index
int64
0
100k
blob_id
stringlengths
40
40
code
stringlengths
7
7.27M
steps
listlengths
1
1.25k
error
bool
2 classes
99,000
6b1460651808b1e255ec97add7d14257088328fa
# modules to create diagrames import flask import io import json from flask import send_file, render_template from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure import bokeh from bokeh.plotting import figure from bokeh.resources import CDN from bokeh.embed import file_html from bokeh.embed import json_item from bokeh.palettes import Spectral6 from bokeh.transform import factor_cmap from bokeh.sampledata.iris import flowers import pandas as pd from util import df_from_sql uri_prefix = '/diagrams' diagrams = flask.Blueprint('diagrams', __name__) colormap = {'setosa': 'red', 'versicolor': 'green', 'virginica': 'blue'} colors = [colormap[x] for x in flowers['species']] def make_plot(x, y): p = figure(title = "Iris Morphology", sizing_mode="fixed", plot_width=800, plot_height=400) p.xaxis.axis_label = x p.yaxis.axis_label = y p.circle(flowers[x], flowers[y], color=colors, fill_alpha=0.2, size=10) return p @diagrams.route(f'{uri_prefix}/') def root(): print (render_template('diagrams/root.html',resources=CDN.render(), prefix=uri_prefix)) return render_template('diagrams/root.html',resources=CDN.render(), prefix=uri_prefix) @diagrams.route(f'{uri_prefix}/plot') def plot(): sql= """SELECT * FROM items LEFT JOIN (SELECT item_id, college_id, AVG(mlss.age) as avg_age, AVG(mlss.serieux) as avg_serieux, COUNT(id) as nb_item FROM (SELECT id, item_id, college_id, serieux, DATE_DIFF(CURRENT_DATE(), `date`, DAY) as age from lss) as mlss GROUP BY item_id, college_id) AS item_synt ON items.item_id = item_synt.item_id LEFT JOIN colleges ON item_synt.college_id = colleges.college_id ; """ df = df_from_sql(sql) df = df.loc[:,~df.columns.duplicated()] df['size']=df['nb_item']*12 TOOLS="hover,crosshair,pan,wheel_zoom,zoom_in,zoom_out,box_zoom,undo,redo,reset,tap,save,box_select,poly_select,lasso_select," TOOLTIPS = [ ("item", "@item_name"), ("College","@college_name"), ("Nb essions", "@nb_item"), ] p = figure(tools=TOOLS, title = "Items", sizing_mode="scale_both", plot_width=100, plot_height=50, tooltips=TOOLTIPS) p.xaxis.axis_label = 'Serieux' p.yaxis.axis_label = 'Age' p.y_range.flipped = True mapper = factor_cmap(field_name='college_id', factors=df['college_id'].dropna().values, palette=Spectral6) print(df['college_id'].dropna().unique()) p.circle('avg_serieux', 'avg_age',source=df, color=mapper, size="size", fill_alpha=0.4, legend_field="college_name") p.legend.location = "top_left" p.legend.click_policy="hide" return json.dumps(json_item(p, "myplot")) @diagrams.route(f'{uri_prefix}/basic.png') def basic(): plot = figure() plot.circle([1,2], [3,4]) return file_html(plot, CDN, "my plot") @diagrams.route(f'{uri_prefix}/plot.png') def plot_png(): import numpy as np import matplotlib import matplotlib.pyplot as plt matplotlib.use('Agg') # Fixing random state for reproducibility np.random.seed(19680801) mu, sigma = 100, 15 x = mu + sigma * np.random.randn(10000) # the histogram of the data n, bins, patches = plt.hist(x, 50, density=True, facecolor='g', alpha=0.75) plt.xlabel('Smarts') plt.ylabel('Probability') plt.title('Histogram of IQ') plt.text(60, .025, r'$\mu=100,\ \sigma=15$') plt.xlim(40, 160) plt.ylim(0, 0.03) plt.grid(True) fig = plt.figure(1) print(fig) # draw(ax) return fig_response(fig) def fig_response(fig): """Turn a matplotlib Figure into Flask response""" img_bytes = io.BytesIO() fig.savefig(img_bytes) img_bytes.seek(0) return send_file(img_bytes, mimetype='image/png')
[ "# modules to create diagrames \nimport flask\nimport io\nimport json\n\nfrom flask import send_file, render_template\nfrom matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas\nfrom matplotlib.figure import Figure\n\nimport bokeh\nfrom bokeh.plotting import figure\nfrom bokeh.resources import CDN\nfrom bokeh.embed import file_html\nfrom bokeh.embed import json_item\nfrom bokeh.palettes import Spectral6\nfrom bokeh.transform import factor_cmap\n\nfrom bokeh.sampledata.iris import flowers\nimport pandas as pd\n\nfrom util import df_from_sql\n\nuri_prefix = '/diagrams'\n\ndiagrams = flask.Blueprint('diagrams', __name__)\n\n\n\ncolormap = {'setosa': 'red', 'versicolor': 'green', 'virginica': 'blue'}\ncolors = [colormap[x] for x in flowers['species']]\n\ndef make_plot(x, y):\n p = figure(title = \"Iris Morphology\", sizing_mode=\"fixed\", plot_width=800, plot_height=400)\n p.xaxis.axis_label = x\n p.yaxis.axis_label = y\n p.circle(flowers[x], flowers[y], color=colors, fill_alpha=0.2, size=10)\n return p\n\[email protected](f'{uri_prefix}/')\ndef root():\n \n print (render_template('diagrams/root.html',resources=CDN.render(), prefix=uri_prefix))\n return render_template('diagrams/root.html',resources=CDN.render(), prefix=uri_prefix)\n\[email protected](f'{uri_prefix}/plot')\ndef plot():\n \n sql= \"\"\"SELECT * FROM items\n LEFT JOIN \n (SELECT item_id, college_id, AVG(mlss.age) as avg_age, AVG(mlss.serieux) as avg_serieux, COUNT(id) as nb_item FROM \n (SELECT id, item_id, college_id, serieux, DATE_DIFF(CURRENT_DATE(), `date`, DAY) as age from lss) as mlss\n GROUP BY item_id, college_id) AS item_synt\n ON items.item_id = item_synt.item_id\n LEFT JOIN colleges\n ON item_synt.college_id = colleges.college_id ;\n \"\"\"\n df = df_from_sql(sql)\n df = df.loc[:,~df.columns.duplicated()]\n df['size']=df['nb_item']*12\n\n TOOLS=\"hover,crosshair,pan,wheel_zoom,zoom_in,zoom_out,box_zoom,undo,redo,reset,tap,save,box_select,poly_select,lasso_select,\"\n TOOLTIPS = [\n (\"item\", \"@item_name\"),\n (\"College\",\"@college_name\"),\n (\"Nb essions\", \"@nb_item\"),\n ]\n p = figure(tools=TOOLS, title = \"Items\", sizing_mode=\"scale_both\", plot_width=100, plot_height=50, tooltips=TOOLTIPS)\n p.xaxis.axis_label = 'Serieux'\n p.yaxis.axis_label = 'Age'\n p.y_range.flipped = True\n\n mapper = factor_cmap(field_name='college_id', factors=df['college_id'].dropna().values, palette=Spectral6)\n print(df['college_id'].dropna().unique())\n p.circle('avg_serieux', 'avg_age',source=df, color=mapper, size=\"size\", fill_alpha=0.4, legend_field=\"college_name\")\n p.legend.location = \"top_left\"\n p.legend.click_policy=\"hide\"\n return json.dumps(json_item(p, \"myplot\"))\n\n\n\n\n\n\n\n\n\n\n\n\[email protected](f'{uri_prefix}/basic.png')\ndef basic():\n plot = figure()\n plot.circle([1,2], [3,4])\n\n return file_html(plot, CDN, \"my plot\")\n\n\[email protected](f'{uri_prefix}/plot.png')\ndef plot_png():\n import numpy as np\n import matplotlib\n import matplotlib.pyplot as plt\n matplotlib.use('Agg')\n\n # Fixing random state for reproducibility\n np.random.seed(19680801)\n\n mu, sigma = 100, 15\n x = mu + sigma * np.random.randn(10000)\n\n # the histogram of the data\n n, bins, patches = plt.hist(x, 50, density=True, facecolor='g', alpha=0.75)\n\n plt.xlabel('Smarts')\n plt.ylabel('Probability')\n plt.title('Histogram of IQ')\n plt.text(60, .025, r'$\\mu=100,\\ \\sigma=15$')\n plt.xlim(40, 160)\n plt.ylim(0, 0.03)\n plt.grid(True)\n fig = plt.figure(1)\n print(fig)\n # draw(ax)\n return fig_response(fig)\n\ndef fig_response(fig):\n \"\"\"Turn a matplotlib Figure into Flask response\"\"\"\n img_bytes = io.BytesIO()\n fig.savefig(img_bytes)\n img_bytes.seek(0)\n return send_file(img_bytes, mimetype='image/png')", "import flask\nimport io\nimport json\nfrom flask import send_file, render_template\nfrom matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas\nfrom matplotlib.figure import Figure\nimport bokeh\nfrom bokeh.plotting import figure\nfrom bokeh.resources import CDN\nfrom bokeh.embed import file_html\nfrom bokeh.embed import json_item\nfrom bokeh.palettes import Spectral6\nfrom bokeh.transform import factor_cmap\nfrom bokeh.sampledata.iris import flowers\nimport pandas as pd\nfrom util import df_from_sql\nuri_prefix = '/diagrams'\ndiagrams = flask.Blueprint('diagrams', __name__)\ncolormap = {'setosa': 'red', 'versicolor': 'green', 'virginica': 'blue'}\ncolors = [colormap[x] for x in flowers['species']]\n\n\ndef make_plot(x, y):\n p = figure(title='Iris Morphology', sizing_mode='fixed', plot_width=800,\n plot_height=400)\n p.xaxis.axis_label = x\n p.yaxis.axis_label = y\n p.circle(flowers[x], flowers[y], color=colors, fill_alpha=0.2, size=10)\n return p\n\n\[email protected](f'{uri_prefix}/')\ndef root():\n print(render_template('diagrams/root.html', resources=CDN.render(),\n prefix=uri_prefix))\n return render_template('diagrams/root.html', resources=CDN.render(),\n prefix=uri_prefix)\n\n\[email protected](f'{uri_prefix}/plot')\ndef plot():\n sql = \"\"\"SELECT * FROM items\n LEFT JOIN \n (SELECT item_id, college_id, AVG(mlss.age) as avg_age, AVG(mlss.serieux) as avg_serieux, COUNT(id) as nb_item FROM \n (SELECT id, item_id, college_id, serieux, DATE_DIFF(CURRENT_DATE(), `date`, DAY) as age from lss) as mlss\n GROUP BY item_id, college_id) AS item_synt\n ON items.item_id = item_synt.item_id\n LEFT JOIN colleges\n ON item_synt.college_id = colleges.college_id ;\n \"\"\"\n df = df_from_sql(sql)\n df = df.loc[:, ~df.columns.duplicated()]\n df['size'] = df['nb_item'] * 12\n TOOLS = (\n 'hover,crosshair,pan,wheel_zoom,zoom_in,zoom_out,box_zoom,undo,redo,reset,tap,save,box_select,poly_select,lasso_select,'\n )\n TOOLTIPS = [('item', '@item_name'), ('College', '@college_name'), (\n 'Nb essions', '@nb_item')]\n p = figure(tools=TOOLS, title='Items', sizing_mode='scale_both',\n plot_width=100, plot_height=50, tooltips=TOOLTIPS)\n p.xaxis.axis_label = 'Serieux'\n p.yaxis.axis_label = 'Age'\n p.y_range.flipped = True\n mapper = factor_cmap(field_name='college_id', factors=df['college_id'].\n dropna().values, palette=Spectral6)\n print(df['college_id'].dropna().unique())\n p.circle('avg_serieux', 'avg_age', source=df, color=mapper, size='size',\n fill_alpha=0.4, legend_field='college_name')\n p.legend.location = 'top_left'\n p.legend.click_policy = 'hide'\n return json.dumps(json_item(p, 'myplot'))\n\n\[email protected](f'{uri_prefix}/basic.png')\ndef basic():\n plot = figure()\n plot.circle([1, 2], [3, 4])\n return file_html(plot, CDN, 'my plot')\n\n\[email protected](f'{uri_prefix}/plot.png')\ndef plot_png():\n import numpy as np\n import matplotlib\n import matplotlib.pyplot as plt\n matplotlib.use('Agg')\n np.random.seed(19680801)\n mu, sigma = 100, 15\n x = mu + sigma * np.random.randn(10000)\n n, bins, patches = plt.hist(x, 50, density=True, facecolor='g', alpha=0.75)\n plt.xlabel('Smarts')\n plt.ylabel('Probability')\n plt.title('Histogram of IQ')\n plt.text(60, 0.025, '$\\\\mu=100,\\\\ \\\\sigma=15$')\n plt.xlim(40, 160)\n plt.ylim(0, 0.03)\n plt.grid(True)\n fig = plt.figure(1)\n print(fig)\n return fig_response(fig)\n\n\ndef fig_response(fig):\n \"\"\"Turn a matplotlib Figure into Flask response\"\"\"\n img_bytes = io.BytesIO()\n fig.savefig(img_bytes)\n img_bytes.seek(0)\n return send_file(img_bytes, mimetype='image/png')\n", "<import token>\nuri_prefix = '/diagrams'\ndiagrams = flask.Blueprint('diagrams', __name__)\ncolormap = {'setosa': 'red', 'versicolor': 'green', 'virginica': 'blue'}\ncolors = [colormap[x] for x in flowers['species']]\n\n\ndef make_plot(x, y):\n p = figure(title='Iris Morphology', sizing_mode='fixed', plot_width=800,\n plot_height=400)\n p.xaxis.axis_label = x\n p.yaxis.axis_label = y\n p.circle(flowers[x], flowers[y], color=colors, fill_alpha=0.2, size=10)\n return p\n\n\[email protected](f'{uri_prefix}/')\ndef root():\n print(render_template('diagrams/root.html', resources=CDN.render(),\n prefix=uri_prefix))\n return render_template('diagrams/root.html', resources=CDN.render(),\n prefix=uri_prefix)\n\n\[email protected](f'{uri_prefix}/plot')\ndef plot():\n sql = \"\"\"SELECT * FROM items\n LEFT JOIN \n (SELECT item_id, college_id, AVG(mlss.age) as avg_age, AVG(mlss.serieux) as avg_serieux, COUNT(id) as nb_item FROM \n (SELECT id, item_id, college_id, serieux, DATE_DIFF(CURRENT_DATE(), `date`, DAY) as age from lss) as mlss\n GROUP BY item_id, college_id) AS item_synt\n ON items.item_id = item_synt.item_id\n LEFT JOIN colleges\n ON item_synt.college_id = colleges.college_id ;\n \"\"\"\n df = df_from_sql(sql)\n df = df.loc[:, ~df.columns.duplicated()]\n df['size'] = df['nb_item'] * 12\n TOOLS = (\n 'hover,crosshair,pan,wheel_zoom,zoom_in,zoom_out,box_zoom,undo,redo,reset,tap,save,box_select,poly_select,lasso_select,'\n )\n TOOLTIPS = [('item', '@item_name'), ('College', '@college_name'), (\n 'Nb essions', '@nb_item')]\n p = figure(tools=TOOLS, title='Items', sizing_mode='scale_both',\n plot_width=100, plot_height=50, tooltips=TOOLTIPS)\n p.xaxis.axis_label = 'Serieux'\n p.yaxis.axis_label = 'Age'\n p.y_range.flipped = True\n mapper = factor_cmap(field_name='college_id', factors=df['college_id'].\n dropna().values, palette=Spectral6)\n print(df['college_id'].dropna().unique())\n p.circle('avg_serieux', 'avg_age', source=df, color=mapper, size='size',\n fill_alpha=0.4, legend_field='college_name')\n p.legend.location = 'top_left'\n p.legend.click_policy = 'hide'\n return json.dumps(json_item(p, 'myplot'))\n\n\[email protected](f'{uri_prefix}/basic.png')\ndef basic():\n plot = figure()\n plot.circle([1, 2], [3, 4])\n return file_html(plot, CDN, 'my plot')\n\n\[email protected](f'{uri_prefix}/plot.png')\ndef plot_png():\n import numpy as np\n import matplotlib\n import matplotlib.pyplot as plt\n matplotlib.use('Agg')\n np.random.seed(19680801)\n mu, sigma = 100, 15\n x = mu + sigma * np.random.randn(10000)\n n, bins, patches = plt.hist(x, 50, density=True, facecolor='g', alpha=0.75)\n plt.xlabel('Smarts')\n plt.ylabel('Probability')\n plt.title('Histogram of IQ')\n plt.text(60, 0.025, '$\\\\mu=100,\\\\ \\\\sigma=15$')\n plt.xlim(40, 160)\n plt.ylim(0, 0.03)\n plt.grid(True)\n fig = plt.figure(1)\n print(fig)\n return fig_response(fig)\n\n\ndef fig_response(fig):\n \"\"\"Turn a matplotlib Figure into Flask response\"\"\"\n img_bytes = io.BytesIO()\n fig.savefig(img_bytes)\n img_bytes.seek(0)\n return send_file(img_bytes, mimetype='image/png')\n", "<import token>\n<assignment token>\n\n\ndef make_plot(x, y):\n p = figure(title='Iris Morphology', sizing_mode='fixed', plot_width=800,\n plot_height=400)\n p.xaxis.axis_label = x\n p.yaxis.axis_label = y\n p.circle(flowers[x], flowers[y], color=colors, fill_alpha=0.2, size=10)\n return p\n\n\[email protected](f'{uri_prefix}/')\ndef root():\n print(render_template('diagrams/root.html', resources=CDN.render(),\n prefix=uri_prefix))\n return render_template('diagrams/root.html', resources=CDN.render(),\n prefix=uri_prefix)\n\n\[email protected](f'{uri_prefix}/plot')\ndef plot():\n sql = \"\"\"SELECT * FROM items\n LEFT JOIN \n (SELECT item_id, college_id, AVG(mlss.age) as avg_age, AVG(mlss.serieux) as avg_serieux, COUNT(id) as nb_item FROM \n (SELECT id, item_id, college_id, serieux, DATE_DIFF(CURRENT_DATE(), `date`, DAY) as age from lss) as mlss\n GROUP BY item_id, college_id) AS item_synt\n ON items.item_id = item_synt.item_id\n LEFT JOIN colleges\n ON item_synt.college_id = colleges.college_id ;\n \"\"\"\n df = df_from_sql(sql)\n df = df.loc[:, ~df.columns.duplicated()]\n df['size'] = df['nb_item'] * 12\n TOOLS = (\n 'hover,crosshair,pan,wheel_zoom,zoom_in,zoom_out,box_zoom,undo,redo,reset,tap,save,box_select,poly_select,lasso_select,'\n )\n TOOLTIPS = [('item', '@item_name'), ('College', '@college_name'), (\n 'Nb essions', '@nb_item')]\n p = figure(tools=TOOLS, title='Items', sizing_mode='scale_both',\n plot_width=100, plot_height=50, tooltips=TOOLTIPS)\n p.xaxis.axis_label = 'Serieux'\n p.yaxis.axis_label = 'Age'\n p.y_range.flipped = True\n mapper = factor_cmap(field_name='college_id', factors=df['college_id'].\n dropna().values, palette=Spectral6)\n print(df['college_id'].dropna().unique())\n p.circle('avg_serieux', 'avg_age', source=df, color=mapper, size='size',\n fill_alpha=0.4, legend_field='college_name')\n p.legend.location = 'top_left'\n p.legend.click_policy = 'hide'\n return json.dumps(json_item(p, 'myplot'))\n\n\[email protected](f'{uri_prefix}/basic.png')\ndef basic():\n plot = figure()\n plot.circle([1, 2], [3, 4])\n return file_html(plot, CDN, 'my plot')\n\n\[email protected](f'{uri_prefix}/plot.png')\ndef plot_png():\n import numpy as np\n import matplotlib\n import matplotlib.pyplot as plt\n matplotlib.use('Agg')\n np.random.seed(19680801)\n mu, sigma = 100, 15\n x = mu + sigma * np.random.randn(10000)\n n, bins, patches = plt.hist(x, 50, density=True, facecolor='g', alpha=0.75)\n plt.xlabel('Smarts')\n plt.ylabel('Probability')\n plt.title('Histogram of IQ')\n plt.text(60, 0.025, '$\\\\mu=100,\\\\ \\\\sigma=15$')\n plt.xlim(40, 160)\n plt.ylim(0, 0.03)\n plt.grid(True)\n fig = plt.figure(1)\n print(fig)\n return fig_response(fig)\n\n\ndef fig_response(fig):\n \"\"\"Turn a matplotlib Figure into Flask response\"\"\"\n img_bytes = io.BytesIO()\n fig.savefig(img_bytes)\n img_bytes.seek(0)\n return send_file(img_bytes, mimetype='image/png')\n", "<import token>\n<assignment token>\n\n\ndef make_plot(x, y):\n p = figure(title='Iris Morphology', sizing_mode='fixed', plot_width=800,\n plot_height=400)\n p.xaxis.axis_label = x\n p.yaxis.axis_label = y\n p.circle(flowers[x], flowers[y], color=colors, fill_alpha=0.2, size=10)\n return p\n\n\[email protected](f'{uri_prefix}/')\ndef root():\n print(render_template('diagrams/root.html', resources=CDN.render(),\n prefix=uri_prefix))\n return render_template('diagrams/root.html', resources=CDN.render(),\n prefix=uri_prefix)\n\n\[email protected](f'{uri_prefix}/plot')\ndef plot():\n sql = \"\"\"SELECT * FROM items\n LEFT JOIN \n (SELECT item_id, college_id, AVG(mlss.age) as avg_age, AVG(mlss.serieux) as avg_serieux, COUNT(id) as nb_item FROM \n (SELECT id, item_id, college_id, serieux, DATE_DIFF(CURRENT_DATE(), `date`, DAY) as age from lss) as mlss\n GROUP BY item_id, college_id) AS item_synt\n ON items.item_id = item_synt.item_id\n LEFT JOIN colleges\n ON item_synt.college_id = colleges.college_id ;\n \"\"\"\n df = df_from_sql(sql)\n df = df.loc[:, ~df.columns.duplicated()]\n df['size'] = df['nb_item'] * 12\n TOOLS = (\n 'hover,crosshair,pan,wheel_zoom,zoom_in,zoom_out,box_zoom,undo,redo,reset,tap,save,box_select,poly_select,lasso_select,'\n )\n TOOLTIPS = [('item', '@item_name'), ('College', '@college_name'), (\n 'Nb essions', '@nb_item')]\n p = figure(tools=TOOLS, title='Items', sizing_mode='scale_both',\n plot_width=100, plot_height=50, tooltips=TOOLTIPS)\n p.xaxis.axis_label = 'Serieux'\n p.yaxis.axis_label = 'Age'\n p.y_range.flipped = True\n mapper = factor_cmap(field_name='college_id', factors=df['college_id'].\n dropna().values, palette=Spectral6)\n print(df['college_id'].dropna().unique())\n p.circle('avg_serieux', 'avg_age', source=df, color=mapper, size='size',\n fill_alpha=0.4, legend_field='college_name')\n p.legend.location = 'top_left'\n p.legend.click_policy = 'hide'\n return json.dumps(json_item(p, 'myplot'))\n\n\n<function token>\n\n\[email protected](f'{uri_prefix}/plot.png')\ndef plot_png():\n import numpy as np\n import matplotlib\n import matplotlib.pyplot as plt\n matplotlib.use('Agg')\n np.random.seed(19680801)\n mu, sigma = 100, 15\n x = mu + sigma * np.random.randn(10000)\n n, bins, patches = plt.hist(x, 50, density=True, facecolor='g', alpha=0.75)\n plt.xlabel('Smarts')\n plt.ylabel('Probability')\n plt.title('Histogram of IQ')\n plt.text(60, 0.025, '$\\\\mu=100,\\\\ \\\\sigma=15$')\n plt.xlim(40, 160)\n plt.ylim(0, 0.03)\n plt.grid(True)\n fig = plt.figure(1)\n print(fig)\n return fig_response(fig)\n\n\ndef fig_response(fig):\n \"\"\"Turn a matplotlib Figure into Flask response\"\"\"\n img_bytes = io.BytesIO()\n fig.savefig(img_bytes)\n img_bytes.seek(0)\n return send_file(img_bytes, mimetype='image/png')\n", "<import token>\n<assignment token>\n\n\ndef make_plot(x, y):\n p = figure(title='Iris Morphology', sizing_mode='fixed', plot_width=800,\n plot_height=400)\n p.xaxis.axis_label = x\n p.yaxis.axis_label = y\n p.circle(flowers[x], flowers[y], color=colors, fill_alpha=0.2, size=10)\n return p\n\n\[email protected](f'{uri_prefix}/')\ndef root():\n print(render_template('diagrams/root.html', resources=CDN.render(),\n prefix=uri_prefix))\n return render_template('diagrams/root.html', resources=CDN.render(),\n prefix=uri_prefix)\n\n\[email protected](f'{uri_prefix}/plot')\ndef plot():\n sql = \"\"\"SELECT * FROM items\n LEFT JOIN \n (SELECT item_id, college_id, AVG(mlss.age) as avg_age, AVG(mlss.serieux) as avg_serieux, COUNT(id) as nb_item FROM \n (SELECT id, item_id, college_id, serieux, DATE_DIFF(CURRENT_DATE(), `date`, DAY) as age from lss) as mlss\n GROUP BY item_id, college_id) AS item_synt\n ON items.item_id = item_synt.item_id\n LEFT JOIN colleges\n ON item_synt.college_id = colleges.college_id ;\n \"\"\"\n df = df_from_sql(sql)\n df = df.loc[:, ~df.columns.duplicated()]\n df['size'] = df['nb_item'] * 12\n TOOLS = (\n 'hover,crosshair,pan,wheel_zoom,zoom_in,zoom_out,box_zoom,undo,redo,reset,tap,save,box_select,poly_select,lasso_select,'\n )\n TOOLTIPS = [('item', '@item_name'), ('College', '@college_name'), (\n 'Nb essions', '@nb_item')]\n p = figure(tools=TOOLS, title='Items', sizing_mode='scale_both',\n plot_width=100, plot_height=50, tooltips=TOOLTIPS)\n p.xaxis.axis_label = 'Serieux'\n p.yaxis.axis_label = 'Age'\n p.y_range.flipped = True\n mapper = factor_cmap(field_name='college_id', factors=df['college_id'].\n dropna().values, palette=Spectral6)\n print(df['college_id'].dropna().unique())\n p.circle('avg_serieux', 'avg_age', source=df, color=mapper, size='size',\n fill_alpha=0.4, legend_field='college_name')\n p.legend.location = 'top_left'\n p.legend.click_policy = 'hide'\n return json.dumps(json_item(p, 'myplot'))\n\n\n<function token>\n\n\[email protected](f'{uri_prefix}/plot.png')\ndef plot_png():\n import numpy as np\n import matplotlib\n import matplotlib.pyplot as plt\n matplotlib.use('Agg')\n np.random.seed(19680801)\n mu, sigma = 100, 15\n x = mu + sigma * np.random.randn(10000)\n n, bins, patches = plt.hist(x, 50, density=True, facecolor='g', alpha=0.75)\n plt.xlabel('Smarts')\n plt.ylabel('Probability')\n plt.title('Histogram of IQ')\n plt.text(60, 0.025, '$\\\\mu=100,\\\\ \\\\sigma=15$')\n plt.xlim(40, 160)\n plt.ylim(0, 0.03)\n plt.grid(True)\n fig = plt.figure(1)\n print(fig)\n return fig_response(fig)\n\n\n<function token>\n", "<import token>\n<assignment token>\n\n\ndef make_plot(x, y):\n p = figure(title='Iris Morphology', sizing_mode='fixed', plot_width=800,\n plot_height=400)\n p.xaxis.axis_label = x\n p.yaxis.axis_label = y\n p.circle(flowers[x], flowers[y], color=colors, fill_alpha=0.2, size=10)\n return p\n\n\[email protected](f'{uri_prefix}/')\ndef root():\n print(render_template('diagrams/root.html', resources=CDN.render(),\n prefix=uri_prefix))\n return render_template('diagrams/root.html', resources=CDN.render(),\n prefix=uri_prefix)\n\n\n<function token>\n<function token>\n\n\[email protected](f'{uri_prefix}/plot.png')\ndef plot_png():\n import numpy as np\n import matplotlib\n import matplotlib.pyplot as plt\n matplotlib.use('Agg')\n np.random.seed(19680801)\n mu, sigma = 100, 15\n x = mu + sigma * np.random.randn(10000)\n n, bins, patches = plt.hist(x, 50, density=True, facecolor='g', alpha=0.75)\n plt.xlabel('Smarts')\n plt.ylabel('Probability')\n plt.title('Histogram of IQ')\n plt.text(60, 0.025, '$\\\\mu=100,\\\\ \\\\sigma=15$')\n plt.xlim(40, 160)\n plt.ylim(0, 0.03)\n plt.grid(True)\n fig = plt.figure(1)\n print(fig)\n return fig_response(fig)\n\n\n<function token>\n", "<import token>\n<assignment token>\n\n\ndef make_plot(x, y):\n p = figure(title='Iris Morphology', sizing_mode='fixed', plot_width=800,\n plot_height=400)\n p.xaxis.axis_label = x\n p.yaxis.axis_label = y\n p.circle(flowers[x], flowers[y], color=colors, fill_alpha=0.2, size=10)\n return p\n\n\[email protected](f'{uri_prefix}/')\ndef root():\n print(render_template('diagrams/root.html', resources=CDN.render(),\n prefix=uri_prefix))\n return render_template('diagrams/root.html', resources=CDN.render(),\n prefix=uri_prefix)\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n", "<import token>\n<assignment token>\n<function token>\n\n\[email protected](f'{uri_prefix}/')\ndef root():\n print(render_template('diagrams/root.html', resources=CDN.render(),\n prefix=uri_prefix))\n return render_template('diagrams/root.html', resources=CDN.render(),\n prefix=uri_prefix)\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n", "<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n" ]
false
99,001
dc764eef16c1554b9e87936fad35078c769b4fcd
from flask import Flask, request, render_template, redirect, Markup from flask_restful import Resource, Api from flask_cors import CORS, cross_origin # from flaskext.markdown import Markdown from sqlalchemy import create_engine import MySQLdb from json import dumps from flask_jsonpify import jsonify from collections import OrderedDict import os import json import random # import markdown # API Formatter classes from api_classes import Helper, GameInstance, PlayerInstance, TeamInstance, TourneyInstance # Queries from api_queries import game_query, player_query, team_query, tourney_query from search_queries import search_game, search_player, search_team, search_tourney '=====================START CONFIGURATION=====================' engine = create_engine( 'mysql://{0}:{1}@{2}:3306/{3}?charset=utf8'.format( os.environ['DB_USER'], os.environ['DB_PASS'], os.environ['DB_HOST'], os.environ['DB_NAME'])) app = Flask(__name__, static_url_path='/static') # Markdown(app) app.config["JSON_SORT_KEYS"] = False cors = CORS(app) app.config['CORS_HEADERS'] = 'Access-Control-Allow-Origin' api = Api(app) '=====================END CONFIGURATION=====================' '=====================START UI ROUTING=====================' @app.route('/') @cross_origin() def home(): return render_template('api.html') @app.errorhandler(404) def page_not_found(e): return "What are you looking for m8?" '=====================END UI ROUTING=====================' '=====================START API=====================' class Players(Resource): def get(self): conn = engine.connect() query = conn.execute(player_query()) list_players = [] for row in query: player = PlayerInstance(row).get_dict() list_players.append(player) conn.close() return jsonify(list_players) class Player(Resource): def get(self, player_id): conn = engine.connect() query = conn.execute(player_query(player_id)) row = query.fetchone() player = PlayerInstance(row).get_dict() conn.close() return jsonify(player) class Teams(Resource): def get(self): conn = engine.connect() conn.execute("set @@session.group_concat_max_len=4294967295") query = conn.execute(team_query()) list_teams = [] for row in query: team = TeamInstance(row).get_dict() list_teams.append(team) conn.close() return jsonify(list_teams) class Team(Resource): def get(self, team_id): conn = engine.connect() conn.execute("set @@session.group_concat_max_len=4294967295") query = conn.execute(team_query(team_id)) row = query.fetchone() team = TeamInstance(row).get_dict() conn.close() return jsonify(team) class Tourneys(Resource): def get(self): conn = engine.connect() query = conn.execute(tourney_query()) list_tourneys = [] for row in query: tourney = TourneyInstance(row).get_dict() list_tourneys.append(tourney) conn.close() return jsonify(list_tourneys) class Tourney(Resource): def get(self, tourney_id): conn = engine.connect() _ = conn.execute("set @@session.group_concat_max_len=18446744073709551615") query = conn.execute(tourney_query(tourney_id)) row = query.fetchone() tourney = TourneyInstance(row).get_dict() conn.close() return jsonify(tourney) class Games(Resource): def get(self): conn = engine.connect() _ = conn.execute("set @@session.group_concat_max_len=18446744073709551615") query = conn.execute(game_query()) list_games = [] for row in query: list_games.append(GameInstance(row).get_dict()) conn.close() return jsonify(list_games) class Game(Resource): def get(self, game_id): conn = engine.connect() _ = conn.execute("set @@session.group_concat_max_len=18446744073709551615") query = conn.execute(game_query(game_id)) row = query.fetchone() conn.close() return jsonify(GameInstance(row).get_dict()) class Search(Resource): def get(self, search_str): search_str = Helper.form_regex(search_str) if search_str is None: return jsonify(["Please enter at least one keyword."]) search_results = OrderedDict() conn = engine.connect() _ = conn.execute("set @@session.group_concat_max_len=18446744073709551615") game_results = conn.execute(search_game(search_str)) player_results = conn.execute(search_player(search_str)) team_results = conn.execute(search_team(search_str)) tourney_results = conn.execute(search_tourney(search_str)) game_data = [] player_data = [] team_data = [] tourney_data = [] game_formatter = GameInstance() player_formatter = PlayerInstance() team_formatter = TeamInstance() tourney_formatter = TourneyInstance() for row in game_results: game_data.append(game_formatter.get_dict(search=True, input_row=row)) for row in player_results: player_data.append(player_formatter.get_dict(search=True, input_row=row)) for row in team_results: team_data.append(team_formatter.get_dict(search=True, input_row=row)) for row in tourney_results: tourney_data.append(tourney_formatter.get_dict(search=True, input_row=row)) search_results['games'] = game_data search_results['players'] = player_data search_results['teams'] = team_data search_results['tournaments'] = tourney_data return jsonify(search_results) api.add_resource(Players, '/players', '/players/') api.add_resource(Player, '/players/<player_id>') api.add_resource(Teams, '/teams', '/teams/') api.add_resource(Team, '/teams/<team_id>') api.add_resource(Tourneys, '/tournaments', '/tournaments/') api.add_resource(Tourney, '/tournaments/<tourney_id>') api.add_resource(Games, '/games', '/games/') api.add_resource(Game, '/games/<game_id>') api.add_resource(Search, '/search/<search_str>') '=====================END API=====================' if __name__ == '__main__': app.run()
[ "from flask import Flask, request, render_template, redirect, Markup\nfrom flask_restful import Resource, Api\nfrom flask_cors import CORS, cross_origin\n# from flaskext.markdown import Markdown\nfrom sqlalchemy import create_engine\nimport MySQLdb\nfrom json import dumps\nfrom flask_jsonpify import jsonify\nfrom collections import OrderedDict\nimport os\nimport json\nimport random\n# import markdown\n\n# API Formatter classes\nfrom api_classes import Helper, GameInstance, PlayerInstance, TeamInstance, TourneyInstance\n\n# Queries\nfrom api_queries import game_query, player_query, team_query, tourney_query\nfrom search_queries import search_game, search_player, search_team, search_tourney\n\n\n'=====================START CONFIGURATION====================='\n\nengine = create_engine(\n 'mysql://{0}:{1}@{2}:3306/{3}?charset=utf8'.format(\n os.environ['DB_USER'],\n os.environ['DB_PASS'],\n os.environ['DB_HOST'],\n os.environ['DB_NAME']))\n\napp = Flask(__name__, static_url_path='/static')\n# Markdown(app)\napp.config[\"JSON_SORT_KEYS\"] = False\ncors = CORS(app)\napp.config['CORS_HEADERS'] = 'Access-Control-Allow-Origin'\napi = Api(app)\n\n'=====================END CONFIGURATION====================='\n'=====================START UI ROUTING====================='\n\n\[email protected]('/')\n@cross_origin()\ndef home():\n return render_template('api.html')\n\n\[email protected](404)\ndef page_not_found(e):\n return \"What are you looking for m8?\"\n\n\n'=====================END UI ROUTING====================='\n'=====================START API====================='\n\n\nclass Players(Resource):\n def get(self):\n conn = engine.connect()\n query = conn.execute(player_query())\n list_players = []\n for row in query:\n player = PlayerInstance(row).get_dict()\n list_players.append(player)\n conn.close()\n return jsonify(list_players)\n\n\nclass Player(Resource):\n def get(self, player_id):\n conn = engine.connect()\n query = conn.execute(player_query(player_id))\n row = query.fetchone()\n player = PlayerInstance(row).get_dict()\n conn.close()\n return jsonify(player)\n\n\nclass Teams(Resource):\n def get(self):\n conn = engine.connect()\n conn.execute(\"set @@session.group_concat_max_len=4294967295\")\n query = conn.execute(team_query())\n list_teams = []\n for row in query:\n team = TeamInstance(row).get_dict()\n list_teams.append(team)\n conn.close()\n return jsonify(list_teams)\n\n\nclass Team(Resource):\n def get(self, team_id):\n conn = engine.connect()\n conn.execute(\"set @@session.group_concat_max_len=4294967295\")\n query = conn.execute(team_query(team_id))\n row = query.fetchone()\n team = TeamInstance(row).get_dict()\n conn.close()\n return jsonify(team)\n\n\nclass Tourneys(Resource):\n def get(self):\n conn = engine.connect()\n query = conn.execute(tourney_query())\n list_tourneys = []\n for row in query:\n tourney = TourneyInstance(row).get_dict()\n list_tourneys.append(tourney)\n\n conn.close()\n return jsonify(list_tourneys)\n\n\nclass Tourney(Resource):\n def get(self, tourney_id):\n conn = engine.connect()\n _ = conn.execute(\"set @@session.group_concat_max_len=18446744073709551615\")\n\n query = conn.execute(tourney_query(tourney_id))\n row = query.fetchone()\n tourney = TourneyInstance(row).get_dict()\n conn.close()\n return jsonify(tourney)\n\n\nclass Games(Resource):\n def get(self):\n conn = engine.connect()\n _ = conn.execute(\"set @@session.group_concat_max_len=18446744073709551615\")\n\n query = conn.execute(game_query())\n list_games = []\n for row in query:\n list_games.append(GameInstance(row).get_dict())\n conn.close()\n return jsonify(list_games)\n\n\nclass Game(Resource):\n def get(self, game_id):\n conn = engine.connect()\n _ = conn.execute(\"set @@session.group_concat_max_len=18446744073709551615\")\n query = conn.execute(game_query(game_id))\n row = query.fetchone()\n conn.close()\n return jsonify(GameInstance(row).get_dict())\n\n\nclass Search(Resource):\n def get(self, search_str):\n search_str = Helper.form_regex(search_str)\n if search_str is None:\n return jsonify([\"Please enter at least one keyword.\"])\n\n search_results = OrderedDict()\n conn = engine.connect()\n\n _ = conn.execute(\"set @@session.group_concat_max_len=18446744073709551615\")\n\n game_results = conn.execute(search_game(search_str))\n player_results = conn.execute(search_player(search_str))\n team_results = conn.execute(search_team(search_str))\n tourney_results = conn.execute(search_tourney(search_str))\n\n game_data = []\n player_data = []\n team_data = []\n tourney_data = []\n\n game_formatter = GameInstance()\n player_formatter = PlayerInstance()\n team_formatter = TeamInstance()\n tourney_formatter = TourneyInstance()\n\n for row in game_results:\n game_data.append(game_formatter.get_dict(search=True, input_row=row))\n\n for row in player_results:\n player_data.append(player_formatter.get_dict(search=True, input_row=row))\n\n for row in team_results:\n team_data.append(team_formatter.get_dict(search=True, input_row=row))\n\n for row in tourney_results:\n tourney_data.append(tourney_formatter.get_dict(search=True, input_row=row))\n\n search_results['games'] = game_data\n search_results['players'] = player_data\n search_results['teams'] = team_data\n search_results['tournaments'] = tourney_data\n\n return jsonify(search_results)\n\napi.add_resource(Players, '/players', '/players/')\napi.add_resource(Player, '/players/<player_id>')\n\napi.add_resource(Teams, '/teams', '/teams/')\napi.add_resource(Team, '/teams/<team_id>')\n\napi.add_resource(Tourneys, '/tournaments', '/tournaments/')\napi.add_resource(Tourney, '/tournaments/<tourney_id>')\n\napi.add_resource(Games, '/games', '/games/')\napi.add_resource(Game, '/games/<game_id>')\n\napi.add_resource(Search, '/search/<search_str>')\n\n'=====================END API====================='\n\nif __name__ == '__main__':\n app.run()\n", "from flask import Flask, request, render_template, redirect, Markup\nfrom flask_restful import Resource, Api\nfrom flask_cors import CORS, cross_origin\nfrom sqlalchemy import create_engine\nimport MySQLdb\nfrom json import dumps\nfrom flask_jsonpify import jsonify\nfrom collections import OrderedDict\nimport os\nimport json\nimport random\nfrom api_classes import Helper, GameInstance, PlayerInstance, TeamInstance, TourneyInstance\nfrom api_queries import game_query, player_query, team_query, tourney_query\nfrom search_queries import search_game, search_player, search_team, search_tourney\n<docstring token>\nengine = create_engine('mysql://{0}:{1}@{2}:3306/{3}?charset=utf8'.format(\n os.environ['DB_USER'], os.environ['DB_PASS'], os.environ['DB_HOST'], os\n .environ['DB_NAME']))\napp = Flask(__name__, static_url_path='/static')\napp.config['JSON_SORT_KEYS'] = False\ncors = CORS(app)\napp.config['CORS_HEADERS'] = 'Access-Control-Allow-Origin'\napi = Api(app)\n<docstring token>\n\n\[email protected]('/')\n@cross_origin()\ndef home():\n return render_template('api.html')\n\n\[email protected](404)\ndef page_not_found(e):\n return 'What are you looking for m8?'\n\n\n<docstring token>\n\n\nclass Players(Resource):\n\n def get(self):\n conn = engine.connect()\n query = conn.execute(player_query())\n list_players = []\n for row in query:\n player = PlayerInstance(row).get_dict()\n list_players.append(player)\n conn.close()\n return jsonify(list_players)\n\n\nclass Player(Resource):\n\n def get(self, player_id):\n conn = engine.connect()\n query = conn.execute(player_query(player_id))\n row = query.fetchone()\n player = PlayerInstance(row).get_dict()\n conn.close()\n return jsonify(player)\n\n\nclass Teams(Resource):\n\n def get(self):\n conn = engine.connect()\n conn.execute('set @@session.group_concat_max_len=4294967295')\n query = conn.execute(team_query())\n list_teams = []\n for row in query:\n team = TeamInstance(row).get_dict()\n list_teams.append(team)\n conn.close()\n return jsonify(list_teams)\n\n\nclass Team(Resource):\n\n def get(self, team_id):\n conn = engine.connect()\n conn.execute('set @@session.group_concat_max_len=4294967295')\n query = conn.execute(team_query(team_id))\n row = query.fetchone()\n team = TeamInstance(row).get_dict()\n conn.close()\n return jsonify(team)\n\n\nclass Tourneys(Resource):\n\n def get(self):\n conn = engine.connect()\n query = conn.execute(tourney_query())\n list_tourneys = []\n for row in query:\n tourney = TourneyInstance(row).get_dict()\n list_tourneys.append(tourney)\n conn.close()\n return jsonify(list_tourneys)\n\n\nclass Tourney(Resource):\n\n def get(self, tourney_id):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(tourney_query(tourney_id))\n row = query.fetchone()\n tourney = TourneyInstance(row).get_dict()\n conn.close()\n return jsonify(tourney)\n\n\nclass Games(Resource):\n\n def get(self):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(game_query())\n list_games = []\n for row in query:\n list_games.append(GameInstance(row).get_dict())\n conn.close()\n return jsonify(list_games)\n\n\nclass Game(Resource):\n\n def get(self, game_id):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(game_query(game_id))\n row = query.fetchone()\n conn.close()\n return jsonify(GameInstance(row).get_dict())\n\n\nclass Search(Resource):\n\n def get(self, search_str):\n search_str = Helper.form_regex(search_str)\n if search_str is None:\n return jsonify(['Please enter at least one keyword.'])\n search_results = OrderedDict()\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n game_results = conn.execute(search_game(search_str))\n player_results = conn.execute(search_player(search_str))\n team_results = conn.execute(search_team(search_str))\n tourney_results = conn.execute(search_tourney(search_str))\n game_data = []\n player_data = []\n team_data = []\n tourney_data = []\n game_formatter = GameInstance()\n player_formatter = PlayerInstance()\n team_formatter = TeamInstance()\n tourney_formatter = TourneyInstance()\n for row in game_results:\n game_data.append(game_formatter.get_dict(search=True, input_row\n =row))\n for row in player_results:\n player_data.append(player_formatter.get_dict(search=True,\n input_row=row))\n for row in team_results:\n team_data.append(team_formatter.get_dict(search=True, input_row\n =row))\n for row in tourney_results:\n tourney_data.append(tourney_formatter.get_dict(search=True,\n input_row=row))\n search_results['games'] = game_data\n search_results['players'] = player_data\n search_results['teams'] = team_data\n search_results['tournaments'] = tourney_data\n return jsonify(search_results)\n\n\napi.add_resource(Players, '/players', '/players/')\napi.add_resource(Player, '/players/<player_id>')\napi.add_resource(Teams, '/teams', '/teams/')\napi.add_resource(Team, '/teams/<team_id>')\napi.add_resource(Tourneys, '/tournaments', '/tournaments/')\napi.add_resource(Tourney, '/tournaments/<tourney_id>')\napi.add_resource(Games, '/games', '/games/')\napi.add_resource(Game, '/games/<game_id>')\napi.add_resource(Search, '/search/<search_str>')\n<docstring token>\nif __name__ == '__main__':\n app.run()\n", "<import token>\n<docstring token>\nengine = create_engine('mysql://{0}:{1}@{2}:3306/{3}?charset=utf8'.format(\n os.environ['DB_USER'], os.environ['DB_PASS'], os.environ['DB_HOST'], os\n .environ['DB_NAME']))\napp = Flask(__name__, static_url_path='/static')\napp.config['JSON_SORT_KEYS'] = False\ncors = CORS(app)\napp.config['CORS_HEADERS'] = 'Access-Control-Allow-Origin'\napi = Api(app)\n<docstring token>\n\n\[email protected]('/')\n@cross_origin()\ndef home():\n return render_template('api.html')\n\n\[email protected](404)\ndef page_not_found(e):\n return 'What are you looking for m8?'\n\n\n<docstring token>\n\n\nclass Players(Resource):\n\n def get(self):\n conn = engine.connect()\n query = conn.execute(player_query())\n list_players = []\n for row in query:\n player = PlayerInstance(row).get_dict()\n list_players.append(player)\n conn.close()\n return jsonify(list_players)\n\n\nclass Player(Resource):\n\n def get(self, player_id):\n conn = engine.connect()\n query = conn.execute(player_query(player_id))\n row = query.fetchone()\n player = PlayerInstance(row).get_dict()\n conn.close()\n return jsonify(player)\n\n\nclass Teams(Resource):\n\n def get(self):\n conn = engine.connect()\n conn.execute('set @@session.group_concat_max_len=4294967295')\n query = conn.execute(team_query())\n list_teams = []\n for row in query:\n team = TeamInstance(row).get_dict()\n list_teams.append(team)\n conn.close()\n return jsonify(list_teams)\n\n\nclass Team(Resource):\n\n def get(self, team_id):\n conn = engine.connect()\n conn.execute('set @@session.group_concat_max_len=4294967295')\n query = conn.execute(team_query(team_id))\n row = query.fetchone()\n team = TeamInstance(row).get_dict()\n conn.close()\n return jsonify(team)\n\n\nclass Tourneys(Resource):\n\n def get(self):\n conn = engine.connect()\n query = conn.execute(tourney_query())\n list_tourneys = []\n for row in query:\n tourney = TourneyInstance(row).get_dict()\n list_tourneys.append(tourney)\n conn.close()\n return jsonify(list_tourneys)\n\n\nclass Tourney(Resource):\n\n def get(self, tourney_id):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(tourney_query(tourney_id))\n row = query.fetchone()\n tourney = TourneyInstance(row).get_dict()\n conn.close()\n return jsonify(tourney)\n\n\nclass Games(Resource):\n\n def get(self):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(game_query())\n list_games = []\n for row in query:\n list_games.append(GameInstance(row).get_dict())\n conn.close()\n return jsonify(list_games)\n\n\nclass Game(Resource):\n\n def get(self, game_id):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(game_query(game_id))\n row = query.fetchone()\n conn.close()\n return jsonify(GameInstance(row).get_dict())\n\n\nclass Search(Resource):\n\n def get(self, search_str):\n search_str = Helper.form_regex(search_str)\n if search_str is None:\n return jsonify(['Please enter at least one keyword.'])\n search_results = OrderedDict()\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n game_results = conn.execute(search_game(search_str))\n player_results = conn.execute(search_player(search_str))\n team_results = conn.execute(search_team(search_str))\n tourney_results = conn.execute(search_tourney(search_str))\n game_data = []\n player_data = []\n team_data = []\n tourney_data = []\n game_formatter = GameInstance()\n player_formatter = PlayerInstance()\n team_formatter = TeamInstance()\n tourney_formatter = TourneyInstance()\n for row in game_results:\n game_data.append(game_formatter.get_dict(search=True, input_row\n =row))\n for row in player_results:\n player_data.append(player_formatter.get_dict(search=True,\n input_row=row))\n for row in team_results:\n team_data.append(team_formatter.get_dict(search=True, input_row\n =row))\n for row in tourney_results:\n tourney_data.append(tourney_formatter.get_dict(search=True,\n input_row=row))\n search_results['games'] = game_data\n search_results['players'] = player_data\n search_results['teams'] = team_data\n search_results['tournaments'] = tourney_data\n return jsonify(search_results)\n\n\napi.add_resource(Players, '/players', '/players/')\napi.add_resource(Player, '/players/<player_id>')\napi.add_resource(Teams, '/teams', '/teams/')\napi.add_resource(Team, '/teams/<team_id>')\napi.add_resource(Tourneys, '/tournaments', '/tournaments/')\napi.add_resource(Tourney, '/tournaments/<tourney_id>')\napi.add_resource(Games, '/games', '/games/')\napi.add_resource(Game, '/games/<game_id>')\napi.add_resource(Search, '/search/<search_str>')\n<docstring token>\nif __name__ == '__main__':\n app.run()\n", "<import token>\n<docstring token>\n<assignment token>\n<docstring token>\n\n\[email protected]('/')\n@cross_origin()\ndef home():\n return render_template('api.html')\n\n\[email protected](404)\ndef page_not_found(e):\n return 'What are you looking for m8?'\n\n\n<docstring token>\n\n\nclass Players(Resource):\n\n def get(self):\n conn = engine.connect()\n query = conn.execute(player_query())\n list_players = []\n for row in query:\n player = PlayerInstance(row).get_dict()\n list_players.append(player)\n conn.close()\n return jsonify(list_players)\n\n\nclass Player(Resource):\n\n def get(self, player_id):\n conn = engine.connect()\n query = conn.execute(player_query(player_id))\n row = query.fetchone()\n player = PlayerInstance(row).get_dict()\n conn.close()\n return jsonify(player)\n\n\nclass Teams(Resource):\n\n def get(self):\n conn = engine.connect()\n conn.execute('set @@session.group_concat_max_len=4294967295')\n query = conn.execute(team_query())\n list_teams = []\n for row in query:\n team = TeamInstance(row).get_dict()\n list_teams.append(team)\n conn.close()\n return jsonify(list_teams)\n\n\nclass Team(Resource):\n\n def get(self, team_id):\n conn = engine.connect()\n conn.execute('set @@session.group_concat_max_len=4294967295')\n query = conn.execute(team_query(team_id))\n row = query.fetchone()\n team = TeamInstance(row).get_dict()\n conn.close()\n return jsonify(team)\n\n\nclass Tourneys(Resource):\n\n def get(self):\n conn = engine.connect()\n query = conn.execute(tourney_query())\n list_tourneys = []\n for row in query:\n tourney = TourneyInstance(row).get_dict()\n list_tourneys.append(tourney)\n conn.close()\n return jsonify(list_tourneys)\n\n\nclass Tourney(Resource):\n\n def get(self, tourney_id):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(tourney_query(tourney_id))\n row = query.fetchone()\n tourney = TourneyInstance(row).get_dict()\n conn.close()\n return jsonify(tourney)\n\n\nclass Games(Resource):\n\n def get(self):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(game_query())\n list_games = []\n for row in query:\n list_games.append(GameInstance(row).get_dict())\n conn.close()\n return jsonify(list_games)\n\n\nclass Game(Resource):\n\n def get(self, game_id):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(game_query(game_id))\n row = query.fetchone()\n conn.close()\n return jsonify(GameInstance(row).get_dict())\n\n\nclass Search(Resource):\n\n def get(self, search_str):\n search_str = Helper.form_regex(search_str)\n if search_str is None:\n return jsonify(['Please enter at least one keyword.'])\n search_results = OrderedDict()\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n game_results = conn.execute(search_game(search_str))\n player_results = conn.execute(search_player(search_str))\n team_results = conn.execute(search_team(search_str))\n tourney_results = conn.execute(search_tourney(search_str))\n game_data = []\n player_data = []\n team_data = []\n tourney_data = []\n game_formatter = GameInstance()\n player_formatter = PlayerInstance()\n team_formatter = TeamInstance()\n tourney_formatter = TourneyInstance()\n for row in game_results:\n game_data.append(game_formatter.get_dict(search=True, input_row\n =row))\n for row in player_results:\n player_data.append(player_formatter.get_dict(search=True,\n input_row=row))\n for row in team_results:\n team_data.append(team_formatter.get_dict(search=True, input_row\n =row))\n for row in tourney_results:\n tourney_data.append(tourney_formatter.get_dict(search=True,\n input_row=row))\n search_results['games'] = game_data\n search_results['players'] = player_data\n search_results['teams'] = team_data\n search_results['tournaments'] = tourney_data\n return jsonify(search_results)\n\n\napi.add_resource(Players, '/players', '/players/')\napi.add_resource(Player, '/players/<player_id>')\napi.add_resource(Teams, '/teams', '/teams/')\napi.add_resource(Team, '/teams/<team_id>')\napi.add_resource(Tourneys, '/tournaments', '/tournaments/')\napi.add_resource(Tourney, '/tournaments/<tourney_id>')\napi.add_resource(Games, '/games', '/games/')\napi.add_resource(Game, '/games/<game_id>')\napi.add_resource(Search, '/search/<search_str>')\n<docstring token>\nif __name__ == '__main__':\n app.run()\n", "<import token>\n<docstring token>\n<assignment token>\n<docstring token>\n\n\[email protected]('/')\n@cross_origin()\ndef home():\n return render_template('api.html')\n\n\[email protected](404)\ndef page_not_found(e):\n return 'What are you looking for m8?'\n\n\n<docstring token>\n\n\nclass Players(Resource):\n\n def get(self):\n conn = engine.connect()\n query = conn.execute(player_query())\n list_players = []\n for row in query:\n player = PlayerInstance(row).get_dict()\n list_players.append(player)\n conn.close()\n return jsonify(list_players)\n\n\nclass Player(Resource):\n\n def get(self, player_id):\n conn = engine.connect()\n query = conn.execute(player_query(player_id))\n row = query.fetchone()\n player = PlayerInstance(row).get_dict()\n conn.close()\n return jsonify(player)\n\n\nclass Teams(Resource):\n\n def get(self):\n conn = engine.connect()\n conn.execute('set @@session.group_concat_max_len=4294967295')\n query = conn.execute(team_query())\n list_teams = []\n for row in query:\n team = TeamInstance(row).get_dict()\n list_teams.append(team)\n conn.close()\n return jsonify(list_teams)\n\n\nclass Team(Resource):\n\n def get(self, team_id):\n conn = engine.connect()\n conn.execute('set @@session.group_concat_max_len=4294967295')\n query = conn.execute(team_query(team_id))\n row = query.fetchone()\n team = TeamInstance(row).get_dict()\n conn.close()\n return jsonify(team)\n\n\nclass Tourneys(Resource):\n\n def get(self):\n conn = engine.connect()\n query = conn.execute(tourney_query())\n list_tourneys = []\n for row in query:\n tourney = TourneyInstance(row).get_dict()\n list_tourneys.append(tourney)\n conn.close()\n return jsonify(list_tourneys)\n\n\nclass Tourney(Resource):\n\n def get(self, tourney_id):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(tourney_query(tourney_id))\n row = query.fetchone()\n tourney = TourneyInstance(row).get_dict()\n conn.close()\n return jsonify(tourney)\n\n\nclass Games(Resource):\n\n def get(self):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(game_query())\n list_games = []\n for row in query:\n list_games.append(GameInstance(row).get_dict())\n conn.close()\n return jsonify(list_games)\n\n\nclass Game(Resource):\n\n def get(self, game_id):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(game_query(game_id))\n row = query.fetchone()\n conn.close()\n return jsonify(GameInstance(row).get_dict())\n\n\nclass Search(Resource):\n\n def get(self, search_str):\n search_str = Helper.form_regex(search_str)\n if search_str is None:\n return jsonify(['Please enter at least one keyword.'])\n search_results = OrderedDict()\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n game_results = conn.execute(search_game(search_str))\n player_results = conn.execute(search_player(search_str))\n team_results = conn.execute(search_team(search_str))\n tourney_results = conn.execute(search_tourney(search_str))\n game_data = []\n player_data = []\n team_data = []\n tourney_data = []\n game_formatter = GameInstance()\n player_formatter = PlayerInstance()\n team_formatter = TeamInstance()\n tourney_formatter = TourneyInstance()\n for row in game_results:\n game_data.append(game_formatter.get_dict(search=True, input_row\n =row))\n for row in player_results:\n player_data.append(player_formatter.get_dict(search=True,\n input_row=row))\n for row in team_results:\n team_data.append(team_formatter.get_dict(search=True, input_row\n =row))\n for row in tourney_results:\n tourney_data.append(tourney_formatter.get_dict(search=True,\n input_row=row))\n search_results['games'] = game_data\n search_results['players'] = player_data\n search_results['teams'] = team_data\n search_results['tournaments'] = tourney_data\n return jsonify(search_results)\n\n\n<code token>\n<docstring token>\n<code token>\n", "<import token>\n<docstring token>\n<assignment token>\n<docstring token>\n<function token>\n\n\[email protected](404)\ndef page_not_found(e):\n return 'What are you looking for m8?'\n\n\n<docstring token>\n\n\nclass Players(Resource):\n\n def get(self):\n conn = engine.connect()\n query = conn.execute(player_query())\n list_players = []\n for row in query:\n player = PlayerInstance(row).get_dict()\n list_players.append(player)\n conn.close()\n return jsonify(list_players)\n\n\nclass Player(Resource):\n\n def get(self, player_id):\n conn = engine.connect()\n query = conn.execute(player_query(player_id))\n row = query.fetchone()\n player = PlayerInstance(row).get_dict()\n conn.close()\n return jsonify(player)\n\n\nclass Teams(Resource):\n\n def get(self):\n conn = engine.connect()\n conn.execute('set @@session.group_concat_max_len=4294967295')\n query = conn.execute(team_query())\n list_teams = []\n for row in query:\n team = TeamInstance(row).get_dict()\n list_teams.append(team)\n conn.close()\n return jsonify(list_teams)\n\n\nclass Team(Resource):\n\n def get(self, team_id):\n conn = engine.connect()\n conn.execute('set @@session.group_concat_max_len=4294967295')\n query = conn.execute(team_query(team_id))\n row = query.fetchone()\n team = TeamInstance(row).get_dict()\n conn.close()\n return jsonify(team)\n\n\nclass Tourneys(Resource):\n\n def get(self):\n conn = engine.connect()\n query = conn.execute(tourney_query())\n list_tourneys = []\n for row in query:\n tourney = TourneyInstance(row).get_dict()\n list_tourneys.append(tourney)\n conn.close()\n return jsonify(list_tourneys)\n\n\nclass Tourney(Resource):\n\n def get(self, tourney_id):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(tourney_query(tourney_id))\n row = query.fetchone()\n tourney = TourneyInstance(row).get_dict()\n conn.close()\n return jsonify(tourney)\n\n\nclass Games(Resource):\n\n def get(self):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(game_query())\n list_games = []\n for row in query:\n list_games.append(GameInstance(row).get_dict())\n conn.close()\n return jsonify(list_games)\n\n\nclass Game(Resource):\n\n def get(self, game_id):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(game_query(game_id))\n row = query.fetchone()\n conn.close()\n return jsonify(GameInstance(row).get_dict())\n\n\nclass Search(Resource):\n\n def get(self, search_str):\n search_str = Helper.form_regex(search_str)\n if search_str is None:\n return jsonify(['Please enter at least one keyword.'])\n search_results = OrderedDict()\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n game_results = conn.execute(search_game(search_str))\n player_results = conn.execute(search_player(search_str))\n team_results = conn.execute(search_team(search_str))\n tourney_results = conn.execute(search_tourney(search_str))\n game_data = []\n player_data = []\n team_data = []\n tourney_data = []\n game_formatter = GameInstance()\n player_formatter = PlayerInstance()\n team_formatter = TeamInstance()\n tourney_formatter = TourneyInstance()\n for row in game_results:\n game_data.append(game_formatter.get_dict(search=True, input_row\n =row))\n for row in player_results:\n player_data.append(player_formatter.get_dict(search=True,\n input_row=row))\n for row in team_results:\n team_data.append(team_formatter.get_dict(search=True, input_row\n =row))\n for row in tourney_results:\n tourney_data.append(tourney_formatter.get_dict(search=True,\n input_row=row))\n search_results['games'] = game_data\n search_results['players'] = player_data\n search_results['teams'] = team_data\n search_results['tournaments'] = tourney_data\n return jsonify(search_results)\n\n\n<code token>\n<docstring token>\n<code token>\n", "<import token>\n<docstring token>\n<assignment token>\n<docstring token>\n<function token>\n<function token>\n<docstring token>\n\n\nclass Players(Resource):\n\n def get(self):\n conn = engine.connect()\n query = conn.execute(player_query())\n list_players = []\n for row in query:\n player = PlayerInstance(row).get_dict()\n list_players.append(player)\n conn.close()\n return jsonify(list_players)\n\n\nclass Player(Resource):\n\n def get(self, player_id):\n conn = engine.connect()\n query = conn.execute(player_query(player_id))\n row = query.fetchone()\n player = PlayerInstance(row).get_dict()\n conn.close()\n return jsonify(player)\n\n\nclass Teams(Resource):\n\n def get(self):\n conn = engine.connect()\n conn.execute('set @@session.group_concat_max_len=4294967295')\n query = conn.execute(team_query())\n list_teams = []\n for row in query:\n team = TeamInstance(row).get_dict()\n list_teams.append(team)\n conn.close()\n return jsonify(list_teams)\n\n\nclass Team(Resource):\n\n def get(self, team_id):\n conn = engine.connect()\n conn.execute('set @@session.group_concat_max_len=4294967295')\n query = conn.execute(team_query(team_id))\n row = query.fetchone()\n team = TeamInstance(row).get_dict()\n conn.close()\n return jsonify(team)\n\n\nclass Tourneys(Resource):\n\n def get(self):\n conn = engine.connect()\n query = conn.execute(tourney_query())\n list_tourneys = []\n for row in query:\n tourney = TourneyInstance(row).get_dict()\n list_tourneys.append(tourney)\n conn.close()\n return jsonify(list_tourneys)\n\n\nclass Tourney(Resource):\n\n def get(self, tourney_id):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(tourney_query(tourney_id))\n row = query.fetchone()\n tourney = TourneyInstance(row).get_dict()\n conn.close()\n return jsonify(tourney)\n\n\nclass Games(Resource):\n\n def get(self):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(game_query())\n list_games = []\n for row in query:\n list_games.append(GameInstance(row).get_dict())\n conn.close()\n return jsonify(list_games)\n\n\nclass Game(Resource):\n\n def get(self, game_id):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(game_query(game_id))\n row = query.fetchone()\n conn.close()\n return jsonify(GameInstance(row).get_dict())\n\n\nclass Search(Resource):\n\n def get(self, search_str):\n search_str = Helper.form_regex(search_str)\n if search_str is None:\n return jsonify(['Please enter at least one keyword.'])\n search_results = OrderedDict()\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n game_results = conn.execute(search_game(search_str))\n player_results = conn.execute(search_player(search_str))\n team_results = conn.execute(search_team(search_str))\n tourney_results = conn.execute(search_tourney(search_str))\n game_data = []\n player_data = []\n team_data = []\n tourney_data = []\n game_formatter = GameInstance()\n player_formatter = PlayerInstance()\n team_formatter = TeamInstance()\n tourney_formatter = TourneyInstance()\n for row in game_results:\n game_data.append(game_formatter.get_dict(search=True, input_row\n =row))\n for row in player_results:\n player_data.append(player_formatter.get_dict(search=True,\n input_row=row))\n for row in team_results:\n team_data.append(team_formatter.get_dict(search=True, input_row\n =row))\n for row in tourney_results:\n tourney_data.append(tourney_formatter.get_dict(search=True,\n input_row=row))\n search_results['games'] = game_data\n search_results['players'] = player_data\n search_results['teams'] = team_data\n search_results['tournaments'] = tourney_data\n return jsonify(search_results)\n\n\n<code token>\n<docstring token>\n<code token>\n", "<import token>\n<docstring token>\n<assignment token>\n<docstring token>\n<function token>\n<function token>\n<docstring token>\n\n\nclass Players(Resource):\n <function token>\n\n\nclass Player(Resource):\n\n def get(self, player_id):\n conn = engine.connect()\n query = conn.execute(player_query(player_id))\n row = query.fetchone()\n player = PlayerInstance(row).get_dict()\n conn.close()\n return jsonify(player)\n\n\nclass Teams(Resource):\n\n def get(self):\n conn = engine.connect()\n conn.execute('set @@session.group_concat_max_len=4294967295')\n query = conn.execute(team_query())\n list_teams = []\n for row in query:\n team = TeamInstance(row).get_dict()\n list_teams.append(team)\n conn.close()\n return jsonify(list_teams)\n\n\nclass Team(Resource):\n\n def get(self, team_id):\n conn = engine.connect()\n conn.execute('set @@session.group_concat_max_len=4294967295')\n query = conn.execute(team_query(team_id))\n row = query.fetchone()\n team = TeamInstance(row).get_dict()\n conn.close()\n return jsonify(team)\n\n\nclass Tourneys(Resource):\n\n def get(self):\n conn = engine.connect()\n query = conn.execute(tourney_query())\n list_tourneys = []\n for row in query:\n tourney = TourneyInstance(row).get_dict()\n list_tourneys.append(tourney)\n conn.close()\n return jsonify(list_tourneys)\n\n\nclass Tourney(Resource):\n\n def get(self, tourney_id):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(tourney_query(tourney_id))\n row = query.fetchone()\n tourney = TourneyInstance(row).get_dict()\n conn.close()\n return jsonify(tourney)\n\n\nclass Games(Resource):\n\n def get(self):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(game_query())\n list_games = []\n for row in query:\n list_games.append(GameInstance(row).get_dict())\n conn.close()\n return jsonify(list_games)\n\n\nclass Game(Resource):\n\n def get(self, game_id):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(game_query(game_id))\n row = query.fetchone()\n conn.close()\n return jsonify(GameInstance(row).get_dict())\n\n\nclass Search(Resource):\n\n def get(self, search_str):\n search_str = Helper.form_regex(search_str)\n if search_str is None:\n return jsonify(['Please enter at least one keyword.'])\n search_results = OrderedDict()\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n game_results = conn.execute(search_game(search_str))\n player_results = conn.execute(search_player(search_str))\n team_results = conn.execute(search_team(search_str))\n tourney_results = conn.execute(search_tourney(search_str))\n game_data = []\n player_data = []\n team_data = []\n tourney_data = []\n game_formatter = GameInstance()\n player_formatter = PlayerInstance()\n team_formatter = TeamInstance()\n tourney_formatter = TourneyInstance()\n for row in game_results:\n game_data.append(game_formatter.get_dict(search=True, input_row\n =row))\n for row in player_results:\n player_data.append(player_formatter.get_dict(search=True,\n input_row=row))\n for row in team_results:\n team_data.append(team_formatter.get_dict(search=True, input_row\n =row))\n for row in tourney_results:\n tourney_data.append(tourney_formatter.get_dict(search=True,\n input_row=row))\n search_results['games'] = game_data\n search_results['players'] = player_data\n search_results['teams'] = team_data\n search_results['tournaments'] = tourney_data\n return jsonify(search_results)\n\n\n<code token>\n<docstring token>\n<code token>\n", "<import token>\n<docstring token>\n<assignment token>\n<docstring token>\n<function token>\n<function token>\n<docstring token>\n<class token>\n\n\nclass Player(Resource):\n\n def get(self, player_id):\n conn = engine.connect()\n query = conn.execute(player_query(player_id))\n row = query.fetchone()\n player = PlayerInstance(row).get_dict()\n conn.close()\n return jsonify(player)\n\n\nclass Teams(Resource):\n\n def get(self):\n conn = engine.connect()\n conn.execute('set @@session.group_concat_max_len=4294967295')\n query = conn.execute(team_query())\n list_teams = []\n for row in query:\n team = TeamInstance(row).get_dict()\n list_teams.append(team)\n conn.close()\n return jsonify(list_teams)\n\n\nclass Team(Resource):\n\n def get(self, team_id):\n conn = engine.connect()\n conn.execute('set @@session.group_concat_max_len=4294967295')\n query = conn.execute(team_query(team_id))\n row = query.fetchone()\n team = TeamInstance(row).get_dict()\n conn.close()\n return jsonify(team)\n\n\nclass Tourneys(Resource):\n\n def get(self):\n conn = engine.connect()\n query = conn.execute(tourney_query())\n list_tourneys = []\n for row in query:\n tourney = TourneyInstance(row).get_dict()\n list_tourneys.append(tourney)\n conn.close()\n return jsonify(list_tourneys)\n\n\nclass Tourney(Resource):\n\n def get(self, tourney_id):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(tourney_query(tourney_id))\n row = query.fetchone()\n tourney = TourneyInstance(row).get_dict()\n conn.close()\n return jsonify(tourney)\n\n\nclass Games(Resource):\n\n def get(self):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(game_query())\n list_games = []\n for row in query:\n list_games.append(GameInstance(row).get_dict())\n conn.close()\n return jsonify(list_games)\n\n\nclass Game(Resource):\n\n def get(self, game_id):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(game_query(game_id))\n row = query.fetchone()\n conn.close()\n return jsonify(GameInstance(row).get_dict())\n\n\nclass Search(Resource):\n\n def get(self, search_str):\n search_str = Helper.form_regex(search_str)\n if search_str is None:\n return jsonify(['Please enter at least one keyword.'])\n search_results = OrderedDict()\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n game_results = conn.execute(search_game(search_str))\n player_results = conn.execute(search_player(search_str))\n team_results = conn.execute(search_team(search_str))\n tourney_results = conn.execute(search_tourney(search_str))\n game_data = []\n player_data = []\n team_data = []\n tourney_data = []\n game_formatter = GameInstance()\n player_formatter = PlayerInstance()\n team_formatter = TeamInstance()\n tourney_formatter = TourneyInstance()\n for row in game_results:\n game_data.append(game_formatter.get_dict(search=True, input_row\n =row))\n for row in player_results:\n player_data.append(player_formatter.get_dict(search=True,\n input_row=row))\n for row in team_results:\n team_data.append(team_formatter.get_dict(search=True, input_row\n =row))\n for row in tourney_results:\n tourney_data.append(tourney_formatter.get_dict(search=True,\n input_row=row))\n search_results['games'] = game_data\n search_results['players'] = player_data\n search_results['teams'] = team_data\n search_results['tournaments'] = tourney_data\n return jsonify(search_results)\n\n\n<code token>\n<docstring token>\n<code token>\n", "<import token>\n<docstring token>\n<assignment token>\n<docstring token>\n<function token>\n<function token>\n<docstring token>\n<class token>\n\n\nclass Player(Resource):\n <function token>\n\n\nclass Teams(Resource):\n\n def get(self):\n conn = engine.connect()\n conn.execute('set @@session.group_concat_max_len=4294967295')\n query = conn.execute(team_query())\n list_teams = []\n for row in query:\n team = TeamInstance(row).get_dict()\n list_teams.append(team)\n conn.close()\n return jsonify(list_teams)\n\n\nclass Team(Resource):\n\n def get(self, team_id):\n conn = engine.connect()\n conn.execute('set @@session.group_concat_max_len=4294967295')\n query = conn.execute(team_query(team_id))\n row = query.fetchone()\n team = TeamInstance(row).get_dict()\n conn.close()\n return jsonify(team)\n\n\nclass Tourneys(Resource):\n\n def get(self):\n conn = engine.connect()\n query = conn.execute(tourney_query())\n list_tourneys = []\n for row in query:\n tourney = TourneyInstance(row).get_dict()\n list_tourneys.append(tourney)\n conn.close()\n return jsonify(list_tourneys)\n\n\nclass Tourney(Resource):\n\n def get(self, tourney_id):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(tourney_query(tourney_id))\n row = query.fetchone()\n tourney = TourneyInstance(row).get_dict()\n conn.close()\n return jsonify(tourney)\n\n\nclass Games(Resource):\n\n def get(self):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(game_query())\n list_games = []\n for row in query:\n list_games.append(GameInstance(row).get_dict())\n conn.close()\n return jsonify(list_games)\n\n\nclass Game(Resource):\n\n def get(self, game_id):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(game_query(game_id))\n row = query.fetchone()\n conn.close()\n return jsonify(GameInstance(row).get_dict())\n\n\nclass Search(Resource):\n\n def get(self, search_str):\n search_str = Helper.form_regex(search_str)\n if search_str is None:\n return jsonify(['Please enter at least one keyword.'])\n search_results = OrderedDict()\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n game_results = conn.execute(search_game(search_str))\n player_results = conn.execute(search_player(search_str))\n team_results = conn.execute(search_team(search_str))\n tourney_results = conn.execute(search_tourney(search_str))\n game_data = []\n player_data = []\n team_data = []\n tourney_data = []\n game_formatter = GameInstance()\n player_formatter = PlayerInstance()\n team_formatter = TeamInstance()\n tourney_formatter = TourneyInstance()\n for row in game_results:\n game_data.append(game_formatter.get_dict(search=True, input_row\n =row))\n for row in player_results:\n player_data.append(player_formatter.get_dict(search=True,\n input_row=row))\n for row in team_results:\n team_data.append(team_formatter.get_dict(search=True, input_row\n =row))\n for row in tourney_results:\n tourney_data.append(tourney_formatter.get_dict(search=True,\n input_row=row))\n search_results['games'] = game_data\n search_results['players'] = player_data\n search_results['teams'] = team_data\n search_results['tournaments'] = tourney_data\n return jsonify(search_results)\n\n\n<code token>\n<docstring token>\n<code token>\n", "<import token>\n<docstring token>\n<assignment token>\n<docstring token>\n<function token>\n<function token>\n<docstring token>\n<class token>\n<class token>\n\n\nclass Teams(Resource):\n\n def get(self):\n conn = engine.connect()\n conn.execute('set @@session.group_concat_max_len=4294967295')\n query = conn.execute(team_query())\n list_teams = []\n for row in query:\n team = TeamInstance(row).get_dict()\n list_teams.append(team)\n conn.close()\n return jsonify(list_teams)\n\n\nclass Team(Resource):\n\n def get(self, team_id):\n conn = engine.connect()\n conn.execute('set @@session.group_concat_max_len=4294967295')\n query = conn.execute(team_query(team_id))\n row = query.fetchone()\n team = TeamInstance(row).get_dict()\n conn.close()\n return jsonify(team)\n\n\nclass Tourneys(Resource):\n\n def get(self):\n conn = engine.connect()\n query = conn.execute(tourney_query())\n list_tourneys = []\n for row in query:\n tourney = TourneyInstance(row).get_dict()\n list_tourneys.append(tourney)\n conn.close()\n return jsonify(list_tourneys)\n\n\nclass Tourney(Resource):\n\n def get(self, tourney_id):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(tourney_query(tourney_id))\n row = query.fetchone()\n tourney = TourneyInstance(row).get_dict()\n conn.close()\n return jsonify(tourney)\n\n\nclass Games(Resource):\n\n def get(self):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(game_query())\n list_games = []\n for row in query:\n list_games.append(GameInstance(row).get_dict())\n conn.close()\n return jsonify(list_games)\n\n\nclass Game(Resource):\n\n def get(self, game_id):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(game_query(game_id))\n row = query.fetchone()\n conn.close()\n return jsonify(GameInstance(row).get_dict())\n\n\nclass Search(Resource):\n\n def get(self, search_str):\n search_str = Helper.form_regex(search_str)\n if search_str is None:\n return jsonify(['Please enter at least one keyword.'])\n search_results = OrderedDict()\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n game_results = conn.execute(search_game(search_str))\n player_results = conn.execute(search_player(search_str))\n team_results = conn.execute(search_team(search_str))\n tourney_results = conn.execute(search_tourney(search_str))\n game_data = []\n player_data = []\n team_data = []\n tourney_data = []\n game_formatter = GameInstance()\n player_formatter = PlayerInstance()\n team_formatter = TeamInstance()\n tourney_formatter = TourneyInstance()\n for row in game_results:\n game_data.append(game_formatter.get_dict(search=True, input_row\n =row))\n for row in player_results:\n player_data.append(player_formatter.get_dict(search=True,\n input_row=row))\n for row in team_results:\n team_data.append(team_formatter.get_dict(search=True, input_row\n =row))\n for row in tourney_results:\n tourney_data.append(tourney_formatter.get_dict(search=True,\n input_row=row))\n search_results['games'] = game_data\n search_results['players'] = player_data\n search_results['teams'] = team_data\n search_results['tournaments'] = tourney_data\n return jsonify(search_results)\n\n\n<code token>\n<docstring token>\n<code token>\n", "<import token>\n<docstring token>\n<assignment token>\n<docstring token>\n<function token>\n<function token>\n<docstring token>\n<class token>\n<class token>\n\n\nclass Teams(Resource):\n <function token>\n\n\nclass Team(Resource):\n\n def get(self, team_id):\n conn = engine.connect()\n conn.execute('set @@session.group_concat_max_len=4294967295')\n query = conn.execute(team_query(team_id))\n row = query.fetchone()\n team = TeamInstance(row).get_dict()\n conn.close()\n return jsonify(team)\n\n\nclass Tourneys(Resource):\n\n def get(self):\n conn = engine.connect()\n query = conn.execute(tourney_query())\n list_tourneys = []\n for row in query:\n tourney = TourneyInstance(row).get_dict()\n list_tourneys.append(tourney)\n conn.close()\n return jsonify(list_tourneys)\n\n\nclass Tourney(Resource):\n\n def get(self, tourney_id):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(tourney_query(tourney_id))\n row = query.fetchone()\n tourney = TourneyInstance(row).get_dict()\n conn.close()\n return jsonify(tourney)\n\n\nclass Games(Resource):\n\n def get(self):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(game_query())\n list_games = []\n for row in query:\n list_games.append(GameInstance(row).get_dict())\n conn.close()\n return jsonify(list_games)\n\n\nclass Game(Resource):\n\n def get(self, game_id):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(game_query(game_id))\n row = query.fetchone()\n conn.close()\n return jsonify(GameInstance(row).get_dict())\n\n\nclass Search(Resource):\n\n def get(self, search_str):\n search_str = Helper.form_regex(search_str)\n if search_str is None:\n return jsonify(['Please enter at least one keyword.'])\n search_results = OrderedDict()\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n game_results = conn.execute(search_game(search_str))\n player_results = conn.execute(search_player(search_str))\n team_results = conn.execute(search_team(search_str))\n tourney_results = conn.execute(search_tourney(search_str))\n game_data = []\n player_data = []\n team_data = []\n tourney_data = []\n game_formatter = GameInstance()\n player_formatter = PlayerInstance()\n team_formatter = TeamInstance()\n tourney_formatter = TourneyInstance()\n for row in game_results:\n game_data.append(game_formatter.get_dict(search=True, input_row\n =row))\n for row in player_results:\n player_data.append(player_formatter.get_dict(search=True,\n input_row=row))\n for row in team_results:\n team_data.append(team_formatter.get_dict(search=True, input_row\n =row))\n for row in tourney_results:\n tourney_data.append(tourney_formatter.get_dict(search=True,\n input_row=row))\n search_results['games'] = game_data\n search_results['players'] = player_data\n search_results['teams'] = team_data\n search_results['tournaments'] = tourney_data\n return jsonify(search_results)\n\n\n<code token>\n<docstring token>\n<code token>\n", "<import token>\n<docstring token>\n<assignment token>\n<docstring token>\n<function token>\n<function token>\n<docstring token>\n<class token>\n<class token>\n<class token>\n\n\nclass Team(Resource):\n\n def get(self, team_id):\n conn = engine.connect()\n conn.execute('set @@session.group_concat_max_len=4294967295')\n query = conn.execute(team_query(team_id))\n row = query.fetchone()\n team = TeamInstance(row).get_dict()\n conn.close()\n return jsonify(team)\n\n\nclass Tourneys(Resource):\n\n def get(self):\n conn = engine.connect()\n query = conn.execute(tourney_query())\n list_tourneys = []\n for row in query:\n tourney = TourneyInstance(row).get_dict()\n list_tourneys.append(tourney)\n conn.close()\n return jsonify(list_tourneys)\n\n\nclass Tourney(Resource):\n\n def get(self, tourney_id):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(tourney_query(tourney_id))\n row = query.fetchone()\n tourney = TourneyInstance(row).get_dict()\n conn.close()\n return jsonify(tourney)\n\n\nclass Games(Resource):\n\n def get(self):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(game_query())\n list_games = []\n for row in query:\n list_games.append(GameInstance(row).get_dict())\n conn.close()\n return jsonify(list_games)\n\n\nclass Game(Resource):\n\n def get(self, game_id):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(game_query(game_id))\n row = query.fetchone()\n conn.close()\n return jsonify(GameInstance(row).get_dict())\n\n\nclass Search(Resource):\n\n def get(self, search_str):\n search_str = Helper.form_regex(search_str)\n if search_str is None:\n return jsonify(['Please enter at least one keyword.'])\n search_results = OrderedDict()\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n game_results = conn.execute(search_game(search_str))\n player_results = conn.execute(search_player(search_str))\n team_results = conn.execute(search_team(search_str))\n tourney_results = conn.execute(search_tourney(search_str))\n game_data = []\n player_data = []\n team_data = []\n tourney_data = []\n game_formatter = GameInstance()\n player_formatter = PlayerInstance()\n team_formatter = TeamInstance()\n tourney_formatter = TourneyInstance()\n for row in game_results:\n game_data.append(game_formatter.get_dict(search=True, input_row\n =row))\n for row in player_results:\n player_data.append(player_formatter.get_dict(search=True,\n input_row=row))\n for row in team_results:\n team_data.append(team_formatter.get_dict(search=True, input_row\n =row))\n for row in tourney_results:\n tourney_data.append(tourney_formatter.get_dict(search=True,\n input_row=row))\n search_results['games'] = game_data\n search_results['players'] = player_data\n search_results['teams'] = team_data\n search_results['tournaments'] = tourney_data\n return jsonify(search_results)\n\n\n<code token>\n<docstring token>\n<code token>\n", "<import token>\n<docstring token>\n<assignment token>\n<docstring token>\n<function token>\n<function token>\n<docstring token>\n<class token>\n<class token>\n<class token>\n\n\nclass Team(Resource):\n <function token>\n\n\nclass Tourneys(Resource):\n\n def get(self):\n conn = engine.connect()\n query = conn.execute(tourney_query())\n list_tourneys = []\n for row in query:\n tourney = TourneyInstance(row).get_dict()\n list_tourneys.append(tourney)\n conn.close()\n return jsonify(list_tourneys)\n\n\nclass Tourney(Resource):\n\n def get(self, tourney_id):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(tourney_query(tourney_id))\n row = query.fetchone()\n tourney = TourneyInstance(row).get_dict()\n conn.close()\n return jsonify(tourney)\n\n\nclass Games(Resource):\n\n def get(self):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(game_query())\n list_games = []\n for row in query:\n list_games.append(GameInstance(row).get_dict())\n conn.close()\n return jsonify(list_games)\n\n\nclass Game(Resource):\n\n def get(self, game_id):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(game_query(game_id))\n row = query.fetchone()\n conn.close()\n return jsonify(GameInstance(row).get_dict())\n\n\nclass Search(Resource):\n\n def get(self, search_str):\n search_str = Helper.form_regex(search_str)\n if search_str is None:\n return jsonify(['Please enter at least one keyword.'])\n search_results = OrderedDict()\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n game_results = conn.execute(search_game(search_str))\n player_results = conn.execute(search_player(search_str))\n team_results = conn.execute(search_team(search_str))\n tourney_results = conn.execute(search_tourney(search_str))\n game_data = []\n player_data = []\n team_data = []\n tourney_data = []\n game_formatter = GameInstance()\n player_formatter = PlayerInstance()\n team_formatter = TeamInstance()\n tourney_formatter = TourneyInstance()\n for row in game_results:\n game_data.append(game_formatter.get_dict(search=True, input_row\n =row))\n for row in player_results:\n player_data.append(player_formatter.get_dict(search=True,\n input_row=row))\n for row in team_results:\n team_data.append(team_formatter.get_dict(search=True, input_row\n =row))\n for row in tourney_results:\n tourney_data.append(tourney_formatter.get_dict(search=True,\n input_row=row))\n search_results['games'] = game_data\n search_results['players'] = player_data\n search_results['teams'] = team_data\n search_results['tournaments'] = tourney_data\n return jsonify(search_results)\n\n\n<code token>\n<docstring token>\n<code token>\n", "<import token>\n<docstring token>\n<assignment token>\n<docstring token>\n<function token>\n<function token>\n<docstring token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass Tourneys(Resource):\n\n def get(self):\n conn = engine.connect()\n query = conn.execute(tourney_query())\n list_tourneys = []\n for row in query:\n tourney = TourneyInstance(row).get_dict()\n list_tourneys.append(tourney)\n conn.close()\n return jsonify(list_tourneys)\n\n\nclass Tourney(Resource):\n\n def get(self, tourney_id):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(tourney_query(tourney_id))\n row = query.fetchone()\n tourney = TourneyInstance(row).get_dict()\n conn.close()\n return jsonify(tourney)\n\n\nclass Games(Resource):\n\n def get(self):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(game_query())\n list_games = []\n for row in query:\n list_games.append(GameInstance(row).get_dict())\n conn.close()\n return jsonify(list_games)\n\n\nclass Game(Resource):\n\n def get(self, game_id):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(game_query(game_id))\n row = query.fetchone()\n conn.close()\n return jsonify(GameInstance(row).get_dict())\n\n\nclass Search(Resource):\n\n def get(self, search_str):\n search_str = Helper.form_regex(search_str)\n if search_str is None:\n return jsonify(['Please enter at least one keyword.'])\n search_results = OrderedDict()\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n game_results = conn.execute(search_game(search_str))\n player_results = conn.execute(search_player(search_str))\n team_results = conn.execute(search_team(search_str))\n tourney_results = conn.execute(search_tourney(search_str))\n game_data = []\n player_data = []\n team_data = []\n tourney_data = []\n game_formatter = GameInstance()\n player_formatter = PlayerInstance()\n team_formatter = TeamInstance()\n tourney_formatter = TourneyInstance()\n for row in game_results:\n game_data.append(game_formatter.get_dict(search=True, input_row\n =row))\n for row in player_results:\n player_data.append(player_formatter.get_dict(search=True,\n input_row=row))\n for row in team_results:\n team_data.append(team_formatter.get_dict(search=True, input_row\n =row))\n for row in tourney_results:\n tourney_data.append(tourney_formatter.get_dict(search=True,\n input_row=row))\n search_results['games'] = game_data\n search_results['players'] = player_data\n search_results['teams'] = team_data\n search_results['tournaments'] = tourney_data\n return jsonify(search_results)\n\n\n<code token>\n<docstring token>\n<code token>\n", "<import token>\n<docstring token>\n<assignment token>\n<docstring token>\n<function token>\n<function token>\n<docstring token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass Tourneys(Resource):\n <function token>\n\n\nclass Tourney(Resource):\n\n def get(self, tourney_id):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(tourney_query(tourney_id))\n row = query.fetchone()\n tourney = TourneyInstance(row).get_dict()\n conn.close()\n return jsonify(tourney)\n\n\nclass Games(Resource):\n\n def get(self):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(game_query())\n list_games = []\n for row in query:\n list_games.append(GameInstance(row).get_dict())\n conn.close()\n return jsonify(list_games)\n\n\nclass Game(Resource):\n\n def get(self, game_id):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(game_query(game_id))\n row = query.fetchone()\n conn.close()\n return jsonify(GameInstance(row).get_dict())\n\n\nclass Search(Resource):\n\n def get(self, search_str):\n search_str = Helper.form_regex(search_str)\n if search_str is None:\n return jsonify(['Please enter at least one keyword.'])\n search_results = OrderedDict()\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n game_results = conn.execute(search_game(search_str))\n player_results = conn.execute(search_player(search_str))\n team_results = conn.execute(search_team(search_str))\n tourney_results = conn.execute(search_tourney(search_str))\n game_data = []\n player_data = []\n team_data = []\n tourney_data = []\n game_formatter = GameInstance()\n player_formatter = PlayerInstance()\n team_formatter = TeamInstance()\n tourney_formatter = TourneyInstance()\n for row in game_results:\n game_data.append(game_formatter.get_dict(search=True, input_row\n =row))\n for row in player_results:\n player_data.append(player_formatter.get_dict(search=True,\n input_row=row))\n for row in team_results:\n team_data.append(team_formatter.get_dict(search=True, input_row\n =row))\n for row in tourney_results:\n tourney_data.append(tourney_formatter.get_dict(search=True,\n input_row=row))\n search_results['games'] = game_data\n search_results['players'] = player_data\n search_results['teams'] = team_data\n search_results['tournaments'] = tourney_data\n return jsonify(search_results)\n\n\n<code token>\n<docstring token>\n<code token>\n", "<import token>\n<docstring token>\n<assignment token>\n<docstring token>\n<function token>\n<function token>\n<docstring token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass Tourney(Resource):\n\n def get(self, tourney_id):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(tourney_query(tourney_id))\n row = query.fetchone()\n tourney = TourneyInstance(row).get_dict()\n conn.close()\n return jsonify(tourney)\n\n\nclass Games(Resource):\n\n def get(self):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(game_query())\n list_games = []\n for row in query:\n list_games.append(GameInstance(row).get_dict())\n conn.close()\n return jsonify(list_games)\n\n\nclass Game(Resource):\n\n def get(self, game_id):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(game_query(game_id))\n row = query.fetchone()\n conn.close()\n return jsonify(GameInstance(row).get_dict())\n\n\nclass Search(Resource):\n\n def get(self, search_str):\n search_str = Helper.form_regex(search_str)\n if search_str is None:\n return jsonify(['Please enter at least one keyword.'])\n search_results = OrderedDict()\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n game_results = conn.execute(search_game(search_str))\n player_results = conn.execute(search_player(search_str))\n team_results = conn.execute(search_team(search_str))\n tourney_results = conn.execute(search_tourney(search_str))\n game_data = []\n player_data = []\n team_data = []\n tourney_data = []\n game_formatter = GameInstance()\n player_formatter = PlayerInstance()\n team_formatter = TeamInstance()\n tourney_formatter = TourneyInstance()\n for row in game_results:\n game_data.append(game_formatter.get_dict(search=True, input_row\n =row))\n for row in player_results:\n player_data.append(player_formatter.get_dict(search=True,\n input_row=row))\n for row in team_results:\n team_data.append(team_formatter.get_dict(search=True, input_row\n =row))\n for row in tourney_results:\n tourney_data.append(tourney_formatter.get_dict(search=True,\n input_row=row))\n search_results['games'] = game_data\n search_results['players'] = player_data\n search_results['teams'] = team_data\n search_results['tournaments'] = tourney_data\n return jsonify(search_results)\n\n\n<code token>\n<docstring token>\n<code token>\n", "<import token>\n<docstring token>\n<assignment token>\n<docstring token>\n<function token>\n<function token>\n<docstring token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass Tourney(Resource):\n <function token>\n\n\nclass Games(Resource):\n\n def get(self):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(game_query())\n list_games = []\n for row in query:\n list_games.append(GameInstance(row).get_dict())\n conn.close()\n return jsonify(list_games)\n\n\nclass Game(Resource):\n\n def get(self, game_id):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(game_query(game_id))\n row = query.fetchone()\n conn.close()\n return jsonify(GameInstance(row).get_dict())\n\n\nclass Search(Resource):\n\n def get(self, search_str):\n search_str = Helper.form_regex(search_str)\n if search_str is None:\n return jsonify(['Please enter at least one keyword.'])\n search_results = OrderedDict()\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n game_results = conn.execute(search_game(search_str))\n player_results = conn.execute(search_player(search_str))\n team_results = conn.execute(search_team(search_str))\n tourney_results = conn.execute(search_tourney(search_str))\n game_data = []\n player_data = []\n team_data = []\n tourney_data = []\n game_formatter = GameInstance()\n player_formatter = PlayerInstance()\n team_formatter = TeamInstance()\n tourney_formatter = TourneyInstance()\n for row in game_results:\n game_data.append(game_formatter.get_dict(search=True, input_row\n =row))\n for row in player_results:\n player_data.append(player_formatter.get_dict(search=True,\n input_row=row))\n for row in team_results:\n team_data.append(team_formatter.get_dict(search=True, input_row\n =row))\n for row in tourney_results:\n tourney_data.append(tourney_formatter.get_dict(search=True,\n input_row=row))\n search_results['games'] = game_data\n search_results['players'] = player_data\n search_results['teams'] = team_data\n search_results['tournaments'] = tourney_data\n return jsonify(search_results)\n\n\n<code token>\n<docstring token>\n<code token>\n", "<import token>\n<docstring token>\n<assignment token>\n<docstring token>\n<function token>\n<function token>\n<docstring token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass Games(Resource):\n\n def get(self):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(game_query())\n list_games = []\n for row in query:\n list_games.append(GameInstance(row).get_dict())\n conn.close()\n return jsonify(list_games)\n\n\nclass Game(Resource):\n\n def get(self, game_id):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(game_query(game_id))\n row = query.fetchone()\n conn.close()\n return jsonify(GameInstance(row).get_dict())\n\n\nclass Search(Resource):\n\n def get(self, search_str):\n search_str = Helper.form_regex(search_str)\n if search_str is None:\n return jsonify(['Please enter at least one keyword.'])\n search_results = OrderedDict()\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n game_results = conn.execute(search_game(search_str))\n player_results = conn.execute(search_player(search_str))\n team_results = conn.execute(search_team(search_str))\n tourney_results = conn.execute(search_tourney(search_str))\n game_data = []\n player_data = []\n team_data = []\n tourney_data = []\n game_formatter = GameInstance()\n player_formatter = PlayerInstance()\n team_formatter = TeamInstance()\n tourney_formatter = TourneyInstance()\n for row in game_results:\n game_data.append(game_formatter.get_dict(search=True, input_row\n =row))\n for row in player_results:\n player_data.append(player_formatter.get_dict(search=True,\n input_row=row))\n for row in team_results:\n team_data.append(team_formatter.get_dict(search=True, input_row\n =row))\n for row in tourney_results:\n tourney_data.append(tourney_formatter.get_dict(search=True,\n input_row=row))\n search_results['games'] = game_data\n search_results['players'] = player_data\n search_results['teams'] = team_data\n search_results['tournaments'] = tourney_data\n return jsonify(search_results)\n\n\n<code token>\n<docstring token>\n<code token>\n", "<import token>\n<docstring token>\n<assignment token>\n<docstring token>\n<function token>\n<function token>\n<docstring token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass Games(Resource):\n <function token>\n\n\nclass Game(Resource):\n\n def get(self, game_id):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(game_query(game_id))\n row = query.fetchone()\n conn.close()\n return jsonify(GameInstance(row).get_dict())\n\n\nclass Search(Resource):\n\n def get(self, search_str):\n search_str = Helper.form_regex(search_str)\n if search_str is None:\n return jsonify(['Please enter at least one keyword.'])\n search_results = OrderedDict()\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n game_results = conn.execute(search_game(search_str))\n player_results = conn.execute(search_player(search_str))\n team_results = conn.execute(search_team(search_str))\n tourney_results = conn.execute(search_tourney(search_str))\n game_data = []\n player_data = []\n team_data = []\n tourney_data = []\n game_formatter = GameInstance()\n player_formatter = PlayerInstance()\n team_formatter = TeamInstance()\n tourney_formatter = TourneyInstance()\n for row in game_results:\n game_data.append(game_formatter.get_dict(search=True, input_row\n =row))\n for row in player_results:\n player_data.append(player_formatter.get_dict(search=True,\n input_row=row))\n for row in team_results:\n team_data.append(team_formatter.get_dict(search=True, input_row\n =row))\n for row in tourney_results:\n tourney_data.append(tourney_formatter.get_dict(search=True,\n input_row=row))\n search_results['games'] = game_data\n search_results['players'] = player_data\n search_results['teams'] = team_data\n search_results['tournaments'] = tourney_data\n return jsonify(search_results)\n\n\n<code token>\n<docstring token>\n<code token>\n", "<import token>\n<docstring token>\n<assignment token>\n<docstring token>\n<function token>\n<function token>\n<docstring token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass Game(Resource):\n\n def get(self, game_id):\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n query = conn.execute(game_query(game_id))\n row = query.fetchone()\n conn.close()\n return jsonify(GameInstance(row).get_dict())\n\n\nclass Search(Resource):\n\n def get(self, search_str):\n search_str = Helper.form_regex(search_str)\n if search_str is None:\n return jsonify(['Please enter at least one keyword.'])\n search_results = OrderedDict()\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n game_results = conn.execute(search_game(search_str))\n player_results = conn.execute(search_player(search_str))\n team_results = conn.execute(search_team(search_str))\n tourney_results = conn.execute(search_tourney(search_str))\n game_data = []\n player_data = []\n team_data = []\n tourney_data = []\n game_formatter = GameInstance()\n player_formatter = PlayerInstance()\n team_formatter = TeamInstance()\n tourney_formatter = TourneyInstance()\n for row in game_results:\n game_data.append(game_formatter.get_dict(search=True, input_row\n =row))\n for row in player_results:\n player_data.append(player_formatter.get_dict(search=True,\n input_row=row))\n for row in team_results:\n team_data.append(team_formatter.get_dict(search=True, input_row\n =row))\n for row in tourney_results:\n tourney_data.append(tourney_formatter.get_dict(search=True,\n input_row=row))\n search_results['games'] = game_data\n search_results['players'] = player_data\n search_results['teams'] = team_data\n search_results['tournaments'] = tourney_data\n return jsonify(search_results)\n\n\n<code token>\n<docstring token>\n<code token>\n", "<import token>\n<docstring token>\n<assignment token>\n<docstring token>\n<function token>\n<function token>\n<docstring token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass Game(Resource):\n <function token>\n\n\nclass Search(Resource):\n\n def get(self, search_str):\n search_str = Helper.form_regex(search_str)\n if search_str is None:\n return jsonify(['Please enter at least one keyword.'])\n search_results = OrderedDict()\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n game_results = conn.execute(search_game(search_str))\n player_results = conn.execute(search_player(search_str))\n team_results = conn.execute(search_team(search_str))\n tourney_results = conn.execute(search_tourney(search_str))\n game_data = []\n player_data = []\n team_data = []\n tourney_data = []\n game_formatter = GameInstance()\n player_formatter = PlayerInstance()\n team_formatter = TeamInstance()\n tourney_formatter = TourneyInstance()\n for row in game_results:\n game_data.append(game_formatter.get_dict(search=True, input_row\n =row))\n for row in player_results:\n player_data.append(player_formatter.get_dict(search=True,\n input_row=row))\n for row in team_results:\n team_data.append(team_formatter.get_dict(search=True, input_row\n =row))\n for row in tourney_results:\n tourney_data.append(tourney_formatter.get_dict(search=True,\n input_row=row))\n search_results['games'] = game_data\n search_results['players'] = player_data\n search_results['teams'] = team_data\n search_results['tournaments'] = tourney_data\n return jsonify(search_results)\n\n\n<code token>\n<docstring token>\n<code token>\n", "<import token>\n<docstring token>\n<assignment token>\n<docstring token>\n<function token>\n<function token>\n<docstring token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass Search(Resource):\n\n def get(self, search_str):\n search_str = Helper.form_regex(search_str)\n if search_str is None:\n return jsonify(['Please enter at least one keyword.'])\n search_results = OrderedDict()\n conn = engine.connect()\n _ = conn.execute(\n 'set @@session.group_concat_max_len=18446744073709551615')\n game_results = conn.execute(search_game(search_str))\n player_results = conn.execute(search_player(search_str))\n team_results = conn.execute(search_team(search_str))\n tourney_results = conn.execute(search_tourney(search_str))\n game_data = []\n player_data = []\n team_data = []\n tourney_data = []\n game_formatter = GameInstance()\n player_formatter = PlayerInstance()\n team_formatter = TeamInstance()\n tourney_formatter = TourneyInstance()\n for row in game_results:\n game_data.append(game_formatter.get_dict(search=True, input_row\n =row))\n for row in player_results:\n player_data.append(player_formatter.get_dict(search=True,\n input_row=row))\n for row in team_results:\n team_data.append(team_formatter.get_dict(search=True, input_row\n =row))\n for row in tourney_results:\n tourney_data.append(tourney_formatter.get_dict(search=True,\n input_row=row))\n search_results['games'] = game_data\n search_results['players'] = player_data\n search_results['teams'] = team_data\n search_results['tournaments'] = tourney_data\n return jsonify(search_results)\n\n\n<code token>\n<docstring token>\n<code token>\n", "<import token>\n<docstring token>\n<assignment token>\n<docstring token>\n<function token>\n<function token>\n<docstring token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass Search(Resource):\n <function token>\n\n\n<code token>\n<docstring token>\n<code token>\n", "<import token>\n<docstring token>\n<assignment token>\n<docstring token>\n<function token>\n<function token>\n<docstring token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<code token>\n<docstring token>\n<code token>\n" ]
false
99,002
ebe15d833ce4f531816f4b3e4af94002076a6280
""" Code to learn things about remote workers, like MAC address, NTP timing, etc. """ import numpy as np import time import re import subprocess import ntplib NTP_SERVERS = ['time.mit.edu', 'ntp1.net.berkeley.edu', 'ntp2.net.berkeley.edu'] def get_time_offset(server, attempts=1): """ Returns a list of offsets for a particular server """ import ntplib c = ntplib.NTPClient() res = [] for i in range(attempts): try: r = c.request(server, version=3) offset = r.offset delay = r.delay res.append(offset) except ntplib.NTPException: pass return res def parse_ifconfig_hwaddr(s): a = re.search(r'.+?(HWaddr\s+(?P<hardware_address>\S+))', s, re.MULTILINE).groupdict('') return a['hardware_address'] def parse_ifconfig_inetaddr(s): return re.findall(r'.+?inet addr:(?P<inet_addr>[\d.]+)', s, re.MULTILINE) def get_hwaddr(): ifconfig_data = subprocess.check_output("/sbin/ifconfig") hwaddr = parse_ifconfig_hwaddr(ifconfig_data) return hwaddr def get_ifconfig(): ifconfig_data = subprocess.check_output("/sbin/ifconfig") hwaddr = parse_ifconfig_hwaddr(ifconfig_data) inet_addr = parse_ifconfig_inetaddr(ifconfig_data) return hwaddr, inet_addr def get_uptime(): uptime_str = open("/proc/uptime").read().strip() up_str, idle_str = uptime_str.split() return float(up_str), float(idle_str)
[ "\"\"\"\nCode to learn things about remote workers, like MAC address, \nNTP timing, etc. \n\"\"\"\n\nimport numpy as np\nimport time\nimport re\nimport subprocess\nimport ntplib\n\nNTP_SERVERS = ['time.mit.edu', \n 'ntp1.net.berkeley.edu', \n 'ntp2.net.berkeley.edu']\n\ndef get_time_offset(server, attempts=1):\n \"\"\"\n Returns a list of offsets for a particular server\n \"\"\"\n import ntplib\n\n c = ntplib.NTPClient()\n\n res = []\n for i in range(attempts):\n try:\n r = c.request(server, version=3)\n offset = r.offset\n delay = r.delay\n res.append(offset)\n except ntplib.NTPException:\n pass\n return res\n\ndef parse_ifconfig_hwaddr(s):\n\n a = re.search(r'.+?(HWaddr\\s+(?P<hardware_address>\\S+))', s, re.MULTILINE).groupdict('')\n return a['hardware_address']\n\ndef parse_ifconfig_inetaddr(s):\n return re.findall(r'.+?inet addr:(?P<inet_addr>[\\d.]+)', s, re.MULTILINE)\n\ndef get_hwaddr():\n ifconfig_data = subprocess.check_output(\"/sbin/ifconfig\")\n hwaddr = parse_ifconfig_hwaddr(ifconfig_data)\n return hwaddr\n\ndef get_ifconfig():\n ifconfig_data = subprocess.check_output(\"/sbin/ifconfig\")\n hwaddr = parse_ifconfig_hwaddr(ifconfig_data)\n inet_addr = parse_ifconfig_inetaddr(ifconfig_data)\n return hwaddr, inet_addr\n\ndef get_uptime():\n uptime_str = open(\"/proc/uptime\").read().strip()\n up_str, idle_str = uptime_str.split()\n\n return float(up_str), float(idle_str)\n\n", "<docstring token>\nimport numpy as np\nimport time\nimport re\nimport subprocess\nimport ntplib\nNTP_SERVERS = ['time.mit.edu', 'ntp1.net.berkeley.edu', 'ntp2.net.berkeley.edu'\n ]\n\n\ndef get_time_offset(server, attempts=1):\n \"\"\"\n Returns a list of offsets for a particular server\n \"\"\"\n import ntplib\n c = ntplib.NTPClient()\n res = []\n for i in range(attempts):\n try:\n r = c.request(server, version=3)\n offset = r.offset\n delay = r.delay\n res.append(offset)\n except ntplib.NTPException:\n pass\n return res\n\n\ndef parse_ifconfig_hwaddr(s):\n a = re.search('.+?(HWaddr\\\\s+(?P<hardware_address>\\\\S+))', s, re.MULTILINE\n ).groupdict('')\n return a['hardware_address']\n\n\ndef parse_ifconfig_inetaddr(s):\n return re.findall('.+?inet addr:(?P<inet_addr>[\\\\d.]+)', s, re.MULTILINE)\n\n\ndef get_hwaddr():\n ifconfig_data = subprocess.check_output('/sbin/ifconfig')\n hwaddr = parse_ifconfig_hwaddr(ifconfig_data)\n return hwaddr\n\n\ndef get_ifconfig():\n ifconfig_data = subprocess.check_output('/sbin/ifconfig')\n hwaddr = parse_ifconfig_hwaddr(ifconfig_data)\n inet_addr = parse_ifconfig_inetaddr(ifconfig_data)\n return hwaddr, inet_addr\n\n\ndef get_uptime():\n uptime_str = open('/proc/uptime').read().strip()\n up_str, idle_str = uptime_str.split()\n return float(up_str), float(idle_str)\n", "<docstring token>\n<import token>\nNTP_SERVERS = ['time.mit.edu', 'ntp1.net.berkeley.edu', 'ntp2.net.berkeley.edu'\n ]\n\n\ndef get_time_offset(server, attempts=1):\n \"\"\"\n Returns a list of offsets for a particular server\n \"\"\"\n import ntplib\n c = ntplib.NTPClient()\n res = []\n for i in range(attempts):\n try:\n r = c.request(server, version=3)\n offset = r.offset\n delay = r.delay\n res.append(offset)\n except ntplib.NTPException:\n pass\n return res\n\n\ndef parse_ifconfig_hwaddr(s):\n a = re.search('.+?(HWaddr\\\\s+(?P<hardware_address>\\\\S+))', s, re.MULTILINE\n ).groupdict('')\n return a['hardware_address']\n\n\ndef parse_ifconfig_inetaddr(s):\n return re.findall('.+?inet addr:(?P<inet_addr>[\\\\d.]+)', s, re.MULTILINE)\n\n\ndef get_hwaddr():\n ifconfig_data = subprocess.check_output('/sbin/ifconfig')\n hwaddr = parse_ifconfig_hwaddr(ifconfig_data)\n return hwaddr\n\n\ndef get_ifconfig():\n ifconfig_data = subprocess.check_output('/sbin/ifconfig')\n hwaddr = parse_ifconfig_hwaddr(ifconfig_data)\n inet_addr = parse_ifconfig_inetaddr(ifconfig_data)\n return hwaddr, inet_addr\n\n\ndef get_uptime():\n uptime_str = open('/proc/uptime').read().strip()\n up_str, idle_str = uptime_str.split()\n return float(up_str), float(idle_str)\n", "<docstring token>\n<import token>\n<assignment token>\n\n\ndef get_time_offset(server, attempts=1):\n \"\"\"\n Returns a list of offsets for a particular server\n \"\"\"\n import ntplib\n c = ntplib.NTPClient()\n res = []\n for i in range(attempts):\n try:\n r = c.request(server, version=3)\n offset = r.offset\n delay = r.delay\n res.append(offset)\n except ntplib.NTPException:\n pass\n return res\n\n\ndef parse_ifconfig_hwaddr(s):\n a = re.search('.+?(HWaddr\\\\s+(?P<hardware_address>\\\\S+))', s, re.MULTILINE\n ).groupdict('')\n return a['hardware_address']\n\n\ndef parse_ifconfig_inetaddr(s):\n return re.findall('.+?inet addr:(?P<inet_addr>[\\\\d.]+)', s, re.MULTILINE)\n\n\ndef get_hwaddr():\n ifconfig_data = subprocess.check_output('/sbin/ifconfig')\n hwaddr = parse_ifconfig_hwaddr(ifconfig_data)\n return hwaddr\n\n\ndef get_ifconfig():\n ifconfig_data = subprocess.check_output('/sbin/ifconfig')\n hwaddr = parse_ifconfig_hwaddr(ifconfig_data)\n inet_addr = parse_ifconfig_inetaddr(ifconfig_data)\n return hwaddr, inet_addr\n\n\ndef get_uptime():\n uptime_str = open('/proc/uptime').read().strip()\n up_str, idle_str = uptime_str.split()\n return float(up_str), float(idle_str)\n", "<docstring token>\n<import token>\n<assignment token>\n\n\ndef get_time_offset(server, attempts=1):\n \"\"\"\n Returns a list of offsets for a particular server\n \"\"\"\n import ntplib\n c = ntplib.NTPClient()\n res = []\n for i in range(attempts):\n try:\n r = c.request(server, version=3)\n offset = r.offset\n delay = r.delay\n res.append(offset)\n except ntplib.NTPException:\n pass\n return res\n\n\ndef parse_ifconfig_hwaddr(s):\n a = re.search('.+?(HWaddr\\\\s+(?P<hardware_address>\\\\S+))', s, re.MULTILINE\n ).groupdict('')\n return a['hardware_address']\n\n\ndef parse_ifconfig_inetaddr(s):\n return re.findall('.+?inet addr:(?P<inet_addr>[\\\\d.]+)', s, re.MULTILINE)\n\n\n<function token>\n\n\ndef get_ifconfig():\n ifconfig_data = subprocess.check_output('/sbin/ifconfig')\n hwaddr = parse_ifconfig_hwaddr(ifconfig_data)\n inet_addr = parse_ifconfig_inetaddr(ifconfig_data)\n return hwaddr, inet_addr\n\n\ndef get_uptime():\n uptime_str = open('/proc/uptime').read().strip()\n up_str, idle_str = uptime_str.split()\n return float(up_str), float(idle_str)\n", "<docstring token>\n<import token>\n<assignment token>\n<function token>\n\n\ndef parse_ifconfig_hwaddr(s):\n a = re.search('.+?(HWaddr\\\\s+(?P<hardware_address>\\\\S+))', s, re.MULTILINE\n ).groupdict('')\n return a['hardware_address']\n\n\ndef parse_ifconfig_inetaddr(s):\n return re.findall('.+?inet addr:(?P<inet_addr>[\\\\d.]+)', s, re.MULTILINE)\n\n\n<function token>\n\n\ndef get_ifconfig():\n ifconfig_data = subprocess.check_output('/sbin/ifconfig')\n hwaddr = parse_ifconfig_hwaddr(ifconfig_data)\n inet_addr = parse_ifconfig_inetaddr(ifconfig_data)\n return hwaddr, inet_addr\n\n\ndef get_uptime():\n uptime_str = open('/proc/uptime').read().strip()\n up_str, idle_str = uptime_str.split()\n return float(up_str), float(idle_str)\n", "<docstring token>\n<import token>\n<assignment token>\n<function token>\n\n\ndef parse_ifconfig_hwaddr(s):\n a = re.search('.+?(HWaddr\\\\s+(?P<hardware_address>\\\\S+))', s, re.MULTILINE\n ).groupdict('')\n return a['hardware_address']\n\n\ndef parse_ifconfig_inetaddr(s):\n return re.findall('.+?inet addr:(?P<inet_addr>[\\\\d.]+)', s, re.MULTILINE)\n\n\n<function token>\n<function token>\n\n\ndef get_uptime():\n uptime_str = open('/proc/uptime').read().strip()\n up_str, idle_str = uptime_str.split()\n return float(up_str), float(idle_str)\n", "<docstring token>\n<import token>\n<assignment token>\n<function token>\n<function token>\n\n\ndef parse_ifconfig_inetaddr(s):\n return re.findall('.+?inet addr:(?P<inet_addr>[\\\\d.]+)', s, re.MULTILINE)\n\n\n<function token>\n<function token>\n\n\ndef get_uptime():\n uptime_str = open('/proc/uptime').read().strip()\n up_str, idle_str = uptime_str.split()\n return float(up_str), float(idle_str)\n", "<docstring token>\n<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef get_uptime():\n uptime_str = open('/proc/uptime').read().strip()\n up_str, idle_str = uptime_str.split()\n return float(up_str), float(idle_str)\n", "<docstring token>\n<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n" ]
false
99,003
004a6b0f58accb55c71cf8cce19a386fe9a04973
# Generated by Django 2.1.5 on 2019-01-24 14:16 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('users', '0002_userprofile_nick_name'), ] operations = [ migrations.AlterField( model_name='userprofile', name='user_type', field=models.CharField(choices=[('s_group_leader', '小组长'), ('b_group_leader', '大组长'), ('administrator', '管理员')], default='', max_length=50, verbose_name='用户类型'), ), ]
[ "# Generated by Django 2.1.5 on 2019-01-24 14:16\n\nfrom django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('users', '0002_userprofile_nick_name'),\n ]\n\n operations = [\n migrations.AlterField(\n model_name='userprofile',\n name='user_type',\n field=models.CharField(choices=[('s_group_leader', '小组长'), ('b_group_leader', '大组长'), ('administrator', '管理员')], default='', max_length=50, verbose_name='用户类型'),\n ),\n ]\n", "from django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n dependencies = [('users', '0002_userprofile_nick_name')]\n operations = [migrations.AlterField(model_name='userprofile', name=\n 'user_type', field=models.CharField(choices=[('s_group_leader',\n '小组长'), ('b_group_leader', '大组长'), ('administrator', '管理员')],\n default='', max_length=50, verbose_name='用户类型'))]\n", "<import token>\n\n\nclass Migration(migrations.Migration):\n dependencies = [('users', '0002_userprofile_nick_name')]\n operations = [migrations.AlterField(model_name='userprofile', name=\n 'user_type', field=models.CharField(choices=[('s_group_leader',\n '小组长'), ('b_group_leader', '大组长'), ('administrator', '管理员')],\n default='', max_length=50, verbose_name='用户类型'))]\n", "<import token>\n\n\nclass Migration(migrations.Migration):\n <assignment token>\n <assignment token>\n", "<import token>\n<class token>\n" ]
false
99,004
6f99029b03ae29625a3e6eb407519e8af575c58c
import numpy as np from PIL import Image pix = np.asarray(Image.open('imgglauber/Mamografia_01.jpg')) edited = pix edited.setflags(write=1) mini = np.amin(pix) maxi = np.amax(pix) - 40 A = 255.0 / (maxi - mini) B = A * mini edited = np.clip(A * pix - B, 0, 255) im = Image.fromarray(np.uint8(edited)) im.save('/home/puf3zin/FURG/graficos/imgglauber/Mamografia_02.jpg')
[ "import numpy as np\nfrom PIL import Image\n\n\npix = np.asarray(Image.open('imgglauber/Mamografia_01.jpg'))\n\nedited = pix\nedited.setflags(write=1)\n\nmini = np.amin(pix)\nmaxi = np.amax(pix) - 40\n\nA = 255.0 / (maxi - mini)\nB = A * mini\n\n\nedited = np.clip(A * pix - B, 0, 255)\n\nim = Image.fromarray(np.uint8(edited))\nim.save('/home/puf3zin/FURG/graficos/imgglauber/Mamografia_02.jpg')\n", "import numpy as np\nfrom PIL import Image\npix = np.asarray(Image.open('imgglauber/Mamografia_01.jpg'))\nedited = pix\nedited.setflags(write=1)\nmini = np.amin(pix)\nmaxi = np.amax(pix) - 40\nA = 255.0 / (maxi - mini)\nB = A * mini\nedited = np.clip(A * pix - B, 0, 255)\nim = Image.fromarray(np.uint8(edited))\nim.save('/home/puf3zin/FURG/graficos/imgglauber/Mamografia_02.jpg')\n", "<import token>\npix = np.asarray(Image.open('imgglauber/Mamografia_01.jpg'))\nedited = pix\nedited.setflags(write=1)\nmini = np.amin(pix)\nmaxi = np.amax(pix) - 40\nA = 255.0 / (maxi - mini)\nB = A * mini\nedited = np.clip(A * pix - B, 0, 255)\nim = Image.fromarray(np.uint8(edited))\nim.save('/home/puf3zin/FURG/graficos/imgglauber/Mamografia_02.jpg')\n", "<import token>\n<assignment token>\nedited.setflags(write=1)\n<assignment token>\nim.save('/home/puf3zin/FURG/graficos/imgglauber/Mamografia_02.jpg')\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n" ]
false
99,005
4a6820c6d8338fbd76eb4534d40bf83d71d68882
from aiohttp import ClientSession from pycld2 import detect from re import compile from .models import PageRaw class ArticleExtractor(object): async def extract_article(self, content: str, url: str) -> dict: """Returns the article section of the given url.""" raise NotImplementedError() class ReadabilityArticleExtractor(ArticleExtractor): _READABILITY_URL = 'http://readability:5000/extract' def __init__(self, client_session: ClientSession): self._client_session = client_session async def extract_article(self, content: str, url: str) -> dict: async with self._client_session.post( ReadabilityArticleExtractor._READABILITY_URL, data={'url': url, 'content': content}) as response: assert response.status == 200, \ 'TextExtractor service returned status [%d].' % response.status json = await response.json() if not json: return {} return {'authors': json.get('byline'), 'summary': json.get('excerpt'), 'length': json.get('length'), 'content_html': json.get('content'), 'content_text': json.get('textContent'), 'title': json.get('title')} class PageFetcher(object): async def fetch_page(self, url: str) -> PageRaw: """Returns the full page of the given url.""" raise NotImplementedError() class HttpPageFetcher(PageFetcher): def __init__(self, client_session: ClientSession): self._client_session = client_session async def fetch_page(self, url: str) -> PageRaw: async with self._client_session.get(url) as response: assert response.status == 200, \ 'Unexpected status [%d].' % response.status content = await response.text() return PageRaw(content=content) class DocumentExtractorService(object): _ARTICLE_LINK_REGEX = compile('href=\"([^\"]*)') _ARTICLE_IMAGE_REGEX = compile('src=\"([^\"]*)') def __init__(self, page_fetcher: PageFetcher, article_extractor: ArticleExtractor): self._page_fetcher = page_fetcher self._article_extractor = article_extractor @staticmethod def _extract_page_info(article: dict, url: str) -> dict: """Extracts additional page information.""" if not article: return {} language = detect(article.get('content_text')) if len(language) > 2 and len(language[2]) > 1: language_code = language[2][0][1] else: language_code = None return {'url': url, 'language': language_code} async def extract(self, url: str) -> dict: """Returns article content and page information for the given url. Returns: (dict): A dictionary with the values - article - authors: The authors. - summary: The article summary. - length: The number of characters. - title: The title. - content_html: The article content in HTML with links. - content_text: The article content in plain text. - links: The external links. - images: The images. - page - url: The page url. - language: The language code (2 digits). - insight (not yet implemented) - entities: Entities name recognition. """ page_raw = await self._page_fetcher.fetch_page(url) article = await self._extract_article_info(page_raw.content, url) page = self._extract_page_info(article, url) return {'article': article, 'page': page} async def _extract_article_info(self, content: str, url: str) -> dict: article = await self._article_extractor.extract_article(content, url) if not article: return {} article['links'] = list(set(self._ARTICLE_LINK_REGEX.findall( article.get('content_html')))) article['images'] = list(set(self._ARTICLE_IMAGE_REGEX.findall( article.get('content_html')))) return article
[ "from aiohttp import ClientSession\nfrom pycld2 import detect\nfrom re import compile\n\nfrom .models import PageRaw\n\n\nclass ArticleExtractor(object):\n async def extract_article(self, content: str, url: str) -> dict:\n \"\"\"Returns the article section of the given url.\"\"\"\n\n raise NotImplementedError()\n\n\nclass ReadabilityArticleExtractor(ArticleExtractor):\n _READABILITY_URL = 'http://readability:5000/extract'\n\n def __init__(self, client_session: ClientSession):\n self._client_session = client_session\n\n async def extract_article(self, content: str, url: str) -> dict:\n async with self._client_session.post(\n ReadabilityArticleExtractor._READABILITY_URL,\n data={'url': url, 'content': content}) as response:\n assert response.status == 200, \\\n 'TextExtractor service returned status [%d].' % response.status\n json = await response.json()\n if not json:\n return {}\n return {'authors': json.get('byline'),\n 'summary': json.get('excerpt'),\n 'length': json.get('length'),\n 'content_html': json.get('content'),\n 'content_text': json.get('textContent'),\n 'title': json.get('title')}\n\n\nclass PageFetcher(object):\n async def fetch_page(self, url: str) -> PageRaw:\n \"\"\"Returns the full page of the given url.\"\"\"\n\n raise NotImplementedError()\n\n\nclass HttpPageFetcher(PageFetcher):\n def __init__(self, client_session: ClientSession):\n self._client_session = client_session\n\n async def fetch_page(self, url: str) -> PageRaw:\n async with self._client_session.get(url) as response:\n assert response.status == 200, \\\n 'Unexpected status [%d].' % response.status\n content = await response.text()\n return PageRaw(content=content)\n\n\nclass DocumentExtractorService(object):\n _ARTICLE_LINK_REGEX = compile('href=\\\"([^\\\"]*)')\n _ARTICLE_IMAGE_REGEX = compile('src=\\\"([^\\\"]*)')\n\n def __init__(self, page_fetcher: PageFetcher,\n article_extractor: ArticleExtractor):\n self._page_fetcher = page_fetcher\n self._article_extractor = article_extractor\n\n @staticmethod\n def _extract_page_info(article: dict, url: str) -> dict:\n \"\"\"Extracts additional page information.\"\"\"\n\n if not article:\n return {}\n language = detect(article.get('content_text'))\n if len(language) > 2 and len(language[2]) > 1:\n language_code = language[2][0][1]\n else:\n language_code = None\n return {'url': url, 'language': language_code}\n\n async def extract(self, url: str) -> dict:\n \"\"\"Returns article content and page information for the given url.\n\n Returns:\n (dict): A dictionary with the values\n - article\n - authors: The authors.\n - summary: The article summary.\n - length: The number of characters.\n - title: The title.\n - content_html: The article content in HTML with links.\n - content_text: The article content in plain text.\n - links: The external links.\n - images: The images.\n - page\n - url: The page url.\n - language: The language code (2 digits).\n - insight (not yet implemented)\n - entities: Entities name recognition.\n \"\"\"\n\n page_raw = await self._page_fetcher.fetch_page(url)\n article = await self._extract_article_info(page_raw.content, url)\n page = self._extract_page_info(article, url)\n return {'article': article, 'page': page}\n\n async def _extract_article_info(self, content: str, url: str) -> dict:\n article = await self._article_extractor.extract_article(content, url)\n if not article:\n return {}\n article['links'] = list(set(self._ARTICLE_LINK_REGEX.findall(\n article.get('content_html'))))\n article['images'] = list(set(self._ARTICLE_IMAGE_REGEX.findall(\n article.get('content_html'))))\n return article\n", "from aiohttp import ClientSession\nfrom pycld2 import detect\nfrom re import compile\nfrom .models import PageRaw\n\n\nclass ArticleExtractor(object):\n\n async def extract_article(self, content: str, url: str) ->dict:\n \"\"\"Returns the article section of the given url.\"\"\"\n raise NotImplementedError()\n\n\nclass ReadabilityArticleExtractor(ArticleExtractor):\n _READABILITY_URL = 'http://readability:5000/extract'\n\n def __init__(self, client_session: ClientSession):\n self._client_session = client_session\n\n async def extract_article(self, content: str, url: str) ->dict:\n async with self._client_session.post(ReadabilityArticleExtractor.\n _READABILITY_URL, data={'url': url, 'content': content}\n ) as response:\n assert response.status == 200, 'TextExtractor service returned status [%d].' % response.status\n json = await response.json()\n if not json:\n return {}\n return {'authors': json.get('byline'), 'summary': json.get(\n 'excerpt'), 'length': json.get('length'), 'content_html': json.\n get('content'), 'content_text': json.get('textContent'),\n 'title': json.get('title')}\n\n\nclass PageFetcher(object):\n\n async def fetch_page(self, url: str) ->PageRaw:\n \"\"\"Returns the full page of the given url.\"\"\"\n raise NotImplementedError()\n\n\nclass HttpPageFetcher(PageFetcher):\n\n def __init__(self, client_session: ClientSession):\n self._client_session = client_session\n\n async def fetch_page(self, url: str) ->PageRaw:\n async with self._client_session.get(url) as response:\n assert response.status == 200, 'Unexpected status [%d].' % response.status\n content = await response.text()\n return PageRaw(content=content)\n\n\nclass DocumentExtractorService(object):\n _ARTICLE_LINK_REGEX = compile('href=\"([^\"]*)')\n _ARTICLE_IMAGE_REGEX = compile('src=\"([^\"]*)')\n\n def __init__(self, page_fetcher: PageFetcher, article_extractor:\n ArticleExtractor):\n self._page_fetcher = page_fetcher\n self._article_extractor = article_extractor\n\n @staticmethod\n def _extract_page_info(article: dict, url: str) ->dict:\n \"\"\"Extracts additional page information.\"\"\"\n if not article:\n return {}\n language = detect(article.get('content_text'))\n if len(language) > 2 and len(language[2]) > 1:\n language_code = language[2][0][1]\n else:\n language_code = None\n return {'url': url, 'language': language_code}\n\n async def extract(self, url: str) ->dict:\n \"\"\"Returns article content and page information for the given url.\n\n Returns:\n (dict): A dictionary with the values\n - article\n - authors: The authors.\n - summary: The article summary.\n - length: The number of characters.\n - title: The title.\n - content_html: The article content in HTML with links.\n - content_text: The article content in plain text.\n - links: The external links.\n - images: The images.\n - page\n - url: The page url.\n - language: The language code (2 digits).\n - insight (not yet implemented)\n - entities: Entities name recognition.\n \"\"\"\n page_raw = await self._page_fetcher.fetch_page(url)\n article = await self._extract_article_info(page_raw.content, url)\n page = self._extract_page_info(article, url)\n return {'article': article, 'page': page}\n\n async def _extract_article_info(self, content: str, url: str) ->dict:\n article = await self._article_extractor.extract_article(content, url)\n if not article:\n return {}\n article['links'] = list(set(self._ARTICLE_LINK_REGEX.findall(\n article.get('content_html'))))\n article['images'] = list(set(self._ARTICLE_IMAGE_REGEX.findall(\n article.get('content_html'))))\n return article\n", "<import token>\n\n\nclass ArticleExtractor(object):\n\n async def extract_article(self, content: str, url: str) ->dict:\n \"\"\"Returns the article section of the given url.\"\"\"\n raise NotImplementedError()\n\n\nclass ReadabilityArticleExtractor(ArticleExtractor):\n _READABILITY_URL = 'http://readability:5000/extract'\n\n def __init__(self, client_session: ClientSession):\n self._client_session = client_session\n\n async def extract_article(self, content: str, url: str) ->dict:\n async with self._client_session.post(ReadabilityArticleExtractor.\n _READABILITY_URL, data={'url': url, 'content': content}\n ) as response:\n assert response.status == 200, 'TextExtractor service returned status [%d].' % response.status\n json = await response.json()\n if not json:\n return {}\n return {'authors': json.get('byline'), 'summary': json.get(\n 'excerpt'), 'length': json.get('length'), 'content_html': json.\n get('content'), 'content_text': json.get('textContent'),\n 'title': json.get('title')}\n\n\nclass PageFetcher(object):\n\n async def fetch_page(self, url: str) ->PageRaw:\n \"\"\"Returns the full page of the given url.\"\"\"\n raise NotImplementedError()\n\n\nclass HttpPageFetcher(PageFetcher):\n\n def __init__(self, client_session: ClientSession):\n self._client_session = client_session\n\n async def fetch_page(self, url: str) ->PageRaw:\n async with self._client_session.get(url) as response:\n assert response.status == 200, 'Unexpected status [%d].' % response.status\n content = await response.text()\n return PageRaw(content=content)\n\n\nclass DocumentExtractorService(object):\n _ARTICLE_LINK_REGEX = compile('href=\"([^\"]*)')\n _ARTICLE_IMAGE_REGEX = compile('src=\"([^\"]*)')\n\n def __init__(self, page_fetcher: PageFetcher, article_extractor:\n ArticleExtractor):\n self._page_fetcher = page_fetcher\n self._article_extractor = article_extractor\n\n @staticmethod\n def _extract_page_info(article: dict, url: str) ->dict:\n \"\"\"Extracts additional page information.\"\"\"\n if not article:\n return {}\n language = detect(article.get('content_text'))\n if len(language) > 2 and len(language[2]) > 1:\n language_code = language[2][0][1]\n else:\n language_code = None\n return {'url': url, 'language': language_code}\n\n async def extract(self, url: str) ->dict:\n \"\"\"Returns article content and page information for the given url.\n\n Returns:\n (dict): A dictionary with the values\n - article\n - authors: The authors.\n - summary: The article summary.\n - length: The number of characters.\n - title: The title.\n - content_html: The article content in HTML with links.\n - content_text: The article content in plain text.\n - links: The external links.\n - images: The images.\n - page\n - url: The page url.\n - language: The language code (2 digits).\n - insight (not yet implemented)\n - entities: Entities name recognition.\n \"\"\"\n page_raw = await self._page_fetcher.fetch_page(url)\n article = await self._extract_article_info(page_raw.content, url)\n page = self._extract_page_info(article, url)\n return {'article': article, 'page': page}\n\n async def _extract_article_info(self, content: str, url: str) ->dict:\n article = await self._article_extractor.extract_article(content, url)\n if not article:\n return {}\n article['links'] = list(set(self._ARTICLE_LINK_REGEX.findall(\n article.get('content_html'))))\n article['images'] = list(set(self._ARTICLE_IMAGE_REGEX.findall(\n article.get('content_html'))))\n return article\n", "<import token>\n<class token>\n\n\nclass ReadabilityArticleExtractor(ArticleExtractor):\n _READABILITY_URL = 'http://readability:5000/extract'\n\n def __init__(self, client_session: ClientSession):\n self._client_session = client_session\n\n async def extract_article(self, content: str, url: str) ->dict:\n async with self._client_session.post(ReadabilityArticleExtractor.\n _READABILITY_URL, data={'url': url, 'content': content}\n ) as response:\n assert response.status == 200, 'TextExtractor service returned status [%d].' % response.status\n json = await response.json()\n if not json:\n return {}\n return {'authors': json.get('byline'), 'summary': json.get(\n 'excerpt'), 'length': json.get('length'), 'content_html': json.\n get('content'), 'content_text': json.get('textContent'),\n 'title': json.get('title')}\n\n\nclass PageFetcher(object):\n\n async def fetch_page(self, url: str) ->PageRaw:\n \"\"\"Returns the full page of the given url.\"\"\"\n raise NotImplementedError()\n\n\nclass HttpPageFetcher(PageFetcher):\n\n def __init__(self, client_session: ClientSession):\n self._client_session = client_session\n\n async def fetch_page(self, url: str) ->PageRaw:\n async with self._client_session.get(url) as response:\n assert response.status == 200, 'Unexpected status [%d].' % response.status\n content = await response.text()\n return PageRaw(content=content)\n\n\nclass DocumentExtractorService(object):\n _ARTICLE_LINK_REGEX = compile('href=\"([^\"]*)')\n _ARTICLE_IMAGE_REGEX = compile('src=\"([^\"]*)')\n\n def __init__(self, page_fetcher: PageFetcher, article_extractor:\n ArticleExtractor):\n self._page_fetcher = page_fetcher\n self._article_extractor = article_extractor\n\n @staticmethod\n def _extract_page_info(article: dict, url: str) ->dict:\n \"\"\"Extracts additional page information.\"\"\"\n if not article:\n return {}\n language = detect(article.get('content_text'))\n if len(language) > 2 and len(language[2]) > 1:\n language_code = language[2][0][1]\n else:\n language_code = None\n return {'url': url, 'language': language_code}\n\n async def extract(self, url: str) ->dict:\n \"\"\"Returns article content and page information for the given url.\n\n Returns:\n (dict): A dictionary with the values\n - article\n - authors: The authors.\n - summary: The article summary.\n - length: The number of characters.\n - title: The title.\n - content_html: The article content in HTML with links.\n - content_text: The article content in plain text.\n - links: The external links.\n - images: The images.\n - page\n - url: The page url.\n - language: The language code (2 digits).\n - insight (not yet implemented)\n - entities: Entities name recognition.\n \"\"\"\n page_raw = await self._page_fetcher.fetch_page(url)\n article = await self._extract_article_info(page_raw.content, url)\n page = self._extract_page_info(article, url)\n return {'article': article, 'page': page}\n\n async def _extract_article_info(self, content: str, url: str) ->dict:\n article = await self._article_extractor.extract_article(content, url)\n if not article:\n return {}\n article['links'] = list(set(self._ARTICLE_LINK_REGEX.findall(\n article.get('content_html'))))\n article['images'] = list(set(self._ARTICLE_IMAGE_REGEX.findall(\n article.get('content_html'))))\n return article\n", "<import token>\n<class token>\n\n\nclass ReadabilityArticleExtractor(ArticleExtractor):\n <assignment token>\n\n def __init__(self, client_session: ClientSession):\n self._client_session = client_session\n\n async def extract_article(self, content: str, url: str) ->dict:\n async with self._client_session.post(ReadabilityArticleExtractor.\n _READABILITY_URL, data={'url': url, 'content': content}\n ) as response:\n assert response.status == 200, 'TextExtractor service returned status [%d].' % response.status\n json = await response.json()\n if not json:\n return {}\n return {'authors': json.get('byline'), 'summary': json.get(\n 'excerpt'), 'length': json.get('length'), 'content_html': json.\n get('content'), 'content_text': json.get('textContent'),\n 'title': json.get('title')}\n\n\nclass PageFetcher(object):\n\n async def fetch_page(self, url: str) ->PageRaw:\n \"\"\"Returns the full page of the given url.\"\"\"\n raise NotImplementedError()\n\n\nclass HttpPageFetcher(PageFetcher):\n\n def __init__(self, client_session: ClientSession):\n self._client_session = client_session\n\n async def fetch_page(self, url: str) ->PageRaw:\n async with self._client_session.get(url) as response:\n assert response.status == 200, 'Unexpected status [%d].' % response.status\n content = await response.text()\n return PageRaw(content=content)\n\n\nclass DocumentExtractorService(object):\n _ARTICLE_LINK_REGEX = compile('href=\"([^\"]*)')\n _ARTICLE_IMAGE_REGEX = compile('src=\"([^\"]*)')\n\n def __init__(self, page_fetcher: PageFetcher, article_extractor:\n ArticleExtractor):\n self._page_fetcher = page_fetcher\n self._article_extractor = article_extractor\n\n @staticmethod\n def _extract_page_info(article: dict, url: str) ->dict:\n \"\"\"Extracts additional page information.\"\"\"\n if not article:\n return {}\n language = detect(article.get('content_text'))\n if len(language) > 2 and len(language[2]) > 1:\n language_code = language[2][0][1]\n else:\n language_code = None\n return {'url': url, 'language': language_code}\n\n async def extract(self, url: str) ->dict:\n \"\"\"Returns article content and page information for the given url.\n\n Returns:\n (dict): A dictionary with the values\n - article\n - authors: The authors.\n - summary: The article summary.\n - length: The number of characters.\n - title: The title.\n - content_html: The article content in HTML with links.\n - content_text: The article content in plain text.\n - links: The external links.\n - images: The images.\n - page\n - url: The page url.\n - language: The language code (2 digits).\n - insight (not yet implemented)\n - entities: Entities name recognition.\n \"\"\"\n page_raw = await self._page_fetcher.fetch_page(url)\n article = await self._extract_article_info(page_raw.content, url)\n page = self._extract_page_info(article, url)\n return {'article': article, 'page': page}\n\n async def _extract_article_info(self, content: str, url: str) ->dict:\n article = await self._article_extractor.extract_article(content, url)\n if not article:\n return {}\n article['links'] = list(set(self._ARTICLE_LINK_REGEX.findall(\n article.get('content_html'))))\n article['images'] = list(set(self._ARTICLE_IMAGE_REGEX.findall(\n article.get('content_html'))))\n return article\n", "<import token>\n<class token>\n\n\nclass ReadabilityArticleExtractor(ArticleExtractor):\n <assignment token>\n <function token>\n\n async def extract_article(self, content: str, url: str) ->dict:\n async with self._client_session.post(ReadabilityArticleExtractor.\n _READABILITY_URL, data={'url': url, 'content': content}\n ) as response:\n assert response.status == 200, 'TextExtractor service returned status [%d].' % response.status\n json = await response.json()\n if not json:\n return {}\n return {'authors': json.get('byline'), 'summary': json.get(\n 'excerpt'), 'length': json.get('length'), 'content_html': json.\n get('content'), 'content_text': json.get('textContent'),\n 'title': json.get('title')}\n\n\nclass PageFetcher(object):\n\n async def fetch_page(self, url: str) ->PageRaw:\n \"\"\"Returns the full page of the given url.\"\"\"\n raise NotImplementedError()\n\n\nclass HttpPageFetcher(PageFetcher):\n\n def __init__(self, client_session: ClientSession):\n self._client_session = client_session\n\n async def fetch_page(self, url: str) ->PageRaw:\n async with self._client_session.get(url) as response:\n assert response.status == 200, 'Unexpected status [%d].' % response.status\n content = await response.text()\n return PageRaw(content=content)\n\n\nclass DocumentExtractorService(object):\n _ARTICLE_LINK_REGEX = compile('href=\"([^\"]*)')\n _ARTICLE_IMAGE_REGEX = compile('src=\"([^\"]*)')\n\n def __init__(self, page_fetcher: PageFetcher, article_extractor:\n ArticleExtractor):\n self._page_fetcher = page_fetcher\n self._article_extractor = article_extractor\n\n @staticmethod\n def _extract_page_info(article: dict, url: str) ->dict:\n \"\"\"Extracts additional page information.\"\"\"\n if not article:\n return {}\n language = detect(article.get('content_text'))\n if len(language) > 2 and len(language[2]) > 1:\n language_code = language[2][0][1]\n else:\n language_code = None\n return {'url': url, 'language': language_code}\n\n async def extract(self, url: str) ->dict:\n \"\"\"Returns article content and page information for the given url.\n\n Returns:\n (dict): A dictionary with the values\n - article\n - authors: The authors.\n - summary: The article summary.\n - length: The number of characters.\n - title: The title.\n - content_html: The article content in HTML with links.\n - content_text: The article content in plain text.\n - links: The external links.\n - images: The images.\n - page\n - url: The page url.\n - language: The language code (2 digits).\n - insight (not yet implemented)\n - entities: Entities name recognition.\n \"\"\"\n page_raw = await self._page_fetcher.fetch_page(url)\n article = await self._extract_article_info(page_raw.content, url)\n page = self._extract_page_info(article, url)\n return {'article': article, 'page': page}\n\n async def _extract_article_info(self, content: str, url: str) ->dict:\n article = await self._article_extractor.extract_article(content, url)\n if not article:\n return {}\n article['links'] = list(set(self._ARTICLE_LINK_REGEX.findall(\n article.get('content_html'))))\n article['images'] = list(set(self._ARTICLE_IMAGE_REGEX.findall(\n article.get('content_html'))))\n return article\n", "<import token>\n<class token>\n<class token>\n\n\nclass PageFetcher(object):\n\n async def fetch_page(self, url: str) ->PageRaw:\n \"\"\"Returns the full page of the given url.\"\"\"\n raise NotImplementedError()\n\n\nclass HttpPageFetcher(PageFetcher):\n\n def __init__(self, client_session: ClientSession):\n self._client_session = client_session\n\n async def fetch_page(self, url: str) ->PageRaw:\n async with self._client_session.get(url) as response:\n assert response.status == 200, 'Unexpected status [%d].' % response.status\n content = await response.text()\n return PageRaw(content=content)\n\n\nclass DocumentExtractorService(object):\n _ARTICLE_LINK_REGEX = compile('href=\"([^\"]*)')\n _ARTICLE_IMAGE_REGEX = compile('src=\"([^\"]*)')\n\n def __init__(self, page_fetcher: PageFetcher, article_extractor:\n ArticleExtractor):\n self._page_fetcher = page_fetcher\n self._article_extractor = article_extractor\n\n @staticmethod\n def _extract_page_info(article: dict, url: str) ->dict:\n \"\"\"Extracts additional page information.\"\"\"\n if not article:\n return {}\n language = detect(article.get('content_text'))\n if len(language) > 2 and len(language[2]) > 1:\n language_code = language[2][0][1]\n else:\n language_code = None\n return {'url': url, 'language': language_code}\n\n async def extract(self, url: str) ->dict:\n \"\"\"Returns article content and page information for the given url.\n\n Returns:\n (dict): A dictionary with the values\n - article\n - authors: The authors.\n - summary: The article summary.\n - length: The number of characters.\n - title: The title.\n - content_html: The article content in HTML with links.\n - content_text: The article content in plain text.\n - links: The external links.\n - images: The images.\n - page\n - url: The page url.\n - language: The language code (2 digits).\n - insight (not yet implemented)\n - entities: Entities name recognition.\n \"\"\"\n page_raw = await self._page_fetcher.fetch_page(url)\n article = await self._extract_article_info(page_raw.content, url)\n page = self._extract_page_info(article, url)\n return {'article': article, 'page': page}\n\n async def _extract_article_info(self, content: str, url: str) ->dict:\n article = await self._article_extractor.extract_article(content, url)\n if not article:\n return {}\n article['links'] = list(set(self._ARTICLE_LINK_REGEX.findall(\n article.get('content_html'))))\n article['images'] = list(set(self._ARTICLE_IMAGE_REGEX.findall(\n article.get('content_html'))))\n return article\n", "<import token>\n<class token>\n<class token>\n<class token>\n\n\nclass HttpPageFetcher(PageFetcher):\n\n def __init__(self, client_session: ClientSession):\n self._client_session = client_session\n\n async def fetch_page(self, url: str) ->PageRaw:\n async with self._client_session.get(url) as response:\n assert response.status == 200, 'Unexpected status [%d].' % response.status\n content = await response.text()\n return PageRaw(content=content)\n\n\nclass DocumentExtractorService(object):\n _ARTICLE_LINK_REGEX = compile('href=\"([^\"]*)')\n _ARTICLE_IMAGE_REGEX = compile('src=\"([^\"]*)')\n\n def __init__(self, page_fetcher: PageFetcher, article_extractor:\n ArticleExtractor):\n self._page_fetcher = page_fetcher\n self._article_extractor = article_extractor\n\n @staticmethod\n def _extract_page_info(article: dict, url: str) ->dict:\n \"\"\"Extracts additional page information.\"\"\"\n if not article:\n return {}\n language = detect(article.get('content_text'))\n if len(language) > 2 and len(language[2]) > 1:\n language_code = language[2][0][1]\n else:\n language_code = None\n return {'url': url, 'language': language_code}\n\n async def extract(self, url: str) ->dict:\n \"\"\"Returns article content and page information for the given url.\n\n Returns:\n (dict): A dictionary with the values\n - article\n - authors: The authors.\n - summary: The article summary.\n - length: The number of characters.\n - title: The title.\n - content_html: The article content in HTML with links.\n - content_text: The article content in plain text.\n - links: The external links.\n - images: The images.\n - page\n - url: The page url.\n - language: The language code (2 digits).\n - insight (not yet implemented)\n - entities: Entities name recognition.\n \"\"\"\n page_raw = await self._page_fetcher.fetch_page(url)\n article = await self._extract_article_info(page_raw.content, url)\n page = self._extract_page_info(article, url)\n return {'article': article, 'page': page}\n\n async def _extract_article_info(self, content: str, url: str) ->dict:\n article = await self._article_extractor.extract_article(content, url)\n if not article:\n return {}\n article['links'] = list(set(self._ARTICLE_LINK_REGEX.findall(\n article.get('content_html'))))\n article['images'] = list(set(self._ARTICLE_IMAGE_REGEX.findall(\n article.get('content_html'))))\n return article\n", "<import token>\n<class token>\n<class token>\n<class token>\n\n\nclass HttpPageFetcher(PageFetcher):\n <function token>\n\n async def fetch_page(self, url: str) ->PageRaw:\n async with self._client_session.get(url) as response:\n assert response.status == 200, 'Unexpected status [%d].' % response.status\n content = await response.text()\n return PageRaw(content=content)\n\n\nclass DocumentExtractorService(object):\n _ARTICLE_LINK_REGEX = compile('href=\"([^\"]*)')\n _ARTICLE_IMAGE_REGEX = compile('src=\"([^\"]*)')\n\n def __init__(self, page_fetcher: PageFetcher, article_extractor:\n ArticleExtractor):\n self._page_fetcher = page_fetcher\n self._article_extractor = article_extractor\n\n @staticmethod\n def _extract_page_info(article: dict, url: str) ->dict:\n \"\"\"Extracts additional page information.\"\"\"\n if not article:\n return {}\n language = detect(article.get('content_text'))\n if len(language) > 2 and len(language[2]) > 1:\n language_code = language[2][0][1]\n else:\n language_code = None\n return {'url': url, 'language': language_code}\n\n async def extract(self, url: str) ->dict:\n \"\"\"Returns article content and page information for the given url.\n\n Returns:\n (dict): A dictionary with the values\n - article\n - authors: The authors.\n - summary: The article summary.\n - length: The number of characters.\n - title: The title.\n - content_html: The article content in HTML with links.\n - content_text: The article content in plain text.\n - links: The external links.\n - images: The images.\n - page\n - url: The page url.\n - language: The language code (2 digits).\n - insight (not yet implemented)\n - entities: Entities name recognition.\n \"\"\"\n page_raw = await self._page_fetcher.fetch_page(url)\n article = await self._extract_article_info(page_raw.content, url)\n page = self._extract_page_info(article, url)\n return {'article': article, 'page': page}\n\n async def _extract_article_info(self, content: str, url: str) ->dict:\n article = await self._article_extractor.extract_article(content, url)\n if not article:\n return {}\n article['links'] = list(set(self._ARTICLE_LINK_REGEX.findall(\n article.get('content_html'))))\n article['images'] = list(set(self._ARTICLE_IMAGE_REGEX.findall(\n article.get('content_html'))))\n return article\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass DocumentExtractorService(object):\n _ARTICLE_LINK_REGEX = compile('href=\"([^\"]*)')\n _ARTICLE_IMAGE_REGEX = compile('src=\"([^\"]*)')\n\n def __init__(self, page_fetcher: PageFetcher, article_extractor:\n ArticleExtractor):\n self._page_fetcher = page_fetcher\n self._article_extractor = article_extractor\n\n @staticmethod\n def _extract_page_info(article: dict, url: str) ->dict:\n \"\"\"Extracts additional page information.\"\"\"\n if not article:\n return {}\n language = detect(article.get('content_text'))\n if len(language) > 2 and len(language[2]) > 1:\n language_code = language[2][0][1]\n else:\n language_code = None\n return {'url': url, 'language': language_code}\n\n async def extract(self, url: str) ->dict:\n \"\"\"Returns article content and page information for the given url.\n\n Returns:\n (dict): A dictionary with the values\n - article\n - authors: The authors.\n - summary: The article summary.\n - length: The number of characters.\n - title: The title.\n - content_html: The article content in HTML with links.\n - content_text: The article content in plain text.\n - links: The external links.\n - images: The images.\n - page\n - url: The page url.\n - language: The language code (2 digits).\n - insight (not yet implemented)\n - entities: Entities name recognition.\n \"\"\"\n page_raw = await self._page_fetcher.fetch_page(url)\n article = await self._extract_article_info(page_raw.content, url)\n page = self._extract_page_info(article, url)\n return {'article': article, 'page': page}\n\n async def _extract_article_info(self, content: str, url: str) ->dict:\n article = await self._article_extractor.extract_article(content, url)\n if not article:\n return {}\n article['links'] = list(set(self._ARTICLE_LINK_REGEX.findall(\n article.get('content_html'))))\n article['images'] = list(set(self._ARTICLE_IMAGE_REGEX.findall(\n article.get('content_html'))))\n return article\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass DocumentExtractorService(object):\n <assignment token>\n <assignment token>\n\n def __init__(self, page_fetcher: PageFetcher, article_extractor:\n ArticleExtractor):\n self._page_fetcher = page_fetcher\n self._article_extractor = article_extractor\n\n @staticmethod\n def _extract_page_info(article: dict, url: str) ->dict:\n \"\"\"Extracts additional page information.\"\"\"\n if not article:\n return {}\n language = detect(article.get('content_text'))\n if len(language) > 2 and len(language[2]) > 1:\n language_code = language[2][0][1]\n else:\n language_code = None\n return {'url': url, 'language': language_code}\n\n async def extract(self, url: str) ->dict:\n \"\"\"Returns article content and page information for the given url.\n\n Returns:\n (dict): A dictionary with the values\n - article\n - authors: The authors.\n - summary: The article summary.\n - length: The number of characters.\n - title: The title.\n - content_html: The article content in HTML with links.\n - content_text: The article content in plain text.\n - links: The external links.\n - images: The images.\n - page\n - url: The page url.\n - language: The language code (2 digits).\n - insight (not yet implemented)\n - entities: Entities name recognition.\n \"\"\"\n page_raw = await self._page_fetcher.fetch_page(url)\n article = await self._extract_article_info(page_raw.content, url)\n page = self._extract_page_info(article, url)\n return {'article': article, 'page': page}\n\n async def _extract_article_info(self, content: str, url: str) ->dict:\n article = await self._article_extractor.extract_article(content, url)\n if not article:\n return {}\n article['links'] = list(set(self._ARTICLE_LINK_REGEX.findall(\n article.get('content_html'))))\n article['images'] = list(set(self._ARTICLE_IMAGE_REGEX.findall(\n article.get('content_html'))))\n return article\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass DocumentExtractorService(object):\n <assignment token>\n <assignment token>\n\n def __init__(self, page_fetcher: PageFetcher, article_extractor:\n ArticleExtractor):\n self._page_fetcher = page_fetcher\n self._article_extractor = article_extractor\n <function token>\n\n async def extract(self, url: str) ->dict:\n \"\"\"Returns article content and page information for the given url.\n\n Returns:\n (dict): A dictionary with the values\n - article\n - authors: The authors.\n - summary: The article summary.\n - length: The number of characters.\n - title: The title.\n - content_html: The article content in HTML with links.\n - content_text: The article content in plain text.\n - links: The external links.\n - images: The images.\n - page\n - url: The page url.\n - language: The language code (2 digits).\n - insight (not yet implemented)\n - entities: Entities name recognition.\n \"\"\"\n page_raw = await self._page_fetcher.fetch_page(url)\n article = await self._extract_article_info(page_raw.content, url)\n page = self._extract_page_info(article, url)\n return {'article': article, 'page': page}\n\n async def _extract_article_info(self, content: str, url: str) ->dict:\n article = await self._article_extractor.extract_article(content, url)\n if not article:\n return {}\n article['links'] = list(set(self._ARTICLE_LINK_REGEX.findall(\n article.get('content_html'))))\n article['images'] = list(set(self._ARTICLE_IMAGE_REGEX.findall(\n article.get('content_html'))))\n return article\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass DocumentExtractorService(object):\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n\n async def extract(self, url: str) ->dict:\n \"\"\"Returns article content and page information for the given url.\n\n Returns:\n (dict): A dictionary with the values\n - article\n - authors: The authors.\n - summary: The article summary.\n - length: The number of characters.\n - title: The title.\n - content_html: The article content in HTML with links.\n - content_text: The article content in plain text.\n - links: The external links.\n - images: The images.\n - page\n - url: The page url.\n - language: The language code (2 digits).\n - insight (not yet implemented)\n - entities: Entities name recognition.\n \"\"\"\n page_raw = await self._page_fetcher.fetch_page(url)\n article = await self._extract_article_info(page_raw.content, url)\n page = self._extract_page_info(article, url)\n return {'article': article, 'page': page}\n\n async def _extract_article_info(self, content: str, url: str) ->dict:\n article = await self._article_extractor.extract_article(content, url)\n if not article:\n return {}\n article['links'] = list(set(self._ARTICLE_LINK_REGEX.findall(\n article.get('content_html'))))\n article['images'] = list(set(self._ARTICLE_IMAGE_REGEX.findall(\n article.get('content_html'))))\n return article\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n" ]
false
99,006
6bb01c6e1cefa3cbb1eefc5995d7637a82dd9003
#!/usr/bin/python3 import sys import logging import os logging.basicConfig(stream=sys.stderr) PROJECT_DIR = '/var/www/SSApp/{{app_version}}/' #activate_this = os.path.join(PROJECT_DIR,'venv/bin', 'activate_this.py') #with open(activate_this) as f: #code = compile(f.read(), activate_this, 'exec') #exec(code, dict(__file__=activate_this)) #exec(open(activate_this).read() sys.path.insert(0,PROJECT_DIR) # Shimmy to allow wsgi/apache to pass environment variables in to apache # Assumes all of our environment variables begin SS_ # http://ericplumb.com/blog/passing-apache-environment-variables-to-django-via-mod_wsgi.html def application(environ, start_response): # pass the WSGI environment variables on through to os.environ for key in environ: if key.startswith('SS_'): os.environ[key] = environ[key] # Required by boto for CloudWatch os.environ['AWS_DEFAULT_REGION'] = environ['AWS_DEFAULT_REGION'] from manage import app as _application _application.secret_key = { removed } return _application(environ, start_response)
[ "#!/usr/bin/python3\r\nimport sys\r\nimport logging\r\nimport os\r\n\r\nlogging.basicConfig(stream=sys.stderr)\r\n\r\nPROJECT_DIR = '/var/www/SSApp/{{app_version}}/'\r\n\r\n#activate_this = os.path.join(PROJECT_DIR,'venv/bin', 'activate_this.py')\r\n\r\n#with open(activate_this) as f:\r\n #code = compile(f.read(), activate_this, 'exec')\r\n #exec(code, dict(__file__=activate_this))\r\n\r\n#exec(open(activate_this).read()\r\n\r\n\r\nsys.path.insert(0,PROJECT_DIR)\r\n\r\n\r\n# Shimmy to allow wsgi/apache to pass environment variables in to apache\r\n# Assumes all of our environment variables begin SS_\r\n# http://ericplumb.com/blog/passing-apache-environment-variables-to-django-via-mod_wsgi.html\r\ndef application(environ, start_response):\r\n # pass the WSGI environment variables on through to os.environ\r\n for key in environ:\r\n if key.startswith('SS_'):\r\n os.environ[key] = environ[key]\r\n\r\n # Required by boto for CloudWatch\r\n os.environ['AWS_DEFAULT_REGION'] = environ['AWS_DEFAULT_REGION']\r\n\r\n from manage import app as _application\r\n _application.secret_key = { removed }\r\n\r\n return _application(environ, start_response)\r\n\r\n", "import sys\nimport logging\nimport os\nlogging.basicConfig(stream=sys.stderr)\nPROJECT_DIR = '/var/www/SSApp/{{app_version}}/'\nsys.path.insert(0, PROJECT_DIR)\n\n\ndef application(environ, start_response):\n for key in environ:\n if key.startswith('SS_'):\n os.environ[key] = environ[key]\n os.environ['AWS_DEFAULT_REGION'] = environ['AWS_DEFAULT_REGION']\n from manage import app as _application\n _application.secret_key = {removed}\n return _application(environ, start_response)\n", "<import token>\nlogging.basicConfig(stream=sys.stderr)\nPROJECT_DIR = '/var/www/SSApp/{{app_version}}/'\nsys.path.insert(0, PROJECT_DIR)\n\n\ndef application(environ, start_response):\n for key in environ:\n if key.startswith('SS_'):\n os.environ[key] = environ[key]\n os.environ['AWS_DEFAULT_REGION'] = environ['AWS_DEFAULT_REGION']\n from manage import app as _application\n _application.secret_key = {removed}\n return _application(environ, start_response)\n", "<import token>\nlogging.basicConfig(stream=sys.stderr)\n<assignment token>\nsys.path.insert(0, PROJECT_DIR)\n\n\ndef application(environ, start_response):\n for key in environ:\n if key.startswith('SS_'):\n os.environ[key] = environ[key]\n os.environ['AWS_DEFAULT_REGION'] = environ['AWS_DEFAULT_REGION']\n from manage import app as _application\n _application.secret_key = {removed}\n return _application(environ, start_response)\n", "<import token>\n<code token>\n<assignment token>\n<code token>\n\n\ndef application(environ, start_response):\n for key in environ:\n if key.startswith('SS_'):\n os.environ[key] = environ[key]\n os.environ['AWS_DEFAULT_REGION'] = environ['AWS_DEFAULT_REGION']\n from manage import app as _application\n _application.secret_key = {removed}\n return _application(environ, start_response)\n", "<import token>\n<code token>\n<assignment token>\n<code token>\n<function token>\n" ]
false
99,007
8a6a6186275dacfef32d41260adc6298f778e205
#Marcela Uliano-Silva, Wellcome Sanger Institute import argparse import pandas as pd from Bio import SeqIO parser= argparse.ArgumentParser(add_help=False) parser.add_argument("-h", "--help", action="help", default=argparse.SUPPRESS, help= "Concatenate the fasta sequences into a file giving a text file with the path to each fasta per line") parser.add_argument("-i", help= "-i: list of fasta paths, one per line", required = "True") parser.add_argument("-o", help= "-o: concatenated fasta sequence", required = "True") args = parser.parse_args() oi=('path', 'oi') paths = pd.read_csv(args.i, names=oi) paths_list = paths["path"].values.tolist() with open(args.o, 'w') as outfile: for f in paths_list: with open(f) as infile: outfile.write(infile.read())
[ "\n\n#Marcela Uliano-Silva, Wellcome Sanger Institute\n\n\nimport argparse\nimport pandas as pd\nfrom Bio import SeqIO\n\nparser= argparse.ArgumentParser(add_help=False)\nparser.add_argument(\"-h\", \"--help\", action=\"help\", default=argparse.SUPPRESS, help= \"Concatenate the fasta sequences into a file giving a text file with the path to each fasta per line\") \nparser.add_argument(\"-i\", help= \"-i: list of fasta paths, one per line\", required = \"True\")\nparser.add_argument(\"-o\", help= \"-o: concatenated fasta sequence\", required = \"True\")\n\nargs = parser.parse_args()\n\noi=('path', 'oi')\npaths = pd.read_csv(args.i, names=oi)\n\npaths_list = paths[\"path\"].values.tolist()\n\nwith open(args.o, 'w') as outfile:\n for f in paths_list:\n with open(f) as infile:\n outfile.write(infile.read())\n", "import argparse\nimport pandas as pd\nfrom Bio import SeqIO\nparser = argparse.ArgumentParser(add_help=False)\nparser.add_argument('-h', '--help', action='help', default=argparse.\n SUPPRESS, help=\n 'Concatenate the fasta sequences into a file giving a text file with the path to each fasta per line'\n )\nparser.add_argument('-i', help='-i: list of fasta paths, one per line',\n required='True')\nparser.add_argument('-o', help='-o: concatenated fasta sequence', required=\n 'True')\nargs = parser.parse_args()\noi = 'path', 'oi'\npaths = pd.read_csv(args.i, names=oi)\npaths_list = paths['path'].values.tolist()\nwith open(args.o, 'w') as outfile:\n for f in paths_list:\n with open(f) as infile:\n outfile.write(infile.read())\n", "<import token>\nparser = argparse.ArgumentParser(add_help=False)\nparser.add_argument('-h', '--help', action='help', default=argparse.\n SUPPRESS, help=\n 'Concatenate the fasta sequences into a file giving a text file with the path to each fasta per line'\n )\nparser.add_argument('-i', help='-i: list of fasta paths, one per line',\n required='True')\nparser.add_argument('-o', help='-o: concatenated fasta sequence', required=\n 'True')\nargs = parser.parse_args()\noi = 'path', 'oi'\npaths = pd.read_csv(args.i, names=oi)\npaths_list = paths['path'].values.tolist()\nwith open(args.o, 'w') as outfile:\n for f in paths_list:\n with open(f) as infile:\n outfile.write(infile.read())\n", "<import token>\n<assignment token>\nparser.add_argument('-h', '--help', action='help', default=argparse.\n SUPPRESS, help=\n 'Concatenate the fasta sequences into a file giving a text file with the path to each fasta per line'\n )\nparser.add_argument('-i', help='-i: list of fasta paths, one per line',\n required='True')\nparser.add_argument('-o', help='-o: concatenated fasta sequence', required=\n 'True')\n<assignment token>\nwith open(args.o, 'w') as outfile:\n for f in paths_list:\n with open(f) as infile:\n outfile.write(infile.read())\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n" ]
false
99,008
14e16c46cb2dff9d56aceeaf5e4708591565fd5e
from django.contrib import admin from models import Normal from nani.admin import TranslateableAdmin from testproject.app.models import Standard admin.site.register(Normal, TranslateableAdmin)
[ "from django.contrib import admin\nfrom models import Normal\nfrom nani.admin import TranslateableAdmin\nfrom testproject.app.models import Standard\n\n\nadmin.site.register(Normal, TranslateableAdmin)", "from django.contrib import admin\nfrom models import Normal\nfrom nani.admin import TranslateableAdmin\nfrom testproject.app.models import Standard\nadmin.site.register(Normal, TranslateableAdmin)\n", "<import token>\nadmin.site.register(Normal, TranslateableAdmin)\n", "<import token>\n<code token>\n" ]
false
99,009
7067eb9840f0e2fc9128f3c52084cdea6c7de011
from django.urls import path, include from rest_framework.routers import DefaultRouter from devices import views app_name = 'devices' router = DefaultRouter() router.register('ports-vlan', views.PortVlanMemberModelViewSet) router.register('ports', views.PortModelViewSet) router.register('pon', views.DevicePONViewSet) router.register('', views.DeviceModelViewSet) urlpatterns = [ path('groups/', views.DeviceGroupsList.as_view()), path('without_groups/', views.DeviceWithoutGroupListAPIView.as_view()), path('', include(router.urls)), ]
[ "from django.urls import path, include\nfrom rest_framework.routers import DefaultRouter\nfrom devices import views\n\n\napp_name = 'devices'\n\n\nrouter = DefaultRouter()\nrouter.register('ports-vlan', views.PortVlanMemberModelViewSet)\nrouter.register('ports', views.PortModelViewSet)\nrouter.register('pon', views.DevicePONViewSet)\nrouter.register('', views.DeviceModelViewSet)\n\nurlpatterns = [\n path('groups/', views.DeviceGroupsList.as_view()),\n path('without_groups/', views.DeviceWithoutGroupListAPIView.as_view()),\n path('', include(router.urls)),\n]\n", "from django.urls import path, include\nfrom rest_framework.routers import DefaultRouter\nfrom devices import views\napp_name = 'devices'\nrouter = DefaultRouter()\nrouter.register('ports-vlan', views.PortVlanMemberModelViewSet)\nrouter.register('ports', views.PortModelViewSet)\nrouter.register('pon', views.DevicePONViewSet)\nrouter.register('', views.DeviceModelViewSet)\nurlpatterns = [path('groups/', views.DeviceGroupsList.as_view()), path(\n 'without_groups/', views.DeviceWithoutGroupListAPIView.as_view()), path\n ('', include(router.urls))]\n", "<import token>\napp_name = 'devices'\nrouter = DefaultRouter()\nrouter.register('ports-vlan', views.PortVlanMemberModelViewSet)\nrouter.register('ports', views.PortModelViewSet)\nrouter.register('pon', views.DevicePONViewSet)\nrouter.register('', views.DeviceModelViewSet)\nurlpatterns = [path('groups/', views.DeviceGroupsList.as_view()), path(\n 'without_groups/', views.DeviceWithoutGroupListAPIView.as_view()), path\n ('', include(router.urls))]\n", "<import token>\n<assignment token>\nrouter.register('ports-vlan', views.PortVlanMemberModelViewSet)\nrouter.register('ports', views.PortModelViewSet)\nrouter.register('pon', views.DevicePONViewSet)\nrouter.register('', views.DeviceModelViewSet)\n<assignment token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n" ]
false
99,010
574421b4f6d4931627d57bfd8046cbec02cc2cb9
# # https://leetcode.com/problems/ransom-note/ # # We make use of builtin data structure callec Counter from the collections package # We could have also used normal dictionary or default dict # # Time Complexity: O(n) from collections import Counter class Solution: def canConstruct(self, ransomNote: str, magazine: str) -> bool: if not (Counter(ransomNote) - Counter(magazine)): return True return False if __name__ == '__main__': magazine = 'ab' ransom = 'a' ans = Solution().canConstruct(ransom, magazine) print(ans)
[ "#\n# https://leetcode.com/problems/ransom-note/\n#\n# We make use of builtin data structure callec Counter from the collections package\n# We could have also used normal dictionary or default dict\n#\n# Time Complexity: O(n)\n\nfrom collections import Counter\n\n\nclass Solution:\n def canConstruct(self, ransomNote: str, magazine: str) -> bool:\n if not (Counter(ransomNote) - Counter(magazine)):\n return True\n return False\n\n\nif __name__ == '__main__':\n magazine = 'ab'\n ransom = 'a'\n ans = Solution().canConstruct(ransom, magazine)\n print(ans)\n", "from collections import Counter\n\n\nclass Solution:\n\n def canConstruct(self, ransomNote: str, magazine: str) ->bool:\n if not Counter(ransomNote) - Counter(magazine):\n return True\n return False\n\n\nif __name__ == '__main__':\n magazine = 'ab'\n ransom = 'a'\n ans = Solution().canConstruct(ransom, magazine)\n print(ans)\n", "<import token>\n\n\nclass Solution:\n\n def canConstruct(self, ransomNote: str, magazine: str) ->bool:\n if not Counter(ransomNote) - Counter(magazine):\n return True\n return False\n\n\nif __name__ == '__main__':\n magazine = 'ab'\n ransom = 'a'\n ans = Solution().canConstruct(ransom, magazine)\n print(ans)\n", "<import token>\n\n\nclass Solution:\n\n def canConstruct(self, ransomNote: str, magazine: str) ->bool:\n if not Counter(ransomNote) - Counter(magazine):\n return True\n return False\n\n\n<code token>\n", "<import token>\n\n\nclass Solution:\n <function token>\n\n\n<code token>\n", "<import token>\n<class token>\n<code token>\n" ]
false
99,011
39e919f2fc239ba153052fa4d9a12e18bd132e5e
