ndef replace_chars(text):\n list_of_numbers = re.findall('\\\\d+', text)\n result_number = ''.join(list_of_numbers)\n return result_number\n\n\ndef xuat(a):\n img = cv2.imread(path)\n img = imutils.resize(img, width=900, height=900)\n x = 0\n y = -100\n fontScale = 2.3\n color = 255, 0, 0\n thickness = 2\n for un in a:\n print(un)\n for row in range(0, 9):\n x += 100\n y = 0\n for col in range(0, 9):\n y += 100\n cv2.putText(img, str(a[int((x - 100) / 100)][int((y - 100) / \n 100)]), (y - 80, x - 30), cv2.FONT_HERSHEY_SIMPLEX,\n fontScale, color, thickness, cv2.LINE_AA)\n cv2.imshow('Bai giai Sodoku', img)\n cv2.waitKey()\n path2 = path.split('.')[0] + '_OUT.jpg'\n cv2.imwrite(path2, img)\n exit()\n\n\ndef process(k):\n while a[int(k / 9)][int(k % 9)] != 0:\n k = k + 1\n i = int(k / 9)\n j = k % 9\n for x in range(1, 10):\n if isOK(i, j, x):\n a[i][j] = x\n if k == lastK:\n print('Bai giai:')\n xuat(a)\n break\n else:\n process(k + 1)\n a[i][j] = 0\n return 0\n\n\ndef isOK(i, j, x):\n for t in range(0, 9):\n if a[i][t] == x:\n return False\n for t in range(0, 9):\n if a[t][j] == x:\n return False\n tmpX = i % 3\n tmpY = j % 3\n for u in range(i - tmpX, i - tmpX + 3):\n for t in range(j - tmpY, j - tmpY + 3):\n if a[u][t] == x:\n return False\n return True\n\n\ndef findLastK():\n for i in range(8, 0, -1):\n for j in range(8, 0, -1):\n if a[i][j] == 0:\n return i * 9 + j\n return 0\n\n\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n", "<import token>\n\n\ndef replace_chars(text):\n list_of_numbers = re.findall('\\\\d+', text)\n result_number = ''.join(list_of_numbers)\n return result_number\n\n\ndef xuat(a):\n img = cv2.imread(path)\n img = imutils.resize(img, width=900, height=900)\n x = 0\n y = -100\n fontScale = 2.3\n color = 255, 0, 0\n thickness = 2\n for un in a:\n print(un)\n for row in range(0, 9):\n x += 100\n y = 0\n for col in range(0, 9):\n y += 100\n cv2.putText(img, str(a[int((x - 100) / 100)][int((y - 100) / \n 100)]), (y - 80, x - 30), cv2.FONT_HERSHEY_SIMPLEX,\n fontScale, color, thickness, cv2.LINE_AA)\n cv2.imshow('Bai giai Sodoku', img)\n cv2.waitKey()\n path2 = path.split('.')[0] + '_OUT.jpg'\n cv2.imwrite(path2, img)\n exit()\n\n\ndef process(k):\n while a[int(k / 9)][int(k % 9)] != 0:\n k = k + 1\n i = int(k / 9)\n j = k % 9\n for x in range(1, 10):\n if isOK(i, j, x):\n a[i][j] = x\n if k == lastK:\n print('Bai giai:')\n xuat(a)\n break\n else:\n process(k + 1)\n a[i][j] = 0\n return 0\n\n\n<function token>\n\n\ndef findLastK():\n for i in range(8, 0, -1):\n for j in range(8, 0, -1):\n if a[i][j] == 0:\n return i * 9 + j\n return 0\n\n\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n", "<import token>\n<function token>\n\n\ndef xuat(a):\n img = cv2.imread(path)\n img = imutils.resize(img, width=900, height=900)\n x = 0\n y = -100\n fontScale = 2.3\n color = 255, 0, 0\n thickness = 2\n for un in a:\n print(un)\n for row in range(0, 9):\n x += 100\n y = 0\n for col in range(0, 9):\n y += 100\n cv2.putText(img, str(a[int((x - 100) / 100)][int((y - 100) / \n 100)]), (y - 80, x - 30), cv2.FONT_HERSHEY_SIMPLEX,\n fontScale, color, thickness, cv2.LINE_AA)\n cv2.imshow('Bai giai Sodoku', img)\n cv2.waitKey()\n path2 = path.split('.')[0] + '_OUT.jpg'\n cv2.imwrite(path2, img)\n exit()\n\n\ndef process(k):\n while a[int(k / 9)][int(k % 9)] != 0:\n k = k + 1\n i = int(k / 9)\n j = k % 9\n for x in range(1, 10):\n if isOK(i, j, x):\n a[i][j] = x\n if k == lastK:\n print('Bai giai:')\n xuat(a)\n break\n else:\n process(k + 1)\n a[i][j] = 0\n return 0\n\n\n<function token>\n\n\ndef findLastK():\n for i in range(8, 0, -1):\n for j in range(8, 0, -1):\n if a[i][j] == 0:\n return i * 9 + j\n return 0\n\n\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n", "<import token>\n<function token>\n\n\ndef xuat(a):\n img = cv2.imread(path)\n img = imutils.resize(img, width=900, height=900)\n x = 0\n y = -100\n fontScale = 2.3\n color = 255, 0, 0\n thickness = 2\n for un in a:\n print(un)\n for row in range(0, 9):\n x += 100\n y = 0\n for col in range(0, 9):\n y += 100\n cv2.putText(img, str(a[int((x - 100) / 100)][int((y - 100) / \n 100)]), (y - 80, x - 30), cv2.FONT_HERSHEY_SIMPLEX,\n fontScale, color, thickness, cv2.LINE_AA)\n cv2.imshow('Bai giai Sodoku', img)\n cv2.waitKey()\n path2 = path.split('.')[0] + '_OUT.jpg'\n cv2.imwrite(path2, img)\n exit()\n\n\ndef process(k):\n while a[int(k / 9)][int(k % 9)] != 0:\n k = k + 1\n i = int(k / 9)\n j = k % 9\n for x in range(1, 10):\n if isOK(i, j, x):\n a[i][j] = x\n if k == lastK:\n print('Bai giai:')\n xuat(a)\n break\n else:\n process(k + 1)\n a[i][j] = 0\n return 0\n\n\n<function token>\n<function token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n", "<import token>\n<function token>\n<function token>\n\n\ndef process(k):\n while a[int(k / 9)][int(k % 9)] != 0:\n k = k + 1\n i = int(k / 9)\n j = k % 9\n for x in range(1, 10):\n if isOK(i, j, x):\n a[i][j] = x\n if k == lastK:\n print('Bai giai:')\n xuat(a)\n break\n else:\n process(k + 1)\n a[i][j] = 0\n return 0\n\n\n<function token>\n<function token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n" ]
false
98,861
43ba469a23d155e33aeb96ef40a72c253f49730c
# Search Space for DyNet # NOTE: No Batch_norm since DyNet has not supported batch norm import dynet as dy import numpy as np from deep_architect.helpers.dynet_support import DyParameterCollection, siso_dynet_module import deep_architect.modules as mo import deep_architect.hyperparameters as hp M = DyParameterCollection() D = hp.Discrete def flatten(): def compile_fn(di, dh): shape = di['in'].dim() n = np.product(shape[0]) Flatten = dy.reshape def fn(di): return {'out': Flatten(di['in'], (n,))} return fn return siso_dynet_module('Flatten', compile_fn, {}) def dense(h_u): def compile_fn(di, dh): shape = di['in'].dim() # ((r, c), batch_dim) m, n = dh['units'], shape[0][0] pW = M.get_collection().add_parameters((m, n)) pb = M.get_collection().add_parameters((m, 1)) Dense = dy.affine_transform def fn(di): In = di['in'] W, b = pW.expr(), pb.expr() # return {'out': W*In + b} return {'out': Dense([b, W, In])} return fn return siso_dynet_module('Dense', compile_fn, {'units': h_u}) # just put here to streamline everything def nonlinearity(h_nonlin_name): def compile_fn(di, dh): def fn(di): nonlin_name = dh['nonlin_name'] if nonlin_name == 'relu': Out = dy.rectify(di['in']) elif nonlin_name == 'elu': Out = dy.elu(di['in']) elif nonlin_name == 'tanh': Out = dy.tanh(di['in']) else: raise ValueError return {'out': Out} return fn return siso_dynet_module('Nonlinearity', compile_fn, {'nonlin_name': h_nonlin_name}) def dropout(h_keep_prob): def compile_fn(di, dh): p = dh['keep_prop'] Dropout = dy.dropout def fn(di): return {'out': Dropout(di['in'], p)} return fn return siso_dynet_module('Dropout', compile_fn, {'keep_prop': h_keep_prob}) def dnn_net_simple(num_classes): # declaring hyperparameter h_nonlin_name = D(['relu', 'tanh', 'elu']) # nonlinearity function names to choose from h_opt_drop = D( [0, 1]) # dropout optional hyperparameter; 0 is exclude, 1 is include h_drop_keep_prob = D([0.25, 0.5, 0.75]) # dropout probability to choose from h_num_hidden = D([64, 128, 256, 512, 1024 ]) # number of hidden units for affine transform module h_num_repeats = D([1, 2]) # 1 is appearing once, 2 is appearing twice # defining search space topology model = mo.siso_sequential([ flatten(), mo.siso_repeat( lambda: mo.siso_sequential([ dense(h_num_hidden), nonlinearity(h_nonlin_name), mo.siso_optional(lambda: dropout(h_drop_keep_prob), h_opt_drop), ]), h_num_repeats), dense(D([num_classes])) ]) return model def dnn_cell(h_num_hidden, h_nonlin_name, h_opt_drop, h_drop_keep_prob): return mo.siso_sequential([ dense(h_num_hidden), nonlinearity(h_nonlin_name), mo.siso_optional(lambda: dropout(h_drop_keep_prob), h_opt_drop) ]) def dnn_net(num_classes): h_nonlin_name = D(['relu', 'tanh', 'elu']) h_opt_drop = D([0, 1]) return mo.siso_sequential([ flatten(), mo.siso_repeat( lambda: dnn_cell(D([64, 128, 256, 512, 1024]), h_nonlin_name, h_opt_drop, D([0.25, 0.5, 0.75])), D([1, 2])), dense(D([num_classes])) ]) # Main/Searcher # Getting and reading mnist data adapted from here: # https://github.com/clab/dynet/blob/master/examples/mnist/mnist-autobatch.py import deep_architect.searchers.random as se import deep_architect.core as co from deep_architect.contrib.misc.datasets.loaders import load_mnist def get_search_space(num_classes): def fn(): co.Scope.reset_default_scope() inputs, outputs = dnn_net(num_classes) return inputs, outputs, {} return fn def main(): num_classes = 10 num_samples = 3 # number of architecture to sample best_val_acc, best_architecture = 0., -1 # donwload and normalize data, using test as val for simplicity X_train, y_train, X_val, y_val, _, _ = load_mnist('data/mnist', normalize_range=True) # defining evaluator evaluator = SimpleClassifierEvaluator((X_train, y_train), (X_val, y_val), num_classes, max_num_training_epochs=5, log_output_to_terminal=True) searcher = se.RandomSearcher(get_search_space(num_classes)) for i in xrange(num_samples): print("Sampling architecture %d" % i) M.renew_collection() inputs, outputs, _, searcher_eval_token = searcher.sample() val_acc = evaluator.evaluate( inputs, outputs)['val_acc'] # evaluate and return validation accuracy print("Finished evaluating architecture %d, validation accuracy is %f" % (i, val_acc)) if val_acc > best_val_acc: best_val_acc = val_acc best_architecture = i searcher.update(val_acc, searcher_eval_token) print("Best validation accuracy is %f with architecture %d" % (best_val_acc, best_architecture)) # Evaluator import random class SimpleClassifierEvaluator: def __init__(self, train_dataset, val_dataset, num_classes, max_num_training_epochs=10, batch_size=16, learning_rate=1e-3, display_step=1, log_output_to_terminal=True): self.train_dataset = train_dataset self.val_dataset = val_dataset self.num_classes = num_classes self.max_num_training_epochs = max_num_training_epochs self.learning_rate = learning_rate self.batch_size = batch_size self.log_output_to_terminal = log_output_to_terminal self.display_step = display_step def compute_accuracy(self, inputs, outputs): correct = 0 for (label, img) in self.val_dataset: dy.renew_cg() x = dy.inputVector(img) co.forward({inputs['in']: x}) logits = outputs['out'].val pred = np.argmax(logits.npvalue()) if (label == pred): correct += 1 return (1.0 * correct / len(self.val_dataset)) def evaluate(self, inputs, outputs): params = M.get_collection() optimizer = dy.SimpleSGDTrainer(params, self.learning_rate) num_batches = int(len(self.train_dataset) / self.batch_size) for epoch in range(self.max_num_training_epochs): random.shuffle(self.train_dataset) i = 0 total_loss = 0 while (i < len(self.train_dataset)): dy.renew_cg() mbsize = min(self.batch_size, len(self.train_dataset) - i) minibatch = self.train_dataset[i:i + mbsize] losses = [] for (label, img) in minibatch: x = dy.inputVector(img) co.forward({inputs['in']: x}) logits = outputs['out'].val loss = dy.pickneglogsoftmax(logits, label) losses.append(loss) mbloss = dy.esum(losses) / mbsize mbloss.backward() optimizer.update() total_loss += mbloss.scalar_value() i += mbsize val_acc = self.compute_accuracy(inputs, outputs) if self.log_output_to_terminal and epoch % self.display_step == 0: print("epoch:", '%d' % (epoch + 1), "loss:", "{:.9f}".format(total_loss / num_batches), "validation_accuracy:", "%.5f" % val_acc) val_acc = self.compute_accuracy(inputs, outputs) return {'val_acc': val_acc} if __name__ == "__main__": main()
[ "# Search Space for DyNet\n# NOTE: No Batch_norm since DyNet has not supported batch norm\n\nimport dynet as dy\nimport numpy as np\n\nfrom deep_architect.helpers.dynet_support import DyParameterCollection, siso_dynet_module\nimport deep_architect.modules as mo\nimport deep_architect.hyperparameters as hp\n\nM = DyParameterCollection()\nD = hp.Discrete\n\n\ndef flatten():\n\n def compile_fn(di, dh):\n shape = di['in'].dim()\n n = np.product(shape[0])\n Flatten = dy.reshape\n\n def fn(di):\n return {'out': Flatten(di['in'], (n,))}\n\n return fn\n\n return siso_dynet_module('Flatten', compile_fn, {})\n\n\ndef dense(h_u):\n\n def compile_fn(di, dh):\n shape = di['in'].dim() # ((r, c), batch_dim)\n m, n = dh['units'], shape[0][0]\n pW = M.get_collection().add_parameters((m, n))\n pb = M.get_collection().add_parameters((m, 1))\n Dense = dy.affine_transform\n\n def fn(di):\n In = di['in']\n W, b = pW.expr(), pb.expr()\n # return {'out': W*In + b}\n return {'out': Dense([b, W, In])}\n\n return fn\n\n return siso_dynet_module('Dense', compile_fn, {'units': h_u})\n\n\n# just put here to streamline everything\ndef nonlinearity(h_nonlin_name):\n\n def compile_fn(di, dh):\n\n def fn(di):\n nonlin_name = dh['nonlin_name']\n if nonlin_name == 'relu':\n Out = dy.rectify(di['in'])\n elif nonlin_name == 'elu':\n Out = dy.elu(di['in'])\n elif nonlin_name == 'tanh':\n Out = dy.tanh(di['in'])\n else:\n raise ValueError\n return {'out': Out}\n\n return fn\n\n return siso_dynet_module('Nonlinearity', compile_fn,\n {'nonlin_name': h_nonlin_name})\n\n\ndef dropout(h_keep_prob):\n\n def compile_fn(di, dh):\n p = dh['keep_prop']\n Dropout = dy.dropout\n\n def fn(di):\n return {'out': Dropout(di['in'], p)}\n\n return fn\n\n return siso_dynet_module('Dropout', compile_fn, {'keep_prop': h_keep_prob})\n\n\ndef dnn_net_simple(num_classes):\n\n # declaring hyperparameter\n h_nonlin_name = D(['relu', 'tanh',\n 'elu']) # nonlinearity function names to choose from\n h_opt_drop = D(\n [0, 1]) # dropout optional hyperparameter; 0 is exclude, 1 is include\n h_drop_keep_prob = D([0.25, 0.5,\n 0.75]) # dropout probability to choose from\n h_num_hidden = D([64, 128, 256, 512, 1024\n ]) # number of hidden units for affine transform module\n h_num_repeats = D([1, 2]) # 1 is appearing once, 2 is appearing twice\n\n # defining search space topology\n model = mo.siso_sequential([\n flatten(),\n mo.siso_repeat(\n lambda: mo.siso_sequential([\n dense(h_num_hidden),\n nonlinearity(h_nonlin_name),\n mo.siso_optional(lambda: dropout(h_drop_keep_prob), h_opt_drop),\n ]), h_num_repeats),\n dense(D([num_classes]))\n ])\n\n return model\n\n\ndef dnn_cell(h_num_hidden, h_nonlin_name, h_opt_drop, h_drop_keep_prob):\n return mo.siso_sequential([\n dense(h_num_hidden),\n nonlinearity(h_nonlin_name),\n mo.siso_optional(lambda: dropout(h_drop_keep_prob), h_opt_drop)\n ])\n\n\ndef dnn_net(num_classes):\n h_nonlin_name = D(['relu', 'tanh', 'elu'])\n h_opt_drop = D([0, 1])\n return mo.siso_sequential([\n flatten(),\n mo.siso_repeat(\n lambda: dnn_cell(D([64, 128, 256, 512, 1024]), h_nonlin_name,\n h_opt_drop, D([0.25, 0.5, 0.75])), D([1, 2])),\n dense(D([num_classes]))\n ])\n\n\n# Main/Searcher\n# Getting and reading mnist data adapted from here:\n# https://github.com/clab/dynet/blob/master/examples/mnist/mnist-autobatch.py\nimport deep_architect.searchers.random as se\nimport deep_architect.core as co\nfrom deep_architect.contrib.misc.datasets.loaders import load_mnist\n\n\ndef get_search_space(num_classes):\n\n def fn():\n co.Scope.reset_default_scope()\n inputs, outputs = dnn_net(num_classes)\n return inputs, outputs, {}\n\n return fn\n\n\ndef main():\n\n num_classes = 10\n num_samples = 3 # number of architecture to sample\n best_val_acc, best_architecture = 0., -1\n\n # donwload and normalize data, using test as val for simplicity\n X_train, y_train, X_val, y_val, _, _ = load_mnist('data/mnist',\n normalize_range=True)\n\n # defining evaluator\n evaluator = SimpleClassifierEvaluator((X_train, y_train), (X_val, y_val),\n num_classes,\n max_num_training_epochs=5,\n log_output_to_terminal=True)\n searcher = se.RandomSearcher(get_search_space(num_classes))\n for i in xrange(num_samples):\n print(\"Sampling architecture %d\" % i)\n M.renew_collection()\n inputs, outputs, _, searcher_eval_token = searcher.sample()\n val_acc = evaluator.evaluate(\n inputs,\n outputs)['val_acc'] # evaluate and return validation accuracy\n print(\"Finished evaluating architecture %d, validation accuracy is %f\" %\n (i, val_acc))\n if val_acc > best_val_acc:\n best_val_acc = val_acc\n best_architecture = i\n searcher.update(val_acc, searcher_eval_token)\n print(\"Best validation accuracy is %f with architecture %d\" %\n (best_val_acc, best_architecture))\n\n\n# Evaluator\nimport random\n\n\nclass SimpleClassifierEvaluator:\n\n def __init__(self,\n train_dataset,\n val_dataset,\n num_classes,\n max_num_training_epochs=10,\n batch_size=16,\n learning_rate=1e-3,\n display_step=1,\n log_output_to_terminal=True):\n\n self.train_dataset = train_dataset\n self.val_dataset = val_dataset\n self.num_classes = num_classes\n self.max_num_training_epochs = max_num_training_epochs\n self.learning_rate = learning_rate\n self.batch_size = batch_size\n self.log_output_to_terminal = log_output_to_terminal\n self.display_step = display_step\n\n def compute_accuracy(self, inputs, outputs):\n correct = 0\n for (label, img) in self.val_dataset:\n dy.renew_cg()\n x = dy.inputVector(img)\n co.forward({inputs['in']: x})\n logits = outputs['out'].val\n pred = np.argmax(logits.npvalue())\n if (label == pred): correct += 1\n return (1.0 * correct / len(self.val_dataset))\n\n def evaluate(self, inputs, outputs):\n params = M.get_collection()\n optimizer = dy.SimpleSGDTrainer(params, self.learning_rate)\n num_batches = int(len(self.train_dataset) / self.batch_size)\n for epoch in range(self.max_num_training_epochs):\n random.shuffle(self.train_dataset)\n i = 0\n total_loss = 0\n while (i < len(self.train_dataset)):\n dy.renew_cg()\n mbsize = min(self.batch_size, len(self.train_dataset) - i)\n minibatch = self.train_dataset[i:i + mbsize]\n losses = []\n for (label, img) in minibatch:\n x = dy.inputVector(img)\n co.forward({inputs['in']: x})\n logits = outputs['out'].val\n loss = dy.pickneglogsoftmax(logits, label)\n losses.append(loss)\n mbloss = dy.esum(losses) / mbsize\n mbloss.backward()\n optimizer.update()\n total_loss += mbloss.scalar_value()\n i += mbsize\n\n val_acc = self.compute_accuracy(inputs, outputs)\n if self.log_output_to_terminal and epoch % self.display_step == 0:\n print(\"epoch:\", '%d' % (epoch + 1), \"loss:\",\n \"{:.9f}\".format(total_loss / num_batches),\n \"validation_accuracy:\", \"%.5f\" % val_acc)\n\n val_acc = self.compute_accuracy(inputs, outputs)\n return {'val_acc': val_acc}\n\n\nif __name__ == \"__main__\":\n main()", "import dynet as dy\nimport numpy as np\nfrom deep_architect.helpers.dynet_support import DyParameterCollection, siso_dynet_module\nimport deep_architect.modules as mo\nimport deep_architect.hyperparameters as hp\nM = DyParameterCollection()\nD = hp.Discrete\n\n\ndef flatten():\n\n def compile_fn(di, dh):\n shape = di['in'].dim()\n n = np.product(shape[0])\n Flatten = dy.reshape\n\n def fn(di):\n return {'out': Flatten(di['in'], (n,))}\n return fn\n return siso_dynet_module('Flatten', compile_fn, {})\n\n\ndef dense(h_u):\n\n def compile_fn(di, dh):\n shape = di['in'].dim()\n m, n = dh['units'], shape[0][0]\n pW = M.get_collection().add_parameters((m, n))\n pb = M.get_collection().add_parameters((m, 1))\n Dense = dy.affine_transform\n\n def fn(di):\n In = di['in']\n W, b = pW.expr(), pb.expr()\n return {'out': Dense([b, W, In])}\n return fn\n return siso_dynet_module('Dense', compile_fn, {'units': h_u})\n\n\ndef nonlinearity(h_nonlin_name):\n\n def compile_fn(di, dh):\n\n def fn(di):\n nonlin_name = dh['nonlin_name']\n if nonlin_name == 'relu':\n Out = dy.rectify(di['in'])\n elif nonlin_name == 'elu':\n Out = dy.elu(di['in'])\n elif nonlin_name == 'tanh':\n Out = dy.tanh(di['in'])\n else:\n raise ValueError\n return {'out': Out}\n return fn\n return siso_dynet_module('Nonlinearity', compile_fn, {'nonlin_name':\n h_nonlin_name})\n\n\ndef dropout(h_keep_prob):\n\n def compile_fn(di, dh):\n p = dh['keep_prop']\n Dropout = dy.dropout\n\n def fn(di):\n return {'out': Dropout(di['in'], p)}\n return fn\n return siso_dynet_module('Dropout', compile_fn, {'keep_prop': h_keep_prob})\n\n\ndef dnn_net_simple(num_classes):\n h_nonlin_name = D(['relu', 'tanh', 'elu'])\n h_opt_drop = D([0, 1])\n h_drop_keep_prob = D([0.25, 0.5, 0.75])\n h_num_hidden = D([64, 128, 256, 512, 1024])\n h_num_repeats = D([1, 2])\n model = mo.siso_sequential([flatten(), mo.siso_repeat(lambda : mo.\n siso_sequential([dense(h_num_hidden), nonlinearity(h_nonlin_name),\n mo.siso_optional(lambda : dropout(h_drop_keep_prob), h_opt_drop)]),\n h_num_repeats), dense(D([num_classes]))])\n return model\n\n\ndef dnn_cell(h_num_hidden, h_nonlin_name, h_opt_drop, h_drop_keep_prob):\n return mo.siso_sequential([dense(h_num_hidden), nonlinearity(\n h_nonlin_name), mo.siso_optional(lambda : dropout(h_drop_keep_prob),\n h_opt_drop)])\n\n\ndef dnn_net(num_classes):\n h_nonlin_name = D(['relu', 'tanh', 'elu'])\n h_opt_drop = D([0, 1])\n return mo.siso_sequential([flatten(), mo.siso_repeat(lambda : dnn_cell(\n D([64, 128, 256, 512, 1024]), h_nonlin_name, h_opt_drop, D([0.25, \n 0.5, 0.75])), D([1, 2])), dense(D([num_classes]))])\n\n\nimport deep_architect.searchers.random as se\nimport deep_architect.core as co\nfrom deep_architect.contrib.misc.datasets.loaders import load_mnist\n\n\ndef get_search_space(num_classes):\n\n def fn():\n co.Scope.reset_default_scope()\n inputs, outputs = dnn_net(num_classes)\n return inputs, outputs, {}\n return fn\n\n\ndef main():\n num_classes = 10\n num_samples = 3\n best_val_acc, best_architecture = 0.0, -1\n X_train, y_train, X_val, y_val, _, _ = load_mnist('data/mnist',\n normalize_range=True)\n evaluator = SimpleClassifierEvaluator((X_train, y_train), (X_val, y_val\n ), num_classes, max_num_training_epochs=5, log_output_to_terminal=True)\n searcher = se.RandomSearcher(get_search_space(num_classes))\n for i in xrange(num_samples):\n print('Sampling architecture %d' % i)\n M.renew_collection()\n inputs, outputs, _, searcher_eval_token = searcher.sample()\n val_acc = evaluator.evaluate(inputs, outputs)['val_acc']\n print(\n 'Finished evaluating architecture %d, validation accuracy is %f' %\n (i, val_acc))\n if val_acc > best_val_acc:\n best_val_acc = val_acc\n best_architecture = i\n searcher.update(val_acc, searcher_eval_token)\n print('Best validation accuracy is %f with architecture %d' % (\n best_val_acc, best_architecture))\n\n\nimport random\n\n\nclass SimpleClassifierEvaluator:\n\n def __init__(self, train_dataset, val_dataset, num_classes,\n max_num_training_epochs=10, batch_size=16, learning_rate=0.001,\n display_step=1, log_output_to_terminal=True):\n self.train_dataset = train_dataset\n self.val_dataset = val_dataset\n self.num_classes = num_classes\n self.max_num_training_epochs = max_num_training_epochs\n self.learning_rate = learning_rate\n self.batch_size = batch_size\n self.log_output_to_terminal = log_output_to_terminal\n self.display_step = display_step\n\n def compute_accuracy(self, inputs, outputs):\n correct = 0\n for label, img in self.val_dataset:\n dy.renew_cg()\n x = dy.inputVector(img)\n co.forward({inputs['in']: x})\n logits = outputs['out'].val\n pred = np.argmax(logits.npvalue())\n if label == pred:\n correct += 1\n return 1.0 * correct / len(self.val_dataset)\n\n def evaluate(self, inputs, outputs):\n params = M.get_collection()\n optimizer = dy.SimpleSGDTrainer(params, self.learning_rate)\n num_batches = int(len(self.train_dataset) / self.batch_size)\n for epoch in range(self.max_num_training_epochs):\n random.shuffle(self.train_dataset)\n i = 0\n total_loss = 0\n while i < len(self.train_dataset):\n dy.renew_cg()\n mbsize = min(self.batch_size, len(self.train_dataset) - i)\n minibatch = self.train_dataset[i:i + mbsize]\n losses = []\n for label, img in minibatch:\n x = dy.inputVector(img)\n co.forward({inputs['in']: x})\n logits = outputs['out'].val\n loss = dy.pickneglogsoftmax(logits, label)\n losses.append(loss)\n mbloss = dy.esum(losses) / mbsize\n mbloss.backward()\n optimizer.update()\n total_loss += mbloss.scalar_value()\n i += mbsize\n val_acc = self.compute_accuracy(inputs, outputs)\n if self.log_output_to_terminal and epoch % self.display_step == 0:\n print('epoch:', '%d' % (epoch + 1), 'loss:', '{:.9f}'.\n format(total_loss / num_batches),\n 'validation_accuracy:', '%.5f' % val_acc)\n val_acc = self.compute_accuracy(inputs, outputs)\n return {'val_acc': val_acc}\n\n\nif __name__ == '__main__':\n main()\n", "<import token>\nM = DyParameterCollection()\nD = hp.Discrete\n\n\ndef flatten():\n\n def compile_fn(di, dh):\n shape = di['in'].dim()\n n = np.product(shape[0])\n Flatten = dy.reshape\n\n def fn(di):\n return {'out': Flatten(di['in'], (n,))}\n return fn\n return siso_dynet_module('Flatten', compile_fn, {})\n\n\ndef dense(h_u):\n\n def compile_fn(di, dh):\n shape = di['in'].dim()\n m, n = dh['units'], shape[0][0]\n pW = M.get_collection().add_parameters((m, n))\n pb = M.get_collection().add_parameters((m, 1))\n Dense = dy.affine_transform\n\n def fn(di):\n In = di['in']\n W, b = pW.expr(), pb.expr()\n return {'out': Dense([b, W, In])}\n return fn\n return siso_dynet_module('Dense', compile_fn, {'units': h_u})\n\n\ndef nonlinearity(h_nonlin_name):\n\n def compile_fn(di, dh):\n\n def fn(di):\n nonlin_name = dh['nonlin_name']\n if nonlin_name == 'relu':\n Out = dy.rectify(di['in'])\n elif nonlin_name == 'elu':\n Out = dy.elu(di['in'])\n elif nonlin_name == 'tanh':\n Out = dy.tanh(di['in'])\n else:\n raise ValueError\n return {'out': Out}\n return fn\n return siso_dynet_module('Nonlinearity', compile_fn, {'nonlin_name':\n h_nonlin_name})\n\n\ndef dropout(h_keep_prob):\n\n def compile_fn(di, dh):\n p = dh['keep_prop']\n Dropout = dy.dropout\n\n def fn(di):\n return {'out': Dropout(di['in'], p)}\n return fn\n return siso_dynet_module('Dropout', compile_fn, {'keep_prop': h_keep_prob})\n\n\ndef dnn_net_simple(num_classes):\n h_nonlin_name = D(['relu', 'tanh', 'elu'])\n h_opt_drop = D([0, 1])\n h_drop_keep_prob = D([0.25, 0.5, 0.75])\n h_num_hidden = D([64, 128, 256, 512, 1024])\n h_num_repeats = D([1, 2])\n model = mo.siso_sequential([flatten(), mo.siso_repeat(lambda : mo.\n siso_sequential([dense(h_num_hidden), nonlinearity(h_nonlin_name),\n mo.siso_optional(lambda : dropout(h_drop_keep_prob), h_opt_drop)]),\n h_num_repeats), dense(D([num_classes]))])\n return model\n\n\ndef dnn_cell(h_num_hidden, h_nonlin_name, h_opt_drop, h_drop_keep_prob):\n return mo.siso_sequential([dense(h_num_hidden), nonlinearity(\n h_nonlin_name), mo.siso_optional(lambda : dropout(h_drop_keep_prob),\n h_opt_drop)])\n\n\ndef dnn_net(num_classes):\n h_nonlin_name = D(['relu', 'tanh', 'elu'])\n h_opt_drop = D([0, 1])\n return mo.siso_sequential([flatten(), mo.siso_repeat(lambda : dnn_cell(\n D([64, 128, 256, 512, 1024]), h_nonlin_name, h_opt_drop, D([0.25, \n 0.5, 0.75])), D([1, 2])), dense(D([num_classes]))])\n\n\n<import token>\n\n\ndef get_search_space(num_classes):\n\n def fn():\n co.Scope.reset_default_scope()\n inputs, outputs = dnn_net(num_classes)\n return inputs, outputs, {}\n return fn\n\n\ndef main():\n num_classes = 10\n num_samples = 3\n best_val_acc, best_architecture = 0.0, -1\n X_train, y_train, X_val, y_val, _, _ = load_mnist('data/mnist',\n normalize_range=True)\n evaluator = SimpleClassifierEvaluator((X_train, y_train), (X_val, y_val\n ), num_classes, max_num_training_epochs=5, log_output_to_terminal=True)\n searcher = se.RandomSearcher(get_search_space(num_classes))\n for i in xrange(num_samples):\n print('Sampling architecture %d' % i)\n M.renew_collection()\n inputs, outputs, _, searcher_eval_token = searcher.sample()\n val_acc = evaluator.evaluate(inputs, outputs)['val_acc']\n print(\n 'Finished evaluating architecture %d, validation accuracy is %f' %\n (i, val_acc))\n if val_acc > best_val_acc:\n best_val_acc = val_acc\n best_architecture = i\n searcher.update(val_acc, searcher_eval_token)\n print('Best validation accuracy is %f with architecture %d' % (\n best_val_acc, best_architecture))\n\n\n<import token>\n\n\nclass SimpleClassifierEvaluator:\n\n def __init__(self, train_dataset, val_dataset, num_classes,\n max_num_training_epochs=10, batch_size=16, learning_rate=0.001,\n display_step=1, log_output_to_terminal=True):\n self.train_dataset = train_dataset\n self.val_dataset = val_dataset\n self.num_classes = num_classes\n self.max_num_training_epochs = max_num_training_epochs\n self.learning_rate = learning_rate\n self.batch_size = batch_size\n self.log_output_to_terminal = log_output_to_terminal\n self.display_step = display_step\n\n def compute_accuracy(self, inputs, outputs):\n correct = 0\n for label, img in self.val_dataset:\n dy.renew_cg()\n x = dy.inputVector(img)\n co.forward({inputs['in']: x})\n logits = outputs['out'].val\n pred = np.argmax(logits.npvalue())\n if label == pred:\n correct += 1\n return 1.0 * correct / len(self.val_dataset)\n\n def evaluate(self, inputs, outputs):\n params = M.get_collection()\n optimizer = dy.SimpleSGDTrainer(params, self.learning_rate)\n num_batches = int(len(self.train_dataset) / self.batch_size)\n for epoch in range(self.max_num_training_epochs):\n random.shuffle(self.train_dataset)\n i = 0\n total_loss = 0\n while i < len(self.train_dataset):\n dy.renew_cg()\n mbsize = min(self.batch_size, len(self.train_dataset) - i)\n minibatch = self.train_dataset[i:i + mbsize]\n losses = []\n for label, img in minibatch:\n x = dy.inputVector(img)\n co.forward({inputs['in']: x})\n logits = outputs['out'].val\n loss = dy.pickneglogsoftmax(logits, label)\n losses.append(loss)\n mbloss = dy.esum(losses) / mbsize\n mbloss.backward()\n optimizer.update()\n total_loss += mbloss.scalar_value()\n i += mbsize\n val_acc = self.compute_accuracy(inputs, outputs)\n if self.log_output_to_terminal and epoch % self.display_step == 0:\n print('epoch:', '%d' % (epoch + 1), 'loss:', '{:.9f}'.\n format(total_loss / num_batches),\n 'validation_accuracy:', '%.5f' % val_acc)\n val_acc = self.compute_accuracy(inputs, outputs)\n return {'val_acc': val_acc}\n\n\nif __name__ == '__main__':\n main()\n", "<import token>\n<assignment token>\n\n\ndef flatten():\n\n def compile_fn(di, dh):\n shape = di['in'].dim()\n n = np.product(shape[0])\n Flatten = dy.reshape\n\n def fn(di):\n return {'out': Flatten(di['in'], (n,))}\n return fn\n return siso_dynet_module('Flatten', compile_fn, {})\n\n\ndef dense(h_u):\n\n def compile_fn(di, dh):\n shape = di['in'].dim()\n m, n = dh['units'], shape[0][0]\n pW = M.get_collection().add_parameters((m, n))\n pb = M.get_collection().add_parameters((m, 1))\n Dense = dy.affine_transform\n\n def fn(di):\n In = di['in']\n W, b = pW.expr(), pb.expr()\n return {'out': Dense([b, W, In])}\n return fn\n return siso_dynet_module('Dense', compile_fn, {'units': h_u})\n\n\ndef nonlinearity(h_nonlin_name):\n\n def compile_fn(di, dh):\n\n def fn(di):\n nonlin_name = dh['nonlin_name']\n if nonlin_name == 'relu':\n Out = dy.rectify(di['in'])\n elif nonlin_name == 'elu':\n Out = dy.elu(di['in'])\n elif nonlin_name == 'tanh':\n Out = dy.tanh(di['in'])\n else:\n raise ValueError\n return {'out': Out}\n return fn\n return siso_dynet_module('Nonlinearity', compile_fn, {'nonlin_name':\n h_nonlin_name})\n\n\ndef dropout(h_keep_prob):\n\n def compile_fn(di, dh):\n p = dh['keep_prop']\n Dropout = dy.dropout\n\n def fn(di):\n return {'out': Dropout(di['in'], p)}\n return fn\n return siso_dynet_module('Dropout', compile_fn, {'keep_prop': h_keep_prob})\n\n\ndef dnn_net_simple(num_classes):\n h_nonlin_name = D(['relu', 'tanh', 'elu'])\n h_opt_drop = D([0, 1])\n h_drop_keep_prob = D([0.25, 0.5, 0.75])\n h_num_hidden = D([64, 128, 256, 512, 1024])\n h_num_repeats = D([1, 2])\n model = mo.siso_sequential([flatten(), mo.siso_repeat(lambda : mo.\n siso_sequential([dense(h_num_hidden), nonlinearity(h_nonlin_name),\n mo.siso_optional(lambda : dropout(h_drop_keep_prob), h_opt_drop)]),\n h_num_repeats), dense(D([num_classes]))])\n return model\n\n\ndef dnn_cell(h_num_hidden, h_nonlin_name, h_opt_drop, h_drop_keep_prob):\n return mo.siso_sequential([dense(h_num_hidden), nonlinearity(\n h_nonlin_name), mo.siso_optional(lambda : dropout(h_drop_keep_prob),\n h_opt_drop)])\n\n\ndef dnn_net(num_classes):\n h_nonlin_name = D(['relu', 'tanh', 'elu'])\n h_opt_drop = D([0, 1])\n return mo.siso_sequential([flatten(), mo.siso_repeat(lambda : dnn_cell(\n D([64, 128, 256, 512, 1024]), h_nonlin_name, h_opt_drop, D([0.25, \n 0.5, 0.75])), D([1, 2])), dense(D([num_classes]))])\n\n\n<import token>\n\n\ndef get_search_space(num_classes):\n\n def fn():\n co.Scope.reset_default_scope()\n inputs, outputs = dnn_net(num_classes)\n return inputs, outputs, {}\n return fn\n\n\ndef main():\n num_classes = 10\n num_samples = 3\n best_val_acc, best_architecture = 0.0, -1\n X_train, y_train, X_val, y_val, _, _ = load_mnist('data/mnist',\n normalize_range=True)\n evaluator = SimpleClassifierEvaluator((X_train, y_train), (X_val, y_val\n ), num_classes, max_num_training_epochs=5, log_output_to_terminal=True)\n searcher = se.RandomSearcher(get_search_space(num_classes))\n for i in xrange(num_samples):\n print('Sampling architecture %d' % i)\n M.renew_collection()\n inputs, outputs, _, searcher_eval_token = searcher.sample()\n val_acc = evaluator.evaluate(inputs, outputs)['val_acc']\n print(\n 'Finished evaluating architecture %d, validation accuracy is %f' %\n (i, val_acc))\n if val_acc > best_val_acc:\n best_val_acc = val_acc\n best_architecture = i\n searcher.update(val_acc, searcher_eval_token)\n print('Best validation accuracy is %f with architecture %d' % (\n best_val_acc, best_architecture))\n\n\n<import token>\n\n\nclass SimpleClassifierEvaluator:\n\n def __init__(self, train_dataset, val_dataset, num_classes,\n max_num_training_epochs=10, batch_size=16, learning_rate=0.001,\n display_step=1, log_output_to_terminal=True):\n self.train_dataset = train_dataset\n self.val_dataset = val_dataset\n self.num_classes = num_classes\n self.max_num_training_epochs = max_num_training_epochs\n self.learning_rate = learning_rate\n self.batch_size = batch_size\n self.log_output_to_terminal = log_output_to_terminal\n self.display_step = display_step\n\n def compute_accuracy(self, inputs, outputs):\n correct = 0\n for label, img in self.val_dataset:\n dy.renew_cg()\n x = dy.inputVector(img)\n co.forward({inputs['in']: x})\n logits = outputs['out'].val\n pred = np.argmax(logits.npvalue())\n if label == pred:\n correct += 1\n return 1.0 * correct / len(self.val_dataset)\n\n def evaluate(self, inputs, outputs):\n params = M.get_collection()\n optimizer = dy.SimpleSGDTrainer(params, self.learning_rate)\n num_batches = int(len(self.train_dataset) / self.batch_size)\n for epoch in range(self.max_num_training_epochs):\n random.shuffle(self.train_dataset)\n i = 0\n total_loss = 0\n while i < len(self.train_dataset):\n dy.renew_cg()\n mbsize = min(self.batch_size, len(self.train_dataset) - i)\n minibatch = self.train_dataset[i:i + mbsize]\n losses = []\n for label, img in minibatch:\n x = dy.inputVector(img)\n co.forward({inputs['in']: x})\n logits = outputs['out'].val\n loss = dy.pickneglogsoftmax(logits, label)\n losses.append(loss)\n mbloss = dy.esum(losses) / mbsize\n mbloss.backward()\n optimizer.update()\n total_loss += mbloss.scalar_value()\n i += mbsize\n val_acc = self.compute_accuracy(inputs, outputs)\n if self.log_output_to_terminal and epoch % self.display_step == 0:\n print('epoch:', '%d' % (epoch + 1), 'loss:', '{:.9f}'.\n format(total_loss / num_batches),\n 'validation_accuracy:', '%.5f' % val_acc)\n val_acc = self.compute_accuracy(inputs, outputs)\n return {'val_acc': val_acc}\n\n\nif __name__ == '__main__':\n main()\n", "<import token>\n<assignment token>\n\n\ndef flatten():\n\n def compile_fn(di, dh):\n shape = di['in'].dim()\n n = np.product(shape[0])\n Flatten = dy.reshape\n\n def fn(di):\n return {'out': Flatten(di['in'], (n,))}\n return fn\n return siso_dynet_module('Flatten', compile_fn, {})\n\n\ndef dense(h_u):\n\n def compile_fn(di, dh):\n shape = di['in'].dim()\n m, n = dh['units'], shape[0][0]\n pW = M.get_collection().add_parameters((m, n))\n pb = M.get_collection().add_parameters((m, 1))\n Dense = dy.affine_transform\n\n def fn(di):\n In = di['in']\n W, b = pW.expr(), pb.expr()\n return {'out': Dense([b, W, In])}\n return fn\n return siso_dynet_module('Dense', compile_fn, {'units': h_u})\n\n\ndef nonlinearity(h_nonlin_name):\n\n def compile_fn(di, dh):\n\n def fn(di):\n nonlin_name = dh['nonlin_name']\n if nonlin_name == 'relu':\n Out = dy.rectify(di['in'])\n elif nonlin_name == 'elu':\n Out = dy.elu(di['in'])\n elif nonlin_name == 'tanh':\n Out = dy.tanh(di['in'])\n else:\n raise ValueError\n return {'out': Out}\n return fn\n return siso_dynet_module('Nonlinearity', compile_fn, {'nonlin_name':\n h_nonlin_name})\n\n\ndef dropout(h_keep_prob):\n\n def compile_fn(di, dh):\n p = dh['keep_prop']\n Dropout = dy.dropout\n\n def fn(di):\n return {'out': Dropout(di['in'], p)}\n return fn\n return siso_dynet_module('Dropout', compile_fn, {'keep_prop': h_keep_prob})\n\n\ndef dnn_net_simple(num_classes):\n h_nonlin_name = D(['relu', 'tanh', 'elu'])\n h_opt_drop = D([0, 1])\n h_drop_keep_prob = D([0.25, 0.5, 0.75])\n h_num_hidden = D([64, 128, 256, 512, 1024])\n h_num_repeats = D([1, 2])\n model = mo.siso_sequential([flatten(), mo.siso_repeat(lambda : mo.\n siso_sequential([dense(h_num_hidden), nonlinearity(h_nonlin_name),\n mo.siso_optional(lambda : dropout(h_drop_keep_prob), h_opt_drop)]),\n h_num_repeats), dense(D([num_classes]))])\n return model\n\n\ndef dnn_cell(h_num_hidden, h_nonlin_name, h_opt_drop, h_drop_keep_prob):\n return mo.siso_sequential([dense(h_num_hidden), nonlinearity(\n h_nonlin_name), mo.siso_optional(lambda : dropout(h_drop_keep_prob),\n h_opt_drop)])\n\n\ndef dnn_net(num_classes):\n h_nonlin_name = D(['relu', 'tanh', 'elu'])\n h_opt_drop = D([0, 1])\n return mo.siso_sequential([flatten(), mo.siso_repeat(lambda : dnn_cell(\n D([64, 128, 256, 512, 1024]), h_nonlin_name, h_opt_drop, D([0.25, \n 0.5, 0.75])), D([1, 2])), dense(D([num_classes]))])\n\n\n<import token>\n\n\ndef get_search_space(num_classes):\n\n def fn():\n co.Scope.reset_default_scope()\n inputs, outputs = dnn_net(num_classes)\n return inputs, outputs, {}\n return fn\n\n\ndef main():\n num_classes = 10\n num_samples = 3\n best_val_acc, best_architecture = 0.0, -1\n X_train, y_train, X_val, y_val, _, _ = load_mnist('data/mnist',\n normalize_range=True)\n evaluator = SimpleClassifierEvaluator((X_train, y_train), (X_val, y_val\n ), num_classes, max_num_training_epochs=5, log_output_to_terminal=True)\n searcher = se.RandomSearcher(get_search_space(num_classes))\n for i in xrange(num_samples):\n print('Sampling architecture %d' % i)\n M.renew_collection()\n inputs, outputs, _, searcher_eval_token = searcher.sample()\n val_acc = evaluator.evaluate(inputs, outputs)['val_acc']\n print(\n 'Finished evaluating architecture %d, validation accuracy is %f' %\n (i, val_acc))\n if val_acc > best_val_acc:\n best_val_acc = val_acc\n best_architecture = i\n searcher.update(val_acc, searcher_eval_token)\n print('Best validation accuracy is %f with architecture %d' % (\n best_val_acc, best_architecture))\n\n\n<import token>\n\n\nclass SimpleClassifierEvaluator:\n\n def __init__(self, train_dataset, val_dataset, num_classes,\n max_num_training_epochs=10, batch_size=16, learning_rate=0.001,\n display_step=1, log_output_to_terminal=True):\n self.train_dataset = train_dataset\n self.val_dataset = val_dataset\n self.num_classes = num_classes\n self.max_num_training_epochs = max_num_training_epochs\n self.learning_rate = learning_rate\n self.batch_size = batch_size\n self.log_output_to_terminal = log_output_to_terminal\n self.display_step = display_step\n\n def compute_accuracy(self, inputs, outputs):\n correct = 0\n for label, img in self.val_dataset:\n dy.renew_cg()\n x = dy.inputVector(img)\n co.forward({inputs['in']: x})\n logits = outputs['out'].val\n pred = np.argmax(logits.npvalue())\n if label == pred:\n correct += 1\n return 1.0 * correct / len(self.val_dataset)\n\n def evaluate(self, inputs, outputs):\n params = M.get_collection()\n optimizer = dy.SimpleSGDTrainer(params, self.learning_rate)\n num_batches = int(len(self.train_dataset) / self.batch_size)\n for epoch in range(self.max_num_training_epochs):\n random.shuffle(self.train_dataset)\n i = 0\n total_loss = 0\n while i < len(self.train_dataset):\n dy.renew_cg()\n mbsize = min(self.batch_size, len(self.train_dataset) - i)\n minibatch = self.train_dataset[i:i + mbsize]\n losses = []\n for label, img in minibatch:\n x = dy.inputVector(img)\n co.forward({inputs['in']: x})\n logits = outputs['out'].val\n loss = dy.pickneglogsoftmax(logits, label)\n losses.append(loss)\n mbloss = dy.esum(losses) / mbsize\n mbloss.backward()\n optimizer.update()\n total_loss += mbloss.scalar_value()\n i += mbsize\n val_acc = self.compute_accuracy(inputs, outputs)\n if self.log_output_to_terminal and epoch % self.display_step == 0:\n print('epoch:', '%d' % (epoch + 1), 'loss:', '{:.9f}'.\n format(total_loss / num_batches),\n 'validation_accuracy:', '%.5f' % val_acc)\n val_acc = self.compute_accuracy(inputs, outputs)\n return {'val_acc': val_acc}\n\n\n<code token>\n", "<import token>\n<assignment token>\n\n\ndef flatten():\n\n def compile_fn(di, dh):\n shape = di['in'].dim()\n n = np.product(shape[0])\n Flatten = dy.reshape\n\n def fn(di):\n return {'out': Flatten(di['in'], (n,))}\n return fn\n return siso_dynet_module('Flatten', compile_fn, {})\n\n\ndef dense(h_u):\n\n def compile_fn(di, dh):\n shape = di['in'].dim()\n m, n = dh['units'], shape[0][0]\n pW = M.get_collection().add_parameters((m, n))\n pb = M.get_collection().add_parameters((m, 1))\n Dense = dy.affine_transform\n\n def fn(di):\n In = di['in']\n W, b = pW.expr(), pb.expr()\n return {'out': Dense([b, W, In])}\n return fn\n return siso_dynet_module('Dense', compile_fn, {'units': h_u})\n\n\ndef nonlinearity(h_nonlin_name):\n\n def compile_fn(di, dh):\n\n def fn(di):\n nonlin_name = dh['nonlin_name']\n if nonlin_name == 'relu':\n Out = dy.rectify(di['in'])\n elif nonlin_name == 'elu':\n Out = dy.elu(di['in'])\n elif nonlin_name == 'tanh':\n Out = dy.tanh(di['in'])\n else:\n raise ValueError\n return {'out': Out}\n return fn\n return siso_dynet_module('Nonlinearity', compile_fn, {'nonlin_name':\n h_nonlin_name})\n\n\ndef dropout(h_keep_prob):\n\n def compile_fn(di, dh):\n p = dh['keep_prop']\n Dropout = dy.dropout\n\n def fn(di):\n return {'out': Dropout(di['in'], p)}\n return fn\n return siso_dynet_module('Dropout', compile_fn, {'keep_prop': h_keep_prob})\n\n\ndef dnn_net_simple(num_classes):\n h_nonlin_name = D(['relu', 'tanh', 'elu'])\n h_opt_drop = D([0, 1])\n h_drop_keep_prob = D([0.25, 0.5, 0.75])\n h_num_hidden = D([64, 128, 256, 512, 1024])\n h_num_repeats = D([1, 2])\n model = mo.siso_sequential([flatten(), mo.siso_repeat(lambda : mo.\n siso_sequential([dense(h_num_hidden), nonlinearity(h_nonlin_name),\n mo.siso_optional(lambda : dropout(h_drop_keep_prob), h_opt_drop)]),\n h_num_repeats), dense(D([num_classes]))])\n return model\n\n\n<function token>\n\n\ndef dnn_net(num_classes):\n h_nonlin_name = D(['relu', 'tanh', 'elu'])\n h_opt_drop = D([0, 1])\n return mo.siso_sequential([flatten(), mo.siso_repeat(lambda : dnn_cell(\n D([64, 128, 256, 512, 1024]), h_nonlin_name, h_opt_drop, D([0.25, \n 0.5, 0.75])), D([1, 2])), dense(D([num_classes]))])\n\n\n<import token>\n\n\ndef get_search_space(num_classes):\n\n def fn():\n co.Scope.reset_default_scope()\n inputs, outputs = dnn_net(num_classes)\n return inputs, outputs, {}\n return fn\n\n\ndef main():\n num_classes = 10\n num_samples = 3\n best_val_acc, best_architecture = 0.0, -1\n X_train, y_train, X_val, y_val, _, _ = load_mnist('data/mnist',\n normalize_range=True)\n evaluator = SimpleClassifierEvaluator((X_train, y_train), (X_val, y_val\n ), num_classes, max_num_training_epochs=5, log_output_to_terminal=True)\n searcher = se.RandomSearcher(get_search_space(num_classes))\n for i in xrange(num_samples):\n print('Sampling architecture %d' % i)\n M.renew_collection()\n inputs, outputs, _, searcher_eval_token = searcher.sample()\n val_acc = evaluator.evaluate(inputs, outputs)['val_acc']\n print(\n 'Finished evaluating architecture %d, validation accuracy is %f' %\n (i, val_acc))\n if val_acc > best_val_acc:\n best_val_acc = val_acc\n best_architecture = i\n searcher.update(val_acc, searcher_eval_token)\n print('Best validation accuracy is %f with architecture %d' % (\n best_val_acc, best_architecture))\n\n\n<import token>\n\n\nclass SimpleClassifierEvaluator:\n\n def __init__(self, train_dataset, val_dataset, num_classes,\n max_num_training_epochs=10, batch_size=16, learning_rate=0.001,\n display_step=1, log_output_to_terminal=True):\n self.train_dataset = train_dataset\n self.val_dataset = val_dataset\n self.num_classes = num_classes\n self.max_num_training_epochs = max_num_training_epochs\n self.learning_rate = learning_rate\n self.batch_size = batch_size\n self.log_output_to_terminal = log_output_to_terminal\n self.display_step = display_step\n\n def compute_accuracy(self, inputs, outputs):\n correct = 0\n for label, img in self.val_dataset:\n dy.renew_cg()\n x = dy.inputVector(img)\n co.forward({inputs['in']: x})\n logits = outputs['out'].val\n pred = np.argmax(logits.npvalue())\n if label == pred:\n correct += 1\n return 1.0 * correct / len(self.val_dataset)\n\n def evaluate(self, inputs, outputs):\n params = M.get_collection()\n optimizer = dy.SimpleSGDTrainer(params, self.learning_rate)\n num_batches = int(len(self.train_dataset) / self.batch_size)\n for epoch in range(self.max_num_training_epochs):\n random.shuffle(self.train_dataset)\n i = 0\n total_loss = 0\n while i < len(self.train_dataset):\n dy.renew_cg()\n mbsize = min(self.batch_size, len(self.train_dataset) - i)\n minibatch = self.train_dataset[i:i + mbsize]\n losses = []\n for label, img in minibatch:\n x = dy.inputVector(img)\n co.forward({inputs['in']: x})\n logits = outputs['out'].val\n loss = dy.pickneglogsoftmax(logits, label)\n losses.append(loss)\n mbloss = dy.esum(losses) / mbsize\n mbloss.backward()\n optimizer.update()\n total_loss += mbloss.scalar_value()\n i += mbsize\n val_acc = self.compute_accuracy(inputs, outputs)\n if self.log_output_to_terminal and epoch % self.display_step == 0:\n print('epoch:', '%d' % (epoch + 1), 'loss:', '{:.9f}'.\n format(total_loss / num_batches),\n 'validation_accuracy:', '%.5f' % val_acc)\n val_acc = self.compute_accuracy(inputs, outputs)\n return {'val_acc': val_acc}\n\n\n<code token>\n", "<import token>\n<assignment token>\n\n\ndef flatten():\n\n def compile_fn(di, dh):\n shape = di['in'].dim()\n n = np.product(shape[0])\n Flatten = dy.reshape\n\n def fn(di):\n return {'out': Flatten(di['in'], (n,))}\n return fn\n return siso_dynet_module('Flatten', compile_fn, {})\n\n\ndef dense(h_u):\n\n def compile_fn(di, dh):\n shape = di['in'].dim()\n m, n = dh['units'], shape[0][0]\n pW = M.get_collection().add_parameters((m, n))\n pb = M.get_collection().add_parameters((m, 1))\n Dense = dy.affine_transform\n\n def fn(di):\n In = di['in']\n W, b = pW.expr(), pb.expr()\n return {'out': Dense([b, W, In])}\n return fn\n return siso_dynet_module('Dense', compile_fn, {'units': h_u})\n\n\ndef nonlinearity(h_nonlin_name):\n\n def compile_fn(di, dh):\n\n def fn(di):\n nonlin_name = dh['nonlin_name']\n if nonlin_name == 'relu':\n Out = dy.rectify(di['in'])\n elif nonlin_name == 'elu':\n Out = dy.elu(di['in'])\n elif nonlin_name == 'tanh':\n Out = dy.tanh(di['in'])\n else:\n raise ValueError\n return {'out': Out}\n return fn\n return siso_dynet_module('Nonlinearity', compile_fn, {'nonlin_name':\n h_nonlin_name})\n\n\ndef dropout(h_keep_prob):\n\n def compile_fn(di, dh):\n p = dh['keep_prop']\n Dropout = dy.dropout\n\n def fn(di):\n return {'out': Dropout(di['in'], p)}\n return fn\n return siso_dynet_module('Dropout', compile_fn, {'keep_prop': h_keep_prob})\n\n\n<function token>\n<function token>\n\n\ndef dnn_net(num_classes):\n h_nonlin_name = D(['relu', 'tanh', 'elu'])\n h_opt_drop = D([0, 1])\n return mo.siso_sequential([flatten(), mo.siso_repeat(lambda : dnn_cell(\n D([64, 128, 256, 512, 1024]), h_nonlin_name, h_opt_drop, D([0.25, \n 0.5, 0.75])), D([1, 2])), dense(D([num_classes]))])\n\n\n<import token>\n\n\ndef get_search_space(num_classes):\n\n def fn():\n co.Scope.reset_default_scope()\n inputs, outputs = dnn_net(num_classes)\n return inputs, outputs, {}\n return fn\n\n\ndef main():\n num_classes = 10\n num_samples = 3\n best_val_acc, best_architecture = 0.0, -1\n X_train, y_train, X_val, y_val, _, _ = load_mnist('data/mnist',\n normalize_range=True)\n evaluator = SimpleClassifierEvaluator((X_train, y_train), (X_val, y_val\n ), num_classes, max_num_training_epochs=5, log_output_to_terminal=True)\n searcher = se.RandomSearcher(get_search_space(num_classes))\n for i in xrange(num_samples):\n print('Sampling architecture %d' % i)\n M.renew_collection()\n inputs, outputs, _, searcher_eval_token = searcher.sample()\n val_acc = evaluator.evaluate(inputs, outputs)['val_acc']\n print(\n 'Finished evaluating architecture %d, validation accuracy is %f' %\n (i, val_acc))\n if val_acc > best_val_acc:\n best_val_acc = val_acc\n best_architecture = i\n searcher.update(val_acc, searcher_eval_token)\n print('Best validation accuracy is %f with architecture %d' % (\n best_val_acc, best_architecture))\n\n\n<import token>\n\n\nclass SimpleClassifierEvaluator:\n\n def __init__(self, train_dataset, val_dataset, num_classes,\n max_num_training_epochs=10, batch_size=16, learning_rate=0.001,\n display_step=1, log_output_to_terminal=True):\n self.train_dataset = train_dataset\n self.val_dataset = val_dataset\n self.num_classes = num_classes\n self.max_num_training_epochs = max_num_training_epochs\n self.learning_rate = learning_rate\n self.batch_size = batch_size\n self.log_output_to_terminal = log_output_to_terminal\n self.display_step = display_step\n\n def compute_accuracy(self, inputs, outputs):\n correct = 0\n for label, img in self.val_dataset:\n dy.renew_cg()\n x = dy.inputVector(img)\n co.forward({inputs['in']: x})\n logits = outputs['out'].val\n pred = np.argmax(logits.npvalue())\n if label == pred:\n correct += 1\n return 1.0 * correct / len(self.val_dataset)\n\n def evaluate(self, inputs, outputs):\n params = M.get_collection()\n optimizer = dy.SimpleSGDTrainer(params, self.learning_rate)\n num_batches = int(len(self.train_dataset) / self.batch_size)\n for epoch in range(self.max_num_training_epochs):\n random.shuffle(self.train_dataset)\n i = 0\n total_loss = 0\n while i < len(self.train_dataset):\n dy.renew_cg()\n mbsize = min(self.batch_size, len(self.train_dataset) - i)\n minibatch = self.train_dataset[i:i + mbsize]\n losses = []\n for label, img in minibatch:\n x = dy.inputVector(img)\n co.forward({inputs['in']: x})\n logits = outputs['out'].val\n loss = dy.pickneglogsoftmax(logits, label)\n losses.append(loss)\n mbloss = dy.esum(losses) / mbsize\n mbloss.backward()\n optimizer.update()\n total_loss += mbloss.scalar_value()\n i += mbsize\n val_acc = self.compute_accuracy(inputs, outputs)\n if self.log_output_to_terminal and epoch % self.display_step == 0:\n print('epoch:', '%d' % (epoch + 1), 'loss:', '{:.9f}'.\n format(total_loss / num_batches),\n 'validation_accuracy:', '%.5f' % val_acc)\n val_acc = self.compute_accuracy(inputs, outputs)\n return {'val_acc': val_acc}\n\n\n<code token>\n", "<import token>\n<assignment token>\n\n\ndef flatten():\n\n def compile_fn(di, dh):\n shape = di['in'].dim()\n n = np.product(shape[0])\n Flatten = dy.reshape\n\n def fn(di):\n return {'out': Flatten(di['in'], (n,))}\n return fn\n return siso_dynet_module('Flatten', compile_fn, {})\n\n\n<function token>\n\n\ndef nonlinearity(h_nonlin_name):\n\n def compile_fn(di, dh):\n\n def fn(di):\n nonlin_name = dh['nonlin_name']\n if nonlin_name == 'relu':\n Out = dy.rectify(di['in'])\n elif nonlin_name == 'elu':\n Out = dy.elu(di['in'])\n elif nonlin_name == 'tanh':\n Out = dy.tanh(di['in'])\n else:\n raise ValueError\n return {'out': Out}\n return fn\n return siso_dynet_module('Nonlinearity', compile_fn, {'nonlin_name':\n h_nonlin_name})\n\n\ndef dropout(h_keep_prob):\n\n def compile_fn(di, dh):\n p = dh['keep_prop']\n Dropout = dy.dropout\n\n def fn(di):\n return {'out': Dropout(di['in'], p)}\n return fn\n return siso_dynet_module('Dropout', compile_fn, {'keep_prop': h_keep_prob})\n\n\n<function token>\n<function token>\n\n\ndef dnn_net(num_classes):\n h_nonlin_name = D(['relu', 'tanh', 'elu'])\n h_opt_drop = D([0, 1])\n return mo.siso_sequential([flatten(), mo.siso_repeat(lambda : dnn_cell(\n D([64, 128, 256, 512, 1024]), h_nonlin_name, h_opt_drop, D([0.25, \n 0.5, 0.75])), D([1, 2])), dense(D([num_classes]))])\n\n\n<import token>\n\n\ndef get_search_space(num_classes):\n\n def fn():\n co.Scope.reset_default_scope()\n inputs, outputs = dnn_net(num_classes)\n return inputs, outputs, {}\n return fn\n\n\ndef main():\n num_classes = 10\n num_samples = 3\n best_val_acc, best_architecture = 0.0, -1\n X_train, y_train, X_val, y_val, _, _ = load_mnist('data/mnist',\n normalize_range=True)\n evaluator = SimpleClassifierEvaluator((X_train, y_train), (X_val, y_val\n ), num_classes, max_num_training_epochs=5, log_output_to_terminal=True)\n searcher = se.RandomSearcher(get_search_space(num_classes))\n for i in xrange(num_samples):\n print('Sampling architecture %d' % i)\n M.renew_collection()\n inputs, outputs, _, searcher_eval_token = searcher.sample()\n val_acc = evaluator.evaluate(inputs, outputs)['val_acc']\n print(\n 'Finished evaluating architecture %d, validation accuracy is %f' %\n (i, val_acc))\n if val_acc > best_val_acc:\n best_val_acc = val_acc\n best_architecture = i\n searcher.update(val_acc, searcher_eval_token)\n print('Best validation accuracy is %f with architecture %d' % (\n best_val_acc, best_architecture))\n\n\n<import token>\n\n\nclass SimpleClassifierEvaluator:\n\n def __init__(self, train_dataset, val_dataset, num_classes,\n max_num_training_epochs=10, batch_size=16, learning_rate=0.001,\n display_step=1, log_output_to_terminal=True):\n self.train_dataset = train_dataset\n self.val_dataset = val_dataset\n self.num_classes = num_classes\n self.max_num_training_epochs = max_num_training_epochs\n self.learning_rate = learning_rate\n self.batch_size = batch_size\n self.log_output_to_terminal = log_output_to_terminal\n self.display_step = display_step\n\n def compute_accuracy(self, inputs, outputs):\n correct = 0\n for label, img in self.val_dataset:\n dy.renew_cg()\n x = dy.inputVector(img)\n co.forward({inputs['in']: x})\n logits = outputs['out'].val\n pred = np.argmax(logits.npvalue())\n if label == pred:\n correct += 1\n return 1.0 * correct / len(self.val_dataset)\n\n def evaluate(self, inputs, outputs):\n params = M.get_collection()\n optimizer = dy.SimpleSGDTrainer(params, self.learning_rate)\n num_batches = int(len(self.train_dataset) / self.batch_size)\n for epoch in range(self.max_num_training_epochs):\n random.shuffle(self.train_dataset)\n i = 0\n total_loss = 0\n while i < len(self.train_dataset):\n dy.renew_cg()\n mbsize = min(self.batch_size, len(self.train_dataset) - i)\n minibatch = self.train_dataset[i:i + mbsize]\n losses = []\n for label, img in minibatch:\n x = dy.inputVector(img)\n co.forward({inputs['in']: x})\n logits = outputs['out'].val\n loss = dy.pickneglogsoftmax(logits, label)\n losses.append(loss)\n mbloss = dy.esum(losses) / mbsize\n mbloss.backward()\n optimizer.update()\n total_loss += mbloss.scalar_value()\n i += mbsize\n val_acc = self.compute_accuracy(inputs, outputs)\n if self.log_output_to_terminal and epoch % self.display_step == 0:\n print('epoch:', '%d' % (epoch + 1), 'loss:', '{:.9f}'.\n format(total_loss / num_batches),\n 'validation_accuracy:', '%.5f' % val_acc)\n val_acc = self.compute_accuracy(inputs, outputs)\n return {'val_acc': val_acc}\n\n\n<code token>\n", "<import token>\n<assignment token>\n\n\ndef flatten():\n\n def compile_fn(di, dh):\n shape = di['in'].dim()\n n = np.product(shape[0])\n Flatten = dy.reshape\n\n def fn(di):\n return {'out': Flatten(di['in'], (n,))}\n return fn\n return siso_dynet_module('Flatten', compile_fn, {})\n\n\n<function token>\n\n\ndef nonlinearity(h_nonlin_name):\n\n def compile_fn(di, dh):\n\n def fn(di):\n nonlin_name = dh['nonlin_name']\n if nonlin_name == 'relu':\n Out = dy.rectify(di['in'])\n elif nonlin_name == 'elu':\n Out = dy.elu(di['in'])\n elif nonlin_name == 'tanh':\n Out = dy.tanh(di['in'])\n else:\n raise ValueError\n return {'out': Out}\n return fn\n return siso_dynet_module('Nonlinearity', compile_fn, {'nonlin_name':\n h_nonlin_name})\n\n\ndef dropout(h_keep_prob):\n\n def compile_fn(di, dh):\n p = dh['keep_prop']\n Dropout = dy.dropout\n\n def fn(di):\n return {'out': Dropout(di['in'], p)}\n return fn\n return siso_dynet_module('Dropout', compile_fn, {'keep_prop': h_keep_prob})\n\n\n<function token>\n<function token>\n<function token>\n<import token>\n\n\ndef get_search_space(num_classes):\n\n def fn():\n co.Scope.reset_default_scope()\n inputs, outputs = dnn_net(num_classes)\n return inputs, outputs, {}\n return fn\n\n\ndef main():\n num_classes = 10\n num_samples = 3\n best_val_acc, best_architecture = 0.0, -1\n X_train, y_train, X_val, y_val, _, _ = load_mnist('data/mnist',\n normalize_range=True)\n evaluator = SimpleClassifierEvaluator((X_train, y_train), (X_val, y_val\n ), num_classes, max_num_training_epochs=5, log_output_to_terminal=True)\n searcher = se.RandomSearcher(get_search_space(num_classes))\n for i in xrange(num_samples):\n print('Sampling architecture %d' % i)\n M.renew_collection()\n inputs, outputs, _, searcher_eval_token = searcher.sample()\n val_acc = evaluator.evaluate(inputs, outputs)['val_acc']\n print(\n 'Finished evaluating architecture %d, validation accuracy is %f' %\n (i, val_acc))\n if val_acc > best_val_acc:\n best_val_acc = val_acc\n best_architecture = i\n searcher.update(val_acc, searcher_eval_token)\n print('Best validation accuracy is %f with architecture %d' % (\n best_val_acc, best_architecture))\n\n\n<import token>\n\n\nclass SimpleClassifierEvaluator:\n\n def __init__(self, train_dataset, val_dataset, num_classes,\n max_num_training_epochs=10, batch_size=16, learning_rate=0.001,\n display_step=1, log_output_to_terminal=True):\n self.train_dataset = train_dataset\n self.val_dataset = val_dataset\n self.num_classes = num_classes\n self.max_num_training_epochs = max_num_training_epochs\n self.learning_rate = learning_rate\n self.batch_size = batch_size\n self.log_output_to_terminal = log_output_to_terminal\n self.display_step = display_step\n\n def compute_accuracy(self, inputs, outputs):\n correct = 0\n for label, img in self.val_dataset:\n dy.renew_cg()\n x = dy.inputVector(img)\n co.forward({inputs['in']: x})\n logits = outputs['out'].val\n pred = np.argmax(logits.npvalue())\n if label == pred:\n correct += 1\n return 1.0 * correct / len(self.val_dataset)\n\n def evaluate(self, inputs, outputs):\n params = M.get_collection()\n optimizer = dy.SimpleSGDTrainer(params, self.learning_rate)\n num_batches = int(len(self.train_dataset) / self.batch_size)\n for epoch in range(self.max_num_training_epochs):\n random.shuffle(self.train_dataset)\n i = 0\n total_loss = 0\n while i < len(self.train_dataset):\n dy.renew_cg()\n mbsize = min(self.batch_size, len(self.train_dataset) - i)\n minibatch = self.train_dataset[i:i + mbsize]\n losses = []\n for label, img in minibatch:\n x = dy.inputVector(img)\n co.forward({inputs['in']: x})\n logits = outputs['out'].val\n loss = dy.pickneglogsoftmax(logits, label)\n losses.append(loss)\n mbloss = dy.esum(losses) / mbsize\n mbloss.backward()\n optimizer.update()\n total_loss += mbloss.scalar_value()\n i += mbsize\n val_acc = self.compute_accuracy(inputs, outputs)\n if self.log_output_to_terminal and epoch % self.display_step == 0:\n print('epoch:', '%d' % (epoch + 1), 'loss:', '{:.9f}'.\n format(total_loss / num_batches),\n 'validation_accuracy:', '%.5f' % val_acc)\n val_acc = self.compute_accuracy(inputs, outputs)\n return {'val_acc': val_acc}\n\n\n<code token>\n", "<import token>\n<assignment token>\n\n\ndef flatten():\n\n def compile_fn(di, dh):\n shape = di['in'].dim()\n n = np.product(shape[0])\n Flatten = dy.reshape\n\n def fn(di):\n return {'out': Flatten(di['in'], (n,))}\n return fn\n return siso_dynet_module('Flatten', compile_fn, {})\n\n\n<function token>\n<function token>\n\n\ndef dropout(h_keep_prob):\n\n def compile_fn(di, dh):\n p = dh['keep_prop']\n Dropout = dy.dropout\n\n def fn(di):\n return {'out': Dropout(di['in'], p)}\n return fn\n return siso_dynet_module('Dropout', compile_fn, {'keep_prop': h_keep_prob})\n\n\n<function token>\n<function token>\n<function token>\n<import token>\n\n\ndef get_search_space(num_classes):\n\n def fn():\n co.Scope.reset_default_scope()\n inputs, outputs = dnn_net(num_classes)\n return inputs, outputs, {}\n return fn\n\n\ndef main():\n num_classes = 10\n num_samples = 3\n best_val_acc, best_architecture = 0.0, -1\n X_train, y_train, X_val, y_val, _, _ = load_mnist('data/mnist',\n normalize_range=True)\n evaluator = SimpleClassifierEvaluator((X_train, y_train), (X_val, y_val\n ), num_classes, max_num_training_epochs=5, log_output_to_terminal=True)\n searcher = se.RandomSearcher(get_search_space(num_classes))\n for i in xrange(num_samples):\n print('Sampling architecture %d' % i)\n M.renew_collection()\n inputs, outputs, _, searcher_eval_token = searcher.sample()\n val_acc = evaluator.evaluate(inputs, outputs)['val_acc']\n print(\n 'Finished evaluating architecture %d, validation accuracy is %f' %\n (i, val_acc))\n if val_acc > best_val_acc:\n best_val_acc = val_acc\n best_architecture = i\n searcher.update(val_acc, searcher_eval_token)\n print('Best validation accuracy is %f with architecture %d' % (\n best_val_acc, best_architecture))\n\n\n<import token>\n\n\nclass SimpleClassifierEvaluator:\n\n def __init__(self, train_dataset, val_dataset, num_classes,\n max_num_training_epochs=10, batch_size=16, learning_rate=0.001,\n display_step=1, log_output_to_terminal=True):\n self.train_dataset = train_dataset\n self.val_dataset = val_dataset\n self.num_classes = num_classes\n self.max_num_training_epochs = max_num_training_epochs\n self.learning_rate = learning_rate\n self.batch_size = batch_size\n self.log_output_to_terminal = log_output_to_terminal\n self.display_step = display_step\n\n def compute_accuracy(self, inputs, outputs):\n correct = 0\n for label, img in self.val_dataset:\n dy.renew_cg()\n x = dy.inputVector(img)\n co.forward({inputs['in']: x})\n logits = outputs['out'].val\n pred = np.argmax(logits.npvalue())\n if label == pred:\n correct += 1\n return 1.0 * correct / len(self.val_dataset)\n\n def evaluate(self, inputs, outputs):\n params = M.get_collection()\n optimizer = dy.SimpleSGDTrainer(params, self.learning_rate)\n num_batches = int(len(self.train_dataset) / self.batch_size)\n for epoch in range(self.max_num_training_epochs):\n random.shuffle(self.train_dataset)\n i = 0\n total_loss = 0\n while i < len(self.train_dataset):\n dy.renew_cg()\n mbsize = min(self.batch_size, len(self.train_dataset) - i)\n minibatch = self.train_dataset[i:i + mbsize]\n losses = []\n for label, img in minibatch:\n x = dy.inputVector(img)\n co.forward({inputs['in']: x})\n logits = outputs['out'].val\n loss = dy.pickneglogsoftmax(logits, label)\n losses.append(loss)\n mbloss = dy.esum(losses) / mbsize\n mbloss.backward()\n optimizer.update()\n total_loss += mbloss.scalar_value()\n i += mbsize\n val_acc = self.compute_accuracy(inputs, outputs)\n if self.log_output_to_terminal and epoch % self.display_step == 0:\n print('epoch:', '%d' % (epoch + 1), 'loss:', '{:.9f}'.\n format(total_loss / num_batches),\n 'validation_accuracy:', '%.5f' % val_acc)\n val_acc = self.compute_accuracy(inputs, outputs)\n return {'val_acc': val_acc}\n\n\n<code token>\n", "<import token>\n<assignment token>\n\n\ndef flatten():\n\n def compile_fn(di, dh):\n shape = di['in'].dim()\n n = np.product(shape[0])\n Flatten = dy.reshape\n\n def fn(di):\n return {'out': Flatten(di['in'], (n,))}\n return fn\n return siso_dynet_module('Flatten', compile_fn, {})\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<import token>\n\n\ndef get_search_space(num_classes):\n\n def fn():\n co.Scope.reset_default_scope()\n inputs, outputs = dnn_net(num_classes)\n return inputs, outputs, {}\n return fn\n\n\ndef main():\n num_classes = 10\n num_samples = 3\n best_val_acc, best_architecture = 0.0, -1\n X_train, y_train, X_val, y_val, _, _ = load_mnist('data/mnist',\n normalize_range=True)\n evaluator = SimpleClassifierEvaluator((X_train, y_train), (X_val, y_val\n ), num_classes, max_num_training_epochs=5, log_output_to_terminal=True)\n searcher = se.RandomSearcher(get_search_space(num_classes))\n for i in xrange(num_samples):\n print('Sampling architecture %d' % i)\n M.renew_collection()\n inputs, outputs, _, searcher_eval_token = searcher.sample()\n val_acc = evaluator.evaluate(inputs, outputs)['val_acc']\n print(\n 'Finished evaluating architecture %d, validation accuracy is %f' %\n (i, val_acc))\n if val_acc > best_val_acc:\n best_val_acc = val_acc\n best_architecture = i\n searcher.update(val_acc, searcher_eval_token)\n print('Best validation accuracy is %f with architecture %d' % (\n best_val_acc, best_architecture))\n\n\n<import token>\n\n\nclass SimpleClassifierEvaluator:\n\n def __init__(self, train_dataset, val_dataset, num_classes,\n max_num_training_epochs=10, batch_size=16, learning_rate=0.001,\n display_step=1, log_output_to_terminal=True):\n self.train_dataset = train_dataset\n self.val_dataset = val_dataset\n self.num_classes = num_classes\n self.max_num_training_epochs = max_num_training_epochs\n self.learning_rate = learning_rate\n self.batch_size = batch_size\n self.log_output_to_terminal = log_output_to_terminal\n self.display_step = display_step\n\n def compute_accuracy(self, inputs, outputs):\n correct = 0\n for label, img in self.val_dataset:\n dy.renew_cg()\n x = dy.inputVector(img)\n co.forward({inputs['in']: x})\n logits = outputs['out'].val\n pred = np.argmax(logits.npvalue())\n if label == pred:\n correct += 1\n return 1.0 * correct / len(self.val_dataset)\n\n def evaluate(self, inputs, outputs):\n params = M.get_collection()\n optimizer = dy.SimpleSGDTrainer(params, self.learning_rate)\n num_batches = int(len(self.train_dataset) / self.batch_size)\n for epoch in range(self.max_num_training_epochs):\n random.shuffle(self.train_dataset)\n i = 0\n total_loss = 0\n while i < len(self.train_dataset):\n dy.renew_cg()\n mbsize = min(self.batch_size, len(self.train_dataset) - i)\n minibatch = self.train_dataset[i:i + mbsize]\n losses = []\n for label, img in minibatch:\n x = dy.inputVector(img)\n co.forward({inputs['in']: x})\n logits = outputs['out'].val\n loss = dy.pickneglogsoftmax(logits, label)\n losses.append(loss)\n mbloss = dy.esum(losses) / mbsize\n mbloss.backward()\n optimizer.update()\n total_loss += mbloss.scalar_value()\n i += mbsize\n val_acc = self.compute_accuracy(inputs, outputs)\n if self.log_output_to_terminal and epoch % self.display_step == 0:\n print('epoch:', '%d' % (epoch + 1), 'loss:', '{:.9f}'.\n format(total_loss / num_batches),\n 'validation_accuracy:', '%.5f' % val_acc)\n val_acc = self.compute_accuracy(inputs, outputs)\n return {'val_acc': val_acc}\n\n\n<code token>\n", "<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<import token>\n\n\ndef get_search_space(num_classes):\n\n def fn():\n co.Scope.reset_default_scope()\n inputs, outputs = dnn_net(num_classes)\n return inputs, outputs, {}\n return fn\n\n\ndef main():\n num_classes = 10\n num_samples = 3\n best_val_acc, best_architecture = 0.0, -1\n X_train, y_train, X_val, y_val, _, _ = load_mnist('data/mnist',\n normalize_range=True)\n evaluator = SimpleClassifierEvaluator((X_train, y_train), (X_val, y_val\n ), num_classes, max_num_training_epochs=5, log_output_to_terminal=True)\n searcher = se.RandomSearcher(get_search_space(num_classes))\n for i in xrange(num_samples):\n print('Sampling architecture %d' % i)\n M.renew_collection()\n inputs, outputs, _, searcher_eval_token = searcher.sample()\n val_acc = evaluator.evaluate(inputs, outputs)['val_acc']\n print(\n 'Finished evaluating architecture %d, validation accuracy is %f' %\n (i, val_acc))\n if val_acc > best_val_acc:\n best_val_acc = val_acc\n best_architecture = i\n searcher.update(val_acc, searcher_eval_token)\n print('Best validation accuracy is %f with architecture %d' % (\n best_val_acc, best_architecture))\n\n\n<import token>\n\n\nclass SimpleClassifierEvaluator:\n\n def __init__(self, train_dataset, val_dataset, num_classes,\n max_num_training_epochs=10, batch_size=16, learning_rate=0.001,\n display_step=1, log_output_to_terminal=True):\n self.train_dataset = train_dataset\n self.val_dataset = val_dataset\n self.num_classes = num_classes\n self.max_num_training_epochs = max_num_training_epochs\n self.learning_rate = learning_rate\n self.batch_size = batch_size\n self.log_output_to_terminal = log_output_to_terminal\n self.display_step = display_step\n\n def compute_accuracy(self, inputs, outputs):\n correct = 0\n for label, img in self.val_dataset:\n dy.renew_cg()\n x = dy.inputVector(img)\n co.forward({inputs['in']: x})\n logits = outputs['out'].val\n pred = np.argmax(logits.npvalue())\n if label == pred:\n correct += 1\n return 1.0 * correct / len(self.val_dataset)\n\n def evaluate(self, inputs, outputs):\n params = M.get_collection()\n optimizer = dy.SimpleSGDTrainer(params, self.learning_rate)\n num_batches = int(len(self.train_dataset) / self.batch_size)\n for epoch in range(self.max_num_training_epochs):\n random.shuffle(self.train_dataset)\n i = 0\n total_loss = 0\n while i < len(self.train_dataset):\n dy.renew_cg()\n mbsize = min(self.batch_size, len(self.train_dataset) - i)\n minibatch = self.train_dataset[i:i + mbsize]\n losses = []\n for label, img in minibatch:\n x = dy.inputVector(img)\n co.forward({inputs['in']: x})\n logits = outputs['out'].val\n loss = dy.pickneglogsoftmax(logits, label)\n losses.append(loss)\n mbloss = dy.esum(losses) / mbsize\n mbloss.backward()\n optimizer.update()\n total_loss += mbloss.scalar_value()\n i += mbsize\n val_acc = self.compute_accuracy(inputs, outputs)\n if self.log_output_to_terminal and epoch % self.display_step == 0:\n print('epoch:', '%d' % (epoch + 1), 'loss:', '{:.9f}'.\n format(total_loss / num_batches),\n 'validation_accuracy:', '%.5f' % val_acc)\n val_acc = self.compute_accuracy(inputs, outputs)\n return {'val_acc': val_acc}\n\n\n<code token>\n", "<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<import token>\n\n\ndef get_search_space(num_classes):\n\n def fn():\n co.Scope.reset_default_scope()\n inputs, outputs = dnn_net(num_classes)\n return inputs, outputs, {}\n return fn\n\n\n<function token>\n<import token>\n\n\nclass SimpleClassifierEvaluator:\n\n def __init__(self, train_dataset, val_dataset, num_classes,\n max_num_training_epochs=10, batch_size=16, learning_rate=0.001,\n display_step=1, log_output_to_terminal=True):\n self.train_dataset = train_dataset\n self.val_dataset = val_dataset\n self.num_classes = num_classes\n self.max_num_training_epochs = max_num_training_epochs\n self.learning_rate = learning_rate\n self.batch_size = batch_size\n self.log_output_to_terminal = log_output_to_terminal\n self.display_step = display_step\n\n def compute_accuracy(self, inputs, outputs):\n correct = 0\n for label, img in self.val_dataset:\n dy.renew_cg()\n x = dy.inputVector(img)\n co.forward({inputs['in']: x})\n logits = outputs['out'].val\n pred = np.argmax(logits.npvalue())\n if label == pred:\n correct += 1\n return 1.0 * correct / len(self.val_dataset)\n\n def evaluate(self, inputs, outputs):\n params = M.get_collection()\n optimizer = dy.SimpleSGDTrainer(params, self.learning_rate)\n num_batches = int(len(self.train_dataset) / self.batch_size)\n for epoch in range(self.max_num_training_epochs):\n random.shuffle(self.train_dataset)\n i = 0\n total_loss = 0\n while i < len(self.train_dataset):\n dy.renew_cg()\n mbsize = min(self.batch_size, len(self.train_dataset) - i)\n minibatch = self.train_dataset[i:i + mbsize]\n losses = []\n for label, img in minibatch:\n x = dy.inputVector(img)\n co.forward({inputs['in']: x})\n logits = outputs['out'].val\n loss = dy.pickneglogsoftmax(logits, label)\n losses.append(loss)\n mbloss = dy.esum(losses) / mbsize\n mbloss.backward()\n optimizer.update()\n total_loss += mbloss.scalar_value()\n i += mbsize\n val_acc = self.compute_accuracy(inputs, outputs)\n if self.log_output_to_terminal and epoch % self.display_step == 0:\n print('epoch:', '%d' % (epoch + 1), 'loss:', '{:.9f}'.\n format(total_loss / num_batches),\n 'validation_accuracy:', '%.5f' % val_acc)\n val_acc = self.compute_accuracy(inputs, outputs)\n return {'val_acc': val_acc}\n\n\n<code token>\n", "<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<import token>\n<function token>\n<function token>\n<import token>\n\n\nclass SimpleClassifierEvaluator:\n\n def __init__(self, train_dataset, val_dataset, num_classes,\n max_num_training_epochs=10, batch_size=16, learning_rate=0.001,\n display_step=1, log_output_to_terminal=True):\n self.train_dataset = train_dataset\n self.val_dataset = val_dataset\n self.num_classes = num_classes\n self.max_num_training_epochs = max_num_training_epochs\n self.learning_rate = learning_rate\n self.batch_size = batch_size\n self.log_output_to_terminal = log_output_to_terminal\n self.display_step = display_step\n\n def compute_accuracy(self, inputs, outputs):\n correct = 0\n for label, img in self.val_dataset:\n dy.renew_cg()\n x = dy.inputVector(img)\n co.forward({inputs['in']: x})\n logits = outputs['out'].val\n pred = np.argmax(logits.npvalue())\n if label == pred:\n correct += 1\n return 1.0 * correct / len(self.val_dataset)\n\n def evaluate(self, inputs, outputs):\n params = M.get_collection()\n optimizer = dy.SimpleSGDTrainer(params, self.learning_rate)\n num_batches = int(len(self.train_dataset) / self.batch_size)\n for epoch in range(self.max_num_training_epochs):\n random.shuffle(self.train_dataset)\n i = 0\n total_loss = 0\n while i < len(self.train_dataset):\n dy.renew_cg()\n mbsize = min(self.batch_size, len(self.train_dataset) - i)\n minibatch = self.train_dataset[i:i + mbsize]\n losses = []\n for label, img in minibatch:\n x = dy.inputVector(img)\n co.forward({inputs['in']: x})\n logits = outputs['out'].val\n loss = dy.pickneglogsoftmax(logits, label)\n losses.append(loss)\n mbloss = dy.esum(losses) / mbsize\n mbloss.backward()\n optimizer.update()\n total_loss += mbloss.scalar_value()\n i += mbsize\n val_acc = self.compute_accuracy(inputs, outputs)\n if self.log_output_to_terminal and epoch % self.display_step == 0:\n print('epoch:', '%d' % (epoch + 1), 'loss:', '{:.9f}'.\n format(total_loss / num_batches),\n 'validation_accuracy:', '%.5f' % val_acc)\n val_acc = self.compute_accuracy(inputs, outputs)\n return {'val_acc': val_acc}\n\n\n<code token>\n", "<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<import token>\n<function token>\n<function token>\n<import token>\n\n\nclass SimpleClassifierEvaluator:\n\n def __init__(self, train_dataset, val_dataset, num_classes,\n max_num_training_epochs=10, batch_size=16, learning_rate=0.001,\n display_step=1, log_output_to_terminal=True):\n self.train_dataset = train_dataset\n self.val_dataset = val_dataset\n self.num_classes = num_classes\n self.max_num_training_epochs = max_num_training_epochs\n self.learning_rate = learning_rate\n self.batch_size = batch_size\n self.log_output_to_terminal = log_output_to_terminal\n self.display_step = display_step\n <function token>\n\n def evaluate(self, inputs, outputs):\n params = M.get_collection()\n optimizer = dy.SimpleSGDTrainer(params, self.learning_rate)\n num_batches = int(len(self.train_dataset) / self.batch_size)\n for epoch in range(self.max_num_training_epochs):\n random.shuffle(self.train_dataset)\n i = 0\n total_loss = 0\n while i < len(self.train_dataset):\n dy.renew_cg()\n mbsize = min(self.batch_size, len(self.train_dataset) - i)\n minibatch = self.train_dataset[i:i + mbsize]\n losses = []\n for label, img in minibatch:\n x = dy.inputVector(img)\n co.forward({inputs['in']: x})\n logits = outputs['out'].val\n loss = dy.pickneglogsoftmax(logits, label)\n losses.append(loss)\n mbloss = dy.esum(losses) / mbsize\n mbloss.backward()\n optimizer.update()\n total_loss += mbloss.scalar_value()\n i += mbsize\n val_acc = self.compute_accuracy(inputs, outputs)\n if self.log_output_to_terminal and epoch % self.display_step == 0:\n print('epoch:', '%d' % (epoch + 1), 'loss:', '{:.9f}'.\n format(total_loss / num_batches),\n 'validation_accuracy:', '%.5f' % val_acc)\n val_acc = self.compute_accuracy(inputs, outputs)\n return {'val_acc': val_acc}\n\n\n<code token>\n", "<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<import token>\n<function token>\n<function token>\n<import token>\n\n\nclass SimpleClassifierEvaluator:\n <function token>\n <function token>\n\n def evaluate(self, inputs, outputs):\n params = M.get_collection()\n optimizer = dy.SimpleSGDTrainer(params, self.learning_rate)\n num_batches = int(len(self.train_dataset) / self.batch_size)\n for epoch in range(self.max_num_training_epochs):\n random.shuffle(self.train_dataset)\n i = 0\n total_loss = 0\n while i < len(self.train_dataset):\n dy.renew_cg()\n mbsize = min(self.batch_size, len(self.train_dataset) - i)\n minibatch = self.train_dataset[i:i + mbsize]\n losses = []\n for label, img in minibatch:\n x = dy.inputVector(img)\n co.forward({inputs['in']: x})\n logits = outputs['out'].val\n loss = dy.pickneglogsoftmax(logits, label)\n losses.append(loss)\n mbloss = dy.esum(losses) / mbsize\n mbloss.backward()\n optimizer.update()\n total_loss += mbloss.scalar_value()\n i += mbsize\n val_acc = self.compute_accuracy(inputs, outputs)\n if self.log_output_to_terminal and epoch % self.display_step == 0:\n print('epoch:', '%d' % (epoch + 1), 'loss:', '{:.9f}'.\n format(total_loss / num_batches),\n 'validation_accuracy:', '%.5f' % val_acc)\n val_acc = self.compute_accuracy(inputs, outputs)\n return {'val_acc': val_acc}\n\n\n<code token>\n", "<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<import token>\n<function token>\n<function token>\n<import token>\n\n\nclass SimpleClassifierEvaluator:\n <function token>\n <function token>\n <function token>\n\n\n<code token>\n", "<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<import token>\n<function token>\n<function token>\n<import token>\n<class token>\n<code token>\n" ]
false
98,862
46afa707cf17654e812a3ee60fbb78db513cc968
#!/usr/bin/env python import os,sys,fnmatch import xml.etree.ElementTree as etree import glob idir='/home/om/cron/pioneer/data/ADCP/' maskfile_rec='datasets_mask_ADCP_REC.xml' maskfile_tel='datasets_mask_ADCP_TEL.xml' infile='datasets_WFP_MOAS.xml' outfile='dataset_WFP_MOAS_adcp.xml' def main(argv): print 'APPENDING' tree=etree.parse(infile) dxml=tree.getroot() #RECOVERED files=glob.glob(idir+'PIONEER_ADCP_RECOVERED_*.nc') for file in files: print file parts=file.split('/') filename=parts[-1:] print filename[0] parts2=filename[0].split('.') Did=parts2[0] print Did newelement=etree.parse(maskfile_rec).getroot() newelement.find('fileNameRegex').text=filename[0] newelement.set('datasetID',Did) dxml.append(newelement) # # #TELEMETERED files=glob.glob(idir+'PIONEER_ADCP_TELEMETERED_*.nc') for file in files: print file parts=file.split('/') filename=parts[-1:] print filename[0] parts2=filename[0].split('.') Did=parts2[0] print Did newelement=etree.parse(maskfile_tel).getroot() newelement.find('fileNameRegex').text=filename[0] newelement.set('datasetID',Did) dxml.append(newelement) # tree.write(outfile, encoding="ISO-8859-1", xml_declaration=True) # # # try: # response=urllib2.urlopen(allurls[0]) # except urllib2.URLError,e: # print "Error accessing site:",e # # print response.read() # if __name__ == "__main__": # parser = optparse.OptionParser() # parser.add_option('-t', '--type',dest='type',help='MOAS,WFP,SPP,BPRESS',default='MOAS',type='str') # parser.add_option('-s', '--state',dest='state',help='REC,TEL',default='REC',type='str') # (opts, args) = parser.parse_args() print 'RUNNING' main(sys.argv)
[ "#!/usr/bin/env python\n\nimport os,sys,fnmatch\nimport xml.etree.ElementTree as etree\nimport glob\n\n\nidir='/home/om/cron/pioneer/data/ADCP/'\nmaskfile_rec='datasets_mask_ADCP_REC.xml'\nmaskfile_tel='datasets_mask_ADCP_TEL.xml'\ninfile='datasets_WFP_MOAS.xml'\noutfile='dataset_WFP_MOAS_adcp.xml'\n\ndef main(argv):\n print 'APPENDING'\n tree=etree.parse(infile)\n dxml=tree.getroot()\n \n #RECOVERED\n files=glob.glob(idir+'PIONEER_ADCP_RECOVERED_*.nc') \n for file in files:\n print file\n parts=file.split('/')\n filename=parts[-1:]\n print filename[0]\n parts2=filename[0].split('.')\n Did=parts2[0]\n print Did\n newelement=etree.parse(maskfile_rec).getroot()\n newelement.find('fileNameRegex').text=filename[0]\n newelement.set('datasetID',Did)\n dxml.append(newelement) \n# \n# \n\n\n #TELEMETERED\n files=glob.glob(idir+'PIONEER_ADCP_TELEMETERED_*.nc') \n for file in files:\n print file\n parts=file.split('/')\n filename=parts[-1:]\n print filename[0]\n parts2=filename[0].split('.')\n Did=parts2[0]\n print Did\n newelement=etree.parse(maskfile_tel).getroot()\n newelement.find('fileNameRegex').text=filename[0]\n newelement.set('datasetID',Did)\n dxml.append(newelement) \n# \n \n \n tree.write(outfile, encoding=\"ISO-8859-1\", xml_declaration=True)\n \n \n\n# \n# \n \n# try:\n# response=urllib2.urlopen(allurls[0])\n# except urllib2.URLError,e:\n# print \"Error accessing site:\",e\n# \n# print response.read()\n# \nif __name__ == \"__main__\":\n # parser = optparse.OptionParser()\n # parser.add_option('-t', '--type',dest='type',help='MOAS,WFP,SPP,BPRESS',default='MOAS',type='str')\n # parser.add_option('-s', '--state',dest='state',help='REC,TEL',default='REC',type='str')\n # (opts, args) = parser.parse_args()\n \n \n print 'RUNNING'\n main(sys.argv)\n" ]
true
98,863
dec2ce871ff635b50d8dc1b010fc7ca5328dbb93
import json import logging import time import traceback from simplejson import JSONDecodeError import requests from eu.softfire.integrationtest.utils.exceptions import MonitoringResourceValidationException from eu.softfire.integrationtest.utils.utils import get_config_value from eu.softfire.integrationtest.validators.validators import AbstractValidator log = logging.getLogger(__name__) class MonitoringResourceValidator(AbstractValidator): def validate(self, resource, resource_id, used_resource_id, session): log.debug('Validate MonitoringResource with resource_id: {}'.format(resource_id)) log.debug('Validate MonitoringResource with resource: {}'.format(resource)) attempts = int(get_config_value('monitoring-resource', 'attempts', '10')) try: res = json.loads(resource) except JSONDecodeError as e: raise MonitoringResourceValidationException(e.msg) if not res["floatingIp"]: raise MonitoringResourceValidationException("Floating ip not available: {}".format(res)) cnt = 1 while cnt <= attempts: log.debug('Validate attempt: {}'.format(cnt)) try: r = requests.get(res["url"], timeout=10) if r.status_code == 200: if "zabbix.php" in r.text: log.debug('********SUCCESSS*********') return except Exception as e: if cnt > attempts: log.error("after %d attempts zabbix is not started yet, considering it failed..." % attempts) exception_data = traceback.format_exc().splitlines() exception_text = "Error: {}".format(exception_data[-1]) log.error(exception_text) raise e # raise exceptions only after X attempts, to allow test passing in slow environments cnt += 1 time.sleep(5) raise MonitoringResourceValidationException(res)