from __future__ import division import os import warnings import pandas as pd import numpy as np import random import nibabel import torch import torchvision.transforms as transforms #import torch.utils.transforms as extended_transforms from torch.utils.data import Dataset, DataLoader from . import data from .utils import export from skimage import io from PIL import Image from sklearn.metrics import roc_auc_score from skimage.transform import resize ###################################################### ###################################################### ###################################################### @export def cxr14(): normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) train_transformation = data.TransformTwice(transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ])) eval_transformation = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize, ]) return { 'train_transformation': train_transformation, 'eval_transformation': eval_transformation, # 'datadir': '../data/cxr14/', # 'csvdir': '../data_csv/', # 'num_classes': None } class MaskToTensor(object): def __call__(self, img): return torch.from_numpy(np.array(img, dtype=np.int32)).long() def RotateFlip(angle, flip): channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train_transformation = transforms.Compose([ transforms.RandomRotation(degrees=(angle,angle)), transforms.RandomHorizontalFlip(p=flip), transforms.Resize(256), transforms.ToTensor(), transforms.Normalize(**channel_stats) ]) target_transformation = transforms.Compose([ transforms.RandomRotation(degrees=(angle,angle)), transforms.RandomHorizontalFlip(p=flip), transforms.Resize(256), transforms.ToTensor() ]) return train_transformation, target_transformation def RotateFlipFlip(angle, hflip, vflip): channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train_transformation = transforms.Compose([ # transforms.ToPILImage(), transforms.RandomRotation(degrees=(angle,angle)), transforms.RandomHorizontalFlip(p=hflip), transforms.RandomVerticalFlip(p=vflip), transforms.Resize(256), transforms.ToTensor(), # transforms.Normalize(**channel_stats) ]) target_transformation = transforms.Compose([ # transforms.ToPILImage(), transforms.RandomRotation(degrees=(angle,angle)), transforms.RandomHorizontalFlip(p=hflip), transforms.RandomVerticalFlip(p=vflip), transforms.Resize(256), transforms.ToTensor() ]) return train_transformation, target_transformation @export def ventricleNormal(): channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) chance = random.random() angles = range(-5,6) #rotate angles -5 to 5 num_transforms = len(angles) #for i in range(num_transforms * 2): # if i/(num_transforms * 2) <= chance < (1 + i)/(num_transforms * 2): # train_transformation, target_transformation = RotateFlip( angles[i % num_transforms], i // num_transforms) for i in range(num_transforms * 4): if i/(num_transforms * 4) <= chance < (1 + i)/(num_transforms * 4): train_transformation, target_transformation = RotateFlipFlip( angles[i % num_transforms], i // num_transforms, (i // num_transforms) % 2) eval_transformation = transforms.Compose([ transforms.Resize(256), transforms.ToTensor(), # transforms.Normalize(**channel_stats) ]) eval_target_transformation = transforms.Compose([ transforms.Resize(256), transforms.ToTensor(), ]) return { 'train_transformation': train_transformation, 'target_transformation': target_transformation, 'eval_transformation': eval_transformation, 'eval_target_transformation': eval_target_transformation } @export def imagenet(): channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train_transformation = data.TransformTwice(transforms.Compose([ transforms.RandomRotation(10), transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1), transforms.ToTensor(), transforms.Normalize(**channel_stats) ])) eval_transformation = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(**channel_stats) ]) return { 'train_transformation': train_transformation, 'eval_transformation': eval_transformation #'datadir': 'data-local/images/ilsvrc2012/', #'num_classes': 1000 } @export def cifar10(): channel_stats = dict(mean=[0.4914, 0.4822, 0.4465], std=[0.2470, 0.2435, 0.2616]) train_transformation = data.TransformTwice(transforms.Compose([ data.RandomTranslateWithReflect(4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(**channel_stats) ])) eval_transformation = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(**channel_stats) ]) return { 'train_transformation': train_transformation, 'eval_transformation': eval_transformation, 'datadir': 'data-local/images/cifar/cifar10/by-image', 'num_classes': 10 } ### complete version similar to torchvision.datasets.ImageFolder / torchvision.datasets.DatasetFolder class ChestXRayDataset(Dataset): """ CXR8 dataset.""" def __init__(self, csv_file, root_dir, transform=None): """ Args: csv_file (string): Path to the csv file with annotations. root_dir (string): Directory with all the images. transform (callable, optional): Optional transform to be applied on a sample. """ self.root_dir = root_dir self.transform = transform df = pd.read_csv(csv_file) classes = df.columns[3:].values.tolist() self.class_to_idx = {classes[i]: i for i in range(len(classes))} self.idx_to_class = dict(enumerate(classes)) self.classes = classes samples = [] for idx in range(len(df)): path = df.iloc[idx]['image_path'] target = df.iloc[idx, 3:].as_matrix().astype('float32') ### labels type: array item = (path, target) samples.append(item) assert(len(samples) == len(df)) self.samples = samples def __len__(self): return len(self.samples) def __getitem__(self, index): path, target = self.samples[index] ### load image img_name = os.path.join(self.root_dir, path) ### get 'image_path' image = io.imread(img_name) if(len(image.shape) == 3): ### some samples have four channels image = image[:,:,0] h, w = image.shape c = 3 images = np.zeros((h, w, c), dtype = np.uint8) ### Set image channel dim = 3 for i in range(c): images[:,:,i] = image assert(images.shape == (1024,1024,3)) images = Image.fromarray(images) if self.transform: images = self.transform(images) ### load labels labels = torch.from_numpy(target) ### return tuple return (images, labels) class IVCdataset(Dataset): def __init__(self, csv_file, path, transform=None): """ csv_file = csv where first column = image filenames and second column = classification path = directory to all iamges """ self.path = path self.transform = transform df = pd.read_csv(csv_file, header=None) classes = df.iloc[:,1].values.tolist() self.class_to_idx = {classes[i]: i for i in range(len(classes))} self.idx_to_class = dict(enumerate(classes)) self.classes = classes print("> dataset size: ", df.shape[0]) #load labels samples = [] for i in range(len(df)): name = df.iloc[i,0] target = df.iloc[i,1].astype('int_') item = (name, target) samples.append(item) assert(len(samples) == len(df)) self.samples = samples def __len__(self): return len(self.samples) def __getitem__(self, index): path, target = self.samples[index] img_name = os.path.join(self.path, path) with warnings.catch_warnings(): warnings.simplefilter("ignore") image = io.imread(img_name) if (len(image.shape)==3): image = image[:,:,0] #with warnings.catch_warnings(): # warnings.simplefilter("ignore") # image = resize(image, (224,224)) image = image.astype('float32') h, w = image.shape c = 3 images = np.zeros((h, w, c), dtype = np.uint8) for i in range(c): images[:,:,i] = image #assert(images.shape == (1024,1024,3)) images = Image.fromarray(images) #trans = transforms.ToTensor() #images = trans(images) if self.transform: images = self.transform(images) labels = torch.from_numpy(np.array([target])) return (images, labels) def loadImages(image, basedir): #img_name = os.path.join(basedir, image) #img_name = nibabel.load(img_name).get_data() #with warnings.catch_warnings(): # warnings.simplefilter("ignore") # image = io.imread(img_name) if (len(image.shape)==3): image = image[:,:,0] image = image.astype('float32') h, w = image.shape c = 3 images = np.zeros((h, w, c), dtype = np.uint8) for i in range(c): images[:,:,i] = image images = Image.fromarray(images) return images class Ventricles(Dataset): def __init__(self, csv_file, path_raw, path_segs, input_transform=None, target_transform=None, train=False): self.path_raw = path_raw self.path_segs = path_segs self.input_transform = input_transform self.target_transform = target_transform self.train = train df = pd.read_csv(csv_file, header=None) #print("Dataset size: ", df.shape[0]) samples = [] #lower = round( len(df) / 5 ) #upper = round( len(df) / 5 * 4 ) for i in range(len(df)): name = df.iloc[i,0] target = df.iloc[i,1] image_name = os.path.join(path_raw, name) target_name = os.path.join(path_segs, target) image_ni = nibabel.load(image_name).get_data() target_ni = nibabel.load(target_name).get_data() slices = image_ni.shape[2] lower = slices / 4 upper = slices / 4 * 3 for i in range(slices): name = image_ni[:,:,i] target = target_ni[:,:,i] item = (name, target) samples.append(item) if train and lower < i < upper: for _ in range(3): samples.append(item) self.samples = samples def __len__(self): return len(self.samples) def __getitem__(self, index): #images, targets = self.samples[index] image, target = self.samples[index] images = loadImages(image, self.path_raw) targets = loadImages(target, self.path_segs) #images = image #targets = target tobinary = targets.convert('L') targets_mask = tobinary.point(lambda x: 0 if x < 1 else 1, '1') if self.train: channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) chance = random.random() angle = range(-5,6) #rotate angles -5 to 5 n_angles = len(angle) #for i in range(num_transforms * 2): # if i/(num_transforms * 2) <= chance < (1 + i)/(num_transforms * 2): # train_transformation, target_transformation = RotateFlip( angles[i % num_transforms], i // num_transforms) # print('angles/flip', angles[i % num_transforms], i // num_transforms) for i in range(n_angles * 4): if i/(n_angles * 4) <= chance < (1 + i)/(n_angles * 4): input_transform, target_transform = RotateFlipFlip( angle[i % n_angles], i // n_angles, (i // n_angles) % 2) images = input_transform(images) targets_mask = target_transform(targets_mask) #targets_mask = target_transform(targets) else: if self.input_transform: images = self.input_transform(images) if self.target_transform: targets_mask = self.target_transform(targets_mask) return (images, targets_mask)
[ "from __future__ import division\n\nimport os\nimport warnings\nimport pandas as pd\nimport numpy as np\nimport random\nimport nibabel\n\nimport torch\nimport torchvision.transforms as transforms\n#import torch.utils.transforms as extended_transforms\nfrom torch.utils.data import Dataset, DataLoader\n\nfrom . import data\nfrom .utils import export\n\n\nfrom skimage import io\nfrom PIL import Image\nfrom sklearn.metrics import roc_auc_score\nfrom skimage.transform import resize\n\n######################################################\n######################################################\n######################################################\n\n@export\ndef cxr14():\n normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],\n std=[0.229, 0.224, 0.225]\n )\n\n train_transformation = data.TransformTwice(transforms.Compose([\n transforms.RandomResizedCrop(224),\n transforms.RandomHorizontalFlip(),\n transforms.ToTensor(),\n normalize,\n ]))\n\n eval_transformation = transforms.Compose([\n transforms.Resize(256),\n transforms.CenterCrop(224),\n transforms.ToTensor(),\n normalize,\n ])\n\n return {\n 'train_transformation': train_transformation,\n 'eval_transformation': eval_transformation,\n # 'datadir': '../data/cxr14/',\n # 'csvdir': '../data_csv/',\n # 'num_classes': None\n }\n\n\nclass MaskToTensor(object):\n def __call__(self, img):\n return torch.from_numpy(np.array(img, dtype=np.int32)).long()\n\ndef RotateFlip(angle, flip): \n channel_stats = dict(mean=[0.485, 0.456, 0.406],\n std=[0.229, 0.224, 0.225])\n train_transformation = transforms.Compose([\n transforms.RandomRotation(degrees=(angle,angle)),\n transforms.RandomHorizontalFlip(p=flip),\n transforms.Resize(256),\n transforms.ToTensor(),\n transforms.Normalize(**channel_stats)\n ])\n target_transformation = transforms.Compose([\n transforms.RandomRotation(degrees=(angle,angle)),\n transforms.RandomHorizontalFlip(p=flip),\n transforms.Resize(256),\n transforms.ToTensor()\n ])\n\n return train_transformation, target_transformation\n\n\ndef RotateFlipFlip(angle, hflip, vflip): \n channel_stats = dict(mean=[0.485, 0.456, 0.406],\n std=[0.229, 0.224, 0.225])\n \n train_transformation = transforms.Compose([\n # transforms.ToPILImage(),\n transforms.RandomRotation(degrees=(angle,angle)),\n transforms.RandomHorizontalFlip(p=hflip),\n transforms.RandomVerticalFlip(p=vflip),\n transforms.Resize(256),\n transforms.ToTensor(),\n# transforms.Normalize(**channel_stats)\n ])\n target_transformation = transforms.Compose([\n # transforms.ToPILImage(),\n transforms.RandomRotation(degrees=(angle,angle)),\n transforms.RandomHorizontalFlip(p=hflip),\n transforms.RandomVerticalFlip(p=vflip),\n transforms.Resize(256),\n transforms.ToTensor()\n ])\n\n return train_transformation, target_transformation\n\n\n\n@export\ndef ventricleNormal():\n channel_stats = dict(mean=[0.485, 0.456, 0.406],\n std=[0.229, 0.224, 0.225])\n\n chance = random.random()\n angles = range(-5,6) #rotate angles -5 to 5\n num_transforms = len(angles)\n\n #for i in range(num_transforms * 2):\n # if i/(num_transforms * 2) <= chance < (1 + i)/(num_transforms * 2):\n # train_transformation, target_transformation = RotateFlip( angles[i % num_transforms], i // num_transforms)\n for i in range(num_transforms * 4):\n if i/(num_transforms * 4) <= chance < (1 + i)/(num_transforms * 4):\n train_transformation, target_transformation = RotateFlipFlip( angles[i % num_transforms], i // num_transforms, (i // num_transforms) % 2)\n\n eval_transformation = transforms.Compose([\n transforms.Resize(256),\n transforms.ToTensor(),\n # transforms.Normalize(**channel_stats)\n ])\n\n eval_target_transformation = transforms.Compose([\n transforms.Resize(256),\n transforms.ToTensor(),\n ])\n\n return {\n 'train_transformation': train_transformation,\n 'target_transformation': target_transformation,\n 'eval_transformation': eval_transformation,\n 'eval_target_transformation': eval_target_transformation\n }\n\n@export\ndef imagenet():\n channel_stats = dict(mean=[0.485, 0.456, 0.406],\n std=[0.229, 0.224, 0.225])\n train_transformation = data.TransformTwice(transforms.Compose([\n transforms.RandomRotation(10),\n transforms.RandomResizedCrop(224),\n transforms.RandomHorizontalFlip(),\n transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1),\n transforms.ToTensor(),\n transforms.Normalize(**channel_stats)\n ]))\n eval_transformation = transforms.Compose([\n transforms.Resize(256),\n transforms.CenterCrop(224),\n transforms.ToTensor(),\n transforms.Normalize(**channel_stats)\n ])\n\n return {\n 'train_transformation': train_transformation,\n 'eval_transformation': eval_transformation\n #'datadir': 'data-local/images/ilsvrc2012/',\n #'num_classes': 1000\n }\n\n\n@export\ndef cifar10():\n channel_stats = dict(mean=[0.4914, 0.4822, 0.4465],\n std=[0.2470, 0.2435, 0.2616])\n train_transformation = data.TransformTwice(transforms.Compose([\n data.RandomTranslateWithReflect(4),\n transforms.RandomHorizontalFlip(),\n transforms.ToTensor(),\n transforms.Normalize(**channel_stats)\n ]))\n eval_transformation = transforms.Compose([\n transforms.ToTensor(),\n transforms.Normalize(**channel_stats)\n ])\n\n return {\n 'train_transformation': train_transformation,\n 'eval_transformation': eval_transformation,\n 'datadir': 'data-local/images/cifar/cifar10/by-image',\n 'num_classes': 10\n }\n\n\n### complete version similar to torchvision.datasets.ImageFolder / torchvision.datasets.DatasetFolder\nclass ChestXRayDataset(Dataset):\n \"\"\" CXR8 dataset.\"\"\"\n def __init__(self, csv_file, root_dir, transform=None):\n \"\"\"\n Args:\n csv_file (string): Path to the csv file with annotations.\n root_dir (string): Directory with all the images.\n transform (callable, optional): Optional transform to be applied\n on a sample.\n \"\"\"\n self.root_dir = root_dir\n self.transform = transform\n \n df = pd.read_csv(csv_file)\n \n classes = df.columns[3:].values.tolist()\n self.class_to_idx = {classes[i]: i for i in range(len(classes))}\n self.idx_to_class = dict(enumerate(classes))\n self.classes = classes\n \n samples = []\n for idx in range(len(df)):\n path = df.iloc[idx]['image_path']\n target = df.iloc[idx, 3:].as_matrix().astype('float32') ### labels type: array\n item = (path, target)\n samples.append(item)\n assert(len(samples) == len(df))\n self.samples = samples\n \n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n \n path, target = self.samples[index]\n \n ### load image\n img_name = os.path.join(self.root_dir, path) ### get 'image_path'\n image = io.imread(img_name)\n if(len(image.shape) == 3): ### some samples have four channels\n image = image[:,:,0]\n h, w = image.shape\n c = 3\n images = np.zeros((h, w, c), dtype = np.uint8) ### Set image channel dim = 3\n for i in range(c):\n images[:,:,i] = image \n assert(images.shape == (1024,1024,3))\n images = Image.fromarray(images)\n\n if self.transform:\n images = self.transform(images)\n\n ### load labels\n labels = torch.from_numpy(target)\n \n ### return tuple\n return (images, labels)\n\n\n\nclass IVCdataset(Dataset):\n def __init__(self, csv_file, path, transform=None):\n \"\"\"\n csv_file = csv where first column = image filenames and second column = classification\n path = directory to all iamges\n \"\"\"\n self.path = path\n self.transform = transform\n\n df = pd.read_csv(csv_file, header=None)\n\n classes = df.iloc[:,1].values.tolist()\n self.class_to_idx = {classes[i]: i for i in range(len(classes))}\n self.idx_to_class = dict(enumerate(classes))\n self.classes = classes\n print(\"> dataset size: \", df.shape[0])\n\n #load labels\n samples = []\n for i in range(len(df)):\n name = df.iloc[i,0]\n target = df.iloc[i,1].astype('int_')\n item = (name, target)\n samples.append(item)\n assert(len(samples) == len(df))\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n path, target = self.samples[index]\n img_name = os.path.join(self.path, path)\n\n with warnings.catch_warnings():\n warnings.simplefilter(\"ignore\")\n image = io.imread(img_name)\n\n if (len(image.shape)==3):\n image = image[:,:,0]\n\n #with warnings.catch_warnings():\n # warnings.simplefilter(\"ignore\")\n # image = resize(image, (224,224))\n image = image.astype('float32') \n \n h, w = image.shape\n c = 3\n images = np.zeros((h, w, c), dtype = np.uint8)\n for i in range(c):\n images[:,:,i] = image\n #assert(images.shape == (1024,1024,3))\n\n images = Image.fromarray(images) \n\n #trans = transforms.ToTensor()\n #images = trans(images) \n \n if self.transform:\n images = self.transform(images)\n \n labels = torch.from_numpy(np.array([target]))\n return (images, labels)\n\n\ndef loadImages(image, basedir):\n #img_name = os.path.join(basedir, image)\n \n #img_name = nibabel.load(img_name).get_data()\n\n #with warnings.catch_warnings():\n # warnings.simplefilter(\"ignore\")\n # image = io.imread(img_name)\n if (len(image.shape)==3):\n image = image[:,:,0]\n image = image.astype('float32') \n h, w = image.shape\n c = 3\n images = np.zeros((h, w, c), dtype = np.uint8)\n for i in range(c):\n images[:,:,i] = image\n images = Image.fromarray(images) \n return images\n\n\nclass Ventricles(Dataset):\n def __init__(self, csv_file, path_raw, path_segs, input_transform=None, target_transform=None, train=False):\n self.path_raw = path_raw\n self.path_segs = path_segs\n self.input_transform = input_transform\n self.target_transform = target_transform\n self.train = train\n\n df = pd.read_csv(csv_file, header=None)\n #print(\"Dataset size: \", df.shape[0])\n\n samples = []\n\n #lower = round( len(df) / 5 )\n #upper = round( len(df) / 5 * 4 )\n for i in range(len(df)):\n name = df.iloc[i,0]\n target = df.iloc[i,1]\n\n image_name = os.path.join(path_raw, name)\n target_name = os.path.join(path_segs, target)\n image_ni = nibabel.load(image_name).get_data()\n target_ni = nibabel.load(target_name).get_data()\n\n\n slices = image_ni.shape[2]\n lower = slices / 4\n upper = slices / 4 * 3\n for i in range(slices):\n name = image_ni[:,:,i]\n target = target_ni[:,:,i]\n item = (name, target)\n samples.append(item)\n \n if train and lower < i < upper:\n for _ in range(3): samples.append(item)\n self.samples = samples\n\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n #images, targets = self.samples[index]\n image, target = self.samples[index]\n images = loadImages(image, self.path_raw)\n targets = loadImages(target, self.path_segs)\n #images = image\n #targets = target\n tobinary = targets.convert('L')\n targets_mask = tobinary.point(lambda x: 0 if x < 1 else 1, '1')\n\n\n\n if self.train:\n channel_stats = dict(mean=[0.485, 0.456, 0.406],\n std=[0.229, 0.224, 0.225])\n\n chance = random.random()\n angle = range(-5,6) #rotate angles -5 to 5\n n_angles = len(angle)\n\n #for i in range(num_transforms * 2):\n # if i/(num_transforms * 2) <= chance < (1 + i)/(num_transforms * 2):\n # train_transformation, target_transformation = RotateFlip( angles[i % num_transforms], i // num_transforms)\n # print('angles/flip', angles[i % num_transforms], i // num_transforms) \n for i in range(n_angles * 4):\n if i/(n_angles * 4) <= chance < (1 + i)/(n_angles * 4):\n input_transform, target_transform = RotateFlipFlip( angle[i % n_angles], i // n_angles, (i // n_angles) % 2)\n\n images = input_transform(images)\n targets_mask = target_transform(targets_mask)\n #targets_mask = target_transform(targets)\n\n else:\n if self.input_transform:\n images = self.input_transform(images)\n if self.target_transform:\n targets_mask = self.target_transform(targets_mask)\n\n return (images, targets_mask)\n\n\n", "from __future__ import division\nimport os\nimport warnings\nimport pandas as pd\nimport numpy as np\nimport random\nimport nibabel\nimport torch\nimport torchvision.transforms as transforms\nfrom torch.utils.data import Dataset, DataLoader\nfrom . import data\nfrom .utils import export\nfrom skimage import io\nfrom PIL import Image\nfrom sklearn.metrics import roc_auc_score\nfrom skimage.transform import resize\n\n\n@export\ndef cxr14():\n normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229,\n 0.224, 0.225])\n train_transformation = data.TransformTwice(transforms.Compose([\n transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(\n ), transforms.ToTensor(), normalize]))\n eval_transformation = transforms.Compose([transforms.Resize(256),\n transforms.CenterCrop(224), transforms.ToTensor(), normalize])\n return {'train_transformation': train_transformation,\n 'eval_transformation': eval_transformation}\n\n\nclass MaskToTensor(object):\n\n def __call__(self, img):\n return torch.from_numpy(np.array(img, dtype=np.int32)).long()\n\n\ndef RotateFlip(angle, flip):\n channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])\n train_transformation = transforms.Compose([transforms.RandomRotation(\n degrees=(angle, angle)), transforms.RandomHorizontalFlip(p=flip),\n transforms.Resize(256), transforms.ToTensor(), transforms.Normalize\n (**channel_stats)])\n target_transformation = transforms.Compose([transforms.RandomRotation(\n degrees=(angle, angle)), transforms.RandomHorizontalFlip(p=flip),\n transforms.Resize(256), transforms.ToTensor()])\n return train_transformation, target_transformation\n\n\ndef RotateFlipFlip(angle, hflip, vflip):\n channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])\n train_transformation = transforms.Compose([transforms.RandomRotation(\n degrees=(angle, angle)), transforms.RandomHorizontalFlip(p=hflip),\n transforms.RandomVerticalFlip(p=vflip), transforms.Resize(256),\n transforms.ToTensor()])\n target_transformation = transforms.Compose([transforms.RandomRotation(\n degrees=(angle, angle)), transforms.RandomHorizontalFlip(p=hflip),\n transforms.RandomVerticalFlip(p=vflip), transforms.Resize(256),\n transforms.ToTensor()])\n return train_transformation, target_transformation\n\n\n@export\ndef ventricleNormal():\n channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])\n chance = random.random()\n angles = range(-5, 6)\n num_transforms = len(angles)\n for i in range(num_transforms * 4):\n if i / (num_transforms * 4) <= chance < (1 + i) / (num_transforms * 4):\n train_transformation, target_transformation = RotateFlipFlip(angles\n [i % num_transforms], i // num_transforms, i //\n num_transforms % 2)\n eval_transformation = transforms.Compose([transforms.Resize(256),\n transforms.ToTensor()])\n eval_target_transformation = transforms.Compose([transforms.Resize(256),\n transforms.ToTensor()])\n return {'train_transformation': train_transformation,\n 'target_transformation': target_transformation,\n 'eval_transformation': eval_transformation,\n 'eval_target_transformation': eval_target_transformation}\n\n\n@export\ndef imagenet():\n channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])\n train_transformation = data.TransformTwice(transforms.Compose([\n transforms.RandomRotation(10), transforms.RandomResizedCrop(224),\n transforms.RandomHorizontalFlip(), transforms.ColorJitter(\n brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1), transforms.\n ToTensor(), transforms.Normalize(**channel_stats)]))\n eval_transformation = transforms.Compose([transforms.Resize(256),\n transforms.CenterCrop(224), transforms.ToTensor(), transforms.\n Normalize(**channel_stats)])\n return {'train_transformation': train_transformation,\n 'eval_transformation': eval_transformation}\n\n\n@export\ndef cifar10():\n channel_stats = dict(mean=[0.4914, 0.4822, 0.4465], std=[0.247, 0.2435,\n 0.2616])\n train_transformation = data.TransformTwice(transforms.Compose([data.\n RandomTranslateWithReflect(4), transforms.RandomHorizontalFlip(),\n transforms.ToTensor(), transforms.Normalize(**channel_stats)]))\n eval_transformation = transforms.Compose([transforms.ToTensor(),\n transforms.Normalize(**channel_stats)])\n return {'train_transformation': train_transformation,\n 'eval_transformation': eval_transformation, 'datadir':\n 'data-local/images/cifar/cifar10/by-image', 'num_classes': 10}\n\n\nclass ChestXRayDataset(Dataset):\n \"\"\" CXR8 dataset.\"\"\"\n\n def __init__(self, csv_file, root_dir, transform=None):\n \"\"\"\n Args:\n csv_file (string): Path to the csv file with annotations.\n root_dir (string): Directory with all the images.\n transform (callable, optional): Optional transform to be applied\n on a sample.\n \"\"\"\n self.root_dir = root_dir\n self.transform = transform\n df = pd.read_csv(csv_file)\n classes = df.columns[3:].values.tolist()\n self.class_to_idx = {classes[i]: i for i in range(len(classes))}\n self.idx_to_class = dict(enumerate(classes))\n self.classes = classes\n samples = []\n for idx in range(len(df)):\n path = df.iloc[idx]['image_path']\n target = df.iloc[idx, 3:].as_matrix().astype('float32')\n item = path, target\n samples.append(item)\n assert len(samples) == len(df)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n path, target = self.samples[index]\n img_name = os.path.join(self.root_dir, path)\n image = io.imread(img_name)\n if len(image.shape) == 3:\n image = image[:, :, 0]\n h, w = image.shape\n c = 3\n images = np.zeros((h, w, c), dtype=np.uint8)\n for i in range(c):\n images[:, :, i] = image\n assert images.shape == (1024, 1024, 3)\n images = Image.fromarray(images)\n if self.transform:\n images = self.transform(images)\n labels = torch.from_numpy(target)\n return images, labels\n\n\nclass IVCdataset(Dataset):\n\n def __init__(self, csv_file, path, transform=None):\n \"\"\"\n csv_file = csv where first column = image filenames and second column = classification\n path = directory to all iamges\n \"\"\"\n self.path = path\n self.transform = transform\n df = pd.read_csv(csv_file, header=None)\n classes = df.iloc[:, 1].values.tolist()\n self.class_to_idx = {classes[i]: i for i in range(len(classes))}\n self.idx_to_class = dict(enumerate(classes))\n self.classes = classes\n print('> dataset size: ', df.shape[0])\n samples = []\n for i in range(len(df)):\n name = df.iloc[i, 0]\n target = df.iloc[i, 1].astype('int_')\n item = name, target\n samples.append(item)\n assert len(samples) == len(df)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n path, target = self.samples[index]\n img_name = os.path.join(self.path, path)\n with warnings.catch_warnings():\n warnings.simplefilter('ignore')\n image = io.imread(img_name)\n if len(image.shape) == 3:\n image = image[:, :, 0]\n image = image.astype('float32')\n h, w = image.shape\n c = 3\n images = np.zeros((h, w, c), dtype=np.uint8)\n for i in range(c):\n images[:, :, i] = image\n images = Image.fromarray(images)\n if self.transform:\n images = self.transform(images)\n labels = torch.from_numpy(np.array([target]))\n return images, labels\n\n\ndef loadImages(image, basedir):\n if len(image.shape) == 3:\n image = image[:, :, 0]\n image = image.astype('float32')\n h, w = image.shape\n c = 3\n images = np.zeros((h, w, c), dtype=np.uint8)\n for i in range(c):\n images[:, :, i] = image\n images = Image.fromarray(images)\n return images\n\n\nclass Ventricles(Dataset):\n\n def __init__(self, csv_file, path_raw, path_segs, input_transform=None,\n target_transform=None, train=False):\n self.path_raw = path_raw\n self.path_segs = path_segs\n self.input_transform = input_transform\n self.target_transform = target_transform\n self.train = train\n df = pd.read_csv(csv_file, header=None)\n samples = []\n for i in range(len(df)):\n name = df.iloc[i, 0]\n target = df.iloc[i, 1]\n image_name = os.path.join(path_raw, name)\n target_name = os.path.join(path_segs, target)\n image_ni = nibabel.load(image_name).get_data()\n target_ni = nibabel.load(target_name).get_data()\n slices = image_ni.shape[2]\n lower = slices / 4\n upper = slices / 4 * 3\n for i in range(slices):\n name = image_ni[:, :, i]\n target = target_ni[:, :, i]\n item = name, target\n samples.append(item)\n if train and lower < i < upper:\n for _ in range(3):\n samples.append(item)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n image, target = self.samples[index]\n images = loadImages(image, self.path_raw)\n targets = loadImages(target, self.path_segs)\n tobinary = targets.convert('L')\n targets_mask = tobinary.point(lambda x: 0 if x < 1 else 1, '1')\n if self.train:\n channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, \n 0.224, 0.225])\n chance = random.random()\n angle = range(-5, 6)\n n_angles = len(angle)\n for i in range(n_angles * 4):\n if i / (n_angles * 4) <= chance < (1 + i) / (n_angles * 4):\n input_transform, target_transform = RotateFlipFlip(angle\n [i % n_angles], i // n_angles, i // n_angles % 2)\n images = input_transform(images)\n targets_mask = target_transform(targets_mask)\n else:\n if self.input_transform:\n images = self.input_transform(images)\n if self.target_transform:\n targets_mask = self.target_transform(targets_mask)\n return images, targets_mask\n", "<import token>\n\n\n@export\ndef cxr14():\n normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229,\n 0.224, 0.225])\n train_transformation = data.TransformTwice(transforms.Compose([\n transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(\n ), transforms.ToTensor(), normalize]))\n eval_transformation = transforms.Compose([transforms.Resize(256),\n transforms.CenterCrop(224), transforms.ToTensor(), normalize])\n return {'train_transformation': train_transformation,\n 'eval_transformation': eval_transformation}\n\n\nclass MaskToTensor(object):\n\n def __call__(self, img):\n return torch.from_numpy(np.array(img, dtype=np.int32)).long()\n\n\ndef RotateFlip(angle, flip):\n channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])\n train_transformation = transforms.Compose([transforms.RandomRotation(\n degrees=(angle, angle)), transforms.RandomHorizontalFlip(p=flip),\n transforms.Resize(256), transforms.ToTensor(), transforms.Normalize\n (**channel_stats)])\n target_transformation = transforms.Compose([transforms.RandomRotation(\n degrees=(angle, angle)), transforms.RandomHorizontalFlip(p=flip),\n transforms.Resize(256), transforms.ToTensor()])\n return train_transformation, target_transformation\n\n\ndef RotateFlipFlip(angle, hflip, vflip):\n channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])\n train_transformation = transforms.Compose([transforms.RandomRotation(\n degrees=(angle, angle)), transforms.RandomHorizontalFlip(p=hflip),\n transforms.RandomVerticalFlip(p=vflip), transforms.Resize(256),\n transforms.ToTensor()])\n target_transformation = transforms.Compose([transforms.RandomRotation(\n degrees=(angle, angle)), transforms.RandomHorizontalFlip(p=hflip),\n transforms.RandomVerticalFlip(p=vflip), transforms.Resize(256),\n transforms.ToTensor()])\n return train_transformation, target_transformation\n\n\n@export\ndef ventricleNormal():\n channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])\n chance = random.random()\n angles = range(-5, 6)\n num_transforms = len(angles)\n for i in range(num_transforms * 4):\n if i / (num_transforms * 4) <= chance < (1 + i) / (num_transforms * 4):\n train_transformation, target_transformation = RotateFlipFlip(angles\n [i % num_transforms], i // num_transforms, i //\n num_transforms % 2)\n eval_transformation = transforms.Compose([transforms.Resize(256),\n transforms.ToTensor()])\n eval_target_transformation = transforms.Compose([transforms.Resize(256),\n transforms.ToTensor()])\n return {'train_transformation': train_transformation,\n 'target_transformation': target_transformation,\n 'eval_transformation': eval_transformation,\n 'eval_target_transformation': eval_target_transformation}\n\n\n@export\ndef imagenet():\n channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])\n train_transformation = data.TransformTwice(transforms.Compose([\n transforms.RandomRotation(10), transforms.RandomResizedCrop(224),\n transforms.RandomHorizontalFlip(), transforms.ColorJitter(\n brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1), transforms.\n ToTensor(), transforms.Normalize(**channel_stats)]))\n eval_transformation = transforms.Compose([transforms.Resize(256),\n transforms.CenterCrop(224), transforms.ToTensor(), transforms.\n Normalize(**channel_stats)])\n return {'train_transformation': train_transformation,\n 'eval_transformation': eval_transformation}\n\n\n@export\ndef cifar10():\n channel_stats = dict(mean=[0.4914, 0.4822, 0.4465], std=[0.247, 0.2435,\n 0.2616])\n train_transformation = data.TransformTwice(transforms.Compose([data.\n RandomTranslateWithReflect(4), transforms.RandomHorizontalFlip(),\n transforms.ToTensor(), transforms.Normalize(**channel_stats)]))\n eval_transformation = transforms.Compose([transforms.ToTensor(),\n transforms.Normalize(**channel_stats)])\n return {'train_transformation': train_transformation,\n 'eval_transformation': eval_transformation, 'datadir':\n 'data-local/images/cifar/cifar10/by-image', 'num_classes': 10}\n\n\nclass ChestXRayDataset(Dataset):\n \"\"\" CXR8 dataset.\"\"\"\n\n def __init__(self, csv_file, root_dir, transform=None):\n \"\"\"\n Args:\n csv_file (string): Path to the csv file with annotations.\n root_dir (string): Directory with all the images.\n transform (callable, optional): Optional transform to be applied\n on a sample.\n \"\"\"\n self.root_dir = root_dir\n self.transform = transform\n df = pd.read_csv(csv_file)\n classes = df.columns[3:].values.tolist()\n self.class_to_idx = {classes[i]: i for i in range(len(classes))}\n self.idx_to_class = dict(enumerate(classes))\n self.classes = classes\n samples = []\n for idx in range(len(df)):\n path = df.iloc[idx]['image_path']\n target = df.iloc[idx, 3:].as_matrix().astype('float32')\n item = path, target\n samples.append(item)\n assert len(samples) == len(df)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n path, target = self.samples[index]\n img_name = os.path.join(self.root_dir, path)\n image = io.imread(img_name)\n if len(image.shape) == 3:\n image = image[:, :, 0]\n h, w = image.shape\n c = 3\n images = np.zeros((h, w, c), dtype=np.uint8)\n for i in range(c):\n images[:, :, i] = image\n assert images.shape == (1024, 1024, 3)\n images = Image.fromarray(images)\n if self.transform:\n images = self.transform(images)\n labels = torch.from_numpy(target)\n return images, labels\n\n\nclass IVCdataset(Dataset):\n\n def __init__(self, csv_file, path, transform=None):\n \"\"\"\n csv_file = csv where first column = image filenames and second column = classification\n path = directory to all iamges\n \"\"\"\n self.path = path\n self.transform = transform\n df = pd.read_csv(csv_file, header=None)\n classes = df.iloc[:, 1].values.tolist()\n self.class_to_idx = {classes[i]: i for i in range(len(classes))}\n self.idx_to_class = dict(enumerate(classes))\n self.classes = classes\n print('> dataset size: ', df.shape[0])\n samples = []\n for i in range(len(df)):\n name = df.iloc[i, 0]\n target = df.iloc[i, 1].astype('int_')\n item = name, target\n samples.append(item)\n assert len(samples) == len(df)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n path, target = self.samples[index]\n img_name = os.path.join(self.path, path)\n with warnings.catch_warnings():\n warnings.simplefilter('ignore')\n image = io.imread(img_name)\n if len(image.shape) == 3:\n image = image[:, :, 0]\n image = image.astype('float32')\n h, w = image.shape\n c = 3\n images = np.zeros((h, w, c), dtype=np.uint8)\n for i in range(c):\n images[:, :, i] = image\n images = Image.fromarray(images)\n if self.transform:\n images = self.transform(images)\n labels = torch.from_numpy(np.array([target]))\n return images, labels\n\n\ndef loadImages(image, basedir):\n if len(image.shape) == 3:\n image = image[:, :, 0]\n image = image.astype('float32')\n h, w = image.shape\n c = 3\n images = np.zeros((h, w, c), dtype=np.uint8)\n for i in range(c):\n images[:, :, i] = image\n images = Image.fromarray(images)\n return images\n\n\nclass Ventricles(Dataset):\n\n def __init__(self, csv_file, path_raw, path_segs, input_transform=None,\n target_transform=None, train=False):\n self.path_raw = path_raw\n self.path_segs = path_segs\n self.input_transform = input_transform\n self.target_transform = target_transform\n self.train = train\n df = pd.read_csv(csv_file, header=None)\n samples = []\n for i in range(len(df)):\n name = df.iloc[i, 0]\n target = df.iloc[i, 1]\n image_name = os.path.join(path_raw, name)\n target_name = os.path.join(path_segs, target)\n image_ni = nibabel.load(image_name).get_data()\n target_ni = nibabel.load(target_name).get_data()\n slices = image_ni.shape[2]\n lower = slices / 4\n upper = slices / 4 * 3\n for i in range(slices):\n name = image_ni[:, :, i]\n target = target_ni[:, :, i]\n item = name, target\n samples.append(item)\n if train and lower < i < upper:\n for _ in range(3):\n samples.append(item)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n image, target = self.samples[index]\n images = loadImages(image, self.path_raw)\n targets = loadImages(target, self.path_segs)\n tobinary = targets.convert('L')\n targets_mask = tobinary.point(lambda x: 0 if x < 1 else 1, '1')\n if self.train:\n channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, \n 0.224, 0.225])\n chance = random.random()\n angle = range(-5, 6)\n n_angles = len(angle)\n for i in range(n_angles * 4):\n if i / (n_angles * 4) <= chance < (1 + i) / (n_angles * 4):\n input_transform, target_transform = RotateFlipFlip(angle\n [i % n_angles], i // n_angles, i // n_angles % 2)\n images = input_transform(images)\n targets_mask = target_transform(targets_mask)\n else:\n if self.input_transform:\n images = self.input_transform(images)\n if self.target_transform:\n targets_mask = self.target_transform(targets_mask)\n return images, targets_mask\n", "<import token>\n<function token>\n\n\nclass MaskToTensor(object):\n\n def __call__(self, img):\n return torch.from_numpy(np.array(img, dtype=np.int32)).long()\n\n\ndef RotateFlip(angle, flip):\n channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])\n train_transformation = transforms.Compose([transforms.RandomRotation(\n degrees=(angle, angle)), transforms.RandomHorizontalFlip(p=flip),\n transforms.Resize(256), transforms.ToTensor(), transforms.Normalize\n (**channel_stats)])\n target_transformation = transforms.Compose([transforms.RandomRotation(\n degrees=(angle, angle)), transforms.RandomHorizontalFlip(p=flip),\n transforms.Resize(256), transforms.ToTensor()])\n return train_transformation, target_transformation\n\n\ndef RotateFlipFlip(angle, hflip, vflip):\n channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])\n train_transformation = transforms.Compose([transforms.RandomRotation(\n degrees=(angle, angle)), transforms.RandomHorizontalFlip(p=hflip),\n transforms.RandomVerticalFlip(p=vflip), transforms.Resize(256),\n transforms.ToTensor()])\n target_transformation = transforms.Compose([transforms.RandomRotation(\n degrees=(angle, angle)), transforms.RandomHorizontalFlip(p=hflip),\n transforms.RandomVerticalFlip(p=vflip), transforms.Resize(256),\n transforms.ToTensor()])\n return train_transformation, target_transformation\n\n\n@export\ndef ventricleNormal():\n channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])\n chance = random.random()\n angles = range(-5, 6)\n num_transforms = len(angles)\n for i in range(num_transforms * 4):\n if i / (num_transforms * 4) <= chance < (1 + i) / (num_transforms * 4):\n train_transformation, target_transformation = RotateFlipFlip(angles\n [i % num_transforms], i // num_transforms, i //\n num_transforms % 2)\n eval_transformation = transforms.Compose([transforms.Resize(256),\n transforms.ToTensor()])\n eval_target_transformation = transforms.Compose([transforms.Resize(256),\n transforms.ToTensor()])\n return {'train_transformation': train_transformation,\n 'target_transformation': target_transformation,\n 'eval_transformation': eval_transformation,\n 'eval_target_transformation': eval_target_transformation}\n\n\n@export\ndef imagenet():\n channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])\n train_transformation = data.TransformTwice(transforms.Compose([\n transforms.RandomRotation(10), transforms.RandomResizedCrop(224),\n transforms.RandomHorizontalFlip(), transforms.ColorJitter(\n brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1), transforms.\n ToTensor(), transforms.Normalize(**channel_stats)]))\n eval_transformation = transforms.Compose([transforms.Resize(256),\n transforms.CenterCrop(224), transforms.ToTensor(), transforms.\n Normalize(**channel_stats)])\n return {'train_transformation': train_transformation,\n 'eval_transformation': eval_transformation}\n\n\n@export\ndef cifar10():\n channel_stats = dict(mean=[0.4914, 0.4822, 0.4465], std=[0.247, 0.2435,\n 0.2616])\n train_transformation = data.TransformTwice(transforms.Compose([data.\n RandomTranslateWithReflect(4), transforms.RandomHorizontalFlip(),\n transforms.ToTensor(), transforms.Normalize(**channel_stats)]))\n eval_transformation = transforms.Compose([transforms.ToTensor(),\n transforms.Normalize(**channel_stats)])\n return {'train_transformation': train_transformation,\n 'eval_transformation': eval_transformation, 'datadir':\n 'data-local/images/cifar/cifar10/by-image', 'num_classes': 10}\n\n\nclass ChestXRayDataset(Dataset):\n \"\"\" CXR8 dataset.\"\"\"\n\n def __init__(self, csv_file, root_dir, transform=None):\n \"\"\"\n Args:\n csv_file (string): Path to the csv file with annotations.\n root_dir (string): Directory with all the images.\n transform (callable, optional): Optional transform to be applied\n on a sample.\n \"\"\"\n self.root_dir = root_dir\n self.transform = transform\n df = pd.read_csv(csv_file)\n classes = df.columns[3:].values.tolist()\n self.class_to_idx = {classes[i]: i for i in range(len(classes))}\n self.idx_to_class = dict(enumerate(classes))\n self.classes = classes\n samples = []\n for idx in range(len(df)):\n path = df.iloc[idx]['image_path']\n target = df.iloc[idx, 3:].as_matrix().astype('float32')\n item = path, target\n samples.append(item)\n assert len(samples) == len(df)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n path, target = self.samples[index]\n img_name = os.path.join(self.root_dir, path)\n image = io.imread(img_name)\n if len(image.shape) == 3:\n image = image[:, :, 0]\n h, w = image.shape\n c = 3\n images = np.zeros((h, w, c), dtype=np.uint8)\n for i in range(c):\n images[:, :, i] = image\n assert images.shape == (1024, 1024, 3)\n images = Image.fromarray(images)\n if self.transform:\n images = self.transform(images)\n labels = torch.from_numpy(target)\n return images, labels\n\n\nclass IVCdataset(Dataset):\n\n def __init__(self, csv_file, path, transform=None):\n \"\"\"\n csv_file = csv where first column = image filenames and second column = classification\n path = directory to all iamges\n \"\"\"\n self.path = path\n self.transform = transform\n df = pd.read_csv(csv_file, header=None)\n classes = df.iloc[:, 1].values.tolist()\n self.class_to_idx = {classes[i]: i for i in range(len(classes))}\n self.idx_to_class = dict(enumerate(classes))\n self.classes = classes\n print('> dataset size: ', df.shape[0])\n samples = []\n for i in range(len(df)):\n name = df.iloc[i, 0]\n target = df.iloc[i, 1].astype('int_')\n item = name, target\n samples.append(item)\n assert len(samples) == len(df)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n path, target = self.samples[index]\n img_name = os.path.join(self.path, path)\n with warnings.catch_warnings():\n warnings.simplefilter('ignore')\n image = io.imread(img_name)\n if len(image.shape) == 3:\n image = image[:, :, 0]\n image = image.astype('float32')\n h, w = image.shape\n c = 3\n images = np.zeros((h, w, c), dtype=np.uint8)\n for i in range(c):\n images[:, :, i] = image\n images = Image.fromarray(images)\n if self.transform:\n images = self.transform(images)\n labels = torch.from_numpy(np.array([target]))\n return images, labels\n\n\ndef loadImages(image, basedir):\n if len(image.shape) == 3:\n image = image[:, :, 0]\n image = image.astype('float32')\n h, w = image.shape\n c = 3\n images = np.zeros((h, w, c), dtype=np.uint8)\n for i in range(c):\n images[:, :, i] = image\n images = Image.fromarray(images)\n return images\n\n\nclass Ventricles(Dataset):\n\n def __init__(self, csv_file, path_raw, path_segs, input_transform=None,\n target_transform=None, train=False):\n self.path_raw = path_raw\n self.path_segs = path_segs\n self.input_transform = input_transform\n self.target_transform = target_transform\n self.train = train\n df = pd.read_csv(csv_file, header=None)\n samples = []\n for i in range(len(df)):\n name = df.iloc[i, 0]\n target = df.iloc[i, 1]\n image_name = os.path.join(path_raw, name)\n target_name = os.path.join(path_segs, target)\n image_ni = nibabel.load(image_name).get_data()\n target_ni = nibabel.load(target_name).get_data()\n slices = image_ni.shape[2]\n lower = slices / 4\n upper = slices / 4 * 3\n for i in range(slices):\n name = image_ni[:, :, i]\n target = target_ni[:, :, i]\n item = name, target\n samples.append(item)\n if train and lower < i < upper:\n for _ in range(3):\n samples.append(item)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n image, target = self.samples[index]\n images = loadImages(image, self.path_raw)\n targets = loadImages(target, self.path_segs)\n tobinary = targets.convert('L')\n targets_mask = tobinary.point(lambda x: 0 if x < 1 else 1, '1')\n if self.train:\n channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, \n 0.224, 0.225])\n chance = random.random()\n angle = range(-5, 6)\n n_angles = len(angle)\n for i in range(n_angles * 4):\n if i / (n_angles * 4) <= chance < (1 + i) / (n_angles * 4):\n input_transform, target_transform = RotateFlipFlip(angle\n [i % n_angles], i // n_angles, i // n_angles % 2)\n images = input_transform(images)\n targets_mask = target_transform(targets_mask)\n else:\n if self.input_transform:\n images = self.input_transform(images)\n if self.target_transform:\n targets_mask = self.target_transform(targets_mask)\n return images, targets_mask\n", "<import token>\n<function token>\n\n\nclass MaskToTensor(object):\n\n def __call__(self, img):\n return torch.from_numpy(np.array(img, dtype=np.int32)).long()\n\n\ndef RotateFlip(angle, flip):\n channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])\n train_transformation = transforms.Compose([transforms.RandomRotation(\n degrees=(angle, angle)), transforms.RandomHorizontalFlip(p=flip),\n transforms.Resize(256), transforms.ToTensor(), transforms.Normalize\n (**channel_stats)])\n target_transformation = transforms.Compose([transforms.RandomRotation(\n degrees=(angle, angle)), transforms.RandomHorizontalFlip(p=flip),\n transforms.Resize(256), transforms.ToTensor()])\n return train_transformation, target_transformation\n\n\ndef RotateFlipFlip(angle, hflip, vflip):\n channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])\n train_transformation = transforms.Compose([transforms.RandomRotation(\n degrees=(angle, angle)), transforms.RandomHorizontalFlip(p=hflip),\n transforms.RandomVerticalFlip(p=vflip), transforms.Resize(256),\n transforms.ToTensor()])\n target_transformation = transforms.Compose([transforms.RandomRotation(\n degrees=(angle, angle)), transforms.RandomHorizontalFlip(p=hflip),\n transforms.RandomVerticalFlip(p=vflip), transforms.Resize(256),\n transforms.ToTensor()])\n return train_transformation, target_transformation\n\n\n<function token>\n\n\n@export\ndef imagenet():\n channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])\n train_transformation = data.TransformTwice(transforms.Compose([\n transforms.RandomRotation(10), transforms.RandomResizedCrop(224),\n transforms.RandomHorizontalFlip(), transforms.ColorJitter(\n brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1), transforms.\n ToTensor(), transforms.Normalize(**channel_stats)]))\n eval_transformation = transforms.Compose([transforms.Resize(256),\n transforms.CenterCrop(224), transforms.ToTensor(), transforms.\n Normalize(**channel_stats)])\n return {'train_transformation': train_transformation,\n 'eval_transformation': eval_transformation}\n\n\n@export\ndef cifar10():\n channel_stats = dict(mean=[0.4914, 0.4822, 0.4465], std=[0.247, 0.2435,\n 0.2616])\n train_transformation = data.TransformTwice(transforms.Compose([data.\n RandomTranslateWithReflect(4), transforms.RandomHorizontalFlip(),\n transforms.ToTensor(), transforms.Normalize(**channel_stats)]))\n eval_transformation = transforms.Compose([transforms.ToTensor(),\n transforms.Normalize(**channel_stats)])\n return {'train_transformation': train_transformation,\n 'eval_transformation': eval_transformation, 'datadir':\n 'data-local/images/cifar/cifar10/by-image', 'num_classes': 10}\n\n\nclass ChestXRayDataset(Dataset):\n \"\"\" CXR8 dataset.\"\"\"\n\n def __init__(self, csv_file, root_dir, transform=None):\n \"\"\"\n Args:\n csv_file (string): Path to the csv file with annotations.\n root_dir (string): Directory with all the images.\n transform (callable, optional): Optional transform to be applied\n on a sample.\n \"\"\"\n self.root_dir = root_dir\n self.transform = transform\n df = pd.read_csv(csv_file)\n classes = df.columns[3:].values.tolist()\n self.class_to_idx = {classes[i]: i for i in range(len(classes))}\n self.idx_to_class = dict(enumerate(classes))\n self.classes = classes\n samples = []\n for idx in range(len(df)):\n path = df.iloc[idx]['image_path']\n target = df.iloc[idx, 3:].as_matrix().astype('float32')\n item = path, target\n samples.append(item)\n assert len(samples) == len(df)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n path, target = self.samples[index]\n img_name = os.path.join(self.root_dir, path)\n image = io.imread(img_name)\n if len(image.shape) == 3:\n image = image[:, :, 0]\n h, w = image.shape\n c = 3\n images = np.zeros((h, w, c), dtype=np.uint8)\n for i in range(c):\n images[:, :, i] = image\n assert images.shape == (1024, 1024, 3)\n images = Image.fromarray(images)\n if self.transform:\n images = self.transform(images)\n labels = torch.from_numpy(target)\n return images, labels\n\n\nclass IVCdataset(Dataset):\n\n def __init__(self, csv_file, path, transform=None):\n \"\"\"\n csv_file = csv where first column = image filenames and second column = classification\n path = directory to all iamges\n \"\"\"\n self.path = path\n self.transform = transform\n df = pd.read_csv(csv_file, header=None)\n classes = df.iloc[:, 1].values.tolist()\n self.class_to_idx = {classes[i]: i for i in range(len(classes))}\n self.idx_to_class = dict(enumerate(classes))\n self.classes = classes\n print('> dataset size: ', df.shape[0])\n samples = []\n for i in range(len(df)):\n name = df.iloc[i, 0]\n target = df.iloc[i, 1].astype('int_')\n item = name, target\n samples.append(item)\n assert len(samples) == len(df)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n path, target = self.samples[index]\n img_name = os.path.join(self.path, path)\n with warnings.catch_warnings():\n warnings.simplefilter('ignore')\n image = io.imread(img_name)\n if len(image.shape) == 3:\n image = image[:, :, 0]\n image = image.astype('float32')\n h, w = image.shape\n c = 3\n images = np.zeros((h, w, c), dtype=np.uint8)\n for i in range(c):\n images[:, :, i] = image\n images = Image.fromarray(images)\n if self.transform:\n images = self.transform(images)\n labels = torch.from_numpy(np.array([target]))\n return images, labels\n\n\ndef loadImages(image, basedir):\n if len(image.shape) == 3:\n image = image[:, :, 0]\n image = image.astype('float32')\n h, w = image.shape\n c = 3\n images = np.zeros((h, w, c), dtype=np.uint8)\n for i in range(c):\n images[:, :, i] = image\n images = Image.fromarray(images)\n return images\n\n\nclass Ventricles(Dataset):\n\n def __init__(self, csv_file, path_raw, path_segs, input_transform=None,\n target_transform=None, train=False):\n self.path_raw = path_raw\n self.path_segs = path_segs\n self.input_transform = input_transform\n self.target_transform = target_transform\n self.train = train\n df = pd.read_csv(csv_file, header=None)\n samples = []\n for i in range(len(df)):\n name = df.iloc[i, 0]\n target = df.iloc[i, 1]\n image_name = os.path.join(path_raw, name)\n target_name = os.path.join(path_segs, target)\n image_ni = nibabel.load(image_name).get_data()\n target_ni = nibabel.load(target_name).get_data()\n slices = image_ni.shape[2]\n lower = slices / 4\n upper = slices / 4 * 3\n for i in range(slices):\n name = image_ni[:, :, i]\n target = target_ni[:, :, i]\n item = name, target\n samples.append(item)\n if train and lower < i < upper:\n for _ in range(3):\n samples.append(item)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n image, target = self.samples[index]\n images = loadImages(image, self.path_raw)\n targets = loadImages(target, self.path_segs)\n tobinary = targets.convert('L')\n targets_mask = tobinary.point(lambda x: 0 if x < 1 else 1, '1')\n if self.train:\n channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, \n 0.224, 0.225])\n chance = random.random()\n angle = range(-5, 6)\n n_angles = len(angle)\n for i in range(n_angles * 4):\n if i / (n_angles * 4) <= chance < (1 + i) / (n_angles * 4):\n input_transform, target_transform = RotateFlipFlip(angle\n [i % n_angles], i // n_angles, i // n_angles % 2)\n images = input_transform(images)\n targets_mask = target_transform(targets_mask)\n else:\n if self.input_transform:\n images = self.input_transform(images)\n if self.target_transform:\n targets_mask = self.target_transform(targets_mask)\n return images, targets_mask\n", "<import token>\n<function token>\n\n\nclass MaskToTensor(object):\n\n def __call__(self, img):\n return torch.from_numpy(np.array(img, dtype=np.int32)).long()\n\n\ndef RotateFlip(angle, flip):\n channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])\n train_transformation = transforms.Compose([transforms.RandomRotation(\n degrees=(angle, angle)), transforms.RandomHorizontalFlip(p=flip),\n transforms.Resize(256), transforms.ToTensor(), transforms.Normalize\n (**channel_stats)])\n target_transformation = transforms.Compose([transforms.RandomRotation(\n degrees=(angle, angle)), transforms.RandomHorizontalFlip(p=flip),\n transforms.Resize(256), transforms.ToTensor()])\n return train_transformation, target_transformation\n\n\ndef RotateFlipFlip(angle, hflip, vflip):\n channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])\n train_transformation = transforms.Compose([transforms.RandomRotation(\n degrees=(angle, angle)), transforms.RandomHorizontalFlip(p=hflip),\n transforms.RandomVerticalFlip(p=vflip), transforms.Resize(256),\n transforms.ToTensor()])\n target_transformation = transforms.Compose([transforms.RandomRotation(\n degrees=(angle, angle)), transforms.RandomHorizontalFlip(p=hflip),\n transforms.RandomVerticalFlip(p=vflip), transforms.Resize(256),\n transforms.ToTensor()])\n return train_transformation, target_transformation\n\n\n<function token>\n\n\n@export\ndef imagenet():\n channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])\n train_transformation = data.TransformTwice(transforms.Compose([\n transforms.RandomRotation(10), transforms.RandomResizedCrop(224),\n transforms.RandomHorizontalFlip(), transforms.ColorJitter(\n brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1), transforms.\n ToTensor(), transforms.Normalize(**channel_stats)]))\n eval_transformation = transforms.Compose([transforms.Resize(256),\n transforms.CenterCrop(224), transforms.ToTensor(), transforms.\n Normalize(**channel_stats)])\n return {'train_transformation': train_transformation,\n 'eval_transformation': eval_transformation}\n\n\n@export\ndef cifar10():\n channel_stats = dict(mean=[0.4914, 0.4822, 0.4465], std=[0.247, 0.2435,\n 0.2616])\n train_transformation = data.TransformTwice(transforms.Compose([data.\n RandomTranslateWithReflect(4), transforms.RandomHorizontalFlip(),\n transforms.ToTensor(), transforms.Normalize(**channel_stats)]))\n eval_transformation = transforms.Compose([transforms.ToTensor(),\n transforms.Normalize(**channel_stats)])\n return {'train_transformation': train_transformation,\n 'eval_transformation': eval_transformation, 'datadir':\n 'data-local/images/cifar/cifar10/by-image', 'num_classes': 10}\n\n\nclass ChestXRayDataset(Dataset):\n \"\"\" CXR8 dataset.\"\"\"\n\n def __init__(self, csv_file, root_dir, transform=None):\n \"\"\"\n Args:\n csv_file (string): Path to the csv file with annotations.\n root_dir (string): Directory with all the images.\n transform (callable, optional): Optional transform to be applied\n on a sample.\n \"\"\"\n self.root_dir = root_dir\n self.transform = transform\n df = pd.read_csv(csv_file)\n classes = df.columns[3:].values.tolist()\n self.class_to_idx = {classes[i]: i for i in range(len(classes))}\n self.idx_to_class = dict(enumerate(classes))\n self.classes = classes\n samples = []\n for idx in range(len(df)):\n path = df.iloc[idx]['image_path']\n target = df.iloc[idx, 3:].as_matrix().astype('float32')\n item = path, target\n samples.append(item)\n assert len(samples) == len(df)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n path, target = self.samples[index]\n img_name = os.path.join(self.root_dir, path)\n image = io.imread(img_name)\n if len(image.shape) == 3:\n image = image[:, :, 0]\n h, w = image.shape\n c = 3\n images = np.zeros((h, w, c), dtype=np.uint8)\n for i in range(c):\n images[:, :, i] = image\n assert images.shape == (1024, 1024, 3)\n images = Image.fromarray(images)\n if self.transform:\n images = self.transform(images)\n labels = torch.from_numpy(target)\n return images, labels\n\n\nclass IVCdataset(Dataset):\n\n def __init__(self, csv_file, path, transform=None):\n \"\"\"\n csv_file = csv where first column = image filenames and second column = classification\n path = directory to all iamges\n \"\"\"\n self.path = path\n self.transform = transform\n df = pd.read_csv(csv_file, header=None)\n classes = df.iloc[:, 1].values.tolist()\n self.class_to_idx = {classes[i]: i for i in range(len(classes))}\n self.idx_to_class = dict(enumerate(classes))\n self.classes = classes\n print('> dataset size: ', df.shape[0])\n samples = []\n for i in range(len(df)):\n name = df.iloc[i, 0]\n target = df.iloc[i, 1].astype('int_')\n item = name, target\n samples.append(item)\n assert len(samples) == len(df)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n path, target = self.samples[index]\n img_name = os.path.join(self.path, path)\n with warnings.catch_warnings():\n warnings.simplefilter('ignore')\n image = io.imread(img_name)\n if len(image.shape) == 3:\n image = image[:, :, 0]\n image = image.astype('float32')\n h, w = image.shape\n c = 3\n images = np.zeros((h, w, c), dtype=np.uint8)\n for i in range(c):\n images[:, :, i] = image\n images = Image.fromarray(images)\n if self.transform:\n images = self.transform(images)\n labels = torch.from_numpy(np.array([target]))\n return images, labels\n\n\n<function token>\n\n\nclass Ventricles(Dataset):\n\n def __init__(self, csv_file, path_raw, path_segs, input_transform=None,\n target_transform=None, train=False):\n self.path_raw = path_raw\n self.path_segs = path_segs\n self.input_transform = input_transform\n self.target_transform = target_transform\n self.train = train\n df = pd.read_csv(csv_file, header=None)\n samples = []\n for i in range(len(df)):\n name = df.iloc[i, 0]\n target = df.iloc[i, 1]\n image_name = os.path.join(path_raw, name)\n target_name = os.path.join(path_segs, target)\n image_ni = nibabel.load(image_name).get_data()\n target_ni = nibabel.load(target_name).get_data()\n slices = image_ni.shape[2]\n lower = slices / 4\n upper = slices / 4 * 3\n for i in range(slices):\n name = image_ni[:, :, i]\n target = target_ni[:, :, i]\n item = name, target\n samples.append(item)\n if train and lower < i < upper:\n for _ in range(3):\n samples.append(item)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n image, target = self.samples[index]\n images = loadImages(image, self.path_raw)\n targets = loadImages(target, self.path_segs)\n tobinary = targets.convert('L')\n targets_mask = tobinary.point(lambda x: 0 if x < 1 else 1, '1')\n if self.train:\n channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, \n 0.224, 0.225])\n chance = random.random()\n angle = range(-5, 6)\n n_angles = len(angle)\n for i in range(n_angles * 4):\n if i / (n_angles * 4) <= chance < (1 + i) / (n_angles * 4):\n input_transform, target_transform = RotateFlipFlip(angle\n [i % n_angles], i // n_angles, i // n_angles % 2)\n images = input_transform(images)\n targets_mask = target_transform(targets_mask)\n else:\n if self.input_transform:\n images = self.input_transform(images)\n if self.target_transform:\n targets_mask = self.target_transform(targets_mask)\n return images, targets_mask\n", "<import token>\n<function token>\n\n\nclass MaskToTensor(object):\n\n def __call__(self, img):\n return torch.from_numpy(np.array(img, dtype=np.int32)).long()\n\n\ndef RotateFlip(angle, flip):\n channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])\n train_transformation = transforms.Compose([transforms.RandomRotation(\n degrees=(angle, angle)), transforms.RandomHorizontalFlip(p=flip),\n transforms.Resize(256), transforms.ToTensor(), transforms.Normalize\n (**channel_stats)])\n target_transformation = transforms.Compose([transforms.RandomRotation(\n degrees=(angle, angle)), transforms.RandomHorizontalFlip(p=flip),\n transforms.Resize(256), transforms.ToTensor()])\n return train_transformation, target_transformation\n\n\ndef RotateFlipFlip(angle, hflip, vflip):\n channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])\n train_transformation = transforms.Compose([transforms.RandomRotation(\n degrees=(angle, angle)), transforms.RandomHorizontalFlip(p=hflip),\n transforms.RandomVerticalFlip(p=vflip), transforms.Resize(256),\n transforms.ToTensor()])\n target_transformation = transforms.Compose([transforms.RandomRotation(\n degrees=(angle, angle)), transforms.RandomHorizontalFlip(p=hflip),\n transforms.RandomVerticalFlip(p=vflip), transforms.Resize(256),\n transforms.ToTensor()])\n return train_transformation, target_transformation\n\n\n<function token>\n\n\n@export\ndef imagenet():\n channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])\n train_transformation = data.TransformTwice(transforms.Compose([\n transforms.RandomRotation(10), transforms.RandomResizedCrop(224),\n transforms.RandomHorizontalFlip(), transforms.ColorJitter(\n brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1), transforms.\n ToTensor(), transforms.Normalize(**channel_stats)]))\n eval_transformation = transforms.Compose([transforms.Resize(256),\n transforms.CenterCrop(224), transforms.ToTensor(), transforms.\n Normalize(**channel_stats)])\n return {'train_transformation': train_transformation,\n 'eval_transformation': eval_transformation}\n\n\n<function token>\n\n\nclass ChestXRayDataset(Dataset):\n \"\"\" CXR8 dataset.\"\"\"\n\n def __init__(self, csv_file, root_dir, transform=None):\n \"\"\"\n Args:\n csv_file (string): Path to the csv file with annotations.\n root_dir (string): Directory with all the images.\n transform (callable, optional): Optional transform to be applied\n on a sample.\n \"\"\"\n self.root_dir = root_dir\n self.transform = transform\n df = pd.read_csv(csv_file)\n classes = df.columns[3:].values.tolist()\n self.class_to_idx = {classes[i]: i for i in range(len(classes))}\n self.idx_to_class = dict(enumerate(classes))\n self.classes = classes\n samples = []\n for idx in range(len(df)):\n path = df.iloc[idx]['image_path']\n target = df.iloc[idx, 3:].as_matrix().astype('float32')\n item = path, target\n samples.append(item)\n assert len(samples) == len(df)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n path, target = self.samples[index]\n img_name = os.path.join(self.root_dir, path)\n image = io.imread(img_name)\n if len(image.shape) == 3:\n image = image[:, :, 0]\n h, w = image.shape\n c = 3\n images = np.zeros((h, w, c), dtype=np.uint8)\n for i in range(c):\n images[:, :, i] = image\n assert images.shape == (1024, 1024, 3)\n images = Image.fromarray(images)\n if self.transform:\n images = self.transform(images)\n labels = torch.from_numpy(target)\n return images, labels\n\n\nclass IVCdataset(Dataset):\n\n def __init__(self, csv_file, path, transform=None):\n \"\"\"\n csv_file = csv where first column = image filenames and second column = classification\n path = directory to all iamges\n \"\"\"\n self.path = path\n self.transform = transform\n df = pd.read_csv(csv_file, header=None)\n classes = df.iloc[:, 1].values.tolist()\n self.class_to_idx = {classes[i]: i for i in range(len(classes))}\n self.idx_to_class = dict(enumerate(classes))\n self.classes = classes\n print('> dataset size: ', df.shape[0])\n samples = []\n for i in range(len(df)):\n name = df.iloc[i, 0]\n target = df.iloc[i, 1].astype('int_')\n item = name, target\n samples.append(item)\n assert len(samples) == len(df)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n path, target = self.samples[index]\n img_name = os.path.join(self.path, path)\n with warnings.catch_warnings():\n warnings.simplefilter('ignore')\n image = io.imread(img_name)\n if len(image.shape) == 3:\n image = image[:, :, 0]\n image = image.astype('float32')\n h, w = image.shape\n c = 3\n images = np.zeros((h, w, c), dtype=np.uint8)\n for i in range(c):\n images[:, :, i] = image\n images = Image.fromarray(images)\n if self.transform:\n images = self.transform(images)\n labels = torch.from_numpy(np.array([target]))\n return images, labels\n\n\n<function token>\n\n\nclass Ventricles(Dataset):\n\n def __init__(self, csv_file, path_raw, path_segs, input_transform=None,\n target_transform=None, train=False):\n self.path_raw = path_raw\n self.path_segs = path_segs\n self.input_transform = input_transform\n self.target_transform = target_transform\n self.train = train\n df = pd.read_csv(csv_file, header=None)\n samples = []\n for i in range(len(df)):\n name = df.iloc[i, 0]\n target = df.iloc[i, 1]\n image_name = os.path.join(path_raw, name)\n target_name = os.path.join(path_segs, target)\n image_ni = nibabel.load(image_name).get_data()\n target_ni = nibabel.load(target_name).get_data()\n slices = image_ni.shape[2]\n lower = slices / 4\n upper = slices / 4 * 3\n for i in range(slices):\n name = image_ni[:, :, i]\n target = target_ni[:, :, i]\n item = name, target\n samples.append(item)\n if train and lower < i < upper:\n for _ in range(3):\n samples.append(item)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n image, target = self.samples[index]\n images = loadImages(image, self.path_raw)\n targets = loadImages(target, self.path_segs)\n tobinary = targets.convert('L')\n targets_mask = tobinary.point(lambda x: 0 if x < 1 else 1, '1')\n if self.train:\n channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, \n 0.224, 0.225])\n chance = random.random()\n angle = range(-5, 6)\n n_angles = len(angle)\n for i in range(n_angles * 4):\n if i / (n_angles * 4) <= chance < (1 + i) / (n_angles * 4):\n input_transform, target_transform = RotateFlipFlip(angle\n [i % n_angles], i // n_angles, i // n_angles % 2)\n images = input_transform(images)\n targets_mask = target_transform(targets_mask)\n else:\n if self.input_transform:\n images = self.input_transform(images)\n if self.target_transform:\n targets_mask = self.target_transform(targets_mask)\n return images, targets_mask\n", "<import token>\n<function token>\n\n\nclass MaskToTensor(object):\n\n def __call__(self, img):\n return torch.from_numpy(np.array(img, dtype=np.int32)).long()\n\n\ndef RotateFlip(angle, flip):\n channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])\n train_transformation = transforms.Compose([transforms.RandomRotation(\n degrees=(angle, angle)), transforms.RandomHorizontalFlip(p=flip),\n transforms.Resize(256), transforms.ToTensor(), transforms.Normalize\n (**channel_stats)])\n target_transformation = transforms.Compose([transforms.RandomRotation(\n degrees=(angle, angle)), transforms.RandomHorizontalFlip(p=flip),\n transforms.Resize(256), transforms.ToTensor()])\n return train_transformation, target_transformation\n\n\ndef RotateFlipFlip(angle, hflip, vflip):\n channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])\n train_transformation = transforms.Compose([transforms.RandomRotation(\n degrees=(angle, angle)), transforms.RandomHorizontalFlip(p=hflip),\n transforms.RandomVerticalFlip(p=vflip), transforms.Resize(256),\n transforms.ToTensor()])\n target_transformation = transforms.Compose([transforms.RandomRotation(\n degrees=(angle, angle)), transforms.RandomHorizontalFlip(p=hflip),\n transforms.RandomVerticalFlip(p=vflip), transforms.Resize(256),\n transforms.ToTensor()])\n return train_transformation, target_transformation\n\n\n<function token>\n<function token>\n<function token>\n\n\nclass ChestXRayDataset(Dataset):\n \"\"\" CXR8 dataset.\"\"\"\n\n def __init__(self, csv_file, root_dir, transform=None):\n \"\"\"\n Args:\n csv_file (string): Path to the csv file with annotations.\n root_dir (string): Directory with all the images.\n transform (callable, optional): Optional transform to be applied\n on a sample.\n \"\"\"\n self.root_dir = root_dir\n self.transform = transform\n df = pd.read_csv(csv_file)\n classes = df.columns[3:].values.tolist()\n self.class_to_idx = {classes[i]: i for i in range(len(classes))}\n self.idx_to_class = dict(enumerate(classes))\n self.classes = classes\n samples = []\n for idx in range(len(df)):\n path = df.iloc[idx]['image_path']\n target = df.iloc[idx, 3:].as_matrix().astype('float32')\n item = path, target\n samples.append(item)\n assert len(samples) == len(df)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n path, target = self.samples[index]\n img_name = os.path.join(self.root_dir, path)\n image = io.imread(img_name)\n if len(image.shape) == 3:\n image = image[:, :, 0]\n h, w = image.shape\n c = 3\n images = np.zeros((h, w, c), dtype=np.uint8)\n for i in range(c):\n images[:, :, i] = image\n assert images.shape == (1024, 1024, 3)\n images = Image.fromarray(images)\n if self.transform:\n images = self.transform(images)\n labels = torch.from_numpy(target)\n return images, labels\n\n\nclass IVCdataset(Dataset):\n\n def __init__(self, csv_file, path, transform=None):\n \"\"\"\n csv_file = csv where first column = image filenames and second column = classification\n path = directory to all iamges\n \"\"\"\n self.path = path\n self.transform = transform\n df = pd.read_csv(csv_file, header=None)\n classes = df.iloc[:, 1].values.tolist()\n self.class_to_idx = {classes[i]: i for i in range(len(classes))}\n self.idx_to_class = dict(enumerate(classes))\n self.classes = classes\n print('> dataset size: ', df.shape[0])\n samples = []\n for i in range(len(df)):\n name = df.iloc[i, 0]\n target = df.iloc[i, 1].astype('int_')\n item = name, target\n samples.append(item)\n assert len(samples) == len(df)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n path, target = self.samples[index]\n img_name = os.path.join(self.path, path)\n with warnings.catch_warnings():\n warnings.simplefilter('ignore')\n image = io.imread(img_name)\n if len(image.shape) == 3:\n image = image[:, :, 0]\n image = image.astype('float32')\n h, w = image.shape\n c = 3\n images = np.zeros((h, w, c), dtype=np.uint8)\n for i in range(c):\n images[:, :, i] = image\n images = Image.fromarray(images)\n if self.transform:\n images = self.transform(images)\n labels = torch.from_numpy(np.array([target]))\n return images, labels\n\n\n<function token>\n\n\nclass Ventricles(Dataset):\n\n def __init__(self, csv_file, path_raw, path_segs, input_transform=None,\n target_transform=None, train=False):\n self.path_raw = path_raw\n self.path_segs = path_segs\n self.input_transform = input_transform\n self.target_transform = target_transform\n self.train = train\n df = pd.read_csv(csv_file, header=None)\n samples = []\n for i in range(len(df)):\n name = df.iloc[i, 0]\n target = df.iloc[i, 1]\n image_name = os.path.join(path_raw, name)\n target_name = os.path.join(path_segs, target)\n image_ni = nibabel.load(image_name).get_data()\n target_ni = nibabel.load(target_name).get_data()\n slices = image_ni.shape[2]\n lower = slices / 4\n upper = slices / 4 * 3\n for i in range(slices):\n name = image_ni[:, :, i]\n target = target_ni[:, :, i]\n item = name, target\n samples.append(item)\n if train and lower < i < upper:\n for _ in range(3):\n samples.append(item)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n image, target = self.samples[index]\n images = loadImages(image, self.path_raw)\n targets = loadImages(target, self.path_segs)\n tobinary = targets.convert('L')\n targets_mask = tobinary.point(lambda x: 0 if x < 1 else 1, '1')\n if self.train:\n channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, \n 0.224, 0.225])\n chance = random.random()\n angle = range(-5, 6)\n n_angles = len(angle)\n for i in range(n_angles * 4):\n if i / (n_angles * 4) <= chance < (1 + i) / (n_angles * 4):\n input_transform, target_transform = RotateFlipFlip(angle\n [i % n_angles], i // n_angles, i // n_angles % 2)\n images = input_transform(images)\n targets_mask = target_transform(targets_mask)\n else:\n if self.input_transform:\n images = self.input_transform(images)\n if self.target_transform:\n targets_mask = self.target_transform(targets_mask)\n return images, targets_mask\n", "<import token>\n<function token>\n\n\nclass MaskToTensor(object):\n\n def __call__(self, img):\n return torch.from_numpy(np.array(img, dtype=np.int32)).long()\n\n\ndef RotateFlip(angle, flip):\n channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])\n train_transformation = transforms.Compose([transforms.RandomRotation(\n degrees=(angle, angle)), transforms.RandomHorizontalFlip(p=flip),\n transforms.Resize(256), transforms.ToTensor(), transforms.Normalize\n (**channel_stats)])\n target_transformation = transforms.Compose([transforms.RandomRotation(\n degrees=(angle, angle)), transforms.RandomHorizontalFlip(p=flip),\n transforms.Resize(256), transforms.ToTensor()])\n return train_transformation, target_transformation\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\nclass ChestXRayDataset(Dataset):\n \"\"\" CXR8 dataset.\"\"\"\n\n def __init__(self, csv_file, root_dir, transform=None):\n \"\"\"\n Args:\n csv_file (string): Path to the csv file with annotations.\n root_dir (string): Directory with all the images.\n transform (callable, optional): Optional transform to be applied\n on a sample.\n \"\"\"\n self.root_dir = root_dir\n self.transform = transform\n df = pd.read_csv(csv_file)\n classes = df.columns[3:].values.tolist()\n self.class_to_idx = {classes[i]: i for i in range(len(classes))}\n self.idx_to_class = dict(enumerate(classes))\n self.classes = classes\n samples = []\n for idx in range(len(df)):\n path = df.iloc[idx]['image_path']\n target = df.iloc[idx, 3:].as_matrix().astype('float32')\n item = path, target\n samples.append(item)\n assert len(samples) == len(df)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n path, target = self.samples[index]\n img_name = os.path.join(self.root_dir, path)\n image = io.imread(img_name)\n if len(image.shape) == 3:\n image = image[:, :, 0]\n h, w = image.shape\n c = 3\n images = np.zeros((h, w, c), dtype=np.uint8)\n for i in range(c):\n images[:, :, i] = image\n assert images.shape == (1024, 1024, 3)\n images = Image.fromarray(images)\n if self.transform:\n images = self.transform(images)\n labels = torch.from_numpy(target)\n return images, labels\n\n\nclass IVCdataset(Dataset):\n\n def __init__(self, csv_file, path, transform=None):\n \"\"\"\n csv_file = csv where first column = image filenames and second column = classification\n path = directory to all iamges\n \"\"\"\n self.path = path\n self.transform = transform\n df = pd.read_csv(csv_file, header=None)\n classes = df.iloc[:, 1].values.tolist()\n self.class_to_idx = {classes[i]: i for i in range(len(classes))}\n self.idx_to_class = dict(enumerate(classes))\n self.classes = classes\n print('> dataset size: ', df.shape[0])\n samples = []\n for i in range(len(df)):\n name = df.iloc[i, 0]\n target = df.iloc[i, 1].astype('int_')\n item = name, target\n samples.append(item)\n assert len(samples) == len(df)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n path, target = self.samples[index]\n img_name = os.path.join(self.path, path)\n with warnings.catch_warnings():\n warnings.simplefilter('ignore')\n image = io.imread(img_name)\n if len(image.shape) == 3:\n image = image[:, :, 0]\n image = image.astype('float32')\n h, w = image.shape\n c = 3\n images = np.zeros((h, w, c), dtype=np.uint8)\n for i in range(c):\n images[:, :, i] = image\n images = Image.fromarray(images)\n if self.transform:\n images = self.transform(images)\n labels = torch.from_numpy(np.array([target]))\n return images, labels\n\n\n<function token>\n\n\nclass Ventricles(Dataset):\n\n def __init__(self, csv_file, path_raw, path_segs, input_transform=None,\n target_transform=None, train=False):\n self.path_raw = path_raw\n self.path_segs = path_segs\n self.input_transform = input_transform\n self.target_transform = target_transform\n self.train = train\n df = pd.read_csv(csv_file, header=None)\n samples = []\n for i in range(len(df)):\n name = df.iloc[i, 0]\n target = df.iloc[i, 1]\n image_name = os.path.join(path_raw, name)\n target_name = os.path.join(path_segs, target)\n image_ni = nibabel.load(image_name).get_data()\n target_ni = nibabel.load(target_name).get_data()\n slices = image_ni.shape[2]\n lower = slices / 4\n upper = slices / 4 * 3\n for i in range(slices):\n name = image_ni[:, :, i]\n target = target_ni[:, :, i]\n item = name, target\n samples.append(item)\n if train and lower < i < upper:\n for _ in range(3):\n samples.append(item)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n image, target = self.samples[index]\n images = loadImages(image, self.path_raw)\n targets = loadImages(target, self.path_segs)\n tobinary = targets.convert('L')\n targets_mask = tobinary.point(lambda x: 0 if x < 1 else 1, '1')\n if self.train:\n channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, \n 0.224, 0.225])\n chance = random.random()\n angle = range(-5, 6)\n n_angles = len(angle)\n for i in range(n_angles * 4):\n if i / (n_angles * 4) <= chance < (1 + i) / (n_angles * 4):\n input_transform, target_transform = RotateFlipFlip(angle\n [i % n_angles], i // n_angles, i // n_angles % 2)\n images = input_transform(images)\n targets_mask = target_transform(targets_mask)\n else:\n if self.input_transform:\n images = self.input_transform(images)\n if self.target_transform:\n targets_mask = self.target_transform(targets_mask)\n return images, targets_mask\n", "<import token>\n<function token>\n\n\nclass MaskToTensor(object):\n\n def __call__(self, img):\n return torch.from_numpy(np.array(img, dtype=np.int32)).long()\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\nclass ChestXRayDataset(Dataset):\n \"\"\" CXR8 dataset.\"\"\"\n\n def __init__(self, csv_file, root_dir, transform=None):\n \"\"\"\n Args:\n csv_file (string): Path to the csv file with annotations.\n root_dir (string): Directory with all the images.\n transform (callable, optional): Optional transform to be applied\n on a sample.\n \"\"\"\n self.root_dir = root_dir\n self.transform = transform\n df = pd.read_csv(csv_file)\n classes = df.columns[3:].values.tolist()\n self.class_to_idx = {classes[i]: i for i in range(len(classes))}\n self.idx_to_class = dict(enumerate(classes))\n self.classes = classes\n samples = []\n for idx in range(len(df)):\n path = df.iloc[idx]['image_path']\n target = df.iloc[idx, 3:].as_matrix().astype('float32')\n item = path, target\n samples.append(item)\n assert len(samples) == len(df)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n path, target = self.samples[index]\n img_name = os.path.join(self.root_dir, path)\n image = io.imread(img_name)\n if len(image.shape) == 3:\n image = image[:, :, 0]\n h, w = image.shape\n c = 3\n images = np.zeros((h, w, c), dtype=np.uint8)\n for i in range(c):\n images[:, :, i] = image\n assert images.shape == (1024, 1024, 3)\n images = Image.fromarray(images)\n if self.transform:\n images = self.transform(images)\n labels = torch.from_numpy(target)\n return images, labels\n\n\nclass IVCdataset(Dataset):\n\n def __init__(self, csv_file, path, transform=None):\n \"\"\"\n csv_file = csv where first column = image filenames and second column = classification\n path = directory to all iamges\n \"\"\"\n self.path = path\n self.transform = transform\n df = pd.read_csv(csv_file, header=None)\n classes = df.iloc[:, 1].values.tolist()\n self.class_to_idx = {classes[i]: i for i in range(len(classes))}\n self.idx_to_class = dict(enumerate(classes))\n self.classes = classes\n print('> dataset size: ', df.shape[0])\n samples = []\n for i in range(len(df)):\n name = df.iloc[i, 0]\n target = df.iloc[i, 1].astype('int_')\n item = name, target\n samples.append(item)\n assert len(samples) == len(df)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n path, target = self.samples[index]\n img_name = os.path.join(self.path, path)\n with warnings.catch_warnings():\n warnings.simplefilter('ignore')\n image = io.imread(img_name)\n if len(image.shape) == 3:\n image = image[:, :, 0]\n image = image.astype('float32')\n h, w = image.shape\n c = 3\n images = np.zeros((h, w, c), dtype=np.uint8)\n for i in range(c):\n images[:, :, i] = image\n images = Image.fromarray(images)\n if self.transform:\n images = self.transform(images)\n labels = torch.from_numpy(np.array([target]))\n return images, labels\n\n\n<function token>\n\n\nclass Ventricles(Dataset):\n\n def __init__(self, csv_file, path_raw, path_segs, input_transform=None,\n target_transform=None, train=False):\n self.path_raw = path_raw\n self.path_segs = path_segs\n self.input_transform = input_transform\n self.target_transform = target_transform\n self.train = train\n df = pd.read_csv(csv_file, header=None)\n samples = []\n for i in range(len(df)):\n name = df.iloc[i, 0]\n target = df.iloc[i, 1]\n image_name = os.path.join(path_raw, name)\n target_name = os.path.join(path_segs, target)\n image_ni = nibabel.load(image_name).get_data()\n target_ni = nibabel.load(target_name).get_data()\n slices = image_ni.shape[2]\n lower = slices / 4\n upper = slices / 4 * 3\n for i in range(slices):\n name = image_ni[:, :, i]\n target = target_ni[:, :, i]\n item = name, target\n samples.append(item)\n if train and lower < i < upper:\n for _ in range(3):\n samples.append(item)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n image, target = self.samples[index]\n images = loadImages(image, self.path_raw)\n targets = loadImages(target, self.path_segs)\n tobinary = targets.convert('L')\n targets_mask = tobinary.point(lambda x: 0 if x < 1 else 1, '1')\n if self.train:\n channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, \n 0.224, 0.225])\n chance = random.random()\n angle = range(-5, 6)\n n_angles = len(angle)\n for i in range(n_angles * 4):\n if i / (n_angles * 4) <= chance < (1 + i) / (n_angles * 4):\n input_transform, target_transform = RotateFlipFlip(angle\n [i % n_angles], i // n_angles, i // n_angles % 2)\n images = input_transform(images)\n targets_mask = target_transform(targets_mask)\n else:\n if self.input_transform:\n images = self.input_transform(images)\n if self.target_transform:\n targets_mask = self.target_transform(targets_mask)\n return images, targets_mask\n", "<import token>\n<function token>\n\n\nclass MaskToTensor(object):\n <function token>\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\nclass ChestXRayDataset(Dataset):\n \"\"\" CXR8 dataset.\"\"\"\n\n def __init__(self, csv_file, root_dir, transform=None):\n \"\"\"\n Args:\n csv_file (string): Path to the csv file with annotations.\n root_dir (string): Directory with all the images.\n transform (callable, optional): Optional transform to be applied\n on a sample.\n \"\"\"\n self.root_dir = root_dir\n self.transform = transform\n df = pd.read_csv(csv_file)\n classes = df.columns[3:].values.tolist()\n self.class_to_idx = {classes[i]: i for i in range(len(classes))}\n self.idx_to_class = dict(enumerate(classes))\n self.classes = classes\n samples = []\n for idx in range(len(df)):\n path = df.iloc[idx]['image_path']\n target = df.iloc[idx, 3:].as_matrix().astype('float32')\n item = path, target\n samples.append(item)\n assert len(samples) == len(df)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n path, target = self.samples[index]\n img_name = os.path.join(self.root_dir, path)\n image = io.imread(img_name)\n if len(image.shape) == 3:\n image = image[:, :, 0]\n h, w = image.shape\n c = 3\n images = np.zeros((h, w, c), dtype=np.uint8)\n for i in range(c):\n images[:, :, i] = image\n assert images.shape == (1024, 1024, 3)\n images = Image.fromarray(images)\n if self.transform:\n images = self.transform(images)\n labels = torch.from_numpy(target)\n return images, labels\n\n\nclass IVCdataset(Dataset):\n\n def __init__(self, csv_file, path, transform=None):\n \"\"\"\n csv_file = csv where first column = image filenames and second column = classification\n path = directory to all iamges\n \"\"\"\n self.path = path\n self.transform = transform\n df = pd.read_csv(csv_file, header=None)\n classes = df.iloc[:, 1].values.tolist()\n self.class_to_idx = {classes[i]: i for i in range(len(classes))}\n self.idx_to_class = dict(enumerate(classes))\n self.classes = classes\n print('> dataset size: ', df.shape[0])\n samples = []\n for i in range(len(df)):\n name = df.iloc[i, 0]\n target = df.iloc[i, 1].astype('int_')\n item = name, target\n samples.append(item)\n assert len(samples) == len(df)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n path, target = self.samples[index]\n img_name = os.path.join(self.path, path)\n with warnings.catch_warnings():\n warnings.simplefilter('ignore')\n image = io.imread(img_name)\n if len(image.shape) == 3:\n image = image[:, :, 0]\n image = image.astype('float32')\n h, w = image.shape\n c = 3\n images = np.zeros((h, w, c), dtype=np.uint8)\n for i in range(c):\n images[:, :, i] = image\n images = Image.fromarray(images)\n if self.transform:\n images = self.transform(images)\n labels = torch.from_numpy(np.array([target]))\n return images, labels\n\n\n<function token>\n\n\nclass Ventricles(Dataset):\n\n def __init__(self, csv_file, path_raw, path_segs, input_transform=None,\n target_transform=None, train=False):\n self.path_raw = path_raw\n self.path_segs = path_segs\n self.input_transform = input_transform\n self.target_transform = target_transform\n self.train = train\n df = pd.read_csv(csv_file, header=None)\n samples = []\n for i in range(len(df)):\n name = df.iloc[i, 0]\n target = df.iloc[i, 1]\n image_name = os.path.join(path_raw, name)\n target_name = os.path.join(path_segs, target)\n image_ni = nibabel.load(image_name).get_data()\n target_ni = nibabel.load(target_name).get_data()\n slices = image_ni.shape[2]\n lower = slices / 4\n upper = slices / 4 * 3\n for i in range(slices):\n name = image_ni[:, :, i]\n target = target_ni[:, :, i]\n item = name, target\n samples.append(item)\n if train and lower < i < upper:\n for _ in range(3):\n samples.append(item)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n image, target = self.samples[index]\n images = loadImages(image, self.path_raw)\n targets = loadImages(target, self.path_segs)\n tobinary = targets.convert('L')\n targets_mask = tobinary.point(lambda x: 0 if x < 1 else 1, '1')\n if self.train:\n channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, \n 0.224, 0.225])\n chance = random.random()\n angle = range(-5, 6)\n n_angles = len(angle)\n for i in range(n_angles * 4):\n if i / (n_angles * 4) <= chance < (1 + i) / (n_angles * 4):\n input_transform, target_transform = RotateFlipFlip(angle\n [i % n_angles], i // n_angles, i // n_angles % 2)\n images = input_transform(images)\n targets_mask = target_transform(targets_mask)\n else:\n if self.input_transform:\n images = self.input_transform(images)\n if self.target_transform:\n targets_mask = self.target_transform(targets_mask)\n return images, targets_mask\n", "<import token>\n<function token>\n<class token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\nclass ChestXRayDataset(Dataset):\n \"\"\" CXR8 dataset.\"\"\"\n\n def __init__(self, csv_file, root_dir, transform=None):\n \"\"\"\n Args:\n csv_file (string): Path to the csv file with annotations.\n root_dir (string): Directory with all the images.\n transform (callable, optional): Optional transform to be applied\n on a sample.\n \"\"\"\n self.root_dir = root_dir\n self.transform = transform\n df = pd.read_csv(csv_file)\n classes = df.columns[3:].values.tolist()\n self.class_to_idx = {classes[i]: i for i in range(len(classes))}\n self.idx_to_class = dict(enumerate(classes))\n self.classes = classes\n samples = []\n for idx in range(len(df)):\n path = df.iloc[idx]['image_path']\n target = df.iloc[idx, 3:].as_matrix().astype('float32')\n item = path, target\n samples.append(item)\n assert len(samples) == len(df)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n path, target = self.samples[index]\n img_name = os.path.join(self.root_dir, path)\n image = io.imread(img_name)\n if len(image.shape) == 3:\n image = image[:, :, 0]\n h, w = image.shape\n c = 3\n images = np.zeros((h, w, c), dtype=np.uint8)\n for i in range(c):\n images[:, :, i] = image\n assert images.shape == (1024, 1024, 3)\n images = Image.fromarray(images)\n if self.transform:\n images = self.transform(images)\n labels = torch.from_numpy(target)\n return images, labels\n\n\nclass IVCdataset(Dataset):\n\n def __init__(self, csv_file, path, transform=None):\n \"\"\"\n csv_file = csv where first column = image filenames and second column = classification\n path = directory to all iamges\n \"\"\"\n self.path = path\n self.transform = transform\n df = pd.read_csv(csv_file, header=None)\n classes = df.iloc[:, 1].values.tolist()\n self.class_to_idx = {classes[i]: i for i in range(len(classes))}\n self.idx_to_class = dict(enumerate(classes))\n self.classes = classes\n print('> dataset size: ', df.shape[0])\n samples = []\n for i in range(len(df)):\n name = df.iloc[i, 0]\n target = df.iloc[i, 1].astype('int_')\n item = name, target\n samples.append(item)\n assert len(samples) == len(df)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n path, target = self.samples[index]\n img_name = os.path.join(self.path, path)\n with warnings.catch_warnings():\n warnings.simplefilter('ignore')\n image = io.imread(img_name)\n if len(image.shape) == 3:\n image = image[:, :, 0]\n image = image.astype('float32')\n h, w = image.shape\n c = 3\n images = np.zeros((h, w, c), dtype=np.uint8)\n for i in range(c):\n images[:, :, i] = image\n images = Image.fromarray(images)\n if self.transform:\n images = self.transform(images)\n labels = torch.from_numpy(np.array([target]))\n return images, labels\n\n\n<function token>\n\n\nclass Ventricles(Dataset):\n\n def __init__(self, csv_file, path_raw, path_segs, input_transform=None,\n target_transform=None, train=False):\n self.path_raw = path_raw\n self.path_segs = path_segs\n self.input_transform = input_transform\n self.target_transform = target_transform\n self.train = train\n df = pd.read_csv(csv_file, header=None)\n samples = []\n for i in range(len(df)):\n name = df.iloc[i, 0]\n target = df.iloc[i, 1]\n image_name = os.path.join(path_raw, name)\n target_name = os.path.join(path_segs, target)\n image_ni = nibabel.load(image_name).get_data()\n target_ni = nibabel.load(target_name).get_data()\n slices = image_ni.shape[2]\n lower = slices / 4\n upper = slices / 4 * 3\n for i in range(slices):\n name = image_ni[:, :, i]\n target = target_ni[:, :, i]\n item = name, target\n samples.append(item)\n if train and lower < i < upper:\n for _ in range(3):\n samples.append(item)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n image, target = self.samples[index]\n images = loadImages(image, self.path_raw)\n targets = loadImages(target, self.path_segs)\n tobinary = targets.convert('L')\n targets_mask = tobinary.point(lambda x: 0 if x < 1 else 1, '1')\n if self.train:\n channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, \n 0.224, 0.225])\n chance = random.random()\n angle = range(-5, 6)\n n_angles = len(angle)\n for i in range(n_angles * 4):\n if i / (n_angles * 4) <= chance < (1 + i) / (n_angles * 4):\n input_transform, target_transform = RotateFlipFlip(angle\n [i % n_angles], i // n_angles, i // n_angles % 2)\n images = input_transform(images)\n targets_mask = target_transform(targets_mask)\n else:\n if self.input_transform:\n images = self.input_transform(images)\n if self.target_transform:\n targets_mask = self.target_transform(targets_mask)\n return images, targets_mask\n", "<import token>\n<function token>\n<class token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\nclass ChestXRayDataset(Dataset):\n <docstring token>\n\n def __init__(self, csv_file, root_dir, transform=None):\n \"\"\"\n Args:\n csv_file (string): Path to the csv file with annotations.\n root_dir (string): Directory with all the images.\n transform (callable, optional): Optional transform to be applied\n on a sample.\n \"\"\"\n self.root_dir = root_dir\n self.transform = transform\n df = pd.read_csv(csv_file)\n classes = df.columns[3:].values.tolist()\n self.class_to_idx = {classes[i]: i for i in range(len(classes))}\n self.idx_to_class = dict(enumerate(classes))\n self.classes = classes\n samples = []\n for idx in range(len(df)):\n path = df.iloc[idx]['image_path']\n target = df.iloc[idx, 3:].as_matrix().astype('float32')\n item = path, target\n samples.append(item)\n assert len(samples) == len(df)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n path, target = self.samples[index]\n img_name = os.path.join(self.root_dir, path)\n image = io.imread(img_name)\n if len(image.shape) == 3:\n image = image[:, :, 0]\n h, w = image.shape\n c = 3\n images = np.zeros((h, w, c), dtype=np.uint8)\n for i in range(c):\n images[:, :, i] = image\n assert images.shape == (1024, 1024, 3)\n images = Image.fromarray(images)\n if self.transform:\n images = self.transform(images)\n labels = torch.from_numpy(target)\n return images, labels\n\n\nclass IVCdataset(Dataset):\n\n def __init__(self, csv_file, path, transform=None):\n \"\"\"\n csv_file = csv where first column = image filenames and second column = classification\n path = directory to all iamges\n \"\"\"\n self.path = path\n self.transform = transform\n df = pd.read_csv(csv_file, header=None)\n classes = df.iloc[:, 1].values.tolist()\n self.class_to_idx = {classes[i]: i for i in range(len(classes))}\n self.idx_to_class = dict(enumerate(classes))\n self.classes = classes\n print('> dataset size: ', df.shape[0])\n samples = []\n for i in range(len(df)):\n name = df.iloc[i, 0]\n target = df.iloc[i, 1].astype('int_')\n item = name, target\n samples.append(item)\n assert len(samples) == len(df)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n path, target = self.samples[index]\n img_name = os.path.join(self.path, path)\n with warnings.catch_warnings():\n warnings.simplefilter('ignore')\n image = io.imread(img_name)\n if len(image.shape) == 3:\n image = image[:, :, 0]\n image = image.astype('float32')\n h, w = image.shape\n c = 3\n images = np.zeros((h, w, c), dtype=np.uint8)\n for i in range(c):\n images[:, :, i] = image\n images = Image.fromarray(images)\n if self.transform:\n images = self.transform(images)\n labels = torch.from_numpy(np.array([target]))\n return images, labels\n\n\n<function token>\n\n\nclass Ventricles(Dataset):\n\n def __init__(self, csv_file, path_raw, path_segs, input_transform=None,\n target_transform=None, train=False):\n self.path_raw = path_raw\n self.path_segs = path_segs\n self.input_transform = input_transform\n self.target_transform = target_transform\n self.train = train\n df = pd.read_csv(csv_file, header=None)\n samples = []\n for i in range(len(df)):\n name = df.iloc[i, 0]\n target = df.iloc[i, 1]\n image_name = os.path.join(path_raw, name)\n target_name = os.path.join(path_segs, target)\n image_ni = nibabel.load(image_name).get_data()\n target_ni = nibabel.load(target_name).get_data()\n slices = image_ni.shape[2]\n lower = slices / 4\n upper = slices / 4 * 3\n for i in range(slices):\n name = image_ni[:, :, i]\n target = target_ni[:, :, i]\n item = name, target\n samples.append(item)\n if train and lower < i < upper:\n for _ in range(3):\n samples.append(item)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n image, target = self.samples[index]\n images = loadImages(image, self.path_raw)\n targets = loadImages(target, self.path_segs)\n tobinary = targets.convert('L')\n targets_mask = tobinary.point(lambda x: 0 if x < 1 else 1, '1')\n if self.train:\n channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, \n 0.224, 0.225])\n chance = random.random()\n angle = range(-5, 6)\n n_angles = len(angle)\n for i in range(n_angles * 4):\n if i / (n_angles * 4) <= chance < (1 + i) / (n_angles * 4):\n input_transform, target_transform = RotateFlipFlip(angle\n [i % n_angles], i // n_angles, i // n_angles % 2)\n images = input_transform(images)\n targets_mask = target_transform(targets_mask)\n else:\n if self.input_transform:\n images = self.input_transform(images)\n if self.target_transform:\n targets_mask = self.target_transform(targets_mask)\n return images, targets_mask\n", "<import token>\n<function token>\n<class token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\nclass ChestXRayDataset(Dataset):\n <docstring token>\n\n def __init__(self, csv_file, root_dir, transform=None):\n \"\"\"\n Args:\n csv_file (string): Path to the csv file with annotations.\n root_dir (string): Directory with all the images.\n transform (callable, optional): Optional transform to be applied\n on a sample.\n \"\"\"\n self.root_dir = root_dir\n self.transform = transform\n df = pd.read_csv(csv_file)\n classes = df.columns[3:].values.tolist()\n self.class_to_idx = {classes[i]: i for i in range(len(classes))}\n self.idx_to_class = dict(enumerate(classes))\n self.classes = classes\n samples = []\n for idx in range(len(df)):\n path = df.iloc[idx]['image_path']\n target = df.iloc[idx, 3:].as_matrix().astype('float32')\n item = path, target\n samples.append(item)\n assert len(samples) == len(df)\n self.samples = samples\n <function token>\n\n def __getitem__(self, index):\n path, target = self.samples[index]\n img_name = os.path.join(self.root_dir, path)\n image = io.imread(img_name)\n if len(image.shape) == 3:\n image = image[:, :, 0]\n h, w = image.shape\n c = 3\n images = np.zeros((h, w, c), dtype=np.uint8)\n for i in range(c):\n images[:, :, i] = image\n assert images.shape == (1024, 1024, 3)\n images = Image.fromarray(images)\n if self.transform:\n images = self.transform(images)\n labels = torch.from_numpy(target)\n return images, labels\n\n\nclass IVCdataset(Dataset):\n\n def __init__(self, csv_file, path, transform=None):\n \"\"\"\n csv_file = csv where first column = image filenames and second column = classification\n path = directory to all iamges\n \"\"\"\n self.path = path\n self.transform = transform\n df = pd.read_csv(csv_file, header=None)\n classes = df.iloc[:, 1].values.tolist()\n self.class_to_idx = {classes[i]: i for i in range(len(classes))}\n self.idx_to_class = dict(enumerate(classes))\n self.classes = classes\n print('> dataset size: ', df.shape[0])\n samples = []\n for i in range(len(df)):\n name = df.iloc[i, 0]\n target = df.iloc[i, 1].astype('int_')\n item = name, target\n samples.append(item)\n assert len(samples) == len(df)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n path, target = self.samples[index]\n img_name = os.path.join(self.path, path)\n with warnings.catch_warnings():\n warnings.simplefilter('ignore')\n image = io.imread(img_name)\n if len(image.shape) == 3:\n image = image[:, :, 0]\n image = image.astype('float32')\n h, w = image.shape\n c = 3\n images = np.zeros((h, w, c), dtype=np.uint8)\n for i in range(c):\n images[:, :, i] = image\n images = Image.fromarray(images)\n if self.transform:\n images = self.transform(images)\n labels = torch.from_numpy(np.array([target]))\n return images, labels\n\n\n<function token>\n\n\nclass Ventricles(Dataset):\n\n def __init__(self, csv_file, path_raw, path_segs, input_transform=None,\n target_transform=None, train=False):\n self.path_raw = path_raw\n self.path_segs = path_segs\n self.input_transform = input_transform\n self.target_transform = target_transform\n self.train = train\n df = pd.read_csv(csv_file, header=None)\n samples = []\n for i in range(len(df)):\n name = df.iloc[i, 0]\n target = df.iloc[i, 1]\n image_name = os.path.join(path_raw, name)\n target_name = os.path.join(path_segs, target)\n image_ni = nibabel.load(image_name).get_data()\n target_ni = nibabel.load(target_name).get_data()\n slices = image_ni.shape[2]\n lower = slices / 4\n upper = slices / 4 * 3\n for i in range(slices):\n name = image_ni[:, :, i]\n target = target_ni[:, :, i]\n item = name, target\n samples.append(item)\n if train and lower < i < upper:\n for _ in range(3):\n samples.append(item)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n image, target = self.samples[index]\n images = loadImages(image, self.path_raw)\n targets = loadImages(target, self.path_segs)\n tobinary = targets.convert('L')\n targets_mask = tobinary.point(lambda x: 0 if x < 1 else 1, '1')\n if self.train:\n channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, \n 0.224, 0.225])\n chance = random.random()\n angle = range(-5, 6)\n n_angles = len(angle)\n for i in range(n_angles * 4):\n if i / (n_angles * 4) <= chance < (1 + i) / (n_angles * 4):\n input_transform, target_transform = RotateFlipFlip(angle\n [i % n_angles], i // n_angles, i // n_angles % 2)\n images = input_transform(images)\n targets_mask = target_transform(targets_mask)\n else:\n if self.input_transform:\n images = self.input_transform(images)\n if self.target_transform:\n targets_mask = self.target_transform(targets_mask)\n return images, targets_mask\n", "<import token>\n<function token>\n<class token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\nclass ChestXRayDataset(Dataset):\n <docstring token>\n <function token>\n <function token>\n\n def __getitem__(self, index):\n path, target = self.samples[index]\n img_name = os.path.join(self.root_dir, path)\n image = io.imread(img_name)\n if len(image.shape) == 3:\n image = image[:, :, 0]\n h, w = image.shape\n c = 3\n images = np.zeros((h, w, c), dtype=np.uint8)\n for i in range(c):\n images[:, :, i] = image\n assert images.shape == (1024, 1024, 3)\n images = Image.fromarray(images)\n if self.transform:\n images = self.transform(images)\n labels = torch.from_numpy(target)\n return images, labels\n\n\nclass IVCdataset(Dataset):\n\n def __init__(self, csv_file, path, transform=None):\n \"\"\"\n csv_file = csv where first column = image filenames and second column = classification\n path = directory to all iamges\n \"\"\"\n self.path = path\n self.transform = transform\n df = pd.read_csv(csv_file, header=None)\n classes = df.iloc[:, 1].values.tolist()\n self.class_to_idx = {classes[i]: i for i in range(len(classes))}\n self.idx_to_class = dict(enumerate(classes))\n self.classes = classes\n print('> dataset size: ', df.shape[0])\n samples = []\n for i in range(len(df)):\n name = df.iloc[i, 0]\n target = df.iloc[i, 1].astype('int_')\n item = name, target\n samples.append(item)\n assert len(samples) == len(df)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n path, target = self.samples[index]\n img_name = os.path.join(self.path, path)\n with warnings.catch_warnings():\n warnings.simplefilter('ignore')\n image = io.imread(img_name)\n if len(image.shape) == 3:\n image = image[:, :, 0]\n image = image.astype('float32')\n h, w = image.shape\n c = 3\n images = np.zeros((h, w, c), dtype=np.uint8)\n for i in range(c):\n images[:, :, i] = image\n images = Image.fromarray(images)\n if self.transform:\n images = self.transform(images)\n labels = torch.from_numpy(np.array([target]))\n return images, labels\n\n\n<function token>\n\n\nclass Ventricles(Dataset):\n\n def __init__(self, csv_file, path_raw, path_segs, input_transform=None,\n target_transform=None, train=False):\n self.path_raw = path_raw\n self.path_segs = path_segs\n self.input_transform = input_transform\n self.target_transform = target_transform\n self.train = train\n df = pd.read_csv(csv_file, header=None)\n samples = []\n for i in range(len(df)):\n name = df.iloc[i, 0]\n target = df.iloc[i, 1]\n image_name = os.path.join(path_raw, name)\n target_name = os.path.join(path_segs, target)\n image_ni = nibabel.load(image_name).get_data()\n target_ni = nibabel.load(target_name).get_data()\n slices = image_ni.shape[2]\n lower = slices / 4\n upper = slices / 4 * 3\n for i in range(slices):\n name = image_ni[:, :, i]\n target = target_ni[:, :, i]\n item = name, target\n samples.append(item)\n if train and lower < i < upper:\n for _ in range(3):\n samples.append(item)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n image, target = self.samples[index]\n images = loadImages(image, self.path_raw)\n targets = loadImages(target, self.path_segs)\n tobinary = targets.convert('L')\n targets_mask = tobinary.point(lambda x: 0 if x < 1 else 1, '1')\n if self.train:\n channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, \n 0.224, 0.225])\n chance = random.random()\n angle = range(-5, 6)\n n_angles = len(angle)\n for i in range(n_angles * 4):\n if i / (n_angles * 4) <= chance < (1 + i) / (n_angles * 4):\n input_transform, target_transform = RotateFlipFlip(angle\n [i % n_angles], i // n_angles, i // n_angles % 2)\n images = input_transform(images)\n targets_mask = target_transform(targets_mask)\n else:\n if self.input_transform:\n images = self.input_transform(images)\n if self.target_transform:\n targets_mask = self.target_transform(targets_mask)\n return images, targets_mask\n", "<import token>\n<function token>\n<class token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\nclass ChestXRayDataset(Dataset):\n <docstring token>\n <function token>\n <function token>\n <function token>\n\n\nclass IVCdataset(Dataset):\n\n def __init__(self, csv_file, path, transform=None):\n \"\"\"\n csv_file = csv where first column = image filenames and second column = classification\n path = directory to all iamges\n \"\"\"\n self.path = path\n self.transform = transform\n df = pd.read_csv(csv_file, header=None)\n classes = df.iloc[:, 1].values.tolist()\n self.class_to_idx = {classes[i]: i for i in range(len(classes))}\n self.idx_to_class = dict(enumerate(classes))\n self.classes = classes\n print('> dataset size: ', df.shape[0])\n samples = []\n for i in range(len(df)):\n name = df.iloc[i, 0]\n target = df.iloc[i, 1].astype('int_')\n item = name, target\n samples.append(item)\n assert len(samples) == len(df)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n path, target = self.samples[index]\n img_name = os.path.join(self.path, path)\n with warnings.catch_warnings():\n warnings.simplefilter('ignore')\n image = io.imread(img_name)\n if len(image.shape) == 3:\n image = image[:, :, 0]\n image = image.astype('float32')\n h, w = image.shape\n c = 3\n images = np.zeros((h, w, c), dtype=np.uint8)\n for i in range(c):\n images[:, :, i] = image\n images = Image.fromarray(images)\n if self.transform:\n images = self.transform(images)\n labels = torch.from_numpy(np.array([target]))\n return images, labels\n\n\n<function token>\n\n\nclass Ventricles(Dataset):\n\n def __init__(self, csv_file, path_raw, path_segs, input_transform=None,\n target_transform=None, train=False):\n self.path_raw = path_raw\n self.path_segs = path_segs\n self.input_transform = input_transform\n self.target_transform = target_transform\n self.train = train\n df = pd.read_csv(csv_file, header=None)\n samples = []\n for i in range(len(df)):\n name = df.iloc[i, 0]\n target = df.iloc[i, 1]\n image_name = os.path.join(path_raw, name)\n target_name = os.path.join(path_segs, target)\n image_ni = nibabel.load(image_name).get_data()\n target_ni = nibabel.load(target_name).get_data()\n slices = image_ni.shape[2]\n lower = slices / 4\n upper = slices / 4 * 3\n for i in range(slices):\n name = image_ni[:, :, i]\n target = target_ni[:, :, i]\n item = name, target\n samples.append(item)\n if train and lower < i < upper:\n for _ in range(3):\n samples.append(item)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n image, target = self.samples[index]\n images = loadImages(image, self.path_raw)\n targets = loadImages(target, self.path_segs)\n tobinary = targets.convert('L')\n targets_mask = tobinary.point(lambda x: 0 if x < 1 else 1, '1')\n if self.train:\n channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, \n 0.224, 0.225])\n chance = random.random()\n angle = range(-5, 6)\n n_angles = len(angle)\n for i in range(n_angles * 4):\n if i / (n_angles * 4) <= chance < (1 + i) / (n_angles * 4):\n input_transform, target_transform = RotateFlipFlip(angle\n [i % n_angles], i // n_angles, i // n_angles % 2)\n images = input_transform(images)\n targets_mask = target_transform(targets_mask)\n else:\n if self.input_transform:\n images = self.input_transform(images)\n if self.target_transform:\n targets_mask = self.target_transform(targets_mask)\n return images, targets_mask\n", "<import token>\n<function token>\n<class token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<class token>\n\n\nclass IVCdataset(Dataset):\n\n def __init__(self, csv_file, path, transform=None):\n \"\"\"\n csv_file = csv where first column = image filenames and second column = classification\n path = directory to all iamges\n \"\"\"\n self.path = path\n self.transform = transform\n df = pd.read_csv(csv_file, header=None)\n classes = df.iloc[:, 1].values.tolist()\n self.class_to_idx = {classes[i]: i for i in range(len(classes))}\n self.idx_to_class = dict(enumerate(classes))\n self.classes = classes\n print('> dataset size: ', df.shape[0])\n samples = []\n for i in range(len(df)):\n name = df.iloc[i, 0]\n target = df.iloc[i, 1].astype('int_')\n item = name, target\n samples.append(item)\n assert len(samples) == len(df)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n path, target = self.samples[index]\n img_name = os.path.join(self.path, path)\n with warnings.catch_warnings():\n warnings.simplefilter('ignore')\n image = io.imread(img_name)\n if len(image.shape) == 3:\n image = image[:, :, 0]\n image = image.astype('float32')\n h, w = image.shape\n c = 3\n images = np.zeros((h, w, c), dtype=np.uint8)\n for i in range(c):\n images[:, :, i] = image\n images = Image.fromarray(images)\n if self.transform:\n images = self.transform(images)\n labels = torch.from_numpy(np.array([target]))\n return images, labels\n\n\n<function token>\n\n\nclass Ventricles(Dataset):\n\n def __init__(self, csv_file, path_raw, path_segs, input_transform=None,\n target_transform=None, train=False):\n self.path_raw = path_raw\n self.path_segs = path_segs\n self.input_transform = input_transform\n self.target_transform = target_transform\n self.train = train\n df = pd.read_csv(csv_file, header=None)\n samples = []\n for i in range(len(df)):\n name = df.iloc[i, 0]\n target = df.iloc[i, 1]\n image_name = os.path.join(path_raw, name)\n target_name = os.path.join(path_segs, target)\n image_ni = nibabel.load(image_name).get_data()\n target_ni = nibabel.load(target_name).get_data()\n slices = image_ni.shape[2]\n lower = slices / 4\n upper = slices / 4 * 3\n for i in range(slices):\n name = image_ni[:, :, i]\n target = target_ni[:, :, i]\n item = name, target\n samples.append(item)\n if train and lower < i < upper:\n for _ in range(3):\n samples.append(item)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n image, target = self.samples[index]\n images = loadImages(image, self.path_raw)\n targets = loadImages(target, self.path_segs)\n tobinary = targets.convert('L')\n targets_mask = tobinary.point(lambda x: 0 if x < 1 else 1, '1')\n if self.train:\n channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, \n 0.224, 0.225])\n chance = random.random()\n angle = range(-5, 6)\n n_angles = len(angle)\n for i in range(n_angles * 4):\n if i / (n_angles * 4) <= chance < (1 + i) / (n_angles * 4):\n input_transform, target_transform = RotateFlipFlip(angle\n [i % n_angles], i // n_angles, i // n_angles % 2)\n images = input_transform(images)\n targets_mask = target_transform(targets_mask)\n else:\n if self.input_transform:\n images = self.input_transform(images)\n if self.target_transform:\n targets_mask = self.target_transform(targets_mask)\n return images, targets_mask\n", "<import token>\n<function token>\n<class token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<class token>\n\n\nclass IVCdataset(Dataset):\n\n def __init__(self, csv_file, path, transform=None):\n \"\"\"\n csv_file = csv where first column = image filenames and second column = classification\n path = directory to all iamges\n \"\"\"\n self.path = path\n self.transform = transform\n df = pd.read_csv(csv_file, header=None)\n classes = df.iloc[:, 1].values.tolist()\n self.class_to_idx = {classes[i]: i for i in range(len(classes))}\n self.idx_to_class = dict(enumerate(classes))\n self.classes = classes\n print('> dataset size: ', df.shape[0])\n samples = []\n for i in range(len(df)):\n name = df.iloc[i, 0]\n target = df.iloc[i, 1].astype('int_')\n item = name, target\n samples.append(item)\n assert len(samples) == len(df)\n self.samples = samples\n <function token>\n\n def __getitem__(self, index):\n path, target = self.samples[index]\n img_name = os.path.join(self.path, path)\n with warnings.catch_warnings():\n warnings.simplefilter('ignore')\n image = io.imread(img_name)\n if len(image.shape) == 3:\n image = image[:, :, 0]\n image = image.astype('float32')\n h, w = image.shape\n c = 3\n images = np.zeros((h, w, c), dtype=np.uint8)\n for i in range(c):\n images[:, :, i] = image\n images = Image.fromarray(images)\n if self.transform:\n images = self.transform(images)\n labels = torch.from_numpy(np.array([target]))\n return images, labels\n\n\n<function token>\n\n\nclass Ventricles(Dataset):\n\n def __init__(self, csv_file, path_raw, path_segs, input_transform=None,\n target_transform=None, train=False):\n self.path_raw = path_raw\n self.path_segs = path_segs\n self.input_transform = input_transform\n self.target_transform = target_transform\n self.train = train\n df = pd.read_csv(csv_file, header=None)\n samples = []\n for i in range(len(df)):\n name = df.iloc[i, 0]\n target = df.iloc[i, 1]\n image_name = os.path.join(path_raw, name)\n target_name = os.path.join(path_segs, target)\n image_ni = nibabel.load(image_name).get_data()\n target_ni = nibabel.load(target_name).get_data()\n slices = image_ni.shape[2]\n lower = slices / 4\n upper = slices / 4 * 3\n for i in range(slices):\n name = image_ni[:, :, i]\n target = target_ni[:, :, i]\n item = name, target\n samples.append(item)\n if train and lower < i < upper:\n for _ in range(3):\n samples.append(item)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n image, target = self.samples[index]\n images = loadImages(image, self.path_raw)\n targets = loadImages(target, self.path_segs)\n tobinary = targets.convert('L')\n targets_mask = tobinary.point(lambda x: 0 if x < 1 else 1, '1')\n if self.train:\n channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, \n 0.224, 0.225])\n chance = random.random()\n angle = range(-5, 6)\n n_angles = len(angle)\n for i in range(n_angles * 4):\n if i / (n_angles * 4) <= chance < (1 + i) / (n_angles * 4):\n input_transform, target_transform = RotateFlipFlip(angle\n [i % n_angles], i // n_angles, i // n_angles % 2)\n images = input_transform(images)\n targets_mask = target_transform(targets_mask)\n else:\n if self.input_transform:\n images = self.input_transform(images)\n if self.target_transform:\n targets_mask = self.target_transform(targets_mask)\n return images, targets_mask\n", "<import token>\n<function token>\n<class token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<class token>\n\n\nclass IVCdataset(Dataset):\n <function token>\n <function token>\n\n def __getitem__(self, index):\n path, target = self.samples[index]\n img_name = os.path.join(self.path, path)\n with warnings.catch_warnings():\n warnings.simplefilter('ignore')\n image = io.imread(img_name)\n if len(image.shape) == 3:\n image = image[:, :, 0]\n image = image.astype('float32')\n h, w = image.shape\n c = 3\n images = np.zeros((h, w, c), dtype=np.uint8)\n for i in range(c):\n images[:, :, i] = image\n images = Image.fromarray(images)\n if self.transform:\n images = self.transform(images)\n labels = torch.from_numpy(np.array([target]))\n return images, labels\n\n\n<function token>\n\n\nclass Ventricles(Dataset):\n\n def __init__(self, csv_file, path_raw, path_segs, input_transform=None,\n target_transform=None, train=False):\n self.path_raw = path_raw\n self.path_segs = path_segs\n self.input_transform = input_transform\n self.target_transform = target_transform\n self.train = train\n df = pd.read_csv(csv_file, header=None)\n samples = []\n for i in range(len(df)):\n name = df.iloc[i, 0]\n target = df.iloc[i, 1]\n image_name = os.path.join(path_raw, name)\n target_name = os.path.join(path_segs, target)\n image_ni = nibabel.load(image_name).get_data()\n target_ni = nibabel.load(target_name).get_data()\n slices = image_ni.shape[2]\n lower = slices / 4\n upper = slices / 4 * 3\n for i in range(slices):\n name = image_ni[:, :, i]\n target = target_ni[:, :, i]\n item = name, target\n samples.append(item)\n if train and lower < i < upper:\n for _ in range(3):\n samples.append(item)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n image, target = self.samples[index]\n images = loadImages(image, self.path_raw)\n targets = loadImages(target, self.path_segs)\n tobinary = targets.convert('L')\n targets_mask = tobinary.point(lambda x: 0 if x < 1 else 1, '1')\n if self.train:\n channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, \n 0.224, 0.225])\n chance = random.random()\n angle = range(-5, 6)\n n_angles = len(angle)\n for i in range(n_angles * 4):\n if i / (n_angles * 4) <= chance < (1 + i) / (n_angles * 4):\n input_transform, target_transform = RotateFlipFlip(angle\n [i % n_angles], i // n_angles, i // n_angles % 2)\n images = input_transform(images)\n targets_mask = target_transform(targets_mask)\n else:\n if self.input_transform:\n images = self.input_transform(images)\n if self.target_transform:\n targets_mask = self.target_transform(targets_mask)\n return images, targets_mask\n", "<import token>\n<function token>\n<class token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<class token>\n\n\nclass IVCdataset(Dataset):\n <function token>\n <function token>\n <function token>\n\n\n<function token>\n\n\nclass Ventricles(Dataset):\n\n def __init__(self, csv_file, path_raw, path_segs, input_transform=None,\n target_transform=None, train=False):\n self.path_raw = path_raw\n self.path_segs = path_segs\n self.input_transform = input_transform\n self.target_transform = target_transform\n self.train = train\n df = pd.read_csv(csv_file, header=None)\n samples = []\n for i in range(len(df)):\n name = df.iloc[i, 0]\n target = df.iloc[i, 1]\n image_name = os.path.join(path_raw, name)\n target_name = os.path.join(path_segs, target)\n image_ni = nibabel.load(image_name).get_data()\n target_ni = nibabel.load(target_name).get_data()\n slices = image_ni.shape[2]\n lower = slices / 4\n upper = slices / 4 * 3\n for i in range(slices):\n name = image_ni[:, :, i]\n target = target_ni[:, :, i]\n item = name, target\n samples.append(item)\n if train and lower < i < upper:\n for _ in range(3):\n samples.append(item)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n image, target = self.samples[index]\n images = loadImages(image, self.path_raw)\n targets = loadImages(target, self.path_segs)\n tobinary = targets.convert('L')\n targets_mask = tobinary.point(lambda x: 0 if x < 1 else 1, '1')\n if self.train:\n channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, \n 0.224, 0.225])\n chance = random.random()\n angle = range(-5, 6)\n n_angles = len(angle)\n for i in range(n_angles * 4):\n if i / (n_angles * 4) <= chance < (1 + i) / (n_angles * 4):\n input_transform, target_transform = RotateFlipFlip(angle\n [i % n_angles], i // n_angles, i // n_angles % 2)\n images = input_transform(images)\n targets_mask = target_transform(targets_mask)\n else:\n if self.input_transform:\n images = self.input_transform(images)\n if self.target_transform:\n targets_mask = self.target_transform(targets_mask)\n return images, targets_mask\n", "<import token>\n<function token>\n<class token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<function token>\n\n\nclass Ventricles(Dataset):\n\n def __init__(self, csv_file, path_raw, path_segs, input_transform=None,\n target_transform=None, train=False):\n self.path_raw = path_raw\n self.path_segs = path_segs\n self.input_transform = input_transform\n self.target_transform = target_transform\n self.train = train\n df = pd.read_csv(csv_file, header=None)\n samples = []\n for i in range(len(df)):\n name = df.iloc[i, 0]\n target = df.iloc[i, 1]\n image_name = os.path.join(path_raw, name)\n target_name = os.path.join(path_segs, target)\n image_ni = nibabel.load(image_name).get_data()\n target_ni = nibabel.load(target_name).get_data()\n slices = image_ni.shape[2]\n lower = slices / 4\n upper = slices / 4 * 3\n for i in range(slices):\n name = image_ni[:, :, i]\n target = target_ni[:, :, i]\n item = name, target\n samples.append(item)\n if train and lower < i < upper:\n for _ in range(3):\n samples.append(item)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n\n def __getitem__(self, index):\n image, target = self.samples[index]\n images = loadImages(image, self.path_raw)\n targets = loadImages(target, self.path_segs)\n tobinary = targets.convert('L')\n targets_mask = tobinary.point(lambda x: 0 if x < 1 else 1, '1')\n if self.train:\n channel_stats = dict(mean=[0.485, 0.456, 0.406], std=[0.229, \n 0.224, 0.225])\n chance = random.random()\n angle = range(-5, 6)\n n_angles = len(angle)\n for i in range(n_angles * 4):\n if i / (n_angles * 4) <= chance < (1 + i) / (n_angles * 4):\n input_transform, target_transform = RotateFlipFlip(angle\n [i % n_angles], i // n_angles, i // n_angles % 2)\n images = input_transform(images)\n targets_mask = target_transform(targets_mask)\n else:\n if self.input_transform:\n images = self.input_transform(images)\n if self.target_transform:\n targets_mask = self.target_transform(targets_mask)\n return images, targets_mask\n", "<import token>\n<function token>\n<class token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<function token>\n\n\nclass Ventricles(Dataset):\n\n def __init__(self, csv_file, path_raw, path_segs, input_transform=None,\n target_transform=None, train=False):\n self.path_raw = path_raw\n self.path_segs = path_segs\n self.input_transform = input_transform\n self.target_transform = target_transform\n self.train = train\n df = pd.read_csv(csv_file, header=None)\n samples = []\n for i in range(len(df)):\n name = df.iloc[i, 0]\n target = df.iloc[i, 1]\n image_name = os.path.join(path_raw, name)\n target_name = os.path.join(path_segs, target)\n image_ni = nibabel.load(image_name).get_data()\n target_ni = nibabel.load(target_name).get_data()\n slices = image_ni.shape[2]\n lower = slices / 4\n upper = slices / 4 * 3\n for i in range(slices):\n name = image_ni[:, :, i]\n target = target_ni[:, :, i]\n item = name, target\n samples.append(item)\n if train and lower < i < upper:\n for _ in range(3):\n samples.append(item)\n self.samples = samples\n\n def __len__(self):\n return len(self.samples)\n <function token>\n", "<import token>\n<function token>\n<class token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<function token>\n\n\nclass Ventricles(Dataset):\n\n def __init__(self, csv_file, path_raw, path_segs, input_transform=None,\n target_transform=None, train=False):\n self.path_raw = path_raw\n self.path_segs = path_segs\n self.input_transform = input_transform\n self.target_transform = target_transform\n self.train = train\n df = pd.read_csv(csv_file, header=None)\n samples = []\n for i in range(len(df)):\n name = df.iloc[i, 0]\n target = df.iloc[i, 1]\n image_name = os.path.join(path_raw, name)\n target_name = os.path.join(path_segs, target)\n image_ni = nibabel.load(image_name).get_data()\n target_ni = nibabel.load(target_name).get_data()\n slices = image_ni.shape[2]\n lower = slices / 4\n upper = slices / 4 * 3\n for i in range(slices):\n name = image_ni[:, :, i]\n target = target_ni[:, :, i]\n item = name, target\n samples.append(item)\n if train and lower < i < upper:\n for _ in range(3):\n samples.append(item)\n self.samples = samples\n <function token>\n <function token>\n", "<import token>\n<function token>\n<class token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<function token>\n\n\nclass Ventricles(Dataset):\n <function token>\n <function token>\n <function token>\n", "<import token>\n<function token>\n<class token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<function token>\n<class token>\n" ]
false
99,012
cc66565cd14316413fbb52da70a8478455625c2e
from django.db import models from django.contrib.auth.models import User class Product(models.Model): name = models.CharField(max_length=200) image = models.URLField() price = models.IntegerField() description = models.TextField() class Favorite(models.Model): user = models.ForeignKey(User) product = models.ForeignKey(Product) created = models.DateTimeField(auto_now_add=True) class Comment(models.Model): user = models.ForeignKey(User) product = models.ForeignKey(Product) content = models.TextField() created = models.DateTimeField(auto_now_add=True)
[ "from django.db import models\nfrom django.contrib.auth.models import User\n\nclass Product(models.Model):\n\tname = models.CharField(max_length=200)\n\timage = models.URLField()\n\tprice = models.IntegerField()\n\tdescription = models.TextField()\n\n\nclass Favorite(models.Model):\n\tuser = models.ForeignKey(User)\n\tproduct = models.ForeignKey(Product)\n\tcreated = models.DateTimeField(auto_now_add=True)\n\nclass Comment(models.Model):\n\tuser = models.ForeignKey(User)\n\tproduct = models.ForeignKey(Product)\n\tcontent = models.TextField()\n\tcreated = models.DateTimeField(auto_now_add=True)", "from django.db import models\nfrom django.contrib.auth.models import User\n\n\nclass Product(models.Model):\n name = models.CharField(max_length=200)\n image = models.URLField()\n price = models.IntegerField()\n description = models.TextField()\n\n\nclass Favorite(models.Model):\n user = models.ForeignKey(User)\n product = models.ForeignKey(Product)\n created = models.DateTimeField(auto_now_add=True)\n\n\nclass Comment(models.Model):\n user = models.ForeignKey(User)\n product = models.ForeignKey(Product)\n content = models.TextField()\n created = models.DateTimeField(auto_now_add=True)\n", "<import token>\n\n\nclass Product(models.Model):\n name = models.CharField(max_length=200)\n image = models.URLField()\n price = models.IntegerField()\n description = models.TextField()\n\n\nclass Favorite(models.Model):\n user = models.ForeignKey(User)\n product = models.ForeignKey(Product)\n created = models.DateTimeField(auto_now_add=True)\n\n\nclass Comment(models.Model):\n user = models.ForeignKey(User)\n product = models.ForeignKey(Product)\n content = models.TextField()\n created = models.DateTimeField(auto_now_add=True)\n", "<import token>\n\n\nclass Product(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n\nclass Favorite(models.Model):\n user = models.ForeignKey(User)\n product = models.ForeignKey(Product)\n created = models.DateTimeField(auto_now_add=True)\n\n\nclass Comment(models.Model):\n user = models.ForeignKey(User)\n product = models.ForeignKey(Product)\n content = models.TextField()\n created = models.DateTimeField(auto_now_add=True)\n", "<import token>\n<class token>\n\n\nclass Favorite(models.Model):\n user = models.ForeignKey(User)\n product = models.ForeignKey(Product)\n created = models.DateTimeField(auto_now_add=True)\n\n\nclass Comment(models.Model):\n user = models.ForeignKey(User)\n product = models.ForeignKey(Product)\n content = models.TextField()\n created = models.DateTimeField(auto_now_add=True)\n", "<import token>\n<class token>\n\n\nclass Favorite(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n\n\nclass Comment(models.Model):\n user = models.ForeignKey(User)\n product = models.ForeignKey(Product)\n content = models.TextField()\n created = models.DateTimeField(auto_now_add=True)\n", "<import token>\n<class token>\n<class token>\n\n\nclass Comment(models.Model):\n user = models.ForeignKey(User)\n product = models.ForeignKey(Product)\n content = models.TextField()\n created = models.DateTimeField(auto_now_add=True)\n", "<import token>\n<class token>\n<class token>\n\n\nclass Comment(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n", "<import token>\n<class token>\n<class token>\n<class token>\n" ]
false
99,013
5d227c1c1035966443f2e177d29b1ea8c93de5c5
#!/usr/bin/env python # coding = utf-8 # from socket import * import socketserver # from time import ctime from DongRuanAPI import * # import threading import queue # import multiprocessing # myque_senddata = queue.Queue(0) myque_ansdata = queue.Queue(0) def senddata(num): # while True: # # print ('muity thread num info %d' %num) # # time.sleep(3) # if not myque_senddata.empty(): # print("[*] %d thread start work....." % num) ''' case when ''' # data = myque_senddata.get() data = num switch_var = {} switch_var['XXCX'] = ['XXCX_SEND.xml', 'XXCX_ANS.xml'] switch_var['DNCX'] = ['DNCX_SEND.xml', 'DNCX_ANS.xml'] switch_var['DNHD'] = ['DNHD_SEND.xml', 'DNHD_ANS.xml'] switch_var['DNDZ'] = ['DNDZ_SEND.xml', 'DNDZ_ANS.xml'] try: s_data = DongRuanAPI(data, switch_var[data[0:4].decode('gbk')]) except Exception as e: s_data = e # myque_ansdata.put(s_data) return s_data class DongRuanTestSerivce(socketserver.BaseRequestHandler): print('[*] waiting for connection ......') def handle(self): # 处理请求信息 while True: addr = self.client_address print ('[*] connected from:' , addr) self.data = self.request.recv(1024) # print (self.data) if not self.data: break # myque_senddata.put(self.data) # s_data = myque_ansdata.get() s_data = senddata(self.data) self.request.sendall(s_data.encode('gbk')) print('[*] waiting for connection ......') if __name__ == '__main__': # 定义服务器配置 HOST = '192.168.1.58' PORT = 2424 BUFSIZ = 1024 ADDR = (HOST, PORT) # # 开启服务器, 持续监听 # tcpSersock = socket(AF_INET, SOCK_STREAM) # tcpSersock.bind(ADDR) # tcpSersock.listen(5) # for num in range(5): # # multiprocessing.Process(target=startrun.senddata).start() # threading.Thread(target= senddata, args=(num, )).start() # # threading.Thread(target=startrun.start).start() server = socketserver.ThreadingTCPServer(ADDR, DongRuanTestSerivce) server.serve_forever() # server = ForkingTCPServer(ADDR, DongRuanTestSerivce) # server_thread = threading.Thread(target=server.serve_forever) # server_thread.start() # startrun = DongRuanTestSerivce() # lock = multiprocessing.Lock() # 这个一定要定义为全局
[ "#!/usr/bin/env python\n# coding = utf-8\n\n# from socket import *\nimport socketserver\n# from time import ctime\nfrom DongRuanAPI import *\n\n# import threading\nimport queue\n# import multiprocessing\n# \nmyque_senddata = queue.Queue(0)\nmyque_ansdata = queue.Queue(0)\n\n\ndef senddata(num):\n # while True:\n # # print ('muity thread num info %d' %num)\n # # time.sleep(3)\n\n # if not myque_senddata.empty():\n\n # print(\"[*] %d thread start work.....\" % num)\n\n\n\n ''' case when '''\n # data = myque_senddata.get()\n data = num\n\n switch_var = {}\n switch_var['XXCX'] = ['XXCX_SEND.xml', 'XXCX_ANS.xml']\n switch_var['DNCX'] = ['DNCX_SEND.xml', 'DNCX_ANS.xml']\n switch_var['DNHD'] = ['DNHD_SEND.xml', 'DNHD_ANS.xml']\n switch_var['DNDZ'] = ['DNDZ_SEND.xml', 'DNDZ_ANS.xml']\n\n try:\n\n s_data = DongRuanAPI(data, switch_var[data[0:4].decode('gbk')])\n\n except Exception as e:\n s_data = e\n\n # myque_ansdata.put(s_data)\n\n return s_data\n\nclass DongRuanTestSerivce(socketserver.BaseRequestHandler):\n\n print('[*] waiting for connection ......')\n\n def handle(self):\n\n # 处理请求信息\n while True:\n\n addr = self.client_address\n print ('[*] connected from:' , addr)\n\n self.data = self.request.recv(1024)\n # print (self.data)\n\n if not self.data:\n break\n\n # myque_senddata.put(self.data)\n # s_data = myque_ansdata.get()\n s_data = senddata(self.data)\n\n self.request.sendall(s_data.encode('gbk'))\n print('[*] waiting for connection ......')\n\nif __name__ == '__main__':\n\n # 定义服务器配置\n HOST = '192.168.1.58'\n PORT = 2424\n BUFSIZ = 1024\n ADDR = (HOST, PORT)\n\n # # 开启服务器, 持续监听\n # tcpSersock = socket(AF_INET, SOCK_STREAM)\n # tcpSersock.bind(ADDR)\n # tcpSersock.listen(5)\n\n # for num in range(5):\n # # multiprocessing.Process(target=startrun.senddata).start()\n # threading.Thread(target= senddata, args=(num, )).start()\n # # threading.Thread(target=startrun.start).start()\n\n server = socketserver.ThreadingTCPServer(ADDR, DongRuanTestSerivce)\n server.serve_forever()\n\n # server = ForkingTCPServer(ADDR, DongRuanTestSerivce)\n # server_thread = threading.Thread(target=server.serve_forever)\n # server_thread.start()\n\n # startrun = DongRuanTestSerivce()\n # lock = multiprocessing.Lock() # 这个一定要定义为全局\n\n", "import socketserver\nfrom DongRuanAPI import *\nimport queue\nmyque_senddata = queue.Queue(0)\nmyque_ansdata = queue.Queue(0)\n\n\ndef senddata(num):\n \"\"\" case when \"\"\"\n data = num\n switch_var = {}\n switch_var['XXCX'] = ['XXCX_SEND.xml', 'XXCX_ANS.xml']\n switch_var['DNCX'] = ['DNCX_SEND.xml', 'DNCX_ANS.xml']\n switch_var['DNHD'] = ['DNHD_SEND.xml', 'DNHD_ANS.xml']\n switch_var['DNDZ'] = ['DNDZ_SEND.xml', 'DNDZ_ANS.xml']\n try:\n s_data = DongRuanAPI(data, switch_var[data[0:4].decode('gbk')])\n except Exception as e:\n s_data = e\n return s_data\n\n\nclass DongRuanTestSerivce(socketserver.BaseRequestHandler):\n print('[*] waiting for connection ......')\n\n def handle(self):\n while True:\n addr = self.client_address\n print('[*] connected from:', addr)\n self.data = self.request.recv(1024)\n if not self.data:\n break\n s_data = senddata(self.data)\n self.request.sendall(s_data.encode('gbk'))\n print('[*] waiting for connection ......')\n\n\nif __name__ == '__main__':\n HOST = '192.168.1.58'\n PORT = 2424\n BUFSIZ = 1024\n ADDR = HOST, PORT\n server = socketserver.ThreadingTCPServer(ADDR, DongRuanTestSerivce)\n server.serve_forever()\n", "<import token>\nmyque_senddata = queue.Queue(0)\nmyque_ansdata = queue.Queue(0)\n\n\ndef senddata(num):\n \"\"\" case when \"\"\"\n data = num\n switch_var = {}\n switch_var['XXCX'] = ['XXCX_SEND.xml', 'XXCX_ANS.xml']\n switch_var['DNCX'] = ['DNCX_SEND.xml', 'DNCX_ANS.xml']\n switch_var['DNHD'] = ['DNHD_SEND.xml', 'DNHD_ANS.xml']\n switch_var['DNDZ'] = ['DNDZ_SEND.xml', 'DNDZ_ANS.xml']\n try:\n s_data = DongRuanAPI(data, switch_var[data[0:4].decode('gbk')])\n except Exception as e:\n s_data = e\n return s_data\n\n\nclass DongRuanTestSerivce(socketserver.BaseRequestHandler):\n print('[*] waiting for connection ......')\n\n def handle(self):\n while True:\n addr = self.client_address\n print('[*] connected from:', addr)\n self.data = self.request.recv(1024)\n if not self.data:\n break\n s_data = senddata(self.data)\n self.request.sendall(s_data.encode('gbk'))\n print('[*] waiting for connection ......')\n\n\nif __name__ == '__main__':\n HOST = '192.168.1.58'\n PORT = 2424\n BUFSIZ = 1024\n ADDR = HOST, PORT\n server = socketserver.ThreadingTCPServer(ADDR, DongRuanTestSerivce)\n server.serve_forever()\n", "<import token>\n<assignment token>\n\n\ndef senddata(num):\n \"\"\" case when \"\"\"\n data = num\n switch_var = {}\n switch_var['XXCX'] = ['XXCX_SEND.xml', 'XXCX_ANS.xml']\n switch_var['DNCX'] = ['DNCX_SEND.xml', 'DNCX_ANS.xml']\n switch_var['DNHD'] = ['DNHD_SEND.xml', 'DNHD_ANS.xml']\n switch_var['DNDZ'] = ['DNDZ_SEND.xml', 'DNDZ_ANS.xml']\n try:\n s_data = DongRuanAPI(data, switch_var[data[0:4].decode('gbk')])\n except Exception as e:\n s_data = e\n return s_data\n\n\nclass DongRuanTestSerivce(socketserver.BaseRequestHandler):\n print('[*] waiting for connection ......')\n\n def handle(self):\n while True:\n addr = self.client_address\n print('[*] connected from:', addr)\n self.data = self.request.recv(1024)\n if not self.data:\n break\n s_data = senddata(self.data)\n self.request.sendall(s_data.encode('gbk'))\n print('[*] waiting for connection ......')\n\n\nif __name__ == '__main__':\n HOST = '192.168.1.58'\n PORT = 2424\n BUFSIZ = 1024\n ADDR = HOST, PORT\n server = socketserver.ThreadingTCPServer(ADDR, DongRuanTestSerivce)\n server.serve_forever()\n", "<import token>\n<assignment token>\n\n\ndef senddata(num):\n \"\"\" case when \"\"\"\n data = num\n switch_var = {}\n switch_var['XXCX'] = ['XXCX_SEND.xml', 'XXCX_ANS.xml']\n switch_var['DNCX'] = ['DNCX_SEND.xml', 'DNCX_ANS.xml']\n switch_var['DNHD'] = ['DNHD_SEND.xml', 'DNHD_ANS.xml']\n switch_var['DNDZ'] = ['DNDZ_SEND.xml', 'DNDZ_ANS.xml']\n try:\n s_data = DongRuanAPI(data, switch_var[data[0:4].decode('gbk')])\n except Exception as e:\n s_data = e\n return s_data\n\n\nclass DongRuanTestSerivce(socketserver.BaseRequestHandler):\n print('[*] waiting for connection ......')\n\n def handle(self):\n while True:\n addr = self.client_address\n print('[*] connected from:', addr)\n self.data = self.request.recv(1024)\n if not self.data:\n break\n s_data = senddata(self.data)\n self.request.sendall(s_data.encode('gbk'))\n print('[*] waiting for connection ......')\n\n\n<code token>\n", "<import token>\n<assignment token>\n<function token>\n\n\nclass DongRuanTestSerivce(socketserver.BaseRequestHandler):\n print('[*] waiting for connection ......')\n\n def handle(self):\n while True:\n addr = self.client_address\n print('[*] connected from:', addr)\n self.data = self.request.recv(1024)\n if not self.data:\n break\n s_data = senddata(self.data)\n self.request.sendall(s_data.encode('gbk'))\n print('[*] waiting for connection ......')\n\n\n<code token>\n", "<import token>\n<assignment token>\n<function token>\n\n\nclass DongRuanTestSerivce(socketserver.BaseRequestHandler):\n print('[*] waiting for connection ......')\n <function token>\n\n\n<code token>\n", "<import token>\n<assignment token>\n<function token>\n<class token>\n<code token>\n" ]
false
99,014
7e8c4e3e0cdbf22b9d554c4e874ec7c0d57d1116
from scipy.interpolate import lagrange import numpy as np import matplotlib.pyplot as plt from matplotlib.patches import Rectangle from sympy.solvers import nsolve from sympy import Symbol import matplotlib as mpl def inside_obstacle(point, obstacle): """ returns 1 if the point is inside any obstacles 0 otherwise """ for obs in obstacle: if point[0] > obs[0][0] and point[0] < obs[0][2] and point[1] > obs[1][0] and point[1] < obs[1][2]: return 1 return 0 def through_obstacle(line, obstacles): """ returns 1 if the line goes through any obstacles 0 otherwise """ noofpoints = 100 for i in range(noofpoints): if inside_obstacle((line[0]+(i*(line[2]-line[0])/noofpoints), line[1]+(i*(line[3]-line[1])/noofpoints)), obstacles) == 1: return 1 return 0 xlimits=(-2,12) ylimits=(-5,5) start=(0,0) goal=(10,0) obstacles=[[(3.5,4.5,4.5,3.5),(0.5,0.5,1.5,1.5)], [(6.5,7.5,7.5,6.5),(-1.5,-1.5,-0.5,-0.5)]] # xlimits=(-2.,15.) # ylimits=(-2.,15.) # start=[0,0] # goal=[10,10] # obstacles=[[(1,2,2,1),(1,1,5,5)], # [(3,4,4,3),(4,4,12,12)], # [(3,12,12,3),(12,12,13,13)], # [(12,13,13,12),(5,5,13,13)], # [(6,12,12,6),(5,5,6,6)]] # xlimits = (-6, 36) # ylimits = (-6, 6) # obstacles = [[(-6, 25, 25, -6), (-6, -6, -5, -5)], # [(-6, 30, 30, -6), (5, 5, 6, 6)], # [(-6, -5, -5, -6), (-5, -5, 5, 5)], # [(4, 5, 5, 4), (-5, -5, 1, 1)], # [(9, 10, 10, 9), (0, 0, 5, 5)], # [(14, 15, 15, 14), (-5, -5, 1, 1)], # [(19, 20, 20, 19), (0, 0, 5, 5)], # [(24, 25, 25, 24), (-5, -5, 1, 1)], # [(29, 30, 30, 29), (0, 0, 5, 5)]] # start = [0, 0] # goal = [35, 0] pathi = [] pathj = [] with open('IFS.txt', 'r') as f: for line in f: for ele in range(len(line)): if line[ele] == '\t': br = ele break pathi.append(float(line[0:br])) pathj.append(float(line[br+1:-2])) finalpath = list(np.transpose(np.vstack((pathi, pathj)))) f = [] for i in range(len(finalpath)): f.append(list(finalpath[i])) finalpath=f newfinalpath = [] newfinalpath.append(finalpath[0]) while str(newfinalpath[-1]) != str(finalpath[-1]): print(newfinalpath[-1]) indx = finalpath.index(newfinalpath[-1]) for i in range(indx, len(finalpath)): if i == len(finalpath)-1: newfinalpath.append(finalpath[-1]) break if through_obstacle((finalpath[indx][0], finalpath[indx][1], finalpath[i][0], finalpath[i][1]), obstacles) == 1: newfinalpath.append(finalpath[i-1]) break newfinalpath = np.transpose(newfinalpath) fig = plt.figure() ax = fig.add_subplot(111) ax.plot(*newfinalpath,color='orange') for obs in obstacles: ax.fill(*obs, 'k', alpha=1) plt.xlim(*xlimits) plt.ylim(*ylimits) pathi=newfinalpath[0] pathj=newfinalpath[1] a=Symbol('a') b=Symbol('b') c=Symbol('c') d=Symbol('d') e=Symbol('e') totalx=[] totaly=[] x=np.linspace(pathi[0],(pathi[0]+pathi[1])/2,20) y=np.linspace(pathj[0],(pathj[0]+pathj[1])/2,20) for points in range(len(x)): totalx.append(x[points]) totaly.append(y[points]) for i in range(int(len(pathi)-2)): f1=a*((pathi[i]+pathi[i+1])/2)**4+b*((pathi[i]+pathi[i+1])/2)**3+c*((pathi[i]+pathi[i+1])/2)**2+d*((pathi[i]+pathi[i+1])/2)**1+e-(pathj[i]+pathj[i+1])/2 f2=a*((pathi[i+1]))**4+b*((pathi[i+1]))**3+c*((pathi[i+1]))**2+d*((pathi[i+1]))**1+e-(pathj[i+1]) f3=a*((pathi[i+1]+pathi[i+2])/2)**4+b*((pathi[i+1]+pathi[i+2])/2)**3+c*((pathi[i+1]+pathi[i+2])/2)**2+d*((pathi[i+1]+pathi[i+2])/2)**1+e-(pathj[i+1]+pathj[i+2])/2 f4=4*a*((pathi[i]+pathi[i+1])/2)**3+3*b*((pathi[i]+pathi[i+1])/2)**2+2*c*((pathi[i]+pathi[i+1])/2)**1+d-((pathj[i+1]-pathj[i])/(pathi[i+1]-pathi[i])) f5=4*a*((pathi[i+1]+pathi[i+2])/2)**3+3*b*((pathi[i+1]+pathi[i+2])/2)**2+2*c*((pathi[i+1]+pathi[i+2])/2)**1+d-((pathj[i+2]-pathj[i+1])/(pathi[i+2]-pathi[i+1])) variables=nsolve((f1,f2,f3,f4,f5),(a,b,c,d,e),(0,0,0,0,0)) x=list(np.linspace((pathi[i]+pathi[i+1])/2,(pathi[i+1]+pathi[i+2])/2,20)) for points in range(len(x)): totalx.append(x[points]) totaly.append(variables[0]*x[points]**4+variables[1]*x[points]**3+variables[2]*x[points]**2+variables[3]*x[points]**1+variables[4]) x=np.linspace((pathi[-1]+pathi[-2])/2,(pathi[-1]),20) y=np.linspace((pathj[-1]+pathj[-2])/2,(pathj[-1]),20) for points in range(len(x)): totalx.append(x[points]) totaly.append(y[points]) ax.plot(totalx,totaly,color='blue') # totalx.append(x) # totaly.append(y) # plt.plot([(pathi[-1]+pathi[-2])/2,pathi[-1]],[(pathj[-1]+pathj[-2])/2,pathj[-1]],color='blue') totalxdash=np.gradient(totalx) totalydash=np.gradient(totaly) totalydashdash=np.gradient(totalydash) R=[] for radius in range(len(totaly)): R.append(1/((totalydashdash[radius])*(1+(totalydash[radius])**2)**1.5)) # print(R) # print('R=',R) l=1.5 theta=[] for radii in R: theta.append(round(np.degrees(np.arctan(l/radii)),4)) print('x=',totalx) print('theta=',theta) plt.plot(start[0],start[1], 'o',color='red') plt.plot(goal[0],goal[1], 'o',color='green') plt.legend(["Eliminate Redundant Nodes","Smooth Curve","Start","Goal"]) plt.show()
[ "from scipy.interpolate import lagrange\r\nimport numpy as np\r\nimport matplotlib.pyplot as plt\r\nfrom matplotlib.patches import Rectangle\r\nfrom sympy.solvers import nsolve\r\nfrom sympy import Symbol\r\nimport matplotlib as mpl\r\n\r\n\r\ndef inside_obstacle(point, obstacle):\r\n \"\"\"\r\n returns 1 if the point is inside any obstacles\r\n 0 otherwise\r\n \"\"\"\r\n for obs in obstacle:\r\n if point[0] > obs[0][0] and point[0] < obs[0][2] and point[1] > obs[1][0] and point[1] < obs[1][2]:\r\n return 1\r\n return 0\r\n\r\n\r\ndef through_obstacle(line, obstacles):\r\n \"\"\"\r\n returns 1 if the line goes through any obstacles\r\n 0 otherwise\r\n \"\"\"\r\n noofpoints = 100\r\n for i in range(noofpoints):\r\n if inside_obstacle((line[0]+(i*(line[2]-line[0])/noofpoints), line[1]+(i*(line[3]-line[1])/noofpoints)), obstacles) == 1:\r\n return 1\r\n return 0\r\n\r\nxlimits=(-2,12)\r\nylimits=(-5,5)\r\nstart=(0,0)\r\ngoal=(10,0)\r\nobstacles=[[(3.5,4.5,4.5,3.5),(0.5,0.5,1.5,1.5)],\r\n [(6.5,7.5,7.5,6.5),(-1.5,-1.5,-0.5,-0.5)]]\r\n\r\n# xlimits=(-2.,15.)\r\n# ylimits=(-2.,15.)\r\n# start=[0,0]\r\n# goal=[10,10]\r\n# obstacles=[[(1,2,2,1),(1,1,5,5)],\r\n# [(3,4,4,3),(4,4,12,12)],\r\n# [(3,12,12,3),(12,12,13,13)],\r\n# [(12,13,13,12),(5,5,13,13)],\r\n# [(6,12,12,6),(5,5,6,6)]]\r\n\r\n# xlimits = (-6, 36)\r\n# ylimits = (-6, 6)\r\n# obstacles = [[(-6, 25, 25, -6), (-6, -6, -5, -5)],\r\n# [(-6, 30, 30, -6), (5, 5, 6, 6)],\r\n# [(-6, -5, -5, -6), (-5, -5, 5, 5)],\r\n# [(4, 5, 5, 4), (-5, -5, 1, 1)],\r\n# [(9, 10, 10, 9), (0, 0, 5, 5)],\r\n# [(14, 15, 15, 14), (-5, -5, 1, 1)],\r\n# [(19, 20, 20, 19), (0, 0, 5, 5)],\r\n# [(24, 25, 25, 24), (-5, -5, 1, 1)],\r\n# [(29, 30, 30, 29), (0, 0, 5, 5)]]\r\n# start = [0, 0]\r\n# goal = [35, 0]\r\n\r\npathi = []\r\npathj = []\r\nwith open('IFS.txt', 'r') as f:\r\n for line in f:\r\n for ele in range(len(line)):\r\n if line[ele] == '\\t':\r\n br = ele\r\n break\r\n pathi.append(float(line[0:br]))\r\n pathj.append(float(line[br+1:-2]))\r\n\r\nfinalpath = list(np.transpose(np.vstack((pathi, pathj))))\r\n\r\nf = []\r\n\r\nfor i in range(len(finalpath)):\r\n f.append(list(finalpath[i]))\r\n\r\nfinalpath=f\r\n\r\nnewfinalpath = []\r\n\r\nnewfinalpath.append(finalpath[0])\r\n\r\nwhile str(newfinalpath[-1]) != str(finalpath[-1]):\r\n\r\n print(newfinalpath[-1])\r\n indx = finalpath.index(newfinalpath[-1])\r\n\r\n for i in range(indx, len(finalpath)):\r\n if i == len(finalpath)-1:\r\n newfinalpath.append(finalpath[-1])\r\n break\r\n if through_obstacle((finalpath[indx][0], finalpath[indx][1], finalpath[i][0], finalpath[i][1]), obstacles) == 1:\r\n newfinalpath.append(finalpath[i-1])\r\n break\r\n\r\nnewfinalpath = np.transpose(newfinalpath)\r\n\r\nfig = plt.figure() \r\n \r\nax = fig.add_subplot(111) \r\n\r\nax.plot(*newfinalpath,color='orange')\r\n\r\nfor obs in obstacles:\r\n ax.fill(*obs, 'k', alpha=1)\r\nplt.xlim(*xlimits)\r\nplt.ylim(*ylimits)\r\n\r\npathi=newfinalpath[0]\r\npathj=newfinalpath[1]\r\n\r\na=Symbol('a')\r\nb=Symbol('b')\r\nc=Symbol('c')\r\nd=Symbol('d')\r\ne=Symbol('e')\r\n\r\ntotalx=[]\r\ntotaly=[]\r\n\r\nx=np.linspace(pathi[0],(pathi[0]+pathi[1])/2,20)\r\ny=np.linspace(pathj[0],(pathj[0]+pathj[1])/2,20)\r\n\r\nfor points in range(len(x)):\r\n totalx.append(x[points])\r\n totaly.append(y[points])\r\n\r\nfor i in range(int(len(pathi)-2)):\r\n f1=a*((pathi[i]+pathi[i+1])/2)**4+b*((pathi[i]+pathi[i+1])/2)**3+c*((pathi[i]+pathi[i+1])/2)**2+d*((pathi[i]+pathi[i+1])/2)**1+e-(pathj[i]+pathj[i+1])/2\r\n f2=a*((pathi[i+1]))**4+b*((pathi[i+1]))**3+c*((pathi[i+1]))**2+d*((pathi[i+1]))**1+e-(pathj[i+1])\r\n f3=a*((pathi[i+1]+pathi[i+2])/2)**4+b*((pathi[i+1]+pathi[i+2])/2)**3+c*((pathi[i+1]+pathi[i+2])/2)**2+d*((pathi[i+1]+pathi[i+2])/2)**1+e-(pathj[i+1]+pathj[i+2])/2\r\n\r\n f4=4*a*((pathi[i]+pathi[i+1])/2)**3+3*b*((pathi[i]+pathi[i+1])/2)**2+2*c*((pathi[i]+pathi[i+1])/2)**1+d-((pathj[i+1]-pathj[i])/(pathi[i+1]-pathi[i]))\r\n f5=4*a*((pathi[i+1]+pathi[i+2])/2)**3+3*b*((pathi[i+1]+pathi[i+2])/2)**2+2*c*((pathi[i+1]+pathi[i+2])/2)**1+d-((pathj[i+2]-pathj[i+1])/(pathi[i+2]-pathi[i+1]))\r\n\r\n variables=nsolve((f1,f2,f3,f4,f5),(a,b,c,d,e),(0,0,0,0,0))\r\n\r\n x=list(np.linspace((pathi[i]+pathi[i+1])/2,(pathi[i+1]+pathi[i+2])/2,20))\r\n\r\n for points in range(len(x)):\r\n totalx.append(x[points])\r\n totaly.append(variables[0]*x[points]**4+variables[1]*x[points]**3+variables[2]*x[points]**2+variables[3]*x[points]**1+variables[4])\r\n\r\nx=np.linspace((pathi[-1]+pathi[-2])/2,(pathi[-1]),20)\r\ny=np.linspace((pathj[-1]+pathj[-2])/2,(pathj[-1]),20)\r\n\r\nfor points in range(len(x)):\r\n totalx.append(x[points])\r\n totaly.append(y[points])\r\n\r\nax.plot(totalx,totaly,color='blue')\r\n# totalx.append(x)\r\n# totaly.append(y)\r\n\r\n# plt.plot([(pathi[-1]+pathi[-2])/2,pathi[-1]],[(pathj[-1]+pathj[-2])/2,pathj[-1]],color='blue')\r\ntotalxdash=np.gradient(totalx)\r\ntotalydash=np.gradient(totaly)\r\ntotalydashdash=np.gradient(totalydash)\r\n\r\nR=[]\r\nfor radius in range(len(totaly)):\r\n R.append(1/((totalydashdash[radius])*(1+(totalydash[radius])**2)**1.5))\r\n # print(R)\r\n\r\n# print('R=',R)\r\n\r\nl=1.5\r\ntheta=[]\r\nfor radii in R:\r\n theta.append(round(np.degrees(np.arctan(l/radii)),4))\r\n\r\nprint('x=',totalx)\r\nprint('theta=',theta)\r\n\r\nplt.plot(start[0],start[1], 'o',color='red')\r\nplt.plot(goal[0],goal[1], 'o',color='green')\r\n\r\nplt.legend([\"Eliminate Redundant Nodes\",\"Smooth Curve\",\"Start\",\"Goal\"])\r\n\r\nplt.show()\r\n", "from scipy.interpolate import lagrange\nimport numpy as np\nimport matplotlib.pyplot as plt\nfrom matplotlib.patches import Rectangle\nfrom sympy.solvers import nsolve\nfrom sympy import Symbol\nimport matplotlib as mpl\n\n\ndef inside_obstacle(point, obstacle):\n \"\"\"\n returns 1 if the point is inside any obstacles\n 0 otherwise\n \"\"\"\n for obs in obstacle:\n if point[0] > obs[0][0] and point[0] < obs[0][2] and point[1] > obs[1][\n 0] and point[1] < obs[1][2]:\n return 1\n return 0\n\n\ndef through_obstacle(line, obstacles):\n \"\"\"\n returns 1 if the line goes through any obstacles\n 0 otherwise\n \"\"\"\n noofpoints = 100\n for i in range(noofpoints):\n if inside_obstacle((line[0] + i * (line[2] - line[0]) / noofpoints,\n line[1] + i * (line[3] - line[1]) / noofpoints), obstacles) == 1:\n return 1\n return 0\n\n\nxlimits = -2, 12\nylimits = -5, 5\nstart = 0, 0\ngoal = 10, 0\nobstacles = [[(3.5, 4.5, 4.5, 3.5), (0.5, 0.5, 1.5, 1.5)], [(6.5, 7.5, 7.5,\n 6.5), (-1.5, -1.5, -0.5, -0.5)]]\npathi = []\npathj = []\nwith open('IFS.txt', 'r') as f:\n for line in f:\n for ele in range(len(line)):\n if line[ele] == '\\t':\n br = ele\n break\n pathi.append(float(line[0:br]))\n pathj.append(float(line[br + 1:-2]))\nfinalpath = list(np.transpose(np.vstack((pathi, pathj))))\nf = []\nfor i in range(len(finalpath)):\n f.append(list(finalpath[i]))\nfinalpath = f\nnewfinalpath = []\nnewfinalpath.append(finalpath[0])\nwhile str(newfinalpath[-1]) != str(finalpath[-1]):\n print(newfinalpath[-1])\n indx = finalpath.index(newfinalpath[-1])\n for i in range(indx, len(finalpath)):\n if i == len(finalpath) - 1:\n newfinalpath.append(finalpath[-1])\n break\n if through_obstacle((finalpath[indx][0], finalpath[indx][1],\n finalpath[i][0], finalpath[i][1]), obstacles) == 1:\n newfinalpath.append(finalpath[i - 1])\n break\nnewfinalpath = np.transpose(newfinalpath)\nfig = plt.figure()\nax = fig.add_subplot(111)\nax.plot(*newfinalpath, color='orange')\nfor obs in obstacles:\n ax.fill(*obs, 'k', alpha=1)\nplt.xlim(*xlimits)\nplt.ylim(*ylimits)\npathi = newfinalpath[0]\npathj = newfinalpath[1]\na = Symbol('a')\nb = Symbol('b')\nc = Symbol('c')\nd = Symbol('d')\ne = Symbol('e')\ntotalx = []\ntotaly = []\nx = np.linspace(pathi[0], (pathi[0] + pathi[1]) / 2, 20)\ny = np.linspace(pathj[0], (pathj[0] + pathj[1]) / 2, 20)\nfor points in range(len(x)):\n totalx.append(x[points])\n totaly.append(y[points])\nfor i in range(int(len(pathi) - 2)):\n f1 = a * ((pathi[i] + pathi[i + 1]) / 2) ** 4 + b * ((pathi[i] + pathi[\n i + 1]) / 2) ** 3 + c * ((pathi[i] + pathi[i + 1]) / 2) ** 2 + d * ((\n pathi[i] + pathi[i + 1]) / 2) ** 1 + e - (pathj[i] + pathj[i + 1]) / 2\n f2 = a * pathi[i + 1] ** 4 + b * pathi[i + 1] ** 3 + c * pathi[i + 1\n ] ** 2 + d * pathi[i + 1] ** 1 + e - pathj[i + 1]\n f3 = a * ((pathi[i + 1] + pathi[i + 2]) / 2) ** 4 + b * ((pathi[i + 1] +\n pathi[i + 2]) / 2) ** 3 + c * ((pathi[i + 1] + pathi[i + 2]) / 2\n ) ** 2 + d * ((pathi[i + 1] + pathi[i + 2]) / 2) ** 1 + e - (pathj[\n i + 1] + pathj[i + 2]) / 2\n f4 = 4 * a * ((pathi[i] + pathi[i + 1]) / 2) ** 3 + 3 * b * ((pathi[i] +\n pathi[i + 1]) / 2) ** 2 + 2 * c * ((pathi[i] + pathi[i + 1]) / 2\n ) ** 1 + d - (pathj[i + 1] - pathj[i]) / (pathi[i + 1] - pathi[i])\n f5 = 4 * a * ((pathi[i + 1] + pathi[i + 2]) / 2) ** 3 + 3 * b * ((pathi\n [i + 1] + pathi[i + 2]) / 2) ** 2 + 2 * c * ((pathi[i + 1] + pathi[\n i + 2]) / 2) ** 1 + d - (pathj[i + 2] - pathj[i + 1]) / (pathi[i + \n 2] - pathi[i + 1])\n variables = nsolve((f1, f2, f3, f4, f5), (a, b, c, d, e), (0, 0, 0, 0, 0))\n x = list(np.linspace((pathi[i] + pathi[i + 1]) / 2, (pathi[i + 1] +\n pathi[i + 2]) / 2, 20))\n for points in range(len(x)):\n totalx.append(x[points])\n totaly.append(variables[0] * x[points] ** 4 + variables[1] * x[\n points] ** 3 + variables[2] * x[points] ** 2 + variables[3] * x\n [points] ** 1 + variables[4])\nx = np.linspace((pathi[-1] + pathi[-2]) / 2, pathi[-1], 20)\ny = np.linspace((pathj[-1] + pathj[-2]) / 2, pathj[-1], 20)\nfor points in range(len(x)):\n totalx.append(x[points])\n totaly.append(y[points])\nax.plot(totalx, totaly, color='blue')\ntotalxdash = np.gradient(totalx)\ntotalydash = np.gradient(totaly)\ntotalydashdash = np.gradient(totalydash)\nR = []\nfor radius in range(len(totaly)):\n R.append(1 / (totalydashdash[radius] * (1 + totalydash[radius] ** 2) **\n 1.5))\nl = 1.5\ntheta = []\nfor radii in R:\n theta.append(round(np.degrees(np.arctan(l / radii)), 4))\nprint('x=', totalx)\nprint('theta=', theta)\nplt.plot(start[0], start[1], 'o', color='red')\nplt.plot(goal[0], goal[1], 'o', color='green')\nplt.legend(['Eliminate Redundant Nodes', 'Smooth Curve', 'Start', 'Goal'])\nplt.show()\n", "<import token>\n\n\ndef inside_obstacle(point, obstacle):\n \"\"\"\n returns 1 if the point is inside any obstacles\n 0 otherwise\n \"\"\"\n for obs in obstacle:\n if point[0] > obs[0][0] and point[0] < obs[0][2] and point[1] > obs[1][\n 0] and point[1] < obs[1][2]:\n return 1\n return 0\n\n\ndef through_obstacle(line, obstacles):\n \"\"\"\n returns 1 if the line goes through any obstacles\n 0 otherwise\n \"\"\"\n noofpoints = 100\n for i in range(noofpoints):\n if inside_obstacle((line[0] + i * (line[2] - line[0]) / noofpoints,\n line[1] + i * (line[3] - line[1]) / noofpoints), obstacles) == 1:\n return 1\n return 0\n\n\nxlimits = -2, 12\nylimits = -5, 5\nstart = 0, 0\ngoal = 10, 0\nobstacles = [[(3.5, 4.5, 4.5, 3.5), (0.5, 0.5, 1.5, 1.5)], [(6.5, 7.5, 7.5,\n 6.5), (-1.5, -1.5, -0.5, -0.5)]]\npathi = []\npathj = []\nwith open('IFS.txt', 'r') as f:\n for line in f:\n for ele in range(len(line)):\n if line[ele] == '\\t':\n br = ele\n break\n pathi.append(float(line[0:br]))\n pathj.append(float(line[br + 1:-2]))\nfinalpath = list(np.transpose(np.vstack((pathi, pathj))))\nf = []\nfor i in range(len(finalpath)):\n f.append(list(finalpath[i]))\nfinalpath = f\nnewfinalpath = []\nnewfinalpath.append(finalpath[0])\nwhile str(newfinalpath[-1]) != str(finalpath[-1]):\n print(newfinalpath[-1])\n indx = finalpath.index(newfinalpath[-1])\n for i in range(indx, len(finalpath)):\n if i == len(finalpath) - 1:\n newfinalpath.append(finalpath[-1])\n break\n if through_obstacle((finalpath[indx][0], finalpath[indx][1],\n finalpath[i][0], finalpath[i][1]), obstacles) == 1:\n newfinalpath.append(finalpath[i - 1])\n break\nnewfinalpath = np.transpose(newfinalpath)\nfig = plt.figure()\nax = fig.add_subplot(111)\nax.plot(*newfinalpath, color='orange')\nfor obs in obstacles:\n ax.fill(*obs, 'k', alpha=1)\nplt.xlim(*xlimits)\nplt.ylim(*ylimits)\npathi = newfinalpath[0]\npathj = newfinalpath[1]\na = Symbol('a')\nb = Symbol('b')\nc = Symbol('c')\nd = Symbol('d')\ne = Symbol('e')\ntotalx = []\ntotaly = []\nx = np.linspace(pathi[0], (pathi[0] + pathi[1]) / 2, 20)\ny = np.linspace(pathj[0], (pathj[0] + pathj[1]) / 2, 20)\nfor points in range(len(x)):\n totalx.append(x[points])\n totaly.append(y[points])\nfor i in range(int(len(pathi) - 2)):\n f1 = a * ((pathi[i] + pathi[i + 1]) / 2) ** 4 + b * ((pathi[i] + pathi[\n i + 1]) / 2) ** 3 + c * ((pathi[i] + pathi[i + 1]) / 2) ** 2 + d * ((\n pathi[i] + pathi[i + 1]) / 2) ** 1 + e - (pathj[i] + pathj[i + 1]) / 2\n f2 = a * pathi[i + 1] ** 4 + b * pathi[i + 1] ** 3 + c * pathi[i + 1\n ] ** 2 + d * pathi[i + 1] ** 1 + e - pathj[i + 1]\n f3 = a * ((pathi[i + 1] + pathi[i + 2]) / 2) ** 4 + b * ((pathi[i + 1] +\n pathi[i + 2]) / 2) ** 3 + c * ((pathi[i + 1] + pathi[i + 2]) / 2\n ) ** 2 + d * ((pathi[i + 1] + pathi[i + 2]) / 2) ** 1 + e - (pathj[\n i + 1] + pathj[i + 2]) / 2\n f4 = 4 * a * ((pathi[i] + pathi[i + 1]) / 2) ** 3 + 3 * b * ((pathi[i] +\n pathi[i + 1]) / 2) ** 2 + 2 * c * ((pathi[i] + pathi[i + 1]) / 2\n ) ** 1 + d - (pathj[i + 1] - pathj[i]) / (pathi[i + 1] - pathi[i])\n f5 = 4 * a * ((pathi[i + 1] + pathi[i + 2]) / 2) ** 3 + 3 * b * ((pathi\n [i + 1] + pathi[i + 2]) / 2) ** 2 + 2 * c * ((pathi[i + 1] + pathi[\n i + 2]) / 2) ** 1 + d - (pathj[i + 2] - pathj[i + 1]) / (pathi[i + \n 2] - pathi[i + 1])\n variables = nsolve((f1, f2, f3, f4, f5), (a, b, c, d, e), (0, 0, 0, 0, 0))\n x = list(np.linspace((pathi[i] + pathi[i + 1]) / 2, (pathi[i + 1] +\n pathi[i + 2]) / 2, 20))\n for points in range(len(x)):\n totalx.append(x[points])\n totaly.append(variables[0] * x[points] ** 4 + variables[1] * x[\n points] ** 3 + variables[2] * x[points] ** 2 + variables[3] * x\n [points] ** 1 + variables[4])\nx = np.linspace((pathi[-1] + pathi[-2]) / 2, pathi[-1], 20)\ny = np.linspace((pathj[-1] + pathj[-2]) / 2, pathj[-1], 20)\nfor points in range(len(x)):\n totalx.append(x[points])\n totaly.append(y[points])\nax.plot(totalx, totaly, color='blue')\ntotalxdash = np.gradient(totalx)\ntotalydash = np.gradient(totaly)\ntotalydashdash = np.gradient(totalydash)\nR = []\nfor radius in range(len(totaly)):\n R.append(1 / (totalydashdash[radius] * (1 + totalydash[radius] ** 2) **\n 1.5))\nl = 1.5\ntheta = []\nfor radii in R:\n theta.append(round(np.degrees(np.arctan(l / radii)), 4))\nprint('x=', totalx)\nprint('theta=', theta)\nplt.plot(start[0], start[1], 'o', color='red')\nplt.plot(goal[0], goal[1], 'o', color='green')\nplt.legend(['Eliminate Redundant Nodes', 'Smooth Curve', 'Start', 'Goal'])\nplt.show()\n", "<import token>\n\n\ndef inside_obstacle(point, obstacle):\n \"\"\"\n returns 1 if the point is inside any obstacles\n 0 otherwise\n \"\"\"\n for obs in obstacle:\n if point[0] > obs[0][0] and point[0] < obs[0][2] and point[1] > obs[1][\n 0] and point[1] < obs[1][2]:\n return 1\n return 0\n\n\ndef through_obstacle(line, obstacles):\n \"\"\"\n returns 1 if the line goes through any obstacles\n 0 otherwise\n \"\"\"\n noofpoints = 100\n for i in range(noofpoints):\n if inside_obstacle((line[0] + i * (line[2] - line[0]) / noofpoints,\n line[1] + i * (line[3] - line[1]) / noofpoints), obstacles) == 1:\n return 1\n return 0\n\n\n<assignment token>\nwith open('IFS.txt', 'r') as f:\n for line in f:\n for ele in range(len(line)):\n if line[ele] == '\\t':\n br = ele\n break\n pathi.append(float(line[0:br]))\n pathj.append(float(line[br + 1:-2]))\n<assignment token>\nfor i in range(len(finalpath)):\n f.append(list(finalpath[i]))\n<assignment token>\nnewfinalpath.append(finalpath[0])\nwhile str(newfinalpath[-1]) != str(finalpath[-1]):\n print(newfinalpath[-1])\n indx = finalpath.index(newfinalpath[-1])\n for i in range(indx, len(finalpath)):\n if i == len(finalpath) - 1:\n newfinalpath.append(finalpath[-1])\n break\n if through_obstacle((finalpath[indx][0], finalpath[indx][1],\n finalpath[i][0], finalpath[i][1]), obstacles) == 1:\n newfinalpath.append(finalpath[i - 1])\n break\n<assignment token>\nax.plot(*newfinalpath, color='orange')\nfor obs in obstacles:\n ax.fill(*obs, 'k', alpha=1)\nplt.xlim(*xlimits)\nplt.ylim(*ylimits)\n<assignment token>\nfor points in range(len(x)):\n totalx.append(x[points])\n totaly.append(y[points])\nfor i in range(int(len(pathi) - 2)):\n f1 = a * ((pathi[i] + pathi[i + 1]) / 2) ** 4 + b * ((pathi[i] + pathi[\n i + 1]) / 2) ** 3 + c * ((pathi[i] + pathi[i + 1]) / 2) ** 2 + d * ((\n pathi[i] + pathi[i + 1]) / 2) ** 1 + e - (pathj[i] + pathj[i + 1]) / 2\n f2 = a * pathi[i + 1] ** 4 + b * pathi[i + 1] ** 3 + c * pathi[i + 1\n ] ** 2 + d * pathi[i + 1] ** 1 + e - pathj[i + 1]\n f3 = a * ((pathi[i + 1] + pathi[i + 2]) / 2) ** 4 + b * ((pathi[i + 1] +\n pathi[i + 2]) / 2) ** 3 + c * ((pathi[i + 1] + pathi[i + 2]) / 2\n ) ** 2 + d * ((pathi[i + 1] + pathi[i + 2]) / 2) ** 1 + e - (pathj[\n i + 1] + pathj[i + 2]) / 2\n f4 = 4 * a * ((pathi[i] + pathi[i + 1]) / 2) ** 3 + 3 * b * ((pathi[i] +\n pathi[i + 1]) / 2) ** 2 + 2 * c * ((pathi[i] + pathi[i + 1]) / 2\n ) ** 1 + d - (pathj[i + 1] - pathj[i]) / (pathi[i + 1] - pathi[i])\n f5 = 4 * a * ((pathi[i + 1] + pathi[i + 2]) / 2) ** 3 + 3 * b * ((pathi\n [i + 1] + pathi[i + 2]) / 2) ** 2 + 2 * c * ((pathi[i + 1] + pathi[\n i + 2]) / 2) ** 1 + d - (pathj[i + 2] - pathj[i + 1]) / (pathi[i + \n 2] - pathi[i + 1])\n variables = nsolve((f1, f2, f3, f4, f5), (a, b, c, d, e), (0, 0, 0, 0, 0))\n x = list(np.linspace((pathi[i] + pathi[i + 1]) / 2, (pathi[i + 1] +\n pathi[i + 2]) / 2, 20))\n for points in range(len(x)):\n totalx.append(x[points])\n totaly.append(variables[0] * x[points] ** 4 + variables[1] * x[\n points] ** 3 + variables[2] * x[points] ** 2 + variables[3] * x\n [points] ** 1 + variables[4])\n<assignment token>\nfor points in range(len(x)):\n totalx.append(x[points])\n totaly.append(y[points])\nax.plot(totalx, totaly, color='blue')\n<assignment token>\nfor radius in range(len(totaly)):\n R.append(1 / (totalydashdash[radius] * (1 + totalydash[radius] ** 2) **\n 1.5))\n<assignment token>\nfor radii in R:\n theta.append(round(np.degrees(np.arctan(l / radii)), 4))\nprint('x=', totalx)\nprint('theta=', theta)\nplt.plot(start[0], start[1], 'o', color='red')\nplt.plot(goal[0], goal[1], 'o', color='green')\nplt.legend(['Eliminate Redundant Nodes', 'Smooth Curve', 'Start', 'Goal'])\nplt.show()\n", "<import token>\n\n\ndef inside_obstacle(point, obstacle):\n \"\"\"\n returns 1 if the point is inside any obstacles\n 0 otherwise\n \"\"\"\n for obs in obstacle:\n if point[0] > obs[0][0] and point[0] < obs[0][2] and point[1] > obs[1][\n 0] and point[1] < obs[1][2]:\n return 1\n return 0\n\n\ndef through_obstacle(line, obstacles):\n \"\"\"\n returns 1 if the line goes through any obstacles\n 0 otherwise\n \"\"\"\n noofpoints = 100\n for i in range(noofpoints):\n if inside_obstacle((line[0] + i * (line[2] - line[0]) / noofpoints,\n line[1] + i * (line[3] - line[1]) / noofpoints), obstacles) == 1:\n return 1\n return 0\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n", "<import token>\n<function token>\n\n\ndef through_obstacle(line, obstacles):\n \"\"\"\n returns 1 if the line goes through any obstacles\n 0 otherwise\n \"\"\"\n noofpoints = 100\n for i in range(noofpoints):\n if inside_obstacle((line[0] + i * (line[2] - line[0]) / noofpoints,\n line[1] + i * (line[3] - line[1]) / noofpoints), obstacles) == 1:\n return 1\n return 0\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n", "<import token>\n<function token>\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n" ]
false
99,015
c37593db9078ed808bd540cdec73e3a145ab287e
from sklearn_cv_pandas.pandas_cv import ( RandomizedSearchCV, GridSearchCV ) from sklearn_cv_pandas.model import Model
[ "from sklearn_cv_pandas.pandas_cv import (\n RandomizedSearchCV,\n GridSearchCV\n)\nfrom sklearn_cv_pandas.model import Model", "from sklearn_cv_pandas.pandas_cv import RandomizedSearchCV, GridSearchCV\nfrom sklearn_cv_pandas.model import Model\n", "<import token>\n" ]
false
99,016
57b9450c5edf6143f68358f286a126e6bc22e417
#seperate transport pathway import csv pathway = [] with open("Pathway.csv", "rb") as f: reader = csv.reader(f, quotechar='"') for line in reader: pathway.append(line) f.close() #remove transport pathway and reassign pathway id new_pathway = [] transport = [] for i in xrange(len(pathway)): temp = [] if "Transport" in pathway[i][1]: temp.append(transport_num) transport.append(pathway[i]) else: new_pathway.append(pathway[i]) new_pathway.append([int(pathway[-1][0])+1, "Transport", "NULL", ""]) with open("pathway_transport.csv", "wb") as f: writer = csv.writer(f) writer.writerows(transport) f.close() with open("pathway_remove_transport.csv", "wb") as f: writer = csv.writer(f) writer.writerows(new_pathway) f.close()
[ "#seperate transport pathway\nimport csv\npathway = []\nwith open(\"Pathway.csv\", \"rb\") as f:\n reader = csv.reader(f, quotechar='\"')\n for line in reader:\n pathway.append(line)\nf.close()\n\n#remove transport pathway and reassign pathway id\nnew_pathway = []\ntransport = []\n\nfor i in xrange(len(pathway)):\n temp = []\n if \"Transport\" in pathway[i][1]:\n temp.append(transport_num)\n transport.append(pathway[i])\n else:\n new_pathway.append(pathway[i])\n\nnew_pathway.append([int(pathway[-1][0])+1, \"Transport\", \"NULL\", \"\"])\n\nwith open(\"pathway_transport.csv\", \"wb\") as f:\n writer = csv.writer(f)\n writer.writerows(transport)\nf.close()\n\nwith open(\"pathway_remove_transport.csv\", \"wb\") as f:\n writer = csv.writer(f)\n writer.writerows(new_pathway)\nf.close()\n\n", "import csv\npathway = []\nwith open('Pathway.csv', 'rb') as f:\n reader = csv.reader(f, quotechar='\"')\n for line in reader:\n pathway.append(line)\nf.close()\nnew_pathway = []\ntransport = []\nfor i in xrange(len(pathway)):\n temp = []\n if 'Transport' in pathway[i][1]:\n temp.append(transport_num)\n transport.append(pathway[i])\n else:\n new_pathway.append(pathway[i])\nnew_pathway.append([int(pathway[-1][0]) + 1, 'Transport', 'NULL', ''])\nwith open('pathway_transport.csv', 'wb') as f:\n writer = csv.writer(f)\n writer.writerows(transport)\nf.close()\nwith open('pathway_remove_transport.csv', 'wb') as f:\n writer = csv.writer(f)\n writer.writerows(new_pathway)\nf.close()\n", "<import token>\npathway = []\nwith open('Pathway.csv', 'rb') as f:\n reader = csv.reader(f, quotechar='\"')\n for line in reader:\n pathway.append(line)\nf.close()\nnew_pathway = []\ntransport = []\nfor i in xrange(len(pathway)):\n temp = []\n if 'Transport' in pathway[i][1]:\n temp.append(transport_num)\n transport.append(pathway[i])\n else:\n new_pathway.append(pathway[i])\nnew_pathway.append([int(pathway[-1][0]) + 1, 'Transport', 'NULL', ''])\nwith open('pathway_transport.csv', 'wb') as f:\n writer = csv.writer(f)\n writer.writerows(transport)\nf.close()\nwith open('pathway_remove_transport.csv', 'wb') as f:\n writer = csv.writer(f)\n writer.writerows(new_pathway)\nf.close()\n", "<import token>\n<assignment token>\nwith open('Pathway.csv', 'rb') as f:\n reader = csv.reader(f, quotechar='\"')\n for line in reader:\n pathway.append(line)\nf.close()\n<assignment token>\nfor i in xrange(len(pathway)):\n temp = []\n if 'Transport' in pathway[i][1]:\n temp.append(transport_num)\n transport.append(pathway[i])\n else:\n new_pathway.append(pathway[i])\nnew_pathway.append([int(pathway[-1][0]) + 1, 'Transport', 'NULL', ''])\nwith open('pathway_transport.csv', 'wb') as f:\n writer = csv.writer(f)\n writer.writerows(transport)\nf.close()\nwith open('pathway_remove_transport.csv', 'wb') as f:\n writer = csv.writer(f)\n writer.writerows(new_pathway)\nf.close()\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n" ]
false
99,017
37664b159b86645ae32be7835e7fc511fbc4202f
from __future__ import print_function import unittest import os import sys here = os.path.dirname(os.path.abspath(__file__)) module_path = os.path.abspath(os.path.join(here, os.pardir)) sys.path.insert(0, module_path) class TestStations(unittest.TestCase): @classmethod def setUp(self): from vbb.client import VBBService self.client = VBBService() def test_get_station(self): station = self.client.stations.get_station_by_id(id=900000013102) self.assertIsInstance(station, dict) def test_get_nearby_stations(self): station = self.client.stations.get_nearby_stations(latitude=52.52725, longitude=13.4123) self.assertIsNotNone(station) def test_get_station_departures(self): station = self.client.stations.get_station_departures(id=900000013102) self.assertIsNotNone(station) def test_get_all_stations(self): stations = self.client.stations.get_all_stations() self.assertEqual(len(stations), 13098)
[ "from __future__ import print_function\nimport unittest\n\nimport os\nimport sys\n\nhere = os.path.dirname(os.path.abspath(__file__))\nmodule_path = os.path.abspath(os.path.join(here, os.pardir))\nsys.path.insert(0, module_path)\n\n\nclass TestStations(unittest.TestCase):\n\n @classmethod\n def setUp(self):\n from vbb.client import VBBService\n self.client = VBBService()\n\n def test_get_station(self):\n station = self.client.stations.get_station_by_id(id=900000013102)\n self.assertIsInstance(station, dict)\n\n def test_get_nearby_stations(self):\n station = self.client.stations.get_nearby_stations(latitude=52.52725, longitude=13.4123)\n self.assertIsNotNone(station)\n\n def test_get_station_departures(self):\n station = self.client.stations.get_station_departures(id=900000013102)\n self.assertIsNotNone(station)\n\n def test_get_all_stations(self):\n stations = self.client.stations.get_all_stations()\n self.assertEqual(len(stations), 13098)", "from __future__ import print_function\nimport unittest\nimport os\nimport sys\nhere = os.path.dirname(os.path.abspath(__file__))\nmodule_path = os.path.abspath(os.path.join(here, os.pardir))\nsys.path.insert(0, module_path)\n\n\nclass TestStations(unittest.TestCase):\n\n @classmethod\n def setUp(self):\n from vbb.client import VBBService\n self.client = VBBService()\n\n def test_get_station(self):\n station = self.client.stations.get_station_by_id(id=900000013102)\n self.assertIsInstance(station, dict)\n\n def test_get_nearby_stations(self):\n station = self.client.stations.get_nearby_stations(latitude=\n 52.52725, longitude=13.4123)\n self.assertIsNotNone(station)\n\n def test_get_station_departures(self):\n station = self.client.stations.get_station_departures(id=900000013102)\n self.assertIsNotNone(station)\n\n def test_get_all_stations(self):\n stations = self.client.stations.get_all_stations()\n self.assertEqual(len(stations), 13098)\n", "<import token>\nhere = os.path.dirname(os.path.abspath(__file__))\nmodule_path = os.path.abspath(os.path.join(here, os.pardir))\nsys.path.insert(0, module_path)\n\n\nclass TestStations(unittest.TestCase):\n\n @classmethod\n def setUp(self):\n from vbb.client import VBBService\n self.client = VBBService()\n\n def test_get_station(self):\n station = self.client.stations.get_station_by_id(id=900000013102)\n self.assertIsInstance(station, dict)\n\n def test_get_nearby_stations(self):\n station = self.client.stations.get_nearby_stations(latitude=\n 52.52725, longitude=13.4123)\n self.assertIsNotNone(station)\n\n def test_get_station_departures(self):\n station = self.client.stations.get_station_departures(id=900000013102)\n self.assertIsNotNone(station)\n\n def test_get_all_stations(self):\n stations = self.client.stations.get_all_stations()\n self.assertEqual(len(stations), 13098)\n", "<import token>\n<assignment token>\nsys.path.insert(0, module_path)\n\n\nclass TestStations(unittest.TestCase):\n\n @classmethod\n def setUp(self):\n from vbb.client import VBBService\n self.client = VBBService()\n\n def test_get_station(self):\n station = self.client.stations.get_station_by_id(id=900000013102)\n self.assertIsInstance(station, dict)\n\n def test_get_nearby_stations(self):\n station = self.client.stations.get_nearby_stations(latitude=\n 52.52725, longitude=13.4123)\n self.assertIsNotNone(station)\n\n def test_get_station_departures(self):\n station = self.client.stations.get_station_departures(id=900000013102)\n self.assertIsNotNone(station)\n\n def test_get_all_stations(self):\n stations = self.client.stations.get_all_stations()\n self.assertEqual(len(stations), 13098)\n", "<import token>\n<assignment token>\n<code token>\n\n\nclass TestStations(unittest.TestCase):\n\n @classmethod\n def setUp(self):\n from vbb.client import VBBService\n self.client = VBBService()\n\n def test_get_station(self):\n station = self.client.stations.get_station_by_id(id=900000013102)\n self.assertIsInstance(station, dict)\n\n def test_get_nearby_stations(self):\n station = self.client.stations.get_nearby_stations(latitude=\n 52.52725, longitude=13.4123)\n self.assertIsNotNone(station)\n\n def test_get_station_departures(self):\n station = self.client.stations.get_station_departures(id=900000013102)\n self.assertIsNotNone(station)\n\n def test_get_all_stations(self):\n stations = self.client.stations.get_all_stations()\n self.assertEqual(len(stations), 13098)\n", "<import token>\n<assignment token>\n<code token>\n\n\nclass TestStations(unittest.TestCase):\n <function token>\n\n def test_get_station(self):\n station = self.client.stations.get_station_by_id(id=900000013102)\n self.assertIsInstance(station, dict)\n\n def test_get_nearby_stations(self):\n station = self.client.stations.get_nearby_stations(latitude=\n 52.52725, longitude=13.4123)\n self.assertIsNotNone(station)\n\n def test_get_station_departures(self):\n station = self.client.stations.get_station_departures(id=900000013102)\n self.assertIsNotNone(station)\n\n def test_get_all_stations(self):\n stations = self.client.stations.get_all_stations()\n self.assertEqual(len(stations), 13098)\n", "<import token>\n<assignment token>\n<code token>\n\n\nclass TestStations(unittest.TestCase):\n <function token>\n <function token>\n\n def test_get_nearby_stations(self):\n station = self.client.stations.get_nearby_stations(latitude=\n 52.52725, longitude=13.4123)\n self.assertIsNotNone(station)\n\n def test_get_station_departures(self):\n station = self.client.stations.get_station_departures(id=900000013102)\n self.assertIsNotNone(station)\n\n def test_get_all_stations(self):\n stations = self.client.stations.get_all_stations()\n self.assertEqual(len(stations), 13098)\n", "<import token>\n<assignment token>\n<code token>\n\n\nclass TestStations(unittest.TestCase):\n <function token>\n <function token>\n\n def test_get_nearby_stations(self):\n station = self.client.stations.get_nearby_stations(latitude=\n 52.52725, longitude=13.4123)\n self.assertIsNotNone(station)\n <function token>\n\n def test_get_all_stations(self):\n stations = self.client.stations.get_all_stations()\n self.assertEqual(len(stations), 13098)\n", "<import token>\n<assignment token>\n<code token>\n\n\nclass TestStations(unittest.TestCase):\n <function token>\n <function token>\n\n def test_get_nearby_stations(self):\n station = self.client.stations.get_nearby_stations(latitude=\n 52.52725, longitude=13.4123)\n self.assertIsNotNone(station)\n <function token>\n <function token>\n", "<import token>\n<assignment token>\n<code token>\n\n\nclass TestStations(unittest.TestCase):\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n<assignment token>\n<code token>\n<class token>\n" ]
false
99,018
e59277325c28f99fe833d4461fc8a43f1b1a4924
from tkinter import * from tkinter import ttk import requests import xmltodict import json import csv import APITM from fdb import services import fdb import time import threading from tkinter import messagebox def Quit(): global root root.destroy() root.quit() def sms_Quit(): global sms_root sms_root.destroy() sms_root.quit() def multifon_main_quit(): global multifon_main multifon_main.destroy() multifon_main.quit() def poisk_region_quit(): global poisk_region_main poisk_region_main.destroy() poisk_region_main.quit() def poisk_region_coords_quit(): global poisk_region_coords poisk_region_coords.destroy() poisk_region_coords.quit() def sms(): def make_menu(w): global the_menu the_menu = Menu(w, tearoff=0) the_menu.add_command(label="Cut") the_menu.add_command(label="Copy") the_menu.add_command(label="Paste") def show_menu(e): w = e.widget the_menu.entryconfigure("Cut", command=lambda: w.event_generate("<<Cut>>")) the_menu.entryconfigure("Copy", command=lambda: w.event_generate("<<Copy>>")) the_menu.entryconfigure("Paste", command=lambda: w.event_generate("<<Paste>>")) the_menu.tk.call("tk_popup", the_menu, e.x_root, e.y_root) def paste_clipboard(event): event.widget.delete(0, 'end') event.widget.insert(0, sms_root.clipboard_get()) def smssend(): global dict_entry r = requests.get('http://smsc.ru/sys/send.php?' 'login=' + dict_entry['login'].get() + '&psw=' + dict_entry['passw'].get() + '&phones=' + dict_entry['phone'].get() + '&mes=' + dict_entry['msg'].get()) label.config(text=r.text) global sms_root sms_root = Tk() make_menu(sms_root) sms_root.title("Отправка СМС") sms_root.protocol('WM_DELETE_WINDOW', sms_Quit) global dict_entry dict_entry={} for s in ["login", "passw", "phone","msg"]: key =s s = ttk.Entry(sms_root);s.pack() s1 = ttk.Label(sms_root,text=key);s1.pack() s.bind('<ButtonRelease-2>', paste_clipboard) s.bind('<ButtonRelease-3>', show_menu) dict_entry [key]=s label = ttk.Label(sms_root);label.pack() ttk.Button(sms_root, text="Отправить", command=smssend).pack() ttk.Button(sms_root,text="ВЫХОД(EXIT)", command=sms_Quit).pack() sms_root.focus_set() sms_root.mainloop() def multifon(): global dict_entry global multifon_main global var1 def multifon_routing(): global dict_entry r = requests.get('https://sm.megafon.ru/sm/client/routing?login=' + dict_entry['number'].get() + '@multifon.ru&password=' + dict_entry['passw'].get()) json_r = xmltodict.parse(r.text) try: if json_r['response']['routing'] == '1': label_chek.config(text='только в «МультиФон»') elif json_r['response']['routing'] == '0': label_chek.config(text='только телефон') elif json_r['response']['routing'] == '2': label_chek.config(text='телефон и «МультиФон»') except KeyError: label_chek.config(text=json_r['response']['result']['description']) def multifon_set_routing(): global dict_entry r = requests.get('https://sm.megafon.ru/sm/client/routing/set?login=' + dict_entry['number'].get() + '@multifon.ru&password=' + dict_entry['passw'].get() + '&routing=' + str(var1.get())) json_r = xmltodict.parse(r.text) label_set.config(text='Результат = ' + json_r['response']['result']['description']) def make_menu(w): global the_menu the_menu = Menu(w, tearoff=0) the_menu.add_command(label="Cut") the_menu.add_command(label="Copy") the_menu.add_command(label="Paste") def show_menu(e): w = e.widget the_menu.entryconfigure("Cut", command=lambda: w.event_generate("<<Cut>>")) the_menu.entryconfigure("Copy", command=lambda: w.event_generate("<<Copy>>")) the_menu.entryconfigure("Paste", command=lambda: w.event_generate("<<Paste>>")) the_menu.tk.call("tk_popup", the_menu, e.x_root, e.y_root) def paste_clipboard(event): event.widget.delete(0, 'end') event.widget.insert(0, multifon_main.clipboard_get()) multifon_main=Tk() make_menu(multifon_main) dict_entry={} for s in ["number", "passw"]: key =s s = ttk.Entry(multifon_main,text=key);s.pack() s1 = ttk.Label(multifon_main, text=key); s1.pack() s.bind('<ButtonRelease-2>', paste_clipboard) s.bind('<ButtonRelease-3>', show_menu) dict_entry [key]=s ttk.Button(multifon_main, text="Проверить", command=multifon_routing).pack() label_chek = ttk.Label(multifon_main);label_chek.pack() ttk.Button(multifon_main, text="Переключить", command=multifon_set_routing).pack() var1 = IntVar(multifon_main) ttk.Radiobutton(multifon_main, text=r'только телефон', variable=var1, value=0).pack(anchor = W) ttk.Radiobutton(multifon_main, text=r'только в «МультиФон»', variable=var1, value=1).pack(anchor = W) ttk.Radiobutton(multifon_main, text=r'телефон и «МультиФон»', variable=var1, value=2).pack(anchor = W) label_set = ttk.Label(multifon_main);label_set.pack() ttk.Button(multifon_main, text="ВЫХОД(EXIT)", command=multifon_main_quit).pack() multifon_main.focus_set() multifon_main.mainloop() def poisk_region(): def show_menu(e): w = e.widget the_menu.entryconfigure("Cut", command=lambda: w.event_generate("<<Cut>>")) the_menu.entryconfigure("Copy", command=lambda: w.event_generate("<<Copy>>")) the_menu.entryconfigure("Paste", command=lambda: w.event_generate("<<Paste>>")) the_menu.tk.call("tk_popup", the_menu, e.x_root, e.y_root) def make_menu(w): global the_menu the_menu = Menu(w, tearoff=0) the_menu.add_command(label="Cut") the_menu.add_command(label="Copy") the_menu.add_command(label="Paste") global dict_entry global poisk_region_main dict_entry={} poisk_region_main=Tk() make_menu(poisk_region_main) def paste_clipboard(event): event.widget.delete(0, 'end') event.widget.insert(0, poisk_region_main.clipboard_get()) def poisk(): global dict_entry r = requests.get('http://catalog.api.2gis.ru/geo/search?q=' + dict_entry['town'].get() + '&types=city,settlement' '&format=short&version=1.3' '&key=' + dict_entry['key'].get()) decoded = json.loads(r.text) try: list = decoded['result'] label_region.config(text='Регион= '+str(list[0]['project_id'])) except: label_region.config(text='error_message= ' + decoded['error_message']+' '+'\n error_code= ' + decoded['error_code']) for s in ["town", "key"]: key =s s = ttk.Entry(poisk_region_main,text=key);s.pack() s1 = ttk.Label(poisk_region_main, text=key); s1.pack() s.bind('<ButtonRelease-2>', paste_clipboard) s.bind('<ButtonRelease-3>', show_menu) dict_entry [key]=s label_region = ttk.Label(poisk_region_main, text='');label_region.pack() ttk.Button(poisk_region_main, text="Найти", command=poisk).pack() ttk.Button(poisk_region_main, text="ВЫХОД(EXIT)", command=poisk_region_quit).pack() poisk_region_main.focus_set() poisk_region_main.mainloop() def poisk_region_coords(): global poisk_region_coords global dict_entry def paste_clipboard(event): event.widget.delete(0, 'end') event.widget.insert(0, poisk_region_coords.clipboard_get()) def show_menu(e): w = e.widget the_menu.entryconfigure("Cut", command=lambda: w.event_generate("<<Cut>>")) the_menu.entryconfigure("Copy", command=lambda: w.event_generate("<<Copy>>")) the_menu.entryconfigure("Paste", command=lambda: w.event_generate("<<Paste>>")) the_menu.tk.call("tk_popup", the_menu, e.x_root, e.y_root) def make_menu(w): global the_menu the_menu = Menu(w, tearoff=0) the_menu.add_command(label="Cut") the_menu.add_command(label="Copy") the_menu.add_command(label="Paste") def poisk_coords(): global dict_entry global poisk_region_coords town = dict_entry['town'].get() key = dict_entry['key'].get() r = requests.get( 'http://catalog.api.2gis.ru/geo/search?q=' + town + '&types=city,settlement&output=xml&version=1.3&key=' + key) json_r = xmltodict.parse(r.text) try: string = str(json_r['root']['result']['geoObject']['selection']) s = string.find('),(') string = string.lstrip('MULTIPOLYGON(((') string = string.replace(')))', '') string = string.replace('POLYGON((', '') string = string.replace('))', '') if s == -1: q = string.split(' ') q_last = q.pop() q_first = q.pop(0) q_all = q_last + ',' + q_first q.append(q_all) with open(town + '.csv', 'w', newline="") as f: writer = csv.writer(f) for i in q: string = i.split(',') writer.writerow(string) else: string = string.split('),(') i = 0 name = 1 for i in string: q = i.split(' ') q_last = q.pop() q_first = q.pop(0) q_all = q_last + ',' + q_first q.append(q_all) with open(town + str(name) + '.csv', 'w', newline="") as f: writer = csv.writer(f) for i in q: string = i.split(',') writer.writerow(string) name = name + 1 messagebox.showinfo('Инфо', 'Все готово') poisk_region_coords.focus_set() poisk_region_coords.focus_force() except: messagebox.showwarning('Error', 'error_message= ' + json_r['root']['error_message']+'\n'+'error_code= ' + json_r['root']['error_code'] + '\n') poisk_region_coords.focus_set() poisk_region_coords.focus_force() dict_entry={} poisk_region_coords = Tk() make_menu(poisk_region_coords) for s in ["town", "key"]: key =s s = ttk.Entry(poisk_region_coords,text=key);s.pack() s1 = ttk.Label(poisk_region_coords, text=key); s1.pack() s.bind('<ButtonRelease-2>', paste_clipboard) s.bind('<ButtonRelease-3>', show_menu) dict_entry [key]=s ttk.Button(poisk_region_coords, text="Найти", command=poisk_coords).pack() ttk.Button(poisk_region_coords, text="ВЫХОД(EXIT)", command=poisk_region_coords_quit).pack() poisk_region_coords.focus_force() poisk_region_coords.mainloop() root = Tk() root.title("Главное") '***************************************************' sms = ttk.Button(text="Отправим смску через смсц", style="C.TButton", command=sms).pack() multifon = ttk.Button(text="Узнаем роутинг мультифона", style="C.TButton", command=multifon).pack() gis2 = ttk.Button(text="Поиском региона 2ГИС по городу", style="C.TButton", command=poisk_region).pack() coords_town = ttk.Button(text="Выгрузим координаты города по названию", style="C.TButton", command=poisk_region_coords).pack() '***************************************************' API = ttk.Button(text="Запрос в АПИ ТМ", style="C.TButton").pack() backup = ttk.Button(text="Бэкап базы *.FDB", style="C.TButton").pack() oktell = ttk.Button(text="Oktell", style="C.TButton").pack() tracert = ttk.Button(text="Запустить Tracert", style="C.TButton").pack() exit = ttk.Button(text="ВЫХОД(EXIT)", style="C.TButton", command=Quit).pack() root.protocol('WM_DELETE_WINDOW', Quit) root.mainloop()
[ "from tkinter import *\nfrom tkinter import ttk\nimport requests\nimport xmltodict\nimport json\nimport csv\nimport APITM\nfrom fdb import services\nimport fdb\nimport time\nimport threading\nfrom tkinter import messagebox\n\n\ndef Quit():\n global root\n root.destroy()\n root.quit()\ndef sms_Quit():\n global sms_root\n sms_root.destroy()\n sms_root.quit()\ndef multifon_main_quit():\n global multifon_main\n multifon_main.destroy()\n multifon_main.quit()\ndef poisk_region_quit():\n global poisk_region_main\n poisk_region_main.destroy()\n poisk_region_main.quit()\ndef poisk_region_coords_quit():\n global poisk_region_coords\n poisk_region_coords.destroy()\n poisk_region_coords.quit()\n\ndef sms():\n def make_menu(w):\n global the_menu\n the_menu = Menu(w, tearoff=0)\n the_menu.add_command(label=\"Cut\")\n the_menu.add_command(label=\"Copy\")\n the_menu.add_command(label=\"Paste\")\n def show_menu(e):\n w = e.widget\n the_menu.entryconfigure(\"Cut\", command=lambda: w.event_generate(\"<<Cut>>\"))\n the_menu.entryconfigure(\"Copy\", command=lambda: w.event_generate(\"<<Copy>>\"))\n the_menu.entryconfigure(\"Paste\", command=lambda: w.event_generate(\"<<Paste>>\"))\n the_menu.tk.call(\"tk_popup\", the_menu, e.x_root, e.y_root)\n def paste_clipboard(event):\n event.widget.delete(0, 'end')\n event.widget.insert(0, sms_root.clipboard_get())\n\n def smssend():\n global dict_entry\n r = requests.get('http://smsc.ru/sys/send.php?'\n 'login=' + dict_entry['login'].get() +\n '&psw=' + dict_entry['passw'].get() +\n '&phones=' + dict_entry['phone'].get() +\n '&mes=' + dict_entry['msg'].get())\n label.config(text=r.text)\n global sms_root\n sms_root = Tk()\n make_menu(sms_root)\n sms_root.title(\"Отправка СМС\")\n sms_root.protocol('WM_DELETE_WINDOW', sms_Quit)\n global dict_entry\n dict_entry={}\n for s in [\"login\", \"passw\", \"phone\",\"msg\"]:\n key =s\n s = ttk.Entry(sms_root);s.pack()\n s1 = ttk.Label(sms_root,text=key);s1.pack()\n s.bind('<ButtonRelease-2>', paste_clipboard)\n s.bind('<ButtonRelease-3>', show_menu)\n dict_entry [key]=s\n label = ttk.Label(sms_root);label.pack()\n ttk.Button(sms_root, text=\"Отправить\", command=smssend).pack()\n ttk.Button(sms_root,text=\"ВЫХОД(EXIT)\", command=sms_Quit).pack()\n sms_root.focus_set()\n sms_root.mainloop()\ndef multifon():\n global dict_entry\n global multifon_main\n global var1\n def multifon_routing():\n global dict_entry\n r = requests.get('https://sm.megafon.ru/sm/client/routing?login=' + dict_entry['number'].get() + '@multifon.ru&password=' + dict_entry['passw'].get())\n json_r = xmltodict.parse(r.text)\n try:\n if json_r['response']['routing'] == '1':\n label_chek.config(text='только в «МультиФон»')\n elif json_r['response']['routing'] == '0':\n label_chek.config(text='только телефон')\n elif json_r['response']['routing'] == '2':\n label_chek.config(text='телефон и «МультиФон»')\n except KeyError:\n label_chek.config(text=json_r['response']['result']['description'])\n def multifon_set_routing():\n global dict_entry\n r = requests.get('https://sm.megafon.ru/sm/client/routing/set?login='\n + dict_entry['number'].get()\n + '@multifon.ru&password='\n + dict_entry['passw'].get()\n + '&routing=' + str(var1.get()))\n json_r = xmltodict.parse(r.text)\n label_set.config(text='Результат = ' + json_r['response']['result']['description'])\n def make_menu(w):\n global the_menu\n the_menu = Menu(w, tearoff=0)\n the_menu.add_command(label=\"Cut\")\n the_menu.add_command(label=\"Copy\")\n the_menu.add_command(label=\"Paste\")\n def show_menu(e):\n w = e.widget\n the_menu.entryconfigure(\"Cut\", command=lambda: w.event_generate(\"<<Cut>>\"))\n the_menu.entryconfigure(\"Copy\", command=lambda: w.event_generate(\"<<Copy>>\"))\n the_menu.entryconfigure(\"Paste\", command=lambda: w.event_generate(\"<<Paste>>\"))\n the_menu.tk.call(\"tk_popup\", the_menu, e.x_root, e.y_root)\n def paste_clipboard(event):\n event.widget.delete(0, 'end')\n event.widget.insert(0, multifon_main.clipboard_get())\n\n multifon_main=Tk()\n make_menu(multifon_main)\n dict_entry={}\n\n\n for s in [\"number\", \"passw\"]:\n key =s\n s = ttk.Entry(multifon_main,text=key);s.pack()\n s1 = ttk.Label(multifon_main, text=key); s1.pack()\n s.bind('<ButtonRelease-2>', paste_clipboard)\n s.bind('<ButtonRelease-3>', show_menu)\n dict_entry [key]=s\n ttk.Button(multifon_main, text=\"Проверить\", command=multifon_routing).pack()\n label_chek = ttk.Label(multifon_main);label_chek.pack()\n ttk.Button(multifon_main, text=\"Переключить\", command=multifon_set_routing).pack()\n var1 = IntVar(multifon_main)\n ttk.Radiobutton(multifon_main, text=r'только телефон', variable=var1, value=0).pack(anchor = W)\n ttk.Radiobutton(multifon_main, text=r'только в «МультиФон»', variable=var1, value=1).pack(anchor = W)\n ttk.Radiobutton(multifon_main, text=r'телефон и «МультиФон»', variable=var1, value=2).pack(anchor = W)\n label_set = ttk.Label(multifon_main);label_set.pack()\n ttk.Button(multifon_main, text=\"ВЫХОД(EXIT)\", command=multifon_main_quit).pack()\n multifon_main.focus_set()\n multifon_main.mainloop()\ndef poisk_region():\n def show_menu(e):\n w = e.widget\n the_menu.entryconfigure(\"Cut\", command=lambda: w.event_generate(\"<<Cut>>\"))\n the_menu.entryconfigure(\"Copy\", command=lambda: w.event_generate(\"<<Copy>>\"))\n the_menu.entryconfigure(\"Paste\", command=lambda: w.event_generate(\"<<Paste>>\"))\n the_menu.tk.call(\"tk_popup\", the_menu, e.x_root, e.y_root)\n def make_menu(w):\n global the_menu\n the_menu = Menu(w, tearoff=0)\n the_menu.add_command(label=\"Cut\")\n the_menu.add_command(label=\"Copy\")\n the_menu.add_command(label=\"Paste\")\n global dict_entry\n global poisk_region_main\n dict_entry={}\n poisk_region_main=Tk()\n make_menu(poisk_region_main)\n def paste_clipboard(event):\n event.widget.delete(0, 'end')\n event.widget.insert(0, poisk_region_main.clipboard_get())\n def poisk():\n global dict_entry\n r = requests.get('http://catalog.api.2gis.ru/geo/search?q='\n + dict_entry['town'].get() +\n '&types=city,settlement'\n '&format=short&version=1.3'\n '&key=' + dict_entry['key'].get())\n decoded = json.loads(r.text)\n try:\n list = decoded['result']\n label_region.config(text='Регион= '+str(list[0]['project_id']))\n except:\n\n label_region.config(text='error_message= ' + decoded['error_message']+' '+'\\n error_code= ' + decoded['error_code'])\n\n for s in [\"town\", \"key\"]:\n key =s\n s = ttk.Entry(poisk_region_main,text=key);s.pack()\n s1 = ttk.Label(poisk_region_main, text=key); s1.pack()\n s.bind('<ButtonRelease-2>', paste_clipboard)\n s.bind('<ButtonRelease-3>', show_menu)\n dict_entry [key]=s\n label_region = ttk.Label(poisk_region_main, text='');label_region.pack()\n ttk.Button(poisk_region_main, text=\"Найти\", command=poisk).pack()\n ttk.Button(poisk_region_main, text=\"ВЫХОД(EXIT)\", command=poisk_region_quit).pack()\n\n poisk_region_main.focus_set()\n poisk_region_main.mainloop()\n\ndef poisk_region_coords():\n global poisk_region_coords\n global dict_entry\n def paste_clipboard(event):\n event.widget.delete(0, 'end')\n event.widget.insert(0, poisk_region_coords.clipboard_get())\n def show_menu(e):\n w = e.widget\n the_menu.entryconfigure(\"Cut\", command=lambda: w.event_generate(\"<<Cut>>\"))\n the_menu.entryconfigure(\"Copy\", command=lambda: w.event_generate(\"<<Copy>>\"))\n the_menu.entryconfigure(\"Paste\", command=lambda: w.event_generate(\"<<Paste>>\"))\n the_menu.tk.call(\"tk_popup\", the_menu, e.x_root, e.y_root)\n def make_menu(w):\n global the_menu\n the_menu = Menu(w, tearoff=0)\n the_menu.add_command(label=\"Cut\")\n the_menu.add_command(label=\"Copy\")\n the_menu.add_command(label=\"Paste\")\n\n def poisk_coords():\n global dict_entry\n global poisk_region_coords\n town = dict_entry['town'].get()\n key = dict_entry['key'].get()\n r = requests.get(\n 'http://catalog.api.2gis.ru/geo/search?q=' + town + '&types=city,settlement&output=xml&version=1.3&key=' + key)\n json_r = xmltodict.parse(r.text)\n try:\n string = str(json_r['root']['result']['geoObject']['selection'])\n s = string.find('),(')\n string = string.lstrip('MULTIPOLYGON(((')\n string = string.replace(')))', '')\n string = string.replace('POLYGON((', '')\n string = string.replace('))', '')\n if s == -1:\n q = string.split(' ')\n q_last = q.pop()\n q_first = q.pop(0)\n q_all = q_last + ',' + q_first\n q.append(q_all)\n with open(town + '.csv', 'w', newline=\"\") as f:\n writer = csv.writer(f)\n for i in q:\n string = i.split(',')\n writer.writerow(string)\n else:\n string = string.split('),(')\n i = 0\n name = 1\n for i in string:\n q = i.split(' ')\n q_last = q.pop()\n q_first = q.pop(0)\n q_all = q_last + ',' + q_first\n q.append(q_all)\n with open(town + str(name) + '.csv', 'w', newline=\"\") as f:\n writer = csv.writer(f)\n for i in q:\n string = i.split(',')\n writer.writerow(string)\n name = name + 1\n messagebox.showinfo('Инфо', 'Все готово')\n poisk_region_coords.focus_set()\n poisk_region_coords.focus_force()\n except:\n messagebox.showwarning('Error', 'error_message= ' + json_r['root']['error_message']+'\\n'+'error_code= ' + json_r['root']['error_code'] + '\\n')\n poisk_region_coords.focus_set()\n poisk_region_coords.focus_force()\n\n dict_entry={}\n poisk_region_coords = Tk()\n make_menu(poisk_region_coords)\n for s in [\"town\", \"key\"]:\n key =s\n s = ttk.Entry(poisk_region_coords,text=key);s.pack()\n s1 = ttk.Label(poisk_region_coords, text=key); s1.pack()\n s.bind('<ButtonRelease-2>', paste_clipboard)\n s.bind('<ButtonRelease-3>', show_menu)\n dict_entry [key]=s\n ttk.Button(poisk_region_coords, text=\"Найти\", command=poisk_coords).pack()\n ttk.Button(poisk_region_coords, text=\"ВЫХОД(EXIT)\", command=poisk_region_coords_quit).pack()\n poisk_region_coords.focus_force()\n poisk_region_coords.mainloop()\n\nroot = Tk()\nroot.title(\"Главное\")\n'***************************************************'\nsms = ttk.Button(text=\"Отправим смску через смсц\", style=\"C.TButton\", command=sms).pack()\nmultifon = ttk.Button(text=\"Узнаем роутинг мультифона\", style=\"C.TButton\", command=multifon).pack()\ngis2 = ttk.Button(text=\"Поиском региона 2ГИС по городу\", style=\"C.TButton\", command=poisk_region).pack()\ncoords_town = ttk.Button(text=\"Выгрузим координаты города по названию\", style=\"C.TButton\", command=poisk_region_coords).pack()\n'***************************************************'\nAPI = ttk.Button(text=\"Запрос в АПИ ТМ\", style=\"C.TButton\").pack()\nbackup = ttk.Button(text=\"Бэкап базы *.FDB\", style=\"C.TButton\").pack()\noktell = ttk.Button(text=\"Oktell\", style=\"C.TButton\").pack()\ntracert = ttk.Button(text=\"Запустить Tracert\", style=\"C.TButton\").pack()\nexit = ttk.Button(text=\"ВЫХОД(EXIT)\", style=\"C.TButton\", command=Quit).pack()\nroot.protocol('WM_DELETE_WINDOW', Quit)\nroot.mainloop()", "from tkinter import *\nfrom tkinter import ttk\nimport requests\nimport xmltodict\nimport json\nimport csv\nimport APITM\nfrom fdb import services\nimport fdb\nimport time\nimport threading\nfrom tkinter import messagebox\n\n\ndef Quit():\n global root\n root.destroy()\n root.quit()\n\n\ndef sms_Quit():\n global sms_root\n sms_root.destroy()\n sms_root.quit()\n\n\ndef multifon_main_quit():\n global multifon_main\n multifon_main.destroy()\n multifon_main.quit()\n\n\ndef poisk_region_quit():\n global poisk_region_main\n poisk_region_main.destroy()\n poisk_region_main.quit()\n\n\ndef poisk_region_coords_quit():\n global poisk_region_coords\n poisk_region_coords.destroy()\n poisk_region_coords.quit()\n\n\ndef sms():\n\n def make_menu(w):\n global the_menu\n the_menu = Menu(w, tearoff=0)\n the_menu.add_command(label='Cut')\n the_menu.add_command(label='Copy')\n the_menu.add_command(label='Paste')\n\n def show_menu(e):\n w = e.widget\n the_menu.entryconfigure('Cut', command=lambda : w.event_generate(\n '<<Cut>>'))\n the_menu.entryconfigure('Copy', command=lambda : w.event_generate(\n '<<Copy>>'))\n the_menu.entryconfigure('Paste', command=lambda : w.event_generate(\n '<<Paste>>'))\n the_menu.tk.call('tk_popup', the_menu, e.x_root, e.y_root)\n\n def paste_clipboard(event):\n event.widget.delete(0, 'end')\n event.widget.insert(0, sms_root.clipboard_get())\n\n def smssend():\n global dict_entry\n r = requests.get('http://smsc.ru/sys/send.php?login=' + dict_entry[\n 'login'].get() + '&psw=' + dict_entry['passw'].get() +\n '&phones=' + dict_entry['phone'].get() + '&mes=' + dict_entry[\n 'msg'].get())\n label.config(text=r.text)\n global sms_root\n sms_root = Tk()\n make_menu(sms_root)\n sms_root.title('Отправка СМС')\n sms_root.protocol('WM_DELETE_WINDOW', sms_Quit)\n global dict_entry\n dict_entry = {}\n for s in ['login', 'passw', 'phone', 'msg']:\n key = s\n s = ttk.Entry(sms_root)\n s.pack()\n s1 = ttk.Label(sms_root, text=key)\n s1.pack()\n s.bind('<ButtonRelease-2>', paste_clipboard)\n s.bind('<ButtonRelease-3>', show_menu)\n dict_entry[key] = s\n label = ttk.Label(sms_root)\n label.pack()\n ttk.Button(sms_root, text='Отправить', command=smssend).pack()\n ttk.Button(sms_root, text='ВЫХОД(EXIT)', command=sms_Quit).pack()\n sms_root.focus_set()\n sms_root.mainloop()\n\n\ndef multifon():\n global dict_entry\n global multifon_main\n global var1\n\n def multifon_routing():\n global dict_entry\n r = requests.get('https://sm.megafon.ru/sm/client/routing?login=' +\n dict_entry['number'].get() + '@multifon.ru&password=' +\n dict_entry['passw'].get())\n json_r = xmltodict.parse(r.text)\n try:\n if json_r['response']['routing'] == '1':\n label_chek.config(text='только в «МультиФон»')\n elif json_r['response']['routing'] == '0':\n label_chek.config(text='только телефон')\n elif json_r['response']['routing'] == '2':\n label_chek.config(text='телефон и «МультиФон»')\n except KeyError:\n label_chek.config(text=json_r['response']['result']['description'])\n\n def multifon_set_routing():\n global dict_entry\n r = requests.get(\n 'https://sm.megafon.ru/sm/client/routing/set?login=' +\n dict_entry['number'].get() + '@multifon.ru&password=' +\n dict_entry['passw'].get() + '&routing=' + str(var1.get()))\n json_r = xmltodict.parse(r.text)\n label_set.config(text='Результат = ' + json_r['response']['result']\n ['description'])\n\n def make_menu(w):\n global the_menu\n the_menu = Menu(w, tearoff=0)\n the_menu.add_command(label='Cut')\n the_menu.add_command(label='Copy')\n the_menu.add_command(label='Paste')\n\n def show_menu(e):\n w = e.widget\n the_menu.entryconfigure('Cut', command=lambda : w.event_generate(\n '<<Cut>>'))\n the_menu.entryconfigure('Copy', command=lambda : w.event_generate(\n '<<Copy>>'))\n the_menu.entryconfigure('Paste', command=lambda : w.event_generate(\n '<<Paste>>'))\n the_menu.tk.call('tk_popup', the_menu, e.x_root, e.y_root)\n\n def paste_clipboard(event):\n event.widget.delete(0, 'end')\n event.widget.insert(0, multifon_main.clipboard_get())\n multifon_main = Tk()\n make_menu(multifon_main)\n dict_entry = {}\n for s in ['number', 'passw']:\n key = s\n s = ttk.Entry(multifon_main, text=key)\n s.pack()\n s1 = ttk.Label(multifon_main, text=key)\n s1.pack()\n s.bind('<ButtonRelease-2>', paste_clipboard)\n s.bind('<ButtonRelease-3>', show_menu)\n dict_entry[key] = s\n ttk.Button(multifon_main, text='Проверить', command=multifon_routing).pack(\n )\n label_chek = ttk.Label(multifon_main)\n label_chek.pack()\n ttk.Button(multifon_main, text='Переключить', command=multifon_set_routing\n ).pack()\n var1 = IntVar(multifon_main)\n ttk.Radiobutton(multifon_main, text='только телефон', variable=var1,\n value=0).pack(anchor=W)\n ttk.Radiobutton(multifon_main, text='только в «МультиФон»', variable=\n var1, value=1).pack(anchor=W)\n ttk.Radiobutton(multifon_main, text='телефон и «МультиФон»', variable=\n var1, value=2).pack(anchor=W)\n label_set = ttk.Label(multifon_main)\n label_set.pack()\n ttk.Button(multifon_main, text='ВЫХОД(EXIT)', command=multifon_main_quit\n ).pack()\n multifon_main.focus_set()\n multifon_main.mainloop()\n\n\ndef poisk_region():\n\n def show_menu(e):\n w = e.widget\n the_menu.entryconfigure('Cut', command=lambda : w.event_generate(\n '<<Cut>>'))\n the_menu.entryconfigure('Copy', command=lambda : w.event_generate(\n '<<Copy>>'))\n the_menu.entryconfigure('Paste', command=lambda : w.event_generate(\n '<<Paste>>'))\n the_menu.tk.call('tk_popup', the_menu, e.x_root, e.y_root)\n\n def make_menu(w):\n global the_menu\n the_menu = Menu(w, tearoff=0)\n the_menu.add_command(label='Cut')\n the_menu.add_command(label='Copy')\n the_menu.add_command(label='Paste')\n global dict_entry\n global poisk_region_main\n dict_entry = {}\n poisk_region_main = Tk()\n make_menu(poisk_region_main)\n\n def paste_clipboard(event):\n event.widget.delete(0, 'end')\n event.widget.insert(0, poisk_region_main.clipboard_get())\n\n def poisk():\n global dict_entry\n r = requests.get('http://catalog.api.2gis.ru/geo/search?q=' +\n dict_entry['town'].get() +\n '&types=city,settlement&format=short&version=1.3&key=' +\n dict_entry['key'].get())\n decoded = json.loads(r.text)\n try:\n list = decoded['result']\n label_region.config(text='Регион= ' + str(list[0]['project_id']))\n except:\n label_region.config(text='error_message= ' + decoded[\n 'error_message'] + ' ' + '\\n error_code= ' + decoded[\n 'error_code'])\n for s in ['town', 'key']:\n key = s\n s = ttk.Entry(poisk_region_main, text=key)\n s.pack()\n s1 = ttk.Label(poisk_region_main, text=key)\n s1.pack()\n s.bind('<ButtonRelease-2>', paste_clipboard)\n s.bind('<ButtonRelease-3>', show_menu)\n dict_entry[key] = s\n label_region = ttk.Label(poisk_region_main, text='')\n label_region.pack()\n ttk.Button(poisk_region_main, text='Найти', command=poisk).pack()\n ttk.Button(poisk_region_main, text='ВЫХОД(EXIT)', command=poisk_region_quit\n ).pack()\n poisk_region_main.focus_set()\n poisk_region_main.mainloop()\n\n\ndef poisk_region_coords():\n global poisk_region_coords\n global dict_entry\n\n def paste_clipboard(event):\n event.widget.delete(0, 'end')\n event.widget.insert(0, poisk_region_coords.clipboard_get())\n\n def show_menu(e):\n w = e.widget\n the_menu.entryconfigure('Cut', command=lambda : w.event_generate(\n '<<Cut>>'))\n the_menu.entryconfigure('Copy', command=lambda : w.event_generate(\n '<<Copy>>'))\n the_menu.entryconfigure('Paste', command=lambda : w.event_generate(\n '<<Paste>>'))\n the_menu.tk.call('tk_popup', the_menu, e.x_root, e.y_root)\n\n def make_menu(w):\n global the_menu\n the_menu = Menu(w, tearoff=0)\n the_menu.add_command(label='Cut')\n the_menu.add_command(label='Copy')\n the_menu.add_command(label='Paste')\n\n def poisk_coords():\n global dict_entry\n global poisk_region_coords\n town = dict_entry['town'].get()\n key = dict_entry['key'].get()\n r = requests.get('http://catalog.api.2gis.ru/geo/search?q=' + town +\n '&types=city,settlement&output=xml&version=1.3&key=' + key)\n json_r = xmltodict.parse(r.text)\n try:\n string = str(json_r['root']['result']['geoObject']['selection'])\n s = string.find('),(')\n string = string.lstrip('MULTIPOLYGON(((')\n string = string.replace(')))', '')\n string = string.replace('POLYGON((', '')\n string = string.replace('))', '')\n if s == -1:\n q = string.split(' ')\n q_last = q.pop()\n q_first = q.pop(0)\n q_all = q_last + ',' + q_first\n q.append(q_all)\n with open(town + '.csv', 'w', newline='') as f:\n writer = csv.writer(f)\n for i in q:\n string = i.split(',')\n writer.writerow(string)\n else:\n string = string.split('),(')\n i = 0\n name = 1\n for i in string:\n q = i.split(' ')\n q_last = q.pop()\n q_first = q.pop(0)\n q_all = q_last + ',' + q_first\n q.append(q_all)\n with open(town + str(name) + '.csv', 'w', newline='') as f:\n writer = csv.writer(f)\n for i in q:\n string = i.split(',')\n writer.writerow(string)\n name = name + 1\n messagebox.showinfo('Инфо', 'Все готово')\n poisk_region_coords.focus_set()\n poisk_region_coords.focus_force()\n except:\n messagebox.showwarning('Error', 'error_message= ' + json_r[\n 'root']['error_message'] + '\\n' + 'error_code= ' + json_r[\n 'root']['error_code'] + '\\n')\n poisk_region_coords.focus_set()\n poisk_region_coords.focus_force()\n dict_entry = {}\n poisk_region_coords = Tk()\n make_menu(poisk_region_coords)\n for s in ['town', 'key']:\n key = s\n s = ttk.Entry(poisk_region_coords, text=key)\n s.pack()\n s1 = ttk.Label(poisk_region_coords, text=key)\n s1.pack()\n s.bind('<ButtonRelease-2>', paste_clipboard)\n s.bind('<ButtonRelease-3>', show_menu)\n dict_entry[key] = s\n ttk.Button(poisk_region_coords, text='Найти', command=poisk_coords).pack()\n ttk.Button(poisk_region_coords, text='ВЫХОД(EXIT)', command=\n poisk_region_coords_quit).pack()\n poisk_region_coords.focus_force()\n poisk_region_coords.mainloop()\n\n\nroot = Tk()\nroot.title('Главное')\n<docstring token>\nsms = ttk.Button(text='Отправим смску через смсц', style='C.TButton',\n command=sms).pack()\nmultifon = ttk.Button(text='Узнаем роутинг мультифона', style='C.TButton',\n command=multifon).pack()\ngis2 = ttk.Button(text='Поиском региона 2ГИС по городу', style='C.TButton',\n command=poisk_region).pack()\ncoords_town = ttk.Button(text='Выгрузим координаты города по названию',\n style='C.TButton', command=poisk_region_coords).pack()\n<docstring token>\nAPI = ttk.Button(text='Запрос в АПИ ТМ', style='C.TButton').pack()\nbackup = ttk.Button(text='Бэкап базы *.FDB', style='C.TButton').pack()\noktell = ttk.Button(text='Oktell', style='C.TButton').pack()\ntracert = ttk.Button(text='Запустить Tracert', style='C.TButton').pack()\nexit = ttk.Button(text='ВЫХОД(EXIT)', style='C.TButton', command=Quit).pack()\nroot.protocol('WM_DELETE_WINDOW', Quit)\nroot.mainloop()\n", "<import token>\n\n\ndef Quit():\n global root\n root.destroy()\n root.quit()\n\n\ndef sms_Quit():\n global sms_root\n sms_root.destroy()\n sms_root.quit()\n\n\ndef multifon_main_quit():\n global multifon_main\n multifon_main.destroy()\n multifon_main.quit()\n\n\ndef poisk_region_quit():\n global poisk_region_main\n poisk_region_main.destroy()\n poisk_region_main.quit()\n\n\ndef poisk_region_coords_quit():\n global poisk_region_coords\n poisk_region_coords.destroy()\n poisk_region_coords.quit()\n\n\ndef sms():\n\n def make_menu(w):\n global the_menu\n the_menu = Menu(w, tearoff=0)\n the_menu.add_command(label='Cut')\n the_menu.add_command(label='Copy')\n the_menu.add_command(label='Paste')\n\n def show_menu(e):\n w = e.widget\n the_menu.entryconfigure('Cut', command=lambda : w.event_generate(\n '<<Cut>>'))\n the_menu.entryconfigure('Copy', command=lambda : w.event_generate(\n '<<Copy>>'))\n the_menu.entryconfigure('Paste', command=lambda : w.event_generate(\n '<<Paste>>'))\n the_menu.tk.call('tk_popup', the_menu, e.x_root, e.y_root)\n\n def paste_clipboard(event):\n event.widget.delete(0, 'end')\n event.widget.insert(0, sms_root.clipboard_get())\n\n def smssend():\n global dict_entry\n r = requests.get('http://smsc.ru/sys/send.php?login=' + dict_entry[\n 'login'].get() + '&psw=' + dict_entry['passw'].get() +\n '&phones=' + dict_entry['phone'].get() + '&mes=' + dict_entry[\n 'msg'].get())\n label.config(text=r.text)\n global sms_root\n sms_root = Tk()\n make_menu(sms_root)\n sms_root.title('Отправка СМС')\n sms_root.protocol('WM_DELETE_WINDOW', sms_Quit)\n global dict_entry\n dict_entry = {}\n for s in ['login', 'passw', 'phone', 'msg']:\n key = s\n s = ttk.Entry(sms_root)\n s.pack()\n s1 = ttk.Label(sms_root, text=key)\n s1.pack()\n s.bind('<ButtonRelease-2>', paste_clipboard)\n s.bind('<ButtonRelease-3>', show_menu)\n dict_entry[key] = s\n label = ttk.Label(sms_root)\n label.pack()\n ttk.Button(sms_root, text='Отправить', command=smssend).pack()\n ttk.Button(sms_root, text='ВЫХОД(EXIT)', command=sms_Quit).pack()\n sms_root.focus_set()\n sms_root.mainloop()\n\n\ndef multifon():\n global dict_entry\n global multifon_main\n global var1\n\n def multifon_routing():\n global dict_entry\n r = requests.get('https://sm.megafon.ru/sm/client/routing?login=' +\n dict_entry['number'].get() + '@multifon.ru&password=' +\n dict_entry['passw'].get())\n json_r = xmltodict.parse(r.text)\n try:\n if json_r['response']['routing'] == '1':\n label_chek.config(text='только в «МультиФон»')\n elif json_r['response']['routing'] == '0':\n label_chek.config(text='только телефон')\n elif json_r['response']['routing'] == '2':\n label_chek.config(text='телефон и «МультиФон»')\n except KeyError:\n label_chek.config(text=json_r['response']['result']['description'])\n\n def multifon_set_routing():\n global dict_entry\n r = requests.get(\n 'https://sm.megafon.ru/sm/client/routing/set?login=' +\n dict_entry['number'].get() + '@multifon.ru&password=' +\n dict_entry['passw'].get() + '&routing=' + str(var1.get()))\n json_r = xmltodict.parse(r.text)\n label_set.config(text='Результат = ' + json_r['response']['result']\n ['description'])\n\n def make_menu(w):\n global the_menu\n the_menu = Menu(w, tearoff=0)\n the_menu.add_command(label='Cut')\n the_menu.add_command(label='Copy')\n the_menu.add_command(label='Paste')\n\n def show_menu(e):\n w = e.widget\n the_menu.entryconfigure('Cut', command=lambda : w.event_generate(\n '<<Cut>>'))\n the_menu.entryconfigure('Copy', command=lambda : w.event_generate(\n '<<Copy>>'))\n the_menu.entryconfigure('Paste', command=lambda : w.event_generate(\n '<<Paste>>'))\n the_menu.tk.call('tk_popup', the_menu, e.x_root, e.y_root)\n\n def paste_clipboard(event):\n event.widget.delete(0, 'end')\n event.widget.insert(0, multifon_main.clipboard_get())\n multifon_main = Tk()\n make_menu(multifon_main)\n dict_entry = {}\n for s in ['number', 'passw']:\n key = s\n s = ttk.Entry(multifon_main, text=key)\n s.pack()\n s1 = ttk.Label(multifon_main, text=key)\n s1.pack()\n s.bind('<ButtonRelease-2>', paste_clipboard)\n s.bind('<ButtonRelease-3>', show_menu)\n dict_entry[key] = s\n ttk.Button(multifon_main, text='Проверить', command=multifon_routing).pack(\n )\n label_chek = ttk.Label(multifon_main)\n label_chek.pack()\n ttk.Button(multifon_main, text='Переключить', command=multifon_set_routing\n ).pack()\n var1 = IntVar(multifon_main)\n ttk.Radiobutton(multifon_main, text='только телефон', variable=var1,\n value=0).pack(anchor=W)\n ttk.Radiobutton(multifon_main, text='только в «МультиФон»', variable=\n var1, value=1).pack(anchor=W)\n ttk.Radiobutton(multifon_main, text='телефон и «МультиФон»', variable=\n var1, value=2).pack(anchor=W)\n label_set = ttk.Label(multifon_main)\n label_set.pack()\n ttk.Button(multifon_main, text='ВЫХОД(EXIT)', command=multifon_main_quit\n ).pack()\n multifon_main.focus_set()\n multifon_main.mainloop()\n\n\ndef poisk_region():\n\n def show_menu(e):\n w = e.widget\n the_menu.entryconfigure('Cut', command=lambda : w.event_generate(\n '<<Cut>>'))\n the_menu.entryconfigure('Copy', command=lambda : w.event_generate(\n '<<Copy>>'))\n the_menu.entryconfigure('Paste', command=lambda : w.event_generate(\n '<<Paste>>'))\n the_menu.tk.call('tk_popup', the_menu, e.x_root, e.y_root)\n\n def make_menu(w):\n global the_menu\n the_menu = Menu(w, tearoff=0)\n the_menu.add_command(label='Cut')\n the_menu.add_command(label='Copy')\n the_menu.add_command(label='Paste')\n global dict_entry\n global poisk_region_main\n dict_entry = {}\n poisk_region_main = Tk()\n make_menu(poisk_region_main)\n\n def paste_clipboard(event):\n event.widget.delete(0, 'end')\n event.widget.insert(0, poisk_region_main.clipboard_get())\n\n def poisk():\n global dict_entry\n r = requests.get('http://catalog.api.2gis.ru/geo/search?q=' +\n dict_entry['town'].get() +\n '&types=city,settlement&format=short&version=1.3&key=' +\n dict_entry['key'].get())\n decoded = json.loads(r.text)\n try:\n list = decoded['result']\n label_region.config(text='Регион= ' + str(list[0]['project_id']))\n except:\n label_region.config(text='error_message= ' + decoded[\n 'error_message'] + ' ' + '\\n error_code= ' + decoded[\n 'error_code'])\n for s in ['town', 'key']:\n key = s\n s = ttk.Entry(poisk_region_main, text=key)\n s.pack()\n s1 = ttk.Label(poisk_region_main, text=key)\n s1.pack()\n s.bind('<ButtonRelease-2>', paste_clipboard)\n s.bind('<ButtonRelease-3>', show_menu)\n dict_entry[key] = s\n label_region = ttk.Label(poisk_region_main, text='')\n label_region.pack()\n ttk.Button(poisk_region_main, text='Найти', command=poisk).pack()\n ttk.Button(poisk_region_main, text='ВЫХОД(EXIT)', command=poisk_region_quit\n ).pack()\n poisk_region_main.focus_set()\n poisk_region_main.mainloop()\n\n\ndef poisk_region_coords():\n global poisk_region_coords\n global dict_entry\n\n def paste_clipboard(event):\n event.widget.delete(0, 'end')\n event.widget.insert(0, poisk_region_coords.clipboard_get())\n\n def show_menu(e):\n w = e.widget\n the_menu.entryconfigure('Cut', command=lambda : w.event_generate(\n '<<Cut>>'))\n the_menu.entryconfigure('Copy', command=lambda : w.event_generate(\n '<<Copy>>'))\n the_menu.entryconfigure('Paste', command=lambda : w.event_generate(\n '<<Paste>>'))\n the_menu.tk.call('tk_popup', the_menu, e.x_root, e.y_root)\n\n def make_menu(w):\n global the_menu\n the_menu = Menu(w, tearoff=0)\n the_menu.add_command(label='Cut')\n the_menu.add_command(label='Copy')\n the_menu.add_command(label='Paste')\n\n def poisk_coords():\n global dict_entry\n global poisk_region_coords\n town = dict_entry['town'].get()\n key = dict_entry['key'].get()\n r = requests.get('http://catalog.api.2gis.ru/geo/search?q=' + town +\n '&types=city,settlement&output=xml&version=1.3&key=' + key)\n json_r = xmltodict.parse(r.text)\n try:\n string = str(json_r['root']['result']['geoObject']['selection'])\n s = string.find('),(')\n string = string.lstrip('MULTIPOLYGON(((')\n string = string.replace(')))', '')\n string = string.replace('POLYGON((', '')\n string = string.replace('))', '')\n if s == -1:\n q = string.split(' ')\n q_last = q.pop()\n q_first = q.pop(0)\n q_all = q_last + ',' + q_first\n q.append(q_all)\n with open(town + '.csv', 'w', newline='') as f:\n writer = csv.writer(f)\n for i in q:\n string = i.split(',')\n writer.writerow(string)\n else:\n string = string.split('),(')\n i = 0\n name = 1\n for i in string:\n q = i.split(' ')\n q_last = q.pop()\n q_first = q.pop(0)\n q_all = q_last + ',' + q_first\n q.append(q_all)\n with open(town + str(name) + '.csv', 'w', newline='') as f:\n writer = csv.writer(f)\n for i in q:\n string = i.split(',')\n writer.writerow(string)\n name = name + 1\n messagebox.showinfo('Инфо', 'Все готово')\n poisk_region_coords.focus_set()\n poisk_region_coords.focus_force()\n except:\n messagebox.showwarning('Error', 'error_message= ' + json_r[\n 'root']['error_message'] + '\\n' + 'error_code= ' + json_r[\n 'root']['error_code'] + '\\n')\n poisk_region_coords.focus_set()\n poisk_region_coords.focus_force()\n dict_entry = {}\n poisk_region_coords = Tk()\n make_menu(poisk_region_coords)\n for s in ['town', 'key']:\n key = s\n s = ttk.Entry(poisk_region_coords, text=key)\n s.pack()\n s1 = ttk.Label(poisk_region_coords, text=key)\n s1.pack()\n s.bind('<ButtonRelease-2>', paste_clipboard)\n s.bind('<ButtonRelease-3>', show_menu)\n dict_entry[key] = s\n ttk.Button(poisk_region_coords, text='Найти', command=poisk_coords).pack()\n ttk.Button(poisk_region_coords, text='ВЫХОД(EXIT)', command=\n poisk_region_coords_quit).pack()\n poisk_region_coords.focus_force()\n poisk_region_coords.mainloop()\n\n\nroot = Tk()\nroot.title('Главное')\n<docstring token>\nsms = ttk.Button(text='Отправим смску через смсц', style='C.TButton',\n command=sms).pack()\nmultifon = ttk.Button(text='Узнаем роутинг мультифона', style='C.TButton',\n command=multifon).pack()\ngis2 = ttk.Button(text='Поиском региона 2ГИС по городу', style='C.TButton',\n command=poisk_region).pack()\ncoords_town = ttk.Button(text='Выгрузим координаты города по названию',\n style='C.TButton', command=poisk_region_coords).pack()\n<docstring token>\nAPI = ttk.Button(text='Запрос в АПИ ТМ', style='C.TButton').pack()\nbackup = ttk.Button(text='Бэкап базы *.FDB', style='C.TButton').pack()\noktell = ttk.Button(text='Oktell', style='C.TButton').pack()\ntracert = ttk.Button(text='Запустить Tracert', style='C.TButton').pack()\nexit = ttk.Button(text='ВЫХОД(EXIT)', style='C.TButton', command=Quit).pack()\nroot.protocol('WM_DELETE_WINDOW', Quit)\nroot.mainloop()\n", "<import token>\n\n\ndef Quit():\n global root\n root.destroy()\n root.quit()\n\n\ndef sms_Quit():\n global sms_root\n sms_root.destroy()\n sms_root.quit()\n\n\ndef multifon_main_quit():\n global multifon_main\n multifon_main.destroy()\n multifon_main.quit()\n\n\ndef poisk_region_quit():\n global poisk_region_main\n poisk_region_main.destroy()\n poisk_region_main.quit()\n\n\ndef poisk_region_coords_quit():\n global poisk_region_coords\n poisk_region_coords.destroy()\n poisk_region_coords.quit()\n\n\ndef sms():\n\n def make_menu(w):\n global the_menu\n the_menu = Menu(w, tearoff=0)\n the_menu.add_command(label='Cut')\n the_menu.add_command(label='Copy')\n the_menu.add_command(label='Paste')\n\n def show_menu(e):\n w = e.widget\n the_menu.entryconfigure('Cut', command=lambda : w.event_generate(\n '<<Cut>>'))\n the_menu.entryconfigure('Copy', command=lambda : w.event_generate(\n '<<Copy>>'))\n the_menu.entryconfigure('Paste', command=lambda : w.event_generate(\n '<<Paste>>'))\n the_menu.tk.call('tk_popup', the_menu, e.x_root, e.y_root)\n\n def paste_clipboard(event):\n event.widget.delete(0, 'end')\n event.widget.insert(0, sms_root.clipboard_get())\n\n def smssend():\n global dict_entry\n r = requests.get('http://smsc.ru/sys/send.php?login=' + dict_entry[\n 'login'].get() + '&psw=' + dict_entry['passw'].get() +\n '&phones=' + dict_entry['phone'].get() + '&mes=' + dict_entry[\n 'msg'].get())\n label.config(text=r.text)\n global sms_root\n sms_root = Tk()\n make_menu(sms_root)\n sms_root.title('Отправка СМС')\n sms_root.protocol('WM_DELETE_WINDOW', sms_Quit)\n global dict_entry\n dict_entry = {}\n for s in ['login', 'passw', 'phone', 'msg']:\n key = s\n s = ttk.Entry(sms_root)\n s.pack()\n s1 = ttk.Label(sms_root, text=key)\n s1.pack()\n s.bind('<ButtonRelease-2>', paste_clipboard)\n s.bind('<ButtonRelease-3>', show_menu)\n dict_entry[key] = s\n label = ttk.Label(sms_root)\n label.pack()\n ttk.Button(sms_root, text='Отправить', command=smssend).pack()\n ttk.Button(sms_root, text='ВЫХОД(EXIT)', command=sms_Quit).pack()\n sms_root.focus_set()\n sms_root.mainloop()\n\n\ndef multifon():\n global dict_entry\n global multifon_main\n global var1\n\n def multifon_routing():\n global dict_entry\n r = requests.get('https://sm.megafon.ru/sm/client/routing?login=' +\n dict_entry['number'].get() + '@multifon.ru&password=' +\n dict_entry['passw'].get())\n json_r = xmltodict.parse(r.text)\n try:\n if json_r['response']['routing'] == '1':\n label_chek.config(text='только в «МультиФон»')\n elif json_r['response']['routing'] == '0':\n label_chek.config(text='только телефон')\n elif json_r['response']['routing'] == '2':\n label_chek.config(text='телефон и «МультиФон»')\n except KeyError:\n label_chek.config(text=json_r['response']['result']['description'])\n\n def multifon_set_routing():\n global dict_entry\n r = requests.get(\n 'https://sm.megafon.ru/sm/client/routing/set?login=' +\n dict_entry['number'].get() + '@multifon.ru&password=' +\n dict_entry['passw'].get() + '&routing=' + str(var1.get()))\n json_r = xmltodict.parse(r.text)\n label_set.config(text='Результат = ' + json_r['response']['result']\n ['description'])\n\n def make_menu(w):\n global the_menu\n the_menu = Menu(w, tearoff=0)\n the_menu.add_command(label='Cut')\n the_menu.add_command(label='Copy')\n the_menu.add_command(label='Paste')\n\n def show_menu(e):\n w = e.widget\n the_menu.entryconfigure('Cut', command=lambda : w.event_generate(\n '<<Cut>>'))\n the_menu.entryconfigure('Copy', command=lambda : w.event_generate(\n '<<Copy>>'))\n the_menu.entryconfigure('Paste', command=lambda : w.event_generate(\n '<<Paste>>'))\n the_menu.tk.call('tk_popup', the_menu, e.x_root, e.y_root)\n\n def paste_clipboard(event):\n event.widget.delete(0, 'end')\n event.widget.insert(0, multifon_main.clipboard_get())\n multifon_main = Tk()\n make_menu(multifon_main)\n dict_entry = {}\n for s in ['number', 'passw']:\n key = s\n s = ttk.Entry(multifon_main, text=key)\n s.pack()\n s1 = ttk.Label(multifon_main, text=key)\n s1.pack()\n s.bind('<ButtonRelease-2>', paste_clipboard)\n s.bind('<ButtonRelease-3>', show_menu)\n dict_entry[key] = s\n ttk.Button(multifon_main, text='Проверить', command=multifon_routing).pack(\n )\n label_chek = ttk.Label(multifon_main)\n label_chek.pack()\n ttk.Button(multifon_main, text='Переключить', command=multifon_set_routing\n ).pack()\n var1 = IntVar(multifon_main)\n ttk.Radiobutton(multifon_main, text='только телефон', variable=var1,\n value=0).pack(anchor=W)\n ttk.Radiobutton(multifon_main, text='только в «МультиФон»', variable=\n var1, value=1).pack(anchor=W)\n ttk.Radiobutton(multifon_main, text='телефон и «МультиФон»', variable=\n var1, value=2).pack(anchor=W)\n label_set = ttk.Label(multifon_main)\n label_set.pack()\n ttk.Button(multifon_main, text='ВЫХОД(EXIT)', command=multifon_main_quit\n ).pack()\n multifon_main.focus_set()\n multifon_main.mainloop()\n\n\ndef poisk_region():\n\n def show_menu(e):\n w = e.widget\n the_menu.entryconfigure('Cut', command=lambda : w.event_generate(\n '<<Cut>>'))\n the_menu.entryconfigure('Copy', command=lambda : w.event_generate(\n '<<Copy>>'))\n the_menu.entryconfigure('Paste', command=lambda : w.event_generate(\n '<<Paste>>'))\n the_menu.tk.call('tk_popup', the_menu, e.x_root, e.y_root)\n\n def make_menu(w):\n global the_menu\n the_menu = Menu(w, tearoff=0)\n the_menu.add_command(label='Cut')\n the_menu.add_command(label='Copy')\n the_menu.add_command(label='Paste')\n global dict_entry\n global poisk_region_main\n dict_entry = {}\n poisk_region_main = Tk()\n make_menu(poisk_region_main)\n\n def paste_clipboard(event):\n event.widget.delete(0, 'end')\n event.widget.insert(0, poisk_region_main.clipboard_get())\n\n def poisk():\n global dict_entry\n r = requests.get('http://catalog.api.2gis.ru/geo/search?q=' +\n dict_entry['town'].get() +\n '&types=city,settlement&format=short&version=1.3&key=' +\n dict_entry['key'].get())\n decoded = json.loads(r.text)\n try:\n list = decoded['result']\n label_region.config(text='Регион= ' + str(list[0]['project_id']))\n except:\n label_region.config(text='error_message= ' + decoded[\n 'error_message'] + ' ' + '\\n error_code= ' + decoded[\n 'error_code'])\n for s in ['town', 'key']:\n key = s\n s = ttk.Entry(poisk_region_main, text=key)\n s.pack()\n s1 = ttk.Label(poisk_region_main, text=key)\n s1.pack()\n s.bind('<ButtonRelease-2>', paste_clipboard)\n s.bind('<ButtonRelease-3>', show_menu)\n dict_entry[key] = s\n label_region = ttk.Label(poisk_region_main, text='')\n label_region.pack()\n ttk.Button(poisk_region_main, text='Найти', command=poisk).pack()\n ttk.Button(poisk_region_main, text='ВЫХОД(EXIT)', command=poisk_region_quit\n ).pack()\n poisk_region_main.focus_set()\n poisk_region_main.mainloop()\n\n\ndef poisk_region_coords():\n global poisk_region_coords\n global dict_entry\n\n def paste_clipboard(event):\n event.widget.delete(0, 'end')\n event.widget.insert(0, poisk_region_coords.clipboard_get())\n\n def show_menu(e):\n w = e.widget\n the_menu.entryconfigure('Cut', command=lambda : w.event_generate(\n '<<Cut>>'))\n the_menu.entryconfigure('Copy', command=lambda : w.event_generate(\n '<<Copy>>'))\n the_menu.entryconfigure('Paste', command=lambda : w.event_generate(\n '<<Paste>>'))\n the_menu.tk.call('tk_popup', the_menu, e.x_root, e.y_root)\n\n def make_menu(w):\n global the_menu\n the_menu = Menu(w, tearoff=0)\n the_menu.add_command(label='Cut')\n the_menu.add_command(label='Copy')\n the_menu.add_command(label='Paste')\n\n def poisk_coords():\n global dict_entry\n global poisk_region_coords\n town = dict_entry['town'].get()\n key = dict_entry['key'].get()\n r = requests.get('http://catalog.api.2gis.ru/geo/search?q=' + town +\n '&types=city,settlement&output=xml&version=1.3&key=' + key)\n json_r = xmltodict.parse(r.text)\n try:\n string = str(json_r['root']['result']['geoObject']['selection'])\n s = string.find('),(')\n string = string.lstrip('MULTIPOLYGON(((')\n string = string.replace(')))', '')\n string = string.replace('POLYGON((', '')\n string = string.replace('))', '')\n if s == -1:\n q = string.split(' ')\n q_last = q.pop()\n q_first = q.pop(0)\n q_all = q_last + ',' + q_first\n q.append(q_all)\n with open(town + '.csv', 'w', newline='') as f:\n writer = csv.writer(f)\n for i in q:\n string = i.split(',')\n writer.writerow(string)\n else:\n string = string.split('),(')\n i = 0\n name = 1\n for i in string:\n q = i.split(' ')\n q_last = q.pop()\n q_first = q.pop(0)\n q_all = q_last + ',' + q_first\n q.append(q_all)\n with open(town + str(name) + '.csv', 'w', newline='') as f:\n writer = csv.writer(f)\n for i in q:\n string = i.split(',')\n writer.writerow(string)\n name = name + 1\n messagebox.showinfo('Инфо', 'Все готово')\n poisk_region_coords.focus_set()\n poisk_region_coords.focus_force()\n except:\n messagebox.showwarning('Error', 'error_message= ' + json_r[\n 'root']['error_message'] + '\\n' + 'error_code= ' + json_r[\n 'root']['error_code'] + '\\n')\n poisk_region_coords.focus_set()\n poisk_region_coords.focus_force()\n dict_entry = {}\n poisk_region_coords = Tk()\n make_menu(poisk_region_coords)\n for s in ['town', 'key']:\n key = s\n s = ttk.Entry(poisk_region_coords, text=key)\n s.pack()\n s1 = ttk.Label(poisk_region_coords, text=key)\n s1.pack()\n s.bind('<ButtonRelease-2>', paste_clipboard)\n s.bind('<ButtonRelease-3>', show_menu)\n dict_entry[key] = s\n ttk.Button(poisk_region_coords, text='Найти', command=poisk_coords).pack()\n ttk.Button(poisk_region_coords, text='ВЫХОД(EXIT)', command=\n poisk_region_coords_quit).pack()\n poisk_region_coords.focus_force()\n poisk_region_coords.mainloop()\n\n\n<assignment token>\nroot.title('Главное')\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\nroot.protocol('WM_DELETE_WINDOW', Quit)\nroot.mainloop()\n", "<import token>\n\n\ndef Quit():\n global root\n root.destroy()\n root.quit()\n\n\ndef sms_Quit():\n global sms_root\n sms_root.destroy()\n sms_root.quit()\n\n\ndef multifon_main_quit():\n global multifon_main\n multifon_main.destroy()\n multifon_main.quit()\n\n\ndef poisk_region_quit():\n global poisk_region_main\n poisk_region_main.destroy()\n poisk_region_main.quit()\n\n\ndef poisk_region_coords_quit():\n global poisk_region_coords\n poisk_region_coords.destroy()\n poisk_region_coords.quit()\n\n\ndef sms():\n\n def make_menu(w):\n global the_menu\n the_menu = Menu(w, tearoff=0)\n the_menu.add_command(label='Cut')\n the_menu.add_command(label='Copy')\n the_menu.add_command(label='Paste')\n\n def show_menu(e):\n w = e.widget\n the_menu.entryconfigure('Cut', command=lambda : w.event_generate(\n '<<Cut>>'))\n the_menu.entryconfigure('Copy', command=lambda : w.event_generate(\n '<<Copy>>'))\n the_menu.entryconfigure('Paste', command=lambda : w.event_generate(\n '<<Paste>>'))\n the_menu.tk.call('tk_popup', the_menu, e.x_root, e.y_root)\n\n def paste_clipboard(event):\n event.widget.delete(0, 'end')\n event.widget.insert(0, sms_root.clipboard_get())\n\n def smssend():\n global dict_entry\n r = requests.get('http://smsc.ru/sys/send.php?login=' + dict_entry[\n 'login'].get() + '&psw=' + dict_entry['passw'].get() +\n '&phones=' + dict_entry['phone'].get() + '&mes=' + dict_entry[\n 'msg'].get())\n label.config(text=r.text)\n global sms_root\n sms_root = Tk()\n make_menu(sms_root)\n sms_root.title('Отправка СМС')\n sms_root.protocol('WM_DELETE_WINDOW', sms_Quit)\n global dict_entry\n dict_entry = {}\n for s in ['login', 'passw', 'phone', 'msg']:\n key = s\n s = ttk.Entry(sms_root)\n s.pack()\n s1 = ttk.Label(sms_root, text=key)\n s1.pack()\n s.bind('<ButtonRelease-2>', paste_clipboard)\n s.bind('<ButtonRelease-3>', show_menu)\n dict_entry[key] = s\n label = ttk.Label(sms_root)\n label.pack()\n ttk.Button(sms_root, text='Отправить', command=smssend).pack()\n ttk.Button(sms_root, text='ВЫХОД(EXIT)', command=sms_Quit).pack()\n sms_root.focus_set()\n sms_root.mainloop()\n\n\ndef multifon():\n global dict_entry\n global multifon_main\n global var1\n\n def multifon_routing():\n global dict_entry\n r = requests.get('https://sm.megafon.ru/sm/client/routing?login=' +\n dict_entry['number'].get() + '@multifon.ru&password=' +\n dict_entry['passw'].get())\n json_r = xmltodict.parse(r.text)\n try:\n if json_r['response']['routing'] == '1':\n label_chek.config(text='только в «МультиФон»')\n elif json_r['response']['routing'] == '0':\n label_chek.config(text='только телефон')\n elif json_r['response']['routing'] == '2':\n label_chek.config(text='телефон и «МультиФон»')\n except KeyError:\n label_chek.config(text=json_r['response']['result']['description'])\n\n def multifon_set_routing():\n global dict_entry\n r = requests.get(\n 'https://sm.megafon.ru/sm/client/routing/set?login=' +\n dict_entry['number'].get() + '@multifon.ru&password=' +\n dict_entry['passw'].get() + '&routing=' + str(var1.get()))\n json_r = xmltodict.parse(r.text)\n label_set.config(text='Результат = ' + json_r['response']['result']\n ['description'])\n\n def make_menu(w):\n global the_menu\n the_menu = Menu(w, tearoff=0)\n the_menu.add_command(label='Cut')\n the_menu.add_command(label='Copy')\n the_menu.add_command(label='Paste')\n\n def show_menu(e):\n w = e.widget\n the_menu.entryconfigure('Cut', command=lambda : w.event_generate(\n '<<Cut>>'))\n the_menu.entryconfigure('Copy', command=lambda : w.event_generate(\n '<<Copy>>'))\n the_menu.entryconfigure('Paste', command=lambda : w.event_generate(\n '<<Paste>>'))\n the_menu.tk.call('tk_popup', the_menu, e.x_root, e.y_root)\n\n def paste_clipboard(event):\n event.widget.delete(0, 'end')\n event.widget.insert(0, multifon_main.clipboard_get())\n multifon_main = Tk()\n make_menu(multifon_main)\n dict_entry = {}\n for s in ['number', 'passw']:\n key = s\n s = ttk.Entry(multifon_main, text=key)\n s.pack()\n s1 = ttk.Label(multifon_main, text=key)\n s1.pack()\n s.bind('<ButtonRelease-2>', paste_clipboard)\n s.bind('<ButtonRelease-3>', show_menu)\n dict_entry[key] = s\n ttk.Button(multifon_main, text='Проверить', command=multifon_routing).pack(\n )\n label_chek = ttk.Label(multifon_main)\n label_chek.pack()\n ttk.Button(multifon_main, text='Переключить', command=multifon_set_routing\n ).pack()\n var1 = IntVar(multifon_main)\n ttk.Radiobutton(multifon_main, text='только телефон', variable=var1,\n value=0).pack(anchor=W)\n ttk.Radiobutton(multifon_main, text='только в «МультиФон»', variable=\n var1, value=1).pack(anchor=W)\n ttk.Radiobutton(multifon_main, text='телефон и «МультиФон»', variable=\n var1, value=2).pack(anchor=W)\n label_set = ttk.Label(multifon_main)\n label_set.pack()\n ttk.Button(multifon_main, text='ВЫХОД(EXIT)', command=multifon_main_quit\n ).pack()\n multifon_main.focus_set()\n multifon_main.mainloop()\n\n\ndef poisk_region():\n\n def show_menu(e):\n w = e.widget\n the_menu.entryconfigure('Cut', command=lambda : w.event_generate(\n '<<Cut>>'))\n the_menu.entryconfigure('Copy', command=lambda : w.event_generate(\n '<<Copy>>'))\n the_menu.entryconfigure('Paste', command=lambda : w.event_generate(\n '<<Paste>>'))\n the_menu.tk.call('tk_popup', the_menu, e.x_root, e.y_root)\n\n def make_menu(w):\n global the_menu\n the_menu = Menu(w, tearoff=0)\n the_menu.add_command(label='Cut')\n the_menu.add_command(label='Copy')\n the_menu.add_command(label='Paste')\n global dict_entry\n global poisk_region_main\n dict_entry = {}\n poisk_region_main = Tk()\n make_menu(poisk_region_main)\n\n def paste_clipboard(event):\n event.widget.delete(0, 'end')\n event.widget.insert(0, poisk_region_main.clipboard_get())\n\n def poisk():\n global dict_entry\n r = requests.get('http://catalog.api.2gis.ru/geo/search?q=' +\n dict_entry['town'].get() +\n '&types=city,settlement&format=short&version=1.3&key=' +\n dict_entry['key'].get())\n decoded = json.loads(r.text)\n try:\n list = decoded['result']\n label_region.config(text='Регион= ' + str(list[0]['project_id']))\n except:\n label_region.config(text='error_message= ' + decoded[\n 'error_message'] + ' ' + '\\n error_code= ' + decoded[\n 'error_code'])\n for s in ['town', 'key']:\n key = s\n s = ttk.Entry(poisk_region_main, text=key)\n s.pack()\n s1 = ttk.Label(poisk_region_main, text=key)\n s1.pack()\n s.bind('<ButtonRelease-2>', paste_clipboard)\n s.bind('<ButtonRelease-3>', show_menu)\n dict_entry[key] = s\n label_region = ttk.Label(poisk_region_main, text='')\n label_region.pack()\n ttk.Button(poisk_region_main, text='Найти', command=poisk).pack()\n ttk.Button(poisk_region_main, text='ВЫХОД(EXIT)', command=poisk_region_quit\n ).pack()\n poisk_region_main.focus_set()\n poisk_region_main.mainloop()\n\n\ndef poisk_region_coords():\n global poisk_region_coords\n global dict_entry\n\n def paste_clipboard(event):\n event.widget.delete(0, 'end')\n event.widget.insert(0, poisk_region_coords.clipboard_get())\n\n def show_menu(e):\n w = e.widget\n the_menu.entryconfigure('Cut', command=lambda : w.event_generate(\n '<<Cut>>'))\n the_menu.entryconfigure('Copy', command=lambda : w.event_generate(\n '<<Copy>>'))\n the_menu.entryconfigure('Paste', command=lambda : w.event_generate(\n '<<Paste>>'))\n the_menu.tk.call('tk_popup', the_menu, e.x_root, e.y_root)\n\n def make_menu(w):\n global the_menu\n the_menu = Menu(w, tearoff=0)\n the_menu.add_command(label='Cut')\n the_menu.add_command(label='Copy')\n the_menu.add_command(label='Paste')\n\n def poisk_coords():\n global dict_entry\n global poisk_region_coords\n town = dict_entry['town'].get()\n key = dict_entry['key'].get()\n r = requests.get('http://catalog.api.2gis.ru/geo/search?q=' + town +\n '&types=city,settlement&output=xml&version=1.3&key=' + key)\n json_r = xmltodict.parse(r.text)\n try:\n string = str(json_r['root']['result']['geoObject']['selection'])\n s = string.find('),(')\n string = string.lstrip('MULTIPOLYGON(((')\n string = string.replace(')))', '')\n string = string.replace('POLYGON((', '')\n string = string.replace('))', '')\n if s == -1:\n q = string.split(' ')\n q_last = q.pop()\n q_first = q.pop(0)\n q_all = q_last + ',' + q_first\n q.append(q_all)\n with open(town + '.csv', 'w', newline='') as f:\n writer = csv.writer(f)\n for i in q:\n string = i.split(',')\n writer.writerow(string)\n else:\n string = string.split('),(')\n i = 0\n name = 1\n for i in string:\n q = i.split(' ')\n q_last = q.pop()\n q_first = q.pop(0)\n q_all = q_last + ',' + q_first\n q.append(q_all)\n with open(town + str(name) + '.csv', 'w', newline='') as f:\n writer = csv.writer(f)\n for i in q:\n string = i.split(',')\n writer.writerow(string)\n name = name + 1\n messagebox.showinfo('Инфо', 'Все готово')\n poisk_region_coords.focus_set()\n poisk_region_coords.focus_force()\n except:\n messagebox.showwarning('Error', 'error_message= ' + json_r[\n 'root']['error_message'] + '\\n' + 'error_code= ' + json_r[\n 'root']['error_code'] + '\\n')\n poisk_region_coords.focus_set()\n poisk_region_coords.focus_force()\n dict_entry = {}\n poisk_region_coords = Tk()\n make_menu(poisk_region_coords)\n for s in ['town', 'key']:\n key = s\n s = ttk.Entry(poisk_region_coords, text=key)\n s.pack()\n s1 = ttk.Label(poisk_region_coords, text=key)\n s1.pack()\n s.bind('<ButtonRelease-2>', paste_clipboard)\n s.bind('<ButtonRelease-3>', show_menu)\n dict_entry[key] = s\n ttk.Button(poisk_region_coords, text='Найти', command=poisk_coords).pack()\n ttk.Button(poisk_region_coords, text='ВЫХОД(EXIT)', command=\n poisk_region_coords_quit).pack()\n poisk_region_coords.focus_force()\n poisk_region_coords.mainloop()\n\n\n<assignment token>\n<code token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<code token>\n", "<import token>\n\n\ndef Quit():\n global root\n root.destroy()\n root.quit()\n\n\ndef sms_Quit():\n global sms_root\n sms_root.destroy()\n sms_root.quit()\n\n\ndef multifon_main_quit():\n global multifon_main\n multifon_main.destroy()\n multifon_main.quit()\n\n\n<function token>\n\n\ndef poisk_region_coords_quit():\n global poisk_region_coords\n poisk_region_coords.destroy()\n poisk_region_coords.quit()\n\n\ndef sms():\n\n def make_menu(w):\n global the_menu\n the_menu = Menu(w, tearoff=0)\n the_menu.add_command(label='Cut')\n the_menu.add_command(label='Copy')\n the_menu.add_command(label='Paste')\n\n def show_menu(e):\n w = e.widget\n the_menu.entryconfigure('Cut', command=lambda : w.event_generate(\n '<<Cut>>'))\n the_menu.entryconfigure('Copy', command=lambda : w.event_generate(\n '<<Copy>>'))\n the_menu.entryconfigure('Paste', command=lambda : w.event_generate(\n '<<Paste>>'))\n the_menu.tk.call('tk_popup', the_menu, e.x_root, e.y_root)\n\n def paste_clipboard(event):\n event.widget.delete(0, 'end')\n event.widget.insert(0, sms_root.clipboard_get())\n\n def smssend():\n global dict_entry\n r = requests.get('http://smsc.ru/sys/send.php?login=' + dict_entry[\n 'login'].get() + '&psw=' + dict_entry['passw'].get() +\n '&phones=' + dict_entry['phone'].get() + '&mes=' + dict_entry[\n 'msg'].get())\n label.config(text=r.text)\n global sms_root\n sms_root = Tk()\n make_menu(sms_root)\n sms_root.title('Отправка СМС')\n sms_root.protocol('WM_DELETE_WINDOW', sms_Quit)\n global dict_entry\n dict_entry = {}\n for s in ['login', 'passw', 'phone', 'msg']:\n key = s\n s = ttk.Entry(sms_root)\n s.pack()\n s1 = ttk.Label(sms_root, text=key)\n s1.pack()\n s.bind('<ButtonRelease-2>', paste_clipboard)\n s.bind('<ButtonRelease-3>', show_menu)\n dict_entry[key] = s\n label = ttk.Label(sms_root)\n label.pack()\n ttk.Button(sms_root, text='Отправить', command=smssend).pack()\n ttk.Button(sms_root, text='ВЫХОД(EXIT)', command=sms_Quit).pack()\n sms_root.focus_set()\n sms_root.mainloop()\n\n\ndef multifon():\n global dict_entry\n global multifon_main\n global var1\n\n def multifon_routing():\n global dict_entry\n r = requests.get('https://sm.megafon.ru/sm/client/routing?login=' +\n dict_entry['number'].get() + '@multifon.ru&password=' +\n dict_entry['passw'].get())\n json_r = xmltodict.parse(r.text)\n try:\n if json_r['response']['routing'] == '1':\n label_chek.config(text='только в «МультиФон»')\n elif json_r['response']['routing'] == '0':\n label_chek.config(text='только телефон')\n elif json_r['response']['routing'] == '2':\n label_chek.config(text='телефон и «МультиФон»')\n except KeyError:\n label_chek.config(text=json_r['response']['result']['description'])\n\n def multifon_set_routing():\n global dict_entry\n r = requests.get(\n 'https://sm.megafon.ru/sm/client/routing/set?login=' +\n dict_entry['number'].get() + '@multifon.ru&password=' +\n dict_entry['passw'].get() + '&routing=' + str(var1.get()))\n json_r = xmltodict.parse(r.text)\n label_set.config(text='Результат = ' + json_r['response']['result']\n ['description'])\n\n def make_menu(w):\n global the_menu\n the_menu = Menu(w, tearoff=0)\n the_menu.add_command(label='Cut')\n the_menu.add_command(label='Copy')\n the_menu.add_command(label='Paste')\n\n def show_menu(e):\n w = e.widget\n the_menu.entryconfigure('Cut', command=lambda : w.event_generate(\n '<<Cut>>'))\n the_menu.entryconfigure('Copy', command=lambda : w.event_generate(\n '<<Copy>>'))\n the_menu.entryconfigure('Paste', command=lambda : w.event_generate(\n '<<Paste>>'))\n the_menu.tk.call('tk_popup', the_menu, e.x_root, e.y_root)\n\n def paste_clipboard(event):\n event.widget.delete(0, 'end')\n event.widget.insert(0, multifon_main.clipboard_get())\n multifon_main = Tk()\n make_menu(multifon_main)\n dict_entry = {}\n for s in ['number', 'passw']:\n key = s\n s = ttk.Entry(multifon_main, text=key)\n s.pack()\n s1 = ttk.Label(multifon_main, text=key)\n s1.pack()\n s.bind('<ButtonRelease-2>', paste_clipboard)\n s.bind('<ButtonRelease-3>', show_menu)\n dict_entry[key] = s\n ttk.Button(multifon_main, text='Проверить', command=multifon_routing).pack(\n )\n label_chek = ttk.Label(multifon_main)\n label_chek.pack()\n ttk.Button(multifon_main, text='Переключить', command=multifon_set_routing\n ).pack()\n var1 = IntVar(multifon_main)\n ttk.Radiobutton(multifon_main, text='только телефон', variable=var1,\n value=0).pack(anchor=W)\n ttk.Radiobutton(multifon_main, text='только в «МультиФон»', variable=\n var1, value=1).pack(anchor=W)\n ttk.Radiobutton(multifon_main, text='телефон и «МультиФон»', variable=\n var1, value=2).pack(anchor=W)\n label_set = ttk.Label(multifon_main)\n label_set.pack()\n ttk.Button(multifon_main, text='ВЫХОД(EXIT)', command=multifon_main_quit\n ).pack()\n multifon_main.focus_set()\n multifon_main.mainloop()\n\n\ndef poisk_region():\n\n def show_menu(e):\n w = e.widget\n the_menu.entryconfigure('Cut', command=lambda : w.event_generate(\n '<<Cut>>'))\n the_menu.entryconfigure('Copy', command=lambda : w.event_generate(\n '<<Copy>>'))\n the_menu.entryconfigure('Paste', command=lambda : w.event_generate(\n '<<Paste>>'))\n the_menu.tk.call('tk_popup', the_menu, e.x_root, e.y_root)\n\n def make_menu(w):\n global the_menu\n the_menu = Menu(w, tearoff=0)\n the_menu.add_command(label='Cut')\n the_menu.add_command(label='Copy')\n the_menu.add_command(label='Paste')\n global dict_entry\n global poisk_region_main\n dict_entry = {}\n poisk_region_main = Tk()\n make_menu(poisk_region_main)\n\n def paste_clipboard(event):\n event.widget.delete(0, 'end')\n event.widget.insert(0, poisk_region_main.clipboard_get())\n\n def poisk():\n global dict_entry\n r = requests.get('http://catalog.api.2gis.ru/geo/search?q=' +\n dict_entry['town'].get() +\n '&types=city,settlement&format=short&version=1.3&key=' +\n dict_entry['key'].get())\n decoded = json.loads(r.text)\n try:\n list = decoded['result']\n label_region.config(text='Регион= ' + str(list[0]['project_id']))\n except:\n label_region.config(text='error_message= ' + decoded[\n 'error_message'] + ' ' + '\\n error_code= ' + decoded[\n 'error_code'])\n for s in ['town', 'key']:\n key = s\n s = ttk.Entry(poisk_region_main, text=key)\n s.pack()\n s1 = ttk.Label(poisk_region_main, text=key)\n s1.pack()\n s.bind('<ButtonRelease-2>', paste_clipboard)\n s.bind('<ButtonRelease-3>', show_menu)\n dict_entry[key] = s\n label_region = ttk.Label(poisk_region_main, text='')\n label_region.pack()\n ttk.Button(poisk_region_main, text='Найти', command=poisk).pack()\n ttk.Button(poisk_region_main, text='ВЫХОД(EXIT)', command=poisk_region_quit\n ).pack()\n poisk_region_main.focus_set()\n poisk_region_main.mainloop()\n\n\ndef poisk_region_coords():\n global poisk_region_coords\n global dict_entry\n\n def paste_clipboard(event):\n event.widget.delete(0, 'end')\n event.widget.insert(0, poisk_region_coords.clipboard_get())\n\n def show_menu(e):\n w = e.widget\n the_menu.entryconfigure('Cut', command=lambda : w.event_generate(\n '<<Cut>>'))\n the_menu.entryconfigure('Copy', command=lambda : w.event_generate(\n '<<Copy>>'))\n the_menu.entryconfigure('Paste', command=lambda : w.event_generate(\n '<<Paste>>'))\n the_menu.tk.call('tk_popup', the_menu, e.x_root, e.y_root)\n\n def make_menu(w):\n global the_menu\n the_menu = Menu(w, tearoff=0)\n the_menu.add_command(label='Cut')\n the_menu.add_command(label='Copy')\n the_menu.add_command(label='Paste')\n\n def poisk_coords():\n global dict_entry\n global poisk_region_coords\n town = dict_entry['town'].get()\n key = dict_entry['key'].get()\n r = requests.get('http://catalog.api.2gis.ru/geo/search?q=' + town +\n '&types=city,settlement&output=xml&version=1.3&key=' + key)\n json_r = xmltodict.parse(r.text)\n try:\n string = str(json_r['root']['result']['geoObject']['selection'])\n s = string.find('),(')\n string = string.lstrip('MULTIPOLYGON(((')\n string = string.replace(')))', '')\n string = string.replace('POLYGON((', '')\n string = string.replace('))', '')\n if s == -1:\n q = string.split(' ')\n q_last = q.pop()\n q_first = q.pop(0)\n q_all = q_last + ',' + q_first\n q.append(q_all)\n with open(town + '.csv', 'w', newline='') as f:\n writer = csv.writer(f)\n for i in q:\n string = i.split(',')\n writer.writerow(string)\n else:\n string = string.split('),(')\n i = 0\n name = 1\n for i in string:\n q = i.split(' ')\n q_last = q.pop()\n q_first = q.pop(0)\n q_all = q_last + ',' + q_first\n q.append(q_all)\n with open(town + str(name) + '.csv', 'w', newline='') as f:\n writer = csv.writer(f)\n for i in q:\n string = i.split(',')\n writer.writerow(string)\n name = name + 1\n messagebox.showinfo('Инфо', 'Все готово')\n poisk_region_coords.focus_set()\n poisk_region_coords.focus_force()\n except:\n messagebox.showwarning('Error', 'error_message= ' + json_r[\n 'root']['error_message'] + '\\n' + 'error_code= ' + json_r[\n 'root']['error_code'] + '\\n')\n poisk_region_coords.focus_set()\n poisk_region_coords.focus_force()\n dict_entry = {}\n poisk_region_coords = Tk()\n make_menu(poisk_region_coords)\n for s in ['town', 'key']:\n key = s\n s = ttk.Entry(poisk_region_coords, text=key)\n s.pack()\n s1 = ttk.Label(poisk_region_coords, text=key)\n s1.pack()\n s.bind('<ButtonRelease-2>', paste_clipboard)\n s.bind('<ButtonRelease-3>', show_menu)\n dict_entry[key] = s\n ttk.Button(poisk_region_coords, text='Найти', command=poisk_coords).pack()\n ttk.Button(poisk_region_coords, text='ВЫХОД(EXIT)', command=\n poisk_region_coords_quit).pack()\n poisk_region_coords.focus_force()\n poisk_region_coords.mainloop()\n\n\n<assignment token>\n<code token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<code token>\n", "<import token>\n\n\ndef Quit():\n global root\n root.destroy()\n root.quit()\n\n\ndef sms_Quit():\n global sms_root\n sms_root.destroy()\n sms_root.quit()\n\n\ndef multifon_main_quit():\n global multifon_main\n multifon_main.destroy()\n multifon_main.quit()\n\n\n<function token>\n\n\ndef poisk_region_coords_quit():\n global poisk_region_coords\n poisk_region_coords.destroy()\n poisk_region_coords.quit()\n\n\ndef sms():\n\n def make_menu(w):\n global the_menu\n the_menu = Menu(w, tearoff=0)\n the_menu.add_command(label='Cut')\n the_menu.add_command(label='Copy')\n the_menu.add_command(label='Paste')\n\n def show_menu(e):\n w = e.widget\n the_menu.entryconfigure('Cut', command=lambda : w.event_generate(\n '<<Cut>>'))\n the_menu.entryconfigure('Copy', command=lambda : w.event_generate(\n '<<Copy>>'))\n the_menu.entryconfigure('Paste', command=lambda : w.event_generate(\n '<<Paste>>'))\n the_menu.tk.call('tk_popup', the_menu, e.x_root, e.y_root)\n\n def paste_clipboard(event):\n event.widget.delete(0, 'end')\n event.widget.insert(0, sms_root.clipboard_get())\n\n def smssend():\n global dict_entry\n r = requests.get('http://smsc.ru/sys/send.php?login=' + dict_entry[\n 'login'].get() + '&psw=' + dict_entry['passw'].get() +\n '&phones=' + dict_entry['phone'].get() + '&mes=' + dict_entry[\n 'msg'].get())\n label.config(text=r.text)\n global sms_root\n sms_root = Tk()\n make_menu(sms_root)\n sms_root.title('Отправка СМС')\n sms_root.protocol('WM_DELETE_WINDOW', sms_Quit)\n global dict_entry\n dict_entry = {}\n for s in ['login', 'passw', 'phone', 'msg']:\n key = s\n s = ttk.Entry(sms_root)\n s.pack()\n s1 = ttk.Label(sms_root, text=key)\n s1.pack()\n s.bind('<ButtonRelease-2>', paste_clipboard)\n s.bind('<ButtonRelease-3>', show_menu)\n dict_entry[key] = s\n label = ttk.Label(sms_root)\n label.pack()\n ttk.Button(sms_root, text='Отправить', command=smssend).pack()\n ttk.Button(sms_root, text='ВЫХОД(EXIT)', command=sms_Quit).pack()\n sms_root.focus_set()\n sms_root.mainloop()\n\n\ndef multifon():\n global dict_entry\n global multifon_main\n global var1\n\n def multifon_routing():\n global dict_entry\n r = requests.get('https://sm.megafon.ru/sm/client/routing?login=' +\n dict_entry['number'].get() + '@multifon.ru&password=' +\n dict_entry['passw'].get())\n json_r = xmltodict.parse(r.text)\n try:\n if json_r['response']['routing'] == '1':\n label_chek.config(text='только в «МультиФон»')\n elif json_r['response']['routing'] == '0':\n label_chek.config(text='только телефон')\n elif json_r['response']['routing'] == '2':\n label_chek.config(text='телефон и «МультиФон»')\n except KeyError:\n label_chek.config(text=json_r['response']['result']['description'])\n\n def multifon_set_routing():\n global dict_entry\n r = requests.get(\n 'https://sm.megafon.ru/sm/client/routing/set?login=' +\n dict_entry['number'].get() + '@multifon.ru&password=' +\n dict_entry['passw'].get() + '&routing=' + str(var1.get()))\n json_r = xmltodict.parse(r.text)\n label_set.config(text='Результат = ' + json_r['response']['result']\n ['description'])\n\n def make_menu(w):\n global the_menu\n the_menu = Menu(w, tearoff=0)\n the_menu.add_command(label='Cut')\n the_menu.add_command(label='Copy')\n the_menu.add_command(label='Paste')\n\n def show_menu(e):\n w = e.widget\n the_menu.entryconfigure('Cut', command=lambda : w.event_generate(\n '<<Cut>>'))\n the_menu.entryconfigure('Copy', command=lambda : w.event_generate(\n '<<Copy>>'))\n the_menu.entryconfigure('Paste', command=lambda : w.event_generate(\n '<<Paste>>'))\n the_menu.tk.call('tk_popup', the_menu, e.x_root, e.y_root)\n\n def paste_clipboard(event):\n event.widget.delete(0, 'end')\n event.widget.insert(0, multifon_main.clipboard_get())\n multifon_main = Tk()\n make_menu(multifon_main)\n dict_entry = {}\n for s in ['number', 'passw']:\n key = s\n s = ttk.Entry(multifon_main, text=key)\n s.pack()\n s1 = ttk.Label(multifon_main, text=key)\n s1.pack()\n s.bind('<ButtonRelease-2>', paste_clipboard)\n s.bind('<ButtonRelease-3>', show_menu)\n dict_entry[key] = s\n ttk.Button(multifon_main, text='Проверить', command=multifon_routing).pack(\n )\n label_chek = ttk.Label(multifon_main)\n label_chek.pack()\n ttk.Button(multifon_main, text='Переключить', command=multifon_set_routing\n ).pack()\n var1 = IntVar(multifon_main)\n ttk.Radiobutton(multifon_main, text='только телефон', variable=var1,\n value=0).pack(anchor=W)\n ttk.Radiobutton(multifon_main, text='только в «МультиФон»', variable=\n var1, value=1).pack(anchor=W)\n ttk.Radiobutton(multifon_main, text='телефон и «МультиФон»', variable=\n var1, value=2).pack(anchor=W)\n label_set = ttk.Label(multifon_main)\n label_set.pack()\n ttk.Button(multifon_main, text='ВЫХОД(EXIT)', command=multifon_main_quit\n ).pack()\n multifon_main.focus_set()\n multifon_main.mainloop()\n\n\n<function token>\n\n\ndef poisk_region_coords():\n global poisk_region_coords\n global dict_entry\n\n def paste_clipboard(event):\n event.widget.delete(0, 'end')\n event.widget.insert(0, poisk_region_coords.clipboard_get())\n\n def show_menu(e):\n w = e.widget\n the_menu.entryconfigure('Cut', command=lambda : w.event_generate(\n '<<Cut>>'))\n the_menu.entryconfigure('Copy', command=lambda : w.event_generate(\n '<<Copy>>'))\n the_menu.entryconfigure('Paste', command=lambda : w.event_generate(\n '<<Paste>>'))\n the_menu.tk.call('tk_popup', the_menu, e.x_root, e.y_root)\n\n def make_menu(w):\n global the_menu\n the_menu = Menu(w, tearoff=0)\n the_menu.add_command(label='Cut')\n the_menu.add_command(label='Copy')\n the_menu.add_command(label='Paste')\n\n def poisk_coords():\n global dict_entry\n global poisk_region_coords\n town = dict_entry['town'].get()\n key = dict_entry['key'].get()\n r = requests.get('http://catalog.api.2gis.ru/geo/search?q=' + town +\n '&types=city,settlement&output=xml&version=1.3&key=' + key)\n json_r = xmltodict.parse(r.text)\n try:\n string = str(json_r['root']['result']['geoObject']['selection'])\n s = string.find('),(')\n string = string.lstrip('MULTIPOLYGON(((')\n string = string.replace(')))', '')\n string = string.replace('POLYGON((', '')\n string = string.replace('))', '')\n if s == -1:\n q = string.split(' ')\n q_last = q.pop()\n q_first = q.pop(0)\n q_all = q_last + ',' + q_first\n q.append(q_all)\n with open(town + '.csv', 'w', newline='') as f:\n writer = csv.writer(f)\n for i in q:\n string = i.split(',')\n writer.writerow(string)\n else:\n string = string.split('),(')\n i = 0\n name = 1\n for i in string:\n q = i.split(' ')\n q_last = q.pop()\n q_first = q.pop(0)\n q_all = q_last + ',' + q_first\n q.append(q_all)\n with open(town + str(name) + '.csv', 'w', newline='') as f:\n writer = csv.writer(f)\n for i in q:\n string = i.split(',')\n writer.writerow(string)\n name = name + 1\n messagebox.showinfo('Инфо', 'Все готово')\n poisk_region_coords.focus_set()\n poisk_region_coords.focus_force()\n except:\n messagebox.showwarning('Error', 'error_message= ' + json_r[\n 'root']['error_message'] + '\\n' + 'error_code= ' + json_r[\n 'root']['error_code'] + '\\n')\n poisk_region_coords.focus_set()\n poisk_region_coords.focus_force()\n dict_entry = {}\n poisk_region_coords = Tk()\n make_menu(poisk_region_coords)\n for s in ['town', 'key']:\n key = s\n s = ttk.Entry(poisk_region_coords, text=key)\n s.pack()\n s1 = ttk.Label(poisk_region_coords, text=key)\n s1.pack()\n s.bind('<ButtonRelease-2>', paste_clipboard)\n s.bind('<ButtonRelease-3>', show_menu)\n dict_entry[key] = s\n ttk.Button(poisk_region_coords, text='Найти', command=poisk_coords).pack()\n ttk.Button(poisk_region_coords, text='ВЫХОД(EXIT)', command=\n poisk_region_coords_quit).pack()\n poisk_region_coords.focus_force()\n poisk_region_coords.mainloop()\n\n\n<assignment token>\n<code token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<code token>\n", "<import token>\n\n\ndef Quit():\n global root\n root.destroy()\n root.quit()\n\n\ndef sms_Quit():\n global sms_root\n sms_root.destroy()\n sms_root.quit()\n\n\ndef multifon_main_quit():\n global multifon_main\n multifon_main.destroy()\n multifon_main.quit()\n\n\n<function token>\n\n\ndef poisk_region_coords_quit():\n global poisk_region_coords\n poisk_region_coords.destroy()\n poisk_region_coords.quit()\n\n\ndef sms():\n\n def make_menu(w):\n global the_menu\n the_menu = Menu(w, tearoff=0)\n the_menu.add_command(label='Cut')\n the_menu.add_command(label='Copy')\n the_menu.add_command(label='Paste')\n\n def show_menu(e):\n w = e.widget\n the_menu.entryconfigure('Cut', command=lambda : w.event_generate(\n '<<Cut>>'))\n the_menu.entryconfigure('Copy', command=lambda : w.event_generate(\n '<<Copy>>'))\n the_menu.entryconfigure('Paste', command=lambda : w.event_generate(\n '<<Paste>>'))\n the_menu.tk.call('tk_popup', the_menu, e.x_root, e.y_root)\n\n def paste_clipboard(event):\n event.widget.delete(0, 'end')\n event.widget.insert(0, sms_root.clipboard_get())\n\n def smssend():\n global dict_entry\n r = requests.get('http://smsc.ru/sys/send.php?login=' + dict_entry[\n 'login'].get() + '&psw=' + dict_entry['passw'].get() +\n '&phones=' + dict_entry['phone'].get() + '&mes=' + dict_entry[\n 'msg'].get())\n label.config(text=r.text)\n global sms_root\n sms_root = Tk()\n make_menu(sms_root)\n sms_root.title('Отправка СМС')\n sms_root.protocol('WM_DELETE_WINDOW', sms_Quit)\n global dict_entry\n dict_entry = {}\n for s in ['login', 'passw', 'phone', 'msg']:\n key = s\n s = ttk.Entry(sms_root)\n s.pack()\n s1 = ttk.Label(sms_root, text=key)\n s1.pack()\n s.bind('<ButtonRelease-2>', paste_clipboard)\n s.bind('<ButtonRelease-3>', show_menu)\n dict_entry[key] = s\n label = ttk.Label(sms_root)\n label.pack()\n ttk.Button(sms_root, text='Отправить', command=smssend).pack()\n ttk.Button(sms_root, text='ВЫХОД(EXIT)', command=sms_Quit).pack()\n sms_root.focus_set()\n sms_root.mainloop()\n\n\ndef multifon():\n global dict_entry\n global multifon_main\n global var1\n\n def multifon_routing():\n global dict_entry\n r = requests.get('https://sm.megafon.ru/sm/client/routing?login=' +\n dict_entry['number'].get() + '@multifon.ru&password=' +\n dict_entry['passw'].get())\n json_r = xmltodict.parse(r.text)\n try:\n if json_r['response']['routing'] == '1':\n label_chek.config(text='только в «МультиФон»')\n elif json_r['response']['routing'] == '0':\n label_chek.config(text='только телефон')\n elif json_r['response']['routing'] == '2':\n label_chek.config(text='телефон и «МультиФон»')\n except KeyError:\n label_chek.config(text=json_r['response']['result']['description'])\n\n def multifon_set_routing():\n global dict_entry\n r = requests.get(\n 'https://sm.megafon.ru/sm/client/routing/set?login=' +\n dict_entry['number'].get() + '@multifon.ru&password=' +\n dict_entry['passw'].get() + '&routing=' + str(var1.get()))\n json_r = xmltodict.parse(r.text)\n label_set.config(text='Результат = ' + json_r['response']['result']\n ['description'])\n\n def make_menu(w):\n global the_menu\n the_menu = Menu(w, tearoff=0)\n the_menu.add_command(label='Cut')\n the_menu.add_command(label='Copy')\n the_menu.add_command(label='Paste')\n\n def show_menu(e):\n w = e.widget\n the_menu.entryconfigure('Cut', command=lambda : w.event_generate(\n '<<Cut>>'))\n the_menu.entryconfigure('Copy', command=lambda : w.event_generate(\n '<<Copy>>'))\n the_menu.entryconfigure('Paste', command=lambda : w.event_generate(\n '<<Paste>>'))\n the_menu.tk.call('tk_popup', the_menu, e.x_root, e.y_root)\n\n def paste_clipboard(event):\n event.widget.delete(0, 'end')\n event.widget.insert(0, multifon_main.clipboard_get())\n multifon_main = Tk()\n make_menu(multifon_main)\n dict_entry = {}\n for s in ['number', 'passw']:\n key = s\n s = ttk.Entry(multifon_main, text=key)\n s.pack()\n s1 = ttk.Label(multifon_main, text=key)\n s1.pack()\n s.bind('<ButtonRelease-2>', paste_clipboard)\n s.bind('<ButtonRelease-3>', show_menu)\n dict_entry[key] = s\n ttk.Button(multifon_main, text='Проверить', command=multifon_routing).pack(\n )\n label_chek = ttk.Label(multifon_main)\n label_chek.pack()\n ttk.Button(multifon_main, text='Переключить', command=multifon_set_routing\n ).pack()\n var1 = IntVar(multifon_main)\n ttk.Radiobutton(multifon_main, text='только телефон', variable=var1,\n value=0).pack(anchor=W)\n ttk.Radiobutton(multifon_main, text='только в «МультиФон»', variable=\n var1, value=1).pack(anchor=W)\n ttk.Radiobutton(multifon_main, text='телефон и «МультиФон»', variable=\n var1, value=2).pack(anchor=W)\n label_set = ttk.Label(multifon_main)\n label_set.pack()\n ttk.Button(multifon_main, text='ВЫХОД(EXIT)', command=multifon_main_quit\n ).pack()\n multifon_main.focus_set()\n multifon_main.mainloop()\n\n\n<function token>\n<function token>\n<assignment token>\n<code token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<code token>\n", "<import token>\n\n\ndef Quit():\n global root\n root.destroy()\n root.quit()\n\n\n<function token>\n\n\ndef multifon_main_quit():\n global multifon_main\n multifon_main.destroy()\n multifon_main.quit()\n\n\n<function token>\n\n\ndef poisk_region_coords_quit():\n global poisk_region_coords\n poisk_region_coords.destroy()\n poisk_region_coords.quit()\n\n\ndef sms():\n\n def make_menu(w):\n global the_menu\n the_menu = Menu(w, tearoff=0)\n the_menu.add_command(label='Cut')\n the_menu.add_command(label='Copy')\n the_menu.add_command(label='Paste')\n\n def show_menu(e):\n w = e.widget\n the_menu.entryconfigure('Cut', command=lambda : w.event_generate(\n '<<Cut>>'))\n the_menu.entryconfigure('Copy', command=lambda : w.event_generate(\n '<<Copy>>'))\n the_menu.entryconfigure('Paste', command=lambda : w.event_generate(\n '<<Paste>>'))\n the_menu.tk.call('tk_popup', the_menu, e.x_root, e.y_root)\n\n def paste_clipboard(event):\n event.widget.delete(0, 'end')\n event.widget.insert(0, sms_root.clipboard_get())\n\n def smssend():\n global dict_entry\n r = requests.get('http://smsc.ru/sys/send.php?login=' + dict_entry[\n 'login'].get() + '&psw=' + dict_entry['passw'].get() +\n '&phones=' + dict_entry['phone'].get() + '&mes=' + dict_entry[\n 'msg'].get())\n label.config(text=r.text)\n global sms_root\n sms_root = Tk()\n make_menu(sms_root)\n sms_root.title('Отправка СМС')\n sms_root.protocol('WM_DELETE_WINDOW', sms_Quit)\n global dict_entry\n dict_entry = {}\n for s in ['login', 'passw', 'phone', 'msg']:\n key = s\n s = ttk.Entry(sms_root)\n s.pack()\n s1 = ttk.Label(sms_root, text=key)\n s1.pack()\n s.bind('<ButtonRelease-2>', paste_clipboard)\n s.bind('<ButtonRelease-3>', show_menu)\n dict_entry[key] = s\n label = ttk.Label(sms_root)\n label.pack()\n ttk.Button(sms_root, text='Отправить', command=smssend).pack()\n ttk.Button(sms_root, text='ВЫХОД(EXIT)', command=sms_Quit).pack()\n sms_root.focus_set()\n sms_root.mainloop()\n\n\ndef multifon():\n global dict_entry\n global multifon_main\n global var1\n\n def multifon_routing():\n global dict_entry\n r = requests.get('https://sm.megafon.ru/sm/client/routing?login=' +\n dict_entry['number'].get() + '@multifon.ru&password=' +\n dict_entry['passw'].get())\n json_r = xmltodict.parse(r.text)\n try:\n if json_r['response']['routing'] == '1':\n label_chek.config(text='только в «МультиФон»')\n elif json_r['response']['routing'] == '0':\n label_chek.config(text='только телефон')\n elif json_r['response']['routing'] == '2':\n label_chek.config(text='телефон и «МультиФон»')\n except KeyError:\n label_chek.config(text=json_r['response']['result']['description'])\n\n def multifon_set_routing():\n global dict_entry\n r = requests.get(\n 'https://sm.megafon.ru/sm/client/routing/set?login=' +\n dict_entry['number'].get() + '@multifon.ru&password=' +\n dict_entry['passw'].get() + '&routing=' + str(var1.get()))\n json_r = xmltodict.parse(r.text)\n label_set.config(text='Результат = ' + json_r['response']['result']\n ['description'])\n\n def make_menu(w):\n global the_menu\n the_menu = Menu(w, tearoff=0)\n the_menu.add_command(label='Cut')\n the_menu.add_command(label='Copy')\n the_menu.add_command(label='Paste')\n\n def show_menu(e):\n w = e.widget\n the_menu.entryconfigure('Cut', command=lambda : w.event_generate(\n '<<Cut>>'))\n the_menu.entryconfigure('Copy', command=lambda : w.event_generate(\n '<<Copy>>'))\n the_menu.entryconfigure('Paste', command=lambda : w.event_generate(\n '<<Paste>>'))\n the_menu.tk.call('tk_popup', the_menu, e.x_root, e.y_root)\n\n def paste_clipboard(event):\n event.widget.delete(0, 'end')\n event.widget.insert(0, multifon_main.clipboard_get())\n multifon_main = Tk()\n make_menu(multifon_main)\n dict_entry = {}\n for s in ['number', 'passw']:\n key = s\n s = ttk.Entry(multifon_main, text=key)\n s.pack()\n s1 = ttk.Label(multifon_main, text=key)\n s1.pack()\n s.bind('<ButtonRelease-2>', paste_clipboard)\n s.bind('<ButtonRelease-3>', show_menu)\n dict_entry[key] = s\n ttk.Button(multifon_main, text='Проверить', command=multifon_routing).pack(\n )\n label_chek = ttk.Label(multifon_main)\n label_chek.pack()\n ttk.Button(multifon_main, text='Переключить', command=multifon_set_routing\n ).pack()\n var1 = IntVar(multifon_main)\n ttk.Radiobutton(multifon_main, text='только телефон', variable=var1,\n value=0).pack(anchor=W)\n ttk.Radiobutton(multifon_main, text='только в «МультиФон»', variable=\n var1, value=1).pack(anchor=W)\n ttk.Radiobutton(multifon_main, text='телефон и «МультиФон»', variable=\n var1, value=2).pack(anchor=W)\n label_set = ttk.Label(multifon_main)\n label_set.pack()\n ttk.Button(multifon_main, text='ВЫХОД(EXIT)', command=multifon_main_quit\n ).pack()\n multifon_main.focus_set()\n multifon_main.mainloop()\n\n\n<function token>\n<function token>\n<assignment token>\n<code token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<code token>\n", "<import token>\n\n\ndef Quit():\n global root\n root.destroy()\n root.quit()\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef poisk_region_coords_quit():\n global poisk_region_coords\n poisk_region_coords.destroy()\n poisk_region_coords.quit()\n\n\ndef sms():\n\n def make_menu(w):\n global the_menu\n the_menu = Menu(w, tearoff=0)\n the_menu.add_command(label='Cut')\n the_menu.add_command(label='Copy')\n the_menu.add_command(label='Paste')\n\n def show_menu(e):\n w = e.widget\n the_menu.entryconfigure('Cut', command=lambda : w.event_generate(\n '<<Cut>>'))\n the_menu.entryconfigure('Copy', command=lambda : w.event_generate(\n '<<Copy>>'))\n the_menu.entryconfigure('Paste', command=lambda : w.event_generate(\n '<<Paste>>'))\n the_menu.tk.call('tk_popup', the_menu, e.x_root, e.y_root)\n\n def paste_clipboard(event):\n event.widget.delete(0, 'end')\n event.widget.insert(0, sms_root.clipboard_get())\n\n def smssend():\n global dict_entry\n r = requests.get('http://smsc.ru/sys/send.php?login=' + dict_entry[\n 'login'].get() + '&psw=' + dict_entry['passw'].get() +\n '&phones=' + dict_entry['phone'].get() + '&mes=' + dict_entry[\n 'msg'].get())\n label.config(text=r.text)\n global sms_root\n sms_root = Tk()\n make_menu(sms_root)\n sms_root.title('Отправка СМС')\n sms_root.protocol('WM_DELETE_WINDOW', sms_Quit)\n global dict_entry\n dict_entry = {}\n for s in ['login', 'passw', 'phone', 'msg']:\n key = s\n s = ttk.Entry(sms_root)\n s.pack()\n s1 = ttk.Label(sms_root, text=key)\n s1.pack()\n s.bind('<ButtonRelease-2>', paste_clipboard)\n s.bind('<ButtonRelease-3>', show_menu)\n dict_entry[key] = s\n label = ttk.Label(sms_root)\n label.pack()\n ttk.Button(sms_root, text='Отправить', command=smssend).pack()\n ttk.Button(sms_root, text='ВЫХОД(EXIT)', command=sms_Quit).pack()\n sms_root.focus_set()\n sms_root.mainloop()\n\n\ndef multifon():\n global dict_entry\n global multifon_main\n global var1\n\n def multifon_routing():\n global dict_entry\n r = requests.get('https://sm.megafon.ru/sm/client/routing?login=' +\n dict_entry['number'].get() + '@multifon.ru&password=' +\n dict_entry['passw'].get())\n json_r = xmltodict.parse(r.text)\n try:\n if json_r['response']['routing'] == '1':\n label_chek.config(text='только в «МультиФон»')\n elif json_r['response']['routing'] == '0':\n label_chek.config(text='только телефон')\n elif json_r['response']['routing'] == '2':\n label_chek.config(text='телефон и «МультиФон»')\n except KeyError:\n label_chek.config(text=json_r['response']['result']['description'])\n\n def multifon_set_routing():\n global dict_entry\n r = requests.get(\n 'https://sm.megafon.ru/sm/client/routing/set?login=' +\n dict_entry['number'].get() + '@multifon.ru&password=' +\n dict_entry['passw'].get() + '&routing=' + str(var1.get()))\n json_r = xmltodict.parse(r.text)\n label_set.config(text='Результат = ' + json_r['response']['result']\n ['description'])\n\n def make_menu(w):\n global the_menu\n the_menu = Menu(w, tearoff=0)\n the_menu.add_command(label='Cut')\n the_menu.add_command(label='Copy')\n the_menu.add_command(label='Paste')\n\n def show_menu(e):\n w = e.widget\n the_menu.entryconfigure('Cut', command=lambda : w.event_generate(\n '<<Cut>>'))\n the_menu.entryconfigure('Copy', command=lambda : w.event_generate(\n '<<Copy>>'))\n the_menu.entryconfigure('Paste', command=lambda : w.event_generate(\n '<<Paste>>'))\n the_menu.tk.call('tk_popup', the_menu, e.x_root, e.y_root)\n\n def paste_clipboard(event):\n event.widget.delete(0, 'end')\n event.widget.insert(0, multifon_main.clipboard_get())\n multifon_main = Tk()\n make_menu(multifon_main)\n dict_entry = {}\n for s in ['number', 'passw']:\n key = s\n s = ttk.Entry(multifon_main, text=key)\n s.pack()\n s1 = ttk.Label(multifon_main, text=key)\n s1.pack()\n s.bind('<ButtonRelease-2>', paste_clipboard)\n s.bind('<ButtonRelease-3>', show_menu)\n dict_entry[key] = s\n ttk.Button(multifon_main, text='Проверить', command=multifon_routing).pack(\n )\n label_chek = ttk.Label(multifon_main)\n label_chek.pack()\n ttk.Button(multifon_main, text='Переключить', command=multifon_set_routing\n ).pack()\n var1 = IntVar(multifon_main)\n ttk.Radiobutton(multifon_main, text='только телефон', variable=var1,\n value=0).pack(anchor=W)\n ttk.Radiobutton(multifon_main, text='только в «МультиФон»', variable=\n var1, value=1).pack(anchor=W)\n ttk.Radiobutton(multifon_main, text='телефон и «МультиФон»', variable=\n var1, value=2).pack(anchor=W)\n label_set = ttk.Label(multifon_main)\n label_set.pack()\n ttk.Button(multifon_main, text='ВЫХОД(EXIT)', command=multifon_main_quit\n ).pack()\n multifon_main.focus_set()\n multifon_main.mainloop()\n\n\n<function token>\n<function token>\n<assignment token>\n<code token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<code token>\n", "<import token>\n\n\ndef Quit():\n global root\n root.destroy()\n root.quit()\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef poisk_region_coords_quit():\n global poisk_region_coords\n poisk_region_coords.destroy()\n poisk_region_coords.quit()\n\n\ndef sms():\n\n def make_menu(w):\n global the_menu\n the_menu = Menu(w, tearoff=0)\n the_menu.add_command(label='Cut')\n the_menu.add_command(label='Copy')\n the_menu.add_command(label='Paste')\n\n def show_menu(e):\n w = e.widget\n the_menu.entryconfigure('Cut', command=lambda : w.event_generate(\n '<<Cut>>'))\n the_menu.entryconfigure('Copy', command=lambda : w.event_generate(\n '<<Copy>>'))\n the_menu.entryconfigure('Paste', command=lambda : w.event_generate(\n '<<Paste>>'))\n the_menu.tk.call('tk_popup', the_menu, e.x_root, e.y_root)\n\n def paste_clipboard(event):\n event.widget.delete(0, 'end')\n event.widget.insert(0, sms_root.clipboard_get())\n\n def smssend():\n global dict_entry\n r = requests.get('http://smsc.ru/sys/send.php?login=' + dict_entry[\n 'login'].get() + '&psw=' + dict_entry['passw'].get() +\n '&phones=' + dict_entry['phone'].get() + '&mes=' + dict_entry[\n 'msg'].get())\n label.config(text=r.text)\n global sms_root\n sms_root = Tk()\n make_menu(sms_root)\n sms_root.title('Отправка СМС')\n sms_root.protocol('WM_DELETE_WINDOW', sms_Quit)\n global dict_entry\n dict_entry = {}\n for s in ['login', 'passw', 'phone', 'msg']:\n key = s\n s = ttk.Entry(sms_root)\n s.pack()\n s1 = ttk.Label(sms_root, text=key)\n s1.pack()\n s.bind('<ButtonRelease-2>', paste_clipboard)\n s.bind('<ButtonRelease-3>', show_menu)\n dict_entry[key] = s\n label = ttk.Label(sms_root)\n label.pack()\n ttk.Button(sms_root, text='Отправить', command=smssend).pack()\n ttk.Button(sms_root, text='ВЫХОД(EXIT)', command=sms_Quit).pack()\n sms_root.focus_set()\n sms_root.mainloop()\n\n\n<function token>\n<function token>\n<function token>\n<assignment token>\n<code token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<code token>\n", "<import token>\n\n\ndef Quit():\n global root\n root.destroy()\n root.quit()\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef sms():\n\n def make_menu(w):\n global the_menu\n the_menu = Menu(w, tearoff=0)\n the_menu.add_command(label='Cut')\n the_menu.add_command(label='Copy')\n the_menu.add_command(label='Paste')\n\n def show_menu(e):\n w = e.widget\n the_menu.entryconfigure('Cut', command=lambda : w.event_generate(\n '<<Cut>>'))\n the_menu.entryconfigure('Copy', command=lambda : w.event_generate(\n '<<Copy>>'))\n the_menu.entryconfigure('Paste', command=lambda : w.event_generate(\n '<<Paste>>'))\n the_menu.tk.call('tk_popup', the_menu, e.x_root, e.y_root)\n\n def paste_clipboard(event):\n event.widget.delete(0, 'end')\n event.widget.insert(0, sms_root.clipboard_get())\n\n def smssend():\n global dict_entry\n r = requests.get('http://smsc.ru/sys/send.php?login=' + dict_entry[\n 'login'].get() + '&psw=' + dict_entry['passw'].get() +\n '&phones=' + dict_entry['phone'].get() + '&mes=' + dict_entry[\n 'msg'].get())\n label.config(text=r.text)\n global sms_root\n sms_root = Tk()\n make_menu(sms_root)\n sms_root.title('Отправка СМС')\n sms_root.protocol('WM_DELETE_WINDOW', sms_Quit)\n global dict_entry\n dict_entry = {}\n for s in ['login', 'passw', 'phone', 'msg']:\n key = s\n s = ttk.Entry(sms_root)\n s.pack()\n s1 = ttk.Label(sms_root, text=key)\n s1.pack()\n s.bind('<ButtonRelease-2>', paste_clipboard)\n s.bind('<ButtonRelease-3>', show_menu)\n dict_entry[key] = s\n label = ttk.Label(sms_root)\n label.pack()\n ttk.Button(sms_root, text='Отправить', command=smssend).pack()\n ttk.Button(sms_root, text='ВЫХОД(EXIT)', command=sms_Quit).pack()\n sms_root.focus_set()\n sms_root.mainloop()\n\n\n<function token>\n<function token>\n<function token>\n<assignment token>\n<code token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<code token>\n", "<import token>\n\n\ndef Quit():\n global root\n root.destroy()\n root.quit()\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<assignment token>\n<code token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<code token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<assignment token>\n<code token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<code token>\n" ]
false
99,019
a59fa5ec5ed5ad790e19bd80482300b42a905725
from django.conf.urls import url from quote.views import QuoteListView, QuoteListCreateView, QuoteRUDView urlpatterns = [ url(r'^quote/$', QuoteListView.as_view(), name='quote'), url(r'^quote/list/$', QuoteListCreateView.as_view(), name='create'), url(r'^quote/detail/$', QuoteRUDView.as_view(), name='RUD'), ]
[ "from django.conf.urls import url\n\nfrom quote.views import QuoteListView, QuoteListCreateView, QuoteRUDView\n\nurlpatterns = [\n url(r'^quote/$', QuoteListView.as_view(), name='quote'),\n url(r'^quote/list/$', QuoteListCreateView.as_view(), name='create'),\n url(r'^quote/detail/$', QuoteRUDView.as_view(), name='RUD'),\n]", "from django.conf.urls import url\nfrom quote.views import QuoteListView, QuoteListCreateView, QuoteRUDView\nurlpatterns = [url('^quote/$', QuoteListView.as_view(), name='quote'), url(\n '^quote/list/$', QuoteListCreateView.as_view(), name='create'), url(\n '^quote/detail/$', QuoteRUDView.as_view(), name='RUD')]\n", "<import token>\nurlpatterns = [url('^quote/$', QuoteListView.as_view(), name='quote'), url(\n '^quote/list/$', QuoteListCreateView.as_view(), name='create'), url(\n '^quote/detail/$', QuoteRUDView.as_view(), name='RUD')]\n", "<import token>\n<assignment token>\n" ]
false
99,020
2b6621aa64970045e575737523371f5220c7ee1e
# ============================================================================ # # Copyright (C) 2007-2012 Conceptive Engineering bvba. All rights reserved. # www.conceptive.be / [email protected] # # This file is part of the Camelot Library. # # This file may be used under the terms of the GNU General Public # License version 2.0 as published by the Free Software Foundation # and appearing in the file license.txt included in the packaging of # this file. Please review this information to ensure GNU # General Public Licensing requirements will be met. # # If you are unsure which license is appropriate for your use, please # visit www.python-camelot.com or contact [email protected] # # This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE # WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. # # For use of this library in commercial applications, please contact # [email protected] # # ============================================================================ from PyQt4 import QtGui, QtCore from PyQt4.QtCore import Qt from customeditor import CustomEditor from camelot.view.art import Icon default_icon_names = [ 'face-angel', 'face-crying', 'face-devilish', 'face-glasses', 'face-grin', 'face-kiss', 'face-monkey', 'face-plain', 'face-sad', 'face-smile', 'face-smile-big', 'face-surprise', 'face-wink', ] default_icons = list( (icon_name, Icon('tango/16x16/emotes/%s.png'%icon_name)) for icon_name in default_icon_names) class SmileyEditor(CustomEditor): def __init__(self, parent, editable = True, icons = default_icons, field_name = 'icons', **kwargs): CustomEditor.__init__(self, parent) self.setObjectName( field_name ) self.box = QtGui.QComboBox() self.box.setFrame(True) self.box.setEditable(False) self.name_by_position = {0:None} self.position_by_name = {None:0} self.box.addItem('') for i,(icon_name, icon) in enumerate(icons): self.name_by_position[i+1] = icon_name self.position_by_name[icon_name] = i+1 self.box.addItem(icon.getQIcon(), '') self.box.setFixedHeight(self.get_height()) self.setFocusPolicy(Qt.StrongFocus) layout = QtGui.QHBoxLayout(self) layout.setContentsMargins( 0, 0, 0, 0) layout.setSpacing(0) self.setAutoFillBackground(True) if not editable: self.box.setEnabled(False) else: self.box.setEnabled(True) self.box.activated.connect( self.smiley_changed ) layout.addWidget(self.box) layout.addStretch() self.setLayout(layout) def get_value(self): position = self.box.currentIndex() return CustomEditor.get_value(self) or self.name_by_position[position] def set_enabled(self, editable=True): self.box.setEnabled(editable) @QtCore.pyqtSlot( int ) def smiley_changed(self, _index ): self.editingFinished.emit() def set_value(self, value): name = CustomEditor.set_value(self, value) self.box.setCurrentIndex( self.position_by_name[name] )
[ "# ============================================================================\n#\n# Copyright (C) 2007-2012 Conceptive Engineering bvba. All rights reserved.\n# www.conceptive.be / [email protected]\n#\n# This file is part of the Camelot Library.\n#\n# This file may be used under the terms of the GNU General Public\n# License version 2.0 as published by the Free Software Foundation\n# and appearing in the file license.txt included in the packaging of\n# this file. Please review this information to ensure GNU\n# General Public Licensing requirements will be met.\n#\n# If you are unsure which license is appropriate for your use, please\n# visit www.python-camelot.com or contact [email protected]\n#\n# This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE\n# WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.\n#\n# For use of this library in commercial applications, please contact\n# [email protected]\n#\n# ============================================================================\n\nfrom PyQt4 import QtGui, QtCore\nfrom PyQt4.QtCore import Qt\n\nfrom customeditor import CustomEditor\nfrom camelot.view.art import Icon\n\ndefault_icon_names = [\n 'face-angel',\n 'face-crying',\n 'face-devilish',\n 'face-glasses',\n 'face-grin',\n 'face-kiss',\n 'face-monkey',\n 'face-plain',\n 'face-sad',\n 'face-smile',\n 'face-smile-big',\n 'face-surprise',\n 'face-wink',\n]\n\ndefault_icons = list( (icon_name, Icon('tango/16x16/emotes/%s.png'%icon_name)) for icon_name in default_icon_names)\n\nclass SmileyEditor(CustomEditor):\n\n def __init__(self, \n parent, \n editable = True, \n icons = default_icons, \n field_name = 'icons',\n **kwargs):\n CustomEditor.__init__(self, parent)\n self.setObjectName( field_name )\n self.box = QtGui.QComboBox()\n self.box.setFrame(True)\n self.box.setEditable(False)\n self.name_by_position = {0:None}\n self.position_by_name = {None:0}\n\n self.box.addItem('')\n for i,(icon_name, icon) in enumerate(icons):\n self.name_by_position[i+1] = icon_name\n self.position_by_name[icon_name] = i+1\n self.box.addItem(icon.getQIcon(), '')\n self.box.setFixedHeight(self.get_height())\n\n self.setFocusPolicy(Qt.StrongFocus)\n layout = QtGui.QHBoxLayout(self)\n layout.setContentsMargins( 0, 0, 0, 0)\n layout.setSpacing(0)\n self.setAutoFillBackground(True)\n if not editable:\n self.box.setEnabled(False)\n else:\n self.box.setEnabled(True)\n\n self.box.activated.connect( self.smiley_changed )\n layout.addWidget(self.box)\n layout.addStretch()\n self.setLayout(layout)\n\n def get_value(self):\n position = self.box.currentIndex()\n return CustomEditor.get_value(self) or self.name_by_position[position]\n\n def set_enabled(self, editable=True):\n self.box.setEnabled(editable)\n\n @QtCore.pyqtSlot( int )\n def smiley_changed(self, _index ):\n self.editingFinished.emit()\n\n def set_value(self, value):\n name = CustomEditor.set_value(self, value)\n self.box.setCurrentIndex( self.position_by_name[name] )\n", "from PyQt4 import QtGui, QtCore\nfrom PyQt4.QtCore import Qt\nfrom customeditor import CustomEditor\nfrom camelot.view.art import Icon\ndefault_icon_names = ['face-angel', 'face-crying', 'face-devilish',\n 'face-glasses', 'face-grin', 'face-kiss', 'face-monkey', 'face-plain',\n 'face-sad', 'face-smile', 'face-smile-big', 'face-surprise', 'face-wink']\ndefault_icons = list((icon_name, Icon('tango/16x16/emotes/%s.png' %\n icon_name)) for icon_name in default_icon_names)\n\n\nclass SmileyEditor(CustomEditor):\n\n def __init__(self, parent, editable=True, icons=default_icons,\n field_name='icons', **kwargs):\n CustomEditor.__init__(self, parent)\n self.setObjectName(field_name)\n self.box = QtGui.QComboBox()\n self.box.setFrame(True)\n self.box.setEditable(False)\n self.name_by_position = {(0): None}\n self.position_by_name = {None: 0}\n self.box.addItem('')\n for i, (icon_name, icon) in enumerate(icons):\n self.name_by_position[i + 1] = icon_name\n self.position_by_name[icon_name] = i + 1\n self.box.addItem(icon.getQIcon(), '')\n self.box.setFixedHeight(self.get_height())\n self.setFocusPolicy(Qt.StrongFocus)\n layout = QtGui.QHBoxLayout(self)\n layout.setContentsMargins(0, 0, 0, 0)\n layout.setSpacing(0)\n self.setAutoFillBackground(True)\n if not editable:\n self.box.setEnabled(False)\n else:\n self.box.setEnabled(True)\n self.box.activated.connect(self.smiley_changed)\n layout.addWidget(self.box)\n layout.addStretch()\n self.setLayout(layout)\n\n def get_value(self):\n position = self.box.currentIndex()\n return CustomEditor.get_value(self) or self.name_by_position[position]\n\n def set_enabled(self, editable=True):\n self.box.setEnabled(editable)\n\n @QtCore.pyqtSlot(int)\n def smiley_changed(self, _index):\n self.editingFinished.emit()\n\n def set_value(self, value):\n name = CustomEditor.set_value(self, value)\n self.box.setCurrentIndex(self.position_by_name[name])\n", "<import token>\ndefault_icon_names = ['face-angel', 'face-crying', 'face-devilish',\n 'face-glasses', 'face-grin', 'face-kiss', 'face-monkey', 'face-plain',\n 'face-sad', 'face-smile', 'face-smile-big', 'face-surprise', 'face-wink']\ndefault_icons = list((icon_name, Icon('tango/16x16/emotes/%s.png' %\n icon_name)) for icon_name in default_icon_names)\n\n\nclass SmileyEditor(CustomEditor):\n\n def __init__(self, parent, editable=True, icons=default_icons,\n field_name='icons', **kwargs):\n CustomEditor.__init__(self, parent)\n self.setObjectName(field_name)\n self.box = QtGui.QComboBox()\n self.box.setFrame(True)\n self.box.setEditable(False)\n self.name_by_position = {(0): None}\n self.position_by_name = {None: 0}\n self.box.addItem('')\n for i, (icon_name, icon) in enumerate(icons):\n self.name_by_position[i + 1] = icon_name\n self.position_by_name[icon_name] = i + 1\n self.box.addItem(icon.getQIcon(), '')\n self.box.setFixedHeight(self.get_height())\n self.setFocusPolicy(Qt.StrongFocus)\n layout = QtGui.QHBoxLayout(self)\n layout.setContentsMargins(0, 0, 0, 0)\n layout.setSpacing(0)\n self.setAutoFillBackground(True)\n if not editable:\n self.box.setEnabled(False)\n else:\n self.box.setEnabled(True)\n self.box.activated.connect(self.smiley_changed)\n layout.addWidget(self.box)\n layout.addStretch()\n self.setLayout(layout)\n\n def get_value(self):\n position = self.box.currentIndex()\n return CustomEditor.get_value(self) or self.name_by_position[position]\n\n def set_enabled(self, editable=True):\n self.box.setEnabled(editable)\n\n @QtCore.pyqtSlot(int)\n def smiley_changed(self, _index):\n self.editingFinished.emit()\n\n def set_value(self, value):\n name = CustomEditor.set_value(self, value)\n self.box.setCurrentIndex(self.position_by_name[name])\n", "<import token>\n<assignment token>\n\n\nclass SmileyEditor(CustomEditor):\n\n def __init__(self, parent, editable=True, icons=default_icons,\n field_name='icons', **kwargs):\n CustomEditor.__init__(self, parent)\n self.setObjectName(field_name)\n self.box = QtGui.QComboBox()\n self.box.setFrame(True)\n self.box.setEditable(False)\n self.name_by_position = {(0): None}\n self.position_by_name = {None: 0}\n self.box.addItem('')\n for i, (icon_name, icon) in enumerate(icons):\n self.name_by_position[i + 1] = icon_name\n self.position_by_name[icon_name] = i + 1\n self.box.addItem(icon.getQIcon(), '')\n self.box.setFixedHeight(self.get_height())\n self.setFocusPolicy(Qt.StrongFocus)\n layout = QtGui.QHBoxLayout(self)\n layout.setContentsMargins(0, 0, 0, 0)\n layout.setSpacing(0)\n self.setAutoFillBackground(True)\n if not editable:\n self.box.setEnabled(False)\n else:\n self.box.setEnabled(True)\n self.box.activated.connect(self.smiley_changed)\n layout.addWidget(self.box)\n layout.addStretch()\n self.setLayout(layout)\n\n def get_value(self):\n position = self.box.currentIndex()\n return CustomEditor.get_value(self) or self.name_by_position[position]\n\n def set_enabled(self, editable=True):\n self.box.setEnabled(editable)\n\n @QtCore.pyqtSlot(int)\n def smiley_changed(self, _index):\n self.editingFinished.emit()\n\n def set_value(self, value):\n name = CustomEditor.set_value(self, value)\n self.box.setCurrentIndex(self.position_by_name[name])\n", "<import token>\n<assignment token>\n\n\nclass SmileyEditor(CustomEditor):\n\n def __init__(self, parent, editable=True, icons=default_icons,\n field_name='icons', **kwargs):\n CustomEditor.__init__(self, parent)\n self.setObjectName(field_name)\n self.box = QtGui.QComboBox()\n self.box.setFrame(True)\n self.box.setEditable(False)\n self.name_by_position = {(0): None}\n self.position_by_name = {None: 0}\n self.box.addItem('')\n for i, (icon_name, icon) in enumerate(icons):\n self.name_by_position[i + 1] = icon_name\n self.position_by_name[icon_name] = i + 1\n self.box.addItem(icon.getQIcon(), '')\n self.box.setFixedHeight(self.get_height())\n self.setFocusPolicy(Qt.StrongFocus)\n layout = QtGui.QHBoxLayout(self)\n layout.setContentsMargins(0, 0, 0, 0)\n layout.setSpacing(0)\n self.setAutoFillBackground(True)\n if not editable:\n self.box.setEnabled(False)\n else:\n self.box.setEnabled(True)\n self.box.activated.connect(self.smiley_changed)\n layout.addWidget(self.box)\n layout.addStretch()\n self.setLayout(layout)\n <function token>\n\n def set_enabled(self, editable=True):\n self.box.setEnabled(editable)\n\n @QtCore.pyqtSlot(int)\n def smiley_changed(self, _index):\n self.editingFinished.emit()\n\n def set_value(self, value):\n name = CustomEditor.set_value(self, value)\n self.box.setCurrentIndex(self.position_by_name[name])\n", "<import token>\n<assignment token>\n\n\nclass SmileyEditor(CustomEditor):\n\n def __init__(self, parent, editable=True, icons=default_icons,\n field_name='icons', **kwargs):\n CustomEditor.__init__(self, parent)\n self.setObjectName(field_name)\n self.box = QtGui.QComboBox()\n self.box.setFrame(True)\n self.box.setEditable(False)\n self.name_by_position = {(0): None}\n self.position_by_name = {None: 0}\n self.box.addItem('')\n for i, (icon_name, icon) in enumerate(icons):\n self.name_by_position[i + 1] = icon_name\n self.position_by_name[icon_name] = i + 1\n self.box.addItem(icon.getQIcon(), '')\n self.box.setFixedHeight(self.get_height())\n self.setFocusPolicy(Qt.StrongFocus)\n layout = QtGui.QHBoxLayout(self)\n layout.setContentsMargins(0, 0, 0, 0)\n layout.setSpacing(0)\n self.setAutoFillBackground(True)\n if not editable:\n self.box.setEnabled(False)\n else:\n self.box.setEnabled(True)\n self.box.activated.connect(self.smiley_changed)\n layout.addWidget(self.box)\n layout.addStretch()\n self.setLayout(layout)\n <function token>\n <function token>\n\n @QtCore.pyqtSlot(int)\n def smiley_changed(self, _index):\n self.editingFinished.emit()\n\n def set_value(self, value):\n name = CustomEditor.set_value(self, value)\n self.box.setCurrentIndex(self.position_by_name[name])\n", "<import token>\n<assignment token>\n\n\nclass SmileyEditor(CustomEditor):\n\n def __init__(self, parent, editable=True, icons=default_icons,\n field_name='icons', **kwargs):\n CustomEditor.__init__(self, parent)\n self.setObjectName(field_name)\n self.box = QtGui.QComboBox()\n self.box.setFrame(True)\n self.box.setEditable(False)\n self.name_by_position = {(0): None}\n self.position_by_name = {None: 0}\n self.box.addItem('')\n for i, (icon_name, icon) in enumerate(icons):\n self.name_by_position[i + 1] = icon_name\n self.position_by_name[icon_name] = i + 1\n self.box.addItem(icon.getQIcon(), '')\n self.box.setFixedHeight(self.get_height())\n self.setFocusPolicy(Qt.StrongFocus)\n layout = QtGui.QHBoxLayout(self)\n layout.setContentsMargins(0, 0, 0, 0)\n layout.setSpacing(0)\n self.setAutoFillBackground(True)\n if not editable:\n self.box.setEnabled(False)\n else:\n self.box.setEnabled(True)\n self.box.activated.connect(self.smiley_changed)\n layout.addWidget(self.box)\n layout.addStretch()\n self.setLayout(layout)\n <function token>\n <function token>\n <function token>\n\n def set_value(self, value):\n name = CustomEditor.set_value(self, value)\n self.box.setCurrentIndex(self.position_by_name[name])\n", "<import token>\n<assignment token>\n\n\nclass SmileyEditor(CustomEditor):\n <function token>\n <function token>\n <function token>\n <function token>\n\n def set_value(self, value):\n name = CustomEditor.set_value(self, value)\n self.box.setCurrentIndex(self.position_by_name[name])\n", "<import token>\n<assignment token>\n\n\nclass SmileyEditor(CustomEditor):\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n<assignment token>\n<class token>\n" ]
false
99,021
61c54f1fce4d5f8d0a0af6febc3d6a73dd230b01
import csv from app.analysis.rules import dispatch_filter from app.main.dao.delivery_sheet_dao import delivery_sheet_dao from app.main.entity.delivery_item import DeliveryItem from app.util.uuid_util import UUIDUtil if __name__ == '__main__': file = open('output.csv', 'r', encoding='utf-8') reader = csv.reader(file) total_items = [] for row in reader: item = DeliveryItem() item.delivery_item_no = UUIDUtil.create_id("di") item.id = row[2] item.spec = row[6] item.product_type = row[7] item.quantity = row[11] if item.quantity == '': item.quantity = 0 item.free_pcs = row[12] if item.free_pcs == '': item.free_pcs = 0 item.customer_id = row[5] item.salesman_id = row[14] item.weight = int(row[3]) item.create_time = row[9] total_items.append(item) item_dict = {} for item in total_items: item_dict.setdefault(item.id, []).append(item) for items in item_dict.values(): while items: sheets = dispatch_filter.filter(items) if sheets: for sheet in sheets: sheet.delivery_no = UUIDUtil.create_id("ds") sheet.customer_id = sheet.items[0].customer_id sheet.salesman_id = sheet.items[0].salesman_id sheet.create_time = sheet.items[0].create_time sheet.weight = 0 for di in sheet.items: di.delivery_item_no = UUIDUtil.create_id("di") di.delivery_no = sheet.delivery_no sheet.weight += di.weight delivery_sheet_dao.batch_insert(sheets)
[ "import csv\n\nfrom app.analysis.rules import dispatch_filter\nfrom app.main.dao.delivery_sheet_dao import delivery_sheet_dao\nfrom app.main.entity.delivery_item import DeliveryItem\nfrom app.util.uuid_util import UUIDUtil\n\nif __name__ == '__main__':\n file = open('output.csv', 'r', encoding='utf-8')\n reader = csv.reader(file)\n total_items = []\n for row in reader:\n item = DeliveryItem()\n item.delivery_item_no = UUIDUtil.create_id(\"di\")\n item.id = row[2]\n item.spec = row[6]\n item.product_type = row[7]\n item.quantity = row[11]\n if item.quantity == '':\n item.quantity = 0\n item.free_pcs = row[12]\n if item.free_pcs == '':\n item.free_pcs = 0\n item.customer_id = row[5]\n item.salesman_id = row[14]\n item.weight = int(row[3])\n item.create_time = row[9]\n total_items.append(item)\n item_dict = {}\n for item in total_items:\n item_dict.setdefault(item.id, []).append(item)\n for items in item_dict.values():\n while items:\n sheets = dispatch_filter.filter(items)\n if sheets:\n for sheet in sheets:\n sheet.delivery_no = UUIDUtil.create_id(\"ds\")\n sheet.customer_id = sheet.items[0].customer_id\n sheet.salesman_id = sheet.items[0].salesman_id\n sheet.create_time = sheet.items[0].create_time\n sheet.weight = 0\n for di in sheet.items:\n di.delivery_item_no = UUIDUtil.create_id(\"di\")\n di.delivery_no = sheet.delivery_no\n sheet.weight += di.weight\n delivery_sheet_dao.batch_insert(sheets)", "import csv\nfrom app.analysis.rules import dispatch_filter\nfrom app.main.dao.delivery_sheet_dao import delivery_sheet_dao\nfrom app.main.entity.delivery_item import DeliveryItem\nfrom app.util.uuid_util import UUIDUtil\nif __name__ == '__main__':\n file = open('output.csv', 'r', encoding='utf-8')\n reader = csv.reader(file)\n total_items = []\n for row in reader:\n item = DeliveryItem()\n item.delivery_item_no = UUIDUtil.create_id('di')\n item.id = row[2]\n item.spec = row[6]\n item.product_type = row[7]\n item.quantity = row[11]\n if item.quantity == '':\n item.quantity = 0\n item.free_pcs = row[12]\n if item.free_pcs == '':\n item.free_pcs = 0\n item.customer_id = row[5]\n item.salesman_id = row[14]\n item.weight = int(row[3])\n item.create_time = row[9]\n total_items.append(item)\n item_dict = {}\n for item in total_items:\n item_dict.setdefault(item.id, []).append(item)\n for items in item_dict.values():\n while items:\n sheets = dispatch_filter.filter(items)\n if sheets:\n for sheet in sheets:\n sheet.delivery_no = UUIDUtil.create_id('ds')\n sheet.customer_id = sheet.items[0].customer_id\n sheet.salesman_id = sheet.items[0].salesman_id\n sheet.create_time = sheet.items[0].create_time\n sheet.weight = 0\n for di in sheet.items:\n di.delivery_item_no = UUIDUtil.create_id('di')\n di.delivery_no = sheet.delivery_no\n sheet.weight += di.weight\n delivery_sheet_dao.batch_insert(sheets)\n", "<import token>\nif __name__ == '__main__':\n file = open('output.csv', 'r', encoding='utf-8')\n reader = csv.reader(file)\n total_items = []\n for row in reader:\n item = DeliveryItem()\n item.delivery_item_no = UUIDUtil.create_id('di')\n item.id = row[2]\n item.spec = row[6]\n item.product_type = row[7]\n item.quantity = row[11]\n if item.quantity == '':\n item.quantity = 0\n item.free_pcs = row[12]\n if item.free_pcs == '':\n item.free_pcs = 0\n item.customer_id = row[5]\n item.salesman_id = row[14]\n item.weight = int(row[3])\n item.create_time = row[9]\n total_items.append(item)\n item_dict = {}\n for item in total_items:\n item_dict.setdefault(item.id, []).append(item)\n for items in item_dict.values():\n while items:\n sheets = dispatch_filter.filter(items)\n if sheets:\n for sheet in sheets:\n sheet.delivery_no = UUIDUtil.create_id('ds')\n sheet.customer_id = sheet.items[0].customer_id\n sheet.salesman_id = sheet.items[0].salesman_id\n sheet.create_time = sheet.items[0].create_time\n sheet.weight = 0\n for di in sheet.items:\n di.delivery_item_no = UUIDUtil.create_id('di')\n di.delivery_no = sheet.delivery_no\n sheet.weight += di.weight\n delivery_sheet_dao.batch_insert(sheets)\n", "<import token>\n<code token>\n" ]
false
99,022
d27792ef1aed67ad62d9aa9ba8c4b17e8911ec3e
from pieces import * class Board: """ Klasa koja implementira strukturu table. """ def __init__(self, rows=20, cols=20): self.rows = rows # broj redova self.cols = cols # broj kolona self.elems = ['.', # prazno polje 'bp', # crni pijun 'br', # crni top 'bn', # crni konj 'bb', # crni lovac 'bk', # crni kralj 'bq', # crna kraljica 'wp', # beli pijun 'wr', # beli top 'wn', # beli konj 'wb', # beli lovac 'wk', # beli kralj 'wq'] # beli kraljica self.data = [['.'] * cols for _ in range(rows)] self.previous_positions = [-7, -7] #provera belih figura da li su koriscene u partiji self.kralj_beli_koriscen = False self.top_beli_levi_koriscen = False self.top_beli_desni_koriscen = False # provera crnih figura da li su koriscene u partiji self.kralj_crni_koriscen = False self.top_crni_levi_koriscen = False self.top_crni_desni_koriscen = False def load_from_file(self, file_path): """ Ucitavanje table iz fajla. :param file_path: putanja fajla. """ board_f = open(file_path, 'r') row = board_f.readline().strip('\n') self.data = [] while row != '': self.data.append(list(row.split())) row = board_f.readline().strip('\n') board_f.close() def save_to_file(self, file_path): """ Snimanje table u fajl. :param file_path: putanja fajla. """ if file_path: f = open(file_path, 'w') for row in range(self.rows): f.write(''.join(self.data[row]) + '\n') f.close() def move_piece(self, from_row, from_col, to_row, to_col): """ Pomeranje figure. :param from_row: prethodni red figure. :param from_col: prethodna kolona figure. :param to_row: novi red figure. :param to_col: nova kolona figure. """ if to_row < len(self.data) and to_col < len(self.data[0]): t = self.data[from_row][from_col] self.data[from_row][from_col] = '.' self.data[to_row][to_col] = t if (from_row == 7 and from_col == 4): self.kralj_beli_koriscen = True elif (from_row == 7 and from_col == 7): self.top_beli_desni_koriscen = True elif (from_row == 7 and from_col == 0): self.top_beli_levi_koriscen = True elif (from_row == 0 and from_col == 4): self.kralj_crni_koriscen = True elif (from_row == 0 and from_col == 7): self.top_crni_desni_koriscen = True elif (from_row == 0 and from_col == 0): self.top_crni_levi_koriscen = True self.previous_positions = [to_row, to_col] def clear(self): """ Ciscenje sadrzaja cele table. """ for row in range(self.rows): for col in range(self.cols): self.data[row][col] = '.' def find_position(self, element): """ Pronalazenje specificnog elementa unutar table. :param element: kod elementa. :returns: tuple(int, int) """ for row in range(self.rows): for col in range(self.cols): if self.data[row][col] == element: return row, col return None, None def determine_piece(self, row, col): """ Odredjivanje koja je figura na odredjenoj poziciji na tabli. :param row: red. :param col: kolona. :return: objekat figure (implementacija klase Piece). """ elem = self.data[row][col] if elem != '.': side = elem[0] # da li je crni (b) ili beli (w) piece = elem[1] # kod figure if piece == 'p': return Pawn(self, row, col, side) # TODO: dodati za ostale figure if piece == 'n': return Knight(self,row,col,side) if piece == 'b': return Bishop(self,row,col,side) if piece == 'r': return Rook(self,row,col,side) if piece == 'q': return Queen(self,row,col,side) if piece == 'k': return King(self, row, col, side) def rokadaM(self, color): """ Mala rokada kada pozicije menjaju kralj i top sa desne strane. """ if(color == 'w'): self.data[7][5] = 'wr' self.data[7][6] = 'wk' self.data[7][4] = '.' self.data[7][7] = '.' self.kralj_beli_koriscen = True self.previous_positions = [7, 6] else: self.data[0][5] = 'br' self.data[0][6] = 'bk' self.data[0][4] = '.' self.data[0][7] = '.' self.kralj_crni_koriscen = True self.previous_positions = [0, 6] def rokadaV(self, color): """ Velika rokada kada pozicije menjaju kralj i top sa leve strane. """ if(color == 'w'): self.data[7][3] = 'wr' self.data[7][2] = 'wk' self.data[7][4] = '.' self.data[7][0] = '.' self.kralj_beli_koriscen = True self.previous_positions = [7, 2] else: self.data[0][3] = 'br' self.data[0][2] = 'bk' self.data[0][4] = '.' self.data[0][0] = '.' self.kralj_crni_koriscen = True self.previous_positions = [0, 2] def en_passant(self, from_row, from_col, to_row, to_col): """ En passant """ t = self.data[from_row][from_col] self.data[from_row][from_col] = '.' self.data[to_row][to_col] = t self.data[from_row][to_col] = '.' def sah(self, side, king_position=None): """ Provera da li je napadnut kralj ako se moguce pozicije protivnika poklapaju sa pozicijom kralja """ if king_position is None: king_position = self.find_position(str(side) + 'k') if side == 'w': napadac = 'b' else: napadac = 'w' for row in range(self.rows): for col in range(self.cols): if self.data[row][col] != '.' and (not self.data[row][col].startswith(side)) and self.data[row][ col] != napadac + 'k': piece = self.determine_piece(row, col) positions = piece.get_legal_moves() if king_position in positions: return True return False def napadnuta_pozicija(self, side,figure_postion): """ Provera da li je napadnut kralj ako se moguce pozicije protivnika poklapaju sa pozicijom kralja """ if side == 'w': napadac = 'b' else: napadac = 'w' for row in range(self.rows): for col in range(self.cols): if self.data[row][col] != '.' and (not self.data[row][col].startswith(side)) and self.data[row][ col] != napadac + 'k': piece = self.determine_piece(row, col) positions = piece.get_legal_moves() if figure_postion in positions: return True return False
[ "from pieces import *\n\nclass Board:\n \"\"\"\n Klasa koja implementira strukturu table.\n \"\"\"\n\n def __init__(self, rows=20, cols=20):\n self.rows = rows # broj redova\n self.cols = cols # broj kolona\n self.elems = ['.', # prazno polje\n 'bp', # crni pijun\n 'br', # crni top\n 'bn', # crni konj\n 'bb', # crni lovac\n 'bk', # crni kralj\n 'bq', # crna kraljica\n 'wp', # beli pijun\n 'wr', # beli top\n 'wn', # beli konj\n 'wb', # beli lovac\n 'wk', # beli kralj\n 'wq'] # beli kraljica\n\n self.data = [['.'] * cols for _ in range(rows)]\n\n self.previous_positions = [-7, -7]\n\n #provera belih figura da li su koriscene u partiji\n self.kralj_beli_koriscen = False\n self.top_beli_levi_koriscen = False\n self.top_beli_desni_koriscen = False\n\n # provera crnih figura da li su koriscene u partiji\n self.kralj_crni_koriscen = False\n self.top_crni_levi_koriscen = False\n self.top_crni_desni_koriscen = False\n\n\n\n def load_from_file(self, file_path):\n \"\"\"\n Ucitavanje table iz fajla.\n :param file_path: putanja fajla.\n \"\"\"\n board_f = open(file_path, 'r')\n row = board_f.readline().strip('\\n')\n self.data = []\n while row != '':\n self.data.append(list(row.split()))\n row = board_f.readline().strip('\\n')\n board_f.close()\n\n def save_to_file(self, file_path):\n \"\"\"\n Snimanje table u fajl.\n :param file_path: putanja fajla.\n \"\"\"\n if file_path:\n f = open(file_path, 'w')\n for row in range(self.rows):\n f.write(''.join(self.data[row]) + '\\n')\n f.close()\n\n def move_piece(self, from_row, from_col, to_row, to_col):\n \"\"\"\n Pomeranje figure.\n :param from_row: prethodni red figure.\n :param from_col: prethodna kolona figure.\n :param to_row: novi red figure.\n :param to_col: nova kolona figure.\n \"\"\"\n if to_row < len(self.data) and to_col < len(self.data[0]):\n t = self.data[from_row][from_col]\n self.data[from_row][from_col] = '.'\n self.data[to_row][to_col] = t\n\n if (from_row == 7 and from_col == 4):\n self.kralj_beli_koriscen = True\n elif (from_row == 7 and from_col == 7):\n self.top_beli_desni_koriscen = True\n elif (from_row == 7 and from_col == 0):\n self.top_beli_levi_koriscen = True\n elif (from_row == 0 and from_col == 4):\n self.kralj_crni_koriscen = True\n elif (from_row == 0 and from_col == 7):\n self.top_crni_desni_koriscen = True\n elif (from_row == 0 and from_col == 0):\n self.top_crni_levi_koriscen = True\n self.previous_positions = [to_row, to_col]\n\n def clear(self):\n \"\"\"\n Ciscenje sadrzaja cele table.\n \"\"\"\n for row in range(self.rows):\n for col in range(self.cols):\n self.data[row][col] = '.'\n\n def find_position(self, element):\n \"\"\"\n Pronalazenje specificnog elementa unutar table.\n :param element: kod elementa.\n :returns: tuple(int, int)\n \"\"\"\n for row in range(self.rows):\n for col in range(self.cols):\n if self.data[row][col] == element:\n return row, col\n return None, None\n\n def determine_piece(self, row, col):\n \"\"\"\n Odredjivanje koja je figura na odredjenoj poziciji na tabli.\n :param row: red.\n :param col: kolona.\n :return: objekat figure (implementacija klase Piece).\n \"\"\"\n elem = self.data[row][col]\n if elem != '.':\n side = elem[0] # da li je crni (b) ili beli (w)\n piece = elem[1] # kod figure\n if piece == 'p':\n return Pawn(self, row, col, side)\n # TODO: dodati za ostale figure\n if piece == 'n':\n return Knight(self,row,col,side)\n if piece == 'b':\n return Bishop(self,row,col,side)\n if piece == 'r':\n return Rook(self,row,col,side)\n if piece == 'q':\n return Queen(self,row,col,side)\n if piece == 'k':\n return King(self, row, col, side)\n def rokadaM(self, color):\n \"\"\"\n Mala rokada kada pozicije menjaju kralj i top sa desne strane.\n \"\"\"\n if(color == 'w'):\n self.data[7][5] = 'wr'\n self.data[7][6] = 'wk'\n self.data[7][4] = '.'\n self.data[7][7] = '.'\n self.kralj_beli_koriscen = True\n self.previous_positions = [7, 6]\n else:\n self.data[0][5] = 'br'\n self.data[0][6] = 'bk'\n self.data[0][4] = '.'\n self.data[0][7] = '.'\n self.kralj_crni_koriscen = True\n self.previous_positions = [0, 6]\n\n def rokadaV(self, color):\n \"\"\"\n Velika rokada kada pozicije menjaju kralj i top sa leve strane.\n \"\"\"\n if(color == 'w'):\n self.data[7][3] = 'wr'\n self.data[7][2] = 'wk'\n self.data[7][4] = '.'\n self.data[7][0] = '.'\n self.kralj_beli_koriscen = True\n self.previous_positions = [7, 2]\n\n else:\n self.data[0][3] = 'br'\n self.data[0][2] = 'bk'\n self.data[0][4] = '.'\n self.data[0][0] = '.'\n self.kralj_crni_koriscen = True\n self.previous_positions = [0, 2]\n\n\n\n def en_passant(self, from_row, from_col, to_row, to_col):\n \"\"\"\n En passant\n \"\"\"\n\n t = self.data[from_row][from_col]\n self.data[from_row][from_col] = '.'\n self.data[to_row][to_col] = t\n self.data[from_row][to_col] = '.'\n\n\n\n\n\n def sah(self, side, king_position=None):\n \"\"\"\n Provera da li je napadnut kralj ako se moguce pozicije protivnika poklapaju sa pozicijom kralja\n \"\"\"\n if king_position is None:\n king_position = self.find_position(str(side) + 'k')\n\n\n if side == 'w':\n napadac = 'b'\n else:\n napadac = 'w'\n\n for row in range(self.rows):\n for col in range(self.cols):\n if self.data[row][col] != '.' and (not self.data[row][col].startswith(side)) and self.data[row][\n col] != napadac + 'k':\n piece = self.determine_piece(row, col)\n positions = piece.get_legal_moves()\n\n if king_position in positions:\n return True\n\n return False\n\n\n\n\n def napadnuta_pozicija(self, side,figure_postion):\n \"\"\"\n Provera da li je napadnut kralj ako se moguce pozicije protivnika poklapaju sa pozicijom kralja\n \"\"\"\n if side == 'w':\n napadac = 'b'\n else:\n napadac = 'w'\n\n for row in range(self.rows):\n for col in range(self.cols):\n if self.data[row][col] != '.' and (not self.data[row][col].startswith(side)) and self.data[row][\n col] != napadac + 'k':\n piece = self.determine_piece(row, col)\n positions = piece.get_legal_moves()\n\n if figure_postion in positions:\n return True\n return False\n\n\n\n\n\n", "from pieces import *\n\n\nclass Board:\n \"\"\"\n Klasa koja implementira strukturu table.\n \"\"\"\n\n def __init__(self, rows=20, cols=20):\n self.rows = rows\n self.cols = cols\n self.elems = ['.', 'bp', 'br', 'bn', 'bb', 'bk', 'bq', 'wp', 'wr',\n 'wn', 'wb', 'wk', 'wq']\n self.data = [(['.'] * cols) for _ in range(rows)]\n self.previous_positions = [-7, -7]\n self.kralj_beli_koriscen = False\n self.top_beli_levi_koriscen = False\n self.top_beli_desni_koriscen = False\n self.kralj_crni_koriscen = False\n self.top_crni_levi_koriscen = False\n self.top_crni_desni_koriscen = False\n\n def load_from_file(self, file_path):\n \"\"\"\n Ucitavanje table iz fajla.\n :param file_path: putanja fajla.\n \"\"\"\n board_f = open(file_path, 'r')\n row = board_f.readline().strip('\\n')\n self.data = []\n while row != '':\n self.data.append(list(row.split()))\n row = board_f.readline().strip('\\n')\n board_f.close()\n\n def save_to_file(self, file_path):\n \"\"\"\n Snimanje table u fajl.\n :param file_path: putanja fajla.\n \"\"\"\n if file_path:\n f = open(file_path, 'w')\n for row in range(self.rows):\n f.write(''.join(self.data[row]) + '\\n')\n f.close()\n\n def move_piece(self, from_row, from_col, to_row, to_col):\n \"\"\"\n Pomeranje figure.\n :param from_row: prethodni red figure.\n :param from_col: prethodna kolona figure.\n :param to_row: novi red figure.\n :param to_col: nova kolona figure.\n \"\"\"\n if to_row < len(self.data) and to_col < len(self.data[0]):\n t = self.data[from_row][from_col]\n self.data[from_row][from_col] = '.'\n self.data[to_row][to_col] = t\n if from_row == 7 and from_col == 4:\n self.kralj_beli_koriscen = True\n elif from_row == 7 and from_col == 7:\n self.top_beli_desni_koriscen = True\n elif from_row == 7 and from_col == 0:\n self.top_beli_levi_koriscen = True\n elif from_row == 0 and from_col == 4:\n self.kralj_crni_koriscen = True\n elif from_row == 0 and from_col == 7:\n self.top_crni_desni_koriscen = True\n elif from_row == 0 and from_col == 0:\n self.top_crni_levi_koriscen = True\n self.previous_positions = [to_row, to_col]\n\n def clear(self):\n \"\"\"\n Ciscenje sadrzaja cele table.\n \"\"\"\n for row in range(self.rows):\n for col in range(self.cols):\n self.data[row][col] = '.'\n\n def find_position(self, element):\n \"\"\"\n Pronalazenje specificnog elementa unutar table.\n :param element: kod elementa.\n :returns: tuple(int, int)\n \"\"\"\n for row in range(self.rows):\n for col in range(self.cols):\n if self.data[row][col] == element:\n return row, col\n return None, None\n\n def determine_piece(self, row, col):\n \"\"\"\n Odredjivanje koja je figura na odredjenoj poziciji na tabli.\n :param row: red.\n :param col: kolona.\n :return: objekat figure (implementacija klase Piece).\n \"\"\"\n elem = self.data[row][col]\n if elem != '.':\n side = elem[0]\n piece = elem[1]\n if piece == 'p':\n return Pawn(self, row, col, side)\n if piece == 'n':\n return Knight(self, row, col, side)\n if piece == 'b':\n return Bishop(self, row, col, side)\n if piece == 'r':\n return Rook(self, row, col, side)\n if piece == 'q':\n return Queen(self, row, col, side)\n if piece == 'k':\n return King(self, row, col, side)\n\n def rokadaM(self, color):\n \"\"\"\n Mala rokada kada pozicije menjaju kralj i top sa desne strane.\n \"\"\"\n if color == 'w':\n self.data[7][5] = 'wr'\n self.data[7][6] = 'wk'\n self.data[7][4] = '.'\n self.data[7][7] = '.'\n self.kralj_beli_koriscen = True\n self.previous_positions = [7, 6]\n else:\n self.data[0][5] = 'br'\n self.data[0][6] = 'bk'\n self.data[0][4] = '.'\n self.data[0][7] = '.'\n self.kralj_crni_koriscen = True\n self.previous_positions = [0, 6]\n\n def rokadaV(self, color):\n \"\"\"\n Velika rokada kada pozicije menjaju kralj i top sa leve strane.\n \"\"\"\n if color == 'w':\n self.data[7][3] = 'wr'\n self.data[7][2] = 'wk'\n self.data[7][4] = '.'\n self.data[7][0] = '.'\n self.kralj_beli_koriscen = True\n self.previous_positions = [7, 2]\n else:\n self.data[0][3] = 'br'\n self.data[0][2] = 'bk'\n self.data[0][4] = '.'\n self.data[0][0] = '.'\n self.kralj_crni_koriscen = True\n self.previous_positions = [0, 2]\n\n def en_passant(self, from_row, from_col, to_row, to_col):\n \"\"\"\n En passant\n \"\"\"\n t = self.data[from_row][from_col]\n self.data[from_row][from_col] = '.'\n self.data[to_row][to_col] = t\n self.data[from_row][to_col] = '.'\n\n def sah(self, side, king_position=None):\n \"\"\"\n Provera da li je napadnut kralj ako se moguce pozicije protivnika poklapaju sa pozicijom kralja\n \"\"\"\n if king_position is None:\n king_position = self.find_position(str(side) + 'k')\n if side == 'w':\n napadac = 'b'\n else:\n napadac = 'w'\n for row in range(self.rows):\n for col in range(self.cols):\n if self.data[row][col] != '.' and not self.data[row][col\n ].startswith(side) and self.data[row][col\n ] != napadac + 'k':\n piece = self.determine_piece(row, col)\n positions = piece.get_legal_moves()\n if king_position in positions:\n return True\n return False\n\n def napadnuta_pozicija(self, side, figure_postion):\n \"\"\"\n Provera da li je napadnut kralj ako se moguce pozicije protivnika poklapaju sa pozicijom kralja\n \"\"\"\n if side == 'w':\n napadac = 'b'\n else:\n napadac = 'w'\n for row in range(self.rows):\n for col in range(self.cols):\n if self.data[row][col] != '.' and not self.data[row][col\n ].startswith(side) and self.data[row][col\n ] != napadac + 'k':\n piece = self.determine_piece(row, col)\n positions = piece.get_legal_moves()\n if figure_postion in positions:\n return True\n return False\n", "<import token>\n\n\nclass Board:\n \"\"\"\n Klasa koja implementira strukturu table.\n \"\"\"\n\n def __init__(self, rows=20, cols=20):\n self.rows = rows\n self.cols = cols\n self.elems = ['.', 'bp', 'br', 'bn', 'bb', 'bk', 'bq', 'wp', 'wr',\n 'wn', 'wb', 'wk', 'wq']\n self.data = [(['.'] * cols) for _ in range(rows)]\n self.previous_positions = [-7, -7]\n self.kralj_beli_koriscen = False\n self.top_beli_levi_koriscen = False\n self.top_beli_desni_koriscen = False\n self.kralj_crni_koriscen = False\n self.top_crni_levi_koriscen = False\n self.top_crni_desni_koriscen = False\n\n def load_from_file(self, file_path):\n \"\"\"\n Ucitavanje table iz fajla.\n :param file_path: putanja fajla.\n \"\"\"\n board_f = open(file_path, 'r')\n row = board_f.readline().strip('\\n')\n self.data = []\n while row != '':\n self.data.append(list(row.split()))\n row = board_f.readline().strip('\\n')\n board_f.close()\n\n def save_to_file(self, file_path):\n \"\"\"\n Snimanje table u fajl.\n :param file_path: putanja fajla.\n \"\"\"\n if file_path:\n f = open(file_path, 'w')\n for row in range(self.rows):\n f.write(''.join(self.data[row]) + '\\n')\n f.close()\n\n def move_piece(self, from_row, from_col, to_row, to_col):\n \"\"\"\n Pomeranje figure.\n :param from_row: prethodni red figure.\n :param from_col: prethodna kolona figure.\n :param to_row: novi red figure.\n :param to_col: nova kolona figure.\n \"\"\"\n if to_row < len(self.data) and to_col < len(self.data[0]):\n t = self.data[from_row][from_col]\n self.data[from_row][from_col] = '.'\n self.data[to_row][to_col] = t\n if from_row == 7 and from_col == 4:\n self.kralj_beli_koriscen = True\n elif from_row == 7 and from_col == 7:\n self.top_beli_desni_koriscen = True\n elif from_row == 7 and from_col == 0:\n self.top_beli_levi_koriscen = True\n elif from_row == 0 and from_col == 4:\n self.kralj_crni_koriscen = True\n elif from_row == 0 and from_col == 7:\n self.top_crni_desni_koriscen = True\n elif from_row == 0 and from_col == 0:\n self.top_crni_levi_koriscen = True\n self.previous_positions = [to_row, to_col]\n\n def clear(self):\n \"\"\"\n Ciscenje sadrzaja cele table.\n \"\"\"\n for row in range(self.rows):\n for col in range(self.cols):\n self.data[row][col] = '.'\n\n def find_position(self, element):\n \"\"\"\n Pronalazenje specificnog elementa unutar table.\n :param element: kod elementa.\n :returns: tuple(int, int)\n \"\"\"\n for row in range(self.rows):\n for col in range(self.cols):\n if self.data[row][col] == element:\n return row, col\n return None, None\n\n def determine_piece(self, row, col):\n \"\"\"\n Odredjivanje koja je figura na odredjenoj poziciji na tabli.\n :param row: red.\n :param col: kolona.\n :return: objekat figure (implementacija klase Piece).\n \"\"\"\n elem = self.data[row][col]\n if elem != '.':\n side = elem[0]\n piece = elem[1]\n if piece == 'p':\n return Pawn(self, row, col, side)\n if piece == 'n':\n return Knight(self, row, col, side)\n if piece == 'b':\n return Bishop(self, row, col, side)\n if piece == 'r':\n return Rook(self, row, col, side)\n if piece == 'q':\n return Queen(self, row, col, side)\n if piece == 'k':\n return King(self, row, col, side)\n\n def rokadaM(self, color):\n \"\"\"\n Mala rokada kada pozicije menjaju kralj i top sa desne strane.\n \"\"\"\n if color == 'w':\n self.data[7][5] = 'wr'\n self.data[7][6] = 'wk'\n self.data[7][4] = '.'\n self.data[7][7] = '.'\n self.kralj_beli_koriscen = True\n self.previous_positions = [7, 6]\n else:\n self.data[0][5] = 'br'\n self.data[0][6] = 'bk'\n self.data[0][4] = '.'\n self.data[0][7] = '.'\n self.kralj_crni_koriscen = True\n self.previous_positions = [0, 6]\n\n def rokadaV(self, color):\n \"\"\"\n Velika rokada kada pozicije menjaju kralj i top sa leve strane.\n \"\"\"\n if color == 'w':\n self.data[7][3] = 'wr'\n self.data[7][2] = 'wk'\n self.data[7][4] = '.'\n self.data[7][0] = '.'\n self.kralj_beli_koriscen = True\n self.previous_positions = [7, 2]\n else:\n self.data[0][3] = 'br'\n self.data[0][2] = 'bk'\n self.data[0][4] = '.'\n self.data[0][0] = '.'\n self.kralj_crni_koriscen = True\n self.previous_positions = [0, 2]\n\n def en_passant(self, from_row, from_col, to_row, to_col):\n \"\"\"\n En passant\n \"\"\"\n t = self.data[from_row][from_col]\n self.data[from_row][from_col] = '.'\n self.data[to_row][to_col] = t\n self.data[from_row][to_col] = '.'\n\n def sah(self, side, king_position=None):\n \"\"\"\n Provera da li je napadnut kralj ako se moguce pozicije protivnika poklapaju sa pozicijom kralja\n \"\"\"\n if king_position is None:\n king_position = self.find_position(str(side) + 'k')\n if side == 'w':\n napadac = 'b'\n else:\n napadac = 'w'\n for row in range(self.rows):\n for col in range(self.cols):\n if self.data[row][col] != '.' and not self.data[row][col\n ].startswith(side) and self.data[row][col\n ] != napadac + 'k':\n piece = self.determine_piece(row, col)\n positions = piece.get_legal_moves()\n if king_position in positions:\n return True\n return False\n\n def napadnuta_pozicija(self, side, figure_postion):\n \"\"\"\n Provera da li je napadnut kralj ako se moguce pozicije protivnika poklapaju sa pozicijom kralja\n \"\"\"\n if side == 'w':\n napadac = 'b'\n else:\n napadac = 'w'\n for row in range(self.rows):\n for col in range(self.cols):\n if self.data[row][col] != '.' and not self.data[row][col\n ].startswith(side) and self.data[row][col\n ] != napadac + 'k':\n piece = self.determine_piece(row, col)\n positions = piece.get_legal_moves()\n if figure_postion in positions:\n return True\n return False\n", "<import token>\n\n\nclass Board:\n <docstring token>\n\n def __init__(self, rows=20, cols=20):\n self.rows = rows\n self.cols = cols\n self.elems = ['.', 'bp', 'br', 'bn', 'bb', 'bk', 'bq', 'wp', 'wr',\n 'wn', 'wb', 'wk', 'wq']\n self.data = [(['.'] * cols) for _ in range(rows)]\n self.previous_positions = [-7, -7]\n self.kralj_beli_koriscen = False\n self.top_beli_levi_koriscen = False\n self.top_beli_desni_koriscen = False\n self.kralj_crni_koriscen = False\n self.top_crni_levi_koriscen = False\n self.top_crni_desni_koriscen = False\n\n def load_from_file(self, file_path):\n \"\"\"\n Ucitavanje table iz fajla.\n :param file_path: putanja fajla.\n \"\"\"\n board_f = open(file_path, 'r')\n row = board_f.readline().strip('\\n')\n self.data = []\n while row != '':\n self.data.append(list(row.split()))\n row = board_f.readline().strip('\\n')\n board_f.close()\n\n def save_to_file(self, file_path):\n \"\"\"\n Snimanje table u fajl.\n :param file_path: putanja fajla.\n \"\"\"\n if file_path:\n f = open(file_path, 'w')\n for row in range(self.rows):\n f.write(''.join(self.data[row]) + '\\n')\n f.close()\n\n def move_piece(self, from_row, from_col, to_row, to_col):\n \"\"\"\n Pomeranje figure.\n :param from_row: prethodni red figure.\n :param from_col: prethodna kolona figure.\n :param to_row: novi red figure.\n :param to_col: nova kolona figure.\n \"\"\"\n if to_row < len(self.data) and to_col < len(self.data[0]):\n t = self.data[from_row][from_col]\n self.data[from_row][from_col] = '.'\n self.data[to_row][to_col] = t\n if from_row == 7 and from_col == 4:\n self.kralj_beli_koriscen = True\n elif from_row == 7 and from_col == 7:\n self.top_beli_desni_koriscen = True\n elif from_row == 7 and from_col == 0:\n self.top_beli_levi_koriscen = True\n elif from_row == 0 and from_col == 4:\n self.kralj_crni_koriscen = True\n elif from_row == 0 and from_col == 7:\n self.top_crni_desni_koriscen = True\n elif from_row == 0 and from_col == 0:\n self.top_crni_levi_koriscen = True\n self.previous_positions = [to_row, to_col]\n\n def clear(self):\n \"\"\"\n Ciscenje sadrzaja cele table.\n \"\"\"\n for row in range(self.rows):\n for col in range(self.cols):\n self.data[row][col] = '.'\n\n def find_position(self, element):\n \"\"\"\n Pronalazenje specificnog elementa unutar table.\n :param element: kod elementa.\n :returns: tuple(int, int)\n \"\"\"\n for row in range(self.rows):\n for col in range(self.cols):\n if self.data[row][col] == element:\n return row, col\n return None, None\n\n def determine_piece(self, row, col):\n \"\"\"\n Odredjivanje koja je figura na odredjenoj poziciji na tabli.\n :param row: red.\n :param col: kolona.\n :return: objekat figure (implementacija klase Piece).\n \"\"\"\n elem = self.data[row][col]\n if elem != '.':\n side = elem[0]\n piece = elem[1]\n if piece == 'p':\n return Pawn(self, row, col, side)\n if piece == 'n':\n return Knight(self, row, col, side)\n if piece == 'b':\n return Bishop(self, row, col, side)\n if piece == 'r':\n return Rook(self, row, col, side)\n if piece == 'q':\n return Queen(self, row, col, side)\n if piece == 'k':\n return King(self, row, col, side)\n\n def rokadaM(self, color):\n \"\"\"\n Mala rokada kada pozicije menjaju kralj i top sa desne strane.\n \"\"\"\n if color == 'w':\n self.data[7][5] = 'wr'\n self.data[7][6] = 'wk'\n self.data[7][4] = '.'\n self.data[7][7] = '.'\n self.kralj_beli_koriscen = True\n self.previous_positions = [7, 6]\n else:\n self.data[0][5] = 'br'\n self.data[0][6] = 'bk'\n self.data[0][4] = '.'\n self.data[0][7] = '.'\n self.kralj_crni_koriscen = True\n self.previous_positions = [0, 6]\n\n def rokadaV(self, color):\n \"\"\"\n Velika rokada kada pozicije menjaju kralj i top sa leve strane.\n \"\"\"\n if color == 'w':\n self.data[7][3] = 'wr'\n self.data[7][2] = 'wk'\n self.data[7][4] = '.'\n self.data[7][0] = '.'\n self.kralj_beli_koriscen = True\n self.previous_positions = [7, 2]\n else:\n self.data[0][3] = 'br'\n self.data[0][2] = 'bk'\n self.data[0][4] = '.'\n self.data[0][0] = '.'\n self.kralj_crni_koriscen = True\n self.previous_positions = [0, 2]\n\n def en_passant(self, from_row, from_col, to_row, to_col):\n \"\"\"\n En passant\n \"\"\"\n t = self.data[from_row][from_col]\n self.data[from_row][from_col] = '.'\n self.data[to_row][to_col] = t\n self.data[from_row][to_col] = '.'\n\n def sah(self, side, king_position=None):\n \"\"\"\n Provera da li je napadnut kralj ako se moguce pozicije protivnika poklapaju sa pozicijom kralja\n \"\"\"\n if king_position is None:\n king_position = self.find_position(str(side) + 'k')\n if side == 'w':\n napadac = 'b'\n else:\n napadac = 'w'\n for row in range(self.rows):\n for col in range(self.cols):\n if self.data[row][col] != '.' and not self.data[row][col\n ].startswith(side) and self.data[row][col\n ] != napadac + 'k':\n piece = self.determine_piece(row, col)\n positions = piece.get_legal_moves()\n if king_position in positions:\n return True\n return False\n\n def napadnuta_pozicija(self, side, figure_postion):\n \"\"\"\n Provera da li je napadnut kralj ako se moguce pozicije protivnika poklapaju sa pozicijom kralja\n \"\"\"\n if side == 'w':\n napadac = 'b'\n else:\n napadac = 'w'\n for row in range(self.rows):\n for col in range(self.cols):\n if self.data[row][col] != '.' and not self.data[row][col\n ].startswith(side) and self.data[row][col\n ] != napadac + 'k':\n piece = self.determine_piece(row, col)\n positions = piece.get_legal_moves()\n if figure_postion in positions:\n return True\n return False\n", "<import token>\n\n\nclass Board:\n <docstring token>\n\n def __init__(self, rows=20, cols=20):\n self.rows = rows\n self.cols = cols\n self.elems = ['.', 'bp', 'br', 'bn', 'bb', 'bk', 'bq', 'wp', 'wr',\n 'wn', 'wb', 'wk', 'wq']\n self.data = [(['.'] * cols) for _ in range(rows)]\n self.previous_positions = [-7, -7]\n self.kralj_beli_koriscen = False\n self.top_beli_levi_koriscen = False\n self.top_beli_desni_koriscen = False\n self.kralj_crni_koriscen = False\n self.top_crni_levi_koriscen = False\n self.top_crni_desni_koriscen = False\n\n def load_from_file(self, file_path):\n \"\"\"\n Ucitavanje table iz fajla.\n :param file_path: putanja fajla.\n \"\"\"\n board_f = open(file_path, 'r')\n row = board_f.readline().strip('\\n')\n self.data = []\n while row != '':\n self.data.append(list(row.split()))\n row = board_f.readline().strip('\\n')\n board_f.close()\n\n def save_to_file(self, file_path):\n \"\"\"\n Snimanje table u fajl.\n :param file_path: putanja fajla.\n \"\"\"\n if file_path:\n f = open(file_path, 'w')\n for row in range(self.rows):\n f.write(''.join(self.data[row]) + '\\n')\n f.close()\n\n def move_piece(self, from_row, from_col, to_row, to_col):\n \"\"\"\n Pomeranje figure.\n :param from_row: prethodni red figure.\n :param from_col: prethodna kolona figure.\n :param to_row: novi red figure.\n :param to_col: nova kolona figure.\n \"\"\"\n if to_row < len(self.data) and to_col < len(self.data[0]):\n t = self.data[from_row][from_col]\n self.data[from_row][from_col] = '.'\n self.data[to_row][to_col] = t\n if from_row == 7 and from_col == 4:\n self.kralj_beli_koriscen = True\n elif from_row == 7 and from_col == 7:\n self.top_beli_desni_koriscen = True\n elif from_row == 7 and from_col == 0:\n self.top_beli_levi_koriscen = True\n elif from_row == 0 and from_col == 4:\n self.kralj_crni_koriscen = True\n elif from_row == 0 and from_col == 7:\n self.top_crni_desni_koriscen = True\n elif from_row == 0 and from_col == 0:\n self.top_crni_levi_koriscen = True\n self.previous_positions = [to_row, to_col]\n <function token>\n\n def find_position(self, element):\n \"\"\"\n Pronalazenje specificnog elementa unutar table.\n :param element: kod elementa.\n :returns: tuple(int, int)\n \"\"\"\n for row in range(self.rows):\n for col in range(self.cols):\n if self.data[row][col] == element:\n return row, col\n return None, None\n\n def determine_piece(self, row, col):\n \"\"\"\n Odredjivanje koja je figura na odredjenoj poziciji na tabli.\n :param row: red.\n :param col: kolona.\n :return: objekat figure (implementacija klase Piece).\n \"\"\"\n elem = self.data[row][col]\n if elem != '.':\n side = elem[0]\n piece = elem[1]\n if piece == 'p':\n return Pawn(self, row, col, side)\n if piece == 'n':\n return Knight(self, row, col, side)\n if piece == 'b':\n return Bishop(self, row, col, side)\n if piece == 'r':\n return Rook(self, row, col, side)\n if piece == 'q':\n return Queen(self, row, col, side)\n if piece == 'k':\n return King(self, row, col, side)\n\n def rokadaM(self, color):\n \"\"\"\n Mala rokada kada pozicije menjaju kralj i top sa desne strane.\n \"\"\"\n if color == 'w':\n self.data[7][5] = 'wr'\n self.data[7][6] = 'wk'\n self.data[7][4] = '.'\n self.data[7][7] = '.'\n self.kralj_beli_koriscen = True\n self.previous_positions = [7, 6]\n else:\n self.data[0][5] = 'br'\n self.data[0][6] = 'bk'\n self.data[0][4] = '.'\n self.data[0][7] = '.'\n self.kralj_crni_koriscen = True\n self.previous_positions = [0, 6]\n\n def rokadaV(self, color):\n \"\"\"\n Velika rokada kada pozicije menjaju kralj i top sa leve strane.\n \"\"\"\n if color == 'w':\n self.data[7][3] = 'wr'\n self.data[7][2] = 'wk'\n self.data[7][4] = '.'\n self.data[7][0] = '.'\n self.kralj_beli_koriscen = True\n self.previous_positions = [7, 2]\n else:\n self.data[0][3] = 'br'\n self.data[0][2] = 'bk'\n self.data[0][4] = '.'\n self.data[0][0] = '.'\n self.kralj_crni_koriscen = True\n self.previous_positions = [0, 2]\n\n def en_passant(self, from_row, from_col, to_row, to_col):\n \"\"\"\n En passant\n \"\"\"\n t = self.data[from_row][from_col]\n self.data[from_row][from_col] = '.'\n self.data[to_row][to_col] = t\n self.data[from_row][to_col] = '.'\n\n def sah(self, side, king_position=None):\n \"\"\"\n Provera da li je napadnut kralj ako se moguce pozicije protivnika poklapaju sa pozicijom kralja\n \"\"\"\n if king_position is None:\n king_position = self.find_position(str(side) + 'k')\n if side == 'w':\n napadac = 'b'\n else:\n napadac = 'w'\n for row in range(self.rows):\n for col in range(self.cols):\n if self.data[row][col] != '.' and not self.data[row][col\n ].startswith(side) and self.data[row][col\n ] != napadac + 'k':\n piece = self.determine_piece(row, col)\n positions = piece.get_legal_moves()\n if king_position in positions:\n return True\n return False\n\n def napadnuta_pozicija(self, side, figure_postion):\n \"\"\"\n Provera da li je napadnut kralj ako se moguce pozicije protivnika poklapaju sa pozicijom kralja\n \"\"\"\n if side == 'w':\n napadac = 'b'\n else:\n napadac = 'w'\n for row in range(self.rows):\n for col in range(self.cols):\n if self.data[row][col] != '.' and not self.data[row][col\n ].startswith(side) and self.data[row][col\n ] != napadac + 'k':\n piece = self.determine_piece(row, col)\n positions = piece.get_legal_moves()\n if figure_postion in positions:\n return True\n return False\n", "<import token>\n\n\nclass Board:\n <docstring token>\n\n def __init__(self, rows=20, cols=20):\n self.rows = rows\n self.cols = cols\n self.elems = ['.', 'bp', 'br', 'bn', 'bb', 'bk', 'bq', 'wp', 'wr',\n 'wn', 'wb', 'wk', 'wq']\n self.data = [(['.'] * cols) for _ in range(rows)]\n self.previous_positions = [-7, -7]\n self.kralj_beli_koriscen = False\n self.top_beli_levi_koriscen = False\n self.top_beli_desni_koriscen = False\n self.kralj_crni_koriscen = False\n self.top_crni_levi_koriscen = False\n self.top_crni_desni_koriscen = False\n\n def load_from_file(self, file_path):\n \"\"\"\n Ucitavanje table iz fajla.\n :param file_path: putanja fajla.\n \"\"\"\n board_f = open(file_path, 'r')\n row = board_f.readline().strip('\\n')\n self.data = []\n while row != '':\n self.data.append(list(row.split()))\n row = board_f.readline().strip('\\n')\n board_f.close()\n\n def save_to_file(self, file_path):\n \"\"\"\n Snimanje table u fajl.\n :param file_path: putanja fajla.\n \"\"\"\n if file_path:\n f = open(file_path, 'w')\n for row in range(self.rows):\n f.write(''.join(self.data[row]) + '\\n')\n f.close()\n\n def move_piece(self, from_row, from_col, to_row, to_col):\n \"\"\"\n Pomeranje figure.\n :param from_row: prethodni red figure.\n :param from_col: prethodna kolona figure.\n :param to_row: novi red figure.\n :param to_col: nova kolona figure.\n \"\"\"\n if to_row < len(self.data) and to_col < len(self.data[0]):\n t = self.data[from_row][from_col]\n self.data[from_row][from_col] = '.'\n self.data[to_row][to_col] = t\n if from_row == 7 and from_col == 4:\n self.kralj_beli_koriscen = True\n elif from_row == 7 and from_col == 7:\n self.top_beli_desni_koriscen = True\n elif from_row == 7 and from_col == 0:\n self.top_beli_levi_koriscen = True\n elif from_row == 0 and from_col == 4:\n self.kralj_crni_koriscen = True\n elif from_row == 0 and from_col == 7:\n self.top_crni_desni_koriscen = True\n elif from_row == 0 and from_col == 0:\n self.top_crni_levi_koriscen = True\n self.previous_positions = [to_row, to_col]\n <function token>\n\n def find_position(self, element):\n \"\"\"\n Pronalazenje specificnog elementa unutar table.\n :param element: kod elementa.\n :returns: tuple(int, int)\n \"\"\"\n for row in range(self.rows):\n for col in range(self.cols):\n if self.data[row][col] == element:\n return row, col\n return None, None\n\n def determine_piece(self, row, col):\n \"\"\"\n Odredjivanje koja je figura na odredjenoj poziciji na tabli.\n :param row: red.\n :param col: kolona.\n :return: objekat figure (implementacija klase Piece).\n \"\"\"\n elem = self.data[row][col]\n if elem != '.':\n side = elem[0]\n piece = elem[1]\n if piece == 'p':\n return Pawn(self, row, col, side)\n if piece == 'n':\n return Knight(self, row, col, side)\n if piece == 'b':\n return Bishop(self, row, col, side)\n if piece == 'r':\n return Rook(self, row, col, side)\n if piece == 'q':\n return Queen(self, row, col, side)\n if piece == 'k':\n return King(self, row, col, side)\n\n def rokadaM(self, color):\n \"\"\"\n Mala rokada kada pozicije menjaju kralj i top sa desne strane.\n \"\"\"\n if color == 'w':\n self.data[7][5] = 'wr'\n self.data[7][6] = 'wk'\n self.data[7][4] = '.'\n self.data[7][7] = '.'\n self.kralj_beli_koriscen = True\n self.previous_positions = [7, 6]\n else:\n self.data[0][5] = 'br'\n self.data[0][6] = 'bk'\n self.data[0][4] = '.'\n self.data[0][7] = '.'\n self.kralj_crni_koriscen = True\n self.previous_positions = [0, 6]\n\n def rokadaV(self, color):\n \"\"\"\n Velika rokada kada pozicije menjaju kralj i top sa leve strane.\n \"\"\"\n if color == 'w':\n self.data[7][3] = 'wr'\n self.data[7][2] = 'wk'\n self.data[7][4] = '.'\n self.data[7][0] = '.'\n self.kralj_beli_koriscen = True\n self.previous_positions = [7, 2]\n else:\n self.data[0][3] = 'br'\n self.data[0][2] = 'bk'\n self.data[0][4] = '.'\n self.data[0][0] = '.'\n self.kralj_crni_koriscen = True\n self.previous_positions = [0, 2]\n\n def en_passant(self, from_row, from_col, to_row, to_col):\n \"\"\"\n En passant\n \"\"\"\n t = self.data[from_row][from_col]\n self.data[from_row][from_col] = '.'\n self.data[to_row][to_col] = t\n self.data[from_row][to_col] = '.'\n\n def sah(self, side, king_position=None):\n \"\"\"\n Provera da li je napadnut kralj ako se moguce pozicije protivnika poklapaju sa pozicijom kralja\n \"\"\"\n if king_position is None:\n king_position = self.find_position(str(side) + 'k')\n if side == 'w':\n napadac = 'b'\n else:\n napadac = 'w'\n for row in range(self.rows):\n for col in range(self.cols):\n if self.data[row][col] != '.' and not self.data[row][col\n ].startswith(side) and self.data[row][col\n ] != napadac + 'k':\n piece = self.determine_piece(row, col)\n positions = piece.get_legal_moves()\n if king_position in positions:\n return True\n return False\n <function token>\n", "<import token>\n\n\nclass Board:\n <docstring token>\n\n def __init__(self, rows=20, cols=20):\n self.rows = rows\n self.cols = cols\n self.elems = ['.', 'bp', 'br', 'bn', 'bb', 'bk', 'bq', 'wp', 'wr',\n 'wn', 'wb', 'wk', 'wq']\n self.data = [(['.'] * cols) for _ in range(rows)]\n self.previous_positions = [-7, -7]\n self.kralj_beli_koriscen = False\n self.top_beli_levi_koriscen = False\n self.top_beli_desni_koriscen = False\n self.kralj_crni_koriscen = False\n self.top_crni_levi_koriscen = False\n self.top_crni_desni_koriscen = False\n\n def load_from_file(self, file_path):\n \"\"\"\n Ucitavanje table iz fajla.\n :param file_path: putanja fajla.\n \"\"\"\n board_f = open(file_path, 'r')\n row = board_f.readline().strip('\\n')\n self.data = []\n while row != '':\n self.data.append(list(row.split()))\n row = board_f.readline().strip('\\n')\n board_f.close()\n\n def save_to_file(self, file_path):\n \"\"\"\n Snimanje table u fajl.\n :param file_path: putanja fajla.\n \"\"\"\n if file_path:\n f = open(file_path, 'w')\n for row in range(self.rows):\n f.write(''.join(self.data[row]) + '\\n')\n f.close()\n\n def move_piece(self, from_row, from_col, to_row, to_col):\n \"\"\"\n Pomeranje figure.\n :param from_row: prethodni red figure.\n :param from_col: prethodna kolona figure.\n :param to_row: novi red figure.\n :param to_col: nova kolona figure.\n \"\"\"\n if to_row < len(self.data) and to_col < len(self.data[0]):\n t = self.data[from_row][from_col]\n self.data[from_row][from_col] = '.'\n self.data[to_row][to_col] = t\n if from_row == 7 and from_col == 4:\n self.kralj_beli_koriscen = True\n elif from_row == 7 and from_col == 7:\n self.top_beli_desni_koriscen = True\n elif from_row == 7 and from_col == 0:\n self.top_beli_levi_koriscen = True\n elif from_row == 0 and from_col == 4:\n self.kralj_crni_koriscen = True\n elif from_row == 0 and from_col == 7:\n self.top_crni_desni_koriscen = True\n elif from_row == 0 and from_col == 0:\n self.top_crni_levi_koriscen = True\n self.previous_positions = [to_row, to_col]\n <function token>\n\n def find_position(self, element):\n \"\"\"\n Pronalazenje specificnog elementa unutar table.\n :param element: kod elementa.\n :returns: tuple(int, int)\n \"\"\"\n for row in range(self.rows):\n for col in range(self.cols):\n if self.data[row][col] == element:\n return row, col\n return None, None\n\n def determine_piece(self, row, col):\n \"\"\"\n Odredjivanje koja je figura na odredjenoj poziciji na tabli.\n :param row: red.\n :param col: kolona.\n :return: objekat figure (implementacija klase Piece).\n \"\"\"\n elem = self.data[row][col]\n if elem != '.':\n side = elem[0]\n piece = elem[1]\n if piece == 'p':\n return Pawn(self, row, col, side)\n if piece == 'n':\n return Knight(self, row, col, side)\n if piece == 'b':\n return Bishop(self, row, col, side)\n if piece == 'r':\n return Rook(self, row, col, side)\n if piece == 'q':\n return Queen(self, row, col, side)\n if piece == 'k':\n return King(self, row, col, side)\n\n def rokadaM(self, color):\n \"\"\"\n Mala rokada kada pozicije menjaju kralj i top sa desne strane.\n \"\"\"\n if color == 'w':\n self.data[7][5] = 'wr'\n self.data[7][6] = 'wk'\n self.data[7][4] = '.'\n self.data[7][7] = '.'\n self.kralj_beli_koriscen = True\n self.previous_positions = [7, 6]\n else:\n self.data[0][5] = 'br'\n self.data[0][6] = 'bk'\n self.data[0][4] = '.'\n self.data[0][7] = '.'\n self.kralj_crni_koriscen = True\n self.previous_positions = [0, 6]\n\n def rokadaV(self, color):\n \"\"\"\n Velika rokada kada pozicije menjaju kralj i top sa leve strane.\n \"\"\"\n if color == 'w':\n self.data[7][3] = 'wr'\n self.data[7][2] = 'wk'\n self.data[7][4] = '.'\n self.data[7][0] = '.'\n self.kralj_beli_koriscen = True\n self.previous_positions = [7, 2]\n else:\n self.data[0][3] = 'br'\n self.data[0][2] = 'bk'\n self.data[0][4] = '.'\n self.data[0][0] = '.'\n self.kralj_crni_koriscen = True\n self.previous_positions = [0, 2]\n <function token>\n\n def sah(self, side, king_position=None):\n \"\"\"\n Provera da li je napadnut kralj ako se moguce pozicije protivnika poklapaju sa pozicijom kralja\n \"\"\"\n if king_position is None:\n king_position = self.find_position(str(side) + 'k')\n if side == 'w':\n napadac = 'b'\n else:\n napadac = 'w'\n for row in range(self.rows):\n for col in range(self.cols):\n if self.data[row][col] != '.' and not self.data[row][col\n ].startswith(side) and self.data[row][col\n ] != napadac + 'k':\n piece = self.determine_piece(row, col)\n positions = piece.get_legal_moves()\n if king_position in positions:\n return True\n return False\n <function token>\n", "<import token>\n\n\nclass Board:\n <docstring token>\n\n def __init__(self, rows=20, cols=20):\n self.rows = rows\n self.cols = cols\n self.elems = ['.', 'bp', 'br', 'bn', 'bb', 'bk', 'bq', 'wp', 'wr',\n 'wn', 'wb', 'wk', 'wq']\n self.data = [(['.'] * cols) for _ in range(rows)]\n self.previous_positions = [-7, -7]\n self.kralj_beli_koriscen = False\n self.top_beli_levi_koriscen = False\n self.top_beli_desni_koriscen = False\n self.kralj_crni_koriscen = False\n self.top_crni_levi_koriscen = False\n self.top_crni_desni_koriscen = False\n\n def load_from_file(self, file_path):\n \"\"\"\n Ucitavanje table iz fajla.\n :param file_path: putanja fajla.\n \"\"\"\n board_f = open(file_path, 'r')\n row = board_f.readline().strip('\\n')\n self.data = []\n while row != '':\n self.data.append(list(row.split()))\n row = board_f.readline().strip('\\n')\n board_f.close()\n\n def save_to_file(self, file_path):\n \"\"\"\n Snimanje table u fajl.\n :param file_path: putanja fajla.\n \"\"\"\n if file_path:\n f = open(file_path, 'w')\n for row in range(self.rows):\n f.write(''.join(self.data[row]) + '\\n')\n f.close()\n\n def move_piece(self, from_row, from_col, to_row, to_col):\n \"\"\"\n Pomeranje figure.\n :param from_row: prethodni red figure.\n :param from_col: prethodna kolona figure.\n :param to_row: novi red figure.\n :param to_col: nova kolona figure.\n \"\"\"\n if to_row < len(self.data) and to_col < len(self.data[0]):\n t = self.data[from_row][from_col]\n self.data[from_row][from_col] = '.'\n self.data[to_row][to_col] = t\n if from_row == 7 and from_col == 4:\n self.kralj_beli_koriscen = True\n elif from_row == 7 and from_col == 7:\n self.top_beli_desni_koriscen = True\n elif from_row == 7 and from_col == 0:\n self.top_beli_levi_koriscen = True\n elif from_row == 0 and from_col == 4:\n self.kralj_crni_koriscen = True\n elif from_row == 0 and from_col == 7:\n self.top_crni_desni_koriscen = True\n elif from_row == 0 and from_col == 0:\n self.top_crni_levi_koriscen = True\n self.previous_positions = [to_row, to_col]\n <function token>\n\n def find_position(self, element):\n \"\"\"\n Pronalazenje specificnog elementa unutar table.\n :param element: kod elementa.\n :returns: tuple(int, int)\n \"\"\"\n for row in range(self.rows):\n for col in range(self.cols):\n if self.data[row][col] == element:\n return row, col\n return None, None\n\n def determine_piece(self, row, col):\n \"\"\"\n Odredjivanje koja je figura na odredjenoj poziciji na tabli.\n :param row: red.\n :param col: kolona.\n :return: objekat figure (implementacija klase Piece).\n \"\"\"\n elem = self.data[row][col]\n if elem != '.':\n side = elem[0]\n piece = elem[1]\n if piece == 'p':\n return Pawn(self, row, col, side)\n if piece == 'n':\n return Knight(self, row, col, side)\n if piece == 'b':\n return Bishop(self, row, col, side)\n if piece == 'r':\n return Rook(self, row, col, side)\n if piece == 'q':\n return Queen(self, row, col, side)\n if piece == 'k':\n return King(self, row, col, side)\n <function token>\n\n def rokadaV(self, color):\n \"\"\"\n Velika rokada kada pozicije menjaju kralj i top sa leve strane.\n \"\"\"\n if color == 'w':\n self.data[7][3] = 'wr'\n self.data[7][2] = 'wk'\n self.data[7][4] = '.'\n self.data[7][0] = '.'\n self.kralj_beli_koriscen = True\n self.previous_positions = [7, 2]\n else:\n self.data[0][3] = 'br'\n self.data[0][2] = 'bk'\n self.data[0][4] = '.'\n self.data[0][0] = '.'\n self.kralj_crni_koriscen = True\n self.previous_positions = [0, 2]\n <function token>\n\n def sah(self, side, king_position=None):\n \"\"\"\n Provera da li je napadnut kralj ako se moguce pozicije protivnika poklapaju sa pozicijom kralja\n \"\"\"\n if king_position is None:\n king_position = self.find_position(str(side) + 'k')\n if side == 'w':\n napadac = 'b'\n else:\n napadac = 'w'\n for row in range(self.rows):\n for col in range(self.cols):\n if self.data[row][col] != '.' and not self.data[row][col\n ].startswith(side) and self.data[row][col\n ] != napadac + 'k':\n piece = self.determine_piece(row, col)\n positions = piece.get_legal_moves()\n if king_position in positions:\n return True\n return False\n <function token>\n", "<import token>\n\n\nclass Board:\n <docstring token>\n\n def __init__(self, rows=20, cols=20):\n self.rows = rows\n self.cols = cols\n self.elems = ['.', 'bp', 'br', 'bn', 'bb', 'bk', 'bq', 'wp', 'wr',\n 'wn', 'wb', 'wk', 'wq']\n self.data = [(['.'] * cols) for _ in range(rows)]\n self.previous_positions = [-7, -7]\n self.kralj_beli_koriscen = False\n self.top_beli_levi_koriscen = False\n self.top_beli_desni_koriscen = False\n self.kralj_crni_koriscen = False\n self.top_crni_levi_koriscen = False\n self.top_crni_desni_koriscen = False\n <function token>\n\n def save_to_file(self, file_path):\n \"\"\"\n Snimanje table u fajl.\n :param file_path: putanja fajla.\n \"\"\"\n if file_path:\n f = open(file_path, 'w')\n for row in range(self.rows):\n f.write(''.join(self.data[row]) + '\\n')\n f.close()\n\n def move_piece(self, from_row, from_col, to_row, to_col):\n \"\"\"\n Pomeranje figure.\n :param from_row: prethodni red figure.\n :param from_col: prethodna kolona figure.\n :param to_row: novi red figure.\n :param to_col: nova kolona figure.\n \"\"\"\n if to_row < len(self.data) and to_col < len(self.data[0]):\n t = self.data[from_row][from_col]\n self.data[from_row][from_col] = '.'\n self.data[to_row][to_col] = t\n if from_row == 7 and from_col == 4:\n self.kralj_beli_koriscen = True\n elif from_row == 7 and from_col == 7:\n self.top_beli_desni_koriscen = True\n elif from_row == 7 and from_col == 0:\n self.top_beli_levi_koriscen = True\n elif from_row == 0 and from_col == 4:\n self.kralj_crni_koriscen = True\n elif from_row == 0 and from_col == 7:\n self.top_crni_desni_koriscen = True\n elif from_row == 0 and from_col == 0:\n self.top_crni_levi_koriscen = True\n self.previous_positions = [to_row, to_col]\n <function token>\n\n def find_position(self, element):\n \"\"\"\n Pronalazenje specificnog elementa unutar table.\n :param element: kod elementa.\n :returns: tuple(int, int)\n \"\"\"\n for row in range(self.rows):\n for col in range(self.cols):\n if self.data[row][col] == element:\n return row, col\n return None, None\n\n def determine_piece(self, row, col):\n \"\"\"\n Odredjivanje koja je figura na odredjenoj poziciji na tabli.\n :param row: red.\n :param col: kolona.\n :return: objekat figure (implementacija klase Piece).\n \"\"\"\n elem = self.data[row][col]\n if elem != '.':\n side = elem[0]\n piece = elem[1]\n if piece == 'p':\n return Pawn(self, row, col, side)\n if piece == 'n':\n return Knight(self, row, col, side)\n if piece == 'b':\n return Bishop(self, row, col, side)\n if piece == 'r':\n return Rook(self, row, col, side)\n if piece == 'q':\n return Queen(self, row, col, side)\n if piece == 'k':\n return King(self, row, col, side)\n <function token>\n\n def rokadaV(self, color):\n \"\"\"\n Velika rokada kada pozicije menjaju kralj i top sa leve strane.\n \"\"\"\n if color == 'w':\n self.data[7][3] = 'wr'\n self.data[7][2] = 'wk'\n self.data[7][4] = '.'\n self.data[7][0] = '.'\n self.kralj_beli_koriscen = True\n self.previous_positions = [7, 2]\n else:\n self.data[0][3] = 'br'\n self.data[0][2] = 'bk'\n self.data[0][4] = '.'\n self.data[0][0] = '.'\n self.kralj_crni_koriscen = True\n self.previous_positions = [0, 2]\n <function token>\n\n def sah(self, side, king_position=None):\n \"\"\"\n Provera da li je napadnut kralj ako se moguce pozicije protivnika poklapaju sa pozicijom kralja\n \"\"\"\n if king_position is None:\n king_position = self.find_position(str(side) + 'k')\n if side == 'w':\n napadac = 'b'\n else:\n napadac = 'w'\n for row in range(self.rows):\n for col in range(self.cols):\n if self.data[row][col] != '.' and not self.data[row][col\n ].startswith(side) and self.data[row][col\n ] != napadac + 'k':\n piece = self.determine_piece(row, col)\n positions = piece.get_legal_moves()\n if king_position in positions:\n return True\n return False\n <function token>\n", "<import token>\n\n\nclass Board:\n <docstring token>\n\n def __init__(self, rows=20, cols=20):\n self.rows = rows\n self.cols = cols\n self.elems = ['.', 'bp', 'br', 'bn', 'bb', 'bk', 'bq', 'wp', 'wr',\n 'wn', 'wb', 'wk', 'wq']\n self.data = [(['.'] * cols) for _ in range(rows)]\n self.previous_positions = [-7, -7]\n self.kralj_beli_koriscen = False\n self.top_beli_levi_koriscen = False\n self.top_beli_desni_koriscen = False\n self.kralj_crni_koriscen = False\n self.top_crni_levi_koriscen = False\n self.top_crni_desni_koriscen = False\n <function token>\n\n def save_to_file(self, file_path):\n \"\"\"\n Snimanje table u fajl.\n :param file_path: putanja fajla.\n \"\"\"\n if file_path:\n f = open(file_path, 'w')\n for row in range(self.rows):\n f.write(''.join(self.data[row]) + '\\n')\n f.close()\n <function token>\n <function token>\n\n def find_position(self, element):\n \"\"\"\n Pronalazenje specificnog elementa unutar table.\n :param element: kod elementa.\n :returns: tuple(int, int)\n \"\"\"\n for row in range(self.rows):\n for col in range(self.cols):\n if self.data[row][col] == element:\n return row, col\n return None, None\n\n def determine_piece(self, row, col):\n \"\"\"\n Odredjivanje koja je figura na odredjenoj poziciji na tabli.\n :param row: red.\n :param col: kolona.\n :return: objekat figure (implementacija klase Piece).\n \"\"\"\n elem = self.data[row][col]\n if elem != '.':\n side = elem[0]\n piece = elem[1]\n if piece == 'p':\n return Pawn(self, row, col, side)\n if piece == 'n':\n return Knight(self, row, col, side)\n if piece == 'b':\n return Bishop(self, row, col, side)\n if piece == 'r':\n return Rook(self, row, col, side)\n if piece == 'q':\n return Queen(self, row, col, side)\n if piece == 'k':\n return King(self, row, col, side)\n <function token>\n\n def rokadaV(self, color):\n \"\"\"\n Velika rokada kada pozicije menjaju kralj i top sa leve strane.\n \"\"\"\n if color == 'w':\n self.data[7][3] = 'wr'\n self.data[7][2] = 'wk'\n self.data[7][4] = '.'\n self.data[7][0] = '.'\n self.kralj_beli_koriscen = True\n self.previous_positions = [7, 2]\n else:\n self.data[0][3] = 'br'\n self.data[0][2] = 'bk'\n self.data[0][4] = '.'\n self.data[0][0] = '.'\n self.kralj_crni_koriscen = True\n self.previous_positions = [0, 2]\n <function token>\n\n def sah(self, side, king_position=None):\n \"\"\"\n Provera da li je napadnut kralj ako se moguce pozicije protivnika poklapaju sa pozicijom kralja\n \"\"\"\n if king_position is None:\n king_position = self.find_position(str(side) + 'k')\n if side == 'w':\n napadac = 'b'\n else:\n napadac = 'w'\n for row in range(self.rows):\n for col in range(self.cols):\n if self.data[row][col] != '.' and not self.data[row][col\n ].startswith(side) and self.data[row][col\n ] != napadac + 'k':\n piece = self.determine_piece(row, col)\n positions = piece.get_legal_moves()\n if king_position in positions:\n return True\n return False\n <function token>\n", "<import token>\n\n\nclass Board:\n <docstring token>\n\n def __init__(self, rows=20, cols=20):\n self.rows = rows\n self.cols = cols\n self.elems = ['.', 'bp', 'br', 'bn', 'bb', 'bk', 'bq', 'wp', 'wr',\n 'wn', 'wb', 'wk', 'wq']\n self.data = [(['.'] * cols) for _ in range(rows)]\n self.previous_positions = [-7, -7]\n self.kralj_beli_koriscen = False\n self.top_beli_levi_koriscen = False\n self.top_beli_desni_koriscen = False\n self.kralj_crni_koriscen = False\n self.top_crni_levi_koriscen = False\n self.top_crni_desni_koriscen = False\n <function token>\n\n def save_to_file(self, file_path):\n \"\"\"\n Snimanje table u fajl.\n :param file_path: putanja fajla.\n \"\"\"\n if file_path:\n f = open(file_path, 'w')\n for row in range(self.rows):\n f.write(''.join(self.data[row]) + '\\n')\n f.close()\n <function token>\n <function token>\n <function token>\n\n def determine_piece(self, row, col):\n \"\"\"\n Odredjivanje koja je figura na odredjenoj poziciji na tabli.\n :param row: red.\n :param col: kolona.\n :return: objekat figure (implementacija klase Piece).\n \"\"\"\n elem = self.data[row][col]\n if elem != '.':\n side = elem[0]\n piece = elem[1]\n if piece == 'p':\n return Pawn(self, row, col, side)\n if piece == 'n':\n return Knight(self, row, col, side)\n if piece == 'b':\n return Bishop(self, row, col, side)\n if piece == 'r':\n return Rook(self, row, col, side)\n if piece == 'q':\n return Queen(self, row, col, side)\n if piece == 'k':\n return King(self, row, col, side)\n <function token>\n\n def rokadaV(self, color):\n \"\"\"\n Velika rokada kada pozicije menjaju kralj i top sa leve strane.\n \"\"\"\n if color == 'w':\n self.data[7][3] = 'wr'\n self.data[7][2] = 'wk'\n self.data[7][4] = '.'\n self.data[7][0] = '.'\n self.kralj_beli_koriscen = True\n self.previous_positions = [7, 2]\n else:\n self.data[0][3] = 'br'\n self.data[0][2] = 'bk'\n self.data[0][4] = '.'\n self.data[0][0] = '.'\n self.kralj_crni_koriscen = True\n self.previous_positions = [0, 2]\n <function token>\n\n def sah(self, side, king_position=None):\n \"\"\"\n Provera da li je napadnut kralj ako se moguce pozicije protivnika poklapaju sa pozicijom kralja\n \"\"\"\n if king_position is None:\n king_position = self.find_position(str(side) + 'k')\n if side == 'w':\n napadac = 'b'\n else:\n napadac = 'w'\n for row in range(self.rows):\n for col in range(self.cols):\n if self.data[row][col] != '.' and not self.data[row][col\n ].startswith(side) and self.data[row][col\n ] != napadac + 'k':\n piece = self.determine_piece(row, col)\n positions = piece.get_legal_moves()\n if king_position in positions:\n return True\n return False\n <function token>\n", "<import token>\n\n\nclass Board:\n <docstring token>\n\n def __init__(self, rows=20, cols=20):\n self.rows = rows\n self.cols = cols\n self.elems = ['.', 'bp', 'br', 'bn', 'bb', 'bk', 'bq', 'wp', 'wr',\n 'wn', 'wb', 'wk', 'wq']\n self.data = [(['.'] * cols) for _ in range(rows)]\n self.previous_positions = [-7, -7]\n self.kralj_beli_koriscen = False\n self.top_beli_levi_koriscen = False\n self.top_beli_desni_koriscen = False\n self.kralj_crni_koriscen = False\n self.top_crni_levi_koriscen = False\n self.top_crni_desni_koriscen = False\n <function token>\n\n def save_to_file(self, file_path):\n \"\"\"\n Snimanje table u fajl.\n :param file_path: putanja fajla.\n \"\"\"\n if file_path:\n f = open(file_path, 'w')\n for row in range(self.rows):\n f.write(''.join(self.data[row]) + '\\n')\n f.close()\n <function token>\n <function token>\n <function token>\n\n def determine_piece(self, row, col):\n \"\"\"\n Odredjivanje koja je figura na odredjenoj poziciji na tabli.\n :param row: red.\n :param col: kolona.\n :return: objekat figure (implementacija klase Piece).\n \"\"\"\n elem = self.data[row][col]\n if elem != '.':\n side = elem[0]\n piece = elem[1]\n if piece == 'p':\n return Pawn(self, row, col, side)\n if piece == 'n':\n return Knight(self, row, col, side)\n if piece == 'b':\n return Bishop(self, row, col, side)\n if piece == 'r':\n return Rook(self, row, col, side)\n if piece == 'q':\n return Queen(self, row, col, side)\n if piece == 'k':\n return King(self, row, col, side)\n <function token>\n\n def rokadaV(self, color):\n \"\"\"\n Velika rokada kada pozicije menjaju kralj i top sa leve strane.\n \"\"\"\n if color == 'w':\n self.data[7][3] = 'wr'\n self.data[7][2] = 'wk'\n self.data[7][4] = '.'\n self.data[7][0] = '.'\n self.kralj_beli_koriscen = True\n self.previous_positions = [7, 2]\n else:\n self.data[0][3] = 'br'\n self.data[0][2] = 'bk'\n self.data[0][4] = '.'\n self.data[0][0] = '.'\n self.kralj_crni_koriscen = True\n self.previous_positions = [0, 2]\n <function token>\n <function token>\n <function token>\n", "<import token>\n\n\nclass Board:\n <docstring token>\n\n def __init__(self, rows=20, cols=20):\n self.rows = rows\n self.cols = cols\n self.elems = ['.', 'bp', 'br', 'bn', 'bb', 'bk', 'bq', 'wp', 'wr',\n 'wn', 'wb', 'wk', 'wq']\n self.data = [(['.'] * cols) for _ in range(rows)]\n self.previous_positions = [-7, -7]\n self.kralj_beli_koriscen = False\n self.top_beli_levi_koriscen = False\n self.top_beli_desni_koriscen = False\n self.kralj_crni_koriscen = False\n self.top_crni_levi_koriscen = False\n self.top_crni_desni_koriscen = False\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def determine_piece(self, row, col):\n \"\"\"\n Odredjivanje koja je figura na odredjenoj poziciji na tabli.\n :param row: red.\n :param col: kolona.\n :return: objekat figure (implementacija klase Piece).\n \"\"\"\n elem = self.data[row][col]\n if elem != '.':\n side = elem[0]\n piece = elem[1]\n if piece == 'p':\n return Pawn(self, row, col, side)\n if piece == 'n':\n return Knight(self, row, col, side)\n if piece == 'b':\n return Bishop(self, row, col, side)\n if piece == 'r':\n return Rook(self, row, col, side)\n if piece == 'q':\n return Queen(self, row, col, side)\n if piece == 'k':\n return King(self, row, col, side)\n <function token>\n\n def rokadaV(self, color):\n \"\"\"\n Velika rokada kada pozicije menjaju kralj i top sa leve strane.\n \"\"\"\n if color == 'w':\n self.data[7][3] = 'wr'\n self.data[7][2] = 'wk'\n self.data[7][4] = '.'\n self.data[7][0] = '.'\n self.kralj_beli_koriscen = True\n self.previous_positions = [7, 2]\n else:\n self.data[0][3] = 'br'\n self.data[0][2] = 'bk'\n self.data[0][4] = '.'\n self.data[0][0] = '.'\n self.kralj_crni_koriscen = True\n self.previous_positions = [0, 2]\n <function token>\n <function token>\n <function token>\n", "<import token>\n\n\nclass Board:\n <docstring token>\n\n def __init__(self, rows=20, cols=20):\n self.rows = rows\n self.cols = cols\n self.elems = ['.', 'bp', 'br', 'bn', 'bb', 'bk', 'bq', 'wp', 'wr',\n 'wn', 'wb', 'wk', 'wq']\n self.data = [(['.'] * cols) for _ in range(rows)]\n self.previous_positions = [-7, -7]\n self.kralj_beli_koriscen = False\n self.top_beli_levi_koriscen = False\n self.top_beli_desni_koriscen = False\n self.kralj_crni_koriscen = False\n self.top_crni_levi_koriscen = False\n self.top_crni_desni_koriscen = False\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def determine_piece(self, row, col):\n \"\"\"\n Odredjivanje koja je figura na odredjenoj poziciji na tabli.\n :param row: red.\n :param col: kolona.\n :return: objekat figure (implementacija klase Piece).\n \"\"\"\n elem = self.data[row][col]\n if elem != '.':\n side = elem[0]\n piece = elem[1]\n if piece == 'p':\n return Pawn(self, row, col, side)\n if piece == 'n':\n return Knight(self, row, col, side)\n if piece == 'b':\n return Bishop(self, row, col, side)\n if piece == 'r':\n return Rook(self, row, col, side)\n if piece == 'q':\n return Queen(self, row, col, side)\n if piece == 'k':\n return King(self, row, col, side)\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n\n\nclass Board:\n <docstring token>\n\n def __init__(self, rows=20, cols=20):\n self.rows = rows\n self.cols = cols\n self.elems = ['.', 'bp', 'br', 'bn', 'bb', 'bk', 'bq', 'wp', 'wr',\n 'wn', 'wb', 'wk', 'wq']\n self.data = [(['.'] * cols) for _ in range(rows)]\n self.previous_positions = [-7, -7]\n self.kralj_beli_koriscen = False\n self.top_beli_levi_koriscen = False\n self.top_beli_desni_koriscen = False\n self.kralj_crni_koriscen = False\n self.top_crni_levi_koriscen = False\n self.top_crni_desni_koriscen = False\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n\n\nclass Board:\n <docstring token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n<class token>\n" ]