[ "import json\nimport logging\nimport time\nimport traceback\nfrom simplejson import JSONDecodeError\n\nimport requests\n\nfrom eu.softfire.integrationtest.utils.exceptions import MonitoringResourceValidationException\nfrom eu.softfire.integrationtest.utils.utils import get_config_value\nfrom eu.softfire.integrationtest.validators.validators import AbstractValidator\n\nlog = logging.getLogger(__name__)\n\nclass MonitoringResourceValidator(AbstractValidator):\n def validate(self, resource, resource_id, used_resource_id, session):\n log.debug('Validate MonitoringResource with resource_id: {}'.format(resource_id))\n log.debug('Validate MonitoringResource with resource: {}'.format(resource))\n\n attempts = int(get_config_value('monitoring-resource', 'attempts', '10'))\n\n try:\n res = json.loads(resource)\n except JSONDecodeError as e:\n raise MonitoringResourceValidationException(e.msg)\n\n if not res[\"floatingIp\"]:\n raise MonitoringResourceValidationException(\"Floating ip not available: {}\".format(res))\n \n cnt = 1\n while cnt <= attempts:\n\n log.debug('Validate attempt: {}'.format(cnt))\n\n try:\n r = requests.get(res[\"url\"], timeout=10)\n if r.status_code == 200:\n if \"zabbix.php\" in r.text:\n log.debug('********SUCCESSS*********')\n return\n except Exception as e:\n if cnt > attempts:\n log.error(\"after %d attempts zabbix is not started yet, considering it failed...\" % attempts)\n exception_data = traceback.format_exc().splitlines()\n exception_text = \"Error: {}\".format(exception_data[-1])\n log.error(exception_text)\n raise e # raise exceptions only after X attempts, to allow test passing in slow environments\n\n cnt += 1\n\n time.sleep(5)\n\n raise MonitoringResourceValidationException(res)\n", "import json\nimport logging\nimport time\nimport traceback\nfrom simplejson import JSONDecodeError\nimport requests\nfrom eu.softfire.integrationtest.utils.exceptions import MonitoringResourceValidationException\nfrom eu.softfire.integrationtest.utils.utils import get_config_value\nfrom eu.softfire.integrationtest.validators.validators import AbstractValidator\nlog = logging.getLogger(__name__)\n\n\nclass MonitoringResourceValidator(AbstractValidator):\n\n def validate(self, resource, resource_id, used_resource_id, session):\n log.debug('Validate MonitoringResource with resource_id: {}'.format\n (resource_id))\n log.debug('Validate MonitoringResource with resource: {}'.format(\n resource))\n attempts = int(get_config_value('monitoring-resource', 'attempts',\n '10'))\n try:\n res = json.loads(resource)\n except JSONDecodeError as e:\n raise MonitoringResourceValidationException(e.msg)\n if not res['floatingIp']:\n raise MonitoringResourceValidationException(\n 'Floating ip not available: {}'.format(res))\n cnt = 1\n while cnt <= attempts:\n log.debug('Validate attempt: {}'.format(cnt))\n try:\n r = requests.get(res['url'], timeout=10)\n if r.status_code == 200:\n if 'zabbix.php' in r.text:\n log.debug('********SUCCESSS*********')\n return\n except Exception as e:\n if cnt > attempts:\n log.error(\n 'after %d attempts zabbix is not started yet, considering it failed...'\n % attempts)\n exception_data = traceback.format_exc().splitlines()\n exception_text = 'Error: {}'.format(exception_data[-1])\n log.error(exception_text)\n raise e\n cnt += 1\n time.sleep(5)\n raise MonitoringResourceValidationException(res)\n", "<import token>\nlog = logging.getLogger(__name__)\n\n\nclass MonitoringResourceValidator(AbstractValidator):\n\n def validate(self, resource, resource_id, used_resource_id, session):\n log.debug('Validate MonitoringResource with resource_id: {}'.format\n (resource_id))\n log.debug('Validate MonitoringResource with resource: {}'.format(\n resource))\n attempts = int(get_config_value('monitoring-resource', 'attempts',\n '10'))\n try:\n res = json.loads(resource)\n except JSONDecodeError as e:\n raise MonitoringResourceValidationException(e.msg)\n if not res['floatingIp']:\n raise MonitoringResourceValidationException(\n 'Floating ip not available: {}'.format(res))\n cnt = 1\n while cnt <= attempts:\n log.debug('Validate attempt: {}'.format(cnt))\n try:\n r = requests.get(res['url'], timeout=10)\n if r.status_code == 200:\n if 'zabbix.php' in r.text:\n log.debug('********SUCCESSS*********')\n return\n except Exception as e:\n if cnt > attempts:\n log.error(\n 'after %d attempts zabbix is not started yet, considering it failed...'\n % attempts)\n exception_data = traceback.format_exc().splitlines()\n exception_text = 'Error: {}'.format(exception_data[-1])\n log.error(exception_text)\n raise e\n cnt += 1\n time.sleep(5)\n raise MonitoringResourceValidationException(res)\n", "<import token>\n<assignment token>\n\n\nclass MonitoringResourceValidator(AbstractValidator):\n\n def validate(self, resource, resource_id, used_resource_id, session):\n log.debug('Validate MonitoringResource with resource_id: {}'.format\n (resource_id))\n log.debug('Validate MonitoringResource with resource: {}'.format(\n resource))\n attempts = int(get_config_value('monitoring-resource', 'attempts',\n '10'))\n try:\n res = json.loads(resource)\n except JSONDecodeError as e:\n raise MonitoringResourceValidationException(e.msg)\n if not res['floatingIp']:\n raise MonitoringResourceValidationException(\n 'Floating ip not available: {}'.format(res))\n cnt = 1\n while cnt <= attempts:\n log.debug('Validate attempt: {}'.format(cnt))\n try:\n r = requests.get(res['url'], timeout=10)\n if r.status_code == 200:\n if 'zabbix.php' in r.text:\n log.debug('********SUCCESSS*********')\n return\n except Exception as e:\n if cnt > attempts:\n log.error(\n 'after %d attempts zabbix is not started yet, considering it failed...'\n % attempts)\n exception_data = traceback.format_exc().splitlines()\n exception_text = 'Error: {}'.format(exception_data[-1])\n log.error(exception_text)\n raise e\n cnt += 1\n time.sleep(5)\n raise MonitoringResourceValidationException(res)\n", "<import token>\n<assignment token>\n\n\nclass MonitoringResourceValidator(AbstractValidator):\n <function token>\n", "<import token>\n<assignment token>\n<class token>\n" ]
false
98,864
730f62e55a7a6366d75d990e557bcce7a623c861
import numpy as np import pandas as pd import geopandas as gpd from sklearn.decomposition import PCA from sklearn import preprocessing as pp from accessibility_analyzing import utlis as ut from accessibility_analyzing.accessibility_calculator import accessibility_calculator """ 此模块下的代码没有使用 """ def generate_access_index(dir_name=r'D:\multicities\data\深圳分区\可达性结算结果'): ''' 存放可达性计算结果的文件夹 该文件夹下暂时只放置两个文件 ''' for each in ut.iter_shpfile(dir_name,['.shp']): t = gpd.read_file(r'{}'.format(each)) yield t['access_ind'] def write_accind_2_file(file_dir): ''' 将可达性计算结果写入 file_dir 下的指定文件 返回geo pandas 格式文件 ''' i = 1 t = gpd.read_file(file_dir) for each in generate_access_index(): name = 'access_ind_{}'.format(i) t[name] = each i+=1 return t def sklearn_pca_cal( n_component=3, cal_df=None, is_z_stand=False, *args): ''' 使用PCA 前必须对数据进行标准化 pca.fit_transform(X)# 返回降维后的数据 pca.components_ #返回因子载荷,横向查看相应载荷,实际为协方差矩阵特征值对应的特征向量 pca.explained_variance_ratio_ #返回方差贡献率 pca.explained_variance_ #返回特征值 注意: X*pca.components_ 结果等于 pca.fit_transform(X) 的输出结果 cal_df: 进行pca计算的数据框 is_z_stand: 这个参数不是简单的是否对输出结果进行z标准化,如果这个这个参数是False 此时计算的是直接对机会项进行PCA 计算赋权(对原始非标准化结果直接赋权),加和,百分化输出。 选择为True时 是对标准化后的可达性计算PCA, 赋权,加和,输出标准化后的 原始三种可达性值 与 最终可达性值(赋权加和后结果)。 ''' column_name_list = [] output_column_name_list = [] for each in args: assert isinstance(each, str) column_name_list.append(each) output_column_name_list.append(each+'_sta') assert n_component <= len(column_name_list) acc_file = cal_df # X = acc_file[['access_ind','access_ind_1','access_ind_2']]#取出dataframe的三列 X = acc_file[column_name_list] X = np.array(X) if is_z_stand==False: pca = PCA(n_components=n_component) NEWX = pca.fit_transform(X) # 返回降维后的数据 variance_ratio = pca.explained_variance_ratio_ t = NEWX*variance_ratio t = t.sum(axis=1) t = t/t.sum(axis=0)# 计算百分值 t = t.reshape(len(t), 1) results = np.concatenate((X,t),axis=1)# 最后结果,前三列为降维后的数据,最后一列为 加权相加的结果 pca_index = 'pca_en_per' output_column_name_list.append(pca_index) results_df = pd.DataFrame(data=results, columns=output_column_name_list) else: scaler = pp.StandardScaler() X_scaler = scaler.fit_transform(X) #对数据进行标准化 pca = PCA(n_components=n_component) NEWX = pca.fit_transform(X_scaler) # 返回降维后的数据 variance_ratio = pca.explained_variance_ratio_ t = NEWX*variance_ratio #直接进行广播相乘 t = t.sum(axis=1) t = t.reshape(len(t), 1) results = np.concatenate((X,t),axis=1)# 最后结果,前三列为降维后的数据,最后一列为 加权相加的结果 # results_df = pd.DataFrame(data=results,columns=['acc_ind_sta','acc_ind_sta_1','acc_ind_sta_2','acc_ind_pca']) pca_index = 'pca_in_per' output_column_name_list.append(pca_index) results_df = pd.DataFrame(data=results,columns=output_column_name_list) del results_df[output_column_name_list[0]] del results_df[output_column_name_list[1]] del results_df[output_column_name_list[2]] final_re_df = pd.concat([acc_file, results_df], axis=1) final_re_df['e_0_pe_le'] = ut.value_classify(final_re_df, 'entr_0_per', number=-5) final_re_df['e_1_pe_le'] = ut.value_classify(final_re_df, 'entr_1_per', number=-5) final_re_df['e_2_pe_le'] = ut.value_classify(final_re_df, 'entr_2_1_p', number=-5) final_re_df['pca_en_le'] = ut.value_classify(final_re_df, pca_index, number=-5) return final_re_df def entro_add(shp_dir,*args): df = ut.read_file(shp_dir) df['aggre_en']=0 for each in args: assert isinstance(each, str) df['aggre_en']+=df[each] df['agg_en_per'] = df['aggre_en']/df['aggre_en'].sum() df['e_0_pe_le'] = ut.value_classify(df, 'entr_0_per', number=-5) df['e_1_pe_le'] = ut.value_classify(df, 'entr_1_per', number=-5) df['e_2_pe_le'] = ut.value_classify(df, 'entr_2_1_p', number=-5) df['agg_en_le'] = ut.value_classify(df, 'agg_en_per', number=-5) return df if __name__ == '__main__': # df = sklearn_pca_cal(3,ut.read_file(r'D:\multicities\data\深圳分区\sz_10_acc_entro.shp'),True, # 'entr_0_per','entr_1_per','entr_2_1_p') df = entro_add(r'D:\multicities\data\深圳分区\sz_10_acc_entro.shp', 'entr_0','entr_1','entr_2_1') ut.to_file(df,r'D:\multicities\data\深圳分区\sz_10_acc_entro_aggre.shp')
[ "import numpy as np\nimport pandas as pd\nimport geopandas as gpd\nfrom sklearn.decomposition import PCA\nfrom sklearn import preprocessing as pp\nfrom accessibility_analyzing import utlis as ut\nfrom accessibility_analyzing.accessibility_calculator import accessibility_calculator\n\n\"\"\"\n此模块下的代码没有使用\n\"\"\"\n\ndef generate_access_index(dir_name=r'D:\\multicities\\data\\深圳分区\\可达性结算结果'):\n '''\n 存放可达性计算结果的文件夹\n 该文件夹下暂时只放置两个文件\n\n '''\n for each in ut.iter_shpfile(dir_name,['.shp']):\n t = gpd.read_file(r'{}'.format(each))\n yield t['access_ind']\n\ndef write_accind_2_file(file_dir):\n '''\n 将可达性计算结果写入 file_dir 下的指定文件\n 返回geo pandas 格式文件\n '''\n i = 1\n t = gpd.read_file(file_dir)\n for each in generate_access_index():\n name = 'access_ind_{}'.format(i)\n t[name] = each\n i+=1\n return t\n\ndef sklearn_pca_cal( n_component=3,\n cal_df=None,\n is_z_stand=False,\n *args):\n '''\n 使用PCA 前必须对数据进行标准化\n pca.fit_transform(X)# 返回降维后的数据\n pca.components_ #返回因子载荷,横向查看相应载荷,实际为协方差矩阵特征值对应的特征向量\n pca.explained_variance_ratio_ #返回方差贡献率\n pca.explained_variance_ #返回特征值\n\n 注意: X*pca.components_ 结果等于 pca.fit_transform(X) 的输出结果\n\n cal_df: 进行pca计算的数据框\n is_z_stand: 这个参数不是简单的是否对输出结果进行z标准化,如果这个这个参数是False 此时计算的是直接对机会项进行PCA\n 计算赋权(对原始非标准化结果直接赋权),加和,百分化输出。 选择为True时 是对标准化后的可达性计算PCA, 赋权,加和,输出标准化后的\n 原始三种可达性值 与 最终可达性值(赋权加和后结果)。\n '''\n column_name_list = []\n output_column_name_list = []\n\n for each in args:\n assert isinstance(each, str)\n column_name_list.append(each)\n output_column_name_list.append(each+'_sta')\n assert n_component <= len(column_name_list)\n\n acc_file = cal_df\n # X = acc_file[['access_ind','access_ind_1','access_ind_2']]#取出dataframe的三列\n X = acc_file[column_name_list]\n X = np.array(X)\n\n\n if is_z_stand==False:\n pca = PCA(n_components=n_component)\n NEWX = pca.fit_transform(X) # 返回降维后的数据\n variance_ratio = pca.explained_variance_ratio_\n t = NEWX*variance_ratio\n t = t.sum(axis=1)\n t = t/t.sum(axis=0)# 计算百分值\n t = t.reshape(len(t), 1)\n results = np.concatenate((X,t),axis=1)# 最后结果,前三列为降维后的数据,最后一列为 加权相加的结果\n pca_index = 'pca_en_per'\n output_column_name_list.append(pca_index)\n results_df = pd.DataFrame(data=results, columns=output_column_name_list)\n else:\n scaler = pp.StandardScaler()\n X_scaler = scaler.fit_transform(X) #对数据进行标准化\n pca = PCA(n_components=n_component)\n NEWX = pca.fit_transform(X_scaler) # 返回降维后的数据\n variance_ratio = pca.explained_variance_ratio_\n t = NEWX*variance_ratio #直接进行广播相乘\n t = t.sum(axis=1)\n t = t.reshape(len(t), 1)\n results = np.concatenate((X,t),axis=1)# 最后结果,前三列为降维后的数据,最后一列为 加权相加的结果\n # results_df = pd.DataFrame(data=results,columns=['acc_ind_sta','acc_ind_sta_1','acc_ind_sta_2','acc_ind_pca'])\n pca_index = 'pca_in_per'\n output_column_name_list.append(pca_index)\n results_df = pd.DataFrame(data=results,columns=output_column_name_list)\n\n del results_df[output_column_name_list[0]]\n del results_df[output_column_name_list[1]]\n del results_df[output_column_name_list[2]]\n final_re_df = pd.concat([acc_file, results_df], axis=1)\n final_re_df['e_0_pe_le'] = ut.value_classify(final_re_df, 'entr_0_per', number=-5)\n final_re_df['e_1_pe_le'] = ut.value_classify(final_re_df, 'entr_1_per', number=-5)\n final_re_df['e_2_pe_le'] = ut.value_classify(final_re_df, 'entr_2_1_p', number=-5)\n final_re_df['pca_en_le'] = ut.value_classify(final_re_df, pca_index, number=-5)\n\n return final_re_df\n\ndef entro_add(shp_dir,*args):\n\n df = ut.read_file(shp_dir)\n df['aggre_en']=0\n for each in args:\n assert isinstance(each, str)\n df['aggre_en']+=df[each]\n df['agg_en_per'] = df['aggre_en']/df['aggre_en'].sum()\n df['e_0_pe_le'] = ut.value_classify(df, 'entr_0_per', number=-5)\n df['e_1_pe_le'] = ut.value_classify(df, 'entr_1_per', number=-5)\n df['e_2_pe_le'] = ut.value_classify(df, 'entr_2_1_p', number=-5)\n df['agg_en_le'] = ut.value_classify(df, 'agg_en_per', number=-5)\n\n return df\nif __name__ == '__main__':\n\n # df = sklearn_pca_cal(3,ut.read_file(r'D:\\multicities\\data\\深圳分区\\sz_10_acc_entro.shp'),True,\n # 'entr_0_per','entr_1_per','entr_2_1_p')\n df = entro_add(r'D:\\multicities\\data\\深圳分区\\sz_10_acc_entro.shp',\n 'entr_0','entr_1','entr_2_1')\n ut.to_file(df,r'D:\\multicities\\data\\深圳分区\\sz_10_acc_entro_aggre.shp')\n\n\n", "import numpy as np\nimport pandas as pd\nimport geopandas as gpd\nfrom sklearn.decomposition import PCA\nfrom sklearn import preprocessing as pp\nfrom accessibility_analyzing import utlis as ut\nfrom accessibility_analyzing.accessibility_calculator import accessibility_calculator\n<docstring token>\n\n\ndef generate_access_index(dir_name='D:\\\\multicities\\\\data\\\\深圳分区\\\\可达性结算结果'):\n \"\"\"\n 存放可达性计算结果的文件夹\n 该文件夹下暂时只放置两个文件\n\n \"\"\"\n for each in ut.iter_shpfile(dir_name, ['.shp']):\n t = gpd.read_file('{}'.format(each))\n yield t['access_ind']\n\n\ndef write_accind_2_file(file_dir):\n \"\"\"\n 将可达性计算结果写入 file_dir 下的指定文件\n 返回geo pandas 格式文件\n \"\"\"\n i = 1\n t = gpd.read_file(file_dir)\n for each in generate_access_index():\n name = 'access_ind_{}'.format(i)\n t[name] = each\n i += 1\n return t\n\n\ndef sklearn_pca_cal(n_component=3, cal_df=None, is_z_stand=False, *args):\n \"\"\"\n 使用PCA 前必须对数据进行标准化\n pca.fit_transform(X)# 返回降维后的数据\n pca.components_ #返回因子载荷,横向查看相应载荷,实际为协方差矩阵特征值对应的特征向量\n pca.explained_variance_ratio_ #返回方差贡献率\n pca.explained_variance_ #返回特征值\n\n 注意: X*pca.components_ 结果等于 pca.fit_transform(X) 的输出结果\n\n cal_df: 进行pca计算的数据框\n is_z_stand: 这个参数不是简单的是否对输出结果进行z标准化,如果这个这个参数是False 此时计算的是直接对机会项进行PCA\n 计算赋权(对原始非标准化结果直接赋权),加和,百分化输出。 选择为True时 是对标准化后的可达性计算PCA, 赋权,加和,输出标准化后的\n 原始三种可达性值 与 最终可达性值(赋权加和后结果)。\n \"\"\"\n column_name_list = []\n output_column_name_list = []\n for each in args:\n assert isinstance(each, str)\n column_name_list.append(each)\n output_column_name_list.append(each + '_sta')\n assert n_component <= len(column_name_list)\n acc_file = cal_df\n X = acc_file[column_name_list]\n X = np.array(X)\n if is_z_stand == False:\n pca = PCA(n_components=n_component)\n NEWX = pca.fit_transform(X)\n variance_ratio = pca.explained_variance_ratio_\n t = NEWX * variance_ratio\n t = t.sum(axis=1)\n t = t / t.sum(axis=0)\n t = t.reshape(len(t), 1)\n results = np.concatenate((X, t), axis=1)\n pca_index = 'pca_en_per'\n output_column_name_list.append(pca_index)\n results_df = pd.DataFrame(data=results, columns=output_column_name_list\n )\n else:\n scaler = pp.StandardScaler()\n X_scaler = scaler.fit_transform(X)\n pca = PCA(n_components=n_component)\n NEWX = pca.fit_transform(X_scaler)\n variance_ratio = pca.explained_variance_ratio_\n t = NEWX * variance_ratio\n t = t.sum(axis=1)\n t = t.reshape(len(t), 1)\n results = np.concatenate((X, t), axis=1)\n pca_index = 'pca_in_per'\n output_column_name_list.append(pca_index)\n results_df = pd.DataFrame(data=results, columns=output_column_name_list\n )\n del results_df[output_column_name_list[0]]\n del results_df[output_column_name_list[1]]\n del results_df[output_column_name_list[2]]\n final_re_df = pd.concat([acc_file, results_df], axis=1)\n final_re_df['e_0_pe_le'] = ut.value_classify(final_re_df, 'entr_0_per',\n number=-5)\n final_re_df['e_1_pe_le'] = ut.value_classify(final_re_df, 'entr_1_per',\n number=-5)\n final_re_df['e_2_pe_le'] = ut.value_classify(final_re_df, 'entr_2_1_p',\n number=-5)\n final_re_df['pca_en_le'] = ut.value_classify(final_re_df, pca_index,\n number=-5)\n return final_re_df\n\n\ndef entro_add(shp_dir, *args):\n df = ut.read_file(shp_dir)\n df['aggre_en'] = 0\n for each in args:\n assert isinstance(each, str)\n df['aggre_en'] += df[each]\n df['agg_en_per'] = df['aggre_en'] / df['aggre_en'].sum()\n df['e_0_pe_le'] = ut.value_classify(df, 'entr_0_per', number=-5)\n df['e_1_pe_le'] = ut.value_classify(df, 'entr_1_per', number=-5)\n df['e_2_pe_le'] = ut.value_classify(df, 'entr_2_1_p', number=-5)\n df['agg_en_le'] = ut.value_classify(df, 'agg_en_per', number=-5)\n return df\n\n\nif __name__ == '__main__':\n df = entro_add('D:\\\\multicities\\\\data\\\\深圳分区\\\\sz_10_acc_entro.shp',\n 'entr_0', 'entr_1', 'entr_2_1')\n ut.to_file(df, 'D:\\\\multicities\\\\data\\\\深圳分区\\\\sz_10_acc_entro_aggre.shp')\n", "<import token>\n<docstring token>\n\n\ndef generate_access_index(dir_name='D:\\\\multicities\\\\data\\\\深圳分区\\\\可达性结算结果'):\n \"\"\"\n 存放可达性计算结果的文件夹\n 该文件夹下暂时只放置两个文件\n\n \"\"\"\n for each in ut.iter_shpfile(dir_name, ['.shp']):\n t = gpd.read_file('{}'.format(each))\n yield t['access_ind']\n\n\ndef write_accind_2_file(file_dir):\n \"\"\"\n 将可达性计算结果写入 file_dir 下的指定文件\n 返回geo pandas 格式文件\n \"\"\"\n i = 1\n t = gpd.read_file(file_dir)\n for each in generate_access_index():\n name = 'access_ind_{}'.format(i)\n t[name] = each\n i += 1\n return t\n\n\ndef sklearn_pca_cal(n_component=3, cal_df=None, is_z_stand=False, *args):\n \"\"\"\n 使用PCA 前必须对数据进行标准化\n pca.fit_transform(X)# 返回降维后的数据\n pca.components_ #返回因子载荷,横向查看相应载荷,实际为协方差矩阵特征值对应的特征向量\n pca.explained_variance_ratio_ #返回方差贡献率\n pca.explained_variance_ #返回特征值\n\n 注意: X*pca.components_ 结果等于 pca.fit_transform(X) 的输出结果\n\n cal_df: 进行pca计算的数据框\n is_z_stand: 这个参数不是简单的是否对输出结果进行z标准化,如果这个这个参数是False 此时计算的是直接对机会项进行PCA\n 计算赋权(对原始非标准化结果直接赋权),加和,百分化输出。 选择为True时 是对标准化后的可达性计算PCA, 赋权,加和,输出标准化后的\n 原始三种可达性值 与 最终可达性值(赋权加和后结果)。\n \"\"\"\n column_name_list = []\n output_column_name_list = []\n for each in args:\n assert isinstance(each, str)\n column_name_list.append(each)\n output_column_name_list.append(each + '_sta')\n assert n_component <= len(column_name_list)\n acc_file = cal_df\n X = acc_file[column_name_list]\n X = np.array(X)\n if is_z_stand == False:\n pca = PCA(n_components=n_component)\n NEWX = pca.fit_transform(X)\n variance_ratio = pca.explained_variance_ratio_\n t = NEWX * variance_ratio\n t = t.sum(axis=1)\n t = t / t.sum(axis=0)\n t = t.reshape(len(t), 1)\n results = np.concatenate((X, t), axis=1)\n pca_index = 'pca_en_per'\n output_column_name_list.append(pca_index)\n results_df = pd.DataFrame(data=results, columns=output_column_name_list\n )\n else:\n scaler = pp.StandardScaler()\n X_scaler = scaler.fit_transform(X)\n pca = PCA(n_components=n_component)\n NEWX = pca.fit_transform(X_scaler)\n variance_ratio = pca.explained_variance_ratio_\n t = NEWX * variance_ratio\n t = t.sum(axis=1)\n t = t.reshape(len(t), 1)\n results = np.concatenate((X, t), axis=1)\n pca_index = 'pca_in_per'\n output_column_name_list.append(pca_index)\n results_df = pd.DataFrame(data=results, columns=output_column_name_list\n )\n del results_df[output_column_name_list[0]]\n del results_df[output_column_name_list[1]]\n del results_df[output_column_name_list[2]]\n final_re_df = pd.concat([acc_file, results_df], axis=1)\n final_re_df['e_0_pe_le'] = ut.value_classify(final_re_df, 'entr_0_per',\n number=-5)\n final_re_df['e_1_pe_le'] = ut.value_classify(final_re_df, 'entr_1_per',\n number=-5)\n final_re_df['e_2_pe_le'] = ut.value_classify(final_re_df, 'entr_2_1_p',\n number=-5)\n final_re_df['pca_en_le'] = ut.value_classify(final_re_df, pca_index,\n number=-5)\n return final_re_df\n\n\ndef entro_add(shp_dir, *args):\n df = ut.read_file(shp_dir)\n df['aggre_en'] = 0\n for each in args:\n assert isinstance(each, str)\n df['aggre_en'] += df[each]\n df['agg_en_per'] = df['aggre_en'] / df['aggre_en'].sum()\n df['e_0_pe_le'] = ut.value_classify(df, 'entr_0_per', number=-5)\n df['e_1_pe_le'] = ut.value_classify(df, 'entr_1_per', number=-5)\n df['e_2_pe_le'] = ut.value_classify(df, 'entr_2_1_p', number=-5)\n df['agg_en_le'] = ut.value_classify(df, 'agg_en_per', number=-5)\n return df\n\n\nif __name__ == '__main__':\n df = entro_add('D:\\\\multicities\\\\data\\\\深圳分区\\\\sz_10_acc_entro.shp',\n 'entr_0', 'entr_1', 'entr_2_1')\n ut.to_file(df, 'D:\\\\multicities\\\\data\\\\深圳分区\\\\sz_10_acc_entro_aggre.shp')\n", "<import token>\n<docstring token>\n\n\ndef generate_access_index(dir_name='D:\\\\multicities\\\\data\\\\深圳分区\\\\可达性结算结果'):\n \"\"\"\n 存放可达性计算结果的文件夹\n 该文件夹下暂时只放置两个文件\n\n \"\"\"\n for each in ut.iter_shpfile(dir_name, ['.shp']):\n t = gpd.read_file('{}'.format(each))\n yield t['access_ind']\n\n\ndef write_accind_2_file(file_dir):\n \"\"\"\n 将可达性计算结果写入 file_dir 下的指定文件\n 返回geo pandas 格式文件\n \"\"\"\n i = 1\n t = gpd.read_file(file_dir)\n for each in generate_access_index():\n name = 'access_ind_{}'.format(i)\n t[name] = each\n i += 1\n return t\n\n\ndef sklearn_pca_cal(n_component=3, cal_df=None, is_z_stand=False, *args):\n \"\"\"\n 使用PCA 前必须对数据进行标准化\n pca.fit_transform(X)# 返回降维后的数据\n pca.components_ #返回因子载荷,横向查看相应载荷,实际为协方差矩阵特征值对应的特征向量\n pca.explained_variance_ratio_ #返回方差贡献率\n pca.explained_variance_ #返回特征值\n\n 注意: X*pca.components_ 结果等于 pca.fit_transform(X) 的输出结果\n\n cal_df: 进行pca计算的数据框\n is_z_stand: 这个参数不是简单的是否对输出结果进行z标准化,如果这个这个参数是False 此时计算的是直接对机会项进行PCA\n 计算赋权(对原始非标准化结果直接赋权),加和,百分化输出。 选择为True时 是对标准化后的可达性计算PCA, 赋权,加和,输出标准化后的\n 原始三种可达性值 与 最终可达性值(赋权加和后结果)。\n \"\"\"\n column_name_list = []\n output_column_name_list = []\n for each in args:\n assert isinstance(each, str)\n column_name_list.append(each)\n output_column_name_list.append(each + '_sta')\n assert n_component <= len(column_name_list)\n acc_file = cal_df\n X = acc_file[column_name_list]\n X = np.array(X)\n if is_z_stand == False:\n pca = PCA(n_components=n_component)\n NEWX = pca.fit_transform(X)\n variance_ratio = pca.explained_variance_ratio_\n t = NEWX * variance_ratio\n t = t.sum(axis=1)\n t = t / t.sum(axis=0)\n t = t.reshape(len(t), 1)\n results = np.concatenate((X, t), axis=1)\n pca_index = 'pca_en_per'\n output_column_name_list.append(pca_index)\n results_df = pd.DataFrame(data=results, columns=output_column_name_list\n )\n else:\n scaler = pp.StandardScaler()\n X_scaler = scaler.fit_transform(X)\n pca = PCA(n_components=n_component)\n NEWX = pca.fit_transform(X_scaler)\n variance_ratio = pca.explained_variance_ratio_\n t = NEWX * variance_ratio\n t = t.sum(axis=1)\n t = t.reshape(len(t), 1)\n results = np.concatenate((X, t), axis=1)\n pca_index = 'pca_in_per'\n output_column_name_list.append(pca_index)\n results_df = pd.DataFrame(data=results, columns=output_column_name_list\n )\n del results_df[output_column_name_list[0]]\n del results_df[output_column_name_list[1]]\n del results_df[output_column_name_list[2]]\n final_re_df = pd.concat([acc_file, results_df], axis=1)\n final_re_df['e_0_pe_le'] = ut.value_classify(final_re_df, 'entr_0_per',\n number=-5)\n final_re_df['e_1_pe_le'] = ut.value_classify(final_re_df, 'entr_1_per',\n number=-5)\n final_re_df['e_2_pe_le'] = ut.value_classify(final_re_df, 'entr_2_1_p',\n number=-5)\n final_re_df['pca_en_le'] = ut.value_classify(final_re_df, pca_index,\n number=-5)\n return final_re_df\n\n\ndef entro_add(shp_dir, *args):\n df = ut.read_file(shp_dir)\n df['aggre_en'] = 0\n for each in args:\n assert isinstance(each, str)\n df['aggre_en'] += df[each]\n df['agg_en_per'] = df['aggre_en'] / df['aggre_en'].sum()\n df['e_0_pe_le'] = ut.value_classify(df, 'entr_0_per', number=-5)\n df['e_1_pe_le'] = ut.value_classify(df, 'entr_1_per', number=-5)\n df['e_2_pe_le'] = ut.value_classify(df, 'entr_2_1_p', number=-5)\n df['agg_en_le'] = ut.value_classify(df, 'agg_en_per', number=-5)\n return df\n\n\n<code token>\n", "<import token>\n<docstring token>\n\n\ndef generate_access_index(dir_name='D:\\\\multicities\\\\data\\\\深圳分区\\\\可达性结算结果'):\n \"\"\"\n 存放可达性计算结果的文件夹\n 该文件夹下暂时只放置两个文件\n\n \"\"\"\n for each in ut.iter_shpfile(dir_name, ['.shp']):\n t = gpd.read_file('{}'.format(each))\n yield t['access_ind']\n\n\ndef write_accind_2_file(file_dir):\n \"\"\"\n 将可达性计算结果写入 file_dir 下的指定文件\n 返回geo pandas 格式文件\n \"\"\"\n i = 1\n t = gpd.read_file(file_dir)\n for each in generate_access_index():\n name = 'access_ind_{}'.format(i)\n t[name] = each\n i += 1\n return t\n\n\n<function token>\n\n\ndef entro_add(shp_dir, *args):\n df = ut.read_file(shp_dir)\n df['aggre_en'] = 0\n for each in args:\n assert isinstance(each, str)\n df['aggre_en'] += df[each]\n df['agg_en_per'] = df['aggre_en'] / df['aggre_en'].sum()\n df['e_0_pe_le'] = ut.value_classify(df, 'entr_0_per', number=-5)\n df['e_1_pe_le'] = ut.value_classify(df, 'entr_1_per', number=-5)\n df['e_2_pe_le'] = ut.value_classify(df, 'entr_2_1_p', number=-5)\n df['agg_en_le'] = ut.value_classify(df, 'agg_en_per', number=-5)\n return df\n\n\n<code token>\n", "<import token>\n<docstring token>\n\n\ndef generate_access_index(dir_name='D:\\\\multicities\\\\data\\\\深圳分区\\\\可达性结算结果'):\n \"\"\"\n 存放可达性计算结果的文件夹\n 该文件夹下暂时只放置两个文件\n\n \"\"\"\n for each in ut.iter_shpfile(dir_name, ['.shp']):\n t = gpd.read_file('{}'.format(each))\n yield t['access_ind']\n\n\ndef write_accind_2_file(file_dir):\n \"\"\"\n 将可达性计算结果写入 file_dir 下的指定文件\n 返回geo pandas 格式文件\n \"\"\"\n i = 1\n t = gpd.read_file(file_dir)\n for each in generate_access_index():\n name = 'access_ind_{}'.format(i)\n t[name] = each\n i += 1\n return t\n\n\n<function token>\n<function token>\n<code token>\n", "<import token>\n<docstring token>\n\n\ndef generate_access_index(dir_name='D:\\\\multicities\\\\data\\\\深圳分区\\\\可达性结算结果'):\n \"\"\"\n 存放可达性计算结果的文件夹\n 该文件夹下暂时只放置两个文件\n\n \"\"\"\n for each in ut.iter_shpfile(dir_name, ['.shp']):\n t = gpd.read_file('{}'.format(each))\n yield t['access_ind']\n\n\n<function token>\n<function token>\n<function token>\n<code token>\n", "<import token>\n<docstring token>\n<function token>\n<function token>\n<function token>\n<function token>\n<code token>\n" ]
false
98,865
1ac1105abd0927322a6c7d8224f0948be45674ad
import chainer from chainer import functions as F import chainer.links as L import sys import os from chainer_chemistry.models import GGNN from chainer_chemistry.models import NFP from chainer_chemistry.models import SchNet from chainer_chemistry.models import WeaveNet sys.path.append(os.path.dirname(__file__)) from models.nfp_drop import NFPDrop from models.ggnn_drop import GGNNDrop class MLPDrop(chainer.Chain): """Basic implementation for MLP with dropout""" # def __init__(self, hidden_dim, out_dim, n_layers=2, activation=F.relu): def __init__(self, out_dim, hidden_dim, n_layers=1, activation=F.relu, dropout_ratio=0.25): super(MLPDrop, self).__init__() if n_layers <= 0: raise ValueError('n_layers must be positive integer, but set {}' .format(n_layers)) layers = [L.Linear(None, hidden_dim) for i in range(n_layers - 1)] with self.init_scope(): self.layers = chainer.ChainList(*layers) self.l_out = L.Linear(None, out_dim) self.activation = activation self.dropout_ratio = dropout_ratio def __call__(self, x): h = F.dropout(x, ratio=self.dropout_ratio) for l in self.layers: h = F.dropout(self.activation(l(h)), ratio=self.dropout_ratio) h = self.l_out(h) return h def build_predictor(method, n_unit, conv_layers, class_num, dropout_ratio=0.25, n_layers=1): print('dropout_ratio, n_layers', dropout_ratio, n_layers) mlp_class = MLPDrop if method == 'nfp': print('Use NFP predictor...') predictor = GraphConvPredictor( NFP(out_dim=n_unit, hidden_dim=n_unit, n_layers=conv_layers), mlp_class(out_dim=class_num, hidden_dim=n_unit, dropout_ratio=dropout_ratio, n_layers=n_layers)) elif method == 'nfpdrop': print('Use NFPDrop predictor...') predictor = GraphConvPredictor( NFPDrop(out_dim=n_unit, hidden_dim=n_unit, n_layers=conv_layers, dropout_ratio=dropout_ratio), mlp_class(out_dim=class_num, hidden_dim=n_unit, dropout_ratio=dropout_ratio, n_layers=n_layers)) elif method == 'ggnn': print('Use GGNN predictor...') predictor = GraphConvPredictor( GGNN(out_dim=n_unit, hidden_dim=n_unit, n_layers=conv_layers), mlp_class(out_dim=class_num, hidden_dim=n_unit, dropout_ratio=dropout_ratio, n_layers=n_layers)) elif method == 'ggnndrop': print('Use GGNNDrop predictor...') predictor = GraphConvPredictor( GGNNDrop(out_dim=n_unit, hidden_dim=n_unit, n_layers=conv_layers, dropout_ratio=dropout_ratio), mlp_class(out_dim=class_num, hidden_dim=n_unit, dropout_ratio=dropout_ratio, n_layers=n_layers)) elif method == 'schnet': print('Use SchNet predictor...') predictor = SchNet(out_dim=class_num, hidden_dim=n_unit, n_layers=conv_layers, readout_hidden_dim=n_unit) elif method == 'weavenet': print('Use WeaveNet predictor...') n_atom = 20 n_sub_layer = 1 weave_channels = [50] * conv_layers predictor = GraphConvPredictor( WeaveNet(weave_channels=weave_channels, hidden_dim=n_unit, n_sub_layer=n_sub_layer, n_atom=n_atom), mlp_class(out_dim=class_num, hidden_dim=n_unit, dropout_ratio=dropout_ratio, n_layers=n_layers)) else: raise ValueError('[ERROR] Invalid predictor: method={}'.format(method)) return predictor class GraphConvPredictor(chainer.Chain): """Wrapper class that combines a graph convolution and MLP.""" def __init__(self, graph_conv, mlp): """Constructor Args: graph_conv: graph convolution network to obtain molecule feature representation mlp: multi layer perceptron, used as final connected layer """ super(GraphConvPredictor, self).__init__() with self.init_scope(): self.graph_conv = graph_conv self.mlp = mlp def __call__(self, atoms, adjs): x = self.graph_conv(atoms, adjs) x = self.mlp(x) return x def predict(self, atoms, adjs): with chainer.no_backprop_mode(), chainer.using_config('train', False): x = self.__call__(atoms, adjs) return F.sigmoid(x)
[ "import chainer\nfrom chainer import functions as F\nimport chainer.links as L\nimport sys\nimport os\n\nfrom chainer_chemistry.models import GGNN\nfrom chainer_chemistry.models import NFP\nfrom chainer_chemistry.models import SchNet\nfrom chainer_chemistry.models import WeaveNet\n\nsys.path.append(os.path.dirname(__file__))\nfrom models.nfp_drop import NFPDrop\nfrom models.ggnn_drop import GGNNDrop\n\n\nclass MLPDrop(chainer.Chain):\n \"\"\"Basic implementation for MLP with dropout\"\"\"\n # def __init__(self, hidden_dim, out_dim, n_layers=2, activation=F.relu):\n def __init__(self, out_dim, hidden_dim, n_layers=1, activation=F.relu,\n dropout_ratio=0.25):\n super(MLPDrop, self).__init__()\n if n_layers <= 0:\n raise ValueError('n_layers must be positive integer, but set {}'\n .format(n_layers))\n layers = [L.Linear(None, hidden_dim) for i in range(n_layers - 1)]\n with self.init_scope():\n self.layers = chainer.ChainList(*layers)\n self.l_out = L.Linear(None, out_dim)\n self.activation = activation\n self.dropout_ratio = dropout_ratio\n\n def __call__(self, x):\n h = F.dropout(x, ratio=self.dropout_ratio)\n for l in self.layers:\n h = F.dropout(self.activation(l(h)), ratio=self.dropout_ratio)\n h = self.l_out(h)\n return h\n\n\ndef build_predictor(method, n_unit, conv_layers, class_num,\n dropout_ratio=0.25, n_layers=1):\n print('dropout_ratio, n_layers', dropout_ratio, n_layers)\n mlp_class = MLPDrop\n if method == 'nfp':\n print('Use NFP predictor...')\n predictor = GraphConvPredictor(\n NFP(out_dim=n_unit, hidden_dim=n_unit, n_layers=conv_layers),\n mlp_class(out_dim=class_num, hidden_dim=n_unit, dropout_ratio=dropout_ratio,\n n_layers=n_layers))\n elif method == 'nfpdrop':\n print('Use NFPDrop predictor...')\n predictor = GraphConvPredictor(\n NFPDrop(out_dim=n_unit, hidden_dim=n_unit, n_layers=conv_layers,\n dropout_ratio=dropout_ratio),\n mlp_class(out_dim=class_num, hidden_dim=n_unit,\n dropout_ratio=dropout_ratio,\n n_layers=n_layers))\n elif method == 'ggnn':\n print('Use GGNN predictor...')\n predictor = GraphConvPredictor(\n GGNN(out_dim=n_unit, hidden_dim=n_unit, n_layers=conv_layers),\n mlp_class(out_dim=class_num, hidden_dim=n_unit,\n dropout_ratio=dropout_ratio, n_layers=n_layers))\n elif method == 'ggnndrop':\n print('Use GGNNDrop predictor...')\n predictor = GraphConvPredictor(\n GGNNDrop(out_dim=n_unit, hidden_dim=n_unit, n_layers=conv_layers,\n dropout_ratio=dropout_ratio),\n mlp_class(out_dim=class_num, hidden_dim=n_unit,\n dropout_ratio=dropout_ratio, n_layers=n_layers))\n elif method == 'schnet':\n print('Use SchNet predictor...')\n predictor = SchNet(out_dim=class_num, hidden_dim=n_unit,\n n_layers=conv_layers, readout_hidden_dim=n_unit)\n elif method == 'weavenet':\n print('Use WeaveNet predictor...')\n n_atom = 20\n n_sub_layer = 1\n weave_channels = [50] * conv_layers\n predictor = GraphConvPredictor(\n WeaveNet(weave_channels=weave_channels, hidden_dim=n_unit,\n n_sub_layer=n_sub_layer, n_atom=n_atom),\n mlp_class(out_dim=class_num, hidden_dim=n_unit,\n dropout_ratio=dropout_ratio, n_layers=n_layers))\n else:\n raise ValueError('[ERROR] Invalid predictor: method={}'.format(method))\n return predictor\n\n\nclass GraphConvPredictor(chainer.Chain):\n \"\"\"Wrapper class that combines a graph convolution and MLP.\"\"\"\n\n def __init__(self, graph_conv, mlp):\n \"\"\"Constructor\n\n Args:\n graph_conv: graph convolution network to obtain molecule feature\n representation\n mlp: multi layer perceptron, used as final connected layer\n \"\"\"\n\n super(GraphConvPredictor, self).__init__()\n with self.init_scope():\n self.graph_conv = graph_conv\n self.mlp = mlp\n\n def __call__(self, atoms, adjs):\n x = self.graph_conv(atoms, adjs)\n x = self.mlp(x)\n return x\n\n def predict(self, atoms, adjs):\n with chainer.no_backprop_mode(), chainer.using_config('train', False):\n x = self.__call__(atoms, adjs)\n return F.sigmoid(x)\n", "import chainer\nfrom chainer import functions as F\nimport chainer.links as L\nimport sys\nimport os\nfrom chainer_chemistry.models import GGNN\nfrom chainer_chemistry.models import NFP\nfrom chainer_chemistry.models import SchNet\nfrom chainer_chemistry.models import WeaveNet\nsys.path.append(os.path.dirname(__file__))\nfrom models.nfp_drop import NFPDrop\nfrom models.ggnn_drop import GGNNDrop\n\n\nclass MLPDrop(chainer.Chain):\n \"\"\"Basic implementation for MLP with dropout\"\"\"\n\n def __init__(self, out_dim, hidden_dim, n_layers=1, activation=F.relu,\n dropout_ratio=0.25):\n super(MLPDrop, self).__init__()\n if n_layers <= 0:\n raise ValueError('n_layers must be positive integer, but set {}'\n .format(n_layers))\n layers = [L.Linear(None, hidden_dim) for i in range(n_layers - 1)]\n with self.init_scope():\n self.layers = chainer.ChainList(*layers)\n self.l_out = L.Linear(None, out_dim)\n self.activation = activation\n self.dropout_ratio = dropout_ratio\n\n def __call__(self, x):\n h = F.dropout(x, ratio=self.dropout_ratio)\n for l in self.layers:\n h = F.dropout(self.activation(l(h)), ratio=self.dropout_ratio)\n h = self.l_out(h)\n return h\n\n\ndef build_predictor(method, n_unit, conv_layers, class_num, dropout_ratio=\n 0.25, n_layers=1):\n print('dropout_ratio, n_layers', dropout_ratio, n_layers)\n mlp_class = MLPDrop\n if method == 'nfp':\n print('Use NFP predictor...')\n predictor = GraphConvPredictor(NFP(out_dim=n_unit, hidden_dim=\n n_unit, n_layers=conv_layers), mlp_class(out_dim=class_num,\n hidden_dim=n_unit, dropout_ratio=dropout_ratio, n_layers=n_layers))\n elif method == 'nfpdrop':\n print('Use NFPDrop predictor...')\n predictor = GraphConvPredictor(NFPDrop(out_dim=n_unit, hidden_dim=\n n_unit, n_layers=conv_layers, dropout_ratio=dropout_ratio),\n mlp_class(out_dim=class_num, hidden_dim=n_unit, dropout_ratio=\n dropout_ratio, n_layers=n_layers))\n elif method == 'ggnn':\n print('Use GGNN predictor...')\n predictor = GraphConvPredictor(GGNN(out_dim=n_unit, hidden_dim=\n n_unit, n_layers=conv_layers), mlp_class(out_dim=class_num,\n hidden_dim=n_unit, dropout_ratio=dropout_ratio, n_layers=n_layers))\n elif method == 'ggnndrop':\n print('Use GGNNDrop predictor...')\n predictor = GraphConvPredictor(GGNNDrop(out_dim=n_unit, hidden_dim=\n n_unit, n_layers=conv_layers, dropout_ratio=dropout_ratio),\n mlp_class(out_dim=class_num, hidden_dim=n_unit, dropout_ratio=\n dropout_ratio, n_layers=n_layers))\n elif method == 'schnet':\n print('Use SchNet predictor...')\n predictor = SchNet(out_dim=class_num, hidden_dim=n_unit, n_layers=\n conv_layers, readout_hidden_dim=n_unit)\n elif method == 'weavenet':\n print('Use WeaveNet predictor...')\n n_atom = 20\n n_sub_layer = 1\n weave_channels = [50] * conv_layers\n predictor = GraphConvPredictor(WeaveNet(weave_channels=\n weave_channels, hidden_dim=n_unit, n_sub_layer=n_sub_layer,\n n_atom=n_atom), mlp_class(out_dim=class_num, hidden_dim=n_unit,\n dropout_ratio=dropout_ratio, n_layers=n_layers))\n else:\n raise ValueError('[ERROR] Invalid predictor: method={}'.format(method))\n return predictor\n\n\nclass GraphConvPredictor(chainer.Chain):\n \"\"\"Wrapper class that combines a graph convolution and MLP.\"\"\"\n\n def __init__(self, graph_conv, mlp):\n \"\"\"Constructor\n\n Args:\n graph_conv: graph convolution network to obtain molecule feature\n representation\n mlp: multi layer perceptron, used as final connected layer\n \"\"\"\n super(GraphConvPredictor, self).__init__()\n with self.init_scope():\n self.graph_conv = graph_conv\n self.mlp = mlp\n\n def __call__(self, atoms, adjs):\n x = self.graph_conv(atoms, adjs)\n x = self.mlp(x)\n return x\n\n def predict(self, atoms, adjs):\n with chainer.no_backprop_mode(), chainer.using_config('train', False):\n x = self.__call__(atoms, adjs)\n return F.sigmoid(x)\n", "<import token>\nsys.path.append(os.path.dirname(__file__))\n<import token>\n\n\nclass MLPDrop(chainer.Chain):\n \"\"\"Basic implementation for MLP with dropout\"\"\"\n\n def __init__(self, out_dim, hidden_dim, n_layers=1, activation=F.relu,\n dropout_ratio=0.25):\n super(MLPDrop, self).__init__()\n if n_layers <= 0:\n raise ValueError('n_layers must be positive integer, but set {}'\n .format(n_layers))\n layers = [L.Linear(None, hidden_dim) for i in range(n_layers - 1)]\n with self.init_scope():\n self.layers = chainer.ChainList(*layers)\n self.l_out = L.Linear(None, out_dim)\n self.activation = activation\n self.dropout_ratio = dropout_ratio\n\n def __call__(self, x):\n h = F.dropout(x, ratio=self.dropout_ratio)\n for l in self.layers:\n h = F.dropout(self.activation(l(h)), ratio=self.dropout_ratio)\n h = self.l_out(h)\n return h\n\n\ndef build_predictor(method, n_unit, conv_layers, class_num, dropout_ratio=\n 0.25, n_layers=1):\n print('dropout_ratio, n_layers', dropout_ratio, n_layers)\n mlp_class = MLPDrop\n if method == 'nfp':\n print('Use NFP predictor...')\n predictor = GraphConvPredictor(NFP(out_dim=n_unit, hidden_dim=\n n_unit, n_layers=conv_layers), mlp_class(out_dim=class_num,\n hidden_dim=n_unit, dropout_ratio=dropout_ratio, n_layers=n_layers))\n elif method == 'nfpdrop':\n print('Use NFPDrop predictor...')\n predictor = GraphConvPredictor(NFPDrop(out_dim=n_unit, hidden_dim=\n n_unit, n_layers=conv_layers, dropout_ratio=dropout_ratio),\n mlp_class(out_dim=class_num, hidden_dim=n_unit, dropout_ratio=\n dropout_ratio, n_layers=n_layers))\n elif method == 'ggnn':\n print('Use GGNN predictor...')\n predictor = GraphConvPredictor(GGNN(out_dim=n_unit, hidden_dim=\n n_unit, n_layers=conv_layers), mlp_class(out_dim=class_num,\n hidden_dim=n_unit, dropout_ratio=dropout_ratio, n_layers=n_layers))\n elif method == 'ggnndrop':\n print('Use GGNNDrop predictor...')\n predictor = GraphConvPredictor(GGNNDrop(out_dim=n_unit, hidden_dim=\n n_unit, n_layers=conv_layers, dropout_ratio=dropout_ratio),\n mlp_class(out_dim=class_num, hidden_dim=n_unit, dropout_ratio=\n dropout_ratio, n_layers=n_layers))\n elif method == 'schnet':\n print('Use SchNet predictor...')\n predictor = SchNet(out_dim=class_num, hidden_dim=n_unit, n_layers=\n conv_layers, readout_hidden_dim=n_unit)\n elif method == 'weavenet':\n print('Use WeaveNet predictor...')\n n_atom = 20\n n_sub_layer = 1\n weave_channels = [50] * conv_layers\n predictor = GraphConvPredictor(WeaveNet(weave_channels=\n weave_channels, hidden_dim=n_unit, n_sub_layer=n_sub_layer,\n n_atom=n_atom), mlp_class(out_dim=class_num, hidden_dim=n_unit,\n dropout_ratio=dropout_ratio, n_layers=n_layers))\n else:\n raise ValueError('[ERROR] Invalid predictor: method={}'.format(method))\n return predictor\n\n\nclass GraphConvPredictor(chainer.Chain):\n \"\"\"Wrapper class that combines a graph convolution and MLP.\"\"\"\n\n def __init__(self, graph_conv, mlp):\n \"\"\"Constructor\n\n Args:\n graph_conv: graph convolution network to obtain molecule feature\n representation\n mlp: multi layer perceptron, used as final connected layer\n \"\"\"\n super(GraphConvPredictor, self).__init__()\n with self.init_scope():\n self.graph_conv = graph_conv\n self.mlp = mlp\n\n def __call__(self, atoms, adjs):\n x = self.graph_conv(atoms, adjs)\n x = self.mlp(x)\n return x\n\n def predict(self, atoms, adjs):\n with chainer.no_backprop_mode(), chainer.using_config('train', False):\n x = self.__call__(atoms, adjs)\n return F.sigmoid(x)\n", "<import token>\n<code token>\n<import token>\n\n\nclass MLPDrop(chainer.Chain):\n \"\"\"Basic implementation for MLP with dropout\"\"\"\n\n def __init__(self, out_dim, hidden_dim, n_layers=1, activation=F.relu,\n dropout_ratio=0.25):\n super(MLPDrop, self).__init__()\n if n_layers <= 0:\n raise ValueError('n_layers must be positive integer, but set {}'\n .format(n_layers))\n layers = [L.Linear(None, hidden_dim) for i in range(n_layers - 1)]\n with self.init_scope():\n self.layers = chainer.ChainList(*layers)\n self.l_out = L.Linear(None, out_dim)\n self.activation = activation\n self.dropout_ratio = dropout_ratio\n\n def __call__(self, x):\n h = F.dropout(x, ratio=self.dropout_ratio)\n for l in self.layers:\n h = F.dropout(self.activation(l(h)), ratio=self.dropout_ratio)\n h = self.l_out(h)\n return h\n\n\ndef build_predictor(method, n_unit, conv_layers, class_num, dropout_ratio=\n 0.25, n_layers=1):\n print('dropout_ratio, n_layers', dropout_ratio, n_layers)\n mlp_class = MLPDrop\n if method == 'nfp':\n print('Use NFP predictor...')\n predictor = GraphConvPredictor(NFP(out_dim=n_unit, hidden_dim=\n n_unit, n_layers=conv_layers), mlp_class(out_dim=class_num,\n hidden_dim=n_unit, dropout_ratio=dropout_ratio, n_layers=n_layers))\n elif method == 'nfpdrop':\n print('Use NFPDrop predictor...')\n predictor = GraphConvPredictor(NFPDrop(out_dim=n_unit, hidden_dim=\n n_unit, n_layers=conv_layers, dropout_ratio=dropout_ratio),\n mlp_class(out_dim=class_num, hidden_dim=n_unit, dropout_ratio=\n dropout_ratio, n_layers=n_layers))\n elif method == 'ggnn':\n print('Use GGNN predictor...')\n predictor = GraphConvPredictor(GGNN(out_dim=n_unit, hidden_dim=\n n_unit, n_layers=conv_layers), mlp_class(out_dim=class_num,\n hidden_dim=n_unit, dropout_ratio=dropout_ratio, n_layers=n_layers))\n elif method == 'ggnndrop':\n print('Use GGNNDrop predictor...')\n predictor = GraphConvPredictor(GGNNDrop(out_dim=n_unit, hidden_dim=\n n_unit, n_layers=conv_layers, dropout_ratio=dropout_ratio),\n mlp_class(out_dim=class_num, hidden_dim=n_unit, dropout_ratio=\n dropout_ratio, n_layers=n_layers))\n elif method == 'schnet':\n print('Use SchNet predictor...')\n predictor = SchNet(out_dim=class_num, hidden_dim=n_unit, n_layers=\n conv_layers, readout_hidden_dim=n_unit)\n elif method == 'weavenet':\n print('Use WeaveNet predictor...')\n n_atom = 20\n n_sub_layer = 1\n weave_channels = [50] * conv_layers\n predictor = GraphConvPredictor(WeaveNet(weave_channels=\n weave_channels, hidden_dim=n_unit, n_sub_layer=n_sub_layer,\n n_atom=n_atom), mlp_class(out_dim=class_num, hidden_dim=n_unit,\n dropout_ratio=dropout_ratio, n_layers=n_layers))\n else:\n raise ValueError('[ERROR] Invalid predictor: method={}'.format(method))\n return predictor\n\n\nclass GraphConvPredictor(chainer.Chain):\n \"\"\"Wrapper class that combines a graph convolution and MLP.\"\"\"\n\n def __init__(self, graph_conv, mlp):\n \"\"\"Constructor\n\n Args:\n graph_conv: graph convolution network to obtain molecule feature\n representation\n mlp: multi layer perceptron, used as final connected layer\n \"\"\"\n super(GraphConvPredictor, self).__init__()\n with self.init_scope():\n self.graph_conv = graph_conv\n self.mlp = mlp\n\n def __call__(self, atoms, adjs):\n x = self.graph_conv(atoms, adjs)\n x = self.mlp(x)\n return x\n\n def predict(self, atoms, adjs):\n with chainer.no_backprop_mode(), chainer.using_config('train', False):\n x = self.__call__(atoms, adjs)\n return F.sigmoid(x)\n", "<import token>\n<code token>\n<import token>\n\n\nclass MLPDrop(chainer.Chain):\n \"\"\"Basic implementation for MLP with dropout\"\"\"\n\n def __init__(self, out_dim, hidden_dim, n_layers=1, activation=F.relu,\n dropout_ratio=0.25):\n super(MLPDrop, self).__init__()\n if n_layers <= 0:\n raise ValueError('n_layers must be positive integer, but set {}'\n .format(n_layers))\n layers = [L.Linear(None, hidden_dim) for i in range(n_layers - 1)]\n with self.init_scope():\n self.layers = chainer.ChainList(*layers)\n self.l_out = L.Linear(None, out_dim)\n self.activation = activation\n self.dropout_ratio = dropout_ratio\n\n def __call__(self, x):\n h = F.dropout(x, ratio=self.dropout_ratio)\n for l in self.layers:\n h = F.dropout(self.activation(l(h)), ratio=self.dropout_ratio)\n h = self.l_out(h)\n return h\n\n\n<function token>\n\n\nclass GraphConvPredictor(chainer.Chain):\n \"\"\"Wrapper class that combines a graph convolution and MLP.\"\"\"\n\n def __init__(self, graph_conv, mlp):\n \"\"\"Constructor\n\n Args:\n graph_conv: graph convolution network to obtain molecule feature\n representation\n mlp: multi layer perceptron, used as final connected layer\n \"\"\"\n super(GraphConvPredictor, self).__init__()\n with self.init_scope():\n self.graph_conv = graph_conv\n self.mlp = mlp\n\n def __call__(self, atoms, adjs):\n x = self.graph_conv(atoms, adjs)\n x = self.mlp(x)\n return x\n\n def predict(self, atoms, adjs):\n with chainer.no_backprop_mode(), chainer.using_config('train', False):\n x = self.__call__(atoms, adjs)\n return F.sigmoid(x)\n", "<import token>\n<code token>\n<import token>\n\n\nclass MLPDrop(chainer.Chain):\n <docstring token>\n\n def __init__(self, out_dim, hidden_dim, n_layers=1, activation=F.relu,\n dropout_ratio=0.25):\n super(MLPDrop, self).__init__()\n if n_layers <= 0:\n raise ValueError('n_layers must be positive integer, but set {}'\n .format(n_layers))\n layers = [L.Linear(None, hidden_dim) for i in range(n_layers - 1)]\n with self.init_scope():\n self.layers = chainer.ChainList(*layers)\n self.l_out = L.Linear(None, out_dim)\n self.activation = activation\n self.dropout_ratio = dropout_ratio\n\n def __call__(self, x):\n h = F.dropout(x, ratio=self.dropout_ratio)\n for l in self.layers:\n h = F.dropout(self.activation(l(h)), ratio=self.dropout_ratio)\n h = self.l_out(h)\n return h\n\n\n<function token>\n\n\nclass GraphConvPredictor(chainer.Chain):\n \"\"\"Wrapper class that combines a graph convolution and MLP.\"\"\"\n\n def __init__(self, graph_conv, mlp):\n \"\"\"Constructor\n\n Args:\n graph_conv: graph convolution network to obtain molecule feature\n representation\n mlp: multi layer perceptron, used as final connected layer\n \"\"\"\n super(GraphConvPredictor, self).__init__()\n with self.init_scope():\n self.graph_conv = graph_conv\n self.mlp = mlp\n\n def __call__(self, atoms, adjs):\n x = self.graph_conv(atoms, adjs)\n x = self.mlp(x)\n return x\n\n def predict(self, atoms, adjs):\n with chainer.no_backprop_mode(), chainer.using_config('train', False):\n x = self.__call__(atoms, adjs)\n return F.sigmoid(x)\n", "<import token>\n<code token>\n<import token>\n\n\nclass MLPDrop(chainer.Chain):\n <docstring token>\n\n def __init__(self, out_dim, hidden_dim, n_layers=1, activation=F.relu,\n dropout_ratio=0.25):\n super(MLPDrop, self).__init__()\n if n_layers <= 0:\n raise ValueError('n_layers must be positive integer, but set {}'\n .format(n_layers))\n layers = [L.Linear(None, hidden_dim) for i in range(n_layers - 1)]\n with self.init_scope():\n self.layers = chainer.ChainList(*layers)\n self.l_out = L.Linear(None, out_dim)\n self.activation = activation\n self.dropout_ratio = dropout_ratio\n <function token>\n\n\n<function token>\n\n\nclass GraphConvPredictor(chainer.Chain):\n \"\"\"Wrapper class that combines a graph convolution and MLP.\"\"\"\n\n def __init__(self, graph_conv, mlp):\n \"\"\"Constructor\n\n Args:\n graph_conv: graph convolution network to obtain molecule feature\n representation\n mlp: multi layer perceptron, used as final connected layer\n \"\"\"\n super(GraphConvPredictor, self).__init__()\n with self.init_scope():\n self.graph_conv = graph_conv\n self.mlp = mlp\n\n def __call__(self, atoms, adjs):\n x = self.graph_conv(atoms, adjs)\n x = self.mlp(x)\n return x\n\n def predict(self, atoms, adjs):\n with chainer.no_backprop_mode(), chainer.using_config('train', False):\n x = self.__call__(atoms, adjs)\n return F.sigmoid(x)\n", "<import token>\n<code token>\n<import token>\n\n\nclass MLPDrop(chainer.Chain):\n <docstring token>\n <function token>\n <function token>\n\n\n<function token>\n\n\nclass GraphConvPredictor(chainer.Chain):\n \"\"\"Wrapper class that combines a graph convolution and MLP.\"\"\"\n\n def __init__(self, graph_conv, mlp):\n \"\"\"Constructor\n\n Args:\n graph_conv: graph convolution network to obtain molecule feature\n representation\n mlp: multi layer perceptron, used as final connected layer\n \"\"\"\n super(GraphConvPredictor, self).__init__()\n with self.init_scope():\n self.graph_conv = graph_conv\n self.mlp = mlp\n\n def __call__(self, atoms, adjs):\n x = self.graph_conv(atoms, adjs)\n x = self.mlp(x)\n return x\n\n def predict(self, atoms, adjs):\n with chainer.no_backprop_mode(), chainer.using_config('train', False):\n x = self.__call__(atoms, adjs)\n return F.sigmoid(x)\n", "<import token>\n<code token>\n<import token>\n<class token>\n<function token>\n\n\nclass GraphConvPredictor(chainer.Chain):\n \"\"\"Wrapper class that combines a graph convolution and MLP.\"\"\"\n\n def __init__(self, graph_conv, mlp):\n \"\"\"Constructor\n\n Args:\n graph_conv: graph convolution network to obtain molecule feature\n representation\n mlp: multi layer perceptron, used as final connected layer\n \"\"\"\n super(GraphConvPredictor, self).__init__()\n with self.init_scope():\n self.graph_conv = graph_conv\n self.mlp = mlp\n\n def __call__(self, atoms, adjs):\n x = self.graph_conv(atoms, adjs)\n x = self.mlp(x)\n return x\n\n def predict(self, atoms, adjs):\n with chainer.no_backprop_mode(), chainer.using_config('train', False):\n x = self.__call__(atoms, adjs)\n return F.sigmoid(x)\n", "<import token>\n<code token>\n<import token>\n<class token>\n<function token>\n\n\nclass GraphConvPredictor(chainer.Chain):\n <docstring token>\n\n def __init__(self, graph_conv, mlp):\n \"\"\"Constructor\n\n Args:\n graph_conv: graph convolution network to obtain molecule feature\n representation\n mlp: multi layer perceptron, used as final connected layer\n \"\"\"\n super(GraphConvPredictor, self).__init__()\n with self.init_scope():\n self.graph_conv = graph_conv\n self.mlp = mlp\n\n def __call__(self, atoms, adjs):\n x = self.graph_conv(atoms, adjs)\n x = self.mlp(x)\n return x\n\n def predict(self, atoms, adjs):\n with chainer.no_backprop_mode(), chainer.using_config('train', False):\n x = self.__call__(atoms, adjs)\n return F.sigmoid(x)\n", "<import token>\n<code token>\n<import token>\n<class token>\n<function token>\n\n\nclass GraphConvPredictor(chainer.Chain):\n <docstring token>\n\n def __init__(self, graph_conv, mlp):\n \"\"\"Constructor\n\n Args:\n graph_conv: graph convolution network to obtain molecule feature\n representation\n mlp: multi layer perceptron, used as final connected layer\n \"\"\"\n super(GraphConvPredictor, self).__init__()\n with self.init_scope():\n self.graph_conv = graph_conv\n self.mlp = mlp\n <function token>\n\n def predict(self, atoms, adjs):\n with chainer.no_backprop_mode(), chainer.using_config('train', False):\n x = self.__call__(atoms, adjs)\n return F.sigmoid(x)\n", "<import token>\n<code token>\n<import token>\n<class token>\n<function token>\n\n\nclass GraphConvPredictor(chainer.Chain):\n <docstring token>\n\n def __init__(self, graph_conv, mlp):\n \"\"\"Constructor\n\n Args:\n graph_conv: graph convolution network to obtain molecule feature\n representation\n mlp: multi layer perceptron, used as final connected layer\n \"\"\"\n super(GraphConvPredictor, self).__init__()\n with self.init_scope():\n self.graph_conv = graph_conv\n self.mlp = mlp\n <function token>\n <function token>\n", "<import token>\n<code token>\n<import token>\n<class token>\n<function token>\n\n\nclass GraphConvPredictor(chainer.Chain):\n <docstring token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n<code token>\n<import token>\n<class token>\n<function token>\n<class token>\n" ]
false
98,866
2478dca0e46ad00c9bfd8fb184149e3957b56c46
import math # імпортуємо модуль математики для подальшого використання x = float(input("Write x ")) #дозволяємо ввести змінні з клавіатури y = float(input("Write y ")) R = ((math.e) ** (2 * x) + (math.sin(y))) / (math.log1p(3.8 * x + y)) #записуэмо математичний вираз(не забуваючи про модуль) print("R=",R) #виводимо результат
[ "import math # імпортуємо модуль математики для подальшого використання\r\n\r\nx = float(input(\"Write x \")) #дозволяємо ввести змінні з клавіатури\r\ny = float(input(\"Write y \"))\r\nR = ((math.e) ** (2 * x) + (math.sin(y))) / (math.log1p(3.8 * x + y)) #записуэмо математичний вираз(не забуваючи про модуль)\r\nprint(\"R=\",R) #виводимо результат\r\n", "import math\nx = float(input('Write x '))\ny = float(input('Write y '))\nR = (math.e ** (2 * x) + math.sin(y)) / math.log1p(3.8 * x + y)\nprint('R=', R)\n", "<import token>\nx = float(input('Write x '))\ny = float(input('Write y '))\nR = (math.e ** (2 * x) + math.sin(y)) / math.log1p(3.8 * x + y)\nprint('R=', R)\n", "<import token>\n<assignment token>\nprint('R=', R)\n", "<import token>\n<assignment token>\n<code token>\n" ]
false
98,867
4a31ecc130214cfcb60e331e514812eaeccec1e6
import pickle import pandas as pd from pandas import DataFrame, Series import pymongo with open('./varweathertweets') as p1: tweets = pickle.load(p1) connection = pymongo.MongoClient("mongodb://localhost") db = connection.tweets mongtweets = db.tweets mongtweets.drop() for item in tweets: mongtweets.insert_one(item)
[ "import pickle\nimport pandas as pd\nfrom pandas import DataFrame, Series\nimport pymongo\n\nwith open('./varweathertweets') as p1:\n tweets = pickle.load(p1)\n\nconnection = pymongo.MongoClient(\"mongodb://localhost\")\ndb = connection.tweets\nmongtweets = db.tweets\nmongtweets.drop()\nfor item in tweets:\n mongtweets.insert_one(item)", "import pickle\nimport pandas as pd\nfrom pandas import DataFrame, Series\nimport pymongo\nwith open('./varweathertweets') as p1:\n tweets = pickle.load(p1)\nconnection = pymongo.MongoClient('mongodb://localhost')\ndb = connection.tweets\nmongtweets = db.tweets\nmongtweets.drop()\nfor item in tweets:\n mongtweets.insert_one(item)\n", "<import token>\nwith open('./varweathertweets') as p1:\n tweets = pickle.load(p1)\nconnection = pymongo.MongoClient('mongodb://localhost')\ndb = connection.tweets\nmongtweets = db.tweets\nmongtweets.drop()\nfor item in tweets:\n mongtweets.insert_one(item)\n", "<import token>\nwith open('./varweathertweets') as p1:\n tweets = pickle.load(p1)\n<assignment token>\nmongtweets.drop()\nfor item in tweets:\n mongtweets.insert_one(item)\n", "<import token>\n<code token>\n<assignment token>\n<code token>\n" ]
false
98,868
9231e41c3780cbc8fde1e8e08d8094e09c28d4de
import flask import uuid import os import socket import logging app = flask.Flask(__name__) @app.route('/ids', methods=['GET']) def get_uuids(): node_name = os.getenv('NODE_NAME', socket.gethostname()) generated_uuid = uuid.uuid1() app.logger.info('Node: [%s] UUID: [%s]', node_name, generated_uuid) rsp = flask.jsonify(uuid=generated_uuid, node=node_name) rsp.status_code = 200 rsp.headers['Content-Type'] = 'application/json' return rsp
[ "import flask\nimport uuid\nimport os\nimport socket\nimport logging\n\n\napp = flask.Flask(__name__)\n\n\[email protected]('/ids', methods=['GET'])\ndef get_uuids():\n node_name = os.getenv('NODE_NAME', socket.gethostname())\n generated_uuid = uuid.uuid1()\n app.logger.info('Node: [%s] UUID: [%s]', node_name, generated_uuid)\n rsp = flask.jsonify(uuid=generated_uuid, node=node_name)\n rsp.status_code = 200\n rsp.headers['Content-Type'] = 'application/json'\n return rsp\n", "import flask\nimport uuid\nimport os\nimport socket\nimport logging\napp = flask.Flask(__name__)\n\n\[email protected]('/ids', methods=['GET'])\ndef get_uuids():\n node_name = os.getenv('NODE_NAME', socket.gethostname())\n generated_uuid = uuid.uuid1()\n app.logger.info('Node: [%s] UUID: [%s]', node_name, generated_uuid)\n rsp = flask.jsonify(uuid=generated_uuid, node=node_name)\n rsp.status_code = 200\n rsp.headers['Content-Type'] = 'application/json'\n return rsp\n", "<import token>\napp = flask.Flask(__name__)\n\n\[email protected]('/ids', methods=['GET'])\ndef get_uuids():\n node_name = os.getenv('NODE_NAME', socket.gethostname())\n generated_uuid = uuid.uuid1()\n app.logger.info('Node: [%s] UUID: [%s]', node_name, generated_uuid)\n rsp = flask.jsonify(uuid=generated_uuid, node=node_name)\n rsp.status_code = 200\n rsp.headers['Content-Type'] = 'application/json'\n return rsp\n", "<import token>\n<assignment token>\n\n\[email protected]('/ids', methods=['GET'])\ndef get_uuids():\n node_name = os.getenv('NODE_NAME', socket.gethostname())\n generated_uuid = uuid.uuid1()\n app.logger.info('Node: [%s] UUID: [%s]', node_name, generated_uuid)\n rsp = flask.jsonify(uuid=generated_uuid, node=node_name)\n rsp.status_code = 200\n rsp.headers['Content-Type'] = 'application/json'\n return rsp\n", "<import token>\n<assignment token>\n<function token>\n" ]
false
98,869
a7fd8f701ddecfa8c2355e759b29a5166a222f12
__author__ = "gongwei" import time tt = time.time() m = tt/3600/24/365 print(m) print(1970+int(m)) print(time.localtime()[4]) print(time.timezone/3600) print(time.daylight) print(time.clock()) print(time.localtime(29999433234))
[ "__author__ = \"gongwei\"\n\n\nimport time\n\ntt = time.time()\n\nm = tt/3600/24/365\n\nprint(m)\n\nprint(1970+int(m))\n\n\nprint(time.localtime()[4])\n\nprint(time.timezone/3600)\nprint(time.daylight)\nprint(time.clock())\nprint(time.localtime(29999433234))", "__author__ = 'gongwei'\nimport time\ntt = time.time()\nm = tt / 3600 / 24 / 365\nprint(m)\nprint(1970 + int(m))\nprint(time.localtime()[4])\nprint(time.timezone / 3600)\nprint(time.daylight)\nprint(time.clock())\nprint(time.localtime(29999433234))\n", "__author__ = 'gongwei'\n<import token>\ntt = time.time()\nm = tt / 3600 / 24 / 365\nprint(m)\nprint(1970 + int(m))\nprint(time.localtime()[4])\nprint(time.timezone / 3600)\nprint(time.daylight)\nprint(time.clock())\nprint(time.localtime(29999433234))\n", "<assignment token>\n<import token>\n<assignment token>\nprint(m)\nprint(1970 + int(m))\nprint(time.localtime()[4])\nprint(time.timezone / 3600)\nprint(time.daylight)\nprint(time.clock())\nprint(time.localtime(29999433234))\n", "<assignment token>\n<import token>\n<assignment token>\n<code token>\n" ]
false
98,870
fc15fa5e8b0a4ee792fd95388fc7fbf54f1d87da
import cv2 import sys sys.path.append("game/") import HighSpeedRacingGame as game from BrainDQN_Nature import BrainDQN import numpy as np import matplotlib.pyplot as plt import time imgDim = [80*1,80*1] # preprocess raw image to 80*80 gray image def preprocess(observation): observation = cv2.cvtColor(cv2.resize(observation, (imgDim[0], imgDim[1])), cv2.COLOR_BGR2GRAY) ret, observation = cv2.threshold(observation,1,255,cv2.THRESH_BINARY) return np.reshape(observation,(imgDim[0],imgDim[1],1)) def HighSpeedRacing(): # Step 1: init BrainDQN actions = 5 brain = BrainDQN(actions, imgDim) # Step 2: init Flappy Bird Game flappyBird = game.GameState() # Step 3: play game # Step 3.1: obtain init state action0 = np.array([0,1,0,0,0]) # do nothing observation0, reward0, terminal = flappyBird.frame_step(action0) print(observation0) # print('observation0 1:',observation0) # observation0 = cv2.cvtColor(cv2.resize(observation0, (imgDim[0],imgDim[1])), cv2.COLOR_BGR2GRAY) # ret, observation0 = cv2.threshold(observation0,1,255,cv2.THRESH_BINARY) brain.setInitState(observation0,action0) #将observation0复制4份放进BrainDQN的属性self.currentState中 # isUseExpertData = False ## isUseExpertData = True # if(isUseExpertData == True): # filename = "./expertData/observation" # actInd = 0 # observation0 = np.load(filename + str(actInd) + ".npy") # plt.imshow(observation0) # # # Step 3.2: run the game # # while 1!= 0: # for _ in range(1): # actInd = 0 # for actInd in range(1,2073): # actInd += 1 # action = np.load(filename + "action" + str(actInd) + ".npy") # reward = np.load(filename + "reward" + str(actInd) + ".npy") # terminal = np.load(filename + "terminal" + str(actInd) + ".npy") # nextObservation = np.load(filename + str(actInd) + ".npy") # plt.imshow(nextObservation) # nextObservation = preprocess(nextObservation) # brain.setPerception(nextObservation,action,reward,terminal) loss=[] plt.figure() ind = 0 # Step 3.2: run the game while 1!= 0: # time.sleep(0.1) action= brain.getAction() loss.append(brain.loss_temp) ind += 1 if ind%500==499: plt.plot(loss) plt.show() nextObservation,reward,terminal = flappyBird.frame_step(action) # nextObservation = preprocess(nextObservation) brain.setPerception(nextObservation,action,reward,terminal) def main(): HighSpeedRacing() if __name__ == '__main__': main()
[ "import cv2\r\nimport sys\r\nsys.path.append(\"game/\")\r\nimport HighSpeedRacingGame as game\r\nfrom BrainDQN_Nature import BrainDQN\r\nimport numpy as np\r\nimport matplotlib.pyplot as plt\r\nimport time\r\nimgDim = [80*1,80*1]\r\n# preprocess raw image to 80*80 gray image\r\ndef preprocess(observation):\r\n observation = cv2.cvtColor(cv2.resize(observation, (imgDim[0], imgDim[1])), cv2.COLOR_BGR2GRAY)\r\n ret, observation = cv2.threshold(observation,1,255,cv2.THRESH_BINARY)\r\n return np.reshape(observation,(imgDim[0],imgDim[1],1))\r\n\r\ndef HighSpeedRacing():\r\n # Step 1: init BrainDQN\r\n actions = 5\r\n brain = BrainDQN(actions, imgDim)\r\n # Step 2: init Flappy Bird Game\r\n flappyBird = game.GameState()\r\n # Step 3: play game\r\n # Step 3.1: obtain init state\r\n action0 = np.array([0,1,0,0,0]) # do nothing\r\n observation0, reward0, terminal = flappyBird.frame_step(action0)\r\n print(observation0)\r\n# print('observation0 1:',observation0)\r\n# observation0 = cv2.cvtColor(cv2.resize(observation0, (imgDim[0],imgDim[1])), cv2.COLOR_BGR2GRAY)\r\n# ret, observation0 = cv2.threshold(observation0,1,255,cv2.THRESH_BINARY)\r\n brain.setInitState(observation0,action0) #将observation0复制4份放进BrainDQN的属性self.currentState中\r\n\r\n# isUseExpertData = False\r\n## isUseExpertData = True\r\n# if(isUseExpertData == True):\r\n# filename = \"./expertData/observation\"\r\n# actInd = 0\r\n# observation0 = np.load(filename + str(actInd) + \".npy\")\r\n# plt.imshow(observation0)\r\n# # # Step 3.2: run the game\r\n# # while 1!= 0:\r\n# for _ in range(1):\r\n# actInd = 0\r\n# for actInd in range(1,2073):\r\n# actInd += 1\r\n# action = np.load(filename + \"action\" + str(actInd) + \".npy\")\r\n# reward = np.load(filename + \"reward\" + str(actInd) + \".npy\")\r\n# terminal = np.load(filename + \"terminal\" + str(actInd) + \".npy\")\r\n# nextObservation = np.load(filename + str(actInd) + \".npy\")\r\n# plt.imshow(nextObservation)\r\n# nextObservation = preprocess(nextObservation)\r\n# brain.setPerception(nextObservation,action,reward,terminal)\r\n loss=[]\r\n plt.figure()\r\n ind = 0\r\n # Step 3.2: run the game\r\n while 1!= 0:\r\n# time.sleep(0.1)\r\n action= brain.getAction()\r\n loss.append(brain.loss_temp)\r\n ind += 1\r\n if ind%500==499:\r\n plt.plot(loss)\r\n plt.show()\r\n nextObservation,reward,terminal = flappyBird.frame_step(action)\r\n# nextObservation = preprocess(nextObservation)\r\n brain.setPerception(nextObservation,action,reward,terminal)\r\n\r\ndef main():\r\n HighSpeedRacing()\r\n\r\nif __name__ == '__main__':\r\n main()\r\n", "import cv2\nimport sys\nsys.path.append('game/')\nimport HighSpeedRacingGame as game\nfrom BrainDQN_Nature import BrainDQN\nimport numpy as np\nimport matplotlib.pyplot as plt\nimport time\nimgDim = [80 * 1, 80 * 1]\n\n\ndef preprocess(observation):\n observation = cv2.cvtColor(cv2.resize(observation, (imgDim[0], imgDim[1\n ])), cv2.COLOR_BGR2GRAY)\n ret, observation = cv2.threshold(observation, 1, 255, cv2.THRESH_BINARY)\n return np.reshape(observation, (imgDim[0], imgDim[1], 1))\n\n\ndef HighSpeedRacing():\n actions = 5\n brain = BrainDQN(actions, imgDim)\n flappyBird = game.GameState()\n action0 = np.array([0, 1, 0, 0, 0])\n observation0, reward0, terminal = flappyBird.frame_step(action0)\n print(observation0)\n brain.setInitState(observation0, action0)\n loss = []\n plt.figure()\n ind = 0\n while 1 != 0:\n action = brain.getAction()\n loss.append(brain.loss_temp)\n ind += 1\n if ind % 500 == 499:\n plt.plot(loss)\n plt.show()\n nextObservation, reward, terminal = flappyBird.frame_step(action)\n brain.setPerception(nextObservation, action, reward, terminal)\n\n\ndef main():\n HighSpeedRacing()\n\n\nif __name__ == '__main__':\n main()\n", "<import token>\nsys.path.append('game/')\n<import token>\nimgDim = [80 * 1, 80 * 1]\n\n\ndef preprocess(observation):\n observation = cv2.cvtColor(cv2.resize(observation, (imgDim[0], imgDim[1\n ])), cv2.COLOR_BGR2GRAY)\n ret, observation = cv2.threshold(observation, 1, 255, cv2.THRESH_BINARY)\n return np.reshape(observation, (imgDim[0], imgDim[1], 1))\n\n\ndef HighSpeedRacing():\n actions = 5\n brain = BrainDQN(actions, imgDim)\n flappyBird = game.GameState()\n action0 = np.array([0, 1, 0, 0, 0])\n observation0, reward0, terminal = flappyBird.frame_step(action0)\n print(observation0)\n brain.setInitState(observation0, action0)\n loss = []\n plt.figure()\n ind = 0\n while 1 != 0:\n action = brain.getAction()\n loss.append(brain.loss_temp)\n ind += 1\n if ind % 500 == 499:\n plt.plot(loss)\n plt.show()\n nextObservation, reward, terminal = flappyBird.frame_step(action)\n brain.setPerception(nextObservation, action, reward, terminal)\n\n\ndef main():\n HighSpeedRacing()\n\n\nif __name__ == '__main__':\n main()\n", "<import token>\nsys.path.append('game/')\n<import token>\n<assignment token>\n\n\ndef preprocess(observation):\n observation = cv2.cvtColor(cv2.resize(observation, (imgDim[0], imgDim[1\n ])), cv2.COLOR_BGR2GRAY)\n ret, observation = cv2.threshold(observation, 1, 255, cv2.THRESH_BINARY)\n return np.reshape(observation, (imgDim[0], imgDim[1], 1))\n\n\ndef HighSpeedRacing():\n actions = 5\n brain = BrainDQN(actions, imgDim)\n flappyBird = game.GameState()\n action0 = np.array([0, 1, 0, 0, 0])\n observation0, reward0, terminal = flappyBird.frame_step(action0)\n print(observation0)\n brain.setInitState(observation0, action0)\n loss = []\n plt.figure()\n ind = 0\n while 1 != 0:\n action = brain.getAction()\n loss.append(brain.loss_temp)\n ind += 1\n if ind % 500 == 499:\n plt.plot(loss)\n plt.show()\n nextObservation, reward, terminal = flappyBird.frame_step(action)\n brain.setPerception(nextObservation, action, reward, terminal)\n\n\ndef main():\n HighSpeedRacing()\n\n\nif __name__ == '__main__':\n main()\n", "<import token>\n<code token>\n<import token>\n<assignment token>\n\n\ndef preprocess(observation):\n observation = cv2.cvtColor(cv2.resize(observation, (imgDim[0], imgDim[1\n ])), cv2.COLOR_BGR2GRAY)\n ret, observation = cv2.threshold(observation, 1, 255, cv2.THRESH_BINARY)\n return np.reshape(observation, (imgDim[0], imgDim[1], 1))\n\n\ndef HighSpeedRacing():\n actions = 5\n brain = BrainDQN(actions, imgDim)\n flappyBird = game.GameState()\n action0 = np.array([0, 1, 0, 0, 0])\n observation0, reward0, terminal = flappyBird.frame_step(action0)\n print(observation0)\n brain.setInitState(observation0, action0)\n loss = []\n plt.figure()\n ind = 0\n while 1 != 0:\n action = brain.getAction()\n loss.append(brain.loss_temp)\n ind += 1\n if ind % 500 == 499:\n plt.plot(loss)\n plt.show()\n nextObservation, reward, terminal = flappyBird.frame_step(action)\n brain.setPerception(nextObservation, action, reward, terminal)\n\n\ndef main():\n HighSpeedRacing()\n\n\n<code token>\n", "<import token>\n<code token>\n<import token>\n<assignment token>\n\n\ndef preprocess(observation):\n observation = cv2.cvtColor(cv2.resize(observation, (imgDim[0], imgDim[1\n ])), cv2.COLOR_BGR2GRAY)\n ret, observation = cv2.threshold(observation, 1, 255, cv2.THRESH_BINARY)\n return np.reshape(observation, (imgDim[0], imgDim[1], 1))\n\n\ndef HighSpeedRacing():\n actions = 5\n brain = BrainDQN(actions, imgDim)\n flappyBird = game.GameState()\n action0 = np.array([0, 1, 0, 0, 0])\n observation0, reward0, terminal = flappyBird.frame_step(action0)\n print(observation0)\n brain.setInitState(observation0, action0)\n loss = []\n plt.figure()\n ind = 0\n while 1 != 0:\n action = brain.getAction()\n loss.append(brain.loss_temp)\n ind += 1\n if ind % 500 == 499:\n plt.plot(loss)\n plt.show()\n nextObservation, reward, terminal = flappyBird.frame_step(action)\n brain.setPerception(nextObservation, action, reward, terminal)\n\n\n<function token>\n<code token>\n", "<import token>\n<code token>\n<import token>\n<assignment token>\n<function token>\n\n\ndef HighSpeedRacing():\n actions = 5\n brain = BrainDQN(actions, imgDim)\n flappyBird = game.GameState()\n action0 = np.array([0, 1, 0, 0, 0])\n observation0, reward0, terminal = flappyBird.frame_step(action0)\n print(observation0)\n brain.setInitState(observation0, action0)\n loss = []\n plt.figure()\n ind = 0\n while 1 != 0:\n action = brain.getAction()\n loss.append(brain.loss_temp)\n ind += 1\n if ind % 500 == 499:\n plt.plot(loss)\n plt.show()\n nextObservation, reward, terminal = flappyBird.frame_step(action)\n brain.setPerception(nextObservation, action, reward, terminal)\n\n\n<function token>\n<code token>\n", "<import token>\n<code token>\n<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<code token>\n" ]
false
98,871
bee688771fbc171686012c49720ddb62bbb65711
import sys sys.stdin = open('14501_퇴사.txt') def check_schedule(): global max_cost day_list = [0] * N cost = 0 for i in range(N): if A[i] == 1: start_day = schedule[i][2] for j in range(schedule[i][0]): if start_day + j < N and day_list[start_day + j] == 0: day_list[start_day + j] += 1 else: return cost += schedule[i][1] if max_cost < cost: max_cost = cost def PowerSet(N, m): if N == m: check_schedule() else: A[m] = 1 PowerSet(N, m + 1) A[m] = 0 PowerSet(N, m + 1) N = int(input()) schedule = [list(map(int, input().split())) for _ in range(N)] day = 0 for i in range(len(schedule)): schedule[i].append(day) day += 1 A = [0] * N max_cost = 0 PowerSet(N, 0) print(max_cost)
[ "import sys\nsys.stdin = open('14501_퇴사.txt')\n\ndef check_schedule():\n global max_cost\n day_list = [0] * N\n cost = 0\n for i in range(N):\n if A[i] == 1:\n start_day = schedule[i][2]\n for j in range(schedule[i][0]):\n if start_day + j < N and day_list[start_day + j] == 0:\n day_list[start_day + j] += 1\n else:\n return\n cost += schedule[i][1]\n if max_cost < cost:\n max_cost = cost\n\n\n\ndef PowerSet(N, m):\n if N == m:\n check_schedule()\n\n else:\n A[m] = 1\n PowerSet(N, m + 1)\n A[m] = 0\n PowerSet(N, m + 1)\n\nN = int(input())\n\nschedule = [list(map(int, input().split())) for _ in range(N)]\n\nday = 0\nfor i in range(len(schedule)):\n schedule[i].append(day)\n day += 1\n\nA = [0] * N\nmax_cost = 0\nPowerSet(N, 0)\nprint(max_cost)", "import sys\nsys.stdin = open('14501_퇴사.txt')\n\n\ndef check_schedule():\n global max_cost\n day_list = [0] * N\n cost = 0\n for i in range(N):\n if A[i] == 1:\n start_day = schedule[i][2]\n for j in range(schedule[i][0]):\n if start_day + j < N and day_list[start_day + j] == 0:\n day_list[start_day + j] += 1\n else:\n return\n cost += schedule[i][1]\n if max_cost < cost:\n max_cost = cost\n\n\ndef PowerSet(N, m):\n if N == m:\n check_schedule()\n else:\n A[m] = 1\n PowerSet(N, m + 1)\n A[m] = 0\n PowerSet(N, m + 1)\n\n\nN = int(input())\nschedule = [list(map(int, input().split())) for _ in range(N)]\nday = 0\nfor i in range(len(schedule)):\n schedule[i].append(day)\n day += 1\nA = [0] * N\nmax_cost = 0\nPowerSet(N, 0)\nprint(max_cost)\n", "<import token>\nsys.stdin = open('14501_퇴사.txt')\n\n\ndef check_schedule():\n global max_cost\n day_list = [0] * N\n cost = 0\n for i in range(N):\n if A[i] == 1:\n start_day = schedule[i][2]\n for j in range(schedule[i][0]):\n if start_day + j < N and day_list[start_day + j] == 0:\n day_list[start_day + j] += 1\n else:\n return\n cost += schedule[i][1]\n if max_cost < cost:\n max_cost = cost\n\n\ndef PowerSet(N, m):\n if N == m:\n check_schedule()\n else:\n A[m] = 1\n PowerSet(N, m + 1)\n A[m] = 0\n PowerSet(N, m + 1)\n\n\nN = int(input())\nschedule = [list(map(int, input().split())) for _ in range(N)]\nday = 0\nfor i in range(len(schedule)):\n schedule[i].append(day)\n day += 1\nA = [0] * N\nmax_cost = 0\nPowerSet(N, 0)\nprint(max_cost)\n", "<import token>\n<assignment token>\n\n\ndef check_schedule():\n global max_cost\n day_list = [0] * N\n cost = 0\n for i in range(N):\n if A[i] == 1:\n start_day = schedule[i][2]\n for j in range(schedule[i][0]):\n if start_day + j < N and day_list[start_day + j] == 0:\n day_list[start_day + j] += 1\n else:\n return\n cost += schedule[i][1]\n if max_cost < cost:\n max_cost = cost\n\n\ndef PowerSet(N, m):\n if N == m:\n check_schedule()\n else:\n A[m] = 1\n PowerSet(N, m + 1)\n A[m] = 0\n PowerSet(N, m + 1)\n\n\n<assignment token>\nfor i in range(len(schedule)):\n schedule[i].append(day)\n day += 1\n<assignment token>\nPowerSet(N, 0)\nprint(max_cost)\n", "<import token>\n<assignment token>\n\n\ndef check_schedule():\n global max_cost\n day_list = [0] * N\n cost = 0\n for i in range(N):\n if A[i] == 1:\n start_day = schedule[i][2]\n for j in range(schedule[i][0]):\n if start_day + j < N and day_list[start_day + j] == 0:\n day_list[start_day + j] += 1\n else:\n return\n cost += schedule[i][1]\n if max_cost < cost:\n max_cost = cost\n\n\ndef PowerSet(N, m):\n if N == m:\n check_schedule()\n else:\n A[m] = 1\n PowerSet(N, m + 1)\n A[m] = 0\n PowerSet(N, m + 1)\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<function token>\n\n\ndef PowerSet(N, m):\n if N == m:\n check_schedule()\n else:\n A[m] = 1\n PowerSet(N, m + 1)\n A[m] = 0\n PowerSet(N, m + 1)\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<function token>\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n" ]
false
98,872
fe2547274aa427d399751001da40702ffd90bc68
from exports.bindings import Exports from imports.bindings import add_imports_to_linker, Imports from typing import Callable import imports.bindings as i import sys import wasmtime class MyImports(Imports): def roundtrip_u8(self, x: int) -> int: raise Exception('unreachable') def roundtrip_s8(self, x: int) -> int: raise Exception('unreachable') def roundtrip_u16(self, x: int) -> int: raise Exception('unreachable') def roundtrip_s16(self, x: int) -> int: raise Exception('unreachable') def roundtrip_bool(self, x: bool) -> bool: raise Exception('unreachable') def roundtrip_char(self, x: str) -> str: raise Exception('unreachable') def roundtrip_enum(self, x: i.E) -> i.E: raise Exception('unreachable') def get_internal(self, x: i.HostState) -> int: raise Exception('unreachable') def run(wasm_file: str) -> None: store = wasmtime.Store() module = wasmtime.Module.from_file(store.engine, wasm_file) linker = wasmtime.Linker(store.engine) linker.define_wasi() wasi = wasmtime.WasiConfig() wasi.inherit_stdout() wasi.inherit_stderr() store.set_wasi(wasi) imports = MyImports() add_imports_to_linker(linker, store, imports) wasm = Exports(store, linker, module) def assert_throws(f: Callable, msg: str) -> None: try: f() raise RuntimeError('expected exception') except TypeError as e: actual = str(e) except OverflowError as e: actual = str(e) except ValueError as e: actual = str(e) except IndexError as e: actual = str(e) if not msg in actual: print(actual) assert(msg in actual) assert_throws(lambda: wasm.invalid_bool(store), 'invalid variant discriminant for bool') assert_throws(lambda: wasm.invalid_u8(store), 'must be between') assert_throws(lambda: wasm.invalid_s8(store), 'must be between') assert_throws(lambda: wasm.invalid_u16(store), 'must be between') assert_throws(lambda: wasm.invalid_s16(store), 'must be between') assert_throws(lambda: wasm.invalid_char(store), 'not a valid char') assert_throws(lambda: wasm.invalid_enum(store), 'not a valid E') assert_throws(lambda: wasm.invalid_handle(store), 'handle index not valid') assert_throws(lambda: wasm.invalid_handle_close(store), 'handle index not valid') if __name__ == '__main__': run(sys.argv[1])