false
99,023
023b94ecc538c03c6b5279822c7e773f8cd80a39
from django.urls import path from .import views urlpatterns = [ path('payment', views.payment, name="payment") ]
[ "from django.urls import path\nfrom .import views\n\nurlpatterns = [\n path('payment', views.payment, name=\"payment\")\n]\n", "from django.urls import path\nfrom . import views\nurlpatterns = [path('payment', views.payment, name='payment')]\n", "<import token>\nurlpatterns = [path('payment', views.payment, name='payment')]\n", "<import token>\n<assignment token>\n" ]
false
99,024
0dd39cf1f28dbf6b1f154cbd37f9d0af442bf8bd
# list persons = ['laosan', 'laosi', 'laowu'] # append,insert添加 pop删除 # persons.append('laoliu') # print(persons) # print(len(persons)) # print(persons[-3]) # 直接赋值 # persons[0] = 'laosana' # print(persons) # python 无泛型 # list = ['laosan', 123, True] # # list 可以包含list 相当于二维数组 # list1 = ['laosan', 123, ['1', '2'], True] # print(list1[2][1]) # print(list) # tuple 区别与list tuple是有序的,声明后不可修改。 # tuple = ('laosan', 'laosi', 'laowu') # # print(tuple) # tuple 的指向不变,但是tuple中的list可变 如: t = (1, 2, 3, [4, 5]) print(t) t[3][0] = 6 t[3][1] = 7 print(t)
[ "# list\npersons = ['laosan', 'laosi', 'laowu']\n\n# append,insert添加 pop删除\n# persons.append('laoliu')\n# print(persons)\n# print(len(persons))\n# print(persons[-3])\n\n# 直接赋值\n# persons[0] = 'laosana'\n\n# print(persons)\n\n# python 无泛型\n# list = ['laosan', 123, True]\n# # list 可以包含list 相当于二维数组\n# list1 = ['laosan', 123, ['1', '2'], True]\n# print(list1[2][1])\n# print(list)\n\n# tuple 区别与list tuple是有序的,声明后不可修改。\n# tuple = ('laosan', 'laosi', 'laowu')\n#\n# print(tuple)\n\n# tuple 的指向不变,但是tuple中的list可变 如:\nt = (1, 2, 3, [4, 5])\nprint(t)\nt[3][0] = 6\nt[3][1] = 7\nprint(t)\n\n\n", "persons = ['laosan', 'laosi', 'laowu']\nt = 1, 2, 3, [4, 5]\nprint(t)\nt[3][0] = 6\nt[3][1] = 7\nprint(t)\n", "<assignment token>\nprint(t)\n<assignment token>\nprint(t)\n", "<assignment token>\n<code token>\n<assignment token>\n<code token>\n" ]
false
99,025
b1264c005d7e311cb68687f923d0ae054b11ecb2
# %% import csv import warnings import sklearn import pandas as pd import gc from data_loading import * from timbre_CNN import * from evaluation import * from torch.utils.data import DataLoader, sampler from melody_loading import * result_dir = "results" model_dir = "models" model_name = "_retrained" val_interval = 5 perform_hyp_search = False perform_cross_val = False evaluation_bs = 256 #timbre_CNN_type = SingleNoteTimbreCNN timbre_CNN_type = SingleNoteTimbreCNNSmall #timbre_CNN_type = MelodyTimbreCNN #timbre_CNN_type = MelodyTimbreCNNSmall # Hyperparameters hyperparams_single = {'batch_size': 64, 'epochs': 20, 'learning_rate': 0.002, 'loss_function': nn.BCELoss()} hyperparams_melody = {"batch_size": 128, # GTX 1050 limits us to <512 "epochs": 25, "learning_rate": 0.003, "loss_function": nn.BCELoss()} def generate_split_indices(data, partition_ratios=None, mode="mixed", seed=None): # Make a random set of shuffled indices for sampling training/test sets randomly w/o overlap if partition_ratios is None: partition_ratios = [0.8, 0.1] rng = np.random.default_rng(seed=seed) if mode == "segment-instruments-random": instruments = data.instrument.unique() rng.shuffle(instruments) i = 0 indices_train = [] indices_val = [] indices_test = [] no_more_instruments = False # Iterate through instruments and add them to the training/validation set indices until ratios are reached next_instrument_indices = np.asarray(data.instrument == instruments[i]).nonzero()[0] while (len(indices_train) + len(next_instrument_indices))/len(data) <= partition_ratios[0]: indices_train = np.append(indices_train, next_instrument_indices) i += 1 if i >= len(instruments): no_more_instruments = True break next_instrument_indices = np.asarray(data.instrument == instruments[i]).nonzero()[0] while (len(indices_train) + len(indices_val) + len(next_instrument_indices))/len(data) \ <= partition_ratios[0] + partition_ratios[1] \ and not no_more_instruments: indices_val = np.append(indices_val, next_instrument_indices) i += 1 if i >= len(instruments): break next_instrument_indices = np.asarray(data.instrument == instruments[i]).nonzero()[0] for j in range(i, len(instruments)): indices_test = np.append(indices_test, np.asarray(data.instrument == instruments[j]).nonzero()[0]) np.random.shuffle(indices_train) np.random.shuffle(indices_val) np.random.shuffle(indices_test) elif mode == "segment-instruments-random-balanced": instruments_grand = data[data.label == 0].instrument.unique() instruments_upright = data[data.label == 1].instrument.unique() rng.shuffle(instruments_grand) rng.shuffle(instruments_upright) num_train_instruments = np.round(partition_ratios[0] * len(data.instrument.unique())) num_val_instruments = np.round(partition_ratios[1] * len(data.instrument.unique())) indices_train = [] indices_val = [] indices_test = [] i_grand = 0 i_upright = 0 for i in range(0, len(data.instrument.unique())): if i % 2 and i_upright < len(instruments_upright): next_instrument_indices = np.asarray(data.instrument == instruments_upright[i_upright]).nonzero()[0] i_upright += 1 elif i_grand < len(instruments_grand): next_instrument_indices = np.asarray(data.instrument == instruments_grand[i_grand]).nonzero()[0] i_grand += 1 else: break if i < num_train_instruments: indices_train = np.append(indices_train, next_instrument_indices) elif i < num_train_instruments+num_val_instruments: indices_val = np.append(indices_val, next_instrument_indices) else: indices_test = np.append(indices_test, next_instrument_indices) if np.sum(partition_ratios) == 1: # Combine val and test sets if no test set required indices_val = np.append(indices_val, indices_test) indices_test = [] np.random.shuffle(indices_train) np.random.shuffle(indices_val) np.random.shuffle(indices_test) elif mode == "segment-instruments-manual": # train_instruments = ["AkPnBcht", "AkPnBsdf", "grand-closed", "grand-removed", "grand-open", # "upright-open", "upright-semiopen", "upright-closed"] # val_instruments = ["StbgTGd2", "AkPnCGdD", "ENSTDkCl"] # test_instruments = ["AkPnStgb", "SptkBGAm", "ENSTDkAm"] # train_instruments = ["Nord_BrightGrand-XL", "Nord_AmberUpright-XL", # "Nord_ConcertGrand1Amb-Lrg", "Nord_BabyUpright-XL", # "Nord_GrandImperial-XL", "Nord_BlackUpright-Lrg", # "Nord_GrandLadyD-Lrg", "Nord_BlueSwede-Lrg", # "Nord_RoyalGrand3D-XL", "Nord_MellowUpright-XL", # "Nord_SilverGrand-XL", "Nord_QueenUpright-Lrg", # "Nord_StudioGrand1-Lrg", "Nord_RainPiano-Lrg"] # val_instruments = ["Nord_ItalianGrand-XL", "Nord_GrandUpright-XL", # "Nord_StudioGrand2-Lrg"] # test_instruments = ["Nord_VelvetGrand-XL", "Nord_RomanticUpright-Lrg", # "Nord_WhiteGrand-XL", "Nord_SaloonUpright-Lrg", # "Nord_ConcertGrand1-Lrg", "Nord_BambinoUpright-XL"] train_instruments = ["Nord_BrightGrand-XL", "Nord_AmberUpright-XL", "Nord_ConcertGrand1-Lrg", "Nord_BabyUpright-XL", "Nord_GrandImperial-XL", "Nord_BlackUpright-Lrg", "Nord_RoyalGrand3D-XL", "Nord_MellowUpright-XL", "Nord_StudioGrand1-Lrg", "Nord_RainPiano-Lrg", "Nord_WhiteGrand-XL", "Nord_RomanticUpright-Lrg", "Nord_VelvetGrand-XL", "Nord_GrandUpright-XL", "Nord_StudioGrand2-Lrg", "Nord_SaloonUpright-Lrg", "Nord_ItalianGrand-XL", "Nord_BlueSwede-Lrg"] val_instruments = ["Nord_ConcertGrand1Amb-Lrg", "Nord_BambinoUpright-XL", "Nord_GrandLadyD-Lrg", "Nord_QueenUpright-Lrg", "Nord_SilverGrand-XL"] test_instruments = [] indices_train = np.asarray(data.instrument.isin(train_instruments)).nonzero()[0] indices_val = np.asarray(data.instrument.isin(val_instruments)).nonzero()[0] indices_test = np.asarray(data.instrument.isin(test_instruments)).nonzero()[0] np.random.shuffle(indices_train) np.random.shuffle(indices_val) np.random.shuffle(indices_test) elif mode == "segment-velocities": indices_train = np.asarray(data.velocity == "M").nonzero()[0] indices_val = np.asarray(data.velocity == "P").nonzero()[0] indices_test = np.asarray(data.velocity == "F").nonzero()[0] np.random.shuffle(indices_train) np.random.shuffle(indices_val) np.random.shuffle(indices_test) elif mode == "mixed": # Reproducible random shuffle of indices, using a fixed seed indices = np.arange(len(data)) rng.shuffle(indices) split_point_train = int(len(data) * partition_ratios[0]) split_point_val = split_point_train + int(len(data) * partition_ratios[1]) indices_train = indices[:split_point_train] indices_val = indices[split_point_train:split_point_val] indices_test = indices[split_point_val:] else: raise Exception("Mode not recognised") # Print training, validation and test set statistics print("") indices_train = indices_train.astype(int) indices_val = indices_val.astype(int) print(len(indices_train), "training samples") print(len(indices_val), "validation samples") print(len(indices_test), "test samples") train_class_balance = data.iloc[indices_train].label.sum(axis=0)/len(indices_train) print("Train set contains", np.round(train_class_balance * 100), "% Upright pianos") if mode == "segment_instruments": print("\t", pd.unique(data.iloc[indices_train].instrument)) val_class_balance = data.iloc[indices_val].label.sum(axis=0)/len(indices_val) print("Validation set contains", np.round(val_class_balance * 100), "% Upright pianos") if mode == "segment_instruments": print("\t", pd.unique(data.iloc[indices_val].instrument)) if len(indices_test) == 0: indices_test = np.array([]) indices_test = indices_test.astype(int) else: indices_test = indices_test.astype(int) test_class_balance = data.iloc[indices_test].label.sum(axis=0)/len(indices_test) print("Test set contains", np.round(test_class_balance * 100), "% Upright pianos") if mode == "segment_instruments": print("\t", pd.unique(data.iloc[indices_test].instrument)) print("Overall, dataset contains", np.round(100 * data.label.sum(axis=0)/len(data)), "% Upright pianos") return indices_train, indices_val, indices_test def generate_crossval_fold_indices(data, seed=None, folds=5, verbose=True): rng = np.random.default_rng(seed=seed) instruments_grand = data[data.label == 0].instrument.unique() instruments_upright = data[data.label == 1].instrument.unique() rng.shuffle(instruments_grand) rng.shuffle(instruments_upright) num_instruments_fold1 = np.round(len(data.instrument.unique())/folds) num_instruments_fold2 = np.round(len(data.instrument.unique())/folds) num_instruments_fold3 = np.round(len(data.instrument.unique())/folds) num_instruments_fold4 = np.round(len(data.instrument.unique())/folds) indices_fold1 = [] indices_fold2 = [] indices_fold3 = [] indices_fold4 = [] indices_fold5 = [] i_grand = 0 i_upright = 0 if folds == 5: for i in range(0, len(data.instrument.unique())): if i % 2 and i_upright < len(instruments_upright): next_instrument_indices = np.asarray(data.instrument == instruments_upright[i_upright]).nonzero()[0] i_upright += 1 elif i_grand < len(instruments_grand): next_instrument_indices = np.asarray(data.instrument == instruments_grand[i_grand]).nonzero()[0] i_grand += 1 else: break if i < num_instruments_fold1: indices_fold1 = np.append(indices_fold1, next_instrument_indices).astype(int) elif i < num_instruments_fold1 + num_instruments_fold2: indices_fold2 = np.append(indices_fold2, next_instrument_indices).astype(int) elif i < num_instruments_fold1 + num_instruments_fold2 + num_instruments_fold3: indices_fold3 = np.append(indices_fold3, next_instrument_indices).astype(int) elif i < num_instruments_fold1 + num_instruments_fold2 + num_instruments_fold3 + num_instruments_fold4: indices_fold4 = np.append(indices_fold4, next_instrument_indices).astype(int) else: indices_fold5 = np.append(indices_fold5, next_instrument_indices).astype(int) elif folds == 4: for i in range(0, len(data.instrument.unique())): if i % 2 and i_upright < len(instruments_upright): next_instrument_indices = np.asarray(data.instrument == instruments_upright[i_upright]).nonzero()[0] i_upright += 1 elif i_grand < len(instruments_grand): next_instrument_indices = np.asarray(data.instrument == instruments_grand[i_grand]).nonzero()[0] i_grand += 1 else: break if i < num_instruments_fold1: indices_fold1 = np.append(indices_fold1, next_instrument_indices).astype(int) elif i < num_instruments_fold1 + num_instruments_fold2: indices_fold2 = np.append(indices_fold2, next_instrument_indices).astype(int) elif i < num_instruments_fold1 + num_instruments_fold2 + num_instruments_fold3: indices_fold3 = np.append(indices_fold3, next_instrument_indices).astype(int) else: indices_fold4 = np.append(indices_fold4, next_instrument_indices).astype(int) np.random.shuffle(indices_fold1) np.random.shuffle(indices_fold2) np.random.shuffle(indices_fold3) np.random.shuffle(indices_fold4) np.random.shuffle(indices_fold5) if verbose: print(len(indices_fold1), "samples in fold 1") print("\t", pd.unique(data.iloc[indices_fold1].instrument)) print(len(indices_fold2), "samples in fold 2") print("\t", pd.unique(data.iloc[indices_fold2].instrument)) print(len(indices_fold3), "samples in fold 3") print("\t", pd.unique(data.iloc[indices_fold3].instrument)) print(len(indices_fold4), "samples in fold 4") print("\t", pd.unique(data.iloc[indices_fold4].instrument)) if folds == 5: print(len(indices_fold5), "samples in fold 5") print("\t", pd.unique(data.iloc[indices_fold5].instrument)) return indices_fold1, indices_fold2, indices_fold3, indices_fold4, indices_fold5 def train_model(cnn_type, params, local_dataset, train_ind, val_loader=None, plot=True, plot_title="", verbose=True): if verbose: print("\n--------------TRAINING MODEL--------------") print(timbre_CNN_type.__name__, "with parameters:") print(params) # Unpack the hyperparameters batch_size = params["batch_size"] epochs = params["epochs"] learning_rate = params["learning_rate"] loss_function = params["loss_function"] loader_train = DataLoader(local_dataset, batch_size=batch_size, shuffle=False, sampler=sampler.SubsetRandomSampler(train_ind), pin_memory=True) model = cnn_type().to(device, non_blocking=True) optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) with torch.enable_grad(): loss_train_log = [] loss_val_log = [] epoch_val_log = [] for epoch in range(epochs): model.train() running_loss = 0.0 for i, batch in enumerate(loader_train): x = batch[0].float().to(device, non_blocking=True) label = batch[1].float().to(device, non_blocking=True) optimizer.zero_grad() y = model(x) loss = loss_function(y, label) loss.backward() optimizer.step() running_loss += loss.detach() gc.collect() # Record training loss mean_epoch_loss = (running_loss/(batch_size*(i+1))).item() if verbose: print("+Training - Epoch", epoch+1, "loss:", mean_epoch_loss) loss_train_log.append(mean_epoch_loss) # Calculate loss on validation set if (epoch == epochs-1 or epoch % val_interval == 0) and val_loader is not None and plot: loss_val = 0 model.eval() with torch.no_grad(): for i, batch in enumerate(val_loader): x = batch[0].float().to(device, non_blocking=True) label = batch[1].float().to(device, non_blocking=True) y = model(x) loss_val += loss_function(y, label).detach() gc.collect() mean_epoch_val_loss = (loss_val / (batch_size * (i + 1))).item() print("\t+Validation - Epoch", epoch + 1, "loss:", mean_epoch_val_loss) loss_val_log.append(mean_epoch_val_loss) epoch_val_log.append(epoch+1) # Plot training curves fig = None if plot: fig = plt.figure() plt.plot(range(1, epochs + 1), loss_train_log, c='r', label='train') if val_loader is not None: plt.plot(epoch_val_log, loss_val_log, c='b', label='val') plt.legend() plt.xlabel('epoch') plt.ylabel('loss') plt.xticks(np.arange(1, epochs+1)) plt.grid() plt.title("Loss curve over "+str(epochs)+" epochs of training - "+plot_title) plt.tight_layout() plt.show() return model, fig def evaluate_CNN(evaluated_model, test_set): labels_total = np.empty(0, dtype=int) preds_total = np.empty(0, dtype=int) instruments_acc = np.empty(0, dtype=str) # Inference mode evaluated_model.eval() with torch.no_grad(): evaluated_model = evaluated_model.to(device, non_blocking=True) for batch in test_set: x = batch[0].float().to(device, non_blocking=True) label = batch[1].float().to(device, non_blocking=True) y = evaluated_model(x) #print("+Evaluating - Batch loss:", loss_function(y, label).item()) pred = torch.round(y) # Accumulate per-batch ground truths, outputs and instrument names labels_total = np.append(labels_total, label.cpu()) preds_total = np.append(preds_total, pred.cpu()) instruments_acc = np.append(instruments_acc, np.array(batch[2])) # Calculate scores per instrument per_inst_scores = pd.DataFrame() for instrument in np.unique(instruments_acc): instrument_mask = np.nonzero(instruments_acc == instrument) # Ignore Confusion matrix, balanced accuracy and F1 score which are irrelevant here instrument_scores = evaluate_scores(labels_total[instrument_mask], preds_total[instrument_mask]) piano_class = "Upright" if labels_total[instrument_mask][0] else "Grand" per_inst_scores = per_inst_scores.append(pd.DataFrame([[np.round(instrument_scores["Accuracy"],2),piano_class]], index=pd.Index([instrument], name="Instrument"), columns=["Accuracy", "Class"])) # Calculate overall scores overall_scores = evaluate_scores(labels_total, preds_total) return overall_scores, per_inst_scores def cross_validate(cnn_type, hyparams, cross_val_subset, cv_folds=2, partition_mode=None, plot_train_curves=True, verbose=True): cv_dataset = TimbreDataset(cross_val_subset) total_scores = pd.DataFrame() if cv_folds == 2: set_1, set_2, _ = generate_split_indices(cross_val_subset, partition_ratios=[0.5, 0.5], mode=partition_mode) training_sets = [set_1, set_2] validation_sets = [set_2, set_1] elif cv_folds == 4: fold1, fold2, fold3, fold4, _ = generate_crossval_fold_indices(cross_val_subset, folds=cv_folds, seed=None, verbose=verbose) training_sets = [np.concatenate([fold2, fold3, fold4]), np.concatenate([fold3, fold4, fold1]), np.concatenate([fold4, fold1, fold2]), np.concatenate([fold1, fold2, fold3])] validation_sets = [fold1, fold2, fold3, fold4] elif cv_folds == 5: fold1, fold2, fold3, fold4, fold5 = generate_crossval_fold_indices(cross_val_subset, folds=cv_folds, seed=None, verbose=verbose) training_sets = [np.concatenate([fold2, fold3, fold4, fold5]), np.concatenate([fold3, fold4, fold5, fold1]), np.concatenate([fold4, fold5, fold1, fold2]), np.concatenate([fold5, fold1, fold2, fold3]), np.concatenate([fold1, fold2, fold3, fold4])] validation_sets = [fold1, fold2, fold3, fold4, fold5] else: raise Exception("CV mode "+str(cv_folds)+" not implemented") for fold, (train_fold_indices, val_fold_indices) in enumerate(zip(training_sets, validation_sets)): print("\n----------------CV FOLD "+str(fold+1)+"-----------------") val_fold = DataLoader(cv_dataset, batch_size=evaluation_bs, shuffle=False, sampler=sampler.SubsetRandomSampler(val_fold_indices), pin_memory=True) model_fold, _ = train_model(cnn_type=cnn_type, params=hyparams, local_dataset=cv_dataset, train_ind=train_fold_indices, val_loader=val_fold, plot=plot_train_curves, plot_title="CV Fold "+str(fold+1), verbose=verbose) scores_fold, per_inst_scores_fold = evaluate_CNN(model_fold, val_fold) if verbose: print("\n------Fold "+str(fold+1)+" validation set scores--------") print(per_inst_scores_fold) display_scores(scores_fold, plot_conf=False) numeric_scores_fold = pd.DataFrame.from_dict({k: [v] for k, v in scores_fold.items() if k in ["Accuracy", "F1", "acc_grand", "acc_upright", "balanced_acc", "min_class_acc"]}) numeric_scores_fold["no_samples"] = len(val_fold_indices) total_scores = total_scores.append(numeric_scores_fold) # Calculate overall cross-validation statistics, weighted by the number of validation samples in each fold weighted_mean_acc = (total_scores.Accuracy * total_scores.no_samples).sum() / total_scores.no_samples.sum() weighted_mean_f1 = (total_scores.F1 * total_scores.no_samples).sum() / total_scores.no_samples.sum() weighted_mean_acc_grand = (total_scores.acc_grand * total_scores.no_samples).sum() / total_scores.no_samples.sum() weighted_mean_acc_upright = (total_scores.acc_upright * total_scores.no_samples).sum() / total_scores.no_samples.sum() weighted_mean_bal_acc = (total_scores.balanced_acc * total_scores.no_samples).sum() / total_scores.no_samples.sum() weighted_mean_min_class_acc = (total_scores.min_class_acc * total_scores.no_samples).sum() / total_scores.no_samples.sum() weighted_std_acc = np.sqrt(np.cov(total_scores.Accuracy, fweights=total_scores.no_samples)) weighted_std_f1 = np.sqrt(np.cov(total_scores.F1, fweights=total_scores.no_samples)) weighted_std_acc_grand = np.sqrt(np.cov(total_scores.acc_grand, fweights=total_scores.no_samples)) weighted_std_acc_upright = np.sqrt(np.cov(total_scores.acc_upright, fweights=total_scores.no_samples)) weighted_std_bal_acc = np.sqrt(np.cov(total_scores.balanced_acc, fweights=total_scores.no_samples)) weighted_std_min_class_acc = np.sqrt(np.cov(total_scores.min_class_acc, fweights=total_scores.no_samples)) cv_scores_stats = pd.DataFrame({"mean": [weighted_mean_acc, weighted_mean_f1, weighted_mean_acc_grand, weighted_mean_acc_upright, weighted_mean_bal_acc, weighted_mean_min_class_acc], "std": [weighted_std_acc, weighted_std_f1, weighted_std_acc_grand, weighted_std_acc_upright, weighted_std_bal_acc, weighted_std_min_class_acc]}, index=["Accuracy", "F1", "Grand class accuracy", "Upright class accuracy", "Balanced (macro-avg) accuracy", "Min per-class accuracy"]) return cv_scores_stats def hyperparameter_search(cnn_type, training_dataset, batch_size_space, epochs_space, lr_space, loss_space=None): if loss_space is None: loss_space = [nn.BCELoss()] hyp_search_csv = os.path.join(result_dir, cnn_type.__name__, "hyperparam_search.csv") with open(hyp_search_csv, "a", newline="") as csvfile: writer = csv.writer(csvfile) writer.writerow(["----------New Hyperparameter search----------"]) writer.writerow(["Batch size", "Epochs", "Learning rate", "Loss function"]) total_combinations = len(loss_space)*len(lr_space)*len(epochs_space)*len(batch_size_space) best_score = 0 best_params = None best_stats = None i = 0 for epochs_local in epochs_space: for loss_function_local in loss_space: for batch_size_local in batch_size_space: for learning_rate_local in lr_space: i += 1 print("\n------ Hyperparameter search combination", i, "of", total_combinations, "------") print("Model type:", cnn_type.__name__) hyperparams_local={"batch_size": batch_size_local, "epochs": epochs_local, "learning_rate": learning_rate_local, "loss_function": loss_function_local} print(hyperparams_local) cv_results = cross_validate(cnn_type=cnn_type, hyparams=hyperparams_local, cross_val_subset=training_dataset, cv_folds=4, partition_mode="segment-instruments-random-balanced", plot_train_curves=False, verbose=False) # Print the results to csv with open(hyp_search_csv, "a", newline="") as csvfile: writer = csv.writer(csvfile) writer.writerow([batch_size_local, epochs_local, learning_rate_local, loss_function_local]) cv_results.to_csv(hyp_search_csv, mode="a") # Update best score using the mean over the folds of the minimum single-class accuracy min_class_acc_local = cv_results.loc["Min per-class accuracy", "mean"] # Ensure that the best model achieves better-than-chance macro-avg accuracy, on average across the folds bal_acc_local = cv_results.loc["Balanced (macro-avg) accuracy", "mean"] if min_class_acc_local > best_score and bal_acc_local > 0.5: best_params = hyperparams_local best_score = min_class_acc_local best_stats = cv_results print("\n------New best performing combination------") print(best_params) print("with stats:") print(best_stats.round(3)) return best_params, best_score, best_stats if __name__ == '__main__': # Configure CPU or GPU using CUDA if available device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print('Device:', device) if torch.cuda.is_available(): print("GPU:", torch.cuda.get_device_name(0)) print("\n\n----------------------LOADING DATA-----------------------") if timbre_CNN_type == SingleNoteTimbreCNN or timbre_CNN_type == SingleNoteTimbreCNNSmall: hyperparams = hyperparams_single loader = InstrumentLoader(data_dir, note_range=[48, 72], set_velocity=None, normalise_wavs=True, load_MIDIsampled=True) total_data = loader.preprocess(fmin=20, fmax=20000, n_mels=300, normalisation="statistics") elif timbre_CNN_type == MelodyTimbreCNN or timbre_CNN_type == MelodyTimbreCNNSmall: hyperparams = hyperparams_melody loader = MelodyInstrumentLoader(data_dir, note_range=[48, 72], set_velocity=None, normalise_wavs=True, load_MIDIsampled=True) # Use reload_wavs=False to speed up dataloading if melspecs already generated total_data = loader.preprocess_melodies(midi_dir, normalisation="statistics") else: raise Exception(str(timbre_CNN_type)+" doesn't exist") # Split into seen and unseen subsets data_seen = total_data[total_data.dataset == "MIDIsampled"] data_unseen = total_data[total_data.dataset != "MIDIsampled"] gc.collect() if perform_hyp_search: print("\n\n----------------HYPERPARAMETER SEARCH--------------------") batch_size_space = [64, 128, 256] epochs_space = [15, 20, 25] lr_space = [0.001, 0.002, 0.003] best_params, best_score, best_stats = hyperparameter_search(cnn_type=timbre_CNN_type, training_dataset=data_seen, batch_size_space=batch_size_space, epochs_space=epochs_space, lr_space=lr_space) print("\n---------------Hyperparameter search results---------------") print("Model type:", timbre_CNN_type.__name__) print("Search space:") print("\tBatch sizes:", batch_size_space) print("\tEpochs:", epochs_space) print("\tLearning rates:", lr_space) print("Best params", best_params) print("Best score", best_score) print("Best stats:") print(best_stats) if best_params is not None: hyperparams = best_params dataset_seen = TimbreDataset(data_seen) train_indices, val_indices, _ = generate_split_indices(data_seen, partition_ratios=[0.8, 0.2], mode="segment-instruments-manual") if perform_cross_val: print("\n\n---------------------CROSS-VALIDATION---------------------") cv_results = cross_validate(cnn_type=timbre_CNN_type, hyparams=hyperparams, cross_val_subset=data_seen, #data_seen.iloc[train_indices], cv_folds=4, partition_mode="segment-instruments-random-balanced") print("\n-------Overall cross-validation scores-------") print(cv_results.round(3)) print("\n\n-------------------RE-TRAINED MODEL-----------------------") loader_val = DataLoader(dataset_seen, batch_size=evaluation_bs, shuffle=False, sampler=sampler.SubsetRandomSampler(val_indices), pin_memory=True) model_filename = "model_"+str(hyperparams["batch_size"])+"_"+str(hyperparams["epochs"])+"_"+str(hyperparams["learning_rate"])+model_name saved_model_path = os.path.join(model_dir, timbre_CNN_type.__name__, model_filename+".pth") if not os.path.isfile(saved_model_path): print("\nCreating and training new model") model, loss_plot = train_model(cnn_type=timbre_CNN_type, params=hyperparams, local_dataset=dataset_seen, train_ind=train_indices, val_loader=loader_val, plot_title="\n"+timbre_CNN_type.__name__) # Save model torch.save(model, saved_model_path) print("Saved trained model to", saved_model_path) # Save loss plot loss_plot.savefig(os.path.join(model_dir, timbre_CNN_type.__name__, model_filename+".svg")) else: print("\nLoading pre-trained model from", saved_model_path) model = torch.load(saved_model_path) print(model) model.count_parameters() # print("\n\n-------------Evaluation on the validation set-------------") # scores_seen, per_inst_scores_seen = evaluate_CNN(model, loader_val) # print("---------Per-instrument scores---------") # print(per_inst_scores_seen) # #per_inst_scores_seen.to_csv(os.path.join(result_dir, timbre_CNN_type.__name__, model_filename + ".csv")) # print("---Overall validation set performance---") # display_scores(scores_seen, "Validation set") print("\n\n--------------Evaluation on the unseen set---------------") dataset_unseen = TimbreDataset(data_unseen) loader_unseen = DataLoader(dataset_unseen, batch_size=evaluation_bs, shuffle=False, pin_memory=True) scores_unseen, per_inst_scores_unseen = evaluate_CNN(model, loader_unseen) print("---------Per-instrument scores---------") print(per_inst_scores_unseen) per_inst_scores_unseen.to_csv(os.path.join(result_dir, timbre_CNN_type.__name__, model_filename + ".csv"), mode="a") print("--------Overall unseen set performance--------") display_scores(scores_unseen, "Unseen test set\n"+timbre_CNN_type.__name__)
[ "# %%\nimport csv\nimport warnings\nimport sklearn\nimport pandas as pd\nimport gc\n\nfrom data_loading import *\nfrom timbre_CNN import *\nfrom evaluation import *\nfrom torch.utils.data import DataLoader, sampler\nfrom melody_loading import *\n\nresult_dir = \"results\"\nmodel_dir = \"models\"\nmodel_name = \"_retrained\"\nval_interval = 5\nperform_hyp_search = False\nperform_cross_val = False\nevaluation_bs = 256\n\n#timbre_CNN_type = SingleNoteTimbreCNN\ntimbre_CNN_type = SingleNoteTimbreCNNSmall\n#timbre_CNN_type = MelodyTimbreCNN\n#timbre_CNN_type = MelodyTimbreCNNSmall\n\n# Hyperparameters\nhyperparams_single = {'batch_size': 64,\n 'epochs': 20,\n 'learning_rate': 0.002,\n 'loss_function': nn.BCELoss()}\n\nhyperparams_melody = {\"batch_size\": 128, # GTX 1050 limits us to <512\n \"epochs\": 25,\n \"learning_rate\": 0.003,\n \"loss_function\": nn.BCELoss()}\n\n\ndef generate_split_indices(data, partition_ratios=None, mode=\"mixed\", seed=None):\n # Make a random set of shuffled indices for sampling training/test sets randomly w/o overlap\n if partition_ratios is None:\n partition_ratios = [0.8, 0.1]\n rng = np.random.default_rng(seed=seed)\n if mode == \"segment-instruments-random\":\n instruments = data.instrument.unique()\n rng.shuffle(instruments)\n\n i = 0\n indices_train = []\n indices_val = []\n indices_test = []\n no_more_instruments = False\n # Iterate through instruments and add them to the training/validation set indices until ratios are reached\n next_instrument_indices = np.asarray(data.instrument == instruments[i]).nonzero()[0]\n while (len(indices_train) + len(next_instrument_indices))/len(data) <= partition_ratios[0]:\n indices_train = np.append(indices_train, next_instrument_indices)\n i += 1\n if i >= len(instruments):\n no_more_instruments = True\n break\n next_instrument_indices = np.asarray(data.instrument == instruments[i]).nonzero()[0]\n while (len(indices_train) + len(indices_val) + len(next_instrument_indices))/len(data) \\\n <= partition_ratios[0] + partition_ratios[1] \\\n and not no_more_instruments:\n indices_val = np.append(indices_val, next_instrument_indices)\n i += 1\n if i >= len(instruments):\n break\n next_instrument_indices = np.asarray(data.instrument == instruments[i]).nonzero()[0]\n for j in range(i, len(instruments)):\n indices_test = np.append(indices_test, np.asarray(data.instrument == instruments[j]).nonzero()[0])\n np.random.shuffle(indices_train)\n np.random.shuffle(indices_val)\n np.random.shuffle(indices_test)\n\n elif mode == \"segment-instruments-random-balanced\":\n instruments_grand = data[data.label == 0].instrument.unique()\n instruments_upright = data[data.label == 1].instrument.unique()\n rng.shuffle(instruments_grand)\n rng.shuffle(instruments_upright)\n num_train_instruments = np.round(partition_ratios[0] * len(data.instrument.unique()))\n num_val_instruments = np.round(partition_ratios[1] * len(data.instrument.unique()))\n indices_train = []\n indices_val = []\n indices_test = []\n i_grand = 0\n i_upright = 0\n\n for i in range(0, len(data.instrument.unique())):\n if i % 2 and i_upright < len(instruments_upright):\n next_instrument_indices = np.asarray(data.instrument == instruments_upright[i_upright]).nonzero()[0]\n i_upright += 1\n elif i_grand < len(instruments_grand):\n next_instrument_indices = np.asarray(data.instrument == instruments_grand[i_grand]).nonzero()[0]\n i_grand += 1\n else:\n break\n if i < num_train_instruments:\n indices_train = np.append(indices_train, next_instrument_indices)\n elif i < num_train_instruments+num_val_instruments:\n indices_val = np.append(indices_val, next_instrument_indices)\n else:\n indices_test = np.append(indices_test, next_instrument_indices)\n if np.sum(partition_ratios) == 1: # Combine val and test sets if no test set required\n indices_val = np.append(indices_val, indices_test)\n indices_test = []\n np.random.shuffle(indices_train)\n np.random.shuffle(indices_val)\n np.random.shuffle(indices_test)\n\n elif mode == \"segment-instruments-manual\":\n # train_instruments = [\"AkPnBcht\", \"AkPnBsdf\", \"grand-closed\", \"grand-removed\", \"grand-open\",\n # \"upright-open\", \"upright-semiopen\", \"upright-closed\"]\n # val_instruments = [\"StbgTGd2\", \"AkPnCGdD\", \"ENSTDkCl\"]\n # test_instruments = [\"AkPnStgb\", \"SptkBGAm\", \"ENSTDkAm\"]\n # train_instruments = [\"Nord_BrightGrand-XL\", \"Nord_AmberUpright-XL\",\n # \"Nord_ConcertGrand1Amb-Lrg\", \"Nord_BabyUpright-XL\",\n # \"Nord_GrandImperial-XL\", \"Nord_BlackUpright-Lrg\",\n # \"Nord_GrandLadyD-Lrg\", \"Nord_BlueSwede-Lrg\",\n # \"Nord_RoyalGrand3D-XL\", \"Nord_MellowUpright-XL\",\n # \"Nord_SilverGrand-XL\", \"Nord_QueenUpright-Lrg\",\n # \"Nord_StudioGrand1-Lrg\", \"Nord_RainPiano-Lrg\"]\n # val_instruments = [\"Nord_ItalianGrand-XL\", \"Nord_GrandUpright-XL\",\n # \"Nord_StudioGrand2-Lrg\"]\n # test_instruments = [\"Nord_VelvetGrand-XL\", \"Nord_RomanticUpright-Lrg\",\n # \"Nord_WhiteGrand-XL\", \"Nord_SaloonUpright-Lrg\",\n # \"Nord_ConcertGrand1-Lrg\", \"Nord_BambinoUpright-XL\"]\n train_instruments = [\"Nord_BrightGrand-XL\", \"Nord_AmberUpright-XL\",\n \"Nord_ConcertGrand1-Lrg\", \"Nord_BabyUpright-XL\",\n \"Nord_GrandImperial-XL\", \"Nord_BlackUpright-Lrg\",\n \"Nord_RoyalGrand3D-XL\", \"Nord_MellowUpright-XL\",\n \"Nord_StudioGrand1-Lrg\", \"Nord_RainPiano-Lrg\",\n \"Nord_WhiteGrand-XL\", \"Nord_RomanticUpright-Lrg\",\n \"Nord_VelvetGrand-XL\", \"Nord_GrandUpright-XL\",\n \"Nord_StudioGrand2-Lrg\", \"Nord_SaloonUpright-Lrg\",\n \"Nord_ItalianGrand-XL\", \"Nord_BlueSwede-Lrg\"]\n val_instruments = [\"Nord_ConcertGrand1Amb-Lrg\", \"Nord_BambinoUpright-XL\",\n \"Nord_GrandLadyD-Lrg\", \"Nord_QueenUpright-Lrg\",\n \"Nord_SilverGrand-XL\"]\n test_instruments = []\n\n indices_train = np.asarray(data.instrument.isin(train_instruments)).nonzero()[0]\n indices_val = np.asarray(data.instrument.isin(val_instruments)).nonzero()[0]\n indices_test = np.asarray(data.instrument.isin(test_instruments)).nonzero()[0]\n np.random.shuffle(indices_train)\n np.random.shuffle(indices_val)\n np.random.shuffle(indices_test)\n\n elif mode == \"segment-velocities\":\n indices_train = np.asarray(data.velocity == \"M\").nonzero()[0]\n indices_val = np.asarray(data.velocity == \"P\").nonzero()[0]\n indices_test = np.asarray(data.velocity == \"F\").nonzero()[0]\n np.random.shuffle(indices_train)\n np.random.shuffle(indices_val)\n np.random.shuffle(indices_test)\n elif mode == \"mixed\":\n # Reproducible random shuffle of indices, using a fixed seed\n indices = np.arange(len(data))\n rng.shuffle(indices)\n\n split_point_train = int(len(data) * partition_ratios[0])\n split_point_val = split_point_train + int(len(data) * partition_ratios[1])\n indices_train = indices[:split_point_train]\n indices_val = indices[split_point_train:split_point_val]\n indices_test = indices[split_point_val:]\n\n else:\n raise Exception(\"Mode not recognised\")\n\n # Print training, validation and test set statistics\n print(\"\")\n indices_train = indices_train.astype(int)\n indices_val = indices_val.astype(int)\n print(len(indices_train), \"training samples\")\n print(len(indices_val), \"validation samples\")\n print(len(indices_test), \"test samples\")\n train_class_balance = data.iloc[indices_train].label.sum(axis=0)/len(indices_train)\n print(\"Train set contains\", np.round(train_class_balance * 100), \"% Upright pianos\")\n if mode == \"segment_instruments\":\n print(\"\\t\", pd.unique(data.iloc[indices_train].instrument))\n val_class_balance = data.iloc[indices_val].label.sum(axis=0)/len(indices_val)\n print(\"Validation set contains\", np.round(val_class_balance * 100), \"% Upright pianos\")\n if mode == \"segment_instruments\":\n print(\"\\t\", pd.unique(data.iloc[indices_val].instrument))\n if len(indices_test) == 0:\n indices_test = np.array([])\n indices_test = indices_test.astype(int)\n else:\n indices_test = indices_test.astype(int)\n test_class_balance = data.iloc[indices_test].label.sum(axis=0)/len(indices_test)\n print(\"Test set contains\", np.round(test_class_balance * 100), \"% Upright pianos\")\n if mode == \"segment_instruments\":\n print(\"\\t\", pd.unique(data.iloc[indices_test].instrument))\n print(\"Overall, dataset contains\", np.round(100 * data.label.sum(axis=0)/len(data)), \"% Upright pianos\")\n return indices_train, indices_val, indices_test\n\n\ndef generate_crossval_fold_indices(data, seed=None, folds=5, verbose=True):\n rng = np.random.default_rng(seed=seed)\n instruments_grand = data[data.label == 0].instrument.unique()\n instruments_upright = data[data.label == 1].instrument.unique()\n rng.shuffle(instruments_grand)\n rng.shuffle(instruments_upright)\n num_instruments_fold1 = np.round(len(data.instrument.unique())/folds)\n num_instruments_fold2 = np.round(len(data.instrument.unique())/folds)\n num_instruments_fold3 = np.round(len(data.instrument.unique())/folds)\n num_instruments_fold4 = np.round(len(data.instrument.unique())/folds)\n indices_fold1 = []\n indices_fold2 = []\n indices_fold3 = []\n indices_fold4 = []\n indices_fold5 = []\n i_grand = 0\n i_upright = 0\n if folds == 5:\n for i in range(0, len(data.instrument.unique())):\n if i % 2 and i_upright < len(instruments_upright):\n next_instrument_indices = np.asarray(data.instrument == instruments_upright[i_upright]).nonzero()[0]\n i_upright += 1\n elif i_grand < len(instruments_grand):\n next_instrument_indices = np.asarray(data.instrument == instruments_grand[i_grand]).nonzero()[0]\n i_grand += 1\n else:\n break\n if i < num_instruments_fold1:\n indices_fold1 = np.append(indices_fold1, next_instrument_indices).astype(int)\n elif i < num_instruments_fold1 + num_instruments_fold2:\n indices_fold2 = np.append(indices_fold2, next_instrument_indices).astype(int)\n elif i < num_instruments_fold1 + num_instruments_fold2 + num_instruments_fold3:\n indices_fold3 = np.append(indices_fold3, next_instrument_indices).astype(int)\n elif i < num_instruments_fold1 + num_instruments_fold2 + num_instruments_fold3 + num_instruments_fold4:\n indices_fold4 = np.append(indices_fold4, next_instrument_indices).astype(int)\n else:\n indices_fold5 = np.append(indices_fold5, next_instrument_indices).astype(int)\n elif folds == 4:\n for i in range(0, len(data.instrument.unique())):\n if i % 2 and i_upright < len(instruments_upright):\n next_instrument_indices = np.asarray(data.instrument == instruments_upright[i_upright]).nonzero()[0]\n i_upright += 1\n elif i_grand < len(instruments_grand):\n next_instrument_indices = np.asarray(data.instrument == instruments_grand[i_grand]).nonzero()[0]\n i_grand += 1\n else:\n break\n if i < num_instruments_fold1:\n indices_fold1 = np.append(indices_fold1, next_instrument_indices).astype(int)\n elif i < num_instruments_fold1 + num_instruments_fold2:\n indices_fold2 = np.append(indices_fold2, next_instrument_indices).astype(int)\n elif i < num_instruments_fold1 + num_instruments_fold2 + num_instruments_fold3:\n indices_fold3 = np.append(indices_fold3, next_instrument_indices).astype(int)\n else:\n indices_fold4 = np.append(indices_fold4, next_instrument_indices).astype(int)\n np.random.shuffle(indices_fold1)\n np.random.shuffle(indices_fold2)\n np.random.shuffle(indices_fold3)\n np.random.shuffle(indices_fold4)\n np.random.shuffle(indices_fold5)\n if verbose:\n print(len(indices_fold1), \"samples in fold 1\")\n print(\"\\t\", pd.unique(data.iloc[indices_fold1].instrument))\n print(len(indices_fold2), \"samples in fold 2\")\n print(\"\\t\", pd.unique(data.iloc[indices_fold2].instrument))\n print(len(indices_fold3), \"samples in fold 3\")\n print(\"\\t\", pd.unique(data.iloc[indices_fold3].instrument))\n print(len(indices_fold4), \"samples in fold 4\")\n print(\"\\t\", pd.unique(data.iloc[indices_fold4].instrument))\n if folds == 5:\n print(len(indices_fold5), \"samples in fold 5\")\n print(\"\\t\", pd.unique(data.iloc[indices_fold5].instrument))\n\n return indices_fold1, indices_fold2, indices_fold3, indices_fold4, indices_fold5\n\n\ndef train_model(cnn_type, params, local_dataset, train_ind, val_loader=None, plot=True, plot_title=\"\", verbose=True):\n if verbose:\n print(\"\\n--------------TRAINING MODEL--------------\")\n print(timbre_CNN_type.__name__, \"with parameters:\")\n print(params)\n # Unpack the hyperparameters\n batch_size = params[\"batch_size\"]\n epochs = params[\"epochs\"]\n learning_rate = params[\"learning_rate\"]\n loss_function = params[\"loss_function\"]\n loader_train = DataLoader(local_dataset, batch_size=batch_size, shuffle=False,\n sampler=sampler.SubsetRandomSampler(train_ind),\n pin_memory=True)\n\n model = cnn_type().to(device, non_blocking=True)\n optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)\n\n with torch.enable_grad():\n loss_train_log = []\n loss_val_log = []\n epoch_val_log = []\n for epoch in range(epochs):\n model.train()\n running_loss = 0.0\n for i, batch in enumerate(loader_train):\n x = batch[0].float().to(device, non_blocking=True)\n label = batch[1].float().to(device, non_blocking=True)\n\n optimizer.zero_grad()\n y = model(x)\n loss = loss_function(y, label)\n\n loss.backward()\n optimizer.step()\n running_loss += loss.detach()\n gc.collect()\n # Record training loss\n mean_epoch_loss = (running_loss/(batch_size*(i+1))).item()\n if verbose:\n print(\"+Training - Epoch\", epoch+1, \"loss:\", mean_epoch_loss)\n loss_train_log.append(mean_epoch_loss)\n\n # Calculate loss on validation set\n if (epoch == epochs-1 or epoch % val_interval == 0) and val_loader is not None and plot:\n loss_val = 0\n model.eval()\n with torch.no_grad():\n for i, batch in enumerate(val_loader):\n x = batch[0].float().to(device, non_blocking=True)\n label = batch[1].float().to(device, non_blocking=True)\n y = model(x)\n loss_val += loss_function(y, label).detach()\n gc.collect()\n mean_epoch_val_loss = (loss_val / (batch_size * (i + 1))).item()\n print(\"\\t+Validation - Epoch\", epoch + 1, \"loss:\", mean_epoch_val_loss)\n loss_val_log.append(mean_epoch_val_loss)\n epoch_val_log.append(epoch+1)\n\n # Plot training curves\n fig = None\n if plot:\n fig = plt.figure()\n plt.plot(range(1, epochs + 1), loss_train_log, c='r', label='train')\n if val_loader is not None:\n plt.plot(epoch_val_log, loss_val_log, c='b', label='val')\n plt.legend()\n plt.xlabel('epoch')\n plt.ylabel('loss')\n plt.xticks(np.arange(1, epochs+1))\n plt.grid()\n plt.title(\"Loss curve over \"+str(epochs)+\" epochs of training - \"+plot_title)\n plt.tight_layout()\n plt.show()\n\n return model, fig\n\n\ndef evaluate_CNN(evaluated_model, test_set):\n labels_total = np.empty(0, dtype=int)\n preds_total = np.empty(0, dtype=int)\n instruments_acc = np.empty(0, dtype=str)\n # Inference mode\n evaluated_model.eval()\n with torch.no_grad():\n evaluated_model = evaluated_model.to(device, non_blocking=True)\n\n for batch in test_set:\n x = batch[0].float().to(device, non_blocking=True)\n label = batch[1].float().to(device, non_blocking=True)\n y = evaluated_model(x)\n #print(\"+Evaluating - Batch loss:\", loss_function(y, label).item())\n pred = torch.round(y)\n # Accumulate per-batch ground truths, outputs and instrument names\n labels_total = np.append(labels_total, label.cpu())\n preds_total = np.append(preds_total, pred.cpu())\n instruments_acc = np.append(instruments_acc, np.array(batch[2]))\n # Calculate scores per instrument\n per_inst_scores = pd.DataFrame()\n for instrument in np.unique(instruments_acc):\n instrument_mask = np.nonzero(instruments_acc == instrument)\n # Ignore Confusion matrix, balanced accuracy and F1 score which are irrelevant here\n instrument_scores = evaluate_scores(labels_total[instrument_mask], preds_total[instrument_mask])\n piano_class = \"Upright\" if labels_total[instrument_mask][0] else \"Grand\"\n per_inst_scores = per_inst_scores.append(pd.DataFrame([[np.round(instrument_scores[\"Accuracy\"],2),piano_class]],\n index=pd.Index([instrument], name=\"Instrument\"),\n columns=[\"Accuracy\", \"Class\"]))\n # Calculate overall scores\n overall_scores = evaluate_scores(labels_total, preds_total)\n return overall_scores, per_inst_scores\n\n\ndef cross_validate(cnn_type, hyparams, cross_val_subset, cv_folds=2, partition_mode=None, plot_train_curves=True, verbose=True):\n\n cv_dataset = TimbreDataset(cross_val_subset)\n total_scores = pd.DataFrame()\n\n if cv_folds == 2:\n set_1, set_2, _ = generate_split_indices(cross_val_subset, partition_ratios=[0.5, 0.5], mode=partition_mode)\n training_sets = [set_1, set_2]\n validation_sets = [set_2, set_1]\n elif cv_folds == 4:\n fold1, fold2, fold3, fold4, _ = generate_crossval_fold_indices(cross_val_subset, folds=cv_folds, seed=None, verbose=verbose)\n training_sets = [np.concatenate([fold2, fold3, fold4]),\n np.concatenate([fold3, fold4, fold1]),\n np.concatenate([fold4, fold1, fold2]),\n np.concatenate([fold1, fold2, fold3])]\n validation_sets = [fold1, fold2, fold3, fold4]\n elif cv_folds == 5:\n fold1, fold2, fold3, fold4, fold5 = generate_crossval_fold_indices(cross_val_subset, folds=cv_folds, seed=None, verbose=verbose)\n training_sets = [np.concatenate([fold2, fold3, fold4, fold5]),\n np.concatenate([fold3, fold4, fold5, fold1]),\n np.concatenate([fold4, fold5, fold1, fold2]),\n np.concatenate([fold5, fold1, fold2, fold3]),\n np.concatenate([fold1, fold2, fold3, fold4])]\n validation_sets = [fold1, fold2, fold3, fold4, fold5]\n else:\n raise Exception(\"CV mode \"+str(cv_folds)+\" not implemented\")\n\n for fold, (train_fold_indices, val_fold_indices) in enumerate(zip(training_sets, validation_sets)):\n print(\"\\n----------------CV FOLD \"+str(fold+1)+\"-----------------\")\n val_fold = DataLoader(cv_dataset, batch_size=evaluation_bs, shuffle=False,\n sampler=sampler.SubsetRandomSampler(val_fold_indices), pin_memory=True)\n model_fold, _ = train_model(cnn_type=cnn_type, params=hyparams,\n local_dataset=cv_dataset, train_ind=train_fold_indices, val_loader=val_fold,\n plot=plot_train_curves, plot_title=\"CV Fold \"+str(fold+1), verbose=verbose)\n scores_fold, per_inst_scores_fold = evaluate_CNN(model_fold, val_fold)\n if verbose:\n print(\"\\n------Fold \"+str(fold+1)+\" validation set scores--------\")\n print(per_inst_scores_fold)\n display_scores(scores_fold, plot_conf=False)\n numeric_scores_fold = pd.DataFrame.from_dict({k: [v] for k, v in scores_fold.items() if k in [\"Accuracy\", \"F1\", \"acc_grand\", \"acc_upright\", \"balanced_acc\", \"min_class_acc\"]})\n numeric_scores_fold[\"no_samples\"] = len(val_fold_indices)\n total_scores = total_scores.append(numeric_scores_fold)\n # Calculate overall cross-validation statistics, weighted by the number of validation samples in each fold\n weighted_mean_acc = (total_scores.Accuracy * total_scores.no_samples).sum() / total_scores.no_samples.sum()\n weighted_mean_f1 = (total_scores.F1 * total_scores.no_samples).sum() / total_scores.no_samples.sum()\n weighted_mean_acc_grand = (total_scores.acc_grand * total_scores.no_samples).sum() / total_scores.no_samples.sum()\n weighted_mean_acc_upright = (total_scores.acc_upright * total_scores.no_samples).sum() / total_scores.no_samples.sum()\n weighted_mean_bal_acc = (total_scores.balanced_acc * total_scores.no_samples).sum() / total_scores.no_samples.sum()\n weighted_mean_min_class_acc = (total_scores.min_class_acc * total_scores.no_samples).sum() / total_scores.no_samples.sum()\n weighted_std_acc = np.sqrt(np.cov(total_scores.Accuracy, fweights=total_scores.no_samples))\n weighted_std_f1 = np.sqrt(np.cov(total_scores.F1, fweights=total_scores.no_samples))\n weighted_std_acc_grand = np.sqrt(np.cov(total_scores.acc_grand, fweights=total_scores.no_samples))\n weighted_std_acc_upright = np.sqrt(np.cov(total_scores.acc_upright, fweights=total_scores.no_samples))\n weighted_std_bal_acc = np.sqrt(np.cov(total_scores.balanced_acc, fweights=total_scores.no_samples))\n weighted_std_min_class_acc = np.sqrt(np.cov(total_scores.min_class_acc, fweights=total_scores.no_samples))\n cv_scores_stats = pd.DataFrame({\"mean\": [weighted_mean_acc, weighted_mean_f1, weighted_mean_acc_grand, weighted_mean_acc_upright, weighted_mean_bal_acc, weighted_mean_min_class_acc],\n \"std\": [weighted_std_acc, weighted_std_f1, weighted_std_acc_grand, weighted_std_acc_upright, weighted_std_bal_acc, weighted_std_min_class_acc]},\n index=[\"Accuracy\", \"F1\", \"Grand class accuracy\", \"Upright class accuracy\", \"Balanced (macro-avg) accuracy\", \"Min per-class accuracy\"])\n return cv_scores_stats\n\n\ndef hyperparameter_search(cnn_type, training_dataset,\n batch_size_space,\n epochs_space,\n lr_space,\n loss_space=None):\n if loss_space is None:\n loss_space = [nn.BCELoss()]\n\n hyp_search_csv = os.path.join(result_dir, cnn_type.__name__, \"hyperparam_search.csv\")\n with open(hyp_search_csv, \"a\", newline=\"\") as csvfile:\n writer = csv.writer(csvfile)\n writer.writerow([\"----------New Hyperparameter search----------\"])\n writer.writerow([\"Batch size\", \"Epochs\", \"Learning rate\", \"Loss function\"])\n\n total_combinations = len(loss_space)*len(lr_space)*len(epochs_space)*len(batch_size_space)\n best_score = 0\n best_params = None\n best_stats = None\n i = 0\n\n for epochs_local in epochs_space:\n for loss_function_local in loss_space:\n for batch_size_local in batch_size_space:\n for learning_rate_local in lr_space:\n i += 1\n print(\"\\n------ Hyperparameter search combination\", i, \"of\", total_combinations, \"------\")\n print(\"Model type:\", cnn_type.__name__)\n hyperparams_local={\"batch_size\": batch_size_local,\n \"epochs\": epochs_local,\n \"learning_rate\": learning_rate_local,\n \"loss_function\": loss_function_local}\n print(hyperparams_local)\n cv_results = cross_validate(cnn_type=cnn_type,\n hyparams=hyperparams_local,\n cross_val_subset=training_dataset,\n cv_folds=4,\n partition_mode=\"segment-instruments-random-balanced\",\n plot_train_curves=False,\n verbose=False)\n # Print the results to csv\n with open(hyp_search_csv, \"a\", newline=\"\") as csvfile:\n writer = csv.writer(csvfile)\n writer.writerow([batch_size_local, epochs_local, learning_rate_local, loss_function_local])\n cv_results.to_csv(hyp_search_csv, mode=\"a\")\n # Update best score using the mean over the folds of the minimum single-class accuracy\n min_class_acc_local = cv_results.loc[\"Min per-class accuracy\", \"mean\"]\n # Ensure that the best model achieves better-than-chance macro-avg accuracy, on average across the folds\n bal_acc_local = cv_results.loc[\"Balanced (macro-avg) accuracy\", \"mean\"]\n if min_class_acc_local > best_score and bal_acc_local > 0.5:\n best_params = hyperparams_local\n best_score = min_class_acc_local\n best_stats = cv_results\n print(\"\\n------New best performing combination------\")\n print(best_params)\n print(\"with stats:\")\n print(best_stats.round(3))\n\n return best_params, best_score, best_stats\n\n\nif __name__ == '__main__':\n # Configure CPU or GPU using CUDA if available\n device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n print('Device:', device)\n if torch.cuda.is_available():\n print(\"GPU:\", torch.cuda.get_device_name(0))\n\n print(\"\\n\\n----------------------LOADING DATA-----------------------\")\n if timbre_CNN_type == SingleNoteTimbreCNN or timbre_CNN_type == SingleNoteTimbreCNNSmall:\n hyperparams = hyperparams_single\n loader = InstrumentLoader(data_dir, note_range=[48, 72], set_velocity=None, normalise_wavs=True, load_MIDIsampled=True)\n total_data = loader.preprocess(fmin=20, fmax=20000, n_mels=300, normalisation=\"statistics\")\n elif timbre_CNN_type == MelodyTimbreCNN or timbre_CNN_type == MelodyTimbreCNNSmall:\n hyperparams = hyperparams_melody\n loader = MelodyInstrumentLoader(data_dir, note_range=[48, 72], set_velocity=None, normalise_wavs=True, load_MIDIsampled=True) # Use reload_wavs=False to speed up dataloading if melspecs already generated\n total_data = loader.preprocess_melodies(midi_dir, normalisation=\"statistics\")\n else:\n raise Exception(str(timbre_CNN_type)+\" doesn't exist\")\n # Split into seen and unseen subsets\n data_seen = total_data[total_data.dataset == \"MIDIsampled\"]\n data_unseen = total_data[total_data.dataset != \"MIDIsampled\"]\n gc.collect()\n\n if perform_hyp_search:\n print(\"\\n\\n----------------HYPERPARAMETER SEARCH--------------------\")\n batch_size_space = [64, 128, 256]\n epochs_space = [15, 20, 25]\n lr_space = [0.001, 0.002, 0.003]\n best_params, best_score, best_stats = hyperparameter_search(cnn_type=timbre_CNN_type, training_dataset=data_seen,\n batch_size_space=batch_size_space,\n epochs_space=epochs_space,\n lr_space=lr_space)\n print(\"\\n---------------Hyperparameter search results---------------\")\n print(\"Model type:\", timbre_CNN_type.__name__)\n print(\"Search space:\")\n print(\"\\tBatch sizes:\", batch_size_space)\n print(\"\\tEpochs:\", epochs_space)\n print(\"\\tLearning rates:\", lr_space)\n print(\"Best params\", best_params)\n print(\"Best score\", best_score)\n print(\"Best stats:\")\n print(best_stats)\n if best_params is not None:\n hyperparams = best_params\n\n dataset_seen = TimbreDataset(data_seen)\n train_indices, val_indices, _ = generate_split_indices(data_seen, partition_ratios=[0.8, 0.2],\n mode=\"segment-instruments-manual\")\n if perform_cross_val:\n print(\"\\n\\n---------------------CROSS-VALIDATION---------------------\")\n cv_results = cross_validate(cnn_type=timbre_CNN_type, hyparams=hyperparams,\n cross_val_subset=data_seen, #data_seen.iloc[train_indices],\n cv_folds=4,\n partition_mode=\"segment-instruments-random-balanced\")\n print(\"\\n-------Overall cross-validation scores-------\")\n print(cv_results.round(3))\n\n print(\"\\n\\n-------------------RE-TRAINED MODEL-----------------------\")\n loader_val = DataLoader(dataset_seen, batch_size=evaluation_bs, shuffle=False,\n sampler=sampler.SubsetRandomSampler(val_indices),\n pin_memory=True)\n model_filename = \"model_\"+str(hyperparams[\"batch_size\"])+\"_\"+str(hyperparams[\"epochs\"])+\"_\"+str(hyperparams[\"learning_rate\"])+model_name\n saved_model_path = os.path.join(model_dir, timbre_CNN_type.__name__, model_filename+\".pth\")\n if not os.path.isfile(saved_model_path):\n print(\"\\nCreating and training new model\")\n model, loss_plot = train_model(cnn_type=timbre_CNN_type, params=hyperparams,\n local_dataset=dataset_seen, train_ind=train_indices, val_loader=loader_val,\n plot_title=\"\\n\"+timbre_CNN_type.__name__)\n # Save model\n torch.save(model, saved_model_path)\n print(\"Saved trained model to\", saved_model_path)\n # Save loss plot\n loss_plot.savefig(os.path.join(model_dir, timbre_CNN_type.__name__, model_filename+\".svg\"))\n else:\n print(\"\\nLoading pre-trained model from\", saved_model_path)\n model = torch.load(saved_model_path)\n print(model)\n model.count_parameters()\n\n # print(\"\\n\\n-------------Evaluation on the validation set-------------\")\n # scores_seen, per_inst_scores_seen = evaluate_CNN(model, loader_val)\n # print(\"---------Per-instrument scores---------\")\n # print(per_inst_scores_seen)\n # #per_inst_scores_seen.to_csv(os.path.join(result_dir, timbre_CNN_type.__name__, model_filename + \".csv\"))\n # print(\"---Overall validation set performance---\")\n # display_scores(scores_seen, \"Validation set\")\n\n print(\"\\n\\n--------------Evaluation on the unseen set---------------\")\n dataset_unseen = TimbreDataset(data_unseen)\n loader_unseen = DataLoader(dataset_unseen, batch_size=evaluation_bs, shuffle=False, pin_memory=True)\n scores_unseen, per_inst_scores_unseen = evaluate_CNN(model, loader_unseen)\n print(\"---------Per-instrument scores---------\")\n print(per_inst_scores_unseen)\n per_inst_scores_unseen.to_csv(os.path.join(result_dir, timbre_CNN_type.__name__, model_filename + \".csv\"), mode=\"a\")\n print(\"--------Overall unseen set performance--------\")\n display_scores(scores_unseen, \"Unseen test set\\n\"+timbre_CNN_type.__name__)\n\n", "import csv\nimport warnings\nimport sklearn\nimport pandas as pd\nimport gc\nfrom data_loading import *\nfrom timbre_CNN import *\nfrom evaluation import *\nfrom torch.utils.data import DataLoader, sampler\nfrom melody_loading import *\nresult_dir = 'results'\nmodel_dir = 'models'\nmodel_name = '_retrained'\nval_interval = 5\nperform_hyp_search = False\nperform_cross_val = False\nevaluation_bs = 256\ntimbre_CNN_type = SingleNoteTimbreCNNSmall\nhyperparams_single = {'batch_size': 64, 'epochs': 20, 'learning_rate': \n 0.002, 'loss_function': nn.BCELoss()}\nhyperparams_melody = {'batch_size': 128, 'epochs': 25, 'learning_rate': \n 0.003, 'loss_function': nn.BCELoss()}\n\n\ndef generate_split_indices(data, partition_ratios=None, mode='mixed', seed=None\n ):\n if partition_ratios is None:\n partition_ratios = [0.8, 0.1]\n rng = np.random.default_rng(seed=seed)\n if mode == 'segment-instruments-random':\n instruments = data.instrument.unique()\n rng.shuffle(instruments)\n i = 0\n indices_train = []\n indices_val = []\n indices_test = []\n no_more_instruments = False\n next_instrument_indices = np.asarray(data.instrument == instruments[i]\n ).nonzero()[0]\n while (len(indices_train) + len(next_instrument_indices)) / len(data\n ) <= partition_ratios[0]:\n indices_train = np.append(indices_train, next_instrument_indices)\n i += 1\n if i >= len(instruments):\n no_more_instruments = True\n break\n next_instrument_indices = np.asarray(data.instrument ==\n instruments[i]).nonzero()[0]\n while (len(indices_train) + len(indices_val) + len(\n next_instrument_indices)) / len(data) <= partition_ratios[0\n ] + partition_ratios[1] and not no_more_instruments:\n indices_val = np.append(indices_val, next_instrument_indices)\n i += 1\n if i >= len(instruments):\n break\n next_instrument_indices = np.asarray(data.instrument ==\n instruments[i]).nonzero()[0]\n for j in range(i, len(instruments)):\n indices_test = np.append(indices_test, np.asarray(data.\n instrument == instruments[j]).nonzero()[0])\n np.random.shuffle(indices_train)\n np.random.shuffle(indices_val)\n np.random.shuffle(indices_test)\n elif mode == 'segment-instruments-random-balanced':\n instruments_grand = data[data.label == 0].instrument.unique()\n instruments_upright = data[data.label == 1].instrument.unique()\n rng.shuffle(instruments_grand)\n rng.shuffle(instruments_upright)\n num_train_instruments = np.round(partition_ratios[0] * len(data.\n instrument.unique()))\n num_val_instruments = np.round(partition_ratios[1] * len(data.\n instrument.unique()))\n indices_train = []\n indices_val = []\n indices_test = []\n i_grand = 0\n i_upright = 0\n for i in range(0, len(data.instrument.unique())):\n if i % 2 and i_upright < len(instruments_upright):\n next_instrument_indices = np.asarray(data.instrument ==\n instruments_upright[i_upright]).nonzero()[0]\n i_upright += 1\n elif i_grand < len(instruments_grand):\n next_instrument_indices = np.asarray(data.instrument ==\n instruments_grand[i_grand]).nonzero()[0]\n i_grand += 1\n else:\n break\n if i < num_train_instruments:\n indices_train = np.append(indices_train,\n next_instrument_indices)\n elif i < num_train_instruments + num_val_instruments:\n indices_val = np.append(indices_val, next_instrument_indices)\n else:\n indices_test = np.append(indices_test, next_instrument_indices)\n if np.sum(partition_ratios) == 1:\n indices_val = np.append(indices_val, indices_test)\n indices_test = []\n np.random.shuffle(indices_train)\n np.random.shuffle(indices_val)\n np.random.shuffle(indices_test)\n elif mode == 'segment-instruments-manual':\n train_instruments = ['Nord_BrightGrand-XL', 'Nord_AmberUpright-XL',\n 'Nord_ConcertGrand1-Lrg', 'Nord_BabyUpright-XL',\n 'Nord_GrandImperial-XL', 'Nord_BlackUpright-Lrg',\n 'Nord_RoyalGrand3D-XL', 'Nord_MellowUpright-XL',\n 'Nord_StudioGrand1-Lrg', 'Nord_RainPiano-Lrg',\n 'Nord_WhiteGrand-XL', 'Nord_RomanticUpright-Lrg',\n 'Nord_VelvetGrand-XL', 'Nord_GrandUpright-XL',\n 'Nord_StudioGrand2-Lrg', 'Nord_SaloonUpright-Lrg',\n 'Nord_ItalianGrand-XL', 'Nord_BlueSwede-Lrg']\n val_instruments = ['Nord_ConcertGrand1Amb-Lrg',\n 'Nord_BambinoUpright-XL', 'Nord_GrandLadyD-Lrg',\n 'Nord_QueenUpright-Lrg', 'Nord_SilverGrand-XL']\n test_instruments = []\n indices_train = np.asarray(data.instrument.isin(train_instruments)\n ).nonzero()[0]\n indices_val = np.asarray(data.instrument.isin(val_instruments)\n ).nonzero()[0]\n indices_test = np.asarray(data.instrument.isin(test_instruments)\n ).nonzero()[0]\n np.random.shuffle(indices_train)\n np.random.shuffle(indices_val)\n np.random.shuffle(indices_test)\n elif mode == 'segment-velocities':\n indices_train = np.asarray(data.velocity == 'M').nonzero()[0]\n indices_val = np.asarray(data.velocity == 'P').nonzero()[0]\n indices_test = np.asarray(data.velocity == 'F').nonzero()[0]\n np.random.shuffle(indices_train)\n np.random.shuffle(indices_val)\n np.random.shuffle(indices_test)\n elif mode == 'mixed':\n indices = np.arange(len(data))\n rng.shuffle(indices)\n split_point_train = int(len(data) * partition_ratios[0])\n split_point_val = split_point_train + int(len(data) *\n partition_ratios[1])\n indices_train = indices[:split_point_train]\n indices_val = indices[split_point_train:split_point_val]\n indices_test = indices[split_point_val:]\n else:\n raise Exception('Mode not recognised')\n print('')\n indices_train = indices_train.astype(int)\n indices_val = indices_val.astype(int)\n print(len(indices_train), 'training samples')\n print(len(indices_val), 'validation samples')\n print(len(indices_test), 'test samples')\n train_class_balance = data.iloc[indices_train].label.sum(axis=0) / len(\n indices_train)\n print('Train set contains', np.round(train_class_balance * 100),\n '% Upright pianos')\n if mode == 'segment_instruments':\n print('\\t', pd.unique(data.iloc[indices_train].instrument))\n val_class_balance = data.iloc[indices_val].label.sum(axis=0) / len(\n indices_val)\n print('Validation set contains', np.round(val_class_balance * 100),\n '% Upright pianos')\n if mode == 'segment_instruments':\n print('\\t', pd.unique(data.iloc[indices_val].instrument))\n if len(indices_test) == 0:\n indices_test = np.array([])\n indices_test = indices_test.astype(int)\n else:\n indices_test = indices_test.astype(int)\n test_class_balance = data.iloc[indices_test].label.sum(axis=0) / len(\n indices_test)\n print('Test set contains', np.round(test_class_balance * 100),\n '% Upright pianos')\n if mode == 'segment_instruments':\n print('\\t', pd.unique(data.iloc[indices_test].instrument))\n print('Overall, dataset contains', np.round(100 * data.label.sum(axis=0\n ) / len(data)), '% Upright pianos')\n return indices_train, indices_val, indices_test\n\n\ndef generate_crossval_fold_indices(data, seed=None, folds=5, verbose=True):\n rng = np.random.default_rng(seed=seed)\n instruments_grand = data[data.label == 0].instrument.unique()\n instruments_upright = data[data.label == 1].instrument.unique()\n rng.shuffle(instruments_grand)\n rng.shuffle(instruments_upright)\n num_instruments_fold1 = np.round(len(data.instrument.unique()) / folds)\n num_instruments_fold2 = np.round(len(data.instrument.unique()) / folds)\n num_instruments_fold3 = np.round(len(data.instrument.unique()) / folds)\n num_instruments_fold4 = np.round(len(data.instrument.unique()) / folds)\n indices_fold1 = []\n indices_fold2 = []\n indices_fold3 = []\n indices_fold4 = []\n indices_fold5 = []\n i_grand = 0\n i_upright = 0\n if folds == 5:\n for i in range(0, len(data.instrument.unique())):\n if i % 2 and i_upright < len(instruments_upright):\n next_instrument_indices = np.asarray(data.instrument ==\n instruments_upright[i_upright]).nonzero()[0]\n i_upright += 1\n elif i_grand < len(instruments_grand):\n next_instrument_indices = np.asarray(data.instrument ==\n instruments_grand[i_grand]).nonzero()[0]\n i_grand += 1\n else:\n break\n if i < num_instruments_fold1:\n indices_fold1 = np.append(indices_fold1,\n next_instrument_indices).astype(int)\n elif i < num_instruments_fold1 + num_instruments_fold2:\n indices_fold2 = np.append(indices_fold2,\n next_instrument_indices).astype(int)\n elif i < num_instruments_fold1 + num_instruments_fold2 + num_instruments_fold3:\n indices_fold3 = np.append(indices_fold3,\n next_instrument_indices).astype(int)\n elif i < num_instruments_fold1 + num_instruments_fold2 + num_instruments_fold3 + num_instruments_fold4:\n indices_fold4 = np.append(indices_fold4,\n next_instrument_indices).astype(int)\n else:\n indices_fold5 = np.append(indices_fold5,\n next_instrument_indices).astype(int)\n elif folds == 4:\n for i in range(0, len(data.instrument.unique())):\n if i % 2 and i_upright < len(instruments_upright):\n next_instrument_indices = np.asarray(data.instrument ==\n instruments_upright[i_upright]).nonzero()[0]\n i_upright += 1\n elif i_grand < len(instruments_grand):\n next_instrument_indices = np.asarray(data.instrument ==\n instruments_grand[i_grand]).nonzero()[0]\n i_grand += 1\n else:\n break\n if i < num_instruments_fold1:\n indices_fold1 = np.append(indices_fold1,\n next_instrument_indices).astype(int)\n elif i < num_instruments_fold1 + num_instruments_fold2:\n indices_fold2 = np.append(indices_fold2,\n next_instrument_indices).astype(int)\n elif i < num_instruments_fold1 + num_instruments_fold2 + num_instruments_fold3:\n indices_fold3 = np.append(indices_fold3,\n next_instrument_indices).astype(int)\n else:\n indices_fold4 = np.append(indices_fold4,\n next_instrument_indices).astype(int)\n np.random.shuffle(indices_fold1)\n np.random.shuffle(indices_fold2)\n np.random.shuffle(indices_fold3)\n np.random.shuffle(indices_fold4)\n np.random.shuffle(indices_fold5)\n if verbose:\n print(len(indices_fold1), 'samples in fold 1')\n print('\\t', pd.unique(data.iloc[indices_fold1].instrument))\n print(len(indices_fold2), 'samples in fold 2')\n print('\\t', pd.unique(data.iloc[indices_fold2].instrument))\n print(len(indices_fold3), 'samples in fold 3')\n print('\\t', pd.unique(data.iloc[indices_fold3].instrument))\n print(len(indices_fold4), 'samples in fold 4')\n print('\\t', pd.unique(data.iloc[indices_fold4].instrument))\n if folds == 5:\n print(len(indices_fold5), 'samples in fold 5')\n print('\\t', pd.unique(data.iloc[indices_fold5].instrument))\n return (indices_fold1, indices_fold2, indices_fold3, indices_fold4,\n indices_fold5)\n\n\ndef train_model(cnn_type, params, local_dataset, train_ind, val_loader=None,\n plot=True, plot_title='', verbose=True):\n if verbose:\n print('\\n--------------TRAINING MODEL--------------')\n print(timbre_CNN_type.__name__, 'with parameters:')\n print(params)\n batch_size = params['batch_size']\n epochs = params['epochs']\n learning_rate = params['learning_rate']\n loss_function = params['loss_function']\n loader_train = DataLoader(local_dataset, batch_size=batch_size, shuffle\n =False, sampler=sampler.SubsetRandomSampler(train_ind), pin_memory=True\n )\n model = cnn_type().to(device, non_blocking=True)\n optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)\n with torch.enable_grad():\n loss_train_log = []\n loss_val_log = []\n epoch_val_log = []\n for epoch in range(epochs):\n model.train()\n running_loss = 0.0\n for i, batch in enumerate(loader_train):\n x = batch[0].float().to(device, non_blocking=True)\n label = batch[1].float().to(device, non_blocking=True)\n optimizer.zero_grad()\n y = model(x)\n loss = loss_function(y, label)\n loss.backward()\n optimizer.step()\n running_loss += loss.detach()\n gc.collect()\n mean_epoch_loss = (running_loss / (batch_size * (i + 1))).item()\n if verbose:\n print('+Training - Epoch', epoch + 1, 'loss:', mean_epoch_loss)\n loss_train_log.append(mean_epoch_loss)\n if (epoch == epochs - 1 or epoch % val_interval == 0\n ) and val_loader is not None and plot:\n loss_val = 0\n model.eval()\n with torch.no_grad():\n for i, batch in enumerate(val_loader):\n x = batch[0].float().to(device, non_blocking=True)\n label = batch[1].float().to(device, non_blocking=True)\n y = model(x)\n loss_val += loss_function(y, label).detach()\n gc.collect()\n mean_epoch_val_loss = (loss_val / (batch_size * (i + 1))).item(\n )\n print('\\t+Validation - Epoch', epoch + 1, 'loss:',\n mean_epoch_val_loss)\n loss_val_log.append(mean_epoch_val_loss)\n epoch_val_log.append(epoch + 1)\n fig = None\n if plot:\n fig = plt.figure()\n plt.plot(range(1, epochs + 1), loss_train_log, c='r', label='train')\n if val_loader is not None:\n plt.plot(epoch_val_log, loss_val_log, c='b', label='val')\n plt.legend()\n plt.xlabel('epoch')\n plt.ylabel('loss')\n plt.xticks(np.arange(1, epochs + 1))\n plt.grid()\n plt.title('Loss curve over ' + str(epochs) +\n ' epochs of training - ' + plot_title)\n plt.tight_layout()\n plt.show()\n return model, fig\n\n\ndef evaluate_CNN(evaluated_model, test_set):\n labels_total = np.empty(0, dtype=int)\n preds_total = np.empty(0, dtype=int)\n instruments_acc = np.empty(0, dtype=str)\n evaluated_model.eval()\n with torch.no_grad():\n evaluated_model = evaluated_model.to(device, non_blocking=True)\n for batch in test_set:\n x = batch[0].float().to(device, non_blocking=True)\n label = batch[1].float().to(device, non_blocking=True)\n y = evaluated_model(x)\n pred = torch.round(y)\n labels_total = np.append(labels_total, label.cpu())\n preds_total = np.append(preds_total, pred.cpu())\n instruments_acc = np.append(instruments_acc, np.array(batch[2]))\n per_inst_scores = pd.DataFrame()\n for instrument in np.unique(instruments_acc):\n instrument_mask = np.nonzero(instruments_acc == instrument)\n instrument_scores = evaluate_scores(labels_total[instrument_mask],\n preds_total[instrument_mask])\n piano_class = 'Upright' if labels_total[instrument_mask][0\n ] else 'Grand'\n per_inst_scores = per_inst_scores.append(pd.DataFrame([[np.round(\n instrument_scores['Accuracy'], 2), piano_class]], index=pd.\n Index([instrument], name='Instrument'), columns=['Accuracy',\n 'Class']))\n overall_scores = evaluate_scores(labels_total, preds_total)\n return overall_scores, per_inst_scores\n\n\ndef cross_validate(cnn_type, hyparams, cross_val_subset, cv_folds=2,\n partition_mode=None, plot_train_curves=True, verbose=True):\n cv_dataset = TimbreDataset(cross_val_subset)\n total_scores = pd.DataFrame()\n if cv_folds == 2:\n set_1, set_2, _ = generate_split_indices(cross_val_subset,\n partition_ratios=[0.5, 0.5], mode=partition_mode)\n training_sets = [set_1, set_2]\n validation_sets = [set_2, set_1]\n elif cv_folds == 4:\n fold1, fold2, fold3, fold4, _ = generate_crossval_fold_indices(\n cross_val_subset, folds=cv_folds, seed=None, verbose=verbose)\n training_sets = [np.concatenate([fold2, fold3, fold4]), np.\n concatenate([fold3, fold4, fold1]), np.concatenate([fold4,\n fold1, fold2]), np.concatenate([fold1, fold2, fold3])]\n validation_sets = [fold1, fold2, fold3, fold4]\n elif cv_folds == 5:\n fold1, fold2, fold3, fold4, fold5 = generate_crossval_fold_indices(\n cross_val_subset, folds=cv_folds, seed=None, verbose=verbose)\n training_sets = [np.concatenate([fold2, fold3, fold4, fold5]), np.\n concatenate([fold3, fold4, fold5, fold1]), np.concatenate([\n fold4, fold5, fold1, fold2]), np.concatenate([fold5, fold1,\n fold2, fold3]), np.concatenate([fold1, fold2, fold3, fold4])]\n validation_sets = [fold1, fold2, fold3, fold4, fold5]\n else:\n raise Exception('CV mode ' + str(cv_folds) + ' not implemented')\n for fold, (train_fold_indices, val_fold_indices) in enumerate(zip(\n training_sets, validation_sets)):\n print('\\n----------------CV FOLD ' + str(fold + 1) +\n '-----------------')\n val_fold = DataLoader(cv_dataset, batch_size=evaluation_bs, shuffle\n =False, sampler=sampler.SubsetRandomSampler(val_fold_indices),\n pin_memory=True)\n model_fold, _ = train_model(cnn_type=cnn_type, params=hyparams,\n local_dataset=cv_dataset, train_ind=train_fold_indices,\n val_loader=val_fold, plot=plot_train_curves, plot_title=\n 'CV Fold ' + str(fold + 1), verbose=verbose)\n scores_fold, per_inst_scores_fold = evaluate_CNN(model_fold, val_fold)\n if verbose:\n print('\\n------Fold ' + str(fold + 1) +\n ' validation set scores--------')\n print(per_inst_scores_fold)\n display_scores(scores_fold, plot_conf=False)\n numeric_scores_fold = pd.DataFrame.from_dict({k: [v] for k, v in\n scores_fold.items() if k in ['Accuracy', 'F1', 'acc_grand',\n 'acc_upright', 'balanced_acc', 'min_class_acc']})\n numeric_scores_fold['no_samples'] = len(val_fold_indices)\n total_scores = total_scores.append(numeric_scores_fold)\n weighted_mean_acc = (total_scores.Accuracy * total_scores.no_samples).sum(\n ) / total_scores.no_samples.sum()\n weighted_mean_f1 = (total_scores.F1 * total_scores.no_samples).sum(\n ) / total_scores.no_samples.sum()\n weighted_mean_acc_grand = (total_scores.acc_grand * total_scores.no_samples\n ).sum() / total_scores.no_samples.sum()\n weighted_mean_acc_upright = (total_scores.acc_upright * total_scores.\n no_samples).sum() / total_scores.no_samples.sum()\n weighted_mean_bal_acc = (total_scores.balanced_acc * total_scores.\n no_samples).sum() / total_scores.no_samples.sum()\n weighted_mean_min_class_acc = (total_scores.min_class_acc *\n total_scores.no_samples).sum() / total_scores.no_samples.sum()\n weighted_std_acc = np.sqrt(np.cov(total_scores.Accuracy, fweights=\n total_scores.no_samples))\n weighted_std_f1 = np.sqrt(np.cov(total_scores.F1, fweights=total_scores\n .no_samples))\n weighted_std_acc_grand = np.sqrt(np.cov(total_scores.acc_grand,\n fweights=total_scores.no_samples))\n weighted_std_acc_upright = np.sqrt(np.cov(total_scores.acc_upright,\n fweights=total_scores.no_samples))\n weighted_std_bal_acc = np.sqrt(np.cov(total_scores.balanced_acc,\n fweights=total_scores.no_samples))\n weighted_std_min_class_acc = np.sqrt(np.cov(total_scores.min_class_acc,\n fweights=total_scores.no_samples))\n cv_scores_stats = pd.DataFrame({'mean': [weighted_mean_acc,\n weighted_mean_f1, weighted_mean_acc_grand,\n weighted_mean_acc_upright, weighted_mean_bal_acc,\n weighted_mean_min_class_acc], 'std': [weighted_std_acc,\n weighted_std_f1, weighted_std_acc_grand, weighted_std_acc_upright,\n weighted_std_bal_acc, weighted_std_min_class_acc]}, index=[\n 'Accuracy', 'F1', 'Grand class accuracy', 'Upright class accuracy',\n 'Balanced (macro-avg) accuracy', 'Min per-class accuracy'])\n return cv_scores_stats\n\n\ndef hyperparameter_search(cnn_type, training_dataset, batch_size_space,\n epochs_space, lr_space, loss_space=None):\n if loss_space is None:\n loss_space = [nn.BCELoss()]\n hyp_search_csv = os.path.join(result_dir, cnn_type.__name__,\n 'hyperparam_search.csv')\n with open(hyp_search_csv, 'a', newline='') as csvfile:\n writer = csv.writer(csvfile)\n writer.writerow(['----------New Hyperparameter search----------'])\n writer.writerow(['Batch size', 'Epochs', 'Learning rate',\n 'Loss function'])\n total_combinations = len(loss_space) * len(lr_space) * len(epochs_space\n ) * len(batch_size_space)\n best_score = 0\n best_params = None\n best_stats = None\n i = 0\n for epochs_local in epochs_space:\n for loss_function_local in loss_space:\n for batch_size_local in batch_size_space:\n for learning_rate_local in lr_space:\n i += 1\n print('\\n------ Hyperparameter search combination', i,\n 'of', total_combinations, '------')\n print('Model type:', cnn_type.__name__)\n hyperparams_local = {'batch_size': batch_size_local,\n 'epochs': epochs_local, 'learning_rate':\n learning_rate_local, 'loss_function':\n loss_function_local}\n print(hyperparams_local)\n cv_results = cross_validate(cnn_type=cnn_type, hyparams\n =hyperparams_local, cross_val_subset=\n training_dataset, cv_folds=4, partition_mode=\n 'segment-instruments-random-balanced',\n plot_train_curves=False, verbose=False)\n with open(hyp_search_csv, 'a', newline='') as csvfile:\n writer = csv.writer(csvfile)\n writer.writerow([batch_size_local, epochs_local,\n learning_rate_local, loss_function_local])\n cv_results.to_csv(hyp_search_csv, mode='a')\n min_class_acc_local = cv_results.loc[\n 'Min per-class accuracy', 'mean']\n bal_acc_local = cv_results.loc[\n 'Balanced (macro-avg) accuracy', 'mean']\n if (min_class_acc_local > best_score and bal_acc_local >\n 0.5):\n best_params = hyperparams_local\n best_score = min_class_acc_local\n best_stats = cv_results\n print('\\n------New best performing combination------')\n print(best_params)\n print('with stats:')\n print(best_stats.round(3))\n return best_params, best_score, best_stats\n\n\nif __name__ == '__main__':\n device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')\n print('Device:', device)\n if torch.cuda.is_available():\n print('GPU:', torch.cuda.get_device_name(0))\n print('\\n\\n----------------------LOADING DATA-----------------------')\n if (timbre_CNN_type == SingleNoteTimbreCNN or timbre_CNN_type ==\n SingleNoteTimbreCNNSmall):\n hyperparams = hyperparams_single\n loader = InstrumentLoader(data_dir, note_range=[48, 72],\n set_velocity=None, normalise_wavs=True, load_MIDIsampled=True)\n total_data = loader.preprocess(fmin=20, fmax=20000, n_mels=300,\n normalisation='statistics')\n elif timbre_CNN_type == MelodyTimbreCNN or timbre_CNN_type == MelodyTimbreCNNSmall:\n hyperparams = hyperparams_melody\n loader = MelodyInstrumentLoader(data_dir, note_range=[48, 72],\n set_velocity=None, normalise_wavs=True, load_MIDIsampled=True)\n total_data = loader.preprocess_melodies(midi_dir, normalisation=\n 'statistics')\n else:\n raise Exception(str(timbre_CNN_type) + \" doesn't exist\")\n data_seen = total_data[total_data.dataset == 'MIDIsampled']\n data_unseen = total_data[total_data.dataset != 'MIDIsampled']\n gc.collect()\n if perform_hyp_search:\n print('\\n\\n----------------HYPERPARAMETER SEARCH--------------------')\n batch_size_space = [64, 128, 256]\n epochs_space = [15, 20, 25]\n lr_space = [0.001, 0.002, 0.003]\n best_params, best_score, best_stats = hyperparameter_search(cnn_type\n =timbre_CNN_type, training_dataset=data_seen, batch_size_space=\n batch_size_space, epochs_space=epochs_space, lr_space=lr_space)\n print('\\n---------------Hyperparameter search results---------------')\n print('Model type:', timbre_CNN_type.__name__)\n print('Search space:')\n print('\\tBatch sizes:', batch_size_space)\n print('\\tEpochs:', epochs_space)\n print('\\tLearning rates:', lr_space)\n print('Best params', best_params)\n print('Best score', best_score)\n print('Best stats:')\n print(best_stats)\n if best_params is not None:\n hyperparams = best_params\n dataset_seen = TimbreDataset(data_seen)\n train_indices, val_indices, _ = generate_split_indices(data_seen,\n partition_ratios=[0.8, 0.2], mode='segment-instruments-manual')\n if perform_cross_val:\n print('\\n\\n---------------------CROSS-VALIDATION---------------------')\n cv_results = cross_validate(cnn_type=timbre_CNN_type, hyparams=\n hyperparams, cross_val_subset=data_seen, cv_folds=4,\n partition_mode='segment-instruments-random-balanced')\n print('\\n-------Overall cross-validation scores-------')\n print(cv_results.round(3))\n print('\\n\\n-------------------RE-TRAINED MODEL-----------------------')\n loader_val = DataLoader(dataset_seen, batch_size=evaluation_bs, shuffle\n =False, sampler=sampler.SubsetRandomSampler(val_indices),\n pin_memory=True)\n model_filename = 'model_' + str(hyperparams['batch_size']) + '_' + str(\n hyperparams['epochs']) + '_' + str(hyperparams['learning_rate']\n ) + model_name\n saved_model_path = os.path.join(model_dir, timbre_CNN_type.__name__, \n model_filename + '.pth')\n if not os.path.isfile(saved_model_path):\n print('\\nCreating and training new model')\n model, loss_plot = train_model(cnn_type=timbre_CNN_type, params=\n hyperparams, local_dataset=dataset_seen, train_ind=\n train_indices, val_loader=loader_val, plot_title='\\n' +\n timbre_CNN_type.__name__)\n torch.save(model, saved_model_path)\n print('Saved trained model to', saved_model_path)\n loss_plot.savefig(os.path.join(model_dir, timbre_CNN_type.__name__,\n model_filename + '.svg'))\n else:\n print('\\nLoading pre-trained model from', saved_model_path)\n model = torch.load(saved_model_path)\n print(model)\n model.count_parameters()\n print('\\n\\n--------------Evaluation on the unseen set---------------')\n dataset_unseen = TimbreDataset(data_unseen)\n loader_unseen = DataLoader(dataset_unseen, batch_size=evaluation_bs,\n shuffle=False, pin_memory=True)\n scores_unseen, per_inst_scores_unseen = evaluate_CNN(model, loader_unseen)\n print('---------Per-instrument scores---------')\n print(per_inst_scores_unseen)\n per_inst_scores_unseen.to_csv(os.path.join(result_dir, timbre_CNN_type.\n __name__, model_filename + '.csv'), mode='a')\n print('--------Overall unseen set performance--------')\n display_scores(scores_unseen, 'Unseen test set\\n' + timbre_CNN_type.\n __name__)\n", "<import token>\nresult_dir = 'results'\nmodel_dir = 'models'\nmodel_name = '_retrained'\nval_interval = 5\nperform_hyp_search = False\nperform_cross_val = False\nevaluation_bs = 256\ntimbre_CNN_type = SingleNoteTimbreCNNSmall\nhyperparams_single = {'batch_size': 64, 'epochs': 20, 'learning_rate': \n 0.002, 'loss_function': nn.BCELoss()}\nhyperparams_melody = {'batch_size': 128, 'epochs': 25, 'learning_rate': \n 0.003, 'loss_function': nn.BCELoss()}\n\n\ndef generate_split_indices(data, partition_ratios=None, mode='mixed', seed=None\n ):\n if partition_ratios is None:\n partition_ratios = [0.8, 0.1]\n rng = np.random.default_rng(seed=seed)\n if mode == 'segment-instruments-random':\n instruments = data.instrument.unique()\n rng.shuffle(instruments)\n i = 0\n indices_train = []\n indices_val = []\n indices_test = []\n no_more_instruments = False\n next_instrument_indices = np.asarray(data.instrument == instruments[i]\n ).nonzero()[0]\n while (len(indices_train) + len(next_instrument_indices)) / len(data\n ) <= partition_ratios[0]:\n indices_train = np.append(indices_train, next_instrument_indices)\n i += 1\n if i >= len(instruments):\n no_more_instruments = True\n break\n next_instrument_indices = np.asarray(data.instrument ==\n instruments[i]).nonzero()[0]\n while (len(indices_train) + len(indices_val) + len(\n next_instrument_indices)) / len(data) <= partition_ratios[0\n ] + partition_ratios[1] and not no_more_instruments:\n indices_val = np.append(indices_val, next_instrument_indices)\n i += 1\n if i >= len(instruments):\n break\n next_instrument_indices = np.asarray(data.instrument ==\n instruments[i]).nonzero()[0]\n for j in range(i, len(instruments)):\n indices_test = np.append(indices_test, np.asarray(data.\n instrument == instruments[j]).nonzero()[0])\n np.random.shuffle(indices_train)\n np.random.shuffle(indices_val)\n np.random.shuffle(indices_test)\n elif mode == 'segment-instruments-random-balanced':\n instruments_grand = data[data.label == 0].instrument.unique()\n instruments_upright = data[data.label == 1].instrument.unique()\n rng.shuffle(instruments_grand)\n rng.shuffle(instruments_upright)\n num_train_instruments = np.round(partition_ratios[0] * len(data.\n instrument.unique()))\n num_val_instruments = np.round(partition_ratios[1] * len(data.\n instrument.unique()))\n indices_train = []\n indices_val = []\n indices_test = []\n i_grand = 0\n i_upright = 0\n for i in range(0, len(data.instrument.unique())):\n if i % 2 and i_upright < len(instruments_upright):\n next_instrument_indices = np.asarray(data.instrument ==\n instruments_upright[i_upright]).nonzero()[0]\n i_upright += 1\n elif i_grand < len(instruments_grand):\n next_instrument_indices = np.asarray(data.instrument ==\n instruments_grand[i_grand]).nonzero()[0]\n i_grand += 1\n else:\n break\n if i < num_train_instruments:\n indices_train = np.append(indices_train,\n next_instrument_indices)\n elif i < num_train_instruments + num_val_instruments:\n indices_val = np.append(indices_val, next_instrument_indices)\n else:\n indices_test = np.append(indices_test, next_instrument_indices)\n if np.sum(partition_ratios) == 1:\n indices_val = np.append(indices_val, indices_test)\n indices_test = []\n np.random.shuffle(indices_train)\n np.random.shuffle(indices_val)\n np.random.shuffle(indices_test)\n elif mode == 'segment-instruments-manual':\n train_instruments = ['Nord_BrightGrand-XL', 'Nord_AmberUpright-XL',\n 'Nord_ConcertGrand1-Lrg', 'Nord_BabyUpright-XL',\n 'Nord_GrandImperial-XL', 'Nord_BlackUpright-Lrg',\n 'Nord_RoyalGrand3D-XL', 'Nord_MellowUpright-XL',\n 'Nord_StudioGrand1-Lrg', 'Nord_RainPiano-Lrg',\n 'Nord_WhiteGrand-XL', 'Nord_RomanticUpright-Lrg',\n 'Nord_VelvetGrand-XL', 'Nord_GrandUpright-XL',\n 'Nord_StudioGrand2-Lrg', 'Nord_SaloonUpright-Lrg',\n 'Nord_ItalianGrand-XL', 'Nord_BlueSwede-Lrg']\n val_instruments = ['Nord_ConcertGrand1Amb-Lrg',\n 'Nord_BambinoUpright-XL', 'Nord_GrandLadyD-Lrg',\n 'Nord_QueenUpright-Lrg', 'Nord_SilverGrand-XL']\n test_instruments = []\n indices_train = np.asarray(data.instrument.isin(train_instruments)\n ).nonzero()[0]\n indices_val = np.asarray(data.instrument.isin(val_instruments)\n ).nonzero()[0]\n indices_test = np.asarray(data.instrument.isin(test_instruments)\n ).nonzero()[0]\n np.random.shuffle(indices_train)\n np.random.shuffle(indices_val)\n np.random.shuffle(indices_test)\n elif mode == 'segment-velocities':\n indices_train = np.asarray(data.velocity == 'M').nonzero()[0]\n indices_val = np.asarray(data.velocity == 'P').nonzero()[0]\n indices_test = np.asarray(data.velocity == 'F').nonzero()[0]\n np.random.shuffle(indices_train)\n np.random.shuffle(indices_val)\n np.random.shuffle(indices_test)\n elif mode == 'mixed':\n indices = np.arange(len(data))\n rng.shuffle(indices)\n split_point_train = int(len(data) * partition_ratios[0])\n split_point_val = split_point_train + int(len(data) *\n partition_ratios[1])\n indices_train = indices[:split_point_train]\n indices_val = indices[split_point_train:split_point_val]\n indices_test = indices[split_point_val:]\n else:\n raise Exception('Mode not recognised')\n print('')\n indices_train = indices_train.astype(int)\n indices_val = indices_val.astype(int)\n print(len(indices_train), 'training samples')\n print(len(indices_val), 'validation samples')\n print(len(indices_test), 'test samples')\n train_class_balance = data.iloc[indices_train].label.sum(axis=0) / len(\n indices_train)\n print('Train set contains', np.round(train_class_balance * 100),\n '% Upright pianos')\n if mode == 'segment_instruments':\n print('\\t', pd.unique(data.iloc[indices_train].instrument))\n val_class_balance = data.iloc[indices_val].label.sum(axis=0) / len(\n indices_val)\n print('Validation set contains', np.round(val_class_balance * 100),\n '% Upright pianos')\n if mode == 'segment_instruments':\n print('\\t', pd.unique(data.iloc[indices_val].instrument))\n if len(indices_test) == 0:\n indices_test = np.array([])\n indices_test = indices_test.astype(int)\n else:\n indices_test = indices_test.astype(int)\n test_class_balance = data.iloc[indices_test].label.sum(axis=0) / len(\n indices_test)\n print('Test set contains', np.round(test_class_balance * 100),\n '% Upright pianos')\n if mode == 'segment_instruments':\n print('\\t', pd.unique(data.iloc[indices_test].instrument))\n print('Overall, dataset contains', np.round(100 * data.label.sum(axis=0\n ) / len(data)), '% Upright pianos')\n return indices_train, indices_val, indices_test\n\n\ndef generate_crossval_fold_indices(data, seed=None, folds=5, verbose=True):\n rng = np.random.default_rng(seed=seed)\n instruments_grand = data[data.label == 0].instrument.unique()\n instruments_upright = data[data.label == 1].instrument.unique()\n rng.shuffle(instruments_grand)\n rng.shuffle(instruments_upright)\n num_instruments_fold1 = np.round(len(data.instrument.unique()) / folds)\n num_instruments_fold2 = np.round(len(data.instrument.unique()) / folds)\n num_instruments_fold3 = np.round(len(data.instrument.unique()) / folds)\n num_instruments_fold4 = np.round(len(data.instrument.unique()) / folds)\n indices_fold1 = []\n indices_fold2 = []\n indices_fold3 = []\n indices_fold4 = []\n indices_fold5 = []\n i_grand = 0\n i_upright = 0\n if folds == 5:\n for i in range(0, len(data.instrument.unique())):\n if i % 2 and i_upright < len(instruments_upright):\n next_instrument_indices = np.asarray(data.instrument ==\n instruments_upright[i_upright]).nonzero()[0]\n i_upright += 1\n elif i_grand < len(instruments_grand):\n next_instrument_indices = np.asarray(data.instrument ==\n instruments_grand[i_grand]).nonzero()[0]\n i_grand += 1\n else:\n break\n if i < num_instruments_fold1:\n indices_fold1 = np.append(indices_fold1,\n next_instrument_indices).astype(int)\n elif i < num_instruments_fold1 + num_instruments_fold2:\n indices_fold2 = np.append(indices_fold2,\n next_instrument_indices).astype(int)\n elif i < num_instruments_fold1 + num_instruments_fold2 + num_instruments_fold3:\n indices_fold3 = np.append(indices_fold3,\n next_instrument_indices).astype(int)\n elif i < num_instruments_fold1 + num_instruments_fold2 + num_instruments_fold3 + num_instruments_fold4:\n indices_fold4 = np.append(indices_fold4,\n next_instrument_indices).astype(int)\n else:\n indices_fold5 = np.append(indices_fold5,\n next_instrument_indices).astype(int)\n elif folds == 4:\n for i in range(0, len(data.instrument.unique())):\n if i % 2 and i_upright < len(instruments_upright):\n next_instrument_indices = np.asarray(data.instrument ==\n instruments_upright[i_upright]).nonzero()[0]\n i_upright += 1\n elif i_grand < len(instruments_grand):\n next_instrument_indices = np.asarray(data.instrument ==\n instruments_grand[i_grand]).nonzero()[0]\n i_grand += 1\n else:\n break\n if i < num_instruments_fold1:\n indices_fold1 = np.append(indices_fold1,\n next_instrument_indices).astype(int)\n elif i < num_instruments_fold1 + num_instruments_fold2:\n indices_fold2 = np.append(indices_fold2,\n next_instrument_indices).astype(int)\n elif i < num_instruments_fold1 + num_instruments_fold2 + num_instruments_fold3:\n indices_fold3 = np.append(indices_fold3,\n next_instrument_indices).astype(int)\n else:\n indices_fold4 = np.append(indices_fold4,\n next_instrument_indices).astype(int)\n np.random.shuffle(indices_fold1)\n np.random.shuffle(indices_fold2)\n np.random.shuffle(indices_fold3)\n np.random.shuffle(indices_fold4)\n np.random.shuffle(indices_fold5)\n if verbose:\n print(len(indices_fold1), 'samples in fold 1')\n print('\\t', pd.unique(data.iloc[indices_fold1].instrument))\n print(len(indices_fold2), 'samples in fold 2')\n print('\\t', pd.unique(data.iloc[indices_fold2].instrument))\n print(len(indices_fold3), 'samples in fold 3')\n print('\\t', pd.unique(data.iloc[indices_fold3].instrument))\n print(len(indices_fold4), 'samples in fold 4')\n print('\\t', pd.unique(data.iloc[indices_fold4].instrument))\n if folds == 5:\n print(len(indices_fold5), 'samples in fold 5')\n print('\\t', pd.unique(data.iloc[indices_fold5].instrument))\n return (indices_fold1, indices_fold2, indices_fold3, indices_fold4,\n indices_fold5)\n\n\ndef train_model(cnn_type, params, local_dataset, train_ind, val_loader=None,\n plot=True, plot_title='', verbose=True):\n if verbose:\n print('\\n--------------TRAINING MODEL--------------')\n print(timbre_CNN_type.__name__, 'with parameters:')\n print(params)\n batch_size = params['batch_size']\n epochs = params['epochs']\n learning_rate = params['learning_rate']\n loss_function = params['loss_function']\n loader_train = DataLoader(local_dataset, batch_size=batch_size, shuffle\n =False, sampler=sampler.SubsetRandomSampler(train_ind), pin_memory=True\n )\n model = cnn_type().to(device, non_blocking=True)\n optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)\n with torch.enable_grad():\n loss_train_log = []\n loss_val_log = []\n epoch_val_log = []\n for epoch in range(epochs):\n model.train()\n running_loss = 0.0\n for i, batch in enumerate(loader_train):\n x = batch[0].float().to(device, non_blocking=True)\n label = batch[1].float().to(device, non_blocking=True)\n optimizer.zero_grad()\n y = model(x)\n loss = loss_function(y, label)\n loss.backward()\n optimizer.step()\n running_loss += loss.detach()\n gc.collect()\n mean_epoch_loss = (running_loss / (batch_size * (i + 1))).item()\n if verbose:\n print('+Training - Epoch', epoch + 1, 'loss:', mean_epoch_loss)\n loss_train_log.append(mean_epoch_loss)\n if (epoch == epochs - 1 or epoch % val_interval == 0\n ) and val_loader is not None and plot:\n loss_val = 0\n model.eval()\n with torch.no_grad():\n for i, batch in enumerate(val_loader):\n x = batch[0].float().to(device, non_blocking=True)\n label = batch[1].float().to(device, non_blocking=True)\n y = model(x)\n loss_val += loss_function(y, label).detach()\n gc.collect()\n mean_epoch_val_loss = (loss_val / (batch_size * (i + 1))).item(\n )\n print('\\t+Validation - Epoch', epoch + 1, 'loss:',\n mean_epoch_val_loss)\n loss_val_log.append(mean_epoch_val_loss)\n epoch_val_log.append(epoch + 1)\n fig = None\n if plot:\n fig = plt.figure()\n plt.plot(range(1, epochs + 1), loss_train_log, c='r', label='train')\n if val_loader is not None:\n plt.plot(epoch_val_log, loss_val_log, c='b', label='val')\n plt.legend()\n plt.xlabel('epoch')\n plt.ylabel('loss')\n plt.xticks(np.arange(1, epochs + 1))\n plt.grid()\n plt.title('Loss curve over ' + str(epochs) +\n ' epochs of training - ' + plot_title)\n plt.tight_layout()\n plt.show()\n return model, fig\n\n\ndef evaluate_CNN(evaluated_model, test_set):\n labels_total = np.empty(0, dtype=int)\n preds_total = np.empty(0, dtype=int)\n instruments_acc = np.empty(0, dtype=str)\n evaluated_model.eval()\n with torch.no_grad():\n evaluated_model = evaluated_model.to(device, non_blocking=True)\n for batch in test_set:\n x = batch[0].float().to(device, non_blocking=True)\n label = batch[1].float().to(device, non_blocking=True)\n y = evaluated_model(x)\n pred = torch.round(y)\n labels_total = np.append(labels_total, label.cpu())\n preds_total = np.append(preds_total, pred.cpu())\n instruments_acc = np.append(instruments_acc, np.array(batch[2]))\n per_inst_scores = pd.DataFrame()\n for instrument in np.unique(instruments_acc):\n instrument_mask = np.nonzero(instruments_acc == instrument)\n instrument_scores = evaluate_scores(labels_total[instrument_mask],\n preds_total[instrument_mask])\n piano_class = 'Upright' if labels_total[instrument_mask][0\n ] else 'Grand'\n per_inst_scores = per_inst_scores.append(pd.DataFrame([[np.round(\n instrument_scores['Accuracy'], 2), piano_class]], index=pd.\n Index([instrument], name='Instrument'), columns=['Accuracy',\n 'Class']))\n overall_scores = evaluate_scores(labels_total, preds_total)\n return overall_scores, per_inst_scores\n\n\ndef cross_validate(cnn_type, hyparams, cross_val_subset, cv_folds=2,\n partition_mode=None, plot_train_curves=True, verbose=True):\n cv_dataset = TimbreDataset(cross_val_subset)\n total_scores = pd.DataFrame()\n if cv_folds == 2:\n set_1, set_2, _ = generate_split_indices(cross_val_subset,\n partition_ratios=[0.5, 0.5], mode=partition_mode)\n training_sets = [set_1, set_2]\n validation_sets = [set_2, set_1]\n elif cv_folds == 4:\n fold1, fold2, fold3, fold4, _ = generate_crossval_fold_indices(\n cross_val_subset, folds=cv_folds, seed=None, verbose=verbose)\n training_sets = [np.concatenate([fold2, fold3, fold4]), np.\n concatenate([fold3, fold4, fold1]), np.concatenate([fold4,\n fold1, fold2]), np.concatenate([fold1, fold2, fold3])]\n validation_sets = [fold1, fold2, fold3, fold4]\n elif cv_folds == 5:\n fold1, fold2, fold3, fold4, fold5 = generate_crossval_fold_indices(\n cross_val_subset, folds=cv_folds, seed=None, verbose=verbose)\n training_sets = [np.concatenate([fold2, fold3, fold4, fold5]), np.\n concatenate([fold3, fold4, fold5, fold1]), np.concatenate([\n fold4, fold5, fold1, fold2]), np.concatenate([fold5, fold1,\n fold2, fold3]), np.concatenate([fold1, fold2, fold3, fold4])]\n validation_sets = [fold1, fold2, fold3, fold4, fold5]\n else:\n raise Exception('CV mode ' + str(cv_folds) + ' not implemented')\n for fold, (train_fold_indices, val_fold_indices) in enumerate(zip(\n training_sets, validation_sets)):\n print('\\n----------------CV FOLD ' + str(fold + 1) +\n '-----------------')\n val_fold = DataLoader(cv_dataset, batch_size=evaluation_bs, shuffle\n =False, sampler=sampler.SubsetRandomSampler(val_fold_indices),\n pin_memory=True)\n model_fold, _ = train_model(cnn_type=cnn_type, params=hyparams,\n local_dataset=cv_dataset, train_ind=train_fold_indices,\n val_loader=val_fold, plot=plot_train_curves, plot_title=\n 'CV Fold ' + str(fold + 1), verbose=verbose)\n scores_fold, per_inst_scores_fold = evaluate_CNN(model_fold, val_fold)\n if verbose:\n print('\\n------Fold ' + str(fold + 1) +\n ' validation set scores--------')\n print(per_inst_scores_fold)\n display_scores(scores_fold, plot_conf=False)\n numeric_scores_fold = pd.DataFrame.from_dict({k: [v] for k, v in\n scores_fold.items() if k in ['Accuracy', 'F1', 'acc_grand',\n 'acc_upright', 'balanced_acc', 'min_class_acc']})\n numeric_scores_fold['no_samples'] = len(val_fold_indices)\n total_scores = total_scores.append(numeric_scores_fold)\n weighted_mean_acc = (total_scores.Accuracy * total_scores.no_samples).sum(\n ) / total_scores.no_samples.sum()\n weighted_mean_f1 = (total_scores.F1 * total_scores.no_samples).sum(\n ) / total_scores.no_samples.sum()\n weighted_mean_acc_grand = (total_scores.acc_grand * total_scores.no_samples\n ).sum() / total_scores.no_samples.sum()\n weighted_mean_acc_upright = (total_scores.acc_upright * total_scores.\n no_samples).sum() / total_scores.no_samples.sum()\n weighted_mean_bal_acc = (total_scores.balanced_acc * total_scores.\n no_samples).sum() / total_scores.no_samples.sum()\n weighted_mean_min_class_acc = (total_scores.min_class_acc *\n total_scores.no_samples).sum() / total_scores.no_samples.sum()\n weighted_std_acc = np.sqrt(np.cov(total_scores.Accuracy, fweights=\n total_scores.no_samples))\n weighted_std_f1 = np.sqrt(np.cov(total_scores.F1, fweights=total_scores\n .no_samples))\n weighted_std_acc_grand = np.sqrt(np.cov(total_scores.acc_grand,\n fweights=total_scores.no_samples))\n weighted_std_acc_upright = np.sqrt(np.cov(total_scores.acc_upright,\n fweights=total_scores.no_samples))\n weighted_std_bal_acc = np.sqrt(np.cov(total_scores.balanced_acc,\n fweights=total_scores.no_samples))\n weighted_std_min_class_acc = np.sqrt(np.cov(total_scores.min_class_acc,\n fweights=total_scores.no_samples))\n cv_scores_stats = pd.DataFrame({'mean': [weighted_mean_acc,\n weighted_mean_f1, weighted_mean_acc_grand,\n weighted_mean_acc_upright, weighted_mean_bal_acc,\n weighted_mean_min_class_acc], 'std': [weighted_std_acc,\n weighted_std_f1, weighted_std_acc_grand, weighted_std_acc_upright,\n weighted_std_bal_acc, weighted_std_min_class_acc]}, index=[\n 'Accuracy', 'F1', 'Grand class accuracy', 'Upright class accuracy',\n 'Balanced (macro-avg) accuracy', 'Min per-class accuracy'])\n return cv_scores_stats\n\n\ndef hyperparameter_search(cnn_type, training_dataset, batch_size_space,\n epochs_space, lr_space, loss_space=None):\n if loss_space is None:\n loss_space = [nn.BCELoss()]\n hyp_search_csv = os.path.join(result_dir, cnn_type.__name__,\n 'hyperparam_search.csv')\n with open(hyp_search_csv, 'a', newline='') as csvfile:\n writer = csv.writer(csvfile)\n writer.writerow(['----------New Hyperparameter search----------'])\n writer.writerow(['Batch size', 'Epochs', 'Learning rate',\n 'Loss function'])\n total_combinations = len(loss_space) * len(lr_space) * len(epochs_space\n ) * len(batch_size_space)\n best_score = 0\n best_params = None\n best_stats = None\n i = 0\n for epochs_local in epochs_space:\n for loss_function_local in loss_space:\n for batch_size_local in batch_size_space:\n for learning_rate_local in lr_space:\n i += 1\n print('\\n------ Hyperparameter search combination', i,\n 'of', total_combinations, '------')\n print('Model type:', cnn_type.__name__)\n hyperparams_local = {'batch_size': batch_size_local,\n 'epochs': epochs_local, 'learning_rate':\n learning_rate_local, 'loss_function':\n loss_function_local}\n print(hyperparams_local)\n cv_results = cross_validate(cnn_type=cnn_type, hyparams\n =hyperparams_local, cross_val_subset=\n training_dataset, cv_folds=4, partition_mode=\n 'segment-instruments-random-balanced',\n plot_train_curves=False, verbose=False)\n with open(hyp_search_csv, 'a', newline='') as csvfile:\n writer = csv.writer(csvfile)\n writer.writerow([batch_size_local, epochs_local,\n learning_rate_local, loss_function_local])\n cv_results.to_csv(hyp_search_csv, mode='a')\n min_class_acc_local = cv_results.loc[\n 'Min per-class accuracy', 'mean']\n bal_acc_local = cv_results.loc[\n 'Balanced (macro-avg) accuracy', 'mean']\n if (min_class_acc_local > best_score and bal_acc_local >\n 0.5):\n best_params = hyperparams_local\n best_score = min_class_acc_local\n best_stats = cv_results\n print('\\n------New best performing combination------')\n print(best_params)\n print('with stats:')\n print(best_stats.round(3))\n return best_params, best_score, best_stats\n\n\nif __name__ == '__main__':\n device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')\n print('Device:', device)\n if torch.cuda.is_available():\n print('GPU:', torch.cuda.get_device_name(0))\n print('\\n\\n----------------------LOADING DATA-----------------------')\n if (timbre_CNN_type == SingleNoteTimbreCNN or timbre_CNN_type ==\n SingleNoteTimbreCNNSmall):\n hyperparams = hyperparams_single\n loader = InstrumentLoader(data_dir, note_range=[48, 72],\n set_velocity=None, normalise_wavs=True, load_MIDIsampled=True)\n total_data = loader.preprocess(fmin=20, fmax=20000, n_mels=300,\n normalisation='statistics')\n elif timbre_CNN_type == MelodyTimbreCNN or timbre_CNN_type == MelodyTimbreCNNSmall:\n hyperparams = hyperparams_melody\n loader = MelodyInstrumentLoader(data_dir, note_range=[48, 72],\n set_velocity=None, normalise_wavs=True, load_MIDIsampled=True)\n total_data = loader.preprocess_melodies(midi_dir, normalisation=\n 'statistics')\n else:\n raise Exception(str(timbre_CNN_type) + \" doesn't exist\")\n data_seen = total_data[total_data.dataset == 'MIDIsampled']\n data_unseen = total_data[total_data.dataset != 'MIDIsampled']\n gc.collect()\n if perform_hyp_search:\n print('\\n\\n----------------HYPERPARAMETER SEARCH--------------------')\n batch_size_space = [64, 128, 256]\n epochs_space = [15, 20, 25]\n lr_space = [0.001, 0.002, 0.003]\n best_params, best_score, best_stats = hyperparameter_search(cnn_type\n =timbre_CNN_type, training_dataset=data_seen, batch_size_space=\n batch_size_space, epochs_space=epochs_space, lr_space=lr_space)\n print('\\n---------------Hyperparameter search results---------------')\n print('Model type:', timbre_CNN_type.__name__)\n print('Search space:')\n print('\\tBatch sizes:', batch_size_space)\n print('\\tEpochs:', epochs_space)\n print('\\tLearning rates:', lr_space)\n print('Best params', best_params)\n print('Best score', best_score)\n print('Best stats:')\n print(best_stats)\n if best_params is not None:\n hyperparams = best_params\n dataset_seen = TimbreDataset(data_seen)\n train_indices, val_indices, _ = generate_split_indices(data_seen,\n partition_ratios=[0.8, 0.2], mode='segment-instruments-manual')\n if perform_cross_val:\n print('\\n\\n---------------------CROSS-VALIDATION---------------------')\n cv_results = cross_validate(cnn_type=timbre_CNN_type, hyparams=\n hyperparams, cross_val_subset=data_seen, cv_folds=4,\n partition_mode='segment-instruments-random-balanced')\n print('\\n-------Overall cross-validation scores-------')\n print(cv_results.round(3))\n print('\\n\\n-------------------RE-TRAINED MODEL-----------------------')\n loader_val = DataLoader(dataset_seen, batch_size=evaluation_bs, shuffle\n =False, sampler=sampler.SubsetRandomSampler(val_indices),\n pin_memory=True)\n model_filename = 'model_' + str(hyperparams['batch_size']) + '_' + str(\n hyperparams['epochs']) + '_' + str(hyperparams['learning_rate']\n ) + model_name\n saved_model_path = os.path.join(model_dir, timbre_CNN_type.__name__, \n model_filename + '.pth')\n if not os.path.isfile(saved_model_path):\n print('\\nCreating and training new model')\n model, loss_plot = train_model(cnn_type=timbre_CNN_type, params=\n hyperparams, local_dataset=dataset_seen, train_ind=\n train_indices, val_loader=loader_val, plot_title='\\n' +\n timbre_CNN_type.__name__)\n torch.save(model, saved_model_path)\n print('Saved trained model to', saved_model_path)\n loss_plot.savefig(os.path.join(model_dir, timbre_CNN_type.__name__,\n model_filename + '.svg'))\n else:\n print('\\nLoading pre-trained model from', saved_model_path)\n model = torch.load(saved_model_path)\n print(model)\n model.count_parameters()\n print('\\n\\n--------------Evaluation on the unseen set---------------')\n dataset_unseen = TimbreDataset(data_unseen)\n loader_unseen = DataLoader(dataset_unseen, batch_size=evaluation_bs,\n shuffle=False, pin_memory=True)\n scores_unseen, per_inst_scores_unseen = evaluate_CNN(model, loader_unseen)\n print('---------Per-instrument scores---------')\n print(per_inst_scores_unseen)\n per_inst_scores_unseen.to_csv(os.path.join(result_dir, timbre_CNN_type.\n __name__, model_filename + '.csv'), mode='a')\n print('--------Overall unseen set performance--------')\n display_scores(scores_unseen, 'Unseen test set\\n' + timbre_CNN_type.\n __name__)\n", "<import token>\n<assignment token>\n\n\ndef generate_split_indices(data, partition_ratios=None, mode='mixed', seed=None\n ):\n if partition_ratios is None:\n partition_ratios = [0.8, 0.1]\n rng = np.random.default_rng(seed=seed)\n if mode == 'segment-instruments-random':\n instruments = data.instrument.unique()\n rng.shuffle(instruments)\n i = 0\n indices_train = []\n indices_val = []\n indices_test = []\n no_more_instruments = False\n next_instrument_indices = np.asarray(data.instrument == instruments[i]\n ).nonzero()[0]\n while (len(indices_train) + len(next_instrument_indices)) / len(data\n ) <= partition_ratios[0]:\n indices_train = np.append(indices_train, next_instrument_indices)\n i += 1\n if i >= len(instruments):\n no_more_instruments = True\n break\n next_instrument_indices = np.asarray(data.instrument ==\n instruments[i]).nonzero()[0]\n while (len(indices_train) + len(indices_val) + len(\n next_instrument_indices)) / len(data) <= partition_ratios[0\n ] + partition_ratios[1] and not no_more_instruments:\n indices_val = np.append(indices_val, next_instrument_indices)\n i += 1\n if i >= len(instruments):\n break\n next_instrument_indices = np.asarray(data.instrument ==\n instruments[i]).nonzero()[0]\n for j in range(i, len(instruments)):\n indices_test = np.append(indices_test, np.asarray(data.\n instrument == instruments[j]).nonzero()[0])\n np.random.shuffle(indices_train)\n np.random.shuffle(indices_val)\n np.random.shuffle(indices_test)\n elif mode == 'segment-instruments-random-balanced':\n instruments_grand = data[data.label == 0].instrument.unique()\n instruments_upright = data[data.label == 1].instrument.unique()\n rng.shuffle(instruments_grand)\n rng.shuffle(instruments_upright)\n num_train_instruments = np.round(partition_ratios[0] * len(data.\n instrument.unique()))\n num_val_instruments = np.round(partition_ratios[1] * len(data.\n instrument.unique()))\n indices_train = []\n indices_val = []\n indices_test = []\n i_grand = 0\n i_upright = 0\n for i in range(0, len(data.instrument.unique())):\n if i % 2 and i_upright < len(instruments_upright):\n next_instrument_indices = np.asarray(data.instrument ==\n instruments_upright[i_upright]).nonzero()[0]\n i_upright += 1\n elif i_grand < len(instruments_grand):\n next_instrument_indices = np.asarray(data.instrument ==\n instruments_grand[i_grand]).nonzero()[0]\n i_grand += 1\n else:\n break\n if i < num_train_instruments:\n indices_train = np.append(indices_train,\n next_instrument_indices)\n elif i < num_train_instruments + num_val_instruments:\n indices_val = np.append(indices_val, next_instrument_indices)\n else:\n indices_test = np.append(indices_test, next_instrument_indices)\n if np.sum(partition_ratios) == 1:\n indices_val = np.append(indices_val, indices_test)\n indices_test = []\n np.random.shuffle(indices_train)\n np.random.shuffle(indices_val)\n np.random.shuffle(indices_test)\n elif mode == 'segment-instruments-manual':\n train_instruments = ['Nord_BrightGrand-XL', 'Nord_AmberUpright-XL',\n 'Nord_ConcertGrand1-Lrg', 'Nord_BabyUpright-XL',\n 'Nord_GrandImperial-XL', 'Nord_BlackUpright-Lrg',\n 'Nord_RoyalGrand3D-XL', 'Nord_MellowUpright-XL',\n 'Nord_StudioGrand1-Lrg', 'Nord_RainPiano-Lrg',\n 'Nord_WhiteGrand-XL', 'Nord_RomanticUpright-Lrg',\n 'Nord_VelvetGrand-XL', 'Nord_GrandUpright-XL',\n 'Nord_StudioGrand2-Lrg', 'Nord_SaloonUpright-Lrg',\n 'Nord_ItalianGrand-XL', 'Nord_BlueSwede-Lrg']\n val_instruments = ['Nord_ConcertGrand1Amb-Lrg',\n 'Nord_BambinoUpright-XL', 'Nord_GrandLadyD-Lrg',\n 'Nord_QueenUpright-Lrg', 'Nord_SilverGrand-XL']\n test_instruments = []\n indices_train = np.asarray(data.instrument.isin(train_instruments)\n ).nonzero()[0]\n indices_val = np.asarray(data.instrument.isin(val_instruments)\n ).nonzero()[0]\n indices_test = np.asarray(data.instrument.isin(test_instruments)\n ).nonzero()[0]\n np.random.shuffle(indices_train)\n np.random.shuffle(indices_val)\n np.random.shuffle(indices_test)\n elif mode == 'segment-velocities':\n indices_train = np.asarray(data.velocity == 'M').nonzero()[0]\n indices_val = np.asarray(data.velocity == 'P').nonzero()[0]\n indices_test = np.asarray(data.velocity == 'F').nonzero()[0]\n np.random.shuffle(indices_train)\n np.random.shuffle(indices_val)\n np.random.shuffle(indices_test)\n elif mode == 'mixed':\n indices = np.arange(len(data))\n rng.shuffle(indices)\n split_point_train = int(len(data) * partition_ratios[0])\n split_point_val = split_point_train + int(len(data) *\n partition_ratios[1])\n indices_train = indices[:split_point_train]\n indices_val = indices[split_point_train:split_point_val]\n indices_test = indices[split_point_val:]\n else:\n raise Exception('Mode not recognised')\n print('')\n indices_train = indices_train.astype(int)\n indices_val = indices_val.astype(int)\n print(len(indices_train), 'training samples')\n print(len(indices_val), 'validation samples')\n print(len(indices_test), 'test samples')\n train_class_balance = data.iloc[indices_train].label.sum(axis=0) / len(\n indices_train)\n print('Train set contains', np.round(train_class_balance * 100),\n '% Upright pianos')\n if mode == 'segment_instruments':\n print('\\t', pd.unique(data.iloc[indices_train].instrument))\n val_class_balance = data.iloc[indices_val].label.sum(axis=0) / len(\n indices_val)\n print('Validation set contains', np.round(val_class_balance * 100),\n '% Upright pianos')\n if mode == 'segment_instruments':\n print('\\t', pd.unique(data.iloc[indices_val].instrument))\n if len(indices_test) == 0:\n indices_test = np.array([])\n indices_test = indices_test.astype(int)\n else:\n indices_test = indices_test.astype(int)\n test_class_balance = data.iloc[indices_test].label.sum(axis=0) / len(\n indices_test)\n print('Test set contains', np.round(test_class_balance * 100),\n '% Upright pianos')\n if mode == 'segment_instruments':\n print('\\t', pd.unique(data.iloc[indices_test].instrument))\n print('Overall, dataset contains', np.round(100 * data.label.sum(axis=0\n ) / len(data)), '% Upright pianos')\n return indices_train, indices_val, indices_test\n\n\ndef generate_crossval_fold_indices(data, seed=None, folds=5, verbose=True):\n rng = np.random.default_rng(seed=seed)\n instruments_grand = data[data.label == 0].instrument.unique()\n instruments_upright = data[data.label == 1].instrument.unique()\n rng.shuffle(instruments_grand)\n rng.shuffle(instruments_upright)\n num_instruments_fold1 = np.round(len(data.instrument.unique()) / folds)\n num_instruments_fold2 = np.round(len(data.instrument.unique()) / folds)\n num_instruments_fold3 = np.round(len(data.instrument.unique()) / folds)\n num_instruments_fold4 = np.round(len(data.instrument.unique()) / folds)\n indices_fold1 = []\n indices_fold2 = []\n indices_fold3 = []\n indices_fold4 = []\n indices_fold5 = []\n i_grand = 0\n i_upright = 0\n if folds == 5:\n for i in range(0, len(data.instrument.unique())):\n if i % 2 and i_upright < len(instruments_upright):\n next_instrument_indices = np.asarray(data.instrument ==\n instruments_upright[i_upright]).nonzero()[0]\n i_upright += 1\n elif i_grand < len(instruments_grand):\n next_instrument_indices = np.asarray(data.instrument ==\n instruments_grand[i_grand]).nonzero()[0]\n i_grand += 1\n else:\n break\n if i < num_instruments_fold1:\n indices_fold1 = np.append(indices_fold1,\n next_instrument_indices).astype(int)\n elif i < num_instruments_fold1 + num_instruments_fold2:\n indices_fold2 = np.append(indices_fold2,\n next_instrument_indices).astype(int)\n elif i < num_instruments_fold1 + num_instruments_fold2 + num_instruments_fold3:\n indices_fold3 = np.append(indices_fold3,\n next_instrument_indices).astype(int)\n elif i < num_instruments_fold1 + num_instruments_fold2 + num_instruments_fold3 + num_instruments_fold4:\n indices_fold4 = np.append(indices_fold4,\n next_instrument_indices).astype(int)\n else:\n indices_fold5 = np.append(indices_fold5,\n next_instrument_indices).astype(int)\n elif folds == 4:\n for i in range(0, len(data.instrument.unique())):\n if i % 2 and i_upright < len(instruments_upright):\n next_instrument_indices = np.asarray(data.instrument ==\n instruments_upright[i_upright]).nonzero()[0]\n i_upright += 1\n elif i_grand < len(instruments_grand):\n next_instrument_indices = np.asarray(data.instrument ==\n instruments_grand[i_grand]).nonzero()[0]\n i_grand += 1\n else:\n break\n if i < num_instruments_fold1:\n indices_fold1 = np.append(indices_fold1,\n next_instrument_indices).astype(int)\n elif i < num_instruments_fold1 + num_instruments_fold2:\n indices_fold2 = np.append(indices_fold2,\n next_instrument_indices).astype(int)\n elif i < num_instruments_fold1 + num_instruments_fold2 + num_instruments_fold3:\n indices_fold3 = np.append(indices_fold3,\n next_instrument_indices).astype(int)\n else:\n indices_fold4 = np.append(indices_fold4,\n next_instrument_indices).astype(int)\n np.random.shuffle(indices_fold1)\n np.random.shuffle(indices_fold2)\n np.random.shuffle(indices_fold3)\n np.random.shuffle(indices_fold4)\n np.random.shuffle(indices_fold5)\n if verbose:\n print(len(indices_fold1), 'samples in fold 1')\n print('\\t', pd.unique(data.iloc[indices_fold1].instrument))\n print(len(indices_fold2), 'samples in fold 2')\n print('\\t', pd.unique(data.iloc[indices_fold2].instrument))\n print(len(indices_fold3), 'samples in fold 3')\n print('\\t', pd.unique(data.iloc[indices_fold3].instrument))\n print(len(indices_fold4), 'samples in fold 4')\n print('\\t', pd.unique(data.iloc[indices_fold4].instrument))\n if folds == 5:\n print(len(indices_fold5), 'samples in fold 5')\n print('\\t', pd.unique(data.iloc[indices_fold5].instrument))\n return (indices_fold1, indices_fold2, indices_fold3, indices_fold4,\n indices_fold5)\n\n\ndef train_model(cnn_type, params, local_dataset, train_ind, val_loader=None,\n plot=True, plot_title='', verbose=True):\n if verbose:\n print('\\n--------------TRAINING MODEL--------------')\n print(timbre_CNN_type.__name__, 'with parameters:')\n print(params)\n batch_size = params['batch_size']\n epochs = params['epochs']\n learning_rate = params['learning_rate']\n loss_function = params['loss_function']\n loader_train = DataLoader(local_dataset, batch_size=batch_size, shuffle\n =False, sampler=sampler.SubsetRandomSampler(train_ind), pin_memory=True\n )\n model = cnn_type().to(device, non_blocking=True)\n optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)\n with torch.enable_grad():\n loss_train_log = []\n loss_val_log = []\n epoch_val_log = []\n for epoch in range(epochs):\n model.train()\n running_loss = 0.0\n for i, batch in enumerate(loader_train):\n x = batch[0].float().to(device, non_blocking=True)\n label = batch[1].float().to(device, non_blocking=True)\n optimizer.zero_grad()\n y = model(x)\n loss = loss_function(y, label)\n loss.backward()\n optimizer.step()\n running_loss += loss.detach()\n gc.collect()\n mean_epoch_loss = (running_loss / (batch_size * (i + 1))).item()\n if verbose:\n print('+Training - Epoch', epoch + 1, 'loss:', mean_epoch_loss)\n loss_train_log.append(mean_epoch_loss)\n if (epoch == epochs - 1 or epoch % val_interval == 0\n ) and val_loader is not None and plot:\n loss_val = 0\n model.eval()\n with torch.no_grad():\n for i, batch in enumerate(val_loader):\n x = batch[0].float().to(device, non_blocking=True)\n label = batch[1].float().to(device, non_blocking=True)\n y = model(x)\n loss_val += loss_function(y, label).detach()\n gc.collect()\n mean_epoch_val_loss = (loss_val / (batch_size * (i + 1))).item(\n )\n print('\\t+Validation - Epoch', epoch + 1, 'loss:',\n mean_epoch_val_loss)\n loss_val_log.append(mean_epoch_val_loss)\n epoch_val_log.append(epoch + 1)\n fig = None\n if plot:\n fig = plt.figure()\n plt.plot(range(1, epochs + 1), loss_train_log, c='r', label='train')\n if val_loader is not None:\n plt.plot(epoch_val_log, loss_val_log, c='b', label='val')\n plt.legend()\n plt.xlabel('epoch')\n plt.ylabel('loss')\n plt.xticks(np.arange(1, epochs + 1))\n plt.grid()\n plt.title('Loss curve over ' + str(epochs) +\n ' epochs of training - ' + plot_title)\n plt.tight_layout()\n plt.show()\n return model, fig\n\n\ndef evaluate_CNN(evaluated_model, test_set):\n labels_total = np.empty(0, dtype=int)\n preds_total = np.empty(0, dtype=int)\n instruments_acc = np.empty(0, dtype=str)\n evaluated_model.eval()\n with torch.no_grad():\n evaluated_model = evaluated_model.to(device, non_blocking=True)\n for batch in test_set:\n x = batch[0].float().to(device, non_blocking=True)\n label = batch[1].float().to(device, non_blocking=True)\n y = evaluated_model(x)\n pred = torch.round(y)\n labels_total = np.append(labels_total, label.cpu())\n preds_total = np.append(preds_total, pred.cpu())\n instruments_acc = np.append(instruments_acc, np.array(batch[2]))\n per_inst_scores = pd.DataFrame()\n for instrument in np.unique(instruments_acc):\n instrument_mask = np.nonzero(instruments_acc == instrument)\n instrument_scores = evaluate_scores(labels_total[instrument_mask],\n preds_total[instrument_mask])\n piano_class = 'Upright' if labels_total[instrument_mask][0\n ] else 'Grand'\n per_inst_scores = per_inst_scores.append(pd.DataFrame([[np.round(\n instrument_scores['Accuracy'], 2), piano_class]], index=pd.\n Index([instrument], name='Instrument'), columns=['Accuracy',\n 'Class']))\n overall_scores = evaluate_scores(labels_total, preds_total)\n return overall_scores, per_inst_scores\n\n\ndef cross_validate(cnn_type, hyparams, cross_val_subset, cv_folds=2,\n partition_mode=None, plot_train_curves=True, verbose=True):\n cv_dataset = TimbreDataset(cross_val_subset)\n total_scores = pd.DataFrame()\n if cv_folds == 2:\n set_1, set_2, _ = generate_split_indices(cross_val_subset,\n partition_ratios=[0.5, 0.5], mode=partition_mode)\n training_sets = [set_1, set_2]\n validation_sets = [set_2, set_1]\n elif cv_folds == 4:\n fold1, fold2, fold3, fold4, _ = generate_crossval_fold_indices(\n cross_val_subset, folds=cv_folds, seed=None, verbose=verbose)\n training_sets = [np.concatenate([fold2, fold3, fold4]), np.\n concatenate([fold3, fold4, fold1]), np.concatenate([fold4,\n fold1, fold2]), np.concatenate([fold1, fold2, fold3])]\n validation_sets = [fold1, fold2, fold3, fold4]\n elif cv_folds == 5:\n fold1, fold2, fold3, fold4, fold5 = generate_crossval_fold_indices(\n cross_val_subset, folds=cv_folds, seed=None, verbose=verbose)\n training_sets = [np.concatenate([fold2, fold3, fold4, fold5]), np.\n concatenate([fold3, fold4, fold5, fold1]), np.concatenate([\n fold4, fold5, fold1, fold2]), np.concatenate([fold5, fold1,\n fold2, fold3]), np.concatenate([fold1, fold2, fold3, fold4])]\n validation_sets = [fold1, fold2, fold3, fold4, fold5]\n else:\n raise Exception('CV mode ' + str(cv_folds) + ' not implemented')\n for fold, (train_fold_indices, val_fold_indices) in enumerate(zip(\n training_sets, validation_sets)):\n print('\\n----------------CV FOLD ' + str(fold + 1) +\n '-----------------')\n val_fold = DataLoader(cv_dataset, batch_size=evaluation_bs, shuffle\n =False, sampler=sampler.SubsetRandomSampler(val_fold_indices),\n pin_memory=True)\n model_fold, _ = train_model(cnn_type=cnn_type, params=hyparams,\n local_dataset=cv_dataset, train_ind=train_fold_indices,\n val_loader=val_fold, plot=plot_train_curves, plot_title=\n 'CV Fold ' + str(fold + 1), verbose=verbose)\n scores_fold, per_inst_scores_fold = evaluate_CNN(model_fold, val_fold)\n if verbose:\n print('\\n------Fold ' + str(fold + 1) +\n ' validation set scores--------')\n print(per_inst_scores_fold)\n display_scores(scores_fold, plot_conf=False)\n numeric_scores_fold = pd.DataFrame.from_dict({k: [v] for k, v in\n scores_fold.items() if k in ['Accuracy', 'F1', 'acc_grand',\n 'acc_upright', 'balanced_acc', 'min_class_acc']})\n numeric_scores_fold['no_samples'] = len(val_fold_indices)\n total_scores = total_scores.append(numeric_scores_fold)\n weighted_mean_acc = (total_scores.Accuracy * total_scores.no_samples).sum(\n ) / total_scores.no_samples.sum()\n weighted_mean_f1 = (total_scores.F1 * total_scores.no_samples).sum(\n ) / total_scores.no_samples.sum()\n weighted_mean_acc_grand = (total_scores.acc_grand * total_scores.no_samples\n ).sum() / total_scores.no_samples.sum()\n weighted_mean_acc_upright = (total_scores.acc_upright * total_scores.\n no_samples).sum() / total_scores.no_samples.sum()\n weighted_mean_bal_acc = (total_scores.balanced_acc * total_scores.\n no_samples).sum() / total_scores.no_samples.sum()\n weighted_mean_min_class_acc = (total_scores.min_class_acc *\n total_scores.no_samples).sum() / total_scores.no_samples.sum()\n weighted_std_acc = np.sqrt(np.cov(total_scores.Accuracy, fweights=\n total_scores.no_samples))\n weighted_std_f1 = np.sqrt(np.cov(total_scores.F1, fweights=total_scores\n .no_samples))\n weighted_std_acc_grand = np.sqrt(np.cov(total_scores.acc_grand,\n fweights=total_scores.no_samples))\n weighted_std_acc_upright = np.sqrt(np.cov(total_scores.acc_upright,\n fweights=total_scores.no_samples))\n weighted_std_bal_acc = np.sqrt(np.cov(total_scores.balanced_acc,\n fweights=total_scores.no_samples))\n weighted_std_min_class_acc = np.sqrt(np.cov(total_scores.min_class_acc,\n fweights=total_scores.no_samples))\n cv_scores_stats = pd.DataFrame({'mean': [weighted_mean_acc,\n weighted_mean_f1, weighted_mean_acc_grand,\n weighted_mean_acc_upright, weighted_mean_bal_acc,\n weighted_mean_min_class_acc], 'std': [weighted_std_acc,\n weighted_std_f1, weighted_std_acc_grand, weighted_std_acc_upright,\n weighted_std_bal_acc, weighted_std_min_class_acc]}, index=[\n 'Accuracy', 'F1', 'Grand class accuracy', 'Upright class accuracy',\n 'Balanced (macro-avg) accuracy', 'Min per-class accuracy'])\n return cv_scores_stats\n\n\ndef hyperparameter_search(cnn_type, training_dataset, batch_size_space,\n epochs_space, lr_space, loss_space=None):\n if loss_space is None:\n loss_space = [nn.BCELoss()]\n hyp_search_csv = os.path.join(result_dir, cnn_type.__name__,\n 'hyperparam_search.csv')\n with open(hyp_search_csv, 'a', newline='') as csvfile:\n writer = csv.writer(csvfile)\n writer.writerow(['----------New Hyperparameter search----------'])\n writer.writerow(['Batch size', 'Epochs', 'Learning rate',\n 'Loss function'])\n total_combinations = len(loss_space) * len(lr_space) * len(epochs_space\n ) * len(batch_size_space)\n best_score = 0\n best_params = None\n best_stats = None\n i = 0\n for epochs_local in epochs_space:\n for loss_function_local in loss_space:\n for batch_size_local in batch_size_space:\n for learning_rate_local in lr_space:\n i += 1\n print('\\n------ Hyperparameter search combination', i,\n 'of', total_combinations, '------')\n print('Model type:', cnn_type.__name__)\n hyperparams_local = {'batch_size': batch_size_local,\n 'epochs': epochs_local, 'learning_rate':\n learning_rate_local, 'loss_function':\n loss_function_local}\n print(hyperparams_local)\n cv_results = cross_validate(cnn_type=cnn_type, hyparams\n =hyperparams_local, cross_val_subset=\n training_dataset, cv_folds=4, partition_mode=\n 'segment-instruments-random-balanced',\n plot_train_curves=False, verbose=False)\n with open(hyp_search_csv, 'a', newline='') as csvfile:\n writer = csv.writer(csvfile)\n writer.writerow([batch_size_local, epochs_local,\n learning_rate_local, loss_function_local])\n cv_results.to_csv(hyp_search_csv, mode='a')\n min_class_acc_local = cv_results.loc[\n 'Min per-class accuracy', 'mean']\n bal_acc_local = cv_results.loc[\n 'Balanced (macro-avg) accuracy', 'mean']\n if (min_class_acc_local > best_score and bal_acc_local >\n 0.5):\n best_params = hyperparams_local\n best_score = min_class_acc_local\n best_stats = cv_results\n print('\\n------New best performing combination------')\n print(best_params)\n print('with stats:')\n print(best_stats.round(3))\n return best_params, best_score, best_stats\n\n\nif __name__ == '__main__':\n device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')\n print('Device:', device)\n if torch.cuda.is_available():\n print('GPU:', torch.cuda.get_device_name(0))\n print('\\n\\n----------------------LOADING DATA-----------------------')\n if (timbre_CNN_type == SingleNoteTimbreCNN or timbre_CNN_type ==\n SingleNoteTimbreCNNSmall):\n hyperparams = hyperparams_single\n loader = InstrumentLoader(data_dir, note_range=[48, 72],\n set_velocity=None, normalise_wavs=True, load_MIDIsampled=True)\n total_data = loader.preprocess(fmin=20, fmax=20000, n_mels=300,\n normalisation='statistics')\n elif timbre_CNN_type == MelodyTimbreCNN or timbre_CNN_type == MelodyTimbreCNNSmall:\n hyperparams = hyperparams_melody\n loader = MelodyInstrumentLoader(data_dir, note_range=[48, 72],\n set_velocity=None, normalise_wavs=True, load_MIDIsampled=True)\n total_data = loader.preprocess_melodies(midi_dir, normalisation=\n 'statistics')\n else:\n raise Exception(str(timbre_CNN_type) + \" doesn't exist\")\n data_seen = total_data[total_data.dataset == 'MIDIsampled']\n data_unseen = total_data[total_data.dataset != 'MIDIsampled']\n gc.collect()\n if perform_hyp_search:\n print('\\n\\n----------------HYPERPARAMETER SEARCH--------------------')\n batch_size_space = [64, 128, 256]\n epochs_space = [15, 20, 25]\n lr_space = [0.001, 0.002, 0.003]\n best_params, best_score, best_stats = hyperparameter_search(cnn_type\n =timbre_CNN_type, training_dataset=data_seen, batch_size_space=\n batch_size_space, epochs_space=epochs_space, lr_space=lr_space)\n print('\\n---------------Hyperparameter search results---------------')\n print('Model type:', timbre_CNN_type.__name__)\n print('Search space:')\n print('\\tBatch sizes:', batch_size_space)\n print('\\tEpochs:', epochs_space)\n print('\\tLearning rates:', lr_space)\n print('Best params', best_params)\n print('Best score', best_score)\n print('Best stats:')\n print(best_stats)\n if best_params is not None:\n hyperparams = best_params\n dataset_seen = TimbreDataset(data_seen)\n train_indices, val_indices, _ = generate_split_indices(data_seen,\n partition_ratios=[0.8, 0.2], mode='segment-instruments-manual')\n if perform_cross_val:\n print('\\n\\n---------------------CROSS-VALIDATION---------------------')\n cv_results = cross_validate(cnn_type=timbre_CNN_type, hyparams=\n hyperparams, cross_val_subset=data_seen, cv_folds=4,\n partition_mode='segment-instruments-random-balanced')\n print('\\n-------Overall cross-validation scores-------')\n print(cv_results.round(3))\n print('\\n\\n-------------------RE-TRAINED MODEL-----------------------')\n loader_val = DataLoader(dataset_seen, batch_size=evaluation_bs, shuffle\n =False, sampler=sampler.SubsetRandomSampler(val_indices),\n pin_memory=True)\n model_filename = 'model_' + str(hyperparams['batch_size']) + '_' + str(\n hyperparams['epochs']) + '_' + str(hyperparams['learning_rate']\n ) + model_name\n saved_model_path = os.path.join(model_dir, timbre_CNN_type.__name__, \n model_filename + '.pth')\n if not os.path.isfile(saved_model_path):\n print('\\nCreating and training new model')\n model, loss_plot = train_model(cnn_type=timbre_CNN_type, params=\n hyperparams, local_dataset=dataset_seen, train_ind=\n train_indices, val_loader=loader_val, plot_title='\\n' +\n timbre_CNN_type.__name__)\n torch.save(model, saved_model_path)\n print('Saved trained model to', saved_model_path)\n loss_plot.savefig(os.path.join(model_dir, timbre_CNN_type.__name__,\n model_filename + '.svg'))\n else:\n print('\\nLoading pre-trained model from', saved_model_path)\n model = torch.load(saved_model_path)\n print(model)\n model.count_parameters()\n print('\\n\\n--------------Evaluation on the unseen set---------------')\n dataset_unseen = TimbreDataset(data_unseen)\n loader_unseen = DataLoader(dataset_unseen, batch_size=evaluation_bs,\n shuffle=False, pin_memory=True)\n scores_unseen, per_inst_scores_unseen = evaluate_CNN(model, loader_unseen)\n print('---------Per-instrument scores---------')\n print(per_inst_scores_unseen)\n per_inst_scores_unseen.to_csv(os.path.join(result_dir, timbre_CNN_type.\n __name__, model_filename + '.csv'), mode='a')\n print('--------Overall unseen set performance--------')\n display_scores(scores_unseen, 'Unseen test set\\n' + timbre_CNN_type.\n __name__)\n", "<import token>\n<assignment token>\n\n\ndef generate_split_indices(data, partition_ratios=None, mode='mixed', seed=None\n ):\n if partition_ratios is None:\n partition_ratios = [0.8, 0.1]\n rng = np.random.default_rng(seed=seed)\n if mode == 'segment-instruments-random':\n instruments = data.instrument.unique()\n rng.shuffle(instruments)\n i = 0\n indices_train = []\n indices_val = []\n indices_test = []\n no_more_instruments = False\n next_instrument_indices = np.asarray(data.instrument == instruments[i]\n ).nonzero()[0]\n while (len(indices_train) + len(next_instrument_indices)) / len(data\n ) <= partition_ratios[0]:\n indices_train = np.append(indices_train, next_instrument_indices)\n i += 1\n if i >= len(instruments):\n no_more_instruments = True\n break\n next_instrument_indices = np.asarray(data.instrument ==\n instruments[i]).nonzero()[0]\n while (len(indices_train) + len(indices_val) + len(\n next_instrument_indices)) / len(data) <= partition_ratios[0\n ] + partition_ratios[1] and not no_more_instruments:\n indices_val = np.append(indices_val, next_instrument_indices)\n i += 1\n if i >= len(instruments):\n break\n next_instrument_indices = np.asarray(data.instrument ==\n instruments[i]).nonzero()[0]\n for j in range(i, len(instruments)):\n indices_test = np.append(indices_test, np.asarray(data.\n instrument == instruments[j]).nonzero()[0])\n np.random.shuffle(indices_train)\n np.random.shuffle(indices_val)\n np.random.shuffle(indices_test)\n elif mode == 'segment-instruments-random-balanced':\n instruments_grand = data[data.label == 0].instrument.unique()\n instruments_upright = data[data.label == 1].instrument.unique()\n rng.shuffle(instruments_grand)\n rng.shuffle(instruments_upright)\n num_train_instruments = np.round(partition_ratios[0] * len(data.\n instrument.unique()))\n num_val_instruments = np.round(partition_ratios[1] * len(data.\n instrument.unique()))\n indices_train = []\n indices_val = []\n indices_test = []\n i_grand = 0\n i_upright = 0\n for i in range(0, len(data.instrument.unique())):\n if i % 2 and i_upright < len(instruments_upright):\n next_instrument_indices = np.asarray(data.instrument ==\n instruments_upright[i_upright]).nonzero()[0]\n i_upright += 1\n elif i_grand < len(instruments_grand):\n next_instrument_indices = np.asarray(data.instrument ==\n instruments_grand[i_grand]).nonzero()[0]\n i_grand += 1\n else:\n break\n if i < num_train_instruments:\n indices_train = np.append(indices_train,\n next_instrument_indices)\n elif i < num_train_instruments + num_val_instruments:\n indices_val = np.append(indices_val, next_instrument_indices)\n else:\n indices_test = np.append(indices_test, next_instrument_indices)\n if np.sum(partition_ratios) == 1:\n indices_val = np.append(indices_val, indices_test)\n indices_test = []\n np.random.shuffle(indices_train)\n np.random.shuffle(indices_val)\n np.random.shuffle(indices_test)\n elif mode == 'segment-instruments-manual':\n train_instruments = ['Nord_BrightGrand-XL', 'Nord_AmberUpright-XL',\n 'Nord_ConcertGrand1-Lrg', 'Nord_BabyUpright-XL',\n 'Nord_GrandImperial-XL', 'Nord_BlackUpright-Lrg',\n 'Nord_RoyalGrand3D-XL', 'Nord_MellowUpright-XL',\n 'Nord_StudioGrand1-Lrg', 'Nord_RainPiano-Lrg',\n 'Nord_WhiteGrand-XL', 'Nord_RomanticUpright-Lrg',\n 'Nord_VelvetGrand-XL', 'Nord_GrandUpright-XL',\n 'Nord_StudioGrand2-Lrg', 'Nord_SaloonUpright-Lrg',\n 'Nord_ItalianGrand-XL', 'Nord_BlueSwede-Lrg']\n val_instruments = ['Nord_ConcertGrand1Amb-Lrg',\n 'Nord_BambinoUpright-XL', 'Nord_GrandLadyD-Lrg',\n 'Nord_QueenUpright-Lrg', 'Nord_SilverGrand-XL']\n test_instruments = []\n indices_train = np.asarray(data.instrument.isin(train_instruments)\n ).nonzero()[0]\n indices_val = np.asarray(data.instrument.isin(val_instruments)\n ).nonzero()[0]\n indices_test = np.asarray(data.instrument.isin(test_instruments)\n ).nonzero()[0]\n np.random.shuffle(indices_train)\n np.random.shuffle(indices_val)\n np.random.shuffle(indices_test)\n elif mode == 'segment-velocities':\n indices_train = np.asarray(data.velocity == 'M').nonzero()[0]\n indices_val = np.asarray(data.velocity == 'P').nonzero()[0]\n indices_test = np.asarray(data.velocity == 'F').nonzero()[0]\n np.random.shuffle(indices_train)\n np.random.shuffle(indices_val)\n np.random.shuffle(indices_test)\n elif mode == 'mixed':\n indices = np.arange(len(data))\n rng.shuffle(indices)\n split_point_train = int(len(data) * partition_ratios[0])\n split_point_val = split_point_train + int(len(data) *\n partition_ratios[1])\n indices_train = indices[:split_point_train]\n indices_val = indices[split_point_train:split_point_val]\n indices_test = indices[split_point_val:]\n else:\n raise Exception('Mode not recognised')\n print('')\n indices_train = indices_train.astype(int)\n indices_val = indices_val.astype(int)\n print(len(indices_train), 'training samples')\n print(len(indices_val), 'validation samples')\n print(len(indices_test), 'test samples')\n train_class_balance = data.iloc[indices_train].label.sum(axis=0) / len(\n indices_train)\n print('Train set contains', np.round(train_class_balance * 100),\n '% Upright pianos')\n if mode == 'segment_instruments':\n print('\\t', pd.unique(data.iloc[indices_train].instrument))\n val_class_balance = data.iloc[indices_val].label.sum(axis=0) / len(\n indices_val)\n print('Validation set contains', np.round(val_class_balance * 100),\n '% Upright pianos')\n if mode == 'segment_instruments':\n print('\\t', pd.unique(data.iloc[indices_val].instrument))\n if len(indices_test) == 0:\n indices_test = np.array([])\n indices_test = indices_test.astype(int)\n else:\n indices_test = indices_test.astype(int)\n test_class_balance = data.iloc[indices_test].label.sum(axis=0) / len(\n indices_test)\n print('Test set contains', np.round(test_class_balance * 100),\n '% Upright pianos')\n if mode == 'segment_instruments':\n print('\\t', pd.unique(data.iloc[indices_test].instrument))\n print('Overall, dataset contains', np.round(100 * data.label.sum(axis=0\n ) / len(data)), '% Upright pianos')\n return indices_train, indices_val, indices_test\n\n\ndef generate_crossval_fold_indices(data, seed=None, folds=5, verbose=True):\n rng = np.random.default_rng(seed=seed)\n instruments_grand = data[data.label == 0].instrument.unique()\n instruments_upright = data[data.label == 1].instrument.unique()\n rng.shuffle(instruments_grand)\n rng.shuffle(instruments_upright)\n num_instruments_fold1 = np.round(len(data.instrument.unique()) / folds)\n num_instruments_fold2 = np.round(len(data.instrument.unique()) / folds)\n num_instruments_fold3 = np.round(len(data.instrument.unique()) / folds)\n num_instruments_fold4 = np.round(len(data.instrument.unique()) / folds)\n indices_fold1 = []\n indices_fold2 = []\n indices_fold3 = []\n indices_fold4 = []\n indices_fold5 = []\n i_grand = 0\n i_upright = 0\n if folds == 5:\n for i in range(0, len(data.instrument.unique())):\n if i % 2 and i_upright < len(instruments_upright):\n next_instrument_indices = np.asarray(data.instrument ==\n instruments_upright[i_upright]).nonzero()[0]\n i_upright += 1\n elif i_grand < len(instruments_grand):\n next_instrument_indices = np.asarray(data.instrument ==\n instruments_grand[i_grand]).nonzero()[0]\n i_grand += 1\n else:\n break\n if i < num_instruments_fold1:\n indices_fold1 = np.append(indices_fold1,\n next_instrument_indices).astype(int)\n elif i < num_instruments_fold1 + num_instruments_fold2:\n indices_fold2 = np.append(indices_fold2,\n next_instrument_indices).astype(int)\n elif i < num_instruments_fold1 + num_instruments_fold2 + num_instruments_fold3:\n indices_fold3 = np.append(indices_fold3,\n next_instrument_indices).astype(int)\n elif i < num_instruments_fold1 + num_instruments_fold2 + num_instruments_fold3 + num_instruments_fold4:\n indices_fold4 = np.append(indices_fold4,\n next_instrument_indices).astype(int)\n else:\n indices_fold5 = np.append(indices_fold5,\n next_instrument_indices).astype(int)\n elif folds == 4:\n for i in range(0, len(data.instrument.unique())):\n if i % 2 and i_upright < len(instruments_upright):\n next_instrument_indices = np.asarray(data.instrument ==\n instruments_upright[i_upright]).nonzero()[0]\n i_upright += 1\n elif i_grand < len(instruments_grand):\n next_instrument_indices = np.asarray(data.instrument ==\n instruments_grand[i_grand]).nonzero()[0]\n i_grand += 1\n else:\n break\n if i < num_instruments_fold1:\n indices_fold1 = np.append(indices_fold1,\n next_instrument_indices).astype(int)\n elif i < num_instruments_fold1 + num_instruments_fold2:\n indices_fold2 = np.append(indices_fold2,\n next_instrument_indices).astype(int)\n elif i < num_instruments_fold1 + num_instruments_fold2 + num_instruments_fold3:\n indices_fold3 = np.append(indices_fold3,\n next_instrument_indices).astype(int)\n else:\n indices_fold4 = np.append(indices_fold4,\n next_instrument_indices).astype(int)\n np.random.shuffle(indices_fold1)\n np.random.shuffle(indices_fold2)\n np.random.shuffle(indices_fold3)\n np.random.shuffle(indices_fold4)\n np.random.shuffle(indices_fold5)\n if verbose:\n print(len(indices_fold1), 'samples in fold 1')\n print('\\t', pd.unique(data.iloc[indices_fold1].instrument))\n print(len(indices_fold2), 'samples in fold 2')\n print('\\t', pd.unique(data.iloc[indices_fold2].instrument))\n print(len(indices_fold3), 'samples in fold 3')\n print('\\t', pd.unique(data.iloc[indices_fold3].instrument))\n print(len(indices_fold4), 'samples in fold 4')\n print('\\t', pd.unique(data.iloc[indices_fold4].instrument))\n if folds == 5:\n print(len(indices_fold5), 'samples in fold 5')\n print('\\t', pd.unique(data.iloc[indices_fold5].instrument))\n return (indices_fold1, indices_fold2, indices_fold3, indices_fold4,\n indices_fold5)\n\n\ndef train_model(cnn_type, params, local_dataset, train_ind, val_loader=None,\n plot=True, plot_title='', verbose=True):\n if verbose:\n print('\\n--------------TRAINING MODEL--------------')\n print(timbre_CNN_type.__name__, 'with parameters:')\n print(params)\n batch_size = params['batch_size']\n epochs = params['epochs']\n learning_rate = params['learning_rate']\n loss_function = params['loss_function']\n loader_train = DataLoader(local_dataset, batch_size=batch_size, shuffle\n =False, sampler=sampler.SubsetRandomSampler(train_ind), pin_memory=True\n )\n model = cnn_type().to(device, non_blocking=True)\n optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)\n with torch.enable_grad():\n loss_train_log = []\n loss_val_log = []\n epoch_val_log = []\n for epoch in range(epochs):\n model.train()\n running_loss = 0.0\n for i, batch in enumerate(loader_train):\n x = batch[0].float().to(device, non_blocking=True)\n label = batch[1].float().to(device, non_blocking=True)\n optimizer.zero_grad()\n y = model(x)\n loss = loss_function(y, label)\n loss.backward()\n optimizer.step()\n running_loss += loss.detach()\n gc.collect()\n mean_epoch_loss = (running_loss / (batch_size * (i + 1))).item()\n if verbose:\n print('+Training - Epoch', epoch + 1, 'loss:', mean_epoch_loss)\n loss_train_log.append(mean_epoch_loss)\n if (epoch == epochs - 1 or epoch % val_interval == 0\n ) and val_loader is not None and plot:\n loss_val = 0\n model.eval()\n with torch.no_grad():\n for i, batch in enumerate(val_loader):\n x = batch[0].float().to(device, non_blocking=True)\n label = batch[1].float().to(device, non_blocking=True)\n y = model(x)\n loss_val += loss_function(y, label).detach()\n gc.collect()\n mean_epoch_val_loss = (loss_val / (batch_size * (i + 1))).item(\n )\n print('\\t+Validation - Epoch', epoch + 1, 'loss:',\n mean_epoch_val_loss)\n loss_val_log.append(mean_epoch_val_loss)\n epoch_val_log.append(epoch + 1)\n fig = None\n if plot:\n fig = plt.figure()\n plt.plot(range(1, epochs + 1), loss_train_log, c='r', label='train')\n if val_loader is not None:\n plt.plot(epoch_val_log, loss_val_log, c='b', label='val')\n plt.legend()\n plt.xlabel('epoch')\n plt.ylabel('loss')\n plt.xticks(np.arange(1, epochs + 1))\n plt.grid()\n plt.title('Loss curve over ' + str(epochs) +\n ' epochs of training - ' + plot_title)\n plt.tight_layout()\n plt.show()\n return model, fig\n\n\ndef evaluate_CNN(evaluated_model, test_set):\n labels_total = np.empty(0, dtype=int)\n preds_total = np.empty(0, dtype=int)\n instruments_acc = np.empty(0, dtype=str)\n evaluated_model.eval()\n with torch.no_grad():\n evaluated_model = evaluated_model.to(device, non_blocking=True)\n for batch in test_set:\n x = batch[0].float().to(device, non_blocking=True)\n label = batch[1].float().to(device, non_blocking=True)\n y = evaluated_model(x)\n pred = torch.round(y)\n labels_total = np.append(labels_total, label.cpu())\n preds_total = np.append(preds_total, pred.cpu())\n instruments_acc = np.append(instruments_acc, np.array(batch[2]))\n per_inst_scores = pd.DataFrame()\n for instrument in np.unique(instruments_acc):\n instrument_mask = np.nonzero(instruments_acc == instrument)\n instrument_scores = evaluate_scores(labels_total[instrument_mask],\n preds_total[instrument_mask])\n piano_class = 'Upright' if labels_total[instrument_mask][0\n ] else 'Grand'\n per_inst_scores = per_inst_scores.append(pd.DataFrame([[np.round(\n instrument_scores['Accuracy'], 2), piano_class]], index=pd.\n Index([instrument], name='Instrument'), columns=['Accuracy',\n 'Class']))\n overall_scores = evaluate_scores(labels_total, preds_total)\n return overall_scores, per_inst_scores\n\n\ndef cross_validate(cnn_type, hyparams, cross_val_subset, cv_folds=2,\n partition_mode=None, plot_train_curves=True, verbose=True):\n cv_dataset = TimbreDataset(cross_val_subset)\n total_scores = pd.DataFrame()\n if cv_folds == 2:\n set_1, set_2, _ = generate_split_indices(cross_val_subset,\n partition_ratios=[0.5, 0.5], mode=partition_mode)\n training_sets = [set_1, set_2]\n validation_sets = [set_2, set_1]\n elif cv_folds == 4:\n fold1, fold2, fold3, fold4, _ = generate_crossval_fold_indices(\n cross_val_subset, folds=cv_folds, seed=None, verbose=verbose)\n training_sets = [np.concatenate([fold2, fold3, fold4]), np.\n concatenate([fold3, fold4, fold1]), np.concatenate([fold4,\n fold1, fold2]), np.concatenate([fold1, fold2, fold3])]\n validation_sets = [fold1, fold2, fold3, fold4]\n elif cv_folds == 5:\n fold1, fold2, fold3, fold4, fold5 = generate_crossval_fold_indices(\n cross_val_subset, folds=cv_folds, seed=None, verbose=verbose)\n training_sets = [np.concatenate([fold2, fold3, fold4, fold5]), np.\n concatenate([fold3, fold4, fold5, fold1]), np.concatenate([\n fold4, fold5, fold1, fold2]), np.concatenate([fold5, fold1,\n fold2, fold3]), np.concatenate([fold1, fold2, fold3, fold4])]\n validation_sets = [fold1, fold2, fold3, fold4, fold5]\n else:\n raise Exception('CV mode ' + str(cv_folds) + ' not implemented')\n for fold, (train_fold_indices, val_fold_indices) in enumerate(zip(\n training_sets, validation_sets)):\n print('\\n----------------CV FOLD ' + str(fold + 1) +\n '-----------------')\n val_fold = DataLoader(cv_dataset, batch_size=evaluation_bs, shuffle\n =False, sampler=sampler.SubsetRandomSampler(val_fold_indices),\n pin_memory=True)\n model_fold, _ = train_model(cnn_type=cnn_type, params=hyparams,\n local_dataset=cv_dataset, train_ind=train_fold_indices,\n val_loader=val_fold, plot=plot_train_curves, plot_title=\n 'CV Fold ' + str(fold + 1), verbose=verbose)\n scores_fold, per_inst_scores_fold = evaluate_CNN(model_fold, val_fold)\n if verbose:\n print('\\n------Fold ' + str(fold + 1) +\n ' validation set scores--------')\n print(per_inst_scores_fold)\n display_scores(scores_fold, plot_conf=False)\n numeric_scores_fold = pd.DataFrame.from_dict({k: [v] for k, v in\n scores_fold.items() if k in ['Accuracy', 'F1', 'acc_grand',\n 'acc_upright', 'balanced_acc', 'min_class_acc']})\n numeric_scores_fold['no_samples'] = len(val_fold_indices)\n total_scores = total_scores.append(numeric_scores_fold)\n weighted_mean_acc = (total_scores.Accuracy * total_scores.no_samples).sum(\n ) / total_scores.no_samples.sum()\n weighted_mean_f1 = (total_scores.F1 * total_scores.no_samples).sum(\n ) / total_scores.no_samples.sum()\n weighted_mean_acc_grand = (total_scores.acc_grand * total_scores.no_samples\n ).sum() / total_scores.no_samples.sum()\n weighted_mean_acc_upright = (total_scores.acc_upright * total_scores.\n no_samples).sum() / total_scores.no_samples.sum()\n weighted_mean_bal_acc = (total_scores.balanced_acc * total_scores.\n no_samples).sum() / total_scores.no_samples.sum()\n weighted_mean_min_class_acc = (total_scores.min_class_acc *\n total_scores.no_samples).sum() / total_scores.no_samples.sum()\n weighted_std_acc = np.sqrt(np.cov(total_scores.Accuracy, fweights=\n total_scores.no_samples))\n weighted_std_f1 = np.sqrt(np.cov(total_scores.F1, fweights=total_scores\n .no_samples))\n weighted_std_acc_grand = np.sqrt(np.cov(total_scores.acc_grand,\n fweights=total_scores.no_samples))\n weighted_std_acc_upright = np.sqrt(np.cov(total_scores.acc_upright,\n fweights=total_scores.no_samples))\n weighted_std_bal_acc = np.sqrt(np.cov(total_scores.balanced_acc,\n fweights=total_scores.no_samples))\n weighted_std_min_class_acc = np.sqrt(np.cov(total_scores.min_class_acc,\n fweights=total_scores.no_samples))\n cv_scores_stats = pd.DataFrame({'mean': [weighted_mean_acc,\n weighted_mean_f1, weighted_mean_acc_grand,\n weighted_mean_acc_upright, weighted_mean_bal_acc,\n weighted_mean_min_class_acc], 'std': [weighted_std_acc,\n weighted_std_f1, weighted_std_acc_grand, weighted_std_acc_upright,\n weighted_std_bal_acc, weighted_std_min_class_acc]}, index=[\n 'Accuracy', 'F1', 'Grand class accuracy', 'Upright class accuracy',\n 'Balanced (macro-avg) accuracy', 'Min per-class accuracy'])\n return cv_scores_stats\n\n\ndef hyperparameter_search(cnn_type, training_dataset, batch_size_space,\n epochs_space, lr_space, loss_space=None):\n if loss_space is None:\n loss_space = [nn.BCELoss()]\n hyp_search_csv = os.path.join(result_dir, cnn_type.__name__,\n 'hyperparam_search.csv')\n with open(hyp_search_csv, 'a', newline='') as csvfile:\n writer = csv.writer(csvfile)\n writer.writerow(['----------New Hyperparameter search----------'])\n writer.writerow(['Batch size', 'Epochs', 'Learning rate',\n 'Loss function'])\n total_combinations = len(loss_space) * len(lr_space) * len(epochs_space\n ) * len(batch_size_space)\n best_score = 0\n best_params = None\n best_stats = None\n i = 0\n for epochs_local in epochs_space:\n for loss_function_local in loss_space:\n for batch_size_local in batch_size_space:\n for learning_rate_local in lr_space:\n i += 1\n print('\\n------ Hyperparameter search combination', i,\n 'of', total_combinations, '------')\n print('Model type:', cnn_type.__name__)\n hyperparams_local = {'batch_size': batch_size_local,\n 'epochs': epochs_local, 'learning_rate':\n learning_rate_local, 'loss_function':\n loss_function_local}\n print(hyperparams_local)\n cv_results = cross_validate(cnn_type=cnn_type, hyparams\n =hyperparams_local, cross_val_subset=\n training_dataset, cv_folds=4, partition_mode=\n 'segment-instruments-random-balanced',\n plot_train_curves=False, verbose=False)\n with open(hyp_search_csv, 'a', newline='') as csvfile:\n writer = csv.writer(csvfile)\n writer.writerow([batch_size_local, epochs_local,\n learning_rate_local, loss_function_local])\n cv_results.to_csv(hyp_search_csv, mode='a')\n min_class_acc_local = cv_results.loc[\n 'Min per-class accuracy', 'mean']\n bal_acc_local = cv_results.loc[\n 'Balanced (macro-avg) accuracy', 'mean']\n if (min_class_acc_local > best_score and bal_acc_local >\n 0.5):\n best_params = hyperparams_local\n best_score = min_class_acc_local\n best_stats = cv_results\n print('\\n------New best performing combination------')\n print(best_params)\n print('with stats:')\n print(best_stats.round(3))\n return best_params, best_score, best_stats\n\n\n<code token>\n", "<import token>\n<assignment token>\n\n\ndef generate_split_indices(data, partition_ratios=None, mode='mixed', seed=None\n ):\n if partition_ratios is None:\n partition_ratios = [0.8, 0.1]\n rng = np.random.default_rng(seed=seed)\n if mode == 'segment-instruments-random':\n instruments = data.instrument.unique()\n rng.shuffle(instruments)\n i = 0\n indices_train = []\n indices_val = []\n indices_test = []\n no_more_instruments = False\n next_instrument_indices = np.asarray(data.instrument == instruments[i]\n ).nonzero()[0]\n while (len(indices_train) + len(next_instrument_indices)) / len(data\n ) <= partition_ratios[0]:\n indices_train = np.append(indices_train, next_instrument_indices)\n i += 1\n if i >= len(instruments):\n no_more_instruments = True\n break\n next_instrument_indices = np.asarray(data.instrument ==\n instruments[i]).nonzero()[0]\n while (len(indices_train) + len(indices_val) + len(\n next_instrument_indices)) / len(data) <= partition_ratios[0\n ] + partition_ratios[1] and not no_more_instruments:\n indices_val = np.append(indices_val, next_instrument_indices)\n i += 1\n if i >= len(instruments):\n break\n next_instrument_indices = np.asarray(data.instrument ==\n instruments[i]).nonzero()[0]\n for j in range(i, len(instruments)):\n indices_test = np.append(indices_test, np.asarray(data.\n instrument == instruments[j]).nonzero()[0])\n np.random.shuffle(indices_train)\n np.random.shuffle(indices_val)\n np.random.shuffle(indices_test)\n elif mode == 'segment-instruments-random-balanced':\n instruments_grand = data[data.label == 0].instrument.unique()\n instruments_upright = data[data.label == 1].instrument.unique()\n rng.shuffle(instruments_grand)\n rng.shuffle(instruments_upright)\n num_train_instruments = np.round(partition_ratios[0] * len(data.\n instrument.unique()))\n num_val_instruments = np.round(partition_ratios[1] * len(data.