[ "from exports.bindings import Exports\nfrom imports.bindings import add_imports_to_linker, Imports\nfrom typing import Callable\nimport imports.bindings as i\nimport sys\nimport wasmtime\n\nclass MyImports(Imports):\n def roundtrip_u8(self, x: int) -> int:\n raise Exception('unreachable')\n\n def roundtrip_s8(self, x: int) -> int:\n raise Exception('unreachable')\n\n def roundtrip_u16(self, x: int) -> int:\n raise Exception('unreachable')\n\n def roundtrip_s16(self, x: int) -> int:\n raise Exception('unreachable')\n\n def roundtrip_bool(self, x: bool) -> bool:\n raise Exception('unreachable')\n\n def roundtrip_char(self, x: str) -> str:\n raise Exception('unreachable')\n\n def roundtrip_enum(self, x: i.E) -> i.E:\n raise Exception('unreachable')\n\n def get_internal(self, x: i.HostState) -> int:\n raise Exception('unreachable')\n\ndef run(wasm_file: str) -> None:\n store = wasmtime.Store()\n module = wasmtime.Module.from_file(store.engine, wasm_file)\n linker = wasmtime.Linker(store.engine)\n linker.define_wasi()\n wasi = wasmtime.WasiConfig()\n wasi.inherit_stdout()\n wasi.inherit_stderr()\n store.set_wasi(wasi)\n\n imports = MyImports()\n add_imports_to_linker(linker, store, imports)\n wasm = Exports(store, linker, module)\n\n def assert_throws(f: Callable, msg: str) -> None:\n try:\n f()\n raise RuntimeError('expected exception')\n except TypeError as e:\n actual = str(e)\n except OverflowError as e:\n actual = str(e)\n except ValueError as e:\n actual = str(e)\n except IndexError as e:\n actual = str(e)\n if not msg in actual:\n print(actual)\n assert(msg in actual)\n\n assert_throws(lambda: wasm.invalid_bool(store), 'invalid variant discriminant for bool')\n assert_throws(lambda: wasm.invalid_u8(store), 'must be between')\n assert_throws(lambda: wasm.invalid_s8(store), 'must be between')\n assert_throws(lambda: wasm.invalid_u16(store), 'must be between')\n assert_throws(lambda: wasm.invalid_s16(store), 'must be between')\n assert_throws(lambda: wasm.invalid_char(store), 'not a valid char')\n assert_throws(lambda: wasm.invalid_enum(store), 'not a valid E')\n assert_throws(lambda: wasm.invalid_handle(store), 'handle index not valid')\n assert_throws(lambda: wasm.invalid_handle_close(store), 'handle index not valid')\n\nif __name__ == '__main__':\n run(sys.argv[1])\n", "from exports.bindings import Exports\nfrom imports.bindings import add_imports_to_linker, Imports\nfrom typing import Callable\nimport imports.bindings as i\nimport sys\nimport wasmtime\n\n\nclass MyImports(Imports):\n\n def roundtrip_u8(self, x: int) ->int:\n raise Exception('unreachable')\n\n def roundtrip_s8(self, x: int) ->int:\n raise Exception('unreachable')\n\n def roundtrip_u16(self, x: int) ->int:\n raise Exception('unreachable')\n\n def roundtrip_s16(self, x: int) ->int:\n raise Exception('unreachable')\n\n def roundtrip_bool(self, x: bool) ->bool:\n raise Exception('unreachable')\n\n def roundtrip_char(self, x: str) ->str:\n raise Exception('unreachable')\n\n def roundtrip_enum(self, x: i.E) ->i.E:\n raise Exception('unreachable')\n\n def get_internal(self, x: i.HostState) ->int:\n raise Exception('unreachable')\n\n\ndef run(wasm_file: str) ->None:\n store = wasmtime.Store()\n module = wasmtime.Module.from_file(store.engine, wasm_file)\n linker = wasmtime.Linker(store.engine)\n linker.define_wasi()\n wasi = wasmtime.WasiConfig()\n wasi.inherit_stdout()\n wasi.inherit_stderr()\n store.set_wasi(wasi)\n imports = MyImports()\n add_imports_to_linker(linker, store, imports)\n wasm = Exports(store, linker, module)\n\n def assert_throws(f: Callable, msg: str) ->None:\n try:\n f()\n raise RuntimeError('expected exception')\n except TypeError as e:\n actual = str(e)\n except OverflowError as e:\n actual = str(e)\n except ValueError as e:\n actual = str(e)\n except IndexError as e:\n actual = str(e)\n if not msg in actual:\n print(actual)\n assert msg in actual\n assert_throws(lambda : wasm.invalid_bool(store),\n 'invalid variant discriminant for bool')\n assert_throws(lambda : wasm.invalid_u8(store), 'must be between')\n assert_throws(lambda : wasm.invalid_s8(store), 'must be between')\n assert_throws(lambda : wasm.invalid_u16(store), 'must be between')\n assert_throws(lambda : wasm.invalid_s16(store), 'must be between')\n assert_throws(lambda : wasm.invalid_char(store), 'not a valid char')\n assert_throws(lambda : wasm.invalid_enum(store), 'not a valid E')\n assert_throws(lambda : wasm.invalid_handle(store), 'handle index not valid'\n )\n assert_throws(lambda : wasm.invalid_handle_close(store),\n 'handle index not valid')\n\n\nif __name__ == '__main__':\n run(sys.argv[1])\n", "<import token>\n\n\nclass MyImports(Imports):\n\n def roundtrip_u8(self, x: int) ->int:\n raise Exception('unreachable')\n\n def roundtrip_s8(self, x: int) ->int:\n raise Exception('unreachable')\n\n def roundtrip_u16(self, x: int) ->int:\n raise Exception('unreachable')\n\n def roundtrip_s16(self, x: int) ->int:\n raise Exception('unreachable')\n\n def roundtrip_bool(self, x: bool) ->bool:\n raise Exception('unreachable')\n\n def roundtrip_char(self, x: str) ->str:\n raise Exception('unreachable')\n\n def roundtrip_enum(self, x: i.E) ->i.E:\n raise Exception('unreachable')\n\n def get_internal(self, x: i.HostState) ->int:\n raise Exception('unreachable')\n\n\ndef run(wasm_file: str) ->None:\n store = wasmtime.Store()\n module = wasmtime.Module.from_file(store.engine, wasm_file)\n linker = wasmtime.Linker(store.engine)\n linker.define_wasi()\n wasi = wasmtime.WasiConfig()\n wasi.inherit_stdout()\n wasi.inherit_stderr()\n store.set_wasi(wasi)\n imports = MyImports()\n add_imports_to_linker(linker, store, imports)\n wasm = Exports(store, linker, module)\n\n def assert_throws(f: Callable, msg: str) ->None:\n try:\n f()\n raise RuntimeError('expected exception')\n except TypeError as e:\n actual = str(e)\n except OverflowError as e:\n actual = str(e)\n except ValueError as e:\n actual = str(e)\n except IndexError as e:\n actual = str(e)\n if not msg in actual:\n print(actual)\n assert msg in actual\n assert_throws(lambda : wasm.invalid_bool(store),\n 'invalid variant discriminant for bool')\n assert_throws(lambda : wasm.invalid_u8(store), 'must be between')\n assert_throws(lambda : wasm.invalid_s8(store), 'must be between')\n assert_throws(lambda : wasm.invalid_u16(store), 'must be between')\n assert_throws(lambda : wasm.invalid_s16(store), 'must be between')\n assert_throws(lambda : wasm.invalid_char(store), 'not a valid char')\n assert_throws(lambda : wasm.invalid_enum(store), 'not a valid E')\n assert_throws(lambda : wasm.invalid_handle(store), 'handle index not valid'\n )\n assert_throws(lambda : wasm.invalid_handle_close(store),\n 'handle index not valid')\n\n\nif __name__ == '__main__':\n run(sys.argv[1])\n", "<import token>\n\n\nclass MyImports(Imports):\n\n def roundtrip_u8(self, x: int) ->int:\n raise Exception('unreachable')\n\n def roundtrip_s8(self, x: int) ->int:\n raise Exception('unreachable')\n\n def roundtrip_u16(self, x: int) ->int:\n raise Exception('unreachable')\n\n def roundtrip_s16(self, x: int) ->int:\n raise Exception('unreachable')\n\n def roundtrip_bool(self, x: bool) ->bool:\n raise Exception('unreachable')\n\n def roundtrip_char(self, x: str) ->str:\n raise Exception('unreachable')\n\n def roundtrip_enum(self, x: i.E) ->i.E:\n raise Exception('unreachable')\n\n def get_internal(self, x: i.HostState) ->int:\n raise Exception('unreachable')\n\n\ndef run(wasm_file: str) ->None:\n store = wasmtime.Store()\n module = wasmtime.Module.from_file(store.engine, wasm_file)\n linker = wasmtime.Linker(store.engine)\n linker.define_wasi()\n wasi = wasmtime.WasiConfig()\n wasi.inherit_stdout()\n wasi.inherit_stderr()\n store.set_wasi(wasi)\n imports = MyImports()\n add_imports_to_linker(linker, store, imports)\n wasm = Exports(store, linker, module)\n\n def assert_throws(f: Callable, msg: str) ->None:\n try:\n f()\n raise RuntimeError('expected exception')\n except TypeError as e:\n actual = str(e)\n except OverflowError as e:\n actual = str(e)\n except ValueError as e:\n actual = str(e)\n except IndexError as e:\n actual = str(e)\n if not msg in actual:\n print(actual)\n assert msg in actual\n assert_throws(lambda : wasm.invalid_bool(store),\n 'invalid variant discriminant for bool')\n assert_throws(lambda : wasm.invalid_u8(store), 'must be between')\n assert_throws(lambda : wasm.invalid_s8(store), 'must be between')\n assert_throws(lambda : wasm.invalid_u16(store), 'must be between')\n assert_throws(lambda : wasm.invalid_s16(store), 'must be between')\n assert_throws(lambda : wasm.invalid_char(store), 'not a valid char')\n assert_throws(lambda : wasm.invalid_enum(store), 'not a valid E')\n assert_throws(lambda : wasm.invalid_handle(store), 'handle index not valid'\n )\n assert_throws(lambda : wasm.invalid_handle_close(store),\n 'handle index not valid')\n\n\n<code token>\n", "<import token>\n\n\nclass MyImports(Imports):\n\n def roundtrip_u8(self, x: int) ->int:\n raise Exception('unreachable')\n\n def roundtrip_s8(self, x: int) ->int:\n raise Exception('unreachable')\n\n def roundtrip_u16(self, x: int) ->int:\n raise Exception('unreachable')\n\n def roundtrip_s16(self, x: int) ->int:\n raise Exception('unreachable')\n\n def roundtrip_bool(self, x: bool) ->bool:\n raise Exception('unreachable')\n\n def roundtrip_char(self, x: str) ->str:\n raise Exception('unreachable')\n\n def roundtrip_enum(self, x: i.E) ->i.E:\n raise Exception('unreachable')\n\n def get_internal(self, x: i.HostState) ->int:\n raise Exception('unreachable')\n\n\n<function token>\n<code token>\n", "<import token>\n\n\nclass MyImports(Imports):\n\n def roundtrip_u8(self, x: int) ->int:\n raise Exception('unreachable')\n\n def roundtrip_s8(self, x: int) ->int:\n raise Exception('unreachable')\n\n def roundtrip_u16(self, x: int) ->int:\n raise Exception('unreachable')\n <function token>\n\n def roundtrip_bool(self, x: bool) ->bool:\n raise Exception('unreachable')\n\n def roundtrip_char(self, x: str) ->str:\n raise Exception('unreachable')\n\n def roundtrip_enum(self, x: i.E) ->i.E:\n raise Exception('unreachable')\n\n def get_internal(self, x: i.HostState) ->int:\n raise Exception('unreachable')\n\n\n<function token>\n<code token>\n", "<import token>\n\n\nclass MyImports(Imports):\n\n def roundtrip_u8(self, x: int) ->int:\n raise Exception('unreachable')\n\n def roundtrip_s8(self, x: int) ->int:\n raise Exception('unreachable')\n\n def roundtrip_u16(self, x: int) ->int:\n raise Exception('unreachable')\n <function token>\n <function token>\n\n def roundtrip_char(self, x: str) ->str:\n raise Exception('unreachable')\n\n def roundtrip_enum(self, x: i.E) ->i.E:\n raise Exception('unreachable')\n\n def get_internal(self, x: i.HostState) ->int:\n raise Exception('unreachable')\n\n\n<function token>\n<code token>\n", "<import token>\n\n\nclass MyImports(Imports):\n <function token>\n\n def roundtrip_s8(self, x: int) ->int:\n raise Exception('unreachable')\n\n def roundtrip_u16(self, x: int) ->int:\n raise Exception('unreachable')\n <function token>\n <function token>\n\n def roundtrip_char(self, x: str) ->str:\n raise Exception('unreachable')\n\n def roundtrip_enum(self, x: i.E) ->i.E:\n raise Exception('unreachable')\n\n def get_internal(self, x: i.HostState) ->int:\n raise Exception('unreachable')\n\n\n<function token>\n<code token>\n", "<import token>\n\n\nclass MyImports(Imports):\n <function token>\n <function token>\n\n def roundtrip_u16(self, x: int) ->int:\n raise Exception('unreachable')\n <function token>\n <function token>\n\n def roundtrip_char(self, x: str) ->str:\n raise Exception('unreachable')\n\n def roundtrip_enum(self, x: i.E) ->i.E:\n raise Exception('unreachable')\n\n def get_internal(self, x: i.HostState) ->int:\n raise Exception('unreachable')\n\n\n<function token>\n<code token>\n", "<import token>\n\n\nclass MyImports(Imports):\n <function token>\n <function token>\n\n def roundtrip_u16(self, x: int) ->int:\n raise Exception('unreachable')\n <function token>\n <function token>\n\n def roundtrip_char(self, x: str) ->str:\n raise Exception('unreachable')\n\n def roundtrip_enum(self, x: i.E) ->i.E:\n raise Exception('unreachable')\n <function token>\n\n\n<function token>\n<code token>\n", "<import token>\n\n\nclass MyImports(Imports):\n <function token>\n <function token>\n\n def roundtrip_u16(self, x: int) ->int:\n raise Exception('unreachable')\n <function token>\n <function token>\n\n def roundtrip_char(self, x: str) ->str:\n raise Exception('unreachable')\n <function token>\n <function token>\n\n\n<function token>\n<code token>\n", "<import token>\n\n\nclass MyImports(Imports):\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def roundtrip_char(self, x: str) ->str:\n raise Exception('unreachable')\n <function token>\n <function token>\n\n\n<function token>\n<code token>\n", "<import token>\n\n\nclass MyImports(Imports):\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\n<function token>\n<code token>\n", "<import token>\n<class token>\n<function token>\n<code token>\n" ]
false
98,873
fa11e463bdde30550c5a9da6189fa0efba459811
# Copyright 2020 The Private Cardinality Estimation Framework Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for wfa_cardinality_estimation_evaluation_framework.evaluations.tests.report_generator.""" import os import re from absl.testing import absltest import numpy as np import pandas as pd from wfa_cardinality_estimation_evaluation_framework.estimators import exact_set from wfa_cardinality_estimation_evaluation_framework.evaluations import analyzer from wfa_cardinality_estimation_evaluation_framework.evaluations import configs from wfa_cardinality_estimation_evaluation_framework.evaluations import evaluator from wfa_cardinality_estimation_evaluation_framework.evaluations import report_generator from wfa_cardinality_estimation_evaluation_framework.evaluations.data import evaluation_configs from wfa_cardinality_estimation_evaluation_framework.simulations import set_generator from wfa_cardinality_estimation_evaluation_framework.simulations import simulator class ReportGeneratorTest(absltest.TestCase): def setUp(self): super(ReportGeneratorTest, self).setUp() exact_set_lossless = simulator.SketchEstimatorConfig( name='exact_set-infty-infty-lossless', sketch_factory=exact_set.ExactSet.get_sketch_factory(), estimator=exact_set.LosslessEstimator(), sketch_noiser=None, estimate_noiser=None) exact_set_less_one = simulator.SketchEstimatorConfig( name='exact_set-infty-infty-less_one', sketch_factory=exact_set.ExactSet.get_sketch_factory(), estimator=exact_set.LessOneEstimator(), sketch_noiser=exact_set.AddRandomElementsNoiser( num_random_elements=0, random_state=np.random.RandomState()), estimate_noiser=None) self.sketch_estimator_config_list = (exact_set_lossless, exact_set_less_one) self.evaluation_config = configs.EvaluationConfig( name='test_evaluation', num_runs=2, scenario_config_list=[ configs.ScenarioConfig( name='ind1', set_generator_factory=( set_generator.IndependentSetGenerator .get_generator_factory_with_num_and_size( universe_size=10, num_sets=5, set_size=1))), configs.ScenarioConfig( name='ind2', set_generator_factory=( set_generator.IndependentSetGenerator .get_generator_factory_with_num_and_size( universe_size=10, num_sets=5, set_size=1))), ]) self.evaluation_run_name = 'test_run' def _run_evaluation_and_simulation(out_dir): self.evaluator = evaluator.Evaluator( evaluation_config=self.evaluation_config, sketch_estimator_config_list=self.sketch_estimator_config_list, run_name=self.evaluation_run_name, out_dir=out_dir) self.evaluator() self.analyzer = analyzer.CardinalityEstimatorEvaluationAnalyzer( out_dir=out_dir, evaluation_directory=out_dir, evaluation_run_name=self.evaluation_run_name, evaluation_name=self.evaluation_config.name, estimable_criteria_list=[(0.05, 0.95), (1.01, 0.9)]) self.analyzer() self.run_evaluation_and_simulation = _run_evaluation_and_simulation def test_parse_sketch_estimator_name(self): sketch_estimator_name = 'vector_of_counts-4096-ln3-sequential' parsed_name = report_generator.ReportGenerator.parse_sketch_estimator_name( sketch_estimator_name) expected = { evaluation_configs.SKETCH: 'vector_of_counts', evaluation_configs.SKETCH_CONFIG: '4096', evaluation_configs.EPSILON: 'ln3', evaluation_configs.ESTIMATOR: 'sequential' } self.assertEqual(parsed_name, expected) def test_add_parsed_sketch_estimator_name_cols(self): df = pd.DataFrame({ 'sketch_estimator': ['vector_of_counts-4096-ln3-sequential', 'bloom_filter-1e6-infty-union_estimator']}) result = ( report_generator.ReportGenerator .add_parsed_sketch_estimator_name_cols(df, 'sketch_estimator')) expected = pd.DataFrame({ 'sketch_estimator': ['vector_of_counts-4096-ln3-sequential', 'bloom_filter-1e6-infty-union_estimator'], evaluation_configs.SKETCH: ['vector_of_counts', 'bloom_filter'], evaluation_configs.SKETCH_CONFIG: ['4096', '1e6'], evaluation_configs.EPSILON: ['ln3', 'infty'], evaluation_configs.ESTIMATOR: ['sequential', 'union_estimator'] }) try: pd.testing.assert_frame_equal(result, expected) except AssertionError: self.fail('Parsed sketch_estimator_name is not added correctly to df.') def test_widen_num_estimable_sets_df(self): out_dir = self.create_tempdir('test_widen_num_estimable_sets_df') self.run_evaluation_and_simulation(out_dir) analysis_results = analyzer.get_analysis_results( analysis_out_dir=out_dir, evaluation_run_name=self.evaluation_run_name, evaluation_name=self.evaluation_config.name) num_estimable_sets_stats_df = ( report_generator.ReportGenerator.widen_num_estimable_sets_df( analysis_results[report_generator.KEY_NUM_ESTIMABLE_SETS_STATS_DF])) # Test values are in correct format. regex = re.compile( r'\d+<br>relative_error: mean=(((-)?\d+\.\d+)|(nan)), ' r'std=(((-)?\d+\.\d+)|(nan))') for s in np.ndarray.flatten(num_estimable_sets_stats_df.values): self.assertRegex(s, regex, f'value {s} not is not in correct format.') # Test the columns are correct. regex = r'(\d+)\%\/(\d+)' for col in num_estimable_sets_stats_df.columns.values: self.assertRegex( col[0], regex, f'column {col[0]} not is not in correct format.') def test_generate_boxplot_html(self): out_dir = self.create_tempdir('test_generate_boxplot_html') self.run_evaluation_and_simulation(out_dir) analysis_results = analyzer.get_analysis_results( analysis_out_dir=out_dir, evaluation_run_name=self.evaluation_run_name, evaluation_name=self.evaluation_config.name) # Generate boxplot html. description_to_file_dir = analysis_results[ report_generator.KEY_DESCRIPTION_TO_FILE_DIR] sketch_estimator_list = [i.name for i in self.sketch_estimator_config_list] scenario_list = [ conf.name for conf in self.evaluation_config.scenario_config_list] plot_html = report_generator.ReportGenerator.generate_boxplot_html( description_to_file_dir=description_to_file_dir, sketch_estimator_list=sketch_estimator_list, scenario_list=scenario_list, out_dir=out_dir) # Read the table from html. plot_html = ' '.join(plot_html.split('\n')) regex = r'<table(.+?)</table>' for h in re.finditer(regex, plot_html): tab = pd.read_html(h.group(0), header=[0, 1])[0] self.assertGreater(tab.shape[0], 0, 'The html table is empty table.') def test_generate_and_save_html_report(self): analysis_out_dir = self.create_tempdir('analysis_dir') report_out_dir = self.create_tempdir('test_report_dir') self.run_evaluation_and_simulation(analysis_out_dir) new_report = report_generator.ReportGenerator( out_dir=report_out_dir, analysis_out_dir=analysis_out_dir, evaluation_run_name=self.evaluation_run_name, evaluation_name=self.evaluation_config.name) report_url = new_report('new_report') self.assertTrue(os.path.exists(report_url)) if __name__ == '__main__': absltest.main()
[ "# Copyright 2020 The Private Cardinality Estimation Framework Authors\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n\"\"\"Tests for wfa_cardinality_estimation_evaluation_framework.evaluations.tests.report_generator.\"\"\"\nimport os\nimport re\n\nfrom absl.testing import absltest\n\nimport numpy as np\nimport pandas as pd\n\nfrom wfa_cardinality_estimation_evaluation_framework.estimators import exact_set\nfrom wfa_cardinality_estimation_evaluation_framework.evaluations import analyzer\nfrom wfa_cardinality_estimation_evaluation_framework.evaluations import configs\nfrom wfa_cardinality_estimation_evaluation_framework.evaluations import evaluator\nfrom wfa_cardinality_estimation_evaluation_framework.evaluations import report_generator\nfrom wfa_cardinality_estimation_evaluation_framework.evaluations.data import evaluation_configs\nfrom wfa_cardinality_estimation_evaluation_framework.simulations import set_generator\nfrom wfa_cardinality_estimation_evaluation_framework.simulations import simulator\n\n\nclass ReportGeneratorTest(absltest.TestCase):\n\n def setUp(self):\n super(ReportGeneratorTest, self).setUp()\n exact_set_lossless = simulator.SketchEstimatorConfig(\n name='exact_set-infty-infty-lossless',\n sketch_factory=exact_set.ExactSet.get_sketch_factory(),\n estimator=exact_set.LosslessEstimator(),\n sketch_noiser=None,\n estimate_noiser=None)\n exact_set_less_one = simulator.SketchEstimatorConfig(\n name='exact_set-infty-infty-less_one',\n sketch_factory=exact_set.ExactSet.get_sketch_factory(),\n estimator=exact_set.LessOneEstimator(),\n sketch_noiser=exact_set.AddRandomElementsNoiser(\n num_random_elements=0, random_state=np.random.RandomState()),\n estimate_noiser=None)\n self.sketch_estimator_config_list = (exact_set_lossless, exact_set_less_one)\n\n self.evaluation_config = configs.EvaluationConfig(\n name='test_evaluation',\n num_runs=2,\n scenario_config_list=[\n configs.ScenarioConfig(\n name='ind1',\n set_generator_factory=(\n set_generator.IndependentSetGenerator\n .get_generator_factory_with_num_and_size(\n universe_size=10, num_sets=5, set_size=1))),\n configs.ScenarioConfig(\n name='ind2',\n set_generator_factory=(\n set_generator.IndependentSetGenerator\n .get_generator_factory_with_num_and_size(\n universe_size=10, num_sets=5, set_size=1))),\n ])\n\n self.evaluation_run_name = 'test_run'\n\n def _run_evaluation_and_simulation(out_dir):\n self.evaluator = evaluator.Evaluator(\n evaluation_config=self.evaluation_config,\n sketch_estimator_config_list=self.sketch_estimator_config_list,\n run_name=self.evaluation_run_name,\n out_dir=out_dir)\n self.evaluator()\n\n self.analyzer = analyzer.CardinalityEstimatorEvaluationAnalyzer(\n out_dir=out_dir,\n evaluation_directory=out_dir,\n evaluation_run_name=self.evaluation_run_name,\n evaluation_name=self.evaluation_config.name,\n estimable_criteria_list=[(0.05, 0.95), (1.01, 0.9)])\n self.analyzer()\n\n self.run_evaluation_and_simulation = _run_evaluation_and_simulation\n\n def test_parse_sketch_estimator_name(self):\n sketch_estimator_name = 'vector_of_counts-4096-ln3-sequential'\n parsed_name = report_generator.ReportGenerator.parse_sketch_estimator_name(\n sketch_estimator_name)\n expected = {\n evaluation_configs.SKETCH: 'vector_of_counts',\n evaluation_configs.SKETCH_CONFIG: '4096',\n evaluation_configs.EPSILON: 'ln3',\n evaluation_configs.ESTIMATOR: 'sequential'\n }\n self.assertEqual(parsed_name, expected)\n\n def test_add_parsed_sketch_estimator_name_cols(self):\n df = pd.DataFrame({\n 'sketch_estimator': ['vector_of_counts-4096-ln3-sequential',\n 'bloom_filter-1e6-infty-union_estimator']})\n result = (\n report_generator.ReportGenerator\n .add_parsed_sketch_estimator_name_cols(df, 'sketch_estimator'))\n expected = pd.DataFrame({\n 'sketch_estimator': ['vector_of_counts-4096-ln3-sequential',\n 'bloom_filter-1e6-infty-union_estimator'],\n evaluation_configs.SKETCH: ['vector_of_counts', 'bloom_filter'],\n evaluation_configs.SKETCH_CONFIG: ['4096', '1e6'],\n evaluation_configs.EPSILON: ['ln3', 'infty'],\n evaluation_configs.ESTIMATOR: ['sequential', 'union_estimator']\n })\n try:\n pd.testing.assert_frame_equal(result, expected)\n except AssertionError:\n self.fail('Parsed sketch_estimator_name is not added correctly to df.')\n\n def test_widen_num_estimable_sets_df(self):\n out_dir = self.create_tempdir('test_widen_num_estimable_sets_df')\n self.run_evaluation_and_simulation(out_dir)\n analysis_results = analyzer.get_analysis_results(\n analysis_out_dir=out_dir,\n evaluation_run_name=self.evaluation_run_name,\n evaluation_name=self.evaluation_config.name)\n num_estimable_sets_stats_df = (\n report_generator.ReportGenerator.widen_num_estimable_sets_df(\n analysis_results[report_generator.KEY_NUM_ESTIMABLE_SETS_STATS_DF]))\n\n # Test values are in correct format.\n regex = re.compile(\n r'\\d+<br>relative_error: mean=(((-)?\\d+\\.\\d+)|(nan)), '\n r'std=(((-)?\\d+\\.\\d+)|(nan))')\n for s in np.ndarray.flatten(num_estimable_sets_stats_df.values):\n self.assertRegex(s, regex, f'value {s} not is not in correct format.')\n\n # Test the columns are correct.\n regex = r'(\\d+)\\%\\/(\\d+)'\n for col in num_estimable_sets_stats_df.columns.values:\n self.assertRegex(\n col[0], regex, f'column {col[0]} not is not in correct format.')\n\n def test_generate_boxplot_html(self):\n out_dir = self.create_tempdir('test_generate_boxplot_html')\n self.run_evaluation_and_simulation(out_dir)\n analysis_results = analyzer.get_analysis_results(\n analysis_out_dir=out_dir,\n evaluation_run_name=self.evaluation_run_name,\n evaluation_name=self.evaluation_config.name)\n # Generate boxplot html.\n description_to_file_dir = analysis_results[\n report_generator.KEY_DESCRIPTION_TO_FILE_DIR]\n sketch_estimator_list = [i.name for i in self.sketch_estimator_config_list]\n scenario_list = [\n conf.name for conf in self.evaluation_config.scenario_config_list]\n plot_html = report_generator.ReportGenerator.generate_boxplot_html(\n description_to_file_dir=description_to_file_dir,\n sketch_estimator_list=sketch_estimator_list,\n scenario_list=scenario_list,\n out_dir=out_dir)\n # Read the table from html.\n plot_html = ' '.join(plot_html.split('\\n'))\n regex = r'<table(.+?)</table>'\n for h in re.finditer(regex, plot_html):\n tab = pd.read_html(h.group(0), header=[0, 1])[0]\n self.assertGreater(tab.shape[0], 0,\n 'The html table is empty table.')\n\n def test_generate_and_save_html_report(self):\n analysis_out_dir = self.create_tempdir('analysis_dir')\n report_out_dir = self.create_tempdir('test_report_dir')\n self.run_evaluation_and_simulation(analysis_out_dir)\n new_report = report_generator.ReportGenerator(\n out_dir=report_out_dir,\n analysis_out_dir=analysis_out_dir,\n evaluation_run_name=self.evaluation_run_name,\n evaluation_name=self.evaluation_config.name)\n report_url = new_report('new_report')\n self.assertTrue(os.path.exists(report_url))\n\n\nif __name__ == '__main__':\n absltest.main()\n", "<docstring token>\nimport os\nimport re\nfrom absl.testing import absltest\nimport numpy as np\nimport pandas as pd\nfrom wfa_cardinality_estimation_evaluation_framework.estimators import exact_set\nfrom wfa_cardinality_estimation_evaluation_framework.evaluations import analyzer\nfrom wfa_cardinality_estimation_evaluation_framework.evaluations import configs\nfrom wfa_cardinality_estimation_evaluation_framework.evaluations import evaluator\nfrom wfa_cardinality_estimation_evaluation_framework.evaluations import report_generator\nfrom wfa_cardinality_estimation_evaluation_framework.evaluations.data import evaluation_configs\nfrom wfa_cardinality_estimation_evaluation_framework.simulations import set_generator\nfrom wfa_cardinality_estimation_evaluation_framework.simulations import simulator\n\n\nclass ReportGeneratorTest(absltest.TestCase):\n\n def setUp(self):\n super(ReportGeneratorTest, self).setUp()\n exact_set_lossless = simulator.SketchEstimatorConfig(name=\n 'exact_set-infty-infty-lossless', sketch_factory=exact_set.\n ExactSet.get_sketch_factory(), estimator=exact_set.\n LosslessEstimator(), sketch_noiser=None, estimate_noiser=None)\n exact_set_less_one = simulator.SketchEstimatorConfig(name=\n 'exact_set-infty-infty-less_one', sketch_factory=exact_set.\n ExactSet.get_sketch_factory(), estimator=exact_set.\n LessOneEstimator(), sketch_noiser=exact_set.\n AddRandomElementsNoiser(num_random_elements=0, random_state=np.\n random.RandomState()), estimate_noiser=None)\n self.sketch_estimator_config_list = (exact_set_lossless,\n exact_set_less_one)\n self.evaluation_config = configs.EvaluationConfig(name=\n 'test_evaluation', num_runs=2, scenario_config_list=[configs.\n ScenarioConfig(name='ind1', set_generator_factory=set_generator\n .IndependentSetGenerator.\n get_generator_factory_with_num_and_size(universe_size=10,\n num_sets=5, set_size=1)), configs.ScenarioConfig(name='ind2',\n set_generator_factory=set_generator.IndependentSetGenerator.\n get_generator_factory_with_num_and_size(universe_size=10,\n num_sets=5, set_size=1))])\n self.evaluation_run_name = 'test_run'\n\n def _run_evaluation_and_simulation(out_dir):\n self.evaluator = evaluator.Evaluator(evaluation_config=self.\n evaluation_config, sketch_estimator_config_list=self.\n sketch_estimator_config_list, run_name=self.\n evaluation_run_name, out_dir=out_dir)\n self.evaluator()\n self.analyzer = analyzer.CardinalityEstimatorEvaluationAnalyzer(\n out_dir=out_dir, evaluation_directory=out_dir,\n evaluation_run_name=self.evaluation_run_name,\n evaluation_name=self.evaluation_config.name,\n estimable_criteria_list=[(0.05, 0.95), (1.01, 0.9)])\n self.analyzer()\n self.run_evaluation_and_simulation = _run_evaluation_and_simulation\n\n def test_parse_sketch_estimator_name(self):\n sketch_estimator_name = 'vector_of_counts-4096-ln3-sequential'\n parsed_name = (report_generator.ReportGenerator.\n parse_sketch_estimator_name(sketch_estimator_name))\n expected = {evaluation_configs.SKETCH: 'vector_of_counts',\n evaluation_configs.SKETCH_CONFIG: '4096', evaluation_configs.\n EPSILON: 'ln3', evaluation_configs.ESTIMATOR: 'sequential'}\n self.assertEqual(parsed_name, expected)\n\n def test_add_parsed_sketch_estimator_name_cols(self):\n df = pd.DataFrame({'sketch_estimator': [\n 'vector_of_counts-4096-ln3-sequential',\n 'bloom_filter-1e6-infty-union_estimator']})\n result = (report_generator.ReportGenerator.\n add_parsed_sketch_estimator_name_cols(df, 'sketch_estimator'))\n expected = pd.DataFrame({'sketch_estimator': [\n 'vector_of_counts-4096-ln3-sequential',\n 'bloom_filter-1e6-infty-union_estimator'], evaluation_configs.\n SKETCH: ['vector_of_counts', 'bloom_filter'],\n evaluation_configs.SKETCH_CONFIG: ['4096', '1e6'],\n evaluation_configs.EPSILON: ['ln3', 'infty'],\n evaluation_configs.ESTIMATOR: ['sequential', 'union_estimator']})\n try:\n pd.testing.assert_frame_equal(result, expected)\n except AssertionError:\n self.fail(\n 'Parsed sketch_estimator_name is not added correctly to df.')\n\n def test_widen_num_estimable_sets_df(self):\n out_dir = self.create_tempdir('test_widen_num_estimable_sets_df')\n self.run_evaluation_and_simulation(out_dir)\n analysis_results = analyzer.get_analysis_results(analysis_out_dir=\n out_dir, evaluation_run_name=self.evaluation_run_name,\n evaluation_name=self.evaluation_config.name)\n num_estimable_sets_stats_df = (report_generator.ReportGenerator.\n widen_num_estimable_sets_df(analysis_results[report_generator.\n KEY_NUM_ESTIMABLE_SETS_STATS_DF]))\n regex = re.compile(\n '\\\\d+<br>relative_error: mean=(((-)?\\\\d+\\\\.\\\\d+)|(nan)), std=(((-)?\\\\d+\\\\.\\\\d+)|(nan))'\n )\n for s in np.ndarray.flatten(num_estimable_sets_stats_df.values):\n self.assertRegex(s, regex,\n f'value {s} not is not in correct format.')\n regex = '(\\\\d+)\\\\%\\\\/(\\\\d+)'\n for col in num_estimable_sets_stats_df.columns.values:\n self.assertRegex(col[0], regex,\n f'column {col[0]} not is not in correct format.')\n\n def test_generate_boxplot_html(self):\n out_dir = self.create_tempdir('test_generate_boxplot_html')\n self.run_evaluation_and_simulation(out_dir)\n analysis_results = analyzer.get_analysis_results(analysis_out_dir=\n out_dir, evaluation_run_name=self.evaluation_run_name,\n evaluation_name=self.evaluation_config.name)\n description_to_file_dir = analysis_results[report_generator.\n KEY_DESCRIPTION_TO_FILE_DIR]\n sketch_estimator_list = [i.name for i in self.\n sketch_estimator_config_list]\n scenario_list = [conf.name for conf in self.evaluation_config.\n scenario_config_list]\n plot_html = report_generator.ReportGenerator.generate_boxplot_html(\n description_to_file_dir=description_to_file_dir,\n sketch_estimator_list=sketch_estimator_list, scenario_list=\n scenario_list, out_dir=out_dir)\n plot_html = ' '.join(plot_html.split('\\n'))\n regex = '<table(.+?)</table>'\n for h in re.finditer(regex, plot_html):\n tab = pd.read_html(h.group(0), header=[0, 1])[0]\n self.assertGreater(tab.shape[0], 0,\n 'The html table is empty table.')\n\n def test_generate_and_save_html_report(self):\n analysis_out_dir = self.create_tempdir('analysis_dir')\n report_out_dir = self.create_tempdir('test_report_dir')\n self.run_evaluation_and_simulation(analysis_out_dir)\n new_report = report_generator.ReportGenerator(out_dir=\n report_out_dir, analysis_out_dir=analysis_out_dir,\n evaluation_run_name=self.evaluation_run_name, evaluation_name=\n self.evaluation_config.name)\n report_url = new_report('new_report')\n self.assertTrue(os.path.exists(report_url))\n\n\nif __name__ == '__main__':\n absltest.main()\n", "<docstring token>\n<import token>\n\n\nclass ReportGeneratorTest(absltest.TestCase):\n\n def setUp(self):\n super(ReportGeneratorTest, self).setUp()\n exact_set_lossless = simulator.SketchEstimatorConfig(name=\n 'exact_set-infty-infty-lossless', sketch_factory=exact_set.\n ExactSet.get_sketch_factory(), estimator=exact_set.\n LosslessEstimator(), sketch_noiser=None, estimate_noiser=None)\n exact_set_less_one = simulator.SketchEstimatorConfig(name=\n 'exact_set-infty-infty-less_one', sketch_factory=exact_set.\n ExactSet.get_sketch_factory(), estimator=exact_set.\n LessOneEstimator(), sketch_noiser=exact_set.\n AddRandomElementsNoiser(num_random_elements=0, random_state=np.\n random.RandomState()), estimate_noiser=None)\n self.sketch_estimator_config_list = (exact_set_lossless,\n exact_set_less_one)\n self.evaluation_config = configs.EvaluationConfig(name=\n 'test_evaluation', num_runs=2, scenario_config_list=[configs.\n ScenarioConfig(name='ind1', set_generator_factory=set_generator\n .IndependentSetGenerator.\n get_generator_factory_with_num_and_size(universe_size=10,\n num_sets=5, set_size=1)), configs.ScenarioConfig(name='ind2',\n set_generator_factory=set_generator.IndependentSetGenerator.\n get_generator_factory_with_num_and_size(universe_size=10,\n num_sets=5, set_size=1))])\n self.evaluation_run_name = 'test_run'\n\n def _run_evaluation_and_simulation(out_dir):\n self.evaluator = evaluator.Evaluator(evaluation_config=self.\n evaluation_config, sketch_estimator_config_list=self.\n sketch_estimator_config_list, run_name=self.\n evaluation_run_name, out_dir=out_dir)\n self.evaluator()\n self.analyzer = analyzer.CardinalityEstimatorEvaluationAnalyzer(\n out_dir=out_dir, evaluation_directory=out_dir,\n evaluation_run_name=self.evaluation_run_name,\n evaluation_name=self.evaluation_config.name,\n estimable_criteria_list=[(0.05, 0.95), (1.01, 0.9)])\n self.analyzer()\n self.run_evaluation_and_simulation = _run_evaluation_and_simulation\n\n def test_parse_sketch_estimator_name(self):\n sketch_estimator_name = 'vector_of_counts-4096-ln3-sequential'\n parsed_name = (report_generator.ReportGenerator.\n parse_sketch_estimator_name(sketch_estimator_name))\n expected = {evaluation_configs.SKETCH: 'vector_of_counts',\n evaluation_configs.SKETCH_CONFIG: '4096', evaluation_configs.\n EPSILON: 'ln3', evaluation_configs.ESTIMATOR: 'sequential'}\n self.assertEqual(parsed_name, expected)\n\n def test_add_parsed_sketch_estimator_name_cols(self):\n df = pd.DataFrame({'sketch_estimator': [\n 'vector_of_counts-4096-ln3-sequential',\n 'bloom_filter-1e6-infty-union_estimator']})\n result = (report_generator.ReportGenerator.\n add_parsed_sketch_estimator_name_cols(df, 'sketch_estimator'))\n expected = pd.DataFrame({'sketch_estimator': [\n 'vector_of_counts-4096-ln3-sequential',\n 'bloom_filter-1e6-infty-union_estimator'], evaluation_configs.\n SKETCH: ['vector_of_counts', 'bloom_filter'],\n evaluation_configs.SKETCH_CONFIG: ['4096', '1e6'],\n evaluation_configs.EPSILON: ['ln3', 'infty'],\n evaluation_configs.ESTIMATOR: ['sequential', 'union_estimator']})\n try:\n pd.testing.assert_frame_equal(result, expected)\n except AssertionError:\n self.fail(\n 'Parsed sketch_estimator_name is not added correctly to df.')\n\n def test_widen_num_estimable_sets_df(self):\n out_dir = self.create_tempdir('test_widen_num_estimable_sets_df')\n self.run_evaluation_and_simulation(out_dir)\n analysis_results = analyzer.get_analysis_results(analysis_out_dir=\n out_dir, evaluation_run_name=self.evaluation_run_name,\n evaluation_name=self.evaluation_config.name)\n num_estimable_sets_stats_df = (report_generator.ReportGenerator.\n widen_num_estimable_sets_df(analysis_results[report_generator.\n KEY_NUM_ESTIMABLE_SETS_STATS_DF]))\n regex = re.compile(\n '\\\\d+<br>relative_error: mean=(((-)?\\\\d+\\\\.\\\\d+)|(nan)), std=(((-)?\\\\d+\\\\.\\\\d+)|(nan))'\n )\n for s in np.ndarray.flatten(num_estimable_sets_stats_df.values):\n self.assertRegex(s, regex,\n f'value {s} not is not in correct format.')\n regex = '(\\\\d+)\\\\%\\\\/(\\\\d+)'\n for col in num_estimable_sets_stats_df.columns.values:\n self.assertRegex(col[0], regex,\n f'column {col[0]} not is not in correct format.')\n\n def test_generate_boxplot_html(self):\n out_dir = self.create_tempdir('test_generate_boxplot_html')\n self.run_evaluation_and_simulation(out_dir)\n analysis_results = analyzer.get_analysis_results(analysis_out_dir=\n out_dir, evaluation_run_name=self.evaluation_run_name,\n evaluation_name=self.evaluation_config.name)\n description_to_file_dir = analysis_results[report_generator.\n KEY_DESCRIPTION_TO_FILE_DIR]\n sketch_estimator_list = [i.name for i in self.\n sketch_estimator_config_list]\n scenario_list = [conf.name for conf in self.evaluation_config.\n scenario_config_list]\n plot_html = report_generator.ReportGenerator.generate_boxplot_html(\n description_to_file_dir=description_to_file_dir,\n sketch_estimator_list=sketch_estimator_list, scenario_list=\n scenario_list, out_dir=out_dir)\n plot_html = ' '.join(plot_html.split('\\n'))\n regex = '<table(.+?)</table>'\n for h in re.finditer(regex, plot_html):\n tab = pd.read_html(h.group(0), header=[0, 1])[0]\n self.assertGreater(tab.shape[0], 0,\n 'The html table is empty table.')\n\n def test_generate_and_save_html_report(self):\n analysis_out_dir = self.create_tempdir('analysis_dir')\n report_out_dir = self.create_tempdir('test_report_dir')\n self.run_evaluation_and_simulation(analysis_out_dir)\n new_report = report_generator.ReportGenerator(out_dir=\n report_out_dir, analysis_out_dir=analysis_out_dir,\n evaluation_run_name=self.evaluation_run_name, evaluation_name=\n self.evaluation_config.name)\n report_url = new_report('new_report')\n self.assertTrue(os.path.exists(report_url))\n\n\nif __name__ == '__main__':\n absltest.main()\n", "<docstring token>\n<import token>\n\n\nclass ReportGeneratorTest(absltest.TestCase):\n\n def setUp(self):\n super(ReportGeneratorTest, self).setUp()\n exact_set_lossless = simulator.SketchEstimatorConfig(name=\n 'exact_set-infty-infty-lossless', sketch_factory=exact_set.\n ExactSet.get_sketch_factory(), estimator=exact_set.\n LosslessEstimator(), sketch_noiser=None, estimate_noiser=None)\n exact_set_less_one = simulator.SketchEstimatorConfig(name=\n 'exact_set-infty-infty-less_one', sketch_factory=exact_set.\n ExactSet.get_sketch_factory(), estimator=exact_set.\n LessOneEstimator(), sketch_noiser=exact_set.\n AddRandomElementsNoiser(num_random_elements=0, random_state=np.\n random.RandomState()), estimate_noiser=None)\n self.sketch_estimator_config_list = (exact_set_lossless,\n exact_set_less_one)\n self.evaluation_config = configs.EvaluationConfig(name=\n 'test_evaluation', num_runs=2, scenario_config_list=[configs.\n ScenarioConfig(name='ind1', set_generator_factory=set_generator\n .IndependentSetGenerator.\n get_generator_factory_with_num_and_size(universe_size=10,\n num_sets=5, set_size=1)), configs.ScenarioConfig(name='ind2',\n set_generator_factory=set_generator.IndependentSetGenerator.\n get_generator_factory_with_num_and_size(universe_size=10,\n num_sets=5, set_size=1))])\n self.evaluation_run_name = 'test_run'\n\n def _run_evaluation_and_simulation(out_dir):\n self.evaluator = evaluator.Evaluator(evaluation_config=self.\n evaluation_config, sketch_estimator_config_list=self.\n sketch_estimator_config_list, run_name=self.\n evaluation_run_name, out_dir=out_dir)\n self.evaluator()\n self.analyzer = analyzer.CardinalityEstimatorEvaluationAnalyzer(\n out_dir=out_dir, evaluation_directory=out_dir,\n evaluation_run_name=self.evaluation_run_name,\n evaluation_name=self.evaluation_config.name,\n estimable_criteria_list=[(0.05, 0.95), (1.01, 0.9)])\n self.analyzer()\n self.run_evaluation_and_simulation = _run_evaluation_and_simulation\n\n def test_parse_sketch_estimator_name(self):\n sketch_estimator_name = 'vector_of_counts-4096-ln3-sequential'\n parsed_name = (report_generator.ReportGenerator.\n parse_sketch_estimator_name(sketch_estimator_name))\n expected = {evaluation_configs.SKETCH: 'vector_of_counts',\n evaluation_configs.SKETCH_CONFIG: '4096', evaluation_configs.\n EPSILON: 'ln3', evaluation_configs.ESTIMATOR: 'sequential'}\n self.assertEqual(parsed_name, expected)\n\n def test_add_parsed_sketch_estimator_name_cols(self):\n df = pd.DataFrame({'sketch_estimator': [\n 'vector_of_counts-4096-ln3-sequential',\n 'bloom_filter-1e6-infty-union_estimator']})\n result = (report_generator.ReportGenerator.\n add_parsed_sketch_estimator_name_cols(df, 'sketch_estimator'))\n expected = pd.DataFrame({'sketch_estimator': [\n 'vector_of_counts-4096-ln3-sequential',\n 'bloom_filter-1e6-infty-union_estimator'], evaluation_configs.\n SKETCH: ['vector_of_counts', 'bloom_filter'],\n evaluation_configs.SKETCH_CONFIG: ['4096', '1e6'],\n evaluation_configs.EPSILON: ['ln3', 'infty'],\n evaluation_configs.ESTIMATOR: ['sequential', 'union_estimator']})\n try:\n pd.testing.assert_frame_equal(result, expected)\n except AssertionError:\n self.fail(\n 'Parsed sketch_estimator_name is not added correctly to df.')\n\n def test_widen_num_estimable_sets_df(self):\n out_dir = self.create_tempdir('test_widen_num_estimable_sets_df')\n self.run_evaluation_and_simulation(out_dir)\n analysis_results = analyzer.get_analysis_results(analysis_out_dir=\n out_dir, evaluation_run_name=self.evaluation_run_name,\n evaluation_name=self.evaluation_config.name)\n num_estimable_sets_stats_df = (report_generator.ReportGenerator.\n widen_num_estimable_sets_df(analysis_results[report_generator.\n KEY_NUM_ESTIMABLE_SETS_STATS_DF]))\n regex = re.compile(\n '\\\\d+<br>relative_error: mean=(((-)?\\\\d+\\\\.\\\\d+)|(nan)), std=(((-)?\\\\d+\\\\.\\\\d+)|(nan))'\n )\n for s in np.ndarray.flatten(num_estimable_sets_stats_df.values):\n self.assertRegex(s, regex,\n f'value {s} not is not in correct format.')\n regex = '(\\\\d+)\\\\%\\\\/(\\\\d+)'\n for col in num_estimable_sets_stats_df.columns.values:\n self.assertRegex(col[0], regex,\n f'column {col[0]} not is not in correct format.')\n\n def test_generate_boxplot_html(self):\n out_dir = self.create_tempdir('test_generate_boxplot_html')\n self.run_evaluation_and_simulation(out_dir)\n analysis_results = analyzer.get_analysis_results(analysis_out_dir=\n out_dir, evaluation_run_name=self.evaluation_run_name,\n evaluation_name=self.evaluation_config.name)\n description_to_file_dir = analysis_results[report_generator.\n KEY_DESCRIPTION_TO_FILE_DIR]\n sketch_estimator_list = [i.name for i in self.\n sketch_estimator_config_list]\n scenario_list = [conf.name for conf in self.evaluation_config.\n scenario_config_list]\n plot_html = report_generator.ReportGenerator.generate_boxplot_html(\n description_to_file_dir=description_to_file_dir,\n sketch_estimator_list=sketch_estimator_list, scenario_list=\n scenario_list, out_dir=out_dir)\n plot_html = ' '.join(plot_html.split('\\n'))\n regex = '<table(.+?)</table>'\n for h in re.finditer(regex, plot_html):\n tab = pd.read_html(h.group(0), header=[0, 1])[0]\n self.assertGreater(tab.shape[0], 0,\n 'The html table is empty table.')\n\n def test_generate_and_save_html_report(self):\n analysis_out_dir = self.create_tempdir('analysis_dir')\n report_out_dir = self.create_tempdir('test_report_dir')\n self.run_evaluation_and_simulation(analysis_out_dir)\n new_report = report_generator.ReportGenerator(out_dir=\n report_out_dir, analysis_out_dir=analysis_out_dir,\n evaluation_run_name=self.evaluation_run_name, evaluation_name=\n self.evaluation_config.name)\n report_url = new_report('new_report')\n self.assertTrue(os.path.exists(report_url))\n\n\n<code token>\n", "<docstring token>\n<import token>\n\n\nclass ReportGeneratorTest(absltest.TestCase):\n\n def setUp(self):\n super(ReportGeneratorTest, self).setUp()\n exact_set_lossless = simulator.SketchEstimatorConfig(name=\n 'exact_set-infty-infty-lossless', sketch_factory=exact_set.\n ExactSet.get_sketch_factory(), estimator=exact_set.\n LosslessEstimator(), sketch_noiser=None, estimate_noiser=None)\n exact_set_less_one = simulator.SketchEstimatorConfig(name=\n 'exact_set-infty-infty-less_one', sketch_factory=exact_set.\n ExactSet.get_sketch_factory(), estimator=exact_set.\n LessOneEstimator(), sketch_noiser=exact_set.\n AddRandomElementsNoiser(num_random_elements=0, random_state=np.\n random.RandomState()), estimate_noiser=None)\n self.sketch_estimator_config_list = (exact_set_lossless,\n exact_set_less_one)\n self.evaluation_config = configs.EvaluationConfig(name=\n 'test_evaluation', num_runs=2, scenario_config_list=[configs.\n ScenarioConfig(name='ind1', set_generator_factory=set_generator\n .IndependentSetGenerator.\n get_generator_factory_with_num_and_size(universe_size=10,\n num_sets=5, set_size=1)), configs.ScenarioConfig(name='ind2',\n set_generator_factory=set_generator.IndependentSetGenerator.\n get_generator_factory_with_num_and_size(universe_size=10,\n num_sets=5, set_size=1))])\n self.evaluation_run_name = 'test_run'\n\n def _run_evaluation_and_simulation(out_dir):\n self.evaluator = evaluator.Evaluator(evaluation_config=self.\n evaluation_config, sketch_estimator_config_list=self.\n sketch_estimator_config_list, run_name=self.\n evaluation_run_name, out_dir=out_dir)\n self.evaluator()\n self.analyzer = analyzer.CardinalityEstimatorEvaluationAnalyzer(\n out_dir=out_dir, evaluation_directory=out_dir,\n evaluation_run_name=self.evaluation_run_name,\n evaluation_name=self.evaluation_config.name,\n estimable_criteria_list=[(0.05, 0.95), (1.01, 0.9)])\n self.analyzer()\n self.run_evaluation_and_simulation = _run_evaluation_and_simulation\n\n def test_parse_sketch_estimator_name(self):\n sketch_estimator_name = 'vector_of_counts-4096-ln3-sequential'\n parsed_name = (report_generator.ReportGenerator.\n parse_sketch_estimator_name(sketch_estimator_name))\n expected = {evaluation_configs.SKETCH: 'vector_of_counts',\n evaluation_configs.SKETCH_CONFIG: '4096', evaluation_configs.\n EPSILON: 'ln3', evaluation_configs.ESTIMATOR: 'sequential'}\n self.assertEqual(parsed_name, expected)\n\n def test_add_parsed_sketch_estimator_name_cols(self):\n df = pd.DataFrame({'sketch_estimator': [\n 'vector_of_counts-4096-ln3-sequential',\n 'bloom_filter-1e6-infty-union_estimator']})\n result = (report_generator.ReportGenerator.\n add_parsed_sketch_estimator_name_cols(df, 'sketch_estimator'))\n expected = pd.DataFrame({'sketch_estimator': [\n 'vector_of_counts-4096-ln3-sequential',\n 'bloom_filter-1e6-infty-union_estimator'], evaluation_configs.\n SKETCH: ['vector_of_counts', 'bloom_filter'],\n evaluation_configs.SKETCH_CONFIG: ['4096', '1e6'],\n evaluation_configs.EPSILON: ['ln3', 'infty'],\n evaluation_configs.ESTIMATOR: ['sequential', 'union_estimator']})\n try:\n pd.testing.assert_frame_equal(result, expected)\n except AssertionError:\n self.fail(\n 'Parsed sketch_estimator_name is not added correctly to df.')\n <function token>\n\n def test_generate_boxplot_html(self):\n out_dir = self.create_tempdir('test_generate_boxplot_html')\n self.run_evaluation_and_simulation(out_dir)\n analysis_results = analyzer.get_analysis_results(analysis_out_dir=\n out_dir, evaluation_run_name=self.evaluation_run_name,\n evaluation_name=self.evaluation_config.name)\n description_to_file_dir = analysis_results[report_generator.\n KEY_DESCRIPTION_TO_FILE_DIR]\n sketch_estimator_list = [i.name for i in self.\n sketch_estimator_config_list]\n scenario_list = [conf.name for conf in self.evaluation_config.\n scenario_config_list]\n plot_html = report_generator.ReportGenerator.generate_boxplot_html(\n description_to_file_dir=description_to_file_dir,\n sketch_estimator_list=sketch_estimator_list, scenario_list=\n scenario_list, out_dir=out_dir)\n plot_html = ' '.join(plot_html.split('\\n'))\n regex = '<table(.+?)</table>'\n for h in re.finditer(regex, plot_html):\n tab = pd.read_html(h.group(0), header=[0, 1])[0]\n self.assertGreater(tab.shape[0], 0,\n 'The html table is empty table.')\n\n def test_generate_and_save_html_report(self):\n analysis_out_dir = self.create_tempdir('analysis_dir')\n report_out_dir = self.create_tempdir('test_report_dir')\n self.run_evaluation_and_simulation(analysis_out_dir)\n new_report = report_generator.ReportGenerator(out_dir=\n report_out_dir, analysis_out_dir=analysis_out_dir,\n evaluation_run_name=self.evaluation_run_name, evaluation_name=\n self.evaluation_config.name)\n report_url = new_report('new_report')\n self.assertTrue(os.path.exists(report_url))\n\n\n<code token>\n", "<docstring token>\n<import token>\n\n\nclass ReportGeneratorTest(absltest.TestCase):\n\n def setUp(self):\n super(ReportGeneratorTest, self).setUp()\n exact_set_lossless = simulator.SketchEstimatorConfig(name=\n 'exact_set-infty-infty-lossless', sketch_factory=exact_set.\n ExactSet.get_sketch_factory(), estimator=exact_set.\n LosslessEstimator(), sketch_noiser=None, estimate_noiser=None)\n exact_set_less_one = simulator.SketchEstimatorConfig(name=\n 'exact_set-infty-infty-less_one', sketch_factory=exact_set.\n ExactSet.get_sketch_factory(), estimator=exact_set.\n LessOneEstimator(), sketch_noiser=exact_set.\n AddRandomElementsNoiser(num_random_elements=0, random_state=np.\n random.RandomState()), estimate_noiser=None)\n self.sketch_estimator_config_list = (exact_set_lossless,\n exact_set_less_one)\n self.evaluation_config = configs.EvaluationConfig(name=\n 'test_evaluation', num_runs=2, scenario_config_list=[configs.\n ScenarioConfig(name='ind1', set_generator_factory=set_generator\n .IndependentSetGenerator.\n get_generator_factory_with_num_and_size(universe_size=10,\n num_sets=5, set_size=1)), configs.ScenarioConfig(name='ind2',\n set_generator_factory=set_generator.IndependentSetGenerator.\n get_generator_factory_with_num_and_size(universe_size=10,\n num_sets=5, set_size=1))])\n self.evaluation_run_name = 'test_run'\n\n def _run_evaluation_and_simulation(out_dir):\n self.evaluator = evaluator.Evaluator(evaluation_config=self.\n evaluation_config, sketch_estimator_config_list=self.\n sketch_estimator_config_list, run_name=self.\n evaluation_run_name, out_dir=out_dir)\n self.evaluator()\n self.analyzer = analyzer.CardinalityEstimatorEvaluationAnalyzer(\n out_dir=out_dir, evaluation_directory=out_dir,\n evaluation_run_name=self.evaluation_run_name,\n evaluation_name=self.evaluation_config.name,\n estimable_criteria_list=[(0.05, 0.95), (1.01, 0.9)])\n self.analyzer()\n self.run_evaluation_and_simulation = _run_evaluation_and_simulation\n <function token>\n\n def test_add_parsed_sketch_estimator_name_cols(self):\n df = pd.DataFrame({'sketch_estimator': [\n 'vector_of_counts-4096-ln3-sequential',\n 'bloom_filter-1e6-infty-union_estimator']})\n result = (report_generator.ReportGenerator.\n add_parsed_sketch_estimator_name_cols(df, 'sketch_estimator'))\n expected = pd.DataFrame({'sketch_estimator': [\n 'vector_of_counts-4096-ln3-sequential',\n 'bloom_filter-1e6-infty-union_estimator'], evaluation_configs.\n SKETCH: ['vector_of_counts', 'bloom_filter'],\n evaluation_configs.SKETCH_CONFIG: ['4096', '1e6'],\n evaluation_configs.EPSILON: ['ln3', 'infty'],\n evaluation_configs.ESTIMATOR: ['sequential', 'union_estimator']})\n try:\n pd.testing.assert_frame_equal(result, expected)\n except AssertionError:\n self.fail(\n 'Parsed sketch_estimator_name is not added correctly to df.')\n <function token>\n\n def test_generate_boxplot_html(self):\n out_dir = self.create_tempdir('test_generate_boxplot_html')\n self.run_evaluation_and_simulation(out_dir)\n analysis_results = analyzer.get_analysis_results(analysis_out_dir=\n out_dir, evaluation_run_name=self.evaluation_run_name,\n evaluation_name=self.evaluation_config.name)\n description_to_file_dir = analysis_results[report_generator.\n KEY_DESCRIPTION_TO_FILE_DIR]\n sketch_estimator_list = [i.name for i in self.\n sketch_estimator_config_list]\n scenario_list = [conf.name for conf in self.evaluation_config.\n scenario_config_list]\n plot_html = report_generator.ReportGenerator.generate_boxplot_html(\n description_to_file_dir=description_to_file_dir,\n sketch_estimator_list=sketch_estimator_list, scenario_list=\n scenario_list, out_dir=out_dir)\n plot_html = ' '.join(plot_html.split('\\n'))\n regex = '<table(.+?)</table>'\n for h in re.finditer(regex, plot_html):\n tab = pd.read_html(h.group(0), header=[0, 1])[0]\n self.assertGreater(tab.shape[0], 0,\n 'The html table is empty table.')\n\n def test_generate_and_save_html_report(self):\n analysis_out_dir = self.create_tempdir('analysis_dir')\n report_out_dir = self.create_tempdir('test_report_dir')\n self.run_evaluation_and_simulation(analysis_out_dir)\n new_report = report_generator.ReportGenerator(out_dir=\n report_out_dir, analysis_out_dir=analysis_out_dir,\n evaluation_run_name=self.evaluation_run_name, evaluation_name=\n self.evaluation_config.name)\n report_url = new_report('new_report')\n self.assertTrue(os.path.exists(report_url))\n\n\n<code token>\n", "<docstring token>\n<import token>\n\n\nclass ReportGeneratorTest(absltest.TestCase):\n\n def setUp(self):\n super(ReportGeneratorTest, self).setUp()\n exact_set_lossless = simulator.SketchEstimatorConfig(name=\n 'exact_set-infty-infty-lossless', sketch_factory=exact_set.\n ExactSet.get_sketch_factory(), estimator=exact_set.\n LosslessEstimator(), sketch_noiser=None, estimate_noiser=None)\n exact_set_less_one = simulator.SketchEstimatorConfig(name=\n 'exact_set-infty-infty-less_one', sketch_factory=exact_set.\n ExactSet.get_sketch_factory(), estimator=exact_set.\n LessOneEstimator(), sketch_noiser=exact_set.\n AddRandomElementsNoiser(num_random_elements=0, random_state=np.\n random.RandomState()), estimate_noiser=None)\n self.sketch_estimator_config_list = (exact_set_lossless,\n exact_set_less_one)\n self.evaluation_config = configs.EvaluationConfig(name=\n 'test_evaluation', num_runs=2, scenario_config_list=[configs.\n ScenarioConfig(name='ind1', set_generator_factory=set_generator\n .IndependentSetGenerator.\n get_generator_factory_with_num_and_size(universe_size=10,\n num_sets=5, set_size=1)), configs.ScenarioConfig(name='ind2',\n set_generator_factory=set_generator.IndependentSetGenerator.\n get_generator_factory_with_num_and_size(universe_size=10,\n num_sets=5, set_size=1))])\n self.evaluation_run_name = 'test_run'\n\n def _run_evaluation_and_simulation(out_dir):\n self.evaluator = evaluator.Evaluator(evaluation_config=self.\n evaluation_config, sketch_estimator_config_list=self.\n sketch_estimator_config_list, run_name=self.\n evaluation_run_name, out_dir=out_dir)\n self.evaluator()\n self.analyzer = analyzer.CardinalityEstimatorEvaluationAnalyzer(\n out_dir=out_dir, evaluation_directory=out_dir,\n evaluation_run_name=self.evaluation_run_name,\n evaluation_name=self.evaluation_config.name,\n estimable_criteria_list=[(0.05, 0.95), (1.01, 0.9)])\n self.analyzer()\n self.run_evaluation_and_simulation = _run_evaluation_and_simulation\n <function token>\n <function token>\n <function token>\n\n def test_generate_boxplot_html(self):\n out_dir = self.create_tempdir('test_generate_boxplot_html')\n self.run_evaluation_and_simulation(out_dir)\n analysis_results = analyzer.get_analysis_results(analysis_out_dir=\n out_dir, evaluation_run_name=self.evaluation_run_name,\n evaluation_name=self.evaluation_config.name)\n description_to_file_dir = analysis_results[report_generator.\n KEY_DESCRIPTION_TO_FILE_DIR]\n sketch_estimator_list = [i.name for i in self.\n sketch_estimator_config_list]\n scenario_list = [conf.name for conf in self.evaluation_config.\n scenario_config_list]\n plot_html = report_generator.ReportGenerator.generate_boxplot_html(\n description_to_file_dir=description_to_file_dir,\n sketch_estimator_list=sketch_estimator_list, scenario_list=\n scenario_list, out_dir=out_dir)\n plot_html = ' '.join(plot_html.split('\\n'))\n regex = '<table(.+?)</table>'\n for h in re.finditer(regex, plot_html):\n tab = pd.read_html(h.group(0), header=[0, 1])[0]\n self.assertGreater(tab.shape[0], 0,\n 'The html table is empty table.')\n\n def test_generate_and_save_html_report(self):\n analysis_out_dir = self.create_tempdir('analysis_dir')\n report_out_dir = self.create_tempdir('test_report_dir')\n self.run_evaluation_and_simulation(analysis_out_dir)\n new_report = report_generator.ReportGenerator(out_dir=\n report_out_dir, analysis_out_dir=analysis_out_dir,\n evaluation_run_name=self.evaluation_run_name, evaluation_name=\n self.evaluation_config.name)\n report_url = new_report('new_report')\n self.assertTrue(os.path.exists(report_url))\n\n\n<code token>\n", "<docstring token>\n<import token>\n\n\nclass ReportGeneratorTest(absltest.TestCase):\n <function token>\n <function token>\n <function token>\n <function token>\n\n def test_generate_boxplot_html(self):\n out_dir = self.create_tempdir('test_generate_boxplot_html')\n self.run_evaluation_and_simulation(out_dir)\n analysis_results = analyzer.get_analysis_results(analysis_out_dir=\n out_dir, evaluation_run_name=self.evaluation_run_name,\n evaluation_name=self.evaluation_config.name)\n description_to_file_dir = analysis_results[report_generator.\n KEY_DESCRIPTION_TO_FILE_DIR]\n sketch_estimator_list = [i.name for i in self.\n sketch_estimator_config_list]\n scenario_list = [conf.name for conf in self.evaluation_config.\n scenario_config_list]\n plot_html = report_generator.ReportGenerator.generate_boxplot_html(\n description_to_file_dir=description_to_file_dir,\n sketch_estimator_list=sketch_estimator_list, scenario_list=\n scenario_list, out_dir=out_dir)\n plot_html = ' '.join(plot_html.split('\\n'))\n regex = '<table(.+?)</table>'\n for h in re.finditer(regex, plot_html):\n tab = pd.read_html(h.group(0), header=[0, 1])[0]\n self.assertGreater(tab.shape[0], 0,\n 'The html table is empty table.')\n\n def test_generate_and_save_html_report(self):\n analysis_out_dir = self.create_tempdir('analysis_dir')\n report_out_dir = self.create_tempdir('test_report_dir')\n self.run_evaluation_and_simulation(analysis_out_dir)\n new_report = report_generator.ReportGenerator(out_dir=\n report_out_dir, analysis_out_dir=analysis_out_dir,\n evaluation_run_name=self.evaluation_run_name, evaluation_name=\n self.evaluation_config.name)\n report_url = new_report('new_report')\n self.assertTrue(os.path.exists(report_url))\n\n\n<code token>\n", "<docstring token>\n<import token>\n\n\nclass ReportGeneratorTest(absltest.TestCase):\n <function token>\n <function token>\n <function token>\n <function token>\n\n def test_generate_boxplot_html(self):\n out_dir = self.create_tempdir('test_generate_boxplot_html')\n self.run_evaluation_and_simulation(out_dir)\n analysis_results = analyzer.get_analysis_results(analysis_out_dir=\n out_dir, evaluation_run_name=self.evaluation_run_name,\n evaluation_name=self.evaluation_config.name)\n description_to_file_dir = analysis_results[report_generator.\n KEY_DESCRIPTION_TO_FILE_DIR]\n sketch_estimator_list = [i.name for i in self.\n sketch_estimator_config_list]\n scenario_list = [conf.name for conf in self.evaluation_config.\n scenario_config_list]\n plot_html = report_generator.ReportGenerator.generate_boxplot_html(\n description_to_file_dir=description_to_file_dir,\n sketch_estimator_list=sketch_estimator_list, scenario_list=\n scenario_list, out_dir=out_dir)\n plot_html = ' '.join(plot_html.split('\\n'))\n regex = '<table(.+?)</table>'\n for h in re.finditer(regex, plot_html):\n tab = pd.read_html(h.group(0), header=[0, 1])[0]\n self.assertGreater(tab.shape[0], 0,\n 'The html table is empty table.')\n <function token>\n\n\n<code token>\n", "<docstring token>\n<import token>\n\n\nclass ReportGeneratorTest(absltest.TestCase):\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\n<code token>\n", "<docstring token>\n<import token>\n<class token>\n<code token>\n" ]
false
98,874
b33388d33fb195d40d167d30bc048df9fb4aba70
#Britni Canale #SoftDev1 pd 6 #K26 -- Getting More REST #2018-11-15 from flask import Flask, render_template, session, request, url_for, redirect, flash from urllib.request import urlopen, Request import json, requests app = Flask(__name__) @app.route("/") def hello(): dog = "https://dog.ceo/api/breeds/image/random" req = urlopen(dog) dogdict = json.loads(req.read()) dogpic = dogdict["message"] print(dogpic) breed = dogpic[30:dogpic.rindex("/")] print(breed) #url = 'http://api.repo.nypl.org/api/v1/items/search?q=cats&publicDomainOnly=true' dogfacts = 'http://api.repo.nypl.org/api/v1/items/search?q='+breed auth = 'Token token=ekujifnuvmrzwzuk' call = requests.get(dogfacts, headers={'Authorization': auth}) #r = requests.get(dogfacts) #logger.info(type(r)) #request = Request(dogfacts, values.encode("utf-8")) #openrequest = urlopen(request) #readrequest = openrequest.read() #print(r.text) #factsdict = json.loads(r.text) #print(factsdict) return render_template("index.html", ttl = "DOGS AND STUFF", DOG = dogpic, breed = breed) if __name__ == "__main__": app.debug = True app.run()
[ "#Britni Canale\n#SoftDev1 pd 6\n#K26 -- Getting More REST\n#2018-11-15\n\n\nfrom flask import Flask, render_template, session, request, url_for, redirect, flash\nfrom urllib.request import urlopen, Request\nimport json, requests\n\napp = Flask(__name__)\n\[email protected](\"/\")\ndef hello():\n dog = \"https://dog.ceo/api/breeds/image/random\"\n req = urlopen(dog)\n dogdict = json.loads(req.read())\n dogpic = dogdict[\"message\"]\n print(dogpic)\n breed = dogpic[30:dogpic.rindex(\"/\")]\n print(breed)\n\n #url = 'http://api.repo.nypl.org/api/v1/items/search?q=cats&publicDomainOnly=true'\n\n\n\n dogfacts = 'http://api.repo.nypl.org/api/v1/items/search?q='+breed\n auth = 'Token token=ekujifnuvmrzwzuk'\n call = requests.get(dogfacts, headers={'Authorization': auth})\n\n #r = requests.get(dogfacts)\n #logger.info(type(r))\n #request = Request(dogfacts, values.encode(\"utf-8\"))\n #openrequest = urlopen(request)\n #readrequest = openrequest.read()\n #print(r.text)\n #factsdict = json.loads(r.text)\n #print(factsdict)\n return render_template(\"index.html\", ttl = \"DOGS AND STUFF\", DOG = dogpic, breed = breed)\n\nif __name__ == \"__main__\":\n app.debug = True\n app.run()\n", "from flask import Flask, render_template, session, request, url_for, redirect, flash\nfrom urllib.request import urlopen, Request\nimport json, requests\napp = Flask(__name__)\n\n\[email protected]('/')\ndef hello():\n dog = 'https://dog.ceo/api/breeds/image/random'\n req = urlopen(dog)\n dogdict = json.loads(req.read())\n dogpic = dogdict['message']\n print(dogpic)\n breed = dogpic[30:dogpic.rindex('/')]\n print(breed)\n dogfacts = 'http://api.repo.nypl.org/api/v1/items/search?q=' + breed\n auth = 'Token token=ekujifnuvmrzwzuk'\n call = requests.get(dogfacts, headers={'Authorization': auth})\n return render_template('index.html', ttl='DOGS AND STUFF', DOG=dogpic,\n breed=breed)\n\n\nif __name__ == '__main__':\n app.debug = True\n app.run()\n", "<import token>\napp = Flask(__name__)\n\n\[email protected]('/')\ndef hello():\n dog = 'https://dog.ceo/api/breeds/image/random'\n req = urlopen(dog)\n dogdict = json.loads(req.read())\n dogpic = dogdict['message']\n print(dogpic)\n breed = dogpic[30:dogpic.rindex('/')]\n print(breed)\n dogfacts = 'http://api.repo.nypl.org/api/v1/items/search?q=' + breed\n auth = 'Token token=ekujifnuvmrzwzuk'\n call = requests.get(dogfacts, headers={'Authorization': auth})\n return render_template('index.html', ttl='DOGS AND STUFF', DOG=dogpic,\n breed=breed)\n\n\nif __name__ == '__main__':\n app.debug = True\n app.run()\n", "<import token>\n<assignment token>\n\n\[email protected]('/')\ndef hello():\n dog = 'https://dog.ceo/api/breeds/image/random'\n req = urlopen(dog)\n dogdict = json.loads(req.read())\n dogpic = dogdict['message']\n print(dogpic)\n breed = dogpic[30:dogpic.rindex('/')]\n print(breed)\n dogfacts = 'http://api.repo.nypl.org/api/v1/items/search?q=' + breed\n auth = 'Token token=ekujifnuvmrzwzuk'\n call = requests.get(dogfacts, headers={'Authorization': auth})\n return render_template('index.html', ttl='DOGS AND STUFF', DOG=dogpic,\n breed=breed)\n\n\nif __name__ == '__main__':\n app.debug = True\n app.run()\n", "<import token>\n<assignment token>\n\n\[email protected]('/')\ndef hello():\n dog = 'https://dog.ceo/api/breeds/image/random'\n req = urlopen(dog)\n dogdict = json.loads(req.read())\n dogpic = dogdict['message']\n print(dogpic)\n breed = dogpic[30:dogpic.rindex('/')]\n print(breed)\n dogfacts = 'http://api.repo.nypl.org/api/v1/items/search?q=' + breed\n auth = 'Token token=ekujifnuvmrzwzuk'\n call = requests.get(dogfacts, headers={'Authorization': auth})\n return render_template('index.html', ttl='DOGS AND STUFF', DOG=dogpic,\n breed=breed)\n\n\n<code token>\n", "<import token>\n<assignment token>\n<function token>\n<code token>\n" ]
false
98,875
5e8aa2fd85aef1a9e0fa939b80ba66f4065a90a2
#FluidChannel.py """ Class implementation file for the Python class FluidChannel Depends on vtkHelper module for geometry visualization functionality """ import math import argparse import numpy as np from vtkHelper import saveStructuredPointsVTK_ascii as writeVTK import scipy.io class EmptyChannel: """ a channel with nothing in it """ def __init__(self,Lo): """ constructor """ self.Lo = Lo def get_Lo(self): """ set Lo if need be ? """ return self.Lo def get_obstList(self,X,Y,Z): """ for an empty channel - no obstacles """ return [] class SphereObstruction(EmptyChannel): """ a channel with a sphere obstruction """ def __init__(self,r,x_c,y_c,z_c): """ just need to define the radius and position of the center of the obstacle. it is up to the caller to verify that the object will fit within the intended channel. If it does not fit, the obstacle will effectively be truncated at the channel boundaries """ self.r = r self.x_c = x_c self.y_c = y_c self.z_c = z_c def get_Lo(self): return self.r*2. def get_obstList(self,X,Y,Z): """ return a list of all indices all indices within boundary of sphere """ x = np.array(X); y = np.array(Y); z = np.array(Z); dist = (x - self.x_c)**2 + (y - self.y_c)**2 + (z - self.z_c)**2 return list(np.where(dist < self.r**2)) class EllipticalScourPit(EmptyChannel): """ a channel with an elliptical scour pit with prescribed properties corresponds to case 3 of Bryan's geometry_desc.m """ def __init__(self,x_c,z_c,cyl_rad): """ constructor giving the x and z coordinates of the scour pit along with the radius of the cylindrical piling """ self.x_c = x_c self.z_c = z_c self.cyl_rad = cyl_rad def get_Lo(self): return self.cyl_rad*2. def get_obstList(self,X,Y,Z): """ return a list of all indices of lattice points within the boundaries of the scour pit obstacle """ ellip_a = 2.*2.*self.cyl_rad ellip_b = 2.*self.cyl_rad ellip_c = 8.*self.cyl_rad ellip_x = self.x_c ellip_z = self.z_c + self.cyl_rad ellip_y = ellip_b floor_part = np.array(np.where(Y < ellip_b)).flatten() dist = (X - self.x_c)**2 + (Z - self.z_c)**2; cyl_part = list(np.array(np.where( dist < self.cyl_rad**2)).flatten()) scour_pit = np.array(np.where( (X - ellip_x)**2/(ellip_a**2) + (Y - ellip_y)**2/(ellip_b**2) + (Z - ellip_z)**2/(ellip_c**2) <= 1.)).flatten() # remove the scour pit from the floor obst_list = np.setxor1d(floor_part[:], np.intersect1d(floor_part[:],scour_pit[:])) # then add the cylinder obst_list = np.union1d(obst_list[:],cyl_part[:]) return list(obst_list[:]) def fluid_properties(fluid_str): """ Return the physical density and kinematic viscosity for the prescribed fluid. """ fluid_lib = {'water':(1000., 1.0e-6), 'glycol':(965.3,6.216e-4), 'glycerin':(1260,1.18e-3)} if fluid_str in fluid_lib.keys(): return fluid_lib[fluid_str] else: print 'valid fluids are:' for keys in fluid_lib: print " '%s' " % keys raise KeyError('invalid fluid specified') class FluidChannel: def __init__(self,Lx_p=1., Ly_p=1., Lz_p=6., fluid='water', obst=EmptyChannel(1.), N_divs = 5, wallList=['left','right','top','bottom']): """ class constructor """ self.Lx_p = Lx_p self.Ly_p = Ly_p self.Lz_p = Lz_p self.N_divs = N_divs self.fluid = fluid self.obst = obst # generate the geometry Lo = obst.get_Lo() self.Ny = math.ceil((N_divs-1)*(Ly_p/Lo))+1 self.Nx = math.ceil((N_divs-1)*(Lx_p/Lo))+1 self.Nz = math.ceil((N_divs-1)*(Lz_p/Lo))+1 self.nnodes = self.Nx*self.Ny*self.Nz print "Creating channel with %g lattice points." % self.nnodes x = np.linspace(0.,Lx_p,self.Nx).astype(np.float32); y = np.linspace(0.,Ly_p,self.Ny).astype(np.float32); z = np.linspace(0.,Lz_p,self.Nz).astype(np.float32); Y,Z,X = np.meshgrid(y,z,x); self.x = np.reshape(X,self.nnodes) self.y = np.reshape(Y,self.nnodes) self.z = np.reshape(Z,self.nnodes) # get fluid properties from the included fluid library self.rho_p, self.nu_p = fluid_properties(fluid) # identify inlet and outlet nodes - # require the user to set solid boundaries separately self.inlet_list = np.where(self.z==0) self.outlet_list = np.where(self.z==Lz_p) print "Getting obstacle list" # get obstacle list self.obst_list = self.obst.get_obstList(self.x[:],self.y[:],self.z[:]) print "Generating channel solid boundaries" # set channel walls self.set_channel_walls(wallList) # now eliminate overlap between node lists self.inlet_list = np.setxor1d(self.inlet_list[:], np.intersect1d(self.inlet_list[:],self.solid_list[:])) self.inlet_list = np.setxor1d(self.inlet_list[:], np.intersect1d(self.inlet_list[:],self.obst_list[:])) self.outlet_list = np.setxor1d(self.outlet_list[:], np.intersect1d(self.outlet_list[:],self.solid_list[:])) self.outlet_list = np.setxor1d(self.outlet_list[:], np.intersect1d(self.outlet_list[:],self.obst_list[:])) self.obst_list = np.setxor1d(self.obst_list[:], np.intersect1d(self.obst_list[:],self.solid_list[:])) def write_mat_file(self): """ generate the mat file to interface with genInput.py. Needs to save Lx_p, Ly_p, Lz_p, Lo, Ny_divs, rho_p, nu_p, snl, inl and onl. note that the snl and obst_list need to be combined into one list """ mat_dict = {} mat_dict['Lx_p'] = self.Lx_p mat_dict['Ly_p'] = self.Ly_p mat_dict['Lz_p'] = self.Lz_p mat_dict['Lo'] = self.obst.get_Lo() mat_dict['Ny_divs'] = self.N_divs mat_dict['rho_p'] = self.rho_p mat_dict['nu_p'] = self.nu_p mat_dict['snl'] = list(np.union1d(self.obst_list[:],self.solid_list[:])) mat_dict['inl'] = list(self.inlet_list[:]) mat_dict['onl'] = list(self.outlet_list[:]) scipy.io.savemat('geometry_description',mat_dict) def write_bc_vtk(self): """ write node lists to properly formatted VTK files """ print "Creating boundary condition arrays" obst_array = np.zeros(self.nnodes) obst_array[list(self.obst_list)] = 100. #print type(self.inlet_list) inlet_array = np.zeros(self.nnodes) inlet_array[list(self.inlet_list)] = 200. outlet_array = np.zeros(self.nnodes) outlet_array[list(self.outlet_list)] = 300. solid_array = np.zeros(self.nnodes) solid_array[list(self.solid_list)] = 500. dims = [int(self.Nx), int(self.Ny), int(self.Nz)] origin = [0., 0., 0.] dx = self.x[1] - self.x[0] spacing = [dx, dx, dx] #uniform lattice print "Writing boundary conditions to VTK files" writeVTK(inlet_array,'inlet','inlet.vtk',dims,origin,spacing) writeVTK(outlet_array,'outlet','outlet.vtk',dims,origin,spacing) writeVTK(obst_array,'obst','obst.vtk',dims,origin,spacing) writeVTK(solid_array,'solid','solid.vtk',dims,origin,spacing) # must have geometry set first def set_channel_walls(self,walls=['left','right','top','bottom']): """ set up to 4 walls as solid walls for the simulation """ solid_list_a = np.empty(0).flatten() solid_list_b = np.empty(0).flatten() solid_list_c = np.empty(0).flatten() solid_list_d = np.empty(0).flatten() for w in walls: if w=='right': solid_list_a = np.array(np.where((self.x==0.))).flatten() elif w=='left': solid_list_b = np.array(np.where((self.x == self.Lx_p))).flatten() elif w=='top': solid_list_d = np.array(np.where((self.y == self.Ly_p))).flatten() elif w=='bottom': solid_list_c = np.array(np.where((self.y == 0.))).flatten() solid_list = np.array(np.union1d(solid_list_a,solid_list_b)); solid_list = np.array(np.union1d(solid_list,solid_list_c)) self.solid_list = np.array(np.union1d(solid_list,solid_list_d))
[ "#FluidChannel.py\n\"\"\"\nClass implementation file for the Python class FluidChannel\nDepends on vtkHelper module for geometry visualization functionality\n\n\"\"\"\nimport math\nimport argparse\nimport numpy as np\nfrom vtkHelper import saveStructuredPointsVTK_ascii as writeVTK\nimport scipy.io\n\nclass EmptyChannel: \n \"\"\"\n a channel with nothing in it\n \"\"\"\n def __init__(self,Lo):\n \"\"\"\n constructor\n \"\"\"\n self.Lo = Lo\n\n def get_Lo(self):\n \"\"\"\n set Lo if need be ?\n \"\"\"\n return self.Lo\n\n def get_obstList(self,X,Y,Z):\n \"\"\"\n for an empty channel - no obstacles \n \"\"\"\n return []\n\nclass SphereObstruction(EmptyChannel):\n \"\"\"\n a channel with a sphere obstruction\n \"\"\"\n\n def __init__(self,r,x_c,y_c,z_c):\n \"\"\"\n just need to define the radius and position of the center of the obstacle.\n it is up to the caller to verify that the object will fit within the intended\n channel. If it does not fit, the obstacle will effectively be\n truncated at the channel boundaries\n \n \"\"\"\n self.r = r\n self.x_c = x_c\n self.y_c = y_c\n self.z_c = z_c\n \n def get_Lo(self):\n return self.r*2.\n\n def get_obstList(self,X,Y,Z):\n \"\"\"\n return a list of all indices all indices within boundary of sphere \n \"\"\"\n\n x = np.array(X); y = np.array(Y); z = np.array(Z);\n dist = (x - self.x_c)**2 + (y - self.y_c)**2 + (z - self.z_c)**2\n \n return list(np.where(dist < self.r**2))\n \nclass EllipticalScourPit(EmptyChannel):\n \"\"\"\n a channel with an elliptical scour pit with prescribed properties\n corresponds to case 3 of Bryan's geometry_desc.m\n \"\"\"\n\n def __init__(self,x_c,z_c,cyl_rad):\n \"\"\"\n constructor giving the x and z coordinates of the scour pit along with\n the radius of the cylindrical piling\n \"\"\"\n self.x_c = x_c\n self.z_c = z_c\n self.cyl_rad = cyl_rad\n\n def get_Lo(self):\n return self.cyl_rad*2.\n\n def get_obstList(self,X,Y,Z):\n \"\"\"\n return a list of all indices of lattice points within the boundaries of the\n scour pit obstacle\n\n \"\"\"\n \n ellip_a = 2.*2.*self.cyl_rad\n ellip_b = 2.*self.cyl_rad\n ellip_c = 8.*self.cyl_rad\n ellip_x = self.x_c\n ellip_z = self.z_c + self.cyl_rad\n ellip_y = ellip_b \n\n floor_part = np.array(np.where(Y < ellip_b)).flatten()\n\n dist = (X - self.x_c)**2 + (Z - self.z_c)**2;\n cyl_part = list(np.array(np.where( dist < self.cyl_rad**2)).flatten())\n\n scour_pit = np.array(np.where( (X - ellip_x)**2/(ellip_a**2) + \n (Y - ellip_y)**2/(ellip_b**2) +\n (Z - ellip_z)**2/(ellip_c**2) <= 1.)).flatten()\n\n # remove the scour pit from the floor\n obst_list = np.setxor1d(floor_part[:], \n np.intersect1d(floor_part[:],scour_pit[:]))\n\n\n # then add the cylinder\n obst_list = np.union1d(obst_list[:],cyl_part[:])\n \n return list(obst_list[:])\n\n\n\ndef fluid_properties(fluid_str): \n \"\"\"\n Return the physical density and kinematic viscosity for the prescribed\n fluid.\n \n \"\"\"\n fluid_lib = {'water':(1000., 1.0e-6), \n 'glycol':(965.3,6.216e-4),\n 'glycerin':(1260,1.18e-3)}\n if fluid_str in fluid_lib.keys():\n return fluid_lib[fluid_str]\n else:\n print 'valid fluids are:'\n for keys in fluid_lib:\n print \" '%s' \" % keys\n raise KeyError('invalid fluid specified')\n\nclass FluidChannel:\n def __init__(self,Lx_p=1.,\n Ly_p=1.,\n Lz_p=6.,\n fluid='water', \n obst=EmptyChannel(1.),\n N_divs = 5,\n wallList=['left','right','top','bottom']):\n \"\"\"\n class constructor\n\n \"\"\"\n self.Lx_p = Lx_p\n self.Ly_p = Ly_p\n self.Lz_p = Lz_p\n self.N_divs = N_divs\n self.fluid = fluid\n self.obst = obst\n\n # generate the geometry\n\n Lo = obst.get_Lo()\n\n self.Ny = math.ceil((N_divs-1)*(Ly_p/Lo))+1\n self.Nx = math.ceil((N_divs-1)*(Lx_p/Lo))+1\n self.Nz = math.ceil((N_divs-1)*(Lz_p/Lo))+1\n self.nnodes = self.Nx*self.Ny*self.Nz\n print \"Creating channel with %g lattice points.\" % self.nnodes\n x = np.linspace(0.,Lx_p,self.Nx).astype(np.float32);\n y = np.linspace(0.,Ly_p,self.Ny).astype(np.float32);\n z = np.linspace(0.,Lz_p,self.Nz).astype(np.float32);\n \n Y,Z,X = np.meshgrid(y,z,x);\n \n self.x = np.reshape(X,self.nnodes)\n self.y = np.reshape(Y,self.nnodes)\n self.z = np.reshape(Z,self.nnodes)\n\n # get fluid properties from the included fluid library\n self.rho_p, self.nu_p = fluid_properties(fluid)\n\n # identify inlet and outlet nodes - \n # require the user to set solid boundaries separately\n self.inlet_list = np.where(self.z==0)\n self.outlet_list = np.where(self.z==Lz_p)\n \n print \"Getting obstacle list\"\n # get obstacle list\n self.obst_list = self.obst.get_obstList(self.x[:],self.y[:],self.z[:])\n \n\n print \"Generating channel solid boundaries\"\n # set channel walls\n self.set_channel_walls(wallList)\n\n # now eliminate overlap between node lists\n\n self.inlet_list = np.setxor1d(self.inlet_list[:],\n np.intersect1d(self.inlet_list[:],self.solid_list[:]))\n self.inlet_list = np.setxor1d(self.inlet_list[:],\n np.intersect1d(self.inlet_list[:],self.obst_list[:]))\n \n self.outlet_list = np.setxor1d(self.outlet_list[:],\n np.intersect1d(self.outlet_list[:],self.solid_list[:]))\n self.outlet_list = np.setxor1d(self.outlet_list[:],\n np.intersect1d(self.outlet_list[:],self.obst_list[:]))\n\n self.obst_list = np.setxor1d(self.obst_list[:],\n np.intersect1d(self.obst_list[:],self.solid_list[:]))\n \n def write_mat_file(self):\n \"\"\"\n generate the mat file to interface with genInput.py. Needs to save\n Lx_p, Ly_p, Lz_p, Lo, Ny_divs, rho_p, nu_p, snl, inl and onl.\n\n note that the snl and obst_list need to be combined into one list \n\n \"\"\"\n mat_dict = {}\n mat_dict['Lx_p'] = self.Lx_p\n mat_dict['Ly_p'] = self.Ly_p\n mat_dict['Lz_p'] = self.Lz_p\n mat_dict['Lo'] = self.obst.get_Lo()\n mat_dict['Ny_divs'] = self.N_divs\n mat_dict['rho_p'] = self.rho_p\n mat_dict['nu_p'] = self.nu_p\n mat_dict['snl'] = list(np.union1d(self.obst_list[:],self.solid_list[:]))\n mat_dict['inl'] = list(self.inlet_list[:])\n mat_dict['onl'] = list(self.outlet_list[:])\n\n scipy.io.savemat('geometry_description',mat_dict)\n\n\n \n def write_bc_vtk(self):\n \"\"\"\n write node lists to properly formatted VTK files\n \"\"\"\n print \"Creating boundary condition arrays\"\n obst_array = np.zeros(self.nnodes)\n obst_array[list(self.obst_list)] = 100.\n\n #print type(self.inlet_list)\n inlet_array = np.zeros(self.nnodes)\n inlet_array[list(self.inlet_list)] = 200.\n\n outlet_array = np.zeros(self.nnodes)\n outlet_array[list(self.outlet_list)] = 300.\n\n solid_array = np.zeros(self.nnodes)\n solid_array[list(self.solid_list)] = 500.\n \n dims = [int(self.Nx), int(self.Ny), int(self.Nz)]\n origin = [0., 0., 0.]\n dx = self.x[1] - self.x[0]\n spacing = [dx, dx, dx] #uniform lattice\n \n print \"Writing boundary conditions to VTK files\"\n writeVTK(inlet_array,'inlet','inlet.vtk',dims,origin,spacing)\n writeVTK(outlet_array,'outlet','outlet.vtk',dims,origin,spacing)\n writeVTK(obst_array,'obst','obst.vtk',dims,origin,spacing)\n writeVTK(solid_array,'solid','solid.vtk',dims,origin,spacing)\n\n\n # must have geometry set first\n def set_channel_walls(self,walls=['left','right','top','bottom']): \n \"\"\"\n set up to 4 walls as solid walls for the simulation\n \"\"\"\n solid_list_a = np.empty(0).flatten()\n solid_list_b = np.empty(0).flatten()\n solid_list_c = np.empty(0).flatten()\n solid_list_d = np.empty(0).flatten()\n\n for w in walls:\n if w=='right':\n solid_list_a = np.array(np.where((self.x==0.))).flatten()\n elif w=='left':\n solid_list_b = np.array(np.where((self.x == self.Lx_p))).flatten()\n elif w=='top':\n solid_list_d = np.array(np.where((self.y == self.Ly_p))).flatten()\n elif w=='bottom':\n solid_list_c = np.array(np.where((self.y == 0.))).flatten()\n\n solid_list = np.array(np.union1d(solid_list_a,solid_list_b)); \n solid_list = np.array(np.union1d(solid_list,solid_list_c))\n self.solid_list = np.array(np.union1d(solid_list,solid_list_d))\n\n\n \n\n\n\n\n\n\n\n" ]
true
98,876
a5f960b897ef6e484fedd8827c619be3b0f90522
from tensorflow.keras import models , optimizers , losses ,activations , callbacks from tensorflow.keras.layers import * import tensorflow.keras.backend as K from PIL import Image import tensorflow as tf import time import os import numpy as np class Recognizer (object) : def __init__( self ): #input_shape = ( 10080, 1 ) # For steps input_shape = ( 17280, 8 ) # 1-day of 5-sec frequency values (heart rate) kernel_size_1 = ( 32 ) kernel_size_2 = ( 32 ) pool_size_1 = ( 2 ) pool_size_2 = ( 2 ) strides = 1 seq_conv_model = [ Conv1D(32, kernel_size=kernel_size_1 , strides=strides , activation=self.leaky_relu), Conv1D(32, kernel_size=kernel_size_1, strides=strides, activation=self.leaky_relu), MaxPooling1D(pool_size=pool_size_1, strides=strides), Conv1D(64, kernel_size=kernel_size_2 , strides=strides , activation=self.leaky_relu), Conv1D(64, kernel_size=kernel_size_2 , strides=strides , activation=self.leaky_relu), MaxPooling1D(pool_size=pool_size_2 , strides=strides), Flatten(), Dense( 64 , activation=activations.sigmoid ), ] seq_model = tf.keras.Sequential( seq_conv_model ) input_x1 = Input( shape=input_shape ) input_x2 = Input( shape=input_shape ) output_x1 = seq_model( input_x1 ) output_x2 = seq_model( input_x2 ) seq_model.summary() distance_euclid = Lambda( lambda tensors : K.abs( tensors[0] - tensors[1] ))( [output_x1 , output_x2] ) outputs = Dense( 1 , activation=activations.sigmoid) ( distance_euclid ) self.__model = models.Model( [ input_x1 , input_x2 ] , outputs ) self.__model.compile( loss=losses.binary_crossentropy , optimizer=optimizers.Adam(lr=0.0001), metrics=['accuracy']) def leaky_relu(self, x): return tf.nn.leaky_relu(x, alpha=0.01) def fit(self, X, Y , hyperparameters ): initial_time = time.time() history = self.__model.fit( X , Y , batch_size=hyperparameters[ 'batch_size' ] , epochs=hyperparameters[ 'epochs' ] , callbacks=hyperparameters[ 'callbacks'], validation_data=hyperparameters[ 'val_data' ] ) final_time = time.time() eta = ( final_time - initial_time ) time_unit = 'seconds' if eta >= 60 : eta = eta / 60 time_unit = 'minutes' self.__model.summary( ) print( 'Elapsed time acquired for {} epoch(s) -> {} {}'.format( hyperparameters[ 'epochs' ] , eta , time_unit ) ) return history def evaluate(self , test_X , test_Y ) : return self.__model.evaluate(test_X, test_Y) def predict(self, X ): predictions = self.__model.predict( X ) return predictions def summary(self): self.__model.summary() def save_model(self , file_path ): self.__model.save(file_path ) def load_model(self , file_path ): self.__model = models.load_model(file_path)