\n instrument.unique()))\n indices_train = []\n indices_val = []\n indices_test = []\n i_grand = 0\n i_upright = 0\n for i in range(0, len(data.instrument.unique())):\n if i % 2 and i_upright < len(instruments_upright):\n next_instrument_indices = np.asarray(data.instrument ==\n instruments_upright[i_upright]).nonzero()[0]\n i_upright += 1\n elif i_grand < len(instruments_grand):\n next_instrument_indices = np.asarray(data.instrument ==\n instruments_grand[i_grand]).nonzero()[0]\n i_grand += 1\n else:\n break\n if i < num_train_instruments:\n indices_train = np.append(indices_train,\n next_instrument_indices)\n elif i < num_train_instruments + num_val_instruments:\n indices_val = np.append(indices_val, next_instrument_indices)\n else:\n indices_test = np.append(indices_test, next_instrument_indices)\n if np.sum(partition_ratios) == 1:\n indices_val = np.append(indices_val, indices_test)\n indices_test = []\n np.random.shuffle(indices_train)\n np.random.shuffle(indices_val)\n np.random.shuffle(indices_test)\n elif mode == 'segment-instruments-manual':\n train_instruments = ['Nord_BrightGrand-XL', 'Nord_AmberUpright-XL',\n 'Nord_ConcertGrand1-Lrg', 'Nord_BabyUpright-XL',\n 'Nord_GrandImperial-XL', 'Nord_BlackUpright-Lrg',\n 'Nord_RoyalGrand3D-XL', 'Nord_MellowUpright-XL',\n 'Nord_StudioGrand1-Lrg', 'Nord_RainPiano-Lrg',\n 'Nord_WhiteGrand-XL', 'Nord_RomanticUpright-Lrg',\n 'Nord_VelvetGrand-XL', 'Nord_GrandUpright-XL',\n 'Nord_StudioGrand2-Lrg', 'Nord_SaloonUpright-Lrg',\n 'Nord_ItalianGrand-XL', 'Nord_BlueSwede-Lrg']\n val_instruments = ['Nord_ConcertGrand1Amb-Lrg',\n 'Nord_BambinoUpright-XL', 'Nord_GrandLadyD-Lrg',\n 'Nord_QueenUpright-Lrg', 'Nord_SilverGrand-XL']\n test_instruments = []\n indices_train = np.asarray(data.instrument.isin(train_instruments)\n ).nonzero()[0]\n indices_val = np.asarray(data.instrument.isin(val_instruments)\n ).nonzero()[0]\n indices_test = np.asarray(data.instrument.isin(test_instruments)\n ).nonzero()[0]\n np.random.shuffle(indices_train)\n np.random.shuffle(indices_val)\n np.random.shuffle(indices_test)\n elif mode == 'segment-velocities':\n indices_train = np.asarray(data.velocity == 'M').nonzero()[0]\n indices_val = np.asarray(data.velocity == 'P').nonzero()[0]\n indices_test = np.asarray(data.velocity == 'F').nonzero()[0]\n np.random.shuffle(indices_train)\n np.random.shuffle(indices_val)\n np.random.shuffle(indices_test)\n elif mode == 'mixed':\n indices = np.arange(len(data))\n rng.shuffle(indices)\n split_point_train = int(len(data) * partition_ratios[0])\n split_point_val = split_point_train + int(len(data) *\n partition_ratios[1])\n indices_train = indices[:split_point_train]\n indices_val = indices[split_point_train:split_point_val]\n indices_test = indices[split_point_val:]\n else:\n raise Exception('Mode not recognised')\n print('')\n indices_train = indices_train.astype(int)\n indices_val = indices_val.astype(int)\n print(len(indices_train), 'training samples')\n print(len(indices_val), 'validation samples')\n print(len(indices_test), 'test samples')\n train_class_balance = data.iloc[indices_train].label.sum(axis=0) / len(\n indices_train)\n print('Train set contains', np.round(train_class_balance * 100),\n '% Upright pianos')\n if mode == 'segment_instruments':\n print('\\t', pd.unique(data.iloc[indices_train].instrument))\n val_class_balance = data.iloc[indices_val].label.sum(axis=0) / len(\n indices_val)\n print('Validation set contains', np.round(val_class_balance * 100),\n '% Upright pianos')\n if mode == 'segment_instruments':\n print('\\t', pd.unique(data.iloc[indices_val].instrument))\n if len(indices_test) == 0:\n indices_test = np.array([])\n indices_test = indices_test.astype(int)\n else:\n indices_test = indices_test.astype(int)\n test_class_balance = data.iloc[indices_test].label.sum(axis=0) / len(\n indices_test)\n print('Test set contains', np.round(test_class_balance * 100),\n '% Upright pianos')\n if mode == 'segment_instruments':\n print('\\t', pd.unique(data.iloc[indices_test].instrument))\n print('Overall, dataset contains', np.round(100 * data.label.sum(axis=0\n ) / len(data)), '% Upright pianos')\n return indices_train, indices_val, indices_test\n\n\ndef generate_crossval_fold_indices(data, seed=None, folds=5, verbose=True):\n rng = np.random.default_rng(seed=seed)\n instruments_grand = data[data.label == 0].instrument.unique()\n instruments_upright = data[data.label == 1].instrument.unique()\n rng.shuffle(instruments_grand)\n rng.shuffle(instruments_upright)\n num_instruments_fold1 = np.round(len(data.instrument.unique()) / folds)\n num_instruments_fold2 = np.round(len(data.instrument.unique()) / folds)\n num_instruments_fold3 = np.round(len(data.instrument.unique()) / folds)\n num_instruments_fold4 = np.round(len(data.instrument.unique()) / folds)\n indices_fold1 = []\n indices_fold2 = []\n indices_fold3 = []\n indices_fold4 = []\n indices_fold5 = []\n i_grand = 0\n i_upright = 0\n if folds == 5:\n for i in range(0, len(data.instrument.unique())):\n if i % 2 and i_upright < len(instruments_upright):\n next_instrument_indices = np.asarray(data.instrument ==\n instruments_upright[i_upright]).nonzero()[0]\n i_upright += 1\n elif i_grand < len(instruments_grand):\n next_instrument_indices = np.asarray(data.instrument ==\n instruments_grand[i_grand]).nonzero()[0]\n i_grand += 1\n else:\n break\n if i < num_instruments_fold1:\n indices_fold1 = np.append(indices_fold1,\n next_instrument_indices).astype(int)\n elif i < num_instruments_fold1 + num_instruments_fold2:\n indices_fold2 = np.append(indices_fold2,\n next_instrument_indices).astype(int)\n elif i < num_instruments_fold1 + num_instruments_fold2 + num_instruments_fold3:\n indices_fold3 = np.append(indices_fold3,\n next_instrument_indices).astype(int)\n elif i < num_instruments_fold1 + num_instruments_fold2 + num_instruments_fold3 + num_instruments_fold4:\n indices_fold4 = np.append(indices_fold4,\n next_instrument_indices).astype(int)\n else:\n indices_fold5 = np.append(indices_fold5,\n next_instrument_indices).astype(int)\n elif folds == 4:\n for i in range(0, len(data.instrument.unique())):\n if i % 2 and i_upright < len(instruments_upright):\n next_instrument_indices = np.asarray(data.instrument ==\n instruments_upright[i_upright]).nonzero()[0]\n i_upright += 1\n elif i_grand < len(instruments_grand):\n next_instrument_indices = np.asarray(data.instrument ==\n instruments_grand[i_grand]).nonzero()[0]\n i_grand += 1\n else:\n break\n if i < num_instruments_fold1:\n indices_fold1 = np.append(indices_fold1,\n next_instrument_indices).astype(int)\n elif i < num_instruments_fold1 + num_instruments_fold2:\n indices_fold2 = np.append(indices_fold2,\n next_instrument_indices).astype(int)\n elif i < num_instruments_fold1 + num_instruments_fold2 + num_instruments_fold3:\n indices_fold3 = np.append(indices_fold3,\n next_instrument_indices).astype(int)\n else:\n indices_fold4 = np.append(indices_fold4,\n next_instrument_indices).astype(int)\n np.random.shuffle(indices_fold1)\n np.random.shuffle(indices_fold2)\n np.random.shuffle(indices_fold3)\n np.random.shuffle(indices_fold4)\n np.random.shuffle(indices_fold5)\n if verbose:\n print(len(indices_fold1), 'samples in fold 1')\n print('\\t', pd.unique(data.iloc[indices_fold1].instrument))\n print(len(indices_fold2), 'samples in fold 2')\n print('\\t', pd.unique(data.iloc[indices_fold2].instrument))\n print(len(indices_fold3), 'samples in fold 3')\n print('\\t', pd.unique(data.iloc[indices_fold3].instrument))\n print(len(indices_fold4), 'samples in fold 4')\n print('\\t', pd.unique(data.iloc[indices_fold4].instrument))\n if folds == 5:\n print(len(indices_fold5), 'samples in fold 5')\n print('\\t', pd.unique(data.iloc[indices_fold5].instrument))\n return (indices_fold1, indices_fold2, indices_fold3, indices_fold4,\n indices_fold5)\n\n\ndef train_model(cnn_type, params, local_dataset, train_ind, val_loader=None,\n plot=True, plot_title='', verbose=True):\n if verbose:\n print('\\n--------------TRAINING MODEL--------------')\n print(timbre_CNN_type.__name__, 'with parameters:')\n print(params)\n batch_size = params['batch_size']\n epochs = params['epochs']\n learning_rate = params['learning_rate']\n loss_function = params['loss_function']\n loader_train = DataLoader(local_dataset, batch_size=batch_size, shuffle\n =False, sampler=sampler.SubsetRandomSampler(train_ind), pin_memory=True\n )\n model = cnn_type().to(device, non_blocking=True)\n optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)\n with torch.enable_grad():\n loss_train_log = []\n loss_val_log = []\n epoch_val_log = []\n for epoch in range(epochs):\n model.train()\n running_loss = 0.0\n for i, batch in enumerate(loader_train):\n x = batch[0].float().to(device, non_blocking=True)\n label = batch[1].float().to(device, non_blocking=True)\n optimizer.zero_grad()\n y = model(x)\n loss = loss_function(y, label)\n loss.backward()\n optimizer.step()\n running_loss += loss.detach()\n gc.collect()\n mean_epoch_loss = (running_loss / (batch_size * (i + 1))).item()\n if verbose:\n print('+Training - Epoch', epoch + 1, 'loss:', mean_epoch_loss)\n loss_train_log.append(mean_epoch_loss)\n if (epoch == epochs - 1 or epoch % val_interval == 0\n ) and val_loader is not None and plot:\n loss_val = 0\n model.eval()\n with torch.no_grad():\n for i, batch in enumerate(val_loader):\n x = batch[0].float().to(device, non_blocking=True)\n label = batch[1].float().to(device, non_blocking=True)\n y = model(x)\n loss_val += loss_function(y, label).detach()\n gc.collect()\n mean_epoch_val_loss = (loss_val / (batch_size * (i + 1))).item(\n )\n print('\\t+Validation - Epoch', epoch + 1, 'loss:',\n mean_epoch_val_loss)\n loss_val_log.append(mean_epoch_val_loss)\n epoch_val_log.append(epoch + 1)\n fig = None\n if plot:\n fig = plt.figure()\n plt.plot(range(1, epochs + 1), loss_train_log, c='r', label='train')\n if val_loader is not None:\n plt.plot(epoch_val_log, loss_val_log, c='b', label='val')\n plt.legend()\n plt.xlabel('epoch')\n plt.ylabel('loss')\n plt.xticks(np.arange(1, epochs + 1))\n plt.grid()\n plt.title('Loss curve over ' + str(epochs) +\n ' epochs of training - ' + plot_title)\n plt.tight_layout()\n plt.show()\n return model, fig\n\n\ndef evaluate_CNN(evaluated_model, test_set):\n labels_total = np.empty(0, dtype=int)\n preds_total = np.empty(0, dtype=int)\n instruments_acc = np.empty(0, dtype=str)\n evaluated_model.eval()\n with torch.no_grad():\n evaluated_model = evaluated_model.to(device, non_blocking=True)\n for batch in test_set:\n x = batch[0].float().to(device, non_blocking=True)\n label = batch[1].float().to(device, non_blocking=True)\n y = evaluated_model(x)\n pred = torch.round(y)\n labels_total = np.append(labels_total, label.cpu())\n preds_total = np.append(preds_total, pred.cpu())\n instruments_acc = np.append(instruments_acc, np.array(batch[2]))\n per_inst_scores = pd.DataFrame()\n for instrument in np.unique(instruments_acc):\n instrument_mask = np.nonzero(instruments_acc == instrument)\n instrument_scores = evaluate_scores(labels_total[instrument_mask],\n preds_total[instrument_mask])\n piano_class = 'Upright' if labels_total[instrument_mask][0\n ] else 'Grand'\n per_inst_scores = per_inst_scores.append(pd.DataFrame([[np.round(\n instrument_scores['Accuracy'], 2), piano_class]], index=pd.\n Index([instrument], name='Instrument'), columns=['Accuracy',\n 'Class']))\n overall_scores = evaluate_scores(labels_total, preds_total)\n return overall_scores, per_inst_scores\n\n\n<function token>\n\n\ndef hyperparameter_search(cnn_type, training_dataset, batch_size_space,\n epochs_space, lr_space, loss_space=None):\n if loss_space is None:\n loss_space = [nn.BCELoss()]\n hyp_search_csv = os.path.join(result_dir, cnn_type.__name__,\n 'hyperparam_search.csv')\n with open(hyp_search_csv, 'a', newline='') as csvfile:\n writer = csv.writer(csvfile)\n writer.writerow(['----------New Hyperparameter search----------'])\n writer.writerow(['Batch size', 'Epochs', 'Learning rate',\n 'Loss function'])\n total_combinations = len(loss_space) * len(lr_space) * len(epochs_space\n ) * len(batch_size_space)\n best_score = 0\n best_params = None\n best_stats = None\n i = 0\n for epochs_local in epochs_space:\n for loss_function_local in loss_space:\n for batch_size_local in batch_size_space:\n for learning_rate_local in lr_space:\n i += 1\n print('\\n------ Hyperparameter search combination', i,\n 'of', total_combinations, '------')\n print('Model type:', cnn_type.__name__)\n hyperparams_local = {'batch_size': batch_size_local,\n 'epochs': epochs_local, 'learning_rate':\n learning_rate_local, 'loss_function':\n loss_function_local}\n print(hyperparams_local)\n cv_results = cross_validate(cnn_type=cnn_type, hyparams\n =hyperparams_local, cross_val_subset=\n training_dataset, cv_folds=4, partition_mode=\n 'segment-instruments-random-balanced',\n plot_train_curves=False, verbose=False)\n with open(hyp_search_csv, 'a', newline='') as csvfile:\n writer = csv.writer(csvfile)\n writer.writerow([batch_size_local, epochs_local,\n learning_rate_local, loss_function_local])\n cv_results.to_csv(hyp_search_csv, mode='a')\n min_class_acc_local = cv_results.loc[\n 'Min per-class accuracy', 'mean']\n bal_acc_local = cv_results.loc[\n 'Balanced (macro-avg) accuracy', 'mean']\n if (min_class_acc_local > best_score and bal_acc_local >\n 0.5):\n best_params = hyperparams_local\n best_score = min_class_acc_local\n best_stats = cv_results\n print('\\n------New best performing combination------')\n print(best_params)\n print('with stats:')\n print(best_stats.round(3))\n return best_params, best_score, best_stats\n\n\n<code token>\n", "<import token>\n<assignment token>\n\n\ndef generate_split_indices(data, partition_ratios=None, mode='mixed', seed=None\n ):\n if partition_ratios is None:\n partition_ratios = [0.8, 0.1]\n rng = np.random.default_rng(seed=seed)\n if mode == 'segment-instruments-random':\n instruments = data.instrument.unique()\n rng.shuffle(instruments)\n i = 0\n indices_train = []\n indices_val = []\n indices_test = []\n no_more_instruments = False\n next_instrument_indices = np.asarray(data.instrument == instruments[i]\n ).nonzero()[0]\n while (len(indices_train) + len(next_instrument_indices)) / len(data\n ) <= partition_ratios[0]:\n indices_train = np.append(indices_train, next_instrument_indices)\n i += 1\n if i >= len(instruments):\n no_more_instruments = True\n break\n next_instrument_indices = np.asarray(data.instrument ==\n instruments[i]).nonzero()[0]\n while (len(indices_train) + len(indices_val) + len(\n next_instrument_indices)) / len(data) <= partition_ratios[0\n ] + partition_ratios[1] and not no_more_instruments:\n indices_val = np.append(indices_val, next_instrument_indices)\n i += 1\n if i >= len(instruments):\n break\n next_instrument_indices = np.asarray(data.instrument ==\n instruments[i]).nonzero()[0]\n for j in range(i, len(instruments)):\n indices_test = np.append(indices_test, np.asarray(data.\n instrument == instruments[j]).nonzero()[0])\n np.random.shuffle(indices_train)\n np.random.shuffle(indices_val)\n np.random.shuffle(indices_test)\n elif mode == 'segment-instruments-random-balanced':\n instruments_grand = data[data.label == 0].instrument.unique()\n instruments_upright = data[data.label == 1].instrument.unique()\n rng.shuffle(instruments_grand)\n rng.shuffle(instruments_upright)\n num_train_instruments = np.round(partition_ratios[0] * len(data.\n instrument.unique()))\n num_val_instruments = np.round(partition_ratios[1] * len(data.\n instrument.unique()))\n indices_train = []\n indices_val = []\n indices_test = []\n i_grand = 0\n i_upright = 0\n for i in range(0, len(data.instrument.unique())):\n if i % 2 and i_upright < len(instruments_upright):\n next_instrument_indices = np.asarray(data.instrument ==\n instruments_upright[i_upright]).nonzero()[0]\n i_upright += 1\n elif i_grand < len(instruments_grand):\n next_instrument_indices = np.asarray(data.instrument ==\n instruments_grand[i_grand]).nonzero()[0]\n i_grand += 1\n else:\n break\n if i < num_train_instruments:\n indices_train = np.append(indices_train,\n next_instrument_indices)\n elif i < num_train_instruments + num_val_instruments:\n indices_val = np.append(indices_val, next_instrument_indices)\n else:\n indices_test = np.append(indices_test, next_instrument_indices)\n if np.sum(partition_ratios) == 1:\n indices_val = np.append(indices_val, indices_test)\n indices_test = []\n np.random.shuffle(indices_train)\n np.random.shuffle(indices_val)\n np.random.shuffle(indices_test)\n elif mode == 'segment-instruments-manual':\n train_instruments = ['Nord_BrightGrand-XL', 'Nord_AmberUpright-XL',\n 'Nord_ConcertGrand1-Lrg', 'Nord_BabyUpright-XL',\n 'Nord_GrandImperial-XL', 'Nord_BlackUpright-Lrg',\n 'Nord_RoyalGrand3D-XL', 'Nord_MellowUpright-XL',\n 'Nord_StudioGrand1-Lrg', 'Nord_RainPiano-Lrg',\n 'Nord_WhiteGrand-XL', 'Nord_RomanticUpright-Lrg',\n 'Nord_VelvetGrand-XL', 'Nord_GrandUpright-XL',\n 'Nord_StudioGrand2-Lrg', 'Nord_SaloonUpright-Lrg',\n 'Nord_ItalianGrand-XL', 'Nord_BlueSwede-Lrg']\n val_instruments = ['Nord_ConcertGrand1Amb-Lrg',\n 'Nord_BambinoUpright-XL', 'Nord_GrandLadyD-Lrg',\n 'Nord_QueenUpright-Lrg', 'Nord_SilverGrand-XL']\n test_instruments = []\n indices_train = np.asarray(data.instrument.isin(train_instruments)\n ).nonzero()[0]\n indices_val = np.asarray(data.instrument.isin(val_instruments)\n ).nonzero()[0]\n indices_test = np.asarray(data.instrument.isin(test_instruments)\n ).nonzero()[0]\n np.random.shuffle(indices_train)\n np.random.shuffle(indices_val)\n np.random.shuffle(indices_test)\n elif mode == 'segment-velocities':\n indices_train = np.asarray(data.velocity == 'M').nonzero()[0]\n indices_val = np.asarray(data.velocity == 'P').nonzero()[0]\n indices_test = np.asarray(data.velocity == 'F').nonzero()[0]\n np.random.shuffle(indices_train)\n np.random.shuffle(indices_val)\n np.random.shuffle(indices_test)\n elif mode == 'mixed':\n indices = np.arange(len(data))\n rng.shuffle(indices)\n split_point_train = int(len(data) * partition_ratios[0])\n split_point_val = split_point_train + int(len(data) *\n partition_ratios[1])\n indices_train = indices[:split_point_train]\n indices_val = indices[split_point_train:split_point_val]\n indices_test = indices[split_point_val:]\n else:\n raise Exception('Mode not recognised')\n print('')\n indices_train = indices_train.astype(int)\n indices_val = indices_val.astype(int)\n print(len(indices_train), 'training samples')\n print(len(indices_val), 'validation samples')\n print(len(indices_test), 'test samples')\n train_class_balance = data.iloc[indices_train].label.sum(axis=0) / len(\n indices_train)\n print('Train set contains', np.round(train_class_balance * 100),\n '% Upright pianos')\n if mode == 'segment_instruments':\n print('\\t', pd.unique(data.iloc[indices_train].instrument))\n val_class_balance = data.iloc[indices_val].label.sum(axis=0) / len(\n indices_val)\n print('Validation set contains', np.round(val_class_balance * 100),\n '% Upright pianos')\n if mode == 'segment_instruments':\n print('\\t', pd.unique(data.iloc[indices_val].instrument))\n if len(indices_test) == 0:\n indices_test = np.array([])\n indices_test = indices_test.astype(int)\n else:\n indices_test = indices_test.astype(int)\n test_class_balance = data.iloc[indices_test].label.sum(axis=0) / len(\n indices_test)\n print('Test set contains', np.round(test_class_balance * 100),\n '% Upright pianos')\n if mode == 'segment_instruments':\n print('\\t', pd.unique(data.iloc[indices_test].instrument))\n print('Overall, dataset contains', np.round(100 * data.label.sum(axis=0\n ) / len(data)), '% Upright pianos')\n return indices_train, indices_val, indices_test\n\n\n<function token>\n\n\ndef train_model(cnn_type, params, local_dataset, train_ind, val_loader=None,\n plot=True, plot_title='', verbose=True):\n if verbose:\n print('\\n--------------TRAINING MODEL--------------')\n print(timbre_CNN_type.__name__, 'with parameters:')\n print(params)\n batch_size = params['batch_size']\n epochs = params['epochs']\n learning_rate = params['learning_rate']\n loss_function = params['loss_function']\n loader_train = DataLoader(local_dataset, batch_size=batch_size, shuffle\n =False, sampler=sampler.SubsetRandomSampler(train_ind), pin_memory=True\n )\n model = cnn_type().to(device, non_blocking=True)\n optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)\n with torch.enable_grad():\n loss_train_log = []\n loss_val_log = []\n epoch_val_log = []\n for epoch in range(epochs):\n model.train()\n running_loss = 0.0\n for i, batch in enumerate(loader_train):\n x = batch[0].float().to(device, non_blocking=True)\n label = batch[1].float().to(device, non_blocking=True)\n optimizer.zero_grad()\n y = model(x)\n loss = loss_function(y, label)\n loss.backward()\n optimizer.step()\n running_loss += loss.detach()\n gc.collect()\n mean_epoch_loss = (running_loss / (batch_size * (i + 1))).item()\n if verbose:\n print('+Training - Epoch', epoch + 1, 'loss:', mean_epoch_loss)\n loss_train_log.append(mean_epoch_loss)\n if (epoch == epochs - 1 or epoch % val_interval == 0\n ) and val_loader is not None and plot:\n loss_val = 0\n model.eval()\n with torch.no_grad():\n for i, batch in enumerate(val_loader):\n x = batch[0].float().to(device, non_blocking=True)\n label = batch[1].float().to(device, non_blocking=True)\n y = model(x)\n loss_val += loss_function(y, label).detach()\n gc.collect()\n mean_epoch_val_loss = (loss_val / (batch_size * (i + 1))).item(\n )\n print('\\t+Validation - Epoch', epoch + 1, 'loss:',\n mean_epoch_val_loss)\n loss_val_log.append(mean_epoch_val_loss)\n epoch_val_log.append(epoch + 1)\n fig = None\n if plot:\n fig = plt.figure()\n plt.plot(range(1, epochs + 1), loss_train_log, c='r', label='train')\n if val_loader is not None:\n plt.plot(epoch_val_log, loss_val_log, c='b', label='val')\n plt.legend()\n plt.xlabel('epoch')\n plt.ylabel('loss')\n plt.xticks(np.arange(1, epochs + 1))\n plt.grid()\n plt.title('Loss curve over ' + str(epochs) +\n ' epochs of training - ' + plot_title)\n plt.tight_layout()\n plt.show()\n return model, fig\n\n\ndef evaluate_CNN(evaluated_model, test_set):\n labels_total = np.empty(0, dtype=int)\n preds_total = np.empty(0, dtype=int)\n instruments_acc = np.empty(0, dtype=str)\n evaluated_model.eval()\n with torch.no_grad():\n evaluated_model = evaluated_model.to(device, non_blocking=True)\n for batch in test_set:\n x = batch[0].float().to(device, non_blocking=True)\n label = batch[1].float().to(device, non_blocking=True)\n y = evaluated_model(x)\n pred = torch.round(y)\n labels_total = np.append(labels_total, label.cpu())\n preds_total = np.append(preds_total, pred.cpu())\n instruments_acc = np.append(instruments_acc, np.array(batch[2]))\n per_inst_scores = pd.DataFrame()\n for instrument in np.unique(instruments_acc):\n instrument_mask = np.nonzero(instruments_acc == instrument)\n instrument_scores = evaluate_scores(labels_total[instrument_mask],\n preds_total[instrument_mask])\n piano_class = 'Upright' if labels_total[instrument_mask][0\n ] else 'Grand'\n per_inst_scores = per_inst_scores.append(pd.DataFrame([[np.round(\n instrument_scores['Accuracy'], 2), piano_class]], index=pd.\n Index([instrument], name='Instrument'), columns=['Accuracy',\n 'Class']))\n overall_scores = evaluate_scores(labels_total, preds_total)\n return overall_scores, per_inst_scores\n\n\n<function token>\n\n\ndef hyperparameter_search(cnn_type, training_dataset, batch_size_space,\n epochs_space, lr_space, loss_space=None):\n if loss_space is None:\n loss_space = [nn.BCELoss()]\n hyp_search_csv = os.path.join(result_dir, cnn_type.__name__,\n 'hyperparam_search.csv')\n with open(hyp_search_csv, 'a', newline='') as csvfile:\n writer = csv.writer(csvfile)\n writer.writerow(['----------New Hyperparameter search----------'])\n writer.writerow(['Batch size', 'Epochs', 'Learning rate',\n 'Loss function'])\n total_combinations = len(loss_space) * len(lr_space) * len(epochs_space\n ) * len(batch_size_space)\n best_score = 0\n best_params = None\n best_stats = None\n i = 0\n for epochs_local in epochs_space:\n for loss_function_local in loss_space:\n for batch_size_local in batch_size_space:\n for learning_rate_local in lr_space:\n i += 1\n print('\\n------ Hyperparameter search combination', i,\n 'of', total_combinations, '------')\n print('Model type:', cnn_type.__name__)\n hyperparams_local = {'batch_size': batch_size_local,\n 'epochs': epochs_local, 'learning_rate':\n learning_rate_local, 'loss_function':\n loss_function_local}\n print(hyperparams_local)\n cv_results = cross_validate(cnn_type=cnn_type, hyparams\n =hyperparams_local, cross_val_subset=\n training_dataset, cv_folds=4, partition_mode=\n 'segment-instruments-random-balanced',\n plot_train_curves=False, verbose=False)\n with open(hyp_search_csv, 'a', newline='') as csvfile:\n writer = csv.writer(csvfile)\n writer.writerow([batch_size_local, epochs_local,\n learning_rate_local, loss_function_local])\n cv_results.to_csv(hyp_search_csv, mode='a')\n min_class_acc_local = cv_results.loc[\n 'Min per-class accuracy', 'mean']\n bal_acc_local = cv_results.loc[\n 'Balanced (macro-avg) accuracy', 'mean']\n if (min_class_acc_local > best_score and bal_acc_local >\n 0.5):\n best_params = hyperparams_local\n best_score = min_class_acc_local\n best_stats = cv_results\n print('\\n------New best performing combination------')\n print(best_params)\n print('with stats:')\n print(best_stats.round(3))\n return best_params, best_score, best_stats\n\n\n<code token>\n", "<import token>\n<assignment token>\n\n\ndef generate_split_indices(data, partition_ratios=None, mode='mixed', seed=None\n ):\n if partition_ratios is None:\n partition_ratios = [0.8, 0.1]\n rng = np.random.default_rng(seed=seed)\n if mode == 'segment-instruments-random':\n instruments = data.instrument.unique()\n rng.shuffle(instruments)\n i = 0\n indices_train = []\n indices_val = []\n indices_test = []\n no_more_instruments = False\n next_instrument_indices = np.asarray(data.instrument == instruments[i]\n ).nonzero()[0]\n while (len(indices_train) + len(next_instrument_indices)) / len(data\n ) <= partition_ratios[0]:\n indices_train = np.append(indices_train, next_instrument_indices)\n i += 1\n if i >= len(instruments):\n no_more_instruments = True\n break\n next_instrument_indices = np.asarray(data.instrument ==\n instruments[i]).nonzero()[0]\n while (len(indices_train) + len(indices_val) + len(\n next_instrument_indices)) / len(data) <= partition_ratios[0\n ] + partition_ratios[1] and not no_more_instruments:\n indices_val = np.append(indices_val, next_instrument_indices)\n i += 1\n if i >= len(instruments):\n break\n next_instrument_indices = np.asarray(data.instrument ==\n instruments[i]).nonzero()[0]\n for j in range(i, len(instruments)):\n indices_test = np.append(indices_test, np.asarray(data.\n instrument == instruments[j]).nonzero()[0])\n np.random.shuffle(indices_train)\n np.random.shuffle(indices_val)\n np.random.shuffle(indices_test)\n elif mode == 'segment-instruments-random-balanced':\n instruments_grand = data[data.label == 0].instrument.unique()\n instruments_upright = data[data.label == 1].instrument.unique()\n rng.shuffle(instruments_grand)\n rng.shuffle(instruments_upright)\n num_train_instruments = np.round(partition_ratios[0] * len(data.\n instrument.unique()))\n num_val_instruments = np.round(partition_ratios[1] * len(data.\n instrument.unique()))\n indices_train = []\n indices_val = []\n indices_test = []\n i_grand = 0\n i_upright = 0\n for i in range(0, len(data.instrument.unique())):\n if i % 2 and i_upright < len(instruments_upright):\n next_instrument_indices = np.asarray(data.instrument ==\n instruments_upright[i_upright]).nonzero()[0]\n i_upright += 1\n elif i_grand < len(instruments_grand):\n next_instrument_indices = np.asarray(data.instrument ==\n instruments_grand[i_grand]).nonzero()[0]\n i_grand += 1\n else:\n break\n if i < num_train_instruments:\n indices_train = np.append(indices_train,\n next_instrument_indices)\n elif i < num_train_instruments + num_val_instruments:\n indices_val = np.append(indices_val, next_instrument_indices)\n else:\n indices_test = np.append(indices_test, next_instrument_indices)\n if np.sum(partition_ratios) == 1:\n indices_val = np.append(indices_val, indices_test)\n indices_test = []\n np.random.shuffle(indices_train)\n np.random.shuffle(indices_val)\n np.random.shuffle(indices_test)\n elif mode == 'segment-instruments-manual':\n train_instruments = ['Nord_BrightGrand-XL', 'Nord_AmberUpright-XL',\n 'Nord_ConcertGrand1-Lrg', 'Nord_BabyUpright-XL',\n 'Nord_GrandImperial-XL', 'Nord_BlackUpright-Lrg',\n 'Nord_RoyalGrand3D-XL', 'Nord_MellowUpright-XL',\n 'Nord_StudioGrand1-Lrg', 'Nord_RainPiano-Lrg',\n 'Nord_WhiteGrand-XL', 'Nord_RomanticUpright-Lrg',\n 'Nord_VelvetGrand-XL', 'Nord_GrandUpright-XL',\n 'Nord_StudioGrand2-Lrg', 'Nord_SaloonUpright-Lrg',\n 'Nord_ItalianGrand-XL', 'Nord_BlueSwede-Lrg']\n val_instruments = ['Nord_ConcertGrand1Amb-Lrg',\n 'Nord_BambinoUpright-XL', 'Nord_GrandLadyD-Lrg',\n 'Nord_QueenUpright-Lrg', 'Nord_SilverGrand-XL']\n test_instruments = []\n indices_train = np.asarray(data.instrument.isin(train_instruments)\n ).nonzero()[0]\n indices_val = np.asarray(data.instrument.isin(val_instruments)\n ).nonzero()[0]\n indices_test = np.asarray(data.instrument.isin(test_instruments)\n ).nonzero()[0]\n np.random.shuffle(indices_train)\n np.random.shuffle(indices_val)\n np.random.shuffle(indices_test)\n elif mode == 'segment-velocities':\n indices_train = np.asarray(data.velocity == 'M').nonzero()[0]\n indices_val = np.asarray(data.velocity == 'P').nonzero()[0]\n indices_test = np.asarray(data.velocity == 'F').nonzero()[0]\n np.random.shuffle(indices_train)\n np.random.shuffle(indices_val)\n np.random.shuffle(indices_test)\n elif mode == 'mixed':\n indices = np.arange(len(data))\n rng.shuffle(indices)\n split_point_train = int(len(data) * partition_ratios[0])\n split_point_val = split_point_train + int(len(data) *\n partition_ratios[1])\n indices_train = indices[:split_point_train]\n indices_val = indices[split_point_train:split_point_val]\n indices_test = indices[split_point_val:]\n else:\n raise Exception('Mode not recognised')\n print('')\n indices_train = indices_train.astype(int)\n indices_val = indices_val.astype(int)\n print(len(indices_train), 'training samples')\n print(len(indices_val), 'validation samples')\n print(len(indices_test), 'test samples')\n train_class_balance = data.iloc[indices_train].label.sum(axis=0) / len(\n indices_train)\n print('Train set contains', np.round(train_class_balance * 100),\n '% Upright pianos')\n if mode == 'segment_instruments':\n print('\\t', pd.unique(data.iloc[indices_train].instrument))\n val_class_balance = data.iloc[indices_val].label.sum(axis=0) / len(\n indices_val)\n print('Validation set contains', np.round(val_class_balance * 100),\n '% Upright pianos')\n if mode == 'segment_instruments':\n print('\\t', pd.unique(data.iloc[indices_val].instrument))\n if len(indices_test) == 0:\n indices_test = np.array([])\n indices_test = indices_test.astype(int)\n else:\n indices_test = indices_test.astype(int)\n test_class_balance = data.iloc[indices_test].label.sum(axis=0) / len(\n indices_test)\n print('Test set contains', np.round(test_class_balance * 100),\n '% Upright pianos')\n if mode == 'segment_instruments':\n print('\\t', pd.unique(data.iloc[indices_test].instrument))\n print('Overall, dataset contains', np.round(100 * data.label.sum(axis=0\n ) / len(data)), '% Upright pianos')\n return indices_train, indices_val, indices_test\n\n\n<function token>\n\n\ndef train_model(cnn_type, params, local_dataset, train_ind, val_loader=None,\n plot=True, plot_title='', verbose=True):\n if verbose:\n print('\\n--------------TRAINING MODEL--------------')\n print(timbre_CNN_type.__name__, 'with parameters:')\n print(params)\n batch_size = params['batch_size']\n epochs = params['epochs']\n learning_rate = params['learning_rate']\n loss_function = params['loss_function']\n loader_train = DataLoader(local_dataset, batch_size=batch_size, shuffle\n =False, sampler=sampler.SubsetRandomSampler(train_ind), pin_memory=True\n )\n model = cnn_type().to(device, non_blocking=True)\n optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)\n with torch.enable_grad():\n loss_train_log = []\n loss_val_log = []\n epoch_val_log = []\n for epoch in range(epochs):\n model.train()\n running_loss = 0.0\n for i, batch in enumerate(loader_train):\n x = batch[0].float().to(device, non_blocking=True)\n label = batch[1].float().to(device, non_blocking=True)\n optimizer.zero_grad()\n y = model(x)\n loss = loss_function(y, label)\n loss.backward()\n optimizer.step()\n running_loss += loss.detach()\n gc.collect()\n mean_epoch_loss = (running_loss / (batch_size * (i + 1))).item()\n if verbose:\n print('+Training - Epoch', epoch + 1, 'loss:', mean_epoch_loss)\n loss_train_log.append(mean_epoch_loss)\n if (epoch == epochs - 1 or epoch % val_interval == 0\n ) and val_loader is not None and plot:\n loss_val = 0\n model.eval()\n with torch.no_grad():\n for i, batch in enumerate(val_loader):\n x = batch[0].float().to(device, non_blocking=True)\n label = batch[1].float().to(device, non_blocking=True)\n y = model(x)\n loss_val += loss_function(y, label).detach()\n gc.collect()\n mean_epoch_val_loss = (loss_val / (batch_size * (i + 1))).item(\n )\n print('\\t+Validation - Epoch', epoch + 1, 'loss:',\n mean_epoch_val_loss)\n loss_val_log.append(mean_epoch_val_loss)\n epoch_val_log.append(epoch + 1)\n fig = None\n if plot:\n fig = plt.figure()\n plt.plot(range(1, epochs + 1), loss_train_log, c='r', label='train')\n if val_loader is not None:\n plt.plot(epoch_val_log, loss_val_log, c='b', label='val')\n plt.legend()\n plt.xlabel('epoch')\n plt.ylabel('loss')\n plt.xticks(np.arange(1, epochs + 1))\n plt.grid()\n plt.title('Loss curve over ' + str(epochs) +\n ' epochs of training - ' + plot_title)\n plt.tight_layout()\n plt.show()\n return model, fig\n\n\ndef evaluate_CNN(evaluated_model, test_set):\n labels_total = np.empty(0, dtype=int)\n preds_total = np.empty(0, dtype=int)\n instruments_acc = np.empty(0, dtype=str)\n evaluated_model.eval()\n with torch.no_grad():\n evaluated_model = evaluated_model.to(device, non_blocking=True)\n for batch in test_set:\n x = batch[0].float().to(device, non_blocking=True)\n label = batch[1].float().to(device, non_blocking=True)\n y = evaluated_model(x)\n pred = torch.round(y)\n labels_total = np.append(labels_total, label.cpu())\n preds_total = np.append(preds_total, pred.cpu())\n instruments_acc = np.append(instruments_acc, np.array(batch[2]))\n per_inst_scores = pd.DataFrame()\n for instrument in np.unique(instruments_acc):\n instrument_mask = np.nonzero(instruments_acc == instrument)\n instrument_scores = evaluate_scores(labels_total[instrument_mask],\n preds_total[instrument_mask])\n piano_class = 'Upright' if labels_total[instrument_mask][0\n ] else 'Grand'\n per_inst_scores = per_inst_scores.append(pd.DataFrame([[np.round(\n instrument_scores['Accuracy'], 2), piano_class]], index=pd.\n Index([instrument], name='Instrument'), columns=['Accuracy',\n 'Class']))\n overall_scores = evaluate_scores(labels_total, preds_total)\n return overall_scores, per_inst_scores\n\n\n<function token>\n<function token>\n<code token>\n", "<import token>\n<assignment token>\n\n\ndef generate_split_indices(data, partition_ratios=None, mode='mixed', seed=None\n ):\n if partition_ratios is None:\n partition_ratios = [0.8, 0.1]\n rng = np.random.default_rng(seed=seed)\n if mode == 'segment-instruments-random':\n instruments = data.instrument.unique()\n rng.shuffle(instruments)\n i = 0\n indices_train = []\n indices_val = []\n indices_test = []\n no_more_instruments = False\n next_instrument_indices = np.asarray(data.instrument == instruments[i]\n ).nonzero()[0]\n while (len(indices_train) + len(next_instrument_indices)) / len(data\n ) <= partition_ratios[0]:\n indices_train = np.append(indices_train, next_instrument_indices)\n i += 1\n if i >= len(instruments):\n no_more_instruments = True\n break\n next_instrument_indices = np.asarray(data.instrument ==\n instruments[i]).nonzero()[0]\n while (len(indices_train) + len(indices_val) + len(\n next_instrument_indices)) / len(data) <= partition_ratios[0\n ] + partition_ratios[1] and not no_more_instruments:\n indices_val = np.append(indices_val, next_instrument_indices)\n i += 1\n if i >= len(instruments):\n break\n next_instrument_indices = np.asarray(data.instrument ==\n instruments[i]).nonzero()[0]\n for j in range(i, len(instruments)):\n indices_test = np.append(indices_test, np.asarray(data.\n instrument == instruments[j]).nonzero()[0])\n np.random.shuffle(indices_train)\n np.random.shuffle(indices_val)\n np.random.shuffle(indices_test)\n elif mode == 'segment-instruments-random-balanced':\n instruments_grand = data[data.label == 0].instrument.unique()\n instruments_upright = data[data.label == 1].instrument.unique()\n rng.shuffle(instruments_grand)\n rng.shuffle(instruments_upright)\n num_train_instruments = np.round(partition_ratios[0] * len(data.\n instrument.unique()))\n num_val_instruments = np.round(partition_ratios[1] * len(data.\n instrument.unique()))\n indices_train = []\n indices_val = []\n indices_test = []\n i_grand = 0\n i_upright = 0\n for i in range(0, len(data.instrument.unique())):\n if i % 2 and i_upright < len(instruments_upright):\n next_instrument_indices = np.asarray(data.instrument ==\n instruments_upright[i_upright]).nonzero()[0]\n i_upright += 1\n elif i_grand < len(instruments_grand):\n next_instrument_indices = np.asarray(data.instrument ==\n instruments_grand[i_grand]).nonzero()[0]\n i_grand += 1\n else:\n break\n if i < num_train_instruments:\n indices_train = np.append(indices_train,\n next_instrument_indices)\n elif i < num_train_instruments + num_val_instruments:\n indices_val = np.append(indices_val, next_instrument_indices)\n else:\n indices_test = np.append(indices_test, next_instrument_indices)\n if np.sum(partition_ratios) == 1:\n indices_val = np.append(indices_val, indices_test)\n indices_test = []\n np.random.shuffle(indices_train)\n np.random.shuffle(indices_val)\n np.random.shuffle(indices_test)\n elif mode == 'segment-instruments-manual':\n train_instruments = ['Nord_BrightGrand-XL', 'Nord_AmberUpright-XL',\n 'Nord_ConcertGrand1-Lrg', 'Nord_BabyUpright-XL',\n 'Nord_GrandImperial-XL', 'Nord_BlackUpright-Lrg',\n 'Nord_RoyalGrand3D-XL', 'Nord_MellowUpright-XL',\n 'Nord_StudioGrand1-Lrg', 'Nord_RainPiano-Lrg',\n 'Nord_WhiteGrand-XL', 'Nord_RomanticUpright-Lrg',\n 'Nord_VelvetGrand-XL', 'Nord_GrandUpright-XL',\n 'Nord_StudioGrand2-Lrg', 'Nord_SaloonUpright-Lrg',\n 'Nord_ItalianGrand-XL', 'Nord_BlueSwede-Lrg']\n val_instruments = ['Nord_ConcertGrand1Amb-Lrg',\n 'Nord_BambinoUpright-XL', 'Nord_GrandLadyD-Lrg',\n 'Nord_QueenUpright-Lrg', 'Nord_SilverGrand-XL']\n test_instruments = []\n indices_train = np.asarray(data.instrument.isin(train_instruments)\n ).nonzero()[0]\n indices_val = np.asarray(data.instrument.isin(val_instruments)\n ).nonzero()[0]\n indices_test = np.asarray(data.instrument.isin(test_instruments)\n ).nonzero()[0]\n np.random.shuffle(indices_train)\n np.random.shuffle(indices_val)\n np.random.shuffle(indices_test)\n elif mode == 'segment-velocities':\n indices_train = np.asarray(data.velocity == 'M').nonzero()[0]\n indices_val = np.asarray(data.velocity == 'P').nonzero()[0]\n indices_test = np.asarray(data.velocity == 'F').nonzero()[0]\n np.random.shuffle(indices_train)\n np.random.shuffle(indices_val)\n np.random.shuffle(indices_test)\n elif mode == 'mixed':\n indices = np.arange(len(data))\n rng.shuffle(indices)\n split_point_train = int(len(data) * partition_ratios[0])\n split_point_val = split_point_train + int(len(data) *\n partition_ratios[1])\n indices_train = indices[:split_point_train]\n indices_val = indices[split_point_train:split_point_val]\n indices_test = indices[split_point_val:]\n else:\n raise Exception('Mode not recognised')\n print('')\n indices_train = indices_train.astype(int)\n indices_val = indices_val.astype(int)\n print(len(indices_train), 'training samples')\n print(len(indices_val), 'validation samples')\n print(len(indices_test), 'test samples')\n train_class_balance = data.iloc[indices_train].label.sum(axis=0) / len(\n indices_train)\n print('Train set contains', np.round(train_class_balance * 100),\n '% Upright pianos')\n if mode == 'segment_instruments':\n print('\\t', pd.unique(data.iloc[indices_train].instrument))\n val_class_balance = data.iloc[indices_val].label.sum(axis=0) / len(\n indices_val)\n print('Validation set contains', np.round(val_class_balance * 100),\n '% Upright pianos')\n if mode == 'segment_instruments':\n print('\\t', pd.unique(data.iloc[indices_val].instrument))\n if len(indices_test) == 0:\n indices_test = np.array([])\n indices_test = indices_test.astype(int)\n else:\n indices_test = indices_test.astype(int)\n test_class_balance = data.iloc[indices_test].label.sum(axis=0) / len(\n indices_test)\n print('Test set contains', np.round(test_class_balance * 100),\n '% Upright pianos')\n if mode == 'segment_instruments':\n print('\\t', pd.unique(data.iloc[indices_test].instrument))\n print('Overall, dataset contains', np.round(100 * data.label.sum(axis=0\n ) / len(data)), '% Upright pianos')\n return indices_train, indices_val, indices_test\n\n\n<function token>\n<function token>\n\n\ndef evaluate_CNN(evaluated_model, test_set):\n labels_total = np.empty(0, dtype=int)\n preds_total = np.empty(0, dtype=int)\n instruments_acc = np.empty(0, dtype=str)\n evaluated_model.eval()\n with torch.no_grad():\n evaluated_model = evaluated_model.to(device, non_blocking=True)\n for batch in test_set:\n x = batch[0].float().to(device, non_blocking=True)\n label = batch[1].float().to(device, non_blocking=True)\n y = evaluated_model(x)\n pred = torch.round(y)\n labels_total = np.append(labels_total, label.cpu())\n preds_total = np.append(preds_total, pred.cpu())\n instruments_acc = np.append(instruments_acc, np.array(batch[2]))\n per_inst_scores = pd.DataFrame()\n for instrument in np.unique(instruments_acc):\n instrument_mask = np.nonzero(instruments_acc == instrument)\n instrument_scores = evaluate_scores(labels_total[instrument_mask],\n preds_total[instrument_mask])\n piano_class = 'Upright' if labels_total[instrument_mask][0\n ] else 'Grand'\n per_inst_scores = per_inst_scores.append(pd.DataFrame([[np.round(\n instrument_scores['Accuracy'], 2), piano_class]], index=pd.\n Index([instrument], name='Instrument'), columns=['Accuracy',\n 'Class']))\n overall_scores = evaluate_scores(labels_total, preds_total)\n return overall_scores, per_inst_scores\n\n\n<function token>\n<function token>\n<code token>\n", "<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n\n\ndef evaluate_CNN(evaluated_model, test_set):\n labels_total = np.empty(0, dtype=int)\n preds_total = np.empty(0, dtype=int)\n instruments_acc = np.empty(0, dtype=str)\n evaluated_model.eval()\n with torch.no_grad():\n evaluated_model = evaluated_model.to(device, non_blocking=True)\n for batch in test_set:\n x = batch[0].float().to(device, non_blocking=True)\n label = batch[1].float().to(device, non_blocking=True)\n y = evaluated_model(x)\n pred = torch.round(y)\n labels_total = np.append(labels_total, label.cpu())\n preds_total = np.append(preds_total, pred.cpu())\n instruments_acc = np.append(instruments_acc, np.array(batch[2]))\n per_inst_scores = pd.DataFrame()\n for instrument in np.unique(instruments_acc):\n instrument_mask = np.nonzero(instruments_acc == instrument)\n instrument_scores = evaluate_scores(labels_total[instrument_mask],\n preds_total[instrument_mask])\n piano_class = 'Upright' if labels_total[instrument_mask][0\n ] else 'Grand'\n per_inst_scores = per_inst_scores.append(pd.DataFrame([[np.round(\n instrument_scores['Accuracy'], 2), piano_class]], index=pd.\n Index([instrument], name='Instrument'), columns=['Accuracy',\n 'Class']))\n overall_scores = evaluate_scores(labels_total, preds_total)\n return overall_scores, per_inst_scores\n\n\n<function token>\n<function token>\n<code token>\n", "<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<code token>\n" ]
false
99,026
cec2414b851fea9e499387a3e46b0fba090c5db5
# -*- coding: utf-8 -*- # Generated by Django 1.9 on 2016-05-16 10:44 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('blog', '0016_category_slug'), ] operations = [ migrations.RenameField( model_name='comment', old_name='text', new_name='comment', ), migrations.RenameField( model_name='comment', old_name='author', new_name='name', ), migrations.AlterField( model_name='category', name='name', field=models.CharField(blank=True, default='', max_length=100, null=True), ), ]
[ "# -*- coding: utf-8 -*-\n# Generated by Django 1.9 on 2016-05-16 10:44\nfrom __future__ import unicode_literals\n\nfrom django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('blog', '0016_category_slug'),\n ]\n\n operations = [\n migrations.RenameField(\n model_name='comment',\n old_name='text',\n new_name='comment',\n ),\n migrations.RenameField(\n model_name='comment',\n old_name='author',\n new_name='name',\n ),\n migrations.AlterField(\n model_name='category',\n name='name',\n field=models.CharField(blank=True, default='', max_length=100, null=True),\n ),\n ]\n", "from __future__ import unicode_literals\nfrom django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n dependencies = [('blog', '0016_category_slug')]\n operations = [migrations.RenameField(model_name='comment', old_name=\n 'text', new_name='comment'), migrations.RenameField(model_name=\n 'comment', old_name='author', new_name='name'), migrations.\n AlterField(model_name='category', name='name', field=models.\n CharField(blank=True, default='', max_length=100, null=True))]\n", "<import token>\n\n\nclass Migration(migrations.Migration):\n dependencies = [('blog', '0016_category_slug')]\n operations = [migrations.RenameField(model_name='comment', old_name=\n 'text', new_name='comment'), migrations.RenameField(model_name=\n 'comment', old_name='author', new_name='name'), migrations.\n AlterField(model_name='category', name='name', field=models.\n CharField(blank=True, default='', max_length=100, null=True))]\n", "<import token>\n\n\nclass Migration(migrations.Migration):\n <assignment token>\n <assignment token>\n", "<import token>\n<class token>\n" ]
false
99,027
4e1354f476eefa4b19cff5b3f0ba57f7f03081ca
import bge from command import Command from gun import Gun class AimCommand(Command): #gun = Gun() def __init__(self,gun): self.gun = gun def execute(self,vec): self.gun.aim(vec)
[ "import bge\nfrom command import Command\nfrom gun import Gun\n\nclass AimCommand(Command):\n #gun = Gun() \n def __init__(self,gun):\n self.gun = gun\n \n def execute(self,vec):\n self.gun.aim(vec)", "import bge\nfrom command import Command\nfrom gun import Gun\n\n\nclass AimCommand(Command):\n\n def __init__(self, gun):\n self.gun = gun\n\n def execute(self, vec):\n self.gun.aim(vec)\n", "<import token>\n\n\nclass AimCommand(Command):\n\n def __init__(self, gun):\n self.gun = gun\n\n def execute(self, vec):\n self.gun.aim(vec)\n", "<import token>\n\n\nclass AimCommand(Command):\n <function token>\n\n def execute(self, vec):\n self.gun.aim(vec)\n", "<import token>\n\n\nclass AimCommand(Command):\n <function token>\n <function token>\n", "<import token>\n<class token>\n" ]
false
99,028
46c9f8733837a326ca170386de9ebbcbf0cce3eb
import redis from model import Site, db import urllib import requests # ------------------------------------------------- # def process_job(): """processes url web scraping request If process has been done before, get result from database Otherwise, process and add data to database""" r = redis.StrictRedis() while True: curr_job = r.blpop('job_queue', 0)[1] r.hset('status', curr_job, 'processing') print('current job ID:', curr_job) # convert byte to string url = r.hget('urls', curr_job).decode("utf-8") print('Current URL:', url) # if this url has not been requested before/is not in the db if Site.query.filter_by(url=url).first(): r.hset('status', curr_job, 'complete') print('Job', curr_job, 'Completed') else: # fetches url page source try: html = str(get_html(url)) print('Successfully retrieved HTML') # add results to database db.session.add(Site(url=url, html=html)) db.session.commit() print('Added to database') r.hset('status', curr_job, 'complete') print('Job', curr_job, 'Completed') except ValueError: r.hset('status', curr_job, 'abort') print('Job', curr_job, 'Aborted') except TimeoutError: r.hset('status', curr_job, 'timeout') print('Job', curr_job, 'Timed Out') return def get_html(url): """Fetches html page source of url""" print('fetching', url) try: re = requests.get(url, timeout=1, stream=True) print('success!') # limit file size to 1mb html = re.raw.read(1000000+1, decode_content=True) if len(html) > 1000000: raise ValueError('response too large') return html except: raise TimeoutError('request timed out')
[ "import redis\nfrom model import Site, db\nimport urllib\nimport requests\n\n# ------------------------------------------------- #\n\ndef process_job():\n \"\"\"processes url web scraping request\n If process has been done before, get result from database\n Otherwise, process and add data to database\"\"\"\n r = redis.StrictRedis()\n while True:\n curr_job = r.blpop('job_queue', 0)[1]\n r.hset('status', curr_job, 'processing')\n print('current job ID:', curr_job)\n # convert byte to string\n url = r.hget('urls', curr_job).decode(\"utf-8\")\n print('Current URL:', url)\n\n # if this url has not been requested before/is not in the db\n if Site.query.filter_by(url=url).first():\n r.hset('status', curr_job, 'complete')\n print('Job', curr_job, 'Completed')\n else:\n # fetches url page source\n try:\n html = str(get_html(url))\n print('Successfully retrieved HTML')\n # add results to database\n db.session.add(Site(url=url, html=html))\n db.session.commit()\n print('Added to database')\n r.hset('status', curr_job, 'complete')\n print('Job', curr_job, 'Completed')\n except ValueError:\n r.hset('status', curr_job, 'abort')\n print('Job', curr_job, 'Aborted')\n except TimeoutError:\n r.hset('status', curr_job, 'timeout')\n print('Job', curr_job, 'Timed Out')\n return\n\ndef get_html(url):\n \"\"\"Fetches html page source of url\"\"\"\n print('fetching', url)\n try:\n re = requests.get(url, timeout=1, stream=True)\n print('success!')\n # limit file size to 1mb\n html = re.raw.read(1000000+1, decode_content=True)\n if len(html) > 1000000:\n raise ValueError('response too large')\n return html\n except:\n raise TimeoutError('request timed out')\n ", "import redis\nfrom model import Site, db\nimport urllib\nimport requests\n\n\ndef process_job():\n \"\"\"processes url web scraping request\n If process has been done before, get result from database\n Otherwise, process and add data to database\"\"\"\n r = redis.StrictRedis()\n while True:\n curr_job = r.blpop('job_queue', 0)[1]\n r.hset('status', curr_job, 'processing')\n print('current job ID:', curr_job)\n url = r.hget('urls', curr_job).decode('utf-8')\n print('Current URL:', url)\n if Site.query.filter_by(url=url).first():\n r.hset('status', curr_job, 'complete')\n print('Job', curr_job, 'Completed')\n else:\n try:\n html = str(get_html(url))\n print('Successfully retrieved HTML')\n db.session.add(Site(url=url, html=html))\n db.session.commit()\n print('Added to database')\n r.hset('status', curr_job, 'complete')\n print('Job', curr_job, 'Completed')\n except ValueError:\n r.hset('status', curr_job, 'abort')\n print('Job', curr_job, 'Aborted')\n except TimeoutError:\n r.hset('status', curr_job, 'timeout')\n print('Job', curr_job, 'Timed Out')\n return\n\n\ndef get_html(url):\n \"\"\"Fetches html page source of url\"\"\"\n print('fetching', url)\n try:\n re = requests.get(url, timeout=1, stream=True)\n print('success!')\n html = re.raw.read(1000000 + 1, decode_content=True)\n if len(html) > 1000000:\n raise ValueError('response too large')\n return html\n except:\n raise TimeoutError('request timed out')\n", "<import token>\n\n\ndef process_job():\n \"\"\"processes url web scraping request\n If process has been done before, get result from database\n Otherwise, process and add data to database\"\"\"\n r = redis.StrictRedis()\n while True:\n curr_job = r.blpop('job_queue', 0)[1]\n r.hset('status', curr_job, 'processing')\n print('current job ID:', curr_job)\n url = r.hget('urls', curr_job).decode('utf-8')\n print('Current URL:', url)\n if Site.query.filter_by(url=url).first():\n r.hset('status', curr_job, 'complete')\n print('Job', curr_job, 'Completed')\n else:\n try:\n html = str(get_html(url))\n print('Successfully retrieved HTML')\n db.session.add(Site(url=url, html=html))\n db.session.commit()\n print('Added to database')\n r.hset('status', curr_job, 'complete')\n print('Job', curr_job, 'Completed')\n except ValueError:\n r.hset('status', curr_job, 'abort')\n print('Job', curr_job, 'Aborted')\n except TimeoutError:\n r.hset('status', curr_job, 'timeout')\n print('Job', curr_job, 'Timed Out')\n return\n\n\ndef get_html(url):\n \"\"\"Fetches html page source of url\"\"\"\n print('fetching', url)\n try:\n re = requests.get(url, timeout=1, stream=True)\n print('success!')\n html = re.raw.read(1000000 + 1, decode_content=True)\n if len(html) > 1000000:\n raise ValueError('response too large')\n return html\n except:\n raise TimeoutError('request timed out')\n", "<import token>\n\n\ndef process_job():\n \"\"\"processes url web scraping request\n If process has been done before, get result from database\n Otherwise, process and add data to database\"\"\"\n r = redis.StrictRedis()\n while True:\n curr_job = r.blpop('job_queue', 0)[1]\n r.hset('status', curr_job, 'processing')\n print('current job ID:', curr_job)\n url = r.hget('urls', curr_job).decode('utf-8')\n print('Current URL:', url)\n if Site.query.filter_by(url=url).first():\n r.hset('status', curr_job, 'complete')\n print('Job', curr_job, 'Completed')\n else:\n try:\n html = str(get_html(url))\n print('Successfully retrieved HTML')\n db.session.add(Site(url=url, html=html))\n db.session.commit()\n print('Added to database')\n r.hset('status', curr_job, 'complete')\n print('Job', curr_job, 'Completed')\n except ValueError:\n r.hset('status', curr_job, 'abort')\n print('Job', curr_job, 'Aborted')\n except TimeoutError:\n r.hset('status', curr_job, 'timeout')\n print('Job', curr_job, 'Timed Out')\n return\n\n\n<function token>\n", "<import token>\n<function token>\n<function token>\n" ]
false
99,029
fd1e6719c073a96d52746f328019c23653ed902c
from django.urls import path from . import views app_name = 'baixa' urlpatterns = [ path('log/', views.BaixaView.as_view(), name='log'), path('produto/<int:pk>/',views.baixa_produto, name='baixa'), ]
[ "from django.urls import path\nfrom . import views\n\napp_name = 'baixa'\nurlpatterns = [\npath('log/', views.BaixaView.as_view(), name='log'),\npath('produto/<int:pk>/',views.baixa_produto, name='baixa'),\n]", "from django.urls import path\nfrom . import views\napp_name = 'baixa'\nurlpatterns = [path('log/', views.BaixaView.as_view(), name='log'), path(\n 'produto/<int:pk>/', views.baixa_produto, name='baixa')]\n", "<import token>\napp_name = 'baixa'\nurlpatterns = [path('log/', views.BaixaView.as_view(), name='log'), path(\n 'produto/<int:pk>/', views.baixa_produto, name='baixa')]\n", "<import token>\n<assignment token>\n" ]
false
99,030
e5b45dbfd4007f7520cb169278e65c78f3186cb1
#!/usr/bin/env python import logging import socket from pipeline import Pipeline from inputs import FileInput, ZeroMQInput, StdInput from parsers import RegexParser from filters import ZuluDateFilter, RemoveFieldsFilter, GrepFilter, LCFilter, UniqFilter, AddFieldsFilter from outputs import STDOutput, JSONOutput, SOLROutput, ZeroMQOutput from dirwatcher import DirWatcher logging.basicConfig(filename='./debug.log', level=logging.INFO, format='%(asctime)s:%(levelname)s:%(message)s') if __name__ == "__main__": zmq_in = ZeroMQInput() p = RegexParser(use = ['apachelog']) gf = GrepFilter(fields=['uri'],regex='health_check_status', reverse=True) rff = RemoveFieldsFilter(fields = ['msg']) zdf = ZuluDateFilter(fields=['date'],informat="%d/%b/%Y:%H:%M:%S") uniq = UniqFilter() solr_typemap = { 'date' : '_dt', 'hostname' : '_ti', 'client_ip' : '_ti', 'uri' : '_tp', 'server' : '_s', 'file' : '_tp', 'serve_time' : '_l', } solr = SOLROutput('http://localhost:8080/solr/medley', commitrate=1000, typemap=solr_typemap ) pipeline = Pipeline(pipes = [zmq_in,p,gf,rff,zdf,uniq,solr]) for data in pipeline: pass
[ "#!/usr/bin/env python\nimport logging\nimport socket\nfrom pipeline import Pipeline\nfrom inputs import FileInput, ZeroMQInput, StdInput\nfrom parsers import RegexParser \nfrom filters import ZuluDateFilter, RemoveFieldsFilter, GrepFilter, LCFilter, UniqFilter, AddFieldsFilter\nfrom outputs import STDOutput, JSONOutput, SOLROutput, ZeroMQOutput\nfrom dirwatcher import DirWatcher\n\nlogging.basicConfig(filename='./debug.log', level=logging.INFO, format='%(asctime)s:%(levelname)s:%(message)s')\n\nif __name__ == \"__main__\":\n\n zmq_in = ZeroMQInput()\n p = RegexParser(use = ['apachelog']) \n gf = GrepFilter(fields=['uri'],regex='health_check_status', reverse=True)\n rff = RemoveFieldsFilter(fields = ['msg'])\n zdf = ZuluDateFilter(fields=['date'],informat=\"%d/%b/%Y:%H:%M:%S\")\n uniq = UniqFilter()\n solr_typemap = { 'date' : '_dt',\n 'hostname' : '_ti',\n 'client_ip' : '_ti',\n 'uri' : '_tp',\n 'server' : '_s',\n 'file' : '_tp',\n 'serve_time' : '_l', }\n\n solr = SOLROutput('http://localhost:8080/solr/medley',\n commitrate=1000, typemap=solr_typemap )\n\n pipeline = Pipeline(pipes = [zmq_in,p,gf,rff,zdf,uniq,solr])\n for data in pipeline:\n pass \n", "import logging\nimport socket\nfrom pipeline import Pipeline\nfrom inputs import FileInput, ZeroMQInput, StdInput\nfrom parsers import RegexParser\nfrom filters import ZuluDateFilter, RemoveFieldsFilter, GrepFilter, LCFilter, UniqFilter, AddFieldsFilter\nfrom outputs import STDOutput, JSONOutput, SOLROutput, ZeroMQOutput\nfrom dirwatcher import DirWatcher\nlogging.basicConfig(filename='./debug.log', level=logging.INFO, format=\n '%(asctime)s:%(levelname)s:%(message)s')\nif __name__ == '__main__':\n zmq_in = ZeroMQInput()\n p = RegexParser(use=['apachelog'])\n gf = GrepFilter(fields=['uri'], regex='health_check_status', reverse=True)\n rff = RemoveFieldsFilter(fields=['msg'])\n zdf = ZuluDateFilter(fields=['date'], informat='%d/%b/%Y:%H:%M:%S')\n uniq = UniqFilter()\n solr_typemap = {'date': '_dt', 'hostname': '_ti', 'client_ip': '_ti',\n 'uri': '_tp', 'server': '_s', 'file': '_tp', 'serve_time': '_l'}\n solr = SOLROutput('http://localhost:8080/solr/medley', commitrate=1000,\n typemap=solr_typemap)\n pipeline = Pipeline(pipes=[zmq_in, p, gf, rff, zdf, uniq, solr])\n for data in pipeline:\n pass\n", "<import token>\nlogging.basicConfig(filename='./debug.log', level=logging.INFO, format=\n '%(asctime)s:%(levelname)s:%(message)s')\nif __name__ == '__main__':\n zmq_in = ZeroMQInput()\n p = RegexParser(use=['apachelog'])\n gf = GrepFilter(fields=['uri'], regex='health_check_status', reverse=True)\n rff = RemoveFieldsFilter(fields=['msg'])\n zdf = ZuluDateFilter(fields=['date'], informat='%d/%b/%Y:%H:%M:%S')\n uniq = UniqFilter()\n solr_typemap = {'date': '_dt', 'hostname': '_ti', 'client_ip': '_ti',\n 'uri': '_tp', 'server': '_s', 'file': '_tp', 'serve_time': '_l'}\n solr = SOLROutput('http://localhost:8080/solr/medley', commitrate=1000,\n typemap=solr_typemap)\n pipeline = Pipeline(pipes=[zmq_in, p, gf, rff, zdf, uniq, solr])\n for data in pipeline:\n pass\n", "<import token>\n<code token>\n" ]
false
99,031
ac0f34e63ce3f1e37859d91ccd05a9e9fd9c4313
# -*- coding: utf-8 -*- import requests import json from colored import fg, attr from PyInquirer import style_from_dict, Token, prompt from PyInquirer import Validator, ValidationError import regex import mysql.connector from mysql.connector import errorcode from .cmdb_data_model import cmdb_data_model """ Color definition. """ blue = fg('#46B1C9') red = fg('#B54653') green = fg('#86DEB7') reset = attr('reset') style = style_from_dict({ Token.QuestionMark: '#B54653 bold', Token.Selected: '#86DEB7 bold', Token.Instruction: '', # default Token.Answer: '#46B1C9 bold', Token.Question: '', }) class NotEmpty(Validator): def validate(self, document): ok = document.text != "" and document.text != None if not ok: raise ValidationError( message='Please enter something', cursor_position=len(document.text)) # Move cursor to end class AddressValidator(Validator): def validate(self, document): ok = regex.match( r'(\d{1,3}\.){3}\d{1,3}', document.text) if not ok: raise ValidationError( message='Please enter a valid IP address.', cursor_position=len(document.text)) # Move cursor to end def db_specification(): """ Asks the user to enter the necessary information (server address, username, password and database name) to access the i-doit CMDB. Returns ------- dict The database information (server address, username, password and database name). """ db_specification_question = [ { 'type': 'input', 'message': 'Enter the IP address of your database server (use format yyx.yyx.yyx.yyx where \'y\' is optional):', 'name': 'server', 'validate': AddressValidator }, { 'type': 'input', 'message': 'Enter your database name:', 'name': 'db_name', 'validate': NotEmpty }, { 'type': 'input', 'message': 'Enter your database username:', 'name': 'username', 'validate': NotEmpty }, { 'type': 'password', 'message': 'Enter your database password:', 'name': 'password' } ] db_specification_answer = prompt(db_specification_question, style=style) return db_specification_answer def test_db_connection(server, db_name, username, passwd): """ Tests the access to the CMDB database. Parameters ---------- server : string The IP address of the CMDB server. db_name: string The CMDB database name. username : string The CMDB username. password : string The CMDB password. Returns ------- boolean Returns true if the connection was successful and false otherwise. """ print(blue + "\n>>> " + reset + "Checking i-doit database connection...") cnx = None try: cnx = mysql.connector.connect( user=username, password=passwd, host=server, database=db_name) print(green + "\n>>> " + reset + "Successfully connected to the i-doit database.") except mysql.connector.Error as err: if err.errno == errorcode.ER_ACCESS_DENIED_ERROR: print(red + "\n>>> " + reset + "Something is wrong with your username or password.") elif err.errno == errorcode.ER_BAD_DB_ERROR: print(red + "\n>>> " + reset + "Database does not exist.") else: print(red + "\n>>> " + reset + str(err)) return cnx def api_specification(): """ Asks the user to enter the necessary information (server address, username, password and api key) to access the i-doit CMDB. Returns ------- dict The CMDB information (server address, username, password and api key). """ api_specification_question = [ { 'type': 'input', 'message': 'Enter the IP address of your CMDB server (use format yyx.yyx.yyx.yyx where \'y\' is optional):', 'name': 'server', 'validate': AddressValidator }, { 'type': 'input', 'message': 'Enter your CMDB username:', 'name': 'username', 'validate': NotEmpty }, { 'type': 'password', 'message': 'Enter your CMDB password:', 'name': 'password' }, { 'type': 'input', 'message': 'Enter your API key:', 'name': 'api_key', 'validate': NotEmpty } ] api_specification_answer = prompt(api_specification_question, style=style) return api_specification_answer def test_api_connection(server, username, password, api_key): """ Tests the access to the CMDB. Parameters ---------- server : string The IP address of the CMDB server. username : string The CMDB username. password : string The CMDB password. api_key: string The CMDB API key. Returns ------- boolean Returns true if the connection was successful and false otherwise. """ global api_url api_url = "http://" + server + "/i-doit/src/jsonrpc.php" global headers headers = {} headers["Content-Type"] = "application/json" headers["X-RPC-Auth-Username"] = username headers["X-RPC-Auth-Password"] = password global apikey apikey = api_key print(blue + "\n>>> " + reset + "Checking API connection...") login_body = json.loads("{\"version\": \"2.0\",\"method\": \"idoit.login\",\"params\": {\"apikey\": \"" + apikey + "\",\"language\": \"en\"},\"id\": 1}") try: s = requests.Session() login_request = s.post(api_url, json=login_body, headers=headers) login = login_request.json() if "error" in login: print(red + "\n>>> " + reset + "Unable to connect to the API. Please verify the connection information.") return False else: print(green + "\n>>> " + reset + "Successfully connected.") return True except requests.exceptions.RequestException: print(red + "\n>>> " + reset + "Unable to connect to the API. Please verify the connection information.") return False def api_constants(): """ Executes the method 'idoit.contants' of the i-doit API. Gets the configuration item types, relationship types, and categories present in the CMDB. Returns ------- boolean Returns the result of the execution of the method. """ constants_body = json.loads("{\"version\": \"2.0\",\"method\": \"idoit.constants\",\"params\": {\"apikey\": \"" + apikey + "\",\"language\": \"en\"},\"id\": 1}") try: s = requests.Session() constants_request = s.post( api_url, json=constants_body, headers=headers) constants = constants_request.json() return constants.get("result") except requests.exceptions.RequestException: print(red + "\n>>> " + reset + "Unable to connect to the API. Please verify the connection information.\n") return None def get_dialogs_from_table(table, db, cursor): values = {} if table != None: name = str(table) + "__id" desc = str(table) + "__title" query = ("SELECT " + name + ", " + desc + " FROM " + db + "." + table + ";") cursor.execute(query) for t in cursor: name, value = t values[name] = value return values def api_category_info(category, db_info, connection): """ Executes the method 'cmdb.category_info' of the i-doit API for a given category. Gets the attributes associated with a category, its data types and the available values of the dialog type attributes. Parameters ---------- category : string The category name. Returns ------- dict Returns the attributes, its data types and the available values of the dialog type attributes associated with the category. """ res = {} attributes = [] types = {} dialogs = {} cat_body = json.loads("{\"version\": \"2.0\",\"method\": \"cmdb.category_info\",\"params\": {\"category\": \"" + category + "\", \"apikey\": \"" + apikey + "\",\"language\": \"en\"},\"id\": 1}") server = db_info.get("server") username = db_info.get("username") password = db_info.get("password") db_name = db_info.get("db_name") try: s = requests.Session() cat_request = s.post(api_url, json=cat_body, headers=headers) if cat_request.text != "": if "result" in cat_request.json(): for attr in cat_request.json()["result"]: new_atr = {} new_atr[cat_request.json()["result"][attr]["title"]] = attr types[cat_request.json()["result"][attr]["title"]] = cat_request.json()[ "result"][attr]["data"]["type"] dialog = cat_request.json().get("result").get(attr).get("info").get("type") d = {} if dialog == "dialog": dialog_body = json.loads("{\"version\": \"2.0\",\"method\": \"cmdb.dialog.read\",\"params\": {\"category\": \"" + category + "\", \"property\": \"" + attr + "\", \"apikey\": \"" + apikey + "\",\"language\": \"en\"},\"id\": 1}") s = requests.Session() dialog_request = s.post( api_url, json=dialog_body, headers=headers) if dialog_request.text != "": values = dialog_request.json().get("result") if values != None: if len(values) == 1: values = values[0] if values != None: for a in values: if type(a) is dict: value = a.get("id") name = a.get("title") d[value] = name elif dialog == "dialog_plus": cursor = connection.cursor() table = cat_request.json().get("result").get(attr).get( "data").get("sourceTable") values = get_dialogs_from_table(table, db_name, cursor) if len(d) > 0: dialogs[attr] = d attributes.append(new_atr) res["attributes"] = attributes res["types"] = types res["dialogs"] = dialogs return res except requests.exceptions.RequestException: print(red + "\n>>> " + reset + "Unable to connect to the API. Please verify the connection information.\n") return None def category_attributes_types(categories, db_info, connection): """ Gets the attributes its data types and the available values of the dialog type attributes associated with all the categories in the CMDB. Parameters ---------- categories : list The category names. Returns ------- dict Returns the attributes, its data types and the available values of the dialog type attributes associated with all the categories. """ attributes = {} for cat in categories: attributes[cat] = {} category_info = api_category_info(cat, db_info, connection) attr = {} for a in category_info.get("attributes"): for key in a: attr[key] = a[key] attributes[cat]["attributes"] = {k: d for d, k in attr.items()} types = category_info.get("types") attributes[cat]["types"] = { attr.get(a): types.get(a) for a in types} attributes[cat]["dialogs"] = category_info.get("dialogs") return attributes def get_object_attributes(ci, cat_attr_types): """ Executes the method 'cmdb.object_type_categories.read' of the i-doit API for a given object type. Gets the categories associated with an object type. Computes the attributes, its data types and the available values of the dialog type attributes of the object type, based on the categories associated with that type. Parameters ---------- ci : string The object name. cat_attr_types : dict The attributes, its data types and the available values of the dialog type attributes, associated with every category, . Returns ------- dict Returns the attributes, its data types and the available values of the dialog type attributes associated with the object type. """ res = {} object_attributes = {} attributes_types = {} dialogs = {} obj_categories_body = json.loads("{\"version\": \"2.0\",\"method\": \"cmdb.object_type_categories.read\",\"params\": {\"type\": \"" + ci + "\", \"apikey\": \"" + apikey + "\",\"language\": \"en\"},\"id\": 1}") try: s = requests.Session() obj_categories_request = s.post( api_url, json=obj_categories_body, headers=headers) if obj_categories_request.text != "": if "result" in obj_categories_request.json(): if "catg" in obj_categories_request.json()["result"]: for cat_g in obj_categories_request.json()["result"]["catg"]: cat = cat_g["const"] if cat in cat_attr_types: dialogs.update( cat_attr_types.get(cat).get("dialogs")) attrs = cat_attr_types.get(cat).get("attributes") types = cat_attr_types.get(cat).get("types") object_attributes.update(attrs) attributes_types.update(types) if "cats" in obj_categories_request.json()["result"]: for cat_s in obj_categories_request.json()["result"]["cats"]: cat = cat_s["const"] if cat in cat_attr_types: dialogs.update( cat_attr_types.get(cat).get("dialogs")) attrs = cat_attr_types.get(cat).get("attributes") types = cat_attr_types.get(cat).get("types") object_attributes.update(attrs) attributes_types.update(types) res["dialogs"] = dialogs res["attributes"] = object_attributes res["types"] = attributes_types return res except requests.exceptions.RequestException: print(red + "\n>>> " + reset + "Unable to connect to the API. Please verify the connection information.\n") return None def process_i_doit(): """ Processes the i-doit CMDB data model, obtaining information about configuration item types, relationship types, configuration items and relationship attributes, restrictions between relationships, data types of attributes, and values for dialog type attributes. Returns ------- dict Returns the CMDB information (server address, username, password and api key). """ print(blue + "\n>>> " + reset + "Make sure that i-doit is running.") api_info = api_specification() server = api_info.get("server") username = api_info.get("username") password = api_info.get("password") api_key = api_info.get("api_key") connection = test_api_connection(server, username, password, api_key) if connection == False: return process_i_doit() else: print(blue + "\n>>> " + reset + "Make sure that i-doit is running.\n") db_info = db_specification() server = db_info.get("server") username = db_info.get("username") password = db_info.get("password") db_name = db_info.get("db_name") connection = test_db_connection(server, db_name, username, password) if connection == None: return process_i_doit() else: print(blue + "\n>>> " + reset + "Processing i-doit CMDB data model...") constants = api_constants() if constants == None: process_i_doit() else: ci_types = constants.get("objectTypes") cmdb_data_model["ci_types"] = ci_types rel_types = constants.get("relationTypes") cmdb_data_model["rel_types"] = rel_types categories = [c for c in { **constants.get("categories").get("g"), **constants.get("categories").get("s")}] cat_attr_types = category_attributes_types( categories, db_info, connection) ci_attributes_types = {} for ci in ci_types: attrs = get_object_attributes(ci, cat_attr_types) if attrs == None: process_i_doit() else: ci_attributes_types[ci] = attrs rel_attributes_types = {} attrs = get_object_attributes( "C__OBJTYPE__RELATION", cat_attr_types) if attrs == None: process_i_doit() else: for rel in rel_types: rel_attributes_types[rel] = attrs cmdb_data_model["ci_attributes"] = { ci: ci_attributes_types[ci]["attributes"] for ci in ci_attributes_types} cmdb_data_model["ci_attributes_data_types"] = { ci: ci_attributes_types[ci]["types"] for ci in ci_attributes_types} cmdb_data_model["ci_dialog_attributes"] = { ci: ci_attributes_types[ci]["dialogs"] for ci in ci_attributes_types} cmdb_data_model["rel_attributes"] = { rel: rel_attributes_types[rel]["attributes"] for rel in rel_attributes_types} cmdb_data_model["rel_attributes_data_types"] = { rel: rel_attributes_types[rel]["types"] for rel in rel_attributes_types} return api_info
[ "# -*- coding: utf-8 -*-\n\nimport requests\nimport json\nfrom colored import fg, attr\nfrom PyInquirer import style_from_dict, Token, prompt\nfrom PyInquirer import Validator, ValidationError\nimport regex\nimport mysql.connector\nfrom mysql.connector import errorcode\n\nfrom .cmdb_data_model import cmdb_data_model\n\n\"\"\"\n Color definition.\n\"\"\"\nblue = fg('#46B1C9')\nred = fg('#B54653')\ngreen = fg('#86DEB7')\nreset = attr('reset')\n\nstyle = style_from_dict({\n Token.QuestionMark: '#B54653 bold',\n Token.Selected: '#86DEB7 bold',\n Token.Instruction: '', # default\n Token.Answer: '#46B1C9 bold',\n Token.Question: '',\n})\n\n\nclass NotEmpty(Validator):\n def validate(self, document):\n ok = document.text != \"\" and document.text != None\n if not ok:\n raise ValidationError(\n message='Please enter something',\n cursor_position=len(document.text)) # Move cursor to end\n\n\nclass AddressValidator(Validator):\n def validate(self, document):\n ok = regex.match(\n r'(\\d{1,3}\\.){3}\\d{1,3}', document.text)\n if not ok:\n raise ValidationError(\n message='Please enter a valid IP address.',\n cursor_position=len(document.text)) # Move cursor to end\n\n\ndef db_specification():\n \"\"\"\n Asks the user to enter the necessary information (server address, username, password and database name) to access the i-doit CMDB.\n\n Returns\n -------\n dict\n The database information (server address, username, password and database name).\n\n \"\"\"\n db_specification_question = [\n {\n 'type': 'input',\n 'message': 'Enter the IP address of your database server (use format yyx.yyx.yyx.yyx where \\'y\\' is optional):',\n 'name': 'server',\n 'validate': AddressValidator\n },\n {\n 'type': 'input',\n 'message': 'Enter your database name:',\n 'name': 'db_name',\n 'validate': NotEmpty\n },\n {\n 'type': 'input',\n 'message': 'Enter your database username:',\n 'name': 'username',\n 'validate': NotEmpty\n },\n {\n 'type': 'password',\n 'message': 'Enter your database password:',\n 'name': 'password'\n }\n ]\n db_specification_answer = prompt(db_specification_question, style=style)\n return db_specification_answer\n\n\ndef test_db_connection(server, db_name, username, passwd):\n \"\"\"\n Tests the access to the CMDB database.\n\n Parameters\n ----------\n server : string\n The IP address of the CMDB server.\n\n db_name: string\n The CMDB database name.\n\n username : string\n The CMDB username.\n\n password : string\n The CMDB password.\n\n Returns\n -------\n boolean\n Returns true if the connection was successful and false otherwise.\n\n \"\"\"\n print(blue + \"\\n>>> \" + reset + \"Checking i-doit database connection...\")\n cnx = None\n try:\n cnx = mysql.connector.connect(\n user=username, password=passwd, host=server, database=db_name)\n print(green + \"\\n>>> \" + reset +\n \"Successfully connected to the i-doit database.\")\n except mysql.connector.Error as err:\n if err.errno == errorcode.ER_ACCESS_DENIED_ERROR:\n print(red + \"\\n>>> \" + reset +\n \"Something is wrong with your username or password.\")\n elif err.errno == errorcode.ER_BAD_DB_ERROR:\n print(red + \"\\n>>> \" + reset + \"Database does not exist.\")\n else:\n print(red + \"\\n>>> \" + reset + str(err))\n return cnx\n\n\ndef api_specification():\n \"\"\"\n Asks the user to enter the necessary information (server address, username, password and api key) to access the i-doit CMDB.\n\n Returns\n -------\n dict\n The CMDB information (server address, username, password and api key).\n \"\"\"\n api_specification_question = [\n {\n 'type': 'input',\n 'message': 'Enter the IP address of your CMDB server (use format yyx.yyx.yyx.yyx where \\'y\\' is optional):',\n 'name': 'server',\n 'validate': AddressValidator\n },\n {\n 'type': 'input',\n 'message': 'Enter your CMDB username:',\n 'name': 'username',\n 'validate': NotEmpty\n },\n {\n 'type': 'password',\n 'message': 'Enter your CMDB password:',\n 'name': 'password'\n },\n {\n 'type': 'input',\n 'message': 'Enter your API key:',\n 'name': 'api_key',\n 'validate': NotEmpty\n }\n ]\n api_specification_answer = prompt(api_specification_question, style=style)\n return api_specification_answer\n\n\ndef test_api_connection(server, username, password, api_key):\n \"\"\"\n Tests the access to the CMDB.\n\n Parameters\n ----------\n server : string\n The IP address of the CMDB server.\n\n username : string\n The CMDB username.\n\n password : string\n The CMDB password.\n\n api_key: string\n The CMDB API key.\n\n Returns\n -------\n boolean\n Returns true if the connection was successful and false otherwise.\n \"\"\"\n global api_url\n api_url = \"http://\" + server + \"/i-doit/src/jsonrpc.php\"\n\n global headers\n headers = {}\n headers[\"Content-Type\"] = \"application/json\"\n headers[\"X-RPC-Auth-Username\"] = username\n headers[\"X-RPC-Auth-Password\"] = password\n\n global apikey\n apikey = api_key\n\n print(blue + \"\\n>>> \" + reset + \"Checking API connection...\")\n\n login_body = json.loads(\"{\\\"version\\\": \\\"2.0\\\",\\\"method\\\": \\\"idoit.login\\\",\\\"params\\\": {\\\"apikey\\\": \\\"\" +\n apikey + \"\\\",\\\"language\\\": \\\"en\\\"},\\\"id\\\": 1}\")\n\n try:\n s = requests.Session()\n login_request = s.post(api_url, json=login_body, headers=headers)\n login = login_request.json()\n if \"error\" in login:\n print(red + \"\\n>>> \" + reset +\n \"Unable to connect to the API. Please verify the connection information.\")\n return False\n else:\n print(green + \"\\n>>> \" + reset + \"Successfully connected.\")\n return True\n except requests.exceptions.RequestException:\n print(red + \"\\n>>> \" + reset +\n \"Unable to connect to the API. Please verify the connection information.\")\n return False\n\n\ndef api_constants():\n \"\"\"\n Executes the method 'idoit.contants' of the i-doit API.\n Gets the configuration item types, relationship types, and categories present in the CMDB.\n\n Returns\n -------\n boolean\n Returns the result of the execution of the method.\n \"\"\"\n constants_body = json.loads(\"{\\\"version\\\": \\\"2.0\\\",\\\"method\\\": \\\"idoit.constants\\\",\\\"params\\\": {\\\"apikey\\\": \\\"\" +\n apikey + \"\\\",\\\"language\\\": \\\"en\\\"},\\\"id\\\": 1}\")\n try:\n s = requests.Session()\n constants_request = s.post(\n api_url, json=constants_body, headers=headers)\n constants = constants_request.json()\n return constants.get(\"result\")\n except requests.exceptions.RequestException:\n print(red + \"\\n>>> \" + reset +\n \"Unable to connect to the API. Please verify the connection information.\\n\")\n return None\n\n\ndef get_dialogs_from_table(table, db, cursor):\n values = {}\n if table != None:\n name = str(table) + \"__id\"\n desc = str(table) + \"__title\"\n query = (\"SELECT \" + name + \", \" + desc +\n \" FROM \" + db + \".\" + table + \";\")\n cursor.execute(query)\n for t in cursor:\n name, value = t\n values[name] = value\n\n return values\n\n\ndef api_category_info(category, db_info, connection):\n \"\"\"\n Executes the method 'cmdb.category_info' of the i-doit API for a given category.\n Gets the attributes associated with a category, its data types and the available values of the dialog type attributes.\n\n Parameters\n ----------\n category : string\n The category name.\n\n Returns\n -------\n dict\n Returns the attributes, its data types and the available values of the dialog type attributes associated with the category.\n \"\"\"\n res = {}\n attributes = []\n types = {}\n dialogs = {}\n cat_body = json.loads(\"{\\\"version\\\": \\\"2.0\\\",\\\"method\\\": \\\"cmdb.category_info\\\",\\\"params\\\": {\\\"category\\\": \\\"\" +\n category + \"\\\", \\\"apikey\\\": \\\"\" + apikey + \"\\\",\\\"language\\\": \\\"en\\\"},\\\"id\\\": 1}\")\n\n server = db_info.get(\"server\")\n username = db_info.get(\"username\")\n password = db_info.get(\"password\")\n db_name = db_info.get(\"db_name\")\n\n try:\n s = requests.Session()\n cat_request = s.post(api_url, json=cat_body, headers=headers)\n if cat_request.text != \"\":\n if \"result\" in cat_request.json():\n for attr in cat_request.json()[\"result\"]:\n new_atr = {}\n new_atr[cat_request.json()[\"result\"][attr][\"title\"]] = attr\n types[cat_request.json()[\"result\"][attr][\"title\"]] = cat_request.json()[\n \"result\"][attr][\"data\"][\"type\"]\n dialog = cat_request.json().get(\"result\").get(attr).get(\"info\").get(\"type\")\n\n d = {}\n\n if dialog == \"dialog\":\n\n dialog_body = json.loads(\"{\\\"version\\\": \\\"2.0\\\",\\\"method\\\": \\\"cmdb.dialog.read\\\",\\\"params\\\": {\\\"category\\\": \\\"\" +\n category + \"\\\", \\\"property\\\": \\\"\" + attr + \"\\\", \\\"apikey\\\": \\\"\" + apikey + \"\\\",\\\"language\\\": \\\"en\\\"},\\\"id\\\": 1}\")\n s = requests.Session()\n dialog_request = s.post(\n api_url, json=dialog_body, headers=headers)\n if dialog_request.text != \"\":\n values = dialog_request.json().get(\"result\")\n if values != None:\n if len(values) == 1:\n values = values[0]\n if values != None:\n for a in values:\n if type(a) is dict:\n value = a.get(\"id\")\n name = a.get(\"title\")\n d[value] = name\n\n elif dialog == \"dialog_plus\":\n cursor = connection.cursor()\n\n table = cat_request.json().get(\"result\").get(attr).get(\n \"data\").get(\"sourceTable\")\n\n values = get_dialogs_from_table(table, db_name, cursor)\n\n if len(d) > 0:\n dialogs[attr] = d\n\n attributes.append(new_atr)\n res[\"attributes\"] = attributes\n res[\"types\"] = types\n res[\"dialogs\"] = dialogs\n return res\n except requests.exceptions.RequestException:\n print(red + \"\\n>>> \" + reset +\n \"Unable to connect to the API. Please verify the connection information.\\n\")\n return None\n\n\ndef category_attributes_types(categories, db_info, connection):\n \"\"\"\n Gets the attributes its data types and the available values of the dialog type attributes associated with all the categories in the CMDB.\n\n Parameters\n ----------\n categories : list\n The category names.\n\n Returns\n -------\n dict\n Returns the attributes, its data types and the available values of the dialog type attributes associated with all the categories.\n \"\"\"\n attributes = {}\n for cat in categories:\n attributes[cat] = {}\n category_info = api_category_info(cat, db_info, connection)\n\n attr = {}\n for a in category_info.get(\"attributes\"):\n for key in a:\n attr[key] = a[key]\n\n attributes[cat][\"attributes\"] = {k: d for d, k in attr.items()}\n\n types = category_info.get(\"types\")\n attributes[cat][\"types\"] = {\n attr.get(a): types.get(a) for a in types}\n\n attributes[cat][\"dialogs\"] = category_info.get(\"dialogs\")\n\n return attributes\n\n\ndef get_object_attributes(ci, cat_attr_types):\n \"\"\"\n Executes the method 'cmdb.object_type_categories.read' of the i-doit API for a given object type.\n Gets the categories associated with an object type.\n Computes the attributes, its data types and the available values of the dialog type attributes of the object type, based on the categories associated with that type.\n\n Parameters\n ----------\n ci : string\n The object name.\n\n cat_attr_types : dict\n The attributes, its data types and the available values of the dialog type attributes, associated with every category, .\n\n Returns\n -------\n dict\n Returns the attributes, its data types and the available values of the dialog type attributes associated with the object type.\n \"\"\"\n res = {}\n object_attributes = {}\n attributes_types = {}\n dialogs = {}\n obj_categories_body = json.loads(\"{\\\"version\\\": \\\"2.0\\\",\\\"method\\\": \\\"cmdb.object_type_categories.read\\\",\\\"params\\\": {\\\"type\\\": \\\"\" +\n ci + \"\\\", \\\"apikey\\\": \\\"\" + apikey + \"\\\",\\\"language\\\": \\\"en\\\"},\\\"id\\\": 1}\")\n try:\n s = requests.Session()\n obj_categories_request = s.post(\n api_url, json=obj_categories_body, headers=headers)\n\n if obj_categories_request.text != \"\":\n if \"result\" in obj_categories_request.json():\n if \"catg\" in obj_categories_request.json()[\"result\"]:\n for cat_g in obj_categories_request.json()[\"result\"][\"catg\"]:\n cat = cat_g[\"const\"]\n if cat in cat_attr_types:\n dialogs.update(\n cat_attr_types.get(cat).get(\"dialogs\"))\n attrs = cat_attr_types.get(cat).get(\"attributes\")\n types = cat_attr_types.get(cat).get(\"types\")\n object_attributes.update(attrs)\n attributes_types.update(types)\n if \"cats\" in obj_categories_request.json()[\"result\"]:\n for cat_s in obj_categories_request.json()[\"result\"][\"cats\"]:\n cat = cat_s[\"const\"]\n if cat in cat_attr_types:\n dialogs.update(\n cat_attr_types.get(cat).get(\"dialogs\"))\n attrs = cat_attr_types.get(cat).get(\"attributes\")\n types = cat_attr_types.get(cat).get(\"types\")\n object_attributes.update(attrs)\n attributes_types.update(types)\n res[\"dialogs\"] = dialogs\n res[\"attributes\"] = object_attributes\n res[\"types\"] = attributes_types\n return res\n except requests.exceptions.RequestException:\n print(red + \"\\n>>> \" + reset +\n \"Unable to connect to the API. Please verify the connection information.\\n\")\n return None\n\n\ndef process_i_doit():\n \"\"\"\n Processes the i-doit CMDB data model, obtaining information about configuration item types, \n relationship types, configuration items and relationship attributes, restrictions between relationships, \n data types of attributes, and values for dialog type attributes.\n\n Returns\n -------\n dict\n Returns the CMDB information (server address, username, password and api key).\n \"\"\"\n print(blue + \"\\n>>> \" + reset + \"Make sure that i-doit is running.\")\n api_info = api_specification()\n\n server = api_info.get(\"server\")\n username = api_info.get(\"username\")\n password = api_info.get(\"password\")\n api_key = api_info.get(\"api_key\")\n\n connection = test_api_connection(server, username, password, api_key)\n if connection == False:\n return process_i_doit()\n else:\n print(blue + \"\\n>>> \" + reset + \"Make sure that i-doit is running.\\n\")\n db_info = db_specification()\n server = db_info.get(\"server\")\n username = db_info.get(\"username\")\n password = db_info.get(\"password\")\n db_name = db_info.get(\"db_name\")\n\n connection = test_db_connection(server, db_name, username, password)\n if connection == None:\n return process_i_doit()\n\n else:\n\n print(blue + \"\\n>>> \" + reset +\n \"Processing i-doit CMDB data model...\")\n constants = api_constants()\n\n if constants == None:\n process_i_doit()\n else:\n ci_types = constants.get(\"objectTypes\")\n cmdb_data_model[\"ci_types\"] = ci_types\n rel_types = constants.get(\"relationTypes\")\n cmdb_data_model[\"rel_types\"] = rel_types\n\n categories = [c for c in {\n **constants.get(\"categories\").get(\"g\"), **constants.get(\"categories\").get(\"s\")}]\n cat_attr_types = category_attributes_types(\n categories, db_info, connection)\n\n ci_attributes_types = {}\n\n for ci in ci_types:\n attrs = get_object_attributes(ci, cat_attr_types)\n if attrs == None:\n process_i_doit()\n else:\n ci_attributes_types[ci] = attrs\n\n rel_attributes_types = {}\n\n attrs = get_object_attributes(\n \"C__OBJTYPE__RELATION\", cat_attr_types)\n\n if attrs == None:\n process_i_doit()\n else:\n for rel in rel_types:\n rel_attributes_types[rel] = attrs\n\n cmdb_data_model[\"ci_attributes\"] = {\n ci: ci_attributes_types[ci][\"attributes\"] for ci in ci_attributes_types}\n\n cmdb_data_model[\"ci_attributes_data_types\"] = {\n ci: ci_attributes_types[ci][\"types\"] for ci in ci_attributes_types}\n\n cmdb_data_model[\"ci_dialog_attributes\"] = {\n ci: ci_attributes_types[ci][\"dialogs\"] for ci in ci_attributes_types}\n\n cmdb_data_model[\"rel_attributes\"] = {\n rel: rel_attributes_types[rel][\"attributes\"] for rel in rel_attributes_types}\n\n cmdb_data_model[\"rel_attributes_data_types\"] = {\n rel: rel_attributes_types[rel][\"types\"] for rel in rel_attributes_types}\n\n return api_info\n", "import requests\nimport json\nfrom colored import fg, attr\nfrom PyInquirer import style_from_dict, Token, prompt\nfrom PyInquirer import Validator, ValidationError\nimport regex\nimport mysql.connector\nfrom mysql.connector import errorcode\nfrom .cmdb_data_model import cmdb_data_model\n<docstring token>\nblue = fg('#46B1C9')\nred = fg('#B54653')\ngreen = fg('#86DEB7')\nreset = attr('reset')\nstyle = style_from_dict({Token.QuestionMark: '#B54653 bold', Token.Selected:\n '#86DEB7 bold', Token.Instruction: '', Token.Answer: '#46B1C9 bold',\n Token.Question: ''})\n\n\nclass NotEmpty(Validator):\n\n def validate(self, document):\n ok = document.text != '' and document.text != None\n if not ok:\n raise ValidationError(message='Please enter something',\n cursor_position=len(document.text))\n\n\nclass AddressValidator(Validator):\n\n def validate(self, document):\n ok = regex.match('(\\\\d{1,3}\\\\.){3}\\\\d{1,3}', document.text)\n if not ok:\n raise ValidationError(message=\n 'Please enter a valid IP address.', cursor_position=len(\n document.text))\n\n\ndef db_specification():\n \"\"\"\n Asks the user to enter the necessary information (server address, username, password and database name) to access the i-doit CMDB.\n\n Returns\n -------\n dict\n The database information (server address, username, password and database name).\n\n \"\"\"\n db_specification_question = [{'type': 'input', 'message':\n \"Enter the IP address of your database server (use format yyx.yyx.yyx.yyx where 'y' is optional):\"\n , 'name': 'server', 'validate': AddressValidator}, {'type': 'input',\n 'message': 'Enter your database name:', 'name': 'db_name',\n 'validate': NotEmpty}, {'type': 'input', 'message':\n 'Enter your database username:', 'name': 'username', 'validate':\n NotEmpty}, {'type': 'password', 'message':\n 'Enter your database password:', 'name': 'password'}]\n db_specification_answer = prompt(db_specification_question, style=style)\n return db_specification_answer\n\n\ndef test_db_connection(server, db_name, username, passwd):\n \"\"\"\n Tests the access to the CMDB database.\n\n Parameters\n ----------\n server : string\n The IP address of the CMDB server.\n\n db_name: string\n The CMDB database name.\n\n username : string\n The CMDB username.\n\n password : string\n The CMDB password.\n\n Returns\n -------\n boolean\n Returns true if the connection was successful and false otherwise.\n\n \"\"\"\n print(blue + '\\n>>> ' + reset + 'Checking i-doit database connection...')\n cnx = None\n try:\n cnx = mysql.connector.connect(user=username, password=passwd, host=\n server, database=db_name)\n print(green + '\\n>>> ' + reset +\n 'Successfully connected to the i-doit database.')\n except mysql.connector.Error as err:\n if err.errno == errorcode.ER_ACCESS_DENIED_ERROR:\n print(red + '\\n>>> ' + reset +\n 'Something is wrong with your username or password.')\n elif err.errno == errorcode.ER_BAD_DB_ERROR:\n print(red + '\\n>>> ' + reset + 'Database does not exist.')\n else:\n print(red + '\\n>>> ' + reset + str(err))\n return cnx\n\n\ndef api_specification():\n \"\"\"\n Asks the user to enter the necessary information (server address, username, password and api key) to access the i-doit CMDB.\n\n Returns\n -------\n dict\n The CMDB information (server address, username, password and api key).\n \"\"\"\n api_specification_question = [{'type': 'input', 'message':\n \"Enter the IP address of your CMDB server (use format yyx.yyx.yyx.yyx where 'y' is optional):\"\n , 'name': 'server', 'validate': AddressValidator}, {'type': 'input',\n 'message': 'Enter your CMDB username:', 'name': 'username',\n 'validate': NotEmpty}, {'type': 'password', 'message':\n 'Enter your CMDB password:', 'name': 'password'}, {'type': 'input',\n 'message': 'Enter your API key:', 'name': 'api_key', 'validate':\n NotEmpty}]\n api_specification_answer = prompt(api_specification_question, style=style)\n return api_specification_answer\n\n\ndef test_api_connection(server, username, password, api_key):\n \"\"\"\n Tests the access to the CMDB.\n\n Parameters\n ----------\n server : string\n The IP address of the CMDB server.\n\n username : string\n The CMDB username.\n\n password : string\n The CMDB password.\n\n api_key: string\n The CMDB API key.\n\n Returns\n -------\n boolean\n Returns true if the connection was successful and false otherwise.\n \"\"\"\n global api_url\n api_url = 'http://' + server + '/i-doit/src/jsonrpc.php'\n global headers\n headers = {}\n headers['Content-Type'] = 'application/json'\n headers['X-RPC-Auth-Username'] = username\n headers['X-RPC-Auth-Password'] = password\n global apikey\n apikey = api_key\n print(blue + '\\n>>> ' + reset + 'Checking API connection...')\n login_body = json.loads(\n '{\"version\": \"2.0\",\"method\": \"idoit.login\",\"params\": {\"apikey\": \"' +\n apikey + '\",\"language\": \"en\"},\"id\": 1}')\n try:\n s = requests.Session()\n login_request = s.post(api_url, json=login_body, headers=headers)\n login = login_request.json()\n if 'error' in login:\n print(red + '\\n>>> ' + reset +\n 'Unable to connect to the API. Please verify the connection information.'\n )\n return False\n else:\n print(green + '\\n>>> ' + reset + 'Successfully connected.')\n return True\n except requests.exceptions.RequestException:\n print(red + '\\n>>> ' + reset +\n 'Unable to connect to the API. Please verify the connection information.'\n )\n return False\n\n\ndef api_constants():\n \"\"\"\n Executes the method 'idoit.contants' of the i-doit API.\n Gets the configuration item types, relationship types, and categories present in the CMDB.\n\n Returns\n -------\n boolean\n Returns the result of the execution of the method.\n \"\"\"\n constants_body = json.loads(\n '{\"version\": \"2.0\",\"method\": \"idoit.constants\",\"params\": {\"apikey\": \"'\n + apikey + '\",\"language\": \"en\"},\"id\": 1}')\n try:\n s = requests.Session()\n constants_request = s.post(api_url, json=constants_body, headers=\n headers)\n constants = constants_request.json()\n return constants.get('result')\n except requests.exceptions.RequestException:\n print(red + '\\n>>> ' + reset +\n \"\"\"Unable to connect to the API. Please verify the connection information.\n\"\"\"\n )\n return None\n\n\ndef get_dialogs_from_table(table, db, cursor):\n values = {}\n if table != None:\n name = str(table) + '__id'\n desc = str(table) + '__title'\n query = ('SELECT ' + name + ', ' + desc + ' FROM ' + db + '.' +\n table + ';')\n cursor.execute(query)\n for t in cursor:\n name, value = t\n values[name] = value\n return values\n\n\ndef api_category_info(category, db_info, connection):\n \"\"\"\n Executes the method 'cmdb.category_info' of the i-doit API for a given category.\n Gets the attributes associated with a category, its data types and the available values of the dialog type attributes.\n\n Parameters\n ----------\n category : string\n The category name.\n\n Returns\n -------\n dict\n Returns the attributes, its data types and the available values of the dialog type attributes associated with the category.\n \"\"\"\n res = {}\n attributes = []\n types = {}\n dialogs = {}\n cat_body = json.loads(\n '{\"version\": \"2.0\",\"method\": \"cmdb.category_info\",\"params\": {\"category\": \"'\n + category + '\", \"apikey\": \"' + apikey +\n '\",\"language\": \"en\"},\"id\": 1}')\n server = db_info.get('server')\n username = db_info.get('username')\n password = db_info.get('password')\n db_name = db_info.get('db_name')\n try:\n s = requests.Session()\n cat_request = s.post(api_url, json=cat_body, headers=headers)\n if cat_request.text != '':\n if 'result' in cat_request.json():\n for attr in cat_request.json()['result']:\n new_atr = {}\n new_atr[cat_request.json()['result'][attr]['title']] = attr\n types[cat_request.json()['result'][attr]['title']\n ] = cat_request.json()['result'][attr]['data']['type']\n dialog = cat_request.json().get('result').get(attr).get(\n 'info').get('type')\n d = {}\n if dialog == 'dialog':\n dialog_body = json.loads(\n '{\"version\": \"2.0\",\"method\": \"cmdb.dialog.read\",\"params\": {\"category\": \"'\n + category + '\", \"property\": \"' + attr +\n '\", \"apikey\": \"' + apikey +\n '\",\"language\": \"en\"},\"id\": 1}')\n s = requests.Session()\n dialog_request = s.post(api_url, json=dialog_body,\n headers=headers)\n if dialog_request.text != '':\n values = dialog_request.json().get('result')\n if values != None:\n if len(values) == 1:\n values = values[0]\n if values != None:\n for a in values:\n if type(a) is dict:\n value = a.get('id')\n name = a.get('title')\n d[value] = name\n elif dialog == 'dialog_plus':\n cursor = connection.cursor()\n table = cat_request.json().get('result').get(attr).get(\n 'data').get('sourceTable')\n values = get_dialogs_from_table(table, db_name, cursor)\n if len(d) > 0:\n dialogs[attr] = d\n attributes.append(new_atr)\n res['attributes'] = attributes\n res['types'] = types\n res['dialogs'] = dialogs\n return res\n except requests.exceptions.RequestException:\n print(red + '\\n>>> ' + reset +\n \"\"\"Unable to connect to the API. Please verify the connection information.\n\"\"\"\n )\n return None\n\n\ndef category_attributes_types(categories, db_info, connection):\n \"\"\"\n Gets the attributes its data types and the available values of the dialog type attributes associated with all the categories in the CMDB.\n\n Parameters\n ----------\n categories : list\n The category names.\n\n Returns\n -------\n dict\n Returns the attributes, its data types and the available values of the dialog type attributes associated with all the categories.\n \"\"\"\n attributes = {}\n for cat in categories:\n attributes[cat] = {}\n category_info = api_category_info(cat, db_info, connection)\n attr = {}\n for a in category_info.get('attributes'):\n for key in a:\n attr[key] = a[key]\n attributes[cat]['attributes'] = {k: d for d, k in attr.items()}\n types = category_info.get('types')\n attributes[cat]['types'] = {attr.get(a): types.get(a) for a in types}\n attributes[cat]['dialogs'] = category_info.get('dialogs')\n return attributes\n\n\ndef get_object_attributes(ci, cat_attr_types):\n \"\"\"\n Executes the method 'cmdb.object_type_categories.read' of the i-doit API for a given object type.\n Gets the categories associated with an object type.\n Computes the attributes, its data types and the available values of the dialog type attributes of the object type, based on the categories associated with that type.\n\n Parameters\n ----------\n ci : string\n The object name.\n\n cat_attr_types : dict\n The attributes, its data types and the available values of the dialog type attributes, associated with every category, .\n\n Returns\n -------\n dict\n Returns the attributes, its data types and the available values of the dialog type attributes associated with the object type.\n \"\"\"\n res = {}\n object_attributes = {}\n attributes_types = {}\n dialogs = {}\n obj_categories_body = json.loads(\n '{\"version\": \"2.0\",\"method\": \"cmdb.object_type_categories.read\",\"params\": {\"type\": \"'\n + ci + '\", \"apikey\": \"' + apikey + '\",\"language\": \"en\"},\"id\": 1}')\n try:\n s = requests.Session()\n obj_categories_request = s.post(api_url, json=obj_categories_body,\n headers=headers)\n if obj_categories_request.text != '':\n if 'result' in obj_categories_request.json():\n if 'catg' in obj_categories_request.json()['result']:\n for cat_g in obj_categories_request.json()['result']['catg'\n ]:\n cat = cat_g['const']\n if cat in cat_attr_types:\n dialogs.update(cat_attr_types.get(cat).get(\n 'dialogs'))\n attrs = cat_attr_types.get(cat).get('attributes')\n types = cat_attr_types.get(cat).get('types')\n object_attributes.update(attrs)\n attributes_types.update(types)\n if 'cats' in obj_categories_request.json()['result']:\n for cat_s in obj_categories_request.json()['result']['cats'\n ]:\n cat = cat_s['const']\n if cat in cat_attr_types:\n dialogs.update(cat_attr_types.get(cat).get(\n 'dialogs'))\n attrs = cat_attr_types.get(cat).get('attributes')\n types = cat_attr_types.get(cat).get('types')\n object_attributes.update(attrs)\n attributes_types.update(types)\n res['dialogs'] = dialogs\n res['attributes'] = object_attributes\n res['types'] = attributes_types\n return res\n except requests.exceptions.RequestException:\n print(red + '\\n>>> ' + reset +\n \"\"\"Unable to connect to the API. Please verify the connection information.\n\"\"\"\n )\n return None\n\n\ndef process_i_doit():\n \"\"\"\n Processes the i-doit CMDB data model, obtaining information about configuration item types, \n relationship types, configuration items and relationship attributes, restrictions between relationships, \n data types of attributes, and values for dialog type attributes.\n\n Returns\n -------\n dict\n Returns the CMDB information (server address, username, password and api key).\n \"\"\"\n print(blue + '\\n>>> ' + reset + 'Make sure that i-doit is running.')\n api_info = api_specification()\n server = api_info.get('server')\n username = api_info.get('username')\n password = api_info.get('password')\n api_key = api_info.get('api_key')\n connection = test_api_connection(server, username, password, api_key)\n if connection == False:\n return process_i_doit()\n else:\n print(blue + '\\n>>> ' + reset + 'Make sure that i-doit is running.\\n')\n db_info = db_specification()\n server = db_info.get('server')\n username = db_info.get('username')\n password = db_info.get('password')\n db_name = db_info.get('db_name')\n connection = test_db_connection(server, db_name, username, password)\n if connection == None:\n return process_i_doit()\n else:\n print(blue + '\\n>>> ' + reset +\n 'Processing i-doit CMDB data model...')\n constants = api_constants()\n if constants == None:\n process_i_doit()\n else:\n ci_types = constants.get('objectTypes')\n cmdb_data_model['ci_types'] = ci_types\n rel_types = constants.get('relationTypes')\n cmdb_data_model['rel_types'] = rel_types\n categories = [c for c in {**constants.get('categories').get\n ('g'), **constants.get('categories').get('s')}]\n cat_attr_types = category_attributes_types(categories,\n db_info, connection)\n ci_attributes_types = {}\n for ci in ci_types:\n attrs = get_object_attributes(ci, cat_attr_types)\n if attrs == None:\n process_i_doit()\n else:\n ci_attributes_types[ci] = attrs\n rel_attributes_types = {}\n attrs = get_object_attributes('C__OBJTYPE__RELATION',\n cat_attr_types)\n if attrs == None:\n process_i_doit()\n else:\n for rel in rel_types:\n rel_attributes_types[rel] = attrs\n cmdb_data_model['ci_attributes'] = {ci: ci_attributes_types\n [ci]['attributes'] for ci in ci_attributes_types}\n cmdb_data_model['ci_attributes_data_types'] = {ci:\n ci_attributes_types[ci]['types'] for ci in\n ci_attributes_types}\n cmdb_data_model['ci_dialog_attributes'] = {ci:\n ci_attributes_types[ci]['dialogs'] for ci in\n ci_attributes_types}\n cmdb_data_model['rel_attributes'] = {rel:\n rel_attributes_types[rel]['attributes'] for rel in\n rel_attributes_types}\n cmdb_data_model['rel_attributes_data_types'] = {rel:\n rel_attributes_types[rel]['types'] for rel in\n rel_attributes_types}\n return api_info\n", "<import token>\n<docstring token>\nblue = fg('#46B1C9')\nred = fg('#B54653')\ngreen = fg('#86DEB7')\nreset = attr('reset')\nstyle = style_from_dict({Token.QuestionMark: '#B54653 bold', Token.Selected:\n '#86DEB7 bold', Token.Instruction: '', Token.Answer: '#46B1C9 bold',\n Token.Question: ''})\n\n\nclass NotEmpty(Validator):\n\n def validate(self, document):\n ok = document.text != '' and document.text != None\n if not ok:\n raise ValidationError(message='Please enter something',\n cursor_position=len(document.text))\n\n\nclass AddressValidator(Validator):\n\n def validate(self, document):\n ok = regex.match('(\\\\d{1,3}\\\\.){3}\\\\d{1,3}', document.text)\n if not ok:\n raise ValidationError(message=\n 'Please enter a valid IP address.', cursor_position=len(\n document.text))\n\n\ndef db_specification():\n \"\"\"\n Asks the user to enter the necessary information (server address, username, password and database name) to access the i-doit CMDB.\n\n Returns\n -------\n dict\n The database information (server address, username, password and database name).\n\n \"\"\"\n db_specification_question = [{'type': 'input', 'message':\n \"Enter the IP address of your database server (use format yyx.yyx.yyx.yyx where 'y' is optional):\"\n , 'name': 'server', 'validate': AddressValidator}, {'type': 'input',\n 'message': 'Enter your database name:', 'name': 'db_name',\n 'validate': NotEmpty}, {'type': 'input', 'message':\n 'Enter your database username:', 'name': 'username', 'validate':\n NotEmpty}, {'type': 'password', 'message':\n 'Enter your database password:', 'name': 'password'}]\n db_specification_answer = prompt(db_specification_question, style=style)\n return db_specification_answer\n\n\ndef test_db_connection(server, db_name, username, passwd):\n \"\"\"\n Tests the access to the CMDB database.\n\n Parameters\n ----------\n server : string\n The IP address of the CMDB server.\n\n db_name: string\n The CMDB database name.\n\n username : string\n The CMDB username.\n\n password : string\n The CMDB password.\n\n Returns\n -------\n boolean\n Returns true if the connection was successful and false otherwise.\n\n \"\"\"\n print(blue + '\\n>>> ' + reset + 'Checking i-doit database connection...')\n cnx = None\n try:\n cnx = mysql.connector.connect(user=username, password=passwd, host=\n server, database=db_name)\n print(green + '\\n>>> ' + reset +\n 'Successfully connected to the i-doit database.')\n except mysql.connector.Error as err:\n if err.errno == errorcode.ER_ACCESS_DENIED_ERROR:\n print(red + '\\n>>> ' + reset +\n 'Something is wrong with your username or password.')\n elif err.errno == errorcode.ER_BAD_DB_ERROR:\n print(red + '\\n>>> ' + reset + 'Database does not exist.')\n else:\n print(red + '\\n>>> ' + reset + str(err))\n return cnx\n\n\ndef api_specification():\n \"\"\"\n Asks the user to enter the necessary information (server address, username, password and api key) to access the i-doit CMDB.\n\n Returns\n -------\n dict\n The CMDB information (server address, username, password and api key).\n \"\"\"\n api_specification_question = [{'type': 'input', 'message':\n \"Enter the IP address of your CMDB server (use format yyx.yyx.yyx.yyx where 'y' is optional):\"\n , 'name': 'server', 'validate': AddressValidator}, {'type': 'input',\n 'message': 'Enter your CMDB username:', 'name': 'username',\n 'validate': NotEmpty}, {'type': 'password', 'message':\n 'Enter your CMDB password:', 'name': 'password'}, {'type': 'input',\n 'message': 'Enter your API key:', 'name': 'api_key', 'validate':\n NotEmpty}]\n api_specification_answer = prompt(api_specification_question, style=style)\n return api_specification_answer\n\n\ndef test_api_connection(server, username, password, api_key):\n \"\"\"\n Tests the access to the CMDB.\n\n Parameters\n ----------\n server : string\n The IP address of the CMDB server.\n\n username : string\n The CMDB username.\n\n password : string\n The CMDB password.\n\n api_key: string\n The CMDB API key.\n\n Returns\n -------\n boolean\n Returns true if the connection was successful and false otherwise.\n \"\"\"\n global api_url\n api_url = 'http://' + server + '/i-doit/src/jsonrpc.php'\n global headers\n headers = {}\n headers['Content-Type'] = 'application/json'\n headers['X-RPC-Auth-Username'] = username\n headers['X-RPC-Auth-Password'] = password\n global apikey\n apikey = api_key\n print(blue + '\\n>>> ' + reset + 'Checking API connection...')\n login_body = json.loads(\n '{\"version\": \"2.0\",\"method\": \"idoit.login\",\"params\": {\"apikey\": \"' +\n apikey + '\",\"language\": \"en\"},\"id\": 1}')\n try:\n s = requests.Session()\n login_request = s.post(api_url, json=login_body, headers=headers)\n login = login_request.json()\n if 'error' in login:\n print(red + '\\n>>> ' + reset +\n 'Unable to connect to the API. Please verify the connection information.'\n )\n return False\n else:\n print(green + '\\n>>> ' + reset + 'Successfully connected.')\n return True\n except requests.exceptions.RequestException:\n print(red + '\\n>>> ' + reset +\n 'Unable to connect to the API. Please verify the connection information.'\n )\n return False\n\n\ndef api_constants():\n \"\"\"\n Executes the method 'idoit.contants' of the i-doit API.\n Gets the configuration item types, relationship types, and categories present in the CMDB.\n\n Returns\n -------\n boolean\n Returns the result of the execution of the method.\n \"\"\"\n constants_body = json.loads(\n '{\"version\": \"2.0\",\"method\": \"idoit.constants\",\"params\": {\"apikey\": \"'\n + apikey + '\",\"language\": \"en\"},\"id\": 1}')\n try:\n s = requests.Session()\n constants_request = s.post(api_url, json=constants_body, headers=\n headers)\n constants = constants_request.json()\n return constants.get('result')\n except requests.exceptions.RequestException:\n print(red + '\\n>>> ' + reset +\n \"\"\"Unable to connect to the API. Please verify the connection information.\n\"\"\"\n )\n return None\n\n\ndef get_dialogs_from_table(table, db, cursor):\n values = {}\n if table != None:\n name = str(table) + '__id'\n desc = str(table) + '__title'\n query = ('SELECT ' + name + ', ' + desc + ' FROM ' + db + '.' +\n table + ';')\n cursor.execute(query)\n for t in cursor:\n name, value = t\n values[name] = value\n return values\n\n\ndef api_category_info(category, db_info, connection):\n \"\"\"\n Executes the method 'cmdb.category_info' of the i-doit API for a given category.\n Gets the attributes associated with a category, its data types and the available values of the dialog type attributes.\n\n Parameters\n ----------\n category : string\n The category name.\n\n Returns\n -------\n dict\n Returns the attributes, its data types and the available values of the dialog type attributes associated with the category.\n \"\"\"\n res = {}\n attributes = []\n types = {}\n dialogs = {}\n cat_body = json.loads(\n '{\"version\": \"2.0\",\"method\": \"cmdb.category_info\",\"params\": {\"category\": \"'\n + category + '\", \"apikey\": \"' + apikey +\n '\",\"language\": \"en\"},\"id\": 1}')\n server = db_info.get('server')\n username = db_info.get('username')\n password = db_info.get('password')\n db_name = db_info.get('db_name')\n try:\n s = requests.Session()\n cat_request = s.post(api_url, json=cat_body, headers=headers)\n if cat_request.text != '':\n if 'result' in cat_request.json():\n for attr in cat_request.json()['result']:\n new_atr = {}\n new_atr[cat_request.json()['result'][attr]['title']] = attr\n types[cat_request.json()['result'][attr]['title']\n ] = cat_request.json()['result'][attr]['data']['type']\n dialog = cat_request.json().get('result').get(attr).get(\n 'info').get('type')\n d = {}\n if dialog == 'dialog':\n dialog_body = json.loads(\n '{\"version\": \"2.0\",\"method\": \"cmdb.dialog.read\",\"params\": {\"category\": \"'\n + category + '\", \"property\": \"' + attr +\n '\", \"apikey\": \"' + apikey +\n '\",\"language\": \"en\"},\"id\": 1}')\n s = requests.Session()\n dialog_request = s.post(api_url, json=dialog_body,\n headers=headers)\n if dialog_request.text != '':\n values = dialog_request.json().get('result')\n if values != None:\n if len(values) == 1:\n values = values[0]\n if values != None:\n for a in values:\n if type(a) is dict:\n value = a.get('id')\n name = a.get('title')\n d[value] = name\n elif dialog == 'dialog_plus':\n cursor = connection.cursor()\n table = cat_request.json().get('result').get(attr).get(\n 'data').get('sourceTable')\n values = get_dialogs_from_table(table, db_name, cursor)\n if len(d) > 0:\n dialogs[attr] = d\n attributes.append(new_atr)\n res['attributes'] = attributes\n res['types'] = types\n res['dialogs'] = dialogs\n return res\n except requests.exceptions.RequestException:\n print(red + '\\n>>> ' + reset +\n \"\"\"Unable to connect to the API. Please verify the connection information.\n\"\"\"\n )\n return None\n\n\ndef category_attributes_types(categories, db_info, connection):\n \"\"\"\n Gets the attributes its data types and the available values of the dialog type attributes associated with all the categories in the CMDB.\n\n Parameters\n ----------\n categories : list\n The category names.\n\n Returns\n -------\n dict\n Returns the attributes, its data types and the available values of the dialog type attributes associated with all the categories.\n \"\"\"\n attributes = {}\n for cat in categories:\n attributes[cat] = {}\n category_info = api_category_info(cat, db_info, connection)\n attr = {}\n for a in category_info.get('attributes'):\n for key in a:\n attr[key] = a[key]\n attributes[cat]['attributes'] = {k: d for d, k in attr.items()}\n types = category_info.get('types')\n attributes[cat]['types'] = {attr.get(a): types.get(a) for a in types}\n attributes[cat]['dialogs'] = category_info.get('dialogs')\n return attributes\n\n\ndef get_object_attributes(ci, cat_attr_types):\n \"\"\"\n Executes the method 'cmdb.object_type_categories.read' of the i-doit API for a given object type.\n Gets the categories associated with an object type.\n Computes the attributes, its data types and the available values of the dialog type attributes of the object type, based on the categories associated with that type.\n\n Parameters\n ----------\n ci : string\n The object name.\n\n cat_attr_types : dict\n The attributes, its data types and the available values of the dialog type attributes, associated with every category, .\n\n Returns\n -------\n dict\n Returns the attributes, its data types and the available values of the dialog type attributes associated with the object type.\n \"\"\"\n res = {}\n object_attributes = {}\n attributes_types = {}\n dialogs = {}\n obj_categories_body = json.loads(\n '{\"version\": \"2.0\",\"method\": \"cmdb.object_type_categories.read\",\"params\": {\"type\": \"'\n + ci + '\", \"apikey\": \"' + apikey + '\",\"language\": \"en\"},\"id\": 1}')\n try:\n s = requests.Session()\n obj_categories_request = s.post(api_url, json=obj_categories_body,\n headers=headers)\n if obj_categories_request.text != '':\n if 'result' in obj_categories_request.json():\n if 'catg' in obj_categories_request.json()['result']:\n for cat_g in obj_categories_request.json()['result']['catg'\n ]:\n cat = cat_g['const']\n if cat in cat_attr_types:\n dialogs.update(cat_attr_types.get(cat).get(\n 'dialogs'))\n attrs = cat_attr_types.get(cat).get('attributes')\n types = cat_attr_types.get(cat).get('types')\n object_attributes.update(attrs)\n attributes_types.update(types)\n if 'cats' in obj_categories_request.json()['result']:\n for cat_s in obj_categories_request.json()['result']['cats'\n ]:\n cat = cat_s['const']\n if cat in cat_attr_types:\n dialogs.update(cat_attr_types.get(cat).get(\n 'dialogs'))\n attrs = cat_attr_types.get(cat).get('attributes')\n types = cat_attr_types.get(cat).get('types')\n object_attributes.update(attrs)\n attributes_types.update(types)\n res['dialogs'] = dialogs\n res['attributes'] = object_attributes\n res['types'] = attributes_types\n return res\n except requests.exceptions.RequestException:\n print(red + '\\n>>> ' + reset +\n \"\"\"Unable to connect to the API. Please verify the connection information.\n\"\"\"\n )\n return None\n\n\ndef process_i_doit():\n \"\"\"\n Processes the i-doit CMDB data model, obtaining information about configuration item types, \n relationship types, configuration items and relationship attributes, restrictions between relationships, \n data types of attributes, and values for dialog type attributes.\n\n Returns\n -------\n dict\n Returns the CMDB information (server address, username, password and api key).\n \"\"\"\n print(blue + '\\n>>> ' + reset + 'Make sure that i-doit is running.')\n api_info = api_specification()\n server = api_info.get('server')\n username = api_info.get('username')\n password = api_info.get('password')\n api_key = api_info.get('api_key')\n connection = test_api_connection(server, username, password, api_key)\n if connection == False:\n return process_i_doit()\n else:\n print(blue + '\\n>>> ' + reset + 'Make sure that i-doit is running.\\n')\n db_info = db_specification()\n server = db_info.get('server')\n username = db_info.get('username')\n password = db_info.get('password')\n db_name = db_info.get('db_name')\n connection = test_db_connection(server, db_name, username, password)\n if connection == None:\n return process_i_doit()\n else:\n print(blue + '\\n>>> ' + reset +\n 'Processing i-doit CMDB data model...')\n constants = api_constants()\n if constants == None:\n process_i_doit()\n else:\n ci_types = constants.get('objectTypes')\n cmdb_data_model['ci_types'] = ci_types\n rel_types = constants.get('relationTypes')\n cmdb_data_model['rel_types'] = rel_types\n categories = [c for c in {**constants.get('categories').get\n ('g'), **constants.get('categories').get('s')}]\n cat_attr_types = category_attributes_types(categories,\n db_info, connection)\n ci_attributes_types = {}\n for ci in ci_types:\n attrs = get_object_attributes(ci, cat_attr_types)\n if attrs == None:\n process_i_doit()\n else:\n ci_attributes_types[ci] = attrs\n rel_attributes_types = {}\n attrs = get_object_attributes('C__OBJTYPE__RELATION',\n cat_attr_types)\n if attrs == None:\n process_i_doit()\n else:\n for rel in rel_types:\n rel_attributes_types[rel] = attrs\n cmdb_data_model['ci_attributes'] = {ci: ci_attributes_types\n [ci]['attributes'] for ci in ci_attributes_types}\n cmdb_data_model['ci_attributes_data_types'] = {ci:\n ci_attributes_types[ci]['types'] for ci in\n ci_attributes_types}\n cmdb_data_model['ci_dialog_attributes'] = {ci:\n ci_attributes_types[ci]['dialogs'] for ci in\n ci_attributes_types}\n cmdb_data_model['rel_attributes'] = {rel:\n rel_attributes_types[rel]['attributes'] for rel in\n rel_attributes_types}\n cmdb_data_model['rel_attributes_data_types'] = {rel:\n rel_attributes_types[rel]['types'] for rel in\n rel_attributes_types}\n return api_info\n", "<import token>\n<docstring token>\n<assignment token>\n\n\nclass NotEmpty(Validator):\n\n def validate(self, document):\n ok = document.text != '' and document.text != None\n if not ok:\n raise ValidationError(message='Please enter something',\n cursor_position=len(document.text))\n\n\nclass AddressValidator(Validator):\n\n def validate(self, document):\n ok = regex.match('(\\\\d{1,3}\\\\.){3}\\\\d{1,3}', document.text)\n if not ok:\n raise ValidationError(message=\n 'Please enter a valid IP address.', cursor_position=len(\n document.text))\n\n\ndef db_specification():\n \"\"\"\n Asks the user to enter the necessary information (server address, username, password and database name) to access the i-doit CMDB.\n\n Returns\n -------\n dict\n The database information (server address, username, password and database name).\n\n \"\"\"\n db_specification_question = [{'type': 'input', 'message':\n \"Enter the IP address of your database server (use format yyx.yyx.yyx.yyx where 'y' is optional):\"\n , 'name': 'server', 'validate': AddressValidator}, {'type': 'input',\n 'message': 'Enter your database name:', 'name': 'db_name',\n 'validate': NotEmpty}, {'type': 'input', 'message':\n 'Enter your database username:', 'name': 'username', 'validate':\n NotEmpty}, {'type': 'password', 'message':\n 'Enter your database password:', 'name': 'password'}]\n db_specification_answer = prompt(db_specification_question, style=style)\n return db_specification_answer\n\n\ndef test_db_connection(server, db_name, username, passwd):\n \"\"\"\n Tests the access to the CMDB database.\n\n Parameters\n ----------\n server : string\n The IP address of the CMDB server.\n\n db_name: string\n The CMDB database name.\n\n username : string\n The CMDB username.\n\n password : string\n The CMDB password.\n\n Returns\n -------\n boolean\n Returns true if the connection was successful and false otherwise.\n\n \"\"\"\n print(blue + '\\n>>> ' + reset + 'Checking i-doit database connection...')\n cnx = None\n try:\n cnx = mysql.connector.connect(user=username, password=passwd, host=\n server, database=db_name)\n print(green + '\\n>>> ' + reset +\n 'Successfully connected to the i-doit database.')\n except mysql.connector.Error as err:\n if err.errno == errorcode.ER_ACCESS_DENIED_ERROR:\n print(red + '\\n>>> ' + reset +\n 'Something is wrong with your username or password.')\n elif err.errno == errorcode.ER_BAD_DB_ERROR:\n print(red + '\\n>>> ' + reset + 'Database does not exist.')\n else:\n print(red + '\\n>>> ' + reset + str(err))\n return cnx\n\n\ndef api_specification():\n \"\"\"\n Asks the user to enter the necessary information (server address, username, password and api key) to access the i-doit CMDB.\n\n Returns\n -------\n dict\n The CMDB information (server address, username, password and api key).\n \"\"\"\n api_specification_question = [{'type': 'input', 'message':\n \"Enter the IP address of your CMDB server (use format yyx.yyx.yyx.yyx where 'y' is optional):\"\n , 'name': 'server', 'validate': AddressValidator}, {'type': 'input',\n 'message': 'Enter your CMDB username:', 'name': 'username',\n 'validate': NotEmpty}, {'type': 'password', 'message':\n 'Enter your CMDB password:', 'name': 'password'}, {'type': 'input',\n 'message': 'Enter your API key:', 'name': 'api_key', 'validate':\n NotEmpty}]\n api_specification_answer = prompt(api_specification_question, style=style)\n return api_specification_answer\n\n\ndef test_api_connection(server, username, password, api_key):\n \"\"\"\n Tests the access to the CMDB.\n\n Parameters\n ----------\n server : string\n The IP address of the CMDB server.\n\n username : string\n The CMDB username.\n\n password : string\n The CMDB password.\n\n api_key: string\n The CMDB API key.\n\n Returns\n -------\n boolean\n Returns true if the connection was successful and false otherwise.\n \"\"\"\n global api_url\n api_url = 'http://' + server + '/i-doit/src/jsonrpc.php'\n global headers\n headers = {}\n headers['Content-Type'] = 'application/json'\n headers['X-RPC-Auth-Username'] = username\n headers['X-RPC-Auth-Password'] = password\n global apikey\n apikey = api_key\n print(blue + '\\n>>> ' + reset + 'Checking API connection...')\n login_body = json.loads(\n '{\"version\": \"2.0\",\"method\": \"idoit.login\",\"params\": {\"apikey\": \"' +\n apikey + '\",\"language\": \"en\"},\"id\": 1}')\n try:\n s = requests.Session()\n login_request = s.post(api_url, json=login_body, headers=headers)\n login = login_request.json()\n if 'error' in login:\n print(red + '\\n>>> ' + reset +\n 'Unable to connect to the API. Please verify the connection information.'\n )\n return False\n else:\n print(green + '\\n>>> ' + reset + 'Successfully connected.')\n return True\n except requests.exceptions.RequestException:\n print(red + '\\n>>> ' + reset +\n 'Unable to connect to the API. Please verify the connection information.'\n )\n return False\n\n\ndef api_constants():\n \"\"\"\n Executes the method 'idoit.contants' of the i-doit API.\n Gets the configuration item types, relationship types, and categories present in the CMDB.\n\n Returns\n -------\n boolean\n Returns the result of the execution of the method.\n \"\"\"\n constants_body = json.loads(\n '{\"version\": \"2.0\",\"method\": \"idoit.constants\",\"params\": {\"apikey\": \"'\n + apikey + '\",\"language\": \"en\"},\"id\": 1}')\n try:\n s = requests.Session()\n constants_request = s.post(api_url, json=constants_body, headers=\n headers)\n constants = constants_request.json()\n return constants.get('result')\n except requests.exceptions.RequestException:\n print(red + '\\n>>> ' + reset +\n \"\"\"Unable to connect to the API. Please verify the connection information.\n\"\"\"\n )\n return None\n\n\ndef get_dialogs_from_table(table, db, cursor):\n values = {}\n if table != None:\n name = str(table) + '__id'\n desc = str(table) + '__title'\n query = ('SELECT ' + name + ', ' + desc + ' FROM ' + db + '.' +\n table + ';')\n cursor.execute(query)\n for t in cursor:\n name, value = t\n values[name] = value\n return values\n\n\ndef api_category_info(category, db_info, connection):\n \"\"\"\n Executes the method 'cmdb.category_info' of the i-doit API for a given category.\n Gets the attributes associated with a category, its data types and the available values of the dialog type attributes.\n\n Parameters\n ----------\n category : string\n The category name.\n\n Returns\n -------\n dict\n Returns the attributes, its data types and the available values of the dialog type attributes associated with the category.\n \"\"\"\n res = {}\n attributes = []\n types = {}\n dialogs = {}\n cat_body = json.loads(\n '{\"version\": \"2.0\",\"method\": \"cmdb.category_info\",\"params\": {\"category\": \"'\n + category + '\", \"apikey\": \"' + apikey +\n '\",\"language\": \"en\"},\"id\": 1}')\n server = db_info.get('server')\n username = db_info.get('username')\n password = db_info.get('password')\n db_name = db_info.get('db_name')\n try:\n s = requests.Session()\n cat_request = s.post(api_url, json=cat_body, headers=headers)\n if cat_request.text != '':\n if 'result' in cat_request.json():\n for attr in cat_request.json()['result']:\n new_atr = {}\n new_atr[cat_request.json()['result'][attr]['title']] = attr\n types[cat_request.json()['result'][attr]['title']\n ] = cat_request.json()['result'][attr]['data']['type']\n dialog = cat_request.json().get('result').get(attr).get(\n 'info').get('type')\n d = {}\n if dialog == 'dialog':\n dialog_body = json.loads(\n '{\"version\": \"2.0\",\"method\": \"cmdb.dialog.read\",\"params\": {\"category\": \"'\n + category + '\", \"property\": \"' + attr +\n '\", \"apikey\": \"' + apikey +\n '\",\"language\": \"en\"},\"id\": 1}')\n s = requests.Session()\n dialog_request = s.post(api_url, json=dialog_body,\n headers=headers)\n if dialog_request.text != '':\n values = dialog_request.json().get('result')\n if values != None:\n if len(values) == 1:\n values = values[0]\n if values != None:\n for a in values:\n if type(a) is dict:\n value = a.get('id')\n name = a.get('title')\n d[value] = name\n elif dialog == 'dialog_plus':\n cursor = connection.cursor()\n table = cat_request.json().get('result').get(attr).get(\n 'data').get('sourceTable')\n values = get_dialogs_from_table(table, db_name, cursor)\n if len(d) > 0:\n dialogs[attr] = d\n attributes.append(new_atr)\n res['attributes'] = attributes\n res['types'] = types\n res['dialogs'] = dialogs\n return res\n except requests.exceptions.RequestException:\n print(red + '\\n>>> ' + reset +\n \"\"\"Unable to connect to the API. Please verify the connection information.\n\"\"\"\n )\n return None\n\n\ndef category_attributes_types(categories, db_info, connection):\n \"\"\"\n Gets the attributes its data types and the available values of the dialog type attributes associated with all the categories in the CMDB.\n\n Parameters\n ----------\n categories : list\n The category names.\n\n Returns\n -------\n dict\n Returns the attributes, its data types and the available values of the dialog type attributes associated with all the categories.\n \"\"\"\n attributes = {}\n for cat in categories:\n attributes[cat] = {}\n category_info = api_category_info(cat, db_info, connection)\n attr = {}\n for a in category_info.get('attributes'):\n for key in a:\n attr[key] = a[key]\n attributes[cat]['attributes'] = {k: d for d, k in attr.items()}\n types = category_info.get('types')\n attributes[cat]['types'] = {attr.get(a): types.get(a) for a in types}\n attributes[cat]['dialogs'] = category_info.get('dialogs')\n return attributes\n\n\ndef get_object_attributes(ci, cat_attr_types):\n \"\"\"\n Executes the method 'cmdb.object_type_categories.read' of the i-doit API for a given object type.\n Gets the categories associated with an object type.\n Computes the attributes, its data types and the available values of the dialog type attributes of the object type, based on the categories associated with that type.\n\n Parameters\n ----------\n ci : string\n The object name.\n\n cat_attr_types : dict\n The attributes, its data types and the available values of the dialog type attributes, associated with every category, .\n\n Returns\n -------\n dict\n Returns the attributes, its data types and the available values of the dialog type attributes associated with the object type.\n \"\"\"\n res = {}\n object_attributes = {}\n attributes_types = {}\n dialogs = {}\n obj_categories_body = json.loads(\n '{\"version\": \"2.0\",\"method\": \"cmdb.object_type_categories.read\",\"params\": {\"type\": \"'\n + ci + '\", \"apikey\": \"' + apikey + '\",\"language\": \"en\"},\"id\": 1}')\n try:\n s = requests.Session()\n obj_categories_request = s.post(api_url, json=obj_categories_body,\n headers=headers)\n if obj_categories_request.text != '':\n if 'result' in obj_categories_request.json():\n if 'catg' in obj_categories_request.json()['result']:\n for cat_g in obj_categories_request.json()['result']['catg'\n ]:\n cat = cat_g['const']\n if cat in cat_attr_types:\n dialogs.update(cat_attr_types.get(cat).get(\n 'dialogs'))\n attrs = cat_attr_types.get(cat).get('attributes')\n types = cat_attr_types.get(cat).get('types')\n object_attributes.update(attrs)\n attributes_types.update(types)\n if 'cats' in obj_categories_request.json()['result']:\n for cat_s in obj_categories_request.json()['result']['cats'\n ]:\n cat = cat_s['const']\n if cat in cat_attr_types:\n dialogs.update(cat_attr_types.get(cat).get(\n 'dialogs'))\n attrs = cat_attr_types.get(cat).get('attributes')\n types = cat_attr_types.get(cat).get('types')\n object_attributes.update(attrs)\n attributes_types.update(types)\n res['dialogs'] = dialogs\n res['attributes'] = object_attributes\n res['types'] = attributes_types\n return res\n except requests.exceptions.RequestException:\n print(red + '\\n>>> ' + reset +\n \"\"\"Unable to connect to the API. Please verify the connection information.\n\"\"\"\n )\n return None\n\n\ndef process_i_doit():\n \"\"\"\n Processes the i-doit CMDB data model, obtaining information about configuration item types, \n relationship types, configuration items and relationship attributes, restrictions between relationships, \n data types of attributes, and values for dialog type attributes.\n\n Returns\n -------\n dict\n Returns the CMDB information (server address, username, password and api key).\n \"\"\"\n print(blue + '\\n>>> ' + reset + 'Make sure that i-doit is running.')\n api_info = api_specification()\n server = api_info.get('server')\n username = api_info.get('username')\n password = api_info.get('password')\n api_key = api_info.get('api_key')\n connection = test_api_connection(server, username, password, api_key)\n if connection == False:\n return process_i_doit()\n else:\n print(blue + '\\n>>> ' + reset + 'Make sure that i-doit is running.\\n')\n db_info = db_specification()\n server = db_info.get('server')\n username = db_info.get('username')\n password = db_info.get('password')\n db_name = db_info.get('db_name')\n connection = test_db_connection(server, db_name, username, password)\n if connection == None:\n return process_i_doit()\n else:\n print(blue + '\\n>>> ' + reset +\n 'Processing i-doit CMDB data model...')\n constants = api_constants()\n if constants == None:\n process_i_doit()\n else:\n ci_types = constants.get('objectTypes')\n cmdb_data_model['ci_types'] = ci_types\n rel_types = constants.get('relationTypes')\n cmdb_data_model['rel_types'] = rel_types\n categories = [c for c in {**constants.get('categories').get\n ('g'), **constants.get('categories').get('s')}]\n cat_attr_types = category_attributes_types(categories,\n db_info, connection)\n ci_attributes_types = {}\n for ci in ci_types:\n attrs = get_object_attributes(ci, cat_attr_types)\n if attrs == None:\n process_i_doit()\n else:\n ci_attributes_types[ci] = attrs\n rel_attributes_types = {}\n attrs = get_object_attributes('C__OBJTYPE__RELATION',\n cat_attr_types)\n if attrs == None:\n process_i_doit()\n else:\n for rel in rel_types:\n rel_attributes_types[rel] = attrs\n cmdb_data_model['ci_attributes'] = {ci: ci_attributes_types\n [ci]['attributes'] for ci in ci_attributes_types}\n cmdb_data_model['ci_attributes_data_types'] = {ci:\n ci_attributes_types[ci]['types'] for ci in\n ci_attributes_types}\n cmdb_data_model['ci_dialog_attributes'] = {ci:\n ci_attributes_types[ci]['dialogs'] for ci in\n ci_attributes_types}\n cmdb_data_model['rel_attributes'] = {rel:\n rel_attributes_types[rel]['attributes'] for rel in\n rel_attributes_types}\n cmdb_data_model['rel_attributes_data_types'] = {rel:\n rel_attributes_types[rel]['types'] for rel in\n rel_attributes_types}\n return api_info\n", "<import token>\n<docstring token>\n<assignment token>\n\n\nclass NotEmpty(Validator):\n\n def validate(self, document):\n ok = document.text != '' and document.text != None\n if not ok:\n raise ValidationError(message='Please enter something',\n cursor_position=len(document.text))\n\n\nclass AddressValidator(Validator):\n\n def validate(self, document):\n ok = regex.match('(\\\\d{1,3}\\\\.){3}\\\\d{1,3}', document.text)\n if not ok:\n raise ValidationError(message=\n 'Please enter a valid IP address.', cursor_position=len(\n document.text))\n\n\ndef db_specification():\n \"\"\"\n Asks the user to enter the necessary information (server address, username, password and database name) to access the i-doit CMDB.\n\n Returns\n -------\n dict\n The database information (server address, username, password and database name).\n\n \"\"\"\n db_specification_question = [{'type': 'input', 'message':\n \"Enter the IP address of your database server (use format yyx.yyx.yyx.yyx where 'y' is optional):\"\n , 'name': 'server', 'validate': AddressValidator}, {'type': 'input',\n 'message': 'Enter your database name:', 'name': 'db_name',\n 'validate': NotEmpty}, {'type': 'input', 'message':\n 'Enter your database username:', 'name': 'username', 'validate':\n NotEmpty}, {'type': 'password', 'message':\n 'Enter your database password:', 'name': 'password'}]\n db_specification_answer = prompt(db_specification_question, style=style)\n return db_specification_answer\n\n\ndef test_db_connection(server, db_name, username, passwd):\n \"\"\"\n Tests the access to the CMDB database.\n\n Parameters\n ----------\n server : string\n The IP address of the CMDB server.\n\n db_name: string\n The CMDB database name.\n\n username : string\n The CMDB username.\n\n password : string\n The CMDB password.\n\n Returns\n -------\n boolean\n Returns true if the connection was successful and false otherwise.\n\n \"\"\"\n print(blue + '\\n>>> ' + reset + 'Checking i-doit database connection...')\n cnx = None\n try:\n cnx = mysql.connector.connect(user=username, password=passwd, host=\n server, database=db_name)\n print(green + '\\n>>> ' + reset +\n 'Successfully connected to the i-doit database.')\n except mysql.connector.Error as err:\n if err.errno == errorcode.ER_ACCESS_DENIED_ERROR:\n print(red + '\\n>>> ' + reset +\n 'Something is wrong with your username or password.')\n elif err.errno == errorcode.ER_BAD_DB_ERROR:\n print(red + '\\n>>> ' + reset + 'Database does not exist.')\n else:\n print(red + '\\n>>> ' + reset + str(err))\n return cnx\n\n\ndef api_specification():\n \"\"\"\n Asks the user to enter the necessary information (server address, username, password and api key) to access the i-doit CMDB.\n\n Returns\n -------\n dict\n The CMDB information (server address, username, password and api key).\n \"\"\"\n api_specification_question = [{'type': 'input', 'message':\n \"Enter the IP address of your CMDB server (use format yyx.yyx.yyx.yyx where 'y' is optional):\"\n , 'name': 'server', 'validate': AddressValidator}, {'type': 'input',\n 'message': 'Enter your CMDB username:', 'name': 'username',\n 'validate': NotEmpty}, {'type': 'password', 'message':\n 'Enter your CMDB password:', 'name': 'password'}, {'type': 'input',\n 'message': 'Enter your API key:', 'name': 'api_key', 'validate':\n NotEmpty}]\n api_specification_answer = prompt(api_specification_question, style=style)\n return api_specification_answer\n\n\ndef test_api_connection(server, username, password, api_key):\n \"\"\"\n Tests the access to the CMDB.\n\n Parameters\n ----------\n server : string\n The IP address of the CMDB server.\n\n username : string\n The CMDB username.\n\n password : string\n The CMDB password.\n\n api_key: string\n The CMDB API key.\n\n Returns\n -------\n boolean\n Returns true if the connection was successful and false otherwise.\n \"\"\"\n global api_url\n api_url = 'http://' + server + '/i-doit/src/jsonrpc.php'\n global headers\n headers = {}\n headers['Content-Type'] = 'application/json'\n headers['X-RPC-Auth-Username'] = username\n headers['X-RPC-Auth-Password'] = password\n global apikey\n apikey = api_key\n print(blue + '\\n>>> ' + reset + 'Checking API connection...')\n login_body = json.loads(\n '{\"version\": \"2.0\",\"method\": \"idoit.login\",\"params\": {\"apikey\": \"' +\n apikey + '\",\"language\": \"en\"},\"id\": 1}')\n try:\n s = requests.Session()\n login_request = s.post(api_url, json=login_body, headers=headers)\n login = login_request.json()\n if 'error' in login:\n print(red + '\\n>>> ' + reset +\n 'Unable to connect to the API. Please verify the connection information.'\n )\n return False\n else:\n print(green + '\\n>>> ' + reset + 'Successfully connected.')\n return True\n except requests.exceptions.RequestException:\n print(red + '\\n>>> ' + reset +\n 'Unable to connect to the API. Please verify the connection information.'\n )\n return False\n\n\ndef api_constants():\n \"\"\"\n Executes the method 'idoit.contants' of the i-doit API.\n Gets the configuration item types, relationship types, and categories present in the CMDB.\n\n Returns\n -------\n boolean\n Returns the result of the execution of the method.\n \"\"\"\n constants_body = json.loads(\n '{\"version\": \"2.0\",\"method\": \"idoit.constants\",\"params\": {\"apikey\": \"'\n + apikey + '\",\"language\": \"en\"},\"id\": 1}')\n try:\n s = requests.Session()\n constants_request = s.post(api_url, json=constants_body, headers=\n headers)\n constants = constants_request.json()\n return constants.get('result')\n except requests.exceptions.RequestException:\n print(red + '\\n>>> ' + reset +\n \"\"\"Unable to connect to the API. Please verify the connection information.\n\"\"\"\n )\n return None\n\n\ndef get_dialogs_from_table(table, db, cursor):\n values = {}\n if table != None:\n name = str(table) + '__id'\n desc = str(table) + '__title'\n query = ('SELECT ' + name + ', ' + desc + ' FROM ' + db + '.' +\n table + ';')\n cursor.execute(query)\n for t in cursor:\n name, value = t\n values[name] = value\n return values\n\n\ndef api_category_info(category, db_info, connection):\n \"\"\"\n Executes the method 'cmdb.category_info' of the i-doit API for a given category.\n Gets the attributes associated with a category, its data types and the available values of the dialog type attributes.\n\n Parameters\n ----------\n category : string\n The category name.\n\n Returns\n -------\n dict\n Returns the attributes, its data types and the available values of the dialog type attributes associated with the category.\n \"\"\"\n res = {}\n attributes = []\n types = {}\n dialogs = {}\n cat_body = json.loads(\n '{\"version\": \"2.0\",\"method\": \"cmdb.category_info\",\"params\": {\"category\": \"'\n + category + '\", \"apikey\": \"' + apikey +\n '\",\"language\": \"en\"},\"id\": 1}')\n server = db_info.get('server')\n username = db_info.get('username')\n password = db_info.get('password')\n db_name = db_info.get('db_name')\n try:\n s = requests.Session()\n cat_request = s.post(api_url, json=cat_body, headers=headers)\n if cat_request.text != '':\n if 'result' in cat_request.json():\n for attr in cat_request.json()['result']:\n new_atr = {}\n new_atr[cat_request.json()['result'][attr]['title']] = attr\n types[cat_request.json()['result'][attr]['title']\n ] = cat_request.json()['result'][attr]['data']['type']\n dialog = cat_request.json().get('result').get(attr).get(\n 'info').get('type')\n d = {}\n if dialog == 'dialog':\n dialog_body = json.loads(\n '{\"version\": \"2.0\",\"method\": \"cmdb.dialog.read\",\"params\": {\"category\": \"'\n + category + '\", \"property\": \"' + attr +\n '\", \"apikey\": \"' + apikey +\n '\",\"language\": \"en\"},\"id\": 1}')\n s = requests.Session()\n dialog_request = s.post(api_url, json=dialog_body,\n headers=headers)\n if dialog_request.text != '':\n values = dialog_request.json().get('result')\n if values != None:\n if len(values) == 1:\n values = values[0]\n if values != None:\n for a in values:\n if type(a) is dict:\n value = a.get('id')\n name = a.get('title')\n d[value] = name\n elif dialog == 'dialog_plus':\n cursor = connection.cursor()\n table = cat_request.json().get('result').get(attr).get(\n 'data').get('sourceTable')\n values = get_dialogs_from_table(table, db_name, cursor)\n if len(d) > 0:\n dialogs[attr] = d\n attributes.append(new_atr)\n res['attributes'] = attributes\n res['types'] = types\n res['dialogs'] = dialogs\n return res\n except requests.exceptions.RequestException:\n print(red + '\\n>>> ' + reset +\n \"\"\"Unable to connect to the API. Please verify the connection information.\n\"\"\"\n )\n return None\n\n\ndef category_attributes_types(categories, db_info, connection):\n \"\"\"\n Gets the attributes its data types and the available values of the dialog type attributes associated with all the categories in the CMDB.\n\n Parameters\n ----------\n categories : list\n The category names.\n\n Returns\n -------\n dict\n Returns the attributes, its data types and the available values of the dialog type attributes associated with all the categories.\n \"\"\"\n attributes = {}\n for cat in categories:\n attributes[cat] = {}\n category_info = api_category_info(cat, db_info, connection)\n attr = {}\n for a in category_info.get('attributes'):\n for key in a:\n attr[key] = a[key]\n attributes[cat]['attributes'] = {k: d for d, k in attr.items()}\n types = category_info.get('types')\n attributes[cat]['types'] = {attr.get(a): types.get(a) for a in types}\n attributes[cat]['dialogs'] = category_info.get('dialogs')\n return attributes\n\n\ndef get_object_attributes(ci, cat_attr_types):\n \"\"\"\n Executes the method 'cmdb.object_type_categories.read' of the i-doit API for a given object type.\n Gets the categories associated with an object type.\n Computes the attributes, its data types and the available values of the dialog type attributes of the object type, based on the categories associated with that type.\n\n Parameters\n ----------\n ci : string\n The object name.\n\n cat_attr_types : dict\n The attributes, its data types and the available values of the dialog type attributes, associated with every category, .\n\n Returns\n -------\n dict\n Returns the attributes, its data types and the available values of the dialog type attributes associated with the object type.\n \"\"\"\n res = {}\n object_attributes = {}\n attributes_types = {}\n dialogs = {}\n obj_categories_body = json.loads(\n '{\"version\": \"2.0\",\"method\": \"cmdb.object_type_categories.read\",\"params\": {\"type\": \"'\n + ci + '\", \"apikey\": \"' + apikey + '\",\"language\": \"en\"},\"id\": 1}')\n try:\n s = requests.Session()\n obj_categories_request = s.post(api_url, json=obj_categories_body,\n headers=headers)\n if obj_categories_request.text != '':\n if 'result' in obj_categories_request.json():\n if 'catg' in obj_categories_request.json()['result']:\n for cat_g in obj_categories_request.json()['result']['catg'\n ]:\n cat = cat_g['const']\n if cat in cat_attr_types:\n dialogs.update(cat_attr_types.get(cat).get(\n 'dialogs'))\n attrs = cat_attr_types.get(cat).get('attributes')\n types = cat_attr_types.get(cat).get('types')\n object_attributes.update(attrs)\n attributes_types.update(types)\n if 'cats' in obj_categories_request.json()['result']:\n for cat_s in obj_categories_request.json()['result']['cats'\n ]:\n cat = cat_s['const']\n if cat in cat_attr_types:\n dialogs.update(cat_attr_types.get(cat).get(\n 'dialogs'))\n attrs = cat_attr_types.get(cat).get('attributes')\n types = cat_attr_types.get(cat).get('types')\n object_attributes.update(attrs)\n attributes_types.update(types)\n res['dialogs'] = dialogs\n res['attributes'] = object_attributes\n res['types'] = attributes_types\n return res\n except requests.exceptions.RequestException:\n print(red + '\\n>>> ' + reset +\n \"\"\"Unable to connect to the API. Please verify the connection information.\n\"\"\"\n )\n return None\n\n\n<function token>\n", "<import token>\n<docstring token>\n<assignment token>\n\n\nclass NotEmpty(Validator):\n\n def validate(self, document):\n ok = document.text != '' and document.text != None\n if not ok:\n raise ValidationError(message='Please enter something',\n cursor_position=len(document.text))\n\n\nclass AddressValidator(Validator):\n\n def validate(self, document):\n ok = regex.match('(\\\\d{1,3}\\\\.){3}\\\\d{1,3}', document.text)\n if not ok:\n raise ValidationError(message=\n 'Please enter a valid IP address.', cursor_position=len(\n document.text))\n\n\ndef db_specification():\n \"\"\"\n Asks the user to enter the necessary information (server address, username, password and database name) to access the i-doit CMDB.\n\n Returns\n -------\n dict\n The database information (server address, username, password and database name).\n\n \"\"\"\n db_specification_question = [{'type': 'input', 'message':\n \"Enter the IP address of your database server (use format yyx.yyx.yyx.yyx where 'y' is optional):\"\n , 'name': 'server', 'validate': AddressValidator}, {'type': 'input',\n 'message': 'Enter your database name:', 'name': 'db_name',\n 'validate': NotEmpty}, {'type': 'input', 'message':\n 'Enter your database username:', 'name': 'username', 'validate':\n NotEmpty}, {'type': 'password', 'message':\n 'Enter your database password:', 'name': 'password'}]\n db_specification_answer = prompt(db_specification_question, style=style)\n return db_specification_answer\n\n\ndef test_db_connection(server, db_name, username, passwd):\n \"\"\"\n Tests the access to the CMDB database.\n\n Parameters\n ----------\n server : string\n The IP address of the CMDB server.\n\n db_name: string\n The CMDB database name.\n\n username : string\n The CMDB username.\n\n password : string\n The CMDB password.\n\n Returns\n -------\n boolean\n Returns true if the connection was successful and false otherwise.\n\n \"\"\"\n print(blue + '\\n>>> ' + reset + 'Checking i-doit database connection...')\n cnx = None\n try:\n cnx = mysql.connector.connect(user=username, password=passwd, host=\n server, database=db_name)\n print(green + '\\n>>> ' + reset +\n 'Successfully connected to the i-doit database.')\n except mysql.connector.Error as err:\n if err.errno == errorcode.ER_ACCESS_DENIED_ERROR:\n print(red + '\\n>>> ' + reset +\n 'Something is wrong with your username or password.')\n elif err.errno == errorcode.ER_BAD_DB_ERROR:\n print(red + '\\n>>> ' + reset + 'Database does not exist.')\n else:\n print(red + '\\n>>> ' + reset + str(err))\n return cnx\n\n\ndef api_specification():\n \"\"\"\n Asks the user to enter the necessary information (server address, username, password and api key) to access the i-doit CMDB.\n\n Returns\n -------\n dict\n The CMDB information (server address, username, password and api key).\n \"\"\"\n api_specification_question = [{'type': 'input', 'message':\n \"Enter the IP address of your CMDB server (use format yyx.yyx.yyx.yyx where 'y' is optional):\"\n , 'name': 'server', 'validate': AddressValidator}, {'type': 'input',\n 'message': 'Enter your CMDB username:', 'name': 'username',\n 'validate': NotEmpty}, {'type': 'password', 'message':\n 'Enter your CMDB password:', 'name': 'password'}, {'type': 'input',\n 'message': 'Enter your API key:', 'name': 'api_key', 'validate':\n NotEmpty}]\n api_specification_answer = prompt(api_specification_question, style=style)\n return api_specification_answer\n\n\ndef test_api_connection(server, username, password, api_key):\n \"\"\"\n Tests the access to the CMDB.\n\n Parameters\n ----------\n server : string\n The IP address of the CMDB server.\n\n username : string\n The CMDB username.\n\n password : string\n The CMDB password.\n\n api_key: string\n The CMDB API key.\n\n Returns\n -------\n boolean\n Returns true if the connection was successful and false otherwise.\n \"\"\"\n global api_url\n api_url = 'http://' + server + '/i-doit/src/jsonrpc.php'\n global headers\n headers = {}\n headers['Content-Type'] = 'application/json'\n headers['X-RPC-Auth-Username'] = username\n headers['X-RPC-Auth-Password'] = password\n global apikey\n apikey = api_key\n print(blue + '\\n>>> ' + reset + 'Checking API connection...')\n login_body = json.loads(\n '{\"version\": \"2.0\",\"method\": \"idoit.login\",\"params\": {\"apikey\": \"' +\n apikey + '\",\"language\": \"en\"},\"id\": 1}')\n try:\n s = requests.Session()\n login_request = s.post(api_url, json=login_body, headers=headers)\n login = login_request.json()\n if 'error' in login:\n print(red + '\\n>>> ' + reset +\n 'Unable to connect to the API. Please verify the connection information.'\n )\n return False\n else:\n print(green + '\\n>>> ' + reset + 'Successfully connected.')\n return True\n except requests.exceptions.RequestException:\n print(red + '\\n>>> ' + reset +\n 'Unable to connect to the API. Please verify the connection information.'\n )\n return False\n\n\ndef api_constants():\n \"\"\"\n Executes the method 'idoit.contants' of the i-doit API.\n Gets the configuration item types, relationship types, and categories present in the CMDB.\n\n Returns\n -------\n boolean\n Returns the result of the execution of the method.\n \"\"\"\n constants_body = json.loads(\n '{\"version\": \"2.0\",\"method\": \"idoit.constants\",\"params\": {\"apikey\": \"'\n + apikey + '\",\"language\": \"en\"},\"id\": 1}')\n try:\n s = requests.Session()\n constants_request = s.post(api_url, json=constants_body, headers=\n headers)\n constants = constants_request.json()\n return constants.get('result')\n except requests.exceptions.RequestException:\n print(red + '\\n>>> ' + reset +\n \"\"\"Unable to connect to the API. Please verify the connection information.\n\"\"\"\n )\n return None\n\n\ndef get_dialogs_from_table(table, db, cursor):\n values = {}\n if table != None:\n name = str(table) + '__id'\n desc = str(table) + '__title'\n query = ('SELECT ' + name + ', ' + desc + ' FROM ' + db + '.' +\n table + ';')\n cursor.execute(query)\n for t in cursor:\n name, value = t\n values[name] = value\n return values\n\n\n<function token>\n\n\ndef category_attributes_types(categories, db_info, connection):\n \"\"\"\n Gets the attributes its data types and the available values of the dialog type attributes associated with all the categories in the CMDB.\n\n Parameters\n ----------\n categories : list\n The category names.\n\n Returns\n -------\n dict\n Returns the attributes, its data types and the available values of the dialog type attributes associated with all the categories.\n \"\"\"\n attributes = {}\n for cat in categories:\n attributes[cat] = {}\n category_info = api_category_info(cat, db_info, connection)\n attr = {}\n for a in category_info.get('attributes'):\n for key in a:\n attr[key] = a[key]\n attributes[cat]['attributes'] = {k: d for d, k in attr.items()}\n types = category_info.get('types')\n attributes[cat]['types'] = {attr.get(a): types.get(a) for a in types}\n attributes[cat]['dialogs'] = category_info.get('dialogs')\n return attributes\n\n\ndef get_object_attributes(ci, cat_attr_types):\n \"\"\"\n Executes the method 'cmdb.object_type_categories.read' of the i-doit API for a given object type.\n Gets the categories associated with an object type.\n Computes the attributes, its data types and the available values of the dialog type attributes of the object type, based on the categories associated with that type.\n\n Parameters\n ----------\n ci : string\n The object name.\n\n cat_attr_types : dict\n The attributes, its data types and the available values of the dialog type attributes, associated with every category, .\n\n Returns\n -------\n dict\n Returns the attributes, its data types and the available values of the dialog type attributes associated with the object type.\n \"\"\"\n res = {}\n object_attributes = {}\n attributes_types = {}\n dialogs = {}\n obj_categories_body = json.loads(\n '{\"version\": \"2.0\",\"method\": \"cmdb.object_type_categories.read\",\"params\": {\"type\": \"'\n + ci + '\", \"apikey\": \"' + apikey + '\",\"language\": \"en\"},\"id\": 1}')\n try:\n s = requests.Session()\n obj_categories_request = s.post(api_url, json=obj_categories_body,\n headers=headers)\n if obj_categories_request.text != '':\n if 'result' in obj_categories_request.json():\n if 'catg' in obj_categories_request.json()['result']:\n for cat_g in obj_categories_request.json()['result']['catg'\n ]:\n cat = cat_g['const']\n if cat in cat_attr_types:\n dialogs.update(cat_attr_types.get(cat).get(\n 'dialogs'))\n attrs = cat_attr_types.get(cat).get('attributes')\n types = cat_attr_types.get(cat).get('types')\n object_attributes.update(attrs)\n attributes_types.update(types)\n if 'cats' in obj_categories_request.json()['result']:\n for cat_s in obj_categories_request.json()['result']['cats'\n ]:\n cat = cat_s['const']\n if cat in cat_attr_types:\n dialogs.update(cat_attr_types.get(cat).get(\n 'dialogs'))\n attrs = cat_attr_types.get(cat).get('attributes')\n types = cat_attr_types.get(cat).get('types')\n object_attributes.update(attrs)\n attributes_types.update(types)\n res['dialogs'] = dialogs\n res['attributes'] = object_attributes\n res['types'] = attributes_types\n return res\n except requests.exceptions.RequestException:\n print(red + '\\n>>> ' + reset +\n \"\"\"Unable to connect to the API. Please verify the connection information.\n\"\"\"\n )\n return None\n\n\n<function token>\n", "<import token>\n<docstring token>\n<assignment token>\n\n\nclass NotEmpty(Validator):\n\n def validate(self, document):\n ok = document.text != '' and document.text != None\n if not ok:\n raise ValidationError(message='Please enter something',\n cursor_position=len(document.text))\n\n\nclass AddressValidator(Validator):\n\n def validate(self, document):\n ok = regex.match('(\\\\d{1,3}\\\\.){3}\\\\d{1,3}', document.text)\n if not ok:\n raise ValidationError(message=\n 'Please enter a valid IP address.', cursor_position=len(\n document.text))\n\n\ndef db_specification():\n \"\"\"\n Asks the user to enter the necessary information (server address, username, password and database name) to access the i-doit CMDB.\n\n Returns\n -------\n dict\n The database information (server address, username, password and database name).\n\n \"\"\"\n db_specification_question = [{'type': 'input', 'message':\n \"Enter the IP address of your database server (use format yyx.yyx.yyx.yyx where 'y' is optional):\"\n , 'name': 'server', 'validate': AddressValidator}, {'type': 'input',\n 'message': 'Enter your database name:', 'name': 'db_name',\n 'validate': NotEmpty}, {'type': 'input', 'message':\n 'Enter your database username:', 'name': 'username', 'validate':\n NotEmpty}, {'type': 'password', 'message':\n 'Enter your database password:', 'name': 'password'}]\n db_specification_answer = prompt(db_specification_question, style=style)\n return db_specification_answer\n\n\n<function token>\n\n\ndef api_specification():\n \"\"\"\n Asks the user to enter the necessary information (server address, username, password and api key) to access the i-doit CMDB.\n\n Returns\n -------\n dict\n The CMDB information (server address, username, password and api key).\n \"\"\"\n api_specification_question = [{'type': 'input', 'message':\n \"Enter the IP address of your CMDB server (use format yyx.yyx.yyx.yyx where 'y' is optional):\"\n , 'name': 'server', 'validate': AddressValidator}, {'type': 'input',\n 'message': 'Enter your CMDB username:', 'name': 'username',\n 'validate': NotEmpty}, {'type': 'password', 'message':\n 'Enter your CMDB password:', 'name': 'password'}, {'type': 'input',\n 'message': 'Enter your API key:', 'name': 'api_key', 'validate':\n NotEmpty}]\n api_specification_answer = prompt(api_specification_question, style=style)\n return api_specification_answer\n\n\ndef test_api_connection(server, username, password, api_key):\n \"\"\"\n Tests the access to the CMDB.\n\n Parameters\n ----------\n server : string\n The IP address of the CMDB server.\n\n username : string\n The CMDB username.\n\n password : string\n The CMDB password.\n\n api_key: string\n The CMDB API key.\n\n Returns\n -------\n boolean\n Returns true if the connection was successful and false otherwise.\n \"\"\"\n global api_url\n api_url = 'http://' + server + '/i-doit/src/jsonrpc.php'\n global headers\n headers = {}\n headers['Content-Type'] = 'application/json'\n headers['X-RPC-Auth-Username'] = username\n headers['X-RPC-Auth-Password'] = password\n global apikey\n apikey = api_key\n print(blue + '\\n>>> ' + reset + 'Checking API connection...')\n login_body = json.loads(\n '{\"version\": \"2.0\",\"method\": \"idoit.login\",\"params\": {\"apikey\": \"' +\n apikey + '\",\"language\": \"en\"},\"id\": 1}')\n try:\n s = requests.Session()\n login_request = s.post(api_url, json=login_body, headers=headers)\n login = login_request.json()\n if 'error' in login:\n print(red + '\\n>>> ' + reset +\n 'Unable to connect to the API. Please verify the connection information.'\n )\n return False\n else:\n print(green + '\\n>>> ' + reset + 'Successfully connected.')\n return True\n except requests.exceptions.RequestException:\n print(red + '\\n>>> ' + reset +\n 'Unable to connect to the API. Please verify the connection information.'\n )\n return False\n\n\ndef api_constants():\n \"\"\"\n Executes the method 'idoit.contants' of the i-doit API.\n Gets the configuration item types, relationship types, and categories present in the CMDB.\n\n Returns\n -------\n boolean\n Returns the result of the execution of the method.\n \"\"\"\n constants_body = json.loads(\n '{\"version\": \"2.0\",\"method\": \"idoit.constants\",\"params\": {\"apikey\": \"'\n + apikey + '\",\"language\": \"en\"},\"id\": 1}')\n try:\n s = requests.Session()\n constants_request = s.post(api_url, json=constants_body, headers=\n headers)\n constants = constants_request.json()\n return constants.get('result')\n except requests.exceptions.RequestException:\n print(red + '\\n>>> ' + reset +\n \"\"\"Unable to connect to the API. Please verify the connection information.\n\"\"\"\n )\n return None\n\n\ndef get_dialogs_from_table(table, db, cursor):\n values = {}\n if table != None:\n name = str(table) + '__id'\n desc = str(table) + '__title'\n query = ('SELECT ' + name + ', ' + desc + ' FROM ' + db + '.' +\n table + ';')\n cursor.execute(query)\n for t in cursor:\n name, value = t\n values[name] = value\n return values\n\n\n<function token>\n\n\ndef category_attributes_types(categories, db_info, connection):\n \"\"\"\n Gets the attributes its data types and the available values of the dialog type attributes associated with all the categories in the CMDB.\n\n Parameters\n ----------\n categories : list\n The category names.\n\n Returns\n -------\n dict\n Returns the attributes, its data types and the available values of the dialog type attributes associated with all the categories.\n \"\"\"\n attributes = {}\n for cat in categories:\n attributes[cat] = {}\n category_info = api_category_info(cat, db_info, connection)\n attr = {}\n for a in category_info.get('attributes'):\n for key in a:\n attr[key] = a[key]\n attributes[cat]['attributes'] = {k: d for d, k in attr.items()}\n types = category_info.get('types')\n attributes[cat]['types'] = {attr.get(a): types.get(a) for a in types}\n attributes[cat]['dialogs'] = category_info.get('dialogs')\n return attributes\n\n\ndef get_object_attributes(ci, cat_attr_types):\n \"\"\"\n Executes the method 'cmdb.object_type_categories.read' of the i-doit API for a given object type.\n Gets the categories associated with an object type.\n Computes the attributes, its data types and the available values of the dialog type attributes of the object type, based on the categories associated with that type.\n\n Parameters\n ----------\n ci : string\n The object name.\n\n cat_attr_types : dict\n The attributes, its data types and the available values of the dialog type attributes, associated with every category, .\n\n Returns\n -------\n dict\n Returns the attributes, its data types and the available values of the dialog type attributes associated with the object type.\n \"\"\"\n res = {}\n object_attributes = {}\n attributes_types = {}\n dialogs = {}\n obj_categories_body = json.loads(\n '{\"version\": \"2.0\",\"method\": \"cmdb.object_type_categories.read\",\"params\": {\"type\": \"'\n + ci + '\", \"apikey\": \"' + apikey + '\",\"language\": \"en\"},\"id\": 1}')\n try:\n s = requests.Session()\n obj_categories_request = s.post(api_url, json=obj_categories_body,\n headers=headers)\n if obj_categories_request.text != '':\n if 'result' in obj_categories_request.json():\n if 'catg' in obj_categories_request.json()['result']:\n for cat_g in obj_categories_request.json()['result']['catg'\n ]:\n cat = cat_g['const']\n if cat in cat_attr_types:\n dialogs.update(cat_attr_types.get(cat).get(\n 'dialogs'))\n attrs = cat_attr_types.get(cat).get('attributes')\n types = cat_attr_types.get(cat).get('types')\n object_attributes.update(attrs)\n attributes_types.update(types)\n if 'cats' in obj_categories_request.json()['result']:\n for cat_s in obj_categories_request.json()['result']['cats'\n ]:\n cat = cat_s['const']\n if cat in cat_attr_types:\n dialogs.update(cat_attr_types.get(cat).get(\n 'dialogs'))\n attrs = cat_attr_types.get(cat).get('attributes')\n types = cat_attr_types.get(cat).get('types')\n object_attributes.update(attrs)\n attributes_types.update(types)\n res['dialogs'] = dialogs\n res['attributes'] = object_attributes\n res['types'] = attributes_types\n return res\n except requests.exceptions.RequestException:\n print(red + '\\n>>> ' + reset +\n \"\"\"Unable to connect to the API. Please verify the connection information.\n\"\"\"\n )\n return None\n\n\n<function token>\n", "<import token>\n<docstring token>\n<assignment token>\n\n\nclass NotEmpty(Validator):\n\n def validate(self, document):\n ok = document.text != '' and document.text != None\n if not ok:\n raise ValidationError(message='Please enter something',\n cursor_position=len(document.text))\n\n\nclass AddressValidator(Validator):\n\n def validate(self, document):\n ok = regex.match('(\\\\d{1,3}\\\\.){3}\\\\d{1,3}', document.text)\n if not ok:\n raise ValidationError(message=\n 'Please enter a valid IP address.', cursor_position=len(\n document.text))\n\n\ndef db_specification():\n \"\"\"\n Asks the user to enter the necessary information (server address, username, password and database name) to access the i-doit CMDB.\n\n Returns\n -------\n dict\n The database information (server address, username, password and database name).\n\n \"\"\"\n db_specification_question = [{'type': 'input', 'message':\n \"Enter the IP address of your database server (use format yyx.yyx.yyx.yyx where 'y' is optional):\"\n , 'name': 'server', 'validate': AddressValidator}, {'type': 'input',\n 'message': 'Enter your database name:', 'name': 'db_name',\n 'validate': NotEmpty}, {'type': 'input', 'message':\n 'Enter your database username:', 'name': 'username', 'validate':\n NotEmpty}, {'type': 'password', 'message':\n 'Enter your database password:', 'name': 'password'}]\n db_specification_answer = prompt(db_specification_question, style=style)\n return db_specification_answer\n\n\n<function token>\n\n\ndef api_specification():\n \"\"\"\n Asks the user to enter the necessary information (server address, username, password and api key) to access the i-doit CMDB.\n\n Returns\n -------\n dict\n The CMDB information (server address, username, password and api key).\n \"\"\"\n api_specification_question = [{'type': 'input', 'message':\n \"Enter the IP address of your CMDB server (use format yyx.yyx.yyx.yyx where 'y' is optional):\"\n , 'name': 'server', 'validate': AddressValidator}, {'type': 'input',\n 'message': 'Enter your CMDB username:', 'name': 'username',\n 'validate': NotEmpty}, {'type': 'password', 'message':\n 'Enter your CMDB password:', 'name': 'password'}, {'type': 'input',\n 'message': 'Enter your API key:', 'name': 'api_key', 'validate':\n NotEmpty}]\n api_specification_answer = prompt(api_specification_question, style=style)\n return api_specification_answer\n\n\n<function token>\n\n\ndef api_constants():\n \"\"\"\n Executes the method 'idoit.contants' of the i-doit API.\n Gets the configuration item types, relationship types, and categories present in the CMDB.\n\n Returns\n -------\n boolean\n Returns the result of the execution of the method.\n \"\"\"\n constants_body = json.loads(\n '{\"version\": \"2.0\",\"method\": \"idoit.constants\",\"params\": {\"apikey\": \"'\n + apikey + '\",\"language\": \"en\"},\"id\": 1}')\n try:\n s = requests.Session()\n constants_request = s.post(api_url, json=constants_body, headers=\n headers)\n constants = constants_request.json()\n return constants.get('result')\n except requests.exceptions.RequestException:\n print(red + '\\n>>> ' + reset +\n \"\"\"Unable to connect to the API. Please verify the connection information.\n\"\"\"\n )\n return None\n\n\ndef get_dialogs_from_table(table, db, cursor):\n values = {}\n if table != None:\n name = str(table) + '__id'\n desc = str(table) + '__title'\n query = ('SELECT ' + name + ', ' + desc + ' FROM ' + db + '.' +\n table + ';')\n cursor.execute(query)\n for t in cursor:\n name, value = t\n values[name] = value\n return values\n\n\n<function token>\n\n\ndef category_attributes_types(categories, db_info, connection):\n \"\"\"\n Gets the attributes its data types and the available values of the dialog type attributes associated with all the categories in the CMDB.\n\n Parameters\n ----------\n categories : list\n The category names.\n\n Returns\n -------\n dict\n Returns the attributes, its data types and the available values of the dialog type attributes associated with all the categories.\n \"\"\"\n attributes = {}\n for cat in categories:\n attributes[cat] = {}\n category_info = api_category_info(cat, db_info, connection)\n attr = {}\n for a in category_info.get('attributes'):\n for key in a:\n attr[key] = a[key]\n attributes[cat]['attributes'] = {k: d for d, k in attr.items()}\n types = category_info.get('types')\n attributes[cat]['types'] = {attr.get(a): types.get(a) for a in types}\n attributes[cat]['dialogs'] = category_info.get('dialogs')\n return attributes\n\n\ndef get_object_attributes(ci, cat_attr_types):\n \"\"\"\n Executes the method 'cmdb.object_type_categories.read' of the i-doit API for a given object type.\n Gets the categories associated with an object type.\n Computes the attributes, its data types and the available values of the dialog type attributes of the object type, based on the categories associated with that type.\n\n Parameters\n ----------\n ci : string\n The object name.\n\n cat_attr_types : dict\n The attributes, its data types and the available values of the dialog type attributes, associated with every category, .\n\n Returns\n -------\n dict\n Returns the attributes, its data types and the available values of the dialog type attributes associated with the object type.\n \"\"\"\n res = {}\n object_attributes = {}\n attributes_types = {}\n dialogs = {}\n obj_categories_body = json.loads(\n '{\"version\": \"2.0\",\"method\": \"cmdb.object_type_categories.read\",\"params\": {\"type\": \"'\n + ci + '\", \"apikey\": \"' + apikey + '\",\"language\": \"en\"},\"id\": 1}')\n try:\n s = requests.Session()\n obj_categories_request = s.post(api_url, json=obj_categories_body,\n headers=headers)\n if obj_categories_request.text != '':\n if 'result' in obj_categories_request.json():\n if 'catg' in obj_categories_request.json()['result']:\n for cat_g in obj_categories_request.json()['result']['catg'\n ]:\n cat = cat_g['const']\n if cat in cat_attr_types:\n dialogs.update(cat_attr_types.get(cat).get(\n 'dialogs'))\n attrs = cat_attr_types.get(cat).get('attributes')\n types = cat_attr_types.get(cat).get('types')\n object_attributes.update(attrs)\n attributes_types.update(types)\n if 'cats' in obj_categories_request.json()['result']:\n for cat_s in obj_categories_request.json()['result']['cats'\n ]:\n cat = cat_s['const']\n if cat in cat_attr_types:\n dialogs.update(cat_attr_types.get(cat).get(\n 'dialogs'))\n attrs = cat_attr_types.get(cat).get('attributes')\n types = cat_attr_types.get(cat).get('types')\n object_attributes.update(attrs)\n attributes_types.update(types)\n res['dialogs'] = dialogs\n res['attributes'] = object_attributes\n res['types'] = attributes_types\n return res\n except requests.exceptions.RequestException:\n print(red + '\\n>>> ' + reset +\n \"\"\"Unable to connect to the API. Please verify the connection information.\n\"\"\"\n )\n return None\n\n\n<function token>\n", "<import token>\n<docstring token>\n<assignment token>\n\n\nclass NotEmpty(Validator):\n\n def validate(self, document):\n ok = document.text != '' and document.text != None\n if not ok:\n raise ValidationError(message='Please enter something',\n cursor_position=len(document.text))\n\n\nclass AddressValidator(Validator):\n\n def validate(self, document):\n ok = regex.match('(\\\\d{1,3}\\\\.){3}\\\\d{1,3}', document.text)\n if not ok:\n raise ValidationError(message=\n 'Please enter a valid IP address.', cursor_position=len(\n document.text))\n\n\ndef db_specification():\n \"\"\"\n Asks the user to enter the necessary information (server address, username, password and database name) to access the i-doit CMDB.\n\n Returns\n -------\n dict\n The database information (server address, username, password and database name).\n\n \"\"\"\n db_specification_question = [{'type': 'input', 'message':\n \"Enter the IP address of your database server (use format yyx.yyx.yyx.yyx where 'y' is optional):\"\n , 'name': 'server', 'validate': AddressValidator}, {'type': 'input',\n 'message': 'Enter your database name:', 'name': 'db_name',\n 'validate': NotEmpty}, {'type': 'input', 'message':\n 'Enter your database username:', 'name': 'username', 'validate':\n NotEmpty}, {'type': 'password', 'message':\n 'Enter your database password:', 'name': 'password'}]\n db_specification_answer = prompt(db_specification_question, style=style)\n return db_specification_answer\n\n\n<function token>\n\n\ndef api_specification():\n \"\"\"\n Asks the user to enter the necessary information (server address, username, password and api key) to access the i-doit CMDB.\n\n Returns\n -------\n dict\n The CMDB information (server address, username, password and api key).\n \"\"\"\n api_specification_question = [{'type': 'input', 'message':\n \"Enter the IP address of your CMDB server (use format yyx.yyx.yyx.yyx where 'y' is optional):\"\n , 'name': 'server', 'validate': AddressValidator}, {'type': 'input',\n 'message': 'Enter your CMDB username:', 'name': 'username',\n 'validate': NotEmpty}, {'type': 'password', 'message':\n 'Enter your CMDB password:', 'name': 'password'}, {'type': 'input',\n 'message': 'Enter your API key:', 'name': 'api_key', 'validate':\n NotEmpty}]\n api_specification_answer = prompt(api_specification_question, style=style)\n return api_specification_answer\n\n\n<function token>\n\n\ndef api_constants():\n \"\"\"\n Executes the method 'idoit.contants' of the i-doit API.\n Gets the configuration item types, relationship types, and categories present in the CMDB.\n\n Returns\n -------\n boolean\n Returns the result of the execution of the method.\n \"\"\"\n constants_body = json.loads(\n '{\"version\": \"2.0\",\"method\": \"idoit.constants\",\"params\": {\"apikey\": \"'\n + apikey + '\",\"language\": \"en\"},\"id\": 1}')\n try:\n s = requests.Session()\n constants_request = s.post(api_url, json=constants_body, headers=\n headers)\n constants = constants_request.json()\n return constants.get('result')\n except requests.exceptions.RequestException:\n print(red + '\\n>>> ' + reset +\n \"\"\"Unable to connect to the API. Please verify the connection information.\n\"\"\"\n )\n return None\n\n\ndef get_dialogs_from_table(table, db, cursor):\n values = {}\n if table != None:\n name = str(table) + '__id'\n desc = str(table) + '__title'\n query = ('SELECT ' + name + ', ' + desc + ' FROM ' + db + '.' +\n table + ';')\n cursor.execute(query)\n for t in cursor:\n name, value = t\n values[name] = value\n return values\n\n\n<function token>\n<function token>\n\n\ndef get_object_attributes(ci, cat_attr_types):\n \"\"\"\n Executes the method 'cmdb.object_type_categories.read' of the i-doit API for a given object type.\n Gets the categories associated with an object type.\n Computes the attributes, its data types and the available values of the dialog type attributes of the object type, based on the categories associated with that type.\n\n Parameters\n ----------\n ci : string\n The object name.\n\n cat_attr_types : dict\n The attributes, its data types and the available values of the dialog type attributes, associated with every category, .\n\n Returns\n -------\n dict\n Returns the attributes, its data types and the available values of the dialog type attributes associated with the object type.\n \"\"\"\n res = {}\n object_attributes = {}\n attributes_types = {}\n dialogs = {}\n obj_categories_body = json.loads(\n '{\"version\": \"2.0\",\"method\": \"cmdb.object_type_categories.read\",\"params\": {\"type\": \"'\n + ci + '\", \"apikey\": \"' + apikey + '\",\"language\": \"en\"},\"id\": 1}')\n try:\n s = requests.Session()\n obj_categories_request = s.post(api_url, json=obj_categories_body,\n headers=headers)\n if obj_categories_request.text != '':\n if 'result' in obj_categories_request.json():\n if 'catg' in obj_categories_request.json()['result']:\n for cat_g in obj_categories_request.json()['result']['catg'\n ]:\n cat = cat_g['const']\n if cat in cat_attr_types:\n dialogs.update(cat_attr_types.get(cat).get(\n 'dialogs'))\n attrs = cat_attr_types.get(cat).get('attributes')\n types = cat_attr_types.get(cat).get('types')\n object_attributes.update(attrs)\n attributes_types.update(types)\n if 'cats' in obj_categories_request.json()['result']:\n for cat_s in obj_categories_request.json()['result']['cats'\n ]:\n cat = cat_s['const']\n if cat in cat_attr_types:\n dialogs.update(cat_attr_types.get(cat).get(\n 'dialogs'))\n attrs = cat_attr_types.get(cat).get('attributes')\n types = cat_attr_types.get(cat).get('types')\n object_attributes.update(attrs)\n attributes_types.update(types)\n res['dialogs'] = dialogs\n res['attributes'] = object_attributes\n res['types'] = attributes_types\n return res\n except requests.exceptions.RequestException:\n print(red + '\\n>>> ' + reset +\n \"\"\"Unable to connect to the API. Please verify the connection information.\n\"\"\"\n )\n return None\n\n\n<function token>\n", "<import token>\n<docstring token>\n<assignment token>\n\n\nclass NotEmpty(Validator):\n\n def validate(self, document):\n ok = document.text != '' and document.text != None\n if not ok:\n raise ValidationError(message='Please enter something',\n cursor_position=len(document.text))\n\n\nclass AddressValidator(Validator):\n\n def validate(self, document):\n ok = regex.match('(\\\\d{1,3}\\\\.){3}\\\\d{1,3}', document.text)\n if not ok:\n raise ValidationError(message=\n 'Please enter a valid IP address.', cursor_position=len(\n document.text))\n\n\n<function token>\n<function token>\n\n\ndef api_specification():\n \"\"\"\n Asks the user to enter the necessary information (server address, username, password and api key) to access the i-doit CMDB.\n\n Returns\n -------\n dict\n The CMDB information (server address, username, password and api key).\n \"\"\"\n api_specification_question = [{'type': 'input', 'message':\n \"Enter the IP address of your CMDB server (use format yyx.yyx.yyx.yyx where 'y' is optional):\"\n , 'name': 'server', 'validate': AddressValidator}, {'type': 'input',\n 'message': 'Enter your CMDB username:', 'name': 'username',\n 'validate': NotEmpty}, {'type': 'password', 'message':\n 'Enter your CMDB password:', 'name': 'password'}, {'type': 'input',\n 'message': 'Enter your API key:', 'name': 'api_key', 'validate':\n NotEmpty}]\n api_specification_answer = prompt(api_specification_question, style=style)\n return api_specification_answer\n\n\n<function token>\n\n\ndef api_constants():\n \"\"\"\n Executes the method 'idoit.contants' of the i-doit API.\n Gets the configuration item types, relationship types, and categories present in the CMDB.\n\n Returns\n -------\n boolean\n Returns the result of the execution of the method.\n \"\"\"\n constants_body = json.loads(\n '{\"version\": \"2.0\",\"method\": \"idoit.constants\",\"params\": {\"apikey\": \"'\n + apikey + '\",\"language\": \"en\"},\"id\": 1}')\n try:\n s = requests.Session()\n constants_request = s.post(api_url, json=constants_body, headers=\n headers)\n constants = constants_request.json()\n return constants.get('result')\n except requests.exceptions.RequestException:\n print(red + '\\n>>> ' + reset +\n \"\"\"Unable to connect to the API. Please verify the connection information.\n\"\"\"\n )\n return None\n\n\ndef get_dialogs_from_table(table, db, cursor):\n values = {}\n if table != None:\n name = str(table) + '__id'\n desc = str(table) + '__title'\n query = ('SELECT ' + name + ', ' + desc + ' FROM ' + db + '.' +\n table + ';')\n cursor.execute(query)\n for t in cursor:\n name, value = t\n values[name] = value\n return values\n\n\n<function token>\n<function token>\n\n\ndef get_object_attributes(ci, cat_attr_types):\n \"\"\"\n Executes the method 'cmdb.object_type_categories.read' of the i-doit API for a given object type.\n Gets the categories associated with an object type.\n Computes the attributes, its data types and the available values of the dialog type attributes of the object type, based on the categories associated with that type.\n\n Parameters\n ----------\n ci : string\n The object name.\n\n cat_attr_types : dict\n The attributes, its data types and the available values of the dialog type attributes, associated with every category, .\n\n Returns\n -------\n dict\n Returns the attributes, its data types and the available values of the dialog type attributes associated with the object type.\n \"\"\"\n res = {}\n object_attributes = {}\n attributes_types = {}\n dialogs = {}\n obj_categories_body = json.loads(\n '{\"version\": \"2.0\",\"method\": \"cmdb.object_type_categories.read\",\"params\": {\"type\": \"'\n + ci + '\", \"apikey\": \"' + apikey + '\",\"language\": \"en\"},\"id\": 1}')\n try:\n s = requests.Session()\n obj_categories_request = s.post(api_url, json=obj_categories_body,\n headers=headers)\n if obj_categories_request.text != '':\n if 'result' in obj_categories_request.json():\n if 'catg' in obj_categories_request.json()['result']:\n for cat_g in obj_categories_request.json()['result']['catg'\n ]:\n cat = cat_g['const']\n if cat in cat_attr_types:\n dialogs.update(cat_attr_types.get(cat).get(\n 'dialogs'))\n attrs = cat_attr_types.get(cat).get('attributes')\n types = cat_attr_types.get(cat).get('types')\n object_attributes.update(attrs)\n attributes_types.update(types)\n if 'cats' in obj_categories_request.json()['result']:\n for cat_s in obj_categories_request.json()['result']['cats'\n ]:\n cat = cat_s['const']\n if cat in cat_attr_types:\n dialogs.update(cat_attr_types.get(cat).get(\n 'dialogs'))\n attrs = cat_attr_types.get(cat).get('attributes')\n types = cat_attr_types.get(cat).get('types')\n object_attributes.update(attrs)\n attributes_types.update(types)\n res['dialogs'] = dialogs\n res['attributes'] = object_attributes\n res['types'] = attributes_types\n return res\n except requests.exceptions.RequestException:\n print(red + '\\n>>> ' + reset +\n \"\"\"Unable to connect to the API. Please verify the connection information.\n\"\"\"\n )\n return None\n\n\n<function token>\n", "<import token>\n<docstring token>\n<assignment token>\n\n\nclass NotEmpty(Validator):\n\n def validate(self, document):\n ok = document.text != '' and document.text != None\n if not ok:\n raise ValidationError(message='Please enter something',\n cursor_position=len(document.text))\n\n\nclass AddressValidator(Validator):\n\n def validate(self, document):\n ok = regex.match('(\\\\d{1,3}\\\\.){3}\\\\d{1,3}', document.text)\n if not ok:\n raise ValidationError(message=\n 'Please enter a valid IP address.', cursor_position=len(\n document.text))\n\n\n<function token>\n<function token>\n\n\ndef api_specification():\n \"\"\"\n Asks the user to enter the necessary information (server address, username, password and api key) to access the i-doit CMDB.\n\n Returns\n -------\n dict\n The CMDB information (server address, username, password and api key).\n \"\"\"\n api_specification_question = [{'type': 'input', 'message':\n \"Enter the IP address of your CMDB server (use format yyx.yyx.yyx.yyx where 'y' is optional):\"\n , 'name': 'server', 'validate': AddressValidator}, {'type': 'input',\n 'message': 'Enter your CMDB username:', 'name': 'username',\n 'validate': NotEmpty}, {'type': 'password', 'message':\n 'Enter your CMDB password:', 'name': 'password'}, {'type': 'input',\n 'message': 'Enter your API key:', 'name': 'api_key', 'validate':\n NotEmpty}]\n api_specification_answer = prompt(api_specification_question, style=style)\n return api_specification_answer\n\n\n<function token>\n\n\ndef api_constants():\n \"\"\"\n Executes the method 'idoit.contants' of the i-doit API.\n Gets the configuration item types, relationship types, and categories present in the CMDB.\n\n Returns\n -------\n boolean\n Returns the result of the execution of the method.\n \"\"\"\n constants_body = json.loads(\n '{\"version\": \"2.0\",\"method\": \"idoit.constants\",\"params\": {\"apikey\": \"'\n + apikey + '\",\"language\": \"en\"},\"id\": 1}')\n try:\n s = requests.Session()\n constants_request = s.post(api_url, json=constants_body, headers=\n headers)\n constants = constants_request.json()\n return constants.get('result')\n except requests.exceptions.RequestException:\n print(red + '\\n>>> ' + reset +\n \"\"\"Unable to connect to the API. Please verify the connection information.\n\"\"\"\n )\n return None\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef get_object_attributes(ci, cat_attr_types):\n \"\"\"\n Executes the method 'cmdb.object_type_categories.read' of the i-doit API for a given object type.\n Gets the categories associated with an object type.\n Computes the attributes, its data types and the available values of the dialog type attributes of the object type, based on the categories associated with that type.\n\n Parameters\n ----------\n ci : string\n The object name.\n\n cat_attr_types : dict\n The attributes, its data types and the available values of the dialog type attributes, associated with every category, .\n\n Returns\n -------\n dict\n Returns the attributes, its data types and the available values of the dialog type attributes associated with the object type.\n \"\"\"\n res = {}\n object_attributes = {}\n attributes_types = {}\n dialogs = {}\n obj_categories_body = json.loads(\n '{\"version\": \"2.0\",\"method\": \"cmdb.object_type_categories.read\",\"params\": {\"type\": \"'\n + ci + '\", \"apikey\": \"' + apikey + '\",\"language\": \"en\"},\"id\": 1}')\n try:\n s = requests.Session()\n obj_categories_request = s.post(api_url, json=obj_categories_body,\n headers=headers)\n if obj_categories_request.text != '':\n if 'result' in obj_categories_request.json():\n if 'catg' in obj_categories_request.json()['result']:\n for cat_g in obj_categories_request.json()['result']['catg'\n ]:\n cat = cat_g['const']\n if cat in cat_attr_types:\n dialogs.update(cat_attr_types.get(cat).get(\n 'dialogs'))\n attrs = cat_attr_types.get(cat).get('attributes')\n types = cat_attr_types.get(cat).get('types')\n object_attributes.update(attrs)\n attributes_types.update(types)\n if 'cats' in obj_categories_request.json()['result']:\n for cat_s in obj_categories_request.json()['result']['cats'\n ]:\n cat = cat_s['const']\n if cat in cat_attr_types:\n dialogs.update(cat_attr_types.get(cat).get(\n 'dialogs'))\n attrs = cat_attr_types.get(cat).get('attributes')\n types = cat_attr_types.get(cat).get('types')\n object_attributes.update(attrs)\n attributes_types.update(types)\n res['dialogs'] = dialogs\n res['attributes'] = object_attributes\n res['types'] = attributes_types\n return res\n except requests.exceptions.RequestException:\n print(red + '\\n>>> ' + reset +\n \"\"\"Unable to connect to the API. Please verify the connection information.\n\"\"\"\n )\n return None\n\n\n<function token>\n", "<import token>\n<docstring token>\n<assignment token>\n\n\nclass NotEmpty(Validator):\n\n def validate(self, document):\n ok = document.text != '' and document.text != None\n if not ok:\n raise ValidationError(message='Please enter something',\n cursor_position=len(document.text))\n\n\nclass AddressValidator(Validator):\n\n def validate(self, document):\n ok = regex.match('(\\\\d{1,3}\\\\.){3}\\\\d{1,3}', document.text)\n if not ok:\n raise ValidationError(message=\n 'Please enter a valid IP address.', cursor_position=len(\n document.text))\n\n\n<function token>\n<function token>\n\n\ndef api_specification():\n \"\"\"\n Asks the user to enter the necessary information (server address, username, password and api key) to access the i-doit CMDB.\n\n Returns\n -------\n dict\n The CMDB information (server address, username, password and api key).\n \"\"\"\n api_specification_question = [{'type': 'input', 'message':\n \"Enter the IP address of your CMDB server (use format yyx.yyx.yyx.yyx where 'y' is optional):\"\n , 'name': 'server', 'validate': AddressValidator}, {'type': 'input',\n 'message': 'Enter your CMDB username:', 'name': 'username',\n 'validate': NotEmpty}, {'type': 'password', 'message':\n 'Enter your CMDB password:', 'name': 'password'}, {'type': 'input',\n 'message': 'Enter your API key:', 'name': 'api_key', 'validate':\n NotEmpty}]\n api_specification_answer = prompt(api_specification_question, style=style)\n return api_specification_answer\n\n\n<function token>\n\n\ndef api_constants():\n \"\"\"\n Executes the method 'idoit.contants' of the i-doit API.\n Gets the configuration item types, relationship types, and categories present in the CMDB.\n\n Returns\n -------\n boolean\n Returns the result of the execution of the method.\n \"\"\"\n constants_body = json.loads(\n '{\"version\": \"2.0\",\"method\": \"idoit.constants\",\"params\": {\"apikey\": \"'\n + apikey + '\",\"language\": \"en\"},\"id\": 1}')\n try:\n s = requests.Session()\n constants_request = s.post(api_url, json=constants_body, headers=\n headers)\n constants = constants_request.json()\n return constants.get('result')\n except requests.exceptions.RequestException:\n print(red + '\\n>>> ' + reset +\n \"\"\"Unable to connect to the API. Please verify the connection information.\n\"\"\"\n )\n return None\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n", "<import token>\n<docstring token>\n<assignment token>\n\n\nclass NotEmpty(Validator):\n\n def validate(self, document):\n ok = document.text != '' and document.text != None\n if not ok:\n raise ValidationError(message='Please enter something',\n cursor_position=len(document.text))\n\n\nclass AddressValidator(Validator):\n\n def validate(self, document):\n ok = regex.match('(\\\\d{1,3}\\\\.){3}\\\\d{1,3}', document.text)\n if not ok:\n raise ValidationError(message=\n 'Please enter a valid IP address.', cursor_position=len(\n document.text))\n\n\n<function token>\n<function token>\n\n\ndef api_specification():\n \"\"\"\n Asks the user to enter the necessary information (server address, username, password and api key) to access the i-doit CMDB.\n\n Returns\n -------\n dict\n The CMDB information (server address, username, password and api key).\n \"\"\"\n api_specification_question = [{'type': 'input', 'message':\n \"Enter the IP address of your CMDB server (use format yyx.yyx.yyx.yyx where 'y' is optional):\"\n , 'name': 'server', 'validate': AddressValidator}, {'type': 'input',\n 'message': 'Enter your CMDB username:', 'name': 'username',\n 'validate': NotEmpty}, {'type': 'password', 'message':\n 'Enter your CMDB password:', 'name': 'password'}, {'type': 'input',\n 'message': 'Enter your API key:', 'name': 'api_key', 'validate':\n NotEmpty}]\n api_specification_answer = prompt(api_specification_question, style=style)\n return api_specification_answer\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n", "<import token>\n<docstring token>\n<assignment token>\n\n\nclass NotEmpty(Validator):\n\n def validate(self, document):\n ok = document.text != '' and document.text != None\n if not ok:\n raise ValidationError(message='Please enter something',\n cursor_position=len(document.text))\n\n\nclass AddressValidator(Validator):\n\n def validate(self, document):\n ok = regex.match('(\\\\d{1,3}\\\\.){3}\\\\d{1,3}', document.text)\n if not ok:\n raise ValidationError(message=\n 'Please enter a valid IP address.', cursor_position=len(\n document.text))\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n", "<import token>\n<docstring token>\n<assignment token>\n\n\nclass NotEmpty(Validator):\n <function token>\n\n\nclass AddressValidator(Validator):\n\n def validate(self, document):\n ok = regex.match('(\\\\d{1,3}\\\\.){3}\\\\d{1,3}', document.text)\n if not ok:\n raise ValidationError(message=\n 'Please enter a valid IP address.', cursor_position=len(\n document.text))\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n", "<import token>\n<docstring token>\n<assignment token>\n<class token>\n\n\nclass AddressValidator(Validator):\n\n def validate(self, document):\n ok = regex.match('(\\\\d{1,3}\\\\.){3}\\\\d{1,3}', document.text)\n if not ok:\n raise ValidationError(message=\n 'Please enter a valid IP address.', cursor_position=len(\n document.text))\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n", "<import token>\n<docstring token>\n<assignment token>\n<class token>\n\n\nclass AddressValidator(Validator):\n <function token>\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n", "<import token>\n<docstring token>\n<assignment token>\n<class token>\n<class token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n" ]
false
99,032
f0dcb759f2b16cbd28780ac838342755a80d8deb
from django.test import RequestFactory from django.urls import reverse from . models import User class TestViews: def login_detail(self): path=reverse() class RegisterModel: def test_save(self): register = RestRegistration.objects.create( email="[email protected]", first_name="shahazad", last_name="shaikh", password=500, confirm_password=500, ) assert register.email == "[email protected]" assert register.password == 500 assert register.confirm_password == 500 assert register.email == "[email protected]" def setUp(self): valid_payload = { 'title': 'test', 'description': "test", 'color': "test", 'label': 'test'} response = client.post( reverse('createnote'), data=json.dumps(valid_payload), content_type='application/json' ) assert (response.status_code) def update(self): valid_payload = { 'title': 'test', 'description': "test", 'color': "test", 'label': 'test'} response = client.post( reverse('updatenote'), data=json.dumps(valid_payload), content_type='application/json' ) assert (response.status_code)
[ "from django.test import RequestFactory\nfrom django.urls import reverse\nfrom . models import User\n\nclass TestViews:\n def login_detail(self):\n path=reverse()\n\n\nclass RegisterModel:\n def test_save(self):\n register = RestRegistration.objects.create(\n email=\"[email protected]\",\n first_name=\"shahazad\",\n last_name=\"shaikh\",\n password=500,\n confirm_password=500,\n )\n assert register.email == \"[email protected]\"\n assert register.password == 500\n assert register.confirm_password == 500\n assert register.email == \"[email protected]\"\n\ndef setUp(self):\n valid_payload = {\n 'title': 'test',\n 'description': \"test\",\n 'color': \"test\",\n 'label': 'test'}\n\n response = client.post(\n reverse('createnote'),\n data=json.dumps(valid_payload),\n content_type='application/json'\n )\n\n assert (response.status_code)\n\n\ndef update(self):\n valid_payload = {\n 'title': 'test',\n 'description': \"test\",\n 'color': \"test\",\n 'label': 'test'}\n\n response = client.post(\n reverse('updatenote'),\n data=json.dumps(valid_payload),\n content_type='application/json'\n )\n assert (response.status_code)\n\n", "from django.test import RequestFactory\nfrom django.urls import reverse\nfrom .models import User\n\n\nclass TestViews:\n\n def login_detail(self):\n path = reverse()\n\n\nclass RegisterModel:\n\n def test_save(self):\n register = RestRegistration.objects.create(email=\n '[email protected]', first_name='shahazad', last_name=\n 'shaikh', password=500, confirm_password=500)\n assert register.email == '[email protected]'\n assert register.password == 500\n assert register.confirm_password == 500\n assert register.email == '[email protected]'\n\n\ndef setUp(self):\n valid_payload = {'title': 'test', 'description': 'test', 'color':\n 'test', 'label': 'test'}\n response = client.post(reverse('createnote'), data=json.dumps(\n valid_payload), content_type='application/json')\n assert response.status_code\n\n\ndef update(self):\n valid_payload = {'title': 'test', 'description': 'test', 'color':\n 'test', 'label': 'test'}\n response = client.post(reverse('updatenote'), data=json.dumps(\n valid_payload), content_type='application/json')\n assert response.status_code\n", "<import token>\n\n\nclass TestViews:\n\n def login_detail(self):\n path = reverse()\n\n\nclass RegisterModel:\n\n def test_save(self):\n register = RestRegistration.objects.create(email=\n '[email protected]', first_name='shahazad', last_name=\n 'shaikh', password=500, confirm_password=500)\n assert register.email == '[email protected]'\n assert register.password == 500\n assert register.confirm_password == 500\n assert register.email == '[email protected]'\n\n\ndef setUp(self):\n valid_payload = {'title': 'test', 'description': 'test', 'color':\n 'test', 'label': 'test'}\n response = client.post(reverse('createnote'), data=json.dumps(\n valid_payload), content_type='application/json')\n assert response.status_code\n\n\ndef update(self):\n valid_payload = {'title': 'test', 'description': 'test', 'color':\n 'test', 'label': 'test'}\n response = client.post(reverse('updatenote'), data=json.dumps(\n valid_payload), content_type='application/json')\n assert response.status_code\n", "<import token>\n\n\nclass TestViews:\n\n def login_detail(self):\n path = reverse()\n\n\nclass RegisterModel:\n\n def test_save(self):\n register = RestRegistration.objects.create(email=\n '[email protected]', first_name='shahazad', last_name=\n 'shaikh', password=500, confirm_password=500)\n assert register.email == '[email protected]'\n assert register.password == 500\n assert register.confirm_password == 500\n assert register.email == '[email protected]'\n\n\ndef setUp(self):\n valid_payload = {'title': 'test', 'description': 'test', 'color':\n 'test', 'label': 'test'}\n response = client.post(reverse('createnote'), data=json.dumps(\n valid_payload), content_type='application/json')\n assert response.status_code\n\n\n<function token>\n", "<import token>\n\n\nclass TestViews:\n\n def login_detail(self):\n path = reverse()\n\n\nclass RegisterModel:\n\n def test_save(self):\n register = RestRegistration.objects.create(email=\n '[email protected]', first_name='shahazad', last_name=\n 'shaikh', password=500, confirm_password=500)\n assert register.email == '[email protected]'\n assert register.password == 500\n assert register.confirm_password == 500\n assert register.email == '[email protected]'\n\n\n<function token>\n<function token>\n", "<import token>\n\n\nclass TestViews:\n <function token>\n\n\nclass RegisterModel:\n\n def test_save(self):\n register = RestRegistration.objects.create(email=\n '[email protected]', first_name='shahazad', last_name=\n 'shaikh', password=500, confirm_password=500)\n assert register.email == '[email protected]'\n assert register.password == 500\n assert register.confirm_password == 500\n assert register.email == '[email protected]'\n\n\n<function token>\n<function token>\n", "<import token>\n<class token>\n\n\nclass RegisterModel:\n\n def test_save(self):\n register = RestRegistration.objects.create(email=\n '[email protected]', first_name='shahazad', last_name=\n 'shaikh', password=500, confirm_password=500)\n assert register.email == '[email protected]'\n assert register.password == 500\n assert register.confirm_password == 500\n assert register.email == '[email protected]'\n\n\n<function token>\n<function token>\n", "<import token>\n<class token>\n\n\nclass RegisterModel:\n <function token>\n assert register.email == '[email protected]'\n\n\n<function token>\n<function token>\n", "<import token>\n<class token>\n<class token>\n<function token>\n<function token>\n" ]
false
99,033
30abbec6be4dae5cc39435c49a9d896700be8591
from collections import deque n, k, q = (int(x) for x in input().split()) result = list() arr = deque([int(x) for x in input().split()]) arr.rotate(k) for _ in range(q): result.append(arr[int(input())]) [print(r) for r in result]
[ "from collections import deque\n\nn, k, q = (int(x) for x in input().split())\nresult = list()\narr = deque([int(x) for x in input().split()])\narr.rotate(k)\nfor _ in range(q):\n result.append(arr[int(input())])\n\n[print(r) for r in result]", "from collections import deque\nn, k, q = (int(x) for x in input().split())\nresult = list()\narr = deque([int(x) for x in input().split()])\narr.rotate(k)\nfor _ in range(q):\n result.append(arr[int(input())])\n[print(r) for r in result]\n", "<import token>\nn, k, q = (int(x) for x in input().split())\nresult = list()\narr = deque([int(x) for x in input().split()])\narr.rotate(k)\nfor _ in range(q):\n result.append(arr[int(input())])\n[print(r) for r in result]\n", "<import token>\n<assignment token>\narr.rotate(k)\nfor _ in range(q):\n result.append(arr[int(input())])\n[print(r) for r in result]\n", "<import token>\n<assignment token>\n<code token>\n" ]
false
99,034
0263e283792b480cc600f7afbb3a888921fff7f5
""" In situations where we are developing an application or library that will be use to create long computation reports or results, we want to execute the long process only when all the project tests are passed. pytest provide a great support for creating test suits, parallel execution, reports, command line, IDE of CI integration, and so forth, so the idea is to write these long computation code in test from, group them in studios and extend pytest with a plugin that allow us to: - Ignore these long computation studies and run only the regular ones. - Sort all the involved tests so the study will be executed only when all dependences are passed. - Define the studies and dependences in a easy way. - Don't interfere with normal pytest use. For a more detailed refecences, please read README.md or visit https://github.com/asteriogonzalez/pytest-study """ from __future__ import print_function try: import wingdbstub except ImportError: pass import re import pytest from blessings import Terminal term = Terminal() MARKS = ['study', 'pre'] # match 1st ocurrence def parse_args(args, kwargs): "update kwargs with positional arguments" positional = ['name', 'order'] kw = {'name': 'default', 'order': 1000} kw.update(kwargs) for key in kwargs: if key in positional: positional.remove(key) for i, val in enumerate(args): kw[positional[i]] = val return kw def get_study_name(item): "Try to get the name where the test belongs to, or '' when is free" for mark in MARKS: marker = item.get_marker(mark) if marker: return parse_args(marker.args, marker.kwargs)['name'] return '' def get_FQN(item): "Get the Full Qualified Name of a test item" names = [] for x in item.listchain(): if not isinstance(x, (pytest.Session, pytest.Instance)): names.append(x.name) return ':'.join(names) # ------------------------------------------ # Skip studio tests # ------------------------------------------ def pytest_addoption(parser): "Add the --runstudy option in command line" # parser.addoption("--runstudy", action="store_true", # default=False, help="run studio processes") parser.addoption("--show_order", action="store_true", default=False, help="""show tests and studies order execution and which are selected for execution.""") parser.addoption("--runstudy", action="store", type="string", default='', metavar='all|reg expression', help="""regular expression for the studies names ('all' runs all). None is selected by default.""") def pytest_collection_modifyitems(config, items): """Remove all study tests if --runstudy is not selected and reorder the study dependences to be executed incrementaly so any failed study test will abort the complete sequence. - Mark a test with @pytest.mark.study to consider part of a study. - Mark a test with @pytest.mark.study and named 'test_study_xxxx()' to be executed at the end when all previous test study functions are passed. """ # check if studio tests myst be skipped run_study = config.getoption("--runstudy") # 'all' will match all studies, '' will not match anything run_study = {'': '(?!x)x', 'all': '.*'}.get(run_study, run_study) # --runstudy given in cli: do not skip study tests and test_selected = list() test_skipped = list() groups = dict() incremental = pytest.mark.incremental() def add(): "helper for gathering test info" marker = item.get_marker(mark) kwargs = parse_args(marker.args, marker.kwargs) group_name = kwargs['name'] group = groups.setdefault(group_name, dict()) group.setdefault(mark, list()).append((kwargs, item)) item.add_marker(incremental) # place every test in regular, prerequisite and studies # group by name for item in items: for mark in set(item.keywords.keys()).intersection(MARKS): add() break else: test_selected.append(item) def sort(a, b): "Sort two items by order priority" return cmp(a[0]['order'], b[0]['order']) # use studies precedence to built the global sequence order mandatory = 'study' # mandatory mark for global sorting: study studies = list() for name, info in groups.items(): studies.extend(info.get(mandatory, [])) studies.sort(sort) def append(tests, where): "helper to add the test item from info structure" for test in tests: test = test[1] if test not in where: where.append(test) # select only the test that are going to be launched width = 0 regexp = re.compile(run_study, re.I | re.DOTALL) for study in studies: group_name = study[0]['name'] width = max(width, len(group_name)) where = test_selected if regexp.search(group_name) else test_skipped for mark, seq in groups[group_name].items(): if mark == mandatory: continue seq.sort(sort) append(seq, where) append([study], where) if config.getoption("--show_order") or config.getoption("--debug"): fmt = "{0:>3d} [{1:>%s}] {2}" % width for i, item in enumerate(test_selected + test_skipped): study = get_study_name(item) fqn = get_FQN(item) line = fmt.format(i, study, fqn) if item in test_selected: line = term.green('+' + line) else: line = term.yellow('-' + line) print(line) # we make the --runstudy check at the end to be able to show # test order with --show_order or --debig options # reorder tests by group name and replace items IN-PLACE if run_study: items[:] = test_selected return skip_test = pytest.mark.skip(reason="need --runstudy option to run") for item in items: if set(item.keywords.keys()).intersection(MARKS): item.add_marker(skip_test) # ------------------------------------------ # incremental failure chain (from pytest doc) # ------------------------------------------ def pytest_runtest_makereport(item, call): "set the last failed test" if "incremental" in item.keywords: if call.excinfo is not None: parent = item.parent parent._previousfailed = item def pytest_runtest_setup(item): "Abort the execution stage if a previous incremental test has failed" if "incremental" in item.keywords: previousfailed = getattr(item.parent, "_previousfailed", None) if previousfailed is not None: pytest.xfail("previous test failed (%s)" % previousfailed.name)
[ "\"\"\"\nIn situations where we are developing an application or library\nthat will be use to create long computation reports or results,\nwe want to execute the long process only when all the project tests\nare passed.\n\npytest provide a great support for creating test suits,\nparallel execution, reports, command line, IDE of CI integration,\nand so forth, so the idea is to write these long computation code\nin test from, group them in studios and extend pytest with a plugin\nthat allow us to:\n\n- Ignore these long computation studies and run only the regular ones.\n- Sort all the involved tests so the study will be executed only when\n all dependences are passed.\n- Define the studies and dependences in a easy way.\n- Don't interfere with normal pytest use.\n\nFor a more detailed refecences, please read README.md or\nvisit https://github.com/asteriogonzalez/pytest-study\n\"\"\"\nfrom __future__ import print_function\ntry:\n import wingdbstub\nexcept ImportError:\n pass\n\nimport re\nimport pytest\nfrom blessings import Terminal\n\nterm = Terminal()\n\nMARKS = ['study', 'pre'] # match 1st ocurrence\n\n\ndef parse_args(args, kwargs):\n \"update kwargs with positional arguments\"\n positional = ['name', 'order']\n kw = {'name': 'default', 'order': 1000}\n kw.update(kwargs)\n for key in kwargs:\n if key in positional:\n positional.remove(key)\n for i, val in enumerate(args):\n kw[positional[i]] = val\n\n return kw\n\n\ndef get_study_name(item):\n \"Try to get the name where the test belongs to, or '' when is free\"\n for mark in MARKS:\n marker = item.get_marker(mark)\n if marker:\n return parse_args(marker.args, marker.kwargs)['name']\n return ''\n\n\ndef get_FQN(item):\n \"Get the Full Qualified Name of a test item\"\n names = []\n for x in item.listchain():\n if not isinstance(x, (pytest.Session, pytest.Instance)):\n names.append(x.name)\n\n return ':'.join(names)\n\n# ------------------------------------------\n# Skip studio tests\n# ------------------------------------------\n\n\ndef pytest_addoption(parser):\n \"Add the --runstudy option in command line\"\n # parser.addoption(\"--runstudy\", action=\"store_true\",\n # default=False, help=\"run studio processes\")\n\n parser.addoption(\"--show_order\", action=\"store_true\",\n default=False,\n help=\"\"\"show tests and studies order execution\n and which are selected for execution.\"\"\")\n\n parser.addoption(\"--runstudy\", action=\"store\", type=\"string\",\n default='', metavar='all|reg expression',\n help=\"\"\"regular expression for the studies names\n ('all' runs all).\n None is selected by default.\"\"\")\n\n\ndef pytest_collection_modifyitems(config, items):\n \"\"\"Remove all study tests if --runstudy is not selected\n and reorder the study dependences to be executed incrementaly\n so any failed study test will abort the complete sequence.\n\n - Mark a test with @pytest.mark.study to consider part of a study.\n - Mark a test with @pytest.mark.study and named 'test_study_xxxx()'\n to be executed at the end when all previous test study functions\n are passed.\n \"\"\"\n # check if studio tests myst be skipped\n run_study = config.getoption(\"--runstudy\")\n # 'all' will match all studies, '' will not match anything\n run_study = {'': '(?!x)x', 'all': '.*'}.get(run_study, run_study)\n # --runstudy given in cli: do not skip study tests and\n test_selected = list()\n test_skipped = list()\n groups = dict()\n incremental = pytest.mark.incremental()\n\n def add():\n \"helper for gathering test info\"\n marker = item.get_marker(mark)\n kwargs = parse_args(marker.args, marker.kwargs)\n group_name = kwargs['name']\n group = groups.setdefault(group_name, dict())\n group.setdefault(mark, list()).append((kwargs, item))\n item.add_marker(incremental)\n\n # place every test in regular, prerequisite and studies\n # group by name\n for item in items:\n for mark in set(item.keywords.keys()).intersection(MARKS):\n add()\n break\n else:\n test_selected.append(item)\n\n def sort(a, b):\n \"Sort two items by order priority\"\n return cmp(a[0]['order'], b[0]['order'])\n\n # use studies precedence to built the global sequence order\n mandatory = 'study' # mandatory mark for global sorting: study\n studies = list()\n for name, info in groups.items():\n studies.extend(info.get(mandatory, []))\n studies.sort(sort)\n\n def append(tests, where):\n \"helper to add the test item from info structure\"\n for test in tests:\n test = test[1]\n if test not in where:\n where.append(test)\n\n # select only the test that are going to be launched\n width = 0\n regexp = re.compile(run_study, re.I | re.DOTALL)\n for study in studies:\n group_name = study[0]['name']\n width = max(width, len(group_name))\n where = test_selected if regexp.search(group_name) else test_skipped\n for mark, seq in groups[group_name].items():\n if mark == mandatory:\n continue\n seq.sort(sort)\n append(seq, where)\n append([study], where)\n\n if config.getoption(\"--show_order\") or config.getoption(\"--debug\"):\n fmt = \"{0:>3d} [{1:>%s}] {2}\" % width\n for i, item in enumerate(test_selected + test_skipped):\n study = get_study_name(item)\n fqn = get_FQN(item)\n line = fmt.format(i, study, fqn)\n if item in test_selected:\n line = term.green('+' + line)\n else:\n line = term.yellow('-' + line)\n print(line)\n\n # we make the --runstudy check at the end to be able to show\n # test order with --show_order or --debig options\n # reorder tests by group name and replace items IN-PLACE\n if run_study:\n items[:] = test_selected\n return\n\n skip_test = pytest.mark.skip(reason=\"need --runstudy option to run\")\n for item in items:\n if set(item.keywords.keys()).intersection(MARKS):\n item.add_marker(skip_test)\n\n# ------------------------------------------\n# incremental failure chain (from pytest doc)\n# ------------------------------------------\n\n\ndef pytest_runtest_makereport(item, call):\n \"set the last failed test\"\n if \"incremental\" in item.keywords:\n if call.excinfo is not None:\n parent = item.parent\n parent._previousfailed = item\n\n\ndef pytest_runtest_setup(item):\n \"Abort the execution stage if a previous incremental test has failed\"\n if \"incremental\" in item.keywords:\n previousfailed = getattr(item.parent, \"_previousfailed\", None)\n if previousfailed is not None:\n pytest.xfail(\"previous test failed (%s)\" % previousfailed.name)\n", "<docstring token>\nfrom __future__ import print_function\ntry:\n import wingdbstub\nexcept ImportError:\n pass\nimport re\nimport pytest\nfrom blessings import Terminal\nterm = Terminal()\nMARKS = ['study', 'pre']\n\n\ndef parse_args(args, kwargs):\n \"\"\"update kwargs with positional arguments\"\"\"\n positional = ['name', 'order']\n kw = {'name': 'default', 'order': 1000}\n kw.update(kwargs)\n for key in kwargs:\n if key in positional:\n positional.remove(key)\n for i, val in enumerate(args):\n kw[positional[i]] = val\n return kw\n\n\ndef get_study_name(item):\n \"\"\"Try to get the name where the test belongs to, or '' when is free\"\"\"\n for mark in MARKS:\n marker = item.get_marker(mark)\n if marker:\n return parse_args(marker.args, marker.kwargs)['name']\n return ''\n\n\ndef get_FQN(item):\n \"\"\"Get the Full Qualified Name of a test item\"\"\"\n names = []\n for x in item.listchain():\n if not isinstance(x, (pytest.Session, pytest.Instance)):\n names.append(x.name)\n return ':'.join(names)\n\n\ndef pytest_addoption(parser):\n \"\"\"Add the --runstudy option in command line\"\"\"\n parser.addoption('--show_order', action='store_true', default=False,\n help=\n \"\"\"show tests and studies order execution\n and which are selected for execution.\"\"\"\n )\n parser.addoption('--runstudy', action='store', type='string', default=\n '', metavar='all|reg expression', help=\n \"\"\"regular expression for the studies names\n ('all' runs all).\n None is selected by default.\"\"\"\n )\n\n\ndef pytest_collection_modifyitems(config, items):\n \"\"\"Remove all study tests if --runstudy is not selected\n and reorder the study dependences to be executed incrementaly\n so any failed study test will abort the complete sequence.\n\n - Mark a test with @pytest.mark.study to consider part of a study.\n - Mark a test with @pytest.mark.study and named 'test_study_xxxx()'\n to be executed at the end when all previous test study functions\n are passed.\n \"\"\"\n run_study = config.getoption('--runstudy')\n run_study = {'': '(?!x)x', 'all': '.*'}.get(run_study, run_study)\n test_selected = list()\n test_skipped = list()\n groups = dict()\n incremental = pytest.mark.incremental()\n\n def add():\n \"\"\"helper for gathering test info\"\"\"\n marker = item.get_marker(mark)\n kwargs = parse_args(marker.args, marker.kwargs)\n group_name = kwargs['name']\n group = groups.setdefault(group_name, dict())\n group.setdefault(mark, list()).append((kwargs, item))\n item.add_marker(incremental)\n for item in items:\n for mark in set(item.keywords.keys()).intersection(MARKS):\n add()\n break\n else:\n test_selected.append(item)\n\n def sort(a, b):\n \"\"\"Sort two items by order priority\"\"\"\n return cmp(a[0]['order'], b[0]['order'])\n mandatory = 'study'\n studies = list()\n for name, info in groups.items():\n studies.extend(info.get(mandatory, []))\n studies.sort(sort)\n\n def append(tests, where):\n \"\"\"helper to add the test item from info structure\"\"\"\n for test in tests:\n test = test[1]\n if test not in where:\n where.append(test)\n width = 0\n regexp = re.compile(run_study, re.I | re.DOTALL)\n for study in studies:\n group_name = study[0]['name']\n width = max(width, len(group_name))\n where = test_selected if regexp.search(group_name) else test_skipped\n for mark, seq in groups[group_name].items():\n if mark == mandatory:\n continue\n seq.sort(sort)\n append(seq, where)\n append([study], where)\n if config.getoption('--show_order') or config.getoption('--debug'):\n fmt = '{0:>3d} [{1:>%s}] {2}' % width\n for i, item in enumerate(test_selected + test_skipped):\n study = get_study_name(item)\n fqn = get_FQN(item)\n line = fmt.format(i, study, fqn)\n if item in test_selected:\n line = term.green('+' + line)\n else:\n line = term.yellow('-' + line)\n print(line)\n if run_study:\n items[:] = test_selected\n return\n skip_test = pytest.mark.skip(reason='need --runstudy option to run')\n for item in items:\n if set(item.keywords.keys()).intersection(MARKS):\n item.add_marker(skip_test)\n\n\ndef pytest_runtest_makereport(item, call):\n \"\"\"set the last failed test\"\"\"\n if 'incremental' in item.keywords:\n if call.excinfo is not None:\n parent = item.parent\n parent._previousfailed = item\n\n\ndef pytest_runtest_setup(item):\n \"\"\"Abort the execution stage if a previous incremental test has failed\"\"\"\n if 'incremental' in item.keywords:\n previousfailed = getattr(item.parent, '_previousfailed', None)\n if previousfailed is not None:\n pytest.xfail('previous test failed (%s)' % previousfailed.name)\n", "<docstring token>\n<import token>\ntry:\n import wingdbstub\nexcept ImportError:\n pass\n<import token>\nterm = Terminal()\nMARKS = ['study', 'pre']\n\n\ndef parse_args(args, kwargs):\n \"\"\"update kwargs with positional arguments\"\"\"\n positional = ['name', 'order']\n kw = {'name': 'default', 'order': 1000}\n kw.update(kwargs)\n for key in kwargs:\n if key in positional:\n positional.remove(key)\n for i, val in enumerate(args):\n kw[positional[i]] = val\n return kw\n\n\ndef get_study_name(item):\n \"\"\"Try to get the name where the test belongs to, or '' when is free\"\"\"\n for mark in MARKS:\n marker = item.get_marker(mark)\n if marker:\n return parse_args(marker.args, marker.kwargs)['name']\n return ''\n\n\ndef get_FQN(item):\n \"\"\"Get the Full Qualified Name of a test item\"\"\"\n names = []\n for x in item.listchain():\n if not isinstance(x, (pytest.Session, pytest.Instance)):\n names.append(x.name)\n return ':'.join(names)\n\n\ndef pytest_addoption(parser):\n \"\"\"Add the --runstudy option in command line\"\"\"\n parser.addoption('--show_order', action='store_true', default=False,\n help=\n \"\"\"show tests and studies order execution\n and which are selected for execution.\"\"\"\n )\n parser.addoption('--runstudy', action='store', type='string', default=\n '', metavar='all|reg expression', help=\n \"\"\"regular expression for the studies names\n ('all' runs all).\n None is selected by default.\"\"\"\n )\n\n\ndef pytest_collection_modifyitems(config, items):\n \"\"\"Remove all study tests if --runstudy is not selected\n and reorder the study dependences to be executed incrementaly\n so any failed study test will abort the complete sequence.\n\n - Mark a test with @pytest.mark.study to consider part of a study.\n - Mark a test with @pytest.mark.study and named 'test_study_xxxx()'\n to be executed at the end when all previous test study functions\n are passed.\n \"\"\"\n run_study = config.getoption('--runstudy')\n run_study = {'': '(?!x)x', 'all': '.*'}.get(run_study, run_study)\n test_selected = list()\n test_skipped = list()\n groups = dict()\n incremental = pytest.mark.incremental()\n\n def add():\n \"\"\"helper for gathering test info\"\"\"\n marker = item.get_marker(mark)\n kwargs = parse_args(marker.args, marker.kwargs)\n group_name = kwargs['name']\n group = groups.setdefault(group_name, dict())\n group.setdefault(mark, list()).append((kwargs, item))\n item.add_marker(incremental)\n for item in items:\n for mark in set(item.keywords.keys()).intersection(MARKS):\n add()\n break\n else:\n test_selected.append(item)\n\n def sort(a, b):\n \"\"\"Sort two items by order priority\"\"\"\n return cmp(a[0]['order'], b[0]['order'])\n mandatory = 'study'\n studies = list()\n for name, info in groups.items():\n studies.extend(info.get(mandatory, []))\n studies.sort(sort)\n\n def append(tests, where):\n \"\"\"helper to add the test item from info structure\"\"\"\n for test in tests:\n test = test[1]\n if test not in where:\n where.append(test)\n width = 0\n regexp = re.compile(run_study, re.I | re.DOTALL)\n for study in studies:\n group_name = study[0]['name']\n width = max(width, len(group_name))\n where = test_selected if regexp.search(group_name) else test_skipped\n for mark, seq in groups[group_name].items():\n if mark == mandatory:\n continue\n seq.sort(sort)\n append(seq, where)\n append([study], where)\n if config.getoption('--show_order') or config.getoption('--debug'):\n fmt = '{0:>3d} [{1:>%s}] {2}' % width\n for i, item in enumerate(test_selected + test_skipped):\n study = get_study_name(item)\n fqn = get_FQN(item)\n line = fmt.format(i, study, fqn)\n if item in test_selected:\n line = term.green('+' + line)\n else:\n line = term.yellow('-' + line)\n print(line)\n if run_study:\n items[:] = test_selected\n return\n skip_test = pytest.mark.skip(reason='need --runstudy option to run')\n for item in items:\n if set(item.keywords.keys()).intersection(MARKS):\n item.add_marker(skip_test)\n\n\ndef pytest_runtest_makereport(item, call):\n \"\"\"set the last failed test\"\"\"\n if 'incremental' in item.keywords:\n if call.excinfo is not None:\n parent = item.parent\n parent._previousfailed = item\n\n\ndef pytest_runtest_setup(item):\n \"\"\"Abort the execution stage if a previous incremental test has failed\"\"\"\n if 'incremental' in item.keywords:\n previousfailed = getattr(item.parent, '_previousfailed', None)\n if previousfailed is not None:\n pytest.xfail('previous test failed (%s)' % previousfailed.name)\n", "<docstring token>\n<import token>\ntry:\n import wingdbstub\nexcept ImportError:\n pass\n<import token>\n<assignment token>\n\n\ndef parse_args(args, kwargs):\n \"\"\"update kwargs with positional arguments\"\"\"\n positional = ['name', 'order']\n kw = {'name': 'default', 'order': 1000}\n kw.update(kwargs)\n for key in kwargs:\n if key in positional:\n positional.remove(key)\n for i, val in enumerate(args):\n kw[positional[i]] = val\n return kw\n\n\ndef get_study_name(item):\n \"\"\"Try to get the name where the test belongs to, or '' when is free\"\"\"\n for mark in MARKS:\n marker = item.get_marker(mark)\n if marker:\n return parse_args(marker.args, marker.kwargs)['name']\n return ''\n\n\ndef get_FQN(item):\n \"\"\"Get the Full Qualified Name of a test item\"\"\"\n names = []\n for x in item.listchain():\n if not isinstance(x, (pytest.Session, pytest.Instance)):\n names.append(x.name)\n return ':'.join(names)\n\n\ndef pytest_addoption(parser):\n \"\"\"Add the --runstudy option in command line\"\"\"\n parser.addoption('--show_order', action='store_true', default=False,\n help=\n \"\"\"show tests and studies order execution\n and which are selected for execution.\"\"\"\n )\n parser.addoption('--runstudy', action='store', type='string', default=\n '', metavar='all|reg expression', help=\n \"\"\"regular expression for the studies names\n ('all' runs all).\n None is selected by default.\"\"\"\n )\n\n\ndef pytest_collection_modifyitems(config, items):\n \"\"\"Remove all study tests if --runstudy is not selected\n and reorder the study dependences to be executed incrementaly\n so any failed study test will abort the complete sequence.\n\n - Mark a test with @pytest.mark.study to consider part of a study.\n - Mark a test with @pytest.mark.study and named 'test_study_xxxx()'\n to be executed at the end when all previous test study functions\n are passed.\n \"\"\"\n run_study = config.getoption('--runstudy')\n run_study = {'': '(?!x)x', 'all': '.*'}.get(run_study, run_study)\n test_selected = list()\n test_skipped = list()\n groups = dict()\n incremental = pytest.mark.incremental()\n\n def add():\n \"\"\"helper for gathering test info\"\"\"\n marker = item.get_marker(mark)\n kwargs = parse_args(marker.args, marker.kwargs)\n group_name = kwargs['name']\n group = groups.setdefault(group_name, dict())\n group.setdefault(mark, list()).append((kwargs, item))\n item.add_marker(incremental)\n for item in items:\n for mark in set(item.keywords.keys()).intersection(MARKS):\n add()\n break\n else:\n test_selected.append(item)\n\n def sort(a, b):\n \"\"\"Sort two items by order priority\"\"\"\n return cmp(a[0]['order'], b[0]['order'])\n mandatory = 'study'\n studies = list()\n for name, info in groups.items():\n studies.extend(info.get(mandatory, []))\n studies.sort(sort)\n\n def append(tests, where):\n \"\"\"helper to add the test item from info structure\"\"\"\n for test in tests:\n test = test[1]\n if test not in where:\n where.append(test)\n width = 0\n regexp = re.compile(run_study, re.I | re.DOTALL)\n for study in studies:\n group_name = study[0]['name']\n width = max(width, len(group_name))\n where = test_selected if regexp.search(group_name) else test_skipped\n for mark, seq in groups[group_name].items():\n if mark == mandatory:\n continue\n seq.sort(sort)\n append(seq, where)\n append([study], where)\n if config.getoption('--show_order') or config.getoption('--debug'):\n fmt = '{0:>3d} [{1:>%s}] {2}' % width\n for i, item in enumerate(test_selected + test_skipped):\n study = get_study_name(item)\n fqn = get_FQN(item)\n line = fmt.format(i, study, fqn)\n if item in test_selected:\n line = term.green('+' + line)\n else:\n line = term.yellow('-' + line)\n print(line)\n if run_study:\n items[:] = test_selected\n return\n skip_test = pytest.mark.skip(reason='need --runstudy option to run')\n for item in items:\n if set(item.keywords.keys()).intersection(MARKS):\n item.add_marker(skip_test)\n\n\ndef pytest_runtest_makereport(item, call):\n \"\"\"set the last failed test\"\"\"\n if 'incremental' in item.keywords:\n if call.excinfo is not None:\n parent = item.parent\n parent._previousfailed = item\n\n\ndef pytest_runtest_setup(item):\n \"\"\"Abort the execution stage if a previous incremental test has failed\"\"\"\n if 'incremental' in item.keywords:\n previousfailed = getattr(item.parent, '_previousfailed', None)\n if previousfailed is not None:\n pytest.xfail('previous test failed (%s)' % previousfailed.name)\n", "<docstring token>\n<import token>\n<code token>\n<import token>\n<assignment token>\n\n\ndef parse_args(args, kwargs):\n \"\"\"update kwargs with positional arguments\"\"\"\n positional = ['name', 'order']\n kw = {'name': 'default', 'order': 1000}\n kw.update(kwargs)\n for key in kwargs:\n if key in positional:\n positional.remove(key)\n for i, val in enumerate(args):\n kw[positional[i]] = val\n return kw\n\n\ndef get_study_name(item):\n \"\"\"Try to get the name where the test belongs to, or '' when is free\"\"\"\n for mark in MARKS:\n marker = item.get_marker(mark)\n if marker:\n return parse_args(marker.args, marker.kwargs)['name']\n return ''\n\n\ndef get_FQN(item):\n \"\"\"Get the Full Qualified Name of a test item\"\"\"\n names = []\n for x in item.listchain():\n if not isinstance(x, (pytest.Session, pytest.Instance)):\n names.append(x.name)\n return ':'.join(names)\n\n\ndef pytest_addoption(parser):\n \"\"\"Add the --runstudy option in command line\"\"\"\n parser.addoption('--show_order', action='store_true', default=False,\n help=\n \"\"\"show tests and studies order execution\n and which are selected for execution.\"\"\"\n )\n parser.addoption('--runstudy', action='store', type='string', default=\n '', metavar='all|reg expression', help=\n \"\"\"regular expression for the studies names\n ('all' runs all).\n None is selected by default.\"\"\"\n )\n\n\ndef pytest_collection_modifyitems(config, items):\n \"\"\"Remove all study tests if --runstudy is not selected\n and reorder the study dependences to be executed incrementaly\n so any failed study test will abort the complete sequence.\n\n - Mark a test with @pytest.mark.study to consider part of a study.\n - Mark a test with @pytest.mark.study and named 'test_study_xxxx()'\n to be executed at the end when all previous test study functions\n are passed.\n \"\"\"\n run_study = config.getoption('--runstudy')\n run_study = {'': '(?!x)x', 'all': '.*'}.get(run_study, run_study)\n test_selected = list()\n test_skipped = list()\n groups = dict()\n incremental = pytest.mark.incremental()\n\n def add():\n \"\"\"helper for gathering test info\"\"\"\n marker = item.get_marker(mark)\n kwargs = parse_args(marker.args, marker.kwargs)\n group_name = kwargs['name']\n group = groups.setdefault(group_name, dict())\n group.setdefault(mark, list()).append((kwargs, item))\n item.add_marker(incremental)\n for item in items:\n for mark in set(item.keywords.keys()).intersection(MARKS):\n add()\n break\n else:\n test_selected.append(item)\n\n def sort(a, b):\n \"\"\"Sort two items by order priority\"\"\"\n return cmp(a[0]['order'], b[0]['order'])\n mandatory = 'study'\n studies = list()\n for name, info in groups.items():\n studies.extend(info.get(mandatory, []))\n studies.sort(sort)\n\n def append(tests, where):\n \"\"\"helper to add the test item from info structure\"\"\"\n for test in tests:\n test = test[1]\n if test not in where:\n where.append(test)\n width = 0\n regexp = re.compile(run_study, re.I | re.DOTALL)\n for study in studies:\n group_name = study[0]['name']\n width = max(width, len(group_name))\n where = test_selected if regexp.search(group_name) else test_skipped\n for mark, seq in groups[group_name].items():\n if mark == mandatory:\n continue\n seq.sort(sort)\n append(seq, where)\n append([study], where)\n if config.getoption('--show_order') or config.getoption('--debug'):\n fmt = '{0:>3d} [{1:>%s}] {2}' % width\n for i, item in enumerate(test_selected + test_skipped):\n study = get_study_name(item)\n fqn = get_FQN(item)\n line = fmt.format(i, study, fqn)\n if item in test_selected:\n line = term.green('+' + line)\n else:\n line = term.yellow('-' + line)\n print(line)\n if run_study:\n items[:] = test_selected\n return\n skip_test = pytest.mark.skip(reason='need --runstudy option to run')\n for item in items:\n if set(item.keywords.keys()).intersection(MARKS):\n item.add_marker(skip_test)\n\n\ndef pytest_runtest_makereport(item, call):\n \"\"\"set the last failed test\"\"\"\n if 'incremental' in item.keywords:\n if call.excinfo is not None:\n parent = item.parent\n parent._previousfailed = item\n\n\ndef pytest_runtest_setup(item):\n \"\"\"Abort the execution stage if a previous incremental test has failed\"\"\"\n if 'incremental' in item.keywords:\n previousfailed = getattr(item.parent, '_previousfailed', None)\n if previousfailed is not None:\n pytest.xfail('previous test failed (%s)' % previousfailed.name)\n", "<docstring token>\n<import token>\n<code token>\n<import token>\n<assignment token>\n\n\ndef parse_args(args, kwargs):\n \"\"\"update kwargs with positional arguments\"\"\"\n positional = ['name', 'order']\n kw = {'name': 'default', 'order': 1000}\n kw.update(kwargs)\n for key in kwargs:\n if key in positional:\n positional.remove(key)\n for i, val in enumerate(args):\n kw[positional[i]] = val\n return kw\n\n\ndef get_study_name(item):\n \"\"\"Try to get the name where the test belongs to, or '' when is free\"\"\"\n for mark in MARKS:\n marker = item.get_marker(mark)\n if marker:\n return parse_args(marker.args, marker.kwargs)['name']\n return ''\n\n\ndef get_FQN(item):\n \"\"\"Get the Full Qualified Name of a test item\"\"\"\n names = []\n for x in item.listchain():\n if not isinstance(x, (pytest.Session, pytest.Instance)):\n names.append(x.name)\n return ':'.join(names)\n\n\ndef pytest_addoption(parser):\n \"\"\"Add the --runstudy option in command line\"\"\"\n parser.addoption('--show_order', action='store_true', default=False,\n help=\n \"\"\"show tests and studies order execution\n and which are selected for execution.\"\"\"\n )\n parser.addoption('--runstudy', action='store', type='string', default=\n '', metavar='all|reg expression', help=\n \"\"\"regular expression for the studies names\n ('all' runs all).\n None is selected by default.\"\"\"\n )\n\n\ndef pytest_collection_modifyitems(config, items):\n \"\"\"Remove all study tests if --runstudy is not selected\n and reorder the study dependences to be executed incrementaly\n so any failed study test will abort the complete sequence.\n\n - Mark a test with @pytest.mark.study to consider part of a study.\n - Mark a test with @pytest.mark.study and named 'test_study_xxxx()'\n to be executed at the end when all previous test study functions\n are passed.\n \"\"\"\n run_study = config.getoption('--runstudy')\n run_study = {'': '(?!x)x', 'all': '.*'}.get(run_study, run_study)\n test_selected = list()\n test_skipped = list()\n groups = dict()\n incremental = pytest.mark.incremental()\n\n def add():\n \"\"\"helper for gathering test info\"\"\"\n marker = item.get_marker(mark)\n kwargs = parse_args(marker.args, marker.kwargs)\n group_name = kwargs['name']\n group = groups.setdefault(group_name, dict())\n group.setdefault(mark, list()).append((kwargs, item))\n item.add_marker(incremental)\n for item in items:\n for mark in set(item.keywords.keys()).intersection(MARKS):\n add()\n break\n else:\n test_selected.append(item)\n\n def sort(a, b):\n \"\"\"Sort two items by order priority\"\"\"\n return cmp(a[0]['order'], b[0]['order'])\n mandatory = 'study'\n studies = list()\n for name, info in groups.items():\n studies.extend(info.get(mandatory, []))\n studies.sort(sort)\n\n def append(tests, where):\n \"\"\"helper to add the test item from info structure\"\"\"\n for test in tests:\n test = test[1]\n if test not in where:\n where.append(test)\n width = 0\n regexp = re.compile(run_study, re.I | re.DOTALL)\n for study in studies:\n group_name = study[0]['name']\n width = max(width, len(group_name))\n where = test_selected if regexp.search(group_name) else test_skipped\n for mark, seq in groups[group_name].items():\n if mark == mandatory:\n continue\n seq.sort(sort)\n append(seq, where)\n append([study], where)\n if config.getoption('--show_order') or config.getoption('--debug'):\n fmt = '{0:>3d} [{1:>%s}] {2}' % width\n for i, item in enumerate(test_selected + test_skipped):\n study = get_study_name(item)\n fqn = get_FQN(item)\n line = fmt.format(i, study, fqn)\n if item in test_selected:\n line = term.green('+' + line)\n else:\n line = term.yellow('-' + line)\n print(line)\n if run_study:\n items[:] = test_selected\n return\n skip_test = pytest.mark.skip(reason='need --runstudy option to run')\n for item in items:\n if set(item.keywords.keys()).intersection(MARKS):\n item.add_marker(skip_test)\n\n\ndef pytest_runtest_makereport(item, call):\n \"\"\"set the last failed test\"\"\"\n if 'incremental' in item.keywords:\n if call.excinfo is not None:\n parent = item.parent\n parent._previousfailed = item\n\n\n<function token>\n", "<docstring token>\n<import token>\n<code token>\n<import token>\n<assignment token>\n\n\ndef parse_args(args, kwargs):\n \"\"\"update kwargs with positional arguments\"\"\"\n positional = ['name', 'order']\n kw = {'name': 'default', 'order': 1000}\n kw.update(kwargs)\n for key in kwargs:\n if key in positional:\n positional.remove(key)\n for i, val in enumerate(args):\n kw[positional[i]] = val\n return kw\n\n\n<function token>\n\n\ndef get_FQN(item):\n \"\"\"Get the Full Qualified Name of a test item\"\"\"\n names = []\n for x in item.listchain():\n if not isinstance(x, (pytest.Session, pytest.Instance)):\n names.append(x.name)\n return ':'.join(names)\n\n\ndef pytest_addoption(parser):\n \"\"\"Add the --runstudy option in command line\"\"\"\n parser.addoption('--show_order', action='store_true', default=False,\n help=\n \"\"\"show tests and studies order execution\n and which are selected for execution.\"\"\"\n )\n parser.addoption('--runstudy', action='store', type='string', default=\n '', metavar='all|reg expression', help=\n \"\"\"regular expression for the studies names\n ('all' runs all).\n None is selected by default.\"\"\"\n )\n\n\ndef pytest_collection_modifyitems(config, items):\n \"\"\"Remove all study tests if --runstudy is not selected\n and reorder the study dependences to be executed incrementaly\n so any failed study test will abort the complete sequence.\n\n - Mark a test with @pytest.mark.study to consider part of a study.\n - Mark a test with @pytest.mark.study and named 'test_study_xxxx()'\n to be executed at the end when all previous test study functions\n are passed.\n \"\"\"\n run_study = config.getoption('--runstudy')\n run_study = {'': '(?!x)x', 'all': '.*'}.get(run_study, run_study)\n test_selected = list()\n test_skipped = list()\n groups = dict()\n incremental = pytest.mark.incremental()\n\n def add():\n \"\"\"helper for gathering test info\"\"\"\n marker = item.get_marker(mark)\n kwargs = parse_args(marker.args, marker.kwargs)\n group_name = kwargs['name']\n group = groups.setdefault(group_name, dict())\n group.setdefault(mark, list()).append((kwargs, item))\n item.add_marker(incremental)\n for item in items:\n for mark in set(item.keywords.keys()).intersection(MARKS):\n add()\n break\n else:\n test_selected.append(item)\n\n def sort(a, b):\n \"\"\"Sort two items by order priority\"\"\"\n return cmp(a[0]['order'], b[0]['order'])\n mandatory = 'study'\n studies = list()\n for name, info in groups.items():\n studies.extend(info.get(mandatory, []))\n studies.sort(sort)\n\n def append(tests, where):\n \"\"\"helper to add the test item from info structure\"\"\"\n for test in tests:\n test = test[1]\n if test not in where:\n where.append(test)\n width = 0\n regexp = re.compile(run_study, re.I | re.DOTALL)\n for study in studies:\n group_name = study[0]['name']\n width = max(width, len(group_name))\n where = test_selected if regexp.search(group_name) else test_skipped\n for mark, seq in groups[group_name].items():\n if mark == mandatory:\n continue\n seq.sort(sort)\n append(seq, where)\n append([study], where)\n if config.getoption('--show_order') or config.getoption('--debug'):\n fmt = '{0:>3d} [{1:>%s}] {2}' % width\n for i, item in enumerate(test_selected + test_skipped):\n study = get_study_name(item)\n fqn = get_FQN(item)\n line = fmt.format(i, study, fqn)\n if item in test_selected:\n line = term.green('+' + line)\n else:\n line = term.yellow('-' + line)\n print(line)\n if run_study:\n items[:] = test_selected\n return\n skip_test = pytest.mark.skip(reason='need --runstudy option to run')\n for item in items:\n if set(item.keywords.keys()).intersection(MARKS):\n item.add_marker(skip_test)\n\n\ndef pytest_runtest_makereport(item, call):\n \"\"\"set the last failed test\"\"\"\n if 'incremental' in item.keywords:\n if call.excinfo is not None:\n parent = item.parent\n parent._previousfailed = item\n\n\n<function token>\n", "<docstring token>\n<import token>\n<code token>\n<import token>\n<assignment token>\n<function token>\n<function token>\n\n\ndef get_FQN(item):\n \"\"\"Get the Full Qualified Name of a test item\"\"\"\n names = []\n for x in item.listchain():\n if not isinstance(x, (pytest.Session, pytest.Instance)):\n names.append(x.name)\n return ':'.join(names)\n\n\ndef pytest_addoption(parser):\n \"\"\"Add the --runstudy option in command line\"\"\"\n parser.addoption('--show_order', action='store_true', default=False,\n help=\n \"\"\"show tests and studies order execution\n and which are selected for execution.\"\"\"\n )\n parser.addoption('--runstudy', action='store', type='string', default=\n '', metavar='all|reg expression', help=\n \"\"\"regular expression for the studies names\n ('all' runs all).\n None is selected by default.\"\"\"\n )\n\n\ndef pytest_collection_modifyitems(config, items):\n \"\"\"Remove all study tests if --runstudy is not selected\n and reorder the study dependences to be executed incrementaly\n so any failed study test will abort the complete sequence.\n\n - Mark a test with @pytest.mark.study to consider part of a study.\n - Mark a test with @pytest.mark.study and named 'test_study_xxxx()'\n to be executed at the end when all previous test study functions\n are passed.\n \"\"\"\n run_study = config.getoption('--runstudy')\n run_study = {'': '(?!x)x', 'all': '.*'}.get(run_study, run_study)\n test_selected = list()\n test_skipped = list()\n groups = dict()\n incremental = pytest.mark.incremental()\n\n def add():\n \"\"\"helper for gathering test info\"\"\"\n marker = item.get_marker(mark)\n kwargs = parse_args(marker.args, marker.kwargs)\n group_name = kwargs['name']\n group = groups.setdefault(group_name, dict())\n group.setdefault(mark, list()).append((kwargs, item))\n item.add_marker(incremental)\n for item in items:\n for mark in set(item.keywords.keys()).intersection(MARKS):\n add()\n break\n else:\n test_selected.append(item)\n\n def sort(a, b):\n \"\"\"Sort two items by order priority\"\"\"\n return cmp(a[0]['order'], b[0]['order'])\n mandatory = 'study'\n studies = list()\n for name, info in groups.items():\n studies.extend(info.get(mandatory, []))\n studies.sort(sort)\n\n def append(tests, where):\n \"\"\"helper to add the test item from info structure\"\"\"\n for test in tests:\n test = test[1]\n if test not in where:\n where.append(test)\n width = 0\n regexp = re.compile(run_study, re.I | re.DOTALL)\n for study in studies:\n group_name = study[0]['name']\n width = max(width, len(group_name))\n where = test_selected if regexp.search(group_name) else test_skipped\n for mark, seq in groups[group_name].items():\n if mark == mandatory:\n continue\n seq.sort(sort)\n append(seq, where)\n append([study], where)\n if config.getoption('--show_order') or config.getoption('--debug'):\n fmt = '{0:>3d} [{1:>%s}] {2}' % width\n for i, item in enumerate(test_selected + test_skipped):\n study = get_study_name(item)\n fqn = get_FQN(item)\n line = fmt.format(i, study, fqn)\n if item in test_selected:\n line = term.green('+' + line)\n else:\n line = term.yellow('-' + line)\n print(line)\n if run_study:\n items[:] = test_selected\n return\n skip_test = pytest.mark.skip(reason='need --runstudy option to run')\n for item in items:\n if set(item.keywords.keys()).intersection(MARKS):\n item.add_marker(skip_test)\n\n\ndef pytest_runtest_makereport(item, call):\n \"\"\"set the last failed test\"\"\"\n if 'incremental' in item.keywords:\n if call.excinfo is not None:\n parent = item.parent\n parent._previousfailed = item\n\n\n<function token>\n", "<docstring token>\n<import token>\n<code token>\n<import token>\n<assignment token>\n<function token>\n<function token>\n\n\ndef get_FQN(item):\n \"\"\"Get the Full Qualified Name of a test item\"\"\"\n names = []\n for x in item.listchain():\n if not isinstance(x, (pytest.Session, pytest.Instance)):\n names.append(x.name)\n return ':'.join(names)\n\n\ndef pytest_addoption(parser):\n \"\"\"Add the --runstudy option in command line\"\"\"\n parser.addoption('--show_order', action='store_true', default=False,\n help=\n \"\"\"show tests and studies order execution\n and which are selected for execution.\"\"\"\n )\n parser.addoption('--runstudy', action='store', type='string', default=\n '', metavar='all|reg expression', help=\n \"\"\"regular expression for the studies names\n ('all' runs all).\n None is selected by default.\"\"\"\n )\n\n\ndef pytest_collection_modifyitems(config, items):\n \"\"\"Remove all study tests if --runstudy is not selected\n and reorder the study dependences to be executed incrementaly\n so any failed study test will abort the complete sequence.\n\n - Mark a test with @pytest.mark.study to consider part of a study.\n - Mark a test with @pytest.mark.study and named 'test_study_xxxx()'\n to be executed at the end when all previous test study functions\n are passed.\n \"\"\"\n run_study = config.getoption('--runstudy')\n run_study = {'': '(?!x)x', 'all': '.*'}.get(run_study, run_study)\n test_selected = list()\n test_skipped = list()\n groups = dict()\n incremental = pytest.mark.incremental()\n\n def add():\n \"\"\"helper for gathering test info\"\"\"\n marker = item.get_marker(mark)\n kwargs = parse_args(marker.args, marker.kwargs)\n group_name = kwargs['name']\n group = groups.setdefault(group_name, dict())\n group.setdefault(mark, list()).append((kwargs, item))\n item.add_marker(incremental)\n for item in items:\n for mark in set(item.keywords.keys()).intersection(MARKS):\n add()\n break\n else:\n test_selected.append(item)\n\n def sort(a, b):\n \"\"\"Sort two items by order priority\"\"\"\n return cmp(a[0]['order'], b[0]['order'])\n mandatory = 'study'\n studies = list()\n for name, info in groups.items():\n studies.extend(info.get(mandatory, []))\n studies.sort(sort)\n\n def append(tests, where):\n \"\"\"helper to add the test item from info structure\"\"\"\n for test in tests:\n test = test[1]\n if test not in where:\n where.append(test)\n width = 0\n regexp = re.compile(run_study, re.I | re.DOTALL)\n for study in studies:\n group_name = study[0]['name']\n width = max(width, len(group_name))\n where = test_selected if regexp.search(group_name) else test_skipped\n for mark, seq in groups[group_name].items():\n if mark == mandatory:\n continue\n seq.sort(sort)\n append(seq, where)\n append([study], where)\n if config.getoption('--show_order') or config.getoption('--debug'):\n fmt = '{0:>3d} [{1:>%s}] {2}' % width\n for i, item in enumerate(test_selected + test_skipped):\n study = get_study_name(item)\n fqn = get_FQN(item)\n line = fmt.format(i, study, fqn)\n if item in test_selected:\n line = term.green('+' + line)\n else:\n line = term.yellow('-' + line)\n print(line)\n if run_study:\n items[:] = test_selected\n return\n skip_test = pytest.mark.skip(reason='need --runstudy option to run')\n for item in items:\n if set(item.keywords.keys()).intersection(MARKS):\n item.add_marker(skip_test)\n\n\n<function token>\n<function token>\n", "<docstring token>\n<import token>\n<code token>\n<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n\n\ndef pytest_addoption(parser):\n \"\"\"Add the --runstudy option in command line\"\"\"\n parser.addoption('--show_order', action='store_true', default=False,\n help=\n \"\"\"show tests and studies order execution\n and which are selected for execution.\"\"\"\n )\n parser.addoption('--runstudy', action='store', type='string', default=\n '', metavar='all|reg expression', help=\n \"\"\"regular expression for the studies names\n ('all' runs all).\n None is selected by default.\"\"\"\n )\n\n\ndef pytest_collection_modifyitems(config, items):\n \"\"\"Remove all study tests if --runstudy is not selected\n and reorder the study dependences to be executed incrementaly\n so any failed study test will abort the complete sequence.\n\n - Mark a test with @pytest.mark.study to consider part of a study.\n - Mark a test with @pytest.mark.study and named 'test_study_xxxx()'\n to be executed at the end when all previous test study functions\n are passed.\n \"\"\"\n run_study = config.getoption('--runstudy')\n run_study = {'': '(?!x)x', 'all': '.*'}.get(run_study, run_study)\n test_selected = list()\n test_skipped = list()\n groups = dict()\n incremental = pytest.mark.incremental()\n\n def add():\n \"\"\"helper for gathering test info\"\"\"\n marker = item.get_marker(mark)\n kwargs = parse_args(marker.args, marker.kwargs)\n group_name = kwargs['name']\n group = groups.setdefault(group_name, dict())\n group.setdefault(mark, list()).append((kwargs, item))\n item.add_marker(incremental)\n for item in items:\n for mark in set(item.keywords.keys()).intersection(MARKS):\n add()\n break\n else:\n test_selected.append(item)\n\n def sort(a, b):\n \"\"\"Sort two items by order priority\"\"\"\n return cmp(a[0]['order'], b[0]['order'])\n mandatory = 'study'\n studies = list()\n for name, info in groups.items():\n studies.extend(info.get(mandatory, []))\n studies.sort(sort)\n\n def append(tests, where):\n \"\"\"helper to add the test item from info structure\"\"\"\n for test in tests:\n test = test[1]\n if test not in where:\n where.append(test)\n width = 0\n regexp = re.compile(run_study, re.I | re.DOTALL)\n for study in studies:\n group_name = study[0]['name']\n width = max(width, len(group_name))\n where = test_selected if regexp.search(group_name) else test_skipped\n for mark, seq in groups[group_name].items():\n if mark == mandatory:\n continue\n seq.sort(sort)\n append(seq, where)\n append([study], where)\n if config.getoption('--show_order') or config.getoption('--debug'):\n fmt = '{0:>3d} [{1:>%s}] {2}' % width\n for i, item in enumerate(test_selected + test_skipped):\n study = get_study_name(item)\n fqn = get_FQN(item)\n line = fmt.format(i, study, fqn)\n if item in test_selected:\n line = term.green('+' + line)\n else:\n line = term.yellow('-' + line)\n print(line)\n if run_study:\n items[:] = test_selected\n return\n skip_test = pytest.mark.skip(reason='need --runstudy option to run')\n for item in items:\n if set(item.keywords.keys()).intersection(MARKS):\n item.add_marker(skip_test)\n\n\n<function token>\n<function token>\n", "<docstring token>\n<import token>\n<code token>\n<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef pytest_collection_modifyitems(config, items):\n \"\"\"Remove all study tests if --runstudy is not selected\n and reorder the study dependences to be executed incrementaly\n so any failed study test will abort the complete sequence.\n\n - Mark a test with @pytest.mark.study to consider part of a study.\n - Mark a test with @pytest.mark.study and named 'test_study_xxxx()'\n to be executed at the end when all previous test study functions\n are passed.\n \"\"\"\n run_study = config.getoption('--runstudy')\n run_study = {'': '(?!x)x', 'all': '.*'}.get(run_study, run_study)\n test_selected = list()\n test_skipped = list()\n groups = dict()\n incremental = pytest.mark.incremental()\n\n def add():\n \"\"\"helper for gathering test info\"\"\"\n marker = item.get_marker(mark)\n kwargs = parse_args(marker.args, marker.kwargs)\n group_name = kwargs['name']\n group = groups.setdefault(group_name, dict())\n group.setdefault(mark, list()).append((kwargs, item))\n item.add_marker(incremental)\n for item in items:\n for mark in set(item.keywords.keys()).intersection(MARKS):\n add()\n break\n else:\n test_selected.append(item)\n\n def sort(a, b):\n \"\"\"Sort two items by order priority\"\"\"\n return cmp(a[0]['order'], b[0]['order'])\n mandatory = 'study'\n studies = list()\n for name, info in groups.items():\n studies.extend(info.get(mandatory, []))\n studies.sort(sort)\n\n def append(tests, where):\n \"\"\"helper to add the test item from info structure\"\"\"\n for test in tests:\n test = test[1]\n if test not in where:\n where.append(test)\n width = 0\n regexp = re.compile(run_study, re.I | re.DOTALL)\n for study in studies:\n group_name = study[0]['name']\n width = max(width, len(group_name))\n where = test_selected if regexp.search(group_name) else test_skipped\n for mark, seq in groups[group_name].items():\n if mark == mandatory:\n continue\n seq.sort(sort)\n append(seq, where)\n append([study], where)\n if config.getoption('--show_order') or config.getoption('--debug'):\n fmt = '{0:>3d} [{1:>%s}] {2}' % width\n for i, item in enumerate(test_selected + test_skipped):\n study = get_study_name(item)\n fqn = get_FQN(item)\n line = fmt.format(i, study, fqn)\n if item in test_selected:\n line = term.green('+' + line)\n else:\n line = term.yellow('-' + line)\n print(line)\n if run_study:\n items[:] = test_selected\n return\n skip_test = pytest.mark.skip(reason='need --runstudy option to run')\n for item in items:\n if set(item.keywords.keys()).intersection(MARKS):\n item.add_marker(skip_test)\n\n\n<function token>\n<function token>\n", "<docstring token>\n<import token>\n<code token>\n<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n" ]
false
99,035
ac79e0d07770b23690008e642d56464adffd3c7d
hit = 0 location = 0 right = 1 skip = False with open("day3.txt") as f: for line in f.readlines(): if skip: skip = False continue trees = line.strip() print(location, trees) if trees[location] == '#': hit += 1 location += right location = location % len(trees) skip = True print(hit)
[ "hit = 0\n\nlocation = 0\nright = 1\nskip = False\n\nwith open(\"day3.txt\") as f:\n for line in f.readlines():\n if skip:\n skip = False\n continue\n\n trees = line.strip()\n print(location, trees)\n if trees[location] == '#':\n hit += 1\n location += right\n location = location % len(trees)\n skip = True\n\nprint(hit)\n", "hit = 0\nlocation = 0\nright = 1\nskip = False\nwith open('day3.txt') as f:\n for line in f.readlines():\n if skip:\n skip = False\n continue\n trees = line.strip()\n print(location, trees)\n if trees[location] == '#':\n hit += 1\n location += right\n location = location % len(trees)\n skip = True\nprint(hit)\n", "<assignment token>\nwith open('day3.txt') as f:\n for line in f.readlines():\n if skip:\n skip = False\n continue\n trees = line.strip()\n print(location, trees)\n if trees[location] == '#':\n hit += 1\n location += right\n location = location % len(trees)\n skip = True\nprint(hit)\n", "<assignment token>\n<code token>\n" ]
false
99,036
bd366bc533f5a291d2264bedb0108f08fcd67914
#!/usr/bin/env python # -*- coding: utf-8 -*- """ __author__ = 'LiBin' __mtime__ = '16/6/13' ┏┓ ┏┓ ┏┛┻━━━┛┻┓ ┃ ☃ ┃ ┃ ┳┛ ┗┳ ┃ ┃ ┻ ┃ ┗━┓ ┏━┛ ┃ ┗━━━┓ ┃ 神兽保佑 ┣┓ ┃ 永无BUG! ┏┛ ┗┓┓┏━┳┓┏┛ ┃┫┫ ┃┫┫ ┗┻┛ ┗┻┛ """ import json import requests import time import hashlib import random import pymysql __version__ = '0.1' class PublicLibrary(object): def __int__(self): pass def getCoding(self, strInput): u""" 获取编码格式 """ if isinstance(strInput, unicode): return "unicode" try: strInput.decode("utf8") return 'utf8' except: pass try: strInput.decode("gbk") return 'gbk' except: pass def tran2UTF8(self, strInput): """ 转化为utf8格式 """ strCodingFmt = self.getCoding(strInput) if strCodingFmt == "utf8": return strInput elif strCodingFmt == "unicode": return strInput.encode("utf8") elif strCodingFmt == "gbk": return strInput.decode("gbk").encode("utf8") def tran2GBK(self, strInput): """ 转化为gbk格式 """ strCodingFmt = self.getCoding(strInput) if strCodingFmt == "gbk": return strInput elif strCodingFmt == "unicode": return strInput.encode("gbk") elif strCodingFmt == "utf8": return strInput.decode("utf8").encode("gbk") def md5(self, init_str): """ md5加密 """ m = hashlib.md5() m.update(init_str) return m.hexdigest() def eval_dict(self, strInput): u"""接收字符串直接转成需要类型,例 | eval dict | str | """ strInput = eval(strInput) return strInput def random_num(self, num): """ 随机出给出数字位数的数字 """ number = '' for i in random.sample(range(10), int(num)): number += ''.join(str(i)) return number def req( self, login_msg, url, method, data=None, headers=None): u"""专用,有登录状态,例 | run interface test tenant | login_msg,url,method,data,headers """ session = requests.Session() url = self.tran2UTF8(url) method = self.tran2UTF8(method) if login_msg: login_msg = self.eval_dict(login_msg) md5_pwd = self.md5(login_msg['passwd']) login_msg['passwd'] = md5_pwd if data: data = self.eval_dict(data) if headers: headers = self.eval_dict(headers) else: headers = { 'Content-Type': 'application/json', 'Accept': 'application/json' } results = 'connection error' # 先登录 r = session.post('https://xxxxxx.cn/login', data=json.dumps(login_msg), headers=headers) print ("*******************************") print (u"登录状态信息") print (r.status_code) print (r.content) print ("*******************************") try: if method == "post": if isinstance(data, dict): data = json.dumps(data) results = session.post( url, data=data, headers=headers, verify=False) elif method == "get": results = session.get( url, params=data, headers=headers, verify=False) elif method == 'delete': results = session.delete(url, headers=headers, verify=False) return results except requests.ConnectionError as e: return e def con_db(self, sql): db = pymysql.connect( host="1.1.5.2", user="xxx", passwd="xxx", db="xxx", charset='utf8') cursor = db.cursor() cursor.execute(sql) data = cursor.fetchone() db.close() return data
[ "#!/usr/bin/env python\n# -*- coding: utf-8 -*-\n\"\"\"\n__author__ = 'LiBin'\n__mtime__ = '16/6/13'\n ┏┓ ┏┓\n ┏┛┻━━━┛┻┓\n ┃ ☃ ┃\n ┃ ┳┛ ┗┳ ┃\n ┃ ┻ ┃\n ┗━┓ ┏━┛\n ┃ ┗━━━┓\n ┃ 神兽保佑 ┣┓\n ┃ 永无BUG! ┏┛\n ┗┓┓┏━┳┓┏┛\n ┃┫┫ ┃┫┫\n ┗┻┛ ┗┻┛\n\"\"\"\n\nimport json\nimport requests\nimport time\nimport hashlib\nimport random\nimport pymysql\n\n__version__ = '0.1'\n\n\nclass PublicLibrary(object):\n\n def __int__(self):\n pass\n\n def getCoding(self, strInput):\n u\"\"\"\n 获取编码格式\n \"\"\"\n if isinstance(strInput, unicode):\n return \"unicode\"\n try:\n strInput.decode(\"utf8\")\n return 'utf8'\n except:\n pass\n try:\n strInput.decode(\"gbk\")\n return 'gbk'\n except:\n pass\n\n def tran2UTF8(self, strInput):\n \"\"\"\n 转化为utf8格式\n \"\"\"\n strCodingFmt = self.getCoding(strInput)\n if strCodingFmt == \"utf8\":\n return strInput\n elif strCodingFmt == \"unicode\":\n return strInput.encode(\"utf8\")\n elif strCodingFmt == \"gbk\":\n return strInput.decode(\"gbk\").encode(\"utf8\")\n\n def tran2GBK(self, strInput):\n \"\"\"\n 转化为gbk格式\n \"\"\"\n strCodingFmt = self.getCoding(strInput)\n if strCodingFmt == \"gbk\":\n return strInput\n elif strCodingFmt == \"unicode\":\n return strInput.encode(\"gbk\")\n elif strCodingFmt == \"utf8\":\n return strInput.decode(\"utf8\").encode(\"gbk\")\n\n def md5(self, init_str):\n \"\"\"\n md5加密\n \"\"\"\n m = hashlib.md5()\n m.update(init_str)\n\n return m.hexdigest()\n\n def eval_dict(self, strInput):\n u\"\"\"接收字符串直接转成需要类型,例\n | eval dict | str |\n \"\"\"\n strInput = eval(strInput)\n\n return strInput\n\n def random_num(self, num):\n \"\"\"\n 随机出给出数字位数的数字\n \"\"\"\n number = ''\n for i in random.sample(range(10), int(num)):\n number += ''.join(str(i))\n\n return number\n\n def req(\n self,\n login_msg,\n url,\n method,\n data=None,\n headers=None):\n u\"\"\"专用,有登录状态,例\n | run interface test tenant | login_msg,url,method,data,headers\n \"\"\"\n session = requests.Session()\n url = self.tran2UTF8(url)\n method = self.tran2UTF8(method)\n if login_msg:\n login_msg = self.eval_dict(login_msg)\n md5_pwd = self.md5(login_msg['passwd'])\n login_msg['passwd'] = md5_pwd\n if data:\n data = self.eval_dict(data)\n if headers:\n headers = self.eval_dict(headers)\n else:\n headers = {\n 'Content-Type': 'application/json',\n 'Accept': 'application/json'\n }\n results = 'connection error'\n # 先登录\n r = session.post('https://xxxxxx.cn/login',\n data=json.dumps(login_msg), headers=headers)\n print (\"*******************************\")\n print (u\"登录状态信息\")\n print (r.status_code)\n print (r.content)\n print (\"*******************************\")\n try:\n if method == \"post\":\n if isinstance(data, dict):\n data = json.dumps(data)\n results = session.post(\n url, data=data, headers=headers, verify=False)\n elif method == \"get\":\n results = session.get(\n url, params=data, headers=headers, verify=False)\n elif method == 'delete':\n results = session.delete(url, headers=headers, verify=False)\n\n return results\n except requests.ConnectionError as e:\n return e\n\n def con_db(self, sql):\n db = pymysql.connect(\n host=\"1.1.5.2\",\n user=\"xxx\",\n passwd=\"xxx\",\n db=\"xxx\",\n charset='utf8')\n\n cursor = db.cursor()\n cursor.execute(sql)\n data = cursor.fetchone()\n db.close()\n return data\n", "<docstring token>\nimport json\nimport requests\nimport time\nimport hashlib\nimport random\nimport pymysql\n__version__ = '0.1'\n\n\nclass PublicLibrary(object):\n\n def __int__(self):\n pass\n\n def getCoding(self, strInput):\n u\"\"\"\n 获取编码格式\n \"\"\"\n if isinstance(strInput, unicode):\n return 'unicode'\n try:\n strInput.decode('utf8')\n return 'utf8'\n except:\n pass\n try:\n strInput.decode('gbk')\n return 'gbk'\n except:\n pass\n\n def tran2UTF8(self, strInput):\n \"\"\"\n 转化为utf8格式\n \"\"\"\n strCodingFmt = self.getCoding(strInput)\n if strCodingFmt == 'utf8':\n return strInput\n elif strCodingFmt == 'unicode':\n return strInput.encode('utf8')\n elif strCodingFmt == 'gbk':\n return strInput.decode('gbk').encode('utf8')\n\n def tran2GBK(self, strInput):\n \"\"\"\n 转化为gbk格式\n \"\"\"\n strCodingFmt = self.getCoding(strInput)\n if strCodingFmt == 'gbk':\n return strInput\n elif strCodingFmt == 'unicode':\n return strInput.encode('gbk')\n elif strCodingFmt == 'utf8':\n return strInput.decode('utf8').encode('gbk')\n\n def md5(self, init_str):\n \"\"\"\n md5加密\n \"\"\"\n m = hashlib.md5()\n m.update(init_str)\n return m.hexdigest()\n\n def eval_dict(self, strInput):\n u\"\"\"接收字符串直接转成需要类型,例\n | eval dict | str |\n \"\"\"\n strInput = eval(strInput)\n return strInput\n\n def random_num(self, num):\n \"\"\"\n 随机出给出数字位数的数字\n \"\"\"\n number = ''\n for i in random.sample(range(10), int(num)):\n number += ''.join(str(i))\n return number\n\n def req(self, login_msg, url, method, data=None, headers=None):\n u\"\"\"专用,有登录状态,例\n | run interface test tenant | login_msg,url,method,data,headers\n \"\"\"\n session = requests.Session()\n url = self.tran2UTF8(url)\n method = self.tran2UTF8(method)\n if login_msg:\n login_msg = self.eval_dict(login_msg)\n md5_pwd = self.md5(login_msg['passwd'])\n login_msg['passwd'] = md5_pwd\n if data:\n data = self.eval_dict(data)\n if headers:\n headers = self.eval_dict(headers)\n else:\n headers = {'Content-Type': 'application/json', 'Accept':\n 'application/json'}\n results = 'connection error'\n r = session.post('https://xxxxxx.cn/login', data=json.dumps(\n login_msg), headers=headers)\n print('*******************************')\n print(u'登录状态信息')\n print(r.status_code)\n print(r.content)\n print('*******************************')\n try:\n if method == 'post':\n if isinstance(data, dict):\n data = json.dumps(data)\n results = session.post(url, data=data, headers=headers,\n verify=False)\n elif method == 'get':\n results = session.get(url, params=data, headers=headers,\n verify=False)\n elif method == 'delete':\n results = session.delete(url, headers=headers, verify=False)\n return results\n except requests.ConnectionError as e:\n return e\n\n def con_db(self, sql):\n db = pymysql.connect(host='1.1.5.2', user='xxx', passwd='xxx', db=\n 'xxx', charset='utf8')\n cursor = db.cursor()\n cursor.execute(sql)\n data = cursor.fetchone()\n db.close()\n return data\n", "<docstring token>\n<import token>\n__version__ = '0.1'\n\n\nclass PublicLibrary(object):\n\n def __int__(self):\n pass\n\n def getCoding(self, strInput):\n u\"\"\"\n 获取编码格式\n \"\"\"\n if isinstance(strInput, unicode):\n return 'unicode'\n try:\n strInput.decode('utf8')\n return 'utf8'\n except:\n pass\n try:\n strInput.decode('gbk')\n return 'gbk'\n except:\n pass\n\n def tran2UTF8(self, strInput):\n \"\"\"\n 转化为utf8格式\n \"\"\"\n strCodingFmt = self.getCoding(strInput)\n if strCodingFmt == 'utf8':\n return strInput\n elif strCodingFmt == 'unicode':\n return strInput.encode('utf8')\n elif strCodingFmt == 'gbk':\n return strInput.decode('gbk').encode('utf8')\n\n def tran2GBK(self, strInput):\n \"\"\"\n 转化为gbk格式\n \"\"\"\n strCodingFmt = self.getCoding(strInput)\n if strCodingFmt == 'gbk':\n return strInput\n elif strCodingFmt == 'unicode':\n return strInput.encode('gbk')\n elif strCodingFmt == 'utf8':\n return strInput.decode('utf8').encode('gbk')\n\n def md5(self, init_str):\n \"\"\"\n md5加密\n \"\"\"\n m = hashlib.md5()\n m.update(init_str)\n return m.hexdigest()\n\n def eval_dict(self, strInput):\n u\"\"\"接收字符串直接转成需要类型,例\n | eval dict | str |\n \"\"\"\n strInput = eval(strInput)\n return strInput\n\n def random_num(self, num):\n \"\"\"\n 随机出给出数字位数的数字\n \"\"\"\n number = ''\n for i in random.sample(range(10), int(num)):\n number += ''.join(str(i))\n return number\n\n def req(self, login_msg, url, method, data=None, headers=None):\n u\"\"\"专用,有登录状态,例\n | run interface test tenant | login_msg,url,method,data,headers\n \"\"\"\n session = requests.Session()\n url = self.tran2UTF8(url)\n method = self.tran2UTF8(method)\n if login_msg:\n login_msg = self.eval_dict(login_msg)\n md5_pwd = self.md5(login_msg['passwd'])\n login_msg['passwd'] = md5_pwd\n if data:\n data = self.eval_dict(data)\n if headers:\n headers = self.eval_dict(headers)\n else:\n headers = {'Content-Type': 'application/json', 'Accept':\n 'application/json'}\n results = 'connection error'\n r = session.post('https://xxxxxx.cn/login', data=json.dumps(\n login_msg), headers=headers)\n print('*******************************')\n print(u'登录状态信息')\n print(r.status_code)\n print(r.content)\n print('*******************************')\n try:\n if method == 'post':\n if isinstance(data, dict):\n data = json.dumps(data)\n results = session.post(url, data=data, headers=headers,\n verify=False)\n elif method == 'get':\n results = session.get(url, params=data, headers=headers,\n verify=False)\n elif method == 'delete':\n results = session.delete(url, headers=headers, verify=False)\n return results\n except requests.ConnectionError as e:\n return e\n\n def con_db(self, sql):\n db = pymysql.connect(host='1.1.5.2', user='xxx', passwd='xxx', db=\n 'xxx', charset='utf8')\n cursor = db.cursor()\n cursor.execute(sql)\n data = cursor.fetchone()\n db.close()\n return data\n", "<docstring token>\n<import token>\n<assignment token>\n\n\nclass PublicLibrary(object):\n\n def __int__(self):\n pass\n\n def getCoding(self, strInput):\n u\"\"\"\n 获取编码格式\n \"\"\"\n if isinstance(strInput, unicode):\n return 'unicode'\n try:\n strInput.decode('utf8')\n return 'utf8'\n except:\n pass\n try:\n strInput.decode('gbk')\n return 'gbk'\n except:\n pass\n\n def tran2UTF8(self, strInput):\n \"\"\"\n 转化为utf8格式\n \"\"\"\n strCodingFmt = self.getCoding(strInput)\n if strCodingFmt == 'utf8':\n return strInput\n elif strCodingFmt == 'unicode':\n return strInput.encode('utf8')\n elif strCodingFmt == 'gbk':\n return strInput.decode('gbk').encode('utf8')\n\n def tran2GBK(self, strInput):\n \"\"\"\n 转化为gbk格式\n \"\"\"\n strCodingFmt = self.getCoding(strInput)\n if strCodingFmt == 'gbk':\n return strInput\n elif strCodingFmt == 'unicode':\n return strInput.encode('gbk')\n elif strCodingFmt == 'utf8':\n return strInput.decode('utf8').encode('gbk')\n\n def md5(self, init_str):\n \"\"\"\n md5加密\n \"\"\"\n m = hashlib.md5()\n m.update(init_str)\n return m.hexdigest()\n\n def eval_dict(self, strInput):\n u\"\"\"接收字符串直接转成需要类型,例\n | eval dict | str |\n \"\"\"\n strInput = eval(strInput)\n return strInput\n\n def random_num(self, num):\n \"\"\"\n 随机出给出数字位数的数字\n \"\"\"\n number = ''\n for i in random.sample(range(10), int(num)):\n number += ''.join(str(i))\n return number\n\n def req(self, login_msg, url, method, data=None, headers=None):\n u\"\"\"专用,有登录状态,例\n | run interface test tenant | login_msg,url,method,data,headers\n \"\"\"\n session = requests.Session()\n url = self.tran2UTF8(url)\n method = self.tran2UTF8(method)\n if login_msg:\n login_msg = self.eval_dict(login_msg)\n md5_pwd = self.md5(login_msg['passwd'])\n login_msg['passwd'] = md5_pwd\n if data:\n data = self.eval_dict(data)\n if headers:\n headers = self.eval_dict(headers)\n else:\n headers = {'Content-Type': 'application/json', 'Accept':\n 'application/json'}\n results = 'connection error'\n r = session.post('https://xxxxxx.cn/login', data=json.dumps(\n login_msg), headers=headers)\n print('*******************************')\n print(u'登录状态信息')\n print(r.status_code)\n print(r.content)\n print('*******************************')\n try:\n if method == 'post':\n if isinstance(data, dict):\n data = json.dumps(data)\n results = session.post(url, data=data, headers=headers,\n verify=False)\n elif method == 'get':\n results = session.get(url, params=data, headers=headers,\n verify=False)\n elif method == 'delete':\n results = session.delete(url, headers=headers, verify=False)\n return results\n except requests.ConnectionError as e:\n return e\n\n def con_db(self, sql):\n db = pymysql.connect(host='1.1.5.2', user='xxx', passwd='xxx', db=\n 'xxx', charset='utf8')\n cursor = db.cursor()\n cursor.execute(sql)\n data = cursor.fetchone()\n db.close()\n return data\n", "<docstring token>\n<import token>\n<assignment token>\n\n\nclass PublicLibrary(object):\n\n def __int__(self):\n pass\n\n def getCoding(self, strInput):\n u\"\"\"\n 获取编码格式\n \"\"\"\n if isinstance(strInput, unicode):\n return 'unicode'\n try:\n strInput.decode('utf8')\n return 'utf8'\n except:\n pass\n try:\n strInput.decode('gbk')\n return 'gbk'\n except:\n pass\n <function token>\n\n def tran2GBK(self, strInput):\n \"\"\"\n 转化为gbk格式\n \"\"\"\n strCodingFmt = self.getCoding(strInput)\n if strCodingFmt == 'gbk':\n return strInput\n elif strCodingFmt == 'unicode':\n return strInput.encode('gbk')\n elif strCodingFmt == 'utf8':\n return strInput.decode('utf8').encode('gbk')\n\n def md5(self, init_str):\n \"\"\"\n md5加密\n \"\"\"\n m = hashlib.md5()\n m.update(init_str)\n return m.hexdigest()\n\n def eval_dict(self, strInput):\n u\"\"\"接收字符串直接转成需要类型,例\n | eval dict | str |\n \"\"\"\n strInput = eval(strInput)\n return strInput\n\n def random_num(self, num):\n \"\"\"\n 随机出给出数字位数的数字\n \"\"\"\n number = ''\n for i in random.sample(range(10), int(num)):\n number += ''.join(str(i))\n return number\n\n def req(self, login_msg, url, method, data=None, headers=None):\n u\"\"\"专用,有登录状态,例\n | run interface test tenant | login_msg,url,method,data,headers\n \"\"\"\n session = requests.Session()\n url = self.tran2UTF8(url)\n method = self.tran2UTF8(method)\n if login_msg:\n login_msg = self.eval_dict(login_msg)\n md5_pwd = self.md5(login_msg['passwd'])\n login_msg['passwd'] = md5_pwd\n if data:\n data = self.eval_dict(data)\n if headers:\n headers = self.eval_dict(headers)\n else:\n headers = {'Content-Type': 'application/json', 'Accept':\n 'application/json'}\n results = 'connection error'\n r = session.post('https://xxxxxx.cn/login', data=json.dumps(\n login_msg), headers=headers)\n print('*******************************')\n print(u'登录状态信息')\n print(r.status_code)\n print(r.content)\n print('*******************************')\n try:\n if method == 'post':\n if isinstance(data, dict):\n data = json.dumps(data)\n results = session.post(url, data=data, headers=headers,\n verify=False)\n elif method == 'get':\n results = session.get(url, params=data, headers=headers,\n verify=False)\n elif method == 'delete':\n results = session.delete(url, headers=headers, verify=False)\n return results\n except requests.ConnectionError as e:\n return e\n\n def con_db(self, sql):\n db = pymysql.connect(host='1.1.5.2', user='xxx', passwd='xxx', db=\n 'xxx', charset='utf8')\n cursor = db.cursor()\n cursor.execute(sql)\n data = cursor.fetchone()\n db.close()\n return data\n", "<docstring token>\n<import token>\n<assignment token>\n\n\nclass PublicLibrary(object):\n\n def __int__(self):\n pass\n\n def getCoding(self, strInput):\n u\"\"\"\n 获取编码格式\n \"\"\"\n if isinstance(strInput, unicode):\n return 'unicode'\n try:\n strInput.decode('utf8')\n return 'utf8'\n except:\n pass\n try:\n strInput.decode('gbk')\n return 'gbk'\n except:\n pass\n <function token>\n\n def tran2GBK(self, strInput):\n \"\"\"\n 转化为gbk格式\n \"\"\"\n strCodingFmt = self.getCoding(strInput)\n if strCodingFmt == 'gbk':\n return strInput\n elif strCodingFmt == 'unicode':\n return strInput.encode('gbk')\n elif strCodingFmt == 'utf8':\n return strInput.decode('utf8').encode('gbk')\n\n def md5(self, init_str):\n \"\"\"\n md5加密\n \"\"\"\n m = hashlib.md5()\n m.update(init_str)\n return m.hexdigest()\n\n def eval_dict(self, strInput):\n u\"\"\"接收字符串直接转成需要类型,例\n | eval dict | str |\n \"\"\"\n strInput = eval(strInput)\n return strInput\n\n def random_num(self, num):\n \"\"\"\n 随机出给出数字位数的数字\n \"\"\"\n number = ''\n for i in random.sample(range(10), int(num)):\n number += ''.join(str(i))\n return number\n\n def req(self, login_msg, url, method, data=None, headers=None):\n u\"\"\"专用,有登录状态,例\n | run interface test tenant | login_msg,url,method,data,headers\n \"\"\"\n session = requests.Session()\n url = self.tran2UTF8(url)\n method = self.tran2UTF8(method)\n if login_msg:\n login_msg = self.eval_dict(login_msg)\n md5_pwd = self.md5(login_msg['passwd'])\n login_msg['passwd'] = md5_pwd\n if data:\n data = self.eval_dict(data)\n if headers:\n headers = self.eval_dict(headers)\n else:\n headers = {'Content-Type': 'application/json', 'Accept':\n 'application/json'}\n results = 'connection error'\n r = session.post('https://xxxxxx.cn/login', data=json.dumps(\n login_msg), headers=headers)\n print('*******************************')\n print(u'登录状态信息')\n print(r.status_code)\n print(r.content)\n print('*******************************')\n try:\n if method == 'post':\n if isinstance(data, dict):\n data = json.dumps(data)\n results = session.post(url, data=data, headers=headers,\n verify=False)\n elif method == 'get':\n results = session.get(url, params=data, headers=headers,\n verify=False)\n elif method == 'delete':\n results = session.delete(url, headers=headers, verify=False)\n return results\n except requests.ConnectionError as e:\n return e\n <function token>\n", "<docstring token>\n<import token>\n<assignment token>\n\n\nclass PublicLibrary(object):\n\n def __int__(self):\n pass\n\n def getCoding(self, strInput):\n u\"\"\"\n 获取编码格式\n \"\"\"\n if isinstance(strInput, unicode):\n return 'unicode'\n try:\n strInput.decode('utf8')\n return 'utf8'\n except:\n pass\n try:\n strInput.decode('gbk')\n return 'gbk'\n except:\n pass\n <function token>\n <function token>\n\n def md5(self, init_str):\n \"\"\"\n md5加密\n \"\"\"\n m = hashlib.md5()\n m.update(init_str)\n return m.hexdigest()\n\n def eval_dict(self, strInput):\n u\"\"\"接收字符串直接转成需要类型,例\n | eval dict | str |\n \"\"\"\n strInput = eval(strInput)\n return strInput\n\n def random_num(self, num):\n \"\"\"\n 随机出给出数字位数的数字\n \"\"\"\n number = ''\n for i in random.sample(range(10), int(num)):\n number += ''.join(str(i))\n return number\n\n def req(self, login_msg, url, method, data=None, headers=None):\n u\"\"\"专用,有登录状态,例\n | run interface test tenant | login_msg,url,method,data,headers\n \"\"\"\n session = requests.Session()\n url = self.tran2UTF8(url)\n method = self.tran2UTF8(method)\n if login_msg:\n login_msg = self.eval_dict(login_msg)\n md5_pwd = self.md5(login_msg['passwd'])\n login_msg['passwd'] = md5_pwd\n if data:\n data = self.eval_dict(data)\n if headers:\n headers = self.eval_dict(headers)\n else:\n headers = {'Content-Type': 'application/json', 'Accept':\n 'application/json'}\n results = 'connection error'\n r = session.post('https://xxxxxx.cn/login', data=json.dumps(\n login_msg), headers=headers)\n print('*******************************')\n print(u'登录状态信息')\n print(r.status_code)\n print(r.content)\n print('*******************************')\n try:\n if method == 'post':\n if isinstance(data, dict):\n data = json.dumps(data)\n results = session.post(url, data=data, headers=headers,\n verify=False)\n elif method == 'get':\n results = session.get(url, params=data, headers=headers,\n verify=False)\n elif method == 'delete':\n results = session.delete(url, headers=headers, verify=False)\n return results\n except requests.ConnectionError as e:\n return e\n <function token>\n", "<docstring token>\n<import token>\n<assignment token>\n\n\nclass PublicLibrary(object):\n <function token>\n\n def getCoding(self, strInput):\n u\"\"\"\n 获取编码格式\n \"\"\"\n if isinstance(strInput, unicode):\n return 'unicode'\n try:\n strInput.decode('utf8')\n return 'utf8'\n except:\n pass\n try:\n strInput.decode('gbk')\n return 'gbk'\n except:\n pass\n <function token>\n <function token>\n\n def md5(self, init_str):\n \"\"\"\n md5加密\n \"\"\"\n m = hashlib.md5()\n m.update(init_str)\n return m.hexdigest()\n\n def eval_dict(self, strInput):\n u\"\"\"接收字符串直接转成需要类型,例\n | eval dict | str |\n \"\"\"\n strInput = eval(strInput)\n return strInput\n\n def random_num(self, num):\n \"\"\"\n 随机出给出数字位数的数字\n \"\"\"\n number = ''\n for i in random.sample(range(10), int(num)):\n number += ''.join(str(i))\n return number\n\n def req(self, login_msg, url, method, data=None, headers=None):\n u\"\"\"专用,有登录状态,例\n | run interface test tenant | login_msg,url,method,data,headers\n \"\"\"\n session = requests.Session()\n url = self.tran2UTF8(url)\n method = self.tran2UTF8(method)\n if login_msg:\n login_msg = self.eval_dict(login_msg)\n md5_pwd = self.md5(login_msg['passwd'])\n login_msg['passwd'] = md5_pwd\n if data:\n data = self.eval_dict(data)\n if headers:\n headers = self.eval_dict(headers)\n else:\n headers = {'Content-Type': 'application/json', 'Accept':\n 'application/json'}\n results = 'connection error'\n r = session.post('https://xxxxxx.cn/login', data=json.dumps(\n login_msg), headers=headers)\n print('*******************************')\n print(u'登录状态信息')\n print(r.status_code)\n print(r.content)\n print('*******************************')\n try:\n if method == 'post':\n if isinstance(data, dict):\n data = json.dumps(data)\n results = session.post(url, data=data, headers=headers,\n verify=False)\n elif method == 'get':\n results = session.get(url, params=data, headers=headers,\n verify=False)\n elif method == 'delete':\n results = session.delete(url, headers=headers, verify=False)\n return results\n except requests.ConnectionError as e:\n return e\n <function token>\n", "<docstring token>\n<import token>\n<assignment token>\n\n\nclass PublicLibrary(object):\n <function token>\n\n def getCoding(self, strInput):\n u\"\"\"\n 获取编码格式\n \"\"\"\n if isinstance(strInput, unicode):\n return 'unicode'\n try:\n strInput.decode('utf8')\n return 'utf8'\n except:\n pass\n try:\n strInput.decode('gbk')\n return 'gbk'\n except:\n pass\n <function token>\n <function token>\n\n def md5(self, init_str):\n \"\"\"\n md5加密\n \"\"\"\n m = hashlib.md5()\n m.update(init_str)\n return m.hexdigest()\n\n def eval_dict(self, strInput):\n u\"\"\"接收字符串直接转成需要类型,例\n | eval dict | str |\n \"\"\"\n strInput = eval(strInput)\n return strInput\n\n def random_num(self, num):\n \"\"\"\n 随机出给出数字位数的数字\n \"\"\"\n number = ''\n for i in random.sample(range(10), int(num)):\n number += ''.join(str(i))\n return number\n <function token>\n <function token>\n", "<docstring token>\n<import token>\n<assignment token>\n\n\nclass PublicLibrary(object):\n <function token>\n\n def getCoding(self, strInput):\n u\"\"\"\n 获取编码格式\n \"\"\"\n if isinstance(strInput, unicode):\n return 'unicode'\n try:\n strInput.decode('utf8')\n return 'utf8'\n except:\n pass\n try:\n strInput.decode('gbk')\n return 'gbk'\n except:\n pass\n <function token>\n <function token>\n <function token>\n\n def eval_dict(self, strInput):\n u\"\"\"接收字符串直接转成需要类型,例\n | eval dict | str |\n \"\"\"\n strInput = eval(strInput)\n return strInput\n\n def random_num(self, num):\n \"\"\"\n 随机出给出数字位数的数字\n \"\"\"\n number = ''\n for i in random.sample(range(10), int(num)):\n number += ''.join(str(i))\n return number\n <function token>\n <function token>\n", "<docstring token>\n<import token>\n<assignment token>\n\n\nclass PublicLibrary(object):\n <function token>\n\n def getCoding(self, strInput):\n u\"\"\"\n 获取编码格式\n \"\"\"\n if isinstance(strInput, unicode):\n return 'unicode'\n try:\n strInput.decode('utf8')\n return 'utf8'\n except:\n pass\n try:\n strInput.decode('gbk')\n return 'gbk'\n except:\n pass\n <function token>\n <function token>\n <function token>\n\n def eval_dict(self, strInput):\n u\"\"\"接收字符串直接转成需要类型,例\n | eval dict | str |\n \"\"\"\n strInput = eval(strInput)\n return strInput\n <function token>\n <function token>\n <function token>\n", "<docstring token>\n<import token>\n<assignment token>\n\n\nclass PublicLibrary(object):\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def eval_dict(self, strInput):\n u\"\"\"接收字符串直接转成需要类型,例\n | eval dict | str |\n \"\"\"\n strInput = eval(strInput)\n return strInput\n <function token>\n <function token>\n <function token>\n", "<docstring token>\n<import token>\n<assignment token>\n\n\nclass PublicLibrary(object):\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<docstring token>\n<import token>\n<assignment token>\n<class token>\n" ]
false
99,037
033d7f5884d89704f7bee9251efe2ca32bdaebc8
import geohash import pandas as pd mobike_csv_file_path = r"/media/jsl/ubuntu/data/mobike/MOBIKE_CUP_2017/train.csv" train_data = pd.read_csv(mobike_csv_file_path) start_loc = train_data['starttime'] # with open('1.txt', 'w') as f: # for item in start_loc: # ll = geohash.decode(item) # lng = ll[1] # lat = ll[0] # f.write(lng+','+lat+'\r\n') print(start_loc)
[ "import geohash\nimport pandas as pd\n\nmobike_csv_file_path = r\"/media/jsl/ubuntu/data/mobike/MOBIKE_CUP_2017/train.csv\"\ntrain_data = pd.read_csv(mobike_csv_file_path)\nstart_loc = train_data['starttime']\n# with open('1.txt', 'w') as f:\n# for item in start_loc:\n# ll = geohash.decode(item)\n# lng = ll[1]\n# lat = ll[0]\n# f.write(lng+','+lat+'\\r\\n')\n\nprint(start_loc)", "import geohash\nimport pandas as pd\nmobike_csv_file_path = (\n '/media/jsl/ubuntu/data/mobike/MOBIKE_CUP_2017/train.csv')\ntrain_data = pd.read_csv(mobike_csv_file_path)\nstart_loc = train_data['starttime']\nprint(start_loc)\n", "<import token>\nmobike_csv_file_path = (\n '/media/jsl/ubuntu/data/mobike/MOBIKE_CUP_2017/train.csv')\ntrain_data = pd.read_csv(mobike_csv_file_path)\nstart_loc = train_data['starttime']\nprint(start_loc)\n", "<import token>\n<assignment token>\nprint(start_loc)\n", "<import token>\n<assignment token>\n<code token>\n" ]
false
99,038
48ce65e046aa7409b3d1ffff373c54535de44ec8
class MedianFinder: def __init__(self): """ initialize your data structure here. """ self.max_heap = [] # to contain left smaller half, or + 1 self.min_heap = [] # to contain right bigger half def addNum(self, num: int) -> None: if not self.max_heap or -self.max_heap[0] >= num: heapq.heappush(self.max_heap, -num) else: heapq.heappush(self.min_heap, num) if len(self.max_heap) > len(self.min_heap) + 1: heapq.heappush(self.min_heap, -heappop(self.max_heap)) elif len(self.max_heap) < len(self.min_heap): heapq.heappush(self.max_heap, -heappop(self.min_heap)) def findMedian(self) -> float: if len(self.max_heap) == len(self.min_heap): return (-self.max_heap[0] + self.min_heap[0]) / 2 return -self.max_heap[0] class MedianFinder: def __init__(self): self.heaps = [], [] def addNum(self, num): small, large = self.heaps heappush(small, -heappushpop(large, num)) if len(large) < len(small): heappush(large, -heappop(small)) def findMedian(self): small, large = self.heaps if len(large) > len(small): return float(large[0]) return (large[0] - small[0]) / 2.0 # Your MedianFinder object will be instantiated and called as such: # obj = MedianFinder() # obj.addNum(num) # param_2 = obj.findMedian()
[ "class MedianFinder:\n\n def __init__(self):\n \"\"\"\n initialize your data structure here.\n \"\"\"\n self.max_heap = [] # to contain left smaller half, or + 1\n self.min_heap = [] # to contain right bigger half\n\n def addNum(self, num: int) -> None:\n if not self.max_heap or -self.max_heap[0] >= num:\n heapq.heappush(self.max_heap, -num)\n else:\n heapq.heappush(self.min_heap, num)\n\n if len(self.max_heap) > len(self.min_heap) + 1:\n heapq.heappush(self.min_heap, -heappop(self.max_heap))\n elif len(self.max_heap) < len(self.min_heap):\n heapq.heappush(self.max_heap, -heappop(self.min_heap))\n\n def findMedian(self) -> float:\n if len(self.max_heap) == len(self.min_heap):\n return (-self.max_heap[0] + self.min_heap[0]) / 2\n return -self.max_heap[0]\n\n\nclass MedianFinder:\n def __init__(self):\n self.heaps = [], []\n\n def addNum(self, num):\n small, large = self.heaps\n heappush(small, -heappushpop(large, num))\n if len(large) < len(small):\n heappush(large, -heappop(small))\n\n def findMedian(self):\n small, large = self.heaps\n if len(large) > len(small):\n return float(large[0])\n return (large[0] - small[0]) / 2.0\n# Your MedianFinder object will be instantiated and called as such:\n# obj = MedianFinder()\n# obj.addNum(num)\n# param_2 = obj.findMedian()\n", "class MedianFinder:\n\n def __init__(self):\n \"\"\"\n initialize your data structure here.\n \"\"\"\n self.max_heap = []\n self.min_heap = []\n\n def addNum(self, num: int) ->None:\n if not self.max_heap or -self.max_heap[0] >= num:\n heapq.heappush(self.max_heap, -num)\n else:\n heapq.heappush(self.min_heap, num)\n if len(self.max_heap) > len(self.min_heap) + 1:\n heapq.heappush(self.min_heap, -heappop(self.max_heap))\n elif len(self.max_heap) < len(self.min_heap):\n heapq.heappush(self.max_heap, -heappop(self.min_heap))\n\n def findMedian(self) ->float:\n if len(self.max_heap) == len(self.min_heap):\n return (-self.max_heap[0] + self.min_heap[0]) / 2\n return -self.max_heap[0]\n\n\nclass MedianFinder:\n\n def __init__(self):\n self.heaps = [], []\n\n def addNum(self, num):\n small, large = self.heaps\n heappush(small, -heappushpop(large, num))\n if len(large) < len(small):\n heappush(large, -heappop(small))\n\n def findMedian(self):\n small, large = self.heaps\n if len(large) > len(small):\n return float(large[0])\n return (large[0] - small[0]) / 2.0\n", "class MedianFinder:\n\n def __init__(self):\n \"\"\"\n initialize your data structure here.\n \"\"\"\n self.max_heap = []\n self.min_heap = []\n\n def addNum(self, num: int) ->None:\n if not self.max_heap or -self.max_heap[0] >= num:\n heapq.heappush(self.max_heap, -num)\n else:\n heapq.heappush(self.min_heap, num)\n if len(self.max_heap) > len(self.min_heap) + 1:\n heapq.heappush(self.min_heap, -heappop(self.max_heap))\n elif len(self.max_heap) < len(self.min_heap):\n heapq.heappush(self.max_heap, -heappop(self.min_heap))\n <function token>\n\n\nclass MedianFinder:\n\n def __init__(self):\n self.heaps = [], []\n\n def addNum(self, num):\n small, large = self.heaps\n heappush(small, -heappushpop(large, num))\n if len(large) < len(small):\n heappush(large, -heappop(small))\n\n def findMedian(self):\n small, large = self.heaps\n if len(large) > len(small):\n return float(large[0])\n return (large[0] - small[0]) / 2.0\n", "class MedianFinder:\n\n def __init__(self):\n \"\"\"\n initialize your data structure here.\n \"\"\"\n self.max_heap = []\n self.min_heap = []\n <function token>\n <function token>\n\n\nclass MedianFinder:\n\n def __init__(self):\n self.heaps = [], []\n\n def addNum(self, num):\n small, large = self.heaps\n heappush(small, -heappushpop(large, num))\n if len(large) < len(small):\n heappush(large, -heappop(small))\n\n def findMedian(self):\n small, large = self.heaps\n if len(large) > len(small):\n return float(large[0])\n return (large[0] - small[0]) / 2.0\n", "class MedianFinder:\n <function token>\n <function token>\n <function token>\n\n\nclass MedianFinder:\n\n def __init__(self):\n self.heaps = [], []\n\n def addNum(self, num):\n small, large = self.heaps\n heappush(small, -heappushpop(large, num))\n if len(large) < len(small):\n heappush(large, -heappop(small))\n\n def findMedian(self):\n small, large = self.heaps\n if len(large) > len(small):\n return float(large[0])\n return (large[0] - small[0]) / 2.0\n", "<class token>\n\n\nclass MedianFinder:\n\n def __init__(self):\n self.heaps = [], []\n\n def addNum(self, num):\n small, large = self.heaps\n heappush(small, -heappushpop(large, num))\n if len(large) < len(small):\n heappush(large, -heappop(small))\n\n def findMedian(self):\n small, large = self.heaps\n if len(large) > len(small):\n return float(large[0])\n return (large[0] - small[0]) / 2.0\n", "<class token>\n\n\nclass MedianFinder:\n\n def __init__(self):\n self.heaps = [], []\n <function token>\n\n def findMedian(self):\n small, large = self.heaps\n if len(large) > len(small):\n return float(large[0])\n return (large[0] - small[0]) / 2.0\n", "<class token>\n\n\nclass MedianFinder:\n <function token>\n <function token>\n\n def findMedian(self):\n small, large = self.heaps\n if len(large) > len(small):\n return float(large[0])\n return (large[0] - small[0]) / 2.0\n", "<class token>\n\n\nclass MedianFinder:\n <function token>\n <function token>\n <function token>\n", "<class token>\n<class token>\n" ]
false
99,039
0c7edc05adddc02f881c2f8677b6e83bc56396f8
lstEven = [] lstOdd = [] for i in range(8): num = int(input()) if num % 2 == 0: lstEven.append(num) else: lstOdd.append(num) if(len(lstEven) > len(lstOdd)): print("Even") else: print("Odd") print(sum(lstEven)) print(sum(lstOdd))
[ "lstEven = []\nlstOdd = []\nfor i in range(8):\n num = int(input())\n if num % 2 == 0:\n lstEven.append(num)\n else:\n lstOdd.append(num)\n\nif(len(lstEven) > len(lstOdd)):\n print(\"Even\")\nelse:\n print(\"Odd\")\n\nprint(sum(lstEven))\nprint(sum(lstOdd))", "lstEven = []\nlstOdd = []\nfor i in range(8):\n num = int(input())\n if num % 2 == 0:\n lstEven.append(num)\n else:\n lstOdd.append(num)\nif len(lstEven) > len(lstOdd):\n print('Even')\nelse:\n print('Odd')\nprint(sum(lstEven))\nprint(sum(lstOdd))\n", "<assignment token>\nfor i in range(8):\n num = int(input())\n if num % 2 == 0:\n lstEven.append(num)\n else:\n lstOdd.append(num)\nif len(lstEven) > len(lstOdd):\n print('Even')\nelse:\n print('Odd')\nprint(sum(lstEven))\nprint(sum(lstOdd))\n", "<assignment token>\n<code token>\n" ]
false
99,040
aae702ad85bbbdc57b74c0b62f2a539b81a39125
trackDict = { "24 Hours of Le Mans Circuit": "1740968730", "Autodromo Internazionale Enzo E Dino Ferrari Imola": "920145926", "Autodromo Nazionale Monza GP": "4241994684", "Autodromo Nazionale Monza GP Historic": "1184596327", "Autodromo Nazionale Monza Historic Oval + GP Mix": "1327182267", "Autodromo Nazionale Monza Oval Historic": "4131920659", "Autodromo Nazionale Monza Short": "368740158", "Autódromo Internacional do Algarve": "3878349996", "Azure Circuit": "832629329", "Azure Coast": "560711985"} for key, value in trackDict.items(): if key == "Azure Coast": track = key trackid = value print(track) print(trackid)
[ "trackDict =\t{\r\n\t\"24 Hours of Le Mans Circuit\": \"1740968730\",\r\n\t\"Autodromo Internazionale Enzo E Dino Ferrari Imola\": \"920145926\",\r\n\t\"Autodromo Nazionale Monza GP\": \"4241994684\",\r\n\t\"Autodromo Nazionale Monza GP Historic\": \"1184596327\",\r\n\t\"Autodromo Nazionale Monza Historic Oval + GP Mix\": \"1327182267\",\r\n\t\"Autodromo Nazionale Monza Oval Historic\": \"4131920659\",\r\n\t\"Autodromo Nazionale Monza Short\": \"368740158\",\r\n\t\"Autódromo Internacional do Algarve\": \"3878349996\",\r\n\t\"Azure Circuit\": \"832629329\",\r\n\t\"Azure Coast\": \"560711985\"}\r\n\r\n\r\n\r\nfor key, value in trackDict.items():\r\n if key == \"Azure Coast\":\r\n track = key\r\n trackid = value\r\n\r\n\r\nprint(track)\r\nprint(trackid)", "trackDict = {'24 Hours of Le Mans Circuit': '1740968730',\n 'Autodromo Internazionale Enzo E Dino Ferrari Imola': '920145926',\n 'Autodromo Nazionale Monza GP': '4241994684',\n 'Autodromo Nazionale Monza GP Historic': '1184596327',\n 'Autodromo Nazionale Monza Historic Oval + GP Mix': '1327182267',\n 'Autodromo Nazionale Monza Oval Historic': '4131920659',\n 'Autodromo Nazionale Monza Short': '368740158',\n 'Autódromo Internacional do Algarve': '3878349996', 'Azure Circuit':\n '832629329', 'Azure Coast': '560711985'}\nfor key, value in trackDict.items():\n if key == 'Azure Coast':\n track = key\n trackid = value\nprint(track)\nprint(trackid)\n", "<assignment token>\nfor key, value in trackDict.items():\n if key == 'Azure Coast':\n track = key\n trackid = value\nprint(track)\nprint(trackid)\n", "<assignment token>\n<code token>\n" ]
false
99,041
d451b603281267f5cb8525fd718500d4c17f8705
import numpy as np np.random.seed(0) from procs import _corr from timeseries import TimeSeries def test_tsmaker(): #Setting seed to equate the two timeseries _,t1 = _corr.tsmaker(0.5, 0.1, 0.01) assert(len(t1.values()) == 100) def test_randomts(): t1 = _corr.random_ts(0.5) assert(len(t1.values()) == 100) def test_stand(): t1 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70]) val = _corr.stand(np.array(t1.values()), 55.0, 10) assert(list(val) == [-1.5, -0.5, 0.5, 1.5]) def test_ccor(): #Testing the corr function independently t1 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70]) t2 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70]) val = _corr.ccor(t1, t2) assert(list(np.real(val)) == [12600, 12000, 11800, 12000]) assert(list(np.imag(val)) == [0, 0, 0, 0]) def test_maxcorr(): t1 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70]) t2 = TimeSeries([1, 2, 3, 4], [50, 60, 70, 40]) standts1 = _corr.stand(t1, t1.mean(), t1.std()) standts2 = _corr.stand(t2, t2.mean(), t2.std()) idx, mcorr = _corr.max_corr_at_phase(standts1, standts2) #idx should be equal to one since the second ts is shifted by 1 assert(idx == 1) assert(np.real(mcorr) == 4) def test_kernelcorr(): t1 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70]) t2 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70]) standts1 = _corr.stand(t1, t1.mean(), t1.std()) standts2 = _corr.stand(t2, t2.mean(), t2.std()) #Kernel_corr should return a correlation of 1.0 since we use similar timeseries assert(_corr.kernel_corr(standts1, standts2, mult=1) == 1.0)
[ "import numpy as np\nnp.random.seed(0)\nfrom procs import _corr\nfrom timeseries import TimeSeries\n\n\ndef test_tsmaker():\n #Setting seed to equate the two timeseries\n _,t1 = _corr.tsmaker(0.5, 0.1, 0.01)\n assert(len(t1.values()) == 100)\n\ndef test_randomts():\n t1 = _corr.random_ts(0.5)\n assert(len(t1.values()) == 100)\n\ndef test_stand():\n t1 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70])\n val = _corr.stand(np.array(t1.values()), 55.0, 10)\n assert(list(val) == [-1.5, -0.5, 0.5, 1.5])\n\ndef test_ccor():\n #Testing the corr function independently\n t1 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70])\n t2 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70])\n val = _corr.ccor(t1, t2)\n assert(list(np.real(val)) == [12600, 12000, 11800, 12000])\n assert(list(np.imag(val)) == [0, 0, 0, 0])\n\ndef test_maxcorr():\n t1 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70])\n t2 = TimeSeries([1, 2, 3, 4], [50, 60, 70, 40])\n standts1 = _corr.stand(t1, t1.mean(), t1.std())\n standts2 = _corr.stand(t2, t2.mean(), t2.std())\n idx, mcorr = _corr.max_corr_at_phase(standts1, standts2)\n #idx should be equal to one since the second ts is shifted by 1\n assert(idx == 1)\n assert(np.real(mcorr) == 4)\n\ndef test_kernelcorr():\n t1 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70])\n t2 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70])\n standts1 = _corr.stand(t1, t1.mean(), t1.std())\n standts2 = _corr.stand(t2, t2.mean(), t2.std())\n #Kernel_corr should return a correlation of 1.0 since we use similar timeseries\n assert(_corr.kernel_corr(standts1, standts2, mult=1) == 1.0)\n \n\n", "import numpy as np\nnp.random.seed(0)\nfrom procs import _corr\nfrom timeseries import TimeSeries\n\n\ndef test_tsmaker():\n _, t1 = _corr.tsmaker(0.5, 0.1, 0.01)\n assert len(t1.values()) == 100\n\n\ndef test_randomts():\n t1 = _corr.random_ts(0.5)\n assert len(t1.values()) == 100\n\n\ndef test_stand():\n t1 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70])\n val = _corr.stand(np.array(t1.values()), 55.0, 10)\n assert list(val) == [-1.5, -0.5, 0.5, 1.5]\n\n\ndef test_ccor():\n t1 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70])\n t2 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70])\n val = _corr.ccor(t1, t2)\n assert list(np.real(val)) == [12600, 12000, 11800, 12000]\n assert list(np.imag(val)) == [0, 0, 0, 0]\n\n\ndef test_maxcorr():\n t1 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70])\n t2 = TimeSeries([1, 2, 3, 4], [50, 60, 70, 40])\n standts1 = _corr.stand(t1, t1.mean(), t1.std())\n standts2 = _corr.stand(t2, t2.mean(), t2.std())\n idx, mcorr = _corr.max_corr_at_phase(standts1, standts2)\n assert idx == 1\n assert np.real(mcorr) == 4\n\n\ndef test_kernelcorr():\n t1 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70])\n t2 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70])\n standts1 = _corr.stand(t1, t1.mean(), t1.std())\n standts2 = _corr.stand(t2, t2.mean(), t2.std())\n assert _corr.kernel_corr(standts1, standts2, mult=1) == 1.0\n", "<import token>\nnp.random.seed(0)\n<import token>\n\n\ndef test_tsmaker():\n _, t1 = _corr.tsmaker(0.5, 0.1, 0.01)\n assert len(t1.values()) == 100\n\n\ndef test_randomts():\n t1 = _corr.random_ts(0.5)\n assert len(t1.values()) == 100\n\n\ndef test_stand():\n t1 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70])\n val = _corr.stand(np.array(t1.values()), 55.0, 10)\n assert list(val) == [-1.5, -0.5, 0.5, 1.5]\n\n\ndef test_ccor():\n t1 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70])\n t2 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70])\n val = _corr.ccor(t1, t2)\n assert list(np.real(val)) == [12600, 12000, 11800, 12000]\n assert list(np.imag(val)) == [0, 0, 0, 0]\n\n\ndef test_maxcorr():\n t1 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70])\n t2 = TimeSeries([1, 2, 3, 4], [50, 60, 70, 40])\n standts1 = _corr.stand(t1, t1.mean(), t1.std())\n standts2 = _corr.stand(t2, t2.mean(), t2.std())\n idx, mcorr = _corr.max_corr_at_phase(standts1, standts2)\n assert idx == 1\n assert np.real(mcorr) == 4\n\n\ndef test_kernelcorr():\n t1 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70])\n t2 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70])\n standts1 = _corr.stand(t1, t1.mean(), t1.std())\n standts2 = _corr.stand(t2, t2.mean(), t2.std())\n assert _corr.kernel_corr(standts1, standts2, mult=1) == 1.0\n", "<import token>\n<code token>\n<import token>\n\n\ndef test_tsmaker():\n _, t1 = _corr.tsmaker(0.5, 0.1, 0.01)\n assert len(t1.values()) == 100\n\n\ndef test_randomts():\n t1 = _corr.random_ts(0.5)\n assert len(t1.values()) == 100\n\n\ndef test_stand():\n t1 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70])\n val = _corr.stand(np.array(t1.values()), 55.0, 10)\n assert list(val) == [-1.5, -0.5, 0.5, 1.5]\n\n\ndef test_ccor():\n t1 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70])\n t2 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70])\n val = _corr.ccor(t1, t2)\n assert list(np.real(val)) == [12600, 12000, 11800, 12000]\n assert list(np.imag(val)) == [0, 0, 0, 0]\n\n\ndef test_maxcorr():\n t1 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70])\n t2 = TimeSeries([1, 2, 3, 4], [50, 60, 70, 40])\n standts1 = _corr.stand(t1, t1.mean(), t1.std())\n standts2 = _corr.stand(t2, t2.mean(), t2.std())\n idx, mcorr = _corr.max_corr_at_phase(standts1, standts2)\n assert idx == 1\n assert np.real(mcorr) == 4\n\n\ndef test_kernelcorr():\n t1 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70])\n t2 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70])\n standts1 = _corr.stand(t1, t1.mean(), t1.std())\n standts2 = _corr.stand(t2, t2.mean(), t2.std())\n assert _corr.kernel_corr(standts1, standts2, mult=1) == 1.0\n", "<import token>\n<code token>\n<import token>\n\n\ndef test_tsmaker():\n _, t1 = _corr.tsmaker(0.5, 0.1, 0.01)\n assert len(t1.values()) == 100\n\n\ndef test_randomts():\n t1 = _corr.random_ts(0.5)\n assert len(t1.values()) == 100\n\n\ndef test_stand():\n t1 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70])\n val = _corr.stand(np.array(t1.values()), 55.0, 10)\n assert list(val) == [-1.5, -0.5, 0.5, 1.5]\n\n\ndef test_ccor():\n t1 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70])\n t2 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70])\n val = _corr.ccor(t1, t2)\n assert list(np.real(val)) == [12600, 12000, 11800, 12000]\n assert list(np.imag(val)) == [0, 0, 0, 0]\n\n\n<function token>\n\n\ndef test_kernelcorr():\n t1 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70])\n t2 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70])\n standts1 = _corr.stand(t1, t1.mean(), t1.std())\n standts2 = _corr.stand(t2, t2.mean(), t2.std())\n assert _corr.kernel_corr(standts1, standts2, mult=1) == 1.0\n", "<import token>\n<code token>\n<import token>\n\n\ndef test_tsmaker():\n _, t1 = _corr.tsmaker(0.5, 0.1, 0.01)\n assert len(t1.values()) == 100\n\n\n<function token>\n\n\ndef test_stand():\n t1 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70])\n val = _corr.stand(np.array(t1.values()), 55.0, 10)\n assert list(val) == [-1.5, -0.5, 0.5, 1.5]\n\n\ndef test_ccor():\n t1 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70])\n t2 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70])\n val = _corr.ccor(t1, t2)\n assert list(np.real(val)) == [12600, 12000, 11800, 12000]\n assert list(np.imag(val)) == [0, 0, 0, 0]\n\n\n<function token>\n\n\ndef test_kernelcorr():\n t1 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70])\n t2 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70])\n standts1 = _corr.stand(t1, t1.mean(), t1.std())\n standts2 = _corr.stand(t2, t2.mean(), t2.std())\n assert _corr.kernel_corr(standts1, standts2, mult=1) == 1.0\n", "<import token>\n<code token>\n<import token>\n\n\ndef test_tsmaker():\n _, t1 = _corr.tsmaker(0.5, 0.1, 0.01)\n assert len(t1.values()) == 100\n\n\n<function token>\n\n\ndef test_stand():\n t1 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70])\n val = _corr.stand(np.array(t1.values()), 55.0, 10)\n assert list(val) == [-1.5, -0.5, 0.5, 1.5]\n\n\n<function token>\n<function token>\n\n\ndef test_kernelcorr():\n t1 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70])\n t2 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70])\n standts1 = _corr.stand(t1, t1.mean(), t1.std())\n standts2 = _corr.stand(t2, t2.mean(), t2.std())\n assert _corr.kernel_corr(standts1, standts2, mult=1) == 1.0\n", "<import token>\n<code token>\n<import token>\n\n\ndef test_tsmaker():\n _, t1 = _corr.tsmaker(0.5, 0.1, 0.01)\n assert len(t1.values()) == 100\n\n\n<function token>\n\n\ndef test_stand():\n t1 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70])\n val = _corr.stand(np.array(t1.values()), 55.0, 10)\n assert list(val) == [-1.5, -0.5, 0.5, 1.5]\n\n\n<function token>\n<function token>\n<function token>\n", "<import token>\n<code token>\n<import token>\n\n\ndef test_tsmaker():\n _, t1 = _corr.tsmaker(0.5, 0.1, 0.01)\n assert len(t1.values()) == 100\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n", "<import token>\n<code token>\n<import token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n" ]
false
99,042
5587c4eb4a8a8756a5f4ccf474781699c0c8d7f9
#! /usr/bin/env python2 ''' Register a mDNS/DNS-SD alias name for your computer using the Avahi daemon This script will register an alternate CNAME alias besides your hostname, which could be useful for ex. when serving several http virtual hosts to your ffriends on the local network and you don't want to make them configure their /etc/hosts. Why a CNAME? You could also publish your current address with avahi-publish-address but on a multihomed host (connected via wifi0 and eth0 perhaps) a single address will not be valid on both networks. So this publishes a CNAME to your hostname, which, by default, is already published by Avahi. domain should almost always be .local the cname is not restricted to ascii, it'll be encoded as IDNA The alias will stay published until the script runs. ''' import avahi, dbus from encodings.idna import ToASCII TTL = 60 # Got these from /usr/include/avahi-common/defs.h CLASS_IN = 0x01 TYPE_CNAME = 0x05 def publish_cname(cname): bus = dbus.SystemBus() server = dbus.Interface(bus.get_object(avahi.DBUS_NAME, avahi.DBUS_PATH_SERVER), avahi.DBUS_INTERFACE_SERVER) group = dbus.Interface(bus.get_object(avahi.DBUS_NAME, server.EntryGroupNew()), avahi.DBUS_INTERFACE_ENTRY_GROUP) if not u'.' in cname: cname = cname + '.local' cname = encode_cname(cname) rdata = encode_rdata(server.GetHostNameFqdn()) rdata = avahi.string_to_byte_array(rdata) group.AddRecord(avahi.IF_UNSPEC, avahi.PROTO_UNSPEC, dbus.UInt32(0), cname, CLASS_IN, TYPE_CNAME, TTL, rdata) group.Commit() def encode_cname(name): return '.'.join( ToASCII(p) for p in name.split('.') if p ) def encode_rdata(name): def enc(part): a = ToASCII(part) return chr(len(a)), a return ''.join( '%s%s' % enc(p) for p in name.split('.') if p ) + '\0' if __name__ == '__main__': import time, sys, locale if len(sys.argv)<2: script_name = sys.argv[0] print "Usage: %s hostname.local [hostname2.local] [hostname3.local]" % script_name sys.exit(1) for each in sys.argv[1:]: name = unicode(each, locale.getpreferredencoding()) publish_cname(name) try: while True: time.sleep(60) except KeyboardInterrupt: print "Exiting" sys.exit(0)
[ "#! /usr/bin/env python2\n'''\nRegister a mDNS/DNS-SD alias name for your computer using the Avahi daemon\n\nThis script will register an alternate CNAME alias besides your hostname,\nwhich could be useful for ex. when serving several http virtual hosts to \nyour ffriends on the local network and you don't want to make them configure\ntheir /etc/hosts.\n\nWhy a CNAME? You could also publish your current address with avahi-publish-address\nbut on a multihomed host (connected via wifi0 and eth0 perhaps) a single\naddress will not be valid on both networks. So this publishes a CNAME to your\nhostname, which, by default, is already published by Avahi.\n\ndomain should almost always be .local\nthe cname is not restricted to ascii, it'll be encoded as IDNA\n\nThe alias will stay published until the script runs.\n'''\nimport avahi, dbus\nfrom encodings.idna import ToASCII\n\nTTL = 60\n# Got these from /usr/include/avahi-common/defs.h\nCLASS_IN = 0x01\nTYPE_CNAME = 0x05\n\n\ndef publish_cname(cname):\n bus = dbus.SystemBus()\n server = dbus.Interface(bus.get_object(avahi.DBUS_NAME, avahi.DBUS_PATH_SERVER),\n avahi.DBUS_INTERFACE_SERVER)\n group = dbus.Interface(bus.get_object(avahi.DBUS_NAME, server.EntryGroupNew()),\n avahi.DBUS_INTERFACE_ENTRY_GROUP)\n\n if not u'.' in cname:\n cname = cname + '.local'\n cname = encode_cname(cname)\n rdata = encode_rdata(server.GetHostNameFqdn())\n rdata = avahi.string_to_byte_array(rdata)\n\n group.AddRecord(avahi.IF_UNSPEC, avahi.PROTO_UNSPEC, dbus.UInt32(0),\n cname, CLASS_IN, TYPE_CNAME, TTL, rdata)\n group.Commit()\n\n\ndef encode_cname(name):\n return '.'.join( ToASCII(p) for p in name.split('.') if p )\n\ndef encode_rdata(name):\n def enc(part):\n a = ToASCII(part)\n return chr(len(a)), a\n return ''.join( '%s%s' % enc(p) for p in name.split('.') if p ) + '\\0'\n\nif __name__ == '__main__':\n import time, sys, locale\n if len(sys.argv)<2:\n script_name = sys.argv[0]\n print \"Usage: %s hostname.local [hostname2.local] [hostname3.local]\" % script_name\n sys.exit(1)\n\n for each in sys.argv[1:]:\n name = unicode(each, locale.getpreferredencoding())\n publish_cname(name)\n try:\n while True: time.sleep(60)\n except KeyboardInterrupt:\n print \"Exiting\"\n sys.exit(0)" ]
true
99,043
e7bf0633de83bb16cc69d74f5e996ecea658ac19
from django.db import models from datetime import datetime class Monday(models.Model): favorite = models.CharField(max_length=100) spread = models.CharField(max_length=100) underdog = models.CharField(max_length=100) list_total = models.CharField(max_length=100) win = models.CharField(max_length=100) is_published = models.BooleanField(default=True) list_data = models.CharField(max_length=100) def __str__(self): return self.favorite
[ "from django.db import models\nfrom datetime import datetime\n\n\nclass Monday(models.Model):\n favorite = models.CharField(max_length=100)\n spread = models.CharField(max_length=100)\n underdog = models.CharField(max_length=100)\n list_total = models.CharField(max_length=100)\n win = models.CharField(max_length=100)\n is_published = models.BooleanField(default=True)\n list_data = models.CharField(max_length=100)\n\n def __str__(self):\n return self.favorite\n", "<import token>\n\n\nclass Monday(models.Model):\n favorite = models.CharField(max_length=100)\n spread = models.CharField(max_length=100)\n underdog = models.CharField(max_length=100)\n list_total = models.CharField(max_length=100)\n win = models.CharField(max_length=100)\n is_published = models.BooleanField(default=True)\n list_data = models.CharField(max_length=100)\n\n def __str__(self):\n return self.favorite\n", "<import token>\n\n\nclass Monday(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __str__(self):\n return self.favorite\n", "<import token>\n\n\nclass Monday(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n", "<import token>\n<class token>\n" ]
false
99,044
046c35112be6c66e4cd179dc908c4c695514a077
import datetime from django.db import models from django.contrib.auth.models import AbstractUser from django.utils import timezone from django.conf import settings # Receive the pre_delete signal and delete the file associated with the model instance. from django.db.models.signals import pre_delete from django.dispatch.dispatcher import receiver class Estado(models.Model): nome = models.CharField(null=True, blank=True, max_length=75) uf = models.CharField(null=True, blank=True, max_length=5) def __str__(self): return self.uf class Cidade(models.Model): nome = models.CharField(null=True, blank=True, max_length=120) estado = models.ForeignKey(Estado, on_delete=models.CASCADE) estado_uf = models.CharField(null=True, blank=True, max_length=5) def __str__(self): return self.nome class Ongs(models.Model): ADOPTION_VALUE = [ ('Gratuito', 'Gratuito'), ('10,00', '10,00'), ('15,00', '15,00'), ('20,00', '20,00'), ('25,00', '25,00'), ('30,00', '30,00'), ('35,00', '35,00'), ('40,00', '40,00'), ('45,00', '45,00'), ('50,00', '50,00'), ('55,00', '55,00'), ('60,00', '60,00'), ('65,00', '65,00'), ('70,00', '70,00'), ('75,00', '75,00'), ('80,00', '80,00'), ('85,00', '85,00'), ('90,00', '90,00'), ('95,00', '95,00'), ('100,00', '100,00'), ] OPEN_HOURS = [ ('06:00', '06:00'), ('06:30', '06:30'), ('07:00', '07:00'), ('07:30', '07:30'), ('08:00', '08:00'), ('08:30', '08:30'), ('09:00', '09:00'), ('09:30', '09:30'), ('10:00', '10:00'), ('10:30', '10:30'), ('11:00', '11:00'), ('11:30', '11:30'), ('12:00', '12:00'), ('12:30', '12:30'), ] CLOSE_HOURS = [ ('16:00', '16:00'), ('16:30', '16:30'), ('17:00', '17:00'), ('17:30', '17:30'), ('18:00', '18:00'), ('18:30', '18:30'), ('19:00', '19:00'), ('19:30', '19:30'), ('20:00', '20:00'), ('20:30', '20:30'), ('21:00', '21:00'), ('21:30', '21:30'), ('22:00', '22:00'), ('22:30', '22:30'), ] DDD = [ ('11', '11'), ('12', '12'), ('13', '13'), ('14', '14'), ('15', '15'), ('16', '16'), ('17', '17'), ('18', '18'), ('19', '19'), ('21', '21'), ('22', '22'), ('24', '24'), ('27', '27'), ('28', '28'), ('31', '31'), ('32', '32'), ('33', '33'), ('34', '34'), ('35', '35'), ('37', '37'), ('38', '38'), ('41', '41'), ('42', '42'), ('43', '43'), ('44', '44'), ('45', '45'), ('46', '46'), ('47', '47'), ('48', '48'), ('49', '49'), ('51', '51'), ('53', '53'), ('54', '54'), ('55', '55'), ('61', '61'), ('62', '62'), ('63', '63'), ('64', '64'), ('65', '65'), ('66', '66'), ('67', '67'), ('68', '68'), ('69', '69'), ('71', '71'), ('73', '73'), ('74', '74'), ('75', '75'), ('77', '77'), ('79', '79'), ('81', '81'), ('82', '82'), ('83', '83'), ('84', '84'), ('85', '85'), ('86', '86'), ('87', '87'), ('88', '88'), ('89', '89'), ('91', '91'), ('92', '92'), ('93', '93'), ('94', '94'), ('95', '95'), ('96', '96'), ('97', '97'), ('98', '98'), ('99', '99'), ] TRANSPORTATION = [ ('Grtis', 'Grtis'), ('1,00', '1,00'), ('2,00', '2,00'), ('3,00', '3,00'), ('4,00', '4,00'), ('5,00', '5,00'), ('7,00', '7,00'), ('10,00', '10,00'), ('12,00', '12,00'), ('15,00', '15,00'), ('18,00', '18,00'), ('20,00', '20,00'), ('25,00', '25,00'), ('30,00', '30,00'), ('35,00', '35,00'), ('40,00', '40,00'), ('45,00', '45,00'), ('50,00', '50,00'), ('55,00', '65,00'), ('60,00', '60,00'), ] name = models.CharField(null=True, blank=True, max_length=40) rate = models.CharField(null=True, blank=True, default='Gratuito', max_length=8, choices=ADOPTION_VALUE) hour_open = models.CharField(blank=True, null=True, default='', max_length=5, choices=OPEN_HOURS) hour_close = models.CharField(blank=True, null=True, default='', max_length=5, choices=CLOSE_HOURS) mission_statement = models.CharField(null=True, blank=True, default='', max_length=300) description = models.CharField(null=True, blank=True, default='', max_length=500) web_site = models.CharField(null=True, blank=True, max_length=150) phone_number_ddd = models.CharField(null=True, blank=True, max_length=3, choices=DDD) phone_number = models.CharField(null=True, blank=True, max_length=12) email = models.CharField(null=True, blank=True, max_length=100) facebook = models.CharField(null=True, blank=True, max_length=100) instagram = models.CharField(null=True, blank=True, max_length=40) logo_link = models.ImageField(null=True, blank=True) picture_1 = models.ImageField(null=True, blank=True) picture_2 = models.ImageField(null=True, blank=True) created_at = models.DateField(auto_now_add=True) updated_at = models.DateField(auto_now=True) city_id = models.ForeignKey(Cidade, on_delete=models.CASCADE, null=True, blank=True) state_id = models.ForeignKey(Estado, on_delete=models.CASCADE, null=True, blank=True) is_foster_ok = models.BooleanField(default=0) is_volunteer_ok = models.BooleanField(default=0) has_transportation = models.BooleanField(default=0) cnpj = models.CharField(null=True, blank=True, max_length=18) founded_date = models.CharField(null=True, blank=True, max_length=30, default='') is_approved = models.BooleanField(default=0) transportation_price = models.CharField(null=True, blank=True, max_length=7, choices=TRANSPORTATION) def __str__(self): return self.name class User(AbstractUser): PERMISSION = [ ('Editar tudo', 'Editar tudo'), ('Editar equipe e pets', 'Editar equipe e pets'), ('Editar pets', 'Editar pets'), ('Visualizar equipe e pets', 'Visualizar equipe e pets'), ('Visualizar pets', 'Visualizar pets'), ] ROLE = [ ('Advogado(a)', 'Advogado(a)'), ('Auxiliar de veterinrio', 'Auxiliar de veterinrio'), ('Bilogo(a)', 'Bilogo(a)'), ('Colaborador(a)', 'Colaborador(a)'), ('Departamento administrativo', 'Departamento administrativo'), ('Departamento de atendimento', 'Departamento de atendimento'), ('Departamento de eventos', 'Departamento de eventos'), ('Departamento educativo', 'Departamento educativo'), ('Departamento de marketing', 'Departamento de marketing'), ('Departamento financeiro', 'Departamento financeiro'), ('Diretor(a) administrativo', 'Diretor(a) administrativo'), ('Diretor(a) de eventos', 'Diretor(a) de eventos'), ('Diretor(a) financeiro', 'Diretor(a) financeiro'), ('Diretor(a) geral', 'Diretor(a) geral'), ('Diretor(a) marketing', 'Diretor(a) marketing'), ('Diretor(a) tcnico', 'Diretor(a) tcnico'), ('Funcionrio(a)', 'Funcionrio(a)'), ('Fundador(a)', 'Fundador(a)'), ('Presidente', 'Presidente'), ('Protetor(a) associado', 'Protetor(a) associado'), ('Secretrio(a)', 'Secretrio(a)'), ('Suplente de secretrio', 'Suplente de secretrio'), ('Suplente de presidente', 'Suplente de presidente'), ('Suplente de vice-presidente', 'Suplente de vice-presidente'), ('Tesoreiro(a)', 'Tesoreiro(a)'), ('Veterinrio(a)', 'Veterinrio(a)'), ('Vice-presidente', 'Vice-presidente'), ('Voluntrio(a)', 'Voluntrio(a)'), ] permission_ong = models.CharField(null=True, blank=True, max_length=30, choices=PERMISSION) role_ong = models.CharField(null=True, blank=True, max_length=30, choices=ROLE) birth_date = models.DateField(null=True, blank=True) has_confirmed_email = models.BooleanField(default=0) country = models.CharField(null=True, blank=True, max_length=50) state_code = models.CharField(null=True, blank=True, max_length=3) city = models.CharField(null=True, blank=True, max_length=50) neighborhood = models.CharField(null=True, blank=True, max_length=50) rg = models.CharField(null=True, blank=True, max_length=12) cpf = models.CharField(null=True, blank=True, max_length=15) phone_number_ddd = models.CharField(null=True, max_length=3) phone_number = models.CharField(null=True, blank=True, max_length=10) address_street = models.CharField(null=True, blank=True, max_length=70) address_number = models.CharField(null=True, blank=True, max_length=6) address_complement = models.CharField(null=True, blank=True, max_length=10) postal_code = models.CharField(null=True, blank=True, max_length=10) facebook_id = models.CharField(null=True, blank=True, max_length=30) created_at = models.DateField(auto_now_add=True) updated_at = models.DateField(auto_now=True) ongs_id = models.ForeignKey(Ongs, on_delete=models.SET_NULL, null=True, blank=True) class Pet_breed(models.Model): name = models.CharField(null=True, blank=True, max_length=100) species = models.CharField(null=True, blank=True, max_length=30) def __str__(self): return self.name class Pet(models.Model): COLOR_OF_PETS = [ ('Amarelo', 'Amarelo'), ('Branco', 'Branco'), ('Cinza', 'Cinza'), ('Creme', 'Creme'), ('Laranja', 'Laranja'), ('Marrom', 'Marrom'), ('Preto', 'Preto'), ] COLOR_PATTERN_OF_PETS = [ ('Arlequim', 'Arlequim'), ('Belton', 'Belton'), ('Bicolor', 'Bicolor'), ('Fulvo','Fulvo'), ('Lobeiro', 'Ruo'), ('Merle', 'Merle'), ('Pintaigado', 'Pintaigado'), ('Ruo', 'Ruo'), ('Sal e Pimenta', 'Sal e Pimenta'), ('Tigrado', 'Tigrado'), ('Unicolor','Unicolor') ] GENDER_OF_PETS = [ ('Fmea', 'Fmea'), ('Macho', 'Macho'), ] ACTIVITY_LEVEL_PETS = [ ('Hiperativo', 'Hiperativo'), ('Ativo', 'Ativo'), ('Moderado', 'Moderado'), ('Baixo', 'Baixo'), ] SPECIAL_NEED = [ ('3 patas funcionais', '3 patas funcionais'), ('2 patas funcionais', '2 patas funcionais'), ('1 pata funcional', '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'), ('Apenas alguns dentes', 'Apenas alguns dentes'), ('Cegueira parcial', 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), ('Necessidade de remdios para sempre', 'Necessidade de remdios para sempre'), ('Necessidade de terapias para sempre', 'Necessidade de terapias'), ('Necessidade de terapias e remdios para sempre', 'Necessidade de terapias e remdios para sempre'), ('Nenhum dente', 'Nenhum dente'), ('Doena Neural','Doena Neural'), ('Rabo amputado', 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), ('Surdez total', 'Surdez total'), ] CONFORTABLE = [ ('No', 'No'), ('Sim', 'Sim'), ('No sei', 'No sei'), ] STATUS_OF_PETS = [ ('A caminho do novo lar', 'A caminho do novo lar'), ('Adoo pendente', 'Adoo pendente'), ('Adotado', 'Adotado'), ('Doente', 'Doente'), ('Esperando visita', 'Esperando visita'), ('Falecido', 'Falecido'), ('Retornando para abrigo','Retornando para abrigo'), ('Lar provisrio','Lar provisrio'), ('Lar provisrio pelo FDS','Lar provisrio pelo FDS'), ] STATUS_OF_TEETH = [ ('Perfeitos', 'Perfeitos'), ('Um pouco de trtaro', 'Um pouco de trtaro'), ('Trtaro mediano', 'Trtaro mediano'), ('Perdeu alguns dentes', 'Perdeu alguns dentes'), ('Dentes permitem apenas comida mole', 'Dentes permitem apenas comida mole'), ('Perdeu quase todos ou todos os dentes', 'Perdeu quase todos ou todos os dentes'), ] COAT_OF_PETS = [ ('Arrepiado ', 'Arrepiado'), ('Liso', 'Liso'), ('Ondulado', 'Ondulado'), ] COAT_SIZE_OF_PETS = [ ('Curto', 'Curto'), ('Mdio', 'Mdio'), ('Longo', 'Longo'), ] SPECIES_OF_PETS = [ ('Cachorro', 'Cachorro'), ('Gato', 'Gato'), ('Outros', 'Outros'), ] SIZE_OF_PETS = [ ('Mini', 'Mini'), ('Pequeno', 'Pequeno'), ('Mdio', 'Mdio'), ('Grande', 'Grande'), ('Gigante', 'Gigante'), ] AGE_CATEGORY_OF_PETS = [ ('Filhote', 'Filhote'), ('Adolescente', 'Adolescente'), ('Adulto', 'Adulto'), ('Maduro', 'Maduro'), ('Idoso', 'Idoso'), ] AGE_OF_PETS = [ ('1 ms', '1 ms'), ('2 meses', '2 meses'), ('3 meses', '3 meses'), ('4 meses', '4 meses'), ('5 meses', '5 meses'), ('6 meses', '6 meses'), ('7 meses', '7 meses'), ('8 meses', '8 meses'), ('9 meses', '9 meses'), ('10 meses', '10 meses'), ('11 meses', '11 meses'), ('1 ano', '1 ano'), ('2 anos', '2 anos'), ('3 anos', '3 anos'), ('4 anos', '4 anos'), ('5 anos', '5 anos'), ('6 anos', '6 anos'), ('7 anos', '7 anos'), ('8 anos', '8 anos'), ('9 anos', '9 anos'), ('10 anos', '10 anos'), ('11 anos', '11 anos'), ('12 anos', '12 anos'), ('13 anos', '13 anos'), ('14 anos', '14 anos'), ('15 anos', '15 anos'), ('16 anos', '16 anos'), ('17 anos', '17 anos'), ('18 anos', '18 anos'), ('19 anos', '19 anos'), ('20 anos', '20 anos'), ('21 anos', '21 anos'), ('22 anos', '22 anos'), ('23 anos', '23 anos'), ('24 anos', '24 anos'), ('25 anos', '25 anos'), ('26 anos', '26 anos'), ('27 anos', '27 anos'), ('28 anos', '28 anos'), ('29 anos', '29 anos'), ('30 anos', '30 anos'), ('No sei', 'No sei'), ] DAY_OF_PETS = [ ('No sei', 'No sei'), ('1', '1'), ('2', '2'), ('3', '3'), ('4', '4'), ('5', '5'), ('6', '6'), ('7', '7'), ('8', '8'), ('9', '9'), ('10', '10'), ('11', '11'), ('12', '12'), ('13', '13'), ('14', '14'), ('15', '15'), ('16', '16'), ('17', '17'), ('18', '18'), ('19', '19'), ('20', '20'), ('21', '21'), ('22', '22'), ('23', '23'), ('24', '24'), ('25', '25'), ('26', '26'), ('27', '27'), ('28', '28'), ('29', '29'), ('30', '30'), ('31', '31'), ] MONTH_OF_PETS = [ ('No sei', 'No sei'), ('Janeiro', 'Janeiro'), ('Fevereiro', 'Fevereiro'), ('Maro', 'Maro'), ('Abril', 'Abril'), ('Maio', 'Maio'), ('Junho', 'Junho'), ('Julho', 'Julho'), ('Agosto', 'Agosto'), ('Setembro', 'Setembro'), ('Outubro', 'Outubro'), ('Novembro', 'Novembro'), ('Dezembro', 'Dezembro'), ] AGE_OF_PETS = [ ('1 ms', '1 ms'), ('2 meses', '2 meses'), ('3 meses', '3 meses'), ('4 meses', '4 meses'), ('5 meses', '5 meses'), ('6 meses', '6 meses'), ('7 meses', '7 meses'), ('8 meses', '8 meses'), ('9 meses', '9 meses'), ('10 meses', '10 meses'), ('11 meses', '11 meses'), ('1 ano', '1 ano'), ('2 anos', '2 anos'), ('3 anos', '3 anos'), ('4 anos', '4 anos'), ('5 anos', '5 anos'), ('6 anos', '6 anos'), ('7 anos', '7 anos'), ('8 anos', '8 anos'), ('9 anos', '9 anos'), ('10 anos', '10 anos'), ('11 anos', '11 anos'), ('12 anos', '12 anos'), ('13 anos', '13 anos'), ('14 anos', '14 anos'), ('15 anos', '15 anos'), ('16 anos', '16 anos'), ('17 anos', '17 anos'), ('18 anos', '18 anos'), ('19 anos', '19 anos'), ('20 anos', '20 anos'), ('21 anos', '21 anos'), ('22 anos', '22 anos'), ('23 anos', '23 anos'), ('24 anos', '24 anos'), ('25 anos', '25 anos'), ('26 anos', '26 anos'), ('27 anos', '27 anos'), ('28 anos', '28 anos'), ('29 anos', '29 anos'), ('30 anos', '30 anos'), ('Menos de 1 ano', 'Menos de 1 ano'), ] RETURN_OF_PETS = [ (0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (8, 8), (9, 9), (10, 10), ] TYPES_STREET = [ ('Alameda', 'Alameda'), ('Avenida', 'Avenida'), ('Chcara', 'Chcara'), ('Colnia', 'Colnia'), ('Condomnio', 'Condomnio'), ('Conjunto', 'Conjunto'), ('Estao', 'Estao'), ('Estrada', 'Estrada'), ('Favela', 'Favela'), ('Fazenda', 'Fazenda'), ('Jardim', 'Jardim'), ('Ladeira', 'Ladeira'), ('Lago', 'Lago'), ('Largo', 'Largo'), ('Loteamento', 'Loteamento'), ('Passarela', 'Passarela'), ('Parque', 'Parque'), ('Praa', 'Praa'), ('Praia','Praia'), ('Rodovia', 'Rodovia'), ('Rua', 'Rua'), ('Setor', 'Setor'), ('Travessa', 'Travessa'), ('Viaduto', 'Viaduto'), ('Vila', 'Vila'), ] SPECIAL_NEED = [ ('3 patas funcionais', '3 patas funcionais'), ('2 patas funcionais', '2 patas funcionais'), ('1 pata funcional', '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'), ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial', 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), ('Necessidade de remdios para sempre', 'Necessidade de remdios para sempre'), ('Necessidade de terapias para sempre', 'Necessidade de terapias'), ('Necessidade de terapias e remdios para sempre', 'Necessidade de terapias e remdios para sempre'), ('Doena mental','Doena mental'), ('Epilepsia','Epilesia'), ('Rabo amputado', 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), ('Surdez total', 'Surdez total'), ('No sente cheiro','No sente cheiro') ] def get_years(): now = int(timezone.now().year) + 1 past = timezone.now().year - 30 a = [] for i in reversed(range(past,now)): a.append((i,i)) a = tuple(a) return a name = models.CharField("Nome", null=True, blank=True, max_length=30) pet_description = models.CharField(null=True, blank=True, max_length = 700) age = models.CharField(null=True, blank=True, max_length=40, choices=AGE_OF_PETS, default='') age_category = models.CharField(null=True, blank=True, max_length=30, choices=AGE_CATEGORY_OF_PETS, default='') species = models.CharField(null=True, blank=True, max_length=25,choices=SPECIES_OF_PETS, default='') primary_breed = models.ForeignKey(Pet_breed, on_delete=models.CASCADE, null=True, blank=True, related_name='primary_breed') secondary_breed = models.ForeignKey(Pet_breed, on_delete=models.CASCADE, null=True, blank=True, related_name='secondary_breed') color = models.CharField(null=True, blank=True, max_length=30,choices=COLOR_OF_PETS, default='') coat = models.CharField(null=True, blank=True, max_length=20,choices=COAT_OF_PETS, default='') gender = models.CharField(null=True, blank=True, max_length=10, choices=GENDER_OF_PETS, default='') birth_day = models.CharField(default=0, null=True, blank=True, max_length=30,choices=DAY_OF_PETS,) birth_month = models.CharField(default=0, null=True, blank=True, max_length=30,choices=MONTH_OF_PETS,) birth_year = models.IntegerField(default=0, null=True, blank=True, choices=get_years()) is_microchiped = models.BooleanField(default=0) activity_level = models.CharField(null=True, blank=True, max_length=40, choices=ACTIVITY_LEVEL_PETS, default='') is_basic_trainned = models.BooleanField(default=0) confortable_with_kids = models.CharField(null=True, blank=True, max_length=100, choices=CONFORTABLE, default='') confortable_with_elder = models.CharField(null=True, blank=True, max_length=100, choices=CONFORTABLE, default='') confortable_with_cats = models.CharField(null=True, blank=True, max_length=100, choices=CONFORTABLE, default='') confortable_with_dogs = models.CharField(null=True, blank=True, max_length=100, choices=CONFORTABLE, default='') confortable_with_men = models.CharField(null=True, blank=True, max_length=100, choices=CONFORTABLE, default='') confortable_with_women = models.CharField(null=True, blank=True, max_length=100, choices=CONFORTABLE, default='') arrival_date = models.CharField(null=True, blank=True, max_length=30, default='') where_was_found_name = models.CharField(null=True, blank=True, max_length=100, default='') is_neutered = models.BooleanField(default=0) was_rabbies_vaccinated_this_year = models.BooleanField(default=0) was_v_vaccinated_this_year = models.BooleanField(default=0) was_others_vaccinated_this_year = models.BooleanField(default=0) profile_picture = models.ImageField(null=True, blank=True) picture_1 = models.ImageField(null=True, blank=True) picture_2 = models.ImageField(null=True, blank=True) picture_3 = models.ImageField(null=True, blank=True) video = models.CharField(null=True, blank=True, max_length=150) qty_views = models.IntegerField(default=0) qty_favorites = models.IntegerField(default=0) qty_msg = models.IntegerField(default=0) qty_shares = models.IntegerField(default=0) ongs_id = models.ForeignKey(Ongs, on_delete=models.CASCADE, default=1) status = models.CharField(null=True, blank=True, max_length=50, choices=STATUS_OF_PETS, default='') coat_size = models.CharField(null=True, blank=True, max_length=50, choices=COAT_SIZE_OF_PETS, default='') walk_pull = models.BooleanField(default=0) walk_pull_hard = models.BooleanField(default=0) walk_dogs = models.BooleanField(default=0) walk_people = models.BooleanField(default=0) walk_fear = models.BooleanField(default=0) color_pattern = models.CharField(null=True, blank=True, max_length=30,choices=COLOR_PATTERN_OF_PETS, default='') size = models.CharField(null=True, blank=True, max_length=50,choices=SIZE_OF_PETS, default='') qty_preview_adoptions = models.IntegerField(default=0, choices=RETURN_OF_PETS) qty_adoptions_app = models.IntegerField(default=0) created_at = models.DateField(auto_now_add=True) updated_at = models.DateField(auto_now=True) teeth_status = models.CharField(null=True, blank=True, max_length=50, choices=STATUS_OF_TEETH, default='') combo_adoption_id = models.IntegerField(default=0, null=True, blank=True,) is_available_adoption = models.BooleanField(default=1) where_was_found = models.CharField(null=True, blank=True, max_length=50, choices=TYPES_STREET, default='') where_was_found_city = models.CharField(null=True, blank=True, max_length=100, default='') where_was_found_state = models.CharField(null=True, blank=True, max_length=100, default='') first_special_need = models.CharField(null=True, blank=True, max_length=100, choices=SPECIAL_NEED, default='') second_special_need = models.CharField(null=True, blank=True, max_length=100, choices=SPECIAL_NEED, default='') third_special_need = models.CharField(null=True, blank=True, max_length=100, choices=SPECIAL_NEED, default='') is_mixed_breed = models.BooleanField(default=1) is_walking_daily = models.BooleanField(default=0) is_acupuncture = models.BooleanField(default=0) is_physiotherapy = models.BooleanField(default=0) is_vermifuged = models.BooleanField(default=0) is_lice_free = models.BooleanField(default=0) is_dog_meet_necessary = models.BooleanField(default=0) walk_alone_dislike = models.BooleanField(default=0) walk_alone = models.BooleanField(default=0) walk_leash = models.BooleanField(default=0) id_at_ong = models.IntegerField(default=0, null=True, blank=True) def __str__(self): return self.name @receiver(models.signals.pre_save, sender=Pet) def delete_file_on_change_extension(sender, instance, **kwargs): if instance.pk: try: old_pic = Pet.objects.get(pk=instance.pk).profile_picture except Pet.DoesNotExist: return else: new_pic = instance.profile_picture if old_pic and old_pic.url != new_pic.url: old_pic.delete(save=False) class Favorites(models.Model): user_id = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.CASCADE) pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE) class Pet_disease_areas(models.Model): name = models.CharField(null=True, blank=True, max_length=300) def __str__(self): return self.name class Pet_disease(models.Model): AREA_OF_PETS = [ ('Cardiologia', 'Cardiologia'), ('Dermatologia', 'Dermatologia'), ('Endocrinologia', 'Endocrinologia'), ('Gastroenterologia e Hepatologia','Gastroenterologia e Hepatologia'), ('Hematologia e Imunologia', 'Hematologia e Imunologia'), ('Infecciosas', 'Infecciosas'), ('Intoxicaes e Envenemanentos', 'Intoxicaes e Envenemanentos'), ('Musculoesquelticas', 'Musculoesquelticas'), ('Nefrologia e Urologia', 'Nefrologia e Urologia'), ('Neonatologia', 'Neonatologia'), ('Neurologia', 'Neurologia'), ('Oftalmologia', 'Oftalmologia'), ('Oncologia', 'Oncologia'), ('Respiratrias', 'Respiratrias'), ('Teriogenologia','Teriogenologia'), ('Vacinao e Nutrologia', 'Vacinao e Nutrologia'), ('Outras', 'Outras'), ] name = models.CharField(null=True, blank=True, max_length=150) area = models.CharField(null=True, blank=True, max_length=100,choices=AREA_OF_PETS, default='') area_id = models.ForeignKey(Pet_disease_areas,on_delete=models.CASCADE,null=True, blank=True) def __str__(self): return self.name class Pet_health(models.Model): SPECIAL_NEED = [ ('3 patas funcionais', '3 patas funcionais'), ('2 patas funcionais', '2 patas funcionais'), ('1 pata funcional', '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'), ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial', 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), ('Necessidade de remdios para sempre', 'Necessidade de remdios para sempre'), ('Necessidade de terapias para sempre', 'Necessidade de terapias'), ('Necessidade de terapias e remdios para sempre', 'Necessidade de terapias e remdios para sempre'), ('Doena mental','Doena mental'), ('Epilepsia','Epilesia'), ('Rabo amputado', 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), ('Surdez total', 'Surdez total'), ('No sente cheiro','No sente cheiro') ] STATUS = [ ('Curado', 'Curado'), ('Em tratamento', 'Em tratamento'), ('Sem verba', 'Sem verba'), ] SPECIAL_TREATMENT = [ ('Fisioterapia', 'Fisioterapia'), ('Acunpuntura', 'Acunpuntura'), ('Caminhada diria', 'Caminhada diria'), ] TYPES = [ ('Fatal', 'Fatal'), ('Para o resto da vida', 'Para o resto da vida'), ('Temporria', 'Temporria'), ] pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE) diagnose_date = models.DateField(null=True, blank=True) #disease = models.ForeignKey(Pet_disease,on_delete=models.CASCADE) disease_status = models.CharField(null=True, blank=True, max_length=100, choices=STATUS, default='') disease_type = models.CharField(null=True, blank=True, max_length=100, choices=TYPES, default='') internal_notes = models.CharField(null=True, blank=True, max_length=300) which_special_need = models.CharField(null=True, blank=True, max_length=100, choices=SPECIAL_NEED, default='') which_special_treatment = models.CharField(null=True, blank=True, max_length=100, choices=SPECIAL_TREATMENT, default='') #disease_area = models.ForeignKey(Pet_disease_areas,on_delete=models.CASCADE, null=True, blank=True) disease_name = models.CharField(null=True, blank=True, max_length=200) created_at = models.DateField(auto_now_add=True) updated_at = models.DateField(auto_now=True) def __str__(self): return self.disease