[ "from tensorflow.keras import models , optimizers , losses ,activations , callbacks\nfrom tensorflow.keras.layers import *\nimport tensorflow.keras.backend as K\nfrom PIL import Image\nimport tensorflow as tf\nimport time\nimport os\nimport numpy as np\n\n\nclass Recognizer (object) :\n\n\tdef __init__( self ):\n\n\t\t#input_shape = ( 10080, 1 ) # For steps\n\t\tinput_shape = ( 17280, 8 ) # 1-day of 5-sec frequency values (heart rate)\n\t\tkernel_size_1 = ( 32 )\n\t\tkernel_size_2 = ( 32 )\n\t\tpool_size_1 = ( 2 )\n\t\tpool_size_2 = ( 2 )\n\t\tstrides = 1\n\n\t\tseq_conv_model = [\n\n\t\t\tConv1D(32, kernel_size=kernel_size_1 , strides=strides , activation=self.leaky_relu),\n\t\t\tConv1D(32, kernel_size=kernel_size_1, strides=strides, activation=self.leaky_relu),\n\t\t\tMaxPooling1D(pool_size=pool_size_1, strides=strides),\n\n\t\t\tConv1D(64, kernel_size=kernel_size_2 , strides=strides , activation=self.leaky_relu),\n\t\t\tConv1D(64, kernel_size=kernel_size_2 , strides=strides , activation=self.leaky_relu),\n\t\t\tMaxPooling1D(pool_size=pool_size_2 , strides=strides),\n\n\t\t\tFlatten(),\n\n\t\t\tDense( 64 , activation=activations.sigmoid ),\n\n\t\t]\n\n\t\tseq_model = tf.keras.Sequential( seq_conv_model )\n\n\t\tinput_x1 = Input( shape=input_shape )\n\t\tinput_x2 = Input( shape=input_shape )\n\n\t\toutput_x1 = seq_model( input_x1 )\n\t\toutput_x2 = seq_model( input_x2 )\n\t\tseq_model.summary()\n\n\t\tdistance_euclid = Lambda( lambda tensors : K.abs( tensors[0] - tensors[1] ))( [output_x1 , output_x2] )\n\t\toutputs = Dense( 1 , activation=activations.sigmoid) ( distance_euclid )\n\t\tself.__model = models.Model( [ input_x1 , input_x2 ] , outputs )\n\n\t\tself.__model.compile( loss=losses.binary_crossentropy , optimizer=optimizers.Adam(lr=0.0001), metrics=['accuracy'])\n\n\tdef leaky_relu(self, x):\n\t\treturn tf.nn.leaky_relu(x, alpha=0.01)\n\n\tdef fit(self, X, Y , hyperparameters ):\n\t\tinitial_time = time.time()\n\t\thistory = self.__model.fit( X , Y ,\n\t\t\t\t\t\t batch_size=hyperparameters[ 'batch_size' ] ,\n\t\t\t\t\t\t epochs=hyperparameters[ 'epochs' ] ,\n\t\t\t\t\t\t callbacks=hyperparameters[ 'callbacks'],\n\t\t\t\t\t\t validation_data=hyperparameters[ 'val_data' ]\n\t\t\t\t\t\t )\n\t\tfinal_time = time.time()\n\t\teta = ( final_time - initial_time )\n\t\ttime_unit = 'seconds'\n\t\tif eta >= 60 :\n\t\t\teta = eta / 60\n\t\t\ttime_unit = 'minutes'\n\t\tself.__model.summary( )\n\t\tprint( 'Elapsed time acquired for {} epoch(s) -> {} {}'.format( hyperparameters[ 'epochs' ] , eta , time_unit ) )\n\t\treturn history\n\n\n\tdef evaluate(self , test_X , test_Y ) :\n\t\treturn self.__model.evaluate(test_X, test_Y)\n\n\n\tdef predict(self, X ):\n\t\tpredictions = self.__model.predict( X )\n\t\treturn predictions\n\n\n\tdef summary(self):\n\t\tself.__model.summary()\n\n\n\tdef save_model(self , file_path ):\n\t\tself.__model.save(file_path )\n\n\n\tdef load_model(self , file_path ):\n\t\tself.__model = models.load_model(file_path)\n", "from tensorflow.keras import models, optimizers, losses, activations, callbacks\nfrom tensorflow.keras.layers import *\nimport tensorflow.keras.backend as K\nfrom PIL import Image\nimport tensorflow as tf\nimport time\nimport os\nimport numpy as np\n\n\nclass Recognizer(object):\n\n def __init__(self):\n input_shape = 17280, 8\n kernel_size_1 = 32\n kernel_size_2 = 32\n pool_size_1 = 2\n pool_size_2 = 2\n strides = 1\n seq_conv_model = [Conv1D(32, kernel_size=kernel_size_1, strides=\n strides, activation=self.leaky_relu), Conv1D(32, kernel_size=\n kernel_size_1, strides=strides, activation=self.leaky_relu),\n MaxPooling1D(pool_size=pool_size_1, strides=strides), Conv1D(64,\n kernel_size=kernel_size_2, strides=strides, activation=self.\n leaky_relu), Conv1D(64, kernel_size=kernel_size_2, strides=\n strides, activation=self.leaky_relu), MaxPooling1D(pool_size=\n pool_size_2, strides=strides), Flatten(), Dense(64, activation=\n activations.sigmoid)]\n seq_model = tf.keras.Sequential(seq_conv_model)\n input_x1 = Input(shape=input_shape)\n input_x2 = Input(shape=input_shape)\n output_x1 = seq_model(input_x1)\n output_x2 = seq_model(input_x2)\n seq_model.summary()\n distance_euclid = Lambda(lambda tensors: K.abs(tensors[0] - tensors[1])\n )([output_x1, output_x2])\n outputs = Dense(1, activation=activations.sigmoid)(distance_euclid)\n self.__model = models.Model([input_x1, input_x2], outputs)\n self.__model.compile(loss=losses.binary_crossentropy, optimizer=\n optimizers.Adam(lr=0.0001), metrics=['accuracy'])\n\n def leaky_relu(self, x):\n return tf.nn.leaky_relu(x, alpha=0.01)\n\n def fit(self, X, Y, hyperparameters):\n initial_time = time.time()\n history = self.__model.fit(X, Y, batch_size=hyperparameters[\n 'batch_size'], epochs=hyperparameters['epochs'], callbacks=\n hyperparameters['callbacks'], validation_data=hyperparameters[\n 'val_data'])\n final_time = time.time()\n eta = final_time - initial_time\n time_unit = 'seconds'\n if eta >= 60:\n eta = eta / 60\n time_unit = 'minutes'\n self.__model.summary()\n print('Elapsed time acquired for {} epoch(s) -> {} {}'.format(\n hyperparameters['epochs'], eta, time_unit))\n return history\n\n def evaluate(self, test_X, test_Y):\n return self.__model.evaluate(test_X, test_Y)\n\n def predict(self, X):\n predictions = self.__model.predict(X)\n return predictions\n\n def summary(self):\n self.__model.summary()\n\n def save_model(self, file_path):\n self.__model.save(file_path)\n\n def load_model(self, file_path):\n self.__model = models.load_model(file_path)\n", "<import token>\n\n\nclass Recognizer(object):\n\n def __init__(self):\n input_shape = 17280, 8\n kernel_size_1 = 32\n kernel_size_2 = 32\n pool_size_1 = 2\n pool_size_2 = 2\n strides = 1\n seq_conv_model = [Conv1D(32, kernel_size=kernel_size_1, strides=\n strides, activation=self.leaky_relu), Conv1D(32, kernel_size=\n kernel_size_1, strides=strides, activation=self.leaky_relu),\n MaxPooling1D(pool_size=pool_size_1, strides=strides), Conv1D(64,\n kernel_size=kernel_size_2, strides=strides, activation=self.\n leaky_relu), Conv1D(64, kernel_size=kernel_size_2, strides=\n strides, activation=self.leaky_relu), MaxPooling1D(pool_size=\n pool_size_2, strides=strides), Flatten(), Dense(64, activation=\n activations.sigmoid)]\n seq_model = tf.keras.Sequential(seq_conv_model)\n input_x1 = Input(shape=input_shape)\n input_x2 = Input(shape=input_shape)\n output_x1 = seq_model(input_x1)\n output_x2 = seq_model(input_x2)\n seq_model.summary()\n distance_euclid = Lambda(lambda tensors: K.abs(tensors[0] - tensors[1])\n )([output_x1, output_x2])\n outputs = Dense(1, activation=activations.sigmoid)(distance_euclid)\n self.__model = models.Model([input_x1, input_x2], outputs)\n self.__model.compile(loss=losses.binary_crossentropy, optimizer=\n optimizers.Adam(lr=0.0001), metrics=['accuracy'])\n\n def leaky_relu(self, x):\n return tf.nn.leaky_relu(x, alpha=0.01)\n\n def fit(self, X, Y, hyperparameters):\n initial_time = time.time()\n history = self.__model.fit(X, Y, batch_size=hyperparameters[\n 'batch_size'], epochs=hyperparameters['epochs'], callbacks=\n hyperparameters['callbacks'], validation_data=hyperparameters[\n 'val_data'])\n final_time = time.time()\n eta = final_time - initial_time\n time_unit = 'seconds'\n if eta >= 60:\n eta = eta / 60\n time_unit = 'minutes'\n self.__model.summary()\n print('Elapsed time acquired for {} epoch(s) -> {} {}'.format(\n hyperparameters['epochs'], eta, time_unit))\n return history\n\n def evaluate(self, test_X, test_Y):\n return self.__model.evaluate(test_X, test_Y)\n\n def predict(self, X):\n predictions = self.__model.predict(X)\n return predictions\n\n def summary(self):\n self.__model.summary()\n\n def save_model(self, file_path):\n self.__model.save(file_path)\n\n def load_model(self, file_path):\n self.__model = models.load_model(file_path)\n", "<import token>\n\n\nclass Recognizer(object):\n\n def __init__(self):\n input_shape = 17280, 8\n kernel_size_1 = 32\n kernel_size_2 = 32\n pool_size_1 = 2\n pool_size_2 = 2\n strides = 1\n seq_conv_model = [Conv1D(32, kernel_size=kernel_size_1, strides=\n strides, activation=self.leaky_relu), Conv1D(32, kernel_size=\n kernel_size_1, strides=strides, activation=self.leaky_relu),\n MaxPooling1D(pool_size=pool_size_1, strides=strides), Conv1D(64,\n kernel_size=kernel_size_2, strides=strides, activation=self.\n leaky_relu), Conv1D(64, kernel_size=kernel_size_2, strides=\n strides, activation=self.leaky_relu), MaxPooling1D(pool_size=\n pool_size_2, strides=strides), Flatten(), Dense(64, activation=\n activations.sigmoid)]\n seq_model = tf.keras.Sequential(seq_conv_model)\n input_x1 = Input(shape=input_shape)\n input_x2 = Input(shape=input_shape)\n output_x1 = seq_model(input_x1)\n output_x2 = seq_model(input_x2)\n seq_model.summary()\n distance_euclid = Lambda(lambda tensors: K.abs(tensors[0] - tensors[1])\n )([output_x1, output_x2])\n outputs = Dense(1, activation=activations.sigmoid)(distance_euclid)\n self.__model = models.Model([input_x1, input_x2], outputs)\n self.__model.compile(loss=losses.binary_crossentropy, optimizer=\n optimizers.Adam(lr=0.0001), metrics=['accuracy'])\n\n def leaky_relu(self, x):\n return tf.nn.leaky_relu(x, alpha=0.01)\n\n def fit(self, X, Y, hyperparameters):\n initial_time = time.time()\n history = self.__model.fit(X, Y, batch_size=hyperparameters[\n 'batch_size'], epochs=hyperparameters['epochs'], callbacks=\n hyperparameters['callbacks'], validation_data=hyperparameters[\n 'val_data'])\n final_time = time.time()\n eta = final_time - initial_time\n time_unit = 'seconds'\n if eta >= 60:\n eta = eta / 60\n time_unit = 'minutes'\n self.__model.summary()\n print('Elapsed time acquired for {} epoch(s) -> {} {}'.format(\n hyperparameters['epochs'], eta, time_unit))\n return history\n\n def evaluate(self, test_X, test_Y):\n return self.__model.evaluate(test_X, test_Y)\n <function token>\n\n def summary(self):\n self.__model.summary()\n\n def save_model(self, file_path):\n self.__model.save(file_path)\n\n def load_model(self, file_path):\n self.__model = models.load_model(file_path)\n", "<import token>\n\n\nclass Recognizer(object):\n\n def __init__(self):\n input_shape = 17280, 8\n kernel_size_1 = 32\n kernel_size_2 = 32\n pool_size_1 = 2\n pool_size_2 = 2\n strides = 1\n seq_conv_model = [Conv1D(32, kernel_size=kernel_size_1, strides=\n strides, activation=self.leaky_relu), Conv1D(32, kernel_size=\n kernel_size_1, strides=strides, activation=self.leaky_relu),\n MaxPooling1D(pool_size=pool_size_1, strides=strides), Conv1D(64,\n kernel_size=kernel_size_2, strides=strides, activation=self.\n leaky_relu), Conv1D(64, kernel_size=kernel_size_2, strides=\n strides, activation=self.leaky_relu), MaxPooling1D(pool_size=\n pool_size_2, strides=strides), Flatten(), Dense(64, activation=\n activations.sigmoid)]\n seq_model = tf.keras.Sequential(seq_conv_model)\n input_x1 = Input(shape=input_shape)\n input_x2 = Input(shape=input_shape)\n output_x1 = seq_model(input_x1)\n output_x2 = seq_model(input_x2)\n seq_model.summary()\n distance_euclid = Lambda(lambda tensors: K.abs(tensors[0] - tensors[1])\n )([output_x1, output_x2])\n outputs = Dense(1, activation=activations.sigmoid)(distance_euclid)\n self.__model = models.Model([input_x1, input_x2], outputs)\n self.__model.compile(loss=losses.binary_crossentropy, optimizer=\n optimizers.Adam(lr=0.0001), metrics=['accuracy'])\n\n def leaky_relu(self, x):\n return tf.nn.leaky_relu(x, alpha=0.01)\n\n def fit(self, X, Y, hyperparameters):\n initial_time = time.time()\n history = self.__model.fit(X, Y, batch_size=hyperparameters[\n 'batch_size'], epochs=hyperparameters['epochs'], callbacks=\n hyperparameters['callbacks'], validation_data=hyperparameters[\n 'val_data'])\n final_time = time.time()\n eta = final_time - initial_time\n time_unit = 'seconds'\n if eta >= 60:\n eta = eta / 60\n time_unit = 'minutes'\n self.__model.summary()\n print('Elapsed time acquired for {} epoch(s) -> {} {}'.format(\n hyperparameters['epochs'], eta, time_unit))\n return history\n <function token>\n <function token>\n\n def summary(self):\n self.__model.summary()\n\n def save_model(self, file_path):\n self.__model.save(file_path)\n\n def load_model(self, file_path):\n self.__model = models.load_model(file_path)\n", "<import token>\n\n\nclass Recognizer(object):\n\n def __init__(self):\n input_shape = 17280, 8\n kernel_size_1 = 32\n kernel_size_2 = 32\n pool_size_1 = 2\n pool_size_2 = 2\n strides = 1\n seq_conv_model = [Conv1D(32, kernel_size=kernel_size_1, strides=\n strides, activation=self.leaky_relu), Conv1D(32, kernel_size=\n kernel_size_1, strides=strides, activation=self.leaky_relu),\n MaxPooling1D(pool_size=pool_size_1, strides=strides), Conv1D(64,\n kernel_size=kernel_size_2, strides=strides, activation=self.\n leaky_relu), Conv1D(64, kernel_size=kernel_size_2, strides=\n strides, activation=self.leaky_relu), MaxPooling1D(pool_size=\n pool_size_2, strides=strides), Flatten(), Dense(64, activation=\n activations.sigmoid)]\n seq_model = tf.keras.Sequential(seq_conv_model)\n input_x1 = Input(shape=input_shape)\n input_x2 = Input(shape=input_shape)\n output_x1 = seq_model(input_x1)\n output_x2 = seq_model(input_x2)\n seq_model.summary()\n distance_euclid = Lambda(lambda tensors: K.abs(tensors[0] - tensors[1])\n )([output_x1, output_x2])\n outputs = Dense(1, activation=activations.sigmoid)(distance_euclid)\n self.__model = models.Model([input_x1, input_x2], outputs)\n self.__model.compile(loss=losses.binary_crossentropy, optimizer=\n optimizers.Adam(lr=0.0001), metrics=['accuracy'])\n\n def leaky_relu(self, x):\n return tf.nn.leaky_relu(x, alpha=0.01)\n\n def fit(self, X, Y, hyperparameters):\n initial_time = time.time()\n history = self.__model.fit(X, Y, batch_size=hyperparameters[\n 'batch_size'], epochs=hyperparameters['epochs'], callbacks=\n hyperparameters['callbacks'], validation_data=hyperparameters[\n 'val_data'])\n final_time = time.time()\n eta = final_time - initial_time\n time_unit = 'seconds'\n if eta >= 60:\n eta = eta / 60\n time_unit = 'minutes'\n self.__model.summary()\n print('Elapsed time acquired for {} epoch(s) -> {} {}'.format(\n hyperparameters['epochs'], eta, time_unit))\n return history\n <function token>\n <function token>\n <function token>\n\n def save_model(self, file_path):\n self.__model.save(file_path)\n\n def load_model(self, file_path):\n self.__model = models.load_model(file_path)\n", "<import token>\n\n\nclass Recognizer(object):\n <function token>\n\n def leaky_relu(self, x):\n return tf.nn.leaky_relu(x, alpha=0.01)\n\n def fit(self, X, Y, hyperparameters):\n initial_time = time.time()\n history = self.__model.fit(X, Y, batch_size=hyperparameters[\n 'batch_size'], epochs=hyperparameters['epochs'], callbacks=\n hyperparameters['callbacks'], validation_data=hyperparameters[\n 'val_data'])\n final_time = time.time()\n eta = final_time - initial_time\n time_unit = 'seconds'\n if eta >= 60:\n eta = eta / 60\n time_unit = 'minutes'\n self.__model.summary()\n print('Elapsed time acquired for {} epoch(s) -> {} {}'.format(\n hyperparameters['epochs'], eta, time_unit))\n return history\n <function token>\n <function token>\n <function token>\n\n def save_model(self, file_path):\n self.__model.save(file_path)\n\n def load_model(self, file_path):\n self.__model = models.load_model(file_path)\n", "<import token>\n\n\nclass Recognizer(object):\n <function token>\n\n def leaky_relu(self, x):\n return tf.nn.leaky_relu(x, alpha=0.01)\n\n def fit(self, X, Y, hyperparameters):\n initial_time = time.time()\n history = self.__model.fit(X, Y, batch_size=hyperparameters[\n 'batch_size'], epochs=hyperparameters['epochs'], callbacks=\n hyperparameters['callbacks'], validation_data=hyperparameters[\n 'val_data'])\n final_time = time.time()\n eta = final_time - initial_time\n time_unit = 'seconds'\n if eta >= 60:\n eta = eta / 60\n time_unit = 'minutes'\n self.__model.summary()\n print('Elapsed time acquired for {} epoch(s) -> {} {}'.format(\n hyperparameters['epochs'], eta, time_unit))\n return history\n <function token>\n <function token>\n <function token>\n\n def save_model(self, file_path):\n self.__model.save(file_path)\n <function token>\n", "<import token>\n\n\nclass Recognizer(object):\n <function token>\n\n def leaky_relu(self, x):\n return tf.nn.leaky_relu(x, alpha=0.01)\n\n def fit(self, X, Y, hyperparameters):\n initial_time = time.time()\n history = self.__model.fit(X, Y, batch_size=hyperparameters[\n 'batch_size'], epochs=hyperparameters['epochs'], callbacks=\n hyperparameters['callbacks'], validation_data=hyperparameters[\n 'val_data'])\n final_time = time.time()\n eta = final_time - initial_time\n time_unit = 'seconds'\n if eta >= 60:\n eta = eta / 60\n time_unit = 'minutes'\n self.__model.summary()\n print('Elapsed time acquired for {} epoch(s) -> {} {}'.format(\n hyperparameters['epochs'], eta, time_unit))\n return history\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n\n\nclass Recognizer(object):\n <function token>\n <function token>\n\n def fit(self, X, Y, hyperparameters):\n initial_time = time.time()\n history = self.__model.fit(X, Y, batch_size=hyperparameters[\n 'batch_size'], epochs=hyperparameters['epochs'], callbacks=\n hyperparameters['callbacks'], validation_data=hyperparameters[\n 'val_data'])\n final_time = time.time()\n eta = final_time - initial_time\n time_unit = 'seconds'\n if eta >= 60:\n eta = eta / 60\n time_unit = 'minutes'\n self.__model.summary()\n print('Elapsed time acquired for {} epoch(s) -> {} {}'.format(\n hyperparameters['epochs'], eta, time_unit))\n return history\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n\n\nclass Recognizer(object):\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n<class token>\n" ]
false
98,877
44e012978ef6575c0ccbc79c9458fb5b80da2796
""" Base components for the Veracity SDK. """ class ApiBase(object): """ Base for API access classes. Provides connection/disconnection. All web calls are async using aiohttp. Arguments: credential (veracity.Credential): Provides oauth access tokens for the API (the user has to log in to retrieve these unless your client application has permissions to use the service.) subscription_key (str): Your application's API subscription key. Gets sent in th Ocp-Apim-Subscription-Key header. scope (str): A valid scope for a Veracity API. Only one permitted. See `identity.ALLOWED_SCOPES` for options. """ def __init__(self, credential, subscription_key, scope): self.credential = credential self.subscription_key = subscription_key # By default we ask for access permission the service and data fabric APIs. self.scopes = [scope] # Use this session for all HTTP requests. We also add authentication # headers to all requests by default, so the child API services do not # need to. self._session = None self._headers = {} @property def connected(self): return self._session is not None @property def session(self): if self._session is None: raise RuntimeError("Must connect API before use.") return self._session @property def default_headers(self): return self._headers async def connect(self, reset=False, credential=None, key=None): """ Create a single HTTP session to call the API. Optionally reset the existing session or change the credentials. Args: reset (bool): Set True to force HTTP session to reconnect. credential (veracity.Credential): Provides oauth access tokens for the API (the user has to log in to retrieve these unless your client application has permissions to use the service.) subscription_key (str): Your application's API subscription key. Gets sent in th Ocp-Apim-Subscription-Key header. """ # Use this session for all HTTP requests. We also add authentication # headers to all requests; which we attempt to set now. import aiohttp reset_headers = reset or (self._session is None) if credential is not None: self.credential = credential reset_headers = True if key is not None: self.subscription_key = key reset_headers = True if reset_headers: token = self.credential.get_token(self.scopes) if 'error' in token: raise RuntimeError(f'Failed to get token:\n{token}') assert 'access_token' in token, 'Token does not provide API access privileges for requested scopes.' actual_token = token['access_token'] self._headers = { 'Ocp-Apim-Subscription-Key': self.subscription_key, 'Authorization': f'Bearer {actual_token}', } if reset: # This sets _session to None. await self.disconnect() if self._session is None: self._session = aiohttp.ClientSession(headers=self._headers) return self._session async def disconnect(self): """ Disconnects the HTTP session. Not essential but good practice. """ from asyncio import shield if self._session is not None: await shield(self._session.connector.close()) await shield(self._session.close()) self._session = None
[ "\"\"\" Base components for the Veracity SDK.\r\n\"\"\"\r\n\r\n\r\nclass ApiBase(object):\r\n \"\"\" Base for API access classes. Provides connection/disconnection.\r\n\r\n All web calls are async using aiohttp.\r\n\r\n Arguments:\r\n credential (veracity.Credential): Provides oauth access tokens for the\r\n API (the user has to log in to retrieve these unless your client\r\n application has permissions to use the service.)\r\n subscription_key (str): Your application's API subscription key. Gets\r\n sent in th Ocp-Apim-Subscription-Key header.\r\n scope (str): A valid scope for a Veracity API. Only one permitted. See\r\n `identity.ALLOWED_SCOPES` for options.\r\n \"\"\"\r\n\r\n def __init__(self, credential, subscription_key, scope):\r\n self.credential = credential\r\n self.subscription_key = subscription_key\r\n # By default we ask for access permission the service and data fabric APIs.\r\n self.scopes = [scope]\r\n # Use this session for all HTTP requests. We also add authentication\r\n # headers to all requests by default, so the child API services do not\r\n # need to.\r\n self._session = None\r\n self._headers = {}\r\n\r\n @property\r\n def connected(self):\r\n return self._session is not None\r\n\r\n @property\r\n def session(self):\r\n if self._session is None:\r\n raise RuntimeError(\"Must connect API before use.\")\r\n return self._session\r\n\r\n @property\r\n def default_headers(self):\r\n return self._headers\r\n\r\n async def connect(self, reset=False, credential=None, key=None):\r\n \"\"\" Create a single HTTP session to call the API.\r\n Optionally reset the existing session or change the credentials.\r\n\r\n Args:\r\n reset (bool): Set True to force HTTP session to reconnect.\r\n credential (veracity.Credential): Provides oauth access tokens for the\r\n API (the user has to log in to retrieve these unless your client\r\n application has permissions to use the service.)\r\n subscription_key (str): Your application's API subscription key. Gets\r\n sent in th Ocp-Apim-Subscription-Key header.\r\n \"\"\"\r\n # Use this session for all HTTP requests. We also add authentication\r\n # headers to all requests; which we attempt to set now.\r\n import aiohttp\r\n\r\n reset_headers = reset or (self._session is None)\r\n\r\n if credential is not None:\r\n self.credential = credential\r\n reset_headers = True\r\n\r\n if key is not None:\r\n self.subscription_key = key\r\n reset_headers = True\r\n\r\n if reset_headers:\r\n token = self.credential.get_token(self.scopes)\r\n if 'error' in token:\r\n raise RuntimeError(f'Failed to get token:\\n{token}')\r\n assert 'access_token' in token, 'Token does not provide API access privileges for requested scopes.'\r\n actual_token = token['access_token']\r\n self._headers = {\r\n 'Ocp-Apim-Subscription-Key': self.subscription_key,\r\n 'Authorization': f'Bearer {actual_token}',\r\n }\r\n\r\n if reset:\r\n # This sets _session to None.\r\n await self.disconnect()\r\n\r\n if self._session is None:\r\n self._session = aiohttp.ClientSession(headers=self._headers)\r\n\r\n return self._session\r\n\r\n async def disconnect(self):\r\n \"\"\" Disconnects the HTTP session. Not essential but good practice.\r\n \"\"\"\r\n from asyncio import shield\r\n if self._session is not None:\r\n await shield(self._session.connector.close())\r\n await shield(self._session.close())\r\n self._session = None\r\n", "<docstring token>\n\n\nclass ApiBase(object):\n \"\"\" Base for API access classes. Provides connection/disconnection.\n\n All web calls are async using aiohttp.\n\n Arguments:\n credential (veracity.Credential): Provides oauth access tokens for the\n API (the user has to log in to retrieve these unless your client\n application has permissions to use the service.)\n subscription_key (str): Your application's API subscription key. Gets\n sent in th Ocp-Apim-Subscription-Key header.\n scope (str): A valid scope for a Veracity API. Only one permitted. See\n `identity.ALLOWED_SCOPES` for options.\n \"\"\"\n\n def __init__(self, credential, subscription_key, scope):\n self.credential = credential\n self.subscription_key = subscription_key\n self.scopes = [scope]\n self._session = None\n self._headers = {}\n\n @property\n def connected(self):\n return self._session is not None\n\n @property\n def session(self):\n if self._session is None:\n raise RuntimeError('Must connect API before use.')\n return self._session\n\n @property\n def default_headers(self):\n return self._headers\n\n async def connect(self, reset=False, credential=None, key=None):\n \"\"\" Create a single HTTP session to call the API.\n Optionally reset the existing session or change the credentials.\n\n Args:\n reset (bool): Set True to force HTTP session to reconnect.\n credential (veracity.Credential): Provides oauth access tokens for the\n API (the user has to log in to retrieve these unless your client\n application has permissions to use the service.)\n subscription_key (str): Your application's API subscription key. Gets\n sent in th Ocp-Apim-Subscription-Key header.\n \"\"\"\n import aiohttp\n reset_headers = reset or self._session is None\n if credential is not None:\n self.credential = credential\n reset_headers = True\n if key is not None:\n self.subscription_key = key\n reset_headers = True\n if reset_headers:\n token = self.credential.get_token(self.scopes)\n if 'error' in token:\n raise RuntimeError(f'Failed to get token:\\n{token}')\n assert 'access_token' in token, 'Token does not provide API access privileges for requested scopes.'\n actual_token = token['access_token']\n self._headers = {'Ocp-Apim-Subscription-Key': self.\n subscription_key, 'Authorization': f'Bearer {actual_token}'}\n if reset:\n await self.disconnect()\n if self._session is None:\n self._session = aiohttp.ClientSession(headers=self._headers)\n return self._session\n\n async def disconnect(self):\n \"\"\" Disconnects the HTTP session. Not essential but good practice.\n \"\"\"\n from asyncio import shield\n if self._session is not None:\n await shield(self._session.connector.close())\n await shield(self._session.close())\n self._session = None\n", "<docstring token>\n\n\nclass ApiBase(object):\n <docstring token>\n\n def __init__(self, credential, subscription_key, scope):\n self.credential = credential\n self.subscription_key = subscription_key\n self.scopes = [scope]\n self._session = None\n self._headers = {}\n\n @property\n def connected(self):\n return self._session is not None\n\n @property\n def session(self):\n if self._session is None:\n raise RuntimeError('Must connect API before use.')\n return self._session\n\n @property\n def default_headers(self):\n return self._headers\n\n async def connect(self, reset=False, credential=None, key=None):\n \"\"\" Create a single HTTP session to call the API.\n Optionally reset the existing session or change the credentials.\n\n Args:\n reset (bool): Set True to force HTTP session to reconnect.\n credential (veracity.Credential): Provides oauth access tokens for the\n API (the user has to log in to retrieve these unless your client\n application has permissions to use the service.)\n subscription_key (str): Your application's API subscription key. Gets\n sent in th Ocp-Apim-Subscription-Key header.\n \"\"\"\n import aiohttp\n reset_headers = reset or self._session is None\n if credential is not None:\n self.credential = credential\n reset_headers = True\n if key is not None:\n self.subscription_key = key\n reset_headers = True\n if reset_headers:\n token = self.credential.get_token(self.scopes)\n if 'error' in token:\n raise RuntimeError(f'Failed to get token:\\n{token}')\n assert 'access_token' in token, 'Token does not provide API access privileges for requested scopes.'\n actual_token = token['access_token']\n self._headers = {'Ocp-Apim-Subscription-Key': self.\n subscription_key, 'Authorization': f'Bearer {actual_token}'}\n if reset:\n await self.disconnect()\n if self._session is None:\n self._session = aiohttp.ClientSession(headers=self._headers)\n return self._session\n\n async def disconnect(self):\n \"\"\" Disconnects the HTTP session. Not essential but good practice.\n \"\"\"\n from asyncio import shield\n if self._session is not None:\n await shield(self._session.connector.close())\n await shield(self._session.close())\n self._session = None\n", "<docstring token>\n\n\nclass ApiBase(object):\n <docstring token>\n\n def __init__(self, credential, subscription_key, scope):\n self.credential = credential\n self.subscription_key = subscription_key\n self.scopes = [scope]\n self._session = None\n self._headers = {}\n <function token>\n\n @property\n def session(self):\n if self._session is None:\n raise RuntimeError('Must connect API before use.')\n return self._session\n\n @property\n def default_headers(self):\n return self._headers\n\n async def connect(self, reset=False, credential=None, key=None):\n \"\"\" Create a single HTTP session to call the API.\n Optionally reset the existing session or change the credentials.\n\n Args:\n reset (bool): Set True to force HTTP session to reconnect.\n credential (veracity.Credential): Provides oauth access tokens for the\n API (the user has to log in to retrieve these unless your client\n application has permissions to use the service.)\n subscription_key (str): Your application's API subscription key. Gets\n sent in th Ocp-Apim-Subscription-Key header.\n \"\"\"\n import aiohttp\n reset_headers = reset or self._session is None\n if credential is not None:\n self.credential = credential\n reset_headers = True\n if key is not None:\n self.subscription_key = key\n reset_headers = True\n if reset_headers:\n token = self.credential.get_token(self.scopes)\n if 'error' in token:\n raise RuntimeError(f'Failed to get token:\\n{token}')\n assert 'access_token' in token, 'Token does not provide API access privileges for requested scopes.'\n actual_token = token['access_token']\n self._headers = {'Ocp-Apim-Subscription-Key': self.\n subscription_key, 'Authorization': f'Bearer {actual_token}'}\n if reset:\n await self.disconnect()\n if self._session is None:\n self._session = aiohttp.ClientSession(headers=self._headers)\n return self._session\n\n async def disconnect(self):\n \"\"\" Disconnects the HTTP session. Not essential but good practice.\n \"\"\"\n from asyncio import shield\n if self._session is not None:\n await shield(self._session.connector.close())\n await shield(self._session.close())\n self._session = None\n", "<docstring token>\n\n\nclass ApiBase(object):\n <docstring token>\n\n def __init__(self, credential, subscription_key, scope):\n self.credential = credential\n self.subscription_key = subscription_key\n self.scopes = [scope]\n self._session = None\n self._headers = {}\n <function token>\n <function token>\n\n @property\n def default_headers(self):\n return self._headers\n\n async def connect(self, reset=False, credential=None, key=None):\n \"\"\" Create a single HTTP session to call the API.\n Optionally reset the existing session or change the credentials.\n\n Args:\n reset (bool): Set True to force HTTP session to reconnect.\n credential (veracity.Credential): Provides oauth access tokens for the\n API (the user has to log in to retrieve these unless your client\n application has permissions to use the service.)\n subscription_key (str): Your application's API subscription key. Gets\n sent in th Ocp-Apim-Subscription-Key header.\n \"\"\"\n import aiohttp\n reset_headers = reset or self._session is None\n if credential is not None:\n self.credential = credential\n reset_headers = True\n if key is not None:\n self.subscription_key = key\n reset_headers = True\n if reset_headers:\n token = self.credential.get_token(self.scopes)\n if 'error' in token:\n raise RuntimeError(f'Failed to get token:\\n{token}')\n assert 'access_token' in token, 'Token does not provide API access privileges for requested scopes.'\n actual_token = token['access_token']\n self._headers = {'Ocp-Apim-Subscription-Key': self.\n subscription_key, 'Authorization': f'Bearer {actual_token}'}\n if reset:\n await self.disconnect()\n if self._session is None:\n self._session = aiohttp.ClientSession(headers=self._headers)\n return self._session\n\n async def disconnect(self):\n \"\"\" Disconnects the HTTP session. Not essential but good practice.\n \"\"\"\n from asyncio import shield\n if self._session is not None:\n await shield(self._session.connector.close())\n await shield(self._session.close())\n self._session = None\n", "<docstring token>\n\n\nclass ApiBase(object):\n <docstring token>\n <function token>\n <function token>\n <function token>\n\n @property\n def default_headers(self):\n return self._headers\n\n async def connect(self, reset=False, credential=None, key=None):\n \"\"\" Create a single HTTP session to call the API.\n Optionally reset the existing session or change the credentials.\n\n Args:\n reset (bool): Set True to force HTTP session to reconnect.\n credential (veracity.Credential): Provides oauth access tokens for the\n API (the user has to log in to retrieve these unless your client\n application has permissions to use the service.)\n subscription_key (str): Your application's API subscription key. Gets\n sent in th Ocp-Apim-Subscription-Key header.\n \"\"\"\n import aiohttp\n reset_headers = reset or self._session is None\n if credential is not None:\n self.credential = credential\n reset_headers = True\n if key is not None:\n self.subscription_key = key\n reset_headers = True\n if reset_headers:\n token = self.credential.get_token(self.scopes)\n if 'error' in token:\n raise RuntimeError(f'Failed to get token:\\n{token}')\n assert 'access_token' in token, 'Token does not provide API access privileges for requested scopes.'\n actual_token = token['access_token']\n self._headers = {'Ocp-Apim-Subscription-Key': self.\n subscription_key, 'Authorization': f'Bearer {actual_token}'}\n if reset:\n await self.disconnect()\n if self._session is None:\n self._session = aiohttp.ClientSession(headers=self._headers)\n return self._session\n\n async def disconnect(self):\n \"\"\" Disconnects the HTTP session. Not essential but good practice.\n \"\"\"\n from asyncio import shield\n if self._session is not None:\n await shield(self._session.connector.close())\n await shield(self._session.close())\n self._session = None\n", "<docstring token>\n\n\nclass ApiBase(object):\n <docstring token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n async def connect(self, reset=False, credential=None, key=None):\n \"\"\" Create a single HTTP session to call the API.\n Optionally reset the existing session or change the credentials.\n\n Args:\n reset (bool): Set True to force HTTP session to reconnect.\n credential (veracity.Credential): Provides oauth access tokens for the\n API (the user has to log in to retrieve these unless your client\n application has permissions to use the service.)\n subscription_key (str): Your application's API subscription key. Gets\n sent in th Ocp-Apim-Subscription-Key header.\n \"\"\"\n import aiohttp\n reset_headers = reset or self._session is None\n if credential is not None:\n self.credential = credential\n reset_headers = True\n if key is not None:\n self.subscription_key = key\n reset_headers = True\n if reset_headers:\n token = self.credential.get_token(self.scopes)\n if 'error' in token:\n raise RuntimeError(f'Failed to get token:\\n{token}')\n assert 'access_token' in token, 'Token does not provide API access privileges for requested scopes.'\n actual_token = token['access_token']\n self._headers = {'Ocp-Apim-Subscription-Key': self.\n subscription_key, 'Authorization': f'Bearer {actual_token}'}\n if reset:\n await self.disconnect()\n if self._session is None:\n self._session = aiohttp.ClientSession(headers=self._headers)\n return self._session\n\n async def disconnect(self):\n \"\"\" Disconnects the HTTP session. Not essential but good practice.\n \"\"\"\n from asyncio import shield\n if self._session is not None:\n await shield(self._session.connector.close())\n await shield(self._session.close())\n self._session = None\n", "<docstring token>\n<class token>\n" ]
false
98,878
60596980abd0b5782a4dce9395e7c8a60889e8bb
def d(n): s = 1 t = n ** 0.5 for i in range(2, int(t) + 1): if n % i == 0: s += i + n // i if t == int(t): s -= t # correct s if t is a perfect square return s def build_abundant(L): abn = set() for n in range(12, L): if d(n) > n: abn.add(n) return abn limit = 28123 abundant = build_abundant(limit) for _ in range(int(input().strip())): num = int(input().strip()) if num < 24: print('NO') elif num > 46 and num % 2 == 0: print('YES') elif num > limit: print('YES') elif any((num - a in abundant) for a in abundant): print('YES') else: print('NO')
[ "def d(n):\n s = 1\n t = n ** 0.5\n for i in range(2, int(t) + 1):\n if n % i == 0: s += i + n // i\n if t == int(t):\n s -= t # correct s if t is a perfect square\n return s\n\n\ndef build_abundant(L):\n abn = set()\n for n in range(12, L):\n if d(n) > n:\n abn.add(n)\n return abn\n\nlimit = 28123\nabundant = build_abundant(limit)\n\nfor _ in range(int(input().strip())):\n num = int(input().strip())\n if num < 24:\n print('NO')\n elif num > 46 and num % 2 == 0:\n print('YES')\n elif num > limit:\n print('YES')\n elif any((num - a in abundant) for a in abundant):\n print('YES')\n else:\n print('NO')\n", "def d(n):\n s = 1\n t = n ** 0.5\n for i in range(2, int(t) + 1):\n if n % i == 0:\n s += i + n // i\n if t == int(t):\n s -= t\n return s\n\n\ndef build_abundant(L):\n abn = set()\n for n in range(12, L):\n if d(n) > n:\n abn.add(n)\n return abn\n\n\nlimit = 28123\nabundant = build_abundant(limit)\nfor _ in range(int(input().strip())):\n num = int(input().strip())\n if num < 24:\n print('NO')\n elif num > 46 and num % 2 == 0:\n print('YES')\n elif num > limit:\n print('YES')\n elif any(num - a in abundant for a in abundant):\n print('YES')\n else:\n print('NO')\n", "def d(n):\n s = 1\n t = n ** 0.5\n for i in range(2, int(t) + 1):\n if n % i == 0:\n s += i + n // i\n if t == int(t):\n s -= t\n return s\n\n\ndef build_abundant(L):\n abn = set()\n for n in range(12, L):\n if d(n) > n:\n abn.add(n)\n return abn\n\n\n<assignment token>\nfor _ in range(int(input().strip())):\n num = int(input().strip())\n if num < 24:\n print('NO')\n elif num > 46 and num % 2 == 0:\n print('YES')\n elif num > limit:\n print('YES')\n elif any(num - a in abundant for a in abundant):\n print('YES')\n else:\n print('NO')\n", "def d(n):\n s = 1\n t = n ** 0.5\n for i in range(2, int(t) + 1):\n if n % i == 0:\n s += i + n // i\n if t == int(t):\n s -= t\n return s\n\n\ndef build_abundant(L):\n abn = set()\n for n in range(12, L):\n if d(n) > n:\n abn.add(n)\n return abn\n\n\n<assignment token>\n<code token>\n", "<function token>\n\n\ndef build_abundant(L):\n abn = set()\n for n in range(12, L):\n if d(n) > n:\n abn.add(n)\n return abn\n\n\n<assignment token>\n<code token>\n", "<function token>\n<function token>\n<assignment token>\n<code token>\n" ]
false
98,879
82ccb55d03466edbce711b983a6c9fc508bd53b6
import copy spam = ['apples', 'bananas', 'tofu', 'cats'] for i in range(len(spam)): if i != len(spam) - 1: print(spam[i], end = " and ") elif i == len(spam) - 1: print(spam[i] + '.') grid = [['.', '.', '.', '.', '.', '.'], ['.', 'O', 'O', '.', '.', '.'], ['O', 'O', 'O', 'O', '.', '.'], ['O', 'O', 'O', 'O', 'O', '.'], ['.', 'O', 'O', 'O', 'O', 'O'], ['O', 'O', 'O', 'O', 'O', '.'], ['O', 'O', 'O', 'O', '.', '.'], ['.', 'O', 'O', '.', '.', '.'], ['.', '.', '.', '.', '.', '.']] for x in range(0,6): for y in range(0,9): print(grid[y][x], end='') print()
[ "import copy\r\n\r\nspam = ['apples', 'bananas', 'tofu', 'cats']\r\n\r\nfor i in range(len(spam)):\r\n if i != len(spam) - 1:\r\n print(spam[i], end = \" and \")\r\n elif i == len(spam) - 1:\r\n print(spam[i] + '.')\r\n\r\ngrid = [['.', '.', '.', '.', '.', '.'],\r\n ['.', 'O', 'O', '.', '.', '.'],\r\n ['O', 'O', 'O', 'O', '.', '.'],\r\n ['O', 'O', 'O', 'O', 'O', '.'],\r\n ['.', 'O', 'O', 'O', 'O', 'O'],\r\n ['O', 'O', 'O', 'O', 'O', '.'],\r\n ['O', 'O', 'O', 'O', '.', '.'],\r\n ['.', 'O', 'O', '.', '.', '.'],\r\n ['.', '.', '.', '.', '.', '.']]\r\n\r\n\r\nfor x in range(0,6):\r\n for y in range(0,9):\r\n print(grid[y][x], end='')\r\n print()\r\n", "import copy\nspam = ['apples', 'bananas', 'tofu', 'cats']\nfor i in range(len(spam)):\n if i != len(spam) - 1:\n print(spam[i], end=' and ')\n elif i == len(spam) - 1:\n print(spam[i] + '.')\ngrid = [['.', '.', '.', '.', '.', '.'], ['.', 'O', 'O', '.', '.', '.'], [\n 'O', 'O', 'O', 'O', '.', '.'], ['O', 'O', 'O', 'O', 'O', '.'], ['.',\n 'O', 'O', 'O', 'O', 'O'], ['O', 'O', 'O', 'O', 'O', '.'], ['O', 'O',\n 'O', 'O', '.', '.'], ['.', 'O', 'O', '.', '.', '.'], ['.', '.', '.',\n '.', '.', '.']]\nfor x in range(0, 6):\n for y in range(0, 9):\n print(grid[y][x], end='')\n print()\n", "<import token>\nspam = ['apples', 'bananas', 'tofu', 'cats']\nfor i in range(len(spam)):\n if i != len(spam) - 1:\n print(spam[i], end=' and ')\n elif i == len(spam) - 1:\n print(spam[i] + '.')\ngrid = [['.', '.', '.', '.', '.', '.'], ['.', 'O', 'O', '.', '.', '.'], [\n 'O', 'O', 'O', 'O', '.', '.'], ['O', 'O', 'O', 'O', 'O', '.'], ['.',\n 'O', 'O', 'O', 'O', 'O'], ['O', 'O', 'O', 'O', 'O', '.'], ['O', 'O',\n 'O', 'O', '.', '.'], ['.', 'O', 'O', '.', '.', '.'], ['.', '.', '.',\n '.', '.', '.']]\nfor x in range(0, 6):\n for y in range(0, 9):\n print(grid[y][x], end='')\n print()\n", "<import token>\n<assignment token>\nfor i in range(len(spam)):\n if i != len(spam) - 1:\n print(spam[i], end=' and ')\n elif i == len(spam) - 1:\n print(spam[i] + '.')\n<assignment token>\nfor x in range(0, 6):\n for y in range(0, 9):\n print(grid[y][x], end='')\n print()\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n" ]
false
98,880
642f7256ffe461b37bcadff847addc99729ff2d2
import numpy as np from PIL import Image #将每一个二进制都填补成8bit def padstring(s): s_len=len(s) return (10-s_len)*"0"+s[2:] #每一个十进制进来编码成对应二进制形成一个总列表 def dec2bin(bin_str): img2 = np.fromfile(bin_str, dtype=np.uint8) x=img2.size sum_list=list() for i in range(x): sum_list.append(padstring(bin(img2[i]))) return sum_list def made_row(s,r_len,c_len): a=np.zeros((r_len,c_len),dtype=np.uint8) strg="" for j in range(len(s)): strg=strg+s[j] for i in range(8*len(s)): if strg[i]=="0": a[0:20,20*i:20*(i+1)]=0 else: a[0:20,20*i:20*(i+1)]=255 return a def arr2byte(s): strg="" for i in range(8): if s[10,i*20+10]<128: strg=strg+"0" else: strg=strg+"1" return int(strg,2)
[ "import numpy as np\r\nfrom PIL import Image\r\n\r\n#将每一个二进制都填补成8bit\r\ndef padstring(s):\r\n s_len=len(s)\r\n return (10-s_len)*\"0\"+s[2:]\r\n \r\n#每一个十进制进来编码成对应二进制形成一个总列表\r\ndef dec2bin(bin_str):\r\n img2 = np.fromfile(bin_str, dtype=np.uint8)\r\n x=img2.size\r\n sum_list=list()\r\n for i in range(x):\r\n sum_list.append(padstring(bin(img2[i])))\r\n return sum_list\r\n\r\ndef made_row(s,r_len,c_len):\r\n a=np.zeros((r_len,c_len),dtype=np.uint8)\r\n strg=\"\"\r\n for j in range(len(s)):\r\n strg=strg+s[j]\r\n for i in range(8*len(s)):\r\n if strg[i]==\"0\":\r\n a[0:20,20*i:20*(i+1)]=0\r\n else:\r\n a[0:20,20*i:20*(i+1)]=255\r\n return a\r\n\r\ndef arr2byte(s):\r\n strg=\"\"\r\n for i in range(8):\r\n if s[10,i*20+10]<128:\r\n strg=strg+\"0\"\r\n else:\r\n strg=strg+\"1\"\r\n return int(strg,2)\r\n\r\n\r\n\r\n\r\n\r\n\r\n \r\n\r\n\r\n\r\n\r\n", "import numpy as np\nfrom PIL import Image\n\n\ndef padstring(s):\n s_len = len(s)\n return (10 - s_len) * '0' + s[2:]\n\n\ndef dec2bin(bin_str):\n img2 = np.fromfile(bin_str, dtype=np.uint8)\n x = img2.size\n sum_list = list()\n for i in range(x):\n sum_list.append(padstring(bin(img2[i])))\n return sum_list\n\n\ndef made_row(s, r_len, c_len):\n a = np.zeros((r_len, c_len), dtype=np.uint8)\n strg = ''\n for j in range(len(s)):\n strg = strg + s[j]\n for i in range(8 * len(s)):\n if strg[i] == '0':\n a[0:20, 20 * i:20 * (i + 1)] = 0\n else:\n a[0:20, 20 * i:20 * (i + 1)] = 255\n return a\n\n\ndef arr2byte(s):\n strg = ''\n for i in range(8):\n if s[10, i * 20 + 10] < 128:\n strg = strg + '0'\n else:\n strg = strg + '1'\n return int(strg, 2)\n", "<import token>\n\n\ndef padstring(s):\n s_len = len(s)\n return (10 - s_len) * '0' + s[2:]\n\n\ndef dec2bin(bin_str):\n img2 = np.fromfile(bin_str, dtype=np.uint8)\n x = img2.size\n sum_list = list()\n for i in range(x):\n sum_list.append(padstring(bin(img2[i])))\n return sum_list\n\n\ndef made_row(s, r_len, c_len):\n a = np.zeros((r_len, c_len), dtype=np.uint8)\n strg = ''\n for j in range(len(s)):\n strg = strg + s[j]\n for i in range(8 * len(s)):\n if strg[i] == '0':\n a[0:20, 20 * i:20 * (i + 1)] = 0\n else:\n a[0:20, 20 * i:20 * (i + 1)] = 255\n return a\n\n\ndef arr2byte(s):\n strg = ''\n for i in range(8):\n if s[10, i * 20 + 10] < 128:\n strg = strg + '0'\n else:\n strg = strg + '1'\n return int(strg, 2)\n", "<import token>\n\n\ndef padstring(s):\n s_len = len(s)\n return (10 - s_len) * '0' + s[2:]\n\n\n<function token>\n\n\ndef made_row(s, r_len, c_len):\n a = np.zeros((r_len, c_len), dtype=np.uint8)\n strg = ''\n for j in range(len(s)):\n strg = strg + s[j]\n for i in range(8 * len(s)):\n if strg[i] == '0':\n a[0:20, 20 * i:20 * (i + 1)] = 0\n else:\n a[0:20, 20 * i:20 * (i + 1)] = 255\n return a\n\n\ndef arr2byte(s):\n strg = ''\n for i in range(8):\n if s[10, i * 20 + 10] < 128:\n strg = strg + '0'\n else:\n strg = strg + '1'\n return int(strg, 2)\n", "<import token>\n\n\ndef padstring(s):\n s_len = len(s)\n return (10 - s_len) * '0' + s[2:]\n\n\n<function token>\n<function token>\n\n\ndef arr2byte(s):\n strg = ''\n for i in range(8):\n if s[10, i * 20 + 10] < 128:\n strg = strg + '0'\n else:\n strg = strg + '1'\n return int(strg, 2)\n", "<import token>\n<function token>\n<function token>\n<function token>\n\n\ndef arr2byte(s):\n strg = ''\n for i in range(8):\n if s[10, i * 20 + 10] < 128:\n strg = strg + '0'\n else:\n strg = strg + '1'\n return int(strg, 2)\n", "<import token>\n<function token>\n<function token>\n<function token>\n<function token>\n" ]
false
98,881
ee204ae32d6d59a5cf5ec97dda68aab80688ff76
#!/usr/bin/env python3 from plox import Lox if __name__ == "__main__": Lox.main()
[ "#!/usr/bin/env python3\nfrom plox import Lox\n\nif __name__ == \"__main__\":\n Lox.main()", "from plox import Lox\nif __name__ == '__main__':\n Lox.main()\n", "<import token>\nif __name__ == '__main__':\n Lox.main()\n", "<import token>\n<code token>\n" ]
false
98,882
c31421d181d4a30542c7117cba24cd58ac749fc3
# -*- coding: utf-8 -*- """ Created on Wed Nov 11 09:43:43 2020 @author: Admin """ import matplotlib.pyplot as plt import matplotlib.image as mpimg import numpy as np import cv2 import pickle from moviepy.editor import * fin=[] out = np.arange(0,250)/250 #print(out.shape) out1= np.ones(100) #print(out1.shape) out2=np.arange(400,350,-1)/400 #print(out2.shape) out3=np.zeros(400) #print(out3.shape) out4=np.arange(800,850,1)/850 #print(out4.shape) out5=np.ones(100) #print(out5.shape) out6 = np.arange(1100,950,-1)/1100 out7=np.zeros(180) fin = np.concatenate((out, out1, out2,out3,out4,out5,out6,out7)) fin = np.expand_dims(fin,axis=1) def abs_sobel_thresh(img, orient='x', sobel_kernel=3, thresh=(0, 255)): # Calculate directional gradient # Apply threshold gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) if orient=='x': sobel = cv2.Sobel(gray,cv2.CV_64F,1,0,ksize=sobel_kernel) else: sobel = cv2.Sobel(gray,cv2.CV_64F,0,1,ksize=sobel_kernel) absolute = np.absolute(sobel) scaled = np.uint8(255*absolute/np.max(absolute)) grad_binary = np.zeros_like(scaled) grad_binary[(scaled >= thresh[0])&(scaled <= thresh[1])] = 1 return grad_binary def mag_thresh(image, sobel_kernel=3, mag_thresh=(0, 255)): # Calculate gradient magnitude # Apply threshold gray_img = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY) sobelx = cv2.Sobel(gray_img,cv2.CV_64F,1,0,ksize=sobel_kernel) sobely = cv2.Sobel(gray_img,cv2.CV_64F,0,1,ksize=sobel_kernel) mag_sobel = np.sqrt((sobelx)**2 + (sobely)**2) absolute = np.absolute(mag_sobel) scaled = np.uint8(255*absolute/np.max(absolute)) mag_binary = np.zeros_like(scaled) mag_binary[(scaled >= mag_thresh[0])&(scaled <= mag_thresh[1])] = 1 return mag_binary def dir_threshold(image, sobel_kernel=3, thresh=(0, np.pi/2)): # Calculate gradient direction # Apply threshold gray_img = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY) sobelx = cv2.Sobel(gray_img,cv2.CV_64F,1,0,ksize=sobel_kernel) sobely = cv2.Sobel(gray_img,cv2.CV_64F,0,1,ksize=sobel_kernel) absx = np.absolute(sobelx) absy = np.absolute(sobely) direction = np.arctan2(absy,absx) dir_binary = np.zeros_like(gray_img) dir_binary[(direction >= thresh[0])&(direction <= thresh[1])] = 1 return dir_binary def hls_select(image,thresh=(0,255)): hls = cv2.cvtColor(image,cv2.COLOR_BGR2HLS) s = hls[:,:,2] binary_output = np.zeros_like(s) binary_output[(s>thresh[0])&(s<=thresh[1])]=1 return binary_output def equalize(image): image_yuv = cv2.cvtColor(image,cv2.COLOR_BGR2YUV) #histo = cv2.calcHist([image_yuv],[0],None,[256],[0,256]) #image_yuv[:,:,0] = cv2.equalizeHist(image_yuv[:,:,0]) #histo = cv2.calcHist([image_yuv],[0],None,[256],[0,256]) #plt.plot(histo) #plt.show() clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(20,20)) image_yuv[:,:,0] = clahe.apply(image_yuv[:,:,0]) img_output = cv2.cvtColor(image_yuv, cv2.COLOR_YUV2BGR) return img_output def yuv_select_lumin(image,thresh=(0,255)): yuv_img = cv2.cvtColor(image,cv2.COLOR_BGR2YUV) lumin = yuv_img[:,:,0] binary_output = np.zeros_like(lumin) binary_output[(lumin>thresh[0])&(lumin<=thresh[1])]=1 return binary_output def hist(img,left_fit1,right_fit1,win=True): #img = img[:,:,0]/255 img = img/255 img = np.expand_dims(img,axis=-1) bottom_half = img[img.shape[0]//2:,:] histogram = np.sum(bottom_half,axis=0) # out = np.arange(600) # out1 = np.arange(600,-1,-1) # out3=np.zeros(79) # out2=np.concatenate((out, out1, out3)) # out3 = np.expand_dims(out2,axis=1) histogram = np.multiply(histogram,fin) #print(img.shape) out_img = np.dstack((img,img,img)) #print(out_img.shape) #print(histogram.shape) midpoint = np.int(histogram.shape[0]//2) leftx_base = np.argmax(histogram[:midpoint]) rightx_base = np.argmax(histogram[midpoint:])+midpoint nwindows = 9 margin = 100 minpix =50 searchmargin = 100 window_height = np.int(img.shape[0]//nwindows) nonzero = img.nonzero() #**Beware y and then x** nonzeroy = np.array(nonzero[0]) nonzerox = np.array(nonzero[1]) leftx_current = leftx_base rightx_current = rightx_base left_lane_ids=[] right_lane_ids=[] if win: for window in range(nwindows): win_y_low = img.shape[0] - (window+1)*window_height win_y_high = img.shape[0] - (window)*window_height win_xleft_low = leftx_current - margin win_xleft_high =leftx_current + margin win_xright_low = rightx_current - margin win_xright_high = rightx_current + margin cv2.rectangle(out_img,(win_xleft_low,win_y_low),(win_xleft_high,win_y_high),(0,255,0),2) cv2.rectangle(out_img,(win_xright_low,win_y_low),(win_xright_high,win_y_high),(0,255,0),2) good_left_inds = ((nonzeroy >= win_y_low )& (nonzeroy < win_y_high) & (nonzerox >= win_xleft_low) &(nonzerox < win_xleft_high)).nonzero()[0] good_right_inds = ((nonzeroy >= win_y_low )& (nonzeroy < win_y_high) & (nonzerox >= win_xright_low) &(nonzerox < win_xright_high)).nonzero()[0] left_lane_ids.append(good_left_inds) right_lane_ids.append(good_right_inds) if len(good_left_inds) > minpix: leftx_current = np.int(np.mean(nonzerox[good_left_inds])) if len(good_right_inds) > minpix: rightx_current = np.int(np.mean(nonzerox[good_right_inds])) try: left_lane_ids = np.concatenate(left_lane_ids) right_lane_ids = np.concatenate(right_lane_ids) except ValueError: pass else: left_lane_ids = ((nonzerox > (left_fit1[0]*(nonzeroy**2) + left_fit1[1]*nonzeroy + left_fit1[2] - searchmargin)) & (nonzerox < (left_fit1[0]*(nonzeroy**2) + left_fit1[1]*nonzeroy + left_fit1[2] + searchmargin))) right_lane_ids = ((nonzerox > (right_fit1[0]*(nonzeroy**2) + right_fit1[1]*nonzeroy + right_fit1[2] - searchmargin)) & (nonzerox < (right_fit1[0]*(nonzeroy**2) + right_fit1[1]*nonzeroy + right_fit1[2] + searchmargin))) leftx = nonzerox[left_lane_ids] lefty = nonzeroy[left_lane_ids] rightx = nonzerox[right_lane_ids] righty = nonzeroy[right_lane_ids] return histogram,leftx,lefty,rightx,righty,out_img cap = cv2.VideoCapture('./project_video.mp4') #cap.set(cv2.CAP_PROP_POS_FRAMES, 1000) size=(int(cap.get(3)),int(cap.get(4))) result1 = cv2.VideoWriter('./output_images/project_video.mp4', cv2.VideoWriter_fourcc(*'MJPG'), 10, size) #cap = cv2.VideoCapture('./challenge_video.mp4') left_fit = [] right_fit =[] prev_left_fit=[] prev_right_fit=[] count=0 radoffset=150 prev_left_fit=[] prev_right_fit=[] width=0 validation_fails=0 #image_no=0 while(True): count+=1 ret, image = cap.read() dist_pickle = pickle.load(open('./camera_cal/matrix.p','rb')) dst = dist_pickle["dist"] mtx = dist_pickle["mtx"] if ret: ksize = 3 img_undist = cv2.undistort(image,mtx,dst,None,mtx) final_img = np.copy(img_undist) #final_img = equalize(final_img) #cv2.imwrite('D:/Self Driving Car Engineer/Course 4/SampleImages/'+str(image_no)+'.jpg',final_img) #image_no+=1 gradx = abs_sobel_thresh(img_undist, orient='x', sobel_kernel=ksize, thresh=(52, 238)) grady = abs_sobel_thresh(img_undist, orient='y', sobel_kernel=ksize, thresh=(59, 249)) mag_binary = mag_thresh(img_undist, sobel_kernel=ksize, mag_thresh=(68, 255)) dir_binary = dir_threshold(img_undist, sobel_kernel=ksize, thresh=(0.02, 1.57)) #s_binary = hls_select(img_undist,thresh=(212,255)) #98-255 works even in brighter areas s_binary = hls_select(img_undist,thresh=(151,255)) #151 luminiscence = yuv_select_lumin(img_undist,thresh=(14,255)) combined = np.zeros_like(dir_binary) combined[((gradx == 1) & (grady == 1)) | ((mag_binary == 1) & (dir_binary == 1)) |(s_binary == 1)&(luminiscence==1)] = 1 #top left,bottom left,bottom right,top right src = np.float32([[585-20, 460+10],[203-20, 720],[1127+30, 720],[695+30, 460+10]]) #src = np.float32([[620, 460-30],[203, 720],[1127, 720],[660, 460-30]]) points = np.int32(np.copy(src)) # cv2.polylines(img_undist,[points] ,True,(0,0,255),5) #** Key here is keep the destination top boundary as closer as possible for effective transform** dst = np.array([[320-20, 0],[320-20, 720],[960+30, 720],[960+30, 0]],dtype='float32') img_size=(combined.shape[1],combined.shape[0]) M = cv2.getPerspectiveTransform(src,dst) Minv = cv2.getPerspectiveTransform(dst,src) warped = cv2.warpPerspective(combined,M,img_size,flags=cv2.INTER_LINEAR) #Testing output4 = np.dstack([warped*255,warped*255,warped*255]) output4 = cv2.resize(output4,(320, 180), interpolation = cv2.INTER_AREA) #Testing ends output3 = cv2.warpPerspective(final_img,M,img_size,flags=cv2.INTER_LINEAR) output3 = cv2.resize(output3,(320, 180), interpolation = cv2.INTER_AREA) #Testing #cv2.imshow('warped',warped*255) kernel = np.ones((320, 1),np.uint8) warped1 = cv2.morphologyEx(warped.astype(np.uint8), cv2.MORPH_DILATE, kernel, iterations = 1) warped = cv2.morphologyEx(warped1.astype(np.uint8), cv2.MORPH_ERODE, kernel, iterations = 1) #cv2.imshow('warped1',warped*255) #Testing ends if((len(left_fit)==0 or len(right_fit)==0) or count==100 or validation_fails>5): histogram_img,leftx,lefty,rightx,righty,out_img = hist(warped,left_fit,right_fit,True) count=0 validation_fails = 0 else: histogram_img,leftx,lefty,rightx,righty,out_img = hist(warped,left_fit,right_fit,False) if(len(leftx)==0 or len(rightx)==0): histogram_img,leftx,lefty,rightx,righty,out_img = hist(warped,left_fit,right_fit,True) count=0 ploty = np.linspace(0,warped.shape[0]-1,warped.shape[0]) left_fit = np.polyfit(lefty,leftx,2) right_fit = np.polyfit(righty,rightx,2) #Testing t2 = right_fit[2]/left_fit[2] t1 = right_fit[1]/left_fit[1] t0 = right_fit[0]/left_fit[0] #print(t2,t1,t0) if(abs(t2) >20 or abs(t1)>20 or abs(t0)>20): validation_fails+=1 if(len(prev_left_fit)!=0): left_fit = prev_left_fit if(len(prev_right_fit)!=0): right_fit = prev_right_fit print('valid fails') prev_left_fit = np.copy(left_fit) prev_right_fit = np.copy(right_fit) #Testing ends try: leftfitx = left_fit[0]*ploty**2 + left_fit[1]*ploty+left_fit[2] rightfitx = right_fit[0]*ploty**2+right_fit[1]*ploty+right_fit[2] except TypeError: print('The function failed to fit a line!') final_out_img = np.copy(out_img).astype(np.uint8) #testing out_img[lefty,leftx] = [255,0,0] out_img[righty,rightx] = [0,0,255] #output4 = cv2.resize(out_img,(320, 180), interpolation = cv2.INTER_AREA) #testing ends leftpoints_draw = (np.asarray([leftfitx,ploty]).T).astype(np.int32) rightpoints_draw = (np.asarray([rightfitx,ploty]).T).astype(np.int32) #testing # width = abs(np.max(leftpoints_draw) - np.max(rightpoints_draw)) # print(width) cv2.polylines(out_img,[leftpoints_draw],False,(0,255,255),3) cv2.polylines(out_img,[rightpoints_draw],False,(0,255,255),3) #testing ends #**Drwaing on image the lane** pts_left = np.array([np.transpose(np.vstack([leftfitx, ploty]))]) pts_right = np.array([np.flipud(np.transpose(np.vstack([rightfitx, ploty])))]) #flipud is just reversing the order of the points which are from top to bottom to make them bottom to top so that we can have an anticlockwise ordering of the corners. pts = np.hstack((pts_left, pts_right)) #print(pts.shape) #Testing left_side_points_mean = np.mean(pts_left) right_side_points_mean = np.mean(pts_right) #Testing ends #**Measuring Curvature radius** y_eval = np.max(ploty) ym_per_pixel = 30/720 #meters per pixel in y dimension xm_per_pixel = 3.7/700 #meters per pixel in x dimension #Testing left_fit_0_metres = left_fit[0] * (xm_per_pixel / (ym_per_pixel**2)) left_fit_1_metres = left_fit[1] * (xm_per_pixel / ym_per_pixel) right_fit_0_metres = right_fit[0] * (xm_per_pixel / (ym_per_pixel**2)) right_fit_1_metres = right_fit[1] * (xm_per_pixel / ym_per_pixel) #Testing ends left_curved = ((1 + (2*left_fit_0_metres*y_eval*ym_per_pixel + left_fit_1_metres)**2)**1.5)/(np.absolute(2*left_fit_0_metres)) right_curved = ((1 + (2*right_fit_0_metres*y_eval*ym_per_pixel + right_fit_1_metres)**2)**1.5)/(np.absolute(2*right_fit_0_metres)) #print('left_curved: '+str(left_curved)) #print('right_curved: '+str(right_curved)) #testing output2 = cv2.resize(out_img,(320, 180), interpolation = cv2.INTER_AREA) #testing ends cv2.fillPoly(final_out_img,np.int_([pts]),(0,255,0)) #cv2.imwrite('./test_images/test.jpg',combined*255) newwarp = cv2.warpPerspective(final_out_img, Minv, (image.shape[1], image.shape[0])) result = cv2.addWeighted(final_img, 1, newwarp, 0.3, 0) vis = np.zeros((720, 1280 ,3),dtype=np.uint8) vis[:720, :1280,:] = result ltext = "left Curvature(m): " + str(round(left_curved,3)) rtext = "right Curvature(m): " + str(round(right_curved,3)) cent_out = round((left_side_points_mean + right_side_points_mean)/2,3) distance_from_center = round(abs(img_size[0]/2 - cent_out)*xm_per_pixel,3) cent = "Vehicle is left from center(m): " + str(distance_from_center) cv2.putText(result,ltext,(200,100),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,255),5,cv2.LINE_4) cv2.putText(result,rtext,(750,100),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,255),5,cv2.LINE_4) cv2.putText(result,cent,(350,200),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,255),5,cv2.LINE_4) #cv2.imshow('result',result) output1 = cv2.resize(combined*255,(320, 180), interpolation = cv2.INTER_AREA) vis[:180, 0:320,:] = np.dstack([output1,output1,output1]) vis[:180, 320:640,:] = output2 vis[:180, 640:960,:] = output3 vis[:180, 960:1280,:] = output4 cv2.putText(vis,ltext,(200,210),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,255),5,cv2.LINE_4) cv2.putText(vis,rtext,(750,210),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,255),5,cv2.LINE_4) cv2.putText(vis,cent,(350,250),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,255),5,cv2.LINE_4) cv2.imshow('result',vis) result1.write(result) if cv2.waitKey(1) & 0xFF == ord('q'): break else: break cap.release() result1.release() cv2.destroyAllWindows()
[ "# -*- coding: utf-8 -*-\r\n\"\"\"\r\nCreated on Wed Nov 11 09:43:43 2020\r\n\r\n@author: Admin\r\n\"\"\"\r\n\r\nimport matplotlib.pyplot as plt\r\nimport matplotlib.image as mpimg\r\nimport numpy as np\r\nimport cv2\r\nimport pickle\r\nfrom moviepy.editor import *\r\n\r\nfin=[]\r\nout = np.arange(0,250)/250\r\n#print(out.shape)\r\nout1= np.ones(100)\r\n#print(out1.shape)\r\nout2=np.arange(400,350,-1)/400\r\n#print(out2.shape)\r\nout3=np.zeros(400)\r\n#print(out3.shape)\r\n\r\nout4=np.arange(800,850,1)/850\r\n#print(out4.shape)\r\nout5=np.ones(100)\r\n#print(out5.shape)\r\nout6 = np.arange(1100,950,-1)/1100\r\nout7=np.zeros(180)\r\n\r\n\r\nfin = np.concatenate((out, out1, out2,out3,out4,out5,out6,out7))\r\nfin = np.expand_dims(fin,axis=1)\r\n\r\n\r\ndef abs_sobel_thresh(img, orient='x', sobel_kernel=3, thresh=(0, 255)):\r\n # Calculate directional gradient\r\n # Apply threshold\r\n \r\n gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)\r\n if orient=='x':\r\n sobel = cv2.Sobel(gray,cv2.CV_64F,1,0,ksize=sobel_kernel)\r\n else:\r\n sobel = cv2.Sobel(gray,cv2.CV_64F,0,1,ksize=sobel_kernel)\r\n absolute = np.absolute(sobel)\r\n scaled = np.uint8(255*absolute/np.max(absolute))\r\n grad_binary = np.zeros_like(scaled)\r\n grad_binary[(scaled >= thresh[0])&(scaled <= thresh[1])] = 1\r\n \r\n return grad_binary\r\n\r\ndef mag_thresh(image, sobel_kernel=3, mag_thresh=(0, 255)):\r\n # Calculate gradient magnitude\r\n # Apply threshold\r\n gray_img = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)\r\n sobelx = cv2.Sobel(gray_img,cv2.CV_64F,1,0,ksize=sobel_kernel)\r\n sobely = cv2.Sobel(gray_img,cv2.CV_64F,0,1,ksize=sobel_kernel)\r\n mag_sobel = np.sqrt((sobelx)**2 + (sobely)**2)\r\n absolute = np.absolute(mag_sobel)\r\n scaled = np.uint8(255*absolute/np.max(absolute))\r\n mag_binary = np.zeros_like(scaled)\r\n mag_binary[(scaled >= mag_thresh[0])&(scaled <= mag_thresh[1])] = 1\r\n return mag_binary\r\n\r\ndef dir_threshold(image, sobel_kernel=3, thresh=(0, np.pi/2)):\r\n # Calculate gradient direction\r\n # Apply threshold\r\n gray_img = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)\r\n sobelx = cv2.Sobel(gray_img,cv2.CV_64F,1,0,ksize=sobel_kernel)\r\n sobely = cv2.Sobel(gray_img,cv2.CV_64F,0,1,ksize=sobel_kernel)\r\n absx = np.absolute(sobelx)\r\n absy = np.absolute(sobely)\r\n direction = np.arctan2(absy,absx)\r\n dir_binary = np.zeros_like(gray_img)\r\n dir_binary[(direction >= thresh[0])&(direction <= thresh[1])] = 1\r\n return dir_binary\r\n\r\ndef hls_select(image,thresh=(0,255)):\r\n hls = cv2.cvtColor(image,cv2.COLOR_BGR2HLS)\r\n s = hls[:,:,2]\r\n binary_output = np.zeros_like(s)\r\n binary_output[(s>thresh[0])&(s<=thresh[1])]=1\r\n return binary_output\r\n\r\ndef equalize(image):\r\n image_yuv = cv2.cvtColor(image,cv2.COLOR_BGR2YUV)\r\n #histo = cv2.calcHist([image_yuv],[0],None,[256],[0,256])\r\n #image_yuv[:,:,0] = cv2.equalizeHist(image_yuv[:,:,0])\r\n #histo = cv2.calcHist([image_yuv],[0],None,[256],[0,256])\r\n #plt.plot(histo)\r\n #plt.show()\r\n clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(20,20))\r\n image_yuv[:,:,0] = clahe.apply(image_yuv[:,:,0])\r\n img_output = cv2.cvtColor(image_yuv, cv2.COLOR_YUV2BGR)\r\n return img_output\r\n\r\ndef yuv_select_lumin(image,thresh=(0,255)):\r\n yuv_img = cv2.cvtColor(image,cv2.COLOR_BGR2YUV)\r\n lumin = yuv_img[:,:,0]\r\n binary_output = np.zeros_like(lumin)\r\n binary_output[(lumin>thresh[0])&(lumin<=thresh[1])]=1\r\n return binary_output\r\n\r\n\r\n\r\ndef hist(img,left_fit1,right_fit1,win=True):\r\n #img = img[:,:,0]/255\r\n img = img/255\r\n img = np.expand_dims(img,axis=-1)\r\n bottom_half = img[img.shape[0]//2:,:]\r\n histogram = np.sum(bottom_half,axis=0)\r\n# out = np.arange(600)\r\n# out1 = np.arange(600,-1,-1)\r\n# out3=np.zeros(79)\r\n# out2=np.concatenate((out, out1, out3))\r\n# out3 = np.expand_dims(out2,axis=1)\r\n histogram = np.multiply(histogram,fin)\r\n #print(img.shape)\r\n out_img = np.dstack((img,img,img))\r\n #print(out_img.shape)\r\n #print(histogram.shape)\r\n midpoint = np.int(histogram.shape[0]//2)\r\n leftx_base = np.argmax(histogram[:midpoint])\r\n rightx_base = np.argmax(histogram[midpoint:])+midpoint\r\n \r\n nwindows = 9\r\n margin = 100\r\n minpix =50\r\n searchmargin = 100 \r\n \r\n \r\n window_height = np.int(img.shape[0]//nwindows)\r\n nonzero = img.nonzero()\r\n #**Beware y and then x**\r\n nonzeroy = np.array(nonzero[0])\r\n nonzerox = np.array(nonzero[1])\r\n \r\n leftx_current = leftx_base\r\n rightx_current = rightx_base\r\n \r\n left_lane_ids=[]\r\n right_lane_ids=[]\r\n \r\n if win:\r\n \r\n for window in range(nwindows):\r\n win_y_low = img.shape[0] - (window+1)*window_height\r\n win_y_high = img.shape[0] - (window)*window_height\r\n \r\n win_xleft_low = leftx_current - margin\r\n win_xleft_high =leftx_current + margin\r\n \r\n win_xright_low = rightx_current - margin\r\n win_xright_high = rightx_current + margin\r\n \r\n cv2.rectangle(out_img,(win_xleft_low,win_y_low),(win_xleft_high,win_y_high),(0,255,0),2)\r\n cv2.rectangle(out_img,(win_xright_low,win_y_low),(win_xright_high,win_y_high),(0,255,0),2)\r\n \r\n good_left_inds = ((nonzeroy >= win_y_low )& (nonzeroy < win_y_high) & (nonzerox >= win_xleft_low) &(nonzerox < win_xleft_high)).nonzero()[0]\r\n good_right_inds = ((nonzeroy >= win_y_low )& (nonzeroy < win_y_high) & (nonzerox >= win_xright_low) &(nonzerox < win_xright_high)).nonzero()[0]\r\n \r\n \r\n left_lane_ids.append(good_left_inds)\r\n right_lane_ids.append(good_right_inds)\r\n \r\n if len(good_left_inds) > minpix:\r\n leftx_current = np.int(np.mean(nonzerox[good_left_inds]))\r\n if len(good_right_inds) > minpix: \r\n rightx_current = np.int(np.mean(nonzerox[good_right_inds]))\r\n \r\n try:\r\n left_lane_ids = np.concatenate(left_lane_ids)\r\n right_lane_ids = np.concatenate(right_lane_ids)\r\n except ValueError:\r\n pass\r\n else:\r\n \r\n left_lane_ids = ((nonzerox > (left_fit1[0]*(nonzeroy**2) + left_fit1[1]*nonzeroy + \r\n left_fit1[2] - searchmargin)) & (nonzerox < (left_fit1[0]*(nonzeroy**2) + \r\n left_fit1[1]*nonzeroy + left_fit1[2] + searchmargin)))\r\n right_lane_ids = ((nonzerox > (right_fit1[0]*(nonzeroy**2) + right_fit1[1]*nonzeroy + \r\n right_fit1[2] - searchmargin)) & (nonzerox < (right_fit1[0]*(nonzeroy**2) + \r\n right_fit1[1]*nonzeroy + right_fit1[2] + searchmargin)))\r\n \r\n \r\n leftx = nonzerox[left_lane_ids]\r\n lefty = nonzeroy[left_lane_ids]\r\n rightx = nonzerox[right_lane_ids]\r\n righty = nonzeroy[right_lane_ids]\r\n\r\n \r\n \r\n return histogram,leftx,lefty,rightx,righty,out_img\r\n\r\n\r\ncap = cv2.VideoCapture('./project_video.mp4')\r\n#cap.set(cv2.CAP_PROP_POS_FRAMES, 1000)\r\n\r\nsize=(int(cap.get(3)),int(cap.get(4)))\r\nresult1 = cv2.VideoWriter('./output_images/project_video.mp4', \r\n cv2.VideoWriter_fourcc(*'MJPG'), \r\n 10, size) \r\n#cap = cv2.VideoCapture('./challenge_video.mp4')\r\nleft_fit = []\r\nright_fit =[]\r\nprev_left_fit=[]\r\nprev_right_fit=[]\r\ncount=0\r\nradoffset=150\r\nprev_left_fit=[]\r\nprev_right_fit=[]\r\nwidth=0\r\nvalidation_fails=0\r\n#image_no=0\r\nwhile(True):\r\n count+=1\r\n ret, image = cap.read()\r\n dist_pickle = pickle.load(open('./camera_cal/matrix.p','rb'))\r\n dst = dist_pickle[\"dist\"]\r\n mtx = dist_pickle[\"mtx\"]\r\n \r\n \r\n if ret:\r\n ksize = 3 \r\n img_undist = cv2.undistort(image,mtx,dst,None,mtx)\r\n final_img = np.copy(img_undist)\r\n \r\n #final_img = equalize(final_img)\r\n #cv2.imwrite('D:/Self Driving Car Engineer/Course 4/SampleImages/'+str(image_no)+'.jpg',final_img)\r\n #image_no+=1\r\n gradx = abs_sobel_thresh(img_undist, orient='x', sobel_kernel=ksize, thresh=(52, 238))\r\n grady = abs_sobel_thresh(img_undist, orient='y', sobel_kernel=ksize, thresh=(59, 249))\r\n mag_binary = mag_thresh(img_undist, sobel_kernel=ksize, mag_thresh=(68, 255))\r\n dir_binary = dir_threshold(img_undist, sobel_kernel=ksize, thresh=(0.02, 1.57))\r\n #s_binary = hls_select(img_undist,thresh=(212,255)) #98-255 works even in brighter areas\r\n s_binary = hls_select(img_undist,thresh=(151,255)) #151\r\n luminiscence = yuv_select_lumin(img_undist,thresh=(14,255))\r\n \r\n \r\n combined = np.zeros_like(dir_binary)\r\n combined[((gradx == 1) & (grady == 1)) | ((mag_binary == 1) & (dir_binary == 1)) |(s_binary == 1)&(luminiscence==1)] = 1\r\n#top left,bottom left,bottom right,top right\r\n src = np.float32([[585-20, 460+10],[203-20, 720],[1127+30, 720],[695+30, 460+10]])\r\n#src = np.float32([[620, 460-30],[203, 720],[1127, 720],[660, 460-30]])\r\n points = np.int32(np.copy(src))\r\n # cv2.polylines(img_undist,[points] ,True,(0,0,255),5)\r\n#** Key here is keep the destination top boundary as closer as possible for effective transform**\r\n dst = np.array([[320-20, 0],[320-20, 720],[960+30, 720],[960+30, 0]],dtype='float32')\r\n \r\n img_size=(combined.shape[1],combined.shape[0])\r\n M = cv2.getPerspectiveTransform(src,dst)\r\n Minv = cv2.getPerspectiveTransform(dst,src)\r\n warped = cv2.warpPerspective(combined,M,img_size,flags=cv2.INTER_LINEAR)\r\n \r\n #Testing\r\n \r\n output4 = np.dstack([warped*255,warped*255,warped*255])\r\n output4 = cv2.resize(output4,(320, 180), interpolation = cv2.INTER_AREA)\r\n #Testing ends\r\n \r\n output3 = cv2.warpPerspective(final_img,M,img_size,flags=cv2.INTER_LINEAR)\r\n output3 = cv2.resize(output3,(320, 180), interpolation = cv2.INTER_AREA)\r\n #Testing\r\n #cv2.imshow('warped',warped*255)\r\n kernel = np.ones((320, 1),np.uint8)\r\n warped1 = cv2.morphologyEx(warped.astype(np.uint8), cv2.MORPH_DILATE, kernel, iterations = 1)\r\n warped = cv2.morphologyEx(warped1.astype(np.uint8), cv2.MORPH_ERODE, kernel, iterations = 1)\r\n #cv2.imshow('warped1',warped*255)\r\n #Testing ends\r\n \r\n if((len(left_fit)==0 or len(right_fit)==0) or count==100 or validation_fails>5):\r\n histogram_img,leftx,lefty,rightx,righty,out_img = hist(warped,left_fit,right_fit,True)\r\n count=0\r\n validation_fails = 0\r\n else:\r\n histogram_img,leftx,lefty,rightx,righty,out_img = hist(warped,left_fit,right_fit,False)\r\n \r\n \r\n \r\n if(len(leftx)==0 or len(rightx)==0):\r\n histogram_img,leftx,lefty,rightx,righty,out_img = hist(warped,left_fit,right_fit,True)\r\n count=0\r\n \r\n ploty = np.linspace(0,warped.shape[0]-1,warped.shape[0])\r\n left_fit = np.polyfit(lefty,leftx,2)\r\n right_fit = np.polyfit(righty,rightx,2)\r\n \r\n \r\n #Testing\r\n t2 = right_fit[2]/left_fit[2]\r\n t1 = right_fit[1]/left_fit[1]\r\n t0 = right_fit[0]/left_fit[0]\r\n #print(t2,t1,t0)\r\n if(abs(t2) >20 or abs(t1)>20 or abs(t0)>20):\r\n validation_fails+=1\r\n if(len(prev_left_fit)!=0):\r\n left_fit = prev_left_fit\r\n if(len(prev_right_fit)!=0):\r\n right_fit = prev_right_fit\r\n print('valid fails')\r\n \r\n prev_left_fit = np.copy(left_fit)\r\n prev_right_fit = np.copy(right_fit)\r\n #Testing ends\r\n \r\n try:\r\n leftfitx = left_fit[0]*ploty**2 + left_fit[1]*ploty+left_fit[2]\r\n rightfitx = right_fit[0]*ploty**2+right_fit[1]*ploty+right_fit[2]\r\n except TypeError:\r\n print('The function failed to fit a line!')\r\n \r\n final_out_img = np.copy(out_img).astype(np.uint8)\r\n \r\n \r\n #testing\r\n out_img[lefty,leftx] = [255,0,0]\r\n out_img[righty,rightx] = [0,0,255]\r\n #output4 = cv2.resize(out_img,(320, 180), interpolation = cv2.INTER_AREA)\r\n #testing ends\r\n \r\n leftpoints_draw = (np.asarray([leftfitx,ploty]).T).astype(np.int32)\r\n rightpoints_draw = (np.asarray([rightfitx,ploty]).T).astype(np.int32)\r\n \r\n #testing\r\n# width = abs(np.max(leftpoints_draw) - np.max(rightpoints_draw))\r\n# print(width) \r\n cv2.polylines(out_img,[leftpoints_draw],False,(0,255,255),3)\r\n cv2.polylines(out_img,[rightpoints_draw],False,(0,255,255),3)\r\n #testing ends\r\n\r\n\r\n#**Drwaing on image the lane**\r\n pts_left = np.array([np.transpose(np.vstack([leftfitx, ploty]))])\r\n pts_right = np.array([np.flipud(np.transpose(np.vstack([rightfitx, ploty])))])\r\n#flipud is just reversing the order of the points which are from top to bottom to make them bottom to top so that we can have an anticlockwise ordering of the corners.\r\n pts = np.hstack((pts_left, pts_right))\r\n#print(pts.shape)\r\n \r\n #Testing\r\n left_side_points_mean = np.mean(pts_left)\r\n right_side_points_mean = np.mean(pts_right)\r\n #Testing ends\r\n \r\n #**Measuring Curvature radius**\r\n y_eval = np.max(ploty)\r\n ym_per_pixel = 30/720 #meters per pixel in y dimension\r\n xm_per_pixel = 3.7/700 #meters per pixel in x dimension\r\n #Testing\r\n left_fit_0_metres = left_fit[0] * (xm_per_pixel / (ym_per_pixel**2))\r\n left_fit_1_metres = left_fit[1] * (xm_per_pixel / ym_per_pixel)\r\n \r\n right_fit_0_metres = right_fit[0] * (xm_per_pixel / (ym_per_pixel**2))\r\n right_fit_1_metres = right_fit[1] * (xm_per_pixel / ym_per_pixel)\r\n #Testing ends\r\n left_curved = ((1 + (2*left_fit_0_metres*y_eval*ym_per_pixel + left_fit_1_metres)**2)**1.5)/(np.absolute(2*left_fit_0_metres))\r\n right_curved = ((1 + (2*right_fit_0_metres*y_eval*ym_per_pixel + right_fit_1_metres)**2)**1.5)/(np.absolute(2*right_fit_0_metres))\r\n\r\n #print('left_curved: '+str(left_curved))\r\n #print('right_curved: '+str(right_curved))\r\n \r\n #testing\r\n output2 = cv2.resize(out_img,(320, 180), interpolation = cv2.INTER_AREA)\r\n #testing ends\r\n cv2.fillPoly(final_out_img,np.int_([pts]),(0,255,0))\r\n#cv2.imwrite('./test_images/test.jpg',combined*255)\r\n newwarp = cv2.warpPerspective(final_out_img, Minv, (image.shape[1], image.shape[0])) \r\n result = cv2.addWeighted(final_img, 1, newwarp, 0.3, 0)\r\n vis = np.zeros((720, 1280 ,3),dtype=np.uint8)\r\n vis[:720, :1280,:] = result\r\n ltext = \"left Curvature(m): \" + str(round(left_curved,3))\r\n rtext = \"right Curvature(m): \" + str(round(right_curved,3))\r\n cent_out = round((left_side_points_mean + right_side_points_mean)/2,3)\r\n distance_from_center = round(abs(img_size[0]/2 - cent_out)*xm_per_pixel,3)\r\n cent = \"Vehicle is left from center(m): \" + str(distance_from_center)\r\n cv2.putText(result,ltext,(200,100),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,255),5,cv2.LINE_4)\r\n cv2.putText(result,rtext,(750,100),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,255),5,cv2.LINE_4)\r\n cv2.putText(result,cent,(350,200),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,255),5,cv2.LINE_4)\r\n #cv2.imshow('result',result)\r\n \r\n \r\n \r\n \r\n \r\n output1 = cv2.resize(combined*255,(320, 180), interpolation = cv2.INTER_AREA)\r\n \r\n \r\n vis[:180, 0:320,:] = np.dstack([output1,output1,output1])\r\n vis[:180, 320:640,:] = output2\r\n vis[:180, 640:960,:] = output3\r\n vis[:180, 960:1280,:] = output4\r\n \r\n cv2.putText(vis,ltext,(200,210),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,255),5,cv2.LINE_4)\r\n cv2.putText(vis,rtext,(750,210),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,255),5,cv2.LINE_4)\r\n cv2.putText(vis,cent,(350,250),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,255),5,cv2.LINE_4)\r\n\r\n \r\n cv2.imshow('result',vis)\r\n \r\n \r\n result1.write(result)\r\n if cv2.waitKey(1) & 0xFF == ord('q'):\r\n break\r\n else:\r\n break\r\n\r\ncap.release()\r\nresult1.release() \r\ncv2.destroyAllWindows()", "<docstring token>\nimport matplotlib.pyplot as plt\nimport matplotlib.image as mpimg\nimport numpy as np\nimport cv2\nimport pickle\nfrom moviepy.editor import *\nfin = []\nout = np.arange(0, 250) / 250\nout1 = np.ones(100)\nout2 = np.arange(400, 350, -1) / 400\nout3 = np.zeros(400)\nout4 = np.arange(800, 850, 1) / 850\nout5 = np.ones(100)\nout6 = np.arange(1100, 950, -1) / 1100\nout7 = np.zeros(180)\nfin = np.concatenate((out, out1, out2, out3, out4, out5, out6, out7))\nfin = np.expand_dims(fin, axis=1)\n\n\ndef abs_sobel_thresh(img, orient='x', sobel_kernel=3, thresh=(0, 255)):\n gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)\n if orient == 'x':\n sobel = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel)\n else:\n sobel = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel)\n absolute = np.absolute(sobel)\n scaled = np.uint8(255 * absolute / np.max(absolute))\n grad_binary = np.zeros_like(scaled)\n grad_binary[(scaled >= thresh[0]) & (scaled <= thresh[1])] = 1\n return grad_binary\n\n\ndef mag_thresh(image, sobel_kernel=3, mag_thresh=(0, 255)):\n gray_img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)\n sobelx = cv2.Sobel(gray_img, cv2.CV_64F, 1, 0, ksize=sobel_kernel)\n sobely = cv2.Sobel(gray_img, cv2.CV_64F, 0, 1, ksize=sobel_kernel)\n mag_sobel = np.sqrt(sobelx ** 2 + sobely ** 2)\n absolute = np.absolute(mag_sobel)\n scaled = np.uint8(255 * absolute / np.max(absolute))\n mag_binary = np.zeros_like(scaled)\n mag_binary[(scaled >= mag_thresh[0]) & (scaled <= mag_thresh[1])] = 1\n return mag_binary\n\n\ndef dir_threshold(image, sobel_kernel=3, thresh=(0, np.pi / 2)):\n gray_img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)\n sobelx = cv2.Sobel(gray_img, cv2.CV_64F, 1, 0, ksize=sobel_kernel)\n sobely = cv2.Sobel(gray_img, cv2.CV_64F, 0, 1, ksize=sobel_kernel)\n absx = np.absolute(sobelx)\n absy = np.absolute(sobely)\n direction = np.arctan2(absy, absx)\n dir_binary = np.zeros_like(gray_img)\n dir_binary[(direction >= thresh[0]) & (direction <= thresh[1])] = 1\n return dir_binary\n\n\ndef hls_select(image, thresh=(0, 255)):\n hls = cv2.cvtColor(image, cv2.COLOR_BGR2HLS)\n s = hls[:, :, 2]\n binary_output = np.zeros_like(s)\n binary_output[(s > thresh[0]) & (s <= thresh[1])] = 1\n return binary_output\n\n\ndef equalize(image):\n image_yuv = cv2.cvtColor(image, cv2.COLOR_BGR2YUV)\n clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(20, 20))\n image_yuv[:, :, 0] = clahe.apply(image_yuv[:, :, 0])\n img_output = cv2.cvtColor(image_yuv, cv2.COLOR_YUV2BGR)\n return img_output\n\n\ndef yuv_select_lumin(image, thresh=(0, 255)):\n yuv_img = cv2.cvtColor(image, cv2.COLOR_BGR2YUV)\n lumin = yuv_img[:, :, 0]\n binary_output = np.zeros_like(lumin)\n binary_output[(lumin > thresh[0]) & (lumin <= thresh[1])] = 1\n return binary_output\n\n\ndef hist(img, left_fit1, right_fit1, win=True):\n img = img / 255\n img = np.expand_dims(img, axis=-1)\n bottom_half = img[img.shape[0] // 2:, :]\n histogram = np.sum(bottom_half, axis=0)\n histogram = np.multiply(histogram, fin)\n out_img = np.dstack((img, img, img))\n midpoint = np.int(histogram.shape[0] // 2)\n leftx_base = np.argmax(histogram[:midpoint])\n rightx_base = np.argmax(histogram[midpoint:]) + midpoint\n nwindows = 9\n margin = 100\n minpix = 50\n searchmargin = 100\n window_height = np.int(img.shape[0] // nwindows)\n nonzero = img.nonzero()\n nonzeroy = np.array(nonzero[0])\n nonzerox = np.array(nonzero[1])\n leftx_current = leftx_base\n rightx_current = rightx_base\n left_lane_ids = []\n right_lane_ids = []\n if win:\n for window in range(nwindows):\n win_y_low = img.shape[0] - (window + 1) * window_height\n win_y_high = img.shape[0] - window * window_height\n win_xleft_low = leftx_current - margin\n win_xleft_high = leftx_current + margin\n win_xright_low = rightx_current - margin\n win_xright_high = rightx_current + margin\n cv2.rectangle(out_img, (win_xleft_low, win_y_low), (\n win_xleft_high, win_y_high), (0, 255, 0), 2)\n cv2.rectangle(out_img, (win_xright_low, win_y_low), (\n win_xright_high, win_y_high), (0, 255, 0), 2)\n good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy <\n win_y_high) & (nonzerox >= win_xleft_low) & (nonzerox <\n win_xleft_high)).nonzero()[0]\n good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy <\n win_y_high) & (nonzerox >= win_xright_low) & (nonzerox <\n win_xright_high)).nonzero()[0]\n left_lane_ids.append(good_left_inds)\n right_lane_ids.append(good_right_inds)\n if len(good_left_inds) > minpix:\n leftx_current = np.int(np.mean(nonzerox[good_left_inds]))\n if len(good_right_inds) > minpix:\n rightx_current = np.int(np.mean(nonzerox[good_right_inds]))\n try:\n left_lane_ids = np.concatenate(left_lane_ids)\n right_lane_ids = np.concatenate(right_lane_ids)\n except ValueError:\n pass\n else:\n left_lane_ids = (nonzerox > left_fit1[0] * nonzeroy ** 2 + \n left_fit1[1] * nonzeroy + left_fit1[2] - searchmargin) & (nonzerox\n < left_fit1[0] * nonzeroy ** 2 + left_fit1[1] * nonzeroy +\n left_fit1[2] + searchmargin)\n right_lane_ids = (nonzerox > right_fit1[0] * nonzeroy ** 2 + \n right_fit1[1] * nonzeroy + right_fit1[2] - searchmargin) & (\n nonzerox < right_fit1[0] * nonzeroy ** 2 + right_fit1[1] *\n nonzeroy + right_fit1[2] + searchmargin)\n leftx = nonzerox[left_lane_ids]\n lefty = nonzeroy[left_lane_ids]\n rightx = nonzerox[right_lane_ids]\n righty = nonzeroy[right_lane_ids]\n return histogram, leftx, lefty, rightx, righty, out_img\n\n\ncap = cv2.VideoCapture('./project_video.mp4')\nsize = int(cap.get(3)), int(cap.get(4))\nresult1 = cv2.VideoWriter('./output_images/project_video.mp4', cv2.\n VideoWriter_fourcc(*'MJPG'), 10, size)\nleft_fit = []\nright_fit = []\nprev_left_fit = []\nprev_right_fit = []\ncount = 0\nradoffset = 150\nprev_left_fit = []\nprev_right_fit = []\nwidth = 0\nvalidation_fails = 0\nwhile True:\n count += 1\n ret, image = cap.read()\n dist_pickle = pickle.load(open('./camera_cal/matrix.p', 'rb'))\n dst = dist_pickle['dist']\n mtx = dist_pickle['mtx']\n if ret:\n ksize = 3\n img_undist = cv2.undistort(image, mtx, dst, None, mtx)\n final_img = np.copy(img_undist)\n gradx = abs_sobel_thresh(img_undist, orient='x', sobel_kernel=ksize,\n thresh=(52, 238))\n grady = abs_sobel_thresh(img_undist, orient='y', sobel_kernel=ksize,\n thresh=(59, 249))\n mag_binary = mag_thresh(img_undist, sobel_kernel=ksize, mag_thresh=\n (68, 255))\n dir_binary = dir_threshold(img_undist, sobel_kernel=ksize, thresh=(\n 0.02, 1.57))\n s_binary = hls_select(img_undist, thresh=(151, 255))\n luminiscence = yuv_select_lumin(img_undist, thresh=(14, 255))\n combined = np.zeros_like(dir_binary)\n combined[(gradx == 1) & (grady == 1) | (mag_binary == 1) & (\n dir_binary == 1) | (s_binary == 1) & (luminiscence == 1)] = 1\n src = np.float32([[585 - 20, 460 + 10], [203 - 20, 720], [1127 + 30,\n 720], [695 + 30, 460 + 10]])\n points = np.int32(np.copy(src))\n dst = np.array([[320 - 20, 0], [320 - 20, 720], [960 + 30, 720], [\n 960 + 30, 0]], dtype='float32')\n img_size = combined.shape[1], combined.shape[0]\n M = cv2.getPerspectiveTransform(src, dst)\n Minv = cv2.getPerspectiveTransform(dst, src)\n warped = cv2.warpPerspective(combined, M, img_size, flags=cv2.\n INTER_LINEAR)\n output4 = np.dstack([warped * 255, warped * 255, warped * 255])\n output4 = cv2.resize(output4, (320, 180), interpolation=cv2.INTER_AREA)\n output3 = cv2.warpPerspective(final_img, M, img_size, flags=cv2.\n INTER_LINEAR)\n output3 = cv2.resize(output3, (320, 180), interpolation=cv2.INTER_AREA)\n kernel = np.ones((320, 1), np.uint8)\n warped1 = cv2.morphologyEx(warped.astype(np.uint8), cv2.\n MORPH_DILATE, kernel, iterations=1)\n warped = cv2.morphologyEx(warped1.astype(np.uint8), cv2.MORPH_ERODE,\n kernel, iterations=1)\n if (len(left_fit) == 0 or len(right_fit) == 0\n ) or count == 100 or validation_fails > 5:\n histogram_img, leftx, lefty, rightx, righty, out_img = hist(warped,\n left_fit, right_fit, True)\n count = 0\n validation_fails = 0\n else:\n histogram_img, leftx, lefty, rightx, righty, out_img = hist(warped,\n left_fit, right_fit, False)\n if len(leftx) == 0 or len(rightx) == 0:\n histogram_img, leftx, lefty, rightx, righty, out_img = hist(warped,\n left_fit, right_fit, True)\n count = 0\n ploty = np.linspace(0, warped.shape[0] - 1, warped.shape[0])\n left_fit = np.polyfit(lefty, leftx, 2)\n right_fit = np.polyfit(righty, rightx, 2)\n t2 = right_fit[2] / left_fit[2]\n t1 = right_fit[1] / left_fit[1]\n t0 = right_fit[0] / left_fit[0]\n if abs(t2) > 20 or abs(t1) > 20 or abs(t0) > 20:\n validation_fails += 1\n if len(prev_left_fit) != 0:\n left_fit = prev_left_fit\n if len(prev_right_fit) != 0:\n right_fit = prev_right_fit\n print('valid fails')\n prev_left_fit = np.copy(left_fit)\n prev_right_fit = np.copy(right_fit)\n try:\n leftfitx = left_fit[0] * ploty ** 2 + left_fit[1\n ] * ploty + left_fit[2]\n rightfitx = right_fit[0] * ploty ** 2 + right_fit[1\n ] * ploty + right_fit[2]\n except TypeError:\n print('The function failed to fit a line!')\n final_out_img = np.copy(out_img).astype(np.uint8)\n out_img[lefty, leftx] = [255, 0, 0]\n out_img[righty, rightx] = [0, 0, 255]\n leftpoints_draw = np.asarray([leftfitx, ploty]).T.astype(np.int32)\n rightpoints_draw = np.asarray([rightfitx, ploty]).T.astype(np.int32)\n cv2.polylines(out_img, [leftpoints_draw], False, (0, 255, 255), 3)\n cv2.polylines(out_img, [rightpoints_draw], False, (0, 255, 255), 3)\n pts_left = np.array([np.transpose(np.vstack([leftfitx, ploty]))])\n pts_right = np.array([np.flipud(np.transpose(np.vstack([rightfitx,\n ploty])))])\n pts = np.hstack((pts_left, pts_right))\n left_side_points_mean = np.mean(pts_left)\n right_side_points_mean = np.mean(pts_right)\n y_eval = np.max(ploty)\n ym_per_pixel = 30 / 720\n xm_per_pixel = 3.7 / 700\n left_fit_0_metres = left_fit[0] * (xm_per_pixel / ym_per_pixel ** 2)\n left_fit_1_metres = left_fit[1] * (xm_per_pixel / ym_per_pixel)\n right_fit_0_metres = right_fit[0] * (xm_per_pixel / ym_per_pixel ** 2)\n right_fit_1_metres = right_fit[1] * (xm_per_pixel / ym_per_pixel)\n left_curved = (1 + (2 * left_fit_0_metres * y_eval * ym_per_pixel +\n left_fit_1_metres) ** 2) ** 1.5 / np.absolute(2 * left_fit_0_metres\n )\n right_curved = (1 + (2 * right_fit_0_metres * y_eval * ym_per_pixel +\n right_fit_1_metres) ** 2) ** 1.5 / np.absolute(2 *\n right_fit_0_metres)\n output2 = cv2.resize(out_img, (320, 180), interpolation=cv2.INTER_AREA)\n cv2.fillPoly(final_out_img, np.int_([pts]), (0, 255, 0))\n newwarp = cv2.warpPerspective(final_out_img, Minv, (image.shape[1],\n image.shape[0]))\n result = cv2.addWeighted(final_img, 1, newwarp, 0.3, 0)\n vis = np.zeros((720, 1280, 3), dtype=np.uint8)\n vis[:720, :1280, :] = result\n ltext = 'left Curvature(m): ' + str(round(left_curved, 3))\n rtext = 'right Curvature(m): ' + str(round(right_curved, 3))\n cent_out = round((left_side_points_mean + right_side_points_mean) /\n 2, 3)\n distance_from_center = round(abs(img_size[0] / 2 - cent_out) *\n xm_per_pixel, 3)\n cent = 'Vehicle is left from center(m): ' + str(distance_from_center)\n cv2.putText(result, ltext, (200, 100), cv2.FONT_HERSHEY_SIMPLEX, 1,\n (255, 255, 255), 5, cv2.LINE_4)\n cv2.putText(result, rtext, (750, 100), cv2.FONT_HERSHEY_SIMPLEX, 1,\n (255, 255, 255), 5, cv2.LINE_4)\n cv2.putText(result, cent, (350, 200), cv2.FONT_HERSHEY_SIMPLEX, 1,\n (255, 255, 255), 5, cv2.LINE_4)\n output1 = cv2.resize(combined * 255, (320, 180), interpolation=cv2.