[ "import datetime\nfrom django.db import models\nfrom django.contrib.auth.models import AbstractUser\nfrom django.utils import timezone\nfrom django.conf import settings\n# Receive the pre_delete signal and delete the file associated with the model instance.\nfrom django.db.models.signals import pre_delete\nfrom django.dispatch.dispatcher import receiver\n\n\nclass Estado(models.Model):\n nome = models.CharField(null=True, blank=True, max_length=75)\n uf = models.CharField(null=True, blank=True, max_length=5)\n\n def __str__(self):\n return self.uf\n\nclass Cidade(models.Model):\n nome = models.CharField(null=True, blank=True, max_length=120)\n estado = models.ForeignKey(Estado, on_delete=models.CASCADE)\n estado_uf = models.CharField(null=True, blank=True, max_length=5)\n\n def __str__(self):\n return self.nome\n\nclass Ongs(models.Model):\n\n ADOPTION_VALUE = [ \n ('Gratuito', 'Gratuito'),\n ('10,00', '10,00'), \n ('15,00', '15,00'), \n ('20,00', '20,00'),\n ('25,00', '25,00'), \n ('30,00', '30,00'), \n ('35,00', '35,00'), \n ('40,00', '40,00'),\n ('45,00', '45,00'), \n ('50,00', '50,00'), \n ('55,00', '55,00'), \n ('60,00', '60,00'),\n ('65,00', '65,00'), \n ('70,00', '70,00'),\n ('75,00', '75,00'), \n ('80,00', '80,00'), \n ('85,00', '85,00'), \n ('90,00', '90,00'),\n ('95,00', '95,00'), \n ('100,00', '100,00'), \n ]\n\n\n OPEN_HOURS = [ \n ('06:00', '06:00'),\n ('06:30', '06:30'), \n ('07:00', '07:00'), \n ('07:30', '07:30'),\n ('08:00', '08:00'), \n ('08:30', '08:30'), \n ('09:00', '09:00'), \n ('09:30', '09:30'),\n ('10:00', '10:00'), \n ('10:30', '10:30'), \n ('11:00', '11:00'), \n ('11:30', '11:30'),\n ('12:00', '12:00'), \n ('12:30', '12:30'),\n ]\n\n CLOSE_HOURS = [ \n ('16:00', '16:00'),\n ('16:30', '16:30'), \n ('17:00', '17:00'), \n ('17:30', '17:30'),\n ('18:00', '18:00'), \n ('18:30', '18:30'), \n ('19:00', '19:00'), \n ('19:30', '19:30'),\n ('20:00', '20:00'), \n ('20:30', '20:30'), \n ('21:00', '21:00'), \n ('21:30', '21:30'),\n ('22:00', '22:00'), \n ('22:30', '22:30'),\n ]\n\n DDD = [ \n ('11', '11'),\n ('12', '12'),\n ('13', '13'),\n ('14', '14'),\n ('15', '15'),\n ('16', '16'),\n ('17', '17'),\n ('18', '18'),\n ('19', '19'),\n ('21', '21'),\n ('22', '22'),\n ('24', '24'),\n ('27', '27'),\n ('28', '28'),\n ('31', '31'),\n ('32', '32'),\n ('33', '33'),\n ('34', '34'),\n ('35', '35'),\n ('37', '37'),\n ('38', '38'),\n ('41', '41'),\n ('42', '42'),\n ('43', '43'),\n ('44', '44'),\n ('45', '45'),\n ('46', '46'),\n ('47', '47'),\n ('48', '48'),\n ('49', '49'),\n ('51', '51'),\n ('53', '53'),\n ('54', '54'),\n ('55', '55'),\n ('61', '61'),\n ('62', '62'),\n ('63', '63'),\n ('64', '64'),\n ('65', '65'),\n ('66', '66'),\n ('67', '67'),\n ('68', '68'),\n ('69', '69'),\n ('71', '71'),\n ('73', '73'),\n ('74', '74'),\n ('75', '75'),\n ('77', '77'),\n ('79', '79'),\n ('81', '81'),\n ('82', '82'),\n ('83', '83'),\n ('84', '84'),\n ('85', '85'),\n ('86', '86'),\n ('87', '87'),\n ('88', '88'),\n ('89', '89'),\n ('91', '91'),\n ('92', '92'),\n ('93', '93'),\n ('94', '94'),\n ('95', '95'),\n ('96', '96'),\n ('97', '97'),\n ('98', '98'),\n ('99', '99'),\n ]\n\n TRANSPORTATION = [ \n ('Grtis', 'Grtis'),\n ('1,00', '1,00'), \n ('2,00', '2,00'), \n ('3,00', '3,00'),\n ('4,00', '4,00'), \n ('5,00', '5,00'), \n ('7,00', '7,00'), \n ('10,00', '10,00'),\n ('12,00', '12,00'), \n ('15,00', '15,00'), \n ('18,00', '18,00'), \n ('20,00', '20,00'),\n ('25,00', '25,00'), \n ('30,00', '30,00'),\n ('35,00', '35,00'), \n ('40,00', '40,00'), \n ('45,00', '45,00'), \n ('50,00', '50,00'),\n ('55,00', '65,00'), \n ('60,00', '60,00'), \n ]\n name = models.CharField(null=True, blank=True, max_length=40)\n rate = models.CharField(null=True, blank=True, default='Gratuito', max_length=8, choices=ADOPTION_VALUE)\n hour_open = models.CharField(blank=True, null=True, default='', max_length=5, choices=OPEN_HOURS)\n hour_close = models.CharField(blank=True, null=True, default='', max_length=5, choices=CLOSE_HOURS) \n mission_statement = models.CharField(null=True, blank=True, default='', max_length=300)\n description = models.CharField(null=True, blank=True, default='', max_length=500)\n web_site = models.CharField(null=True, blank=True, max_length=150)\n phone_number_ddd = models.CharField(null=True, blank=True, max_length=3, choices=DDD)\n phone_number = models.CharField(null=True, blank=True, max_length=12)\n email = models.CharField(null=True, blank=True, max_length=100)\n facebook = models.CharField(null=True, blank=True, max_length=100)\n instagram = models.CharField(null=True, blank=True, max_length=40)\n logo_link = models.ImageField(null=True, blank=True)\n picture_1 = models.ImageField(null=True, blank=True)\n picture_2 = models.ImageField(null=True, blank=True)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n city_id = models.ForeignKey(Cidade, on_delete=models.CASCADE, null=True, blank=True)\n state_id = models.ForeignKey(Estado, on_delete=models.CASCADE, null=True, blank=True)\n is_foster_ok = models.BooleanField(default=0)\n is_volunteer_ok = models.BooleanField(default=0)\n has_transportation = models.BooleanField(default=0)\n cnpj = models.CharField(null=True, blank=True, max_length=18)\n founded_date = models.CharField(null=True, blank=True, max_length=30, default='')\n is_approved = models.BooleanField(default=0)\n transportation_price = models.CharField(null=True, blank=True, max_length=7, choices=TRANSPORTATION)\n \n def __str__(self):\n return self.name\n\nclass User(AbstractUser):\n\n PERMISSION = [\n ('Editar tudo', 'Editar tudo'), \n ('Editar equipe e pets', 'Editar equipe e pets'),\n ('Editar pets', 'Editar pets'),\n ('Visualizar equipe e pets', 'Visualizar equipe e pets'),\n ('Visualizar pets', 'Visualizar pets'),\n ]\n\n ROLE = [\n ('Advogado(a)', 'Advogado(a)'),\n ('Auxiliar de veterinrio', 'Auxiliar de veterinrio'),\n ('Bilogo(a)', 'Bilogo(a)'), \n ('Colaborador(a)', 'Colaborador(a)'), \n ('Departamento administrativo', 'Departamento administrativo'),\n ('Departamento de atendimento', 'Departamento de atendimento'), \n ('Departamento de eventos', 'Departamento de eventos'),\n ('Departamento educativo', 'Departamento educativo'), \n ('Departamento de marketing', 'Departamento de marketing'), \n ('Departamento financeiro', 'Departamento financeiro'),\n ('Diretor(a) administrativo', 'Diretor(a) administrativo'),\n ('Diretor(a) de eventos', 'Diretor(a) de eventos'),\n ('Diretor(a) financeiro', 'Diretor(a) financeiro'),\n ('Diretor(a) geral', 'Diretor(a) geral'),\n ('Diretor(a) marketing', 'Diretor(a) marketing'), \n ('Diretor(a) tcnico', 'Diretor(a) tcnico'), \n ('Funcionrio(a)', 'Funcionrio(a)'),\n ('Fundador(a)', 'Fundador(a)'), \n ('Presidente', 'Presidente'),\n ('Protetor(a) associado', 'Protetor(a) associado'),\n ('Secretrio(a)', 'Secretrio(a)'),\n ('Suplente de secretrio', 'Suplente de secretrio'),\n ('Suplente de presidente', 'Suplente de presidente'),\n ('Suplente de vice-presidente', 'Suplente de vice-presidente'), \n ('Tesoreiro(a)', 'Tesoreiro(a)'), \n ('Veterinrio(a)', 'Veterinrio(a)'),\n ('Vice-presidente', 'Vice-presidente'),\n ('Voluntrio(a)', 'Voluntrio(a)'),\n ]\n\n permission_ong = models.CharField(null=True, blank=True, max_length=30, choices=PERMISSION)\n role_ong = models.CharField(null=True, blank=True, max_length=30, choices=ROLE)\n birth_date = models.DateField(null=True, blank=True)\n has_confirmed_email = models.BooleanField(default=0)\n country = models.CharField(null=True, blank=True, max_length=50)\n state_code = models.CharField(null=True, blank=True, max_length=3)\n city = models.CharField(null=True, blank=True, max_length=50)\n neighborhood = models.CharField(null=True, blank=True, max_length=50)\n rg = models.CharField(null=True, blank=True, max_length=12)\n cpf = models.CharField(null=True, blank=True, max_length=15)\n phone_number_ddd = models.CharField(null=True, max_length=3)\n phone_number = models.CharField(null=True, blank=True, max_length=10)\n address_street = models.CharField(null=True, blank=True, max_length=70)\n address_number = models.CharField(null=True, blank=True, max_length=6)\n address_complement = models.CharField(null=True, blank=True, max_length=10)\n postal_code = models.CharField(null=True, blank=True, max_length=10)\n facebook_id = models.CharField(null=True, blank=True, max_length=30) \n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True) \n ongs_id = models.ForeignKey(Ongs, on_delete=models.SET_NULL, null=True, blank=True)\n\nclass Pet_breed(models.Model):\n name = models.CharField(null=True, blank=True, max_length=100)\n species = models.CharField(null=True, blank=True, max_length=30)\n\n def __str__(self):\n return self.name \n\nclass Pet(models.Model):\n\n COLOR_OF_PETS = [\n ('Amarelo', 'Amarelo'), \n ('Branco', 'Branco'), \n ('Cinza', 'Cinza'), \n ('Creme', 'Creme'),\n ('Laranja', 'Laranja'),\n ('Marrom', 'Marrom'), \n ('Preto', 'Preto'), \n ]\n\n COLOR_PATTERN_OF_PETS = [\n ('Arlequim', 'Arlequim'),\n ('Belton', 'Belton'), \n ('Bicolor', 'Bicolor'), \n ('Fulvo','Fulvo'),\n ('Lobeiro', 'Ruo'), \n ('Merle', 'Merle'),\n ('Pintaigado', 'Pintaigado'), \n ('Ruo', 'Ruo'), \n ('Sal e Pimenta', 'Sal e Pimenta'), \n ('Tigrado', 'Tigrado'),\n ('Unicolor','Unicolor')\n ]\n\n GENDER_OF_PETS = [\n ('Fmea', 'Fmea'), \n ('Macho', 'Macho'), \n ]\n\n ACTIVITY_LEVEL_PETS = [\n ('Hiperativo', 'Hiperativo'), \n ('Ativo', 'Ativo'), \n ('Moderado', 'Moderado'),\n ('Baixo', 'Baixo'), \n ]\n\n SPECIAL_NEED = [\n ('3 patas funcionais', '3 patas funcionais'), \n ('2 patas funcionais', '2 patas funcionais'),\n ('1 pata funcional', '1 pata funcional'), \n ('0 patas funcionais', '0 patas funcionais'), \n ('Apenas alguns dentes', 'Apenas alguns dentes'),\n ('Cegueira parcial', 'Cegueira parcial'), \n ('Cegueira total', 'Cegueira total'),\n ('Necessidade de remdios para sempre', 'Necessidade de remdios para sempre'),\n ('Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre', 'Necessidade de terapias e remdios para sempre'),\n ('Nenhum dente', 'Nenhum dente'), \n ('Doena Neural','Doena Neural'),\n ('Rabo amputado', 'Rabo amputado'), \n ('Surdez parcial', 'Surdez parcial'), \n ('Surdez total', 'Surdez total'), \n ]\n\n CONFORTABLE = [ \n ('No', 'No'), \n ('Sim', 'Sim'),\n ('No sei', 'No sei'),\n ]\n\n STATUS_OF_PETS = [\n ('A caminho do novo lar', 'A caminho do novo lar'), \n ('Adoo pendente', 'Adoo pendente'), \n ('Adotado', 'Adotado'), \n ('Doente', 'Doente'),\n ('Esperando visita', 'Esperando visita'), \n ('Falecido', 'Falecido'),\n ('Retornando para abrigo','Retornando para abrigo'),\n ('Lar provisrio','Lar provisrio'),\n ('Lar provisrio pelo FDS','Lar provisrio pelo FDS'),\n\n ]\n\n STATUS_OF_TEETH = [\n ('Perfeitos', 'Perfeitos'), \n ('Um pouco de trtaro', 'Um pouco de trtaro'), \n ('Trtaro mediano', 'Trtaro mediano'),\n ('Perdeu alguns dentes', 'Perdeu alguns dentes'),\n ('Dentes permitem apenas comida mole', 'Dentes permitem apenas comida mole'), \n ('Perdeu quase todos ou todos os dentes', 'Perdeu quase todos ou todos os dentes'), \n ]\n\n COAT_OF_PETS = [\n ('Arrepiado ', 'Arrepiado'), \n ('Liso', 'Liso'),\n ('Ondulado', 'Ondulado'), \n ]\n\n COAT_SIZE_OF_PETS = [\n ('Curto', 'Curto'), \n ('Mdio', 'Mdio'),\n ('Longo', 'Longo'), \n ]\n\n SPECIES_OF_PETS = [\n ('Cachorro', 'Cachorro'), \n ('Gato', 'Gato'), \n ('Outros', 'Outros'), \n ]\n\n SIZE_OF_PETS = [\n ('Mini', 'Mini'), \n ('Pequeno', 'Pequeno'), \n ('Mdio', 'Mdio'), \n ('Grande', 'Grande'),\n ('Gigante', 'Gigante'), \n ]\n\n AGE_CATEGORY_OF_PETS = [\n ('Filhote', 'Filhote'), \n ('Adolescente', 'Adolescente'), \n ('Adulto', 'Adulto'), \n ('Maduro', 'Maduro'),\n ('Idoso', 'Idoso'), \n ]\n\n AGE_OF_PETS = [\n ('1 ms', '1 ms'), \n ('2 meses', '2 meses'), \n ('3 meses', '3 meses'), \n ('4 meses', '4 meses'),\n ('5 meses', '5 meses'), \n ('6 meses', '6 meses'), \n ('7 meses', '7 meses'), \n ('8 meses', '8 meses'),\n ('9 meses', '9 meses'), \n ('10 meses', '10 meses'), \n ('11 meses', '11 meses'),\n ('1 ano', '1 ano'), \n ('2 anos', '2 anos'),\n ('3 anos', '3 anos'), \n ('4 anos', '4 anos'),\n ('5 anos', '5 anos'), \n ('6 anos', '6 anos'),\n ('7 anos', '7 anos'),\n ('8 anos', '8 anos'), \n ('9 anos', '9 anos'),\n ('10 anos', '10 anos'), \n ('11 anos', '11 anos'),\n ('12 anos', '12 anos'),\n ('13 anos', '13 anos'), \n ('14 anos', '14 anos'),\n ('15 anos', '15 anos'), \n ('16 anos', '16 anos'),\n ('17 anos', '17 anos'),\n ('18 anos', '18 anos'), \n ('19 anos', '19 anos'),\n ('20 anos', '20 anos'), \n ('21 anos', '21 anos'),\n ('22 anos', '22 anos'), \n ('23 anos', '23 anos'),\n ('24 anos', '24 anos'), \n ('25 anos', '25 anos'),\n ('26 anos', '26 anos'), \n ('27 anos', '27 anos'),\n ('28 anos', '28 anos'), \n ('29 anos', '29 anos'),\n ('30 anos', '30 anos'), \n ('No sei', 'No sei'),\n ]\n\n\n DAY_OF_PETS = [ \n ('No sei', 'No sei'),\n ('1', '1'), \n ('2', '2'),\n ('3', '3'), \n ('4', '4'),\n ('5', '5'), \n ('6', '6'),\n ('7', '7'),\n ('8', '8'), \n ('9', '9'),\n ('10', '10'), \n ('11', '11'),\n ('12', '12'),\n ('13', '13'), \n ('14', '14'),\n ('15', '15'), \n ('16', '16'),\n ('17', '17'),\n ('18', '18'), \n ('19', '19'),\n ('20', '20'), \n ('21', '21'),\n ('22', '22'), \n ('23', '23'),\n ('24', '24'), \n ('25', '25'),\n ('26', '26'), \n ('27', '27'),\n ('28', '28'), \n ('29', '29'),\n ('30', '30'),\n ('31', '31'), \n ]\n\n MONTH_OF_PETS = [\n ('No sei', 'No sei'), \n ('Janeiro', 'Janeiro'), \n ('Fevereiro', 'Fevereiro'), \n ('Maro', 'Maro'),\n ('Abril', 'Abril'), \n ('Maio', 'Maio'), \n ('Junho', 'Junho'), \n ('Julho', 'Julho'),\n ('Agosto', 'Agosto'), \n ('Setembro', 'Setembro'), \n ('Outubro', 'Outubro'),\n ('Novembro', 'Novembro'), \n ('Dezembro', 'Dezembro'),\n ]\n\n AGE_OF_PETS = [\n ('1 ms', '1 ms'), \n ('2 meses', '2 meses'), \n ('3 meses', '3 meses'), \n ('4 meses', '4 meses'),\n ('5 meses', '5 meses'), \n ('6 meses', '6 meses'), \n ('7 meses', '7 meses'), \n ('8 meses', '8 meses'),\n ('9 meses', '9 meses'), \n ('10 meses', '10 meses'), \n ('11 meses', '11 meses'),\n ('1 ano', '1 ano'), \n ('2 anos', '2 anos'),\n ('3 anos', '3 anos'), \n ('4 anos', '4 anos'),\n ('5 anos', '5 anos'), \n ('6 anos', '6 anos'),\n ('7 anos', '7 anos'),\n ('8 anos', '8 anos'), \n ('9 anos', '9 anos'),\n ('10 anos', '10 anos'), \n ('11 anos', '11 anos'),\n ('12 anos', '12 anos'),\n ('13 anos', '13 anos'), \n ('14 anos', '14 anos'),\n ('15 anos', '15 anos'), \n ('16 anos', '16 anos'),\n ('17 anos', '17 anos'),\n ('18 anos', '18 anos'), \n ('19 anos', '19 anos'),\n ('20 anos', '20 anos'), \n ('21 anos', '21 anos'),\n ('22 anos', '22 anos'), \n ('23 anos', '23 anos'),\n ('24 anos', '24 anos'), \n ('25 anos', '25 anos'),\n ('26 anos', '26 anos'), \n ('27 anos', '27 anos'),\n ('28 anos', '28 anos'), \n ('29 anos', '29 anos'),\n ('30 anos', '30 anos'), \n ('Menos de 1 ano', 'Menos de 1 ano'),\n ]\n\n RETURN_OF_PETS = [ \n (0, 0),\n (1, 1), \n (2, 2),\n (3, 3), \n (4, 4),\n (5, 5), \n (6, 6),\n (7, 7),\n (8, 8), \n (9, 9),\n (10, 10), \n ]\n\n TYPES_STREET = [\n ('Alameda', 'Alameda'),\n ('Avenida', 'Avenida'),\n ('Chcara', 'Chcara'),\n ('Colnia', 'Colnia'),\n ('Condomnio', 'Condomnio'),\n ('Conjunto', 'Conjunto'),\n ('Estao', 'Estao'),\n ('Estrada', 'Estrada'),\n ('Favela', 'Favela'),\n ('Fazenda', 'Fazenda'),\n ('Jardim', 'Jardim'),\n ('Ladeira', 'Ladeira'),\n ('Lago', 'Lago'),\n ('Largo', 'Largo'),\n ('Loteamento', 'Loteamento'),\n ('Passarela', 'Passarela'),\n ('Parque', 'Parque'),\n ('Praa', 'Praa'),\n ('Praia','Praia'),\n ('Rodovia', 'Rodovia'),\n ('Rua', 'Rua'),\n ('Setor', 'Setor'),\n ('Travessa', 'Travessa'),\n ('Viaduto', 'Viaduto'),\n ('Vila', 'Vila'),\n ]\n\n SPECIAL_NEED = [\n ('3 patas funcionais', '3 patas funcionais'), \n ('2 patas funcionais', '2 patas funcionais'),\n ('1 pata funcional', '1 pata funcional'), \n ('0 patas funcionais', '0 patas funcionais'), \n ('No pode mastigar', 'No pode mastigar'),\n ('Cegueira parcial', 'Cegueira parcial'), \n ('Cegueira total', 'Cegueira total'),\n ('Necessidade de remdios para sempre', 'Necessidade de remdios para sempre'),\n ('Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre', 'Necessidade de terapias e remdios para sempre'),\n ('Doena mental','Doena mental'),\n ('Epilepsia','Epilesia'),\n ('Rabo amputado', 'Rabo amputado'), \n ('Surdez parcial', 'Surdez parcial'), \n ('Surdez total', 'Surdez total'), \n ('No sente cheiro','No sente cheiro') \n ]\n\n def get_years():\n now = int(timezone.now().year) + 1\n past = timezone.now().year - 30\n \n a = []\n for i in reversed(range(past,now)):\n a.append((i,i))\n a = tuple(a) \n\n return a\n\n name = models.CharField(\"Nome\", null=True, blank=True, max_length=30)\n pet_description = models.CharField(null=True, blank=True, max_length = 700)\n age = models.CharField(null=True, blank=True, max_length=40, choices=AGE_OF_PETS, default='')\n age_category = models.CharField(null=True, blank=True, max_length=30, choices=AGE_CATEGORY_OF_PETS, default='')\n species = models.CharField(null=True, blank=True, max_length=25,choices=SPECIES_OF_PETS, default='')\n primary_breed = models.ForeignKey(Pet_breed, on_delete=models.CASCADE, null=True, blank=True, related_name='primary_breed')\n secondary_breed = models.ForeignKey(Pet_breed, on_delete=models.CASCADE, null=True, blank=True, related_name='secondary_breed')\n color = models.CharField(null=True, blank=True, max_length=30,choices=COLOR_OF_PETS, default='')\n coat = models.CharField(null=True, blank=True, max_length=20,choices=COAT_OF_PETS, default='')\n gender = models.CharField(null=True, blank=True, max_length=10, choices=GENDER_OF_PETS, default='')\n birth_day = models.CharField(default=0, null=True, blank=True, max_length=30,choices=DAY_OF_PETS,)\n birth_month = models.CharField(default=0, null=True, blank=True, max_length=30,choices=MONTH_OF_PETS,)\n birth_year = models.IntegerField(default=0, null=True, blank=True, choices=get_years())\n is_microchiped = models.BooleanField(default=0)\n activity_level = models.CharField(null=True, blank=True, max_length=40, choices=ACTIVITY_LEVEL_PETS, default='')\n is_basic_trainned = models.BooleanField(default=0)\n confortable_with_kids = models.CharField(null=True, blank=True, max_length=100, choices=CONFORTABLE, default='')\n confortable_with_elder = models.CharField(null=True, blank=True, max_length=100, choices=CONFORTABLE, default='')\n confortable_with_cats = models.CharField(null=True, blank=True, max_length=100, choices=CONFORTABLE, default='')\n confortable_with_dogs = models.CharField(null=True, blank=True, max_length=100, choices=CONFORTABLE, default='')\n confortable_with_men = models.CharField(null=True, blank=True, max_length=100, choices=CONFORTABLE, default='')\n confortable_with_women = models.CharField(null=True, blank=True, max_length=100, choices=CONFORTABLE, default='')\n arrival_date = models.CharField(null=True, blank=True, max_length=30, default='')\n where_was_found_name = models.CharField(null=True, blank=True, max_length=100, default='')\n is_neutered = models.BooleanField(default=0)\n was_rabbies_vaccinated_this_year = models.BooleanField(default=0)\n was_v_vaccinated_this_year = models.BooleanField(default=0)\n was_others_vaccinated_this_year = models.BooleanField(default=0)\n profile_picture = models.ImageField(null=True, blank=True)\n picture_1 = models.ImageField(null=True, blank=True)\n picture_2 = models.ImageField(null=True, blank=True)\n picture_3 = models.ImageField(null=True, blank=True)\n video = models.CharField(null=True, blank=True, max_length=150)\n qty_views = models.IntegerField(default=0)\n qty_favorites = models.IntegerField(default=0)\n qty_msg = models.IntegerField(default=0)\n qty_shares = models.IntegerField(default=0)\n ongs_id = models.ForeignKey(Ongs, on_delete=models.CASCADE, default=1)\n status = models.CharField(null=True, blank=True, max_length=50, choices=STATUS_OF_PETS, default='')\n coat_size = models.CharField(null=True, blank=True, max_length=50, choices=COAT_SIZE_OF_PETS, default='')\n walk_pull = models.BooleanField(default=0)\n walk_pull_hard = models.BooleanField(default=0)\n walk_dogs = models.BooleanField(default=0)\n walk_people = models.BooleanField(default=0)\n walk_fear = models.BooleanField(default=0)\n color_pattern = models.CharField(null=True, blank=True, max_length=30,choices=COLOR_PATTERN_OF_PETS, default='')\n size = models.CharField(null=True, blank=True, max_length=50,choices=SIZE_OF_PETS, default='')\n qty_preview_adoptions = models.IntegerField(default=0, choices=RETURN_OF_PETS)\n qty_adoptions_app = models.IntegerField(default=0)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n teeth_status = models.CharField(null=True, blank=True, max_length=50, choices=STATUS_OF_TEETH, default='')\n combo_adoption_id = models.IntegerField(default=0, null=True, blank=True,)\n is_available_adoption = models.BooleanField(default=1)\n where_was_found = models.CharField(null=True, blank=True, max_length=50, choices=TYPES_STREET, default='')\n where_was_found_city = models.CharField(null=True, blank=True, max_length=100, default='')\n where_was_found_state = models.CharField(null=True, blank=True, max_length=100, default='')\n first_special_need = models.CharField(null=True, blank=True, max_length=100, choices=SPECIAL_NEED, default='')\n second_special_need = models.CharField(null=True, blank=True, max_length=100, choices=SPECIAL_NEED, default='')\n third_special_need = models.CharField(null=True, blank=True, max_length=100, choices=SPECIAL_NEED, default='')\n is_mixed_breed = models.BooleanField(default=1)\n is_walking_daily = models.BooleanField(default=0)\n is_acupuncture = models.BooleanField(default=0)\n is_physiotherapy = models.BooleanField(default=0)\n is_vermifuged = models.BooleanField(default=0)\n is_lice_free = models.BooleanField(default=0)\n is_dog_meet_necessary = models.BooleanField(default=0)\n walk_alone_dislike = models.BooleanField(default=0)\n walk_alone = models.BooleanField(default=0)\n walk_leash = models.BooleanField(default=0)\n id_at_ong = models.IntegerField(default=0, null=True, blank=True)\n\n def __str__(self):\n return self.name\n\n@receiver(models.signals.pre_save, sender=Pet)\ndef delete_file_on_change_extension(sender, instance, **kwargs):\n if instance.pk:\n try:\n old_pic = Pet.objects.get(pk=instance.pk).profile_picture\n except Pet.DoesNotExist:\n return\n else:\n new_pic = instance.profile_picture\n if old_pic and old_pic.url != new_pic.url:\n old_pic.delete(save=False)\n\nclass Favorites(models.Model):\n user_id = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.CASCADE)\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n\nclass Pet_disease_areas(models.Model):\n name = models.CharField(null=True, blank=True, max_length=300)\n\n def __str__(self):\n return self.name\n\nclass Pet_disease(models.Model):\n\n AREA_OF_PETS = [\n ('Cardiologia', 'Cardiologia'), \n ('Dermatologia', 'Dermatologia'),\n ('Endocrinologia', 'Endocrinologia'), \n ('Gastroenterologia e Hepatologia','Gastroenterologia e Hepatologia'),\n ('Hematologia e Imunologia', 'Hematologia e Imunologia'), \n ('Infecciosas', 'Infecciosas'), \n ('Intoxicaes e Envenemanentos', 'Intoxicaes e Envenemanentos'), \n ('Musculoesquelticas', 'Musculoesquelticas'),\n ('Nefrologia e Urologia', 'Nefrologia e Urologia'), \n ('Neonatologia', 'Neonatologia'), \n ('Neurologia', 'Neurologia'), \n ('Oftalmologia', 'Oftalmologia'), \n ('Oncologia', 'Oncologia'), \n ('Respiratrias', 'Respiratrias'),\n ('Teriogenologia','Teriogenologia'),\n ('Vacinao e Nutrologia', 'Vacinao e Nutrologia'), \n ('Outras', 'Outras'), \n ]\n\n name = models.CharField(null=True, blank=True, max_length=150)\n area = models.CharField(null=True, blank=True, max_length=100,choices=AREA_OF_PETS, default='')\n area_id = models.ForeignKey(Pet_disease_areas,on_delete=models.CASCADE,null=True, blank=True)\n\n def __str__(self):\n return self.name\n\nclass Pet_health(models.Model):\n\n SPECIAL_NEED = [\n ('3 patas funcionais', '3 patas funcionais'), \n ('2 patas funcionais', '2 patas funcionais'),\n ('1 pata funcional', '1 pata funcional'), \n ('0 patas funcionais', '0 patas funcionais'), \n ('No pode mastigar', 'No pode mastigar'),\n ('Cegueira parcial', 'Cegueira parcial'), \n ('Cegueira total', 'Cegueira total'),\n ('Necessidade de remdios para sempre', 'Necessidade de remdios para sempre'),\n ('Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre', 'Necessidade de terapias e remdios para sempre'),\n ('Doena mental','Doena mental'),\n ('Epilepsia','Epilesia'),\n ('Rabo amputado', 'Rabo amputado'), \n ('Surdez parcial', 'Surdez parcial'), \n ('Surdez total', 'Surdez total'), \n ('No sente cheiro','No sente cheiro') \n ]\n\n STATUS = [\n ('Curado', 'Curado'), \n ('Em tratamento', 'Em tratamento'),\n ('Sem verba', 'Sem verba'), \n ]\n\n SPECIAL_TREATMENT = [\n ('Fisioterapia', 'Fisioterapia'), \n ('Acunpuntura', 'Acunpuntura'),\n ('Caminhada diria', 'Caminhada diria'), \n ]\n\n TYPES = [\n ('Fatal', 'Fatal'), \n ('Para o resto da vida', 'Para o resto da vida'), \n ('Temporria', 'Temporria'),\n ]\n\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n diagnose_date = models.DateField(null=True, blank=True)\n #disease = models.ForeignKey(Pet_disease,on_delete=models.CASCADE)\n disease_status = models.CharField(null=True, blank=True, max_length=100, choices=STATUS, default='')\n disease_type = models.CharField(null=True, blank=True, max_length=100, choices=TYPES, default='')\n internal_notes = models.CharField(null=True, blank=True, max_length=300) \n which_special_need = models.CharField(null=True, blank=True, max_length=100, choices=SPECIAL_NEED, default='')\n which_special_treatment = models.CharField(null=True, blank=True, max_length=100, choices=SPECIAL_TREATMENT, default='')\n #disease_area = models.ForeignKey(Pet_disease_areas,on_delete=models.CASCADE, null=True, blank=True)\n disease_name = models.CharField(null=True, blank=True, max_length=200)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n\n def __str__(self):\n return self.disease\n", "import datetime\nfrom django.db import models\nfrom django.contrib.auth.models import AbstractUser\nfrom django.utils import timezone\nfrom django.conf import settings\nfrom django.db.models.signals import pre_delete\nfrom django.dispatch.dispatcher import receiver\n\n\nclass Estado(models.Model):\n nome = models.CharField(null=True, blank=True, max_length=75)\n uf = models.CharField(null=True, blank=True, max_length=5)\n\n def __str__(self):\n return self.uf\n\n\nclass Cidade(models.Model):\n nome = models.CharField(null=True, blank=True, max_length=120)\n estado = models.ForeignKey(Estado, on_delete=models.CASCADE)\n estado_uf = models.CharField(null=True, blank=True, max_length=5)\n\n def __str__(self):\n return self.nome\n\n\nclass Ongs(models.Model):\n ADOPTION_VALUE = [('Gratuito', 'Gratuito'), ('10,00', '10,00'), (\n '15,00', '15,00'), ('20,00', '20,00'), ('25,00', '25,00'), ('30,00',\n '30,00'), ('35,00', '35,00'), ('40,00', '40,00'), ('45,00', '45,00'\n ), ('50,00', '50,00'), ('55,00', '55,00'), ('60,00', '60,00'), (\n '65,00', '65,00'), ('70,00', '70,00'), ('75,00', '75,00'), ('80,00',\n '80,00'), ('85,00', '85,00'), ('90,00', '90,00'), ('95,00', '95,00'\n ), ('100,00', '100,00')]\n OPEN_HOURS = [('06:00', '06:00'), ('06:30', '06:30'), ('07:00', '07:00'\n ), ('07:30', '07:30'), ('08:00', '08:00'), ('08:30', '08:30'), (\n '09:00', '09:00'), ('09:30', '09:30'), ('10:00', '10:00'), ('10:30',\n '10:30'), ('11:00', '11:00'), ('11:30', '11:30'), ('12:00', '12:00'\n ), ('12:30', '12:30')]\n CLOSE_HOURS = [('16:00', '16:00'), ('16:30', '16:30'), ('17:00',\n '17:00'), ('17:30', '17:30'), ('18:00', '18:00'), ('18:30', '18:30'\n ), ('19:00', '19:00'), ('19:30', '19:30'), ('20:00', '20:00'), (\n '20:30', '20:30'), ('21:00', '21:00'), ('21:30', '21:30'), ('22:00',\n '22:00'), ('22:30', '22:30')]\n DDD = [('11', '11'), ('12', '12'), ('13', '13'), ('14', '14'), ('15',\n '15'), ('16', '16'), ('17', '17'), ('18', '18'), ('19', '19'), (\n '21', '21'), ('22', '22'), ('24', '24'), ('27', '27'), ('28', '28'),\n ('31', '31'), ('32', '32'), ('33', '33'), ('34', '34'), ('35', '35'\n ), ('37', '37'), ('38', '38'), ('41', '41'), ('42', '42'), ('43',\n '43'), ('44', '44'), ('45', '45'), ('46', '46'), ('47', '47'), (\n '48', '48'), ('49', '49'), ('51', '51'), ('53', '53'), ('54', '54'),\n ('55', '55'), ('61', '61'), ('62', '62'), ('63', '63'), ('64', '64'\n ), ('65', '65'), ('66', '66'), ('67', '67'), ('68', '68'), ('69',\n '69'), ('71', '71'), ('73', '73'), ('74', '74'), ('75', '75'), (\n '77', '77'), ('79', '79'), ('81', '81'), ('82', '82'), ('83', '83'),\n ('84', '84'), ('85', '85'), ('86', '86'), ('87', '87'), ('88', '88'\n ), ('89', '89'), ('91', '91'), ('92', '92'), ('93', '93'), ('94',\n '94'), ('95', '95'), ('96', '96'), ('97', '97'), ('98', '98'), (\n '99', '99')]\n TRANSPORTATION = [('Grtis', 'Grtis'), ('1,00', '1,00'), ('2,00', '2,00'\n ), ('3,00', '3,00'), ('4,00', '4,00'), ('5,00', '5,00'), ('7,00',\n '7,00'), ('10,00', '10,00'), ('12,00', '12,00'), ('15,00', '15,00'),\n ('18,00', '18,00'), ('20,00', '20,00'), ('25,00', '25,00'), (\n '30,00', '30,00'), ('35,00', '35,00'), ('40,00', '40,00'), ('45,00',\n '45,00'), ('50,00', '50,00'), ('55,00', '65,00'), ('60,00', '60,00')]\n name = models.CharField(null=True, blank=True, max_length=40)\n rate = models.CharField(null=True, blank=True, default='Gratuito',\n max_length=8, choices=ADOPTION_VALUE)\n hour_open = models.CharField(blank=True, null=True, default='',\n max_length=5, choices=OPEN_HOURS)\n hour_close = models.CharField(blank=True, null=True, default='',\n max_length=5, choices=CLOSE_HOURS)\n mission_statement = models.CharField(null=True, blank=True, default='',\n max_length=300)\n description = models.CharField(null=True, blank=True, default='',\n max_length=500)\n web_site = models.CharField(null=True, blank=True, max_length=150)\n phone_number_ddd = models.CharField(null=True, blank=True, max_length=3,\n choices=DDD)\n phone_number = models.CharField(null=True, blank=True, max_length=12)\n email = models.CharField(null=True, blank=True, max_length=100)\n facebook = models.CharField(null=True, blank=True, max_length=100)\n instagram = models.CharField(null=True, blank=True, max_length=40)\n logo_link = models.ImageField(null=True, blank=True)\n picture_1 = models.ImageField(null=True, blank=True)\n picture_2 = models.ImageField(null=True, blank=True)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n city_id = models.ForeignKey(Cidade, on_delete=models.CASCADE, null=True,\n blank=True)\n state_id = models.ForeignKey(Estado, on_delete=models.CASCADE, null=\n True, blank=True)\n is_foster_ok = models.BooleanField(default=0)\n is_volunteer_ok = models.BooleanField(default=0)\n has_transportation = models.BooleanField(default=0)\n cnpj = models.CharField(null=True, blank=True, max_length=18)\n founded_date = models.CharField(null=True, blank=True, max_length=30,\n default='')\n is_approved = models.BooleanField(default=0)\n transportation_price = models.CharField(null=True, blank=True,\n max_length=7, choices=TRANSPORTATION)\n\n def __str__(self):\n return self.name\n\n\nclass User(AbstractUser):\n PERMISSION = [('Editar tudo', 'Editar tudo'), ('Editar equipe e pets',\n 'Editar equipe e pets'), ('Editar pets', 'Editar pets'), (\n 'Visualizar equipe e pets', 'Visualizar equipe e pets'), (\n 'Visualizar pets', 'Visualizar pets')]\n ROLE = [('Advogado(a)', 'Advogado(a)'), ('Auxiliar de veterinrio',\n 'Auxiliar de veterinrio'), ('Bilogo(a)', 'Bilogo(a)'), (\n 'Colaborador(a)', 'Colaborador(a)'), ('Departamento administrativo',\n 'Departamento administrativo'), ('Departamento de atendimento',\n 'Departamento de atendimento'), ('Departamento de eventos',\n 'Departamento de eventos'), ('Departamento educativo',\n 'Departamento educativo'), ('Departamento de marketing',\n 'Departamento de marketing'), ('Departamento financeiro',\n 'Departamento financeiro'), ('Diretor(a) administrativo',\n 'Diretor(a) administrativo'), ('Diretor(a) de eventos',\n 'Diretor(a) de eventos'), ('Diretor(a) financeiro',\n 'Diretor(a) financeiro'), ('Diretor(a) geral', 'Diretor(a) geral'),\n ('Diretor(a) marketing', 'Diretor(a) marketing'), (\n 'Diretor(a) tcnico', 'Diretor(a) tcnico'), ('Funcionrio(a)',\n 'Funcionrio(a)'), ('Fundador(a)', 'Fundador(a)'), ('Presidente',\n 'Presidente'), ('Protetor(a) associado', 'Protetor(a) associado'),\n ('Secretrio(a)', 'Secretrio(a)'), ('Suplente de secretrio',\n 'Suplente de secretrio'), ('Suplente de presidente',\n 'Suplente de presidente'), ('Suplente de vice-presidente',\n 'Suplente de vice-presidente'), ('Tesoreiro(a)', 'Tesoreiro(a)'), (\n 'Veterinrio(a)', 'Veterinrio(a)'), ('Vice-presidente',\n 'Vice-presidente'), ('Voluntrio(a)', 'Voluntrio(a)')]\n permission_ong = models.CharField(null=True, blank=True, max_length=30,\n choices=PERMISSION)\n role_ong = models.CharField(null=True, blank=True, max_length=30,\n choices=ROLE)\n birth_date = models.DateField(null=True, blank=True)\n has_confirmed_email = models.BooleanField(default=0)\n country = models.CharField(null=True, blank=True, max_length=50)\n state_code = models.CharField(null=True, blank=True, max_length=3)\n city = models.CharField(null=True, blank=True, max_length=50)\n neighborhood = models.CharField(null=True, blank=True, max_length=50)\n rg = models.CharField(null=True, blank=True, max_length=12)\n cpf = models.CharField(null=True, blank=True, max_length=15)\n phone_number_ddd = models.CharField(null=True, max_length=3)\n phone_number = models.CharField(null=True, blank=True, max_length=10)\n address_street = models.CharField(null=True, blank=True, max_length=70)\n address_number = models.CharField(null=True, blank=True, max_length=6)\n address_complement = models.CharField(null=True, blank=True, max_length=10)\n postal_code = models.CharField(null=True, blank=True, max_length=10)\n facebook_id = models.CharField(null=True, blank=True, max_length=30)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n ongs_id = models.ForeignKey(Ongs, on_delete=models.SET_NULL, null=True,\n blank=True)\n\n\nclass Pet_breed(models.Model):\n name = models.CharField(null=True, blank=True, max_length=100)\n species = models.CharField(null=True, blank=True, max_length=30)\n\n def __str__(self):\n return self.name\n\n\nclass Pet(models.Model):\n COLOR_OF_PETS = [('Amarelo', 'Amarelo'), ('Branco', 'Branco'), ('Cinza',\n 'Cinza'), ('Creme', 'Creme'), ('Laranja', 'Laranja'), ('Marrom',\n 'Marrom'), ('Preto', 'Preto')]\n COLOR_PATTERN_OF_PETS = [('Arlequim', 'Arlequim'), ('Belton', 'Belton'),\n ('Bicolor', 'Bicolor'), ('Fulvo', 'Fulvo'), ('Lobeiro', 'Ruo'), (\n 'Merle', 'Merle'), ('Pintaigado', 'Pintaigado'), ('Ruo', 'Ruo'), (\n 'Sal e Pimenta', 'Sal e Pimenta'), ('Tigrado', 'Tigrado'), (\n 'Unicolor', 'Unicolor')]\n GENDER_OF_PETS = [('Fmea', 'Fmea'), ('Macho', 'Macho')]\n ACTIVITY_LEVEL_PETS = [('Hiperativo', 'Hiperativo'), ('Ativo', 'Ativo'),\n ('Moderado', 'Moderado'), ('Baixo', 'Baixo')]\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('Apenas alguns dentes', 'Apenas alguns dentes'), (\n 'Cegueira parcial', 'Cegueira parcial'), ('Cegueira total',\n 'Cegueira total'), ('Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Nenhum dente',\n 'Nenhum dente'), ('Doena Neural', 'Doena Neural'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total')]\n CONFORTABLE = [('No', 'No'), ('Sim', 'Sim'), ('No sei', 'No sei')]\n STATUS_OF_PETS = [('A caminho do novo lar', 'A caminho do novo lar'), (\n 'Adoo pendente', 'Adoo pendente'), ('Adotado', 'Adotado'), (\n 'Doente', 'Doente'), ('Esperando visita', 'Esperando visita'), (\n 'Falecido', 'Falecido'), ('Retornando para abrigo',\n 'Retornando para abrigo'), ('Lar provisrio', 'Lar provisrio'), (\n 'Lar provisrio pelo FDS', 'Lar provisrio pelo FDS')]\n STATUS_OF_TEETH = [('Perfeitos', 'Perfeitos'), ('Um pouco de trtaro',\n 'Um pouco de trtaro'), ('Trtaro mediano', 'Trtaro mediano'), (\n 'Perdeu alguns dentes', 'Perdeu alguns dentes'), (\n 'Dentes permitem apenas comida mole',\n 'Dentes permitem apenas comida mole'), (\n 'Perdeu quase todos ou todos os dentes',\n 'Perdeu quase todos ou todos os dentes')]\n COAT_OF_PETS = [('Arrepiado ', 'Arrepiado'), ('Liso', 'Liso'), (\n 'Ondulado', 'Ondulado')]\n COAT_SIZE_OF_PETS = [('Curto', 'Curto'), ('Mdio', 'Mdio'), ('Longo',\n 'Longo')]\n SPECIES_OF_PETS = [('Cachorro', 'Cachorro'), ('Gato', 'Gato'), (\n 'Outros', 'Outros')]\n SIZE_OF_PETS = [('Mini', 'Mini'), ('Pequeno', 'Pequeno'), ('Mdio',\n 'Mdio'), ('Grande', 'Grande'), ('Gigante', 'Gigante')]\n AGE_CATEGORY_OF_PETS = [('Filhote', 'Filhote'), ('Adolescente',\n 'Adolescente'), ('Adulto', 'Adulto'), ('Maduro', 'Maduro'), (\n 'Idoso', 'Idoso')]\n AGE_OF_PETS = [('1 ms', '1 ms'), ('2 meses', '2 meses'), ('3 meses',\n '3 meses'), ('4 meses', '4 meses'), ('5 meses', '5 meses'), (\n '6 meses', '6 meses'), ('7 meses', '7 meses'), ('8 meses',\n '8 meses'), ('9 meses', '9 meses'), ('10 meses', '10 meses'), (\n '11 meses', '11 meses'), ('1 ano', '1 ano'), ('2 anos', '2 anos'),\n ('3 anos', '3 anos'), ('4 anos', '4 anos'), ('5 anos', '5 anos'), (\n '6 anos', '6 anos'), ('7 anos', '7 anos'), ('8 anos', '8 anos'), (\n '9 anos', '9 anos'), ('10 anos', '10 anos'), ('11 anos', '11 anos'),\n ('12 anos', '12 anos'), ('13 anos', '13 anos'), ('14 anos',\n '14 anos'), ('15 anos', '15 anos'), ('16 anos', '16 anos'), (\n '17 anos', '17 anos'), ('18 anos', '18 anos'), ('19 anos',\n '19 anos'), ('20 anos', '20 anos'), ('21 anos', '21 anos'), (\n '22 anos', '22 anos'), ('23 anos', '23 anos'), ('24 anos',\n '24 anos'), ('25 anos', '25 anos'), ('26 anos', '26 anos'), (\n '27 anos', '27 anos'), ('28 anos', '28 anos'), ('29 anos',\n '29 anos'), ('30 anos', '30 anos'), ('No sei', 'No sei')]\n DAY_OF_PETS = [('No sei', 'No sei'), ('1', '1'), ('2', '2'), ('3', '3'),\n ('4', '4'), ('5', '5'), ('6', '6'), ('7', '7'), ('8', '8'), ('9',\n '9'), ('10', '10'), ('11', '11'), ('12', '12'), ('13', '13'), ('14',\n '14'), ('15', '15'), ('16', '16'), ('17', '17'), ('18', '18'), (\n '19', '19'), ('20', '20'), ('21', '21'), ('22', '22'), ('23', '23'),\n ('24', '24'), ('25', '25'), ('26', '26'), ('27', '27'), ('28', '28'\n ), ('29', '29'), ('30', '30'), ('31', '31')]\n MONTH_OF_PETS = [('No sei', 'No sei'), ('Janeiro', 'Janeiro'), (\n 'Fevereiro', 'Fevereiro'), ('Maro', 'Maro'), ('Abril', 'Abril'), (\n 'Maio', 'Maio'), ('Junho', 'Junho'), ('Julho', 'Julho'), ('Agosto',\n 'Agosto'), ('Setembro', 'Setembro'), ('Outubro', 'Outubro'), (\n 'Novembro', 'Novembro'), ('Dezembro', 'Dezembro')]\n AGE_OF_PETS = [('1 ms', '1 ms'), ('2 meses', '2 meses'), ('3 meses',\n '3 meses'), ('4 meses', '4 meses'), ('5 meses', '5 meses'), (\n '6 meses', '6 meses'), ('7 meses', '7 meses'), ('8 meses',\n '8 meses'), ('9 meses', '9 meses'), ('10 meses', '10 meses'), (\n '11 meses', '11 meses'), ('1 ano', '1 ano'), ('2 anos', '2 anos'),\n ('3 anos', '3 anos'), ('4 anos', '4 anos'), ('5 anos', '5 anos'), (\n '6 anos', '6 anos'), ('7 anos', '7 anos'), ('8 anos', '8 anos'), (\n '9 anos', '9 anos'), ('10 anos', '10 anos'), ('11 anos', '11 anos'),\n ('12 anos', '12 anos'), ('13 anos', '13 anos'), ('14 anos',\n '14 anos'), ('15 anos', '15 anos'), ('16 anos', '16 anos'), (\n '17 anos', '17 anos'), ('18 anos', '18 anos'), ('19 anos',\n '19 anos'), ('20 anos', '20 anos'), ('21 anos', '21 anos'), (\n '22 anos', '22 anos'), ('23 anos', '23 anos'), ('24 anos',\n '24 anos'), ('25 anos', '25 anos'), ('26 anos', '26 anos'), (\n '27 anos', '27 anos'), ('28 anos', '28 anos'), ('29 anos',\n '29 anos'), ('30 anos', '30 anos'), ('Menos de 1 ano',\n 'Menos de 1 ano')]\n RETURN_OF_PETS = [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6\n ), (7, 7), (8, 8), (9, 9), (10, 10)]\n TYPES_STREET = [('Alameda', 'Alameda'), ('Avenida', 'Avenida'), (\n 'Chcara', 'Chcara'), ('Colnia', 'Colnia'), ('Condomnio',\n 'Condomnio'), ('Conjunto', 'Conjunto'), ('Estao', 'Estao'), (\n 'Estrada', 'Estrada'), ('Favela', 'Favela'), ('Fazenda', 'Fazenda'),\n ('Jardim', 'Jardim'), ('Ladeira', 'Ladeira'), ('Lago', 'Lago'), (\n 'Largo', 'Largo'), ('Loteamento', 'Loteamento'), ('Passarela',\n 'Passarela'), ('Parque', 'Parque'), ('Praa', 'Praa'), ('Praia',\n 'Praia'), ('Rodovia', 'Rodovia'), ('Rua', 'Rua'), ('Setor', 'Setor'\n ), ('Travessa', 'Travessa'), ('Viaduto', 'Viaduto'), ('Vila', 'Vila')]\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial',\n 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), (\n 'Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Doena mental',\n 'Doena mental'), ('Epilepsia', 'Epilesia'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total'), ('No sente cheiro', 'No sente cheiro')\n ]\n\n def get_years():\n now = int(timezone.now().year) + 1\n past = timezone.now().year - 30\n a = []\n for i in reversed(range(past, now)):\n a.append((i, i))\n a = tuple(a)\n return a\n name = models.CharField('Nome', null=True, blank=True, max_length=30)\n pet_description = models.CharField(null=True, blank=True, max_length=700)\n age = models.CharField(null=True, blank=True, max_length=40, choices=\n AGE_OF_PETS, default='')\n age_category = models.CharField(null=True, blank=True, max_length=30,\n choices=AGE_CATEGORY_OF_PETS, default='')\n species = models.CharField(null=True, blank=True, max_length=25,\n choices=SPECIES_OF_PETS, default='')\n primary_breed = models.ForeignKey(Pet_breed, on_delete=models.CASCADE,\n null=True, blank=True, related_name='primary_breed')\n secondary_breed = models.ForeignKey(Pet_breed, on_delete=models.CASCADE,\n null=True, blank=True, related_name='secondary_breed')\n color = models.CharField(null=True, blank=True, max_length=30, choices=\n COLOR_OF_PETS, default='')\n coat = models.CharField(null=True, blank=True, max_length=20, choices=\n COAT_OF_PETS, default='')\n gender = models.CharField(null=True, blank=True, max_length=10, choices\n =GENDER_OF_PETS, default='')\n birth_day = models.CharField(default=0, null=True, blank=True,\n max_length=30, choices=DAY_OF_PETS)\n birth_month = models.CharField(default=0, null=True, blank=True,\n max_length=30, choices=MONTH_OF_PETS)\n birth_year = models.IntegerField(default=0, null=True, blank=True,\n choices=get_years())\n is_microchiped = models.BooleanField(default=0)\n activity_level = models.CharField(null=True, blank=True, max_length=40,\n choices=ACTIVITY_LEVEL_PETS, default='')\n is_basic_trainned = models.BooleanField(default=0)\n confortable_with_kids = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_elder = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_cats = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_dogs = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_men = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_women = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n arrival_date = models.CharField(null=True, blank=True, max_length=30,\n default='')\n where_was_found_name = models.CharField(null=True, blank=True,\n max_length=100, default='')\n is_neutered = models.BooleanField(default=0)\n was_rabbies_vaccinated_this_year = models.BooleanField(default=0)\n was_v_vaccinated_this_year = models.BooleanField(default=0)\n was_others_vaccinated_this_year = models.BooleanField(default=0)\n profile_picture = models.ImageField(null=True, blank=True)\n picture_1 = models.ImageField(null=True, blank=True)\n picture_2 = models.ImageField(null=True, blank=True)\n picture_3 = models.ImageField(null=True, blank=True)\n video = models.CharField(null=True, blank=True, max_length=150)\n qty_views = models.IntegerField(default=0)\n qty_favorites = models.IntegerField(default=0)\n qty_msg = models.IntegerField(default=0)\n qty_shares = models.IntegerField(default=0)\n ongs_id = models.ForeignKey(Ongs, on_delete=models.CASCADE, default=1)\n status = models.CharField(null=True, blank=True, max_length=50, choices\n =STATUS_OF_PETS, default='')\n coat_size = models.CharField(null=True, blank=True, max_length=50,\n choices=COAT_SIZE_OF_PETS, default='')\n walk_pull = models.BooleanField(default=0)\n walk_pull_hard = models.BooleanField(default=0)\n walk_dogs = models.BooleanField(default=0)\n walk_people = models.BooleanField(default=0)\n walk_fear = models.BooleanField(default=0)\n color_pattern = models.CharField(null=True, blank=True, max_length=30,\n choices=COLOR_PATTERN_OF_PETS, default='')\n size = models.CharField(null=True, blank=True, max_length=50, choices=\n SIZE_OF_PETS, default='')\n qty_preview_adoptions = models.IntegerField(default=0, choices=\n RETURN_OF_PETS)\n qty_adoptions_app = models.IntegerField(default=0)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n teeth_status = models.CharField(null=True, blank=True, max_length=50,\n choices=STATUS_OF_TEETH, default='')\n combo_adoption_id = models.IntegerField(default=0, null=True, blank=True)\n is_available_adoption = models.BooleanField(default=1)\n where_was_found = models.CharField(null=True, blank=True, max_length=50,\n choices=TYPES_STREET, default='')\n where_was_found_city = models.CharField(null=True, blank=True,\n max_length=100, default='')\n where_was_found_state = models.CharField(null=True, blank=True,\n max_length=100, default='')\n first_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n second_special_need = models.CharField(null=True, blank=True,\n max_length=100, choices=SPECIAL_NEED, default='')\n third_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n is_mixed_breed = models.BooleanField(default=1)\n is_walking_daily = models.BooleanField(default=0)\n is_acupuncture = models.BooleanField(default=0)\n is_physiotherapy = models.BooleanField(default=0)\n is_vermifuged = models.BooleanField(default=0)\n is_lice_free = models.BooleanField(default=0)\n is_dog_meet_necessary = models.BooleanField(default=0)\n walk_alone_dislike = models.BooleanField(default=0)\n walk_alone = models.BooleanField(default=0)\n walk_leash = models.BooleanField(default=0)\n id_at_ong = models.IntegerField(default=0, null=True, blank=True)\n\n def __str__(self):\n return self.name\n\n\n@receiver(models.signals.pre_save, sender=Pet)\ndef delete_file_on_change_extension(sender, instance, **kwargs):\n if instance.pk:\n try:\n old_pic = Pet.objects.get(pk=instance.pk).profile_picture\n except Pet.DoesNotExist:\n return\n else:\n new_pic = instance.profile_picture\n if old_pic and old_pic.url != new_pic.url:\n old_pic.delete(save=False)\n\n\nclass Favorites(models.Model):\n user_id = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.\n CASCADE)\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n\n\nclass Pet_disease_areas(models.Model):\n name = models.CharField(null=True, blank=True, max_length=300)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_disease(models.Model):\n AREA_OF_PETS = [('Cardiologia', 'Cardiologia'), ('Dermatologia',\n 'Dermatologia'), ('Endocrinologia', 'Endocrinologia'), (\n 'Gastroenterologia e Hepatologia',\n 'Gastroenterologia e Hepatologia'), ('Hematologia e Imunologia',\n 'Hematologia e Imunologia'), ('Infecciosas', 'Infecciosas'), (\n 'Intoxicaes e Envenemanentos', 'Intoxicaes e Envenemanentos'), (\n 'Musculoesquelticas', 'Musculoesquelticas'), (\n 'Nefrologia e Urologia', 'Nefrologia e Urologia'), ('Neonatologia',\n 'Neonatologia'), ('Neurologia', 'Neurologia'), ('Oftalmologia',\n 'Oftalmologia'), ('Oncologia', 'Oncologia'), ('Respiratrias',\n 'Respiratrias'), ('Teriogenologia', 'Teriogenologia'), (\n 'Vacinao e Nutrologia', 'Vacinao e Nutrologia'), ('Outras', 'Outras')]\n name = models.CharField(null=True, blank=True, max_length=150)\n area = models.CharField(null=True, blank=True, max_length=100, choices=\n AREA_OF_PETS, default='')\n area_id = models.ForeignKey(Pet_disease_areas, on_delete=models.CASCADE,\n null=True, blank=True)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_health(models.Model):\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial',\n 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), (\n 'Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Doena mental',\n 'Doena mental'), ('Epilepsia', 'Epilesia'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total'), ('No sente cheiro', 'No sente cheiro')\n ]\n STATUS = [('Curado', 'Curado'), ('Em tratamento', 'Em tratamento'), (\n 'Sem verba', 'Sem verba')]\n SPECIAL_TREATMENT = [('Fisioterapia', 'Fisioterapia'), ('Acunpuntura',\n 'Acunpuntura'), ('Caminhada diria', 'Caminhada diria')]\n TYPES = [('Fatal', 'Fatal'), ('Para o resto da vida',\n 'Para o resto da vida'), ('Temporria', 'Temporria')]\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n diagnose_date = models.DateField(null=True, blank=True)\n disease_status = models.CharField(null=True, blank=True, max_length=100,\n choices=STATUS, default='')\n disease_type = models.CharField(null=True, blank=True, max_length=100,\n choices=TYPES, default='')\n internal_notes = models.CharField(null=True, blank=True, max_length=300)\n which_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n which_special_treatment = models.CharField(null=True, blank=True,\n max_length=100, choices=SPECIAL_TREATMENT, default='')\n disease_name = models.CharField(null=True, blank=True, max_length=200)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n\n def __str__(self):\n return self.disease\n", "<import token>\n\n\nclass Estado(models.Model):\n nome = models.CharField(null=True, blank=True, max_length=75)\n uf = models.CharField(null=True, blank=True, max_length=5)\n\n def __str__(self):\n return self.uf\n\n\nclass Cidade(models.Model):\n nome = models.CharField(null=True, blank=True, max_length=120)\n estado = models.ForeignKey(Estado, on_delete=models.CASCADE)\n estado_uf = models.CharField(null=True, blank=True, max_length=5)\n\n def __str__(self):\n return self.nome\n\n\nclass Ongs(models.Model):\n ADOPTION_VALUE = [('Gratuito', 'Gratuito'), ('10,00', '10,00'), (\n '15,00', '15,00'), ('20,00', '20,00'), ('25,00', '25,00'), ('30,00',\n '30,00'), ('35,00', '35,00'), ('40,00', '40,00'), ('45,00', '45,00'\n ), ('50,00', '50,00'), ('55,00', '55,00'), ('60,00', '60,00'), (\n '65,00', '65,00'), ('70,00', '70,00'), ('75,00', '75,00'), ('80,00',\n '80,00'), ('85,00', '85,00'), ('90,00', '90,00'), ('95,00', '95,00'\n ), ('100,00', '100,00')]\n OPEN_HOURS = [('06:00', '06:00'), ('06:30', '06:30'), ('07:00', '07:00'\n ), ('07:30', '07:30'), ('08:00', '08:00'), ('08:30', '08:30'), (\n '09:00', '09:00'), ('09:30', '09:30'), ('10:00', '10:00'), ('10:30',\n '10:30'), ('11:00', '11:00'), ('11:30', '11:30'), ('12:00', '12:00'\n ), ('12:30', '12:30')]\n CLOSE_HOURS = [('16:00', '16:00'), ('16:30', '16:30'), ('17:00',\n '17:00'), ('17:30', '17:30'), ('18:00', '18:00'), ('18:30', '18:30'\n ), ('19:00', '19:00'), ('19:30', '19:30'), ('20:00', '20:00'), (\n '20:30', '20:30'), ('21:00', '21:00'), ('21:30', '21:30'), ('22:00',\n '22:00'), ('22:30', '22:30')]\n DDD = [('11', '11'), ('12', '12'), ('13', '13'), ('14', '14'), ('15',\n '15'), ('16', '16'), ('17', '17'), ('18', '18'), ('19', '19'), (\n '21', '21'), ('22', '22'), ('24', '24'), ('27', '27'), ('28', '28'),\n ('31', '31'), ('32', '32'), ('33', '33'), ('34', '34'), ('35', '35'\n ), ('37', '37'), ('38', '38'), ('41', '41'), ('42', '42'), ('43',\n '43'), ('44', '44'), ('45', '45'), ('46', '46'), ('47', '47'), (\n '48', '48'), ('49', '49'), ('51', '51'), ('53', '53'), ('54', '54'),\n ('55', '55'), ('61', '61'), ('62', '62'), ('63', '63'), ('64', '64'\n ), ('65', '65'), ('66', '66'), ('67', '67'), ('68', '68'), ('69',\n '69'), ('71', '71'), ('73', '73'), ('74', '74'), ('75', '75'), (\n '77', '77'), ('79', '79'), ('81', '81'), ('82', '82'), ('83', '83'),\n ('84', '84'), ('85', '85'), ('86', '86'), ('87', '87'), ('88', '88'\n ), ('89', '89'), ('91', '91'), ('92', '92'), ('93', '93'), ('94',\n '94'), ('95', '95'), ('96', '96'), ('97', '97'), ('98', '98'), (\n '99', '99')]\n TRANSPORTATION = [('Grtis', 'Grtis'), ('1,00', '1,00'), ('2,00', '2,00'\n ), ('3,00', '3,00'), ('4,00', '4,00'), ('5,00', '5,00'), ('7,00',\n '7,00'), ('10,00', '10,00'), ('12,00', '12,00'), ('15,00', '15,00'),\n ('18,00', '18,00'), ('20,00', '20,00'), ('25,00', '25,00'), (\n '30,00', '30,00'), ('35,00', '35,00'), ('40,00', '40,00'), ('45,00',\n '45,00'), ('50,00', '50,00'), ('55,00', '65,00'), ('60,00', '60,00')]\n name = models.CharField(null=True, blank=True, max_length=40)\n rate = models.CharField(null=True, blank=True, default='Gratuito',\n max_length=8, choices=ADOPTION_VALUE)\n hour_open = models.CharField(blank=True, null=True, default='',\n max_length=5, choices=OPEN_HOURS)\n hour_close = models.CharField(blank=True, null=True, default='',\n max_length=5, choices=CLOSE_HOURS)\n mission_statement = models.CharField(null=True, blank=True, default='',\n max_length=300)\n description = models.CharField(null=True, blank=True, default='',\n max_length=500)\n web_site = models.CharField(null=True, blank=True, max_length=150)\n phone_number_ddd = models.CharField(null=True, blank=True, max_length=3,\n choices=DDD)\n phone_number = models.CharField(null=True, blank=True, max_length=12)\n email = models.CharField(null=True, blank=True, max_length=100)\n facebook = models.CharField(null=True, blank=True, max_length=100)\n instagram = models.CharField(null=True, blank=True, max_length=40)\n logo_link = models.ImageField(null=True, blank=True)\n picture_1 = models.ImageField(null=True, blank=True)\n picture_2 = models.ImageField(null=True, blank=True)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n city_id = models.ForeignKey(Cidade, on_delete=models.CASCADE, null=True,\n blank=True)\n state_id = models.ForeignKey(Estado, on_delete=models.CASCADE, null=\n True, blank=True)\n is_foster_ok = models.BooleanField(default=0)\n is_volunteer_ok = models.BooleanField(default=0)\n has_transportation = models.BooleanField(default=0)\n cnpj = models.CharField(null=True, blank=True, max_length=18)\n founded_date = models.CharField(null=True, blank=True, max_length=30,\n default='')\n is_approved = models.BooleanField(default=0)\n transportation_price = models.CharField(null=True, blank=True,\n max_length=7, choices=TRANSPORTATION)\n\n def __str__(self):\n return self.name\n\n\nclass User(AbstractUser):\n PERMISSION = [('Editar tudo', 'Editar tudo'), ('Editar equipe e pets',\n 'Editar equipe e pets'), ('Editar pets', 'Editar pets'), (\n 'Visualizar equipe e pets', 'Visualizar equipe e pets'), (\n 'Visualizar pets', 'Visualizar pets')]\n ROLE = [('Advogado(a)', 'Advogado(a)'), ('Auxiliar de veterinrio',\n 'Auxiliar de veterinrio'), ('Bilogo(a)', 'Bilogo(a)'), (\n 'Colaborador(a)', 'Colaborador(a)'), ('Departamento administrativo',\n 'Departamento administrativo'), ('Departamento de atendimento',\n 'Departamento de atendimento'), ('Departamento de eventos',\n 'Departamento de eventos'), ('Departamento educativo',\n 'Departamento educativo'), ('Departamento de marketing',\n 'Departamento de marketing'), ('Departamento financeiro',\n 'Departamento financeiro'), ('Diretor(a) administrativo',\n 'Diretor(a) administrativo'), ('Diretor(a) de eventos',\n 'Diretor(a) de eventos'), ('Diretor(a) financeiro',\n 'Diretor(a) financeiro'), ('Diretor(a) geral', 'Diretor(a) geral'),\n ('Diretor(a) marketing', 'Diretor(a) marketing'), (\n 'Diretor(a) tcnico', 'Diretor(a) tcnico'), ('Funcionrio(a)',\n 'Funcionrio(a)'), ('Fundador(a)', 'Fundador(a)'), ('Presidente',\n 'Presidente'), ('Protetor(a) associado', 'Protetor(a) associado'),\n ('Secretrio(a)', 'Secretrio(a)'), ('Suplente de secretrio',\n 'Suplente de secretrio'), ('Suplente de presidente',\n 'Suplente de presidente'), ('Suplente de vice-presidente',\n 'Suplente de vice-presidente'), ('Tesoreiro(a)', 'Tesoreiro(a)'), (\n 'Veterinrio(a)', 'Veterinrio(a)'), ('Vice-presidente',\n 'Vice-presidente'), ('Voluntrio(a)', 'Voluntrio(a)')]\n permission_ong = models.CharField(null=True, blank=True, max_length=30,\n choices=PERMISSION)\n role_ong = models.CharField(null=True, blank=True, max_length=30,\n choices=ROLE)\n birth_date = models.DateField(null=True, blank=True)\n has_confirmed_email = models.BooleanField(default=0)\n country = models.CharField(null=True, blank=True, max_length=50)\n state_code = models.CharField(null=True, blank=True, max_length=3)\n city = models.CharField(null=True, blank=True, max_length=50)\n neighborhood = models.CharField(null=True, blank=True, max_length=50)\n rg = models.CharField(null=True, blank=True, max_length=12)\n cpf = models.CharField(null=True, blank=True, max_length=15)\n phone_number_ddd = models.CharField(null=True, max_length=3)\n phone_number = models.CharField(null=True, blank=True, max_length=10)\n address_street = models.CharField(null=True, blank=True, max_length=70)\n address_number = models.CharField(null=True, blank=True, max_length=6)\n address_complement = models.CharField(null=True, blank=True, max_length=10)\n postal_code = models.CharField(null=True, blank=True, max_length=10)\n facebook_id = models.CharField(null=True, blank=True, max_length=30)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n ongs_id = models.ForeignKey(Ongs, on_delete=models.SET_NULL, null=True,\n blank=True)\n\n\nclass Pet_breed(models.Model):\n name = models.CharField(null=True, blank=True, max_length=100)\n species = models.CharField(null=True, blank=True, max_length=30)\n\n def __str__(self):\n return self.name\n\n\nclass Pet(models.Model):\n COLOR_OF_PETS = [('Amarelo', 'Amarelo'), ('Branco', 'Branco'), ('Cinza',\n 'Cinza'), ('Creme', 'Creme'), ('Laranja', 'Laranja'), ('Marrom',\n 'Marrom'), ('Preto', 'Preto')]\n COLOR_PATTERN_OF_PETS = [('Arlequim', 'Arlequim'), ('Belton', 'Belton'),\n ('Bicolor', 'Bicolor'), ('Fulvo', 'Fulvo'), ('Lobeiro', 'Ruo'), (\n 'Merle', 'Merle'), ('Pintaigado', 'Pintaigado'), ('Ruo', 'Ruo'), (\n 'Sal e Pimenta', 'Sal e Pimenta'), ('Tigrado', 'Tigrado'), (\n 'Unicolor', 'Unicolor')]\n GENDER_OF_PETS = [('Fmea', 'Fmea'), ('Macho', 'Macho')]\n ACTIVITY_LEVEL_PETS = [('Hiperativo', 'Hiperativo'), ('Ativo', 'Ativo'),\n ('Moderado', 'Moderado'), ('Baixo', 'Baixo')]\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('Apenas alguns dentes', 'Apenas alguns dentes'), (\n 'Cegueira parcial', 'Cegueira parcial'), ('Cegueira total',\n 'Cegueira total'), ('Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Nenhum dente',\n 'Nenhum dente'), ('Doena Neural', 'Doena Neural'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total')]\n CONFORTABLE = [('No', 'No'), ('Sim', 'Sim'), ('No sei', 'No sei')]\n STATUS_OF_PETS = [('A caminho do novo lar', 'A caminho do novo lar'), (\n 'Adoo pendente', 'Adoo pendente'), ('Adotado', 'Adotado'), (\n 'Doente', 'Doente'), ('Esperando visita', 'Esperando visita'), (\n 'Falecido', 'Falecido'), ('Retornando para abrigo',\n 'Retornando para abrigo'), ('Lar provisrio', 'Lar provisrio'), (\n 'Lar provisrio pelo FDS', 'Lar provisrio pelo FDS')]\n STATUS_OF_TEETH = [('Perfeitos', 'Perfeitos'), ('Um pouco de trtaro',\n 'Um pouco de trtaro'), ('Trtaro mediano', 'Trtaro mediano'), (\n 'Perdeu alguns dentes', 'Perdeu alguns dentes'), (\n 'Dentes permitem apenas comida mole',\n 'Dentes permitem apenas comida mole'), (\n 'Perdeu quase todos ou todos os dentes',\n 'Perdeu quase todos ou todos os dentes')]\n COAT_OF_PETS = [('Arrepiado ', 'Arrepiado'), ('Liso', 'Liso'), (\n 'Ondulado', 'Ondulado')]\n COAT_SIZE_OF_PETS = [('Curto', 'Curto'), ('Mdio', 'Mdio'), ('Longo',\n 'Longo')]\n SPECIES_OF_PETS = [('Cachorro', 'Cachorro'), ('Gato', 'Gato'), (\n 'Outros', 'Outros')]\n SIZE_OF_PETS = [('Mini', 'Mini'), ('Pequeno', 'Pequeno'), ('Mdio',\n 'Mdio'), ('Grande', 'Grande'), ('Gigante', 'Gigante')]\n AGE_CATEGORY_OF_PETS = [('Filhote', 'Filhote'), ('Adolescente',\n 'Adolescente'), ('Adulto', 'Adulto'), ('Maduro', 'Maduro'), (\n 'Idoso', 'Idoso')]\n AGE_OF_PETS = [('1 ms', '1 ms'), ('2 meses', '2 meses'), ('3 meses',\n '3 meses'), ('4 meses', '4 meses'), ('5 meses', '5 meses'), (\n '6 meses', '6 meses'), ('7 meses', '7 meses'), ('8 meses',\n '8 meses'), ('9 meses', '9 meses'), ('10 meses', '10 meses'), (\n '11 meses', '11 meses'), ('1 ano', '1 ano'), ('2 anos', '2 anos'),\n ('3 anos', '3 anos'), ('4 anos', '4 anos'), ('5 anos', '5 anos'), (\n '6 anos', '6 anos'), ('7 anos', '7 anos'), ('8 anos', '8 anos'), (\n '9 anos', '9 anos'), ('10 anos', '10 anos'), ('11 anos', '11 anos'),\n ('12 anos', '12 anos'), ('13 anos', '13 anos'), ('14 anos',\n '14 anos'), ('15 anos', '15 anos'), ('16 anos', '16 anos'), (\n '17 anos', '17 anos'), ('18 anos', '18 anos'), ('19 anos',\n '19 anos'), ('20 anos', '20 anos'), ('21 anos', '21 anos'), (\n '22 anos', '22 anos'), ('23 anos', '23 anos'), ('24 anos',\n '24 anos'), ('25 anos', '25 anos'), ('26 anos', '26 anos'), (\n '27 anos', '27 anos'), ('28 anos', '28 anos'), ('29 anos',\n '29 anos'), ('30 anos', '30 anos'), ('No sei', 'No sei')]\n DAY_OF_PETS = [('No sei', 'No sei'), ('1', '1'), ('2', '2'), ('3', '3'),\n ('4', '4'), ('5', '5'), ('6', '6'), ('7', '7'), ('8', '8'), ('9',\n '9'), ('10', '10'), ('11', '11'), ('12', '12'), ('13', '13'), ('14',\n '14'), ('15', '15'), ('16', '16'), ('17', '17'), ('18', '18'), (\n '19', '19'), ('20', '20'), ('21', '21'), ('22', '22'), ('23', '23'),\n ('24', '24'), ('25', '25'), ('26', '26'), ('27', '27'), ('28', '28'\n ), ('29', '29'), ('30', '30'), ('31', '31')]\n MONTH_OF_PETS = [('No sei', 'No sei'), ('Janeiro', 'Janeiro'), (\n 'Fevereiro', 'Fevereiro'), ('Maro', 'Maro'), ('Abril', 'Abril'), (\n 'Maio', 'Maio'), ('Junho', 'Junho'), ('Julho', 'Julho'), ('Agosto',\n 'Agosto'), ('Setembro', 'Setembro'), ('Outubro', 'Outubro'), (\n 'Novembro', 'Novembro'), ('Dezembro', 'Dezembro')]\n AGE_OF_PETS = [('1 ms', '1 ms'), ('2 meses', '2 meses'), ('3 meses',\n '3 meses'), ('4 meses', '4 meses'), ('5 meses', '5 meses'), (\n '6 meses', '6 meses'), ('7 meses', '7 meses'), ('8 meses',\n '8 meses'), ('9 meses', '9 meses'), ('10 meses', '10 meses'), (\n '11 meses', '11 meses'), ('1 ano', '1 ano'), ('2 anos', '2 anos'),\n ('3 anos', '3 anos'), ('4 anos', '4 anos'), ('5 anos', '5 anos'), (\n '6 anos', '6 anos'), ('7 anos', '7 anos'), ('8 anos', '8 anos'), (\n '9 anos', '9 anos'), ('10 anos', '10 anos'), ('11 anos', '11 anos'),\n ('12 anos', '12 anos'), ('13 anos', '13 anos'), ('14 anos',\n '14 anos'), ('15 anos', '15 anos'), ('16 anos', '16 anos'), (\n '17 anos', '17 anos'), ('18 anos', '18 anos'), ('19 anos',\n '19 anos'), ('20 anos', '20 anos'), ('21 anos', '21 anos'), (\n '22 anos', '22 anos'), ('23 anos', '23 anos'), ('24 anos',\n '24 anos'), ('25 anos', '25 anos'), ('26 anos', '26 anos'), (\n '27 anos', '27 anos'), ('28 anos', '28 anos'), ('29 anos',\n '29 anos'), ('30 anos', '30 anos'), ('Menos de 1 ano',\n 'Menos de 1 ano')]\n RETURN_OF_PETS = [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6\n ), (7, 7), (8, 8), (9, 9), (10, 10)]\n TYPES_STREET = [('Alameda', 'Alameda'), ('Avenida', 'Avenida'), (\n 'Chcara', 'Chcara'), ('Colnia', 'Colnia'), ('Condomnio',\n 'Condomnio'), ('Conjunto', 'Conjunto'), ('Estao', 'Estao'), (\n 'Estrada', 'Estrada'), ('Favela', 'Favela'), ('Fazenda', 'Fazenda'),\n ('Jardim', 'Jardim'), ('Ladeira', 'Ladeira'), ('Lago', 'Lago'), (\n 'Largo', 'Largo'), ('Loteamento', 'Loteamento'), ('Passarela',\n 'Passarela'), ('Parque', 'Parque'), ('Praa', 'Praa'), ('Praia',\n 'Praia'), ('Rodovia', 'Rodovia'), ('Rua', 'Rua'), ('Setor', 'Setor'\n ), ('Travessa', 'Travessa'), ('Viaduto', 'Viaduto'), ('Vila', 'Vila')]\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial',\n 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), (\n 'Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Doena mental',\n 'Doena mental'), ('Epilepsia', 'Epilesia'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total'), ('No sente cheiro', 'No sente cheiro')\n ]\n\n def get_years():\n now = int(timezone.now().year) + 1\n past = timezone.now().year - 30\n a = []\n for i in reversed(range(past, now)):\n a.append((i, i))\n a = tuple(a)\n return a\n name = models.CharField('Nome', null=True, blank=True, max_length=30)\n pet_description = models.CharField(null=True, blank=True, max_length=700)\n age = models.CharField(null=True, blank=True, max_length=40, choices=\n AGE_OF_PETS, default='')\n age_category = models.CharField(null=True, blank=True, max_length=30,\n choices=AGE_CATEGORY_OF_PETS, default='')\n species = models.CharField(null=True, blank=True, max_length=25,\n choices=SPECIES_OF_PETS, default='')\n primary_breed = models.ForeignKey(Pet_breed, on_delete=models.CASCADE,\n null=True, blank=True, related_name='primary_breed')\n secondary_breed = models.ForeignKey(Pet_breed, on_delete=models.CASCADE,\n null=True, blank=True, related_name='secondary_breed')\n color = models.CharField(null=True, blank=True, max_length=30, choices=\n COLOR_OF_PETS, default='')\n coat = models.CharField(null=True, blank=True, max_length=20, choices=\n COAT_OF_PETS, default='')\n gender = models.CharField(null=True, blank=True, max_length=10, choices\n =GENDER_OF_PETS, default='')\n birth_day = models.CharField(default=0, null=True, blank=True,\n max_length=30, choices=DAY_OF_PETS)\n birth_month = models.CharField(default=0, null=True, blank=True,\n max_length=30, choices=MONTH_OF_PETS)\n birth_year = models.IntegerField(default=0, null=True, blank=True,\n choices=get_years())\n is_microchiped = models.BooleanField(default=0)\n activity_level = models.CharField(null=True, blank=True, max_length=40,\n choices=ACTIVITY_LEVEL_PETS, default='')\n is_basic_trainned = models.BooleanField(default=0)\n confortable_with_kids = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_elder = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_cats = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_dogs = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_men = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_women = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n arrival_date = models.CharField(null=True, blank=True, max_length=30,\n default='')\n where_was_found_name = models.CharField(null=True, blank=True,\n max_length=100, default='')\n is_neutered = models.BooleanField(default=0)\n was_rabbies_vaccinated_this_year = models.BooleanField(default=0)\n was_v_vaccinated_this_year = models.BooleanField(default=0)\n was_others_vaccinated_this_year = models.BooleanField(default=0)\n profile_picture = models.ImageField(null=True, blank=True)\n picture_1 = models.ImageField(null=True, blank=True)\n picture_2 = models.ImageField(null=True, blank=True)\n picture_3 = models.ImageField(null=True, blank=True)\n video = models.CharField(null=True, blank=True, max_length=150)\n qty_views = models.IntegerField(default=0)\n qty_favorites = models.IntegerField(default=0)\n qty_msg = models.IntegerField(default=0)\n qty_shares = models.IntegerField(default=0)\n ongs_id = models.ForeignKey(Ongs, on_delete=models.CASCADE, default=1)\n status = models.CharField(null=True, blank=True, max_length=50, choices\n =STATUS_OF_PETS, default='')\n coat_size = models.CharField(null=True, blank=True, max_length=50,\n choices=COAT_SIZE_OF_PETS, default='')\n walk_pull = models.BooleanField(default=0)\n walk_pull_hard = models.BooleanField(default=0)\n walk_dogs = models.BooleanField(default=0)\n walk_people = models.BooleanField(default=0)\n walk_fear = models.BooleanField(default=0)\n color_pattern = models.CharField(null=True, blank=True, max_length=30,\n choices=COLOR_PATTERN_OF_PETS, default='')\n size = models.CharField(null=True, blank=True, max_length=50, choices=\n SIZE_OF_PETS, default='')\n qty_preview_adoptions = models.IntegerField(default=0, choices=\n RETURN_OF_PETS)\n qty_adoptions_app = models.IntegerField(default=0)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n teeth_status = models.CharField(null=True, blank=True, max_length=50,\n choices=STATUS_OF_TEETH, default='')\n combo_adoption_id = models.IntegerField(default=0, null=True, blank=True)\n is_available_adoption = models.BooleanField(default=1)\n where_was_found = models.CharField(null=True, blank=True, max_length=50,\n choices=TYPES_STREET, default='')\n where_was_found_city = models.CharField(null=True, blank=True,\n max_length=100, default='')\n where_was_found_state = models.CharField(null=True, blank=True,\n max_length=100, default='')\n first_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n second_special_need = models.CharField(null=True, blank=True,\n max_length=100, choices=SPECIAL_NEED, default='')\n third_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n is_mixed_breed = models.BooleanField(default=1)\n is_walking_daily = models.BooleanField(default=0)\n is_acupuncture = models.BooleanField(default=0)\n is_physiotherapy = models.BooleanField(default=0)\n is_vermifuged = models.BooleanField(default=0)\n is_lice_free = models.BooleanField(default=0)\n is_dog_meet_necessary = models.BooleanField(default=0)\n walk_alone_dislike = models.BooleanField(default=0)\n walk_alone = models.BooleanField(default=0)\n walk_leash = models.BooleanField(default=0)\n id_at_ong = models.IntegerField(default=0, null=True, blank=True)\n\n def __str__(self):\n return self.name\n\n\n@receiver(models.signals.pre_save, sender=Pet)\ndef delete_file_on_change_extension(sender, instance, **kwargs):\n if instance.pk:\n try:\n old_pic = Pet.objects.get(pk=instance.pk).profile_picture\n except Pet.DoesNotExist:\n return\n else:\n new_pic = instance.profile_picture\n if old_pic and old_pic.url != new_pic.url:\n old_pic.delete(save=False)\n\n\nclass Favorites(models.Model):\n user_id = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.\n CASCADE)\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n\n\nclass Pet_disease_areas(models.Model):\n name = models.CharField(null=True, blank=True, max_length=300)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_disease(models.Model):\n AREA_OF_PETS = [('Cardiologia', 'Cardiologia'), ('Dermatologia',\n 'Dermatologia'), ('Endocrinologia', 'Endocrinologia'), (\n 'Gastroenterologia e Hepatologia',\n 'Gastroenterologia e Hepatologia'), ('Hematologia e Imunologia',\n 'Hematologia e Imunologia'), ('Infecciosas', 'Infecciosas'), (\n 'Intoxicaes e Envenemanentos', 'Intoxicaes e Envenemanentos'), (\n 'Musculoesquelticas', 'Musculoesquelticas'), (\n 'Nefrologia e Urologia', 'Nefrologia e Urologia'), ('Neonatologia',\n 'Neonatologia'), ('Neurologia', 'Neurologia'), ('Oftalmologia',\n 'Oftalmologia'), ('Oncologia', 'Oncologia'), ('Respiratrias',\n 'Respiratrias'), ('Teriogenologia', 'Teriogenologia'), (\n 'Vacinao e Nutrologia', 'Vacinao e Nutrologia'), ('Outras', 'Outras')]\n name = models.CharField(null=True, blank=True, max_length=150)\n area = models.CharField(null=True, blank=True, max_length=100, choices=\n AREA_OF_PETS, default='')\n area_id = models.ForeignKey(Pet_disease_areas, on_delete=models.CASCADE,\n null=True, blank=True)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_health(models.Model):\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial',\n 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), (\n 'Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Doena mental',\n 'Doena mental'), ('Epilepsia', 'Epilesia'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total'), ('No sente cheiro', 'No sente cheiro')\n ]\n STATUS = [('Curado', 'Curado'), ('Em tratamento', 'Em tratamento'), (\n 'Sem verba', 'Sem verba')]\n SPECIAL_TREATMENT = [('Fisioterapia', 'Fisioterapia'), ('Acunpuntura',\n 'Acunpuntura'), ('Caminhada diria', 'Caminhada diria')]\n TYPES = [('Fatal', 'Fatal'), ('Para o resto da vida',\n 'Para o resto da vida'), ('Temporria', 'Temporria')]\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n diagnose_date = models.DateField(null=True, blank=True)\n disease_status = models.CharField(null=True, blank=True, max_length=100,\n choices=STATUS, default='')\n disease_type = models.CharField(null=True, blank=True, max_length=100,\n choices=TYPES, default='')\n internal_notes = models.CharField(null=True, blank=True, max_length=300)\n which_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n which_special_treatment = models.CharField(null=True, blank=True,\n max_length=100, choices=SPECIAL_TREATMENT, default='')\n disease_name = models.CharField(null=True, blank=True, max_length=200)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n\n def __str__(self):\n return self.disease\n", "<import token>\n\n\nclass Estado(models.Model):\n nome = models.CharField(null=True, blank=True, max_length=75)\n uf = models.CharField(null=True, blank=True, max_length=5)\n\n def __str__(self):\n return self.uf\n\n\nclass Cidade(models.Model):\n nome = models.CharField(null=True, blank=True, max_length=120)\n estado = models.ForeignKey(Estado, on_delete=models.CASCADE)\n estado_uf = models.CharField(null=True, blank=True, max_length=5)\n\n def __str__(self):\n return self.nome\n\n\nclass Ongs(models.Model):\n ADOPTION_VALUE = [('Gratuito', 'Gratuito'), ('10,00', '10,00'), (\n '15,00', '15,00'), ('20,00', '20,00'), ('25,00', '25,00'), ('30,00',\n '30,00'), ('35,00', '35,00'), ('40,00', '40,00'), ('45,00', '45,00'\n ), ('50,00', '50,00'), ('55,00', '55,00'), ('60,00', '60,00'), (\n '65,00', '65,00'), ('70,00', '70,00'), ('75,00', '75,00'), ('80,00',\n '80,00'), ('85,00', '85,00'), ('90,00', '90,00'), ('95,00', '95,00'\n ), ('100,00', '100,00')]\n OPEN_HOURS = [('06:00', '06:00'), ('06:30', '06:30'), ('07:00', '07:00'\n ), ('07:30', '07:30'), ('08:00', '08:00'), ('08:30', '08:30'), (\n '09:00', '09:00'), ('09:30', '09:30'), ('10:00', '10:00'), ('10:30',\n '10:30'), ('11:00', '11:00'), ('11:30', '11:30'), ('12:00', '12:00'\n ), ('12:30', '12:30')]\n CLOSE_HOURS = [('16:00', '16:00'), ('16:30', '16:30'), ('17:00',\n '17:00'), ('17:30', '17:30'), ('18:00', '18:00'), ('18:30', '18:30'\n ), ('19:00', '19:00'), ('19:30', '19:30'), ('20:00', '20:00'), (\n '20:30', '20:30'), ('21:00', '21:00'), ('21:30', '21:30'), ('22:00',\n '22:00'), ('22:30', '22:30')]\n DDD = [('11', '11'), ('12', '12'), ('13', '13'), ('14', '14'), ('15',\n '15'), ('16', '16'), ('17', '17'), ('18', '18'), ('19', '19'), (\n '21', '21'), ('22', '22'), ('24', '24'), ('27', '27'), ('28', '28'),\n ('31', '31'), ('32', '32'), ('33', '33'), ('34', '34'), ('35', '35'\n ), ('37', '37'), ('38', '38'), ('41', '41'), ('42', '42'), ('43',\n '43'), ('44', '44'), ('45', '45'), ('46', '46'), ('47', '47'), (\n '48', '48'), ('49', '49'), ('51', '51'), ('53', '53'), ('54', '54'),\n ('55', '55'), ('61', '61'), ('62', '62'), ('63', '63'), ('64', '64'\n ), ('65', '65'), ('66', '66'), ('67', '67'), ('68', '68'), ('69',\n '69'), ('71', '71'), ('73', '73'), ('74', '74'), ('75', '75'), (\n '77', '77'), ('79', '79'), ('81', '81'), ('82', '82'), ('83', '83'),\n ('84', '84'), ('85', '85'), ('86', '86'), ('87', '87'), ('88', '88'\n ), ('89', '89'), ('91', '91'), ('92', '92'), ('93', '93'), ('94',\n '94'), ('95', '95'), ('96', '96'), ('97', '97'), ('98', '98'), (\n '99', '99')]\n TRANSPORTATION = [('Grtis', 'Grtis'), ('1,00', '1,00'), ('2,00', '2,00'\n ), ('3,00', '3,00'), ('4,00', '4,00'), ('5,00', '5,00'), ('7,00',\n '7,00'), ('10,00', '10,00'), ('12,00', '12,00'), ('15,00', '15,00'),\n ('18,00', '18,00'), ('20,00', '20,00'), ('25,00', '25,00'), (\n '30,00', '30,00'), ('35,00', '35,00'), ('40,00', '40,00'), ('45,00',\n '45,00'), ('50,00', '50,00'), ('55,00', '65,00'), ('60,00', '60,00')]\n name = models.CharField(null=True, blank=True, max_length=40)\n rate = models.CharField(null=True, blank=True, default='Gratuito',\n max_length=8, choices=ADOPTION_VALUE)\n hour_open = models.CharField(blank=True, null=True, default='',\n max_length=5, choices=OPEN_HOURS)\n hour_close = models.CharField(blank=True, null=True, default='',\n max_length=5, choices=CLOSE_HOURS)\n mission_statement = models.CharField(null=True, blank=True, default='',\n max_length=300)\n description = models.CharField(null=True, blank=True, default='',\n max_length=500)\n web_site = models.CharField(null=True, blank=True, max_length=150)\n phone_number_ddd = models.CharField(null=True, blank=True, max_length=3,\n choices=DDD)\n phone_number = models.CharField(null=True, blank=True, max_length=12)\n email = models.CharField(null=True, blank=True, max_length=100)\n facebook = models.CharField(null=True, blank=True, max_length=100)\n instagram = models.CharField(null=True, blank=True, max_length=40)\n logo_link = models.ImageField(null=True, blank=True)\n picture_1 = models.ImageField(null=True, blank=True)\n picture_2 = models.ImageField(null=True, blank=True)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n city_id = models.ForeignKey(Cidade, on_delete=models.CASCADE, null=True,\n blank=True)\n state_id = models.ForeignKey(Estado, on_delete=models.CASCADE, null=\n True, blank=True)\n is_foster_ok = models.BooleanField(default=0)\n is_volunteer_ok = models.BooleanField(default=0)\n has_transportation = models.BooleanField(default=0)\n cnpj = models.CharField(null=True, blank=True, max_length=18)\n founded_date = models.CharField(null=True, blank=True, max_length=30,\n default='')\n is_approved = models.BooleanField(default=0)\n transportation_price = models.CharField(null=True, blank=True,\n max_length=7, choices=TRANSPORTATION)\n\n def __str__(self):\n return self.name\n\n\nclass User(AbstractUser):\n PERMISSION = [('Editar tudo', 'Editar tudo'), ('Editar equipe e pets',\n 'Editar equipe e pets'), ('Editar pets', 'Editar pets'), (\n 'Visualizar equipe e pets', 'Visualizar equipe e pets'), (\n 'Visualizar pets', 'Visualizar pets')]\n ROLE = [('Advogado(a)', 'Advogado(a)'), ('Auxiliar de veterinrio',\n 'Auxiliar de veterinrio'), ('Bilogo(a)', 'Bilogo(a)'), (\n 'Colaborador(a)', 'Colaborador(a)'), ('Departamento administrativo',\n 'Departamento administrativo'), ('Departamento de atendimento',\n 'Departamento de atendimento'), ('Departamento de eventos',\n 'Departamento de eventos'), ('Departamento educativo',\n 'Departamento educativo'), ('Departamento de marketing',\n 'Departamento de marketing'), ('Departamento financeiro',\n 'Departamento financeiro'), ('Diretor(a) administrativo',\n 'Diretor(a) administrativo'), ('Diretor(a) de eventos',\n 'Diretor(a) de eventos'), ('Diretor(a) financeiro',\n 'Diretor(a) financeiro'), ('Diretor(a) geral', 'Diretor(a) geral'),\n ('Diretor(a) marketing', 'Diretor(a) marketing'), (\n 'Diretor(a) tcnico', 'Diretor(a) tcnico'), ('Funcionrio(a)',\n 'Funcionrio(a)'), ('Fundador(a)', 'Fundador(a)'), ('Presidente',\n 'Presidente'), ('Protetor(a) associado', 'Protetor(a) associado'),\n ('Secretrio(a)', 'Secretrio(a)'), ('Suplente de secretrio',\n 'Suplente de secretrio'), ('Suplente de presidente',\n 'Suplente de presidente'), ('Suplente de vice-presidente',\n 'Suplente de vice-presidente'), ('Tesoreiro(a)', 'Tesoreiro(a)'), (\n 'Veterinrio(a)', 'Veterinrio(a)'), ('Vice-presidente',\n 'Vice-presidente'), ('Voluntrio(a)', 'Voluntrio(a)')]\n permission_ong = models.CharField(null=True, blank=True, max_length=30,\n choices=PERMISSION)\n role_ong = models.CharField(null=True, blank=True, max_length=30,\n choices=ROLE)\n birth_date = models.DateField(null=True, blank=True)\n has_confirmed_email = models.BooleanField(default=0)\n country = models.CharField(null=True, blank=True, max_length=50)\n state_code = models.CharField(null=True, blank=True, max_length=3)\n city = models.CharField(null=True, blank=True, max_length=50)\n neighborhood = models.CharField(null=True, blank=True, max_length=50)\n rg = models.CharField(null=True, blank=True, max_length=12)\n cpf = models.CharField(null=True, blank=True, max_length=15)\n phone_number_ddd = models.CharField(null=True, max_length=3)\n phone_number = models.CharField(null=True, blank=True, max_length=10)\n address_street = models.CharField(null=True, blank=True, max_length=70)\n address_number = models.CharField(null=True, blank=True, max_length=6)\n address_complement = models.CharField(null=True, blank=True, max_length=10)\n postal_code = models.CharField(null=True, blank=True, max_length=10)\n facebook_id = models.CharField(null=True, blank=True, max_length=30)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n ongs_id = models.ForeignKey(Ongs, on_delete=models.SET_NULL, null=True,\n blank=True)\n\n\nclass Pet_breed(models.Model):\n name = models.CharField(null=True, blank=True, max_length=100)\n species = models.CharField(null=True, blank=True, max_length=30)\n\n def __str__(self):\n return self.name\n\n\nclass Pet(models.Model):\n COLOR_OF_PETS = [('Amarelo', 'Amarelo'), ('Branco', 'Branco'), ('Cinza',\n 'Cinza'), ('Creme', 'Creme'), ('Laranja', 'Laranja'), ('Marrom',\n 'Marrom'), ('Preto', 'Preto')]\n COLOR_PATTERN_OF_PETS = [('Arlequim', 'Arlequim'), ('Belton', 'Belton'),\n ('Bicolor', 'Bicolor'), ('Fulvo', 'Fulvo'), ('Lobeiro', 'Ruo'), (\n 'Merle', 'Merle'), ('Pintaigado', 'Pintaigado'), ('Ruo', 'Ruo'), (\n 'Sal e Pimenta', 'Sal e Pimenta'), ('Tigrado', 'Tigrado'), (\n 'Unicolor', 'Unicolor')]\n GENDER_OF_PETS = [('Fmea', 'Fmea'), ('Macho', 'Macho')]\n ACTIVITY_LEVEL_PETS = [('Hiperativo', 'Hiperativo'), ('Ativo', 'Ativo'),\n ('Moderado', 'Moderado'), ('Baixo', 'Baixo')]\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('Apenas alguns dentes', 'Apenas alguns dentes'), (\n 'Cegueira parcial', 'Cegueira parcial'), ('Cegueira total',\n 'Cegueira total'), ('Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Nenhum dente',\n 'Nenhum dente'), ('Doena Neural', 'Doena Neural'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total')]\n CONFORTABLE = [('No', 'No'), ('Sim', 'Sim'), ('No sei', 'No sei')]\n STATUS_OF_PETS = [('A caminho do novo lar', 'A caminho do novo lar'), (\n 'Adoo pendente', 'Adoo pendente'), ('Adotado', 'Adotado'), (\n 'Doente', 'Doente'), ('Esperando visita', 'Esperando visita'), (\n 'Falecido', 'Falecido'), ('Retornando para abrigo',\n 'Retornando para abrigo'), ('Lar provisrio', 'Lar provisrio'), (\n 'Lar provisrio pelo FDS', 'Lar provisrio pelo FDS')]\n STATUS_OF_TEETH = [('Perfeitos', 'Perfeitos'), ('Um pouco de trtaro',\n 'Um pouco de trtaro'), ('Trtaro mediano', 'Trtaro mediano'), (\n 'Perdeu alguns dentes', 'Perdeu alguns dentes'), (\n 'Dentes permitem apenas comida mole',\n 'Dentes permitem apenas comida mole'), (\n 'Perdeu quase todos ou todos os dentes',\n 'Perdeu quase todos ou todos os dentes')]\n COAT_OF_PETS = [('Arrepiado ', 'Arrepiado'), ('Liso', 'Liso'), (\n 'Ondulado', 'Ondulado')]\n COAT_SIZE_OF_PETS = [('Curto', 'Curto'), ('Mdio', 'Mdio'), ('Longo',\n 'Longo')]\n SPECIES_OF_PETS = [('Cachorro', 'Cachorro'), ('Gato', 'Gato'), (\n 'Outros', 'Outros')]\n SIZE_OF_PETS = [('Mini', 'Mini'), ('Pequeno', 'Pequeno'), ('Mdio',\n 'Mdio'), ('Grande', 'Grande'), ('Gigante', 'Gigante')]\n AGE_CATEGORY_OF_PETS = [('Filhote', 'Filhote'), ('Adolescente',\n 'Adolescente'), ('Adulto', 'Adulto'), ('Maduro', 'Maduro'), (\n 'Idoso', 'Idoso')]\n AGE_OF_PETS = [('1 ms', '1 ms'), ('2 meses', '2 meses'), ('3 meses',\n '3 meses'), ('4 meses', '4 meses'), ('5 meses', '5 meses'), (\n '6 meses', '6 meses'), ('7 meses', '7 meses'), ('8 meses',\n '8 meses'), ('9 meses', '9 meses'), ('10 meses', '10 meses'), (\n '11 meses', '11 meses'), ('1 ano', '1 ano'), ('2 anos', '2 anos'),\n ('3 anos', '3 anos'), ('4 anos', '4 anos'), ('5 anos', '5 anos'), (\n '6 anos', '6 anos'), ('7 anos', '7 anos'), ('8 anos', '8 anos'), (\n '9 anos', '9 anos'), ('10 anos', '10 anos'), ('11 anos', '11 anos'),\n ('12 anos', '12 anos'), ('13 anos', '13 anos'), ('14 anos',\n '14 anos'), ('15 anos', '15 anos'), ('16 anos', '16 anos'), (\n '17 anos', '17 anos'), ('18 anos', '18 anos'), ('19 anos',\n '19 anos'), ('20 anos', '20 anos'), ('21 anos', '21 anos'), (\n '22 anos', '22 anos'), ('23 anos', '23 anos'), ('24 anos',\n '24 anos'), ('25 anos', '25 anos'), ('26 anos', '26 anos'), (\n '27 anos', '27 anos'), ('28 anos', '28 anos'), ('29 anos',\n '29 anos'), ('30 anos', '30 anos'), ('No sei', 'No sei')]\n DAY_OF_PETS = [('No sei', 'No sei'), ('1', '1'), ('2', '2'), ('3', '3'),\n ('4', '4'), ('5', '5'), ('6', '6'), ('7', '7'), ('8', '8'), ('9',\n '9'), ('10', '10'), ('11', '11'), ('12', '12'), ('13', '13'), ('14',\n '14'), ('15', '15'), ('16', '16'), ('17', '17'), ('18', '18'), (\n '19', '19'), ('20', '20'), ('21', '21'), ('22', '22'), ('23', '23'),\n ('24', '24'), ('25', '25'), ('26', '26'), ('27', '27'), ('28', '28'\n ), ('29', '29'), ('30', '30'), ('31', '31')]\n MONTH_OF_PETS = [('No sei', 'No sei'), ('Janeiro', 'Janeiro'), (\n 'Fevereiro', 'Fevereiro'), ('Maro', 'Maro'), ('Abril', 'Abril'), (\n 'Maio', 'Maio'), ('Junho', 'Junho'), ('Julho', 'Julho'), ('Agosto',\n 'Agosto'), ('Setembro', 'Setembro'), ('Outubro', 'Outubro'), (\n 'Novembro', 'Novembro'), ('Dezembro', 'Dezembro')]\n AGE_OF_PETS = [('1 ms', '1 ms'), ('2 meses', '2 meses'), ('3 meses',\n '3 meses'), ('4 meses', '4 meses'), ('5 meses', '5 meses'), (\n '6 meses', '6 meses'), ('7 meses', '7 meses'), ('8 meses',\n '8 meses'), ('9 meses', '9 meses'), ('10 meses', '10 meses'), (\n '11 meses', '11 meses'), ('1 ano', '1 ano'), ('2 anos', '2 anos'),\n ('3 anos', '3 anos'), ('4 anos', '4 anos'), ('5 anos', '5 anos'), (\n '6 anos', '6 anos'), ('7 anos', '7 anos'), ('8 anos', '8 anos'), (\n '9 anos', '9 anos'), ('10 anos', '10 anos'), ('11 anos', '11 anos'),\n ('12 anos', '12 anos'), ('13 anos', '13 anos'), ('14 anos',\n '14 anos'), ('15 anos', '15 anos'), ('16 anos', '16 anos'), (\n '17 anos', '17 anos'), ('18 anos', '18 anos'), ('19 anos',\n '19 anos'), ('20 anos', '20 anos'), ('21 anos', '21 anos'), (\n '22 anos', '22 anos'), ('23 anos', '23 anos'), ('24 anos',\n '24 anos'), ('25 anos', '25 anos'), ('26 anos', '26 anos'), (\n '27 anos', '27 anos'), ('28 anos', '28 anos'), ('29 anos',\n '29 anos'), ('30 anos', '30 anos'), ('Menos de 1 ano',\n 'Menos de 1 ano')]\n RETURN_OF_PETS = [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6\n ), (7, 7), (8, 8), (9, 9), (10, 10)]\n TYPES_STREET = [('Alameda', 'Alameda'), ('Avenida', 'Avenida'), (\n 'Chcara', 'Chcara'), ('Colnia', 'Colnia'), ('Condomnio',\n 'Condomnio'), ('Conjunto', 'Conjunto'), ('Estao', 'Estao'), (\n 'Estrada', 'Estrada'), ('Favela', 'Favela'), ('Fazenda', 'Fazenda'),\n ('Jardim', 'Jardim'), ('Ladeira', 'Ladeira'), ('Lago', 'Lago'), (\n 'Largo', 'Largo'), ('Loteamento', 'Loteamento'), ('Passarela',\n 'Passarela'), ('Parque', 'Parque'), ('Praa', 'Praa'), ('Praia',\n 'Praia'), ('Rodovia', 'Rodovia'), ('Rua', 'Rua'), ('Setor', 'Setor'\n ), ('Travessa', 'Travessa'), ('Viaduto', 'Viaduto'), ('Vila', 'Vila')]\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial',\n 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), (\n 'Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Doena mental',\n 'Doena mental'), ('Epilepsia', 'Epilesia'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total'), ('No sente cheiro', 'No sente cheiro')\n ]\n\n def get_years():\n now = int(timezone.now().year) + 1\n past = timezone.now().year - 30\n a = []\n for i in reversed(range(past, now)):\n a.append((i, i))\n a = tuple(a)\n return a\n name = models.CharField('Nome', null=True, blank=True, max_length=30)\n pet_description = models.CharField(null=True, blank=True, max_length=700)\n age = models.CharField(null=True, blank=True, max_length=40, choices=\n AGE_OF_PETS, default='')\n age_category = models.CharField(null=True, blank=True, max_length=30,\n choices=AGE_CATEGORY_OF_PETS, default='')\n species = models.CharField(null=True, blank=True, max_length=25,\n choices=SPECIES_OF_PETS, default='')\n primary_breed = models.ForeignKey(Pet_breed, on_delete=models.CASCADE,\n null=True, blank=True, related_name='primary_breed')\n secondary_breed = models.ForeignKey(Pet_breed, on_delete=models.CASCADE,\n null=True, blank=True, related_name='secondary_breed')\n color = models.CharField(null=True, blank=True, max_length=30, choices=\n COLOR_OF_PETS, default='')\n coat = models.CharField(null=True, blank=True, max_length=20, choices=\n COAT_OF_PETS, default='')\n gender = models.CharField(null=True, blank=True, max_length=10, choices\n =GENDER_OF_PETS, default='')\n birth_day = models.CharField(default=0, null=True, blank=True,\n max_length=30, choices=DAY_OF_PETS)\n birth_month = models.CharField(default=0, null=True, blank=True,\n max_length=30, choices=MONTH_OF_PETS)\n birth_year = models.IntegerField(default=0, null=True, blank=True,\n choices=get_years())\n is_microchiped = models.BooleanField(default=0)\n activity_level = models.CharField(null=True, blank=True, max_length=40,\n choices=ACTIVITY_LEVEL_PETS, default='')\n is_basic_trainned = models.BooleanField(default=0)\n confortable_with_kids = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_elder = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_cats = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_dogs = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_men = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_women = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n arrival_date = models.CharField(null=True, blank=True, max_length=30,\n default='')\n where_was_found_name = models.CharField(null=True, blank=True,\n max_length=100, default='')\n is_neutered = models.BooleanField(default=0)\n was_rabbies_vaccinated_this_year = models.BooleanField(default=0)\n was_v_vaccinated_this_year = models.BooleanField(default=0)\n was_others_vaccinated_this_year = models.BooleanField(default=0)\n profile_picture = models.ImageField(null=True, blank=True)\n picture_1 = models.ImageField(null=True, blank=True)\n picture_2 = models.ImageField(null=True, blank=True)\n picture_3 = models.ImageField(null=True, blank=True)\n video = models.CharField(null=True, blank=True, max_length=150)\n qty_views = models.IntegerField(default=0)\n qty_favorites = models.IntegerField(default=0)\n qty_msg = models.IntegerField(default=0)\n qty_shares = models.IntegerField(default=0)\n ongs_id = models.ForeignKey(Ongs, on_delete=models.CASCADE, default=1)\n status = models.CharField(null=True, blank=True, max_length=50, choices\n =STATUS_OF_PETS, default='')\n coat_size = models.CharField(null=True, blank=True, max_length=50,\n choices=COAT_SIZE_OF_PETS, default='')\n walk_pull = models.BooleanField(default=0)\n walk_pull_hard = models.BooleanField(default=0)\n walk_dogs = models.BooleanField(default=0)\n walk_people = models.BooleanField(default=0)\n walk_fear = models.BooleanField(default=0)\n color_pattern = models.CharField(null=True, blank=True, max_length=30,\n choices=COLOR_PATTERN_OF_PETS, default='')\n size = models.CharField(null=True, blank=True, max_length=50, choices=\n SIZE_OF_PETS, default='')\n qty_preview_adoptions = models.IntegerField(default=0, choices=\n RETURN_OF_PETS)\n qty_adoptions_app = models.IntegerField(default=0)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n teeth_status = models.CharField(null=True, blank=True, max_length=50,\n choices=STATUS_OF_TEETH, default='')\n combo_adoption_id = models.IntegerField(default=0, null=True, blank=True)\n is_available_adoption = models.BooleanField(default=1)\n where_was_found = models.CharField(null=True, blank=True, max_length=50,\n choices=TYPES_STREET, default='')\n where_was_found_city = models.CharField(null=True, blank=True,\n max_length=100, default='')\n where_was_found_state = models.CharField(null=True, blank=True,\n max_length=100, default='')\n first_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n second_special_need = models.CharField(null=True, blank=True,\n max_length=100, choices=SPECIAL_NEED, default='')\n third_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n is_mixed_breed = models.BooleanField(default=1)\n is_walking_daily = models.BooleanField(default=0)\n is_acupuncture = models.BooleanField(default=0)\n is_physiotherapy = models.BooleanField(default=0)\n is_vermifuged = models.BooleanField(default=0)\n is_lice_free = models.BooleanField(default=0)\n is_dog_meet_necessary = models.BooleanField(default=0)\n walk_alone_dislike = models.BooleanField(default=0)\n walk_alone = models.BooleanField(default=0)\n walk_leash = models.BooleanField(default=0)\n id_at_ong = models.IntegerField(default=0, null=True, blank=True)\n\n def __str__(self):\n return self.name\n\n\n<function token>\n\n\nclass Favorites(models.Model):\n user_id = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.\n CASCADE)\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n\n\nclass Pet_disease_areas(models.Model):\n name = models.CharField(null=True, blank=True, max_length=300)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_disease(models.Model):\n AREA_OF_PETS = [('Cardiologia', 'Cardiologia'), ('Dermatologia',\n 'Dermatologia'), ('Endocrinologia', 'Endocrinologia'), (\n 'Gastroenterologia e Hepatologia',\n 'Gastroenterologia e Hepatologia'), ('Hematologia e Imunologia',\n 'Hematologia e Imunologia'), ('Infecciosas', 'Infecciosas'), (\n 'Intoxicaes e Envenemanentos', 'Intoxicaes e Envenemanentos'), (\n 'Musculoesquelticas', 'Musculoesquelticas'), (\n 'Nefrologia e Urologia', 'Nefrologia e Urologia'), ('Neonatologia',\n 'Neonatologia'), ('Neurologia', 'Neurologia'), ('Oftalmologia',\n 'Oftalmologia'), ('Oncologia', 'Oncologia'), ('Respiratrias',\n 'Respiratrias'), ('Teriogenologia', 'Teriogenologia'), (\n 'Vacinao e Nutrologia', 'Vacinao e Nutrologia'), ('Outras', 'Outras')]\n name = models.CharField(null=True, blank=True, max_length=150)\n area = models.CharField(null=True, blank=True, max_length=100, choices=\n AREA_OF_PETS, default='')\n area_id = models.ForeignKey(Pet_disease_areas, on_delete=models.CASCADE,\n null=True, blank=True)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_health(models.Model):\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial',\n 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), (\n 'Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Doena mental',\n 'Doena mental'), ('Epilepsia', 'Epilesia'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total'), ('No sente cheiro', 'No sente cheiro')\n ]\n STATUS = [('Curado', 'Curado'), ('Em tratamento', 'Em tratamento'), (\n 'Sem verba', 'Sem verba')]\n SPECIAL_TREATMENT = [('Fisioterapia', 'Fisioterapia'), ('Acunpuntura',\n 'Acunpuntura'), ('Caminhada diria', 'Caminhada diria')]\n TYPES = [('Fatal', 'Fatal'), ('Para o resto da vida',\n 'Para o resto da vida'), ('Temporria', 'Temporria')]\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n diagnose_date = models.DateField(null=True, blank=True)\n disease_status = models.CharField(null=True, blank=True, max_length=100,\n choices=STATUS, default='')\n disease_type = models.CharField(null=True, blank=True, max_length=100,\n choices=TYPES, default='')\n internal_notes = models.CharField(null=True, blank=True, max_length=300)\n which_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n which_special_treatment = models.CharField(null=True, blank=True,\n max_length=100, choices=SPECIAL_TREATMENT, default='')\n disease_name = models.CharField(null=True, blank=True, max_length=200)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n\n def __str__(self):\n return self.disease\n", "<import token>\n\n\nclass Estado(models.Model):\n <assignment token>\n <assignment token>\n\n def __str__(self):\n return self.uf\n\n\nclass Cidade(models.Model):\n nome = models.CharField(null=True, blank=True, max_length=120)\n estado = models.ForeignKey(Estado, on_delete=models.CASCADE)\n estado_uf = models.CharField(null=True, blank=True, max_length=5)\n\n def __str__(self):\n return self.nome\n\n\nclass Ongs(models.Model):\n ADOPTION_VALUE = [('Gratuito', 'Gratuito'), ('10,00', '10,00'), (\n '15,00', '15,00'), ('20,00', '20,00'), ('25,00', '25,00'), ('30,00',\n '30,00'), ('35,00', '35,00'), ('40,00', '40,00'), ('45,00', '45,00'\n ), ('50,00', '50,00'), ('55,00', '55,00'), ('60,00', '60,00'), (\n '65,00', '65,00'), ('70,00', '70,00'), ('75,00', '75,00'), ('80,00',\n '80,00'), ('85,00', '85,00'), ('90,00', '90,00'), ('95,00', '95,00'\n ), ('100,00', '100,00')]\n OPEN_HOURS = [('06:00', '06:00'), ('06:30', '06:30'), ('07:00', '07:00'\n ), ('07:30', '07:30'), ('08:00', '08:00'), ('08:30', '08:30'), (\n '09:00', '09:00'), ('09:30', '09:30'), ('10:00', '10:00'), ('10:30',\n '10:30'), ('11:00', '11:00'), ('11:30', '11:30'), ('12:00', '12:00'\n ), ('12:30', '12:30')]\n CLOSE_HOURS = [('16:00', '16:00'), ('16:30', '16:30'), ('17:00',\n '17:00'), ('17:30', '17:30'), ('18:00', '18:00'), ('18:30', '18:30'\n ), ('19:00', '19:00'), ('19:30', '19:30'), ('20:00', '20:00'), (\n '20:30', '20:30'), ('21:00', '21:00'), ('21:30', '21:30'), ('22:00',\n '22:00'), ('22:30', '22:30')]\n DDD = [('11', '11'), ('12', '12'), ('13', '13'), ('14', '14'), ('15',\n '15'), ('16', '16'), ('17', '17'), ('18', '18'), ('19', '19'), (\n '21', '21'), ('22', '22'), ('24', '24'), ('27', '27'), ('28', '28'),\n ('31', '31'), ('32', '32'), ('33', '33'), ('34', '34'), ('35', '35'\n ), ('37', '37'), ('38', '38'), ('41', '41'), ('42', '42'), ('43',\n '43'), ('44', '44'), ('45', '45'), ('46', '46'), ('47', '47'), (\n '48', '48'), ('49', '49'), ('51', '51'), ('53', '53'), ('54', '54'),\n ('55', '55'), ('61', '61'), ('62', '62'), ('63', '63'), ('64', '64'\n ), ('65', '65'), ('66', '66'), ('67', '67'), ('68', '68'), ('69',\n '69'), ('71', '71'), ('73', '73'), ('74', '74'), ('75', '75'), (\n '77', '77'), ('79', '79'), ('81', '81'), ('82', '82'), ('83', '83'),\n ('84', '84'), ('85', '85'), ('86', '86'), ('87', '87'), ('88', '88'\n ), ('89', '89'), ('91', '91'), ('92', '92'), ('93', '93'), ('94',\n '94'), ('95', '95'), ('96', '96'), ('97', '97'), ('98', '98'), (\n '99', '99')]\n TRANSPORTATION = [('Grtis', 'Grtis'), ('1,00', '1,00'), ('2,00', '2,00'\n ), ('3,00', '3,00'), ('4,00', '4,00'), ('5,00', '5,00'), ('7,00',\n '7,00'), ('10,00', '10,00'), ('12,00', '12,00'), ('15,00', '15,00'),\n ('18,00', '18,00'), ('20,00', '20,00'), ('25,00', '25,00'), (\n '30,00', '30,00'), ('35,00', '35,00'), ('40,00', '40,00'), ('45,00',\n '45,00'), ('50,00', '50,00'), ('55,00', '65,00'), ('60,00', '60,00')]\n name = models.CharField(null=True, blank=True, max_length=40)\n rate = models.CharField(null=True, blank=True, default='Gratuito',\n max_length=8, choices=ADOPTION_VALUE)\n hour_open = models.CharField(blank=True, null=True, default='',\n max_length=5, choices=OPEN_HOURS)\n hour_close = models.CharField(blank=True, null=True, default='',\n max_length=5, choices=CLOSE_HOURS)\n mission_statement = models.CharField(null=True, blank=True, default='',\n max_length=300)\n description = models.CharField(null=True, blank=True, default='',\n max_length=500)\n web_site = models.CharField(null=True, blank=True, max_length=150)\n phone_number_ddd = models.CharField(null=True, blank=True, max_length=3,\n choices=DDD)\n phone_number = models.CharField(null=True, blank=True, max_length=12)\n email = models.CharField(null=True, blank=True, max_length=100)\n facebook = models.CharField(null=True, blank=True, max_length=100)\n instagram = models.CharField(null=True, blank=True, max_length=40)\n logo_link = models.ImageField(null=True, blank=True)\n picture_1 = models.ImageField(null=True, blank=True)\n picture_2 = models.ImageField(null=True, blank=True)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n city_id = models.ForeignKey(Cidade, on_delete=models.CASCADE, null=True,\n blank=True)\n state_id = models.ForeignKey(Estado, on_delete=models.CASCADE, null=\n True, blank=True)\n is_foster_ok = models.BooleanField(default=0)\n is_volunteer_ok = models.BooleanField(default=0)\n has_transportation = models.BooleanField(default=0)\n cnpj = models.CharField(null=True, blank=True, max_length=18)\n founded_date = models.CharField(null=True, blank=True, max_length=30,\n default='')\n is_approved = models.BooleanField(default=0)\n transportation_price = models.CharField(null=True, blank=True,\n max_length=7, choices=TRANSPORTATION)\n\n def __str__(self):\n return self.name\n\n\nclass User(AbstractUser):\n PERMISSION = [('Editar tudo', 'Editar tudo'), ('Editar equipe e pets',\n 'Editar equipe e pets'), ('Editar pets', 'Editar pets'), (\n 'Visualizar equipe e pets', 'Visualizar equipe e pets'), (\n 'Visualizar pets', 'Visualizar pets')]\n ROLE = [('Advogado(a)', 'Advogado(a)'), ('Auxiliar de veterinrio',\n 'Auxiliar de veterinrio'), ('Bilogo(a)', 'Bilogo(a)'), (\n 'Colaborador(a)', 'Colaborador(a)'), ('Departamento administrativo',\n 'Departamento administrativo'), ('Departamento de atendimento',\n 'Departamento de atendimento'), ('Departamento de eventos',\n 'Departamento de eventos'), ('Departamento educativo',\n 'Departamento educativo'), ('Departamento de marketing',\n 'Departamento de marketing'), ('Departamento financeiro',\n 'Departamento financeiro'), ('Diretor(a) administrativo',\n 'Diretor(a) administrativo'), ('Diretor(a) de eventos',\n 'Diretor(a) de eventos'), ('Diretor(a) financeiro',\n 'Diretor(a) financeiro'), ('Diretor(a) geral', 'Diretor(a) geral'),\n ('Diretor(a) marketing', 'Diretor(a) marketing'), (\n 'Diretor(a) tcnico', 'Diretor(a) tcnico'), ('Funcionrio(a)',\n 'Funcionrio(a)'), ('Fundador(a)', 'Fundador(a)'), ('Presidente',\n 'Presidente'), ('Protetor(a) associado', 'Protetor(a) associado'),\n ('Secretrio(a)', 'Secretrio(a)'), ('Suplente de secretrio',\n 'Suplente de secretrio'), ('Suplente de presidente',\n 'Suplente de presidente'), ('Suplente de vice-presidente',\n 'Suplente de vice-presidente'), ('Tesoreiro(a)', 'Tesoreiro(a)'), (\n 'Veterinrio(a)', 'Veterinrio(a)'), ('Vice-presidente',\n 'Vice-presidente'), ('Voluntrio(a)', 'Voluntrio(a)')]\n permission_ong = models.CharField(null=True, blank=True, max_length=30,\n choices=PERMISSION)\n role_ong = models.CharField(null=True, blank=True, max_length=30,\n choices=ROLE)\n birth_date = models.DateField(null=True, blank=True)\n has_confirmed_email = models.BooleanField(default=0)\n country = models.CharField(null=True, blank=True, max_length=50)\n state_code = models.CharField(null=True, blank=True, max_length=3)\n city = models.CharField(null=True, blank=True, max_length=50)\n neighborhood = models.CharField(null=True, blank=True, max_length=50)\n rg = models.CharField(null=True, blank=True, max_length=12)\n cpf = models.CharField(null=True, blank=True, max_length=15)\n phone_number_ddd = models.CharField(null=True, max_length=3)\n phone_number = models.CharField(null=True, blank=True, max_length=10)\n address_street = models.CharField(null=True, blank=True, max_length=70)\n address_number = models.CharField(null=True, blank=True, max_length=6)\n address_complement = models.CharField(null=True, blank=True, max_length=10)\n postal_code = models.CharField(null=True, blank=True, max_length=10)\n facebook_id = models.CharField(null=True, blank=True, max_length=30)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n ongs_id = models.ForeignKey(Ongs, on_delete=models.SET_NULL, null=True,\n blank=True)\n\n\nclass Pet_breed(models.Model):\n name = models.CharField(null=True, blank=True, max_length=100)\n species = models.CharField(null=True, blank=True, max_length=30)\n\n def __str__(self):\n return self.name\n\n\nclass Pet(models.Model):\n COLOR_OF_PETS = [('Amarelo', 'Amarelo'), ('Branco', 'Branco'), ('Cinza',\n 'Cinza'), ('Creme', 'Creme'), ('Laranja', 'Laranja'), ('Marrom',\n 'Marrom'), ('Preto', 'Preto')]\n COLOR_PATTERN_OF_PETS = [('Arlequim', 'Arlequim'), ('Belton', 'Belton'),\n ('Bicolor', 'Bicolor'), ('Fulvo', 'Fulvo'), ('Lobeiro', 'Ruo'), (\n 'Merle', 'Merle'), ('Pintaigado', 'Pintaigado'), ('Ruo', 'Ruo'), (\n 'Sal e Pimenta', 'Sal e Pimenta'), ('Tigrado', 'Tigrado'), (\n 'Unicolor', 'Unicolor')]\n GENDER_OF_PETS = [('Fmea', 'Fmea'), ('Macho', 'Macho')]\n ACTIVITY_LEVEL_PETS = [('Hiperativo', 'Hiperativo'), ('Ativo', 'Ativo'),\n ('Moderado', 'Moderado'), ('Baixo', 'Baixo')]\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('Apenas alguns dentes', 'Apenas alguns dentes'), (\n 'Cegueira parcial', 'Cegueira parcial'), ('Cegueira total',\n 'Cegueira total'), ('Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Nenhum dente',\n 'Nenhum dente'), ('Doena Neural', 'Doena Neural'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total')]\n CONFORTABLE = [('No', 'No'), ('Sim', 'Sim'), ('No sei', 'No sei')]\n STATUS_OF_PETS = [('A caminho do novo lar', 'A caminho do novo lar'), (\n 'Adoo pendente', 'Adoo pendente'), ('Adotado', 'Adotado'), (\n 'Doente', 'Doente'), ('Esperando visita', 'Esperando visita'), (\n 'Falecido', 'Falecido'), ('Retornando para abrigo',\n 'Retornando para abrigo'), ('Lar provisrio', 'Lar provisrio'), (\n 'Lar provisrio pelo FDS', 'Lar provisrio pelo FDS')]\n STATUS_OF_TEETH = [('Perfeitos', 'Perfeitos'), ('Um pouco de trtaro',\n 'Um pouco de trtaro'), ('Trtaro mediano', 'Trtaro mediano'), (\n 'Perdeu alguns dentes', 'Perdeu alguns dentes'), (\n 'Dentes permitem apenas comida mole',\n 'Dentes permitem apenas comida mole'), (\n 'Perdeu quase todos ou todos os dentes',\n 'Perdeu quase todos ou todos os dentes')]\n COAT_OF_PETS = [('Arrepiado ', 'Arrepiado'), ('Liso', 'Liso'), (\n 'Ondulado', 'Ondulado')]\n COAT_SIZE_OF_PETS = [('Curto', 'Curto'), ('Mdio', 'Mdio'), ('Longo',\n 'Longo')]\n SPECIES_OF_PETS = [('Cachorro', 'Cachorro'), ('Gato', 'Gato'), (\n 'Outros', 'Outros')]\n SIZE_OF_PETS = [('Mini', 'Mini'), ('Pequeno', 'Pequeno'), ('Mdio',\n 'Mdio'), ('Grande', 'Grande'), ('Gigante', 'Gigante')]\n AGE_CATEGORY_OF_PETS = [('Filhote', 'Filhote'), ('Adolescente',\n 'Adolescente'), ('Adulto', 'Adulto'), ('Maduro', 'Maduro'), (\n 'Idoso', 'Idoso')]\n AGE_OF_PETS = [('1 ms', '1 ms'), ('2 meses', '2 meses'), ('3 meses',\n '3 meses'), ('4 meses', '4 meses'), ('5 meses', '5 meses'), (\n '6 meses', '6 meses'), ('7 meses', '7 meses'), ('8 meses',\n '8 meses'), ('9 meses', '9 meses'), ('10 meses', '10 meses'), (\n '11 meses', '11 meses'), ('1 ano', '1 ano'), ('2 anos', '2 anos'),\n ('3 anos', '3 anos'), ('4 anos', '4 anos'), ('5 anos', '5 anos'), (\n '6 anos', '6 anos'), ('7 anos', '7 anos'), ('8 anos', '8 anos'), (\n '9 anos', '9 anos'), ('10 anos', '10 anos'), ('11 anos', '11 anos'),\n ('12 anos', '12 anos'), ('13 anos', '13 anos'), ('14 anos',\n '14 anos'), ('15 anos', '15 anos'), ('16 anos', '16 anos'), (\n '17 anos', '17 anos'), ('18 anos', '18 anos'), ('19 anos',\n '19 anos'), ('20 anos', '20 anos'), ('21 anos', '21 anos'), (\n '22 anos', '22 anos'), ('23 anos', '23 anos'), ('24 anos',\n '24 anos'), ('25 anos', '25 anos'), ('26 anos', '26 anos'), (\n '27 anos', '27 anos'), ('28 anos', '28 anos'), ('29 anos',\n '29 anos'), ('30 anos', '30 anos'), ('No sei', 'No sei')]\n DAY_OF_PETS = [('No sei', 'No sei'), ('1', '1'), ('2', '2'), ('3', '3'),\n ('4', '4'), ('5', '5'), ('6', '6'), ('7', '7'), ('8', '8'), ('9',\n '9'), ('10', '10'), ('11', '11'), ('12', '12'), ('13', '13'), ('14',\n '14'), ('15', '15'), ('16', '16'), ('17', '17'), ('18', '18'), (\n '19', '19'), ('20', '20'), ('21', '21'), ('22', '22'), ('23', '23'),\n ('24', '24'), ('25', '25'), ('26', '26'), ('27', '27'), ('28', '28'\n ), ('29', '29'), ('30', '30'), ('31', '31')]\n MONTH_OF_PETS = [('No sei', 'No sei'), ('Janeiro', 'Janeiro'), (\n 'Fevereiro', 'Fevereiro'), ('Maro', 'Maro'), ('Abril', 'Abril'), (\n 'Maio', 'Maio'), ('Junho', 'Junho'), ('Julho', 'Julho'), ('Agosto',\n 'Agosto'), ('Setembro', 'Setembro'), ('Outubro', 'Outubro'), (\n 'Novembro', 'Novembro'), ('Dezembro', 'Dezembro')]\n AGE_OF_PETS = [('1 ms', '1 ms'), ('2 meses', '2 meses'), ('3 meses',\n '3 meses'), ('4 meses', '4 meses'), ('5 meses', '5 meses'), (\n '6 meses', '6 meses'), ('7 meses', '7 meses'), ('8 meses',\n '8 meses'), ('9 meses', '9 meses'), ('10 meses', '10 meses'), (\n '11 meses', '11 meses'), ('1 ano', '1 ano'), ('2 anos', '2 anos'),\n ('3 anos', '3 anos'), ('4 anos', '4 anos'), ('5 anos', '5 anos'), (\n '6 anos', '6 anos'), ('7 anos', '7 anos'), ('8 anos', '8 anos'), (\n '9 anos', '9 anos'), ('10 anos', '10 anos'), ('11 anos', '11 anos'),\n ('12 anos', '12 anos'), ('13 anos', '13 anos'), ('14 anos',\n '14 anos'), ('15 anos', '15 anos'), ('16 anos', '16 anos'), (\n '17 anos', '17 anos'), ('18 anos', '18 anos'), ('19 anos',\n '19 anos'), ('20 anos', '20 anos'), ('21 anos', '21 anos'), (\n '22 anos', '22 anos'), ('23 anos', '23 anos'), ('24 anos',\n '24 anos'), ('25 anos', '25 anos'), ('26 anos', '26 anos'), (\n '27 anos', '27 anos'), ('28 anos', '28 anos'), ('29 anos',\n '29 anos'), ('30 anos', '30 anos'), ('Menos de 1 ano',\n 'Menos de 1 ano')]\n RETURN_OF_PETS = [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6\n ), (7, 7), (8, 8), (9, 9), (10, 10)]\n TYPES_STREET = [('Alameda', 'Alameda'), ('Avenida', 'Avenida'), (\n 'Chcara', 'Chcara'), ('Colnia', 'Colnia'), ('Condomnio',\n 'Condomnio'), ('Conjunto', 'Conjunto'), ('Estao', 'Estao'), (\n 'Estrada', 'Estrada'), ('Favela', 'Favela'), ('Fazenda', 'Fazenda'),\n ('Jardim', 'Jardim'), ('Ladeira', 'Ladeira'), ('Lago', 'Lago'), (\n 'Largo', 'Largo'), ('Loteamento', 'Loteamento'), ('Passarela',\n 'Passarela'), ('Parque', 'Parque'), ('Praa', 'Praa'), ('Praia',\n 'Praia'), ('Rodovia', 'Rodovia'), ('Rua', 'Rua'), ('Setor', 'Setor'\n ), ('Travessa', 'Travessa'), ('Viaduto', 'Viaduto'), ('Vila', 'Vila')]\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial',\n 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), (\n 'Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Doena mental',\n 'Doena mental'), ('Epilepsia', 'Epilesia'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total'), ('No sente cheiro', 'No sente cheiro')\n ]\n\n def get_years():\n now = int(timezone.now().year) + 1\n past = timezone.now().year - 30\n a = []\n for i in reversed(range(past, now)):\n a.append((i, i))\n a = tuple(a)\n return a\n name = models.CharField('Nome', null=True, blank=True, max_length=30)\n pet_description = models.CharField(null=True, blank=True, max_length=700)\n age = models.CharField(null=True, blank=True, max_length=40, choices=\n AGE_OF_PETS, default='')\n age_category = models.CharField(null=True, blank=True, max_length=30,\n choices=AGE_CATEGORY_OF_PETS, default='')\n species = models.CharField(null=True, blank=True, max_length=25,\n choices=SPECIES_OF_PETS, default='')\n primary_breed = models.ForeignKey(Pet_breed, on_delete=models.CASCADE,\n null=True, blank=True, related_name='primary_breed')\n secondary_breed = models.ForeignKey(Pet_breed, on_delete=models.CASCADE,\n null=True, blank=True, related_name='secondary_breed')\n color = models.CharField(null=True, blank=True, max_length=30, choices=\n COLOR_OF_PETS, default='')\n coat = models.CharField(null=True, blank=True, max_length=20, choices=\n COAT_OF_PETS, default='')\n gender = models.CharField(null=True, blank=True, max_length=10, choices\n =GENDER_OF_PETS, default='')\n birth_day = models.CharField(default=0, null=True, blank=True,\n max_length=30, choices=DAY_OF_PETS)\n birth_month = models.CharField(default=0, null=True, blank=True,\n max_length=30, choices=MONTH_OF_PETS)\n birth_year = models.IntegerField(default=0, null=True, blank=True,\n choices=get_years())\n is_microchiped = models.BooleanField(default=0)\n activity_level = models.CharField(null=True, blank=True, max_length=40,\n choices=ACTIVITY_LEVEL_PETS, default='')\n is_basic_trainned = models.BooleanField(default=0)\n confortable_with_kids = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_elder = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_cats = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_dogs = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_men = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_women = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n arrival_date = models.CharField(null=True, blank=True, max_length=30,\n default='')\n where_was_found_name = models.CharField(null=True, blank=True,\n max_length=100, default='')\n is_neutered = models.BooleanField(default=0)\n was_rabbies_vaccinated_this_year = models.BooleanField(default=0)\n was_v_vaccinated_this_year = models.BooleanField(default=0)\n was_others_vaccinated_this_year = models.BooleanField(default=0)\n profile_picture = models.ImageField(null=True, blank=True)\n picture_1 = models.ImageField(null=True, blank=True)\n picture_2 = models.ImageField(null=True, blank=True)\n picture_3 = models.ImageField(null=True, blank=True)\n video = models.CharField(null=True, blank=True, max_length=150)\n qty_views = models.IntegerField(default=0)\n qty_favorites = models.IntegerField(default=0)\n qty_msg = models.IntegerField(default=0)\n qty_shares = models.IntegerField(default=0)\n ongs_id = models.ForeignKey(Ongs, on_delete=models.CASCADE, default=1)\n status = models.CharField(null=True, blank=True, max_length=50, choices\n =STATUS_OF_PETS, default='')\n coat_size = models.CharField(null=True, blank=True, max_length=50,\n choices=COAT_SIZE_OF_PETS, default='')\n walk_pull = models.BooleanField(default=0)\n walk_pull_hard = models.BooleanField(default=0)\n walk_dogs = models.BooleanField(default=0)\n walk_people = models.BooleanField(default=0)\n walk_fear = models.BooleanField(default=0)\n color_pattern = models.CharField(null=True, blank=True, max_length=30,\n choices=COLOR_PATTERN_OF_PETS, default='')\n size = models.CharField(null=True, blank=True, max_length=50, choices=\n SIZE_OF_PETS, default='')\n qty_preview_adoptions = models.IntegerField(default=0, choices=\n RETURN_OF_PETS)\n qty_adoptions_app = models.IntegerField(default=0)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n teeth_status = models.CharField(null=True, blank=True, max_length=50,\n choices=STATUS_OF_TEETH, default='')\n combo_adoption_id = models.IntegerField(default=0, null=True, blank=True)\n is_available_adoption = models.BooleanField(default=1)\n where_was_found = models.CharField(null=True, blank=True, max_length=50,\n choices=TYPES_STREET, default='')\n where_was_found_city = models.CharField(null=True, blank=True,\n max_length=100, default='')\n where_was_found_state = models.CharField(null=True, blank=True,\n max_length=100, default='')\n first_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n second_special_need = models.CharField(null=True, blank=True,\n max_length=100, choices=SPECIAL_NEED, default='')\n third_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n is_mixed_breed = models.BooleanField(default=1)\n is_walking_daily = models.BooleanField(default=0)\n is_acupuncture = models.BooleanField(default=0)\n is_physiotherapy = models.BooleanField(default=0)\n is_vermifuged = models.BooleanField(default=0)\n is_lice_free = models.BooleanField(default=0)\n is_dog_meet_necessary = models.BooleanField(default=0)\n walk_alone_dislike = models.BooleanField(default=0)\n walk_alone = models.BooleanField(default=0)\n walk_leash = models.BooleanField(default=0)\n id_at_ong = models.IntegerField(default=0, null=True, blank=True)\n\n def __str__(self):\n return self.name\n\n\n<function token>\n\n\nclass Favorites(models.Model):\n user_id = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.\n CASCADE)\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n\n\nclass Pet_disease_areas(models.Model):\n name = models.CharField(null=True, blank=True, max_length=300)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_disease(models.Model):\n AREA_OF_PETS = [('Cardiologia', 'Cardiologia'), ('Dermatologia',\n 'Dermatologia'), ('Endocrinologia', 'Endocrinologia'), (\n 'Gastroenterologia e Hepatologia',\n 'Gastroenterologia e Hepatologia'), ('Hematologia e Imunologia',\n 'Hematologia e Imunologia'), ('Infecciosas', 'Infecciosas'), (\n 'Intoxicaes e Envenemanentos', 'Intoxicaes e Envenemanentos'), (\n 'Musculoesquelticas', 'Musculoesquelticas'), (\n 'Nefrologia e Urologia', 'Nefrologia e Urologia'), ('Neonatologia',\n 'Neonatologia'), ('Neurologia', 'Neurologia'), ('Oftalmologia',\n 'Oftalmologia'), ('Oncologia', 'Oncologia'), ('Respiratrias',\n 'Respiratrias'), ('Teriogenologia', 'Teriogenologia'), (\n 'Vacinao e Nutrologia', 'Vacinao e Nutrologia'), ('Outras', 'Outras')]\n name = models.CharField(null=True, blank=True, max_length=150)\n area = models.CharField(null=True, blank=True, max_length=100, choices=\n AREA_OF_PETS, default='')\n area_id = models.ForeignKey(Pet_disease_areas, on_delete=models.CASCADE,\n null=True, blank=True)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_health(models.Model):\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial',\n 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), (\n 'Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Doena mental',\n 'Doena mental'), ('Epilepsia', 'Epilesia'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total'), ('No sente cheiro', 'No sente cheiro')\n ]\n STATUS = [('Curado', 'Curado'), ('Em tratamento', 'Em tratamento'), (\n 'Sem verba', 'Sem verba')]\n SPECIAL_TREATMENT = [('Fisioterapia', 'Fisioterapia'), ('Acunpuntura',\n 'Acunpuntura'), ('Caminhada diria', 'Caminhada diria')]\n TYPES = [('Fatal', 'Fatal'), ('Para o resto da vida',\n 'Para o resto da vida'), ('Temporria', 'Temporria')]\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n diagnose_date = models.DateField(null=True, blank=True)\n disease_status = models.CharField(null=True, blank=True, max_length=100,\n choices=STATUS, default='')\n disease_type = models.CharField(null=True, blank=True, max_length=100,\n choices=TYPES, default='')\n internal_notes = models.CharField(null=True, blank=True, max_length=300)\n which_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n which_special_treatment = models.CharField(null=True, blank=True,\n max_length=100, choices=SPECIAL_TREATMENT, default='')\n disease_name = models.CharField(null=True, blank=True, max_length=200)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n\n def __str__(self):\n return self.disease\n", "<import token>\n\n\nclass Estado(models.Model):\n <assignment token>\n <assignment token>\n <function token>\n\n\nclass Cidade(models.Model):\n nome = models.CharField(null=True, blank=True, max_length=120)\n estado = models.ForeignKey(Estado, on_delete=models.CASCADE)\n estado_uf = models.CharField(null=True, blank=True, max_length=5)\n\n def __str__(self):\n return self.nome\n\n\nclass Ongs(models.Model):\n ADOPTION_VALUE = [('Gratuito', 'Gratuito'), ('10,00', '10,00'), (\n '15,00', '15,00'), ('20,00', '20,00'), ('25,00', '25,00'), ('30,00',\n '30,00'), ('35,00', '35,00'), ('40,00', '40,00'), ('45,00', '45,00'\n ), ('50,00', '50,00'), ('55,00', '55,00'), ('60,00', '60,00'), (\n '65,00', '65,00'), ('70,00', '70,00'), ('75,00', '75,00'), ('80,00',\n '80,00'), ('85,00', '85,00'), ('90,00', '90,00'), ('95,00', '95,00'\n ), ('100,00', '100,00')]\n OPEN_HOURS = [('06:00', '06:00'), ('06:30', '06:30'), ('07:00', '07:00'\n ), ('07:30', '07:30'), ('08:00', '08:00'), ('08:30', '08:30'), (\n '09:00', '09:00'), ('09:30', '09:30'), ('10:00', '10:00'), ('10:30',\n '10:30'), ('11:00', '11:00'), ('11:30', '11:30'), ('12:00', '12:00'\n ), ('12:30', '12:30')]\n CLOSE_HOURS = [('16:00', '16:00'), ('16:30', '16:30'), ('17:00',\n '17:00'), ('17:30', '17:30'), ('18:00', '18:00'), ('18:30', '18:30'\n ), ('19:00', '19:00'), ('19:30', '19:30'), ('20:00', '20:00'), (\n '20:30', '20:30'), ('21:00', '21:00'), ('21:30', '21:30'), ('22:00',\n '22:00'), ('22:30', '22:30')]\n DDD = [('11', '11'), ('12', '12'), ('13', '13'), ('14', '14'), ('15',\n '15'), ('16', '16'), ('17', '17'), ('18', '18'), ('19', '19'), (\n '21', '21'), ('22', '22'), ('24', '24'), ('27', '27'), ('28', '28'),\n ('31', '31'), ('32', '32'), ('33', '33'), ('34', '34'), ('35', '35'\n ), ('37', '37'), ('38', '38'), ('41', '41'), ('42', '42'), ('43',\n '43'), ('44', '44'), ('45', '45'), ('46', '46'), ('47', '47'), (\n '48', '48'), ('49', '49'), ('51', '51'), ('53', '53'), ('54', '54'),\n ('55', '55'), ('61', '61'), ('62', '62'), ('63', '63'), ('64', '64'\n ), ('65', '65'), ('66', '66'), ('67', '67'), ('68', '68'), ('69',\n '69'), ('71', '71'), ('73', '73'), ('74', '74'), ('75', '75'), (\n '77', '77'), ('79', '79'), ('81', '81'), ('82', '82'), ('83', '83'),\n ('84', '84'), ('85', '85'), ('86', '86'), ('87', '87'), ('88', '88'\n ), ('89', '89'), ('91', '91'), ('92', '92'), ('93', '93'), ('94',\n '94'), ('95', '95'), ('96', '96'), ('97', '97'), ('98', '98'), (\n '99', '99')]\n TRANSPORTATION = [('Grtis', 'Grtis'), ('1,00', '1,00'), ('2,00', '2,00'\n ), ('3,00', '3,00'), ('4,00', '4,00'), ('5,00', '5,00'), ('7,00',\n '7,00'), ('10,00', '10,00'), ('12,00', '12,00'), ('15,00', '15,00'),\n ('18,00', '18,00'), ('20,00', '20,00'), ('25,00', '25,00'), (\n '30,00', '30,00'), ('35,00', '35,00'), ('40,00', '40,00'), ('45,00',\n '45,00'), ('50,00', '50,00'), ('55,00', '65,00'), ('60,00', '60,00')]\n name = models.CharField(null=True, blank=True, max_length=40)\n rate = models.CharField(null=True, blank=True, default='Gratuito',\n max_length=8, choices=ADOPTION_VALUE)\n hour_open = models.CharField(blank=True, null=True, default='',\n max_length=5, choices=OPEN_HOURS)\n hour_close = models.CharField(blank=True, null=True, default='',\n max_length=5, choices=CLOSE_HOURS)\n mission_statement = models.CharField(null=True, blank=True, default='',\n max_length=300)\n description = models.CharField(null=True, blank=True, default='',\n max_length=500)\n web_site = models.CharField(null=True, blank=True, max_length=150)\n phone_number_ddd = models.CharField(null=True, blank=True, max_length=3,\n choices=DDD)\n phone_number = models.CharField(null=True, blank=True, max_length=12)\n email = models.CharField(null=True, blank=True, max_length=100)\n facebook = models.CharField(null=True, blank=True, max_length=100)\n instagram = models.CharField(null=True, blank=True, max_length=40)\n logo_link = models.ImageField(null=True, blank=True)\n picture_1 = models.ImageField(null=True, blank=True)\n picture_2 = models.ImageField(null=True, blank=True)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n city_id = models.ForeignKey(Cidade, on_delete=models.CASCADE, null=True,\n blank=True)\n state_id = models.ForeignKey(Estado, on_delete=models.CASCADE, null=\n True, blank=True)\n is_foster_ok = models.BooleanField(default=0)\n is_volunteer_ok = models.BooleanField(default=0)\n has_transportation = models.BooleanField(default=0)\n cnpj = models.CharField(null=True, blank=True, max_length=18)\n founded_date = models.CharField(null=True, blank=True, max_length=30,\n default='')\n is_approved = models.BooleanField(default=0)\n transportation_price = models.CharField(null=True, blank=True,\n max_length=7, choices=TRANSPORTATION)\n\n def __str__(self):\n return self.name\n\n\nclass User(AbstractUser):\n PERMISSION = [('Editar tudo', 'Editar tudo'), ('Editar equipe e pets',\n 'Editar equipe e pets'), ('Editar pets', 'Editar pets'), (\n 'Visualizar equipe e pets', 'Visualizar equipe e pets'), (\n 'Visualizar pets', 'Visualizar pets')]\n ROLE = [('Advogado(a)', 'Advogado(a)'), ('Auxiliar de veterinrio',\n 'Auxiliar de veterinrio'), ('Bilogo(a)', 'Bilogo(a)'), (\n 'Colaborador(a)', 'Colaborador(a)'), ('Departamento administrativo',\n 'Departamento administrativo'), ('Departamento de atendimento',\n 'Departamento de atendimento'), ('Departamento de eventos',\n 'Departamento de eventos'), ('Departamento educativo',\n 'Departamento educativo'), ('Departamento de marketing',\n 'Departamento de marketing'), ('Departamento financeiro',\n 'Departamento financeiro'), ('Diretor(a) administrativo',\n 'Diretor(a) administrativo'), ('Diretor(a) de eventos',\n 'Diretor(a) de eventos'), ('Diretor(a) financeiro',\n 'Diretor(a) financeiro'), ('Diretor(a) geral', 'Diretor(a) geral'),\n ('Diretor(a) marketing', 'Diretor(a) marketing'), (\n 'Diretor(a) tcnico', 'Diretor(a) tcnico'), ('Funcionrio(a)',\n 'Funcionrio(a)'), ('Fundador(a)', 'Fundador(a)'), ('Presidente',\n 'Presidente'), ('Protetor(a) associado', 'Protetor(a) associado'),\n ('Secretrio(a)', 'Secretrio(a)'), ('Suplente de secretrio',\n 'Suplente de secretrio'), ('Suplente de presidente',\n 'Suplente de presidente'), ('Suplente de vice-presidente',\n 'Suplente de vice-presidente'), ('Tesoreiro(a)', 'Tesoreiro(a)'), (\n 'Veterinrio(a)', 'Veterinrio(a)'), ('Vice-presidente',\n 'Vice-presidente'), ('Voluntrio(a)', 'Voluntrio(a)')]\n permission_ong = models.CharField(null=True, blank=True, max_length=30,\n choices=PERMISSION)\n role_ong = models.CharField(null=True, blank=True, max_length=30,\n choices=ROLE)\n birth_date = models.DateField(null=True, blank=True)\n has_confirmed_email = models.BooleanField(default=0)\n country = models.CharField(null=True, blank=True, max_length=50)\n state_code = models.CharField(null=True, blank=True, max_length=3)\n city = models.CharField(null=True, blank=True, max_length=50)\n neighborhood = models.CharField(null=True, blank=True, max_length=50)\n rg = models.CharField(null=True, blank=True, max_length=12)\n cpf = models.CharField(null=True, blank=True, max_length=15)\n phone_number_ddd = models.CharField(null=True, max_length=3)\n phone_number = models.CharField(null=True, blank=True, max_length=10)\n address_street = models.CharField(null=True, blank=True, max_length=70)\n address_number = models.CharField(null=True, blank=True, max_length=6)\n address_complement = models.CharField(null=True, blank=True, max_length=10)\n postal_code = models.CharField(null=True, blank=True, max_length=10)\n facebook_id = models.CharField(null=True, blank=True, max_length=30)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n ongs_id = models.ForeignKey(Ongs, on_delete=models.SET_NULL, null=True,\n blank=True)\n\n\nclass Pet_breed(models.Model):\n name = models.CharField(null=True, blank=True, max_length=100)\n species = models.CharField(null=True, blank=True, max_length=30)\n\n def __str__(self):\n return self.name\n\n\nclass Pet(models.Model):\n COLOR_OF_PETS = [('Amarelo', 'Amarelo'), ('Branco', 'Branco'), ('Cinza',\n 'Cinza'), ('Creme', 'Creme'), ('Laranja', 'Laranja'), ('Marrom',\n 'Marrom'), ('Preto', 'Preto')]\n COLOR_PATTERN_OF_PETS = [('Arlequim', 'Arlequim'), ('Belton', 'Belton'),\n ('Bicolor', 'Bicolor'), ('Fulvo', 'Fulvo'), ('Lobeiro', 'Ruo'), (\n 'Merle', 'Merle'), ('Pintaigado', 'Pintaigado'), ('Ruo', 'Ruo'), (\n 'Sal e Pimenta', 'Sal e Pimenta'), ('Tigrado', 'Tigrado'), (\n 'Unicolor', 'Unicolor')]\n GENDER_OF_PETS = [('Fmea', 'Fmea'), ('Macho', 'Macho')]\n ACTIVITY_LEVEL_PETS = [('Hiperativo', 'Hiperativo'), ('Ativo', 'Ativo'),\n ('Moderado', 'Moderado'), ('Baixo', 'Baixo')]\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('Apenas alguns dentes', 'Apenas alguns dentes'), (\n 'Cegueira parcial', 'Cegueira parcial'), ('Cegueira total',\n 'Cegueira total'), ('Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Nenhum dente',\n 'Nenhum dente'), ('Doena Neural', 'Doena Neural'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total')]\n CONFORTABLE = [('No', 'No'), ('Sim', 'Sim'), ('No sei', 'No sei')]\n STATUS_OF_PETS = [('A caminho do novo lar', 'A caminho do novo lar'), (\n 'Adoo pendente', 'Adoo pendente'), ('Adotado', 'Adotado'), (\n 'Doente', 'Doente'), ('Esperando visita', 'Esperando visita'), (\n 'Falecido', 'Falecido'), ('Retornando para abrigo',\n 'Retornando para abrigo'), ('Lar provisrio', 'Lar provisrio'), (\n 'Lar provisrio pelo FDS', 'Lar provisrio pelo FDS')]\n STATUS_OF_TEETH = [('Perfeitos', 'Perfeitos'), ('Um pouco de trtaro',\n 'Um pouco de trtaro'), ('Trtaro mediano', 'Trtaro mediano'), (\n 'Perdeu alguns dentes', 'Perdeu alguns dentes'), (\n 'Dentes permitem apenas comida mole',\n 'Dentes permitem apenas comida mole'), (\n 'Perdeu quase todos ou todos os dentes',\n 'Perdeu quase todos ou todos os dentes')]\n COAT_OF_PETS = [('Arrepiado ', 'Arrepiado'), ('Liso', 'Liso'), (\n 'Ondulado', 'Ondulado')]\n COAT_SIZE_OF_PETS = [('Curto', 'Curto'), ('Mdio', 'Mdio'), ('Longo',\n 'Longo')]\n SPECIES_OF_PETS = [('Cachorro', 'Cachorro'), ('Gato', 'Gato'), (\n 'Outros', 'Outros')]\n SIZE_OF_PETS = [('Mini', 'Mini'), ('Pequeno', 'Pequeno'), ('Mdio',\n 'Mdio'), ('Grande', 'Grande'), ('Gigante', 'Gigante')]\n AGE_CATEGORY_OF_PETS = [('Filhote', 'Filhote'), ('Adolescente',\n 'Adolescente'), ('Adulto', 'Adulto'), ('Maduro', 'Maduro'), (\n 'Idoso', 'Idoso')]\n AGE_OF_PETS = [('1 ms', '1 ms'), ('2 meses', '2 meses'), ('3 meses',\n '3 meses'), ('4 meses', '4 meses'), ('5 meses', '5 meses'), (\n '6 meses', '6 meses'), ('7 meses', '7 meses'), ('8 meses',\n '8 meses'), ('9 meses', '9 meses'), ('10 meses', '10 meses'), (\n '11 meses', '11 meses'), ('1 ano', '1 ano'), ('2 anos', '2 anos'),\n ('3 anos', '3 anos'), ('4 anos', '4 anos'), ('5 anos', '5 anos'), (\n '6 anos', '6 anos'), ('7 anos', '7 anos'), ('8 anos', '8 anos'), (\n '9 anos', '9 anos'), ('10 anos', '10 anos'), ('11 anos', '11 anos'),\n ('12 anos', '12 anos'), ('13 anos', '13 anos'), ('14 anos',\n '14 anos'), ('15 anos', '15 anos'), ('16 anos', '16 anos'), (\n '17 anos', '17 anos'), ('18 anos', '18 anos'), ('19 anos',\n '19 anos'), ('20 anos', '20 anos'), ('21 anos', '21 anos'), (\n '22 anos', '22 anos'), ('23 anos', '23 anos'), ('24 anos',\n '24 anos'), ('25 anos', '25 anos'), ('26 anos', '26 anos'), (\n '27 anos', '27 anos'), ('28 anos', '28 anos'), ('29 anos',\n '29 anos'), ('30 anos', '30 anos'), ('No sei', 'No sei')]\n DAY_OF_PETS = [('No sei', 'No sei'), ('1', '1'), ('2', '2'), ('3', '3'),\n ('4', '4'), ('5', '5'), ('6', '6'), ('7', '7'), ('8', '8'), ('9',\n '9'), ('10', '10'), ('11', '11'), ('12', '12'), ('13', '13'), ('14',\n '14'), ('15', '15'), ('16', '16'), ('17', '17'), ('18', '18'), (\n '19', '19'), ('20', '20'), ('21', '21'), ('22', '22'), ('23', '23'),\n ('24', '24'), ('25', '25'), ('26', '26'), ('27', '27'), ('28', '28'\n ), ('29', '29'), ('30', '30'), ('31', '31')]\n MONTH_OF_PETS = [('No sei', 'No sei'), ('Janeiro', 'Janeiro'), (\n 'Fevereiro', 'Fevereiro'), ('Maro', 'Maro'), ('Abril', 'Abril'), (\n 'Maio', 'Maio'), ('Junho', 'Junho'), ('Julho', 'Julho'), ('Agosto',\n 'Agosto'), ('Setembro', 'Setembro'), ('Outubro', 'Outubro'), (\n 'Novembro', 'Novembro'), ('Dezembro', 'Dezembro')]\n AGE_OF_PETS = [('1 ms', '1 ms'), ('2 meses', '2 meses'), ('3 meses',\n '3 meses'), ('4 meses', '4 meses'), ('5 meses', '5 meses'), (\n '6 meses', '6 meses'), ('7 meses', '7 meses'), ('8 meses',\n '8 meses'), ('9 meses', '9 meses'), ('10 meses', '10 meses'), (\n '11 meses', '11 meses'), ('1 ano', '1 ano'), ('2 anos', '2 anos'),\n ('3 anos', '3 anos'), ('4 anos', '4 anos'), ('5 anos', '5 anos'), (\n '6 anos', '6 anos'), ('7 anos', '7 anos'), ('8 anos', '8 anos'), (\n '9 anos', '9 anos'), ('10 anos', '10 anos'), ('11 anos', '11 anos'),\n ('12 anos', '12 anos'), ('13 anos', '13 anos'), ('14 anos',\n '14 anos'), ('15 anos', '15 anos'), ('16 anos', '16 anos'), (\n '17 anos', '17 anos'), ('18 anos', '18 anos'), ('19 anos',\n '19 anos'), ('20 anos', '20 anos'), ('21 anos', '21 anos'), (\n '22 anos', '22 anos'), ('23 anos', '23 anos'), ('24 anos',\n '24 anos'), ('25 anos', '25 anos'), ('26 anos', '26 anos'), (\n '27 anos', '27 anos'), ('28 anos', '28 anos'), ('29 anos',\n '29 anos'), ('30 anos', '30 anos'), ('Menos de 1 ano',\n 'Menos de 1 ano')]\n RETURN_OF_PETS = [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6\n ), (7, 7), (8, 8), (9, 9), (10, 10)]\n TYPES_STREET = [('Alameda', 'Alameda'), ('Avenida', 'Avenida'), (\n 'Chcara', 'Chcara'), ('Colnia', 'Colnia'), ('Condomnio',\n 'Condomnio'), ('Conjunto', 'Conjunto'), ('Estao', 'Estao'), (\n 'Estrada', 'Estrada'), ('Favela', 'Favela'), ('Fazenda', 'Fazenda'),\n ('Jardim', 'Jardim'), ('Ladeira', 'Ladeira'), ('Lago', 'Lago'), (\n 'Largo', 'Largo'), ('Loteamento', 'Loteamento'), ('Passarela',\n 'Passarela'), ('Parque', 'Parque'), ('Praa', 'Praa'), ('Praia',\n 'Praia'), ('Rodovia', 'Rodovia'), ('Rua', 'Rua'), ('Setor', 'Setor'\n ), ('Travessa', 'Travessa'), ('Viaduto', 'Viaduto'), ('Vila', 'Vila')]\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial',\n 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), (\n 'Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Doena mental',\n 'Doena mental'), ('Epilepsia', 'Epilesia'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total'), ('No sente cheiro', 'No sente cheiro')\n ]\n\n def get_years():\n now = int(timezone.now().year) + 1\n past = timezone.now().year - 30\n a = []\n for i in reversed(range(past, now)):\n a.append((i, i))\n a = tuple(a)\n return a\n name = models.CharField('Nome', null=True, blank=True, max_length=30)\n pet_description = models.CharField(null=True, blank=True, max_length=700)\n age = models.CharField(null=True, blank=True, max_length=40, choices=\n AGE_OF_PETS, default='')\n age_category = models.CharField(null=True, blank=True, max_length=30,\n choices=AGE_CATEGORY_OF_PETS, default='')\n species = models.CharField(null=True, blank=True, max_length=25,\n choices=SPECIES_OF_PETS, default='')\n primary_breed = models.ForeignKey(Pet_breed, on_delete=models.CASCADE,\n null=True, blank=True, related_name='primary_breed')\n secondary_breed = models.ForeignKey(Pet_breed, on_delete=models.CASCADE,\n null=True, blank=True, related_name='secondary_breed')\n color = models.CharField(null=True, blank=True, max_length=30, choices=\n COLOR_OF_PETS, default='')\n coat = models.CharField(null=True, blank=True, max_length=20, choices=\n COAT_OF_PETS, default='')\n gender = models.CharField(null=True, blank=True, max_length=10, choices\n =GENDER_OF_PETS, default='')\n birth_day = models.CharField(default=0, null=True, blank=True,\n max_length=30, choices=DAY_OF_PETS)\n birth_month = models.CharField(default=0, null=True, blank=True,\n max_length=30, choices=MONTH_OF_PETS)\n birth_year = models.IntegerField(default=0, null=True, blank=True,\n choices=get_years())\n is_microchiped = models.BooleanField(default=0)\n activity_level = models.CharField(null=True, blank=True, max_length=40,\n choices=ACTIVITY_LEVEL_PETS, default='')\n is_basic_trainned = models.BooleanField(default=0)\n confortable_with_kids = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_elder = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_cats = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_dogs = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_men = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_women = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n arrival_date = models.CharField(null=True, blank=True, max_length=30,\n default='')\n where_was_found_name = models.CharField(null=True, blank=True,\n max_length=100, default='')\n is_neutered = models.BooleanField(default=0)\n was_rabbies_vaccinated_this_year = models.BooleanField(default=0)\n was_v_vaccinated_this_year = models.BooleanField(default=0)\n was_others_vaccinated_this_year = models.BooleanField(default=0)\n profile_picture = models.ImageField(null=True, blank=True)\n picture_1 = models.ImageField(null=True, blank=True)\n picture_2 = models.ImageField(null=True, blank=True)\n picture_3 = models.ImageField(null=True, blank=True)\n video = models.CharField(null=True, blank=True, max_length=150)\n qty_views = models.IntegerField(default=0)\n qty_favorites = models.IntegerField(default=0)\n qty_msg = models.IntegerField(default=0)\n qty_shares = models.IntegerField(default=0)\n ongs_id = models.ForeignKey(Ongs, on_delete=models.CASCADE, default=1)\n status = models.CharField(null=True, blank=True, max_length=50, choices\n =STATUS_OF_PETS, default='')\n coat_size = models.CharField(null=True, blank=True, max_length=50,\n choices=COAT_SIZE_OF_PETS, default='')\n walk_pull = models.BooleanField(default=0)\n walk_pull_hard = models.BooleanField(default=0)\n walk_dogs = models.BooleanField(default=0)\n walk_people = models.BooleanField(default=0)\n walk_fear = models.BooleanField(default=0)\n color_pattern = models.CharField(null=True, blank=True, max_length=30,\n choices=COLOR_PATTERN_OF_PETS, default='')\n size = models.CharField(null=True, blank=True, max_length=50, choices=\n SIZE_OF_PETS, default='')\n qty_preview_adoptions = models.IntegerField(default=0, choices=\n RETURN_OF_PETS)\n qty_adoptions_app = models.IntegerField(default=0)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n teeth_status = models.CharField(null=True, blank=True, max_length=50,\n choices=STATUS_OF_TEETH, default='')\n combo_adoption_id = models.IntegerField(default=0, null=True, blank=True)\n is_available_adoption = models.BooleanField(default=1)\n where_was_found = models.CharField(null=True, blank=True, max_length=50,\n choices=TYPES_STREET, default='')\n where_was_found_city = models.CharField(null=True, blank=True,\n max_length=100, default='')\n where_was_found_state = models.CharField(null=True, blank=True,\n max_length=100, default='')\n first_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n second_special_need = models.CharField(null=True, blank=True,\n max_length=100, choices=SPECIAL_NEED, default='')\n third_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n is_mixed_breed = models.BooleanField(default=1)\n is_walking_daily = models.BooleanField(default=0)\n is_acupuncture = models.BooleanField(default=0)\n is_physiotherapy = models.BooleanField(default=0)\n is_vermifuged = models.BooleanField(default=0)\n is_lice_free = models.BooleanField(default=0)\n is_dog_meet_necessary = models.BooleanField(default=0)\n walk_alone_dislike = models.BooleanField(default=0)\n walk_alone = models.BooleanField(default=0)\n walk_leash = models.BooleanField(default=0)\n id_at_ong = models.IntegerField(default=0, null=True, blank=True)\n\n def __str__(self):\n return self.name\n\n\n<function token>\n\n\nclass Favorites(models.Model):\n user_id = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.\n CASCADE)\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n\n\nclass Pet_disease_areas(models.Model):\n name = models.CharField(null=True, blank=True, max_length=300)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_disease(models.Model):\n AREA_OF_PETS = [('Cardiologia', 'Cardiologia'), ('Dermatologia',\n 'Dermatologia'), ('Endocrinologia', 'Endocrinologia'), (\n 'Gastroenterologia e Hepatologia',\n 'Gastroenterologia e Hepatologia'), ('Hematologia e Imunologia',\n 'Hematologia e Imunologia'), ('Infecciosas', 'Infecciosas'), (\n 'Intoxicaes e Envenemanentos', 'Intoxicaes e Envenemanentos'), (\n 'Musculoesquelticas', 'Musculoesquelticas'), (\n 'Nefrologia e Urologia', 'Nefrologia e Urologia'), ('Neonatologia',\n 'Neonatologia'), ('Neurologia', 'Neurologia'), ('Oftalmologia',\n 'Oftalmologia'), ('Oncologia', 'Oncologia'), ('Respiratrias',\n 'Respiratrias'), ('Teriogenologia', 'Teriogenologia'), (\n 'Vacinao e Nutrologia', 'Vacinao e Nutrologia'), ('Outras', 'Outras')]\n name = models.CharField(null=True, blank=True, max_length=150)\n area = models.CharField(null=True, blank=True, max_length=100, choices=\n AREA_OF_PETS, default='')\n area_id = models.ForeignKey(Pet_disease_areas, on_delete=models.CASCADE,\n null=True, blank=True)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_health(models.Model):\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial',\n 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), (\n 'Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Doena mental',\n 'Doena mental'), ('Epilepsia', 'Epilesia'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total'), ('No sente cheiro', 'No sente cheiro')\n ]\n STATUS = [('Curado', 'Curado'), ('Em tratamento', 'Em tratamento'), (\n 'Sem verba', 'Sem verba')]\n SPECIAL_TREATMENT = [('Fisioterapia', 'Fisioterapia'), ('Acunpuntura',\n 'Acunpuntura'), ('Caminhada diria', 'Caminhada diria')]\n TYPES = [('Fatal', 'Fatal'), ('Para o resto da vida',\n 'Para o resto da vida'), ('Temporria', 'Temporria')]\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n diagnose_date = models.DateField(null=True, blank=True)\n disease_status = models.CharField(null=True, blank=True, max_length=100,\n choices=STATUS, default='')\n disease_type = models.CharField(null=True, blank=True, max_length=100,\n choices=TYPES, default='')\n internal_notes = models.CharField(null=True, blank=True, max_length=300)\n which_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n which_special_treatment = models.CharField(null=True, blank=True,\n max_length=100, choices=SPECIAL_TREATMENT, default='')\n disease_name = models.CharField(null=True, blank=True, max_length=200)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n\n def __str__(self):\n return self.disease\n", "<import token>\n<class token>\n\n\nclass Cidade(models.Model):\n nome = models.CharField(null=True, blank=True, max_length=120)\n estado = models.ForeignKey(Estado, on_delete=models.CASCADE)\n estado_uf = models.CharField(null=True, blank=True, max_length=5)\n\n def __str__(self):\n return self.nome\n\n\nclass Ongs(models.Model):\n ADOPTION_VALUE = [('Gratuito', 'Gratuito'), ('10,00', '10,00'), (\n '15,00', '15,00'), ('20,00', '20,00'), ('25,00', '25,00'), ('30,00',\n '30,00'), ('35,00', '35,00'), ('40,00', '40,00'), ('45,00', '45,00'\n ), ('50,00', '50,00'), ('55,00', '55,00'), ('60,00', '60,00'), (\n '65,00', '65,00'), ('70,00', '70,00'), ('75,00', '75,00'), ('80,00',\n '80,00'), ('85,00', '85,00'), ('90,00', '90,00'), ('95,00', '95,00'\n ), ('100,00', '100,00')]\n OPEN_HOURS = [('06:00', '06:00'), ('06:30', '06:30'), ('07:00', '07:00'\n ), ('07:30', '07:30'), ('08:00', '08:00'), ('08:30', '08:30'), (\n '09:00', '09:00'), ('09:30', '09:30'), ('10:00', '10:00'), ('10:30',\n '10:30'), ('11:00', '11:00'), ('11:30', '11:30'), ('12:00', '12:00'\n ), ('12:30', '12:30')]\n CLOSE_HOURS = [('16:00', '16:00'), ('16:30', '16:30'), ('17:00',\n '17:00'), ('17:30', '17:30'), ('18:00', '18:00'), ('18:30', '18:30'\n ), ('19:00', '19:00'), ('19:30', '19:30'), ('20:00', '20:00'), (\n '20:30', '20:30'), ('21:00', '21:00'), ('21:30', '21:30'), ('22:00',\n '22:00'), ('22:30', '22:30')]\n DDD = [('11', '11'), ('12', '12'), ('13', '13'), ('14', '14'), ('15',\n '15'), ('16', '16'), ('17', '17'), ('18', '18'), ('19', '19'), (\n '21', '21'), ('22', '22'), ('24', '24'), ('27', '27'), ('28', '28'),\n ('31', '31'), ('32', '32'), ('33', '33'), ('34', '34'), ('35', '35'\n ), ('37', '37'), ('38', '38'), ('41', '41'), ('42', '42'), ('43',\n '43'), ('44', '44'), ('45', '45'), ('46', '46'), ('47', '47'), (\n '48', '48'), ('49', '49'), ('51', '51'), ('53', '53'), ('54', '54'),\n ('55', '55'), ('61', '61'), ('62', '62'), ('63', '63'), ('64', '64'\n ), ('65', '65'), ('66', '66'), ('67', '67'), ('68', '68'), ('69',\n '69'), ('71', '71'), ('73', '73'), ('74', '74'), ('75', '75'), (\n '77', '77'), ('79', '79'), ('81', '81'), ('82', '82'), ('83', '83'),\n ('84', '84'), ('85', '85'), ('86', '86'), ('87', '87'), ('88', '88'\n ), ('89', '89'), ('91', '91'), ('92', '92'), ('93', '93'), ('94',\n '94'), ('95', '95'), ('96', '96'), ('97', '97'), ('98', '98'), (\n '99', '99')]\n TRANSPORTATION = [('Grtis', 'Grtis'), ('1,00', '1,00'), ('2,00', '2,00'\n ), ('3,00', '3,00'), ('4,00', '4,00'), ('5,00', '5,00'), ('7,00',\n '7,00'), ('10,00', '10,00'), ('12,00', '12,00'), ('15,00', '15,00'),\n ('18,00', '18,00'), ('20,00', '20,00'), ('25,00', '25,00'), (\n '30,00', '30,00'), ('35,00', '35,00'), ('40,00', '40,00'), ('45,00',\n '45,00'), ('50,00', '50,00'), ('55,00', '65,00'), ('60,00', '60,00')]\n name = models.CharField(null=True, blank=True, max_length=40)\n rate = models.CharField(null=True, blank=True, default='Gratuito',\n max_length=8, choices=ADOPTION_VALUE)\n hour_open = models.CharField(blank=True, null=True, default='',\n max_length=5, choices=OPEN_HOURS)\n hour_close = models.CharField(blank=True, null=True, default='',\n max_length=5, choices=CLOSE_HOURS)\n mission_statement = models.CharField(null=True, blank=True, default='',\n max_length=300)\n description = models.CharField(null=True, blank=True, default='',\n max_length=500)\n web_site = models.CharField(null=True, blank=True, max_length=150)\n phone_number_ddd = models.CharField(null=True, blank=True, max_length=3,\n choices=DDD)\n phone_number = models.CharField(null=True, blank=True, max_length=12)\n email = models.CharField(null=True, blank=True, max_length=100)\n facebook = models.CharField(null=True, blank=True, max_length=100)\n instagram = models.CharField(null=True, blank=True, max_length=40)\n logo_link = models.ImageField(null=True, blank=True)\n picture_1 = models.ImageField(null=True, blank=True)\n picture_2 = models.ImageField(null=True, blank=True)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n city_id = models.ForeignKey(Cidade, on_delete=models.CASCADE, null=True,\n blank=True)\n state_id = models.ForeignKey(Estado, on_delete=models.CASCADE, null=\n True, blank=True)\n is_foster_ok = models.BooleanField(default=0)\n is_volunteer_ok = models.BooleanField(default=0)\n has_transportation = models.BooleanField(default=0)\n cnpj = models.CharField(null=True, blank=True, max_length=18)\n founded_date = models.CharField(null=True, blank=True, max_length=30,\n default='')\n is_approved = models.BooleanField(default=0)\n transportation_price = models.CharField(null=True, blank=True,\n max_length=7, choices=TRANSPORTATION)\n\n def __str__(self):\n return self.name\n\n\nclass User(AbstractUser):\n PERMISSION = [('Editar tudo', 'Editar tudo'), ('Editar equipe e pets',\n 'Editar equipe e pets'), ('Editar pets', 'Editar pets'), (\n 'Visualizar equipe e pets', 'Visualizar equipe e pets'), (\n 'Visualizar pets', 'Visualizar pets')]\n ROLE = [('Advogado(a)', 'Advogado(a)'), ('Auxiliar de veterinrio',\n 'Auxiliar de veterinrio'), ('Bilogo(a)', 'Bilogo(a)'), (\n 'Colaborador(a)', 'Colaborador(a)'), ('Departamento administrativo',\n 'Departamento administrativo'), ('Departamento de atendimento',\n 'Departamento de atendimento'), ('Departamento de eventos',\n 'Departamento de eventos'), ('Departamento educativo',\n 'Departamento educativo'), ('Departamento de marketing',\n 'Departamento de marketing'), ('Departamento financeiro',\n 'Departamento financeiro'), ('Diretor(a) administrativo',\n 'Diretor(a) administrativo'), ('Diretor(a) de eventos',\n 'Diretor(a) de eventos'), ('Diretor(a) financeiro',\n 'Diretor(a) financeiro'), ('Diretor(a) geral', 'Diretor(a) geral'),\n ('Diretor(a) marketing', 'Diretor(a) marketing'), (\n 'Diretor(a) tcnico', 'Diretor(a) tcnico'), ('Funcionrio(a)',\n 'Funcionrio(a)'), ('Fundador(a)', 'Fundador(a)'), ('Presidente',\n 'Presidente'), ('Protetor(a) associado', 'Protetor(a) associado'),\n ('Secretrio(a)', 'Secretrio(a)'), ('Suplente de secretrio',\n 'Suplente de secretrio'), ('Suplente de presidente',\n 'Suplente de presidente'), ('Suplente de vice-presidente',\n 'Suplente de vice-presidente'), ('Tesoreiro(a)', 'Tesoreiro(a)'), (\n 'Veterinrio(a)', 'Veterinrio(a)'), ('Vice-presidente',\n 'Vice-presidente'), ('Voluntrio(a)', 'Voluntrio(a)')]\n permission_ong = models.CharField(null=True, blank=True, max_length=30,\n choices=PERMISSION)\n role_ong = models.CharField(null=True, blank=True, max_length=30,\n choices=ROLE)\n birth_date = models.DateField(null=True, blank=True)\n has_confirmed_email = models.BooleanField(default=0)\n country = models.CharField(null=True, blank=True, max_length=50)\n state_code = models.CharField(null=True, blank=True, max_length=3)\n city = models.CharField(null=True, blank=True, max_length=50)\n neighborhood = models.CharField(null=True, blank=True, max_length=50)\n rg = models.CharField(null=True, blank=True, max_length=12)\n cpf = models.CharField(null=True, blank=True, max_length=15)\n phone_number_ddd = models.CharField(null=True, max_length=3)\n phone_number = models.CharField(null=True, blank=True, max_length=10)\n address_street = models.CharField(null=True, blank=True, max_length=70)\n address_number = models.CharField(null=True, blank=True, max_length=6)\n address_complement = models.CharField(null=True, blank=True, max_length=10)\n postal_code = models.CharField(null=True, blank=True, max_length=10)\n facebook_id = models.CharField(null=True, blank=True, max_length=30)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n ongs_id = models.ForeignKey(Ongs, on_delete=models.SET_NULL, null=True,\n blank=True)\n\n\nclass Pet_breed(models.Model):\n name = models.CharField(null=True, blank=True, max_length=100)\n species = models.CharField(null=True, blank=True, max_length=30)\n\n def __str__(self):\n return self.name\n\n\nclass Pet(models.Model):\n COLOR_OF_PETS = [('Amarelo', 'Amarelo'), ('Branco', 'Branco'), ('Cinza',\n 'Cinza'), ('Creme', 'Creme'), ('Laranja', 'Laranja'), ('Marrom',\n 'Marrom'), ('Preto', 'Preto')]\n COLOR_PATTERN_OF_PETS = [('Arlequim', 'Arlequim'), ('Belton', 'Belton'),\n ('Bicolor', 'Bicolor'), ('Fulvo', 'Fulvo'), ('Lobeiro', 'Ruo'), (\n 'Merle', 'Merle'), ('Pintaigado', 'Pintaigado'), ('Ruo', 'Ruo'), (\n 'Sal e Pimenta', 'Sal e Pimenta'), ('Tigrado', 'Tigrado'), (\n 'Unicolor', 'Unicolor')]\n GENDER_OF_PETS = [('Fmea', 'Fmea'), ('Macho', 'Macho')]\n ACTIVITY_LEVEL_PETS = [('Hiperativo', 'Hiperativo'), ('Ativo', 'Ativo'),\n ('Moderado', 'Moderado'), ('Baixo', 'Baixo')]\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('Apenas alguns dentes', 'Apenas alguns dentes'), (\n 'Cegueira parcial', 'Cegueira parcial'), ('Cegueira total',\n 'Cegueira total'), ('Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Nenhum dente',\n 'Nenhum dente'), ('Doena Neural', 'Doena Neural'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total')]\n CONFORTABLE = [('No', 'No'), ('Sim', 'Sim'), ('No sei', 'No sei')]\n STATUS_OF_PETS = [('A caminho do novo lar', 'A caminho do novo lar'), (\n 'Adoo pendente', 'Adoo pendente'), ('Adotado', 'Adotado'), (\n 'Doente', 'Doente'), ('Esperando visita', 'Esperando visita'), (\n 'Falecido', 'Falecido'), ('Retornando para abrigo',\n 'Retornando para abrigo'), ('Lar provisrio', 'Lar provisrio'), (\n 'Lar provisrio pelo FDS', 'Lar provisrio pelo FDS')]\n STATUS_OF_TEETH = [('Perfeitos', 'Perfeitos'), ('Um pouco de trtaro',\n 'Um pouco de trtaro'), ('Trtaro mediano', 'Trtaro mediano'), (\n 'Perdeu alguns dentes', 'Perdeu alguns dentes'), (\n 'Dentes permitem apenas comida mole',\n 'Dentes permitem apenas comida mole'), (\n 'Perdeu quase todos ou todos os dentes',\n 'Perdeu quase todos ou todos os dentes')]\n COAT_OF_PETS = [('Arrepiado ', 'Arrepiado'), ('Liso', 'Liso'), (\n 'Ondulado', 'Ondulado')]\n COAT_SIZE_OF_PETS = [('Curto', 'Curto'), ('Mdio', 'Mdio'), ('Longo',\n 'Longo')]\n SPECIES_OF_PETS = [('Cachorro', 'Cachorro'), ('Gato', 'Gato'), (\n 'Outros', 'Outros')]\n SIZE_OF_PETS = [('Mini', 'Mini'), ('Pequeno', 'Pequeno'), ('Mdio',\n 'Mdio'), ('Grande', 'Grande'), ('Gigante', 'Gigante')]\n AGE_CATEGORY_OF_PETS = [('Filhote', 'Filhote'), ('Adolescente',\n 'Adolescente'), ('Adulto', 'Adulto'), ('Maduro', 'Maduro'), (\n 'Idoso', 'Idoso')]\n AGE_OF_PETS = [('1 ms', '1 ms'), ('2 meses', '2 meses'), ('3 meses',\n '3 meses'), ('4 meses', '4 meses'), ('5 meses', '5 meses'), (\n '6 meses', '6 meses'), ('7 meses', '7 meses'), ('8 meses',\n '8 meses'), ('9 meses', '9 meses'), ('10 meses', '10 meses'), (\n '11 meses', '11 meses'), ('1 ano', '1 ano'), ('2 anos', '2 anos'),\n ('3 anos', '3 anos'), ('4 anos', '4 anos'), ('5 anos', '5 anos'), (\n '6 anos', '6 anos'), ('7 anos', '7 anos'), ('8 anos', '8 anos'), (\n '9 anos', '9 anos'), ('10 anos', '10 anos'), ('11 anos', '11 anos'),\n ('12 anos', '12 anos'), ('13 anos', '13 anos'), ('14 anos',\n '14 anos'), ('15 anos', '15 anos'), ('16 anos', '16 anos'), (\n '17 anos', '17 anos'), ('18 anos', '18 anos'), ('19 anos',\n '19 anos'), ('20 anos', '20 anos'), ('21 anos', '21 anos'), (\n '22 anos', '22 anos'), ('23 anos', '23 anos'), ('24 anos',\n '24 anos'), ('25 anos', '25 anos'), ('26 anos', '26 anos'), (\n '27 anos', '27 anos'), ('28 anos', '28 anos'), ('29 anos',\n '29 anos'), ('30 anos', '30 anos'), ('No sei', 'No sei')]\n DAY_OF_PETS = [('No sei', 'No sei'), ('1', '1'), ('2', '2'), ('3', '3'),\n ('4', '4'), ('5', '5'), ('6', '6'), ('7', '7'), ('8', '8'), ('9',\n '9'), ('10', '10'), ('11', '11'), ('12', '12'), ('13', '13'), ('14',\n '14'), ('15', '15'), ('16', '16'), ('17', '17'), ('18', '18'), (\n '19', '19'), ('20', '20'), ('21', '21'), ('22', '22'), ('23', '23'),\n ('24', '24'), ('25', '25'), ('26', '26'), ('27', '27'), ('28', '28'\n ), ('29', '29'), ('30', '30'), ('31', '31')]\n MONTH_OF_PETS = [('No sei', 'No sei'), ('Janeiro', 'Janeiro'), (\n 'Fevereiro', 'Fevereiro'), ('Maro', 'Maro'), ('Abril', 'Abril'), (\n 'Maio', 'Maio'), ('Junho', 'Junho'), ('Julho', 'Julho'), ('Agosto',\n 'Agosto'), ('Setembro', 'Setembro'), ('Outubro', 'Outubro'), (\n 'Novembro', 'Novembro'), ('Dezembro', 'Dezembro')]\n AGE_OF_PETS = [('1 ms', '1 ms'), ('2 meses', '2 meses'), ('3 meses',\n '3 meses'), ('4 meses', '4 meses'), ('5 meses', '5 meses'), (\n '6 meses', '6 meses'), ('7 meses', '7 meses'), ('8 meses',\n '8 meses'), ('9 meses', '9 meses'), ('10 meses', '10 meses'), (\n '11 meses', '11 meses'), ('1 ano', '1 ano'), ('2 anos', '2 anos'),\n ('3 anos', '3 anos'), ('4 anos', '4 anos'), ('5 anos', '5 anos'), (\n '6 anos', '6 anos'), ('7 anos', '7 anos'), ('8 anos', '8 anos'), (\n '9 anos', '9 anos'), ('10 anos', '10 anos'), ('11 anos', '11 anos'),\n ('12 anos', '12 anos'), ('13 anos', '13 anos'), ('14 anos',\n '14 anos'), ('15 anos', '15 anos'), ('16 anos', '16 anos'), (\n '17 anos', '17 anos'), ('18 anos', '18 anos'), ('19 anos',\n '19 anos'), ('20 anos', '20 anos'), ('21 anos', '21 anos'), (\n '22 anos', '22 anos'), ('23 anos', '23 anos'), ('24 anos',\n '24 anos'), ('25 anos', '25 anos'), ('26 anos', '26 anos'), (\n '27 anos', '27 anos'), ('28 anos', '28 anos'), ('29 anos',\n '29 anos'), ('30 anos', '30 anos'), ('Menos de 1 ano',\n 'Menos de 1 ano')]\n RETURN_OF_PETS = [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6\n ), (7, 7), (8, 8), (9, 9), (10, 10)]\n TYPES_STREET = [('Alameda', 'Alameda'), ('Avenida', 'Avenida'), (\n 'Chcara', 'Chcara'), ('Colnia', 'Colnia'), ('Condomnio',\n 'Condomnio'), ('Conjunto', 'Conjunto'), ('Estao', 'Estao'), (\n 'Estrada', 'Estrada'), ('Favela', 'Favela'), ('Fazenda', 'Fazenda'),\n ('Jardim', 'Jardim'), ('Ladeira', 'Ladeira'), ('Lago', 'Lago'), (\n 'Largo', 'Largo'), ('Loteamento', 'Loteamento'), ('Passarela',\n 'Passarela'), ('Parque', 'Parque'), ('Praa', 'Praa'), ('Praia',\n 'Praia'), ('Rodovia', 'Rodovia'), ('Rua', 'Rua'), ('Setor', 'Setor'\n ), ('Travessa', 'Travessa'), ('Viaduto', 'Viaduto'), ('Vila', 'Vila')]\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial',\n 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), (\n 'Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Doena mental',\n 'Doena mental'), ('Epilepsia', 'Epilesia'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total'), ('No sente cheiro', 'No sente cheiro')\n ]\n\n def get_years():\n now = int(timezone.now().year) + 1\n past = timezone.now().year - 30\n a = []\n for i in reversed(range(past, now)):\n a.append((i, i))\n a = tuple(a)\n return a\n name = models.CharField('Nome', null=True, blank=True, max_length=30)\n pet_description = models.CharField(null=True, blank=True, max_length=700)\n age = models.CharField(null=True, blank=True, max_length=40, choices=\n AGE_OF_PETS, default='')\n age_category = models.CharField(null=True, blank=True, max_length=30,\n choices=AGE_CATEGORY_OF_PETS, default='')\n species = models.CharField(null=True, blank=True, max_length=25,\n choices=SPECIES_OF_PETS, default='')\n primary_breed = models.ForeignKey(Pet_breed, on_delete=models.CASCADE,\n null=True, blank=True, related_name='primary_breed')\n secondary_breed = models.ForeignKey(Pet_breed, on_delete=models.CASCADE,\n null=True, blank=True, related_name='secondary_breed')\n color = models.CharField(null=True, blank=True, max_length=30, choices=\n COLOR_OF_PETS, default='')\n coat = models.CharField(null=True, blank=True, max_length=20, choices=\n COAT_OF_PETS, default='')\n gender = models.CharField(null=True, blank=True, max_length=10, choices\n =GENDER_OF_PETS, default='')\n birth_day = models.CharField(default=0, null=True, blank=True,\n max_length=30, choices=DAY_OF_PETS)\n birth_month = models.CharField(default=0, null=True, blank=True,\n max_length=30, choices=MONTH_OF_PETS)\n birth_year = models.IntegerField(default=0, null=True, blank=True,\n choices=get_years())\n is_microchiped = models.BooleanField(default=0)\n activity_level = models.CharField(null=True, blank=True, max_length=40,\n choices=ACTIVITY_LEVEL_PETS, default='')\n is_basic_trainned = models.BooleanField(default=0)\n confortable_with_kids = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_elder = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_cats = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_dogs = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_men = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_women = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n arrival_date = models.CharField(null=True, blank=True, max_length=30,\n default='')\n where_was_found_name = models.CharField(null=True, blank=True,\n max_length=100, default='')\n is_neutered = models.BooleanField(default=0)\n was_rabbies_vaccinated_this_year = models.BooleanField(default=0)\n was_v_vaccinated_this_year = models.BooleanField(default=0)\n was_others_vaccinated_this_year = models.BooleanField(default=0)\n profile_picture = models.ImageField(null=True, blank=True)\n picture_1 = models.ImageField(null=True, blank=True)\n picture_2 = models.ImageField(null=True, blank=True)\n picture_3 = models.ImageField(null=True, blank=True)\n video = models.CharField(null=True, blank=True, max_length=150)\n qty_views = models.IntegerField(default=0)\n qty_favorites = models.IntegerField(default=0)\n qty_msg = models.IntegerField(default=0)\n qty_shares = models.IntegerField(default=0)\n ongs_id = models.ForeignKey(Ongs, on_delete=models.CASCADE, default=1)\n status = models.CharField(null=True, blank=True, max_length=50, choices\n =STATUS_OF_PETS, default='')\n coat_size = models.CharField(null=True, blank=True, max_length=50,\n choices=COAT_SIZE_OF_PETS, default='')\n walk_pull = models.BooleanField(default=0)\n walk_pull_hard = models.BooleanField(default=0)\n walk_dogs = models.BooleanField(default=0)\n walk_people = models.BooleanField(default=0)\n walk_fear = models.BooleanField(default=0)\n color_pattern = models.CharField(null=True, blank=True, max_length=30,\n choices=COLOR_PATTERN_OF_PETS, default='')\n size = models.CharField(null=True, blank=True, max_length=50, choices=\n SIZE_OF_PETS, default='')\n qty_preview_adoptions = models.IntegerField(default=0, choices=\n RETURN_OF_PETS)\n qty_adoptions_app = models.IntegerField(default=0)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n teeth_status = models.CharField(null=True, blank=True, max_length=50,\n choices=STATUS_OF_TEETH, default='')\n combo_adoption_id = models.IntegerField(default=0, null=True, blank=True)\n is_available_adoption = models.BooleanField(default=1)\n where_was_found = models.CharField(null=True, blank=True, max_length=50,\n choices=TYPES_STREET, default='')\n where_was_found_city = models.CharField(null=True, blank=True,\n max_length=100, default='')\n where_was_found_state = models.CharField(null=True, blank=True,\n max_length=100, default='')\n first_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n second_special_need = models.CharField(null=True, blank=True,\n max_length=100, choices=SPECIAL_NEED, default='')\n third_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n is_mixed_breed = models.BooleanField(default=1)\n is_walking_daily = models.BooleanField(default=0)\n is_acupuncture = models.BooleanField(default=0)\n is_physiotherapy = models.BooleanField(default=0)\n is_vermifuged = models.BooleanField(default=0)\n is_lice_free = models.BooleanField(default=0)\n is_dog_meet_necessary = models.BooleanField(default=0)\n walk_alone_dislike = models.BooleanField(default=0)\n walk_alone = models.BooleanField(default=0)\n walk_leash = models.BooleanField(default=0)\n id_at_ong = models.IntegerField(default=0, null=True, blank=True)\n\n def __str__(self):\n return self.name\n\n\n<function token>\n\n\nclass Favorites(models.Model):\n user_id = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.\n CASCADE)\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n\n\nclass Pet_disease_areas(models.Model):\n name = models.CharField(null=True, blank=True, max_length=300)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_disease(models.Model):\n AREA_OF_PETS = [('Cardiologia', 'Cardiologia'), ('Dermatologia',\n 'Dermatologia'), ('Endocrinologia', 'Endocrinologia'), (\n 'Gastroenterologia e Hepatologia',\n 'Gastroenterologia e Hepatologia'), ('Hematologia e Imunologia',\n 'Hematologia e Imunologia'), ('Infecciosas', 'Infecciosas'), (\n 'Intoxicaes e Envenemanentos', 'Intoxicaes e Envenemanentos'), (\n 'Musculoesquelticas', 'Musculoesquelticas'), (\n 'Nefrologia e Urologia', 'Nefrologia e Urologia'), ('Neonatologia',\n 'Neonatologia'), ('Neurologia', 'Neurologia'), ('Oftalmologia',\n 'Oftalmologia'), ('Oncologia', 'Oncologia'), ('Respiratrias',\n 'Respiratrias'), ('Teriogenologia', 'Teriogenologia'), (\n 'Vacinao e Nutrologia', 'Vacinao e Nutrologia'), ('Outras', 'Outras')]\n name = models.CharField(null=True, blank=True, max_length=150)\n area = models.CharField(null=True, blank=True, max_length=100, choices=\n AREA_OF_PETS, default='')\n area_id = models.ForeignKey(Pet_disease_areas, on_delete=models.CASCADE,\n null=True, blank=True)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_health(models.Model):\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial',\n 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), (\n 'Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Doena mental',\n 'Doena mental'), ('Epilepsia', 'Epilesia'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total'), ('No sente cheiro', 'No sente cheiro')\n ]\n STATUS = [('Curado', 'Curado'), ('Em tratamento', 'Em tratamento'), (\n 'Sem verba', 'Sem verba')]\n SPECIAL_TREATMENT = [('Fisioterapia', 'Fisioterapia'), ('Acunpuntura',\n 'Acunpuntura'), ('Caminhada diria', 'Caminhada diria')]\n TYPES = [('Fatal', 'Fatal'), ('Para o resto da vida',\n 'Para o resto da vida'), ('Temporria', 'Temporria')]\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n diagnose_date = models.DateField(null=True, blank=True)\n disease_status = models.CharField(null=True, blank=True, max_length=100,\n choices=STATUS, default='')\n disease_type = models.CharField(null=True, blank=True, max_length=100,\n choices=TYPES, default='')\n internal_notes = models.CharField(null=True, blank=True, max_length=300)\n which_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n which_special_treatment = models.CharField(null=True, blank=True,\n max_length=100, choices=SPECIAL_TREATMENT, default='')\n disease_name = models.CharField(null=True, blank=True, max_length=200)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n\n def __str__(self):\n return self.disease\n", "<import token>\n<class token>\n\n\nclass Cidade(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __str__(self):\n return self.nome\n\n\nclass Ongs(models.Model):\n ADOPTION_VALUE = [('Gratuito', 'Gratuito'), ('10,00', '10,00'), (\n '15,00', '15,00'), ('20,00', '20,00'), ('25,00', '25,00'), ('30,00',\n '30,00'), ('35,00', '35,00'), ('40,00', '40,00'), ('45,00', '45,00'\n ), ('50,00', '50,00'), ('55,00', '55,00'), ('60,00', '60,00'), (\n '65,00', '65,00'), ('70,00', '70,00'), ('75,00', '75,00'), ('80,00',\n '80,00'), ('85,00', '85,00'), ('90,00', '90,00'), ('95,00', '95,00'\n ), ('100,00', '100,00')]\n OPEN_HOURS = [('06:00', '06:00'), ('06:30', '06:30'), ('07:00', '07:00'\n ), ('07:30', '07:30'), ('08:00', '08:00'), ('08:30', '08:30'), (\n '09:00', '09:00'), ('09:30', '09:30'), ('10:00', '10:00'), ('10:30',\n '10:30'), ('11:00', '11:00'), ('11:30', '11:30'), ('12:00', '12:00'\n ), ('12:30', '12:30')]\n CLOSE_HOURS = [('16:00', '16:00'), ('16:30', '16:30'), ('17:00',\n '17:00'), ('17:30', '17:30'), ('18:00', '18:00'), ('18:30', '18:30'\n ), ('19:00', '19:00'), ('19:30', '19:30'), ('20:00', '20:00'), (\n '20:30', '20:30'), ('21:00', '21:00'), ('21:30', '21:30'), ('22:00',\n '22:00'), ('22:30', '22:30')]\n DDD = [('11', '11'), ('12', '12'), ('13', '13'), ('14', '14'), ('15',\n '15'), ('16', '16'), ('17', '17'), ('18', '18'), ('19', '19'), (\n '21', '21'), ('22', '22'), ('24', '24'), ('27', '27'), ('28', '28'),\n ('31', '31'), ('32', '32'), ('33', '33'), ('34', '34'), ('35', '35'\n ), ('37', '37'), ('38', '38'), ('41', '41'), ('42', '42'), ('43',\n '43'), ('44', '44'), ('45', '45'), ('46', '46'), ('47', '47'), (\n '48', '48'), ('49', '49'), ('51', '51'), ('53', '53'), ('54', '54'),\n ('55', '55'), ('61', '61'), ('62', '62'), ('63', '63'), ('64', '64'\n ), ('65', '65'), ('66', '66'), ('67', '67'), ('68', '68'), ('69',\n '69'), ('71', '71'), ('73', '73'), ('74', '74'), ('75', '75'), (\n '77', '77'), ('79', '79'), ('81', '81'), ('82', '82'), ('83', '83'),\n ('84', '84'), ('85', '85'), ('86', '86'), ('87', '87'), ('88', '88'\n ), ('89', '89'), ('91', '91'), ('92', '92'), ('93', '93'), ('94',\n '94'), ('95', '95'), ('96', '96'), ('97', '97'), ('98', '98'), (\n '99', '99')]\n TRANSPORTATION = [('Grtis', 'Grtis'), ('1,00', '1,00'), ('2,00', '2,00'\n ), ('3,00', '3,00'), ('4,00', '4,00'), ('5,00', '5,00'), ('7,00',\n '7,00'), ('10,00', '10,00'), ('12,00', '12,00'), ('15,00', '15,00'),\n ('18,00', '18,00'), ('20,00', '20,00'), ('25,00', '25,00'), (\n '30,00', '30,00'), ('35,00', '35,00'), ('40,00', '40,00'), ('45,00',\n '45,00'), ('50,00', '50,00'), ('55,00', '65,00'), ('60,00', '60,00')]\n name = models.CharField(null=True, blank=True, max_length=40)\n rate = models.CharField(null=True, blank=True, default='Gratuito',\n max_length=8, choices=ADOPTION_VALUE)\n hour_open = models.CharField(blank=True, null=True, default='',\n max_length=5, choices=OPEN_HOURS)\n hour_close = models.CharField(blank=True, null=True, default='',\n max_length=5, choices=CLOSE_HOURS)\n mission_statement = models.CharField(null=True, blank=True, default='',\n max_length=300)\n description = models.CharField(null=True, blank=True, default='',\n max_length=500)\n web_site = models.CharField(null=True, blank=True, max_length=150)\n phone_number_ddd = models.CharField(null=True, blank=True, max_length=3,\n choices=DDD)\n phone_number = models.CharField(null=True, blank=True, max_length=12)\n email = models.CharField(null=True, blank=True, max_length=100)\n facebook = models.CharField(null=True, blank=True, max_length=100)\n instagram = models.CharField(null=True, blank=True, max_length=40)\n logo_link = models.ImageField(null=True, blank=True)\n picture_1 = models.ImageField(null=True, blank=True)\n picture_2 = models.ImageField(null=True, blank=True)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n city_id = models.ForeignKey(Cidade, on_delete=models.CASCADE, null=True,\n blank=True)\n state_id = models.ForeignKey(Estado, on_delete=models.CASCADE, null=\n True, blank=True)\n is_foster_ok = models.BooleanField(default=0)\n is_volunteer_ok = models.BooleanField(default=0)\n has_transportation = models.BooleanField(default=0)\n cnpj = models.CharField(null=True, blank=True, max_length=18)\n founded_date = models.CharField(null=True, blank=True, max_length=30,\n default='')\n is_approved = models.BooleanField(default=0)\n transportation_price = models.CharField(null=True, blank=True,\n max_length=7, choices=TRANSPORTATION)\n\n def __str__(self):\n return self.name\n\n\nclass User(AbstractUser):\n PERMISSION = [('Editar tudo', 'Editar tudo'), ('Editar equipe e pets',\n 'Editar equipe e pets'), ('Editar pets', 'Editar pets'), (\n 'Visualizar equipe e pets', 'Visualizar equipe e pets'), (\n 'Visualizar pets', 'Visualizar pets')]\n ROLE = [('Advogado(a)', 'Advogado(a)'), ('Auxiliar de veterinrio',\n 'Auxiliar de veterinrio'), ('Bilogo(a)', 'Bilogo(a)'), (\n 'Colaborador(a)', 'Colaborador(a)'), ('Departamento administrativo',\n 'Departamento administrativo'), ('Departamento de atendimento',\n 'Departamento de atendimento'), ('Departamento de eventos',\n 'Departamento de eventos'), ('Departamento educativo',\n 'Departamento educativo'), ('Departamento de marketing',\n 'Departamento de marketing'), ('Departamento financeiro',\n 'Departamento financeiro'), ('Diretor(a) administrativo',\n 'Diretor(a) administrativo'), ('Diretor(a) de eventos',\n 'Diretor(a) de eventos'), ('Diretor(a) financeiro',\n 'Diretor(a) financeiro'), ('Diretor(a) geral', 'Diretor(a) geral'),\n ('Diretor(a) marketing', 'Diretor(a) marketing'), (\n 'Diretor(a) tcnico', 'Diretor(a) tcnico'), ('Funcionrio(a)',\n 'Funcionrio(a)'), ('Fundador(a)', 'Fundador(a)'), ('Presidente',\n 'Presidente'), ('Protetor(a) associado', 'Protetor(a) associado'),\n ('Secretrio(a)', 'Secretrio(a)'), ('Suplente de secretrio',\n 'Suplente de secretrio'), ('Suplente de presidente',\n 'Suplente de presidente'), ('Suplente de vice-presidente',\n 'Suplente de vice-presidente'), ('Tesoreiro(a)', 'Tesoreiro(a)'), (\n 'Veterinrio(a)', 'Veterinrio(a)'), ('Vice-presidente',\n 'Vice-presidente'), ('Voluntrio(a)', 'Voluntrio(a)')]\n permission_ong = models.CharField(null=True, blank=True, max_length=30,\n choices=PERMISSION)\n role_ong = models.CharField(null=True, blank=True, max_length=30,\n choices=ROLE)\n birth_date = models.DateField(null=True, blank=True)\n has_confirmed_email = models.BooleanField(default=0)\n country = models.CharField(null=True, blank=True, max_length=50)\n state_code = models.CharField(null=True, blank=True, max_length=3)\n city = models.CharField(null=True, blank=True, max_length=50)\n neighborhood = models.CharField(null=True, blank=True, max_length=50)\n rg = models.CharField(null=True, blank=True, max_length=12)\n cpf = models.CharField(null=True, blank=True, max_length=15)\n phone_number_ddd = models.CharField(null=True, max_length=3)\n phone_number = models.CharField(null=True, blank=True, max_length=10)\n address_street = models.CharField(null=True, blank=True, max_length=70)\n address_number = models.CharField(null=True, blank=True, max_length=6)\n address_complement = models.CharField(null=True, blank=True, max_length=10)\n postal_code = models.CharField(null=True, blank=True, max_length=10)\n facebook_id = models.CharField(null=True, blank=True, max_length=30)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n ongs_id = models.ForeignKey(Ongs, on_delete=models.SET_NULL, null=True,\n blank=True)\n\n\nclass Pet_breed(models.Model):\n name = models.CharField(null=True, blank=True, max_length=100)\n species = models.CharField(null=True, blank=True, max_length=30)\n\n def __str__(self):\n return self.name\n\n\nclass Pet(models.Model):\n COLOR_OF_PETS = [('Amarelo', 'Amarelo'), ('Branco', 'Branco'), ('Cinza',\n 'Cinza'), ('Creme', 'Creme'), ('Laranja', 'Laranja'), ('Marrom',\n 'Marrom'), ('Preto', 'Preto')]\n COLOR_PATTERN_OF_PETS = [('Arlequim', 'Arlequim'), ('Belton', 'Belton'),\n ('Bicolor', 'Bicolor'), ('Fulvo', 'Fulvo'), ('Lobeiro', 'Ruo'), (\n 'Merle', 'Merle'), ('Pintaigado', 'Pintaigado'), ('Ruo', 'Ruo'), (\n 'Sal e Pimenta', 'Sal e Pimenta'), ('Tigrado', 'Tigrado'), (\n 'Unicolor', 'Unicolor')]\n GENDER_OF_PETS = [('Fmea', 'Fmea'), ('Macho', 'Macho')]\n ACTIVITY_LEVEL_PETS = [('Hiperativo', 'Hiperativo'), ('Ativo', 'Ativo'),\n ('Moderado', 'Moderado'), ('Baixo', 'Baixo')]\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('Apenas alguns dentes', 'Apenas alguns dentes'), (\n 'Cegueira parcial', 'Cegueira parcial'), ('Cegueira total',\n 'Cegueira total'), ('Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Nenhum dente',\n 'Nenhum dente'), ('Doena Neural', 'Doena Neural'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total')]\n CONFORTABLE = [('No', 'No'), ('Sim', 'Sim'), ('No sei', 'No sei')]\n STATUS_OF_PETS = [('A caminho do novo lar', 'A caminho do novo lar'), (\n 'Adoo pendente', 'Adoo pendente'), ('Adotado', 'Adotado'), (\n 'Doente', 'Doente'), ('Esperando visita', 'Esperando visita'), (\n 'Falecido', 'Falecido'), ('Retornando para abrigo',\n 'Retornando para abrigo'), ('Lar provisrio', 'Lar provisrio'), (\n 'Lar provisrio pelo FDS', 'Lar provisrio pelo FDS')]\n STATUS_OF_TEETH = [('Perfeitos', 'Perfeitos'), ('Um pouco de trtaro',\n 'Um pouco de trtaro'), ('Trtaro mediano', 'Trtaro mediano'), (\n 'Perdeu alguns dentes', 'Perdeu alguns dentes'), (\n 'Dentes permitem apenas comida mole',\n 'Dentes permitem apenas comida mole'), (\n 'Perdeu quase todos ou todos os dentes',\n 'Perdeu quase todos ou todos os dentes')]\n COAT_OF_PETS = [('Arrepiado ', 'Arrepiado'), ('Liso', 'Liso'), (\n 'Ondulado', 'Ondulado')]\n COAT_SIZE_OF_PETS = [('Curto', 'Curto'), ('Mdio', 'Mdio'), ('Longo',\n 'Longo')]\n SPECIES_OF_PETS = [('Cachorro', 'Cachorro'), ('Gato', 'Gato'), (\n 'Outros', 'Outros')]\n SIZE_OF_PETS = [('Mini', 'Mini'), ('Pequeno', 'Pequeno'), ('Mdio',\n 'Mdio'), ('Grande', 'Grande'), ('Gigante', 'Gigante')]\n AGE_CATEGORY_OF_PETS = [('Filhote', 'Filhote'), ('Adolescente',\n 'Adolescente'), ('Adulto', 'Adulto'), ('Maduro', 'Maduro'), (\n 'Idoso', 'Idoso')]\n AGE_OF_PETS = [('1 ms', '1 ms'), ('2 meses', '2 meses'), ('3 meses',\n '3 meses'), ('4 meses', '4 meses'), ('5 meses', '5 meses'), (\n '6 meses', '6 meses'), ('7 meses', '7 meses'), ('8 meses',\n '8 meses'), ('9 meses', '9 meses'), ('10 meses', '10 meses'), (\n '11 meses', '11 meses'), ('1 ano', '1 ano'), ('2 anos', '2 anos'),\n ('3 anos', '3 anos'), ('4 anos', '4 anos'), ('5 anos', '5 anos'), (\n '6 anos', '6 anos'), ('7 anos', '7 anos'), ('8 anos', '8 anos'), (\n '9 anos', '9 anos'), ('10 anos', '10 anos'), ('11 anos', '11 anos'),\n ('12 anos', '12 anos'), ('13 anos', '13 anos'), ('14 anos',\n '14 anos'), ('15 anos', '15 anos'), ('16 anos', '16 anos'), (\n '17 anos', '17 anos'), ('18 anos', '18 anos'), ('19 anos',\n '19 anos'), ('20 anos', '20 anos'), ('21 anos', '21 anos'), (\n '22 anos', '22 anos'), ('23 anos', '23 anos'), ('24 anos',\n '24 anos'), ('25 anos', '25 anos'), ('26 anos', '26 anos'), (\n '27 anos', '27 anos'), ('28 anos', '28 anos'), ('29 anos',\n '29 anos'), ('30 anos', '30 anos'), ('No sei', 'No sei')]\n DAY_OF_PETS = [('No sei', 'No sei'), ('1', '1'), ('2', '2'), ('3', '3'),\n ('4', '4'), ('5', '5'), ('6', '6'), ('7', '7'), ('8', '8'), ('9',\n '9'), ('10', '10'), ('11', '11'), ('12', '12'), ('13', '13'), ('14',\n '14'), ('15', '15'), ('16', '16'), ('17', '17'), ('18', '18'), (\n '19', '19'), ('20', '20'), ('21', '21'), ('22', '22'), ('23', '23'),\n ('24', '24'), ('25', '25'), ('26', '26'), ('27', '27'), ('28', '28'\n ), ('29', '29'), ('30', '30'), ('31', '31')]\n MONTH_OF_PETS = [('No sei', 'No sei'), ('Janeiro', 'Janeiro'), (\n 'Fevereiro', 'Fevereiro'), ('Maro', 'Maro'), ('Abril', 'Abril'), (\n 'Maio', 'Maio'), ('Junho', 'Junho'), ('Julho', 'Julho'), ('Agosto',\n 'Agosto'), ('Setembro', 'Setembro'), ('Outubro', 'Outubro'), (\n 'Novembro', 'Novembro'), ('Dezembro', 'Dezembro')]\n AGE_OF_PETS = [('1 ms', '1 ms'), ('2 meses', '2 meses'), ('3 meses',\n '3 meses'), ('4 meses', '4 meses'), ('5 meses', '5 meses'), (\n '6 meses', '6 meses'), ('7 meses', '7 meses'), ('8 meses',\n '8 meses'), ('9 meses', '9 meses'), ('10 meses', '10 meses'), (\n '11 meses', '11 meses'), ('1 ano', '1 ano'), ('2 anos', '2 anos'),\n ('3 anos', '3 anos'), ('4 anos', '4 anos'), ('5 anos', '5 anos'), (\n '6 anos', '6 anos'), ('7 anos', '7 anos'), ('8 anos', '8 anos'), (\n '9 anos', '9 anos'), ('10 anos', '10 anos'), ('11 anos', '11 anos'),\n ('12 anos', '12 anos'), ('13 anos', '13 anos'), ('14 anos',\n '14 anos'), ('15 anos', '15 anos'), ('16 anos', '16 anos'), (\n '17 anos', '17 anos'), ('18 anos', '18 anos'), ('19 anos',\n '19 anos'), ('20 anos', '20 anos'), ('21 anos', '21 anos'), (\n '22 anos', '22 anos'), ('23 anos', '23 anos'), ('24 anos',\n '24 anos'), ('25 anos', '25 anos'), ('26 anos', '26 anos'), (\n '27 anos', '27 anos'), ('28 anos', '28 anos'), ('29 anos',\n '29 anos'), ('30 anos', '30 anos'), ('Menos de 1 ano',\n 'Menos de 1 ano')]\n RETURN_OF_PETS = [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6\n ), (7, 7), (8, 8), (9, 9), (10, 10)]\n TYPES_STREET = [('Alameda', 'Alameda'), ('Avenida', 'Avenida'), (\n 'Chcara', 'Chcara'), ('Colnia', 'Colnia'), ('Condomnio',\n 'Condomnio'), ('Conjunto', 'Conjunto'), ('Estao', 'Estao'), (\n 'Estrada', 'Estrada'), ('Favela', 'Favela'), ('Fazenda', 'Fazenda'),\n ('Jardim', 'Jardim'), ('Ladeira', 'Ladeira'), ('Lago', 'Lago'), (\n 'Largo', 'Largo'), ('Loteamento', 'Loteamento'), ('Passarela',\n 'Passarela'), ('Parque', 'Parque'), ('Praa', 'Praa'), ('Praia',\n 'Praia'), ('Rodovia', 'Rodovia'), ('Rua', 'Rua'), ('Setor', 'Setor'\n ), ('Travessa', 'Travessa'), ('Viaduto', 'Viaduto'), ('Vila', 'Vila')]\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial',\n 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), (\n 'Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Doena mental',\n 'Doena mental'), ('Epilepsia', 'Epilesia'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total'), ('No sente cheiro', 'No sente cheiro')\n ]\n\n def get_years():\n now = int(timezone.now().year) + 1\n past = timezone.now().year - 30\n a = []\n for i in reversed(range(past, now)):\n a.append((i, i))\n a = tuple(a)\n return a\n name = models.CharField('Nome', null=True, blank=True, max_length=30)\n pet_description = models.CharField(null=True, blank=True, max_length=700)\n age = models.CharField(null=True, blank=True, max_length=40, choices=\n AGE_OF_PETS, default='')\n age_category = models.CharField(null=True, blank=True, max_length=30,\n choices=AGE_CATEGORY_OF_PETS, default='')\n species = models.CharField(null=True, blank=True, max_length=25,\n choices=SPECIES_OF_PETS, default='')\n primary_breed = models.ForeignKey(Pet_breed, on_delete=models.CASCADE,\n null=True, blank=True, related_name='primary_breed')\n secondary_breed = models.ForeignKey(Pet_breed, on_delete=models.CASCADE,\n null=True, blank=True, related_name='secondary_breed')\n color = models.CharField(null=True, blank=True, max_length=30, choices=\n COLOR_OF_PETS, default='')\n coat = models.CharField(null=True, blank=True, max_length=20, choices=\n COAT_OF_PETS, default='')\n gender = models.CharField(null=True, blank=True, max_length=10, choices\n =GENDER_OF_PETS, default='')\n birth_day = models.CharField(default=0, null=True, blank=True,\n max_length=30, choices=DAY_OF_PETS)\n birth_month = models.CharField(default=0, null=True, blank=True,\n max_length=30, choices=MONTH_OF_PETS)\n birth_year = models.IntegerField(default=0, null=True, blank=True,\n choices=get_years())\n is_microchiped = models.BooleanField(default=0)\n activity_level = models.CharField(null=True, blank=True, max_length=40,\n choices=ACTIVITY_LEVEL_PETS, default='')\n is_basic_trainned = models.BooleanField(default=0)\n confortable_with_kids = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_elder = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_cats = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_dogs = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_men = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_women = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n arrival_date = models.CharField(null=True, blank=True, max_length=30,\n default='')\n where_was_found_name = models.CharField(null=True, blank=True,\n max_length=100, default='')\n is_neutered = models.BooleanField(default=0)\n was_rabbies_vaccinated_this_year = models.BooleanField(default=0)\n was_v_vaccinated_this_year = models.BooleanField(default=0)\n was_others_vaccinated_this_year = models.BooleanField(default=0)\n profile_picture = models.ImageField(null=True, blank=True)\n picture_1 = models.ImageField(null=True, blank=True)\n picture_2 = models.ImageField(null=True, blank=True)\n picture_3 = models.ImageField(null=True, blank=True)\n video = models.CharField(null=True, blank=True, max_length=150)\n qty_views = models.IntegerField(default=0)\n qty_favorites = models.IntegerField(default=0)\n qty_msg = models.IntegerField(default=0)\n qty_shares = models.IntegerField(default=0)\n ongs_id = models.ForeignKey(Ongs, on_delete=models.CASCADE, default=1)\n status = models.CharField(null=True, blank=True, max_length=50, choices\n =STATUS_OF_PETS, default='')\n coat_size = models.CharField(null=True, blank=True, max_length=50,\n choices=COAT_SIZE_OF_PETS, default='')\n walk_pull = models.BooleanField(default=0)\n walk_pull_hard = models.BooleanField(default=0)\n walk_dogs = models.BooleanField(default=0)\n walk_people = models.BooleanField(default=0)\n walk_fear = models.BooleanField(default=0)\n color_pattern = models.CharField(null=True, blank=True, max_length=30,\n choices=COLOR_PATTERN_OF_PETS, default='')\n size = models.CharField(null=True, blank=True, max_length=50, choices=\n SIZE_OF_PETS, default='')\n qty_preview_adoptions = models.IntegerField(default=0, choices=\n RETURN_OF_PETS)\n qty_adoptions_app = models.IntegerField(default=0)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n teeth_status = models.CharField(null=True, blank=True, max_length=50,\n choices=STATUS_OF_TEETH, default='')\n combo_adoption_id = models.IntegerField(default=0, null=True, blank=True)\n is_available_adoption = models.BooleanField(default=1)\n where_was_found = models.CharField(null=True, blank=True, max_length=50,\n choices=TYPES_STREET, default='')\n where_was_found_city = models.CharField(null=True, blank=True,\n max_length=100, default='')\n where_was_found_state = models.CharField(null=True, blank=True,\n max_length=100, default='')\n first_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n second_special_need = models.CharField(null=True, blank=True,\n max_length=100, choices=SPECIAL_NEED, default='')\n third_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n is_mixed_breed = models.BooleanField(default=1)\n is_walking_daily = models.BooleanField(default=0)\n is_acupuncture = models.BooleanField(default=0)\n is_physiotherapy = models.BooleanField(default=0)\n is_vermifuged = models.BooleanField(default=0)\n is_lice_free = models.BooleanField(default=0)\n is_dog_meet_necessary = models.BooleanField(default=0)\n walk_alone_dislike = models.BooleanField(default=0)\n walk_alone = models.BooleanField(default=0)\n walk_leash = models.BooleanField(default=0)\n id_at_ong = models.IntegerField(default=0, null=True, blank=True)\n\n def __str__(self):\n return self.name\n\n\n<function token>\n\n\nclass Favorites(models.Model):\n user_id = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.