\n INTER_AREA)\n vis[:180, 0:320, :] = np.dstack([output1, output1, output1])\n vis[:180, 320:640, :] = output2\n vis[:180, 640:960, :] = output3\n vis[:180, 960:1280, :] = output4\n cv2.putText(vis, ltext, (200, 210), cv2.FONT_HERSHEY_SIMPLEX, 1, (\n 255, 255, 255), 5, cv2.LINE_4)\n cv2.putText(vis, rtext, (750, 210), cv2.FONT_HERSHEY_SIMPLEX, 1, (\n 255, 255, 255), 5, cv2.LINE_4)\n cv2.putText(vis, cent, (350, 250), cv2.FONT_HERSHEY_SIMPLEX, 1, (\n 255, 255, 255), 5, cv2.LINE_4)\n cv2.imshow('result', vis)\n result1.write(result)\n if cv2.waitKey(1) & 255 == ord('q'):\n break\n else:\n break\ncap.release()\nresult1.release()\ncv2.destroyAllWindows()\n", "<docstring token>\n<import token>\nfin = []\nout = np.arange(0, 250) / 250\nout1 = np.ones(100)\nout2 = np.arange(400, 350, -1) / 400\nout3 = np.zeros(400)\nout4 = np.arange(800, 850, 1) / 850\nout5 = np.ones(100)\nout6 = np.arange(1100, 950, -1) / 1100\nout7 = np.zeros(180)\nfin = np.concatenate((out, out1, out2, out3, out4, out5, out6, out7))\nfin = np.expand_dims(fin, axis=1)\n\n\ndef abs_sobel_thresh(img, orient='x', sobel_kernel=3, thresh=(0, 255)):\n gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)\n if orient == 'x':\n sobel = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel)\n else:\n sobel = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel)\n absolute = np.absolute(sobel)\n scaled = np.uint8(255 * absolute / np.max(absolute))\n grad_binary = np.zeros_like(scaled)\n grad_binary[(scaled >= thresh[0]) & (scaled <= thresh[1])] = 1\n return grad_binary\n\n\ndef mag_thresh(image, sobel_kernel=3, mag_thresh=(0, 255)):\n gray_img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)\n sobelx = cv2.Sobel(gray_img, cv2.CV_64F, 1, 0, ksize=sobel_kernel)\n sobely = cv2.Sobel(gray_img, cv2.CV_64F, 0, 1, ksize=sobel_kernel)\n mag_sobel = np.sqrt(sobelx ** 2 + sobely ** 2)\n absolute = np.absolute(mag_sobel)\n scaled = np.uint8(255 * absolute / np.max(absolute))\n mag_binary = np.zeros_like(scaled)\n mag_binary[(scaled >= mag_thresh[0]) & (scaled <= mag_thresh[1])] = 1\n return mag_binary\n\n\ndef dir_threshold(image, sobel_kernel=3, thresh=(0, np.pi / 2)):\n gray_img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)\n sobelx = cv2.Sobel(gray_img, cv2.CV_64F, 1, 0, ksize=sobel_kernel)\n sobely = cv2.Sobel(gray_img, cv2.CV_64F, 0, 1, ksize=sobel_kernel)\n absx = np.absolute(sobelx)\n absy = np.absolute(sobely)\n direction = np.arctan2(absy, absx)\n dir_binary = np.zeros_like(gray_img)\n dir_binary[(direction >= thresh[0]) & (direction <= thresh[1])] = 1\n return dir_binary\n\n\ndef hls_select(image, thresh=(0, 255)):\n hls = cv2.cvtColor(image, cv2.COLOR_BGR2HLS)\n s = hls[:, :, 2]\n binary_output = np.zeros_like(s)\n binary_output[(s > thresh[0]) & (s <= thresh[1])] = 1\n return binary_output\n\n\ndef equalize(image):\n image_yuv = cv2.cvtColor(image, cv2.COLOR_BGR2YUV)\n clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(20, 20))\n image_yuv[:, :, 0] = clahe.apply(image_yuv[:, :, 0])\n img_output = cv2.cvtColor(image_yuv, cv2.COLOR_YUV2BGR)\n return img_output\n\n\ndef yuv_select_lumin(image, thresh=(0, 255)):\n yuv_img = cv2.cvtColor(image, cv2.COLOR_BGR2YUV)\n lumin = yuv_img[:, :, 0]\n binary_output = np.zeros_like(lumin)\n binary_output[(lumin > thresh[0]) & (lumin <= thresh[1])] = 1\n return binary_output\n\n\ndef hist(img, left_fit1, right_fit1, win=True):\n img = img / 255\n img = np.expand_dims(img, axis=-1)\n bottom_half = img[img.shape[0] // 2:, :]\n histogram = np.sum(bottom_half, axis=0)\n histogram = np.multiply(histogram, fin)\n out_img = np.dstack((img, img, img))\n midpoint = np.int(histogram.shape[0] // 2)\n leftx_base = np.argmax(histogram[:midpoint])\n rightx_base = np.argmax(histogram[midpoint:]) + midpoint\n nwindows = 9\n margin = 100\n minpix = 50\n searchmargin = 100\n window_height = np.int(img.shape[0] // nwindows)\n nonzero = img.nonzero()\n nonzeroy = np.array(nonzero[0])\n nonzerox = np.array(nonzero[1])\n leftx_current = leftx_base\n rightx_current = rightx_base\n left_lane_ids = []\n right_lane_ids = []\n if win:\n for window in range(nwindows):\n win_y_low = img.shape[0] - (window + 1) * window_height\n win_y_high = img.shape[0] - window * window_height\n win_xleft_low = leftx_current - margin\n win_xleft_high = leftx_current + margin\n win_xright_low = rightx_current - margin\n win_xright_high = rightx_current + margin\n cv2.rectangle(out_img, (win_xleft_low, win_y_low), (\n win_xleft_high, win_y_high), (0, 255, 0), 2)\n cv2.rectangle(out_img, (win_xright_low, win_y_low), (\n win_xright_high, win_y_high), (0, 255, 0), 2)\n good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy <\n win_y_high) & (nonzerox >= win_xleft_low) & (nonzerox <\n win_xleft_high)).nonzero()[0]\n good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy <\n win_y_high) & (nonzerox >= win_xright_low) & (nonzerox <\n win_xright_high)).nonzero()[0]\n left_lane_ids.append(good_left_inds)\n right_lane_ids.append(good_right_inds)\n if len(good_left_inds) > minpix:\n leftx_current = np.int(np.mean(nonzerox[good_left_inds]))\n if len(good_right_inds) > minpix:\n rightx_current = np.int(np.mean(nonzerox[good_right_inds]))\n try:\n left_lane_ids = np.concatenate(left_lane_ids)\n right_lane_ids = np.concatenate(right_lane_ids)\n except ValueError:\n pass\n else:\n left_lane_ids = (nonzerox > left_fit1[0] * nonzeroy ** 2 + \n left_fit1[1] * nonzeroy + left_fit1[2] - searchmargin) & (nonzerox\n < left_fit1[0] * nonzeroy ** 2 + left_fit1[1] * nonzeroy +\n left_fit1[2] + searchmargin)\n right_lane_ids = (nonzerox > right_fit1[0] * nonzeroy ** 2 + \n right_fit1[1] * nonzeroy + right_fit1[2] - searchmargin) & (\n nonzerox < right_fit1[0] * nonzeroy ** 2 + right_fit1[1] *\n nonzeroy + right_fit1[2] + searchmargin)\n leftx = nonzerox[left_lane_ids]\n lefty = nonzeroy[left_lane_ids]\n rightx = nonzerox[right_lane_ids]\n righty = nonzeroy[right_lane_ids]\n return histogram, leftx, lefty, rightx, righty, out_img\n\n\ncap = cv2.VideoCapture('./project_video.mp4')\nsize = int(cap.get(3)), int(cap.get(4))\nresult1 = cv2.VideoWriter('./output_images/project_video.mp4', cv2.\n VideoWriter_fourcc(*'MJPG'), 10, size)\nleft_fit = []\nright_fit = []\nprev_left_fit = []\nprev_right_fit = []\ncount = 0\nradoffset = 150\nprev_left_fit = []\nprev_right_fit = []\nwidth = 0\nvalidation_fails = 0\nwhile True:\n count += 1\n ret, image = cap.read()\n dist_pickle = pickle.load(open('./camera_cal/matrix.p', 'rb'))\n dst = dist_pickle['dist']\n mtx = dist_pickle['mtx']\n if ret:\n ksize = 3\n img_undist = cv2.undistort(image, mtx, dst, None, mtx)\n final_img = np.copy(img_undist)\n gradx = abs_sobel_thresh(img_undist, orient='x', sobel_kernel=ksize,\n thresh=(52, 238))\n grady = abs_sobel_thresh(img_undist, orient='y', sobel_kernel=ksize,\n thresh=(59, 249))\n mag_binary = mag_thresh(img_undist, sobel_kernel=ksize, mag_thresh=\n (68, 255))\n dir_binary = dir_threshold(img_undist, sobel_kernel=ksize, thresh=(\n 0.02, 1.57))\n s_binary = hls_select(img_undist, thresh=(151, 255))\n luminiscence = yuv_select_lumin(img_undist, thresh=(14, 255))\n combined = np.zeros_like(dir_binary)\n combined[(gradx == 1) & (grady == 1) | (mag_binary == 1) & (\n dir_binary == 1) | (s_binary == 1) & (luminiscence == 1)] = 1\n src = np.float32([[585 - 20, 460 + 10], [203 - 20, 720], [1127 + 30,\n 720], [695 + 30, 460 + 10]])\n points = np.int32(np.copy(src))\n dst = np.array([[320 - 20, 0], [320 - 20, 720], [960 + 30, 720], [\n 960 + 30, 0]], dtype='float32')\n img_size = combined.shape[1], combined.shape[0]\n M = cv2.getPerspectiveTransform(src, dst)\n Minv = cv2.getPerspectiveTransform(dst, src)\n warped = cv2.warpPerspective(combined, M, img_size, flags=cv2.\n INTER_LINEAR)\n output4 = np.dstack([warped * 255, warped * 255, warped * 255])\n output4 = cv2.resize(output4, (320, 180), interpolation=cv2.INTER_AREA)\n output3 = cv2.warpPerspective(final_img, M, img_size, flags=cv2.\n INTER_LINEAR)\n output3 = cv2.resize(output3, (320, 180), interpolation=cv2.INTER_AREA)\n kernel = np.ones((320, 1), np.uint8)\n warped1 = cv2.morphologyEx(warped.astype(np.uint8), cv2.\n MORPH_DILATE, kernel, iterations=1)\n warped = cv2.morphologyEx(warped1.astype(np.uint8), cv2.MORPH_ERODE,\n kernel, iterations=1)\n if (len(left_fit) == 0 or len(right_fit) == 0\n ) or count == 100 or validation_fails > 5:\n histogram_img, leftx, lefty, rightx, righty, out_img = hist(warped,\n left_fit, right_fit, True)\n count = 0\n validation_fails = 0\n else:\n histogram_img, leftx, lefty, rightx, righty, out_img = hist(warped,\n left_fit, right_fit, False)\n if len(leftx) == 0 or len(rightx) == 0:\n histogram_img, leftx, lefty, rightx, righty, out_img = hist(warped,\n left_fit, right_fit, True)\n count = 0\n ploty = np.linspace(0, warped.shape[0] - 1, warped.shape[0])\n left_fit = np.polyfit(lefty, leftx, 2)\n right_fit = np.polyfit(righty, rightx, 2)\n t2 = right_fit[2] / left_fit[2]\n t1 = right_fit[1] / left_fit[1]\n t0 = right_fit[0] / left_fit[0]\n if abs(t2) > 20 or abs(t1) > 20 or abs(t0) > 20:\n validation_fails += 1\n if len(prev_left_fit) != 0:\n left_fit = prev_left_fit\n if len(prev_right_fit) != 0:\n right_fit = prev_right_fit\n print('valid fails')\n prev_left_fit = np.copy(left_fit)\n prev_right_fit = np.copy(right_fit)\n try:\n leftfitx = left_fit[0] * ploty ** 2 + left_fit[1\n ] * ploty + left_fit[2]\n rightfitx = right_fit[0] * ploty ** 2 + right_fit[1\n ] * ploty + right_fit[2]\n except TypeError:\n print('The function failed to fit a line!')\n final_out_img = np.copy(out_img).astype(np.uint8)\n out_img[lefty, leftx] = [255, 0, 0]\n out_img[righty, rightx] = [0, 0, 255]\n leftpoints_draw = np.asarray([leftfitx, ploty]).T.astype(np.int32)\n rightpoints_draw = np.asarray([rightfitx, ploty]).T.astype(np.int32)\n cv2.polylines(out_img, [leftpoints_draw], False, (0, 255, 255), 3)\n cv2.polylines(out_img, [rightpoints_draw], False, (0, 255, 255), 3)\n pts_left = np.array([np.transpose(np.vstack([leftfitx, ploty]))])\n pts_right = np.array([np.flipud(np.transpose(np.vstack([rightfitx,\n ploty])))])\n pts = np.hstack((pts_left, pts_right))\n left_side_points_mean = np.mean(pts_left)\n right_side_points_mean = np.mean(pts_right)\n y_eval = np.max(ploty)\n ym_per_pixel = 30 / 720\n xm_per_pixel = 3.7 / 700\n left_fit_0_metres = left_fit[0] * (xm_per_pixel / ym_per_pixel ** 2)\n left_fit_1_metres = left_fit[1] * (xm_per_pixel / ym_per_pixel)\n right_fit_0_metres = right_fit[0] * (xm_per_pixel / ym_per_pixel ** 2)\n right_fit_1_metres = right_fit[1] * (xm_per_pixel / ym_per_pixel)\n left_curved = (1 + (2 * left_fit_0_metres * y_eval * ym_per_pixel +\n left_fit_1_metres) ** 2) ** 1.5 / np.absolute(2 * left_fit_0_metres\n )\n right_curved = (1 + (2 * right_fit_0_metres * y_eval * ym_per_pixel +\n right_fit_1_metres) ** 2) ** 1.5 / np.absolute(2 *\n right_fit_0_metres)\n output2 = cv2.resize(out_img, (320, 180), interpolation=cv2.INTER_AREA)\n cv2.fillPoly(final_out_img, np.int_([pts]), (0, 255, 0))\n newwarp = cv2.warpPerspective(final_out_img, Minv, (image.shape[1],\n image.shape[0]))\n result = cv2.addWeighted(final_img, 1, newwarp, 0.3, 0)\n vis = np.zeros((720, 1280, 3), dtype=np.uint8)\n vis[:720, :1280, :] = result\n ltext = 'left Curvature(m): ' + str(round(left_curved, 3))\n rtext = 'right Curvature(m): ' + str(round(right_curved, 3))\n cent_out = round((left_side_points_mean + right_side_points_mean) /\n 2, 3)\n distance_from_center = round(abs(img_size[0] / 2 - cent_out) *\n xm_per_pixel, 3)\n cent = 'Vehicle is left from center(m): ' + str(distance_from_center)\n cv2.putText(result, ltext, (200, 100), cv2.FONT_HERSHEY_SIMPLEX, 1,\n (255, 255, 255), 5, cv2.LINE_4)\n cv2.putText(result, rtext, (750, 100), cv2.FONT_HERSHEY_SIMPLEX, 1,\n (255, 255, 255), 5, cv2.LINE_4)\n cv2.putText(result, cent, (350, 200), cv2.FONT_HERSHEY_SIMPLEX, 1,\n (255, 255, 255), 5, cv2.LINE_4)\n output1 = cv2.resize(combined * 255, (320, 180), interpolation=cv2.\n INTER_AREA)\n vis[:180, 0:320, :] = np.dstack([output1, output1, output1])\n vis[:180, 320:640, :] = output2\n vis[:180, 640:960, :] = output3\n vis[:180, 960:1280, :] = output4\n cv2.putText(vis, ltext, (200, 210), cv2.FONT_HERSHEY_SIMPLEX, 1, (\n 255, 255, 255), 5, cv2.LINE_4)\n cv2.putText(vis, rtext, (750, 210), cv2.FONT_HERSHEY_SIMPLEX, 1, (\n 255, 255, 255), 5, cv2.LINE_4)\n cv2.putText(vis, cent, (350, 250), cv2.FONT_HERSHEY_SIMPLEX, 1, (\n 255, 255, 255), 5, cv2.LINE_4)\n cv2.imshow('result', vis)\n result1.write(result)\n if cv2.waitKey(1) & 255 == ord('q'):\n break\n else:\n break\ncap.release()\nresult1.release()\ncv2.destroyAllWindows()\n", "<docstring token>\n<import token>\n<assignment token>\n\n\ndef abs_sobel_thresh(img, orient='x', sobel_kernel=3, thresh=(0, 255)):\n gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)\n if orient == 'x':\n sobel = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel)\n else:\n sobel = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel)\n absolute = np.absolute(sobel)\n scaled = np.uint8(255 * absolute / np.max(absolute))\n grad_binary = np.zeros_like(scaled)\n grad_binary[(scaled >= thresh[0]) & (scaled <= thresh[1])] = 1\n return grad_binary\n\n\ndef mag_thresh(image, sobel_kernel=3, mag_thresh=(0, 255)):\n gray_img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)\n sobelx = cv2.Sobel(gray_img, cv2.CV_64F, 1, 0, ksize=sobel_kernel)\n sobely = cv2.Sobel(gray_img, cv2.CV_64F, 0, 1, ksize=sobel_kernel)\n mag_sobel = np.sqrt(sobelx ** 2 + sobely ** 2)\n absolute = np.absolute(mag_sobel)\n scaled = np.uint8(255 * absolute / np.max(absolute))\n mag_binary = np.zeros_like(scaled)\n mag_binary[(scaled >= mag_thresh[0]) & (scaled <= mag_thresh[1])] = 1\n return mag_binary\n\n\ndef dir_threshold(image, sobel_kernel=3, thresh=(0, np.pi / 2)):\n gray_img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)\n sobelx = cv2.Sobel(gray_img, cv2.CV_64F, 1, 0, ksize=sobel_kernel)\n sobely = cv2.Sobel(gray_img, cv2.CV_64F, 0, 1, ksize=sobel_kernel)\n absx = np.absolute(sobelx)\n absy = np.absolute(sobely)\n direction = np.arctan2(absy, absx)\n dir_binary = np.zeros_like(gray_img)\n dir_binary[(direction >= thresh[0]) & (direction <= thresh[1])] = 1\n return dir_binary\n\n\ndef hls_select(image, thresh=(0, 255)):\n hls = cv2.cvtColor(image, cv2.COLOR_BGR2HLS)\n s = hls[:, :, 2]\n binary_output = np.zeros_like(s)\n binary_output[(s > thresh[0]) & (s <= thresh[1])] = 1\n return binary_output\n\n\ndef equalize(image):\n image_yuv = cv2.cvtColor(image, cv2.COLOR_BGR2YUV)\n clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(20, 20))\n image_yuv[:, :, 0] = clahe.apply(image_yuv[:, :, 0])\n img_output = cv2.cvtColor(image_yuv, cv2.COLOR_YUV2BGR)\n return img_output\n\n\ndef yuv_select_lumin(image, thresh=(0, 255)):\n yuv_img = cv2.cvtColor(image, cv2.COLOR_BGR2YUV)\n lumin = yuv_img[:, :, 0]\n binary_output = np.zeros_like(lumin)\n binary_output[(lumin > thresh[0]) & (lumin <= thresh[1])] = 1\n return binary_output\n\n\ndef hist(img, left_fit1, right_fit1, win=True):\n img = img / 255\n img = np.expand_dims(img, axis=-1)\n bottom_half = img[img.shape[0] // 2:, :]\n histogram = np.sum(bottom_half, axis=0)\n histogram = np.multiply(histogram, fin)\n out_img = np.dstack((img, img, img))\n midpoint = np.int(histogram.shape[0] // 2)\n leftx_base = np.argmax(histogram[:midpoint])\n rightx_base = np.argmax(histogram[midpoint:]) + midpoint\n nwindows = 9\n margin = 100\n minpix = 50\n searchmargin = 100\n window_height = np.int(img.shape[0] // nwindows)\n nonzero = img.nonzero()\n nonzeroy = np.array(nonzero[0])\n nonzerox = np.array(nonzero[1])\n leftx_current = leftx_base\n rightx_current = rightx_base\n left_lane_ids = []\n right_lane_ids = []\n if win:\n for window in range(nwindows):\n win_y_low = img.shape[0] - (window + 1) * window_height\n win_y_high = img.shape[0] - window * window_height\n win_xleft_low = leftx_current - margin\n win_xleft_high = leftx_current + margin\n win_xright_low = rightx_current - margin\n win_xright_high = rightx_current + margin\n cv2.rectangle(out_img, (win_xleft_low, win_y_low), (\n win_xleft_high, win_y_high), (0, 255, 0), 2)\n cv2.rectangle(out_img, (win_xright_low, win_y_low), (\n win_xright_high, win_y_high), (0, 255, 0), 2)\n good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy <\n win_y_high) & (nonzerox >= win_xleft_low) & (nonzerox <\n win_xleft_high)).nonzero()[0]\n good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy <\n win_y_high) & (nonzerox >= win_xright_low) & (nonzerox <\n win_xright_high)).nonzero()[0]\n left_lane_ids.append(good_left_inds)\n right_lane_ids.append(good_right_inds)\n if len(good_left_inds) > minpix:\n leftx_current = np.int(np.mean(nonzerox[good_left_inds]))\n if len(good_right_inds) > minpix:\n rightx_current = np.int(np.mean(nonzerox[good_right_inds]))\n try:\n left_lane_ids = np.concatenate(left_lane_ids)\n right_lane_ids = np.concatenate(right_lane_ids)\n except ValueError:\n pass\n else:\n left_lane_ids = (nonzerox > left_fit1[0] * nonzeroy ** 2 + \n left_fit1[1] * nonzeroy + left_fit1[2] - searchmargin) & (nonzerox\n < left_fit1[0] * nonzeroy ** 2 + left_fit1[1] * nonzeroy +\n left_fit1[2] + searchmargin)\n right_lane_ids = (nonzerox > right_fit1[0] * nonzeroy ** 2 + \n right_fit1[1] * nonzeroy + right_fit1[2] - searchmargin) & (\n nonzerox < right_fit1[0] * nonzeroy ** 2 + right_fit1[1] *\n nonzeroy + right_fit1[2] + searchmargin)\n leftx = nonzerox[left_lane_ids]\n lefty = nonzeroy[left_lane_ids]\n rightx = nonzerox[right_lane_ids]\n righty = nonzeroy[right_lane_ids]\n return histogram, leftx, lefty, rightx, righty, out_img\n\n\n<assignment token>\nwhile True:\n count += 1\n ret, image = cap.read()\n dist_pickle = pickle.load(open('./camera_cal/matrix.p', 'rb'))\n dst = dist_pickle['dist']\n mtx = dist_pickle['mtx']\n if ret:\n ksize = 3\n img_undist = cv2.undistort(image, mtx, dst, None, mtx)\n final_img = np.copy(img_undist)\n gradx = abs_sobel_thresh(img_undist, orient='x', sobel_kernel=ksize,\n thresh=(52, 238))\n grady = abs_sobel_thresh(img_undist, orient='y', sobel_kernel=ksize,\n thresh=(59, 249))\n mag_binary = mag_thresh(img_undist, sobel_kernel=ksize, mag_thresh=\n (68, 255))\n dir_binary = dir_threshold(img_undist, sobel_kernel=ksize, thresh=(\n 0.02, 1.57))\n s_binary = hls_select(img_undist, thresh=(151, 255))\n luminiscence = yuv_select_lumin(img_undist, thresh=(14, 255))\n combined = np.zeros_like(dir_binary)\n combined[(gradx == 1) & (grady == 1) | (mag_binary == 1) & (\n dir_binary == 1) | (s_binary == 1) & (luminiscence == 1)] = 1\n src = np.float32([[585 - 20, 460 + 10], [203 - 20, 720], [1127 + 30,\n 720], [695 + 30, 460 + 10]])\n points = np.int32(np.copy(src))\n dst = np.array([[320 - 20, 0], [320 - 20, 720], [960 + 30, 720], [\n 960 + 30, 0]], dtype='float32')\n img_size = combined.shape[1], combined.shape[0]\n M = cv2.getPerspectiveTransform(src, dst)\n Minv = cv2.getPerspectiveTransform(dst, src)\n warped = cv2.warpPerspective(combined, M, img_size, flags=cv2.\n INTER_LINEAR)\n output4 = np.dstack([warped * 255, warped * 255, warped * 255])\n output4 = cv2.resize(output4, (320, 180), interpolation=cv2.INTER_AREA)\n output3 = cv2.warpPerspective(final_img, M, img_size, flags=cv2.\n INTER_LINEAR)\n output3 = cv2.resize(output3, (320, 180), interpolation=cv2.INTER_AREA)\n kernel = np.ones((320, 1), np.uint8)\n warped1 = cv2.morphologyEx(warped.astype(np.uint8), cv2.\n MORPH_DILATE, kernel, iterations=1)\n warped = cv2.morphologyEx(warped1.astype(np.uint8), cv2.MORPH_ERODE,\n kernel, iterations=1)\n if (len(left_fit) == 0 or len(right_fit) == 0\n ) or count == 100 or validation_fails > 5:\n histogram_img, leftx, lefty, rightx, righty, out_img = hist(warped,\n left_fit, right_fit, True)\n count = 0\n validation_fails = 0\n else:\n histogram_img, leftx, lefty, rightx, righty, out_img = hist(warped,\n left_fit, right_fit, False)\n if len(leftx) == 0 or len(rightx) == 0:\n histogram_img, leftx, lefty, rightx, righty, out_img = hist(warped,\n left_fit, right_fit, True)\n count = 0\n ploty = np.linspace(0, warped.shape[0] - 1, warped.shape[0])\n left_fit = np.polyfit(lefty, leftx, 2)\n right_fit = np.polyfit(righty, rightx, 2)\n t2 = right_fit[2] / left_fit[2]\n t1 = right_fit[1] / left_fit[1]\n t0 = right_fit[0] / left_fit[0]\n if abs(t2) > 20 or abs(t1) > 20 or abs(t0) > 20:\n validation_fails += 1\n if len(prev_left_fit) != 0:\n left_fit = prev_left_fit\n if len(prev_right_fit) != 0:\n right_fit = prev_right_fit\n print('valid fails')\n prev_left_fit = np.copy(left_fit)\n prev_right_fit = np.copy(right_fit)\n try:\n leftfitx = left_fit[0] * ploty ** 2 + left_fit[1\n ] * ploty + left_fit[2]\n rightfitx = right_fit[0] * ploty ** 2 + right_fit[1\n ] * ploty + right_fit[2]\n except TypeError:\n print('The function failed to fit a line!')\n final_out_img = np.copy(out_img).astype(np.uint8)\n out_img[lefty, leftx] = [255, 0, 0]\n out_img[righty, rightx] = [0, 0, 255]\n leftpoints_draw = np.asarray([leftfitx, ploty]).T.astype(np.int32)\n rightpoints_draw = np.asarray([rightfitx, ploty]).T.astype(np.int32)\n cv2.polylines(out_img, [leftpoints_draw], False, (0, 255, 255), 3)\n cv2.polylines(out_img, [rightpoints_draw], False, (0, 255, 255), 3)\n pts_left = np.array([np.transpose(np.vstack([leftfitx, ploty]))])\n pts_right = np.array([np.flipud(np.transpose(np.vstack([rightfitx,\n ploty])))])\n pts = np.hstack((pts_left, pts_right))\n left_side_points_mean = np.mean(pts_left)\n right_side_points_mean = np.mean(pts_right)\n y_eval = np.max(ploty)\n ym_per_pixel = 30 / 720\n xm_per_pixel = 3.7 / 700\n left_fit_0_metres = left_fit[0] * (xm_per_pixel / ym_per_pixel ** 2)\n left_fit_1_metres = left_fit[1] * (xm_per_pixel / ym_per_pixel)\n right_fit_0_metres = right_fit[0] * (xm_per_pixel / ym_per_pixel ** 2)\n right_fit_1_metres = right_fit[1] * (xm_per_pixel / ym_per_pixel)\n left_curved = (1 + (2 * left_fit_0_metres * y_eval * ym_per_pixel +\n left_fit_1_metres) ** 2) ** 1.5 / np.absolute(2 * left_fit_0_metres\n )\n right_curved = (1 + (2 * right_fit_0_metres * y_eval * ym_per_pixel +\n right_fit_1_metres) ** 2) ** 1.5 / np.absolute(2 *\n right_fit_0_metres)\n output2 = cv2.resize(out_img, (320, 180), interpolation=cv2.INTER_AREA)\n cv2.fillPoly(final_out_img, np.int_([pts]), (0, 255, 0))\n newwarp = cv2.warpPerspective(final_out_img, Minv, (image.shape[1],\n image.shape[0]))\n result = cv2.addWeighted(final_img, 1, newwarp, 0.3, 0)\n vis = np.zeros((720, 1280, 3), dtype=np.uint8)\n vis[:720, :1280, :] = result\n ltext = 'left Curvature(m): ' + str(round(left_curved, 3))\n rtext = 'right Curvature(m): ' + str(round(right_curved, 3))\n cent_out = round((left_side_points_mean + right_side_points_mean) /\n 2, 3)\n distance_from_center = round(abs(img_size[0] / 2 - cent_out) *\n xm_per_pixel, 3)\n cent = 'Vehicle is left from center(m): ' + str(distance_from_center)\n cv2.putText(result, ltext, (200, 100), cv2.FONT_HERSHEY_SIMPLEX, 1,\n (255, 255, 255), 5, cv2.LINE_4)\n cv2.putText(result, rtext, (750, 100), cv2.FONT_HERSHEY_SIMPLEX, 1,\n (255, 255, 255), 5, cv2.LINE_4)\n cv2.putText(result, cent, (350, 200), cv2.FONT_HERSHEY_SIMPLEX, 1,\n (255, 255, 255), 5, cv2.LINE_4)\n output1 = cv2.resize(combined * 255, (320, 180), interpolation=cv2.\n INTER_AREA)\n vis[:180, 0:320, :] = np.dstack([output1, output1, output1])\n vis[:180, 320:640, :] = output2\n vis[:180, 640:960, :] = output3\n vis[:180, 960:1280, :] = output4\n cv2.putText(vis, ltext, (200, 210), cv2.FONT_HERSHEY_SIMPLEX, 1, (\n 255, 255, 255), 5, cv2.LINE_4)\n cv2.putText(vis, rtext, (750, 210), cv2.FONT_HERSHEY_SIMPLEX, 1, (\n 255, 255, 255), 5, cv2.LINE_4)\n cv2.putText(vis, cent, (350, 250), cv2.FONT_HERSHEY_SIMPLEX, 1, (\n 255, 255, 255), 5, cv2.LINE_4)\n cv2.imshow('result', vis)\n result1.write(result)\n if cv2.waitKey(1) & 255 == ord('q'):\n break\n else:\n break\ncap.release()\nresult1.release()\ncv2.destroyAllWindows()\n", "<docstring token>\n<import token>\n<assignment token>\n\n\ndef abs_sobel_thresh(img, orient='x', sobel_kernel=3, thresh=(0, 255)):\n gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)\n if orient == 'x':\n sobel = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel)\n else:\n sobel = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel)\n absolute = np.absolute(sobel)\n scaled = np.uint8(255 * absolute / np.max(absolute))\n grad_binary = np.zeros_like(scaled)\n grad_binary[(scaled >= thresh[0]) & (scaled <= thresh[1])] = 1\n return grad_binary\n\n\ndef mag_thresh(image, sobel_kernel=3, mag_thresh=(0, 255)):\n gray_img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)\n sobelx = cv2.Sobel(gray_img, cv2.CV_64F, 1, 0, ksize=sobel_kernel)\n sobely = cv2.Sobel(gray_img, cv2.CV_64F, 0, 1, ksize=sobel_kernel)\n mag_sobel = np.sqrt(sobelx ** 2 + sobely ** 2)\n absolute = np.absolute(mag_sobel)\n scaled = np.uint8(255 * absolute / np.max(absolute))\n mag_binary = np.zeros_like(scaled)\n mag_binary[(scaled >= mag_thresh[0]) & (scaled <= mag_thresh[1])] = 1\n return mag_binary\n\n\ndef dir_threshold(image, sobel_kernel=3, thresh=(0, np.pi / 2)):\n gray_img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)\n sobelx = cv2.Sobel(gray_img, cv2.CV_64F, 1, 0, ksize=sobel_kernel)\n sobely = cv2.Sobel(gray_img, cv2.CV_64F, 0, 1, ksize=sobel_kernel)\n absx = np.absolute(sobelx)\n absy = np.absolute(sobely)\n direction = np.arctan2(absy, absx)\n dir_binary = np.zeros_like(gray_img)\n dir_binary[(direction >= thresh[0]) & (direction <= thresh[1])] = 1\n return dir_binary\n\n\ndef hls_select(image, thresh=(0, 255)):\n hls = cv2.cvtColor(image, cv2.COLOR_BGR2HLS)\n s = hls[:, :, 2]\n binary_output = np.zeros_like(s)\n binary_output[(s > thresh[0]) & (s <= thresh[1])] = 1\n return binary_output\n\n\ndef equalize(image):\n image_yuv = cv2.cvtColor(image, cv2.COLOR_BGR2YUV)\n clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(20, 20))\n image_yuv[:, :, 0] = clahe.apply(image_yuv[:, :, 0])\n img_output = cv2.cvtColor(image_yuv, cv2.COLOR_YUV2BGR)\n return img_output\n\n\ndef yuv_select_lumin(image, thresh=(0, 255)):\n yuv_img = cv2.cvtColor(image, cv2.COLOR_BGR2YUV)\n lumin = yuv_img[:, :, 0]\n binary_output = np.zeros_like(lumin)\n binary_output[(lumin > thresh[0]) & (lumin <= thresh[1])] = 1\n return binary_output\n\n\ndef hist(img, left_fit1, right_fit1, win=True):\n img = img / 255\n img = np.expand_dims(img, axis=-1)\n bottom_half = img[img.shape[0] // 2:, :]\n histogram = np.sum(bottom_half, axis=0)\n histogram = np.multiply(histogram, fin)\n out_img = np.dstack((img, img, img))\n midpoint = np.int(histogram.shape[0] // 2)\n leftx_base = np.argmax(histogram[:midpoint])\n rightx_base = np.argmax(histogram[midpoint:]) + midpoint\n nwindows = 9\n margin = 100\n minpix = 50\n searchmargin = 100\n window_height = np.int(img.shape[0] // nwindows)\n nonzero = img.nonzero()\n nonzeroy = np.array(nonzero[0])\n nonzerox = np.array(nonzero[1])\n leftx_current = leftx_base\n rightx_current = rightx_base\n left_lane_ids = []\n right_lane_ids = []\n if win:\n for window in range(nwindows):\n win_y_low = img.shape[0] - (window + 1) * window_height\n win_y_high = img.shape[0] - window * window_height\n win_xleft_low = leftx_current - margin\n win_xleft_high = leftx_current + margin\n win_xright_low = rightx_current - margin\n win_xright_high = rightx_current + margin\n cv2.rectangle(out_img, (win_xleft_low, win_y_low), (\n win_xleft_high, win_y_high), (0, 255, 0), 2)\n cv2.rectangle(out_img, (win_xright_low, win_y_low), (\n win_xright_high, win_y_high), (0, 255, 0), 2)\n good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy <\n win_y_high) & (nonzerox >= win_xleft_low) & (nonzerox <\n win_xleft_high)).nonzero()[0]\n good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy <\n win_y_high) & (nonzerox >= win_xright_low) & (nonzerox <\n win_xright_high)).nonzero()[0]\n left_lane_ids.append(good_left_inds)\n right_lane_ids.append(good_right_inds)\n if len(good_left_inds) > minpix:\n leftx_current = np.int(np.mean(nonzerox[good_left_inds]))\n if len(good_right_inds) > minpix:\n rightx_current = np.int(np.mean(nonzerox[good_right_inds]))\n try:\n left_lane_ids = np.concatenate(left_lane_ids)\n right_lane_ids = np.concatenate(right_lane_ids)\n except ValueError:\n pass\n else:\n left_lane_ids = (nonzerox > left_fit1[0] * nonzeroy ** 2 + \n left_fit1[1] * nonzeroy + left_fit1[2] - searchmargin) & (nonzerox\n < left_fit1[0] * nonzeroy ** 2 + left_fit1[1] * nonzeroy +\n left_fit1[2] + searchmargin)\n right_lane_ids = (nonzerox > right_fit1[0] * nonzeroy ** 2 + \n right_fit1[1] * nonzeroy + right_fit1[2] - searchmargin) & (\n nonzerox < right_fit1[0] * nonzeroy ** 2 + right_fit1[1] *\n nonzeroy + right_fit1[2] + searchmargin)\n leftx = nonzerox[left_lane_ids]\n lefty = nonzeroy[left_lane_ids]\n rightx = nonzerox[right_lane_ids]\n righty = nonzeroy[right_lane_ids]\n return histogram, leftx, lefty, rightx, righty, out_img\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<import token>\n<assignment token>\n\n\ndef abs_sobel_thresh(img, orient='x', sobel_kernel=3, thresh=(0, 255)):\n gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)\n if orient == 'x':\n sobel = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel)\n else:\n sobel = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel)\n absolute = np.absolute(sobel)\n scaled = np.uint8(255 * absolute / np.max(absolute))\n grad_binary = np.zeros_like(scaled)\n grad_binary[(scaled >= thresh[0]) & (scaled <= thresh[1])] = 1\n return grad_binary\n\n\ndef mag_thresh(image, sobel_kernel=3, mag_thresh=(0, 255)):\n gray_img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)\n sobelx = cv2.Sobel(gray_img, cv2.CV_64F, 1, 0, ksize=sobel_kernel)\n sobely = cv2.Sobel(gray_img, cv2.CV_64F, 0, 1, ksize=sobel_kernel)\n mag_sobel = np.sqrt(sobelx ** 2 + sobely ** 2)\n absolute = np.absolute(mag_sobel)\n scaled = np.uint8(255 * absolute / np.max(absolute))\n mag_binary = np.zeros_like(scaled)\n mag_binary[(scaled >= mag_thresh[0]) & (scaled <= mag_thresh[1])] = 1\n return mag_binary\n\n\ndef dir_threshold(image, sobel_kernel=3, thresh=(0, np.pi / 2)):\n gray_img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)\n sobelx = cv2.Sobel(gray_img, cv2.CV_64F, 1, 0, ksize=sobel_kernel)\n sobely = cv2.Sobel(gray_img, cv2.CV_64F, 0, 1, ksize=sobel_kernel)\n absx = np.absolute(sobelx)\n absy = np.absolute(sobely)\n direction = np.arctan2(absy, absx)\n dir_binary = np.zeros_like(gray_img)\n dir_binary[(direction >= thresh[0]) & (direction <= thresh[1])] = 1\n return dir_binary\n\n\ndef hls_select(image, thresh=(0, 255)):\n hls = cv2.cvtColor(image, cv2.COLOR_BGR2HLS)\n s = hls[:, :, 2]\n binary_output = np.zeros_like(s)\n binary_output[(s > thresh[0]) & (s <= thresh[1])] = 1\n return binary_output\n\n\ndef equalize(image):\n image_yuv = cv2.cvtColor(image, cv2.COLOR_BGR2YUV)\n clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(20, 20))\n image_yuv[:, :, 0] = clahe.apply(image_yuv[:, :, 0])\n img_output = cv2.cvtColor(image_yuv, cv2.COLOR_YUV2BGR)\n return img_output\n\n\n<function token>\n\n\ndef hist(img, left_fit1, right_fit1, win=True):\n img = img / 255\n img = np.expand_dims(img, axis=-1)\n bottom_half = img[img.shape[0] // 2:, :]\n histogram = np.sum(bottom_half, axis=0)\n histogram = np.multiply(histogram, fin)\n out_img = np.dstack((img, img, img))\n midpoint = np.int(histogram.shape[0] // 2)\n leftx_base = np.argmax(histogram[:midpoint])\n rightx_base = np.argmax(histogram[midpoint:]) + midpoint\n nwindows = 9\n margin = 100\n minpix = 50\n searchmargin = 100\n window_height = np.int(img.shape[0] // nwindows)\n nonzero = img.nonzero()\n nonzeroy = np.array(nonzero[0])\n nonzerox = np.array(nonzero[1])\n leftx_current = leftx_base\n rightx_current = rightx_base\n left_lane_ids = []\n right_lane_ids = []\n if win:\n for window in range(nwindows):\n win_y_low = img.shape[0] - (window + 1) * window_height\n win_y_high = img.shape[0] - window * window_height\n win_xleft_low = leftx_current - margin\n win_xleft_high = leftx_current + margin\n win_xright_low = rightx_current - margin\n win_xright_high = rightx_current + margin\n cv2.rectangle(out_img, (win_xleft_low, win_y_low), (\n win_xleft_high, win_y_high), (0, 255, 0), 2)\n cv2.rectangle(out_img, (win_xright_low, win_y_low), (\n win_xright_high, win_y_high), (0, 255, 0), 2)\n good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy <\n win_y_high) & (nonzerox >= win_xleft_low) & (nonzerox <\n win_xleft_high)).nonzero()[0]\n good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy <\n win_y_high) & (nonzerox >= win_xright_low) & (nonzerox <\n win_xright_high)).nonzero()[0]\n left_lane_ids.append(good_left_inds)\n right_lane_ids.append(good_right_inds)\n if len(good_left_inds) > minpix:\n leftx_current = np.int(np.mean(nonzerox[good_left_inds]))\n if len(good_right_inds) > minpix:\n rightx_current = np.int(np.mean(nonzerox[good_right_inds]))\n try:\n left_lane_ids = np.concatenate(left_lane_ids)\n right_lane_ids = np.concatenate(right_lane_ids)\n except ValueError:\n pass\n else:\n left_lane_ids = (nonzerox > left_fit1[0] * nonzeroy ** 2 + \n left_fit1[1] * nonzeroy + left_fit1[2] - searchmargin) & (nonzerox\n < left_fit1[0] * nonzeroy ** 2 + left_fit1[1] * nonzeroy +\n left_fit1[2] + searchmargin)\n right_lane_ids = (nonzerox > right_fit1[0] * nonzeroy ** 2 + \n right_fit1[1] * nonzeroy + right_fit1[2] - searchmargin) & (\n nonzerox < right_fit1[0] * nonzeroy ** 2 + right_fit1[1] *\n nonzeroy + right_fit1[2] + searchmargin)\n leftx = nonzerox[left_lane_ids]\n lefty = nonzeroy[left_lane_ids]\n rightx = nonzerox[right_lane_ids]\n righty = nonzeroy[right_lane_ids]\n return histogram, leftx, lefty, rightx, righty, out_img\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<import token>\n<assignment token>\n\n\ndef abs_sobel_thresh(img, orient='x', sobel_kernel=3, thresh=(0, 255)):\n gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)\n if orient == 'x':\n sobel = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel)\n else:\n sobel = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel)\n absolute = np.absolute(sobel)\n scaled = np.uint8(255 * absolute / np.max(absolute))\n grad_binary = np.zeros_like(scaled)\n grad_binary[(scaled >= thresh[0]) & (scaled <= thresh[1])] = 1\n return grad_binary\n\n\ndef mag_thresh(image, sobel_kernel=3, mag_thresh=(0, 255)):\n gray_img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)\n sobelx = cv2.Sobel(gray_img, cv2.CV_64F, 1, 0, ksize=sobel_kernel)\n sobely = cv2.Sobel(gray_img, cv2.CV_64F, 0, 1, ksize=sobel_kernel)\n mag_sobel = np.sqrt(sobelx ** 2 + sobely ** 2)\n absolute = np.absolute(mag_sobel)\n scaled = np.uint8(255 * absolute / np.max(absolute))\n mag_binary = np.zeros_like(scaled)\n mag_binary[(scaled >= mag_thresh[0]) & (scaled <= mag_thresh[1])] = 1\n return mag_binary\n\n\ndef dir_threshold(image, sobel_kernel=3, thresh=(0, np.pi / 2)):\n gray_img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)\n sobelx = cv2.Sobel(gray_img, cv2.CV_64F, 1, 0, ksize=sobel_kernel)\n sobely = cv2.Sobel(gray_img, cv2.CV_64F, 0, 1, ksize=sobel_kernel)\n absx = np.absolute(sobelx)\n absy = np.absolute(sobely)\n direction = np.arctan2(absy, absx)\n dir_binary = np.zeros_like(gray_img)\n dir_binary[(direction >= thresh[0]) & (direction <= thresh[1])] = 1\n return dir_binary\n\n\ndef hls_select(image, thresh=(0, 255)):\n hls = cv2.cvtColor(image, cv2.COLOR_BGR2HLS)\n s = hls[:, :, 2]\n binary_output = np.zeros_like(s)\n binary_output[(s > thresh[0]) & (s <= thresh[1])] = 1\n return binary_output\n\n\ndef equalize(image):\n image_yuv = cv2.cvtColor(image, cv2.COLOR_BGR2YUV)\n clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(20, 20))\n image_yuv[:, :, 0] = clahe.apply(image_yuv[:, :, 0])\n img_output = cv2.cvtColor(image_yuv, cv2.COLOR_YUV2BGR)\n return img_output\n\n\n<function token>\n<function token>\n<assignment token>\n<code token>\n", "<docstring token>\n<import token>\n<assignment token>\n\n\ndef abs_sobel_thresh(img, orient='x', sobel_kernel=3, thresh=(0, 255)):\n gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)\n if orient == 'x':\n sobel = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel)\n else:\n sobel = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel)\n absolute = np.absolute(sobel)\n scaled = np.uint8(255 * absolute / np.max(absolute))\n grad_binary = np.zeros_like(scaled)\n grad_binary[(scaled >= thresh[0]) & (scaled <= thresh[1])] = 1\n return grad_binary\n\n\ndef mag_thresh(image, sobel_kernel=3, mag_thresh=(0, 255)):\n gray_img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)\n sobelx = cv2.Sobel(gray_img, cv2.CV_64F, 1, 0, ksize=sobel_kernel)\n sobely = cv2.Sobel(gray_img, cv2.CV_64F, 0, 1, ksize=sobel_kernel)\n mag_sobel = np.sqrt(sobelx ** 2 + sobely ** 2)\n absolute = np.absolute(mag_sobel)\n scaled = np.uint8(255 * absolute / np.max(absolute))\n mag_binary = np.zeros_like(scaled)\n mag_binary[(scaled >= mag_thresh[0]) & (scaled <= mag_thresh[1])] = 1\n return mag_binary\n\n\ndef dir_threshold(image, sobel_kernel=3, thresh=(0, np.pi / 2)):\n gray_img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)\n sobelx = cv2.Sobel(gray_img, cv2.CV_64F, 1, 0, ksize=sobel_kernel)\n sobely = cv2.Sobel(gray_img, cv2.CV_64F, 0, 1, ksize=sobel_kernel)\n absx = np.absolute(sobelx)\n absy = np.absolute(sobely)\n direction = np.arctan2(absy, absx)\n dir_binary = np.zeros_like(gray_img)\n dir_binary[(direction >= thresh[0]) & (direction <= thresh[1])] = 1\n return dir_binary\n\n\n<function token>\n\n\ndef equalize(image):\n image_yuv = cv2.cvtColor(image, cv2.COLOR_BGR2YUV)\n clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(20, 20))\n image_yuv[:, :, 0] = clahe.apply(image_yuv[:, :, 0])\n img_output = cv2.cvtColor(image_yuv, cv2.COLOR_YUV2BGR)\n return img_output\n\n\n<function token>\n<function token>\n<assignment token>\n<code token>\n", "<docstring token>\n<import token>\n<assignment token>\n\n\ndef abs_sobel_thresh(img, orient='x', sobel_kernel=3, thresh=(0, 255)):\n gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)\n if orient == 'x':\n sobel = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel)\n else:\n sobel = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel)\n absolute = np.absolute(sobel)\n scaled = np.uint8(255 * absolute / np.max(absolute))\n grad_binary = np.zeros_like(scaled)\n grad_binary[(scaled >= thresh[0]) & (scaled <= thresh[1])] = 1\n return grad_binary\n\n\n<function token>\n\n\ndef dir_threshold(image, sobel_kernel=3, thresh=(0, np.pi / 2)):\n gray_img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)\n sobelx = cv2.Sobel(gray_img, cv2.CV_64F, 1, 0, ksize=sobel_kernel)\n sobely = cv2.Sobel(gray_img, cv2.CV_64F, 0, 1, ksize=sobel_kernel)\n absx = np.absolute(sobelx)\n absy = np.absolute(sobely)\n direction = np.arctan2(absy, absx)\n dir_binary = np.zeros_like(gray_img)\n dir_binary[(direction >= thresh[0]) & (direction <= thresh[1])] = 1\n return dir_binary\n\n\n<function token>\n\n\ndef equalize(image):\n image_yuv = cv2.cvtColor(image, cv2.COLOR_BGR2YUV)\n clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(20, 20))\n image_yuv[:, :, 0] = clahe.apply(image_yuv[:, :, 0])\n img_output = cv2.cvtColor(image_yuv, cv2.COLOR_YUV2BGR)\n return img_output\n\n\n<function token>\n<function token>\n<assignment token>\n<code token>\n", "<docstring token>\n<import token>\n<assignment token>\n\n\ndef abs_sobel_thresh(img, orient='x', sobel_kernel=3, thresh=(0, 255)):\n gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)\n if orient == 'x':\n sobel = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel)\n else:\n sobel = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel)\n absolute = np.absolute(sobel)\n scaled = np.uint8(255 * absolute / np.max(absolute))\n grad_binary = np.zeros_like(scaled)\n grad_binary[(scaled >= thresh[0]) & (scaled <= thresh[1])] = 1\n return grad_binary\n\n\n<function token>\n\n\ndef dir_threshold(image, sobel_kernel=3, thresh=(0, np.pi / 2)):\n gray_img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)\n sobelx = cv2.Sobel(gray_img, cv2.CV_64F, 1, 0, ksize=sobel_kernel)\n sobely = cv2.Sobel(gray_img, cv2.CV_64F, 0, 1, ksize=sobel_kernel)\n absx = np.absolute(sobelx)\n absy = np.absolute(sobely)\n direction = np.arctan2(absy, absx)\n dir_binary = np.zeros_like(gray_img)\n dir_binary[(direction >= thresh[0]) & (direction <= thresh[1])] = 1\n return dir_binary\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<assignment token>\n<code token>\n", "<docstring token>\n<import token>\n<assignment token>\n<function token>\n<function token>\n\n\ndef dir_threshold(image, sobel_kernel=3, thresh=(0, np.pi / 2)):\n gray_img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)\n sobelx = cv2.Sobel(gray_img, cv2.CV_64F, 1, 0, ksize=sobel_kernel)\n sobely = cv2.Sobel(gray_img, cv2.CV_64F, 0, 1, ksize=sobel_kernel)\n absx = np.absolute(sobelx)\n absy = np.absolute(sobely)\n direction = np.arctan2(absy, absx)\n dir_binary = np.zeros_like(gray_img)\n dir_binary[(direction >= thresh[0]) & (direction <= thresh[1])] = 1\n return dir_binary\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<assignment token>\n<code token>\n", "<docstring token>\n<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<assignment token>\n<code token>\n" ]
false
98,883
9f1af2bca93dc31d37cd1ca781d840f77c21ac3f
import os import sys import web def migrate(db, directory): try: db.where("schema_info") except: db.query("create table schema_info (version int not null)") sys.path.append(directory) for migration in sorted_migrations(os.listdir(directory)): if db.where("schema_info", version=migration.version): print "Skipping %s since it's already applied." % migration continue print "Applying %s" % migration __import__(migration.name).up(db) db.insert("schema_info", version=migration.version) def sorted_migrations(fnames): def build_migration(fname): name = os.path.splitext(fname)[0] version = int(name.split("_")[-1]) return web.storage(fname=fname, name=name, version=version) migrations = [build_migration(f) for f in fnames if f.endswith('.py')] return sorted(migrations, key=lambda m: m.version) if __name__ == "__main__": import config migrate(config.dbn, "config/migrations")
[ "import os\nimport sys\n\nimport web\n\n\ndef migrate(db, directory):\n try:\n db.where(\"schema_info\")\n except:\n db.query(\"create table schema_info (version int not null)\")\n\n sys.path.append(directory)\n for migration in sorted_migrations(os.listdir(directory)):\n if db.where(\"schema_info\", version=migration.version):\n print \"Skipping %s since it's already applied.\" % migration\n continue\n print \"Applying %s\" % migration\n __import__(migration.name).up(db)\n db.insert(\"schema_info\", version=migration.version)\n\n\ndef sorted_migrations(fnames):\n def build_migration(fname):\n name = os.path.splitext(fname)[0]\n version = int(name.split(\"_\")[-1])\n return web.storage(fname=fname, name=name, version=version)\n\n migrations = [build_migration(f) for f in fnames if f.endswith('.py')]\n return sorted(migrations, key=lambda m: m.version)\n\n\nif __name__ == \"__main__\":\n import config\n migrate(config.dbn, \"config/migrations\")\n" ]
true
98,884
b4e28e834118194a51f32ae0bf42118bbeaec7c6
top_dir = '/oak/stanford/groups/khavari/users/dfporter/seq/all/' top_dir = '/Users/dfporter/pma/dataAndScripts/clip/miseq/Runs/hiseq_pcbp1_190416/' top_dir = '/Users/dfporter/pma/dataAndScripts/clip/miseq/Runs/hiseq_rbfox_190418/' scheme_file = top_dir + '/scheme.xlsx' ann_counts_file = top_dir + '/ann_counts.txt' bed_file_dir = top_dir + '/beds/' positive_proteins = [ 'Rbfox1', 'Rbfox2', 'hnRNPD', ]
[ "\ntop_dir = '/oak/stanford/groups/khavari/users/dfporter/seq/all/'\ntop_dir = '/Users/dfporter/pma/dataAndScripts/clip/miseq/Runs/hiseq_pcbp1_190416/'\ntop_dir = '/Users/dfporter/pma/dataAndScripts/clip/miseq/Runs/hiseq_rbfox_190418/'\n\nscheme_file = top_dir + '/scheme.xlsx'\nann_counts_file = top_dir + '/ann_counts.txt'\nbed_file_dir = top_dir + '/beds/'\n\npositive_proteins = [\n\t'Rbfox1', 'Rbfox2', 'hnRNPD',\n]", "top_dir = '/oak/stanford/groups/khavari/users/dfporter/seq/all/'\ntop_dir = (\n '/Users/dfporter/pma/dataAndScripts/clip/miseq/Runs/hiseq_pcbp1_190416/')\ntop_dir = (\n '/Users/dfporter/pma/dataAndScripts/clip/miseq/Runs/hiseq_rbfox_190418/')\nscheme_file = top_dir + '/scheme.xlsx'\nann_counts_file = top_dir + '/ann_counts.txt'\nbed_file_dir = top_dir + '/beds/'\npositive_proteins = ['Rbfox1', 'Rbfox2', 'hnRNPD']\n", "<assignment token>\n" ]
false
98,885
065b78926404abde0293fe43008397ed30b873e7
from flask_restful import Resource from flask_restful import reqparse from celery.result import AsyncResult def add_resource_status(name, api, celery): class TaskStatus(Resource): """Class to be added to api's resources.""" def post(self): parser = reqparse.RequestParser() parser.add_argument('task-id', type=str, help='Task id has to be a string', location='form') args = parser.parse_args() result = AsyncResult(args['task-id'], app=celery) return { 'task-id': args['task-id'], 'status': result.status, } api.add_resource(TaskStatus, name)
[ "from flask_restful import Resource\nfrom flask_restful import reqparse\nfrom celery.result import AsyncResult\n\n\ndef add_resource_status(name, api, celery):\n class TaskStatus(Resource):\n \"\"\"Class to be added to api's resources.\"\"\"\n\n def post(self):\n parser = reqparse.RequestParser()\n parser.add_argument('task-id',\n type=str,\n help='Task id has to be a string',\n location='form')\n args = parser.parse_args()\n result = AsyncResult(args['task-id'], app=celery)\n return {\n 'task-id': args['task-id'],\n 'status': result.status,\n }\n api.add_resource(TaskStatus, name)\n", "from flask_restful import Resource\nfrom flask_restful import reqparse\nfrom celery.result import AsyncResult\n\n\ndef add_resource_status(name, api, celery):\n\n\n class TaskStatus(Resource):\n \"\"\"Class to be added to api's resources.\"\"\"\n\n def post(self):\n parser = reqparse.RequestParser()\n parser.add_argument('task-id', type=str, help=\n 'Task id has to be a string', location='form')\n args = parser.parse_args()\n result = AsyncResult(args['task-id'], app=celery)\n return {'task-id': args['task-id'], 'status': result.status}\n api.add_resource(TaskStatus, name)\n", "<import token>\n\n\ndef add_resource_status(name, api, celery):\n\n\n class TaskStatus(Resource):\n \"\"\"Class to be added to api's resources.\"\"\"\n\n def post(self):\n parser = reqparse.RequestParser()\n parser.add_argument('task-id', type=str, help=\n 'Task id has to be a string', location='form')\n args = parser.parse_args()\n result = AsyncResult(args['task-id'], app=celery)\n return {'task-id': args['task-id'], 'status': result.status}\n api.add_resource(TaskStatus, name)\n", "<import token>\n<function token>\n" ]
false
98,886
829ad0513708cb0a12e0a3efccde5754523a9c39
# -*- coding: utf-8 -*- import os import warnings warnings.filterwarnings("ignore") import pandas as pd import numpy as np import tushare as ts ts.set_token('29eaf3bcac23df4c6d025de157ab2d53beead3391fbe6e83b4ebcb6c') pro = ts.pro_api() from matplotlib.pylab import date2num #mpl.rcParams['font.family'] = 'sans-serif' #mpl.rcParams['font.sans-serif'] = 'SimHei' # Chinese from mylab.stock.myfeature import getKdj from mylab.stock.myfeature import getMacd __all__ = ["getIndexBasic","getIndexDaily", "getIndexWeekly","getIndexMonthly","getIndex", "getStockBasic","getStockDaily","getStockWeekly","getStockMonthly","getStock", "getIndustryBasic","getIndustryDaily","getIndustryWeekly","getIndustryMonthly","getIndustry", "resetIndex","readData", "mergeDailyWeeklyMonthly","mergeWeeklyMonthly","mergeStockIndex", "deleteSTKC","deleteNew", "myMerge", ] def myMerge(df1,df2,on = [], how = "left" ): cols = [i for i in df2.columns.values if i in df1.columns.values] # in df1 and df2 cols = [i for i in cols if i not in on ] # not in on df2 = df2.drop(cols, axis = 1 ) df = pd.merge( df1, df2, on = on , how = how ) return df def deleteSTKC(pool_df): pool_df["name1"] = [i[0] for i in pool_df["name"].values] pool_df["code1"] = [i[0] for i in pool_df["ts_code"].values] pool_df["code3"] = [i[0:3] for i in pool_df["ts_code"].values] pool_df = pool_df.loc[pool_df["name1"] != "*", :] pool_df = pool_df.loc[pool_df["name1"] != "S", :] pool_df = pool_df.loc[pool_df["code1"] != "3", :] pool_df = pool_df.loc[pool_df["code3"] != "688", :] pool_df = pool_df.drop(["name1","code1","code3"], axis = 1) pool_df = pool_df.reset_index(drop = True) return pool_df def deleteNew(pool_df, list_data = "20190101"): pool_df = pool_df.loc[pool_df.list_date.values < list_data,:] pool_df = pool_df.reset_index(drop = True) return pool_df def getStockBasic(LOCAL = True, noSTKC = True, list_data = "20190101"): if LOCAL: pool_df = pd.read_csv("./data/stock/stock_basic_info.csv") pool_df["list_date"] = pool_df["list_date"].astype("str") else: fields='ts_code,symbol,name,area,industry,list_date,market,list_status,delist_date,exchange' pool_df = pro.stock_basic(list_status='L', fields=fields) if noSTKC: pool_df = deleteSTKC(pool_df) if list_data: pool_df = deleteNew(pool_df, list_data ) return pool_df def getIndexBasic(LOCAL = True, market = "SZSE" ): if LOCAL: pool_df = pd.read_csv("./data/index/index_basic_info_"+market+".csv") else: pool_df = pro.index_basic(market= market) return pool_df def getIndexDaily(stock_code , start_date = "20100101", end_date = "20200314", LOCAL = True, market = "SZSE" ): dir_file = "./data/index/"+market+"/daily/" if LOCAL: daily_df = readData(dir_file, stock_code, start_date , end_date ) else: daily_df = pro.index_daily(ts_code = stock_code,start_date = start_date, end_date = end_date ) daily_df = resetIndex(daily_df) return daily_df def getIndexWeekly(stock_code, start_date = "20100101", end_date = "20200314", LOCAL = True, market = "SZSE" ): dir_file = "./data/index/"+market+"/weekly/" if LOCAL: daily_df = readData(dir_file, stock_code, start_date , end_date ) else: daily_df = pro.index_weekly(ts_code = stock_code,start_date = start_date, end_date = end_date ) daily_df = resetIndex(daily_df) return daily_df def getIndexMonthly(stock_code, start_date = "20100101", end_date = "20200314", LOCAL = True, market = "SZSE" ): dir_file = "./data/index/"+market+"/monthly/" if LOCAL: daily_df = readData(dir_file, stock_code, start_date , end_date ) else: daily_df = pro.index_monthly(ts_code = stock_code,start_date = start_date, end_date = end_date ) daily_df = resetIndex(daily_df) return daily_df def getStockDaily(stock_code, start_date = "20100101", end_date = "20200314", LOCAL = True ): dir_file = "./data/stock/daily/" if LOCAL: daily_df = readData(dir_file, stock_code, start_date , end_date ) else: daily_df = pro.daily(ts_code = stock_code,start_date = start_date, end_date = end_date ) daily_df = resetIndex(daily_df) return daily_df def getStockWeekly(stock_code, start_date = "20100101", end_date = "20200314", LOCAL = True ): dir_file = "./data/stock/weekly/" if LOCAL: daily_df = readData(dir_file, stock_code, start_date , end_date ) else: daily_df = pro.daily(ts_code = stock_code,start_date = start_date, end_date = end_date ) daily_df = resetIndex(daily_df) return daily_df def getStockMonthly(stock_code, start_date = "20100101", end_date = "20200314", LOCAL = True ): dir_file = "./data/stock/monthly/" if LOCAL: daily_df = readData(dir_file, stock_code, start_date , end_date ) else: daily_df = pro.daily(ts_code = stock_code,start_date = start_date, end_date = end_date ) daily_df = resetIndex(daily_df) return daily_df def getIndustryBasic( ): pool_df = pd.read_csv("./data/industry/all_industry_basic_info.csv") return pool_df def getIndustryDaily(stock_code , start_date = "20100101", end_date = "20200314" ): dir_file = "./data/industry/daily/" daily_df = readData(dir_file, stock_code, start_date , end_date ) daily_df = resetIndex(daily_df) return daily_df def getIndustryWeekly(stock_code, start_date = "20100101", end_date = "20200314" ): dir_file = "./data/industry/weekly/" daily_df = readData(dir_file, stock_code, start_date , end_date ) daily_df = resetIndex(daily_df) return daily_df def getIndustryMonthly(stock_code, start_date = "20100101", end_date = "20200314" ): dir_file = "./data/industry/monthly/" daily_df = readData(dir_file, stock_code, start_date , end_date ) daily_df = resetIndex(daily_df) return daily_df def resetIndex(daily_df): # reset ascending daily_df["trade_date_stamp"] = daily_df["trade_date"].copy() daily_df["trade_date_stamp"] = pd.to_datetime(daily_df["trade_date_stamp"]).map(date2num) daily_df.sort_values(by="trade_date_stamp", ascending=True,inplace=True) daily_df.reset_index(drop=True,inplace=True) return daily_df def readData(dir_file, stock_code, start_date = "20100101", end_date = "20200314" ): for file_dir , _ , files in os.walk(dir_file): for i,file_name in enumerate(files): if file_name[:9] == stock_code: daily_df = pd.read_csv(file_dir+file_name) daily_df["trade_date"] = daily_df["trade_date"].astype("str") daily_df = daily_df.loc[daily_df["trade_date"] >= start_date,:].reset_index(drop=True) daily_df = daily_df.loc[daily_df["trade_date"] <= end_date,:].reset_index(drop=True) break return daily_df def mergeDailyWeeklyMonthly(daily_df,weekly_df,monthly_df): weekly_df.drop(["ts_code", "trade_date_stamp"],axis = 1, inplace = True) cols = [i+'_weekly' for i in weekly_df.columns ] weekly_df.columns = cols weekly_df.rename(columns = {"trade_date_weekly":"trade_date"}, inplace = True) all_df = pd.merge(daily_df, weekly_df, how= "left" ,on= "trade_date") monthly_df.drop(["ts_code", "trade_date_stamp"],axis = 1, inplace = True) cols = [i+'_monthly' for i in monthly_df.columns ] monthly_df.columns = cols monthly_df.rename(columns = {"trade_date_monthly":"trade_date"}, inplace = True) all_df = pd.merge(all_df, monthly_df, how= "left" ,on= "trade_date") all_df.fillna(method= "ffill", inplace=True) return all_df def mergeWeeklyMonthly(weekly_df,monthly_df): cols = [i+'_weekly' for i in weekly_df.columns ] weekly_df.columns = cols col_dic = {"trade_date_weekly":"trade_date","ts_code_weekly":"ts_code","trade_date_stamp_weekly":"trade_date_stamp"} weekly_df.rename(columns = col_dic, inplace = True) monthly_df.drop(["ts_code", "trade_date_stamp"],axis = 1, inplace = True) cols = [i+'_monthly' for i in monthly_df.columns ] monthly_df.columns = cols monthly_df.rename(columns = {"trade_date_monthly":"trade_date"}, inplace = True) all_df = pd.merge(weekly_df, monthly_df, how= "outer" ,on= "trade_date") all_df.fillna(method= "ffill", inplace=True) return all_df def mergeStockIndex(stock_df, df): index_df = df.copy(deep = True) index_df.drop(["ts_code", "trade_date_stamp"],axis = 1, inplace = True) cols = [i+'_index' for i in index_df.columns.values ] index_df.columns = cols index_df.rename(columns = {"trade_date_index":"trade_date"}, inplace = True) all_df = pd.merge(left = stock_df, right = index_df, how= "left" ,on= "trade_date") all_df.fillna(method= "ffill", inplace=True) return all_df def getStock(stock_code,start_date, end_date , LOCAL = True): daily_df = getStockDaily(stock_code,start_date, end_date , LOCAL = LOCAL) weekly_df = getStockWeekly(stock_code,start_date , end_date , LOCAL = LOCAL) monthly_df = getStockMonthly(stock_code,start_date , end_date , LOCAL = LOCAL) # KDJ and MACD daily_df = getKdj(daily_df) daily_df = getMacd(daily_df) weekly_df = getKdj(weekly_df) weekly_df = getMacd(weekly_df) monthly_df = getKdj(monthly_df) monthly_df = getMacd(monthly_df) # merge all_df = mergeDailyWeeklyMonthly(daily_df,weekly_df,monthly_df) return all_df def getIndex(stock_code,start_date, end_date , LOCAL = True, merge_daily = True): if merge_daily: daily_df = getIndexDaily(stock_code,start_date, end_date , LOCAL = True) daily_df = getKdj(daily_df) daily_df = getMacd(daily_df) weekly_df = getIndexWeekly(stock_code,start_date , end_date , LOCAL = True) monthly_df = getIndexMonthly(stock_code,start_date , end_date , LOCAL = True) # KDJ weekly_df = getKdj(weekly_df) weekly_df = getMacd(weekly_df) monthly_df = getKdj(monthly_df) monthly_df = getMacd(monthly_df) # merge if merge_daily: all_df = mergeDailyWeeklyMonthly(daily_df,weekly_df,monthly_df) else: all_df = mergeWeeklyMonthly(weekly_df,monthly_df) return all_df def getIndustry(stock_code,start_date = "20100101", end_date = "20200314" , LOCAL = True, merge_daily = True): if merge_daily: daily_df = getIndustryDaily(stock_code,start_date, end_date ) daily_df = getKdj(daily_df) daily_df = getMacd(daily_df) weekly_df = getIndustryWeekly(stock_code,start_date , end_date ) monthly_df = getIndustryMonthly(stock_code,start_date , end_date ) # KDJ and MACD weekly_df = getKdj(weekly_df) weekly_df = getMacd(weekly_df) monthly_df = getKdj(monthly_df) monthly_df = getMacd(monthly_df) # merge if merge_daily: all_df = mergeDailyWeeklyMonthly(daily_df,weekly_df,monthly_df) else: all_df = mergeWeeklyMonthly(weekly_df,monthly_df) return all_df
[ "# -*- coding: utf-8 -*-\nimport os\nimport warnings\nwarnings.filterwarnings(\"ignore\")\n\nimport pandas as pd\nimport numpy as np\nimport tushare as ts\nts.set_token('29eaf3bcac23df4c6d025de157ab2d53beead3391fbe6e83b4ebcb6c')\npro = ts.pro_api()\n\nfrom matplotlib.pylab import date2num\n#mpl.rcParams['font.family'] = 'sans-serif'\n#mpl.rcParams['font.sans-serif'] = 'SimHei' # Chinese \n\nfrom mylab.stock.myfeature import getKdj\nfrom mylab.stock.myfeature import getMacd\n\n\n__all__ = [\"getIndexBasic\",\"getIndexDaily\", \"getIndexWeekly\",\"getIndexMonthly\",\"getIndex\",\n \"getStockBasic\",\"getStockDaily\",\"getStockWeekly\",\"getStockMonthly\",\"getStock\",\n \"getIndustryBasic\",\"getIndustryDaily\",\"getIndustryWeekly\",\"getIndustryMonthly\",\"getIndustry\",\n \"resetIndex\",\"readData\",\n \"mergeDailyWeeklyMonthly\",\"mergeWeeklyMonthly\",\"mergeStockIndex\",\n \"deleteSTKC\",\"deleteNew\",\n \"myMerge\",\n ]\n\ndef myMerge(df1,df2,on = [], how = \"left\" ):\n cols = [i for i in df2.columns.values if i in df1.columns.values] # in df1 and df2\n cols = [i for i in cols if i not in on ] # not in on\n df2 = df2.drop(cols, axis = 1 )\n df = pd.merge( df1, df2, on = on , how = how ) \n return df\n\ndef deleteSTKC(pool_df):\n pool_df[\"name1\"] = [i[0] for i in pool_df[\"name\"].values]\n pool_df[\"code1\"] = [i[0] for i in pool_df[\"ts_code\"].values]\n pool_df[\"code3\"] = [i[0:3] for i in pool_df[\"ts_code\"].values]\n pool_df = pool_df.loc[pool_df[\"name1\"] != \"*\", :]\n pool_df = pool_df.loc[pool_df[\"name1\"] != \"S\", :]\n pool_df = pool_df.loc[pool_df[\"code1\"] != \"3\", :]\n pool_df = pool_df.loc[pool_df[\"code3\"] != \"688\", :]\n pool_df = pool_df.drop([\"name1\",\"code1\",\"code3\"], axis = 1)\n pool_df = pool_df.reset_index(drop = True)\n return pool_df\n\ndef deleteNew(pool_df, list_data = \"20190101\"):\n pool_df = pool_df.loc[pool_df.list_date.values < list_data,:]\n pool_df = pool_df.reset_index(drop = True)\n return pool_df \n\ndef getStockBasic(LOCAL = True, noSTKC = True, list_data = \"20190101\"):\n if LOCAL:\n pool_df = pd.read_csv(\"./data/stock/stock_basic_info.csv\")\n pool_df[\"list_date\"] = pool_df[\"list_date\"].astype(\"str\")\n else:\n fields='ts_code,symbol,name,area,industry,list_date,market,list_status,delist_date,exchange'\n pool_df = pro.stock_basic(list_status='L', fields=fields)\n if noSTKC:\n pool_df = deleteSTKC(pool_df)\n if list_data:\n pool_df = deleteNew(pool_df, list_data )\n return pool_df\n\ndef getIndexBasic(LOCAL = True, market = \"SZSE\" ):\n if LOCAL:\n pool_df = pd.read_csv(\"./data/index/index_basic_info_\"+market+\".csv\")\n else:\n pool_df = pro.index_basic(market= market)\n return pool_df\n\ndef getIndexDaily(stock_code , start_date = \"20100101\", end_date = \"20200314\", LOCAL = True, market = \"SZSE\" ):\n dir_file = \"./data/index/\"+market+\"/daily/\"\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date , end_date )\n else:\n daily_df = pro.index_daily(ts_code = stock_code,start_date = start_date, end_date = end_date )\n daily_df = resetIndex(daily_df)\n return daily_df\n\ndef getIndexWeekly(stock_code, start_date = \"20100101\", end_date = \"20200314\", LOCAL = True, market = \"SZSE\" ):\n dir_file = \"./data/index/\"+market+\"/weekly/\"\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date , end_date )\n else:\n daily_df = pro.index_weekly(ts_code = stock_code,start_date = start_date, end_date = end_date )\n daily_df = resetIndex(daily_df)\n return daily_df\n\ndef getIndexMonthly(stock_code, start_date = \"20100101\", end_date = \"20200314\", LOCAL = True, market = \"SZSE\" ):\n dir_file = \"./data/index/\"+market+\"/monthly/\"\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date , end_date )\n else:\n daily_df = pro.index_monthly(ts_code = stock_code,start_date = start_date, end_date = end_date )\n daily_df = resetIndex(daily_df)\n return daily_df\n\ndef getStockDaily(stock_code, start_date = \"20100101\", end_date = \"20200314\", LOCAL = True ):\n dir_file = \"./data/stock/daily/\"\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date , end_date )\n else:\n daily_df = pro.daily(ts_code = stock_code,start_date = start_date, end_date = end_date )\n daily_df = resetIndex(daily_df)\n return daily_df\n\ndef getStockWeekly(stock_code, start_date = \"20100101\", end_date = \"20200314\", LOCAL = True ):\n dir_file = \"./data/stock/weekly/\"\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date , end_date )\n else:\n daily_df = pro.daily(ts_code = stock_code,start_date = start_date, end_date = end_date )\n daily_df = resetIndex(daily_df)\n return daily_df\n\ndef getStockMonthly(stock_code, start_date = \"20100101\", end_date = \"20200314\", LOCAL = True ):\n dir_file = \"./data/stock/monthly/\"\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date , end_date )\n else:\n daily_df = pro.daily(ts_code = stock_code,start_date = start_date, end_date = end_date )\n daily_df = resetIndex(daily_df)\n return daily_df\n\ndef getIndustryBasic( ):\n pool_df = pd.read_csv(\"./data/industry/all_industry_basic_info.csv\")\n return pool_df\n\ndef getIndustryDaily(stock_code , start_date = \"20100101\", end_date = \"20200314\" ):\n dir_file = \"./data/industry/daily/\"\n daily_df = readData(dir_file, stock_code, start_date , end_date )\n daily_df = resetIndex(daily_df)\n return daily_df\n\ndef getIndustryWeekly(stock_code, start_date = \"20100101\", end_date = \"20200314\" ):\n dir_file = \"./data/industry/weekly/\"\n daily_df = readData(dir_file, stock_code, start_date , end_date )\n daily_df = resetIndex(daily_df)\n return daily_df\n\ndef getIndustryMonthly(stock_code, start_date = \"20100101\", end_date = \"20200314\" ):\n dir_file = \"./data/industry/monthly/\"\n daily_df = readData(dir_file, stock_code, start_date , end_date )\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef resetIndex(daily_df):\n # reset ascending\n daily_df[\"trade_date_stamp\"] = daily_df[\"trade_date\"].copy()\n daily_df[\"trade_date_stamp\"] = pd.to_datetime(daily_df[\"trade_date_stamp\"]).map(date2num)\n daily_df.sort_values(by=\"trade_date_stamp\", ascending=True,inplace=True)\n daily_df.reset_index(drop=True,inplace=True)\n return daily_df\n\ndef readData(dir_file, stock_code, start_date = \"20100101\", end_date = \"20200314\" ):\n for file_dir , _ , files in os.walk(dir_file):\n for i,file_name in enumerate(files):\n if file_name[:9] == stock_code:\n daily_df = pd.read_csv(file_dir+file_name)\n daily_df[\"trade_date\"] = daily_df[\"trade_date\"].astype(\"str\")\n daily_df = daily_df.loc[daily_df[\"trade_date\"] >= start_date,:].reset_index(drop=True)\n daily_df = daily_df.loc[daily_df[\"trade_date\"] <= end_date,:].reset_index(drop=True)\n break\n return daily_df\n\ndef mergeDailyWeeklyMonthly(daily_df,weekly_df,monthly_df):\n weekly_df.drop([\"ts_code\", \"trade_date_stamp\"],axis = 1, inplace = True)\n cols = [i+'_weekly' for i in weekly_df.columns ]\n weekly_df.columns = cols\n weekly_df.rename(columns = {\"trade_date_weekly\":\"trade_date\"}, inplace = True)\n all_df = pd.merge(daily_df, weekly_df, how= \"left\" ,on= \"trade_date\")\n monthly_df.drop([\"ts_code\", \"trade_date_stamp\"],axis = 1, inplace = True)\n cols = [i+'_monthly' for i in monthly_df.columns ]\n monthly_df.columns = cols\n monthly_df.rename(columns = {\"trade_date_monthly\":\"trade_date\"}, inplace = True)\n all_df = pd.merge(all_df, monthly_df, how= \"left\" ,on= \"trade_date\")\n \n all_df.fillna(method= \"ffill\", inplace=True)\n return all_df\n\ndef mergeWeeklyMonthly(weekly_df,monthly_df):\n cols = [i+'_weekly' for i in weekly_df.columns ]\n weekly_df.columns = cols\n col_dic = {\"trade_date_weekly\":\"trade_date\",\"ts_code_weekly\":\"ts_code\",\"trade_date_stamp_weekly\":\"trade_date_stamp\"}\n weekly_df.rename(columns = col_dic, inplace = True)\n\n monthly_df.drop([\"ts_code\", \"trade_date_stamp\"],axis = 1, inplace = True)\n cols = [i+'_monthly' for i in monthly_df.columns ]\n monthly_df.columns = cols\n monthly_df.rename(columns = {\"trade_date_monthly\":\"trade_date\"}, inplace = True)\n \n all_df = pd.merge(weekly_df, monthly_df, how= \"outer\" ,on= \"trade_date\")\n \n all_df.fillna(method= \"ffill\", inplace=True)\n return all_df\n\ndef mergeStockIndex(stock_df, df):\n index_df = df.copy(deep = True)\n index_df.drop([\"ts_code\", \"trade_date_stamp\"],axis = 1, inplace = True)\n cols = [i+'_index' for i in index_df.columns.values ]\n index_df.columns = cols\n index_df.rename(columns = {\"trade_date_index\":\"trade_date\"}, inplace = True)\n all_df = pd.merge(left = stock_df, right = index_df, how= \"left\" ,on= \"trade_date\")\n all_df.fillna(method= \"ffill\", inplace=True)\n return all_df\n\ndef getStock(stock_code,start_date, end_date , LOCAL = True):\n daily_df = getStockDaily(stock_code,start_date, end_date , LOCAL = LOCAL)\n weekly_df = getStockWeekly(stock_code,start_date , end_date , LOCAL = LOCAL)\n monthly_df = getStockMonthly(stock_code,start_date , end_date , LOCAL = LOCAL)\n # KDJ and MACD\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n # merge\n all_df = mergeDailyWeeklyMonthly(daily_df,weekly_df,monthly_df)\n return all_df\n\ndef getIndex(stock_code,start_date, end_date , LOCAL = True, merge_daily = True):\n if merge_daily:\n daily_df = getIndexDaily(stock_code,start_date, end_date , LOCAL = True)\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getIndexWeekly(stock_code,start_date , end_date , LOCAL = True)\n monthly_df = getIndexMonthly(stock_code,start_date , end_date , LOCAL = True)\n # KDJ\n \n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n # merge\n if merge_daily:\n all_df = mergeDailyWeeklyMonthly(daily_df,weekly_df,monthly_df)\n else:\n all_df = mergeWeeklyMonthly(weekly_df,monthly_df)\n \n return all_df\n\ndef getIndustry(stock_code,start_date = \"20100101\", end_date = \"20200314\" , LOCAL = True, merge_daily = True):\n if merge_daily:\n daily_df = getIndustryDaily(stock_code,start_date, end_date )\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getIndustryWeekly(stock_code,start_date , end_date )\n monthly_df = getIndustryMonthly(stock_code,start_date , end_date )\n # KDJ and MACD\n \n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n # merge\n if merge_daily:\n all_df = mergeDailyWeeklyMonthly(daily_df,weekly_df,monthly_df)\n else:\n all_df = mergeWeeklyMonthly(weekly_df,monthly_df)\n return all_df\n\n", "import os\nimport warnings\nwarnings.filterwarnings('ignore')\nimport pandas as pd\nimport numpy as np\nimport tushare as ts\nts.set_token('29eaf3bcac23df4c6d025de157ab2d53beead3391fbe6e83b4ebcb6c')\npro = ts.pro_api()\nfrom matplotlib.pylab import date2num\nfrom mylab.stock.myfeature import getKdj\nfrom mylab.stock.myfeature import getMacd\n__all__ = ['getIndexBasic', 'getIndexDaily', 'getIndexWeekly',\n 'getIndexMonthly', 'getIndex', 'getStockBasic', 'getStockDaily',\n 'getStockWeekly', 'getStockMonthly', 'getStock', 'getIndustryBasic',\n 'getIndustryDaily', 'getIndustryWeekly', 'getIndustryMonthly',\n 'getIndustry', 'resetIndex', 'readData', 'mergeDailyWeeklyMonthly',\n 'mergeWeeklyMonthly', 'mergeStockIndex', 'deleteSTKC', 'deleteNew',\n 'myMerge']\n\n\ndef myMerge(df1, df2, on=[], how='left'):\n cols = [i for i in df2.columns.values if i in df1.columns.values]\n cols = [i for i in cols if i not in on]\n df2 = df2.drop(cols, axis=1)\n df = pd.merge(df1, df2, on=on, how=how)\n return df\n\n\ndef deleteSTKC(pool_df):\n pool_df['name1'] = [i[0] for i in pool_df['name'].values]\n pool_df['code1'] = [i[0] for i in pool_df['ts_code'].values]\n pool_df['code3'] = [i[0:3] for i in pool_df['ts_code'].values]\n pool_df = pool_df.loc[pool_df['name1'] != '*', :]\n pool_df = pool_df.loc[pool_df['name1'] != 'S', :]\n pool_df = pool_df.loc[pool_df['code1'] != '3', :]\n pool_df = pool_df.loc[pool_df['code3'] != '688', :]\n pool_df = pool_df.drop(['name1', 'code1', 'code3'], axis=1)\n pool_df = pool_df.reset_index(drop=True)\n return pool_df\n\n\ndef deleteNew(pool_df, list_data='20190101'):\n pool_df = pool_df.loc[pool_df.list_date.values < list_data, :]\n pool_df = pool_df.reset_index(drop=True)\n return pool_df\n\n\ndef getStockBasic(LOCAL=True, noSTKC=True, list_data='20190101'):\n if LOCAL:\n pool_df = pd.read_csv('./data/stock/stock_basic_info.csv')\n pool_df['list_date'] = pool_df['list_date'].astype('str')\n else:\n fields = (\n 'ts_code,symbol,name,area,industry,list_date,market,list_status,delist_date,exchange'\n )\n pool_df = pro.stock_basic(list_status='L', fields=fields)\n if noSTKC:\n pool_df = deleteSTKC(pool_df)\n if list_data:\n pool_df = deleteNew(pool_df, list_data)\n return pool_df\n\n\ndef getIndexBasic(LOCAL=True, market='SZSE'):\n if LOCAL:\n pool_df = pd.read_csv('./data/index/index_basic_info_' + market +\n '.csv')\n else:\n pool_df = pro.index_basic(market=market)\n return pool_df\n\n\ndef getIndexDaily(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/daily/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_daily(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndexWeekly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/weekly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_weekly(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndexMonthly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/monthly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_monthly(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockDaily(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/daily/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockWeekly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/weekly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockMonthly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/monthly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndustryBasic():\n pool_df = pd.read_csv('./data/industry/all_industry_basic_info.csv')\n return pool_df\n\n\ndef getIndustryDaily(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/daily/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndustryWeekly(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/weekly/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndustryMonthly(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/monthly/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef resetIndex(daily_df):\n daily_df['trade_date_stamp'] = daily_df['trade_date'].copy()\n daily_df['trade_date_stamp'] = pd.to_datetime(daily_df['trade_date_stamp']\n ).map(date2num)\n daily_df.sort_values(by='trade_date_stamp', ascending=True, inplace=True)\n daily_df.reset_index(drop=True, inplace=True)\n return daily_df\n\n\ndef readData(dir_file, stock_code, start_date='20100101', end_date='20200314'):\n for file_dir, _, files in os.walk(dir_file):\n for i, file_name in enumerate(files):\n if file_name[:9] == stock_code:\n daily_df = pd.read_csv(file_dir + file_name)\n daily_df['trade_date'] = daily_df['trade_date'].astype('str')\n daily_df = daily_df.loc[daily_df['trade_date'] >= start_date, :\n ].reset_index(drop=True)\n daily_df = daily_df.loc[daily_df['trade_date'] <= end_date, :\n ].reset_index(drop=True)\n break\n return daily_df\n\n\ndef mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df):\n weekly_df.drop(['ts_code', 'trade_date_stamp'], axis=1, inplace=True)\n cols = [(i + '_weekly') for i in weekly_df.columns]\n weekly_df.columns = cols\n weekly_df.rename(columns={'trade_date_weekly': 'trade_date'}, inplace=True)\n all_df = pd.merge(daily_df, weekly_df, how='left', on='trade_date')\n monthly_df.drop(['ts_code', 'trade_date_stamp'], axis=1, inplace=True)\n cols = [(i + '_monthly') for i in monthly_df.columns]\n monthly_df.columns = cols\n monthly_df.rename(columns={'trade_date_monthly': 'trade_date'}, inplace\n =True)\n all_df = pd.merge(all_df, monthly_df, how='left', on='trade_date')\n all_df.fillna(method='ffill', inplace=True)\n return all_df\n\n\ndef mergeWeeklyMonthly(weekly_df, monthly_df):\n cols = [(i + '_weekly') for i in weekly_df.columns]\n weekly_df.columns = cols\n col_dic = {'trade_date_weekly': 'trade_date', 'ts_code_weekly':\n 'ts_code', 'trade_date_stamp_weekly': 'trade_date_stamp'}\n weekly_df.rename(columns=col_dic, inplace=True)\n monthly_df.drop(['ts_code', 'trade_date_stamp'], axis=1, inplace=True)\n cols = [(i + '_monthly') for i in monthly_df.columns]\n monthly_df.columns = cols\n monthly_df.rename(columns={'trade_date_monthly': 'trade_date'}, inplace\n =True)\n all_df = pd.merge(weekly_df, monthly_df, how='outer', on='trade_date')\n all_df.fillna(method='ffill', inplace=True)\n return all_df\n\n\ndef mergeStockIndex(stock_df, df):\n index_df = df.copy(deep=True)\n index_df.drop(['ts_code', 'trade_date_stamp'], axis=1, inplace=True)\n cols = [(i + '_index') for i in index_df.columns.values]\n index_df.columns = cols\n index_df.rename(columns={'trade_date_index': 'trade_date'}, inplace=True)\n all_df = pd.merge(left=stock_df, right=index_df, how='left', on=\n 'trade_date')\n all_df.fillna(method='ffill', inplace=True)\n return all_df\n\n\ndef getStock(stock_code, start_date, end_date, LOCAL=True):\n daily_df = getStockDaily(stock_code, start_date, end_date, LOCAL=LOCAL)\n weekly_df = getStockWeekly(stock_code, start_date, end_date, LOCAL=LOCAL)\n monthly_df = getStockMonthly(stock_code, start_date, end_date, LOCAL=LOCAL)\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n all_df = mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df)\n return all_df\n\n\ndef getIndex(stock_code, start_date, end_date, LOCAL=True, merge_daily=True):\n if merge_daily:\n daily_df = getIndexDaily(stock_code, start_date, end_date, LOCAL=True)\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getIndexWeekly(stock_code, start_date, end_date, LOCAL=True)\n monthly_df = getIndexMonthly(stock_code, start_date, end_date, LOCAL=True)\n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n if merge_daily:\n all_df = mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df)\n else:\n all_df = mergeWeeklyMonthly(weekly_df, monthly_df)\n return all_df\n\n\ndef getIndustry(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, merge_daily=True):\n if merge_daily:\n daily_df = getIndustryDaily(stock_code, start_date, end_date)\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getIndustryWeekly(stock_code, start_date, end_date)\n monthly_df = getIndustryMonthly(stock_code, start_date, end_date)\n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n if merge_daily:\n all_df = mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df)\n else:\n all_df = mergeWeeklyMonthly(weekly_df, monthly_df)\n return all_df\n", "<import token>\nwarnings.filterwarnings('ignore')\n<import token>\nts.set_token('29eaf3bcac23df4c6d025de157ab2d53beead3391fbe6e83b4ebcb6c')\npro = ts.pro_api()\n<import token>\n__all__ = ['getIndexBasic', 'getIndexDaily', 'getIndexWeekly',\n 'getIndexMonthly', 'getIndex', 'getStockBasic', 'getStockDaily',\n 'getStockWeekly', 'getStockMonthly', 'getStock', 'getIndustryBasic',\n 'getIndustryDaily', 'getIndustryWeekly', 'getIndustryMonthly',\n 'getIndustry', 'resetIndex', 'readData', 'mergeDailyWeeklyMonthly',\n 'mergeWeeklyMonthly', 'mergeStockIndex', 'deleteSTKC', 'deleteNew',\n 'myMerge']\n\n\ndef myMerge(df1, df2, on=[], how='left'):\n cols = [i for i in df2.columns.values if i in df1.columns.values]\n cols = [i for i in cols if i not in on]\n df2 = df2.drop(cols, axis=1)\n df = pd.merge(df1, df2, on=on, how=how)\n return df\n\n\ndef deleteSTKC(pool_df):\n pool_df['name1'] = [i[0] for i in pool_df['name'].values]\n pool_df['code1'] = [i[0] for i in pool_df['ts_code'].values]\n pool_df['code3'] = [i[0:3] for i in pool_df['ts_code'].values]\n pool_df = pool_df.loc[pool_df['name1'] != '*', :]\n pool_df = pool_df.loc[pool_df['name1'] != 'S', :]\n pool_df = pool_df.loc[pool_df['code1'] != '3', :]\n pool_df = pool_df.loc[pool_df['code3'] != '688', :]\n pool_df = pool_df.drop(['name1', 'code1', 'code3'], axis=1)\n pool_df = pool_df.reset_index(drop=True)\n return pool_df\n\n\ndef deleteNew(pool_df, list_data='20190101'):\n pool_df = pool_df.loc[pool_df.list_date.values < list_data, :]\n pool_df = pool_df.reset_index(drop=True)\n return pool_df\n\n\ndef getStockBasic(LOCAL=True, noSTKC=True, list_data='20190101'):\n if LOCAL:\n pool_df = pd.read_csv('./data/stock/stock_basic_info.csv')\n pool_df['list_date'] = pool_df['list_date'].astype('str')\n else:\n fields = (\n 'ts_code,symbol,name,area,industry,list_date,market,list_status,delist_date,exchange'\n )\n pool_df = pro.stock_basic(list_status='L', fields=fields)\n if noSTKC:\n pool_df = deleteSTKC(pool_df)\n if list_data:\n pool_df = deleteNew(pool_df, list_data)\n return pool_df\n\n\ndef getIndexBasic(LOCAL=True, market='SZSE'):\n if LOCAL:\n pool_df = pd.read_csv('./data/index/index_basic_info_' + market +\n '.csv')\n else:\n pool_df = pro.index_basic(market=market)\n return pool_df\n\n\ndef getIndexDaily(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/daily/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_daily(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndexWeekly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/weekly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_weekly(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndexMonthly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/monthly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_monthly(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockDaily(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/daily/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockWeekly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/weekly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockMonthly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/monthly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndustryBasic():\n pool_df = pd.read_csv('./data/industry/all_industry_basic_info.csv')\n return pool_df\n\n\ndef getIndustryDaily(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/daily/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndustryWeekly(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/weekly/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndustryMonthly(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/monthly/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef resetIndex(daily_df):\n daily_df['trade_date_stamp'] = daily_df['trade_date'].copy()\n daily_df['trade_date_stamp'] = pd.to_datetime(daily_df['trade_date_stamp']\n ).map(date2num)\n daily_df.sort_values(by='trade_date_stamp', ascending=True, inplace=True)\n daily_df.reset_index(drop=True, inplace=True)\n return daily_df\n\n\ndef readData(dir_file, stock_code, start_date='20100101', end_date='20200314'):\n for file_dir, _, files in os.walk(dir_file):\n for i, file_name in enumerate(files):\n if file_name[:9] == stock_code:\n daily_df = pd.read_csv(file_dir + file_name)\n daily_df['trade_date'] = daily_df['trade_date'].astype('str')\n daily_df = daily_df.loc[daily_df['trade_date'] >= start_date, :\n ].reset_index(drop=True)\n daily_df = daily_df.loc[daily_df['trade_date'] <= end_date, :\n ].reset_index(drop=True)\n break\n return daily_df\n\n\ndef mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df):\n weekly_df.drop(['ts_code', 'trade_date_stamp'], axis=1, inplace=True)\n cols = [(i + '_weekly') for i in weekly_df.columns]\n weekly_df.columns = cols\n weekly_df.rename(columns={'trade_date_weekly': 'trade_date'}, inplace=True)\n all_df = pd.merge(daily_df, weekly_df, how='left', on='trade_date')\n monthly_df.drop(['ts_code', 'trade_date_stamp'], axis=1, inplace=True)\n cols = [(i + '_monthly') for i in monthly_df.columns]\n monthly_df.columns = cols\n monthly_df.rename(columns={'trade_date_monthly': 'trade_date'}, inplace\n =True)\n all_df = pd.merge(all_df, monthly_df, how='left', on='trade_date')\n all_df.fillna(method='ffill', inplace=True)\n return all_df\n\n\ndef mergeWeeklyMonthly(weekly_df, monthly_df):\n cols = [(i + '_weekly') for i in weekly_df.columns]\n weekly_df.columns = cols\n col_dic = {'trade_date_weekly': 'trade_date', 'ts_code_weekly':\n 'ts_code', 'trade_date_stamp_weekly': 'trade_date_stamp'}\n weekly_df.rename(columns=col_dic, inplace=True)\n monthly_df.drop(['ts_code', 'trade_date_stamp'], axis=1, inplace=True)\n cols = [(i + '_monthly') for i in monthly_df.columns]\n monthly_df.columns = cols\n monthly_df.rename(columns={'trade_date_monthly': 'trade_date'}, inplace\n =True)\n all_df = pd.merge(weekly_df, monthly_df, how='outer', on='trade_date')\n all_df.fillna(method='ffill', inplace=True)\n return all_df\n\n\ndef mergeStockIndex(stock_df, df):\n index_df = df.copy(deep=True)\n index_df.drop(['ts_code', 'trade_date_stamp'], axis=1, inplace=True)\n cols = [(i + '_index') for i in index_df.columns.values]\n index_df.columns = cols\n index_df.rename(columns={'trade_date_index': 'trade_date'}, inplace=True)\n all_df = pd.merge(left=stock_df, right=index_df, how='left', on=\n 'trade_date')\n all_df.fillna(method='ffill', inplace=True)\n return all_df\n\n\ndef getStock(stock_code, start_date, end_date, LOCAL=True):\n daily_df = getStockDaily(stock_code, start_date, end_date, LOCAL=LOCAL)\n weekly_df = getStockWeekly(stock_code, start_date, end_date, LOCAL=LOCAL)\n monthly_df = getStockMonthly(stock_code, start_date, end_date, LOCAL=LOCAL)\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n all_df = mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df)\n return all_df\n\n\ndef getIndex(stock_code, start_date, end_date, LOCAL=True, merge_daily=True):\n if merge_daily:\n daily_df = getIndexDaily(stock_code, start_date, end_date, LOCAL=True)\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getIndexWeekly(stock_code, start_date, end_date, LOCAL=True)\n monthly_df = getIndexMonthly(stock_code, start_date, end_date, LOCAL=True)\n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n if merge_daily:\n all_df = mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df)\n else:\n all_df = mergeWeeklyMonthly(weekly_df, monthly_df)\n return all_df\n\n\ndef getIndustry(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, merge_daily=True):\n if merge_daily:\n daily_df = getIndustryDaily(stock_code, start_date, end_date)\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getIndustryWeekly(stock_code, start_date, end_date)\n monthly_df = getIndustryMonthly(stock_code, start_date, end_date)\n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n if merge_daily:\n all_df = mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df)\n else:\n all_df = mergeWeeklyMonthly(weekly_df, monthly_df)\n return all_df\n", "<import token>\nwarnings.filterwarnings('ignore')\n<import token>\nts.set_token('29eaf3bcac23df4c6d025de157ab2d53beead3391fbe6e83b4ebcb6c')\n<assignment token>\n<import token>\n<assignment token>\n\n\ndef myMerge(df1, df2, on=[], how='left'):\n cols = [i for i in df2.columns.values if i in df1.columns.values]\n cols = [i for i in cols if i not in on]\n df2 = df2.drop(cols, axis=1)\n df = pd.merge(df1, df2, on=on, how=how)\n return df\n\n\ndef deleteSTKC(pool_df):\n pool_df['name1'] = [i[0] for i in pool_df['name'].values]\n pool_df['code1'] = [i[0] for i in pool_df['ts_code'].values]\n pool_df['code3'] = [i[0:3] for i in pool_df['ts_code'].values]\n pool_df = pool_df.loc[pool_df['name1'] != '*', :]\n pool_df = pool_df.loc[pool_df['name1'] != 'S', :]\n pool_df = pool_df.loc[pool_df['code1'] != '3', :]\n pool_df = pool_df.loc[pool_df['code3'] != '688', :]\n pool_df = pool_df.drop(['name1', 'code1', 'code3'], axis=1)\n pool_df = pool_df.reset_index(drop=True)\n return pool_df\n\n\ndef deleteNew(pool_df, list_data='20190101'):\n pool_df = pool_df.loc[pool_df.list_date.values < list_data, :]\n pool_df = pool_df.reset_index(drop=True)\n return pool_df\n\n\ndef getStockBasic(LOCAL=True, noSTKC=True, list_data='20190101'):\n if LOCAL:\n pool_df = pd.read_csv('./data/stock/stock_basic_info.csv')\n pool_df['list_date'] = pool_df['list_date'].astype('str')\n else:\n fields = (\n 'ts_code,symbol,name,area,industry,list_date,market,list_status,delist_date,exchange'\n )\n pool_df = pro.stock_basic(list_status='L', fields=fields)\n if noSTKC:\n pool_df = deleteSTKC(pool_df)\n if list_data:\n pool_df = deleteNew(pool_df, list_data)\n return pool_df\n\n\ndef getIndexBasic(LOCAL=True, market='SZSE'):\n if LOCAL:\n pool_df = pd.read_csv('./data/index/index_basic_info_' + market +\n '.csv')\n else:\n pool_df = pro.index_basic(market=market)\n return pool_df\n\n\ndef getIndexDaily(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/daily/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_daily(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndexWeekly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/weekly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_weekly(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndexMonthly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/monthly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_monthly(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockDaily(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/daily/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockWeekly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/weekly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockMonthly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/monthly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndustryBasic():\n pool_df = pd.read_csv('./data/industry/all_industry_basic_info.csv')\n return pool_df\n\n\ndef getIndustryDaily(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/daily/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndustryWeekly(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/weekly/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndustryMonthly(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/monthly/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef resetIndex(daily_df):\n daily_df['trade_date_stamp'] = daily_df['trade_date'].copy()\n daily_df['trade_date_stamp'] = pd.to_datetime(daily_df['trade_date_stamp']\n ).map(date2num)\n daily_df.sort_values(by='trade_date_stamp', ascending=True, inplace=True)\n daily_df.reset_index(drop=True, inplace=True)\n return daily_df\n\n\ndef readData(dir_file, stock_code, start_date='20100101', end_date='20200314'):\n for file_dir, _, files in os.walk(dir_file):\n for i, file_name in enumerate(files):\n if file_name[:9] == stock_code:\n daily_df = pd.read_csv(file_dir + file_name)\n daily_df['trade_date'] = daily_df['trade_date'].astype('str')\n daily_df = daily_df.loc[daily_df['trade_date'] >= start_date, :\n ].reset_index(drop=True)\n daily_df = daily_df.loc[daily_df['trade_date'] <= end_date, :\n ].reset_index(drop=True)\n break\n return daily_df\n\n\ndef mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df):\n weekly_df.drop(['ts_code', 'trade_date_stamp'], axis=1, inplace=True)\n cols = [(i + '_weekly') for i in weekly_df.columns]\n weekly_df.columns = cols\n weekly_df.rename(columns={'trade_date_weekly': 'trade_date'}, inplace=True)\n all_df = pd.merge(daily_df, weekly_df, how='left', on='trade_date')\n monthly_df.drop(['ts_code', 'trade_date_stamp'], axis=1, inplace=True)\n cols = [(i + '_monthly') for i in monthly_df.columns]\n monthly_df.columns = cols\n monthly_df.rename(columns={'trade_date_monthly': 'trade_date'}, inplace\n =True)\n all_df = pd.merge(all_df, monthly_df, how='left', on='trade_date')\n all_df.fillna(method='ffill', inplace=True)\n return all_df\n\n\ndef mergeWeeklyMonthly(weekly_df, monthly_df):\n cols = [(i + '_weekly') for i in weekly_df.columns]\n weekly_df.columns = cols\n col_dic = {'trade_date_weekly': 'trade_date', 'ts_code_weekly':\n 'ts_code', 'trade_date_stamp_weekly': 'trade_date_stamp'}\n weekly_df.rename(columns=col_dic, inplace=True)\n monthly_df.drop(['ts_code', 'trade_date_stamp'], axis=1, inplace=True)\n cols = [(i + '_monthly') for i in monthly_df.columns]\n monthly_df.columns = cols\n monthly_df.rename(columns={'trade_date_monthly': 'trade_date'}, inplace\n =True)\n all_df = pd.merge(weekly_df, monthly_df, how='outer', on='trade_date')\n all_df.fillna(method='ffill', inplace=True)\n return all_df\n\n\ndef mergeStockIndex(stock_df, df):\n index_df = df.copy(deep=True)\n index_df.drop(['ts_code', 'trade_date_stamp'], axis=1, inplace=True)\n cols = [(i + '_index') for i in index_df.columns.values]\n index_df.columns = cols\n index_df.rename(columns={'trade_date_index': 'trade_date'}, inplace=True)\n all_df = pd.merge(left=stock_df, right=index_df, how='left', on=\n 'trade_date')\n all_df.fillna(method='ffill', inplace=True)\n return all_df\n\n\ndef getStock(stock_code, start_date, end_date, LOCAL=True):\n daily_df = getStockDaily(stock_code, start_date, end_date, LOCAL=LOCAL)\n weekly_df = getStockWeekly(stock_code, start_date, end_date, LOCAL=LOCAL)\n monthly_df = getStockMonthly(stock_code, start_date, end_date, LOCAL=LOCAL)\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n all_df = mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df)\n return all_df\n\n\ndef getIndex(stock_code, start_date, end_date, LOCAL=True, merge_daily=True):\n if merge_daily:\n daily_df = getIndexDaily(stock_code, start_date, end_date, LOCAL=True)\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getIndexWeekly(stock_code, start_date, end_date, LOCAL=True)\n monthly_df = getIndexMonthly(stock_code, start_date, end_date, LOCAL=True)\n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n if merge_daily:\n all_df = mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df)\n else:\n all_df = mergeWeeklyMonthly(weekly_df, monthly_df)\n return all_df\n\n\ndef getIndustry(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, merge_daily=True):\n if merge_daily:\n daily_df = getIndustryDaily(stock_code, start_date, end_date)\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getIndustryWeekly(stock_code, start_date, end_date)\n monthly_df = getIndustryMonthly(stock_code, start_date, end_date)\n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n if merge_daily:\n all_df = mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df)\n else:\n all_df = mergeWeeklyMonthly(weekly_df, monthly_df)\n return all_df\n", "<import token>\n<code token>\n<import token>\n<code token>\n<assignment token>\n<import token>\n<assignment token>\n\n\ndef myMerge(df1, df2, on=[], how='left'):\n cols = [i for i in df2.columns.values if i in df1.columns.values]\n cols = [i for i in cols if i not in on]\n df2 = df2.drop(cols, axis=1)\n df = pd.merge(df1, df2, on=on, how=how)\n return df\n\n\ndef deleteSTKC(pool_df):\n pool_df['name1'] = [i[0] for i in pool_df['name'].values]\n pool_df['code1'] = [i[0] for i in pool_df['ts_code'].values]\n pool_df['code3'] = [i[0:3] for i in pool_df['ts_code'].values]\n pool_df = pool_df.loc[pool_df['name1'] != '*', :]\n pool_df = pool_df.loc[pool_df['name1'] != 'S', :]\n pool_df = pool_df.loc[pool_df['code1'] != '3', :]\n pool_df = pool_df.loc[pool_df['code3'] != '688', :]\n pool_df = pool_df.drop(['name1', 'code1', 'code3'], axis=1)\n pool_df = pool_df.reset_index(drop=True)\n return pool_df\n\n\ndef deleteNew(pool_df, list_data='20190101'):\n pool_df = pool_df.loc[pool_df.list_date.values < list_data, :]\n pool_df = pool_df.reset_index(drop=True)\n return pool_df\n\n\ndef getStockBasic(LOCAL=True, noSTKC=True, list_data='20190101'):\n if LOCAL:\n pool_df = pd.read_csv('./data/stock/stock_basic_info.csv')\n pool_df['list_date'] = pool_df['list_date'].astype('str')\n else:\n fields = (\n 'ts_code,symbol,name,area,industry,list_date,market,list_status,delist_date,exchange'\n )\n pool_df = pro.stock_basic(list_status='L', fields=fields)\n if noSTKC:\n pool_df = deleteSTKC(pool_df)\n if list_data:\n pool_df = deleteNew(pool_df, list_data)\n return pool_df\n\n\ndef getIndexBasic(LOCAL=True, market='SZSE'):\n if LOCAL:\n pool_df = pd.read_csv('./data/index/index_basic_info_' + market +\n '.csv')\n else:\n pool_df = pro.index_basic(market=market)\n return pool_df\n\n\ndef getIndexDaily(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/daily/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_daily(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndexWeekly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/weekly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_weekly(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndexMonthly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/monthly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_monthly(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockDaily(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/daily/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockWeekly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/weekly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockMonthly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/monthly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndustryBasic():\n pool_df = pd.read_csv('./data/industry/all_industry_basic_info.csv')\n return pool_df\n\n\ndef getIndustryDaily(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/daily/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndustryWeekly(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/weekly/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndustryMonthly(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/monthly/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef resetIndex(daily_df):\n daily_df['trade_date_stamp'] = daily_df['trade_date'].copy()\n daily_df['trade_date_stamp'] = pd.to_datetime(daily_df['trade_date_stamp']\n ).map(date2num)\n daily_df.sort_values(by='trade_date_stamp', ascending=True, inplace=True)\n daily_df.reset_index(drop=True, inplace=True)\n return daily_df\n\n\ndef readData(dir_file, stock_code, start_date='20100101', end_date='20200314'):\n for file_dir, _, files in os.walk(dir_file):\n for i, file_name in enumerate(files):\n if file_name[:9] == stock_code:\n daily_df = pd.read_csv(file_dir + file_name)\n daily_df['trade_date'] = daily_df['trade_date'].astype('str')\n daily_df = daily_df.loc[daily_df['trade_date'] >= start_date, :\n ].reset_index(drop=True)\n daily_df = daily_df.loc[daily_df['trade_date'] <= end_date, :\n ].reset_index(drop=True)\n break\n return daily_df\n\n\ndef mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df):\n weekly_df.drop(['ts_code', 'trade_date_stamp'], axis=1, inplace=True)\n cols = [(i + '_weekly') for i in weekly_df.columns]\n weekly_df.columns = cols\n weekly_df.rename(columns={'trade_date_weekly': 'trade_date'}, inplace=True)\n all_df = pd.merge(daily_df, weekly_df, how='left', on='trade_date')\n monthly_df.drop(['ts_code', 'trade_date_stamp'], axis=1, inplace=True)\n cols = [(i + '_monthly') for i in monthly_df.columns]\n monthly_df.columns = cols\n monthly_df.rename(columns={'trade_date_monthly': 'trade_date'}, inplace\n =True)\n all_df = pd.merge(all_df, monthly_df, how='left', on='trade_date')\n all_df.fillna(method='ffill', inplace=True)\n return all_df\n\n\ndef mergeWeeklyMonthly(weekly_df, monthly_df):\n cols = [(i + '_weekly') for i in weekly_df.columns]\n weekly_df.columns = cols\n col_dic = {'trade_date_weekly': 'trade_date', 'ts_code_weekly':\n 'ts_code', 'trade_date_stamp_weekly': 'trade_date_stamp'}\n weekly_df.rename(columns=col_dic, inplace=True)\n monthly_df.drop(['ts_code', 'trade_date_stamp'], axis=1, inplace=True)\n cols = [(i + '_monthly') for i in monthly_df.columns]\n monthly_df.columns = cols\n monthly_df.rename(columns={'trade_date_monthly': 'trade_date'}, inplace\n =True)\n all_df = pd.merge(weekly_df, monthly_df, how='outer', on='trade_date')\n all_df.fillna(method='ffill', inplace=True)\n return all_df\n\n\ndef mergeStockIndex(stock_df, df):\n index_df = df.copy(deep=True)\n index_df.drop(['ts_code', 'trade_date_stamp'], axis=1, inplace=True)\n cols = [(i + '_index') for i in index_df.columns.values]\n index_df.columns = cols\n index_df.rename(columns={'trade_date_index': 'trade_date'}, inplace=True)\n all_df = pd.merge(left=stock_df, right=index_df, how='left', on=\n 'trade_date')\n all_df.fillna(method='ffill', inplace=True)\n return all_df\n\n\ndef getStock(stock_code, start_date, end_date, LOCAL=True):\n daily_df = getStockDaily(stock_code, start_date, end_date, LOCAL=LOCAL)\n weekly_df = getStockWeekly(stock_code, start_date, end_date, LOCAL=LOCAL)\n monthly_df = getStockMonthly(stock_code, start_date, end_date, LOCAL=LOCAL)\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n all_df = mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df)\n return all_df\n\n\ndef getIndex(stock_code, start_date, end_date, LOCAL=True, merge_daily=True):\n if merge_daily:\n daily_df = getIndexDaily(stock_code, start_date, end_date, LOCAL=True)\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getIndexWeekly(stock_code, start_date, end_date, LOCAL=True)\n monthly_df = getIndexMonthly(stock_code, start_date, end_date, LOCAL=True)\n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n if merge_daily:\n all_df = mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df)\n else:\n all_df = mergeWeeklyMonthly(weekly_df, monthly_df)\n return all_df\n\n\ndef getIndustry(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, merge_daily=True):\n if merge_daily:\n daily_df = getIndustryDaily(stock_code, start_date, end_date)\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getIndustryWeekly(stock_code, start_date, end_date)\n monthly_df = getIndustryMonthly(stock_code, start_date, end_date)\n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n if merge_daily:\n all_df = mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df)\n else:\n all_df = mergeWeeklyMonthly(weekly_df, monthly_df)\n return all_df\n", "<import token>\n<code token>\n<import token>\n<code token>\n<assignment token>\n<import token>\n<assignment token>\n\n\ndef myMerge(df1, df2, on=[], how='left'):\n cols = [i for i in df2.columns.values if i in df1.columns.values]\n cols = [i for i in cols if i not in on]\n df2 = df2.drop(cols, axis=1)\n df = pd.merge(df1, df2, on=on, how=how)\n return df\n\n\ndef deleteSTKC(pool_df):\n pool_df['name1'] = [i[0] for i in pool_df['name'].values]\n pool_df['code1'] = [i[0] for i in pool_df['ts_code'].values]\n pool_df['code3'] = [i[0:3] for i in pool_df['ts_code'].values]\n pool_df = pool_df.loc[pool_df['name1'] != '*', :]\n pool_df = pool_df.loc[pool_df['name1'] != 'S', :]\n pool_df = pool_df.loc[pool_df['code1'] != '3', :]\n pool_df = pool_df.loc[pool_df['code3'] != '688', :]\n pool_df = pool_df.drop(['name1', 'code1', 'code3'], axis=1)\n pool_df = pool_df.reset_index(drop=True)\n return pool_df\n\n\ndef deleteNew(pool_df, list_data='20190101'):\n pool_df = pool_df.loc[pool_df.list_date.values < list_data, :]\n pool_df = pool_df.reset_index(drop=True)\n return pool_df\n\n\ndef getStockBasic(LOCAL=True, noSTKC=True, list_data='20190101'):\n if LOCAL:\n pool_df = pd.read_csv('./data/stock/stock_basic_info.csv')\n pool_df['list_date'] = pool_df['list_date'].astype('str')\n else:\n fields = (\n 'ts_code,symbol,name,area,industry,list_date,market,list_status,delist_date,exchange'\n )\n pool_df = pro.stock_basic(list_status='L', fields=fields)\n if noSTKC:\n pool_df = deleteSTKC(pool_df)\n if list_data:\n pool_df = deleteNew(pool_df, list_data)\n return pool_df\n\n\ndef getIndexBasic(LOCAL=True, market='SZSE'):\n if LOCAL:\n pool_df = pd.read_csv('./data/index/index_basic_info_' + market +\n '.csv')\n else:\n pool_df = pro.index_basic(market=market)\n return pool_df\n\n\ndef getIndexDaily(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/daily/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_daily(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndexWeekly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/weekly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_weekly(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndexMonthly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/monthly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_monthly(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockDaily(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/daily/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockWeekly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/weekly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockMonthly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/monthly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndustryBasic():\n pool_df = pd.read_csv('./data/industry/all_industry_basic_info.csv')\n return pool_df\n\n\ndef getIndustryDaily(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/daily/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndustryWeekly(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/weekly/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndustryMonthly(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/monthly/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef resetIndex(daily_df):\n daily_df['trade_date_stamp'] = daily_df['trade_date'].copy()\n daily_df['trade_date_stamp'] = pd.to_datetime(daily_df['trade_date_stamp']\n ).map(date2num)\n daily_df.sort_values(by='trade_date_stamp', ascending=True, inplace=True)\n daily_df.reset_index(drop=True, inplace=True)\n return daily_df\n\n\ndef readData(dir_file, stock_code, start_date='20100101', end_date='20200314'):\n for file_dir, _, files in os.walk(dir_file):\n for i, file_name in enumerate(files):\n if file_name[:9] == stock_code:\n daily_df = pd.read_csv(file_dir + file_name)\n daily_df['trade_date'] = daily_df['trade_date'].astype('str')\n daily_df = daily_df.loc[daily_df['trade_date'] >= start_date, :\n ].reset_index(drop=True)\n daily_df = daily_df.loc[daily_df['trade_date'] <= end_date, :\n ].reset_index(drop=True)\n break\n return daily_df\n\n\n<function token>\n\n\ndef mergeWeeklyMonthly(weekly_df, monthly_df):\n cols = [(i + '_weekly') for i in weekly_df.columns]\n weekly_df.columns = cols\n col_dic = {'trade_date_weekly': 'trade_date', 'ts_code_weekly':\n 'ts_code', 'trade_date_stamp_weekly': 'trade_date_stamp'}\n weekly_df.rename(columns=col_dic, inplace=True)\n monthly_df.drop(['ts_code', 'trade_date_stamp'], axis=1, inplace=True)\n cols = [(i + '_monthly') for i in monthly_df.columns]\n monthly_df.columns = cols\n monthly_df.rename(columns={'trade_date_monthly': 'trade_date'}, inplace\n =True)\n all_df = pd.merge(weekly_df, monthly_df, how='outer', on='trade_date')\n all_df.fillna(method='ffill', inplace=True)\n return all_df\n\n\ndef mergeStockIndex(stock_df, df):\n index_df = df.copy(deep=True)\n index_df.drop(['ts_code', 'trade_date_stamp'], axis=1, inplace=True)\n cols = [(i + '_index') for i in index_df.columns.values]\n index_df.columns = cols\n index_df.rename(columns={'trade_date_index': 'trade_date'}, inplace=True)\n all_df = pd.merge(left=stock_df, right=index_df, how='left', on=\n 'trade_date')\n all_df.fillna(method='ffill', inplace=True)\n return all_df\n\n\ndef getStock(stock_code, start_date, end_date, LOCAL=True):\n daily_df = getStockDaily(stock_code, start_date, end_date, LOCAL=LOCAL)\n weekly_df = getStockWeekly(stock_code, start_date, end_date, LOCAL=LOCAL)\n monthly_df = getStockMonthly(stock_code, start_date, end_date, LOCAL=LOCAL)\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n all_df = mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df)\n return all_df\n\n\ndef getIndex(stock_code, start_date, end_date, LOCAL=True, merge_daily=True):\n if merge_daily:\n daily_df = getIndexDaily(stock_code, start_date, end_date, LOCAL=True)\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getIndexWeekly(stock_code, start_date, end_date, LOCAL=True)\n monthly_df = getIndexMonthly(stock_code, start_date, end_date, LOCAL=True)\n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n if merge_daily:\n all_df = mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df)\n else:\n all_df = mergeWeeklyMonthly(weekly_df, monthly_df)\n return all_df\n\n\ndef getIndustry(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, merge_daily=True):\n if merge_daily:\n daily_df = getIndustryDaily(stock_code, start_date, end_date)\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getIndustryWeekly(stock_code, start_date, end_date)\n monthly_df = getIndustryMonthly(stock_code, start_date, end_date)\n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n if merge_daily:\n all_df = mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df)\n else:\n all_df = mergeWeeklyMonthly(weekly_df, monthly_df)\n return all_df\n", "<import token>\n<code token>\n<import token>\n<code token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n\n\ndef deleteSTKC(pool_df):\n pool_df['name1'] = [i[0] for i in pool_df['name'].values]\n pool_df['code1'] = [i[0] for i in pool_df['ts_code'].values]\n pool_df['code3'] = [i[0:3] for i in pool_df['ts_code'].values]\n pool_df = pool_df.loc[pool_df['name1'] != '*', :]\n pool_df = pool_df.loc[pool_df['name1'] != 'S', :]\n pool_df = pool_df.loc[pool_df['code1'] != '3', :]\n pool_df = pool_df.loc[pool_df['code3'] != '688', :]\n pool_df = pool_df.drop(['name1', 'code1', 'code3'], axis=1)\n pool_df = pool_df.reset_index(drop=True)\n return pool_df\n\n\ndef deleteNew(pool_df, list_data='20190101'):\n pool_df = pool_df.loc[pool_df.list_date.values < list_data, :]\n pool_df = pool_df.reset_index(drop=True)\n return pool_df\n\n\ndef getStockBasic(LOCAL=True, noSTKC=True, list_data='20190101'):\n if LOCAL:\n pool_df = pd.read_csv('./data/stock/stock_basic_info.csv')\n pool_df['list_date'] = pool_df['list_date'].astype('str')\n else:\n fields = (\n 'ts_code,symbol,name,area,industry,list_date,market,list_status,delist_date,exchange'\n )\n pool_df = pro.stock_basic(list_status='L', fields=fields)\n if noSTKC:\n pool_df = deleteSTKC(pool_df)\n if list_data:\n pool_df = deleteNew(pool_df, list_data)\n return pool_df\n\n\ndef getIndexBasic(LOCAL=True, market='SZSE'):\n if LOCAL:\n pool_df = pd.read_csv('./data/index/index_basic_info_' + market +\n '.csv')\n else:\n pool_df = pro.index_basic(market=market)\n return pool_df\n\n\ndef getIndexDaily(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/daily/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_daily(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndexWeekly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/weekly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_weekly(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndexMonthly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/monthly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_monthly(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockDaily(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/daily/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockWeekly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/weekly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockMonthly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/monthly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndustryBasic():\n pool_df = pd.read_csv('./data/industry/all_industry_basic_info.csv')\n return pool_df\n\n\ndef getIndustryDaily(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/daily/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndustryWeekly(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/weekly/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndustryMonthly(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/monthly/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef resetIndex(daily_df):\n daily_df['trade_date_stamp'] = daily_df['trade_date'].copy()\n daily_df['trade_date_stamp'] = pd.to_datetime(daily_df['trade_date_stamp']\n ).map(date2num)\n daily_df.sort_values(by='trade_date_stamp', ascending=True, inplace=True)\n daily_df.reset_index(drop=True, inplace=True)\n return daily_df\n\n\ndef readData(dir_file, stock_code, start_date='20100101', end_date='20200314'):\n for file_dir, _, files in os.walk(dir_file):\n for i, file_name in enumerate(files):\n if file_name[:9] == stock_code:\n daily_df = pd.read_csv(file_dir + file_name)\n daily_df['trade_date'] = daily_df['trade_date'].astype('str')\n daily_df = daily_df.loc[daily_df['trade_date'] >= start_date, :\n ].reset_index(drop=True)\n daily_df = daily_df.loc[daily_df['trade_date'] <= end_date, :\n ].reset_index(drop=True)\n break\n return daily_df\n\n\n<function token>\n\n\ndef mergeWeeklyMonthly(weekly_df, monthly_df):\n cols = [(i + '_weekly') for i in weekly_df.columns]\n weekly_df.columns = cols\n col_dic = {'trade_date_weekly': 'trade_date', 'ts_code_weekly':\n 'ts_code', 'trade_date_stamp_weekly': 'trade_date_stamp'}\n weekly_df.rename(columns=col_dic, inplace=True)\n monthly_df.drop(['ts_code', 'trade_date_stamp'], axis=1, inplace=True)\n cols = [(i + '_monthly') for i in monthly_df.columns]\n monthly_df.columns = cols\n monthly_df.rename(columns={'trade_date_monthly': 'trade_date'}, inplace\n =True)\n all_df = pd.merge(weekly_df, monthly_df, how='outer', on='trade_date')\n all_df.fillna(method='ffill', inplace=True)\n return all_df\n\n\ndef mergeStockIndex(stock_df, df):\n index_df = df.copy(deep=True)\n index_df.drop(['ts_code', 'trade_date_stamp'], axis=1, inplace=True)\n cols = [(i + '_index') for i in index_df.columns.values]\n index_df.columns = cols\n index_df.rename(columns={'trade_date_index': 'trade_date'}, inplace=True)\n all_df = pd.merge(left=stock_df, right=index_df, how='left', on=\n 'trade_date')\n all_df.fillna(method='ffill', inplace=True)\n return all_df\n\n\ndef getStock(stock_code, start_date, end_date, LOCAL=True):\n daily_df = getStockDaily(stock_code, start_date, end_date, LOCAL=LOCAL)\n weekly_df = getStockWeekly(stock_code, start_date, end_date, LOCAL=LOCAL)\n monthly_df = getStockMonthly(stock_code, start_date, end_date, LOCAL=LOCAL)\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n all_df = mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df)\n return all_df\n\n\ndef getIndex(stock_code, start_date, end_date, LOCAL=True, merge_daily=True):\n if merge_daily:\n daily_df = getIndexDaily(stock_code, start_date, end_date, LOCAL=True)\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getIndexWeekly(stock_code, start_date, end_date, LOCAL=True)\n monthly_df = getIndexMonthly(stock_code, start_date, end_date, LOCAL=True)\n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n if merge_daily:\n all_df = mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df)\n else:\n all_df = mergeWeeklyMonthly(weekly_df, monthly_df)\n return all_df\n\n\ndef getIndustry(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, merge_daily=True):\n if merge_daily:\n daily_df = getIndustryDaily(stock_code, start_date, end_date)\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getIndustryWeekly(stock_code, start_date, end_date)\n monthly_df = getIndustryMonthly(stock_code, start_date, end_date)\n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n if merge_daily:\n all_df = mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df)\n else:\n all_df = mergeWeeklyMonthly(weekly_df, monthly_df)\n return all_df\n", "<import token>\n<code token>\n<import token>\n<code token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n\n\ndef deleteSTKC(pool_df):\n pool_df['name1'] = [i[0] for i in pool_df['name'].values]\n pool_df['code1'] = [i[0] for i in pool_df['ts_code'].values]\n pool_df['code3'] = [i[0:3] for i in pool_df['ts_code'].values]\n pool_df = pool_df.loc[pool_df['name1'] != '*', :]\n pool_df = pool_df.loc[pool_df['name1'] != 'S', :]\n pool_df = pool_df.loc[pool_df['code1'] != '3', :]\n pool_df = pool_df.loc[pool_df['code3'] != '688', :]\n pool_df = pool_df.drop(['name1', 'code1', 'code3'], axis=1)\n pool_df = pool_df.reset_index(drop=True)\n return pool_df\n\n\ndef deleteNew(pool_df, list_data='20190101'):\n pool_df = pool_df.loc[pool_df.list_date.values < list_data, :]\n pool_df = pool_df.reset_index(drop=True)\n return pool_df\n\n\ndef getStockBasic(LOCAL=True, noSTKC=True, list_data='20190101'):\n if LOCAL:\n pool_df = pd.read_csv('./data/stock/stock_basic_info.csv')\n pool_df['list_date'] = pool_df['list_date'].astype('str')\n else:\n fields = (\n 'ts_code,symbol,name,area,industry,list_date,market,list_status,delist_date,exchange'\n )\n pool_df = pro.stock_basic(list_status='L', fields=fields)\n if noSTKC:\n pool_df = deleteSTKC(pool_df)\n if list_data:\n pool_df = deleteNew(pool_df, list_data)\n return pool_df\n\n\ndef getIndexBasic(LOCAL=True, market='SZSE'):\n if LOCAL:\n pool_df = pd.read_csv('./data/index/index_basic_info_' + market +\n '.csv')\n else:\n pool_df = pro.index_basic(market=market)\n return pool_df\n\n\ndef getIndexDaily(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/daily/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_daily(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndexWeekly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/weekly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_weekly(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndexMonthly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/monthly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_monthly(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockDaily(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/daily/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockWeekly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/weekly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockMonthly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/monthly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndustryBasic():\n pool_df = pd.read_csv('./data/industry/all_industry_basic_info.csv')\n return pool_df\n\n\ndef getIndustryDaily(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/daily/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndustryWeekly(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/weekly/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndustryMonthly(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/monthly/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef resetIndex(daily_df):\n daily_df['trade_date_stamp'] = daily_df['trade_date'].copy()\n daily_df['trade_date_stamp'] = pd.to_datetime(daily_df['trade_date_stamp']\n ).map(date2num)\n daily_df.sort_values(by='trade_date_stamp', ascending=True, inplace=True)\n daily_df.reset_index(drop=True, inplace=True)\n return daily_df\n\n\ndef readData(dir_file, stock_code, start_date='20100101', end_date='20200314'):\n for file_dir, _, files in os.walk(dir_file):\n for i, file_name in enumerate(files):\n if file_name[:9] == stock_code:\n daily_df = pd.read_csv(file_dir + file_name)\n daily_df['trade_date'] = daily_df['trade_date'].astype('str')\n daily_df = daily_df.loc[daily_df['trade_date'] >= start_date, :\n ].reset_index(drop=True)\n daily_df = daily_df.loc[daily_df['trade_date'] <= end_date, :\n ].reset_index(drop=True)\n break\n return daily_df\n\n\n<function token>\n\n\ndef mergeWeeklyMonthly(weekly_df, monthly_df):\n cols = [(i + '_weekly') for i in weekly_df.columns]\n weekly_df.columns = cols\n col_dic = {'trade_date_weekly': 'trade_date', 'ts_code_weekly':\n 'ts_code', 'trade_date_stamp_weekly': 'trade_date_stamp'}\n weekly_df.rename(columns=col_dic, inplace=True)\n monthly_df.drop(['ts_code', 'trade_date_stamp'], axis=1, inplace=True)\n cols = [(i + '_monthly') for i in monthly_df.columns]\n monthly_df.columns = cols\n monthly_df.rename(columns={'trade_date_monthly': 'trade_date'}, inplace\n =True)\n all_df = pd.merge(weekly_df, monthly_df, how='outer', on='trade_date')\n all_df.fillna(method='ffill', inplace=True)\n return all_df\n\n\n<function token>\n\n\ndef getStock(stock_code, start_date, end_date, LOCAL=True):\n daily_df = getStockDaily(stock_code, start_date, end_date, LOCAL=LOCAL)\n weekly_df = getStockWeekly(stock_code, start_date, end_date, LOCAL=LOCAL)\n monthly_df = getStockMonthly(stock_code, start_date, end_date, LOCAL=LOCAL)\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n all_df = mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df)\n return all_df\n\n\ndef getIndex(stock_code, start_date, end_date, LOCAL=True, merge_daily=True):\n if merge_daily:\n daily_df = getIndexDaily(stock_code, start_date, end_date, LOCAL=True)\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getIndexWeekly(stock_code, start_date, end_date, LOCAL=True)\n monthly_df = getIndexMonthly(stock_code, start_date, end_date, LOCAL=True)\n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n if merge_daily:\n all_df = mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df)\n else:\n all_df = mergeWeeklyMonthly(weekly_df, monthly_df)\n return all_df\n\n\ndef getIndustry(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, merge_daily=True):\n if merge_daily:\n daily_df = getIndustryDaily(stock_code, start_date, end_date)\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getIndustryWeekly(stock_code, start_date, end_date)\n monthly_df = getIndustryMonthly(stock_code, start_date, end_date)\n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n if merge_daily:\n all_df = mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df)\n else:\n all_df = mergeWeeklyMonthly(weekly_df, monthly_df)\n return all_df\n", "<import token>\n<code token>\n<import token>\n<code token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n\n\ndef deleteSTKC(pool_df):\n pool_df['name1'] = [i[0] for i in pool_df['name'].values]\n pool_df['code1'] = [i[0] for i in pool_df['ts_code'].values]\n pool_df['code3'] = [i[0:3] for i in pool_df['ts_code'].values]\n pool_df = pool_df.loc[pool_df['name1'] != '*', :]\n pool_df = pool_df.loc[pool_df['name1'] != 'S', :]\n pool_df = pool_df.loc[pool_df['code1'] != '3', :]\n pool_df = pool_df.loc[pool_df['code3'] != '688', :]\n pool_df = pool_df.drop(['name1', 'code1', 'code3'], axis=1)\n pool_df = pool_df.reset_index(drop=True)\n return pool_df\n\n\ndef deleteNew(pool_df, list_data='20190101'):\n pool_df = pool_df.loc[pool_df.list_date.values < list_data, :]\n pool_df = pool_df.reset_index(drop=True)\n return pool_df\n\n\ndef getStockBasic(LOCAL=True, noSTKC=True, list_data='20190101'):\n if LOCAL:\n pool_df = pd.read_csv('./data/stock/stock_basic_info.csv')\n pool_df['list_date'] = pool_df['list_date'].astype('str')\n else:\n fields = (\n 'ts_code,symbol,name,area,industry,list_date,market,list_status,delist_date,exchange'\n )\n pool_df = pro.stock_basic(list_status='L', fields=fields)\n if noSTKC:\n pool_df = deleteSTKC(pool_df)\n if list_data:\n pool_df = deleteNew(pool_df, list_data)\n return pool_df\n\n\ndef getIndexBasic(LOCAL=True, market='SZSE'):\n if LOCAL:\n pool_df = pd.read_csv('./data/index/index_basic_info_' + market +\n '.csv')\n else:\n pool_df = pro.index_basic(market=market)\n return pool_df\n\n\ndef getIndexDaily(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/daily/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_daily(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndexWeekly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/weekly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_weekly(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndexMonthly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/monthly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_monthly(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockDaily(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/daily/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockWeekly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/weekly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockMonthly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/monthly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndustryBasic():\n pool_df = pd.read_csv('./data/industry/all_industry_basic_info.csv')\n return pool_df\n\n\ndef getIndustryDaily(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/daily/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndustryWeekly(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/weekly/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndustryMonthly(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/monthly/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef resetIndex(daily_df):\n daily_df['trade_date_stamp'] = daily_df['trade_date'].copy()\n daily_df['trade_date_stamp'] = pd.to_datetime(daily_df['trade_date_stamp']\n ).map(date2num)\n daily_df.sort_values(by='trade_date_stamp', ascending=True, inplace=True)\n daily_df.reset_index(drop=True, inplace=True)\n return daily_df\n\n\ndef readData(dir_file, stock_code, start_date='20100101', end_date='20200314'):\n for file_dir, _, files in os.walk(dir_file):\n for i, file_name in enumerate(files):\n if file_name[:9] == stock_code:\n daily_df = pd.read_csv(file_dir + file_name)\n daily_df['trade_date'] = daily_df['trade_date'].astype('str')\n daily_df = daily_df.loc[daily_df['trade_date'] >= start_date, :\n ].reset_index(drop=True)\n daily_df = daily_df.loc[daily_df['trade_date'] <= end_date, :\n ].reset_index(drop=True)\n break\n return daily_df\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef getStock(stock_code, start_date, end_date, LOCAL=True):\n daily_df = getStockDaily(stock_code, start_date, end_date, LOCAL=LOCAL)\n weekly_df = getStockWeekly(stock_code, start_date, end_date, LOCAL=LOCAL)\n monthly_df = getStockMonthly(stock_code, start_date, end_date, LOCAL=LOCAL)\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n all_df = mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df)\n return all_df\n\n\ndef getIndex(stock_code, start_date, end_date, LOCAL=True, merge_daily=True):\n if merge_daily:\n daily_df = getIndexDaily(stock_code, start_date, end_date, LOCAL=True)\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getIndexWeekly(stock_code, start_date, end_date, LOCAL=True)\n monthly_df = getIndexMonthly(stock_code, start_date, end_date, LOCAL=True)\n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n if merge_daily:\n all_df = mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df)\n else:\n all_df = mergeWeeklyMonthly(weekly_df, monthly_df)\n return all_df\n\n\ndef getIndustry(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, merge_daily=True):\n if merge_daily:\n daily_df = getIndustryDaily(stock_code, start_date, end_date)\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getIndustryWeekly(stock_code, start_date, end_date)\n monthly_df = getIndustryMonthly(stock_code, start_date, end_date)\n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n if merge_daily:\n all_df = mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df)\n else:\n all_df = mergeWeeklyMonthly(weekly_df, monthly_df)\n return all_df\n", "<import token>\n<code token>\n<import token>\n<code token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n\n\ndef deleteSTKC(pool_df):\n pool_df['name1'] = [i[0] for i in pool_df['name'].values]\n pool_df['code1'] = [i[0] for i in pool_df['ts_code'].values]\n pool_df['code3'] = [i[0:3] for i in pool_df['ts_code'].values]\n pool_df = pool_df.loc[pool_df['name1'] != '*', :]\n pool_df = pool_df.loc[pool_df['name1'] != 'S', :]\n pool_df = pool_df.loc[pool_df['code1'] != '3', :]\n pool_df = pool_df.loc[pool_df['code3'] != '688', :]\n pool_df = pool_df.drop(['name1', 'code1', 'code3'], axis=1)\n pool_df = pool_df.reset_index(drop=True)\n return pool_df\n\n\ndef deleteNew(pool_df, list_data='20190101'):\n pool_df = pool_df.loc[pool_df.list_date.values < list_data, :]\n pool_df = pool_df.reset_index(drop=True)\n return pool_df\n\n\ndef getStockBasic(LOCAL=True, noSTKC=True, list_data='20190101'):\n if LOCAL:\n pool_df = pd.read_csv('./data/stock/stock_basic_info.csv')\n pool_df['list_date'] = pool_df['list_date'].astype('str')\n else:\n fields = (\n 'ts_code,symbol,name,area,industry,list_date,market,list_status,delist_date,exchange'\n )\n pool_df = pro.stock_basic(list_status='L', fields=fields)\n if noSTKC:\n pool_df = deleteSTKC(pool_df)\n if list_data:\n pool_df = deleteNew(pool_df, list_data)\n return pool_df\n\n\n<function token>\n\n\ndef getIndexDaily(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/daily/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_daily(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndexWeekly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/weekly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_weekly(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndexMonthly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/monthly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_monthly(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockDaily(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/daily/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockWeekly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/weekly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockMonthly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/monthly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndustryBasic():\n pool_df = pd.read_csv('./data/industry/all_industry_basic_info.csv')\n return pool_df\n\n\ndef getIndustryDaily(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/daily/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndustryWeekly(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/weekly/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndustryMonthly(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/monthly/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef resetIndex(daily_df):\n daily_df['trade_date_stamp'] = daily_df['trade_date'].copy()\n daily_df['trade_date_stamp'] = pd.to_datetime(daily_df['trade_date_stamp']\n ).map(date2num)\n daily_df.sort_values(by='trade_date_stamp', ascending=True, inplace=True)\n daily_df.reset_index(drop=True, inplace=True)\n return daily_df\n\n\ndef readData(dir_file, stock_code, start_date='20100101', end_date='20200314'):\n for file_dir, _, files in os.walk(dir_file):\n for i, file_name in enumerate(files):\n if file_name[:9] == stock_code:\n daily_df = pd.read_csv(file_dir + file_name)\n daily_df['trade_date'] = daily_df['trade_date'].astype('str')\n daily_df = daily_df.loc[daily_df['trade_date'] >= start_date, :\n ].reset_index(drop=True)\n daily_df = daily_df.loc[daily_df['trade_date'] <= end_date, :\n ].reset_index(drop=True)\n break\n return daily_df\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef getStock(stock_code, start_date, end_date, LOCAL=True):\n daily_df = getStockDaily(stock_code, start_date, end_date, LOCAL=LOCAL)\n weekly_df = getStockWeekly(stock_code, start_date, end_date, LOCAL=LOCAL)\n monthly_df = getStockMonthly(stock_code, start_date, end_date, LOCAL=LOCAL)\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n all_df = mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df)\n return all_df\n\n\ndef getIndex(stock_code, start_date, end_date, LOCAL=True, merge_daily=True):\n if merge_daily:\n daily_df = getIndexDaily(stock_code, start_date, end_date, LOCAL=True)\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getIndexWeekly(stock_code, start_date, end_date, LOCAL=True)\n monthly_df = getIndexMonthly(stock_code, start_date, end_date, LOCAL=True)\n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n if merge_daily:\n all_df = mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df)\n else:\n all_df = mergeWeeklyMonthly(weekly_df, monthly_df)\n return all_df\n\n\ndef getIndustry(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, merge_daily=True):\n if merge_daily:\n daily_df = getIndustryDaily(stock_code, start_date, end_date)\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getIndustryWeekly(stock_code, start_date, end_date)\n monthly_df = getIndustryMonthly(stock_code, start_date, end_date)\n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n if merge_daily:\n all_df = mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df)\n else:\n all_df = mergeWeeklyMonthly(weekly_df, monthly_df)\n return all_df\n", "<import token>\n<code token>\n<import token>\n<code token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n\n\ndef deleteSTKC(pool_df):\n pool_df['name1'] = [i[0] for i in pool_df['name'].values]\n pool_df['code1'] = [i[0] for i in pool_df['ts_code'].values]\n pool_df['code3'] = [i[0:3] for i in pool_df['ts_code'].values]\n pool_df = pool_df.loc[pool_df['name1'] != '*', :]\n pool_df = pool_df.loc[pool_df['name1'] != 'S', :]\n pool_df = pool_df.loc[pool_df['code1'] != '3', :]\n pool_df = pool_df.loc[pool_df['code3'] != '688', :]\n pool_df = pool_df.drop(['name1', 'code1', 'code3'], axis=1)\n pool_df = pool_df.reset_index(drop=True)\n return pool_df\n\n\ndef deleteNew(pool_df, list_data='20190101'):\n pool_df = pool_df.loc[pool_df.list_date.values < list_data, :]\n pool_df = pool_df.reset_index(drop=True)\n return pool_df\n\n\ndef getStockBasic(LOCAL=True, noSTKC=True, list_data='20190101'):\n if LOCAL:\n pool_df = pd.read_csv('./data/stock/stock_basic_info.csv')\n pool_df['list_date'] = pool_df['list_date'].astype('str')\n else:\n fields = (\n 'ts_code,symbol,name,area,industry,list_date,market,list_status,delist_date,exchange'\n )\n pool_df = pro.stock_basic(list_status='L', fields=fields)\n if noSTKC:\n pool_df = deleteSTKC(pool_df)\n if list_data:\n pool_df = deleteNew(pool_df, list_data)\n return pool_df\n\n\n<function token>\n\n\ndef getIndexDaily(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/daily/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_daily(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndexWeekly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/weekly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_weekly(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndexMonthly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/monthly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_monthly(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockDaily(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/daily/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockWeekly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/weekly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockMonthly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/monthly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndustryBasic():\n pool_df = pd.read_csv('./data/industry/all_industry_basic_info.csv')\n return pool_df\n\n\ndef getIndustryDaily(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/daily/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\n<function token>\n\n\ndef getIndustryMonthly(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/monthly/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef resetIndex(daily_df):\n daily_df['trade_date_stamp'] = daily_df['trade_date'].copy()\n daily_df['trade_date_stamp'] = pd.to_datetime(daily_df['trade_date_stamp']\n ).map(date2num)\n daily_df.sort_values(by='trade_date_stamp', ascending=True, inplace=True)\n daily_df.reset_index(drop=True, inplace=True)\n return daily_df\n\n\ndef readData(dir_file, stock_code, start_date='20100101', end_date='20200314'):\n for file_dir, _, files in os.walk(dir_file):\n for i, file_name in enumerate(files):\n if file_name[:9] == stock_code:\n daily_df = pd.read_csv(file_dir + file_name)\n daily_df['trade_date'] = daily_df['trade_date'].astype('str')\n daily_df = daily_df.loc[daily_df['trade_date'] >= start_date, :\n ].reset_index(drop=True)\n daily_df = daily_df.loc[daily_df['trade_date'] <= end_date, :\n ].reset_index(drop=True)\n break\n return daily_df\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef getStock(stock_code, start_date, end_date, LOCAL=True):\n daily_df = getStockDaily(stock_code, start_date, end_date, LOCAL=LOCAL)\n weekly_df = getStockWeekly(stock_code, start_date, end_date, LOCAL=LOCAL)\n monthly_df = getStockMonthly(stock_code, start_date, end_date, LOCAL=LOCAL)\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n all_df = mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df)\n return all_df\n\n\ndef getIndex(stock_code, start_date, end_date, LOCAL=True, merge_daily=True):\n if merge_daily:\n daily_df = getIndexDaily(stock_code, start_date, end_date, LOCAL=True)\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getIndexWeekly(stock_code, start_date, end_date, LOCAL=True)\n monthly_df = getIndexMonthly(stock_code, start_date, end_date, LOCAL=True)\n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n if merge_daily:\n all_df = mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df)\n else:\n all_df = mergeWeeklyMonthly(weekly_df, monthly_df)\n return all_df\n\n\ndef getIndustry(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, merge_daily=True):\n if merge_daily:\n daily_df = getIndustryDaily(stock_code, start_date, end_date)\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getIndustryWeekly(stock_code, start_date, end_date)\n monthly_df = getIndustryMonthly(stock_code, start_date, end_date)\n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n if merge_daily:\n all_df = mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df)\n else:\n all_df = mergeWeeklyMonthly(weekly_df, monthly_df)\n return all_df\n", "<import token>\n<code token>\n<import token>\n<code token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n\n\ndef deleteSTKC(pool_df):\n pool_df['name1'] = [i[0] for i in pool_df['name'].values]\n pool_df['code1'] = [i[0] for i in pool_df['ts_code'].values]\n pool_df['code3'] = [i[0:3] for i in pool_df['ts_code'].values]\n pool_df = pool_df.loc[pool_df['name1'] != '*', :]\n pool_df = pool_df.loc[pool_df['name1'] != 'S', :]\n pool_df = pool_df.loc[pool_df['code1'] != '3', :]\n pool_df = pool_df.loc[pool_df['code3'] != '688', :]\n pool_df = pool_df.drop(['name1', 'code1', 'code3'], axis=1)\n pool_df = pool_df.reset_index(drop=True)\n return pool_df\n\n\ndef deleteNew(pool_df, list_data='20190101'):\n pool_df = pool_df.loc[pool_df.list_date.values < list_data, :]\n pool_df = pool_df.reset_index(drop=True)\n return pool_df\n\n\ndef getStockBasic(LOCAL=True, noSTKC=True, list_data='20190101'):\n if LOCAL:\n pool_df = pd.read_csv('./data/stock/stock_basic_info.csv')\n pool_df['list_date'] = pool_df['list_date'].astype('str')\n else:\n fields = (\n 'ts_code,symbol,name,area,industry,list_date,market,list_status,delist_date,exchange'\n )\n pool_df = pro.stock_basic(list_status='L', fields=fields)\n if noSTKC:\n pool_df = deleteSTKC(pool_df)\n if list_data:\n pool_df = deleteNew(pool_df, list_data)\n return pool_df\n\n\n<function token>\n\n\ndef getIndexDaily(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/daily/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_daily(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndexWeekly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/weekly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_weekly(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndexMonthly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/monthly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_monthly(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockDaily(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/daily/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockWeekly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/weekly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockMonthly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/monthly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndustryBasic():\n pool_df = pd.read_csv('./data/industry/all_industry_basic_info.csv')\n return pool_df\n\n\ndef getIndustryDaily(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/daily/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\n<function token>\n\n\ndef getIndustryMonthly(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/monthly/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef resetIndex(daily_df):\n daily_df['trade_date_stamp'] = daily_df['trade_date'].copy()\n daily_df['trade_date_stamp'] = pd.to_datetime(daily_df['trade_date_stamp']\n ).map(date2num)\n daily_df.sort_values(by='trade_date_stamp', ascending=True, inplace=True)\n daily_df.reset_index(drop=True, inplace=True)\n return daily_df\n\n\ndef readData(dir_file, stock_code, start_date='20100101', end_date='20200314'):\n for file_dir, _, files in os.walk(dir_file):\n for i, file_name in enumerate(files):\n if file_name[:9] == stock_code:\n daily_df = pd.read_csv(file_dir + file_name)\n daily_df['trade_date'] = daily_df['trade_date'].astype('str')\n daily_df = daily_df.loc[daily_df['trade_date'] >= start_date, :\n ].reset_index(drop=True)\n daily_df = daily_df.loc[daily_df['trade_date'] <= end_date, :\n ].reset_index(drop=True)\n break\n return daily_df\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef getStock(stock_code, start_date, end_date, LOCAL=True):\n daily_df = getStockDaily(stock_code, start_date, end_date, LOCAL=LOCAL)\n weekly_df = getStockWeekly(stock_code, start_date, end_date, LOCAL=LOCAL)\n monthly_df = getStockMonthly(stock_code, start_date, end_date, LOCAL=LOCAL)\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n all_df = mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df)\n return all_df\n\n\n<function token>\n\n\ndef getIndustry(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, merge_daily=True):\n if merge_daily:\n daily_df = getIndustryDaily(stock_code, start_date, end_date)\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getIndustryWeekly(stock_code, start_date, end_date)\n monthly_df = getIndustryMonthly(stock_code, start_date, end_date)\n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n if merge_daily:\n all_df = mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df)\n else:\n all_df = mergeWeeklyMonthly(weekly_df, monthly_df)\n return all_df\n", "<import token>\n<code token>\n<import token>\n<code token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<function token>\n\n\ndef deleteNew(pool_df, list_data='20190101'):\n pool_df = pool_df.loc[pool_df.list_date.values < list_data, :]\n pool_df = pool_df.reset_index(drop=True)\n return pool_df\n\n\ndef getStockBasic(LOCAL=True, noSTKC=True, list_data='20190101'):\n if LOCAL:\n pool_df = pd.read_csv('./data/stock/stock_basic_info.csv')\n pool_df['list_date'] = pool_df['list_date'].astype('str')\n else:\n fields = (\n 'ts_code,symbol,name,area,industry,list_date,market,list_status,delist_date,exchange'\n )\n pool_df = pro.stock_basic(list_status='L', fields=fields)\n if noSTKC:\n pool_df = deleteSTKC(pool_df)\n if list_data:\n pool_df = deleteNew(pool_df, list_data)\n return pool_df\n\n\n<function token>\n\n\ndef getIndexDaily(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/daily/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_daily(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndexWeekly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/weekly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_weekly(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndexMonthly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/monthly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_monthly(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockDaily(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/daily/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockWeekly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/weekly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockMonthly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/monthly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndustryBasic():\n pool_df = pd.read_csv('./data/industry/all_industry_basic_info.csv')\n return pool_df\n\n\ndef getIndustryDaily(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/daily/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\n<function token>\n\n\ndef getIndustryMonthly(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/monthly/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef resetIndex(daily_df):\n daily_df['trade_date_stamp'] = daily_df['trade_date'].copy()\n daily_df['trade_date_stamp'] = pd.to_datetime(daily_df['trade_date_stamp']\n ).map(date2num)\n daily_df.sort_values(by='trade_date_stamp', ascending=True, inplace=True)\n daily_df.reset_index(drop=True, inplace=True)\n return daily_df\n\n\ndef readData(dir_file, stock_code, start_date='20100101', end_date='20200314'):\n for file_dir, _, files in os.walk(dir_file):\n for i, file_name in enumerate(files):\n if file_name[:9] == stock_code:\n daily_df = pd.read_csv(file_dir + file_name)\n daily_df['trade_date'] = daily_df['trade_date'].astype('str')\n daily_df = daily_df.loc[daily_df['trade_date'] >= start_date, :\n ].reset_index(drop=True)\n daily_df = daily_df.loc[daily_df['trade_date'] <= end_date, :\n ].reset_index(drop=True)\n break\n return daily_df\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef getStock(stock_code, start_date, end_date, LOCAL=True):\n daily_df = getStockDaily(stock_code, start_date, end_date, LOCAL=LOCAL)\n weekly_df = getStockWeekly(stock_code, start_date, end_date, LOCAL=LOCAL)\n monthly_df = getStockMonthly(stock_code, start_date, end_date, LOCAL=LOCAL)\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n all_df = mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df)\n return all_df\n\n\n<function token>\n\n\ndef getIndustry(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, merge_daily=True):\n if merge_daily:\n daily_df = getIndustryDaily(stock_code, start_date, end_date)\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getIndustryWeekly(stock_code, start_date, end_date)\n monthly_df = getIndustryMonthly(stock_code, start_date, end_date)\n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n if merge_daily:\n all_df = mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df)\n else:\n all_df = mergeWeeklyMonthly(weekly_df, monthly_df)\n return all_df\n", "<import token>\n<code token>\n<import token>\n<code token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<function token>\n\n\ndef deleteNew(pool_df, list_data='20190101'):\n pool_df = pool_df.loc[pool_df.list_date.values < list_data, :]\n pool_df = pool_df.reset_index(drop=True)\n return pool_df\n\n\ndef getStockBasic(LOCAL=True, noSTKC=True, list_data='20190101'):\n if LOCAL:\n pool_df = pd.read_csv('./data/stock/stock_basic_info.csv')\n pool_df['list_date'] = pool_df['list_date'].astype('str')\n else:\n fields = (\n 'ts_code,symbol,name,area,industry,list_date,market,list_status,delist_date,exchange'\n )\n pool_df = pro.stock_basic(list_status='L', fields=fields)\n if noSTKC:\n pool_df = deleteSTKC(pool_df)\n if list_data:\n pool_df = deleteNew(pool_df, list_data)\n return pool_df\n\n\n<function token>\n\n\ndef getIndexDaily(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/daily/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_daily(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndexWeekly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/weekly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_weekly(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndexMonthly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/monthly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_monthly(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockDaily(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/daily/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockWeekly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/weekly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockMonthly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/monthly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\n<function token>\n\n\ndef getIndustryDaily(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/daily/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\n<function token>\n\n\ndef getIndustryMonthly(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/monthly/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef resetIndex(daily_df):\n daily_df['trade_date_stamp'] = daily_df['trade_date'].copy()\n daily_df['trade_date_stamp'] = pd.to_datetime(daily_df['trade_date_stamp']\n ).map(date2num)\n daily_df.sort_values(by='trade_date_stamp', ascending=True, inplace=True)\n daily_df.reset_index(drop=True, inplace=True)\n return daily_df\n\n\ndef readData(dir_file, stock_code, start_date='20100101', end_date='20200314'):\n for file_dir, _, files in os.walk(dir_file):\n for i, file_name in enumerate(files):\n if file_name[:9] == stock_code:\n daily_df = pd.read_csv(file_dir + file_name)\n daily_df['trade_date'] = daily_df['trade_date'].astype('str')\n daily_df = daily_df.loc[daily_df['trade_date'] >= start_date, :\n ].reset_index(drop=True)\n daily_df = daily_df.loc[daily_df['trade_date'] <= end_date, :\n ].reset_index(drop=True)\n break\n return daily_df\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef getStock(stock_code, start_date, end_date, LOCAL=True):\n daily_df = getStockDaily(stock_code, start_date, end_date, LOCAL=LOCAL)\n weekly_df = getStockWeekly(stock_code, start_date, end_date, LOCAL=LOCAL)\n monthly_df = getStockMonthly(stock_code, start_date, end_date, LOCAL=LOCAL)\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n all_df = mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df)\n return all_df\n\n\n<function token>\n\n\ndef getIndustry(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, merge_daily=True):\n if merge_daily:\n daily_df = getIndustryDaily(stock_code, start_date, end_date)\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getIndustryWeekly(stock_code, start_date, end_date)\n monthly_df = getIndustryMonthly(stock_code, start_date, end_date)\n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n if merge_daily:\n all_df = mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df)\n else:\n all_df = mergeWeeklyMonthly(weekly_df, monthly_df)\n return all_df\n", "<import token>\n<code token>\n<import token>\n<code token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<function token>\n\n\ndef deleteNew(pool_df, list_data='20190101'):\n pool_df = pool_df.loc[pool_df.list_date.values < list_data, :]\n pool_df = pool_df.reset_index(drop=True)\n return pool_df\n\n\n<function token>\n<function token>\n\n\ndef getIndexDaily(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/daily/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_daily(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndexWeekly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/weekly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_weekly(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndexMonthly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/monthly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_monthly(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockDaily(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/daily/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockWeekly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/weekly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockMonthly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/monthly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\n<function token>\n\n\ndef getIndustryDaily(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/daily/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\n<function token>\n\n\ndef getIndustryMonthly(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/monthly/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef resetIndex(daily_df):\n daily_df['trade_date_stamp'] = daily_df['trade_date'].copy()\n daily_df['trade_date_stamp'] = pd.to_datetime(daily_df['trade_date_stamp']\n ).map(date2num)\n daily_df.sort_values(by='trade_date_stamp', ascending=True, inplace=True)\n daily_df.reset_index(drop=True, inplace=True)\n return daily_df\n\n\ndef readData(dir_file, stock_code, start_date='20100101', end_date='20200314'):\n for file_dir, _, files in os.walk(dir_file):\n for i, file_name in enumerate(files):\n if file_name[:9] == stock_code:\n daily_df = pd.read_csv(file_dir + file_name)\n daily_df['trade_date'] = daily_df['trade_date'].astype('str')\n daily_df = daily_df.loc[daily_df['trade_date'] >= start_date, :\n ].reset_index(drop=True)\n daily_df = daily_df.loc[daily_df['trade_date'] <= end_date, :\n ].reset_index(drop=True)\n break\n return daily_df\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef getStock(stock_code, start_date, end_date, LOCAL=True):\n daily_df = getStockDaily(stock_code, start_date, end_date, LOCAL=LOCAL)\n weekly_df = getStockWeekly(stock_code, start_date, end_date, LOCAL=LOCAL)\n monthly_df = getStockMonthly(stock_code, start_date, end_date, LOCAL=LOCAL)\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n all_df = mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df)\n return all_df\n\n\n<function token>\n\n\ndef getIndustry(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, merge_daily=True):\n if merge_daily:\n daily_df = getIndustryDaily(stock_code, start_date, end_date)\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getIndustryWeekly(stock_code, start_date, end_date)\n monthly_df = getIndustryMonthly(stock_code, start_date, end_date)\n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n if merge_daily:\n all_df = mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df)\n else:\n all_df = mergeWeeklyMonthly(weekly_df, monthly_df)\n return all_df\n", "<import token>\n<code token>\n<import token>\n<code token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<function token>\n\n\ndef deleteNew(pool_df, list_data='20190101'):\n pool_df = pool_df.loc[pool_df.list_date.values < list_data, :]\n pool_df = pool_df.reset_index(drop=True)\n return pool_df\n\n\n<function token>\n<function token>\n\n\ndef getIndexDaily(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/daily/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_daily(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndexWeekly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/weekly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_weekly(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndexMonthly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/monthly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_monthly(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockDaily(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/daily/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockWeekly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/weekly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockMonthly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/monthly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\n<function token>\n\n\ndef getIndustryDaily(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/daily/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\n<function token>\n\n\ndef getIndustryMonthly(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/monthly/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef resetIndex(daily_df):\n daily_df['trade_date_stamp'] = daily_df['trade_date'].copy()\n daily_df['trade_date_stamp'] = pd.to_datetime(daily_df['trade_date_stamp']\n ).map(date2num)\n daily_df.sort_values(by='trade_date_stamp', ascending=True, inplace=True)\n daily_df.reset_index(drop=True, inplace=True)\n return daily_df\n\n\ndef readData(dir_file, stock_code, start_date='20100101', end_date='20200314'):\n for file_dir, _, files in os.walk(dir_file):\n for i, file_name in enumerate(files):\n if file_name[:9] == stock_code:\n daily_df = pd.read_csv(file_dir + file_name)\n daily_df['trade_date'] = daily_df['trade_date'].astype('str')\n daily_df = daily_df.loc[daily_df['trade_date'] >= start_date, :\n ].reset_index(drop=True)\n daily_df = daily_df.loc[daily_df['trade_date'] <= end_date, :\n ].reset_index(drop=True)\n break\n return daily_df\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef getIndustry(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, merge_daily=True):\n if merge_daily:\n daily_df = getIndustryDaily(stock_code, start_date, end_date)\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getIndustryWeekly(stock_code, start_date, end_date)\n monthly_df = getIndustryMonthly(stock_code, start_date, end_date)\n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n if merge_daily:\n all_df = mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df)\n else:\n all_df = mergeWeeklyMonthly(weekly_df, monthly_df)\n return all_df\n", "<import token>\n<code token>\n<import token>\n<code token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<function token>\n\n\ndef deleteNew(pool_df, list_data='20190101'):\n pool_df = pool_df.loc[pool_df.list_date.values < list_data, :]\n pool_df = pool_df.reset_index(drop=True)\n return pool_df\n\n\n<function token>\n<function token>\n\n\ndef getIndexDaily(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/daily/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_daily(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getIndexWeekly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/weekly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_weekly(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\n<function token>\n\n\ndef getStockDaily(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/daily/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockWeekly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/weekly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockMonthly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/monthly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\n<function token>\n\n\ndef getIndustryDaily(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/daily/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\n<function token>\n\n\ndef getIndustryMonthly(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/monthly/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef resetIndex(daily_df):\n daily_df['trade_date_stamp'] = daily_df['trade_date'].copy()\n daily_df['trade_date_stamp'] = pd.to_datetime(daily_df['trade_date_stamp']\n ).map(date2num)\n daily_df.sort_values(by='trade_date_stamp', ascending=True, inplace=True)\n daily_df.reset_index(drop=True, inplace=True)\n return daily_df\n\n\ndef readData(dir_file, stock_code, start_date='20100101', end_date='20200314'):\n for file_dir, _, files in os.walk(dir_file):\n for i, file_name in enumerate(files):\n if file_name[:9] == stock_code:\n daily_df = pd.read_csv(file_dir + file_name)\n daily_df['trade_date'] = daily_df['trade_date'].astype('str')\n daily_df = daily_df.loc[daily_df['trade_date'] >= start_date, :\n ].reset_index(drop=True)\n daily_df = daily_df.loc[daily_df['trade_date'] <= end_date, :\n ].reset_index(drop=True)\n break\n return daily_df\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef getIndustry(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, merge_daily=True):\n if merge_daily:\n daily_df = getIndustryDaily(stock_code, start_date, end_date)\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getIndustryWeekly(stock_code, start_date, end_date)\n monthly_df = getIndustryMonthly(stock_code, start_date, end_date)\n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n if merge_daily:\n all_df = mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df)\n else:\n all_df = mergeWeeklyMonthly(weekly_df, monthly_df)\n return all_df\n", "<import token>\n<code token>\n<import token>\n<code token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<function token>\n\n\ndef deleteNew(pool_df, list_data='20190101'):\n pool_df = pool_df.loc[pool_df.list_date.values < list_data, :]\n pool_df = pool_df.reset_index(drop=True)\n return pool_df\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef getIndexWeekly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/weekly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_weekly(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\n<function token>\n\n\ndef getStockDaily(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/daily/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockWeekly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/weekly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockMonthly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/monthly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\n<function token>\n\n\ndef getIndustryDaily(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/daily/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\n<function token>\n\n\ndef getIndustryMonthly(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/monthly/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef resetIndex(daily_df):\n daily_df['trade_date_stamp'] = daily_df['trade_date'].copy()\n daily_df['trade_date_stamp'] = pd.to_datetime(daily_df['trade_date_stamp']\n ).map(date2num)\n daily_df.sort_values(by='trade_date_stamp', ascending=True, inplace=True)\n daily_df.reset_index(drop=True, inplace=True)\n return daily_df\n\n\ndef readData(dir_file, stock_code, start_date='20100101', end_date='20200314'):\n for file_dir, _, files in os.walk(dir_file):\n for i, file_name in enumerate(files):\n if file_name[:9] == stock_code:\n daily_df = pd.read_csv(file_dir + file_name)\n daily_df['trade_date'] = daily_df['trade_date'].astype('str')\n daily_df = daily_df.loc[daily_df['trade_date'] >= start_date, :\n ].reset_index(drop=True)\n daily_df = daily_df.loc[daily_df['trade_date'] <= end_date, :\n ].reset_index(drop=True)\n break\n return daily_df\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef getIndustry(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, merge_daily=True):\n if merge_daily:\n daily_df = getIndustryDaily(stock_code, start_date, end_date)\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getIndustryWeekly(stock_code, start_date, end_date)\n monthly_df = getIndustryMonthly(stock_code, start_date, end_date)\n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n if merge_daily:\n all_df = mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df)\n else:\n all_df = mergeWeeklyMonthly(weekly_df, monthly_df)\n return all_df\n", "<import token>\n<code token>\n<import token>\n<code token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<function token>\n\n\ndef deleteNew(pool_df, list_data='20190101'):\n pool_df = pool_df.loc[pool_df.list_date.values < list_data, :]\n pool_df = pool_df.reset_index(drop=True)\n return pool_df\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef getIndexWeekly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/weekly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_weekly(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\n<function token>\n<function token>\n\n\ndef getStockWeekly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/weekly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef getStockMonthly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/monthly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\n<function token>\n\n\ndef getIndustryDaily(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/daily/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\n<function token>\n\n\ndef getIndustryMonthly(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/monthly/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef resetIndex(daily_df):\n daily_df['trade_date_stamp'] = daily_df['trade_date'].copy()\n daily_df['trade_date_stamp'] = pd.to_datetime(daily_df['trade_date_stamp']\n ).map(date2num)\n daily_df.sort_values(by='trade_date_stamp', ascending=True, inplace=True)\n daily_df.reset_index(drop=True, inplace=True)\n return daily_df\n\n\ndef readData(dir_file, stock_code, start_date='20100101', end_date='20200314'):\n for file_dir, _, files in os.walk(dir_file):\n for i, file_name in enumerate(files):\n if file_name[:9] == stock_code:\n daily_df = pd.read_csv(file_dir + file_name)\n daily_df['trade_date'] = daily_df['trade_date'].astype('str')\n daily_df = daily_df.loc[daily_df['trade_date'] >= start_date, :\n ].reset_index(drop=True)\n daily_df = daily_df.loc[daily_df['trade_date'] <= end_date, :\n ].reset_index(drop=True)\n break\n return daily_df\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef getIndustry(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, merge_daily=True):\n if merge_daily:\n daily_df = getIndustryDaily(stock_code, start_date, end_date)\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getIndustryWeekly(stock_code, start_date, end_date)\n monthly_df = getIndustryMonthly(stock_code, start_date, end_date)\n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n if merge_daily:\n all_df = mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df)\n else:\n all_df = mergeWeeklyMonthly(weekly_df, monthly_df)\n return all_df\n", "<import token>\n<code token>\n<import token>\n<code token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<function token>\n\n\ndef deleteNew(pool_df, list_data='20190101'):\n pool_df = pool_df.loc[pool_df.list_date.values < list_data, :]\n pool_df = pool_df.reset_index(drop=True)\n return pool_df\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef getIndexWeekly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/weekly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_weekly(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\n<function token>\n<function token>\n\n\ndef getStockWeekly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/weekly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\n<function token>\n<function token>\n\n\ndef getIndustryDaily(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/daily/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\n<function token>\n\n\ndef getIndustryMonthly(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/monthly/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef resetIndex(daily_df):\n daily_df['trade_date_stamp'] = daily_df['trade_date'].copy()\n daily_df['trade_date_stamp'] = pd.to_datetime(daily_df['trade_date_stamp']\n ).map(date2num)\n daily_df.sort_values(by='trade_date_stamp', ascending=True, inplace=True)\n daily_df.reset_index(drop=True, inplace=True)\n return daily_df\n\n\ndef readData(dir_file, stock_code, start_date='20100101', end_date='20200314'):\n for file_dir, _, files in os.walk(dir_file):\n for i, file_name in enumerate(files):\n if file_name[:9] == stock_code:\n daily_df = pd.read_csv(file_dir + file_name)\n daily_df['trade_date'] = daily_df['trade_date'].astype('str')\n daily_df = daily_df.loc[daily_df['trade_date'] >= start_date, :\n ].reset_index(drop=True)\n daily_df = daily_df.loc[daily_df['trade_date'] <= end_date, :\n ].reset_index(drop=True)\n break\n return daily_df\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef getIndustry(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, merge_daily=True):\n if merge_daily:\n daily_df = getIndustryDaily(stock_code, start_date, end_date)\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getIndustryWeekly(stock_code, start_date, end_date)\n monthly_df = getIndustryMonthly(stock_code, start_date, end_date)\n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n if merge_daily:\n all_df = mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df)\n else:\n all_df = mergeWeeklyMonthly(weekly_df, monthly_df)\n return all_df\n", "<import token>\n<code token>\n<import token>\n<code token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef getIndexWeekly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/weekly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_weekly(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\n<function token>\n<function token>\n\n\ndef getStockWeekly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/weekly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\n<function token>\n<function token>\n\n\ndef getIndustryDaily(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/daily/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\n<function token>\n\n\ndef getIndustryMonthly(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/monthly/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef resetIndex(daily_df):\n daily_df['trade_date_stamp'] = daily_df['trade_date'].copy()\n daily_df['trade_date_stamp'] = pd.to_datetime(daily_df['trade_date_stamp']\n ).map(date2num)\n daily_df.sort_values(by='trade_date_stamp', ascending=True, inplace=True)\n daily_df.reset_index(drop=True, inplace=True)\n return daily_df\n\n\ndef readData(dir_file, stock_code, start_date='20100101', end_date='20200314'):\n for file_dir, _, files in os.walk(dir_file):\n for i, file_name in enumerate(files):\n if file_name[:9] == stock_code:\n daily_df = pd.read_csv(file_dir + file_name)\n daily_df['trade_date'] = daily_df['trade_date'].astype('str')\n daily_df = daily_df.loc[daily_df['trade_date'] >= start_date, :\n ].reset_index(drop=True)\n daily_df = daily_df.loc[daily_df['trade_date'] <= end_date, :\n ].reset_index(drop=True)\n break\n return daily_df\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef getIndustry(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, merge_daily=True):\n if merge_daily:\n daily_df = getIndustryDaily(stock_code, start_date, end_date)\n daily_df = getKdj(daily_df)\n daily_df = getMacd(daily_df)\n weekly_df = getIndustryWeekly(stock_code, start_date, end_date)\n monthly_df = getIndustryMonthly(stock_code, start_date, end_date)\n weekly_df = getKdj(weekly_df)\n weekly_df = getMacd(weekly_df)\n monthly_df = getKdj(monthly_df)\n monthly_df = getMacd(monthly_df)\n if merge_daily:\n all_df = mergeDailyWeeklyMonthly(daily_df, weekly_df, monthly_df)\n else:\n all_df = mergeWeeklyMonthly(weekly_df, monthly_df)\n return all_df\n", "<import token>\n<code token>\n<import token>\n<code token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef getIndexWeekly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/weekly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_weekly(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\n<function token>\n<function token>\n\n\ndef getStockWeekly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True):\n dir_file = './data/stock/weekly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.daily(ts_code=stock_code, start_date=start_date,\n end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\n<function token>\n<function token>\n\n\ndef getIndustryDaily(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/daily/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\n<function token>\n\n\ndef getIndustryMonthly(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/monthly/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef resetIndex(daily_df):\n daily_df['trade_date_stamp'] = daily_df['trade_date'].copy()\n daily_df['trade_date_stamp'] = pd.to_datetime(daily_df['trade_date_stamp']\n ).map(date2num)\n daily_df.sort_values(by='trade_date_stamp', ascending=True, inplace=True)\n daily_df.reset_index(drop=True, inplace=True)\n return daily_df\n\n\ndef readData(dir_file, stock_code, start_date='20100101', end_date='20200314'):\n for file_dir, _, files in os.walk(dir_file):\n for i, file_name in enumerate(files):\n if file_name[:9] == stock_code:\n daily_df = pd.read_csv(file_dir + file_name)\n daily_df['trade_date'] = daily_df['trade_date'].astype('str')\n daily_df = daily_df.loc[daily_df['trade_date'] >= start_date, :\n ].reset_index(drop=True)\n daily_df = daily_df.loc[daily_df['trade_date'] <= end_date, :\n ].reset_index(drop=True)\n break\n return daily_df\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n", "<import token>\n<code token>\n<import token>\n<code token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef getIndexWeekly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/weekly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_weekly(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef getIndustryDaily(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/daily/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\n<function token>\n\n\ndef getIndustryMonthly(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/monthly/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef resetIndex(daily_df):\n daily_df['trade_date_stamp'] = daily_df['trade_date'].copy()\n daily_df['trade_date_stamp'] = pd.to_datetime(daily_df['trade_date_stamp']\n ).map(date2num)\n daily_df.sort_values(by='trade_date_stamp', ascending=True, inplace=True)\n daily_df.reset_index(drop=True, inplace=True)\n return daily_df\n\n\ndef readData(dir_file, stock_code, start_date='20100101', end_date='20200314'):\n for file_dir, _, files in os.walk(dir_file):\n for i, file_name in enumerate(files):\n if file_name[:9] == stock_code:\n daily_df = pd.read_csv(file_dir + file_name)\n daily_df['trade_date'] = daily_df['trade_date'].astype('str')\n daily_df = daily_df.loc[daily_df['trade_date'] >= start_date, :\n ].reset_index(drop=True)\n daily_df = daily_df.loc[daily_df['trade_date'] <= end_date, :\n ].reset_index(drop=True)\n break\n return daily_df\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n", "<import token>\n<code token>\n<import token>\n<code token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef getIndexWeekly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/weekly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_weekly(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef getIndustryMonthly(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/monthly/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef resetIndex(daily_df):\n daily_df['trade_date_stamp'] = daily_df['trade_date'].copy()\n daily_df['trade_date_stamp'] = pd.to_datetime(daily_df['trade_date_stamp']\n ).map(date2num)\n daily_df.sort_values(by='trade_date_stamp', ascending=True, inplace=True)\n daily_df.reset_index(drop=True, inplace=True)\n return daily_df\n\n\ndef readData(dir_file, stock_code, start_date='20100101', end_date='20200314'):\n for file_dir, _, files in os.walk(dir_file):\n for i, file_name in enumerate(files):\n if file_name[:9] == stock_code:\n daily_df = pd.read_csv(file_dir + file_name)\n daily_df['trade_date'] = daily_df['trade_date'].astype('str')\n daily_df = daily_df.loc[daily_df['trade_date'] >= start_date, :\n ].reset_index(drop=True)\n daily_df = daily_df.loc[daily_df['trade_date'] <= end_date, :\n ].reset_index(drop=True)\n break\n return daily_df\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n", "<import token>\n<code token>\n<import token>\n<code token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef getIndexWeekly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/weekly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_weekly(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef getIndustryMonthly(stock_code, start_date='20100101', end_date='20200314'):\n dir_file = './data/industry/monthly/'\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\ndef resetIndex(daily_df):\n daily_df['trade_date_stamp'] = daily_df['trade_date'].copy()\n daily_df['trade_date_stamp'] = pd.to_datetime(daily_df['trade_date_stamp']\n ).map(date2num)\n daily_df.sort_values(by='trade_date_stamp', ascending=True, inplace=True)\n daily_df.reset_index(drop=True, inplace=True)\n return daily_df\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n", "<import token>\n<code token>\n<import token>\n<code token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef getIndexWeekly(stock_code, start_date='20100101', end_date='20200314',\n LOCAL=True, market='SZSE'):\n dir_file = './data/index/' + market + '/weekly/'\n if LOCAL:\n daily_df = readData(dir_file, stock_code, start_date, end_date)\n else:\n daily_df = pro.index_weekly(ts_code=stock_code, start_date=\n start_date, end_date=end_date)\n daily_df = resetIndex(daily_df)\n return daily_df\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef resetIndex(daily_df):\n daily_df['trade_date_stamp'] = daily_df['trade_date'].copy()\n daily_df['trade_date_stamp'] = pd.to_datetime(daily_df['trade_date_stamp']\n ).map(date2num)\n daily_df.sort_values(by='trade_date_stamp', ascending=True, inplace=True)\n daily_df.reset_index(drop=True, inplace=True)\n return daily_df\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n", "<import token>\n<code token>\n<import token>\n<code token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef resetIndex(daily_df):\n daily_df['trade_date_stamp'] = daily_df['trade_date'].copy()\n daily_df['trade_date_stamp'] = pd.to_datetime(daily_df['trade_date_stamp']\n ).map(date2num)\n daily_df.sort_values(by='trade_date_stamp', ascending=True, inplace=True)\n daily_df.reset_index(drop=True, inplace=True)\n return daily_df\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n", "<import token>\n<code token>\n<import token>\n<code token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n" ]
false
98,887
a8cb755ba2839b7ee118bcf2d0a0a71ed4dbb011
class Solution(object): def wordBreak(self,s,words): d = [False] * len(s) for i in range(0,len(d)): for w in words: if w == s[i-len(w)+1:i+1] and (d[i-len(w)] or i-len(w)+1 == 0): d[i] = True return d[-1] def wordBreakHelper(self,s,begin,wb,w_d): for i in range(begin,len(s)): wb += s[i] if wb in w_d: if i == len(s) - 1: return True if(self.wordBreakHelper(s,i+1,'',w_d)): return True return False def word_Break(self, s, wordDict): return self.wordBreakHelper(s,0,'',set(wordDict)) sol = Solution() print sol.wordBreak('leetcode',['le','et','etco','de']);
[ "class Solution(object):\n\n def wordBreak(self,s,words):\n d = [False] * len(s)\n for i in range(0,len(d)):\n for w in words:\n if w == s[i-len(w)+1:i+1] and (d[i-len(w)] or i-len(w)+1 == 0):\n d[i] = True \n return d[-1]\n\n def wordBreakHelper(self,s,begin,wb,w_d):\n for i in range(begin,len(s)):\n wb += s[i]\n if wb in w_d:\n if i == len(s) - 1: return True\n if(self.wordBreakHelper(s,i+1,'',w_d)): return True\n return False \n \n def word_Break(self, s, wordDict):\n return self.wordBreakHelper(s,0,'',set(wordDict)) \n\nsol = Solution()\nprint sol.wordBreak('leetcode',['le','et','etco','de']);\n \n \n " ]
true
98,888
f45b240698b41e00419987c6fce6b6974e9d21bb
import numpy as np import cv2 import time import smtplib from email.mime.text import MIMEText from email.mime.multipart import MIMEMultipart gpios = True try: # Wenn Programm nicht auf einem Raspberry läuft, GPIOS nicht benutzen import RPi.GPIO as GPIO GPIO.setwarnings(False) GPIO.setmode(GPIO.BCM) GPIO.setup(17, GPIO.OUT) GPIO.setup(4, GPIO.OUT) GPIO.setup(18, GPIO.IN, pull_up_down = GPIO.PUD_UP) # internen Pull-Up aktivieren except ImportError: gpios = False print('WARNING - no GPIOS found') ##README##################################################################################################################### # Email: Zeile 127 # Bildausschnitte: ab Zeile 164 # Iterationen für Erosion und Dilatation: Zeile 255, 257 # Hough-Detector: Zeile 193 # Blob-Detector Parameter: Zeile 77 # Blob-Detector Parameter: Zeile 272 ##PARAMETERS################################################################################################################# log_name = 'log_seite2' # Name der Log Datei (Zusammenfassung der Messreihe): Wird NICHT fortgesetzt raw_numbers_name = 'raw_seite2' # Name der Datei, in der alle Würfe einzeln gespeichert werden: Wird fortgesetzt email_header = 'dicer - seite2' # Emailbetreff darknumbers = False # Dunkle Würfelaugen? send_email = True # Email mit Messdaten versenden? email_log_number = 6000 # Nach wie vielen Würfen soll jeweils eine Email geschrieben werden? error_logging = True #Bild bei Fehler speichern? measures = 18000 #Anzahl der Messungen: -1 für unendlich #Uhrzeit, wenn automatisch beendet werden soll (funktionert, ist aber gerade deaktiviert: Zeile 311): #endtime_hr = 22 #endtime_min = 45 cap = cv2.VideoCapture(0) # Bildquelle: (Zahl ändern, falls mehrere Kameras angeschlossen sind (auch interne Webcams)) ########################################################################################################################### print('Setting up...') interrupted = False dicer_ready = False ret, frame = cap.read() # Test, ob Kamera funktionert if ret is not True: #Wenn Kamera nicht geht, Dummy Image laden dicer_ready = False grey = cv2.imread('dummy_image.png', 0) cv2.putText(grey, 'NO CAMERA', (10, 200), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA) pos_img = np.zeros(shape=[100, 100, 1], dtype=np.uint8) cv2.imshow('Press any key to exit', grey) print('Error - stopping') cv2.waitKey() # Taste drücken, zum beenden elif GPIO.input(18) == 0 and gpios == True: # Temperaturreais prüfen wenn RPi vorhanden print('Temperature relay is offline, stopping') else: dicer_ready = True global_steptime = 0.00015 # Abstand zwischen den Schritten # blobdetektor konfigurieren blob_params = cv2.SimpleBlobDetector_Params() blob_params.filterByColor = True blob_params.filterByArea = True blob_params.minArea = 100 blob_params.filterByCircularity = True blob_params.minCircularity = 0.7 blob_params.filterByInertia = False blob_params.filterByConvexity = False all_numbers = [0] * 9 # [one, two, three, four, five, six, errorcnt, rollnumber, std_dev def interr(channel): global gpios global dicer_ready global interrupted gpios = False dicer_ready = False interrupted = True print('Interrupt') def step_plus(steptime): GPIO.output(17, GPIO.LOW) GPIO.output(4, GPIO.HIGH) time.sleep(steptime) GPIO.output(4, GPIO.LOW) time.sleep(steptime) def step_minus(steptime): GPIO.output(17, GPIO.HIGH) GPIO.output(4, GPIO.HIGH) time.sleep(steptime) GPIO.output(4, GPIO.LOW) time.sleep(steptime) GPIO.output(17, GPIO.LOW) def clock(now): time_seconds = int((time.time() - now)) t_hr = int(time_seconds / 3600) t_min = int(time_seconds / 60) - (t_hr * 60) t_sec = int(time_seconds) - (t_min * 60) showTime = str(t_hr) + ':' + str(t_min).zfill(2) print(showTime) return showTime def write_email(numbers, ctime, error, header_name): server = smtplib.SMTP('SERVERADRESSE', PORTNR) server.starttls() server.login('LOGIN-BENUTZERNAME', 'PASSWORT') msg = MIMEMultipart() msg['From'] = 'ABSENDER' msg['To'] = 'EMPFAENGER' if error: msg['Subject'] = 'Error' else: msg['Cc'] = 'KOPIE ADRESSE' msg['Subject'] = header_name message = str(numbers[0]) + ',' + str(numbers[1]) + ',' + str(numbers[2]) + ',' + str(numbers[3]) + ',' + str( numbers[4]) + ',' + str(numbers[5]) + ' Err: ' + str(numbers[6]) + ' All: ' + str( numbers[7]) + '\n' + 'Zeit: '+ str(ctime) msg.attach(MIMEText(message)) server.send_message(msg) def logging(numbers, ctime, log_name): file = open(log_name, 'w') file.write('Einz:' + str(numbers[0]) + '\n') file.write('Zwei:' + str(numbers[1]) + '\n') file.write("Drei: " + str(numbers[2]) + '\n') file.write("Vier: " + str(numbers[3]) + '\n') file.write("Fuenf: " + str(numbers[4]) + '\n') file.write("Sechs: " + str(numbers[5]) + '\n') file.write('Fehler: ' + str(numbers[6]) + '\n') file.write('Gesamt: ' + str(numbers[7]) + '\n') file.write('Standardabw: ' + str(numbers[8]) + '\n') file.write('Zeit: ' + str(ctime) + '\n') file.close() def get_images(): for i in range(5): ret, frame = cap.read() #cv2.imwrite('frame.png',frame) # Bildausschnitte von Würfel und Positionserkennung y = 160 h = 240 x = 220 w = 240 dice_image = frame[y:y + h, x:x + w] grey = cv2.cvtColor(dice_image, cv2.COLOR_BGR2GRAY) #cv2.imshow('input', grey) #cv2.imwrite('real_image.png',frame) y = 120 h = 15 pos_img = frame[y:y + h, x:x + w] pos_img = cv2.cvtColor(pos_img, cv2.COLOR_BGR2GRAY) #cv2.imwrite('pos_raw.png',pos_img) ret, pos_img = cv2.threshold(pos_img, 245, 255, cv2.THRESH_BINARY) #cv2.imshow('pos', pos_img) #cv2.imwrite('pos.png',pos_img) return grey, pos_img def hough_detector(input_img): #cv2.imshow('hough_input', input_image) img = cv2.medianBlur(input_img, 5) # Bild gätten mit Gauß cimg = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) # Farbraum umwandeln (nur für die farbigen Kreise) circles = cv2.HoughCircles(img, cv2.HOUGH_GRADIENT, 1, 20, param1=200, param2=10, minRadius=5, maxRadius=25) # param1: Schwellenwert, param2: muss man ausprobieren h_number = 0 try: # Kreise zählen und markieren circles = np.uint16(np.around(circles)) for i in circles[0, :]: # draw the outer circle cv2.circle(cimg, (i[0], i[1]), i[2], (0, 255, 0), 2) h_number += 1 except: print('HOUGH DETECTOR ERROR, NO CIRCLES FOUND') cv2.putText(cimg, str(h_number), (10, 200), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 50), 2, cv2.LINE_AA) cv2.imshow('hough detector', cimg) cv2.imwrite('hough detector.png', cimg) return h_number def img_processing(image_input): # Bild vorbereitung image_input = cv2.medianBlur(image_input, 3) # Bild gätten mit Gauß ret, binary_image = cv2.threshold(image_input, 220, 255, cv2.THRESH_BINARY) # Schwellenwertbild #cv2.imwrite('binary1.png', binary_image) if darknumbers: # Wenn dunkle Würfelaugen, dann Bereich um den Würfel weiß machen w = binary_image.shape[1] #y h = binary_image.shape[0] #x mask = np.zeros((h + 2, w + 2), np.uint8) cv2.floodFill(binary_image, mask, (0,0), 255); mask = np.zeros((h + 2, w + 2), np.uint8) cv2.floodFill(binary_image, mask, (h,w), 255); else: binary_image = cv2.bitwise_not(binary_image) # Bei hellen Würfelaugen reicht invertieren des Bildes #cv2.imwrite('binary2.png', binary_image) kernel_round = np.array([[0, 0, 0, 1, 1, 1, 0, 0, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 1, 1, 1, 0, 0, 0]], dtype=np.uint8) # Kreisförmige Maske erzeugen dilate = cv2.dilate(binary_image,kernel_round, iterations=3) # Dilatation anwenden erode = cv2.erode(dilate, kernel_round, iterations=2) # Erosion anwenden return erode def counting(image, all_numbers, dice_image, raw_numbers_name): one = all_numbers[0] two = all_numbers[1] three = all_numbers[2] four = all_numbers[3] five = all_numbers[4] six = all_numbers[5] errorcnt = all_numbers[6] success_rolls= all_numbers[7] detector = cv2.SimpleBlobDetector_create(blob_params) keypoints = detector.detect(image) img_with_keypoints = cv2.drawKeypoints(image, keypoints, np.array([]), (0, 0, 255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS) blob_number = 0 for i in keypoints[0:]: blob_number = blob_number + 1 cv2.putText(img_with_keypoints, str(blob_number), (10, 200), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2, cv2.LINE_AA) hough_number = hough_detector(image) if blob_number == hough_number: number = blob_number print('DETECTED: ', number) if blob_number > 0 and blob_number < 7: raw_log = open(raw_numbers_name,'a') raw_log.write(str(number) + '\n') raw_log.close() success_rolls +=1 all_numbers[number-1] += 1 else: errorcnt = errorcnt + 1 if error_logging is True: cv2.imwrite('errors/' + str(errorcnt) + ' number_error_binary.png', image) cv2.imwrite('errors/' + str(errorcnt) + ' number_error_real.png', dice_image) else: print('NOT MATCHING FILTERS') errorcnt = errorcnt + 1 if error_logging is True: cv2.imwrite('errors/' + str(errorcnt) + ' matching_error.png', image) cv2.imwrite('errors/' + str(errorcnt) + ' matching_error_real.png', dice_image) rolled = [one, two, three, four, five, six] std_dev = np.std(rolled) all_numbers[6] = errorcnt all_numbers[7] = success_rolls all_numbers[8] = std_dev cv2.imshow('blob detector', img_with_keypoints) cv2.imwrite('blob_detector.png', img_with_keypoints) return all_numbers start_time = time.time() if dicer_ready is True: # Interrupt initialisieren GPIO.add_event_detect(18, GPIO.FALLING, callback = interr, bouncetime = 200) print('Starting...') while dicer_ready is True: #localtime = time.localtime(time.time()) #if localtime.tm_hour >= endtime_hr and localtime.tm_min >= endtime_min: # Abschaltung nach Uhrzeit # dicer_ready = False if gpios: for i in range(3200): #if i > 3100: # die letzten Schritte abbremsen # steptime = steptime + global_steptime * 0.1 #else: steptime = global_steptime step_plus(steptime) time.sleep(0.6) # Kurze Pause, damit Würfel ruhig liegen kann position_correct = False real_image, pos_img = get_images() # Aufnahme machen while position_correct is not True and gpios is True: #Positionsbestimmung mit Bild von weißem Viereck real_image, pos_img = get_images() #cv2.imshow('pos', pos_img) M = cv2.moments(pos_img) # Momente berechnen #print(M) if M["m00"] != 0: cX = int(M["m10"] / M["m00"]) else: cX = 0 #cv2.circle(pos_img, (cX, cY), 4, (0, 0, 0), -1) if cX < 115: step_minus(global_steptime) elif cX > 135: step_plus(global_steptime) else: position_correct = True #print('correct position:') #print("X:", cX, "Y:", cY) #cv2.imwrite('newpos.png',pos_img) processed_img = img_processing(real_image) numbers = counting(processed_img, all_numbers, real_image, raw_numbers_name) cv2.imshow('Hold Q to exit', real_image) ctime = clock(start_time) if (numbers[7] % 10) == 0: # Nach 10 Messungen ins log schreiben logging(numbers, ctime, log_name) if send_email is True and (numbers[7] % email_log_number) == 0: #Bei gewünschter Anzahl Messungen eine Email schreiben write_email(numbers, ctime,0, email_header) print('=================') print('Time: ' + str(ctime)) print('One: ', numbers[0]) print('Two: ', numbers[1]) print('Three: ', numbers[2]) print('Four: ', numbers[3]) print('Five: ', numbers[4]) print('Six: ', numbers[5]) print('Errors: ', numbers[6]) print('Success rolls: ', numbers[7]) print('Deviation: ', numbers[8]) print('=================') if numbers[7] == measures: break if cv2.waitKey(200) & 0xFF == ord('q'): # Q drücken, zum beenden (am besten gedrückt halten, bis beendet wurde) break if interrupted == True: #wenn Interrupt (Temperaturfehler) ausgelöst wurde write_email(numbers, ctime,1, email_header) elif dicer_ready == True and send_email == True: #wenn Messung normal beendet wurde write_email(numbers, ctime,0, email_header) cap.release() cv2.destroyAllWindows() print('Everything finished')
[ "import numpy as np\nimport cv2\nimport time\nimport smtplib\nfrom email.mime.text import MIMEText\nfrom email.mime.multipart import MIMEMultipart\n\ngpios = True\n\ntry: # Wenn Programm nicht auf einem Raspberry läuft, GPIOS nicht benutzen\n import RPi.GPIO as GPIO\n GPIO.setwarnings(False)\n GPIO.setmode(GPIO.BCM)\n GPIO.setup(17, GPIO.OUT)\n GPIO.setup(4, GPIO.OUT)\n GPIO.setup(18, GPIO.IN, pull_up_down = GPIO.PUD_UP) # internen Pull-Up aktivieren\n \nexcept ImportError:\n gpios = False\n print('WARNING - no GPIOS found')\n\n##README#####################################################################################################################\n# Email: Zeile 127\n# Bildausschnitte: ab Zeile 164\n# Iterationen für Erosion und Dilatation: Zeile 255, 257\n# Hough-Detector: Zeile 193\n# Blob-Detector Parameter: Zeile 77\n# Blob-Detector Parameter: Zeile 272\n\n##PARAMETERS#################################################################################################################\n\nlog_name = 'log_seite2' # Name der Log Datei (Zusammenfassung der Messreihe): Wird NICHT fortgesetzt\nraw_numbers_name = 'raw_seite2' # Name der Datei, in der alle Würfe einzeln gespeichert werden: Wird fortgesetzt\nemail_header = 'dicer - seite2' # Emailbetreff\n\ndarknumbers = False # Dunkle Würfelaugen?\n\nsend_email = True # Email mit Messdaten versenden?\nemail_log_number = 6000 # Nach wie vielen Würfen soll jeweils eine Email geschrieben werden?\n\nerror_logging = True #Bild bei Fehler speichern?\n\nmeasures = 18000 #Anzahl der Messungen: -1 für unendlich\n\n#Uhrzeit, wenn automatisch beendet werden soll (funktionert, ist aber gerade deaktiviert: Zeile 311): \n#endtime_hr = 22\n#endtime_min = 45\n\ncap = cv2.VideoCapture(0) # Bildquelle: (Zahl ändern, falls mehrere Kameras angeschlossen sind (auch interne Webcams))\n\n###########################################################################################################################\n\nprint('Setting up...')\n\ninterrupted = False\ndicer_ready = False\n\nret, frame = cap.read() # Test, ob Kamera funktionert\n\nif ret is not True: #Wenn Kamera nicht geht, Dummy Image laden\n dicer_ready = False\n grey = cv2.imread('dummy_image.png', 0)\n cv2.putText(grey, 'NO CAMERA', (10, 200), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)\n pos_img = np.zeros(shape=[100, 100, 1], dtype=np.uint8)\n cv2.imshow('Press any key to exit', grey)\n print('Error - stopping')\n cv2.waitKey() # Taste drücken, zum beenden\nelif GPIO.input(18) == 0 and gpios == True: # Temperaturreais prüfen wenn RPi vorhanden\n print('Temperature relay is offline, stopping')\nelse:\n dicer_ready = True\n\nglobal_steptime = 0.00015 # Abstand zwischen den Schritten\n\n# blobdetektor konfigurieren\nblob_params = cv2.SimpleBlobDetector_Params()\nblob_params.filterByColor = True\nblob_params.filterByArea = True\nblob_params.minArea = 100\nblob_params.filterByCircularity = True\nblob_params.minCircularity = 0.7\nblob_params.filterByInertia = False\nblob_params.filterByConvexity = False\n\nall_numbers = [0] * 9 # [one, two, three, four, five, six, errorcnt, rollnumber, std_dev\n\n\ndef interr(channel):\n global gpios\n global dicer_ready\n global interrupted\n gpios = False\n dicer_ready = False\n interrupted = True\n print('Interrupt')\n \n\ndef step_plus(steptime):\n GPIO.output(17, GPIO.LOW)\n GPIO.output(4, GPIO.HIGH)\n time.sleep(steptime)\n GPIO.output(4, GPIO.LOW)\n time.sleep(steptime)\n\n\ndef step_minus(steptime):\n GPIO.output(17, GPIO.HIGH)\n GPIO.output(4, GPIO.HIGH)\n time.sleep(steptime)\n GPIO.output(4, GPIO.LOW)\n time.sleep(steptime)\n GPIO.output(17, GPIO.LOW)\n\n\ndef clock(now):\n time_seconds = int((time.time() - now))\n t_hr = int(time_seconds / 3600)\n t_min = int(time_seconds / 60) - (t_hr * 60)\n t_sec = int(time_seconds) - (t_min * 60)\n showTime = str(t_hr) + ':' + str(t_min).zfill(2)\n print(showTime)\n return showTime\n\n\ndef write_email(numbers, ctime, error, header_name):\n server = smtplib.SMTP('SERVERADRESSE', PORTNR)\n server.starttls()\n server.login('LOGIN-BENUTZERNAME', 'PASSWORT')\n msg = MIMEMultipart()\n msg['From'] = 'ABSENDER'\n msg['To'] = 'EMPFAENGER'\n if error:\n msg['Subject'] = 'Error'\n else:\n msg['Cc'] = 'KOPIE ADRESSE'\n msg['Subject'] = header_name\n message = str(numbers[0]) + ',' + str(numbers[1]) + ',' + str(numbers[2]) + ',' + str(numbers[3]) + ',' + str(\n numbers[4]) + ',' + str(numbers[5]) + ' Err: ' + str(numbers[6]) + ' All: ' + str(\n numbers[7]) + '\\n' + 'Zeit: '+ str(ctime)\n msg.attach(MIMEText(message))\n\n server.send_message(msg)\n\n\ndef logging(numbers, ctime, log_name):\n\n file = open(log_name, 'w')\n file.write('Einz:' + str(numbers[0]) + '\\n')\n file.write('Zwei:' + str(numbers[1]) + '\\n')\n file.write(\"Drei: \" + str(numbers[2]) + '\\n')\n file.write(\"Vier: \" + str(numbers[3]) + '\\n')\n file.write(\"Fuenf: \" + str(numbers[4]) + '\\n')\n file.write(\"Sechs: \" + str(numbers[5]) + '\\n')\n file.write('Fehler: ' + str(numbers[6]) + '\\n')\n file.write('Gesamt: ' + str(numbers[7]) + '\\n')\n file.write('Standardabw: ' + str(numbers[8]) + '\\n')\n file.write('Zeit: ' + str(ctime) + '\\n')\n\n file.close()\n\n\ndef get_images():\n for i in range(5):\n ret, frame = cap.read()\n\n #cv2.imwrite('frame.png',frame)\n # Bildausschnitte von Würfel und Positionserkennung\n y = 160\n h = 240\n\n x = 220\n w = 240\n\n dice_image = frame[y:y + h, x:x + w]\n grey = cv2.cvtColor(dice_image, cv2.COLOR_BGR2GRAY)\n #cv2.imshow('input', grey)\n #cv2.imwrite('real_image.png',frame)\n y = 120\n h = 15\n\n\n pos_img = frame[y:y + h, x:x + w]\n pos_img = cv2.cvtColor(pos_img, cv2.COLOR_BGR2GRAY)\n #cv2.imwrite('pos_raw.png',pos_img)\n ret, pos_img = cv2.threshold(pos_img, 245, 255, cv2.THRESH_BINARY)\n #cv2.imshow('pos', pos_img)\n #cv2.imwrite('pos.png',pos_img)\n return grey, pos_img\n\n\ndef hough_detector(input_img):\n #cv2.imshow('hough_input', input_image)\n img = cv2.medianBlur(input_img, 5) # Bild gätten mit Gauß\n cimg = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) # Farbraum umwandeln (nur für die farbigen Kreise)\n circles = cv2.HoughCircles(img, cv2.HOUGH_GRADIENT, 1, 20, param1=200, param2=10, minRadius=5,\n maxRadius=25) # param1: Schwellenwert, param2: muss man ausprobieren\n\n h_number = 0\n\n try: # Kreise zählen und markieren\n circles = np.uint16(np.around(circles))\n for i in circles[0, :]:\n # draw the outer circle\n cv2.circle(cimg, (i[0], i[1]), i[2], (0, 255, 0), 2)\n h_number += 1\n except:\n print('HOUGH DETECTOR ERROR, NO CIRCLES FOUND')\n\n cv2.putText(cimg, str(h_number), (10, 200), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 50), 2, cv2.LINE_AA)\n cv2.imshow('hough detector', cimg)\n cv2.imwrite('hough detector.png', cimg)\n\n return h_number\n\n\ndef img_processing(image_input): # Bild vorbereitung\n\n\n image_input = cv2.medianBlur(image_input, 3) # Bild gätten mit Gauß\n ret, binary_image = cv2.threshold(image_input, 220, 255,\n cv2.THRESH_BINARY) # Schwellenwertbild\n\n \n #cv2.imwrite('binary1.png', binary_image)\n\n if darknumbers: # Wenn dunkle Würfelaugen, dann Bereich um den Würfel weiß machen\n w = binary_image.shape[1] #y\n h = binary_image.shape[0] #x\n\n mask = np.zeros((h + 2, w + 2), np.uint8)\n\n cv2.floodFill(binary_image, mask, (0,0), 255);\n \n mask = np.zeros((h + 2, w + 2), np.uint8)\n \n cv2.floodFill(binary_image, mask, (h,w), 255);\n \n else:\n binary_image = cv2.bitwise_not(binary_image) # Bei hellen Würfelaugen reicht invertieren des Bildes\n\n #cv2.imwrite('binary2.png', binary_image)\n\n kernel_round = np.array([[0, 0, 0, 1, 1, 1, 0, 0, 0],\n [0, 1, 1, 1, 1, 1, 1, 1, 0],\n [0, 1, 1, 1, 1, 1, 1, 1, 0],\n [1, 1, 1, 1, 1, 1, 1, 1, 1],\n [1, 1, 1, 1, 1, 1, 1, 1, 1],\n [1, 1, 1, 1, 1, 1, 1, 1, 1],\n [0, 1, 1, 1, 1, 1, 1, 1, 0],\n [0, 1, 1, 1, 1, 1, 1, 1, 0],\n [0, 0, 0, 1, 1, 1, 0, 0, 0]], dtype=np.uint8) # Kreisförmige Maske erzeugen\n\n dilate = cv2.dilate(binary_image,kernel_round, iterations=3) # Dilatation anwenden\n\n erode = cv2.erode(dilate, kernel_round, iterations=2) # Erosion anwenden\n\n return erode\n\n\ndef counting(image, all_numbers, dice_image, raw_numbers_name):\n one = all_numbers[0]\n two = all_numbers[1]\n three = all_numbers[2]\n four = all_numbers[3]\n five = all_numbers[4]\n six = all_numbers[5]\n errorcnt = all_numbers[6]\n success_rolls= all_numbers[7]\n\n detector = cv2.SimpleBlobDetector_create(blob_params)\n keypoints = detector.detect(image)\n img_with_keypoints = cv2.drawKeypoints(image, keypoints, np.array([]), (0, 0, 255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)\n\n blob_number = 0\n\n for i in keypoints[0:]:\n blob_number = blob_number + 1\n\n cv2.putText(img_with_keypoints, str(blob_number), (10, 200), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2,\n cv2.LINE_AA)\n\n hough_number = hough_detector(image)\n\n \n if blob_number == hough_number:\n number = blob_number\n print('DETECTED: ', number)\n \n \n \n if blob_number > 0 and blob_number < 7:\n raw_log = open(raw_numbers_name,'a')\n raw_log.write(str(number) + '\\n')\n raw_log.close() \n success_rolls +=1\n all_numbers[number-1] += 1\n else:\n errorcnt = errorcnt + 1\n if error_logging is True:\n cv2.imwrite('errors/' + str(errorcnt) + ' number_error_binary.png', image)\n cv2.imwrite('errors/' + str(errorcnt) + ' number_error_real.png', dice_image)\n\n else:\n print('NOT MATCHING FILTERS')\n errorcnt = errorcnt + 1\n if error_logging is True:\n cv2.imwrite('errors/' + str(errorcnt) + ' matching_error.png', image)\n cv2.imwrite('errors/' + str(errorcnt) + ' matching_error_real.png', dice_image)\n \n rolled = [one, two, three, four, five, six]\n std_dev = np.std(rolled)\n\n all_numbers[6] = errorcnt\n all_numbers[7] = success_rolls\n all_numbers[8] = std_dev\n\n cv2.imshow('blob detector', img_with_keypoints)\n cv2.imwrite('blob_detector.png', img_with_keypoints)\n\n return all_numbers\n\n\n\nstart_time = time.time()\n\nif dicer_ready is True: # Interrupt initialisieren\n GPIO.add_event_detect(18, GPIO.FALLING, callback = interr, bouncetime = 200)\n print('Starting...')\n\n\nwhile dicer_ready is True:\n #localtime = time.localtime(time.time())\n #if localtime.tm_hour >= endtime_hr and localtime.tm_min >= endtime_min: # Abschaltung nach Uhrzeit\n # dicer_ready = False\n \n \n if gpios:\n for i in range(3200):\n\n #if i > 3100: # die letzten Schritte abbremsen\n # steptime = steptime + global_steptime * 0.1\n #else:\n steptime = global_steptime\n\n step_plus(steptime)\n\n time.sleep(0.6) # Kurze Pause, damit Würfel ruhig liegen kann\n \n position_correct = False\n real_image, pos_img = get_images() # Aufnahme machen\n\n while position_correct is not True and gpios is True: #Positionsbestimmung mit Bild von weißem Viereck\n real_image, pos_img = get_images()\n #cv2.imshow('pos', pos_img)\n \n M = cv2.moments(pos_img) # Momente berechnen\n\n #print(M)\n\n if M[\"m00\"] != 0:\n cX = int(M[\"m10\"] / M[\"m00\"])\n else:\n cX = 0\n\n #cv2.circle(pos_img, (cX, cY), 4, (0, 0, 0), -1)\n\n if cX < 115:\n step_minus(global_steptime)\n elif cX > 135:\n step_plus(global_steptime)\n else:\n position_correct = True\n #print('correct position:')\n #print(\"X:\", cX, \"Y:\", cY)\n #cv2.imwrite('newpos.png',pos_img)\n\n processed_img = img_processing(real_image)\n numbers = counting(processed_img, all_numbers, real_image, raw_numbers_name) \n cv2.imshow('Hold Q to exit', real_image)\n\n ctime = clock(start_time)\n\n if (numbers[7] % 10) == 0: # Nach 10 Messungen ins log schreiben\n logging(numbers, ctime, log_name)\n\n if send_email is True and (numbers[7] % email_log_number) == 0: #Bei gewünschter Anzahl Messungen eine Email schreiben\n write_email(numbers, ctime,0, email_header)\n\n print('=================')\n print('Time: ' + str(ctime))\n print('One: ', numbers[0])\n print('Two: ', numbers[1])\n print('Three: ', numbers[2])\n print('Four: ', numbers[3])\n print('Five: ', numbers[4])\n print('Six: ', numbers[5])\n print('Errors: ', numbers[6])\n print('Success rolls: ', numbers[7])\n print('Deviation: ', numbers[8])\n print('=================')\n\n if numbers[7] == measures:\n break\n\n if cv2.waitKey(200) & 0xFF == ord('q'): # Q drücken, zum beenden (am besten gedrückt halten, bis beendet wurde)\n break\n\nif interrupted == True: #wenn Interrupt (Temperaturfehler) ausgelöst wurde\n write_email(numbers, ctime,1, email_header)\nelif dicer_ready == True and send_email == True: #wenn Messung normal beendet wurde\n write_email(numbers, ctime,0, email_header)\n \ncap.release()\ncv2.destroyAllWindows()\nprint('Everything finished')\n", "import numpy as np\nimport cv2\nimport time\nimport smtplib\nfrom email.mime.text import MIMEText\nfrom email.mime.multipart import MIMEMultipart\ngpios = True\ntry:\n import RPi.GPIO as GPIO\n GPIO.setwarnings(False)\n GPIO.setmode(GPIO.BCM)\n GPIO.setup(17, GPIO.OUT)\n GPIO.setup(4, GPIO.OUT)\n GPIO.setup(18, GPIO.IN, pull_up_down=GPIO.PUD_UP)\nexcept ImportError:\n gpios = False\n print('WARNING - no GPIOS found')\nlog_name = 'log_seite2'\nraw_numbers_name = 'raw_seite2'\nemail_header = 'dicer - seite2'\ndarknumbers = False\nsend_email = True\nemail_log_number = 6000\nerror_logging = True\nmeasures = 18000\ncap = cv2.VideoCapture(0)\nprint('Setting up...')\ninterrupted = False\ndicer_ready = False\nret, frame = cap.read()\nif ret is not True:\n dicer_ready = False\n grey = cv2.imread('dummy_image.png', 0)\n cv2.putText(grey, 'NO CAMERA', (10, 200), cv2.FONT_HERSHEY_SIMPLEX, 1,\n (255, 255, 255), 2, cv2.LINE_AA)\n pos_img = np.zeros(shape=[100, 100, 1], dtype=np.uint8)\n cv2.imshow('Press any key to exit', grey)\n print('Error - stopping')\n cv2.waitKey()\nelif GPIO.input(18) == 0 and gpios == True:\n print('Temperature relay is offline, stopping')\nelse:\n dicer_ready = True\nglobal_steptime = 0.00015\nblob_params = cv2.SimpleBlobDetector_Params()\nblob_params.filterByColor = True\nblob_params.filterByArea = True\nblob_params.minArea = 100\nblob_params.filterByCircularity = True\nblob_params.minCircularity = 0.7\nblob_params.filterByInertia = False\nblob_params.filterByConvexity = False\nall_numbers = [0] * 9\n\n\ndef interr(channel):\n global gpios\n global dicer_ready\n global interrupted\n gpios = False\n dicer_ready = False\n interrupted = True\n print('Interrupt')\n\n\ndef step_plus(steptime):\n GPIO.output(17, GPIO.LOW)\n GPIO.output(4, GPIO.HIGH)\n time.sleep(steptime)\n GPIO.output(4, GPIO.LOW)\n time.sleep(steptime)\n\n\ndef step_minus(steptime):\n GPIO.output(17, GPIO.HIGH)\n GPIO.output(4, GPIO.HIGH)\n time.sleep(steptime)\n GPIO.output(4, GPIO.LOW)\n time.sleep(steptime)\n GPIO.output(17, GPIO.LOW)\n\n\ndef clock(now):\n time_seconds = int(time.time() - now)\n t_hr = int(time_seconds / 3600)\n t_min = int(time_seconds / 60) - t_hr * 60\n t_sec = int(time_seconds) - t_min * 60\n showTime = str(t_hr) + ':' + str(t_min).zfill(2)\n print(showTime)\n return showTime\n\n\ndef write_email(numbers, ctime, error, header_name):\n server = smtplib.SMTP('SERVERADRESSE', PORTNR)\n server.starttls()\n server.login('LOGIN-BENUTZERNAME', 'PASSWORT')\n msg = MIMEMultipart()\n msg['From'] = 'ABSENDER'\n msg['To'] = 'EMPFAENGER'\n if error:\n msg['Subject'] = 'Error'\n else:\n msg['Cc'] = 'KOPIE ADRESSE'\n msg['Subject'] = header_name\n message = str(numbers[0]) + ',' + str(numbers[1]) + ',' + str(numbers[2]\n ) + ',' + str(numbers[3]) + ',' + str(numbers[4]) + ',' + str(numbers\n [5]) + ' Err: ' + str(numbers[6]) + ' All: ' + str(numbers[7]\n ) + '\\n' + 'Zeit: ' + str(ctime)\n msg.attach(MIMEText(message))\n server.send_message(msg)\n\n\ndef logging(numbers, ctime, log_name):\n file = open(log_name, 'w')\n file.write('Einz:' + str(numbers[0]) + '\\n')\n file.write('Zwei:' + str(numbers[1]) + '\\n')\n file.write('Drei: ' + str(numbers[2]) + '\\n')\n file.write('Vier: ' + str(numbers[3]) + '\\n')\n file.write('Fuenf: ' + str(numbers[4]) + '\\n')\n file.write('Sechs: ' + str(numbers[5]) + '\\n')\n file.write('Fehler: ' + str(numbers[6]) + '\\n')\n file.write('Gesamt: ' + str(numbers[7]) + '\\n')\n file.write('Standardabw: ' + str(numbers[8]) + '\\n')\n file.write('Zeit: ' + str(ctime) + '\\n')\n file.close()\n\n\ndef get_images():\n for i in range(5):\n ret, frame = cap.read()\n y = 160\n h = 240\n x = 220\n w = 240\n dice_image = frame[y:y + h, x:x + w]\n grey = cv2.cvtColor(dice_image, cv2.COLOR_BGR2GRAY)\n y = 120\n h = 15\n pos_img = frame[y:y + h, x:x + w]\n pos_img = cv2.cvtColor(pos_img, cv2.COLOR_BGR2GRAY)\n ret, pos_img = cv2.threshold(pos_img, 245, 255, cv2.THRESH_BINARY)\n return grey, pos_img\n\n\ndef hough_detector(input_img):\n img = cv2.medianBlur(input_img, 5)\n cimg = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)\n circles = cv2.HoughCircles(img, cv2.HOUGH_GRADIENT, 1, 20, param1=200,\n param2=10, minRadius=5, maxRadius=25)\n h_number = 0\n try:\n circles = np.uint16(np.around(circles))\n for i in circles[0, :]:\n cv2.circle(cimg, (i[0], i[1]), i[2], (0, 255, 0), 2)\n h_number += 1\n except:\n print('HOUGH DETECTOR ERROR, NO CIRCLES FOUND')\n cv2.putText(cimg, str(h_number), (10, 200), cv2.FONT_HERSHEY_SIMPLEX, 1,\n (0, 255, 50), 2, cv2.LINE_AA)\n cv2.imshow('hough detector', cimg)\n cv2.imwrite('hough detector.png', cimg)\n return h_number\n\n\ndef img_processing(image_input):\n image_input = cv2.medianBlur(image_input, 3)\n ret, binary_image = cv2.threshold(image_input, 220, 255, cv2.THRESH_BINARY)\n if darknumbers:\n w = binary_image.shape[1]\n h = binary_image.shape[0]\n mask = np.zeros((h + 2, w + 2), np.uint8)\n cv2.floodFill(binary_image, mask, (0, 0), 255)\n mask = np.zeros((h + 2, w + 2), np.uint8)\n cv2.floodFill(binary_image, mask, (h, w), 255)\n else:\n binary_image = cv2.bitwise_not(binary_image)\n kernel_round = np.array([[0, 0, 0, 1, 1, 1, 0, 0, 0], [0, 1, 1, 1, 1, 1,\n 1, 1, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1],\n [1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1, 1,\n 1, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 1, 1, 1, \n 0, 0, 0]], dtype=np.uint8)\n dilate = cv2.dilate(binary_image, kernel_round, iterations=3)\n erode = cv2.erode(dilate, kernel_round, iterations=2)\n return erode\n\n\ndef counting(image, all_numbers, dice_image, raw_numbers_name):\n one = all_numbers[0]\n two = all_numbers[1]\n three = all_numbers[2]\n four = all_numbers[3]\n five = all_numbers[4]\n six = all_numbers[5]\n errorcnt = all_numbers[6]\n success_rolls = all_numbers[7]\n detector = cv2.SimpleBlobDetector_create(blob_params)\n keypoints = detector.detect(image)\n img_with_keypoints = cv2.drawKeypoints(image, keypoints, np.array([]),\n (0, 0, 255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)\n blob_number = 0\n for i in keypoints[0:]:\n blob_number = blob_number + 1\n cv2.putText(img_with_keypoints, str(blob_number), (10, 200), cv2.\n FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2, cv2.LINE_AA)\n hough_number = hough_detector(image)\n if blob_number == hough_number:\n number = blob_number\n print('DETECTED: ', number)\n if blob_number > 0 and blob_number < 7:\n raw_log = open(raw_numbers_name, 'a')\n raw_log.write(str(number) + '\\n')\n raw_log.close()\n success_rolls += 1\n all_numbers[number - 1] += 1\n else:\n errorcnt = errorcnt + 1\n if error_logging is True:\n cv2.imwrite('errors/' + str(errorcnt) +\n ' number_error_binary.png', image)\n cv2.imwrite('errors/' + str(errorcnt) +\n ' number_error_real.png', dice_image)\n else:\n print('NOT MATCHING FILTERS')\n errorcnt = errorcnt + 1\n if error_logging is True:\n cv2.imwrite('errors/' + str(errorcnt) + ' matching_error.png',\n image)\n cv2.imwrite('errors/' + str(errorcnt) +\n ' matching_error_real.png', dice_image)\n rolled = [one, two, three, four, five, six]\n std_dev = np.std(rolled)\n all_numbers[6] = errorcnt\n all_numbers[7] = success_rolls\n all_numbers[8] = std_dev\n cv2.imshow('blob detector', img_with_keypoints)\n cv2.imwrite('blob_detector.png', img_with_keypoints)\n return all_numbers\n\n\nstart_time = time.time()\nif dicer_ready is True:\n GPIO.add_event_detect(18, GPIO.FALLING, callback=interr, bouncetime=200)\n print('Starting...')\nwhile dicer_ready is True:\n if gpios:\n for i in range(3200):\n steptime = global_steptime\n step_plus(steptime)\n time.sleep(0.6)\n position_correct = False\n real_image, pos_img = get_images()\n while position_correct is not True and gpios is True:\n real_image, pos_img = get_images()\n M = cv2.moments(pos_img)\n if M['m00'] != 0:\n cX = int(M['m10'] / M['m00'])\n else:\n cX = 0\n if cX < 115:\n step_minus(global_steptime)\n elif cX > 135:\n step_plus(global_steptime)\n else:\n position_correct = True\n processed_img = img_processing(real_image)\n numbers = counting(processed_img, all_numbers, real_image, raw_numbers_name\n )\n cv2.imshow('Hold Q to exit', real_image)\n ctime = clock(start_time)\n if numbers[7] % 10 == 0:\n logging(numbers, ctime, log_name)\n if send_email is True and numbers[7] % email_log_number == 0:\n write_email(numbers, ctime, 0, email_header)\n print('=================')\n print('Time: ' + str(ctime))\n print('One: ', numbers[0])\n print('Two: ', numbers[1])\n print('Three: ', numbers[2])\n print('Four: ', numbers[3])\n print('Five: ', numbers[4])\n print('Six: ', numbers[5])\n print('Errors: ', numbers[6])\n print('Success rolls: ', numbers[7])\n print('Deviation: ', numbers[8])\n print('=================')\n if numbers[7] == measures:\n break\n if cv2.waitKey(200) & 255 == ord('q'):\n break\nif interrupted == True:\n write_email(numbers, ctime, 1, email_header)\nelif dicer_ready == True and send_email == True:\n write_email(numbers, ctime, 0, email_header)\ncap.release()\ncv2.destroyAllWindows()\nprint('Everything finished')\n", "<import token>\ngpios = True\ntry:\n import RPi.GPIO as GPIO\n GPIO.setwarnings(False)\n GPIO.setmode(GPIO.BCM)\n GPIO.setup(17, GPIO.OUT)\n GPIO.setup(4, GPIO.OUT)\n GPIO.setup(18, GPIO.IN, pull_up_down=GPIO.PUD_UP)\nexcept ImportError:\n gpios = False\n print('WARNING - no GPIOS found')\nlog_name = 'log_seite2'\nraw_numbers_name = 'raw_seite2'\nemail_header = 'dicer - seite2'\ndarknumbers = False\nsend_email = True\nemail_log_number = 6000\nerror_logging = True\nmeasures = 18000\ncap = cv2.VideoCapture(0)\nprint('Setting up...')\ninterrupted = False\ndicer_ready = False\nret, frame = cap.read()\nif ret is not True:\n dicer_ready = False\n grey = cv2.imread('dummy_image.png', 0)\n cv2.putText(grey, 'NO CAMERA', (10, 200), cv2.FONT_HERSHEY_SIMPLEX, 1,\n (255, 255, 255), 2, cv2.LINE_AA)\n pos_img = np.zeros(shape=[100, 100, 1], dtype=np.uint8)\n cv2.imshow('Press any key to exit', grey)\n print('Error - stopping')\n cv2.waitKey()\nelif GPIO.input(18) == 0 and gpios == True:\n print('Temperature relay is offline, stopping')\nelse:\n dicer_ready = True\nglobal_steptime = 0.00015\nblob_params = cv2.SimpleBlobDetector_Params()\nblob_params.filterByColor = True\nblob_params.filterByArea = True\nblob_params.minArea = 100\nblob_params.filterByCircularity = True\nblob_params.minCircularity = 0.7\nblob_params.filterByInertia = False\nblob_params.filterByConvexity = False\nall_numbers = [0] * 9\n\n\ndef interr(channel):\n global gpios\n global dicer_ready\n global interrupted\n gpios = False\n dicer_ready = False\n interrupted = True\n print('Interrupt')\n\n\ndef step_plus(steptime):\n GPIO.output(17, GPIO.LOW)\n GPIO.output(4, GPIO.HIGH)\n time.sleep(steptime)\n GPIO.output(4, GPIO.LOW)\n time.sleep(steptime)\n\n\ndef step_minus(steptime):\n GPIO.output(17, GPIO.HIGH)\n GPIO.output(4, GPIO.HIGH)\n time.sleep(steptime)\n GPIO.output(4, GPIO.LOW)\n time.sleep(steptime)\n GPIO.output(17, GPIO.LOW)\n\n\ndef clock(now):\n time_seconds = int(time.time() - now)\n t_hr = int(time_seconds / 3600)\n t_min = int(time_seconds / 60) - t_hr * 60\n t_sec = int(time_seconds) - t_min * 60\n showTime = str(t_hr) + ':' + str(t_min).zfill(2)\n print(showTime)\n return showTime\n\n\ndef write_email(numbers, ctime, error, header_name):\n server = smtplib.SMTP('SERVERADRESSE', PORTNR)\n server.starttls()\n server.login('LOGIN-BENUTZERNAME', 'PASSWORT')\n msg = MIMEMultipart()\n msg['From'] = 'ABSENDER'\n msg['To'] = 'EMPFAENGER'\n if error:\n msg['Subject'] = 'Error'\n else:\n msg['Cc'] = 'KOPIE ADRESSE'\n msg['Subject'] = header_name\n message = str(numbers[0]) + ',' + str(numbers[1]) + ',' + str(numbers[2]\n ) + ',' + str(numbers[3]) + ',' + str(numbers[4]) + ',' + str(numbers\n [5]) + ' Err: ' + str(numbers[6]) + ' All: ' + str(numbers[7]\n ) + '\\n' + 'Zeit: ' + str(ctime)\n msg.attach(MIMEText(message))\n server.send_message(msg)\n\n\ndef logging(numbers, ctime, log_name):\n file = open(log_name, 'w')\n file.write('Einz:' + str(numbers[0]) + '\\n')\n file.write('Zwei:' + str(numbers[1]) + '\\n')\n file.write('Drei: ' + str(numbers[2]) + '\\n')\n file.write('Vier: ' + str(numbers[3]) + '\\n')\n file.write('Fuenf: ' + str(numbers[4]) + '\\n')\n file.write('Sechs: ' + str(numbers[5]) + '\\n')\n file.write('Fehler: ' + str(numbers[6]) + '\\n')\n file.write('Gesamt: ' + str(numbers[7]) + '\\n')\n file.write('Standardabw: ' + str(numbers[8]) + '\\n')\n file.write('Zeit: ' + str(ctime) + '\\n')\n file.close()\n\n\ndef get_images():\n for i in range(5):\n ret, frame = cap.read()\n y = 160\n h = 240\n x = 220\n w = 240\n dice_image = frame[y:y + h, x:x + w]\n grey = cv2.cvtColor(dice_image, cv2.COLOR_BGR2GRAY)\n y = 120\n h = 15\n pos_img = frame[y:y + h, x:x + w]\n pos_img = cv2.cvtColor(pos_img, cv2.COLOR_BGR2GRAY)\n ret, pos_img = cv2.threshold(pos_img, 245, 255, cv2.THRESH_BINARY)\n return grey, pos_img\n\n\ndef hough_detector(input_img):\n img = cv2.medianBlur(input_img, 5)\n cimg = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)\n circles = cv2.HoughCircles(img, cv2.HOUGH_GRADIENT, 1, 20, param1=200,\n param2=10, minRadius=5, maxRadius=25)\n h_number = 0\n try:\n circles = np.uint16(np.around(circles))\n for i in circles[0, :]:\n cv2.circle(cimg, (i[0], i[1]), i[2], (0, 255, 0), 2)\n h_number += 1\n except:\n print('HOUGH DETECTOR ERROR, NO CIRCLES FOUND')\n cv2.putText(cimg, str(h_number), (10, 200), cv2.FONT_HERSHEY_SIMPLEX, 1,\n (0, 255, 50), 2, cv2.LINE_AA)\n cv2.imshow('hough detector', cimg)\n cv2.imwrite('hough detector.png', cimg)\n return h_number\n\n\ndef img_processing(image_input):\n image_input = cv2.medianBlur(image_input, 3)\n ret, binary_image = cv2.threshold(image_input, 220, 255, cv2.THRESH_BINARY)\n if darknumbers:\n w = binary_image.shape[1]\n h = binary_image.shape[0]\n mask = np.zeros((h + 2, w + 2), np.uint8)\n cv2.floodFill(binary_image, mask, (0, 0), 255)\n mask = np.zeros((h + 2, w + 2), np.uint8)\n cv2.floodFill(binary_image, mask, (h, w), 255)\n else:\n binary_image = cv2.bitwise_not(binary_image)\n kernel_round = np.array([[0, 0, 0, 1, 1, 1, 0, 0, 0], [0, 1, 1, 1, 1, 1,\n 1, 1, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1],\n [1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1, 1,\n 1, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 1, 1, 1, \n 0, 0, 0]], dtype=np.uint8)\n dilate = cv2.dilate(binary_image, kernel_round, iterations=3)\n erode = cv2.erode(dilate, kernel_round, iterations=2)\n return erode\n\n\ndef counting(image, all_numbers, dice_image, raw_numbers_name):\n one = all_numbers[0]\n two = all_numbers[1]\n three = all_numbers[2]\n four = all_numbers[3]\n five = all_numbers[4]\n six = all_numbers[5]\n errorcnt = all_numbers[6]\n success_rolls = all_numbers[7]\n detector = cv2.SimpleBlobDetector_create(blob_params)\n keypoints = detector.detect(image)\n img_with_keypoints = cv2.drawKeypoints(image, keypoints, np.array([]),\n (0, 0, 255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)\n blob_number = 0\n for i in keypoints[0:]:\n blob_number = blob_number + 1\n cv2.putText(img_with_keypoints, str(blob_number), (10, 200), cv2.\n FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2, cv2.LINE_AA)\n hough_number = hough_detector(image)\n if blob_number == hough_number:\n number = blob_number\n print('DETECTED: ', number)\n if blob_number > 0 and blob_number < 7:\n raw_log = open(raw_numbers_name, 'a')\n raw_log.write(str(number) + '\\n')\n raw_log.close()\n success_rolls += 1\n all_numbers[number - 1] += 1\n else:\n errorcnt = errorcnt + 1\n if error_logging is True:\n cv2.imwrite('errors/' + str(errorcnt) +\n ' number_error_binary.png', image)\n cv2.imwrite('errors/' + str(errorcnt) +\n ' number_error_real.png', dice_image)\n else:\n print('NOT MATCHING FILTERS')\n errorcnt = errorcnt + 1\n if error_logging is True:\n cv2.imwrite('errors/' + str(errorcnt) + ' matching_error.png',\n image)\n cv2.imwrite('errors/' + str(errorcnt) +\n ' matching_error_real.png', dice_image)\n rolled = [one, two, three, four, five, six]\n std_dev = np.std(rolled)\n all_numbers[6] = errorcnt\n all_numbers[7] = success_rolls\n all_numbers[8] = std_dev\n cv2.imshow('blob detector', img_with_keypoints)\n cv2.imwrite('blob_detector.png', img_with_keypoints)\n return all_numbers\n\n\nstart_time = time.time()\nif dicer_ready is True:\n GPIO.add_event_detect(18, GPIO.FALLING, callback=interr, bouncetime=200)\n print('Starting...')\nwhile dicer_ready is True:\n if gpios:\n for i in range(3200):\n steptime = global_steptime\n step_plus(steptime)\n time.sleep(0.6)\n position_correct = False\n real_image, pos_img = get_images()\n while position_correct is not True and gpios is True:\n real_image, pos_img = get_images()\n M = cv2.moments(pos_img)\n if M['m00'] != 0:\n cX = int(M['m10'] / M['m00'])\n else:\n cX = 0\n if cX < 115:\n step_minus(global_steptime)\n elif cX > 135:\n step_plus(global_steptime)\n else:\n position_correct = True\n processed_img = img_processing(real_image)\n numbers = counting(processed_img, all_numbers, real_image, raw_numbers_name\n )\n cv2.imshow('Hold Q to exit', real_image)\n ctime = clock(start_time)\n if numbers[7] % 10 == 0:\n logging(numbers, ctime, log_name)\n if send_email is True and numbers[7] % email_log_number == 0:\n write_email(numbers, ctime, 0, email_header)\n print('=================')\n print('Time: ' + str(ctime))\n print('One: ', numbers[0])\n print('Two: ', numbers[1])\n print('Three: ', numbers[2])\n print('Four: ', numbers[3])\n print('Five: ', numbers[4])\n print('Six: ', numbers[5])\n print('Errors: ', numbers[6])\n print('Success rolls: ', numbers[7])\n print('Deviation: ', numbers[8])\n print('=================')\n if numbers[7] == measures:\n break\n if cv2.waitKey(200) & 255 == ord('q'):\n break\nif interrupted == True:\n write_email(numbers, ctime, 1, email_header)\nelif dicer_ready == True and send_email == True:\n write_email(numbers, ctime, 0, email_header)\ncap.release()\ncv2.destroyAllWindows()\nprint('Everything finished')\n", "<import token>\n<assignment token>\ntry:\n import RPi.GPIO as GPIO\n GPIO.setwarnings(False)\n GPIO.setmode(GPIO.BCM)\n GPIO.setup(17, GPIO.OUT)\n GPIO.setup(4, GPIO.OUT)\n GPIO.setup(18, GPIO.IN, pull_up_down=GPIO.PUD_UP)\nexcept ImportError:\n gpios = False\n print('WARNING - no GPIOS found')\n<assignment token>\nprint('Setting up...')\n<assignment token>\nif ret is not True:\n dicer_ready = False\n grey = cv2.imread('dummy_image.png', 0)\n cv2.putText(grey, 'NO CAMERA', (10, 200), cv2.FONT_HERSHEY_SIMPLEX, 1,\n (255, 255, 255), 2, cv2.LINE_AA)\n pos_img = np.zeros(shape=[100, 100, 1], dtype=np.uint8)\n cv2.imshow('Press any key to exit', grey)\n print('Error - stopping')\n cv2.waitKey()\nelif GPIO.input(18) == 0 and gpios == True:\n print('Temperature relay is offline, stopping')\nelse:\n dicer_ready = True\n<assignment token>\n\n\ndef interr(channel):\n global gpios\n global dicer_ready\n global interrupted\n gpios = False\n dicer_ready = False\n interrupted = True\n print('Interrupt')\n\n\ndef step_plus(steptime):\n GPIO.output(17, GPIO.LOW)\n GPIO.output(4, GPIO.HIGH)\n time.sleep(steptime)\n GPIO.output(4, GPIO.LOW)\n time.sleep(steptime)\n\n\ndef step_minus(steptime):\n GPIO.output(17, GPIO.HIGH)\n GPIO.output(4, GPIO.HIGH)\n time.sleep(steptime)\n GPIO.output(4, GPIO.LOW)\n time.sleep(steptime)\n GPIO.output(17, GPIO.LOW)\n\n\ndef clock(now):\n time_seconds = int(time.time() - now)\n t_hr = int(time_seconds / 3600)\n t_min = int(time_seconds / 60) - t_hr * 60\n t_sec = int(time_seconds) - t_min * 60\n showTime = str(t_hr) + ':' + str(t_min).zfill(2)\n print(showTime)\n return showTime\n\n\ndef write_email(numbers, ctime, error, header_name):\n server = smtplib.SMTP('SERVERADRESSE', PORTNR)\n server.starttls()\n server.login('LOGIN-BENUTZERNAME', 'PASSWORT')\n msg = MIMEMultipart()\n msg['From'] = 'ABSENDER'\n msg['To'] = 'EMPFAENGER'\n if error:\n msg['Subject'] = 'Error'\n else:\n msg['Cc'] = 'KOPIE ADRESSE'\n msg['Subject'] = header_name\n message = str(numbers[0]) + ',' + str(numbers[1]) + ',' + str(numbers[2]\n ) + ',' + str(numbers[3]) + ',' + str(numbers[4]) + ',' + str(numbers\n [5]) + ' Err: ' + str(numbers[6]) + ' All: ' + str(numbers[7]\n ) + '\\n' + 'Zeit: ' + str(ctime)\n msg.attach(MIMEText(message))\n server.send_message(msg)\n\n\ndef logging(numbers, ctime, log_name):\n file = open(log_name, 'w')\n file.write('Einz:' + str(numbers[0]) + '\\n')\n file.write('Zwei:' + str(numbers[1]) + '\\n')\n file.write('Drei: ' + str(numbers[2]) + '\\n')\n file.write('Vier: ' + str(numbers[3]) + '\\n')\n file.write('Fuenf: ' + str(numbers[4]) + '\\n')\n file.write('Sechs: ' + str(numbers[5]) + '\\n')\n file.write('Fehler: ' + str(numbers[6]) + '\\n')\n file.write('Gesamt: ' + str(numbers[7]) + '\\n')\n file.write('Standardabw: ' + str(numbers[8]) + '\\n')\n file.write('Zeit: ' + str(ctime) + '\\n')\n file.close()\n\n\ndef get_images():\n for i in range(5):\n ret, frame = cap.read()\n y = 160\n h = 240\n x = 220\n w = 240\n dice_image = frame[y:y + h, x:x + w]\n grey = cv2.cvtColor(dice_image, cv2.COLOR_BGR2GRAY)\n y = 120\n h = 15\n pos_img = frame[y:y + h, x:x + w]\n pos_img = cv2.cvtColor(pos_img, cv2.COLOR_BGR2GRAY)\n ret, pos_img = cv2.threshold(pos_img, 245, 255, cv2.THRESH_BINARY)\n return grey, pos_img\n\n\ndef hough_detector(input_img):\n img = cv2.medianBlur(input_img, 5)\n cimg = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)\n circles = cv2.HoughCircles(img, cv2.HOUGH_GRADIENT, 1, 20, param1=200,\n param2=10, minRadius=5, maxRadius=25)\n h_number = 0\n try:\n circles = np.uint16(np.around(circles))\n for i in circles[0, :]:\n cv2.circle(cimg, (i[0], i[1]), i[2], (0, 255, 0), 2)\n h_number += 1\n except:\n print('HOUGH DETECTOR ERROR, NO CIRCLES FOUND')\n cv2.putText(cimg, str(h_number), (10, 200), cv2.FONT_HERSHEY_SIMPLEX, 1,\n (0, 255, 50), 2, cv2.LINE_AA)\n cv2.imshow('hough detector', cimg)\n cv2.imwrite('hough detector.png', cimg)\n return h_number\n\n\ndef img_processing(image_input):\n image_input = cv2.medianBlur(image_input, 3)\n ret, binary_image = cv2.threshold(image_input, 220, 255, cv2.THRESH_BINARY)\n if darknumbers:\n w = binary_image.shape[1]\n h = binary_image.shape[0]\n mask = np.zeros((h + 2, w + 2), np.uint8)\n cv2.floodFill(binary_image, mask, (0, 0), 255)\n mask = np.zeros((h + 2, w + 2), np.uint8)\n cv2.floodFill(binary_image, mask, (h, w), 255)\n else:\n binary_image = cv2.bitwise_not(binary_image)\n kernel_round = np.array([[0, 0, 0, 1, 1, 1, 0, 0, 0], [0, 1, 1, 1, 1, 1,\n 1, 1, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1],\n [1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1, 1,\n 1, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 1, 1, 1, \n 0, 0, 0]], dtype=np.uint8)\n dilate = cv2.dilate(binary_image, kernel_round, iterations=3)\n erode = cv2.erode(dilate, kernel_round, iterations=2)\n return erode\n\n\ndef counting(image, all_numbers, dice_image, raw_numbers_name):\n one = all_numbers[0]\n two = all_numbers[1]\n three = all_numbers[2]\n four = all_numbers[3]\n five = all_numbers[4]\n six = all_numbers[5]\n errorcnt = all_numbers[6]\n success_rolls = all_numbers[7]\n detector = cv2.SimpleBlobDetector_create(blob_params)\n keypoints = detector.detect(image)\n img_with_keypoints = cv2.drawKeypoints(image, keypoints, np.array([]),\n (0, 0, 255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)\n blob_number = 0\n for i in keypoints[0:]:\n blob_number = blob_number + 1\n cv2.putText(img_with_keypoints, str(blob_number), (10, 200), cv2.\n FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2, cv2.LINE_AA)\n hough_number = hough_detector(image)\n if blob_number == hough_number:\n number = blob_number\n print('DETECTED: ', number)\n if blob_number > 0 and blob_number < 7:\n raw_log = open(raw_numbers_name, 'a')\n raw_log.write(str(number) + '\\n')\n raw_log.close()\n success_rolls += 1\n all_numbers[number - 1] += 1\n else:\n errorcnt = errorcnt + 1\n if error_logging is True:\n cv2.imwrite('errors/' + str(errorcnt) +\n ' number_error_binary.png', image)\n cv2.imwrite('errors/' + str(errorcnt) +\n ' number_error_real.png', dice_image)\n else:\n print('NOT MATCHING FILTERS')\n errorcnt = errorcnt + 1\n if error_logging is True:\n cv2.imwrite('errors/' + str(errorcnt) + ' matching_error.png',\n image)\n cv2.imwrite('errors/' + str(errorcnt) +\n ' matching_error_real.png', dice_image)\n rolled = [one, two, three, four, five, six]\n std_dev = np.std(rolled)\n all_numbers[6] = errorcnt\n all_numbers[7] = success_rolls\n all_numbers[8] = std_dev\n cv2.imshow('blob detector', img_with_keypoints)\n cv2.imwrite('blob_detector.png', img_with_keypoints)\n return all_numbers\n\n\n<assignment token>\nif dicer_ready is True:\n GPIO.add_event_detect(18, GPIO.FALLING, callback=interr, bouncetime=200)\n print('Starting...')\nwhile dicer_ready is True:\n if gpios:\n for i in range(3200):\n steptime = global_steptime\n step_plus(steptime)\n time.sleep(0.6)\n position_correct = False\n real_image, pos_img = get_images()\n while position_correct is not True and gpios is True:\n real_image, pos_img = get_images()\n M = cv2.moments(pos_img)\n if M['m00'] != 0:\n cX = int(M['m10'] / M['m00'])\n else:\n cX = 0\n if cX < 115:\n step_minus(global_steptime)\n elif cX > 135:\n step_plus(global_steptime)\n else:\n position_correct = True\n processed_img = img_processing(real_image)\n numbers = counting(processed_img, all_numbers, real_image, raw_numbers_name\n )\n cv2.imshow('Hold Q to exit', real_image)\n ctime = clock(start_time)\n if numbers[7] % 10 == 0:\n logging(numbers, ctime, log_name)\n if send_email is True and numbers[7] % email_log_number == 0:\n write_email(numbers, ctime, 0, email_header)\n print('=================')\n print('Time: ' + str(ctime))\n print('One: ', numbers[0])\n print('Two: ', numbers[1])\n print('Three: ', numbers[2])\n print('Four: ', numbers[3])\n print('Five: ', numbers[4])\n print('Six: ', numbers[5])\n print('Errors: ', numbers[6])\n print('Success rolls: ', numbers[7])\n print('Deviation: ', numbers[8])\n print('=================')\n if numbers[7] == measures:\n break\n if cv2.waitKey(200) & 255 == ord('q'):\n break\nif interrupted == True:\n write_email(numbers, ctime, 1, email_header)\nelif dicer_ready == True and send_email == True:\n write_email(numbers, ctime, 0, email_header)\ncap.release()\ncv2.destroyAllWindows()\nprint('Everything finished')\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n\n\ndef interr(channel):\n global gpios\n global dicer_ready\n global interrupted\n gpios = False\n dicer_ready = False\n interrupted = True\n print('Interrupt')\n\n\ndef step_plus(steptime):\n GPIO.output(17, GPIO.LOW)\n GPIO.output(4, GPIO.HIGH)\n time.sleep(steptime)\n GPIO.output(4, GPIO.LOW)\n time.sleep(steptime)\n\n\ndef step_minus(steptime):\n GPIO.output(17, GPIO.HIGH)\n GPIO.output(4, GPIO.HIGH)\n time.sleep(steptime)\n GPIO.output(4, GPIO.LOW)\n time.sleep(steptime)\n GPIO.output(17, GPIO.LOW)\n\n\ndef clock(now):\n time_seconds = int(time.time() - now)\n t_hr = int(time_seconds / 3600)\n t_min = int(time_seconds / 60) - t_hr * 60\n t_sec = int(time_seconds) - t_min * 60\n showTime = str(t_hr) + ':' + str(t_min).zfill(2)\n print(showTime)\n return showTime\n\n\ndef write_email(numbers, ctime, error, header_name):\n server = smtplib.SMTP('SERVERADRESSE', PORTNR)\n server.starttls()\n server.login('LOGIN-BENUTZERNAME', 'PASSWORT')\n msg = MIMEMultipart()\n msg['From'] = 'ABSENDER'\n msg['To'] = 'EMPFAENGER'\n if error:\n msg['Subject'] = 'Error'\n else:\n msg['Cc'] = 'KOPIE ADRESSE'\n msg['Subject'] = header_name\n message = str(numbers[0]) + ',' + str(numbers[1]) + ',' + str(numbers[2]\n ) + ',' + str(numbers[3]) + ',' + str(numbers[4]) + ',' + str(numbers\n [5]) + ' Err: ' + str(numbers[6]) + ' All: ' + str(numbers[7]\n ) + '\\n' + 'Zeit: ' + str(ctime)\n msg.attach(MIMEText(message))\n server.send_message(msg)\n\n\ndef logging(numbers, ctime, log_name):\n file = open(log_name, 'w')\n file.write('Einz:' + str(numbers[0]) + '\\n')\n file.write('Zwei:' + str(numbers[1]) + '\\n')\n file.write('Drei: ' + str(numbers[2]) + '\\n')\n file.write('Vier: ' + str(numbers[3]) + '\\n')\n file.write('Fuenf: ' + str(numbers[4]) + '\\n')\n file.write('Sechs: ' + str(numbers[5]) + '\\n')\n file.write('Fehler: ' + str(numbers[6]) + '\\n')\n file.write('Gesamt: ' + str(numbers[7]) + '\\n')\n file.write('Standardabw: ' + str(numbers[8]) + '\\n')\n file.write('Zeit: ' + str(ctime) + '\\n')\n file.close()\n\n\ndef get_images():\n for i in range(5):\n ret, frame = cap.read()\n y = 160\n h = 240\n x = 220\n w = 240\n dice_image = frame[y:y + h, x:x + w]\n grey = cv2.cvtColor(dice_image, cv2.COLOR_BGR2GRAY)\n y = 120\n h = 15\n pos_img = frame[y:y + h, x:x + w]\n pos_img = cv2.cvtColor(pos_img, cv2.COLOR_BGR2GRAY)\n ret, pos_img = cv2.threshold(pos_img, 245, 255, cv2.THRESH_BINARY)\n return grey, pos_img\n\n\ndef hough_detector(input_img):\n img = cv2.medianBlur(input_img, 5)\n cimg = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)\n circles = cv2.HoughCircles(img, cv2.HOUGH_GRADIENT, 1, 20, param1=200,\n param2=10, minRadius=5, maxRadius=25)\n h_number = 0\n try:\n circles = np.uint16(np.around(circles))\n for i in circles[0, :]:\n cv2.circle(cimg, (i[0], i[1]), i[2], (0, 255, 0), 2)\n h_number += 1\n except:\n print('HOUGH DETECTOR ERROR, NO CIRCLES FOUND')\n cv2.putText(cimg, str(h_number), (10, 200), cv2.FONT_HERSHEY_SIMPLEX, 1,\n (0, 255, 50), 2, cv2.LINE_AA)\n cv2.imshow('hough detector', cimg)\n cv2.imwrite('hough detector.png', cimg)\n return h_number\n\n\ndef img_processing(image_input):\n image_input = cv2.medianBlur(image_input, 3)\n ret, binary_image = cv2.threshold(image_input, 220, 255, cv2.THRESH_BINARY)\n if darknumbers:\n w = binary_image.shape[1]\n h = binary_image.shape[0]\n mask = np.zeros((h + 2, w + 2), np.uint8)\n cv2.floodFill(binary_image, mask, (0, 0), 255)\n mask = np.zeros((h + 2, w + 2), np.uint8)\n cv2.floodFill(binary_image, mask, (h, w), 255)\n else:\n binary_image = cv2.bitwise_not(binary_image)\n kernel_round = np.array([[0, 0, 0, 1, 1, 1, 0, 0, 0], [0, 1, 1, 1, 1, 1,\n 1, 1, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1],\n [1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1, 1,\n 1, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 1, 1, 1, \n 0, 0, 0]], dtype=np.uint8)\n dilate = cv2.dilate(binary_image, kernel_round, iterations=3)\n erode = cv2.erode(dilate, kernel_round, iterations=2)\n return erode\n\n\ndef counting(image, all_numbers, dice_image, raw_numbers_name):\n one = all_numbers[0]\n two = all_numbers[1]\n three = all_numbers[2]\n four = all_numbers[3]\n five = all_numbers[4]\n six = all_numbers[5]\n errorcnt = all_numbers[6]\n success_rolls = all_numbers[7]\n detector = cv2.SimpleBlobDetector_create(blob_params)\n keypoints = detector.detect(image)\n img_with_keypoints = cv2.drawKeypoints(image, keypoints, np.array([]),\n (0, 0, 255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)\n blob_number = 0\n for i in keypoints[0:]:\n blob_number = blob_number + 1\n cv2.putText(img_with_keypoints, str(blob_number), (10, 200), cv2.\n FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2, cv2.LINE_AA)\n hough_number = hough_detector(image)\n if blob_number == hough_number:\n number = blob_number\n print('DETECTED: ', number)\n if blob_number > 0 and blob_number < 7:\n raw_log = open(raw_numbers_name, 'a')\n raw_log.write(str(number) + '\\n')\n raw_log.close()\n success_rolls += 1\n all_numbers[number - 1] += 1\n else:\n errorcnt = errorcnt + 1\n if error_logging is True:\n cv2.imwrite('errors/' + str(errorcnt) +\n ' number_error_binary.png', image)\n cv2.imwrite('errors/' + str(errorcnt) +\n ' number_error_real.png', dice_image)\n else:\n print('NOT MATCHING FILTERS')\n errorcnt = errorcnt + 1\n if error_logging is True:\n cv2.imwrite('errors/' + str(errorcnt) + ' matching_error.png',\n image)\n cv2.imwrite('errors/' + str(errorcnt) +\n ' matching_error_real.png', dice_image)\n rolled = [one, two, three, four, five, six]\n std_dev = np.std(rolled)\n all_numbers[6] = errorcnt\n all_numbers[7] = success_rolls\n all_numbers[8] = std_dev\n cv2.imshow('blob detector', img_with_keypoints)\n cv2.imwrite('blob_detector.png', img_with_keypoints)\n return all_numbers\n\n\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n\n\ndef interr(channel):\n global gpios\n global dicer_ready\n global interrupted\n gpios = False\n dicer_ready = False\n interrupted = True\n print('Interrupt')\n\n\ndef step_plus(steptime):\n GPIO.output(17, GPIO.LOW)\n GPIO.output(4, GPIO.HIGH)\n time.sleep(steptime)\n GPIO.output(4, GPIO.LOW)\n time.sleep(steptime)\n\n\n<function token>\n\n\ndef clock(now):\n time_seconds = int(time.time() - now)\n t_hr = int(time_seconds / 3600)\n t_min = int(time_seconds / 60) - t_hr * 60\n t_sec = int(time_seconds) - t_min * 60\n showTime = str(t_hr) + ':' + str(t_min).zfill(2)\n print(showTime)\n return showTime\n\n\ndef write_email(numbers, ctime, error, header_name):\n server = smtplib.SMTP('SERVERADRESSE', PORTNR)\n server.starttls()\n server.login('LOGIN-BENUTZERNAME', 'PASSWORT')\n msg = MIMEMultipart()\n msg['From'] = 'ABSENDER'\n msg['To'] = 'EMPFAENGER'\n if error:\n msg['Subject'] = 'Error'\n else:\n msg['Cc'] = 'KOPIE ADRESSE'\n msg['Subject'] = header_name\n message = str(numbers[0]) + ',' + str(numbers[1]) + ',' + str(numbers[2]\n ) + ',' + str(numbers[3]) + ',' + str(numbers[4]) + ',' + str(numbers\n [5]) + ' Err: ' + str(numbers[6]) + ' All: ' + str(numbers[7]\n ) + '\\n' + 'Zeit: ' + str(ctime)\n msg.attach(MIMEText(message))\n server.send_message(msg)\n\n\ndef logging(numbers, ctime, log_name):\n file = open(log_name, 'w')\n file.write('Einz:' + str(numbers[0]) + '\\n')\n file.write('Zwei:' + str(numbers[1]) + '\\n')\n file.write('Drei: ' + str(numbers[2]) + '\\n')\n file.write('Vier: ' + str(numbers[3]) + '\\n')\n file.write('Fuenf: ' + str(numbers[4]) + '\\n')\n file.write('Sechs: ' + str(numbers[5]) + '\\n')\n file.write('Fehler: ' + str(numbers[6]) + '\\n')\n file.write('Gesamt: ' + str(numbers[7]) + '\\n')\n file.write('Standardabw: ' + str(numbers[8]) + '\\n')\n file.write('Zeit: ' + str(ctime) + '\\n')\n file.close()\n\n\ndef get_images():\n for i in range(5):\n ret, frame = cap.read()\n y = 160\n h = 240\n x = 220\n w = 240\n dice_image = frame[y:y + h, x:x + w]\n grey = cv2.cvtColor(dice_image, cv2.COLOR_BGR2GRAY)\n y = 120\n h = 15\n pos_img = frame[y:y + h, x:x + w]\n pos_img = cv2.cvtColor(pos_img, cv2.COLOR_BGR2GRAY)\n ret, pos_img = cv2.threshold(pos_img, 245, 255, cv2.THRESH_BINARY)\n return grey, pos_img\n\n\ndef hough_detector(input_img):\n img = cv2.medianBlur(input_img, 5)\n cimg = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)\n circles = cv2.HoughCircles(img, cv2.HOUGH_GRADIENT, 1, 20, param1=200,\n param2=10, minRadius=5, maxRadius=25)\n h_number = 0\n try:\n circles = np.uint16(np.around(circles))\n for i in circles[0, :]:\n cv2.circle(cimg, (i[0], i[1]), i[2], (0, 255, 0), 2)\n h_number += 1\n except:\n print('HOUGH DETECTOR ERROR, NO CIRCLES FOUND')\n cv2.putText(cimg, str(h_number), (10, 200), cv2.FONT_HERSHEY_SIMPLEX, 1,\n (0, 255, 50), 2, cv2.LINE_AA)\n cv2.imshow('hough detector', cimg)\n cv2.imwrite('hough detector.png', cimg)\n return h_number\n\n\ndef img_processing(image_input):\n image_input = cv2.medianBlur(image_input, 3)\n ret, binary_image = cv2.threshold(image_input, 220, 255, cv2.THRESH_BINARY)\n if darknumbers:\n w = binary_image.shape[1]\n h = binary_image.shape[0]\n mask = np.zeros((h + 2, w + 2), np.uint8)\n cv2.floodFill(binary_image, mask, (0, 0), 255)\n mask = np.zeros((h + 2, w + 2), np.uint8)\n cv2.floodFill(binary_image, mask, (h, w), 255)\n else:\n binary_image = cv2.bitwise_not(binary_image)\n kernel_round = np.array([[0, 0, 0, 1, 1, 1, 0, 0, 0], [0, 1, 1, 1, 1, 1,\n 1, 1, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1],\n [1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1, 1,\n 1, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 1, 1, 1, \n 0, 0, 0]], dtype=np.uint8)\n dilate = cv2.dilate(binary_image, kernel_round, iterations=3)\n erode = cv2.erode(dilate, kernel_round, iterations=2)\n return erode\n\n\ndef counting(image, all_numbers, dice_image, raw_numbers_name):\n one = all_numbers[0]\n two = all_numbers[1]\n three = all_numbers[2]\n four = all_numbers[3]\n five = all_numbers[4]\n six = all_numbers[5]\n errorcnt = all_numbers[6]\n success_rolls = all_numbers[7]\n detector = cv2.SimpleBlobDetector_create(blob_params)\n keypoints = detector.detect(image)\n img_with_keypoints = cv2.drawKeypoints(image, keypoints, np.array([]),\n (0, 0, 255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)\n blob_number = 0\n for i in keypoints[0:]:\n blob_number = blob_number + 1\n cv2.putText(img_with_keypoints, str(blob_number), (10, 200), cv2.\n FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2, cv2.LINE_AA)\n hough_number = hough_detector(image)\n if blob_number == hough_number:\n number = blob_number\n print('DETECTED: ', number)\n if blob_number > 0 and blob_number < 7:\n raw_log = open(raw_numbers_name, 'a')\n raw_log.write(str(number) + '\\n')\n raw_log.close()\n success_rolls += 1\n all_numbers[number - 1] += 1\n else:\n errorcnt = errorcnt + 1\n if error_logging is True:\n cv2.imwrite('errors/' + str(errorcnt) +\n ' number_error_binary.png', image)\n cv2.imwrite('errors/' + str(errorcnt) +\n ' number_error_real.png', dice_image)\n else:\n print('NOT MATCHING FILTERS')\n errorcnt = errorcnt + 1\n if error_logging is True:\n cv2.imwrite('errors/' + str(errorcnt) + ' matching_error.png',\n image)\n cv2.imwrite('errors/' + str(errorcnt) +\n ' matching_error_real.png', dice_image)\n rolled = [one, two, three, four, five, six]\n std_dev = np.std(rolled)\n all_numbers[6] = errorcnt\n all_numbers[7] = success_rolls\n all_numbers[8] = std_dev\n cv2.imshow('blob detector', img_with_keypoints)\n cv2.imwrite('blob_detector.png', img_with_keypoints)\n return all_numbers\n\n\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n\n\ndef interr(channel):\n global gpios\n global dicer_ready\n global interrupted\n gpios = False\n dicer_ready = False\n interrupted = True\n print('Interrupt')\n\n\ndef step_plus(steptime):\n GPIO.output(17, GPIO.LOW)\n GPIO.output(4, GPIO.HIGH)\n time.sleep(steptime)\n GPIO.output(4, GPIO.LOW)\n time.sleep(steptime)\n\n\n<function token>\n\n\ndef clock(now):\n time_seconds = int(time.time() - now)\n t_hr = int(time_seconds / 3600)\n t_min = int(time_seconds / 60) - t_hr * 60\n t_sec = int(time_seconds) - t_min * 60\n showTime = str(t_hr) + ':' + str(t_min).zfill(2)\n print(showTime)\n return showTime\n\n\ndef write_email(numbers, ctime, error, header_name):\n server = smtplib.SMTP('SERVERADRESSE', PORTNR)\n server.starttls()\n server.login('LOGIN-BENUTZERNAME', 'PASSWORT')\n msg = MIMEMultipart()\n msg['From'] = 'ABSENDER'\n msg['To'] = 'EMPFAENGER'\n if error:\n msg['Subject'] = 'Error'\n else:\n msg['Cc'] = 'KOPIE ADRESSE'\n msg['Subject'] = header_name\n message = str(numbers[0]) + ',' + str(numbers[1]) + ',' + str(numbers[2]\n ) + ',' + str(numbers[3]) + ',' + str(numbers[4]) + ',' + str(numbers\n [5]) + ' Err: ' + str(numbers[6]) + ' All: ' + str(numbers[7]\n ) + '\\n' + 'Zeit: ' + str(ctime)\n msg.attach(MIMEText(message))\n server.send_message(msg)\n\n\n<function token>\n\n\ndef get_images():\n for i in range(5):\n ret, frame = cap.read()\n y = 160\n h = 240\n x = 220\n w = 240\n dice_image = frame[y:y + h, x:x + w]\n grey = cv2.cvtColor(dice_image, cv2.COLOR_BGR2GRAY)\n y = 120\n h = 15\n pos_img = frame[y:y + h, x:x + w]\n pos_img = cv2.cvtColor(pos_img, cv2.COLOR_BGR2GRAY)\n ret, pos_img = cv2.threshold(pos_img, 245, 255, cv2.THRESH_BINARY)\n return grey, pos_img\n\n\ndef hough_detector(input_img):\n img = cv2.medianBlur(input_img, 5)\n cimg = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)\n circles = cv2.HoughCircles(img, cv2.HOUGH_GRADIENT, 1, 20, param1=200,\n param2=10, minRadius=5, maxRadius=25)\n h_number = 0\n try:\n circles = np.uint16(np.around(circles))\n for i in circles[0, :]:\n cv2.circle(cimg, (i[0], i[1]), i[2], (0, 255, 0), 2)\n h_number += 1\n except:\n print('HOUGH DETECTOR ERROR, NO CIRCLES FOUND')\n cv2.putText(cimg, str(h_number), (10, 200), cv2.FONT_HERSHEY_SIMPLEX, 1,\n (0, 255, 50), 2, cv2.LINE_AA)\n cv2.imshow('hough detector', cimg)\n cv2.imwrite('hough detector.png', cimg)\n return h_number\n\n\ndef img_processing(image_input):\n image_input = cv2.medianBlur(image_input, 3)\n ret, binary_image = cv2.threshold(image_input, 220, 255, cv2.THRESH_BINARY)\n if darknumbers:\n w = binary_image.shape[1]\n h = binary_image.shape[0]\n mask = np.zeros((h + 2, w + 2), np.uint8)\n cv2.floodFill(binary_image, mask, (0, 0), 255)\n mask = np.zeros((h + 2, w + 2), np.uint8)\n cv2.floodFill(binary_image, mask, (h, w), 255)\n else:\n binary_image = cv2.bitwise_not(binary_image)\n kernel_round = np.array([[0, 0, 0, 1, 1, 1, 0, 0, 0], [0, 1, 1, 1, 1, 1,\n 1, 1, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1],\n [1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1, 1,\n 1, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 1, 1, 1, \n 0, 0, 0]], dtype=np.uint8)\n dilate = cv2.dilate(binary_image, kernel_round, iterations=3)\n erode = cv2.erode(dilate, kernel_round, iterations=2)\n return erode\n\n\ndef counting(image, all_numbers, dice_image, raw_numbers_name):\n one = all_numbers[0]\n two = all_numbers[1]\n three = all_numbers[2]\n four = all_numbers[3]\n five = all_numbers[4]\n six = all_numbers[5]\n errorcnt = all_numbers[6]\n success_rolls = all_numbers[7]\n detector = cv2.SimpleBlobDetector_create(blob_params)\n keypoints = detector.detect(image)\n img_with_keypoints = cv2.drawKeypoints(image, keypoints, np.array([]),\n (0, 0, 255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)\n blob_number = 0\n for i in keypoints[0:]:\n blob_number = blob_number + 1\n cv2.putText(img_with_keypoints, str(blob_number), (10, 200), cv2.\n FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2, cv2.LINE_AA)\n hough_number = hough_detector(image)\n if blob_number == hough_number:\n number = blob_number\n print('DETECTED: ', number)\n if blob_number > 0 and blob_number < 7:\n raw_log = open(raw_numbers_name, 'a')\n raw_log.write(str(number) + '\\n')\n raw_log.close()\n success_rolls += 1\n all_numbers[number - 1] += 1\n else:\n errorcnt = errorcnt + 1\n if error_logging is True:\n cv2.imwrite('errors/' + str(errorcnt) +\n ' number_error_binary.png', image)\n cv2.imwrite('errors/' + str(errorcnt) +\n ' number_error_real.png', dice_image)\n else:\n print('NOT MATCHING FILTERS')\n errorcnt = errorcnt + 1\n if error_logging is True:\n cv2.imwrite('errors/' + str(errorcnt) + ' matching_error.png',\n image)\n cv2.imwrite('errors/' + str(errorcnt) +\n ' matching_error_real.png', dice_image)\n rolled = [one, two, three, four, five, six]\n std_dev = np.std(rolled)\n all_numbers[6] = errorcnt\n all_numbers[7] = success_rolls\n all_numbers[8] = std_dev\n cv2.imshow('blob detector', img_with_keypoints)\n cv2.imwrite('blob_detector.png', img_with_keypoints)\n return all_numbers\n\n\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n\n\ndef interr(channel):\n global gpios\n global dicer_ready\n global interrupted\n gpios = False\n dicer_ready = False\n interrupted = True\n print('Interrupt')\n\n\ndef step_plus(steptime):\n GPIO.output(17, GPIO.LOW)\n GPIO.output(4, GPIO.HIGH)\n time.sleep(steptime)\n GPIO.output(4, GPIO.LOW)\n time.sleep(steptime)\n\n\n<function token>\n\n\ndef clock(now):\n time_seconds = int(time.time() - now)\n t_hr = int(time_seconds / 3600)\n t_min = int(time_seconds / 60) - t_hr * 60\n t_sec = int(time_seconds) - t_min * 60\n showTime = str(t_hr) + ':' + str(t_min).zfill(2)\n print(showTime)\n return showTime\n\n\ndef write_email(numbers, ctime, error, header_name):\n server = smtplib.SMTP('SERVERADRESSE', PORTNR)\n server.starttls()\n server.login('LOGIN-BENUTZERNAME', 'PASSWORT')\n msg = MIMEMultipart()\n msg['From'] = 'ABSENDER'\n msg['To'] = 'EMPFAENGER'\n if error:\n msg['Subject'] = 'Error'\n else:\n msg['Cc'] = 'KOPIE ADRESSE'\n msg['Subject'] = header_name\n message = str(numbers[0]) + ',' + str(numbers[1]) + ',' + str(numbers[2]\n ) + ',' + str(numbers[3]) + ',' + str(numbers[4]) + ',' + str(numbers\n [5]) + ' Err: ' + str(numbers[6]) + ' All: ' + str(numbers[7]\n ) + '\\n' + 'Zeit: ' + str(ctime)\n msg.attach(MIMEText(message))\n server.send_message(msg)\n\n\n<function token>\n<function token>\n\n\ndef hough_detector(input_img):\n img = cv2.medianBlur(input_img, 5)\n cimg = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)\n circles = cv2.HoughCircles(img, cv2.HOUGH_GRADIENT, 1, 20, param1=200,\n param2=10, minRadius=5, maxRadius=25)\n h_number = 0\n try:\n circles = np.uint16(np.around(circles))\n for i in circles[0, :]:\n cv2.circle(cimg, (i[0], i[1]), i[2], (0, 255, 0), 2)\n h_number += 1\n except:\n print('HOUGH DETECTOR ERROR, NO CIRCLES FOUND')\n cv2.putText(cimg, str(h_number), (10, 200), cv2.FONT_HERSHEY_SIMPLEX, 1,\n (0, 255, 50), 2, cv2.LINE_AA)\n cv2.imshow('hough detector', cimg)\n cv2.imwrite('hough detector.png', cimg)\n return h_number\n\n\ndef img_processing(image_input):\n image_input = cv2.medianBlur(image_input, 3)\n ret, binary_image = cv2.threshold(image_input, 220, 255, cv2.THRESH_BINARY)\n if darknumbers:\n w = binary_image.shape[1]\n h = binary_image.shape[0]\n mask = np.zeros((h + 2, w + 2), np.uint8)\n cv2.floodFill(binary_image, mask, (0, 0), 255)\n mask = np.zeros((h + 2, w + 2), np.uint8)\n cv2.floodFill(binary_image, mask, (h, w), 255)\n else:\n binary_image = cv2.bitwise_not(binary_image)\n kernel_round = np.array([[0, 0, 0, 1, 1, 1, 0, 0, 0], [0, 1, 1, 1, 1, 1,\n 1, 1, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1],\n [1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1, 1,\n 1, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 1, 1, 1, \n 0, 0, 0]], dtype=np.uint8)\n dilate = cv2.dilate(binary_image, kernel_round, iterations=3)\n erode = cv2.erode(dilate, kernel_round, iterations=2)\n return erode\n\n\ndef counting(image, all_numbers, dice_image, raw_numbers_name):\n one = all_numbers[0]\n two = all_numbers[1]\n three = all_numbers[2]\n four = all_numbers[3]\n five = all_numbers[4]\n six = all_numbers[5]\n errorcnt = all_numbers[6]\n success_rolls = all_numbers[7]\n detector = cv2.SimpleBlobDetector_create(blob_params)\n keypoints = detector.detect(image)\n img_with_keypoints = cv2.drawKeypoints(image, keypoints, np.array([]),\n (0, 0, 255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)\n blob_number = 0\n for i in keypoints[0:]:\n blob_number = blob_number + 1\n cv2.putText(img_with_keypoints, str(blob_number), (10, 200), cv2.\n FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2, cv2.LINE_AA)\n hough_number = hough_detector(image)\n if blob_number == hough_number:\n number = blob_number\n print('DETECTED: ', number)\n if blob_number > 0 and blob_number < 7:\n raw_log = open(raw_numbers_name, 'a')\n raw_log.write(str(number) + '\\n')\n raw_log.close()\n success_rolls += 1\n all_numbers[number - 1] += 1\n else:\n errorcnt = errorcnt + 1\n if error_logging is True:\n cv2.imwrite('errors/' + str(errorcnt) +\n ' number_error_binary.png', image)\n cv2.imwrite('errors/' + str(errorcnt) +\n ' number_error_real.png', dice_image)\n else:\n print('NOT MATCHING FILTERS')\n errorcnt = errorcnt + 1\n if error_logging is True:\n cv2.imwrite('errors/' + str(errorcnt) + ' matching_error.png',\n image)\n cv2.imwrite('errors/' + str(errorcnt) +\n ' matching_error_real.png', dice_image)\n rolled = [one, two, three, four, five, six]\n std_dev = np.std(rolled)\n all_numbers[6] = errorcnt\n all_numbers[7] = success_rolls\n all_numbers[8] = std_dev\n cv2.imshow('blob detector', img_with_keypoints)\n cv2.imwrite('blob_detector.png', img_with_keypoints)\n return all_numbers\n\n\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n\n\ndef interr(channel):\n global gpios\n global dicer_ready\n global interrupted\n gpios = False\n dicer_ready = False\n interrupted = True\n print('Interrupt')\n\n\ndef step_plus(steptime):\n GPIO.output(17, GPIO.LOW)\n GPIO.output(4, GPIO.HIGH)\n time.sleep(steptime)\n GPIO.output(4, GPIO.LOW)\n time.sleep(steptime)\n\n\n<function token>\n\n\ndef clock(now):\n time_seconds = int(time.time() - now)\n t_hr = int(time_seconds / 3600)\n t_min = int(time_seconds / 60) - t_hr * 60\n t_sec = int(time_seconds) - t_min * 60\n showTime = str(t_hr) + ':' + str(t_min).zfill(2)\n print(showTime)\n return showTime\n\n\ndef write_email(numbers, ctime, error, header_name):\n server = smtplib.SMTP('SERVERADRESSE', PORTNR)\n server.starttls()\n server.login('LOGIN-BENUTZERNAME', 'PASSWORT')\n msg = MIMEMultipart()\n msg['From'] = 'ABSENDER'\n msg['To'] = 'EMPFAENGER'\n if error:\n msg['Subject'] = 'Error'\n else:\n msg['Cc'] = 'KOPIE ADRESSE'\n msg['Subject'] = header_name\n message = str(numbers[0]) + ',' + str(numbers[1]) + ',' + str(numbers[2]\n ) + ',' + str(numbers[3]) + ',' + str(numbers[4]) + ',' + str(numbers\n [5]) + ' Err: ' + str(numbers[6]) + ' All: ' + str(numbers[7]\n ) + '\\n' + 'Zeit: ' + str(ctime)\n msg.attach(MIMEText(message))\n server.send_message(msg)\n\n\n<function token>\n<function token>\n\n\ndef hough_detector(input_img):\n img = cv2.medianBlur(input_img, 5)\n cimg = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)\n circles = cv2.HoughCircles(img, cv2.HOUGH_GRADIENT, 1, 20, param1=200,\n param2=10, minRadius=5, maxRadius=25)\n h_number = 0\n try:\n circles = np.uint16(np.around(circles))\n for i in circles[0, :]:\n cv2.circle(cimg, (i[0], i[1]), i[2], (0, 255, 0), 2)\n h_number += 1\n except:\n print('HOUGH DETECTOR ERROR, NO CIRCLES FOUND')\n cv2.putText(cimg, str(h_number), (10, 200), cv2.FONT_HERSHEY_SIMPLEX, 1,\n (0, 255, 50), 2, cv2.LINE_AA)\n cv2.imshow('hough detector', cimg)\n cv2.imwrite('hough detector.png', cimg)\n return h_number\n\n\ndef img_processing(image_input):\n image_input = cv2.medianBlur(image_input, 3)\n ret, binary_image = cv2.threshold(image_input, 220, 255, cv2.THRESH_BINARY)\n if darknumbers:\n w = binary_image.shape[1]\n h = binary_image.shape[0]\n mask = np.zeros((h + 2, w + 2), np.uint8)\n cv2.floodFill(binary_image, mask, (0, 0), 255)\n mask = np.zeros((h + 2, w + 2), np.uint8)\n cv2.floodFill(binary_image, mask, (h, w), 255)\n else:\n binary_image = cv2.bitwise_not(binary_image)\n kernel_round = np.array([[0, 0, 0, 1, 1, 1, 0, 0, 0], [0, 1, 1, 1, 1, 1,\n 1, 1, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1],\n [1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1, 1,\n 1, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 1, 1, 1, \n 0, 0, 0]], dtype=np.uint8)\n dilate = cv2.dilate(binary_image, kernel_round, iterations=3)\n erode = cv2.erode(dilate, kernel_round, iterations=2)\n return erode\n\n\n<function token>\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n\n\ndef interr(channel):\n global gpios\n global dicer_ready\n global interrupted\n gpios = False\n dicer_ready = False\n interrupted = True\n print('Interrupt')\n\n\n<function token>\n<function token>\n\n\ndef clock(now):\n time_seconds = int(time.time() - now)\n t_hr = int(time_seconds / 3600)\n t_min = int(time_seconds / 60) - t_hr * 60\n t_sec = int(time_seconds) - t_min * 60\n showTime = str(t_hr) + ':' + str(t_min).zfill(2)\n print(showTime)\n return showTime\n\n\ndef write_email(numbers, ctime, error, header_name):\n server = smtplib.SMTP('SERVERADRESSE', PORTNR)\n server.starttls()\n server.login('LOGIN-BENUTZERNAME', 'PASSWORT')\n msg = MIMEMultipart()\n msg['From'] = 'ABSENDER'\n msg['To'] = 'EMPFAENGER'\n if error:\n msg['Subject'] = 'Error'\n else:\n msg['Cc'] = 'KOPIE ADRESSE'\n msg['Subject'] = header_name\n message = str(numbers[0]) + ',' + str(numbers[1]) + ',' + str(numbers[2]\n ) + ',' + str(numbers[3]) + ',' + str(numbers[4]) + ',' + str(numbers\n [5]) + ' Err: ' + str(numbers[6]) + ' All: ' + str(numbers[7]\n ) + '\\n' + 'Zeit: ' + str(ctime)\n msg.attach(MIMEText(message))\n server.send_message(msg)\n\n\n<function token>\n<function token>\n\n\ndef hough_detector(input_img):\n img = cv2.medianBlur(input_img, 5)\n cimg = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)\n circles = cv2.HoughCircles(img, cv2.HOUGH_GRADIENT, 1, 20, param1=200,\n param2=10, minRadius=5, maxRadius=25)\n h_number = 0\n try:\n circles = np.uint16(np.around(circles))\n for i in circles[0, :]:\n cv2.circle(cimg, (i[0], i[1]), i[2], (0, 255, 0), 2)\n h_number += 1\n except:\n print('HOUGH DETECTOR ERROR, NO CIRCLES FOUND')\n cv2.putText(cimg, str(h_number), (10, 200), cv2.FONT_HERSHEY_SIMPLEX, 1,\n (0, 255, 50), 2, cv2.LINE_AA)\n cv2.imshow('hough detector', cimg)\n cv2.imwrite('hough detector.png', cimg)\n return h_number\n\n\ndef img_processing(image_input):\n image_input = cv2.medianBlur(image_input, 3)\n ret, binary_image = cv2.threshold(image_input, 220, 255, cv2.THRESH_BINARY)\n if darknumbers:\n w = binary_image.shape[1]\n h = binary_image.shape[0]\n mask = np.zeros((h + 2, w + 2), np.uint8)\n cv2.floodFill(binary_image, mask, (0, 0), 255)\n mask = np.zeros((h + 2, w + 2), np.uint8)\n cv2.floodFill(binary_image, mask, (h, w), 255)\n else:\n binary_image = cv2.bitwise_not(binary_image)\n kernel_round = np.array([[0, 0, 0, 1, 1, 1, 0, 0, 0], [0, 1, 1, 1, 1, 1,\n 1, 1, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1],\n [1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1, 1,\n 1, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 1, 1, 1, \n 0, 0, 0]], dtype=np.uint8)\n dilate = cv2.dilate(binary_image, kernel_round, iterations=3)\n erode = cv2.erode(dilate, kernel_round, iterations=2)\n return erode\n\n\n<function token>\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n\n\ndef interr(channel):\n global gpios\n global dicer_ready\n global interrupted\n gpios = False\n dicer_ready = False\n interrupted = True\n print('Interrupt')\n\n\n<function token>\n<function token>\n\n\ndef clock(now):\n time_seconds = int(time.time() - now)\n t_hr = int(time_seconds / 3600)\n t_min = int(time_seconds / 60) - t_hr * 60\n t_sec = int(time_seconds) - t_min * 60\n showTime = str(t_hr) + ':' + str(t_min).zfill(2)\n print(showTime)\n return showTime\n\n\ndef write_email(numbers, ctime, error, header_name):\n server = smtplib.SMTP('SERVERADRESSE', PORTNR)\n server.starttls()\n server.login('LOGIN-BENUTZERNAME', 'PASSWORT')\n msg = MIMEMultipart()\n msg['From'] = 'ABSENDER'\n msg['To'] = 'EMPFAENGER'\n if error:\n msg['Subject'] = 'Error'\n else:\n msg['Cc'] = 'KOPIE ADRESSE'\n msg['Subject'] = header_name\n message = str(numbers[0]) + ',' + str(numbers[1]) + ',' + str(numbers[2]\n ) + ',' + str(numbers[3]) + ',' + str(numbers[4]) + ',' + str(numbers\n [5]) + ' Err: ' + str(numbers[6]) + ' All: ' + str(numbers[7]\n ) + '\\n' + 'Zeit: ' + str(ctime)\n msg.attach(MIMEText(message))\n server.send_message(msg)\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef img_processing(image_input):\n image_input = cv2.medianBlur(image_input, 3)\n ret, binary_image = cv2.threshold(image_input, 220, 255, cv2.THRESH_BINARY)\n if darknumbers:\n w = binary_image.shape[1]\n h = binary_image.shape[0]\n mask = np.zeros((h + 2, w + 2), np.uint8)\n cv2.floodFill(binary_image, mask, (0, 0), 255)\n mask = np.zeros((h + 2, w + 2), np.uint8)\n cv2.floodFill(binary_image, mask, (h, w), 255)\n else:\n binary_image = cv2.bitwise_not(binary_image)\n kernel_round = np.array([[0, 0, 0, 1, 1, 1, 0, 0, 0], [0, 1, 1, 1, 1, 1,\n 1, 1, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1],\n [1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1, 1,\n 1, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 1, 1, 1, \n 0, 0, 0]], dtype=np.uint8)\n dilate = cv2.dilate(binary_image, kernel_round, iterations=3)\n erode = cv2.erode(dilate, kernel_round, iterations=2)\n return erode\n\n\n<function token>\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n\n\ndef clock(now):\n time_seconds = int(time.time() - now)\n t_hr = int(time_seconds / 3600)\n t_min = int(time_seconds / 60) - t_hr * 60\n t_sec = int(time_seconds) - t_min * 60\n showTime = str(t_hr) + ':' + str(t_min).zfill(2)\n print(showTime)\n return showTime\n\n\ndef write_email(numbers, ctime, error, header_name):\n server = smtplib.SMTP('SERVERADRESSE', PORTNR)\n server.starttls()\n server.login('LOGIN-BENUTZERNAME', 'PASSWORT')\n msg = MIMEMultipart()\n msg['From'] = 'ABSENDER'\n msg['To'] = 'EMPFAENGER'\n if error:\n msg['Subject'] = 'Error'\n else:\n msg['Cc'] = 'KOPIE ADRESSE'\n msg['Subject'] = header_name\n message = str(numbers[0]) + ',' + str(numbers[1]) + ',' + str(numbers[2]\n ) + ',' + str(numbers[3]) + ',' + str(numbers[4]) + ',' + str(numbers\n [5]) + ' Err: ' + str(numbers[6]) + ' All: ' + str(numbers[7]\n ) + '\\n' + 'Zeit: ' + str(ctime)\n msg.attach(MIMEText(message))\n server.send_message(msg)\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef img_processing(image_input):\n image_input = cv2.medianBlur(image_input, 3)\n ret, binary_image = cv2.threshold(image_input, 220, 255, cv2.THRESH_BINARY)\n if darknumbers:\n w = binary_image.shape[1]\n h = binary_image.shape[0]\n mask = np.zeros((h + 2, w + 2), np.uint8)\n cv2.floodFill(binary_image, mask, (0, 0), 255)\n mask = np.zeros((h + 2, w + 2), np.uint8)\n cv2.floodFill(binary_image, mask, (h, w), 255)\n else:\n binary_image = cv2.bitwise_not(binary_image)\n kernel_round = np.array([[0, 0, 0, 1, 1, 1, 0, 0, 0], [0, 1, 1, 1, 1, 1,\n 1, 1, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1],\n [1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1, 1,\n 1, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 1, 1, 1, \n 0, 0, 0]], dtype=np.uint8)\n dilate = cv2.dilate(binary_image, kernel_round, iterations=3)\n erode = cv2.erode(dilate, kernel_round, iterations=2)\n return erode\n\n\n<function token>\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef write_email(numbers, ctime, error, header_name):\n server = smtplib.SMTP('SERVERADRESSE', PORTNR)\n server.starttls()\n server.login('LOGIN-BENUTZERNAME', 'PASSWORT')\n msg = MIMEMultipart()\n msg['From'] = 'ABSENDER'\n msg['To'] = 'EMPFAENGER'\n if error:\n msg['Subject'] = 'Error'\n else:\n msg['Cc'] = 'KOPIE ADRESSE'\n msg['Subject'] = header_name\n message = str(numbers[0]) + ',' + str(numbers[1]) + ',' + str(numbers[2]\n ) + ',' + str(numbers[3]) + ',' + str(numbers[4]) + ',' + str(numbers\n [5]) + ' Err: ' + str(numbers[6]) + ' All: ' + str(numbers[7]\n ) + '\\n' + 'Zeit: ' + str(ctime)\n msg.attach(MIMEText(message))\n server.send_message(msg)\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef img_processing(image_input):\n image_input = cv2.medianBlur(image_input, 3)\n ret, binary_image = cv2.threshold(image_input, 220, 255, cv2.THRESH_BINARY)\n if darknumbers:\n w = binary_image.shape[1]\n h = binary_image.shape[0]\n mask = np.zeros((h + 2, w + 2), np.uint8)\n cv2.floodFill(binary_image, mask, (0, 0), 255)\n mask = np.zeros((h + 2, w + 2), np.uint8)\n cv2.floodFill(binary_image, mask, (h, w), 255)\n else:\n binary_image = cv2.bitwise_not(binary_image)\n kernel_round = np.array([[0, 0, 0, 1, 1, 1, 0, 0, 0], [0, 1, 1, 1, 1, 1,\n 1, 1, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1],\n [1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1, 1,\n 1, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 1, 1, 1, \n 0, 0, 0]], dtype=np.uint8)\n dilate = cv2.dilate(binary_image, kernel_round, iterations=3)\n erode = cv2.erode(dilate, kernel_round, iterations=2)\n return erode\n\n\n<function token>\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef img_processing(image_input):\n image_input = cv2.medianBlur(image_input, 3)\n ret, binary_image = cv2.threshold(image_input, 220, 255, cv2.THRESH_BINARY)\n if darknumbers:\n w = binary_image.shape[1]\n h = binary_image.shape[0]\n mask = np.zeros((h + 2, w + 2), np.uint8)\n cv2.floodFill(binary_image, mask, (0, 0), 255)\n mask = np.zeros((h + 2, w + 2), np.uint8)\n cv2.floodFill(binary_image, mask, (h, w), 255)\n else:\n binary_image = cv2.bitwise_not(binary_image)\n kernel_round = np.array([[0, 0, 0, 1, 1, 1, 0, 0, 0], [0, 1, 1, 1, 1, 1,\n 1, 1, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1],\n [1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1, 1,\n 1, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 1, 1, 1, \n 0, 0, 0]], dtype=np.uint8)\n dilate = cv2.dilate(binary_image, kernel_round, iterations=3)\n erode = cv2.erode(dilate, kernel_round, iterations=2)\n return erode\n\n\n<function token>\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<assignment token>\n<code token>\n" ]
false
98,889
1f1cc5409f475a33f5cc3b27ae3016b4d54ed797
# Program to extract number # of rows using Python import xlrd import math # Give the location of the file loc = (r'F:\Document\article\journal\results\cal\scores.xlsx') wb = xlrd.open_workbook(loc) sheet = wb.sheet_by_index(0) print(sheet.cell_value(1, 0)) total = sheet.cell_value(1,2) print(total) i = 1 import numpy as np from pyitlib import discrete_random_variable as drv #X = np.array((0,0)) #print(drv.entropy(X)) res = "" i=1 for i in range(sheet.nrows -2): j=0 while j<1: ftop = sheet.cell_value(int(i+1),int(j)) j = j+1 ptof = sheet.cell_value(int(i+1) , int(j)) mu1 =(ftop / total) mu2 =(ptof / total) m11 = mu1 * (math.log2(mu1 + 0.0000001)) m22 = mu2 * (math.log2(mu2 + 0.0000001)) muen = (-m11+m22 ) if (muen > 0): print("******************line number is ***************") print(i+2) print("************************************************") # X = np.array((mu1)) # mu11 = drv . entropy(X) # Y = np.array((mu2)) # mu22 = drv.entropy(Y) # muen = mu11 - mu22 res = res + str( muen) +" , " print(res) # Extracting number of rows #print(sheet.nrows) #print(res)
[ "\r\n# Program to extract number\r\n# of rows using Python\r\nimport xlrd\r\nimport math\r\n# Give the location of the file\r\nloc = (r'F:\\Document\\article\\journal\\results\\cal\\scores.xlsx')\r\n\r\nwb = xlrd.open_workbook(loc)\r\nsheet = wb.sheet_by_index(0)\r\nprint(sheet.cell_value(1, 0))\r\n\r\n\r\ntotal = sheet.cell_value(1,2)\r\nprint(total)\r\ni = 1\r\n\r\nimport numpy as np\r\nfrom pyitlib import discrete_random_variable as drv\r\n#X = np.array((0,0))\r\n#print(drv.entropy(X))\r\n\r\nres = \"\"\r\ni=1\r\nfor i in range(sheet.nrows -2):\r\n j=0\r\n while j<1:\r\n\r\n ftop = sheet.cell_value(int(i+1),int(j))\r\n\r\n j = j+1\r\n ptof = sheet.cell_value(int(i+1) , int(j))\r\n mu1 =(ftop / total)\r\n mu2 =(ptof / total)\r\n\r\n m11 = mu1 * (math.log2(mu1 + 0.0000001))\r\n m22 = mu2 * (math.log2(mu2 + 0.0000001))\r\n muen = (-m11+m22 )\r\n if (muen > 0):\r\n print(\"******************line number is ***************\")\r\n print(i+2)\r\n print(\"************************************************\")\r\n # X = np.array((mu1))\r\n # mu11 = drv . entropy(X)\r\n # Y = np.array((mu2))\r\n # mu22 = drv.entropy(Y)\r\n # muen = mu11 - mu22\r\n\r\n\r\n res = res + str( muen) +\" , \"\r\n\r\n\r\nprint(res)\r\n# Extracting number of rows\r\n#print(sheet.nrows)\r\n#print(res)\r\n\r\n\r\n\r\n\r\n\r\n", "import xlrd\nimport math\nloc = 'F:\\\\Document\\\\article\\\\journal\\\\results\\\\cal\\\\scores.xlsx'\nwb = xlrd.open_workbook(loc)\nsheet = wb.sheet_by_index(0)\nprint(sheet.cell_value(1, 0))\ntotal = sheet.cell_value(1, 2)\nprint(total)\ni = 1\nimport numpy as np\nfrom pyitlib import discrete_random_variable as drv\nres = ''\ni = 1\nfor i in range(sheet.nrows - 2):\n j = 0\n while j < 1:\n ftop = sheet.cell_value(int(i + 1), int(j))\n j = j + 1\n ptof = sheet.cell_value(int(i + 1), int(j))\n mu1 = ftop / total\n mu2 = ptof / total\n m11 = mu1 * math.log2(mu1 + 1e-07)\n m22 = mu2 * math.log2(mu2 + 1e-07)\n muen = -m11 + m22\n if muen > 0:\n print('******************line number is ***************')\n print(i + 2)\n print('************************************************')\n res = res + str(muen) + ' , '\nprint(res)\n", "<import token>\nloc = 'F:\\\\Document\\\\article\\\\journal\\\\results\\\\cal\\\\scores.xlsx'\nwb = xlrd.open_workbook(loc)\nsheet = wb.sheet_by_index(0)\nprint(sheet.cell_value(1, 0))\ntotal = sheet.cell_value(1, 2)\nprint(total)\ni = 1\n<import token>\nres = ''\ni = 1\nfor i in range(sheet.nrows - 2):\n j = 0\n while j < 1:\n ftop = sheet.cell_value(int(i + 1), int(j))\n j = j + 1\n ptof = sheet.cell_value(int(i + 1), int(j))\n mu1 = ftop / total\n mu2 = ptof / total\n m11 = mu1 * math.log2(mu1 + 1e-07)\n m22 = mu2 * math.log2(mu2 + 1e-07)\n muen = -m11 + m22\n if muen > 0:\n print('******************line number is ***************')\n print(i + 2)\n print('************************************************')\n res = res + str(muen) + ' , '\nprint(res)\n", "<import token>\n<assignment token>\nprint(sheet.cell_value(1, 0))\n<assignment token>\nprint(total)\n<assignment token>\n<import token>\n<assignment token>\nfor i in range(sheet.nrows - 2):\n j = 0\n while j < 1:\n ftop = sheet.cell_value(int(i + 1), int(j))\n j = j + 1\n ptof = sheet.cell_value(int(i + 1), int(j))\n mu1 = ftop / total\n mu2 = ptof / total\n m11 = mu1 * math.log2(mu1 + 1e-07)\n m22 = mu2 * math.log2(mu2 + 1e-07)\n muen = -m11 + m22\n if muen > 0:\n print('******************line number is ***************')\n print(i + 2)\n print('************************************************')\n res = res + str(muen) + ' , '\nprint(res)\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<import token>\n<assignment token>\n<code token>\n" ]
false
98,890
2093c4a14bc6731c210556b26b3748d1a8f8d5fe
print('\nCurso Ciência de Dados - Fundamentos em Python (Modulos e Pacotes)\[email protected]\n') print('Parte 1:\n') print('Parte 2:\n') #--------------------------------- #----- Parte 1 ------------------- print('----------------------------------------------\n---------- Parte 1----------------------------') import statistics as est import math from statistics import mean,median from statistics import* z = [10,20,20,40] x = est.mean(z) y = est.median(z) x1 = mean(z) y1 = median(z) dp1 = stdev(z) print('\nConjunto de dados criado: ',z) print('\nMédia: ',x) print('\nMediana: ',y) print('\nMédia: ',x1) print('\nMediana: ',y1) print('\nDesvio Padrão Calculado pela função statistics.stdev: ',dp1,' Observe que há diferença do desvio padrão calculado, provavelmente pq a função utiliza algum espaço amostra dessa lista que é pequena\n') z1 = [zi-mean(z) for zi in z] print('\nDiferença entre elementos e média da lista: ',z1,'\n') z_square= [pow(z1i,2) for z1i in z1] print('\nQuadrado da diferença calculada acima: ',z_square,'\n') z_total = sum(z_square) print(z_total/len(z)) print("\nO desvio padrão é:", math.sqrt(z_total/len(z)),'\n')
[ "print('\\nCurso Ciência de Dados - Fundamentos em Python (Modulos e Pacotes)\\[email protected]\\n')\nprint('Parte 1:\\n')\nprint('Parte 2:\\n')\n\n\n#---------------------------------\n#----- Parte 1 -------------------\nprint('----------------------------------------------\\n---------- Parte 1----------------------------')\n\nimport statistics as est\nimport math\nfrom statistics import mean,median\nfrom statistics import*\nz = [10,20,20,40]\nx = est.mean(z)\ny = est.median(z)\nx1 = mean(z)\ny1 = median(z)\ndp1 = stdev(z)\nprint('\\nConjunto de dados criado: ',z)\nprint('\\nMédia: ',x)\nprint('\\nMediana: ',y)\nprint('\\nMédia: ',x1)\nprint('\\nMediana: ',y1)\nprint('\\nDesvio Padrão Calculado pela função statistics.stdev: ',dp1,' Observe que há diferença do desvio padrão calculado, provavelmente pq a função utiliza algum espaço amostra dessa lista que é pequena\\n') \nz1 = [zi-mean(z) for zi in z]\nprint('\\nDiferença entre elementos e média da lista: ',z1,'\\n')\nz_square= [pow(z1i,2) for z1i in z1]\nprint('\\nQuadrado da diferença calculada acima: ',z_square,'\\n')\nz_total = sum(z_square)\nprint(z_total/len(z))\nprint(\"\\nO desvio padrão é:\", math.sqrt(z_total/len(z)),'\\n')\n", "print(\n \"\"\"\nCurso Ciência de Dados - Fundamentos em Python (Modulos e Pacotes)\[email protected]\n\"\"\"\n )\nprint('Parte 1:\\n')\nprint('Parte 2:\\n')\nprint(\n \"\"\"----------------------------------------------\n---------- Parte 1----------------------------\"\"\"\n )\nimport statistics as est\nimport math\nfrom statistics import mean, median\nfrom statistics import *\nz = [10, 20, 20, 40]\nx = est.mean(z)\ny = est.median(z)\nx1 = mean(z)\ny1 = median(z)\ndp1 = stdev(z)\nprint(\"\"\"\nConjunto de dados criado: \"\"\", z)\nprint('\\nMédia: ', x)\nprint('\\nMediana: ', y)\nprint('\\nMédia: ', x1)\nprint('\\nMediana: ', y1)\nprint(\"\"\"\nDesvio Padrão Calculado pela função statistics.stdev: \"\"\", dp1,\n \"\"\" Observe que há diferença do desvio padrão calculado, provavelmente pq a função utiliza algum espaço amostra dessa lista que é pequena\n\"\"\"\n )\nz1 = [(zi - mean(z)) for zi in z]\nprint(\"\"\"\nDiferença entre elementos e média da lista: \"\"\", z1, '\\n')\nz_square = [pow(z1i, 2) for z1i in z1]\nprint(\"\"\"\nQuadrado da diferença calculada acima: \"\"\", z_square, '\\n')\nz_total = sum(z_square)\nprint(z_total / len(z))\nprint(\"\"\"\nO desvio padrão é:\"\"\", math.sqrt(z_total / len(z)), '\\n')\n", "print(\n \"\"\"\nCurso Ciência de Dados - Fundamentos em Python (Modulos e Pacotes)\[email protected]\n\"\"\"\n )\nprint('Parte 1:\\n')\nprint('Parte 2:\\n')\nprint(\n \"\"\"----------------------------------------------\n---------- Parte 1----------------------------\"\"\"\n )\n<import token>\nz = [10, 20, 20, 40]\nx = est.mean(z)\ny = est.median(z)\nx1 = mean(z)\ny1 = median(z)\ndp1 = stdev(z)\nprint(\"\"\"\nConjunto de dados criado: \"\"\", z)\nprint('\\nMédia: ', x)\nprint('\\nMediana: ', y)\nprint('\\nMédia: ', x1)\nprint('\\nMediana: ', y1)\nprint(\"\"\"\nDesvio Padrão Calculado pela função statistics.stdev: \"\"\", dp1,\n \"\"\" Observe que há diferença do desvio padrão calculado, provavelmente pq a função utiliza algum espaço amostra dessa lista que é pequena\n\"\"\"\n )\nz1 = [(zi - mean(z)) for zi in z]\nprint(\"\"\"\nDiferença entre elementos e média da lista: \"\"\", z1, '\\n')\nz_square = [pow(z1i, 2) for z1i in z1]\nprint(\"\"\"\nQuadrado da diferença calculada acima: \"\"\", z_square, '\\n')\nz_total = sum(z_square)\nprint(z_total / len(z))\nprint(\"\"\"\nO desvio padrão é:\"\"\", math.sqrt(z_total / len(z)), '\\n')\n", "print(\n \"\"\"\nCurso Ciência de Dados - Fundamentos em Python (Modulos e Pacotes)\[email protected]\n\"\"\"\n )\nprint('Parte 1:\\n')\nprint('Parte 2:\\n')\nprint(\n \"\"\"----------------------------------------------\n---------- Parte 1----------------------------\"\"\"\n )\n<import token>\n<assignment token>\nprint(\"\"\"\nConjunto de dados criado: \"\"\", z)\nprint('\\nMédia: ', x)\nprint('\\nMediana: ', y)\nprint('\\nMédia: ', x1)\nprint('\\nMediana: ', y1)\nprint(\"\"\"\nDesvio Padrão Calculado pela função statistics.stdev: \"\"\", dp1,\n \"\"\" Observe que há diferença do desvio padrão calculado, provavelmente pq a função utiliza algum espaço amostra dessa lista que é pequena\n\"\"\"\n )\n<assignment token>\nprint(\"\"\"\nDiferença entre elementos e média da lista: \"\"\", z1, '\\n')\n<assignment token>\nprint(\"\"\"\nQuadrado da diferença calculada acima: \"\"\", z_square, '\\n')\n<assignment token>\nprint(z_total / len(z))\nprint(\"\"\"\nO desvio padrão é:\"\"\", math.sqrt(z_total / len(z)), '\\n')\n", "<code token>\n<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n" ]
false
98,891
e8295931bed5249b10f8b83dd5929a79d2b284df
def count_money_combinations(amount, denominations, denom_index=0, num_denom=0): global count_list if amount < 0: return 0 if amount == 0: count_list.append(num_denom) return 1 if denom_index > len(denominations) - 1 and amount > 0: return 0 return count_money_combinations(amount - denominations[denom_index], denominations, denom_index, num_denom + 1) \ + count_money_combinations(amount, denominations, denom_index + 1, num_denom) if __name__ == '__main__': denominations = [1, 5, 10, 20, 50] amount = 79 count_list = [] _ = count_money_combinations(amount, denominations) print(count_list) assert min(count_list) == 7
[ "def count_money_combinations(amount, denominations, denom_index=0, num_denom=0):\n global count_list\n\n if amount < 0:\n return 0\n\n if amount == 0:\n count_list.append(num_denom)\n return 1\n\n if denom_index > len(denominations) - 1 and amount > 0:\n return 0\n\n return count_money_combinations(amount - denominations[denom_index], denominations, denom_index, num_denom + 1) \\\n + count_money_combinations(amount, denominations, denom_index + 1, num_denom)\n\n\nif __name__ == '__main__':\n denominations = [1, 5, 10, 20, 50]\n amount = 79\n count_list = []\n _ = count_money_combinations(amount, denominations)\n print(count_list)\n assert min(count_list) == 7", "def count_money_combinations(amount, denominations, denom_index=0, num_denom=0\n ):\n global count_list\n if amount < 0:\n return 0\n if amount == 0:\n count_list.append(num_denom)\n return 1\n if denom_index > len(denominations) - 1 and amount > 0:\n return 0\n return count_money_combinations(amount - denominations[denom_index],\n denominations, denom_index, num_denom + 1) + count_money_combinations(\n amount, denominations, denom_index + 1, num_denom)\n\n\nif __name__ == '__main__':\n denominations = [1, 5, 10, 20, 50]\n amount = 79\n count_list = []\n _ = count_money_combinations(amount, denominations)\n print(count_list)\n assert min(count_list) == 7\n", "def count_money_combinations(amount, denominations, denom_index=0, num_denom=0\n ):\n global count_list\n if amount < 0:\n return 0\n if amount == 0:\n count_list.append(num_denom)\n return 1\n if denom_index > len(denominations) - 1 and amount > 0:\n return 0\n return count_money_combinations(amount - denominations[denom_index],\n denominations, denom_index, num_denom + 1) + count_money_combinations(\n amount, denominations, denom_index + 1, num_denom)\n\n\n<code token>\n", "<function token>\n<code token>\n" ]
false
98,892
a7593e0f21cbdbc84ba6d55dcc55f527744c420f
# 다음의 결과와 같이 국어, 영어, 수학 점수를 입력받아 합계를 구하는 객체지향 코드를 작성하십시오. # 이 때 학생 클래스의 객체는 객체 생성 시 국어, 영어, 수학 점수를 저장하며, 총점을 구하는 메서드를 제공합니다. # 입력 # 89, 90, 100 # 출력 # 국어, 영어, 수학의 총점: 279 class Student: def __init__(self, kor, eng, math): self.__kor = kor self.__eng = eng self.__math = math @property def kor(self): return self.__kor @property def eng(self): return self.__eng @property def math(self): return self.__math def scores(self): return f"국어, 영어, 수학의 총점: {self.kor + self.eng + self.math}" students = list(map(int, input().split(", "))) students_list = Student(students[0], students[1], students[2]) print(students_list.scores())
[ "# 다음의 결과와 같이 국어, 영어, 수학 점수를 입력받아 합계를 구하는 객체지향 코드를 작성하십시오.\n# 이 때 학생 클래스의 객체는 객체 생성 시 국어, 영어, 수학 점수를 저장하며, 총점을 구하는 메서드를 제공합니다.\n# 입력\n# 89, 90, 100\n# 출력\n# 국어, 영어, 수학의 총점: 279\n\n\nclass Student:\n def __init__(self, kor, eng, math):\n self.__kor = kor\n self.__eng = eng\n self.__math = math\n\n @property\n def kor(self):\n return self.__kor\n\n @property\n def eng(self):\n return self.__eng\n\n @property\n def math(self):\n return self.__math\n\n def scores(self):\n return f\"국어, 영어, 수학의 총점: {self.kor + self.eng + self.math}\"\n\n\nstudents = list(map(int, input().split(\", \")))\nstudents_list = Student(students[0], students[1], students[2])\nprint(students_list.scores())\n", "class Student:\n\n def __init__(self, kor, eng, math):\n self.__kor = kor\n self.__eng = eng\n self.__math = math\n\n @property\n def kor(self):\n return self.__kor\n\n @property\n def eng(self):\n return self.__eng\n\n @property\n def math(self):\n return self.__math\n\n def scores(self):\n return f'국어, 영어, 수학의 총점: {self.kor + self.eng + self.math}'\n\n\nstudents = list(map(int, input().split(', ')))\nstudents_list = Student(students[0], students[1], students[2])\nprint(students_list.scores())\n", "class Student:\n\n def __init__(self, kor, eng, math):\n self.__kor = kor\n self.__eng = eng\n self.__math = math\n\n @property\n def kor(self):\n return self.__kor\n\n @property\n def eng(self):\n return self.__eng\n\n @property\n def math(self):\n return self.__math\n\n def scores(self):\n return f'국어, 영어, 수학의 총점: {self.kor + self.eng + self.math}'\n\n\n<assignment token>\nprint(students_list.scores())\n", "class Student:\n\n def __init__(self, kor, eng, math):\n self.__kor = kor\n self.__eng = eng\n self.__math = math\n\n @property\n def kor(self):\n return self.__kor\n\n @property\n def eng(self):\n return self.__eng\n\n @property\n def math(self):\n return self.__math\n\n def scores(self):\n return f'국어, 영어, 수학의 총점: {self.kor + self.eng + self.math}'\n\n\n<assignment token>\n<code token>\n", "class Student:\n\n def __init__(self, kor, eng, math):\n self.__kor = kor\n self.__eng = eng\n self.__math = math\n\n @property\n def kor(self):\n return self.__kor\n <function token>\n\n @property\n def math(self):\n return self.__math\n\n def scores(self):\n return f'국어, 영어, 수학의 총점: {self.kor + self.eng + self.math}'\n\n\n<assignment token>\n<code token>\n", "class Student:\n\n def __init__(self, kor, eng, math):\n self.__kor = kor\n self.__eng = eng\n self.__math = math\n\n @property\n def kor(self):\n return self.__kor\n <function token>\n\n @property\n def math(self):\n return self.__math\n <function token>\n\n\n<assignment token>\n<code token>\n", "class Student:\n\n def __init__(self, kor, eng, math):\n self.__kor = kor\n self.__eng = eng\n self.__math = math\n\n @property\n def kor(self):\n return self.__kor\n <function token>\n <function token>\n <function token>\n\n\n<assignment token>\n<code token>\n", "class Student:\n <function token>\n\n @property\n def kor(self):\n return self.__kor\n <function token>\n <function token>\n <function token>\n\n\n<assignment token>\n<code token>\n", "class Student:\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\n<assignment token>\n<code token>\n", "<class token>\n<assignment token>\n<code token>\n" ]
false
98,893
b34cabe9f84b661ea006be6a1f19f50ef24d570b
# Generated by Django 3.1.3 on 2020-11-04 01:49 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('stocks', '0003_portfoliosummary'), ] operations = [ migrations.AddField( model_name='portfoliosummary', name='average_cost', field=models.DecimalField(decimal_places=2, max_digits=12, null=True), ), migrations.AddField( model_name='portfoliosummary', name='current_market_price', field=models.DecimalField(decimal_places=2, max_digits=12, null=True), ), migrations.AddField( model_name='portfoliosummary', name='total_gain_loss', field=models.DecimalField(decimal_places=2, max_digits=20, null=True), ), migrations.AlterField( model_name='portfoliosummary', name='book_value', field=models.DecimalField(decimal_places=2, max_digits=20, null=True), ), migrations.AlterField( model_name='portfoliosummary', name='market_value', field=models.DecimalField(decimal_places=2, max_digits=20, null=True), ), migrations.AlterField( model_name='user', name='first_name', field=models.CharField(blank=True, max_length=150, verbose_name='first name'), ), migrations.AlterModelTable( name='portfoliosummary', table='portfolio_summary', ), ]
[ "# Generated by Django 3.1.3 on 2020-11-04 01:49\n\nfrom django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('stocks', '0003_portfoliosummary'),\n ]\n\n operations = [\n migrations.AddField(\n model_name='portfoliosummary',\n name='average_cost',\n field=models.DecimalField(decimal_places=2, max_digits=12, null=True),\n ),\n migrations.AddField(\n model_name='portfoliosummary',\n name='current_market_price',\n field=models.DecimalField(decimal_places=2, max_digits=12, null=True),\n ),\n migrations.AddField(\n model_name='portfoliosummary',\n name='total_gain_loss',\n field=models.DecimalField(decimal_places=2, max_digits=20, null=True),\n ),\n migrations.AlterField(\n model_name='portfoliosummary',\n name='book_value',\n field=models.DecimalField(decimal_places=2, max_digits=20, null=True),\n ),\n migrations.AlterField(\n model_name='portfoliosummary',\n name='market_value',\n field=models.DecimalField(decimal_places=2, max_digits=20, null=True),\n ),\n migrations.AlterField(\n model_name='user',\n name='first_name',\n field=models.CharField(blank=True, max_length=150, verbose_name='first name'),\n ),\n migrations.AlterModelTable(\n name='portfoliosummary',\n table='portfolio_summary',\n ),\n ]\n", "from django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n dependencies = [('stocks', '0003_portfoliosummary')]\n operations = [migrations.AddField(model_name='portfoliosummary', name=\n 'average_cost', field=models.DecimalField(decimal_places=2,\n max_digits=12, null=True)), migrations.AddField(model_name=\n 'portfoliosummary', name='current_market_price', field=models.\n DecimalField(decimal_places=2, max_digits=12, null=True)),\n migrations.AddField(model_name='portfoliosummary', name=\n 'total_gain_loss', field=models.DecimalField(decimal_places=2,\n max_digits=20, null=True)), migrations.AlterField(model_name=\n 'portfoliosummary', name='book_value', field=models.DecimalField(\n decimal_places=2, max_digits=20, null=True)), migrations.AlterField\n (model_name='portfoliosummary', name='market_value', field=models.\n DecimalField(decimal_places=2, max_digits=20, null=True)),\n migrations.AlterField(model_name='user', name='first_name', field=\n models.CharField(blank=True, max_length=150, verbose_name=\n 'first name')), migrations.AlterModelTable(name='portfoliosummary',\n table='portfolio_summary')]\n", "<import token>\n\n\nclass Migration(migrations.Migration):\n dependencies = [('stocks', '0003_portfoliosummary')]\n operations = [migrations.AddField(model_name='portfoliosummary', name=\n 'average_cost', field=models.DecimalField(decimal_places=2,\n max_digits=12, null=True)), migrations.AddField(model_name=\n 'portfoliosummary', name='current_market_price', field=models.\n DecimalField(decimal_places=2, max_digits=12, null=True)),\n migrations.AddField(model_name='portfoliosummary', name=\n 'total_gain_loss', field=models.DecimalField(decimal_places=2,\n max_digits=20, null=True)), migrations.AlterField(model_name=\n 'portfoliosummary', name='book_value', field=models.DecimalField(\n decimal_places=2, max_digits=20, null=True)), migrations.AlterField\n (model_name='portfoliosummary', name='market_value', field=models.\n DecimalField(decimal_places=2, max_digits=20, null=True)),\n migrations.AlterField(model_name='user', name='first_name', field=\n models.CharField(blank=True, max_length=150, verbose_name=\n 'first name')), migrations.AlterModelTable(name='portfoliosummary',\n table='portfolio_summary')]\n", "<import token>\n\n\nclass Migration(migrations.Migration):\n <assignment token>\n <assignment token>\n", "<import token>\n<class token>\n" ]
false
98,894
fa783aa1ec7adb8a5f4c2c8c5e8994484492d9c3
import uuid import datetime import random import json from azure.servicebus import ServiceBusService sbs = ServiceBusService(service_namespace='brucewaynetolltooth', shared_access_key_name='RootManageSharedAccessKey', shared_access_key_value='m6mWS29LUMIh2ZH9gh4KjmoNPiXBxeMCaq6eMxojBDc=') devices = [] for x in range(0, 10): devices.append(str(uuid.uuid4())) for y in range(0,20): for dev in devices: reading = {'id': dev, 'timestamp': str(datetime.datetime.utcnow()), 'uv': random.random(), 'temperature': random.randint(70, 100), 'humidity': random.randint(70, 100)} s = json.dumps(reading) sbs.send_event('entrysignals', s) print(y)
[ "import uuid\nimport datetime\nimport random\nimport json\nfrom azure.servicebus import ServiceBusService\n\nsbs = ServiceBusService(service_namespace='brucewaynetolltooth', shared_access_key_name='RootManageSharedAccessKey', shared_access_key_value='m6mWS29LUMIh2ZH9gh4KjmoNPiXBxeMCaq6eMxojBDc=')\ndevices = []\nfor x in range(0, 10):\n devices.append(str(uuid.uuid4()))\n\nfor y in range(0,20):\n for dev in devices:\n reading = {'id': dev, 'timestamp': str(datetime.datetime.utcnow()), 'uv': random.random(), 'temperature': random.randint(70, 100), 'humidity': random.randint(70, 100)}\n s = json.dumps(reading)\n sbs.send_event('entrysignals', s)\n print(y)", "import uuid\nimport datetime\nimport random\nimport json\nfrom azure.servicebus import ServiceBusService\nsbs = ServiceBusService(service_namespace='brucewaynetolltooth',\n shared_access_key_name='RootManageSharedAccessKey',\n shared_access_key_value='m6mWS29LUMIh2ZH9gh4KjmoNPiXBxeMCaq6eMxojBDc=')\ndevices = []\nfor x in range(0, 10):\n devices.append(str(uuid.uuid4()))\nfor y in range(0, 20):\n for dev in devices:\n reading = {'id': dev, 'timestamp': str(datetime.datetime.utcnow()),\n 'uv': random.random(), 'temperature': random.randint(70, 100),\n 'humidity': random.randint(70, 100)}\n s = json.dumps(reading)\n sbs.send_event('entrysignals', s)\n print(y)\n", "<import token>\nsbs = ServiceBusService(service_namespace='brucewaynetolltooth',\n shared_access_key_name='RootManageSharedAccessKey',\n shared_access_key_value='m6mWS29LUMIh2ZH9gh4KjmoNPiXBxeMCaq6eMxojBDc=')\ndevices = []\nfor x in range(0, 10):\n devices.append(str(uuid.uuid4()))\nfor y in range(0, 20):\n for dev in devices:\n reading = {'id': dev, 'timestamp': str(datetime.datetime.utcnow()),\n 'uv': random.random(), 'temperature': random.randint(70, 100),\n 'humidity': random.randint(70, 100)}\n s = json.dumps(reading)\n sbs.send_event('entrysignals', s)\n print(y)\n", "<import token>\n<assignment token>\nfor x in range(0, 10):\n devices.append(str(uuid.uuid4()))\nfor y in range(0, 20):\n for dev in devices:\n reading = {'id': dev, 'timestamp': str(datetime.datetime.utcnow()),\n 'uv': random.random(), 'temperature': random.randint(70, 100),\n 'humidity': random.randint(70, 100)}\n s = json.dumps(reading)\n sbs.send_event('entrysignals', s)\n print(y)\n", "<import token>\n<assignment token>\n<code token>\n" ]
false
98,895
f8f68a06303712f28be07fc91589356a760e2311
from __future__ import division import numpy as np import pickle file = open("syntax_avg_lang_knn-2",'r') sys_1 = pickle.load(file) preds_1 = [item for sublist in sys_1 for item in sublist] file = open("syntax_avg_lang_preds",'r') sys_2 = pickle.load(file) preds_2 = [item for sublist in sys_2 for item in sublist] file = open("syntax_avg_lang_refs",'r') references = pickle.load(file) refs = [item for sublist in references for item in sublist] assert len(preds_1)==len(refs) assert len(preds_2)==len(refs) bootstrap_number=10000 count_win_1 = 0 count_win_2 = 0 count_ties = 0 for k in range(bootstrap_number): # Make random subset of half sentences in test data subset = np.random.choice(len(refs),size=int(0.5*len(refs))) #print([preds_1[idx] for idx in subset]) #print([preds_2[idx] for idx in subset]) #print([refs[idx] for idx in subset]) b_1 = sum([1 for idx in subset if preds_1[idx]==refs[idx]]) b_2 = sum([1 for idx in subset if preds_2[idx]==refs[idx]]) #print(b_1,b_2) if b_1 > b_2: count_win_1 += 1 elif b_1 < b_2: count_win_2 += 1 else: count_ties += 1 print('Win probabilities: %.3f , %.3f , Tie Probability: %.3f' % ((count_win_1/bootstrap_number)*100.0,(count_win_2/bootstrap_number)*100.0, (count_ties/bootstrap_number)*100.0))
[ "from __future__ import division\nimport numpy as np\nimport pickle\n\nfile = open(\"syntax_avg_lang_knn-2\",'r') \nsys_1 = pickle.load(file)\npreds_1 = [item for sublist in sys_1 for item in sublist]\n\nfile = open(\"syntax_avg_lang_preds\",'r')\nsys_2 = pickle.load(file)\npreds_2 = [item for sublist in sys_2 for item in sublist]\n\nfile = open(\"syntax_avg_lang_refs\",'r')\nreferences = pickle.load(file)\nrefs = [item for sublist in references for item in sublist]\n\n\nassert len(preds_1)==len(refs)\nassert len(preds_2)==len(refs)\n\nbootstrap_number=10000\ncount_win_1 = 0\ncount_win_2 = 0\ncount_ties = 0\n\n\nfor k in range(bootstrap_number):\n # Make random subset of half sentences in test data\n subset = np.random.choice(len(refs),size=int(0.5*len(refs)))\n #print([preds_1[idx] for idx in subset])\n #print([preds_2[idx] for idx in subset])\n #print([refs[idx] for idx in subset])\n b_1 = sum([1 for idx in subset if preds_1[idx]==refs[idx]])\n b_2 = sum([1 for idx in subset if preds_2[idx]==refs[idx]])\n #print(b_1,b_2) \n if b_1 > b_2:\n\tcount_win_1 += 1\n elif b_1 < b_2:\n\tcount_win_2 += 1\n else:\n\tcount_ties += 1\n\nprint('Win probabilities: %.3f , %.3f , Tie Probability: %.3f' % ((count_win_1/bootstrap_number)*100.0,(count_win_2/bootstrap_number)*100.0, (count_ties/bootstrap_number)*100.0))\n" ]
true
98,896
6c6009eec2fb24d57802dbe10336363abbc77e34
# trying to make a one list and add links as per needs #adithya prabhu #developed jun 2021 #latest open input in webpage import webbrowser import time import datetime import pyautogui from tabulate import tabulate screenWidth,screenHeight = pyautogui.size() now = datetime.datetime.now() day=(now.strftime('%A')) print(day) Current_time = time.strftime("%H.%M") all="https://meet.google.com/ghfgffc" comp="https://meet.google.com/ghfghgcf" rest="https://please-take-a-break.adithyarprabhu.repl.co/" #please take a break website # monday_url=[all,comp,all,all,rest,rest,rest,rest] # tuesday_url=[comp,all,all,all,rest,rest,rest,rest] # wednesday_url=[all,comp,all,all,rest,rest,rest,rest] # thursday_url=[all,comp,all,all,rest,rest,rest,rest] # friday_url=[all,all,all,comp,rest,rest,rest,rest] # saturday_url=[all,all,all,all,rest,rest,rest,rest] # while n<len(urls): # print(urls[n],times[n]) # n=n+1 # while n<len(urls): # print(urls[n],times[n],sep="-----at-->") # n=n+1 urls=[] if day=='Monday': urls.append(all) urls.append(comp) urls.append(all) urls.append(all) urls.append(rest) urls.append(rest) urls.append(rest) urls.append(rest) elif day=='Tuesday': urls.append(comp) urls.append(all) urls.append(all) urls.append(all) urls.append(rest) urls.append(rest) urls.append(rest) urls.append(rest) elif day=='Wednesday': urls.append(all) urls.append(comp) urls.append(all) urls.append(all) urls.append(rest) urls.append(rest) urls.append(rest) urls.append(rest) elif day=='Thursday': urls.append(all) urls.append(comp) urls.append(all) urls.append(all) urls.append(rest) urls.append(rest) urls.append(rest) urls.append(rest) elif day=='Friday': urls.append(all) urls.append(all) urls.append(all) urls.append(comp) urls.append(rest) urls.append(rest) urls.append(rest) urls.append(rest) elif day=='Saturday': urls.append(all) urls.append(all) urls.append(all) urls.append(all) urls.append(rest) urls.append(rest) urls.append(rest) urls.append(rest) else:#Sunday print("Sunday is a Holiday 😁😀😀 you fool") time.sleep(10) times=[] times.append("07.12") times.append("08.17") times.append("09.27") times.append("10.27") times.append("12.17") times.append("14.43") times.append("15.51") times.append("19.31") #definitions def add(): y_n=input("do you have any extra sessions today ?(y/n) -->") while "y" in y_n.lower(): exttime=input("enter the time to shedule it in format HH.MM-->") times.append(exttime) times.sort() pos_in_times=times.index(exttime) ext=input("Enter the link here(must include https and all that)-->") urls.insert(pos_in_times,ext) y_n=input("do you have any more extra sessions today ?(y/n) -->") def next(): while Current_time >(times[0]) : urls.remove(urls[0]) times.remove(times[0]) def remove(): re_y_n=input("do you want to remove any session (y/n)-->") task_table() while "y" in re_y_n.lower(): which=int(input("which session do you want to remove(1,2..)--")) which=which-1 urls.remove(urls[which])#use numbers from 0 as 0 is first element of the list times.remove(times[which]) task_table() re_y_n=input("now do you want to remove any session (y/n)-->") def opengmeet_or_site(): next() for i in range(100): link = (urls[0]) alarm = (times[0]) Current_time = time.strftime("%H.%M") while (Current_time != alarm): print ("Waiting, the current time is " + Current_time+" :-( " ) Current_time = time.strftime("%H.%M") time.sleep(1) if (Current_time == alarm): print ("WEBSITE IS OPENING :D") if "meet.google.com" in (urls[0]) : webbrowser.open(link) pyautogui.press('enter') time.sleep(2) pyautogui.click(100*screenWidth/1680,410*screenHeight/1050) #Join now time.sleep(10) pyautogui.hotkey('ctrl','d') time.sleep(1) pyautogui.hotkey('ctrl','e') time.sleep(1) pyautogui.click(1150*screenWidth/1680,620*screenHeight/1050) #Join now urls.remove(urls[0]) times.remove(times[0]) else: webbrowser.open(link) urls.remove(urls[0]) times.remove(times[0]) def task_table(): from tabulate import tabulate next() n=0 l = [] numbers=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,100] while n<len(urls): a= [numbers[n],urls[n],times[n]] l.append(a) n=n+1 table = tabulate(l, headers=['num','url', 'time'], tablefmt='orgtbl') print(table) def start_table(): start_list = [["1","VIEW TODAY'S SCHEDULE"],[],["2","ADD TASK TO TODAY'S SCHEDULE"],[] ,["3","REMOVE TASK FROM TODAY'S SCHEDULE"],[],["4","RUN THE PROGRAMME"],[],["5","EXIT"]] start_table = tabulate(start_list, headers=['OPTION','PURPOSE'], tablefmt='orgtbl') print(start_table) next() print("**********************************************************") print("WELCOME TO AUTOMATIC WEBSITE OPENER AND GOOGLE MEET JOINER") print("**********************************************************") start_table() k=0 while k==k: o=input("Enter your option to proceed(1/2/3/4/5)-->") if "1" in o: task_table() elif "2" in o: add() elif "3" in o: remove() elif "4" in o: opengmeet_or_site() elif "5" in o: print("Thanks") break else: print("Error Man try again!")
[ "# trying to make a one list and add links as per needs\r\n\r\n#adithya prabhu\r\n#developed jun 2021\r\n#latest open input in webpage\r\n\r\n\r\nimport webbrowser\r\nimport time \r\nimport datetime\r\nimport pyautogui\r\nfrom tabulate import tabulate\r\n\r\nscreenWidth,screenHeight = pyautogui.size()\r\nnow = datetime.datetime.now()\r\nday=(now.strftime('%A'))\r\nprint(day)\r\nCurrent_time = time.strftime(\"%H.%M\")\r\n \r\n\r\nall=\"https://meet.google.com/ghfgffc\"\r\ncomp=\"https://meet.google.com/ghfghgcf\"\r\nrest=\"https://please-take-a-break.adithyarprabhu.repl.co/\" #please take a break website\r\n\r\n# monday_url=[all,comp,all,all,rest,rest,rest,rest]\r\n# tuesday_url=[comp,all,all,all,rest,rest,rest,rest]\r\n# wednesday_url=[all,comp,all,all,rest,rest,rest,rest]\r\n# thursday_url=[all,comp,all,all,rest,rest,rest,rest]\r\n# friday_url=[all,all,all,comp,rest,rest,rest,rest]\r\n# saturday_url=[all,all,all,all,rest,rest,rest,rest]\r\n# while n<len(urls):\r\n# print(urls[n],times[n])\r\n# n=n+1\r\n# while n<len(urls):\r\n# print(urls[n],times[n],sep=\"-----at-->\")\r\n# n=n+1\r\n\r\n\r\nurls=[]\r\nif day=='Monday':\r\n urls.append(all)\r\n urls.append(comp)\r\n urls.append(all)\r\n urls.append(all)\r\n urls.append(rest)\r\n urls.append(rest)\r\n urls.append(rest)\r\n urls.append(rest)\r\nelif day=='Tuesday': \r\n urls.append(comp)\r\n urls.append(all)\r\n urls.append(all)\r\n urls.append(all)\r\n urls.append(rest)\r\n urls.append(rest)\r\n urls.append(rest)\r\n urls.append(rest)\r\nelif day=='Wednesday': \r\n urls.append(all)\r\n urls.append(comp)\r\n urls.append(all)\r\n urls.append(all)\r\n urls.append(rest)\r\n urls.append(rest)\r\n urls.append(rest)\r\n urls.append(rest)\r\nelif day=='Thursday': \r\n urls.append(all)\r\n urls.append(comp)\r\n urls.append(all)\r\n urls.append(all)\r\n urls.append(rest)\r\n urls.append(rest)\r\n urls.append(rest)\r\n urls.append(rest)\r\nelif day=='Friday': \r\n urls.append(all)\r\n urls.append(all)\r\n urls.append(all)\r\n urls.append(comp)\r\n urls.append(rest)\r\n urls.append(rest)\r\n urls.append(rest)\r\n urls.append(rest)\r\nelif day=='Saturday': \r\n urls.append(all)\r\n urls.append(all)\r\n urls.append(all)\r\n urls.append(all)\r\n urls.append(rest)\r\n urls.append(rest)\r\n urls.append(rest)\r\n urls.append(rest)\r\nelse:#Sunday\r\n print(\"Sunday is a Holiday 😁😀😀 you fool\")\r\n time.sleep(10)\r\n\r\n\r\n\r\n\r\n\r\ntimes=[]\r\ntimes.append(\"07.12\")\r\ntimes.append(\"08.17\")\r\ntimes.append(\"09.27\")\r\ntimes.append(\"10.27\")\r\ntimes.append(\"12.17\")\r\ntimes.append(\"14.43\")\r\ntimes.append(\"15.51\")\r\ntimes.append(\"19.31\")\r\n\r\n\r\n\r\n\r\n\r\n#definitions\r\ndef add():\r\n y_n=input(\"do you have any extra sessions today ?(y/n) -->\")\r\n while \"y\" in y_n.lower():\r\n exttime=input(\"enter the time to shedule it in format HH.MM-->\")\r\n times.append(exttime)\r\n times.sort()\r\n pos_in_times=times.index(exttime)\r\n ext=input(\"Enter the link here(must include https and all that)-->\")\r\n urls.insert(pos_in_times,ext)\r\n y_n=input(\"do you have any more extra sessions today ?(y/n) -->\")\r\ndef next():\r\n while Current_time >(times[0]) :\r\n urls.remove(urls[0])\r\n times.remove(times[0])\r\ndef remove():\r\n re_y_n=input(\"do you want to remove any session (y/n)-->\")\r\n task_table()\r\n while \"y\" in re_y_n.lower():\r\n which=int(input(\"which session do you want to remove(1,2..)--\"))\r\n which=which-1\r\n urls.remove(urls[which])#use numbers from 0 as 0 is first element of the list\r\n times.remove(times[which])\r\n task_table()\r\n re_y_n=input(\"now do you want to remove any session (y/n)-->\")\r\ndef opengmeet_or_site():\r\n next()\r\n for i in range(100):\r\n link = (urls[0]) \r\n alarm = (times[0])\r\n Current_time = time.strftime(\"%H.%M\")\r\n while (Current_time != alarm): \r\n print (\"Waiting, the current time is \" + Current_time+\" :-( \" )\r\n Current_time = time.strftime(\"%H.%M\") \r\n time.sleep(1) \r\n if (Current_time == alarm): \r\n print (\"WEBSITE IS OPENING :D\")\r\n if \"meet.google.com\" in (urls[0]) : \r\n webbrowser.open(link)\r\n pyautogui.press('enter')\r\n time.sleep(2)\r\n pyautogui.click(100*screenWidth/1680,410*screenHeight/1050) #Join now\r\n time.sleep(10)\r\n pyautogui.hotkey('ctrl','d')\r\n time.sleep(1)\r\n pyautogui.hotkey('ctrl','e')\r\n time.sleep(1)\r\n pyautogui.click(1150*screenWidth/1680,620*screenHeight/1050) #Join now\r\n urls.remove(urls[0])\r\n times.remove(times[0])\r\n else:\r\n webbrowser.open(link)\r\n urls.remove(urls[0])\r\n times.remove(times[0]) \r\ndef task_table():\r\n from tabulate import tabulate\r\n next()\r\n n=0\r\n l = []\r\n numbers=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,100]\r\n while n<len(urls):\r\n a= [numbers[n],urls[n],times[n]]\r\n l.append(a)\r\n n=n+1\r\n table = tabulate(l, headers=['num','url', 'time'], tablefmt='orgtbl')\r\n print(table)\r\ndef start_table():\r\n start_list = [[\"1\",\"VIEW TODAY'S SCHEDULE\"],[],[\"2\",\"ADD TASK TO TODAY'S SCHEDULE\"],[]\r\n ,[\"3\",\"REMOVE TASK FROM TODAY'S SCHEDULE\"],[],[\"4\",\"RUN THE PROGRAMME\"],[],[\"5\",\"EXIT\"]]\r\n start_table = tabulate(start_list, headers=['OPTION','PURPOSE'], tablefmt='orgtbl')\r\n\r\n print(start_table)\r\n\r\nnext()\r\n\r\nprint(\"**********************************************************\")\r\nprint(\"WELCOME TO AUTOMATIC WEBSITE OPENER AND GOOGLE MEET JOINER\")\r\nprint(\"**********************************************************\")\r\n\r\nstart_table()\r\nk=0\r\nwhile k==k:\r\n o=input(\"Enter your option to proceed(1/2/3/4/5)-->\")\r\n if \"1\" in o:\r\n task_table()\r\n elif \"2\" in o:\r\n add()\r\n elif \"3\" in o:\r\n remove()\r\n elif \"4\" in o:\r\n opengmeet_or_site()\r\n elif \"5\" in o:\r\n print(\"Thanks\")\r\n break\r\n else:\r\n print(\"Error Man try again!\")\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n", "import webbrowser\nimport time\nimport datetime\nimport pyautogui\nfrom tabulate import tabulate\nscreenWidth, screenHeight = pyautogui.size()\nnow = datetime.datetime.now()\nday = now.strftime('%A')\nprint(day)\nCurrent_time = time.strftime('%H.%M')\nall = 'https://meet.google.com/ghfgffc'\ncomp = 'https://meet.google.com/ghfghgcf'\nrest = 'https://please-take-a-break.adithyarprabhu.repl.co/'\nurls = []\nif day == 'Monday':\n urls.append(all)\n urls.append(comp)\n urls.append(all)\n urls.append(all)\n urls.append(rest)\n urls.append(rest)\n urls.append(rest)\n urls.append(rest)\nelif day == 'Tuesday':\n urls.append(comp)\n urls.append(all)\n urls.append(all)\n urls.append(all)\n urls.append(rest)\n urls.append(rest)\n urls.append(rest)\n urls.append(rest)\nelif day == 'Wednesday':\n urls.append(all)\n urls.append(comp)\n urls.append(all)\n urls.append(all)\n urls.append(rest)\n urls.append(rest)\n urls.append(rest)\n urls.append(rest)\nelif day == 'Thursday':\n urls.append(all)\n urls.append(comp)\n urls.append(all)\n urls.append(all)\n urls.append(rest)\n urls.append(rest)\n urls.append(rest)\n urls.append(rest)\nelif day == 'Friday':\n urls.append(all)\n urls.append(all)\n urls.append(all)\n urls.append(comp)\n urls.append(rest)\n urls.append(rest)\n urls.append(rest)\n urls.append(rest)\nelif day == 'Saturday':\n urls.append(all)\n urls.append(all)\n urls.append(all)\n urls.append(all)\n urls.append(rest)\n urls.append(rest)\n urls.append(rest)\n urls.append(rest)\nelse:\n print('Sunday is a Holiday 😁😀😀 you fool')\n time.sleep(10)\ntimes = []\ntimes.append('07.12')\ntimes.append('08.17')\ntimes.append('09.27')\ntimes.append('10.27')\ntimes.append('12.17')\ntimes.append('14.43')\ntimes.append('15.51')\ntimes.append('19.31')\n\n\ndef add():\n y_n = input('do you have any extra sessions today ?(y/n) -->')\n while 'y' in y_n.lower():\n exttime = input('enter the time to shedule it in format HH.MM-->')\n times.append(exttime)\n times.sort()\n pos_in_times = times.index(exttime)\n ext = input('Enter the link here(must include https and all that)-->')\n urls.insert(pos_in_times, ext)\n y_n = input('do you have any more extra sessions today ?(y/n) -->')\n\n\ndef next():\n while Current_time > times[0]:\n urls.remove(urls[0])\n times.remove(times[0])\n\n\ndef remove():\n re_y_n = input('do you want to remove any session (y/n)-->')\n task_table()\n while 'y' in re_y_n.lower():\n which = int(input('which session do you want to remove(1,2..)--'))\n which = which - 1\n urls.remove(urls[which])\n times.remove(times[which])\n task_table()\n re_y_n = input('now do you want to remove any session (y/n)-->')\n\n\ndef opengmeet_or_site():\n next()\n for i in range(100):\n link = urls[0]\n alarm = times[0]\n Current_time = time.strftime('%H.%M')\n while Current_time != alarm:\n print('Waiting, the current time is ' + Current_time + ' :-( ')\n Current_time = time.strftime('%H.%M')\n time.sleep(1)\n if Current_time == alarm:\n print('WEBSITE IS OPENING :D')\n if 'meet.google.com' in urls[0]:\n webbrowser.open(link)\n pyautogui.press('enter')\n time.sleep(2)\n pyautogui.click(100 * screenWidth / 1680, 410 *\n screenHeight / 1050)\n time.sleep(10)\n pyautogui.hotkey('ctrl', 'd')\n time.sleep(1)\n pyautogui.hotkey('ctrl', 'e')\n time.sleep(1)\n pyautogui.click(1150 * screenWidth / 1680, 620 *\n screenHeight / 1050)\n urls.remove(urls[0])\n times.remove(times[0])\n else:\n webbrowser.open(link)\n urls.remove(urls[0])\n times.remove(times[0])\n\n\ndef task_table():\n from tabulate import tabulate\n next()\n n = 0\n l = []\n numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, \n 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,\n 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,\n 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68,\n 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85,\n 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100]\n while n < len(urls):\n a = [numbers[n], urls[n], times[n]]\n l.append(a)\n n = n + 1\n table = tabulate(l, headers=['num', 'url', 'time'], tablefmt='orgtbl')\n print(table)\n\n\ndef start_table():\n start_list = [['1', \"VIEW TODAY'S SCHEDULE\"], [], ['2',\n \"ADD TASK TO TODAY'S SCHEDULE\"], [], ['3',\n \"REMOVE TASK FROM TODAY'S SCHEDULE\"], [], ['4', 'RUN THE PROGRAMME'\n ], [], ['5', 'EXIT']]\n start_table = tabulate(start_list, headers=['OPTION', 'PURPOSE'],\n tablefmt='orgtbl')\n print(start_table)\n\n\nnext()\nprint('**********************************************************')\nprint('WELCOME TO AUTOMATIC WEBSITE OPENER AND GOOGLE MEET JOINER')\nprint('**********************************************************')\nstart_table()\nk = 0\nwhile k == k:\n o = input('Enter your option to proceed(1/2/3/4/5)-->')\n if '1' in o:\n task_table()\n elif '2' in o:\n add()\n elif '3' in o:\n remove()\n elif '4' in o:\n opengmeet_or_site()\n elif '5' in o:\n print('Thanks')\n break\n else:\n print('Error Man try again!')\n", "<import token>\nscreenWidth, screenHeight = pyautogui.size()\nnow = datetime.datetime.now()\nday = now.strftime('%A')\nprint(day)\nCurrent_time = time.strftime('%H.%M')\nall = 'https://meet.google.com/ghfgffc'\ncomp = 'https://meet.google.com/ghfghgcf'\nrest = 'https://please-take-a-break.adithyarprabhu.repl.co/'\nurls = []\nif day == 'Monday':\n urls.append(all)\n urls.append(comp)\n urls.append(all)\n urls.append(all)\n urls.append(rest)\n urls.append(rest)\n urls.append(rest)\n urls.append(rest)\nelif day == 'Tuesday':\n urls.append(comp)\n urls.append(all)\n urls.append(all)\n urls.append(all)\n urls.append(rest)\n urls.append(rest)\n urls.append(rest)\n urls.append(rest)\nelif day == 'Wednesday':\n urls.append(all)\n urls.append(comp)\n urls.append(all)\n urls.append(all)\n urls.append(rest)\n urls.append(rest)\n urls.append(rest)\n urls.append(rest)\nelif day == 'Thursday':\n urls.append(all)\n urls.append(comp)\n urls.append(all)\n urls.append(all)\n urls.append(rest)\n urls.append(rest)\n urls.append(rest)\n urls.append(rest)\nelif day == 'Friday':\n urls.append(all)\n urls.append(all)\n urls.append(all)\n urls.append(comp)\n urls.append(rest)\n urls.append(rest)\n urls.append(rest)\n urls.append(rest)\nelif day == 'Saturday':\n urls.append(all)\n urls.append(all)\n urls.append(all)\n urls.append(all)\n urls.append(rest)\n urls.append(rest)\n urls.append(rest)\n urls.append(rest)\nelse:\n print('Sunday is a Holiday 😁😀😀 you fool')\n time.sleep(10)\ntimes = []\ntimes.append('07.12')\ntimes.append('08.17')\ntimes.append('09.27')\ntimes.append('10.27')\ntimes.append('12.17')\ntimes.append('14.43')\ntimes.append('15.51')\ntimes.append('19.31')\n\n\ndef add():\n y_n = input('do you have any extra sessions today ?(y/n) -->')\n while 'y' in y_n.lower():\n exttime = input('enter the time to shedule it in format HH.MM-->')\n times.append(exttime)\n times.sort()\n pos_in_times = times.index(exttime)\n ext = input('Enter the link here(must include https and all that)-->')\n urls.insert(pos_in_times, ext)\n y_n = input('do you have any more extra sessions today ?(y/n) -->')\n\n\ndef next():\n while Current_time > times[0]:\n urls.remove(urls[0])\n times.remove(times[0])\n\n\ndef remove():\n re_y_n = input('do you want to remove any session (y/n)-->')\n task_table()\n while 'y' in re_y_n.lower():\n which = int(input('which session do you want to remove(1,2..)--'))\n which = which - 1\n urls.remove(urls[which])\n times.remove(times[which])\n task_table()\n re_y_n = input('now do you want to remove any session (y/n)-->')\n\n\ndef opengmeet_or_site():\n next()\n for i in range(100):\n link = urls[0]\n alarm = times[0]\n Current_time = time.strftime('%H.%M')\n while Current_time != alarm:\n print('Waiting, the current time is ' + Current_time + ' :-( ')\n Current_time = time.strftime('%H.%M')\n time.sleep(1)\n if Current_time == alarm:\n print('WEBSITE IS OPENING :D')\n if 'meet.google.com' in urls[0]:\n webbrowser.open(link)\n pyautogui.press('enter')\n time.sleep(2)\n pyautogui.click(100 * screenWidth / 1680, 410 *\n screenHeight / 1050)\n time.sleep(10)\n pyautogui.hotkey('ctrl', 'd')\n time.sleep(1)\n pyautogui.hotkey('ctrl', 'e')\n time.sleep(1)\n pyautogui.click(1150 * screenWidth / 1680, 620 *\n screenHeight / 1050)\n urls.remove(urls[0])\n times.remove(times[0])\n else:\n webbrowser.open(link)\n urls.remove(urls[0])\n times.remove(times[0])\n\n\ndef task_table():\n from tabulate import tabulate\n next()\n n = 0\n l = []\n numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, \n 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,\n 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,\n 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68,\n 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85,\n 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100]\n while n < len(urls):\n a = [numbers[n], urls[n], times[n]]\n l.append(a)\n n = n + 1\n table = tabulate(l, headers=['num', 'url', 'time'], tablefmt='orgtbl')\n print(table)\n\n\ndef start_table():\n start_list = [['1', \"VIEW TODAY'S SCHEDULE\"], [], ['2',\n \"ADD TASK TO TODAY'S SCHEDULE\"], [], ['3',\n \"REMOVE TASK FROM TODAY'S SCHEDULE\"], [], ['4', 'RUN THE PROGRAMME'\n ], [], ['5', 'EXIT']]\n start_table = tabulate(start_list, headers=['OPTION', 'PURPOSE'],\n tablefmt='orgtbl')\n print(start_table)\n\n\nnext()\nprint('**********************************************************')\nprint('WELCOME TO AUTOMATIC WEBSITE OPENER AND GOOGLE MEET JOINER')\nprint('**********************************************************')\nstart_table()\nk = 0\nwhile k == k:\n o = input('Enter your option to proceed(1/2/3/4/5)-->')\n if '1' in o:\n task_table()\n elif '2' in o:\n add()\n elif '3' in o:\n remove()\n elif '4' in o:\n opengmeet_or_site()\n elif '5' in o:\n print('Thanks')\n break\n else:\n print('Error Man try again!')\n", "<import token>\n<assignment token>\nprint(day)\n<assignment token>\nif day == 'Monday':\n urls.append(all)\n urls.append(comp)\n urls.append(all)\n urls.append(all)\n urls.append(rest)\n urls.append(rest)\n urls.append(rest)\n urls.append(rest)\nelif day == 'Tuesday':\n urls.append(comp)\n urls.append(all)\n urls.append(all)\n urls.append(all)\n urls.append(rest)\n urls.append(rest)\n urls.append(rest)\n urls.append(rest)\nelif day == 'Wednesday':\n urls.append(all)\n urls.append(comp)\n urls.append(all)\n urls.append(all)\n urls.append(rest)\n urls.append(rest)\n urls.append(rest)\n urls.append(rest)\nelif day == 'Thursday':\n urls.append(all)\n urls.append(comp)\n urls.append(all)\n urls.append(all)\n urls.append(rest)\n urls.append(rest)\n urls.append(rest)\n urls.append(rest)\nelif day == 'Friday':\n urls.append(all)\n urls.append(all)\n urls.append(all)\n urls.append(comp)\n urls.append(rest)\n urls.append(rest)\n urls.append(rest)\n urls.append(rest)\nelif day == 'Saturday':\n urls.append(all)\n urls.append(all)\n urls.append(all)\n urls.append(all)\n urls.append(rest)\n urls.append(rest)\n urls.append(rest)\n urls.append(rest)\nelse:\n print('Sunday is a Holiday 😁😀😀 you fool')\n time.sleep(10)\n<assignment token>\ntimes.append('07.12')\ntimes.append('08.17')\ntimes.append('09.27')\ntimes.append('10.27')\ntimes.append('12.17')\ntimes.append('14.43')\ntimes.append('15.51')\ntimes.append('19.31')\n\n\ndef add():\n y_n = input('do you have any extra sessions today ?(y/n) -->')\n while 'y' in y_n.lower():\n exttime = input('enter the time to shedule it in format HH.MM-->')\n times.append(exttime)\n times.sort()\n pos_in_times = times.index(exttime)\n ext = input('Enter the link here(must include https and all that)-->')\n urls.insert(pos_in_times, ext)\n y_n = input('do you have any more extra sessions today ?(y/n) -->')\n\n\ndef next():\n while Current_time > times[0]:\n urls.remove(urls[0])\n times.remove(times[0])\n\n\ndef remove():\n re_y_n = input('do you want to remove any session (y/n)-->')\n task_table()\n while 'y' in re_y_n.lower():\n which = int(input('which session do you want to remove(1,2..)--'))\n which = which - 1\n urls.remove(urls[which])\n times.remove(times[which])\n task_table()\n re_y_n = input('now do you want to remove any session (y/n)-->')\n\n\ndef opengmeet_or_site():\n next()\n for i in range(100):\n link = urls[0]\n alarm = times[0]\n Current_time = time.strftime('%H.%M')\n while Current_time != alarm:\n print('Waiting, the current time is ' + Current_time + ' :-( ')\n Current_time = time.strftime('%H.%M')\n time.sleep(1)\n if Current_time == alarm:\n print('WEBSITE IS OPENING :D')\n if 'meet.google.com' in urls[0]:\n webbrowser.open(link)\n pyautogui.press('enter')\n time.sleep(2)\n pyautogui.click(100 * screenWidth / 1680, 410 *\n screenHeight / 1050)\n time.sleep(10)\n pyautogui.hotkey('ctrl', 'd')\n time.sleep(1)\n pyautogui.hotkey('ctrl', 'e')\n time.sleep(1)\n pyautogui.click(1150 * screenWidth / 1680, 620 *\n screenHeight / 1050)\n urls.remove(urls[0])\n times.remove(times[0])\n else:\n webbrowser.open(link)\n urls.remove(urls[0])\n times.remove(times[0])\n\n\ndef task_table():\n from tabulate import tabulate\n next()\n n = 0\n l = []\n numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, \n 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,\n 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,\n 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68,\n 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85,\n 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100]\n while n < len(urls):\n a = [numbers[n], urls[n], times[n]]\n l.append(a)\n n = n + 1\n table = tabulate(l, headers=['num', 'url', 'time'], tablefmt='orgtbl')\n print(table)\n\n\ndef start_table():\n start_list = [['1', \"VIEW TODAY'S SCHEDULE\"], [], ['2',\n \"ADD TASK TO TODAY'S SCHEDULE\"], [], ['3',\n \"REMOVE TASK FROM TODAY'S SCHEDULE\"], [], ['4', 'RUN THE PROGRAMME'\n ], [], ['5', 'EXIT']]\n start_table = tabulate(start_list, headers=['OPTION', 'PURPOSE'],\n tablefmt='orgtbl')\n print(start_table)\n\n\nnext()\nprint('**********************************************************')\nprint('WELCOME TO AUTOMATIC WEBSITE OPENER AND GOOGLE MEET JOINER')\nprint('**********************************************************')\nstart_table()\n<assignment token>\nwhile k == k:\n o = input('Enter your option to proceed(1/2/3/4/5)-->')\n if '1' in o:\n task_table()\n elif '2' in o:\n add()\n elif '3' in o:\n remove()\n elif '4' in o:\n opengmeet_or_site()\n elif '5' in o:\n print('Thanks')\n break\n else:\n print('Error Man try again!')\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n\n\ndef add():\n y_n = input('do you have any extra sessions today ?(y/n) -->')\n while 'y' in y_n.lower():\n exttime = input('enter the time to shedule it in format HH.MM-->')\n times.append(exttime)\n times.sort()\n pos_in_times = times.index(exttime)\n ext = input('Enter the link here(must include https and all that)-->')\n urls.insert(pos_in_times, ext)\n y_n = input('do you have any more extra sessions today ?(y/n) -->')\n\n\ndef next():\n while Current_time > times[0]:\n urls.remove(urls[0])\n times.remove(times[0])\n\n\ndef remove():\n re_y_n = input('do you want to remove any session (y/n)-->')\n task_table()\n while 'y' in re_y_n.lower():\n which = int(input('which session do you want to remove(1,2..)--'))\n which = which - 1\n urls.remove(urls[which])\n times.remove(times[which])\n task_table()\n re_y_n = input('now do you want to remove any session (y/n)-->')\n\n\ndef opengmeet_or_site():\n next()\n for i in range(100):\n link = urls[0]\n alarm = times[0]\n Current_time = time.strftime('%H.%M')\n while Current_time != alarm:\n print('Waiting, the current time is ' + Current_time + ' :-( ')\n Current_time = time.strftime('%H.%M')\n time.sleep(1)\n if Current_time == alarm:\n print('WEBSITE IS OPENING :D')\n if 'meet.google.com' in urls[0]:\n webbrowser.open(link)\n pyautogui.press('enter')\n time.sleep(2)\n pyautogui.click(100 * screenWidth / 1680, 410 *\n screenHeight / 1050)\n time.sleep(10)\n pyautogui.hotkey('ctrl', 'd')\n time.sleep(1)\n pyautogui.hotkey('ctrl', 'e')\n time.sleep(1)\n pyautogui.click(1150 * screenWidth / 1680, 620 *\n screenHeight / 1050)\n urls.remove(urls[0])\n times.remove(times[0])\n else:\n webbrowser.open(link)\n urls.remove(urls[0])\n times.remove(times[0])\n\n\ndef task_table():\n from tabulate import tabulate\n next()\n n = 0\n l = []\n numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, \n 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,\n 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,\n 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68,\n 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85,\n 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100]\n while n < len(urls):\n a = [numbers[n], urls[n], times[n]]\n l.append(a)\n n = n + 1\n table = tabulate(l, headers=['num', 'url', 'time'], tablefmt='orgtbl')\n print(table)\n\n\ndef start_table():\n start_list = [['1', \"VIEW TODAY'S SCHEDULE\"], [], ['2',\n \"ADD TASK TO TODAY'S SCHEDULE\"], [], ['3',\n \"REMOVE TASK FROM TODAY'S SCHEDULE\"], [], ['4', 'RUN THE PROGRAMME'\n ], [], ['5', 'EXIT']]\n start_table = tabulate(start_list, headers=['OPTION', 'PURPOSE'],\n tablefmt='orgtbl')\n print(start_table)\n\n\n<code token>\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n\n\ndef add():\n y_n = input('do you have any extra sessions today ?(y/n) -->')\n while 'y' in y_n.lower():\n exttime = input('enter the time to shedule it in format HH.MM-->')\n times.append(exttime)\n times.sort()\n pos_in_times = times.index(exttime)\n ext = input('Enter the link here(must include https and all that)-->')\n urls.insert(pos_in_times, ext)\n y_n = input('do you have any more extra sessions today ?(y/n) -->')\n\n\n<function token>\n\n\ndef remove():\n re_y_n = input('do you want to remove any session (y/n)-->')\n task_table()\n while 'y' in re_y_n.lower():\n which = int(input('which session do you want to remove(1,2..)--'))\n which = which - 1\n urls.remove(urls[which])\n times.remove(times[which])\n task_table()\n re_y_n = input('now do you want to remove any session (y/n)-->')\n\n\ndef opengmeet_or_site():\n next()\n for i in range(100):\n link = urls[0]\n alarm = times[0]\n Current_time = time.strftime('%H.%M')\n while Current_time != alarm:\n print('Waiting, the current time is ' + Current_time + ' :-( ')\n Current_time = time.strftime('%H.%M')\n time.sleep(1)\n if Current_time == alarm:\n print('WEBSITE IS OPENING :D')\n if 'meet.google.com' in urls[0]:\n webbrowser.open(link)\n pyautogui.press('enter')\n time.sleep(2)\n pyautogui.click(100 * screenWidth / 1680, 410 *\n screenHeight / 1050)\n time.sleep(10)\n pyautogui.hotkey('ctrl', 'd')\n time.sleep(1)\n pyautogui.hotkey('ctrl', 'e')\n time.sleep(1)\n pyautogui.click(1150 * screenWidth / 1680, 620 *\n screenHeight / 1050)\n urls.remove(urls[0])\n times.remove(times[0])\n else:\n webbrowser.open(link)\n urls.remove(urls[0])\n times.remove(times[0])\n\n\ndef task_table():\n from tabulate import tabulate\n next()\n n = 0\n l = []\n numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, \n 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,\n 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,\n 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68,\n 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85,\n 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100]\n while n < len(urls):\n a = [numbers[n], urls[n], times[n]]\n l.append(a)\n n = n + 1\n table = tabulate(l, headers=['num', 'url', 'time'], tablefmt='orgtbl')\n print(table)\n\n\ndef start_table():\n start_list = [['1', \"VIEW TODAY'S SCHEDULE\"], [], ['2',\n \"ADD TASK TO TODAY'S SCHEDULE\"], [], ['3',\n \"REMOVE TASK FROM TODAY'S SCHEDULE\"], [], ['4', 'RUN THE PROGRAMME'\n ], [], ['5', 'EXIT']]\n start_table = tabulate(start_list, headers=['OPTION', 'PURPOSE'],\n tablefmt='orgtbl')\n print(start_table)\n\n\n<code token>\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n\n\ndef add():\n y_n = input('do you have any extra sessions today ?(y/n) -->')\n while 'y' in y_n.lower():\n exttime = input('enter the time to shedule it in format HH.MM-->')\n times.append(exttime)\n times.sort()\n pos_in_times = times.index(exttime)\n ext = input('Enter the link here(must include https and all that)-->')\n urls.insert(pos_in_times, ext)\n y_n = input('do you have any more extra sessions today ?(y/n) -->')\n\n\n<function token>\n<function token>\n\n\ndef opengmeet_or_site():\n next()\n for i in range(100):\n link = urls[0]\n alarm = times[0]\n Current_time = time.strftime('%H.%M')\n while Current_time != alarm:\n print('Waiting, the current time is ' + Current_time + ' :-( ')\n Current_time = time.strftime('%H.%M')\n time.sleep(1)\n if Current_time == alarm:\n print('WEBSITE IS OPENING :D')\n if 'meet.google.com' in urls[0]:\n webbrowser.open(link)\n pyautogui.press('enter')\n time.sleep(2)\n pyautogui.click(100 * screenWidth / 1680, 410 *\n screenHeight / 1050)\n time.sleep(10)\n pyautogui.hotkey('ctrl', 'd')\n time.sleep(1)\n pyautogui.hotkey('ctrl', 'e')\n time.sleep(1)\n pyautogui.click(1150 * screenWidth / 1680, 620 *\n screenHeight / 1050)\n urls.remove(urls[0])\n times.remove(times[0])\n else:\n webbrowser.open(link)\n urls.remove(urls[0])\n times.remove(times[0])\n\n\ndef task_table():\n from tabulate import tabulate\n next()\n n = 0\n l = []\n numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, \n 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,\n 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,\n 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68,\n 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85,\n 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100]\n while n < len(urls):\n a = [numbers[n], urls[n], times[n]]\n l.append(a)\n n = n + 1\n table = tabulate(l, headers=['num', 'url', 'time'], tablefmt='orgtbl')\n print(table)\n\n\ndef start_table():\n start_list = [['1', \"VIEW TODAY'S SCHEDULE\"], [], ['2',\n \"ADD TASK TO TODAY'S SCHEDULE\"], [], ['3',\n \"REMOVE TASK FROM TODAY'S SCHEDULE\"], [], ['4', 'RUN THE PROGRAMME'\n ], [], ['5', 'EXIT']]\n start_table = tabulate(start_list, headers=['OPTION', 'PURPOSE'],\n tablefmt='orgtbl')\n print(start_table)\n\n\n<code token>\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<function token>\n<function token>\n<function token>\n\n\ndef opengmeet_or_site():\n next()\n for i in range(100):\n link = urls[0]\n alarm = times[0]\n Current_time = time.strftime('%H.%M')\n while Current_time != alarm:\n print('Waiting, the current time is ' + Current_time + ' :-( ')\n Current_time = time.strftime('%H.%M')\n time.sleep(1)\n if Current_time == alarm:\n print('WEBSITE IS OPENING :D')\n if 'meet.google.com' in urls[0]:\n webbrowser.open(link)\n pyautogui.press('enter')\n time.sleep(2)\n pyautogui.click(100 * screenWidth / 1680, 410 *\n screenHeight / 1050)\n time.sleep(10)\n pyautogui.hotkey('ctrl', 'd')\n time.sleep(1)\n pyautogui.hotkey('ctrl', 'e')\n time.sleep(1)\n pyautogui.click(1150 * screenWidth / 1680, 620 *\n screenHeight / 1050)\n urls.remove(urls[0])\n times.remove(times[0])\n else:\n webbrowser.open(link)\n urls.remove(urls[0])\n times.remove(times[0])\n\n\ndef task_table():\n from tabulate import tabulate\n next()\n n = 0\n l = []\n numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, \n 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,\n 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,\n 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68,\n 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85,\n 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100]\n while n < len(urls):\n a = [numbers[n], urls[n], times[n]]\n l.append(a)\n n = n + 1\n table = tabulate(l, headers=['num', 'url', 'time'], tablefmt='orgtbl')\n print(table)\n\n\ndef start_table():\n start_list = [['1', \"VIEW TODAY'S SCHEDULE\"], [], ['2',\n \"ADD TASK TO TODAY'S SCHEDULE\"], [], ['3',\n \"REMOVE TASK FROM TODAY'S SCHEDULE\"], [], ['4', 'RUN THE PROGRAMME'\n ], [], ['5', 'EXIT']]\n start_table = tabulate(start_list, headers=['OPTION', 'PURPOSE'],\n tablefmt='orgtbl')\n print(start_table)\n\n\n<code token>\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<function token>\n<function token>\n<function token>\n\n\ndef opengmeet_or_site():\n next()\n for i in range(100):\n link = urls[0]\n alarm = times[0]\n Current_time = time.strftime('%H.%M')\n while Current_time != alarm:\n print('Waiting, the current time is ' + Current_time + ' :-( ')\n Current_time = time.strftime('%H.%M')\n time.sleep(1)\n if Current_time == alarm:\n print('WEBSITE IS OPENING :D')\n if 'meet.google.com' in urls[0]:\n webbrowser.open(link)\n pyautogui.press('enter')\n time.sleep(2)\n pyautogui.click(100 * screenWidth / 1680, 410 *\n screenHeight / 1050)\n time.sleep(10)\n pyautogui.hotkey('ctrl', 'd')\n time.sleep(1)\n pyautogui.hotkey('ctrl', 'e')\n time.sleep(1)\n pyautogui.click(1150 * screenWidth / 1680, 620 *\n screenHeight / 1050)\n urls.remove(urls[0])\n times.remove(times[0])\n else:\n webbrowser.open(link)\n urls.remove(urls[0])\n times.remove(times[0])\n\n\n<function token>\n\n\ndef start_table():\n start_list = [['1', \"VIEW TODAY'S SCHEDULE\"], [], ['2',\n \"ADD TASK TO TODAY'S SCHEDULE\"], [], ['3',\n \"REMOVE TASK FROM TODAY'S SCHEDULE\"], [], ['4', 'RUN THE PROGRAMME'\n ], [], ['5', 'EXIT']]\n start_table = tabulate(start_list, headers=['OPTION', 'PURPOSE'],\n tablefmt='orgtbl')\n print(start_table)\n\n\n<code token>\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<function token>\n<function token>\n<function token>\n\n\ndef opengmeet_or_site():\n next()\n for i in range(100):\n link = urls[0]\n alarm = times[0]\n Current_time = time.strftime('%H.%M')\n while Current_time != alarm:\n print('Waiting, the current time is ' + Current_time + ' :-( ')\n Current_time = time.strftime('%H.%M')\n time.sleep(1)\n if Current_time == alarm:\n print('WEBSITE IS OPENING :D')\n if 'meet.google.com' in urls[0]:\n webbrowser.open(link)\n pyautogui.press('enter')\n time.sleep(2)\n pyautogui.click(100 * screenWidth / 1680, 410 *\n screenHeight / 1050)\n time.sleep(10)\n pyautogui.hotkey('ctrl', 'd')\n time.sleep(1)\n pyautogui.hotkey('ctrl', 'e')\n time.sleep(1)\n pyautogui.click(1150 * screenWidth / 1680, 620 *\n screenHeight / 1050)\n urls.remove(urls[0])\n times.remove(times[0])\n else:\n webbrowser.open(link)\n urls.remove(urls[0])\n times.remove(times[0])\n\n\n<function token>\n<function token>\n<code token>\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<code token>\n<assignment token>\n<code token>\n" ]
false
98,897
11a09fae8c9ff81b561eb538f095e36df6f47842
def letras_maiusculas(função): def maiuscula(): return função().upper() return maiuscula @letras_maiusculas # Decorator def meu_nome(): return 'Fernando' nome = meu_nome() print(nome)
[ "def letras_maiusculas(função):\r\n def maiuscula():\r\n return função().upper()\r\n\r\n return maiuscula\r\n\r\n\r\n@letras_maiusculas # Decorator\r\ndef meu_nome():\r\n return 'Fernando'\r\n\r\n\r\nnome = meu_nome()\r\nprint(nome)\r\n", "def letras_maiusculas(função):\n\n def maiuscula():\n return função().upper()\n return maiuscula\n\n\n@letras_maiusculas\ndef meu_nome():\n return 'Fernando'\n\n\nnome = meu_nome()\nprint(nome)\n", "def letras_maiusculas(função):\n\n def maiuscula():\n return função().upper()\n return maiuscula\n\n\n@letras_maiusculas\ndef meu_nome():\n return 'Fernando'\n\n\n<assignment token>\nprint(nome)\n", "def letras_maiusculas(função):\n\n def maiuscula():\n return função().upper()\n return maiuscula\n\n\n@letras_maiusculas\ndef meu_nome():\n return 'Fernando'\n\n\n<assignment token>\n<code token>\n", "def letras_maiusculas(função):\n\n def maiuscula():\n return função().upper()\n return maiuscula\n\n\n<function token>\n<assignment token>\n<code token>\n", "<function token>\n<function token>\n<assignment token>\n<code token>\n" ]
false
98,898
6ac6d608990831c153da0befb60329ce1f02ebfb
from rest_framework import routers from musiclib.views import CategoryViewSet, ArtistViewSet, DiscographyViewSet, SongViewSet router = routers.SimpleRouter() router.register(r'categories', CategoryViewSet) router.register(r'artists', ArtistViewSet) router.register(r'discographies', DiscographyViewSet) router.register(r'songs', SongViewSet) urlpatterns = router.urls
[ "from rest_framework import routers\nfrom musiclib.views import CategoryViewSet, ArtistViewSet, DiscographyViewSet, SongViewSet\n\nrouter = routers.SimpleRouter()\nrouter.register(r'categories', CategoryViewSet)\nrouter.register(r'artists', ArtistViewSet)\nrouter.register(r'discographies', DiscographyViewSet)\nrouter.register(r'songs', SongViewSet)\nurlpatterns = router.urls\n", "from rest_framework import routers\nfrom musiclib.views import CategoryViewSet, ArtistViewSet, DiscographyViewSet, SongViewSet\nrouter = routers.SimpleRouter()\nrouter.register('categories', CategoryViewSet)\nrouter.register('artists', ArtistViewSet)\nrouter.register('discographies', DiscographyViewSet)\nrouter.register('songs', SongViewSet)\nurlpatterns = router.urls\n", "<import token>\nrouter = routers.SimpleRouter()\nrouter.register('categories', CategoryViewSet)\nrouter.register('artists', ArtistViewSet)\nrouter.register('discographies', DiscographyViewSet)\nrouter.register('songs', SongViewSet)\nurlpatterns = router.urls\n", "<import token>\n<assignment token>\nrouter.register('categories', CategoryViewSet)\nrouter.register('artists', ArtistViewSet)\nrouter.register('discographies', DiscographyViewSet)\nrouter.register('songs', SongViewSet)\n<assignment token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n" ]
false
98,899
8179b83dadfa4bb62feac793150daaedc47a2cec
#Uses python2 import sys #import queue def distance(adj, cost, s, t): #write your code here dist = [float("inf") for _ in range(len(adj))] prev = [None for _ in range(len(adj))] dist[s] = 0 H = dict() for i in range(len(adj)): H[i] = dist[i] while len(H) > 0: minimum_distance = min(H.itervalues()) U = [key for key, value in H.iteritems() if value == minimum_distance] u = U[0] H.pop(u) i = 0 for v in adj[u]: if dist[v] > dist[u] + cost[u][i]: dist[v] = dist[u] + cost[u][i] H[v] = dist[v] prev[v] = u i += 1 return -1 if dist[t] == float("inf") else dist[t] n, m = list(map(int, raw_input().split())) edges = [] for i in range(m): a, b, w = map(int, raw_input().split()) edges.append(((a, b), w)) adj = [[] for _ in range(n)] cost = [[] for _ in range(n)] for ((a, b), w) in edges: adj[a - 1].append(b - 1) cost[a - 1].append(w) s, t = list(map(int, raw_input().split())) s-=1 t-=1 print(distance(adj, cost, s, t))
[ "#Uses python2\n\nimport sys\n#import queue\n\n\ndef distance(adj, cost, s, t):\n #write your code here\n dist = [float(\"inf\") for _ in range(len(adj))]\n prev = [None for _ in range(len(adj))]\n dist[s] = 0\n \n H = dict()\n for i in range(len(adj)):\n H[i] = dist[i]\n \n while len(H) > 0:\n minimum_distance = min(H.itervalues())\n U = [key for key, value in H.iteritems() if value == minimum_distance]\n u = U[0]\n H.pop(u)\n i = 0\n for v in adj[u]:\n if dist[v] > dist[u] + cost[u][i]:\n dist[v] = dist[u] + cost[u][i]\n H[v] = dist[v]\n prev[v] = u\n i += 1\n return -1 if dist[t] == float(\"inf\") else dist[t]\n\n\nn, m = list(map(int, raw_input().split()))\n\nedges = []\nfor i in range(m):\n a, b, w = map(int, raw_input().split())\n edges.append(((a, b), w))\n\nadj = [[] for _ in range(n)]\ncost = [[] for _ in range(n)]\n\nfor ((a, b), w) in edges:\n adj[a - 1].append(b - 1)\n cost[a - 1].append(w)\n \ns, t = list(map(int, raw_input().split()))\ns-=1\nt-=1\nprint(distance(adj, cost, s, t))\n\n", "import sys\n\n\ndef distance(adj, cost, s, t):\n dist = [float('inf') for _ in range(len(adj))]\n prev = [None for _ in range(len(adj))]\n dist[s] = 0\n H = dict()\n for i in range(len(adj)):\n H[i] = dist[i]\n while len(H) > 0:\n minimum_distance = min(H.itervalues())\n U = [key for key, value in H.iteritems() if value == minimum_distance]\n u = U[0]\n H.pop(u)\n i = 0\n for v in adj[u]:\n if dist[v] > dist[u] + cost[u][i]:\n dist[v] = dist[u] + cost[u][i]\n H[v] = dist[v]\n prev[v] = u\n i += 1\n return -1 if dist[t] == float('inf') else dist[t]\n\n\nn, m = list(map(int, raw_input().split()))\nedges = []\nfor i in range(m):\n a, b, w = map(int, raw_input().split())\n edges.append(((a, b), w))\nadj = [[] for _ in range(n)]\ncost = [[] for _ in range(n)]\nfor (a, b), w in edges:\n adj[a - 1].append(b - 1)\n cost[a - 1].append(w)\ns, t = list(map(int, raw_input().split()))\ns -= 1\nt -= 1\nprint(distance(adj, cost, s, t))\n", "<import token>\n\n\ndef distance(adj, cost, s, t):\n dist = [float('inf') for _ in range(len(adj))]\n prev = [None for _ in range(len(adj))]\n dist[s] = 0\n H = dict()\n for i in range(len(adj)):\n H[i] = dist[i]\n while len(H) > 0:\n minimum_distance = min(H.itervalues())\n U = [key for key, value in H.iteritems() if value == minimum_distance]\n u = U[0]\n H.pop(u)\n i = 0\n for v in adj[u]:\n if dist[v] > dist[u] + cost[u][i]:\n dist[v] = dist[u] + cost[u][i]\n H[v] = dist[v]\n prev[v] = u\n i += 1\n return -1 if dist[t] == float('inf') else dist[t]\n\n\nn, m = list(map(int, raw_input().split()))\nedges = []\nfor i in range(m):\n a, b, w = map(int, raw_input().split())\n edges.append(((a, b), w))\nadj = [[] for _ in range(n)]\ncost = [[] for _ in range(n)]\nfor (a, b), w in edges:\n adj[a - 1].append(b - 1)\n cost[a - 1].append(w)\ns, t = list(map(int, raw_input().split()))\ns -= 1\nt -= 1\nprint(distance(adj, cost, s, t))\n", "<import token>\n\n\ndef distance(adj, cost, s, t):\n dist = [float('inf') for _ in range(len(adj))]\n prev = [None for _ in range(len(adj))]\n dist[s] = 0\n H = dict()\n for i in range(len(adj)):\n H[i] = dist[i]\n while len(H) > 0:\n minimum_distance = min(H.itervalues())\n U = [key for key, value in H.iteritems() if value == minimum_distance]\n u = U[0]\n H.pop(u)\n i = 0\n for v in adj[u]:\n if dist[v] > dist[u] + cost[u][i]:\n dist[v] = dist[u] + cost[u][i]\n H[v] = dist[v]\n prev[v] = u\n i += 1\n return -1 if dist[t] == float('inf') else dist[t]\n\n\n<assignment token>\nfor i in range(m):\n a, b, w = map(int, raw_input().split())\n edges.append(((a, b), w))\n<assignment token>\nfor (a, b), w in edges:\n adj[a - 1].append(b - 1)\n cost[a - 1].append(w)\n<assignment token>\ns -= 1\nt -= 1\nprint(distance(adj, cost, s, t))\n", "<import token>\n\n\ndef distance(adj, cost, s, t):\n dist = [float('inf') for _ in range(len(adj))]\n prev = [None for _ in range(len(adj))]\n dist[s] = 0\n H = dict()\n for i in range(len(adj)):\n H[i] = dist[i]\n while len(H) > 0:\n minimum_distance = min(H.itervalues())\n U = [key for key, value in H.iteritems() if value == minimum_distance]\n u = U[0]\n H.pop(u)\n i = 0\n for v in adj[u]:\n if dist[v] > dist[u] + cost[u][i]:\n dist[v] = dist[u] + cost[u][i]\n H[v] = dist[v]\n prev[v] = u\n i += 1\n return -1 if dist[t] == float('inf') else dist[t]\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n", "<import token>\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n" ]
false