\n CASCADE)\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n\n\nclass Pet_disease_areas(models.Model):\n name = models.CharField(null=True, blank=True, max_length=300)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_disease(models.Model):\n AREA_OF_PETS = [('Cardiologia', 'Cardiologia'), ('Dermatologia',\n 'Dermatologia'), ('Endocrinologia', 'Endocrinologia'), (\n 'Gastroenterologia e Hepatologia',\n 'Gastroenterologia e Hepatologia'), ('Hematologia e Imunologia',\n 'Hematologia e Imunologia'), ('Infecciosas', 'Infecciosas'), (\n 'Intoxicaes e Envenemanentos', 'Intoxicaes e Envenemanentos'), (\n 'Musculoesquelticas', 'Musculoesquelticas'), (\n 'Nefrologia e Urologia', 'Nefrologia e Urologia'), ('Neonatologia',\n 'Neonatologia'), ('Neurologia', 'Neurologia'), ('Oftalmologia',\n 'Oftalmologia'), ('Oncologia', 'Oncologia'), ('Respiratrias',\n 'Respiratrias'), ('Teriogenologia', 'Teriogenologia'), (\n 'Vacinao e Nutrologia', 'Vacinao e Nutrologia'), ('Outras', 'Outras')]\n name = models.CharField(null=True, blank=True, max_length=150)\n area = models.CharField(null=True, blank=True, max_length=100, choices=\n AREA_OF_PETS, default='')\n area_id = models.ForeignKey(Pet_disease_areas, on_delete=models.CASCADE,\n null=True, blank=True)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_health(models.Model):\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial',\n 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), (\n 'Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Doena mental',\n 'Doena mental'), ('Epilepsia', 'Epilesia'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total'), ('No sente cheiro', 'No sente cheiro')\n ]\n STATUS = [('Curado', 'Curado'), ('Em tratamento', 'Em tratamento'), (\n 'Sem verba', 'Sem verba')]\n SPECIAL_TREATMENT = [('Fisioterapia', 'Fisioterapia'), ('Acunpuntura',\n 'Acunpuntura'), ('Caminhada diria', 'Caminhada diria')]\n TYPES = [('Fatal', 'Fatal'), ('Para o resto da vida',\n 'Para o resto da vida'), ('Temporria', 'Temporria')]\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n diagnose_date = models.DateField(null=True, blank=True)\n disease_status = models.CharField(null=True, blank=True, max_length=100,\n choices=STATUS, default='')\n disease_type = models.CharField(null=True, blank=True, max_length=100,\n choices=TYPES, default='')\n internal_notes = models.CharField(null=True, blank=True, max_length=300)\n which_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n which_special_treatment = models.CharField(null=True, blank=True,\n max_length=100, choices=SPECIAL_TREATMENT, default='')\n disease_name = models.CharField(null=True, blank=True, max_length=200)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n\n def __str__(self):\n return self.disease\n", "<import token>\n<class token>\n\n\nclass Cidade(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n\n\nclass Ongs(models.Model):\n ADOPTION_VALUE = [('Gratuito', 'Gratuito'), ('10,00', '10,00'), (\n '15,00', '15,00'), ('20,00', '20,00'), ('25,00', '25,00'), ('30,00',\n '30,00'), ('35,00', '35,00'), ('40,00', '40,00'), ('45,00', '45,00'\n ), ('50,00', '50,00'), ('55,00', '55,00'), ('60,00', '60,00'), (\n '65,00', '65,00'), ('70,00', '70,00'), ('75,00', '75,00'), ('80,00',\n '80,00'), ('85,00', '85,00'), ('90,00', '90,00'), ('95,00', '95,00'\n ), ('100,00', '100,00')]\n OPEN_HOURS = [('06:00', '06:00'), ('06:30', '06:30'), ('07:00', '07:00'\n ), ('07:30', '07:30'), ('08:00', '08:00'), ('08:30', '08:30'), (\n '09:00', '09:00'), ('09:30', '09:30'), ('10:00', '10:00'), ('10:30',\n '10:30'), ('11:00', '11:00'), ('11:30', '11:30'), ('12:00', '12:00'\n ), ('12:30', '12:30')]\n CLOSE_HOURS = [('16:00', '16:00'), ('16:30', '16:30'), ('17:00',\n '17:00'), ('17:30', '17:30'), ('18:00', '18:00'), ('18:30', '18:30'\n ), ('19:00', '19:00'), ('19:30', '19:30'), ('20:00', '20:00'), (\n '20:30', '20:30'), ('21:00', '21:00'), ('21:30', '21:30'), ('22:00',\n '22:00'), ('22:30', '22:30')]\n DDD = [('11', '11'), ('12', '12'), ('13', '13'), ('14', '14'), ('15',\n '15'), ('16', '16'), ('17', '17'), ('18', '18'), ('19', '19'), (\n '21', '21'), ('22', '22'), ('24', '24'), ('27', '27'), ('28', '28'),\n ('31', '31'), ('32', '32'), ('33', '33'), ('34', '34'), ('35', '35'\n ), ('37', '37'), ('38', '38'), ('41', '41'), ('42', '42'), ('43',\n '43'), ('44', '44'), ('45', '45'), ('46', '46'), ('47', '47'), (\n '48', '48'), ('49', '49'), ('51', '51'), ('53', '53'), ('54', '54'),\n ('55', '55'), ('61', '61'), ('62', '62'), ('63', '63'), ('64', '64'\n ), ('65', '65'), ('66', '66'), ('67', '67'), ('68', '68'), ('69',\n '69'), ('71', '71'), ('73', '73'), ('74', '74'), ('75', '75'), (\n '77', '77'), ('79', '79'), ('81', '81'), ('82', '82'), ('83', '83'),\n ('84', '84'), ('85', '85'), ('86', '86'), ('87', '87'), ('88', '88'\n ), ('89', '89'), ('91', '91'), ('92', '92'), ('93', '93'), ('94',\n '94'), ('95', '95'), ('96', '96'), ('97', '97'), ('98', '98'), (\n '99', '99')]\n TRANSPORTATION = [('Grtis', 'Grtis'), ('1,00', '1,00'), ('2,00', '2,00'\n ), ('3,00', '3,00'), ('4,00', '4,00'), ('5,00', '5,00'), ('7,00',\n '7,00'), ('10,00', '10,00'), ('12,00', '12,00'), ('15,00', '15,00'),\n ('18,00', '18,00'), ('20,00', '20,00'), ('25,00', '25,00'), (\n '30,00', '30,00'), ('35,00', '35,00'), ('40,00', '40,00'), ('45,00',\n '45,00'), ('50,00', '50,00'), ('55,00', '65,00'), ('60,00', '60,00')]\n name = models.CharField(null=True, blank=True, max_length=40)\n rate = models.CharField(null=True, blank=True, default='Gratuito',\n max_length=8, choices=ADOPTION_VALUE)\n hour_open = models.CharField(blank=True, null=True, default='',\n max_length=5, choices=OPEN_HOURS)\n hour_close = models.CharField(blank=True, null=True, default='',\n max_length=5, choices=CLOSE_HOURS)\n mission_statement = models.CharField(null=True, blank=True, default='',\n max_length=300)\n description = models.CharField(null=True, blank=True, default='',\n max_length=500)\n web_site = models.CharField(null=True, blank=True, max_length=150)\n phone_number_ddd = models.CharField(null=True, blank=True, max_length=3,\n choices=DDD)\n phone_number = models.CharField(null=True, blank=True, max_length=12)\n email = models.CharField(null=True, blank=True, max_length=100)\n facebook = models.CharField(null=True, blank=True, max_length=100)\n instagram = models.CharField(null=True, blank=True, max_length=40)\n logo_link = models.ImageField(null=True, blank=True)\n picture_1 = models.ImageField(null=True, blank=True)\n picture_2 = models.ImageField(null=True, blank=True)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n city_id = models.ForeignKey(Cidade, on_delete=models.CASCADE, null=True,\n blank=True)\n state_id = models.ForeignKey(Estado, on_delete=models.CASCADE, null=\n True, blank=True)\n is_foster_ok = models.BooleanField(default=0)\n is_volunteer_ok = models.BooleanField(default=0)\n has_transportation = models.BooleanField(default=0)\n cnpj = models.CharField(null=True, blank=True, max_length=18)\n founded_date = models.CharField(null=True, blank=True, max_length=30,\n default='')\n is_approved = models.BooleanField(default=0)\n transportation_price = models.CharField(null=True, blank=True,\n max_length=7, choices=TRANSPORTATION)\n\n def __str__(self):\n return self.name\n\n\nclass User(AbstractUser):\n PERMISSION = [('Editar tudo', 'Editar tudo'), ('Editar equipe e pets',\n 'Editar equipe e pets'), ('Editar pets', 'Editar pets'), (\n 'Visualizar equipe e pets', 'Visualizar equipe e pets'), (\n 'Visualizar pets', 'Visualizar pets')]\n ROLE = [('Advogado(a)', 'Advogado(a)'), ('Auxiliar de veterinrio',\n 'Auxiliar de veterinrio'), ('Bilogo(a)', 'Bilogo(a)'), (\n 'Colaborador(a)', 'Colaborador(a)'), ('Departamento administrativo',\n 'Departamento administrativo'), ('Departamento de atendimento',\n 'Departamento de atendimento'), ('Departamento de eventos',\n 'Departamento de eventos'), ('Departamento educativo',\n 'Departamento educativo'), ('Departamento de marketing',\n 'Departamento de marketing'), ('Departamento financeiro',\n 'Departamento financeiro'), ('Diretor(a) administrativo',\n 'Diretor(a) administrativo'), ('Diretor(a) de eventos',\n 'Diretor(a) de eventos'), ('Diretor(a) financeiro',\n 'Diretor(a) financeiro'), ('Diretor(a) geral', 'Diretor(a) geral'),\n ('Diretor(a) marketing', 'Diretor(a) marketing'), (\n 'Diretor(a) tcnico', 'Diretor(a) tcnico'), ('Funcionrio(a)',\n 'Funcionrio(a)'), ('Fundador(a)', 'Fundador(a)'), ('Presidente',\n 'Presidente'), ('Protetor(a) associado', 'Protetor(a) associado'),\n ('Secretrio(a)', 'Secretrio(a)'), ('Suplente de secretrio',\n 'Suplente de secretrio'), ('Suplente de presidente',\n 'Suplente de presidente'), ('Suplente de vice-presidente',\n 'Suplente de vice-presidente'), ('Tesoreiro(a)', 'Tesoreiro(a)'), (\n 'Veterinrio(a)', 'Veterinrio(a)'), ('Vice-presidente',\n 'Vice-presidente'), ('Voluntrio(a)', 'Voluntrio(a)')]\n permission_ong = models.CharField(null=True, blank=True, max_length=30,\n choices=PERMISSION)\n role_ong = models.CharField(null=True, blank=True, max_length=30,\n choices=ROLE)\n birth_date = models.DateField(null=True, blank=True)\n has_confirmed_email = models.BooleanField(default=0)\n country = models.CharField(null=True, blank=True, max_length=50)\n state_code = models.CharField(null=True, blank=True, max_length=3)\n city = models.CharField(null=True, blank=True, max_length=50)\n neighborhood = models.CharField(null=True, blank=True, max_length=50)\n rg = models.CharField(null=True, blank=True, max_length=12)\n cpf = models.CharField(null=True, blank=True, max_length=15)\n phone_number_ddd = models.CharField(null=True, max_length=3)\n phone_number = models.CharField(null=True, blank=True, max_length=10)\n address_street = models.CharField(null=True, blank=True, max_length=70)\n address_number = models.CharField(null=True, blank=True, max_length=6)\n address_complement = models.CharField(null=True, blank=True, max_length=10)\n postal_code = models.CharField(null=True, blank=True, max_length=10)\n facebook_id = models.CharField(null=True, blank=True, max_length=30)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n ongs_id = models.ForeignKey(Ongs, on_delete=models.SET_NULL, null=True,\n blank=True)\n\n\nclass Pet_breed(models.Model):\n name = models.CharField(null=True, blank=True, max_length=100)\n species = models.CharField(null=True, blank=True, max_length=30)\n\n def __str__(self):\n return self.name\n\n\nclass Pet(models.Model):\n COLOR_OF_PETS = [('Amarelo', 'Amarelo'), ('Branco', 'Branco'), ('Cinza',\n 'Cinza'), ('Creme', 'Creme'), ('Laranja', 'Laranja'), ('Marrom',\n 'Marrom'), ('Preto', 'Preto')]\n COLOR_PATTERN_OF_PETS = [('Arlequim', 'Arlequim'), ('Belton', 'Belton'),\n ('Bicolor', 'Bicolor'), ('Fulvo', 'Fulvo'), ('Lobeiro', 'Ruo'), (\n 'Merle', 'Merle'), ('Pintaigado', 'Pintaigado'), ('Ruo', 'Ruo'), (\n 'Sal e Pimenta', 'Sal e Pimenta'), ('Tigrado', 'Tigrado'), (\n 'Unicolor', 'Unicolor')]\n GENDER_OF_PETS = [('Fmea', 'Fmea'), ('Macho', 'Macho')]\n ACTIVITY_LEVEL_PETS = [('Hiperativo', 'Hiperativo'), ('Ativo', 'Ativo'),\n ('Moderado', 'Moderado'), ('Baixo', 'Baixo')]\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('Apenas alguns dentes', 'Apenas alguns dentes'), (\n 'Cegueira parcial', 'Cegueira parcial'), ('Cegueira total',\n 'Cegueira total'), ('Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Nenhum dente',\n 'Nenhum dente'), ('Doena Neural', 'Doena Neural'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total')]\n CONFORTABLE = [('No', 'No'), ('Sim', 'Sim'), ('No sei', 'No sei')]\n STATUS_OF_PETS = [('A caminho do novo lar', 'A caminho do novo lar'), (\n 'Adoo pendente', 'Adoo pendente'), ('Adotado', 'Adotado'), (\n 'Doente', 'Doente'), ('Esperando visita', 'Esperando visita'), (\n 'Falecido', 'Falecido'), ('Retornando para abrigo',\n 'Retornando para abrigo'), ('Lar provisrio', 'Lar provisrio'), (\n 'Lar provisrio pelo FDS', 'Lar provisrio pelo FDS')]\n STATUS_OF_TEETH = [('Perfeitos', 'Perfeitos'), ('Um pouco de trtaro',\n 'Um pouco de trtaro'), ('Trtaro mediano', 'Trtaro mediano'), (\n 'Perdeu alguns dentes', 'Perdeu alguns dentes'), (\n 'Dentes permitem apenas comida mole',\n 'Dentes permitem apenas comida mole'), (\n 'Perdeu quase todos ou todos os dentes',\n 'Perdeu quase todos ou todos os dentes')]\n COAT_OF_PETS = [('Arrepiado ', 'Arrepiado'), ('Liso', 'Liso'), (\n 'Ondulado', 'Ondulado')]\n COAT_SIZE_OF_PETS = [('Curto', 'Curto'), ('Mdio', 'Mdio'), ('Longo',\n 'Longo')]\n SPECIES_OF_PETS = [('Cachorro', 'Cachorro'), ('Gato', 'Gato'), (\n 'Outros', 'Outros')]\n SIZE_OF_PETS = [('Mini', 'Mini'), ('Pequeno', 'Pequeno'), ('Mdio',\n 'Mdio'), ('Grande', 'Grande'), ('Gigante', 'Gigante')]\n AGE_CATEGORY_OF_PETS = [('Filhote', 'Filhote'), ('Adolescente',\n 'Adolescente'), ('Adulto', 'Adulto'), ('Maduro', 'Maduro'), (\n 'Idoso', 'Idoso')]\n AGE_OF_PETS = [('1 ms', '1 ms'), ('2 meses', '2 meses'), ('3 meses',\n '3 meses'), ('4 meses', '4 meses'), ('5 meses', '5 meses'), (\n '6 meses', '6 meses'), ('7 meses', '7 meses'), ('8 meses',\n '8 meses'), ('9 meses', '9 meses'), ('10 meses', '10 meses'), (\n '11 meses', '11 meses'), ('1 ano', '1 ano'), ('2 anos', '2 anos'),\n ('3 anos', '3 anos'), ('4 anos', '4 anos'), ('5 anos', '5 anos'), (\n '6 anos', '6 anos'), ('7 anos', '7 anos'), ('8 anos', '8 anos'), (\n '9 anos', '9 anos'), ('10 anos', '10 anos'), ('11 anos', '11 anos'),\n ('12 anos', '12 anos'), ('13 anos', '13 anos'), ('14 anos',\n '14 anos'), ('15 anos', '15 anos'), ('16 anos', '16 anos'), (\n '17 anos', '17 anos'), ('18 anos', '18 anos'), ('19 anos',\n '19 anos'), ('20 anos', '20 anos'), ('21 anos', '21 anos'), (\n '22 anos', '22 anos'), ('23 anos', '23 anos'), ('24 anos',\n '24 anos'), ('25 anos', '25 anos'), ('26 anos', '26 anos'), (\n '27 anos', '27 anos'), ('28 anos', '28 anos'), ('29 anos',\n '29 anos'), ('30 anos', '30 anos'), ('No sei', 'No sei')]\n DAY_OF_PETS = [('No sei', 'No sei'), ('1', '1'), ('2', '2'), ('3', '3'),\n ('4', '4'), ('5', '5'), ('6', '6'), ('7', '7'), ('8', '8'), ('9',\n '9'), ('10', '10'), ('11', '11'), ('12', '12'), ('13', '13'), ('14',\n '14'), ('15', '15'), ('16', '16'), ('17', '17'), ('18', '18'), (\n '19', '19'), ('20', '20'), ('21', '21'), ('22', '22'), ('23', '23'),\n ('24', '24'), ('25', '25'), ('26', '26'), ('27', '27'), ('28', '28'\n ), ('29', '29'), ('30', '30'), ('31', '31')]\n MONTH_OF_PETS = [('No sei', 'No sei'), ('Janeiro', 'Janeiro'), (\n 'Fevereiro', 'Fevereiro'), ('Maro', 'Maro'), ('Abril', 'Abril'), (\n 'Maio', 'Maio'), ('Junho', 'Junho'), ('Julho', 'Julho'), ('Agosto',\n 'Agosto'), ('Setembro', 'Setembro'), ('Outubro', 'Outubro'), (\n 'Novembro', 'Novembro'), ('Dezembro', 'Dezembro')]\n AGE_OF_PETS = [('1 ms', '1 ms'), ('2 meses', '2 meses'), ('3 meses',\n '3 meses'), ('4 meses', '4 meses'), ('5 meses', '5 meses'), (\n '6 meses', '6 meses'), ('7 meses', '7 meses'), ('8 meses',\n '8 meses'), ('9 meses', '9 meses'), ('10 meses', '10 meses'), (\n '11 meses', '11 meses'), ('1 ano', '1 ano'), ('2 anos', '2 anos'),\n ('3 anos', '3 anos'), ('4 anos', '4 anos'), ('5 anos', '5 anos'), (\n '6 anos', '6 anos'), ('7 anos', '7 anos'), ('8 anos', '8 anos'), (\n '9 anos', '9 anos'), ('10 anos', '10 anos'), ('11 anos', '11 anos'),\n ('12 anos', '12 anos'), ('13 anos', '13 anos'), ('14 anos',\n '14 anos'), ('15 anos', '15 anos'), ('16 anos', '16 anos'), (\n '17 anos', '17 anos'), ('18 anos', '18 anos'), ('19 anos',\n '19 anos'), ('20 anos', '20 anos'), ('21 anos', '21 anos'), (\n '22 anos', '22 anos'), ('23 anos', '23 anos'), ('24 anos',\n '24 anos'), ('25 anos', '25 anos'), ('26 anos', '26 anos'), (\n '27 anos', '27 anos'), ('28 anos', '28 anos'), ('29 anos',\n '29 anos'), ('30 anos', '30 anos'), ('Menos de 1 ano',\n 'Menos de 1 ano')]\n RETURN_OF_PETS = [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6\n ), (7, 7), (8, 8), (9, 9), (10, 10)]\n TYPES_STREET = [('Alameda', 'Alameda'), ('Avenida', 'Avenida'), (\n 'Chcara', 'Chcara'), ('Colnia', 'Colnia'), ('Condomnio',\n 'Condomnio'), ('Conjunto', 'Conjunto'), ('Estao', 'Estao'), (\n 'Estrada', 'Estrada'), ('Favela', 'Favela'), ('Fazenda', 'Fazenda'),\n ('Jardim', 'Jardim'), ('Ladeira', 'Ladeira'), ('Lago', 'Lago'), (\n 'Largo', 'Largo'), ('Loteamento', 'Loteamento'), ('Passarela',\n 'Passarela'), ('Parque', 'Parque'), ('Praa', 'Praa'), ('Praia',\n 'Praia'), ('Rodovia', 'Rodovia'), ('Rua', 'Rua'), ('Setor', 'Setor'\n ), ('Travessa', 'Travessa'), ('Viaduto', 'Viaduto'), ('Vila', 'Vila')]\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial',\n 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), (\n 'Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Doena mental',\n 'Doena mental'), ('Epilepsia', 'Epilesia'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total'), ('No sente cheiro', 'No sente cheiro')\n ]\n\n def get_years():\n now = int(timezone.now().year) + 1\n past = timezone.now().year - 30\n a = []\n for i in reversed(range(past, now)):\n a.append((i, i))\n a = tuple(a)\n return a\n name = models.CharField('Nome', null=True, blank=True, max_length=30)\n pet_description = models.CharField(null=True, blank=True, max_length=700)\n age = models.CharField(null=True, blank=True, max_length=40, choices=\n AGE_OF_PETS, default='')\n age_category = models.CharField(null=True, blank=True, max_length=30,\n choices=AGE_CATEGORY_OF_PETS, default='')\n species = models.CharField(null=True, blank=True, max_length=25,\n choices=SPECIES_OF_PETS, default='')\n primary_breed = models.ForeignKey(Pet_breed, on_delete=models.CASCADE,\n null=True, blank=True, related_name='primary_breed')\n secondary_breed = models.ForeignKey(Pet_breed, on_delete=models.CASCADE,\n null=True, blank=True, related_name='secondary_breed')\n color = models.CharField(null=True, blank=True, max_length=30, choices=\n COLOR_OF_PETS, default='')\n coat = models.CharField(null=True, blank=True, max_length=20, choices=\n COAT_OF_PETS, default='')\n gender = models.CharField(null=True, blank=True, max_length=10, choices\n =GENDER_OF_PETS, default='')\n birth_day = models.CharField(default=0, null=True, blank=True,\n max_length=30, choices=DAY_OF_PETS)\n birth_month = models.CharField(default=0, null=True, blank=True,\n max_length=30, choices=MONTH_OF_PETS)\n birth_year = models.IntegerField(default=0, null=True, blank=True,\n choices=get_years())\n is_microchiped = models.BooleanField(default=0)\n activity_level = models.CharField(null=True, blank=True, max_length=40,\n choices=ACTIVITY_LEVEL_PETS, default='')\n is_basic_trainned = models.BooleanField(default=0)\n confortable_with_kids = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_elder = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_cats = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_dogs = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_men = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_women = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n arrival_date = models.CharField(null=True, blank=True, max_length=30,\n default='')\n where_was_found_name = models.CharField(null=True, blank=True,\n max_length=100, default='')\n is_neutered = models.BooleanField(default=0)\n was_rabbies_vaccinated_this_year = models.BooleanField(default=0)\n was_v_vaccinated_this_year = models.BooleanField(default=0)\n was_others_vaccinated_this_year = models.BooleanField(default=0)\n profile_picture = models.ImageField(null=True, blank=True)\n picture_1 = models.ImageField(null=True, blank=True)\n picture_2 = models.ImageField(null=True, blank=True)\n picture_3 = models.ImageField(null=True, blank=True)\n video = models.CharField(null=True, blank=True, max_length=150)\n qty_views = models.IntegerField(default=0)\n qty_favorites = models.IntegerField(default=0)\n qty_msg = models.IntegerField(default=0)\n qty_shares = models.IntegerField(default=0)\n ongs_id = models.ForeignKey(Ongs, on_delete=models.CASCADE, default=1)\n status = models.CharField(null=True, blank=True, max_length=50, choices\n =STATUS_OF_PETS, default='')\n coat_size = models.CharField(null=True, blank=True, max_length=50,\n choices=COAT_SIZE_OF_PETS, default='')\n walk_pull = models.BooleanField(default=0)\n walk_pull_hard = models.BooleanField(default=0)\n walk_dogs = models.BooleanField(default=0)\n walk_people = models.BooleanField(default=0)\n walk_fear = models.BooleanField(default=0)\n color_pattern = models.CharField(null=True, blank=True, max_length=30,\n choices=COLOR_PATTERN_OF_PETS, default='')\n size = models.CharField(null=True, blank=True, max_length=50, choices=\n SIZE_OF_PETS, default='')\n qty_preview_adoptions = models.IntegerField(default=0, choices=\n RETURN_OF_PETS)\n qty_adoptions_app = models.IntegerField(default=0)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n teeth_status = models.CharField(null=True, blank=True, max_length=50,\n choices=STATUS_OF_TEETH, default='')\n combo_adoption_id = models.IntegerField(default=0, null=True, blank=True)\n is_available_adoption = models.BooleanField(default=1)\n where_was_found = models.CharField(null=True, blank=True, max_length=50,\n choices=TYPES_STREET, default='')\n where_was_found_city = models.CharField(null=True, blank=True,\n max_length=100, default='')\n where_was_found_state = models.CharField(null=True, blank=True,\n max_length=100, default='')\n first_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n second_special_need = models.CharField(null=True, blank=True,\n max_length=100, choices=SPECIAL_NEED, default='')\n third_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n is_mixed_breed = models.BooleanField(default=1)\n is_walking_daily = models.BooleanField(default=0)\n is_acupuncture = models.BooleanField(default=0)\n is_physiotherapy = models.BooleanField(default=0)\n is_vermifuged = models.BooleanField(default=0)\n is_lice_free = models.BooleanField(default=0)\n is_dog_meet_necessary = models.BooleanField(default=0)\n walk_alone_dislike = models.BooleanField(default=0)\n walk_alone = models.BooleanField(default=0)\n walk_leash = models.BooleanField(default=0)\n id_at_ong = models.IntegerField(default=0, null=True, blank=True)\n\n def __str__(self):\n return self.name\n\n\n<function token>\n\n\nclass Favorites(models.Model):\n user_id = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.\n CASCADE)\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n\n\nclass Pet_disease_areas(models.Model):\n name = models.CharField(null=True, blank=True, max_length=300)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_disease(models.Model):\n AREA_OF_PETS = [('Cardiologia', 'Cardiologia'), ('Dermatologia',\n 'Dermatologia'), ('Endocrinologia', 'Endocrinologia'), (\n 'Gastroenterologia e Hepatologia',\n 'Gastroenterologia e Hepatologia'), ('Hematologia e Imunologia',\n 'Hematologia e Imunologia'), ('Infecciosas', 'Infecciosas'), (\n 'Intoxicaes e Envenemanentos', 'Intoxicaes e Envenemanentos'), (\n 'Musculoesquelticas', 'Musculoesquelticas'), (\n 'Nefrologia e Urologia', 'Nefrologia e Urologia'), ('Neonatologia',\n 'Neonatologia'), ('Neurologia', 'Neurologia'), ('Oftalmologia',\n 'Oftalmologia'), ('Oncologia', 'Oncologia'), ('Respiratrias',\n 'Respiratrias'), ('Teriogenologia', 'Teriogenologia'), (\n 'Vacinao e Nutrologia', 'Vacinao e Nutrologia'), ('Outras', 'Outras')]\n name = models.CharField(null=True, blank=True, max_length=150)\n area = models.CharField(null=True, blank=True, max_length=100, choices=\n AREA_OF_PETS, default='')\n area_id = models.ForeignKey(Pet_disease_areas, on_delete=models.CASCADE,\n null=True, blank=True)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_health(models.Model):\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial',\n 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), (\n 'Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Doena mental',\n 'Doena mental'), ('Epilepsia', 'Epilesia'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total'), ('No sente cheiro', 'No sente cheiro')\n ]\n STATUS = [('Curado', 'Curado'), ('Em tratamento', 'Em tratamento'), (\n 'Sem verba', 'Sem verba')]\n SPECIAL_TREATMENT = [('Fisioterapia', 'Fisioterapia'), ('Acunpuntura',\n 'Acunpuntura'), ('Caminhada diria', 'Caminhada diria')]\n TYPES = [('Fatal', 'Fatal'), ('Para o resto da vida',\n 'Para o resto da vida'), ('Temporria', 'Temporria')]\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n diagnose_date = models.DateField(null=True, blank=True)\n disease_status = models.CharField(null=True, blank=True, max_length=100,\n choices=STATUS, default='')\n disease_type = models.CharField(null=True, blank=True, max_length=100,\n choices=TYPES, default='')\n internal_notes = models.CharField(null=True, blank=True, max_length=300)\n which_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n which_special_treatment = models.CharField(null=True, blank=True,\n max_length=100, choices=SPECIAL_TREATMENT, default='')\n disease_name = models.CharField(null=True, blank=True, max_length=200)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n\n def __str__(self):\n return self.disease\n", "<import token>\n<class token>\n<class token>\n\n\nclass Ongs(models.Model):\n ADOPTION_VALUE = [('Gratuito', 'Gratuito'), ('10,00', '10,00'), (\n '15,00', '15,00'), ('20,00', '20,00'), ('25,00', '25,00'), ('30,00',\n '30,00'), ('35,00', '35,00'), ('40,00', '40,00'), ('45,00', '45,00'\n ), ('50,00', '50,00'), ('55,00', '55,00'), ('60,00', '60,00'), (\n '65,00', '65,00'), ('70,00', '70,00'), ('75,00', '75,00'), ('80,00',\n '80,00'), ('85,00', '85,00'), ('90,00', '90,00'), ('95,00', '95,00'\n ), ('100,00', '100,00')]\n OPEN_HOURS = [('06:00', '06:00'), ('06:30', '06:30'), ('07:00', '07:00'\n ), ('07:30', '07:30'), ('08:00', '08:00'), ('08:30', '08:30'), (\n '09:00', '09:00'), ('09:30', '09:30'), ('10:00', '10:00'), ('10:30',\n '10:30'), ('11:00', '11:00'), ('11:30', '11:30'), ('12:00', '12:00'\n ), ('12:30', '12:30')]\n CLOSE_HOURS = [('16:00', '16:00'), ('16:30', '16:30'), ('17:00',\n '17:00'), ('17:30', '17:30'), ('18:00', '18:00'), ('18:30', '18:30'\n ), ('19:00', '19:00'), ('19:30', '19:30'), ('20:00', '20:00'), (\n '20:30', '20:30'), ('21:00', '21:00'), ('21:30', '21:30'), ('22:00',\n '22:00'), ('22:30', '22:30')]\n DDD = [('11', '11'), ('12', '12'), ('13', '13'), ('14', '14'), ('15',\n '15'), ('16', '16'), ('17', '17'), ('18', '18'), ('19', '19'), (\n '21', '21'), ('22', '22'), ('24', '24'), ('27', '27'), ('28', '28'),\n ('31', '31'), ('32', '32'), ('33', '33'), ('34', '34'), ('35', '35'\n ), ('37', '37'), ('38', '38'), ('41', '41'), ('42', '42'), ('43',\n '43'), ('44', '44'), ('45', '45'), ('46', '46'), ('47', '47'), (\n '48', '48'), ('49', '49'), ('51', '51'), ('53', '53'), ('54', '54'),\n ('55', '55'), ('61', '61'), ('62', '62'), ('63', '63'), ('64', '64'\n ), ('65', '65'), ('66', '66'), ('67', '67'), ('68', '68'), ('69',\n '69'), ('71', '71'), ('73', '73'), ('74', '74'), ('75', '75'), (\n '77', '77'), ('79', '79'), ('81', '81'), ('82', '82'), ('83', '83'),\n ('84', '84'), ('85', '85'), ('86', '86'), ('87', '87'), ('88', '88'\n ), ('89', '89'), ('91', '91'), ('92', '92'), ('93', '93'), ('94',\n '94'), ('95', '95'), ('96', '96'), ('97', '97'), ('98', '98'), (\n '99', '99')]\n TRANSPORTATION = [('Grtis', 'Grtis'), ('1,00', '1,00'), ('2,00', '2,00'\n ), ('3,00', '3,00'), ('4,00', '4,00'), ('5,00', '5,00'), ('7,00',\n '7,00'), ('10,00', '10,00'), ('12,00', '12,00'), ('15,00', '15,00'),\n ('18,00', '18,00'), ('20,00', '20,00'), ('25,00', '25,00'), (\n '30,00', '30,00'), ('35,00', '35,00'), ('40,00', '40,00'), ('45,00',\n '45,00'), ('50,00', '50,00'), ('55,00', '65,00'), ('60,00', '60,00')]\n name = models.CharField(null=True, blank=True, max_length=40)\n rate = models.CharField(null=True, blank=True, default='Gratuito',\n max_length=8, choices=ADOPTION_VALUE)\n hour_open = models.CharField(blank=True, null=True, default='',\n max_length=5, choices=OPEN_HOURS)\n hour_close = models.CharField(blank=True, null=True, default='',\n max_length=5, choices=CLOSE_HOURS)\n mission_statement = models.CharField(null=True, blank=True, default='',\n max_length=300)\n description = models.CharField(null=True, blank=True, default='',\n max_length=500)\n web_site = models.CharField(null=True, blank=True, max_length=150)\n phone_number_ddd = models.CharField(null=True, blank=True, max_length=3,\n choices=DDD)\n phone_number = models.CharField(null=True, blank=True, max_length=12)\n email = models.CharField(null=True, blank=True, max_length=100)\n facebook = models.CharField(null=True, blank=True, max_length=100)\n instagram = models.CharField(null=True, blank=True, max_length=40)\n logo_link = models.ImageField(null=True, blank=True)\n picture_1 = models.ImageField(null=True, blank=True)\n picture_2 = models.ImageField(null=True, blank=True)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n city_id = models.ForeignKey(Cidade, on_delete=models.CASCADE, null=True,\n blank=True)\n state_id = models.ForeignKey(Estado, on_delete=models.CASCADE, null=\n True, blank=True)\n is_foster_ok = models.BooleanField(default=0)\n is_volunteer_ok = models.BooleanField(default=0)\n has_transportation = models.BooleanField(default=0)\n cnpj = models.CharField(null=True, blank=True, max_length=18)\n founded_date = models.CharField(null=True, blank=True, max_length=30,\n default='')\n is_approved = models.BooleanField(default=0)\n transportation_price = models.CharField(null=True, blank=True,\n max_length=7, choices=TRANSPORTATION)\n\n def __str__(self):\n return self.name\n\n\nclass User(AbstractUser):\n PERMISSION = [('Editar tudo', 'Editar tudo'), ('Editar equipe e pets',\n 'Editar equipe e pets'), ('Editar pets', 'Editar pets'), (\n 'Visualizar equipe e pets', 'Visualizar equipe e pets'), (\n 'Visualizar pets', 'Visualizar pets')]\n ROLE = [('Advogado(a)', 'Advogado(a)'), ('Auxiliar de veterinrio',\n 'Auxiliar de veterinrio'), ('Bilogo(a)', 'Bilogo(a)'), (\n 'Colaborador(a)', 'Colaborador(a)'), ('Departamento administrativo',\n 'Departamento administrativo'), ('Departamento de atendimento',\n 'Departamento de atendimento'), ('Departamento de eventos',\n 'Departamento de eventos'), ('Departamento educativo',\n 'Departamento educativo'), ('Departamento de marketing',\n 'Departamento de marketing'), ('Departamento financeiro',\n 'Departamento financeiro'), ('Diretor(a) administrativo',\n 'Diretor(a) administrativo'), ('Diretor(a) de eventos',\n 'Diretor(a) de eventos'), ('Diretor(a) financeiro',\n 'Diretor(a) financeiro'), ('Diretor(a) geral', 'Diretor(a) geral'),\n ('Diretor(a) marketing', 'Diretor(a) marketing'), (\n 'Diretor(a) tcnico', 'Diretor(a) tcnico'), ('Funcionrio(a)',\n 'Funcionrio(a)'), ('Fundador(a)', 'Fundador(a)'), ('Presidente',\n 'Presidente'), ('Protetor(a) associado', 'Protetor(a) associado'),\n ('Secretrio(a)', 'Secretrio(a)'), ('Suplente de secretrio',\n 'Suplente de secretrio'), ('Suplente de presidente',\n 'Suplente de presidente'), ('Suplente de vice-presidente',\n 'Suplente de vice-presidente'), ('Tesoreiro(a)', 'Tesoreiro(a)'), (\n 'Veterinrio(a)', 'Veterinrio(a)'), ('Vice-presidente',\n 'Vice-presidente'), ('Voluntrio(a)', 'Voluntrio(a)')]\n permission_ong = models.CharField(null=True, blank=True, max_length=30,\n choices=PERMISSION)\n role_ong = models.CharField(null=True, blank=True, max_length=30,\n choices=ROLE)\n birth_date = models.DateField(null=True, blank=True)\n has_confirmed_email = models.BooleanField(default=0)\n country = models.CharField(null=True, blank=True, max_length=50)\n state_code = models.CharField(null=True, blank=True, max_length=3)\n city = models.CharField(null=True, blank=True, max_length=50)\n neighborhood = models.CharField(null=True, blank=True, max_length=50)\n rg = models.CharField(null=True, blank=True, max_length=12)\n cpf = models.CharField(null=True, blank=True, max_length=15)\n phone_number_ddd = models.CharField(null=True, max_length=3)\n phone_number = models.CharField(null=True, blank=True, max_length=10)\n address_street = models.CharField(null=True, blank=True, max_length=70)\n address_number = models.CharField(null=True, blank=True, max_length=6)\n address_complement = models.CharField(null=True, blank=True, max_length=10)\n postal_code = models.CharField(null=True, blank=True, max_length=10)\n facebook_id = models.CharField(null=True, blank=True, max_length=30)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n ongs_id = models.ForeignKey(Ongs, on_delete=models.SET_NULL, null=True,\n blank=True)\n\n\nclass Pet_breed(models.Model):\n name = models.CharField(null=True, blank=True, max_length=100)\n species = models.CharField(null=True, blank=True, max_length=30)\n\n def __str__(self):\n return self.name\n\n\nclass Pet(models.Model):\n COLOR_OF_PETS = [('Amarelo', 'Amarelo'), ('Branco', 'Branco'), ('Cinza',\n 'Cinza'), ('Creme', 'Creme'), ('Laranja', 'Laranja'), ('Marrom',\n 'Marrom'), ('Preto', 'Preto')]\n COLOR_PATTERN_OF_PETS = [('Arlequim', 'Arlequim'), ('Belton', 'Belton'),\n ('Bicolor', 'Bicolor'), ('Fulvo', 'Fulvo'), ('Lobeiro', 'Ruo'), (\n 'Merle', 'Merle'), ('Pintaigado', 'Pintaigado'), ('Ruo', 'Ruo'), (\n 'Sal e Pimenta', 'Sal e Pimenta'), ('Tigrado', 'Tigrado'), (\n 'Unicolor', 'Unicolor')]\n GENDER_OF_PETS = [('Fmea', 'Fmea'), ('Macho', 'Macho')]\n ACTIVITY_LEVEL_PETS = [('Hiperativo', 'Hiperativo'), ('Ativo', 'Ativo'),\n ('Moderado', 'Moderado'), ('Baixo', 'Baixo')]\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('Apenas alguns dentes', 'Apenas alguns dentes'), (\n 'Cegueira parcial', 'Cegueira parcial'), ('Cegueira total',\n 'Cegueira total'), ('Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Nenhum dente',\n 'Nenhum dente'), ('Doena Neural', 'Doena Neural'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total')]\n CONFORTABLE = [('No', 'No'), ('Sim', 'Sim'), ('No sei', 'No sei')]\n STATUS_OF_PETS = [('A caminho do novo lar', 'A caminho do novo lar'), (\n 'Adoo pendente', 'Adoo pendente'), ('Adotado', 'Adotado'), (\n 'Doente', 'Doente'), ('Esperando visita', 'Esperando visita'), (\n 'Falecido', 'Falecido'), ('Retornando para abrigo',\n 'Retornando para abrigo'), ('Lar provisrio', 'Lar provisrio'), (\n 'Lar provisrio pelo FDS', 'Lar provisrio pelo FDS')]\n STATUS_OF_TEETH = [('Perfeitos', 'Perfeitos'), ('Um pouco de trtaro',\n 'Um pouco de trtaro'), ('Trtaro mediano', 'Trtaro mediano'), (\n 'Perdeu alguns dentes', 'Perdeu alguns dentes'), (\n 'Dentes permitem apenas comida mole',\n 'Dentes permitem apenas comida mole'), (\n 'Perdeu quase todos ou todos os dentes',\n 'Perdeu quase todos ou todos os dentes')]\n COAT_OF_PETS = [('Arrepiado ', 'Arrepiado'), ('Liso', 'Liso'), (\n 'Ondulado', 'Ondulado')]\n COAT_SIZE_OF_PETS = [('Curto', 'Curto'), ('Mdio', 'Mdio'), ('Longo',\n 'Longo')]\n SPECIES_OF_PETS = [('Cachorro', 'Cachorro'), ('Gato', 'Gato'), (\n 'Outros', 'Outros')]\n SIZE_OF_PETS = [('Mini', 'Mini'), ('Pequeno', 'Pequeno'), ('Mdio',\n 'Mdio'), ('Grande', 'Grande'), ('Gigante', 'Gigante')]\n AGE_CATEGORY_OF_PETS = [('Filhote', 'Filhote'), ('Adolescente',\n 'Adolescente'), ('Adulto', 'Adulto'), ('Maduro', 'Maduro'), (\n 'Idoso', 'Idoso')]\n AGE_OF_PETS = [('1 ms', '1 ms'), ('2 meses', '2 meses'), ('3 meses',\n '3 meses'), ('4 meses', '4 meses'), ('5 meses', '5 meses'), (\n '6 meses', '6 meses'), ('7 meses', '7 meses'), ('8 meses',\n '8 meses'), ('9 meses', '9 meses'), ('10 meses', '10 meses'), (\n '11 meses', '11 meses'), ('1 ano', '1 ano'), ('2 anos', '2 anos'),\n ('3 anos', '3 anos'), ('4 anos', '4 anos'), ('5 anos', '5 anos'), (\n '6 anos', '6 anos'), ('7 anos', '7 anos'), ('8 anos', '8 anos'), (\n '9 anos', '9 anos'), ('10 anos', '10 anos'), ('11 anos', '11 anos'),\n ('12 anos', '12 anos'), ('13 anos', '13 anos'), ('14 anos',\n '14 anos'), ('15 anos', '15 anos'), ('16 anos', '16 anos'), (\n '17 anos', '17 anos'), ('18 anos', '18 anos'), ('19 anos',\n '19 anos'), ('20 anos', '20 anos'), ('21 anos', '21 anos'), (\n '22 anos', '22 anos'), ('23 anos', '23 anos'), ('24 anos',\n '24 anos'), ('25 anos', '25 anos'), ('26 anos', '26 anos'), (\n '27 anos', '27 anos'), ('28 anos', '28 anos'), ('29 anos',\n '29 anos'), ('30 anos', '30 anos'), ('No sei', 'No sei')]\n DAY_OF_PETS = [('No sei', 'No sei'), ('1', '1'), ('2', '2'), ('3', '3'),\n ('4', '4'), ('5', '5'), ('6', '6'), ('7', '7'), ('8', '8'), ('9',\n '9'), ('10', '10'), ('11', '11'), ('12', '12'), ('13', '13'), ('14',\n '14'), ('15', '15'), ('16', '16'), ('17', '17'), ('18', '18'), (\n '19', '19'), ('20', '20'), ('21', '21'), ('22', '22'), ('23', '23'),\n ('24', '24'), ('25', '25'), ('26', '26'), ('27', '27'), ('28', '28'\n ), ('29', '29'), ('30', '30'), ('31', '31')]\n MONTH_OF_PETS = [('No sei', 'No sei'), ('Janeiro', 'Janeiro'), (\n 'Fevereiro', 'Fevereiro'), ('Maro', 'Maro'), ('Abril', 'Abril'), (\n 'Maio', 'Maio'), ('Junho', 'Junho'), ('Julho', 'Julho'), ('Agosto',\n 'Agosto'), ('Setembro', 'Setembro'), ('Outubro', 'Outubro'), (\n 'Novembro', 'Novembro'), ('Dezembro', 'Dezembro')]\n AGE_OF_PETS = [('1 ms', '1 ms'), ('2 meses', '2 meses'), ('3 meses',\n '3 meses'), ('4 meses', '4 meses'), ('5 meses', '5 meses'), (\n '6 meses', '6 meses'), ('7 meses', '7 meses'), ('8 meses',\n '8 meses'), ('9 meses', '9 meses'), ('10 meses', '10 meses'), (\n '11 meses', '11 meses'), ('1 ano', '1 ano'), ('2 anos', '2 anos'),\n ('3 anos', '3 anos'), ('4 anos', '4 anos'), ('5 anos', '5 anos'), (\n '6 anos', '6 anos'), ('7 anos', '7 anos'), ('8 anos', '8 anos'), (\n '9 anos', '9 anos'), ('10 anos', '10 anos'), ('11 anos', '11 anos'),\n ('12 anos', '12 anos'), ('13 anos', '13 anos'), ('14 anos',\n '14 anos'), ('15 anos', '15 anos'), ('16 anos', '16 anos'), (\n '17 anos', '17 anos'), ('18 anos', '18 anos'), ('19 anos',\n '19 anos'), ('20 anos', '20 anos'), ('21 anos', '21 anos'), (\n '22 anos', '22 anos'), ('23 anos', '23 anos'), ('24 anos',\n '24 anos'), ('25 anos', '25 anos'), ('26 anos', '26 anos'), (\n '27 anos', '27 anos'), ('28 anos', '28 anos'), ('29 anos',\n '29 anos'), ('30 anos', '30 anos'), ('Menos de 1 ano',\n 'Menos de 1 ano')]\n RETURN_OF_PETS = [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6\n ), (7, 7), (8, 8), (9, 9), (10, 10)]\n TYPES_STREET = [('Alameda', 'Alameda'), ('Avenida', 'Avenida'), (\n 'Chcara', 'Chcara'), ('Colnia', 'Colnia'), ('Condomnio',\n 'Condomnio'), ('Conjunto', 'Conjunto'), ('Estao', 'Estao'), (\n 'Estrada', 'Estrada'), ('Favela', 'Favela'), ('Fazenda', 'Fazenda'),\n ('Jardim', 'Jardim'), ('Ladeira', 'Ladeira'), ('Lago', 'Lago'), (\n 'Largo', 'Largo'), ('Loteamento', 'Loteamento'), ('Passarela',\n 'Passarela'), ('Parque', 'Parque'), ('Praa', 'Praa'), ('Praia',\n 'Praia'), ('Rodovia', 'Rodovia'), ('Rua', 'Rua'), ('Setor', 'Setor'\n ), ('Travessa', 'Travessa'), ('Viaduto', 'Viaduto'), ('Vila', 'Vila')]\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial',\n 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), (\n 'Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Doena mental',\n 'Doena mental'), ('Epilepsia', 'Epilesia'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total'), ('No sente cheiro', 'No sente cheiro')\n ]\n\n def get_years():\n now = int(timezone.now().year) + 1\n past = timezone.now().year - 30\n a = []\n for i in reversed(range(past, now)):\n a.append((i, i))\n a = tuple(a)\n return a\n name = models.CharField('Nome', null=True, blank=True, max_length=30)\n pet_description = models.CharField(null=True, blank=True, max_length=700)\n age = models.CharField(null=True, blank=True, max_length=40, choices=\n AGE_OF_PETS, default='')\n age_category = models.CharField(null=True, blank=True, max_length=30,\n choices=AGE_CATEGORY_OF_PETS, default='')\n species = models.CharField(null=True, blank=True, max_length=25,\n choices=SPECIES_OF_PETS, default='')\n primary_breed = models.ForeignKey(Pet_breed, on_delete=models.CASCADE,\n null=True, blank=True, related_name='primary_breed')\n secondary_breed = models.ForeignKey(Pet_breed, on_delete=models.CASCADE,\n null=True, blank=True, related_name='secondary_breed')\n color = models.CharField(null=True, blank=True, max_length=30, choices=\n COLOR_OF_PETS, default='')\n coat = models.CharField(null=True, blank=True, max_length=20, choices=\n COAT_OF_PETS, default='')\n gender = models.CharField(null=True, blank=True, max_length=10, choices\n =GENDER_OF_PETS, default='')\n birth_day = models.CharField(default=0, null=True, blank=True,\n max_length=30, choices=DAY_OF_PETS)\n birth_month = models.CharField(default=0, null=True, blank=True,\n max_length=30, choices=MONTH_OF_PETS)\n birth_year = models.IntegerField(default=0, null=True, blank=True,\n choices=get_years())\n is_microchiped = models.BooleanField(default=0)\n activity_level = models.CharField(null=True, blank=True, max_length=40,\n choices=ACTIVITY_LEVEL_PETS, default='')\n is_basic_trainned = models.BooleanField(default=0)\n confortable_with_kids = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_elder = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_cats = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_dogs = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_men = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_women = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n arrival_date = models.CharField(null=True, blank=True, max_length=30,\n default='')\n where_was_found_name = models.CharField(null=True, blank=True,\n max_length=100, default='')\n is_neutered = models.BooleanField(default=0)\n was_rabbies_vaccinated_this_year = models.BooleanField(default=0)\n was_v_vaccinated_this_year = models.BooleanField(default=0)\n was_others_vaccinated_this_year = models.BooleanField(default=0)\n profile_picture = models.ImageField(null=True, blank=True)\n picture_1 = models.ImageField(null=True, blank=True)\n picture_2 = models.ImageField(null=True, blank=True)\n picture_3 = models.ImageField(null=True, blank=True)\n video = models.CharField(null=True, blank=True, max_length=150)\n qty_views = models.IntegerField(default=0)\n qty_favorites = models.IntegerField(default=0)\n qty_msg = models.IntegerField(default=0)\n qty_shares = models.IntegerField(default=0)\n ongs_id = models.ForeignKey(Ongs, on_delete=models.CASCADE, default=1)\n status = models.CharField(null=True, blank=True, max_length=50, choices\n =STATUS_OF_PETS, default='')\n coat_size = models.CharField(null=True, blank=True, max_length=50,\n choices=COAT_SIZE_OF_PETS, default='')\n walk_pull = models.BooleanField(default=0)\n walk_pull_hard = models.BooleanField(default=0)\n walk_dogs = models.BooleanField(default=0)\n walk_people = models.BooleanField(default=0)\n walk_fear = models.BooleanField(default=0)\n color_pattern = models.CharField(null=True, blank=True, max_length=30,\n choices=COLOR_PATTERN_OF_PETS, default='')\n size = models.CharField(null=True, blank=True, max_length=50, choices=\n SIZE_OF_PETS, default='')\n qty_preview_adoptions = models.IntegerField(default=0, choices=\n RETURN_OF_PETS)\n qty_adoptions_app = models.IntegerField(default=0)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n teeth_status = models.CharField(null=True, blank=True, max_length=50,\n choices=STATUS_OF_TEETH, default='')\n combo_adoption_id = models.IntegerField(default=0, null=True, blank=True)\n is_available_adoption = models.BooleanField(default=1)\n where_was_found = models.CharField(null=True, blank=True, max_length=50,\n choices=TYPES_STREET, default='')\n where_was_found_city = models.CharField(null=True, blank=True,\n max_length=100, default='')\n where_was_found_state = models.CharField(null=True, blank=True,\n max_length=100, default='')\n first_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n second_special_need = models.CharField(null=True, blank=True,\n max_length=100, choices=SPECIAL_NEED, default='')\n third_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n is_mixed_breed = models.BooleanField(default=1)\n is_walking_daily = models.BooleanField(default=0)\n is_acupuncture = models.BooleanField(default=0)\n is_physiotherapy = models.BooleanField(default=0)\n is_vermifuged = models.BooleanField(default=0)\n is_lice_free = models.BooleanField(default=0)\n is_dog_meet_necessary = models.BooleanField(default=0)\n walk_alone_dislike = models.BooleanField(default=0)\n walk_alone = models.BooleanField(default=0)\n walk_leash = models.BooleanField(default=0)\n id_at_ong = models.IntegerField(default=0, null=True, blank=True)\n\n def __str__(self):\n return self.name\n\n\n<function token>\n\n\nclass Favorites(models.Model):\n user_id = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.\n CASCADE)\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n\n\nclass Pet_disease_areas(models.Model):\n name = models.CharField(null=True, blank=True, max_length=300)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_disease(models.Model):\n AREA_OF_PETS = [('Cardiologia', 'Cardiologia'), ('Dermatologia',\n 'Dermatologia'), ('Endocrinologia', 'Endocrinologia'), (\n 'Gastroenterologia e Hepatologia',\n 'Gastroenterologia e Hepatologia'), ('Hematologia e Imunologia',\n 'Hematologia e Imunologia'), ('Infecciosas', 'Infecciosas'), (\n 'Intoxicaes e Envenemanentos', 'Intoxicaes e Envenemanentos'), (\n 'Musculoesquelticas', 'Musculoesquelticas'), (\n 'Nefrologia e Urologia', 'Nefrologia e Urologia'), ('Neonatologia',\n 'Neonatologia'), ('Neurologia', 'Neurologia'), ('Oftalmologia',\n 'Oftalmologia'), ('Oncologia', 'Oncologia'), ('Respiratrias',\n 'Respiratrias'), ('Teriogenologia', 'Teriogenologia'), (\n 'Vacinao e Nutrologia', 'Vacinao e Nutrologia'), ('Outras', 'Outras')]\n name = models.CharField(null=True, blank=True, max_length=150)\n area = models.CharField(null=True, blank=True, max_length=100, choices=\n AREA_OF_PETS, default='')\n area_id = models.ForeignKey(Pet_disease_areas, on_delete=models.CASCADE,\n null=True, blank=True)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_health(models.Model):\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial',\n 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), (\n 'Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Doena mental',\n 'Doena mental'), ('Epilepsia', 'Epilesia'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total'), ('No sente cheiro', 'No sente cheiro')\n ]\n STATUS = [('Curado', 'Curado'), ('Em tratamento', 'Em tratamento'), (\n 'Sem verba', 'Sem verba')]\n SPECIAL_TREATMENT = [('Fisioterapia', 'Fisioterapia'), ('Acunpuntura',\n 'Acunpuntura'), ('Caminhada diria', 'Caminhada diria')]\n TYPES = [('Fatal', 'Fatal'), ('Para o resto da vida',\n 'Para o resto da vida'), ('Temporria', 'Temporria')]\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n diagnose_date = models.DateField(null=True, blank=True)\n disease_status = models.CharField(null=True, blank=True, max_length=100,\n choices=STATUS, default='')\n disease_type = models.CharField(null=True, blank=True, max_length=100,\n choices=TYPES, default='')\n internal_notes = models.CharField(null=True, blank=True, max_length=300)\n which_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n which_special_treatment = models.CharField(null=True, blank=True,\n max_length=100, choices=SPECIAL_TREATMENT, default='')\n disease_name = models.CharField(null=True, blank=True, max_length=200)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n\n def __str__(self):\n return self.disease\n", "<import token>\n<class token>\n<class token>\n\n\nclass Ongs(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __str__(self):\n return self.name\n\n\nclass User(AbstractUser):\n PERMISSION = [('Editar tudo', 'Editar tudo'), ('Editar equipe e pets',\n 'Editar equipe e pets'), ('Editar pets', 'Editar pets'), (\n 'Visualizar equipe e pets', 'Visualizar equipe e pets'), (\n 'Visualizar pets', 'Visualizar pets')]\n ROLE = [('Advogado(a)', 'Advogado(a)'), ('Auxiliar de veterinrio',\n 'Auxiliar de veterinrio'), ('Bilogo(a)', 'Bilogo(a)'), (\n 'Colaborador(a)', 'Colaborador(a)'), ('Departamento administrativo',\n 'Departamento administrativo'), ('Departamento de atendimento',\n 'Departamento de atendimento'), ('Departamento de eventos',\n 'Departamento de eventos'), ('Departamento educativo',\n 'Departamento educativo'), ('Departamento de marketing',\n 'Departamento de marketing'), ('Departamento financeiro',\n 'Departamento financeiro'), ('Diretor(a) administrativo',\n 'Diretor(a) administrativo'), ('Diretor(a) de eventos',\n 'Diretor(a) de eventos'), ('Diretor(a) financeiro',\n 'Diretor(a) financeiro'), ('Diretor(a) geral', 'Diretor(a) geral'),\n ('Diretor(a) marketing', 'Diretor(a) marketing'), (\n 'Diretor(a) tcnico', 'Diretor(a) tcnico'), ('Funcionrio(a)',\n 'Funcionrio(a)'), ('Fundador(a)', 'Fundador(a)'), ('Presidente',\n 'Presidente'), ('Protetor(a) associado', 'Protetor(a) associado'),\n ('Secretrio(a)', 'Secretrio(a)'), ('Suplente de secretrio',\n 'Suplente de secretrio'), ('Suplente de presidente',\n 'Suplente de presidente'), ('Suplente de vice-presidente',\n 'Suplente de vice-presidente'), ('Tesoreiro(a)', 'Tesoreiro(a)'), (\n 'Veterinrio(a)', 'Veterinrio(a)'), ('Vice-presidente',\n 'Vice-presidente'), ('Voluntrio(a)', 'Voluntrio(a)')]\n permission_ong = models.CharField(null=True, blank=True, max_length=30,\n choices=PERMISSION)\n role_ong = models.CharField(null=True, blank=True, max_length=30,\n choices=ROLE)\n birth_date = models.DateField(null=True, blank=True)\n has_confirmed_email = models.BooleanField(default=0)\n country = models.CharField(null=True, blank=True, max_length=50)\n state_code = models.CharField(null=True, blank=True, max_length=3)\n city = models.CharField(null=True, blank=True, max_length=50)\n neighborhood = models.CharField(null=True, blank=True, max_length=50)\n rg = models.CharField(null=True, blank=True, max_length=12)\n cpf = models.CharField(null=True, blank=True, max_length=15)\n phone_number_ddd = models.CharField(null=True, max_length=3)\n phone_number = models.CharField(null=True, blank=True, max_length=10)\n address_street = models.CharField(null=True, blank=True, max_length=70)\n address_number = models.CharField(null=True, blank=True, max_length=6)\n address_complement = models.CharField(null=True, blank=True, max_length=10)\n postal_code = models.CharField(null=True, blank=True, max_length=10)\n facebook_id = models.CharField(null=True, blank=True, max_length=30)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n ongs_id = models.ForeignKey(Ongs, on_delete=models.SET_NULL, null=True,\n blank=True)\n\n\nclass Pet_breed(models.Model):\n name = models.CharField(null=True, blank=True, max_length=100)\n species = models.CharField(null=True, blank=True, max_length=30)\n\n def __str__(self):\n return self.name\n\n\nclass Pet(models.Model):\n COLOR_OF_PETS = [('Amarelo', 'Amarelo'), ('Branco', 'Branco'), ('Cinza',\n 'Cinza'), ('Creme', 'Creme'), ('Laranja', 'Laranja'), ('Marrom',\n 'Marrom'), ('Preto', 'Preto')]\n COLOR_PATTERN_OF_PETS = [('Arlequim', 'Arlequim'), ('Belton', 'Belton'),\n ('Bicolor', 'Bicolor'), ('Fulvo', 'Fulvo'), ('Lobeiro', 'Ruo'), (\n 'Merle', 'Merle'), ('Pintaigado', 'Pintaigado'), ('Ruo', 'Ruo'), (\n 'Sal e Pimenta', 'Sal e Pimenta'), ('Tigrado', 'Tigrado'), (\n 'Unicolor', 'Unicolor')]\n GENDER_OF_PETS = [('Fmea', 'Fmea'), ('Macho', 'Macho')]\n ACTIVITY_LEVEL_PETS = [('Hiperativo', 'Hiperativo'), ('Ativo', 'Ativo'),\n ('Moderado', 'Moderado'), ('Baixo', 'Baixo')]\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('Apenas alguns dentes', 'Apenas alguns dentes'), (\n 'Cegueira parcial', 'Cegueira parcial'), ('Cegueira total',\n 'Cegueira total'), ('Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Nenhum dente',\n 'Nenhum dente'), ('Doena Neural', 'Doena Neural'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total')]\n CONFORTABLE = [('No', 'No'), ('Sim', 'Sim'), ('No sei', 'No sei')]\n STATUS_OF_PETS = [('A caminho do novo lar', 'A caminho do novo lar'), (\n 'Adoo pendente', 'Adoo pendente'), ('Adotado', 'Adotado'), (\n 'Doente', 'Doente'), ('Esperando visita', 'Esperando visita'), (\n 'Falecido', 'Falecido'), ('Retornando para abrigo',\n 'Retornando para abrigo'), ('Lar provisrio', 'Lar provisrio'), (\n 'Lar provisrio pelo FDS', 'Lar provisrio pelo FDS')]\n STATUS_OF_TEETH = [('Perfeitos', 'Perfeitos'), ('Um pouco de trtaro',\n 'Um pouco de trtaro'), ('Trtaro mediano', 'Trtaro mediano'), (\n 'Perdeu alguns dentes', 'Perdeu alguns dentes'), (\n 'Dentes permitem apenas comida mole',\n 'Dentes permitem apenas comida mole'), (\n 'Perdeu quase todos ou todos os dentes',\n 'Perdeu quase todos ou todos os dentes')]\n COAT_OF_PETS = [('Arrepiado ', 'Arrepiado'), ('Liso', 'Liso'), (\n 'Ondulado', 'Ondulado')]\n COAT_SIZE_OF_PETS = [('Curto', 'Curto'), ('Mdio', 'Mdio'), ('Longo',\n 'Longo')]\n SPECIES_OF_PETS = [('Cachorro', 'Cachorro'), ('Gato', 'Gato'), (\n 'Outros', 'Outros')]\n SIZE_OF_PETS = [('Mini', 'Mini'), ('Pequeno', 'Pequeno'), ('Mdio',\n 'Mdio'), ('Grande', 'Grande'), ('Gigante', 'Gigante')]\n AGE_CATEGORY_OF_PETS = [('Filhote', 'Filhote'), ('Adolescente',\n 'Adolescente'), ('Adulto', 'Adulto'), ('Maduro', 'Maduro'), (\n 'Idoso', 'Idoso')]\n AGE_OF_PETS = [('1 ms', '1 ms'), ('2 meses', '2 meses'), ('3 meses',\n '3 meses'), ('4 meses', '4 meses'), ('5 meses', '5 meses'), (\n '6 meses', '6 meses'), ('7 meses', '7 meses'), ('8 meses',\n '8 meses'), ('9 meses', '9 meses'), ('10 meses', '10 meses'), (\n '11 meses', '11 meses'), ('1 ano', '1 ano'), ('2 anos', '2 anos'),\n ('3 anos', '3 anos'), ('4 anos', '4 anos'), ('5 anos', '5 anos'), (\n '6 anos', '6 anos'), ('7 anos', '7 anos'), ('8 anos', '8 anos'), (\n '9 anos', '9 anos'), ('10 anos', '10 anos'), ('11 anos', '11 anos'),\n ('12 anos', '12 anos'), ('13 anos', '13 anos'), ('14 anos',\n '14 anos'), ('15 anos', '15 anos'), ('16 anos', '16 anos'), (\n '17 anos', '17 anos'), ('18 anos', '18 anos'), ('19 anos',\n '19 anos'), ('20 anos', '20 anos'), ('21 anos', '21 anos'), (\n '22 anos', '22 anos'), ('23 anos', '23 anos'), ('24 anos',\n '24 anos'), ('25 anos', '25 anos'), ('26 anos', '26 anos'), (\n '27 anos', '27 anos'), ('28 anos', '28 anos'), ('29 anos',\n '29 anos'), ('30 anos', '30 anos'), ('No sei', 'No sei')]\n DAY_OF_PETS = [('No sei', 'No sei'), ('1', '1'), ('2', '2'), ('3', '3'),\n ('4', '4'), ('5', '5'), ('6', '6'), ('7', '7'), ('8', '8'), ('9',\n '9'), ('10', '10'), ('11', '11'), ('12', '12'), ('13', '13'), ('14',\n '14'), ('15', '15'), ('16', '16'), ('17', '17'), ('18', '18'), (\n '19', '19'), ('20', '20'), ('21', '21'), ('22', '22'), ('23', '23'),\n ('24', '24'), ('25', '25'), ('26', '26'), ('27', '27'), ('28', '28'\n ), ('29', '29'), ('30', '30'), ('31', '31')]\n MONTH_OF_PETS = [('No sei', 'No sei'), ('Janeiro', 'Janeiro'), (\n 'Fevereiro', 'Fevereiro'), ('Maro', 'Maro'), ('Abril', 'Abril'), (\n 'Maio', 'Maio'), ('Junho', 'Junho'), ('Julho', 'Julho'), ('Agosto',\n 'Agosto'), ('Setembro', 'Setembro'), ('Outubro', 'Outubro'), (\n 'Novembro', 'Novembro'), ('Dezembro', 'Dezembro')]\n AGE_OF_PETS = [('1 ms', '1 ms'), ('2 meses', '2 meses'), ('3 meses',\n '3 meses'), ('4 meses', '4 meses'), ('5 meses', '5 meses'), (\n '6 meses', '6 meses'), ('7 meses', '7 meses'), ('8 meses',\n '8 meses'), ('9 meses', '9 meses'), ('10 meses', '10 meses'), (\n '11 meses', '11 meses'), ('1 ano', '1 ano'), ('2 anos', '2 anos'),\n ('3 anos', '3 anos'), ('4 anos', '4 anos'), ('5 anos', '5 anos'), (\n '6 anos', '6 anos'), ('7 anos', '7 anos'), ('8 anos', '8 anos'), (\n '9 anos', '9 anos'), ('10 anos', '10 anos'), ('11 anos', '11 anos'),\n ('12 anos', '12 anos'), ('13 anos', '13 anos'), ('14 anos',\n '14 anos'), ('15 anos', '15 anos'), ('16 anos', '16 anos'), (\n '17 anos', '17 anos'), ('18 anos', '18 anos'), ('19 anos',\n '19 anos'), ('20 anos', '20 anos'), ('21 anos', '21 anos'), (\n '22 anos', '22 anos'), ('23 anos', '23 anos'), ('24 anos',\n '24 anos'), ('25 anos', '25 anos'), ('26 anos', '26 anos'), (\n '27 anos', '27 anos'), ('28 anos', '28 anos'), ('29 anos',\n '29 anos'), ('30 anos', '30 anos'), ('Menos de 1 ano',\n 'Menos de 1 ano')]\n RETURN_OF_PETS = [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6\n ), (7, 7), (8, 8), (9, 9), (10, 10)]\n TYPES_STREET = [('Alameda', 'Alameda'), ('Avenida', 'Avenida'), (\n 'Chcara', 'Chcara'), ('Colnia', 'Colnia'), ('Condomnio',\n 'Condomnio'), ('Conjunto', 'Conjunto'), ('Estao', 'Estao'), (\n 'Estrada', 'Estrada'), ('Favela', 'Favela'), ('Fazenda', 'Fazenda'),\n ('Jardim', 'Jardim'), ('Ladeira', 'Ladeira'), ('Lago', 'Lago'), (\n 'Largo', 'Largo'), ('Loteamento', 'Loteamento'), ('Passarela',\n 'Passarela'), ('Parque', 'Parque'), ('Praa', 'Praa'), ('Praia',\n 'Praia'), ('Rodovia', 'Rodovia'), ('Rua', 'Rua'), ('Setor', 'Setor'\n ), ('Travessa', 'Travessa'), ('Viaduto', 'Viaduto'), ('Vila', 'Vila')]\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial',\n 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), (\n 'Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Doena mental',\n 'Doena mental'), ('Epilepsia', 'Epilesia'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total'), ('No sente cheiro', 'No sente cheiro')\n ]\n\n def get_years():\n now = int(timezone.now().year) + 1\n past = timezone.now().year - 30\n a = []\n for i in reversed(range(past, now)):\n a.append((i, i))\n a = tuple(a)\n return a\n name = models.CharField('Nome', null=True, blank=True, max_length=30)\n pet_description = models.CharField(null=True, blank=True, max_length=700)\n age = models.CharField(null=True, blank=True, max_length=40, choices=\n AGE_OF_PETS, default='')\n age_category = models.CharField(null=True, blank=True, max_length=30,\n choices=AGE_CATEGORY_OF_PETS, default='')\n species = models.CharField(null=True, blank=True, max_length=25,\n choices=SPECIES_OF_PETS, default='')\n primary_breed = models.ForeignKey(Pet_breed, on_delete=models.CASCADE,\n null=True, blank=True, related_name='primary_breed')\n secondary_breed = models.ForeignKey(Pet_breed, on_delete=models.CASCADE,\n null=True, blank=True, related_name='secondary_breed')\n color = models.CharField(null=True, blank=True, max_length=30, choices=\n COLOR_OF_PETS, default='')\n coat = models.CharField(null=True, blank=True, max_length=20, choices=\n COAT_OF_PETS, default='')\n gender = models.CharField(null=True, blank=True, max_length=10, choices\n =GENDER_OF_PETS, default='')\n birth_day = models.CharField(default=0, null=True, blank=True,\n max_length=30, choices=DAY_OF_PETS)\n birth_month = models.CharField(default=0, null=True, blank=True,\n max_length=30, choices=MONTH_OF_PETS)\n birth_year = models.IntegerField(default=0, null=True, blank=True,\n choices=get_years())\n is_microchiped = models.BooleanField(default=0)\n activity_level = models.CharField(null=True, blank=True, max_length=40,\n choices=ACTIVITY_LEVEL_PETS, default='')\n is_basic_trainned = models.BooleanField(default=0)\n confortable_with_kids = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_elder = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_cats = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_dogs = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_men = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_women = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n arrival_date = models.CharField(null=True, blank=True, max_length=30,\n default='')\n where_was_found_name = models.CharField(null=True, blank=True,\n max_length=100, default='')\n is_neutered = models.BooleanField(default=0)\n was_rabbies_vaccinated_this_year = models.BooleanField(default=0)\n was_v_vaccinated_this_year = models.BooleanField(default=0)\n was_others_vaccinated_this_year = models.BooleanField(default=0)\n profile_picture = models.ImageField(null=True, blank=True)\n picture_1 = models.ImageField(null=True, blank=True)\n picture_2 = models.ImageField(null=True, blank=True)\n picture_3 = models.ImageField(null=True, blank=True)\n video = models.CharField(null=True, blank=True, max_length=150)\n qty_views = models.IntegerField(default=0)\n qty_favorites = models.IntegerField(default=0)\n qty_msg = models.IntegerField(default=0)\n qty_shares = models.IntegerField(default=0)\n ongs_id = models.ForeignKey(Ongs, on_delete=models.CASCADE, default=1)\n status = models.CharField(null=True, blank=True, max_length=50, choices\n =STATUS_OF_PETS, default='')\n coat_size = models.CharField(null=True, blank=True, max_length=50,\n choices=COAT_SIZE_OF_PETS, default='')\n walk_pull = models.BooleanField(default=0)\n walk_pull_hard = models.BooleanField(default=0)\n walk_dogs = models.BooleanField(default=0)\n walk_people = models.BooleanField(default=0)\n walk_fear = models.BooleanField(default=0)\n color_pattern = models.CharField(null=True, blank=True, max_length=30,\n choices=COLOR_PATTERN_OF_PETS, default='')\n size = models.CharField(null=True, blank=True, max_length=50, choices=\n SIZE_OF_PETS, default='')\n qty_preview_adoptions = models.IntegerField(default=0, choices=\n RETURN_OF_PETS)\n qty_adoptions_app = models.IntegerField(default=0)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n teeth_status = models.CharField(null=True, blank=True, max_length=50,\n choices=STATUS_OF_TEETH, default='')\n combo_adoption_id = models.IntegerField(default=0, null=True, blank=True)\n is_available_adoption = models.BooleanField(default=1)\n where_was_found = models.CharField(null=True, blank=True, max_length=50,\n choices=TYPES_STREET, default='')\n where_was_found_city = models.CharField(null=True, blank=True,\n max_length=100, default='')\n where_was_found_state = models.CharField(null=True, blank=True,\n max_length=100, default='')\n first_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n second_special_need = models.CharField(null=True, blank=True,\n max_length=100, choices=SPECIAL_NEED, default='')\n third_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n is_mixed_breed = models.BooleanField(default=1)\n is_walking_daily = models.BooleanField(default=0)\n is_acupuncture = models.BooleanField(default=0)\n is_physiotherapy = models.BooleanField(default=0)\n is_vermifuged = models.BooleanField(default=0)\n is_lice_free = models.BooleanField(default=0)\n is_dog_meet_necessary = models.BooleanField(default=0)\n walk_alone_dislike = models.BooleanField(default=0)\n walk_alone = models.BooleanField(default=0)\n walk_leash = models.BooleanField(default=0)\n id_at_ong = models.IntegerField(default=0, null=True, blank=True)\n\n def __str__(self):\n return self.name\n\n\n<function token>\n\n\nclass Favorites(models.Model):\n user_id = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.\n CASCADE)\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n\n\nclass Pet_disease_areas(models.Model):\n name = models.CharField(null=True, blank=True, max_length=300)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_disease(models.Model):\n AREA_OF_PETS = [('Cardiologia', 'Cardiologia'), ('Dermatologia',\n 'Dermatologia'), ('Endocrinologia', 'Endocrinologia'), (\n 'Gastroenterologia e Hepatologia',\n 'Gastroenterologia e Hepatologia'), ('Hematologia e Imunologia',\n 'Hematologia e Imunologia'), ('Infecciosas', 'Infecciosas'), (\n 'Intoxicaes e Envenemanentos', 'Intoxicaes e Envenemanentos'), (\n 'Musculoesquelticas', 'Musculoesquelticas'), (\n 'Nefrologia e Urologia', 'Nefrologia e Urologia'), ('Neonatologia',\n 'Neonatologia'), ('Neurologia', 'Neurologia'), ('Oftalmologia',\n 'Oftalmologia'), ('Oncologia', 'Oncologia'), ('Respiratrias',\n 'Respiratrias'), ('Teriogenologia', 'Teriogenologia'), (\n 'Vacinao e Nutrologia', 'Vacinao e Nutrologia'), ('Outras', 'Outras')]\n name = models.CharField(null=True, blank=True, max_length=150)\n area = models.CharField(null=True, blank=True, max_length=100, choices=\n AREA_OF_PETS, default='')\n area_id = models.ForeignKey(Pet_disease_areas, on_delete=models.CASCADE,\n null=True, blank=True)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_health(models.Model):\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial',\n 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), (\n 'Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Doena mental',\n 'Doena mental'), ('Epilepsia', 'Epilesia'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total'), ('No sente cheiro', 'No sente cheiro')\n ]\n STATUS = [('Curado', 'Curado'), ('Em tratamento', 'Em tratamento'), (\n 'Sem verba', 'Sem verba')]\n SPECIAL_TREATMENT = [('Fisioterapia', 'Fisioterapia'), ('Acunpuntura',\n 'Acunpuntura'), ('Caminhada diria', 'Caminhada diria')]\n TYPES = [('Fatal', 'Fatal'), ('Para o resto da vida',\n 'Para o resto da vida'), ('Temporria', 'Temporria')]\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n diagnose_date = models.DateField(null=True, blank=True)\n disease_status = models.CharField(null=True, blank=True, max_length=100,\n choices=STATUS, default='')\n disease_type = models.CharField(null=True, blank=True, max_length=100,\n choices=TYPES, default='')\n internal_notes = models.CharField(null=True, blank=True, max_length=300)\n which_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n which_special_treatment = models.CharField(null=True, blank=True,\n max_length=100, choices=SPECIAL_TREATMENT, default='')\n disease_name = models.CharField(null=True, blank=True, max_length=200)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n\n def __str__(self):\n return self.disease\n", "<import token>\n<class token>\n<class token>\n\n\nclass Ongs(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n\n\nclass User(AbstractUser):\n PERMISSION = [('Editar tudo', 'Editar tudo'), ('Editar equipe e pets',\n 'Editar equipe e pets'), ('Editar pets', 'Editar pets'), (\n 'Visualizar equipe e pets', 'Visualizar equipe e pets'), (\n 'Visualizar pets', 'Visualizar pets')]\n ROLE = [('Advogado(a)', 'Advogado(a)'), ('Auxiliar de veterinrio',\n 'Auxiliar de veterinrio'), ('Bilogo(a)', 'Bilogo(a)'), (\n 'Colaborador(a)', 'Colaborador(a)'), ('Departamento administrativo',\n 'Departamento administrativo'), ('Departamento de atendimento',\n 'Departamento de atendimento'), ('Departamento de eventos',\n 'Departamento de eventos'), ('Departamento educativo',\n 'Departamento educativo'), ('Departamento de marketing',\n 'Departamento de marketing'), ('Departamento financeiro',\n 'Departamento financeiro'), ('Diretor(a) administrativo',\n 'Diretor(a) administrativo'), ('Diretor(a) de eventos',\n 'Diretor(a) de eventos'), ('Diretor(a) financeiro',\n 'Diretor(a) financeiro'), ('Diretor(a) geral', 'Diretor(a) geral'),\n ('Diretor(a) marketing', 'Diretor(a) marketing'), (\n 'Diretor(a) tcnico', 'Diretor(a) tcnico'), ('Funcionrio(a)',\n 'Funcionrio(a)'), ('Fundador(a)', 'Fundador(a)'), ('Presidente',\n 'Presidente'), ('Protetor(a) associado', 'Protetor(a) associado'),\n ('Secretrio(a)', 'Secretrio(a)'), ('Suplente de secretrio',\n 'Suplente de secretrio'), ('Suplente de presidente',\n 'Suplente de presidente'), ('Suplente de vice-presidente',\n 'Suplente de vice-presidente'), ('Tesoreiro(a)', 'Tesoreiro(a)'), (\n 'Veterinrio(a)', 'Veterinrio(a)'), ('Vice-presidente',\n 'Vice-presidente'), ('Voluntrio(a)', 'Voluntrio(a)')]\n permission_ong = models.CharField(null=True, blank=True, max_length=30,\n choices=PERMISSION)\n role_ong = models.CharField(null=True, blank=True, max_length=30,\n choices=ROLE)\n birth_date = models.DateField(null=True, blank=True)\n has_confirmed_email = models.BooleanField(default=0)\n country = models.CharField(null=True, blank=True, max_length=50)\n state_code = models.CharField(null=True, blank=True, max_length=3)\n city = models.CharField(null=True, blank=True, max_length=50)\n neighborhood = models.CharField(null=True, blank=True, max_length=50)\n rg = models.CharField(null=True, blank=True, max_length=12)\n cpf = models.CharField(null=True, blank=True, max_length=15)\n phone_number_ddd = models.CharField(null=True, max_length=3)\n phone_number = models.CharField(null=True, blank=True, max_length=10)\n address_street = models.CharField(null=True, blank=True, max_length=70)\n address_number = models.CharField(null=True, blank=True, max_length=6)\n address_complement = models.CharField(null=True, blank=True, max_length=10)\n postal_code = models.CharField(null=True, blank=True, max_length=10)\n facebook_id = models.CharField(null=True, blank=True, max_length=30)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n ongs_id = models.ForeignKey(Ongs, on_delete=models.SET_NULL, null=True,\n blank=True)\n\n\nclass Pet_breed(models.Model):\n name = models.CharField(null=True, blank=True, max_length=100)\n species = models.CharField(null=True, blank=True, max_length=30)\n\n def __str__(self):\n return self.name\n\n\nclass Pet(models.Model):\n COLOR_OF_PETS = [('Amarelo', 'Amarelo'), ('Branco', 'Branco'), ('Cinza',\n 'Cinza'), ('Creme', 'Creme'), ('Laranja', 'Laranja'), ('Marrom',\n 'Marrom'), ('Preto', 'Preto')]\n COLOR_PATTERN_OF_PETS = [('Arlequim', 'Arlequim'), ('Belton', 'Belton'),\n ('Bicolor', 'Bicolor'), ('Fulvo', 'Fulvo'), ('Lobeiro', 'Ruo'), (\n 'Merle', 'Merle'), ('Pintaigado', 'Pintaigado'), ('Ruo', 'Ruo'), (\n 'Sal e Pimenta', 'Sal e Pimenta'), ('Tigrado', 'Tigrado'), (\n 'Unicolor', 'Unicolor')]\n GENDER_OF_PETS = [('Fmea', 'Fmea'), ('Macho', 'Macho')]\n ACTIVITY_LEVEL_PETS = [('Hiperativo', 'Hiperativo'), ('Ativo', 'Ativo'),\n ('Moderado', 'Moderado'), ('Baixo', 'Baixo')]\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('Apenas alguns dentes', 'Apenas alguns dentes'), (\n 'Cegueira parcial', 'Cegueira parcial'), ('Cegueira total',\n 'Cegueira total'), ('Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Nenhum dente',\n 'Nenhum dente'), ('Doena Neural', 'Doena Neural'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total')]\n CONFORTABLE = [('No', 'No'), ('Sim', 'Sim'), ('No sei', 'No sei')]\n STATUS_OF_PETS = [('A caminho do novo lar', 'A caminho do novo lar'), (\n 'Adoo pendente', 'Adoo pendente'), ('Adotado', 'Adotado'), (\n 'Doente', 'Doente'), ('Esperando visita', 'Esperando visita'), (\n 'Falecido', 'Falecido'), ('Retornando para abrigo',\n 'Retornando para abrigo'), ('Lar provisrio', 'Lar provisrio'), (\n 'Lar provisrio pelo FDS', 'Lar provisrio pelo FDS')]\n STATUS_OF_TEETH = [('Perfeitos', 'Perfeitos'), ('Um pouco de trtaro',\n 'Um pouco de trtaro'), ('Trtaro mediano', 'Trtaro mediano'), (\n 'Perdeu alguns dentes', 'Perdeu alguns dentes'), (\n 'Dentes permitem apenas comida mole',\n 'Dentes permitem apenas comida mole'), (\n 'Perdeu quase todos ou todos os dentes',\n 'Perdeu quase todos ou todos os dentes')]\n COAT_OF_PETS = [('Arrepiado ', 'Arrepiado'), ('Liso', 'Liso'), (\n 'Ondulado', 'Ondulado')]\n COAT_SIZE_OF_PETS = [('Curto', 'Curto'), ('Mdio', 'Mdio'), ('Longo',\n 'Longo')]\n SPECIES_OF_PETS = [('Cachorro', 'Cachorro'), ('Gato', 'Gato'), (\n 'Outros', 'Outros')]\n SIZE_OF_PETS = [('Mini', 'Mini'), ('Pequeno', 'Pequeno'), ('Mdio',\n 'Mdio'), ('Grande', 'Grande'), ('Gigante', 'Gigante')]\n AGE_CATEGORY_OF_PETS = [('Filhote', 'Filhote'), ('Adolescente',\n 'Adolescente'), ('Adulto', 'Adulto'), ('Maduro', 'Maduro'), (\n 'Idoso', 'Idoso')]\n AGE_OF_PETS = [('1 ms', '1 ms'), ('2 meses', '2 meses'), ('3 meses',\n '3 meses'), ('4 meses', '4 meses'), ('5 meses', '5 meses'), (\n '6 meses', '6 meses'), ('7 meses', '7 meses'), ('8 meses',\n '8 meses'), ('9 meses', '9 meses'), ('10 meses', '10 meses'), (\n '11 meses', '11 meses'), ('1 ano', '1 ano'), ('2 anos', '2 anos'),\n ('3 anos', '3 anos'), ('4 anos', '4 anos'), ('5 anos', '5 anos'), (\n '6 anos', '6 anos'), ('7 anos', '7 anos'), ('8 anos', '8 anos'), (\n '9 anos', '9 anos'), ('10 anos', '10 anos'), ('11 anos', '11 anos'),\n ('12 anos', '12 anos'), ('13 anos', '13 anos'), ('14 anos',\n '14 anos'), ('15 anos', '15 anos'), ('16 anos', '16 anos'), (\n '17 anos', '17 anos'), ('18 anos', '18 anos'), ('19 anos',\n '19 anos'), ('20 anos', '20 anos'), ('21 anos', '21 anos'), (\n '22 anos', '22 anos'), ('23 anos', '23 anos'), ('24 anos',\n '24 anos'), ('25 anos', '25 anos'), ('26 anos', '26 anos'), (\n '27 anos', '27 anos'), ('28 anos', '28 anos'), ('29 anos',\n '29 anos'), ('30 anos', '30 anos'), ('No sei', 'No sei')]\n DAY_OF_PETS = [('No sei', 'No sei'), ('1', '1'), ('2', '2'), ('3', '3'),\n ('4', '4'), ('5', '5'), ('6', '6'), ('7', '7'), ('8', '8'), ('9',\n '9'), ('10', '10'), ('11', '11'), ('12', '12'), ('13', '13'), ('14',\n '14'), ('15', '15'), ('16', '16'), ('17', '17'), ('18', '18'), (\n '19', '19'), ('20', '20'), ('21', '21'), ('22', '22'), ('23', '23'),\n ('24', '24'), ('25', '25'), ('26', '26'), ('27', '27'), ('28', '28'\n ), ('29', '29'), ('30', '30'), ('31', '31')]\n MONTH_OF_PETS = [('No sei', 'No sei'), ('Janeiro', 'Janeiro'), (\n 'Fevereiro', 'Fevereiro'), ('Maro', 'Maro'), ('Abril', 'Abril'), (\n 'Maio', 'Maio'), ('Junho', 'Junho'), ('Julho', 'Julho'), ('Agosto',\n 'Agosto'), ('Setembro', 'Setembro'), ('Outubro', 'Outubro'), (\n 'Novembro', 'Novembro'), ('Dezembro', 'Dezembro')]\n AGE_OF_PETS = [('1 ms', '1 ms'), ('2 meses', '2 meses'), ('3 meses',\n '3 meses'), ('4 meses', '4 meses'), ('5 meses', '5 meses'), (\n '6 meses', '6 meses'), ('7 meses', '7 meses'), ('8 meses',\n '8 meses'), ('9 meses', '9 meses'), ('10 meses', '10 meses'), (\n '11 meses', '11 meses'), ('1 ano', '1 ano'), ('2 anos', '2 anos'),\n ('3 anos', '3 anos'), ('4 anos', '4 anos'), ('5 anos', '5 anos'), (\n '6 anos', '6 anos'), ('7 anos', '7 anos'), ('8 anos', '8 anos'), (\n '9 anos', '9 anos'), ('10 anos', '10 anos'), ('11 anos', '11 anos'),\n ('12 anos', '12 anos'), ('13 anos', '13 anos'), ('14 anos',\n '14 anos'), ('15 anos', '15 anos'), ('16 anos', '16 anos'), (\n '17 anos', '17 anos'), ('18 anos', '18 anos'), ('19 anos',\n '19 anos'), ('20 anos', '20 anos'), ('21 anos', '21 anos'), (\n '22 anos', '22 anos'), ('23 anos', '23 anos'), ('24 anos',\n '24 anos'), ('25 anos', '25 anos'), ('26 anos', '26 anos'), (\n '27 anos', '27 anos'), ('28 anos', '28 anos'), ('29 anos',\n '29 anos'), ('30 anos', '30 anos'), ('Menos de 1 ano',\n 'Menos de 1 ano')]\n RETURN_OF_PETS = [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6\n ), (7, 7), (8, 8), (9, 9), (10, 10)]\n TYPES_STREET = [('Alameda', 'Alameda'), ('Avenida', 'Avenida'), (\n 'Chcara', 'Chcara'), ('Colnia', 'Colnia'), ('Condomnio',\n 'Condomnio'), ('Conjunto', 'Conjunto'), ('Estao', 'Estao'), (\n 'Estrada', 'Estrada'), ('Favela', 'Favela'), ('Fazenda', 'Fazenda'),\n ('Jardim', 'Jardim'), ('Ladeira', 'Ladeira'), ('Lago', 'Lago'), (\n 'Largo', 'Largo'), ('Loteamento', 'Loteamento'), ('Passarela',\n 'Passarela'), ('Parque', 'Parque'), ('Praa', 'Praa'), ('Praia',\n 'Praia'), ('Rodovia', 'Rodovia'), ('Rua', 'Rua'), ('Setor', 'Setor'\n ), ('Travessa', 'Travessa'), ('Viaduto', 'Viaduto'), ('Vila', 'Vila')]\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial',\n 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), (\n 'Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Doena mental',\n 'Doena mental'), ('Epilepsia', 'Epilesia'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total'), ('No sente cheiro', 'No sente cheiro')\n ]\n\n def get_years():\n now = int(timezone.now().year) + 1\n past = timezone.now().year - 30\n a = []\n for i in reversed(range(past, now)):\n a.append((i, i))\n a = tuple(a)\n return a\n name = models.CharField('Nome', null=True, blank=True, max_length=30)\n pet_description = models.CharField(null=True, blank=True, max_length=700)\n age = models.CharField(null=True, blank=True, max_length=40, choices=\n AGE_OF_PETS, default='')\n age_category = models.CharField(null=True, blank=True, max_length=30,\n choices=AGE_CATEGORY_OF_PETS, default='')\n species = models.CharField(null=True, blank=True, max_length=25,\n choices=SPECIES_OF_PETS, default='')\n primary_breed = models.ForeignKey(Pet_breed, on_delete=models.CASCADE,\n null=True, blank=True, related_name='primary_breed')\n secondary_breed = models.ForeignKey(Pet_breed, on_delete=models.CASCADE,\n null=True, blank=True, related_name='secondary_breed')\n color = models.CharField(null=True, blank=True, max_length=30, choices=\n COLOR_OF_PETS, default='')\n coat = models.CharField(null=True, blank=True, max_length=20, choices=\n COAT_OF_PETS, default='')\n gender = models.CharField(null=True, blank=True, max_length=10, choices\n =GENDER_OF_PETS, default='')\n birth_day = models.CharField(default=0, null=True, blank=True,\n max_length=30, choices=DAY_OF_PETS)\n birth_month = models.CharField(default=0, null=True, blank=True,\n max_length=30, choices=MONTH_OF_PETS)\n birth_year = models.IntegerField(default=0, null=True, blank=True,\n choices=get_years())\n is_microchiped = models.BooleanField(default=0)\n activity_level = models.CharField(null=True, blank=True, max_length=40,\n choices=ACTIVITY_LEVEL_PETS, default='')\n is_basic_trainned = models.BooleanField(default=0)\n confortable_with_kids = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_elder = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_cats = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_dogs = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_men = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_women = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n arrival_date = models.CharField(null=True, blank=True, max_length=30,\n default='')\n where_was_found_name = models.CharField(null=True, blank=True,\n max_length=100, default='')\n is_neutered = models.BooleanField(default=0)\n was_rabbies_vaccinated_this_year = models.BooleanField(default=0)\n was_v_vaccinated_this_year = models.BooleanField(default=0)\n was_others_vaccinated_this_year = models.BooleanField(default=0)\n profile_picture = models.ImageField(null=True, blank=True)\n picture_1 = models.ImageField(null=True, blank=True)\n picture_2 = models.ImageField(null=True, blank=True)\n picture_3 = models.ImageField(null=True, blank=True)\n video = models.CharField(null=True, blank=True, max_length=150)\n qty_views = models.IntegerField(default=0)\n qty_favorites = models.IntegerField(default=0)\n qty_msg = models.IntegerField(default=0)\n qty_shares = models.IntegerField(default=0)\n ongs_id = models.ForeignKey(Ongs, on_delete=models.CASCADE, default=1)\n status = models.CharField(null=True, blank=True, max_length=50, choices\n =STATUS_OF_PETS, default='')\n coat_size = models.CharField(null=True, blank=True, max_length=50,\n choices=COAT_SIZE_OF_PETS, default='')\n walk_pull = models.BooleanField(default=0)\n walk_pull_hard = models.BooleanField(default=0)\n walk_dogs = models.BooleanField(default=0)\n walk_people = models.BooleanField(default=0)\n walk_fear = models.BooleanField(default=0)\n color_pattern = models.CharField(null=True, blank=True, max_length=30,\n choices=COLOR_PATTERN_OF_PETS, default='')\n size = models.CharField(null=True, blank=True, max_length=50, choices=\n SIZE_OF_PETS, default='')\n qty_preview_adoptions = models.IntegerField(default=0, choices=\n RETURN_OF_PETS)\n qty_adoptions_app = models.IntegerField(default=0)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n teeth_status = models.CharField(null=True, blank=True, max_length=50,\n choices=STATUS_OF_TEETH, default='')\n combo_adoption_id = models.IntegerField(default=0, null=True, blank=True)\n is_available_adoption = models.BooleanField(default=1)\n where_was_found = models.CharField(null=True, blank=True, max_length=50,\n choices=TYPES_STREET, default='')\n where_was_found_city = models.CharField(null=True, blank=True,\n max_length=100, default='')\n where_was_found_state = models.CharField(null=True, blank=True,\n max_length=100, default='')\n first_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n second_special_need = models.CharField(null=True, blank=True,\n max_length=100, choices=SPECIAL_NEED, default='')\n third_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n is_mixed_breed = models.BooleanField(default=1)\n is_walking_daily = models.BooleanField(default=0)\n is_acupuncture = models.BooleanField(default=0)\n is_physiotherapy = models.BooleanField(default=0)\n is_vermifuged = models.BooleanField(default=0)\n is_lice_free = models.BooleanField(default=0)\n is_dog_meet_necessary = models.BooleanField(default=0)\n walk_alone_dislike = models.BooleanField(default=0)\n walk_alone = models.BooleanField(default=0)\n walk_leash = models.BooleanField(default=0)\n id_at_ong = models.IntegerField(default=0, null=True, blank=True)\n\n def __str__(self):\n return self.name\n\n\n<function token>\n\n\nclass Favorites(models.Model):\n user_id = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.\n CASCADE)\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n\n\nclass Pet_disease_areas(models.Model):\n name = models.CharField(null=True, blank=True, max_length=300)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_disease(models.Model):\n AREA_OF_PETS = [('Cardiologia', 'Cardiologia'), ('Dermatologia',\n 'Dermatologia'), ('Endocrinologia', 'Endocrinologia'), (\n 'Gastroenterologia e Hepatologia',\n 'Gastroenterologia e Hepatologia'), ('Hematologia e Imunologia',\n 'Hematologia e Imunologia'), ('Infecciosas', 'Infecciosas'), (\n 'Intoxicaes e Envenemanentos', 'Intoxicaes e Envenemanentos'), (\n 'Musculoesquelticas', 'Musculoesquelticas'), (\n 'Nefrologia e Urologia', 'Nefrologia e Urologia'), ('Neonatologia',\n 'Neonatologia'), ('Neurologia', 'Neurologia'), ('Oftalmologia',\n 'Oftalmologia'), ('Oncologia', 'Oncologia'), ('Respiratrias',\n 'Respiratrias'), ('Teriogenologia', 'Teriogenologia'), (\n 'Vacinao e Nutrologia', 'Vacinao e Nutrologia'), ('Outras', 'Outras')]\n name = models.CharField(null=True, blank=True, max_length=150)\n area = models.CharField(null=True, blank=True, max_length=100, choices=\n AREA_OF_PETS, default='')\n area_id = models.ForeignKey(Pet_disease_areas, on_delete=models.CASCADE,\n null=True, blank=True)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_health(models.Model):\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial',\n 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), (\n 'Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Doena mental',\n 'Doena mental'), ('Epilepsia', 'Epilesia'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total'), ('No sente cheiro', 'No sente cheiro')\n ]\n STATUS = [('Curado', 'Curado'), ('Em tratamento', 'Em tratamento'), (\n 'Sem verba', 'Sem verba')]\n SPECIAL_TREATMENT = [('Fisioterapia', 'Fisioterapia'), ('Acunpuntura',\n 'Acunpuntura'), ('Caminhada diria', 'Caminhada diria')]\n TYPES = [('Fatal', 'Fatal'), ('Para o resto da vida',\n 'Para o resto da vida'), ('Temporria', 'Temporria')]\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n diagnose_date = models.DateField(null=True, blank=True)\n disease_status = models.CharField(null=True, blank=True, max_length=100,\n choices=STATUS, default='')\n disease_type = models.CharField(null=True, blank=True, max_length=100,\n choices=TYPES, default='')\n internal_notes = models.CharField(null=True, blank=True, max_length=300)\n which_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n which_special_treatment = models.CharField(null=True, blank=True,\n max_length=100, choices=SPECIAL_TREATMENT, default='')\n disease_name = models.CharField(null=True, blank=True, max_length=200)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n\n def __str__(self):\n return self.disease\n", "<import token>\n<class token>\n<class token>\n<class token>\n\n\nclass User(AbstractUser):\n PERMISSION = [('Editar tudo', 'Editar tudo'), ('Editar equipe e pets',\n 'Editar equipe e pets'), ('Editar pets', 'Editar pets'), (\n 'Visualizar equipe e pets', 'Visualizar equipe e pets'), (\n 'Visualizar pets', 'Visualizar pets')]\n ROLE = [('Advogado(a)', 'Advogado(a)'), ('Auxiliar de veterinrio',\n 'Auxiliar de veterinrio'), ('Bilogo(a)', 'Bilogo(a)'), (\n 'Colaborador(a)', 'Colaborador(a)'), ('Departamento administrativo',\n 'Departamento administrativo'), ('Departamento de atendimento',\n 'Departamento de atendimento'), ('Departamento de eventos',\n 'Departamento de eventos'), ('Departamento educativo',\n 'Departamento educativo'), ('Departamento de marketing',\n 'Departamento de marketing'), ('Departamento financeiro',\n 'Departamento financeiro'), ('Diretor(a) administrativo',\n 'Diretor(a) administrativo'), ('Diretor(a) de eventos',\n 'Diretor(a) de eventos'), ('Diretor(a) financeiro',\n 'Diretor(a) financeiro'), ('Diretor(a) geral', 'Diretor(a) geral'),\n ('Diretor(a) marketing', 'Diretor(a) marketing'), (\n 'Diretor(a) tcnico', 'Diretor(a) tcnico'), ('Funcionrio(a)',\n 'Funcionrio(a)'), ('Fundador(a)', 'Fundador(a)'), ('Presidente',\n 'Presidente'), ('Protetor(a) associado', 'Protetor(a) associado'),\n ('Secretrio(a)', 'Secretrio(a)'), ('Suplente de secretrio',\n 'Suplente de secretrio'), ('Suplente de presidente',\n 'Suplente de presidente'), ('Suplente de vice-presidente',\n 'Suplente de vice-presidente'), ('Tesoreiro(a)', 'Tesoreiro(a)'), (\n 'Veterinrio(a)', 'Veterinrio(a)'), ('Vice-presidente',\n 'Vice-presidente'), ('Voluntrio(a)', 'Voluntrio(a)')]\n permission_ong = models.CharField(null=True, blank=True, max_length=30,\n choices=PERMISSION)\n role_ong = models.CharField(null=True, blank=True, max_length=30,\n choices=ROLE)\n birth_date = models.DateField(null=True, blank=True)\n has_confirmed_email = models.BooleanField(default=0)\n country = models.CharField(null=True, blank=True, max_length=50)\n state_code = models.CharField(null=True, blank=True, max_length=3)\n city = models.CharField(null=True, blank=True, max_length=50)\n neighborhood = models.CharField(null=True, blank=True, max_length=50)\n rg = models.CharField(null=True, blank=True, max_length=12)\n cpf = models.CharField(null=True, blank=True, max_length=15)\n phone_number_ddd = models.CharField(null=True, max_length=3)\n phone_number = models.CharField(null=True, blank=True, max_length=10)\n address_street = models.CharField(null=True, blank=True, max_length=70)\n address_number = models.CharField(null=True, blank=True, max_length=6)\n address_complement = models.CharField(null=True, blank=True, max_length=10)\n postal_code = models.CharField(null=True, blank=True, max_length=10)\n facebook_id = models.CharField(null=True, blank=True, max_length=30)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n ongs_id = models.ForeignKey(Ongs, on_delete=models.SET_NULL, null=True,\n blank=True)\n\n\nclass Pet_breed(models.Model):\n name = models.CharField(null=True, blank=True, max_length=100)\n species = models.CharField(null=True, blank=True, max_length=30)\n\n def __str__(self):\n return self.name\n\n\nclass Pet(models.Model):\n COLOR_OF_PETS = [('Amarelo', 'Amarelo'), ('Branco', 'Branco'), ('Cinza',\n 'Cinza'), ('Creme', 'Creme'), ('Laranja', 'Laranja'), ('Marrom',\n 'Marrom'), ('Preto', 'Preto')]\n COLOR_PATTERN_OF_PETS = [('Arlequim', 'Arlequim'), ('Belton', 'Belton'),\n ('Bicolor', 'Bicolor'), ('Fulvo', 'Fulvo'), ('Lobeiro', 'Ruo'), (\n 'Merle', 'Merle'), ('Pintaigado', 'Pintaigado'), ('Ruo', 'Ruo'), (\n 'Sal e Pimenta', 'Sal e Pimenta'), ('Tigrado', 'Tigrado'), (\n 'Unicolor', 'Unicolor')]\n GENDER_OF_PETS = [('Fmea', 'Fmea'), ('Macho', 'Macho')]\n ACTIVITY_LEVEL_PETS = [('Hiperativo', 'Hiperativo'), ('Ativo', 'Ativo'),\n ('Moderado', 'Moderado'), ('Baixo', 'Baixo')]\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('Apenas alguns dentes', 'Apenas alguns dentes'), (\n 'Cegueira parcial', 'Cegueira parcial'), ('Cegueira total',\n 'Cegueira total'), ('Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Nenhum dente',\n 'Nenhum dente'), ('Doena Neural', 'Doena Neural'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total')]\n CONFORTABLE = [('No', 'No'), ('Sim', 'Sim'), ('No sei', 'No sei')]\n STATUS_OF_PETS = [('A caminho do novo lar', 'A caminho do novo lar'), (\n 'Adoo pendente', 'Adoo pendente'), ('Adotado', 'Adotado'), (\n 'Doente', 'Doente'), ('Esperando visita', 'Esperando visita'), (\n 'Falecido', 'Falecido'), ('Retornando para abrigo',\n 'Retornando para abrigo'), ('Lar provisrio', 'Lar provisrio'), (\n 'Lar provisrio pelo FDS', 'Lar provisrio pelo FDS')]\n STATUS_OF_TEETH = [('Perfeitos', 'Perfeitos'), ('Um pouco de trtaro',\n 'Um pouco de trtaro'), ('Trtaro mediano', 'Trtaro mediano'), (\n 'Perdeu alguns dentes', 'Perdeu alguns dentes'), (\n 'Dentes permitem apenas comida mole',\n 'Dentes permitem apenas comida mole'), (\n 'Perdeu quase todos ou todos os dentes',\n 'Perdeu quase todos ou todos os dentes')]\n COAT_OF_PETS = [('Arrepiado ', 'Arrepiado'), ('Liso', 'Liso'), (\n 'Ondulado', 'Ondulado')]\n COAT_SIZE_OF_PETS = [('Curto', 'Curto'), ('Mdio', 'Mdio'), ('Longo',\n 'Longo')]\n SPECIES_OF_PETS = [('Cachorro', 'Cachorro'), ('Gato', 'Gato'), (\n 'Outros', 'Outros')]\n SIZE_OF_PETS = [('Mini', 'Mini'), ('Pequeno', 'Pequeno'), ('Mdio',\n 'Mdio'), ('Grande', 'Grande'), ('Gigante', 'Gigante')]\n AGE_CATEGORY_OF_PETS = [('Filhote', 'Filhote'), ('Adolescente',\n 'Adolescente'), ('Adulto', 'Adulto'), ('Maduro', 'Maduro'), (\n 'Idoso', 'Idoso')]\n AGE_OF_PETS = [('1 ms', '1 ms'), ('2 meses', '2 meses'), ('3 meses',\n '3 meses'), ('4 meses', '4 meses'), ('5 meses', '5 meses'), (\n '6 meses', '6 meses'), ('7 meses', '7 meses'), ('8 meses',\n '8 meses'), ('9 meses', '9 meses'), ('10 meses', '10 meses'), (\n '11 meses', '11 meses'), ('1 ano', '1 ano'), ('2 anos', '2 anos'),\n ('3 anos', '3 anos'), ('4 anos', '4 anos'), ('5 anos', '5 anos'), (\n '6 anos', '6 anos'), ('7 anos', '7 anos'), ('8 anos', '8 anos'), (\n '9 anos', '9 anos'), ('10 anos', '10 anos'), ('11 anos', '11 anos'),\n ('12 anos', '12 anos'), ('13 anos', '13 anos'), ('14 anos',\n '14 anos'), ('15 anos', '15 anos'), ('16 anos', '16 anos'), (\n '17 anos', '17 anos'), ('18 anos', '18 anos'), ('19 anos',\n '19 anos'), ('20 anos', '20 anos'), ('21 anos', '21 anos'), (\n '22 anos', '22 anos'), ('23 anos', '23 anos'), ('24 anos',\n '24 anos'), ('25 anos', '25 anos'), ('26 anos', '26 anos'), (\n '27 anos', '27 anos'), ('28 anos', '28 anos'), ('29 anos',\n '29 anos'), ('30 anos', '30 anos'), ('No sei', 'No sei')]\n DAY_OF_PETS = [('No sei', 'No sei'), ('1', '1'), ('2', '2'), ('3', '3'),\n ('4', '4'), ('5', '5'), ('6', '6'), ('7', '7'), ('8', '8'), ('9',\n '9'), ('10', '10'), ('11', '11'), ('12', '12'), ('13', '13'), ('14',\n '14'), ('15', '15'), ('16', '16'), ('17', '17'), ('18', '18'), (\n '19', '19'), ('20', '20'), ('21', '21'), ('22', '22'), ('23', '23'),\n ('24', '24'), ('25', '25'), ('26', '26'), ('27', '27'), ('28', '28'\n ), ('29', '29'), ('30', '30'), ('31', '31')]\n MONTH_OF_PETS = [('No sei', 'No sei'), ('Janeiro', 'Janeiro'), (\n 'Fevereiro', 'Fevereiro'), ('Maro', 'Maro'), ('Abril', 'Abril'), (\n 'Maio', 'Maio'), ('Junho', 'Junho'), ('Julho', 'Julho'), ('Agosto',\n 'Agosto'), ('Setembro', 'Setembro'), ('Outubro', 'Outubro'), (\n 'Novembro', 'Novembro'), ('Dezembro', 'Dezembro')]\n AGE_OF_PETS = [('1 ms', '1 ms'), ('2 meses', '2 meses'), ('3 meses',\n '3 meses'), ('4 meses', '4 meses'), ('5 meses', '5 meses'), (\n '6 meses', '6 meses'), ('7 meses', '7 meses'), ('8 meses',\n '8 meses'), ('9 meses', '9 meses'), ('10 meses', '10 meses'), (\n '11 meses', '11 meses'), ('1 ano', '1 ano'), ('2 anos', '2 anos'),\n ('3 anos', '3 anos'), ('4 anos', '4 anos'), ('5 anos', '5 anos'), (\n '6 anos', '6 anos'), ('7 anos', '7 anos'), ('8 anos', '8 anos'), (\n '9 anos', '9 anos'), ('10 anos', '10 anos'), ('11 anos', '11 anos'),\n ('12 anos', '12 anos'), ('13 anos', '13 anos'), ('14 anos',\n '14 anos'), ('15 anos', '15 anos'), ('16 anos', '16 anos'), (\n '17 anos', '17 anos'), ('18 anos', '18 anos'), ('19 anos',\n '19 anos'), ('20 anos', '20 anos'), ('21 anos', '21 anos'), (\n '22 anos', '22 anos'), ('23 anos', '23 anos'), ('24 anos',\n '24 anos'), ('25 anos', '25 anos'), ('26 anos', '26 anos'), (\n '27 anos', '27 anos'), ('28 anos', '28 anos'), ('29 anos',\n '29 anos'), ('30 anos', '30 anos'), ('Menos de 1 ano',\n 'Menos de 1 ano')]\n RETURN_OF_PETS = [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6\n ), (7, 7), (8, 8), (9, 9), (10, 10)]\n TYPES_STREET = [('Alameda', 'Alameda'), ('Avenida', 'Avenida'), (\n 'Chcara', 'Chcara'), ('Colnia', 'Colnia'), ('Condomnio',\n 'Condomnio'), ('Conjunto', 'Conjunto'), ('Estao', 'Estao'), (\n 'Estrada', 'Estrada'), ('Favela', 'Favela'), ('Fazenda', 'Fazenda'),\n ('Jardim', 'Jardim'), ('Ladeira', 'Ladeira'), ('Lago', 'Lago'), (\n 'Largo', 'Largo'), ('Loteamento', 'Loteamento'), ('Passarela',\n 'Passarela'), ('Parque', 'Parque'), ('Praa', 'Praa'), ('Praia',\n 'Praia'), ('Rodovia', 'Rodovia'), ('Rua', 'Rua'), ('Setor', 'Setor'\n ), ('Travessa', 'Travessa'), ('Viaduto', 'Viaduto'), ('Vila', 'Vila')]\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial',\n 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), (\n 'Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Doena mental',\n 'Doena mental'), ('Epilepsia', 'Epilesia'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total'), ('No sente cheiro', 'No sente cheiro')\n ]\n\n def get_years():\n now = int(timezone.now().year) + 1\n past = timezone.now().year - 30\n a = []\n for i in reversed(range(past, now)):\n a.append((i, i))\n a = tuple(a)\n return a\n name = models.CharField('Nome', null=True, blank=True, max_length=30)\n pet_description = models.CharField(null=True, blank=True, max_length=700)\n age = models.CharField(null=True, blank=True, max_length=40, choices=\n AGE_OF_PETS, default='')\n age_category = models.CharField(null=True, blank=True, max_length=30,\n choices=AGE_CATEGORY_OF_PETS, default='')\n species = models.CharField(null=True, blank=True, max_length=25,\n choices=SPECIES_OF_PETS, default='')\n primary_breed = models.ForeignKey(Pet_breed, on_delete=models.CASCADE,\n null=True, blank=True, related_name='primary_breed')\n secondary_breed = models.ForeignKey(Pet_breed, on_delete=models.CASCADE,\n null=True, blank=True, related_name='secondary_breed')\n color = models.CharField(null=True, blank=True, max_length=30, choices=\n COLOR_OF_PETS, default='')\n coat = models.CharField(null=True, blank=True, max_length=20, choices=\n COAT_OF_PETS, default='')\n gender = models.CharField(null=True, blank=True, max_length=10, choices\n =GENDER_OF_PETS, default='')\n birth_day = models.CharField(default=0, null=True, blank=True,\n max_length=30, choices=DAY_OF_PETS)\n birth_month = models.CharField(default=0, null=True, blank=True,\n max_length=30, choices=MONTH_OF_PETS)\n birth_year = models.IntegerField(default=0, null=True, blank=True,\n choices=get_years())\n is_microchiped = models.BooleanField(default=0)\n activity_level = models.CharField(null=True, blank=True, max_length=40,\n choices=ACTIVITY_LEVEL_PETS, default='')\n is_basic_trainned = models.BooleanField(default=0)\n confortable_with_kids = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_elder = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_cats = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_dogs = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_men = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_women = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n arrival_date = models.CharField(null=True, blank=True, max_length=30,\n default='')\n where_was_found_name = models.CharField(null=True, blank=True,\n max_length=100, default='')\n is_neutered = models.BooleanField(default=0)\n was_rabbies_vaccinated_this_year = models.BooleanField(default=0)\n was_v_vaccinated_this_year = models.BooleanField(default=0)\n was_others_vaccinated_this_year = models.BooleanField(default=0)\n profile_picture = models.ImageField(null=True, blank=True)\n picture_1 = models.ImageField(null=True, blank=True)\n picture_2 = models.ImageField(null=True, blank=True)\n picture_3 = models.ImageField(null=True, blank=True)\n video = models.CharField(null=True, blank=True, max_length=150)\n qty_views = models.IntegerField(default=0)\n qty_favorites = models.IntegerField(default=0)\n qty_msg = models.IntegerField(default=0)\n qty_shares = models.IntegerField(default=0)\n ongs_id = models.ForeignKey(Ongs, on_delete=models.CASCADE, default=1)\n status = models.CharField(null=True, blank=True, max_length=50, choices\n =STATUS_OF_PETS, default='')\n coat_size = models.CharField(null=True, blank=True, max_length=50,\n choices=COAT_SIZE_OF_PETS, default='')\n walk_pull = models.BooleanField(default=0)\n walk_pull_hard = models.BooleanField(default=0)\n walk_dogs = models.BooleanField(default=0)\n walk_people = models.BooleanField(default=0)\n walk_fear = models.BooleanField(default=0)\n color_pattern = models.CharField(null=True, blank=True, max_length=30,\n choices=COLOR_PATTERN_OF_PETS, default='')\n size = models.CharField(null=True, blank=True, max_length=50, choices=\n SIZE_OF_PETS, default='')\n qty_preview_adoptions = models.IntegerField(default=0, choices=\n RETURN_OF_PETS)\n qty_adoptions_app = models.IntegerField(default=0)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n teeth_status = models.CharField(null=True, blank=True, max_length=50,\n choices=STATUS_OF_TEETH, default='')\n combo_adoption_id = models.IntegerField(default=0, null=True, blank=True)\n is_available_adoption = models.BooleanField(default=1)\n where_was_found = models.CharField(null=True, blank=True, max_length=50,\n choices=TYPES_STREET, default='')\n where_was_found_city = models.CharField(null=True, blank=True,\n max_length=100, default='')\n where_was_found_state = models.CharField(null=True, blank=True,\n max_length=100, default='')\n first_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n second_special_need = models.CharField(null=True, blank=True,\n max_length=100, choices=SPECIAL_NEED, default='')\n third_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n is_mixed_breed = models.BooleanField(default=1)\n is_walking_daily = models.BooleanField(default=0)\n is_acupuncture = models.BooleanField(default=0)\n is_physiotherapy = models.BooleanField(default=0)\n is_vermifuged = models.BooleanField(default=0)\n is_lice_free = models.BooleanField(default=0)\n is_dog_meet_necessary = models.BooleanField(default=0)\n walk_alone_dislike = models.BooleanField(default=0)\n walk_alone = models.BooleanField(default=0)\n walk_leash = models.BooleanField(default=0)\n id_at_ong = models.IntegerField(default=0, null=True, blank=True)\n\n def __str__(self):\n return self.name\n\n\n<function token>\n\n\nclass Favorites(models.Model):\n user_id = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.\n CASCADE)\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n\n\nclass Pet_disease_areas(models.Model):\n name = models.CharField(null=True, blank=True, max_length=300)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_disease(models.Model):\n AREA_OF_PETS = [('Cardiologia', 'Cardiologia'), ('Dermatologia',\n 'Dermatologia'), ('Endocrinologia', 'Endocrinologia'), (\n 'Gastroenterologia e Hepatologia',\n 'Gastroenterologia e Hepatologia'), ('Hematologia e Imunologia',\n 'Hematologia e Imunologia'), ('Infecciosas', 'Infecciosas'), (\n 'Intoxicaes e Envenemanentos', 'Intoxicaes e Envenemanentos'), (\n 'Musculoesquelticas', 'Musculoesquelticas'), (\n 'Nefrologia e Urologia', 'Nefrologia e Urologia'), ('Neonatologia',\n 'Neonatologia'), ('Neurologia', 'Neurologia'), ('Oftalmologia',\n 'Oftalmologia'), ('Oncologia', 'Oncologia'), ('Respiratrias',\n 'Respiratrias'), ('Teriogenologia', 'Teriogenologia'), (\n 'Vacinao e Nutrologia', 'Vacinao e Nutrologia'), ('Outras', 'Outras')]\n name = models.CharField(null=True, blank=True, max_length=150)\n area = models.CharField(null=True, blank=True, max_length=100, choices=\n AREA_OF_PETS, default='')\n area_id = models.ForeignKey(Pet_disease_areas, on_delete=models.CASCADE,\n null=True, blank=True)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_health(models.Model):\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial',\n 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), (\n 'Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Doena mental',\n 'Doena mental'), ('Epilepsia', 'Epilesia'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total'), ('No sente cheiro', 'No sente cheiro')\n ]\n STATUS = [('Curado', 'Curado'), ('Em tratamento', 'Em tratamento'), (\n 'Sem verba', 'Sem verba')]\n SPECIAL_TREATMENT = [('Fisioterapia', 'Fisioterapia'), ('Acunpuntura',\n 'Acunpuntura'), ('Caminhada diria', 'Caminhada diria')]\n TYPES = [('Fatal', 'Fatal'), ('Para o resto da vida',\n 'Para o resto da vida'), ('Temporria', 'Temporria')]\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n diagnose_date = models.DateField(null=True, blank=True)\n disease_status = models.CharField(null=True, blank=True, max_length=100,\n choices=STATUS, default='')\n disease_type = models.CharField(null=True, blank=True, max_length=100,\n choices=TYPES, default='')\n internal_notes = models.CharField(null=True, blank=True, max_length=300)\n which_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n which_special_treatment = models.CharField(null=True, blank=True,\n max_length=100, choices=SPECIAL_TREATMENT, default='')\n disease_name = models.CharField(null=True, blank=True, max_length=200)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n\n def __str__(self):\n return self.disease\n", "<import token>\n<class token>\n<class token>\n<class token>\n\n\nclass User(AbstractUser):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n\nclass Pet_breed(models.Model):\n name = models.CharField(null=True, blank=True, max_length=100)\n species = models.CharField(null=True, blank=True, max_length=30)\n\n def __str__(self):\n return self.name\n\n\nclass Pet(models.Model):\n COLOR_OF_PETS = [('Amarelo', 'Amarelo'), ('Branco', 'Branco'), ('Cinza',\n 'Cinza'), ('Creme', 'Creme'), ('Laranja', 'Laranja'), ('Marrom',\n 'Marrom'), ('Preto', 'Preto')]\n COLOR_PATTERN_OF_PETS = [('Arlequim', 'Arlequim'), ('Belton', 'Belton'),\n ('Bicolor', 'Bicolor'), ('Fulvo', 'Fulvo'), ('Lobeiro', 'Ruo'), (\n 'Merle', 'Merle'), ('Pintaigado', 'Pintaigado'), ('Ruo', 'Ruo'), (\n 'Sal e Pimenta', 'Sal e Pimenta'), ('Tigrado', 'Tigrado'), (\n 'Unicolor', 'Unicolor')]\n GENDER_OF_PETS = [('Fmea', 'Fmea'), ('Macho', 'Macho')]\n ACTIVITY_LEVEL_PETS = [('Hiperativo', 'Hiperativo'), ('Ativo', 'Ativo'),\n ('Moderado', 'Moderado'), ('Baixo', 'Baixo')]\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('Apenas alguns dentes', 'Apenas alguns dentes'), (\n 'Cegueira parcial', 'Cegueira parcial'), ('Cegueira total',\n 'Cegueira total'), ('Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Nenhum dente',\n 'Nenhum dente'), ('Doena Neural', 'Doena Neural'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total')]\n CONFORTABLE = [('No', 'No'), ('Sim', 'Sim'), ('No sei', 'No sei')]\n STATUS_OF_PETS = [('A caminho do novo lar', 'A caminho do novo lar'), (\n 'Adoo pendente', 'Adoo pendente'), ('Adotado', 'Adotado'), (\n 'Doente', 'Doente'), ('Esperando visita', 'Esperando visita'), (\n 'Falecido', 'Falecido'), ('Retornando para abrigo',\n 'Retornando para abrigo'), ('Lar provisrio', 'Lar provisrio'), (\n 'Lar provisrio pelo FDS', 'Lar provisrio pelo FDS')]\n STATUS_OF_TEETH = [('Perfeitos', 'Perfeitos'), ('Um pouco de trtaro',\n 'Um pouco de trtaro'), ('Trtaro mediano', 'Trtaro mediano'), (\n 'Perdeu alguns dentes', 'Perdeu alguns dentes'), (\n 'Dentes permitem apenas comida mole',\n 'Dentes permitem apenas comida mole'), (\n 'Perdeu quase todos ou todos os dentes',\n 'Perdeu quase todos ou todos os dentes')]\n COAT_OF_PETS = [('Arrepiado ', 'Arrepiado'), ('Liso', 'Liso'), (\n 'Ondulado', 'Ondulado')]\n COAT_SIZE_OF_PETS = [('Curto', 'Curto'), ('Mdio', 'Mdio'), ('Longo',\n 'Longo')]\n SPECIES_OF_PETS = [('Cachorro', 'Cachorro'), ('Gato', 'Gato'), (\n 'Outros', 'Outros')]\n SIZE_OF_PETS = [('Mini', 'Mini'), ('Pequeno', 'Pequeno'), ('Mdio',\n 'Mdio'), ('Grande', 'Grande'), ('Gigante', 'Gigante')]\n AGE_CATEGORY_OF_PETS = [('Filhote', 'Filhote'), ('Adolescente',\n 'Adolescente'), ('Adulto', 'Adulto'), ('Maduro', 'Maduro'), (\n 'Idoso', 'Idoso')]\n AGE_OF_PETS = [('1 ms', '1 ms'), ('2 meses', '2 meses'), ('3 meses',\n '3 meses'), ('4 meses', '4 meses'), ('5 meses', '5 meses'), (\n '6 meses', '6 meses'), ('7 meses', '7 meses'), ('8 meses',\n '8 meses'), ('9 meses', '9 meses'), ('10 meses', '10 meses'), (\n '11 meses', '11 meses'), ('1 ano', '1 ano'), ('2 anos', '2 anos'),\n ('3 anos', '3 anos'), ('4 anos', '4 anos'), ('5 anos', '5 anos'), (\n '6 anos', '6 anos'), ('7 anos', '7 anos'), ('8 anos', '8 anos'), (\n '9 anos', '9 anos'), ('10 anos', '10 anos'), ('11 anos', '11 anos'),\n ('12 anos', '12 anos'), ('13 anos', '13 anos'), ('14 anos',\n '14 anos'), ('15 anos', '15 anos'), ('16 anos', '16 anos'), (\n '17 anos', '17 anos'), ('18 anos', '18 anos'), ('19 anos',\n '19 anos'), ('20 anos', '20 anos'), ('21 anos', '21 anos'), (\n '22 anos', '22 anos'), ('23 anos', '23 anos'), ('24 anos',\n '24 anos'), ('25 anos', '25 anos'), ('26 anos', '26 anos'), (\n '27 anos', '27 anos'), ('28 anos', '28 anos'), ('29 anos',\n '29 anos'), ('30 anos', '30 anos'), ('No sei', 'No sei')]\n DAY_OF_PETS = [('No sei', 'No sei'), ('1', '1'), ('2', '2'), ('3', '3'),\n ('4', '4'), ('5', '5'), ('6', '6'), ('7', '7'), ('8', '8'), ('9',\n '9'), ('10', '10'), ('11', '11'), ('12', '12'), ('13', '13'), ('14',\n '14'), ('15', '15'), ('16', '16'), ('17', '17'), ('18', '18'), (\n '19', '19'), ('20', '20'), ('21', '21'), ('22', '22'), ('23', '23'),\n ('24', '24'), ('25', '25'), ('26', '26'), ('27', '27'), ('28', '28'\n ), ('29', '29'), ('30', '30'), ('31', '31')]\n MONTH_OF_PETS = [('No sei', 'No sei'), ('Janeiro', 'Janeiro'), (\n 'Fevereiro', 'Fevereiro'), ('Maro', 'Maro'), ('Abril', 'Abril'), (\n 'Maio', 'Maio'), ('Junho', 'Junho'), ('Julho', 'Julho'), ('Agosto',\n 'Agosto'), ('Setembro', 'Setembro'), ('Outubro', 'Outubro'), (\n 'Novembro', 'Novembro'), ('Dezembro', 'Dezembro')]\n AGE_OF_PETS = [('1 ms', '1 ms'), ('2 meses', '2 meses'), ('3 meses',\n '3 meses'), ('4 meses', '4 meses'), ('5 meses', '5 meses'), (\n '6 meses', '6 meses'), ('7 meses', '7 meses'), ('8 meses',\n '8 meses'), ('9 meses', '9 meses'), ('10 meses', '10 meses'), (\n '11 meses', '11 meses'), ('1 ano', '1 ano'), ('2 anos', '2 anos'),\n ('3 anos', '3 anos'), ('4 anos', '4 anos'), ('5 anos', '5 anos'), (\n '6 anos', '6 anos'), ('7 anos', '7 anos'), ('8 anos', '8 anos'), (\n '9 anos', '9 anos'), ('10 anos', '10 anos'), ('11 anos', '11 anos'),\n ('12 anos', '12 anos'), ('13 anos', '13 anos'), ('14 anos',\n '14 anos'), ('15 anos', '15 anos'), ('16 anos', '16 anos'), (\n '17 anos', '17 anos'), ('18 anos', '18 anos'), ('19 anos',\n '19 anos'), ('20 anos', '20 anos'), ('21 anos', '21 anos'), (\n '22 anos', '22 anos'), ('23 anos', '23 anos'), ('24 anos',\n '24 anos'), ('25 anos', '25 anos'), ('26 anos', '26 anos'), (\n '27 anos', '27 anos'), ('28 anos', '28 anos'), ('29 anos',\n '29 anos'), ('30 anos', '30 anos'), ('Menos de 1 ano',\n 'Menos de 1 ano')]\n RETURN_OF_PETS = [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6\n ), (7, 7), (8, 8), (9, 9), (10, 10)]\n TYPES_STREET = [('Alameda', 'Alameda'), ('Avenida', 'Avenida'), (\n 'Chcara', 'Chcara'), ('Colnia', 'Colnia'), ('Condomnio',\n 'Condomnio'), ('Conjunto', 'Conjunto'), ('Estao', 'Estao'), (\n 'Estrada', 'Estrada'), ('Favela', 'Favela'), ('Fazenda', 'Fazenda'),\n ('Jardim', 'Jardim'), ('Ladeira', 'Ladeira'), ('Lago', 'Lago'), (\n 'Largo', 'Largo'), ('Loteamento', 'Loteamento'), ('Passarela',\n 'Passarela'), ('Parque', 'Parque'), ('Praa', 'Praa'), ('Praia',\n 'Praia'), ('Rodovia', 'Rodovia'), ('Rua', 'Rua'), ('Setor', 'Setor'\n ), ('Travessa', 'Travessa'), ('Viaduto', 'Viaduto'), ('Vila', 'Vila')]\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial',\n 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), (\n 'Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Doena mental',\n 'Doena mental'), ('Epilepsia', 'Epilesia'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total'), ('No sente cheiro', 'No sente cheiro')\n ]\n\n def get_years():\n now = int(timezone.now().year) + 1\n past = timezone.now().year - 30\n a = []\n for i in reversed(range(past, now)):\n a.append((i, i))\n a = tuple(a)\n return a\n name = models.CharField('Nome', null=True, blank=True, max_length=30)\n pet_description = models.CharField(null=True, blank=True, max_length=700)\n age = models.CharField(null=True, blank=True, max_length=40, choices=\n AGE_OF_PETS, default='')\n age_category = models.CharField(null=True, blank=True, max_length=30,\n choices=AGE_CATEGORY_OF_PETS, default='')\n species = models.CharField(null=True, blank=True, max_length=25,\n choices=SPECIES_OF_PETS, default='')\n primary_breed = models.ForeignKey(Pet_breed, on_delete=models.CASCADE,\n null=True, blank=True, related_name='primary_breed')\n secondary_breed = models.ForeignKey(Pet_breed, on_delete=models.CASCADE,\n null=True, blank=True, related_name='secondary_breed')\n color = models.CharField(null=True, blank=True, max_length=30, choices=\n COLOR_OF_PETS, default='')\n coat = models.CharField(null=True, blank=True, max_length=20, choices=\n COAT_OF_PETS, default='')\n gender = models.CharField(null=True, blank=True, max_length=10, choices\n =GENDER_OF_PETS, default='')\n birth_day = models.CharField(default=0, null=True, blank=True,\n max_length=30, choices=DAY_OF_PETS)\n birth_month = models.CharField(default=0, null=True, blank=True,\n max_length=30, choices=MONTH_OF_PETS)\n birth_year = models.IntegerField(default=0, null=True, blank=True,\n choices=get_years())\n is_microchiped = models.BooleanField(default=0)\n activity_level = models.CharField(null=True, blank=True, max_length=40,\n choices=ACTIVITY_LEVEL_PETS, default='')\n is_basic_trainned = models.BooleanField(default=0)\n confortable_with_kids = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_elder = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_cats = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_dogs = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_men = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_women = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n arrival_date = models.CharField(null=True, blank=True, max_length=30,\n default='')\n where_was_found_name = models.CharField(null=True, blank=True,\n max_length=100, default='')\n is_neutered = models.BooleanField(default=0)\n was_rabbies_vaccinated_this_year = models.BooleanField(default=0)\n was_v_vaccinated_this_year = models.BooleanField(default=0)\n was_others_vaccinated_this_year = models.BooleanField(default=0)\n profile_picture = models.ImageField(null=True, blank=True)\n picture_1 = models.ImageField(null=True, blank=True)\n picture_2 = models.ImageField(null=True, blank=True)\n picture_3 = models.ImageField(null=True, blank=True)\n video = models.CharField(null=True, blank=True, max_length=150)\n qty_views = models.IntegerField(default=0)\n qty_favorites = models.IntegerField(default=0)\n qty_msg = models.IntegerField(default=0)\n qty_shares = models.IntegerField(default=0)\n ongs_id = models.ForeignKey(Ongs, on_delete=models.CASCADE, default=1)\n status = models.CharField(null=True, blank=True, max_length=50, choices\n =STATUS_OF_PETS, default='')\n coat_size = models.CharField(null=True, blank=True, max_length=50,\n choices=COAT_SIZE_OF_PETS, default='')\n walk_pull = models.BooleanField(default=0)\n walk_pull_hard = models.BooleanField(default=0)\n walk_dogs = models.BooleanField(default=0)\n walk_people = models.BooleanField(default=0)\n walk_fear = models.BooleanField(default=0)\n color_pattern = models.CharField(null=True, blank=True, max_length=30,\n choices=COLOR_PATTERN_OF_PETS, default='')\n size = models.CharField(null=True, blank=True, max_length=50, choices=\n SIZE_OF_PETS, default='')\n qty_preview_adoptions = models.IntegerField(default=0, choices=\n RETURN_OF_PETS)\n qty_adoptions_app = models.IntegerField(default=0)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n teeth_status = models.CharField(null=True, blank=True, max_length=50,\n choices=STATUS_OF_TEETH, default='')\n combo_adoption_id = models.IntegerField(default=0, null=True, blank=True)\n is_available_adoption = models.BooleanField(default=1)\n where_was_found = models.CharField(null=True, blank=True, max_length=50,\n choices=TYPES_STREET, default='')\n where_was_found_city = models.CharField(null=True, blank=True,\n max_length=100, default='')\n where_was_found_state = models.CharField(null=True, blank=True,\n max_length=100, default='')\n first_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n second_special_need = models.CharField(null=True, blank=True,\n max_length=100, choices=SPECIAL_NEED, default='')\n third_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n is_mixed_breed = models.BooleanField(default=1)\n is_walking_daily = models.BooleanField(default=0)\n is_acupuncture = models.BooleanField(default=0)\n is_physiotherapy = models.BooleanField(default=0)\n is_vermifuged = models.BooleanField(default=0)\n is_lice_free = models.BooleanField(default=0)\n is_dog_meet_necessary = models.BooleanField(default=0)\n walk_alone_dislike = models.BooleanField(default=0)\n walk_alone = models.BooleanField(default=0)\n walk_leash = models.BooleanField(default=0)\n id_at_ong = models.IntegerField(default=0, null=True, blank=True)\n\n def __str__(self):\n return self.name\n\n\n<function token>\n\n\nclass Favorites(models.Model):\n user_id = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.\n CASCADE)\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n\n\nclass Pet_disease_areas(models.Model):\n name = models.CharField(null=True, blank=True, max_length=300)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_disease(models.Model):\n AREA_OF_PETS = [('Cardiologia', 'Cardiologia'), ('Dermatologia',\n 'Dermatologia'), ('Endocrinologia', 'Endocrinologia'), (\n 'Gastroenterologia e Hepatologia',\n 'Gastroenterologia e Hepatologia'), ('Hematologia e Imunologia',\n 'Hematologia e Imunologia'), ('Infecciosas', 'Infecciosas'), (\n 'Intoxicaes e Envenemanentos', 'Intoxicaes e Envenemanentos'), (\n 'Musculoesquelticas', 'Musculoesquelticas'), (\n 'Nefrologia e Urologia', 'Nefrologia e Urologia'), ('Neonatologia',\n 'Neonatologia'), ('Neurologia', 'Neurologia'), ('Oftalmologia',\n 'Oftalmologia'), ('Oncologia', 'Oncologia'), ('Respiratrias',\n 'Respiratrias'), ('Teriogenologia', 'Teriogenologia'), (\n 'Vacinao e Nutrologia', 'Vacinao e Nutrologia'), ('Outras', 'Outras')]\n name = models.CharField(null=True, blank=True, max_length=150)\n area = models.CharField(null=True, blank=True, max_length=100, choices=\n AREA_OF_PETS, default='')\n area_id = models.ForeignKey(Pet_disease_areas, on_delete=models.CASCADE,\n null=True, blank=True)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_health(models.Model):\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial',\n 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), (\n 'Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Doena mental',\n 'Doena mental'), ('Epilepsia', 'Epilesia'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total'), ('No sente cheiro', 'No sente cheiro')\n ]\n STATUS = [('Curado', 'Curado'), ('Em tratamento', 'Em tratamento'), (\n 'Sem verba', 'Sem verba')]\n SPECIAL_TREATMENT = [('Fisioterapia', 'Fisioterapia'), ('Acunpuntura',\n 'Acunpuntura'), ('Caminhada diria', 'Caminhada diria')]\n TYPES = [('Fatal', 'Fatal'), ('Para o resto da vida',\n 'Para o resto da vida'), ('Temporria', 'Temporria')]\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n diagnose_date = models.DateField(null=True, blank=True)\n disease_status = models.CharField(null=True, blank=True, max_length=100,\n choices=STATUS, default='')\n disease_type = models.CharField(null=True, blank=True, max_length=100,\n choices=TYPES, default='')\n internal_notes = models.CharField(null=True, blank=True, max_length=300)\n which_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n which_special_treatment = models.CharField(null=True, blank=True,\n max_length=100, choices=SPECIAL_TREATMENT, default='')\n disease_name = models.CharField(null=True, blank=True, max_length=200)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n\n def __str__(self):\n return self.disease\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass Pet_breed(models.Model):\n name = models.CharField(null=True, blank=True, max_length=100)\n species = models.CharField(null=True, blank=True, max_length=30)\n\n def __str__(self):\n return self.name\n\n\nclass Pet(models.Model):\n COLOR_OF_PETS = [('Amarelo', 'Amarelo'), ('Branco', 'Branco'), ('Cinza',\n 'Cinza'), ('Creme', 'Creme'), ('Laranja', 'Laranja'), ('Marrom',\n 'Marrom'), ('Preto', 'Preto')]\n COLOR_PATTERN_OF_PETS = [('Arlequim', 'Arlequim'), ('Belton', 'Belton'),\n ('Bicolor', 'Bicolor'), ('Fulvo', 'Fulvo'), ('Lobeiro', 'Ruo'), (\n 'Merle', 'Merle'), ('Pintaigado', 'Pintaigado'), ('Ruo', 'Ruo'), (\n 'Sal e Pimenta', 'Sal e Pimenta'), ('Tigrado', 'Tigrado'), (\n 'Unicolor', 'Unicolor')]\n GENDER_OF_PETS = [('Fmea', 'Fmea'), ('Macho', 'Macho')]\n ACTIVITY_LEVEL_PETS = [('Hiperativo', 'Hiperativo'), ('Ativo', 'Ativo'),\n ('Moderado', 'Moderado'), ('Baixo', 'Baixo')]\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('Apenas alguns dentes', 'Apenas alguns dentes'), (\n 'Cegueira parcial', 'Cegueira parcial'), ('Cegueira total',\n 'Cegueira total'), ('Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Nenhum dente',\n 'Nenhum dente'), ('Doena Neural', 'Doena Neural'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total')]\n CONFORTABLE = [('No', 'No'), ('Sim', 'Sim'), ('No sei', 'No sei')]\n STATUS_OF_PETS = [('A caminho do novo lar', 'A caminho do novo lar'), (\n 'Adoo pendente', 'Adoo pendente'), ('Adotado', 'Adotado'), (\n 'Doente', 'Doente'), ('Esperando visita', 'Esperando visita'), (\n 'Falecido', 'Falecido'), ('Retornando para abrigo',\n 'Retornando para abrigo'), ('Lar provisrio', 'Lar provisrio'), (\n 'Lar provisrio pelo FDS', 'Lar provisrio pelo FDS')]\n STATUS_OF_TEETH = [('Perfeitos', 'Perfeitos'), ('Um pouco de trtaro',\n 'Um pouco de trtaro'), ('Trtaro mediano', 'Trtaro mediano'), (\n 'Perdeu alguns dentes', 'Perdeu alguns dentes'), (\n 'Dentes permitem apenas comida mole',\n 'Dentes permitem apenas comida mole'), (\n 'Perdeu quase todos ou todos os dentes',\n 'Perdeu quase todos ou todos os dentes')]\n COAT_OF_PETS = [('Arrepiado ', 'Arrepiado'), ('Liso', 'Liso'), (\n 'Ondulado', 'Ondulado')]\n COAT_SIZE_OF_PETS = [('Curto', 'Curto'), ('Mdio', 'Mdio'), ('Longo',\n 'Longo')]\n SPECIES_OF_PETS = [('Cachorro', 'Cachorro'), ('Gato', 'Gato'), (\n 'Outros', 'Outros')]\n SIZE_OF_PETS = [('Mini', 'Mini'), ('Pequeno', 'Pequeno'), ('Mdio',\n 'Mdio'), ('Grande', 'Grande'), ('Gigante', 'Gigante')]\n AGE_CATEGORY_OF_PETS = [('Filhote', 'Filhote'), ('Adolescente',\n 'Adolescente'), ('Adulto', 'Adulto'), ('Maduro', 'Maduro'), (\n 'Idoso', 'Idoso')]\n AGE_OF_PETS = [('1 ms', '1 ms'), ('2 meses', '2 meses'), ('3 meses',\n '3 meses'), ('4 meses', '4 meses'), ('5 meses', '5 meses'), (\n '6 meses', '6 meses'), ('7 meses', '7 meses'), ('8 meses',\n '8 meses'), ('9 meses', '9 meses'), ('10 meses', '10 meses'), (\n '11 meses', '11 meses'), ('1 ano', '1 ano'), ('2 anos', '2 anos'),\n ('3 anos', '3 anos'), ('4 anos', '4 anos'), ('5 anos', '5 anos'), (\n '6 anos', '6 anos'), ('7 anos', '7 anos'), ('8 anos', '8 anos'), (\n '9 anos', '9 anos'), ('10 anos', '10 anos'), ('11 anos', '11 anos'),\n ('12 anos', '12 anos'), ('13 anos', '13 anos'), ('14 anos',\n '14 anos'), ('15 anos', '15 anos'), ('16 anos', '16 anos'), (\n '17 anos', '17 anos'), ('18 anos', '18 anos'), ('19 anos',\n '19 anos'), ('20 anos', '20 anos'), ('21 anos', '21 anos'), (\n '22 anos', '22 anos'), ('23 anos', '23 anos'), ('24 anos',\n '24 anos'), ('25 anos', '25 anos'), ('26 anos', '26 anos'), (\n '27 anos', '27 anos'), ('28 anos', '28 anos'), ('29 anos',\n '29 anos'), ('30 anos', '30 anos'), ('No sei', 'No sei')]\n DAY_OF_PETS = [('No sei', 'No sei'), ('1', '1'), ('2', '2'), ('3', '3'),\n ('4', '4'), ('5', '5'), ('6', '6'), ('7', '7'), ('8', '8'), ('9',\n '9'), ('10', '10'), ('11', '11'), ('12', '12'), ('13', '13'), ('14',\n '14'), ('15', '15'), ('16', '16'), ('17', '17'), ('18', '18'), (\n '19', '19'), ('20', '20'), ('21', '21'), ('22', '22'), ('23', '23'),\n ('24', '24'), ('25', '25'), ('26', '26'), ('27', '27'), ('28', '28'\n ), ('29', '29'), ('30', '30'), ('31', '31')]\n MONTH_OF_PETS = [('No sei', 'No sei'), ('Janeiro', 'Janeiro'), (\n 'Fevereiro', 'Fevereiro'), ('Maro', 'Maro'), ('Abril', 'Abril'), (\n 'Maio', 'Maio'), ('Junho', 'Junho'), ('Julho', 'Julho'), ('Agosto',\n 'Agosto'), ('Setembro', 'Setembro'), ('Outubro', 'Outubro'), (\n 'Novembro', 'Novembro'), ('Dezembro', 'Dezembro')]\n AGE_OF_PETS = [('1 ms', '1 ms'), ('2 meses', '2 meses'), ('3 meses',\n '3 meses'), ('4 meses', '4 meses'), ('5 meses', '5 meses'), (\n '6 meses', '6 meses'), ('7 meses', '7 meses'), ('8 meses',\n '8 meses'), ('9 meses', '9 meses'), ('10 meses', '10 meses'), (\n '11 meses', '11 meses'), ('1 ano', '1 ano'), ('2 anos', '2 anos'),\n ('3 anos', '3 anos'), ('4 anos', '4 anos'), ('5 anos', '5 anos'), (\n '6 anos', '6 anos'), ('7 anos', '7 anos'), ('8 anos', '8 anos'), (\n '9 anos', '9 anos'), ('10 anos', '10 anos'), ('11 anos', '11 anos'),\n ('12 anos', '12 anos'), ('13 anos', '13 anos'), ('14 anos',\n '14 anos'), ('15 anos', '15 anos'), ('16 anos', '16 anos'), (\n '17 anos', '17 anos'), ('18 anos', '18 anos'), ('19 anos',\n '19 anos'), ('20 anos', '20 anos'), ('21 anos', '21 anos'), (\n '22 anos', '22 anos'), ('23 anos', '23 anos'), ('24 anos',\n '24 anos'), ('25 anos', '25 anos'), ('26 anos', '26 anos'), (\n '27 anos', '27 anos'), ('28 anos', '28 anos'), ('29 anos',\n '29 anos'), ('30 anos', '30 anos'), ('Menos de 1 ano',\n 'Menos de 1 ano')]\n RETURN_OF_PETS = [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6\n ), (7, 7), (8, 8), (9, 9), (10, 10)]\n TYPES_STREET = [('Alameda', 'Alameda'), ('Avenida', 'Avenida'), (\n 'Chcara', 'Chcara'), ('Colnia', 'Colnia'), ('Condomnio',\n 'Condomnio'), ('Conjunto', 'Conjunto'), ('Estao', 'Estao'), (\n 'Estrada', 'Estrada'), ('Favela', 'Favela'), ('Fazenda', 'Fazenda'),\n ('Jardim', 'Jardim'), ('Ladeira', 'Ladeira'), ('Lago', 'Lago'), (\n 'Largo', 'Largo'), ('Loteamento', 'Loteamento'), ('Passarela',\n 'Passarela'), ('Parque', 'Parque'), ('Praa', 'Praa'), ('Praia',\n 'Praia'), ('Rodovia', 'Rodovia'), ('Rua', 'Rua'), ('Setor', 'Setor'\n ), ('Travessa', 'Travessa'), ('Viaduto', 'Viaduto'), ('Vila', 'Vila')]\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial',\n 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), (\n 'Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Doena mental',\n 'Doena mental'), ('Epilepsia', 'Epilesia'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total'), ('No sente cheiro', 'No sente cheiro')\n ]\n\n def get_years():\n now = int(timezone.now().year) + 1\n past = timezone.now().year - 30\n a = []\n for i in reversed(range(past, now)):\n a.append((i, i))\n a = tuple(a)\n return a\n name = models.CharField('Nome', null=True, blank=True, max_length=30)\n pet_description = models.CharField(null=True, blank=True, max_length=700)\n age = models.CharField(null=True, blank=True, max_length=40, choices=\n AGE_OF_PETS, default='')\n age_category = models.CharField(null=True, blank=True, max_length=30,\n choices=AGE_CATEGORY_OF_PETS, default='')\n species = models.CharField(null=True, blank=True, max_length=25,\n choices=SPECIES_OF_PETS, default='')\n primary_breed = models.ForeignKey(Pet_breed, on_delete=models.CASCADE,\n null=True, blank=True, related_name='primary_breed')\n secondary_breed = models.ForeignKey(Pet_breed, on_delete=models.CASCADE,\n null=True, blank=True, related_name='secondary_breed')\n color = models.CharField(null=True, blank=True, max_length=30, choices=\n COLOR_OF_PETS, default='')\n coat = models.CharField(null=True, blank=True, max_length=20, choices=\n COAT_OF_PETS, default='')\n gender = models.CharField(null=True, blank=True, max_length=10, choices\n =GENDER_OF_PETS, default='')\n birth_day = models.CharField(default=0, null=True, blank=True,\n max_length=30, choices=DAY_OF_PETS)\n birth_month = models.CharField(default=0, null=True, blank=True,\n max_length=30, choices=MONTH_OF_PETS)\n birth_year = models.IntegerField(default=0, null=True, blank=True,\n choices=get_years())\n is_microchiped = models.BooleanField(default=0)\n activity_level = models.CharField(null=True, blank=True, max_length=40,\n choices=ACTIVITY_LEVEL_PETS, default='')\n is_basic_trainned = models.BooleanField(default=0)\n confortable_with_kids = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_elder = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_cats = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_dogs = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_men = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_women = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n arrival_date = models.CharField(null=True, blank=True, max_length=30,\n default='')\n where_was_found_name = models.CharField(null=True, blank=True,\n max_length=100, default='')\n is_neutered = models.BooleanField(default=0)\n was_rabbies_vaccinated_this_year = models.BooleanField(default=0)\n was_v_vaccinated_this_year = models.BooleanField(default=0)\n was_others_vaccinated_this_year = models.BooleanField(default=0)\n profile_picture = models.ImageField(null=True, blank=True)\n picture_1 = models.ImageField(null=True, blank=True)\n picture_2 = models.ImageField(null=True, blank=True)\n picture_3 = models.ImageField(null=True, blank=True)\n video = models.CharField(null=True, blank=True, max_length=150)\n qty_views = models.IntegerField(default=0)\n qty_favorites = models.IntegerField(default=0)\n qty_msg = models.IntegerField(default=0)\n qty_shares = models.IntegerField(default=0)\n ongs_id = models.ForeignKey(Ongs, on_delete=models.CASCADE, default=1)\n status = models.CharField(null=True, blank=True, max_length=50, choices\n =STATUS_OF_PETS, default='')\n coat_size = models.CharField(null=True, blank=True, max_length=50,\n choices=COAT_SIZE_OF_PETS, default='')\n walk_pull = models.BooleanField(default=0)\n walk_pull_hard = models.BooleanField(default=0)\n walk_dogs = models.BooleanField(default=0)\n walk_people = models.BooleanField(default=0)\n walk_fear = models.BooleanField(default=0)\n color_pattern = models.CharField(null=True, blank=True, max_length=30,\n choices=COLOR_PATTERN_OF_PETS, default='')\n size = models.CharField(null=True, blank=True, max_length=50, choices=\n SIZE_OF_PETS, default='')\n qty_preview_adoptions = models.IntegerField(default=0, choices=\n RETURN_OF_PETS)\n qty_adoptions_app = models.IntegerField(default=0)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n teeth_status = models.CharField(null=True, blank=True, max_length=50,\n choices=STATUS_OF_TEETH, default='')\n combo_adoption_id = models.IntegerField(default=0, null=True, blank=True)\n is_available_adoption = models.BooleanField(default=1)\n where_was_found = models.CharField(null=True, blank=True, max_length=50,\n choices=TYPES_STREET, default='')\n where_was_found_city = models.CharField(null=True, blank=True,\n max_length=100, default='')\n where_was_found_state = models.CharField(null=True, blank=True,\n max_length=100, default='')\n first_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n second_special_need = models.CharField(null=True, blank=True,\n max_length=100, choices=SPECIAL_NEED, default='')\n third_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n is_mixed_breed = models.BooleanField(default=1)\n is_walking_daily = models.BooleanField(default=0)\n is_acupuncture = models.BooleanField(default=0)\n is_physiotherapy = models.BooleanField(default=0)\n is_vermifuged = models.BooleanField(default=0)\n is_lice_free = models.BooleanField(default=0)\n is_dog_meet_necessary = models.BooleanField(default=0)\n walk_alone_dislike = models.BooleanField(default=0)\n walk_alone = models.BooleanField(default=0)\n walk_leash = models.BooleanField(default=0)\n id_at_ong = models.IntegerField(default=0, null=True, blank=True)\n\n def __str__(self):\n return self.name\n\n\n<function token>\n\n\nclass Favorites(models.Model):\n user_id = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.\n CASCADE)\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n\n\nclass Pet_disease_areas(models.Model):\n name = models.CharField(null=True, blank=True, max_length=300)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_disease(models.Model):\n AREA_OF_PETS = [('Cardiologia', 'Cardiologia'), ('Dermatologia',\n 'Dermatologia'), ('Endocrinologia', 'Endocrinologia'), (\n 'Gastroenterologia e Hepatologia',\n 'Gastroenterologia e Hepatologia'), ('Hematologia e Imunologia',\n 'Hematologia e Imunologia'), ('Infecciosas', 'Infecciosas'), (\n 'Intoxicaes e Envenemanentos', 'Intoxicaes e Envenemanentos'), (\n 'Musculoesquelticas', 'Musculoesquelticas'), (\n 'Nefrologia e Urologia', 'Nefrologia e Urologia'), ('Neonatologia',\n 'Neonatologia'), ('Neurologia', 'Neurologia'), ('Oftalmologia',\n 'Oftalmologia'), ('Oncologia', 'Oncologia'), ('Respiratrias',\n 'Respiratrias'), ('Teriogenologia', 'Teriogenologia'), (\n 'Vacinao e Nutrologia', 'Vacinao e Nutrologia'), ('Outras', 'Outras')]\n name = models.CharField(null=True, blank=True, max_length=150)\n area = models.CharField(null=True, blank=True, max_length=100, choices=\n AREA_OF_PETS, default='')\n area_id = models.ForeignKey(Pet_disease_areas, on_delete=models.CASCADE,\n null=True, blank=True)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_health(models.Model):\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial',\n 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), (\n 'Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Doena mental',\n 'Doena mental'), ('Epilepsia', 'Epilesia'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total'), ('No sente cheiro', 'No sente cheiro')\n ]\n STATUS = [('Curado', 'Curado'), ('Em tratamento', 'Em tratamento'), (\n 'Sem verba', 'Sem verba')]\n SPECIAL_TREATMENT = [('Fisioterapia', 'Fisioterapia'), ('Acunpuntura',\n 'Acunpuntura'), ('Caminhada diria', 'Caminhada diria')]\n TYPES = [('Fatal', 'Fatal'), ('Para o resto da vida',\n 'Para o resto da vida'), ('Temporria', 'Temporria')]\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n diagnose_date = models.DateField(null=True, blank=True)\n disease_status = models.CharField(null=True, blank=True, max_length=100,\n choices=STATUS, default='')\n disease_type = models.CharField(null=True, blank=True, max_length=100,\n choices=TYPES, default='')\n internal_notes = models.CharField(null=True, blank=True, max_length=300)\n which_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n which_special_treatment = models.CharField(null=True, blank=True,\n max_length=100, choices=SPECIAL_TREATMENT, default='')\n disease_name = models.CharField(null=True, blank=True, max_length=200)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n\n def __str__(self):\n return self.disease\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass Pet_breed(models.Model):\n <assignment token>\n <assignment token>\n\n def __str__(self):\n return self.name\n\n\nclass Pet(models.Model):\n COLOR_OF_PETS = [('Amarelo', 'Amarelo'), ('Branco', 'Branco'), ('Cinza',\n 'Cinza'), ('Creme', 'Creme'), ('Laranja', 'Laranja'), ('Marrom',\n 'Marrom'), ('Preto', 'Preto')]\n COLOR_PATTERN_OF_PETS = [('Arlequim', 'Arlequim'), ('Belton', 'Belton'),\n ('Bicolor', 'Bicolor'), ('Fulvo', 'Fulvo'), ('Lobeiro', 'Ruo'), (\n 'Merle', 'Merle'), ('Pintaigado', 'Pintaigado'), ('Ruo', 'Ruo'), (\n 'Sal e Pimenta', 'Sal e Pimenta'), ('Tigrado', 'Tigrado'), (\n 'Unicolor', 'Unicolor')]\n GENDER_OF_PETS = [('Fmea', 'Fmea'), ('Macho', 'Macho')]\n ACTIVITY_LEVEL_PETS = [('Hiperativo', 'Hiperativo'), ('Ativo', 'Ativo'),\n ('Moderado', 'Moderado'), ('Baixo', 'Baixo')]\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('Apenas alguns dentes', 'Apenas alguns dentes'), (\n 'Cegueira parcial', 'Cegueira parcial'), ('Cegueira total',\n 'Cegueira total'), ('Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Nenhum dente',\n 'Nenhum dente'), ('Doena Neural', 'Doena Neural'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total')]\n CONFORTABLE = [('No', 'No'), ('Sim', 'Sim'), ('No sei', 'No sei')]\n STATUS_OF_PETS = [('A caminho do novo lar', 'A caminho do novo lar'), (\n 'Adoo pendente', 'Adoo pendente'), ('Adotado', 'Adotado'), (\n 'Doente', 'Doente'), ('Esperando visita', 'Esperando visita'), (\n 'Falecido', 'Falecido'), ('Retornando para abrigo',\n 'Retornando para abrigo'), ('Lar provisrio', 'Lar provisrio'), (\n 'Lar provisrio pelo FDS', 'Lar provisrio pelo FDS')]\n STATUS_OF_TEETH = [('Perfeitos', 'Perfeitos'), ('Um pouco de trtaro',\n 'Um pouco de trtaro'), ('Trtaro mediano', 'Trtaro mediano'), (\n 'Perdeu alguns dentes', 'Perdeu alguns dentes'), (\n 'Dentes permitem apenas comida mole',\n 'Dentes permitem apenas comida mole'), (\n 'Perdeu quase todos ou todos os dentes',\n 'Perdeu quase todos ou todos os dentes')]\n COAT_OF_PETS = [('Arrepiado ', 'Arrepiado'), ('Liso', 'Liso'), (\n 'Ondulado', 'Ondulado')]\n COAT_SIZE_OF_PETS = [('Curto', 'Curto'), ('Mdio', 'Mdio'), ('Longo',\n 'Longo')]\n SPECIES_OF_PETS = [('Cachorro', 'Cachorro'), ('Gato', 'Gato'), (\n 'Outros', 'Outros')]\n SIZE_OF_PETS = [('Mini', 'Mini'), ('Pequeno', 'Pequeno'), ('Mdio',\n 'Mdio'), ('Grande', 'Grande'), ('Gigante', 'Gigante')]\n AGE_CATEGORY_OF_PETS = [('Filhote', 'Filhote'), ('Adolescente',\n 'Adolescente'), ('Adulto', 'Adulto'), ('Maduro', 'Maduro'), (\n 'Idoso', 'Idoso')]\n AGE_OF_PETS = [('1 ms', '1 ms'), ('2 meses', '2 meses'), ('3 meses',\n '3 meses'), ('4 meses', '4 meses'), ('5 meses', '5 meses'), (\n '6 meses', '6 meses'), ('7 meses', '7 meses'), ('8 meses',\n '8 meses'), ('9 meses', '9 meses'), ('10 meses', '10 meses'), (\n '11 meses', '11 meses'), ('1 ano', '1 ano'), ('2 anos', '2 anos'),\n ('3 anos', '3 anos'), ('4 anos', '4 anos'), ('5 anos', '5 anos'), (\n '6 anos', '6 anos'), ('7 anos', '7 anos'), ('8 anos', '8 anos'), (\n '9 anos', '9 anos'), ('10 anos', '10 anos'), ('11 anos', '11 anos'),\n ('12 anos', '12 anos'), ('13 anos', '13 anos'), ('14 anos',\n '14 anos'), ('15 anos', '15 anos'), ('16 anos', '16 anos'), (\n '17 anos', '17 anos'), ('18 anos', '18 anos'), ('19 anos',\n '19 anos'), ('20 anos', '20 anos'), ('21 anos', '21 anos'), (\n '22 anos', '22 anos'), ('23 anos', '23 anos'), ('24 anos',\n '24 anos'), ('25 anos', '25 anos'), ('26 anos', '26 anos'), (\n '27 anos', '27 anos'), ('28 anos', '28 anos'), ('29 anos',\n '29 anos'), ('30 anos', '30 anos'), ('No sei', 'No sei')]\n DAY_OF_PETS = [('No sei', 'No sei'), ('1', '1'), ('2', '2'), ('3', '3'),\n ('4', '4'), ('5', '5'), ('6', '6'), ('7', '7'), ('8', '8'), ('9',\n '9'), ('10', '10'), ('11', '11'), ('12', '12'), ('13', '13'), ('14',\n '14'), ('15', '15'), ('16', '16'), ('17', '17'), ('18', '18'), (\n '19', '19'), ('20', '20'), ('21', '21'), ('22', '22'), ('23', '23'),\n ('24', '24'), ('25', '25'), ('26', '26'), ('27', '27'), ('28', '28'\n ), ('29', '29'), ('30', '30'), ('31', '31')]\n MONTH_OF_PETS = [('No sei', 'No sei'), ('Janeiro', 'Janeiro'), (\n 'Fevereiro', 'Fevereiro'), ('Maro', 'Maro'), ('Abril', 'Abril'), (\n 'Maio', 'Maio'), ('Junho', 'Junho'), ('Julho', 'Julho'), ('Agosto',\n 'Agosto'), ('Setembro', 'Setembro'), ('Outubro', 'Outubro'), (\n 'Novembro', 'Novembro'), ('Dezembro', 'Dezembro')]\n AGE_OF_PETS = [('1 ms', '1 ms'), ('2 meses', '2 meses'), ('3 meses',\n '3 meses'), ('4 meses', '4 meses'), ('5 meses', '5 meses'), (\n '6 meses', '6 meses'), ('7 meses', '7 meses'), ('8 meses',\n '8 meses'), ('9 meses', '9 meses'), ('10 meses', '10 meses'), (\n '11 meses', '11 meses'), ('1 ano', '1 ano'), ('2 anos', '2 anos'),\n ('3 anos', '3 anos'), ('4 anos', '4 anos'), ('5 anos', '5 anos'), (\n '6 anos', '6 anos'), ('7 anos', '7 anos'), ('8 anos', '8 anos'), (\n '9 anos', '9 anos'), ('10 anos', '10 anos'), ('11 anos', '11 anos'),\n ('12 anos', '12 anos'), ('13 anos', '13 anos'), ('14 anos',\n '14 anos'), ('15 anos', '15 anos'), ('16 anos', '16 anos'), (\n '17 anos', '17 anos'), ('18 anos', '18 anos'), ('19 anos',\n '19 anos'), ('20 anos', '20 anos'), ('21 anos', '21 anos'), (\n '22 anos', '22 anos'), ('23 anos', '23 anos'), ('24 anos',\n '24 anos'), ('25 anos', '25 anos'), ('26 anos', '26 anos'), (\n '27 anos', '27 anos'), ('28 anos', '28 anos'), ('29 anos',\n '29 anos'), ('30 anos', '30 anos'), ('Menos de 1 ano',\n 'Menos de 1 ano')]\n RETURN_OF_PETS = [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6\n ), (7, 7), (8, 8), (9, 9), (10, 10)]\n TYPES_STREET = [('Alameda', 'Alameda'), ('Avenida', 'Avenida'), (\n 'Chcara', 'Chcara'), ('Colnia', 'Colnia'), ('Condomnio',\n 'Condomnio'), ('Conjunto', 'Conjunto'), ('Estao', 'Estao'), (\n 'Estrada', 'Estrada'), ('Favela', 'Favela'), ('Fazenda', 'Fazenda'),\n ('Jardim', 'Jardim'), ('Ladeira', 'Ladeira'), ('Lago', 'Lago'), (\n 'Largo', 'Largo'), ('Loteamento', 'Loteamento'), ('Passarela',\n 'Passarela'), ('Parque', 'Parque'), ('Praa', 'Praa'), ('Praia',\n 'Praia'), ('Rodovia', 'Rodovia'), ('Rua', 'Rua'), ('Setor', 'Setor'\n ), ('Travessa', 'Travessa'), ('Viaduto', 'Viaduto'), ('Vila', 'Vila')]\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial',\n 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), (\n 'Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Doena mental',\n 'Doena mental'), ('Epilepsia', 'Epilesia'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total'), ('No sente cheiro', 'No sente cheiro')\n ]\n\n def get_years():\n now = int(timezone.now().year) + 1\n past = timezone.now().year - 30\n a = []\n for i in reversed(range(past, now)):\n a.append((i, i))\n a = tuple(a)\n return a\n name = models.CharField('Nome', null=True, blank=True, max_length=30)\n pet_description = models.CharField(null=True, blank=True, max_length=700)\n age = models.CharField(null=True, blank=True, max_length=40, choices=\n AGE_OF_PETS, default='')\n age_category = models.CharField(null=True, blank=True, max_length=30,\n choices=AGE_CATEGORY_OF_PETS, default='')\n species = models.CharField(null=True, blank=True, max_length=25,\n choices=SPECIES_OF_PETS, default='')\n primary_breed = models.ForeignKey(Pet_breed, on_delete=models.CASCADE,\n null=True, blank=True, related_name='primary_breed')\n secondary_breed = models.ForeignKey(Pet_breed, on_delete=models.CASCADE,\n null=True, blank=True, related_name='secondary_breed')\n color = models.CharField(null=True, blank=True, max_length=30, choices=\n COLOR_OF_PETS, default='')\n coat = models.CharField(null=True, blank=True, max_length=20, choices=\n COAT_OF_PETS, default='')\n gender = models.CharField(null=True, blank=True, max_length=10, choices\n =GENDER_OF_PETS, default='')\n birth_day = models.CharField(default=0, null=True, blank=True,\n max_length=30, choices=DAY_OF_PETS)\n birth_month = models.CharField(default=0, null=True, blank=True,\n max_length=30, choices=MONTH_OF_PETS)\n birth_year = models.IntegerField(default=0, null=True, blank=True,\n choices=get_years())\n is_microchiped = models.BooleanField(default=0)\n activity_level = models.CharField(null=True, blank=True, max_length=40,\n choices=ACTIVITY_LEVEL_PETS, default='')\n is_basic_trainned = models.BooleanField(default=0)\n confortable_with_kids = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_elder = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_cats = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_dogs = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_men = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_women = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n arrival_date = models.CharField(null=True, blank=True, max_length=30,\n default='')\n where_was_found_name = models.CharField(null=True, blank=True,\n max_length=100, default='')\n is_neutered = models.BooleanField(default=0)\n was_rabbies_vaccinated_this_year = models.BooleanField(default=0)\n was_v_vaccinated_this_year = models.BooleanField(default=0)\n was_others_vaccinated_this_year = models.BooleanField(default=0)\n profile_picture = models.ImageField(null=True, blank=True)\n picture_1 = models.ImageField(null=True, blank=True)\n picture_2 = models.ImageField(null=True, blank=True)\n picture_3 = models.ImageField(null=True, blank=True)\n video = models.CharField(null=True, blank=True, max_length=150)\n qty_views = models.IntegerField(default=0)\n qty_favorites = models.IntegerField(default=0)\n qty_msg = models.IntegerField(default=0)\n qty_shares = models.IntegerField(default=0)\n ongs_id = models.ForeignKey(Ongs, on_delete=models.CASCADE, default=1)\n status = models.CharField(null=True, blank=True, max_length=50, choices\n =STATUS_OF_PETS, default='')\n coat_size = models.CharField(null=True, blank=True, max_length=50,\n choices=COAT_SIZE_OF_PETS, default='')\n walk_pull = models.BooleanField(default=0)\n walk_pull_hard = models.BooleanField(default=0)\n walk_dogs = models.BooleanField(default=0)\n walk_people = models.BooleanField(default=0)\n walk_fear = models.BooleanField(default=0)\n color_pattern = models.CharField(null=True, blank=True, max_length=30,\n choices=COLOR_PATTERN_OF_PETS, default='')\n size = models.CharField(null=True, blank=True, max_length=50, choices=\n SIZE_OF_PETS, default='')\n qty_preview_adoptions = models.IntegerField(default=0, choices=\n RETURN_OF_PETS)\n qty_adoptions_app = models.IntegerField(default=0)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n teeth_status = models.CharField(null=True, blank=True, max_length=50,\n choices=STATUS_OF_TEETH, default='')\n combo_adoption_id = models.IntegerField(default=0, null=True, blank=True)\n is_available_adoption = models.BooleanField(default=1)\n where_was_found = models.CharField(null=True, blank=True, max_length=50,\n choices=TYPES_STREET, default='')\n where_was_found_city = models.CharField(null=True, blank=True,\n max_length=100, default='')\n where_was_found_state = models.CharField(null=True, blank=True,\n max_length=100, default='')\n first_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n second_special_need = models.CharField(null=True, blank=True,\n max_length=100, choices=SPECIAL_NEED, default='')\n third_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n is_mixed_breed = models.BooleanField(default=1)\n is_walking_daily = models.BooleanField(default=0)\n is_acupuncture = models.BooleanField(default=0)\n is_physiotherapy = models.BooleanField(default=0)\n is_vermifuged = models.BooleanField(default=0)\n is_lice_free = models.BooleanField(default=0)\n is_dog_meet_necessary = models.BooleanField(default=0)\n walk_alone_dislike = models.BooleanField(default=0)\n walk_alone = models.BooleanField(default=0)\n walk_leash = models.BooleanField(default=0)\n id_at_ong = models.IntegerField(default=0, null=True, blank=True)\n\n def __str__(self):\n return self.name\n\n\n<function token>\n\n\nclass Favorites(models.Model):\n user_id = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.\n CASCADE)\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n\n\nclass Pet_disease_areas(models.Model):\n name = models.CharField(null=True, blank=True, max_length=300)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_disease(models.Model):\n AREA_OF_PETS = [('Cardiologia', 'Cardiologia'), ('Dermatologia',\n 'Dermatologia'), ('Endocrinologia', 'Endocrinologia'), (\n 'Gastroenterologia e Hepatologia',\n 'Gastroenterologia e Hepatologia'), ('Hematologia e Imunologia',\n 'Hematologia e Imunologia'), ('Infecciosas', 'Infecciosas'), (\n 'Intoxicaes e Envenemanentos', 'Intoxicaes e Envenemanentos'), (\n 'Musculoesquelticas', 'Musculoesquelticas'), (\n 'Nefrologia e Urologia', 'Nefrologia e Urologia'), ('Neonatologia',\n 'Neonatologia'), ('Neurologia', 'Neurologia'), ('Oftalmologia',\n 'Oftalmologia'), ('Oncologia', 'Oncologia'), ('Respiratrias',\n 'Respiratrias'), ('Teriogenologia', 'Teriogenologia'), (\n 'Vacinao e Nutrologia', 'Vacinao e Nutrologia'), ('Outras', 'Outras')]\n name = models.CharField(null=True, blank=True, max_length=150)\n area = models.CharField(null=True, blank=True, max_length=100, choices=\n AREA_OF_PETS, default='')\n area_id = models.ForeignKey(Pet_disease_areas, on_delete=models.CASCADE,\n null=True, blank=True)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_health(models.Model):\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial',\n 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), (\n 'Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Doena mental',\n 'Doena mental'), ('Epilepsia', 'Epilesia'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total'), ('No sente cheiro', 'No sente cheiro')\n ]\n STATUS = [('Curado', 'Curado'), ('Em tratamento', 'Em tratamento'), (\n 'Sem verba', 'Sem verba')]\n SPECIAL_TREATMENT = [('Fisioterapia', 'Fisioterapia'), ('Acunpuntura',\n 'Acunpuntura'), ('Caminhada diria', 'Caminhada diria')]\n TYPES = [('Fatal', 'Fatal'), ('Para o resto da vida',\n 'Para o resto da vida'), ('Temporria', 'Temporria')]\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n diagnose_date = models.DateField(null=True, blank=True)\n disease_status = models.CharField(null=True, blank=True, max_length=100,\n choices=STATUS, default='')\n disease_type = models.CharField(null=True, blank=True, max_length=100,\n choices=TYPES, default='')\n internal_notes = models.CharField(null=True, blank=True, max_length=300)\n which_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n which_special_treatment = models.CharField(null=True, blank=True,\n max_length=100, choices=SPECIAL_TREATMENT, default='')\n disease_name = models.CharField(null=True, blank=True, max_length=200)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n\n def __str__(self):\n return self.disease\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass Pet_breed(models.Model):\n <assignment token>\n <assignment token>\n <function token>\n\n\nclass Pet(models.Model):\n COLOR_OF_PETS = [('Amarelo', 'Amarelo'), ('Branco', 'Branco'), ('Cinza',\n 'Cinza'), ('Creme', 'Creme'), ('Laranja', 'Laranja'), ('Marrom',\n 'Marrom'), ('Preto', 'Preto')]\n COLOR_PATTERN_OF_PETS = [('Arlequim', 'Arlequim'), ('Belton', 'Belton'),\n ('Bicolor', 'Bicolor'), ('Fulvo', 'Fulvo'), ('Lobeiro', 'Ruo'), (\n 'Merle', 'Merle'), ('Pintaigado', 'Pintaigado'), ('Ruo', 'Ruo'), (\n 'Sal e Pimenta', 'Sal e Pimenta'), ('Tigrado', 'Tigrado'), (\n 'Unicolor', 'Unicolor')]\n GENDER_OF_PETS = [('Fmea', 'Fmea'), ('Macho', 'Macho')]\n ACTIVITY_LEVEL_PETS = [('Hiperativo', 'Hiperativo'), ('Ativo', 'Ativo'),\n ('Moderado', 'Moderado'), ('Baixo', 'Baixo')]\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('Apenas alguns dentes', 'Apenas alguns dentes'), (\n 'Cegueira parcial', 'Cegueira parcial'), ('Cegueira total',\n 'Cegueira total'), ('Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Nenhum dente',\n 'Nenhum dente'), ('Doena Neural', 'Doena Neural'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total')]\n CONFORTABLE = [('No', 'No'), ('Sim', 'Sim'), ('No sei', 'No sei')]\n STATUS_OF_PETS = [('A caminho do novo lar', 'A caminho do novo lar'), (\n 'Adoo pendente', 'Adoo pendente'), ('Adotado', 'Adotado'), (\n 'Doente', 'Doente'), ('Esperando visita', 'Esperando visita'), (\n 'Falecido', 'Falecido'), ('Retornando para abrigo',\n 'Retornando para abrigo'), ('Lar provisrio', 'Lar provisrio'), (\n 'Lar provisrio pelo FDS', 'Lar provisrio pelo FDS')]\n STATUS_OF_TEETH = [('Perfeitos', 'Perfeitos'), ('Um pouco de trtaro',\n 'Um pouco de trtaro'), ('Trtaro mediano', 'Trtaro mediano'), (\n 'Perdeu alguns dentes', 'Perdeu alguns dentes'), (\n 'Dentes permitem apenas comida mole',\n 'Dentes permitem apenas comida mole'), (\n 'Perdeu quase todos ou todos os dentes',\n 'Perdeu quase todos ou todos os dentes')]\n COAT_OF_PETS = [('Arrepiado ', 'Arrepiado'), ('Liso', 'Liso'), (\n 'Ondulado', 'Ondulado')]\n COAT_SIZE_OF_PETS = [('Curto', 'Curto'), ('Mdio', 'Mdio'), ('Longo',\n 'Longo')]\n SPECIES_OF_PETS = [('Cachorro', 'Cachorro'), ('Gato', 'Gato'), (\n 'Outros', 'Outros')]\n SIZE_OF_PETS = [('Mini', 'Mini'), ('Pequeno', 'Pequeno'), ('Mdio',\n 'Mdio'), ('Grande', 'Grande'), ('Gigante', 'Gigante')]\n AGE_CATEGORY_OF_PETS = [('Filhote', 'Filhote'), ('Adolescente',\n 'Adolescente'), ('Adulto', 'Adulto'), ('Maduro', 'Maduro'), (\n 'Idoso', 'Idoso')]\n AGE_OF_PETS = [('1 ms', '1 ms'), ('2 meses', '2 meses'), ('3 meses',\n '3 meses'), ('4 meses', '4 meses'), ('5 meses', '5 meses'), (\n '6 meses', '6 meses'), ('7 meses', '7 meses'), ('8 meses',\n '8 meses'), ('9 meses', '9 meses'), ('10 meses', '10 meses'), (\n '11 meses', '11 meses'), ('1 ano', '1 ano'), ('2 anos', '2 anos'),\n ('3 anos', '3 anos'), ('4 anos', '4 anos'), ('5 anos', '5 anos'), (\n '6 anos', '6 anos'), ('7 anos', '7 anos'), ('8 anos', '8 anos'), (\n '9 anos', '9 anos'), ('10 anos', '10 anos'), ('11 anos', '11 anos'),\n ('12 anos', '12 anos'), ('13 anos', '13 anos'), ('14 anos',\n '14 anos'), ('15 anos', '15 anos'), ('16 anos', '16 anos'), (\n '17 anos', '17 anos'), ('18 anos', '18 anos'), ('19 anos',\n '19 anos'), ('20 anos', '20 anos'), ('21 anos', '21 anos'), (\n '22 anos', '22 anos'), ('23 anos', '23 anos'), ('24 anos',\n '24 anos'), ('25 anos', '25 anos'), ('26 anos', '26 anos'), (\n '27 anos', '27 anos'), ('28 anos', '28 anos'), ('29 anos',\n '29 anos'), ('30 anos', '30 anos'), ('No sei', 'No sei')]\n DAY_OF_PETS = [('No sei', 'No sei'), ('1', '1'), ('2', '2'), ('3', '3'),\n ('4', '4'), ('5', '5'), ('6', '6'), ('7', '7'), ('8', '8'), ('9',\n '9'), ('10', '10'), ('11', '11'), ('12', '12'), ('13', '13'), ('14',\n '14'), ('15', '15'), ('16', '16'), ('17', '17'), ('18', '18'), (\n '19', '19'), ('20', '20'), ('21', '21'), ('22', '22'), ('23', '23'),\n ('24', '24'), ('25', '25'), ('26', '26'), ('27', '27'), ('28', '28'\n ), ('29', '29'), ('30', '30'), ('31', '31')]\n MONTH_OF_PETS = [('No sei', 'No sei'), ('Janeiro', 'Janeiro'), (\n 'Fevereiro', 'Fevereiro'), ('Maro', 'Maro'), ('Abril', 'Abril'), (\n 'Maio', 'Maio'), ('Junho', 'Junho'), ('Julho', 'Julho'), ('Agosto',\n 'Agosto'), ('Setembro', 'Setembro'), ('Outubro', 'Outubro'), (\n 'Novembro', 'Novembro'), ('Dezembro', 'Dezembro')]\n AGE_OF_PETS = [('1 ms', '1 ms'), ('2 meses', '2 meses'), ('3 meses',\n '3 meses'), ('4 meses', '4 meses'), ('5 meses', '5 meses'), (\n '6 meses', '6 meses'), ('7 meses', '7 meses'), ('8 meses',\n '8 meses'), ('9 meses', '9 meses'), ('10 meses', '10 meses'), (\n '11 meses', '11 meses'), ('1 ano', '1 ano'), ('2 anos', '2 anos'),\n ('3 anos', '3 anos'), ('4 anos', '4 anos'), ('5 anos', '5 anos'), (\n '6 anos', '6 anos'), ('7 anos', '7 anos'), ('8 anos', '8 anos'), (\n '9 anos', '9 anos'), ('10 anos', '10 anos'), ('11 anos', '11 anos'),\n ('12 anos', '12 anos'), ('13 anos', '13 anos'), ('14 anos',\n '14 anos'), ('15 anos', '15 anos'), ('16 anos', '16 anos'), (\n '17 anos', '17 anos'), ('18 anos', '18 anos'), ('19 anos',\n '19 anos'), ('20 anos', '20 anos'), ('21 anos', '21 anos'), (\n '22 anos', '22 anos'), ('23 anos', '23 anos'), ('24 anos',\n '24 anos'), ('25 anos', '25 anos'), ('26 anos', '26 anos'), (\n '27 anos', '27 anos'), ('28 anos', '28 anos'), ('29 anos',\n '29 anos'), ('30 anos', '30 anos'), ('Menos de 1 ano',\n 'Menos de 1 ano')]\n RETURN_OF_PETS = [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6\n ), (7, 7), (8, 8), (9, 9), (10, 10)]\n TYPES_STREET = [('Alameda', 'Alameda'), ('Avenida', 'Avenida'), (\n 'Chcara', 'Chcara'), ('Colnia', 'Colnia'), ('Condomnio',\n 'Condomnio'), ('Conjunto', 'Conjunto'), ('Estao', 'Estao'), (\n 'Estrada', 'Estrada'), ('Favela', 'Favela'), ('Fazenda', 'Fazenda'),\n ('Jardim', 'Jardim'), ('Ladeira', 'Ladeira'), ('Lago', 'Lago'), (\n 'Largo', 'Largo'), ('Loteamento', 'Loteamento'), ('Passarela',\n 'Passarela'), ('Parque', 'Parque'), ('Praa', 'Praa'), ('Praia',\n 'Praia'), ('Rodovia', 'Rodovia'), ('Rua', 'Rua'), ('Setor', 'Setor'\n ), ('Travessa', 'Travessa'), ('Viaduto', 'Viaduto'), ('Vila', 'Vila')]\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial',\n 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), (\n 'Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Doena mental',\n 'Doena mental'), ('Epilepsia', 'Epilesia'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total'), ('No sente cheiro', 'No sente cheiro')\n ]\n\n def get_years():\n now = int(timezone.now().year) + 1\n past = timezone.now().year - 30\n a = []\n for i in reversed(range(past, now)):\n a.append((i, i))\n a = tuple(a)\n return a\n name = models.CharField('Nome', null=True, blank=True, max_length=30)\n pet_description = models.CharField(null=True, blank=True, max_length=700)\n age = models.CharField(null=True, blank=True, max_length=40, choices=\n AGE_OF_PETS, default='')\n age_category = models.CharField(null=True, blank=True, max_length=30,\n choices=AGE_CATEGORY_OF_PETS, default='')\n species = models.CharField(null=True, blank=True, max_length=25,\n choices=SPECIES_OF_PETS, default='')\n primary_breed = models.ForeignKey(Pet_breed, on_delete=models.CASCADE,\n null=True, blank=True, related_name='primary_breed')\n secondary_breed = models.ForeignKey(Pet_breed, on_delete=models.CASCADE,\n null=True, blank=True, related_name='secondary_breed')\n color = models.CharField(null=True, blank=True, max_length=30, choices=\n COLOR_OF_PETS, default='')\n coat = models.CharField(null=True, blank=True, max_length=20, choices=\n COAT_OF_PETS, default='')\n gender = models.CharField(null=True, blank=True, max_length=10, choices\n =GENDER_OF_PETS, default='')\n birth_day = models.CharField(default=0, null=True, blank=True,\n max_length=30, choices=DAY_OF_PETS)\n birth_month = models.CharField(default=0, null=True, blank=True,\n max_length=30, choices=MONTH_OF_PETS)\n birth_year = models.IntegerField(default=0, null=True, blank=True,\n choices=get_years())\n is_microchiped = models.BooleanField(default=0)\n activity_level = models.CharField(null=True, blank=True, max_length=40,\n choices=ACTIVITY_LEVEL_PETS, default='')\n is_basic_trainned = models.BooleanField(default=0)\n confortable_with_kids = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_elder = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_cats = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_dogs = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_men = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_women = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n arrival_date = models.CharField(null=True, blank=True, max_length=30,\n default='')\n where_was_found_name = models.CharField(null=True, blank=True,\n max_length=100, default='')\n is_neutered = models.BooleanField(default=0)\n was_rabbies_vaccinated_this_year = models.BooleanField(default=0)\n was_v_vaccinated_this_year = models.BooleanField(default=0)\n was_others_vaccinated_this_year = models.BooleanField(default=0)\n profile_picture = models.ImageField(null=True, blank=True)\n picture_1 = models.ImageField(null=True, blank=True)\n picture_2 = models.ImageField(null=True, blank=True)\n picture_3 = models.ImageField(null=True, blank=True)\n video = models.CharField(null=True, blank=True, max_length=150)\n qty_views = models.IntegerField(default=0)\n qty_favorites = models.IntegerField(default=0)\n qty_msg = models.IntegerField(default=0)\n qty_shares = models.IntegerField(default=0)\n ongs_id = models.ForeignKey(Ongs, on_delete=models.CASCADE, default=1)\n status = models.CharField(null=True, blank=True, max_length=50, choices\n =STATUS_OF_PETS, default='')\n coat_size = models.CharField(null=True, blank=True, max_length=50,\n choices=COAT_SIZE_OF_PETS, default='')\n walk_pull = models.BooleanField(default=0)\n walk_pull_hard = models.BooleanField(default=0)\n walk_dogs = models.BooleanField(default=0)\n walk_people = models.BooleanField(default=0)\n walk_fear = models.BooleanField(default=0)\n color_pattern = models.CharField(null=True, blank=True, max_length=30,\n choices=COLOR_PATTERN_OF_PETS, default='')\n size = models.CharField(null=True, blank=True, max_length=50, choices=\n SIZE_OF_PETS, default='')\n qty_preview_adoptions = models.IntegerField(default=0, choices=\n RETURN_OF_PETS)\n qty_adoptions_app = models.IntegerField(default=0)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n teeth_status = models.CharField(null=True, blank=True, max_length=50,\n choices=STATUS_OF_TEETH, default='')\n combo_adoption_id = models.IntegerField(default=0, null=True, blank=True)\n is_available_adoption = models.BooleanField(default=1)\n where_was_found = models.CharField(null=True, blank=True, max_length=50,\n choices=TYPES_STREET, default='')\n where_was_found_city = models.CharField(null=True, blank=True,\n max_length=100, default='')\n where_was_found_state = models.CharField(null=True, blank=True,\n max_length=100, default='')\n first_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n second_special_need = models.CharField(null=True, blank=True,\n max_length=100, choices=SPECIAL_NEED, default='')\n third_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n is_mixed_breed = models.BooleanField(default=1)\n is_walking_daily = models.BooleanField(default=0)\n is_acupuncture = models.BooleanField(default=0)\n is_physiotherapy = models.BooleanField(default=0)\n is_vermifuged = models.BooleanField(default=0)\n is_lice_free = models.BooleanField(default=0)\n is_dog_meet_necessary = models.BooleanField(default=0)\n walk_alone_dislike = models.BooleanField(default=0)\n walk_alone = models.BooleanField(default=0)\n walk_leash = models.BooleanField(default=0)\n id_at_ong = models.IntegerField(default=0, null=True, blank=True)\n\n def __str__(self):\n return self.name\n\n\n<function token>\n\n\nclass Favorites(models.Model):\n user_id = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.\n CASCADE)\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n\n\nclass Pet_disease_areas(models.Model):\n name = models.CharField(null=True, blank=True, max_length=300)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_disease(models.Model):\n AREA_OF_PETS = [('Cardiologia', 'Cardiologia'), ('Dermatologia',\n 'Dermatologia'), ('Endocrinologia', 'Endocrinologia'), (\n 'Gastroenterologia e Hepatologia',\n 'Gastroenterologia e Hepatologia'), ('Hematologia e Imunologia',\n 'Hematologia e Imunologia'), ('Infecciosas', 'Infecciosas'), (\n 'Intoxicaes e Envenemanentos', 'Intoxicaes e Envenemanentos'), (\n 'Musculoesquelticas', 'Musculoesquelticas'), (\n 'Nefrologia e Urologia', 'Nefrologia e Urologia'), ('Neonatologia',\n 'Neonatologia'), ('Neurologia', 'Neurologia'), ('Oftalmologia',\n 'Oftalmologia'), ('Oncologia', 'Oncologia'), ('Respiratrias',\n 'Respiratrias'), ('Teriogenologia', 'Teriogenologia'), (\n 'Vacinao e Nutrologia', 'Vacinao e Nutrologia'), ('Outras', 'Outras')]\n name = models.CharField(null=True, blank=True, max_length=150)\n area = models.CharField(null=True, blank=True, max_length=100, choices=\n AREA_OF_PETS, default='')\n area_id = models.ForeignKey(Pet_disease_areas, on_delete=models.CASCADE,\n null=True, blank=True)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_health(models.Model):\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial',\n 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), (\n 'Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Doena mental',\n 'Doena mental'), ('Epilepsia', 'Epilesia'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total'), ('No sente cheiro', 'No sente cheiro')\n ]\n STATUS = [('Curado', 'Curado'), ('Em tratamento', 'Em tratamento'), (\n 'Sem verba', 'Sem verba')]\n SPECIAL_TREATMENT = [('Fisioterapia', 'Fisioterapia'), ('Acunpuntura',\n 'Acunpuntura'), ('Caminhada diria', 'Caminhada diria')]\n TYPES = [('Fatal', 'Fatal'), ('Para o resto da vida',\n 'Para o resto da vida'), ('Temporria', 'Temporria')]\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n diagnose_date = models.DateField(null=True, blank=True)\n disease_status = models.CharField(null=True, blank=True, max_length=100,\n choices=STATUS, default='')\n disease_type = models.CharField(null=True, blank=True, max_length=100,\n choices=TYPES, default='')\n internal_notes = models.CharField(null=True, blank=True, max_length=300)\n which_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n which_special_treatment = models.CharField(null=True, blank=True,\n max_length=100, choices=SPECIAL_TREATMENT, default='')\n disease_name = models.CharField(null=True, blank=True, max_length=200)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n\n def __str__(self):\n return self.disease\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass Pet(models.Model):\n COLOR_OF_PETS = [('Amarelo', 'Amarelo'), ('Branco', 'Branco'), ('Cinza',\n 'Cinza'), ('Creme', 'Creme'), ('Laranja', 'Laranja'), ('Marrom',\n 'Marrom'), ('Preto', 'Preto')]\n COLOR_PATTERN_OF_PETS = [('Arlequim', 'Arlequim'), ('Belton', 'Belton'),\n ('Bicolor', 'Bicolor'), ('Fulvo', 'Fulvo'), ('Lobeiro', 'Ruo'), (\n 'Merle', 'Merle'), ('Pintaigado', 'Pintaigado'), ('Ruo', 'Ruo'), (\n 'Sal e Pimenta', 'Sal e Pimenta'), ('Tigrado', 'Tigrado'), (\n 'Unicolor', 'Unicolor')]\n GENDER_OF_PETS = [('Fmea', 'Fmea'), ('Macho', 'Macho')]\n ACTIVITY_LEVEL_PETS = [('Hiperativo', 'Hiperativo'), ('Ativo', 'Ativo'),\n ('Moderado', 'Moderado'), ('Baixo', 'Baixo')]\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('Apenas alguns dentes', 'Apenas alguns dentes'), (\n 'Cegueira parcial', 'Cegueira parcial'), ('Cegueira total',\n 'Cegueira total'), ('Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Nenhum dente',\n 'Nenhum dente'), ('Doena Neural', 'Doena Neural'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total')]\n CONFORTABLE = [('No', 'No'), ('Sim', 'Sim'), ('No sei', 'No sei')]\n STATUS_OF_PETS = [('A caminho do novo lar', 'A caminho do novo lar'), (\n 'Adoo pendente', 'Adoo pendente'), ('Adotado', 'Adotado'), (\n 'Doente', 'Doente'), ('Esperando visita', 'Esperando visita'), (\n 'Falecido', 'Falecido'), ('Retornando para abrigo',\n 'Retornando para abrigo'), ('Lar provisrio', 'Lar provisrio'), (\n 'Lar provisrio pelo FDS', 'Lar provisrio pelo FDS')]\n STATUS_OF_TEETH = [('Perfeitos', 'Perfeitos'), ('Um pouco de trtaro',\n 'Um pouco de trtaro'), ('Trtaro mediano', 'Trtaro mediano'), (\n 'Perdeu alguns dentes', 'Perdeu alguns dentes'), (\n 'Dentes permitem apenas comida mole',\n 'Dentes permitem apenas comida mole'), (\n 'Perdeu quase todos ou todos os dentes',\n 'Perdeu quase todos ou todos os dentes')]\n COAT_OF_PETS = [('Arrepiado ', 'Arrepiado'), ('Liso', 'Liso'), (\n 'Ondulado', 'Ondulado')]\n COAT_SIZE_OF_PETS = [('Curto', 'Curto'), ('Mdio', 'Mdio'), ('Longo',\n 'Longo')]\n SPECIES_OF_PETS = [('Cachorro', 'Cachorro'), ('Gato', 'Gato'), (\n 'Outros', 'Outros')]\n SIZE_OF_PETS = [('Mini', 'Mini'), ('Pequeno', 'Pequeno'), ('Mdio',\n 'Mdio'), ('Grande', 'Grande'), ('Gigante', 'Gigante')]\n AGE_CATEGORY_OF_PETS = [('Filhote', 'Filhote'), ('Adolescente',\n 'Adolescente'), ('Adulto', 'Adulto'), ('Maduro', 'Maduro'), (\n 'Idoso', 'Idoso')]\n AGE_OF_PETS = [('1 ms', '1 ms'), ('2 meses', '2 meses'), ('3 meses',\n '3 meses'), ('4 meses', '4 meses'), ('5 meses', '5 meses'), (\n '6 meses', '6 meses'), ('7 meses', '7 meses'), ('8 meses',\n '8 meses'), ('9 meses', '9 meses'), ('10 meses', '10 meses'), (\n '11 meses', '11 meses'), ('1 ano', '1 ano'), ('2 anos', '2 anos'),\n ('3 anos', '3 anos'), ('4 anos', '4 anos'), ('5 anos', '5 anos'), (\n '6 anos', '6 anos'), ('7 anos', '7 anos'), ('8 anos', '8 anos'), (\n '9 anos', '9 anos'), ('10 anos', '10 anos'), ('11 anos', '11 anos'),\n ('12 anos', '12 anos'), ('13 anos', '13 anos'), ('14 anos',\n '14 anos'), ('15 anos', '15 anos'), ('16 anos', '16 anos'), (\n '17 anos', '17 anos'), ('18 anos', '18 anos'), ('19 anos',\n '19 anos'), ('20 anos', '20 anos'), ('21 anos', '21 anos'), (\n '22 anos', '22 anos'), ('23 anos', '23 anos'), ('24 anos',\n '24 anos'), ('25 anos', '25 anos'), ('26 anos', '26 anos'), (\n '27 anos', '27 anos'), ('28 anos', '28 anos'), ('29 anos',\n '29 anos'), ('30 anos', '30 anos'), ('No sei', 'No sei')]\n DAY_OF_PETS = [('No sei', 'No sei'), ('1', '1'), ('2', '2'), ('3', '3'),\n ('4', '4'), ('5', '5'), ('6', '6'), ('7', '7'), ('8', '8'), ('9',\n '9'), ('10', '10'), ('11', '11'), ('12', '12'), ('13', '13'), ('14',\n '14'), ('15', '15'), ('16', '16'), ('17', '17'), ('18', '18'), (\n '19', '19'), ('20', '20'), ('21', '21'), ('22', '22'), ('23', '23'),\n ('24', '24'), ('25', '25'), ('26', '26'), ('27', '27'), ('28', '28'\n ), ('29', '29'), ('30', '30'), ('31', '31')]\n MONTH_OF_PETS = [('No sei', 'No sei'), ('Janeiro', 'Janeiro'), (\n 'Fevereiro', 'Fevereiro'), ('Maro', 'Maro'), ('Abril', 'Abril'), (\n 'Maio', 'Maio'), ('Junho', 'Junho'), ('Julho', 'Julho'), ('Agosto',\n 'Agosto'), ('Setembro', 'Setembro'), ('Outubro', 'Outubro'), (\n 'Novembro', 'Novembro'), ('Dezembro', 'Dezembro')]\n AGE_OF_PETS = [('1 ms', '1 ms'), ('2 meses', '2 meses'), ('3 meses',\n '3 meses'), ('4 meses', '4 meses'), ('5 meses', '5 meses'), (\n '6 meses', '6 meses'), ('7 meses', '7 meses'), ('8 meses',\n '8 meses'), ('9 meses', '9 meses'), ('10 meses', '10 meses'), (\n '11 meses', '11 meses'), ('1 ano', '1 ano'), ('2 anos', '2 anos'),\n ('3 anos', '3 anos'), ('4 anos', '4 anos'), ('5 anos', '5 anos'), (\n '6 anos', '6 anos'), ('7 anos', '7 anos'), ('8 anos', '8 anos'), (\n '9 anos', '9 anos'), ('10 anos', '10 anos'), ('11 anos', '11 anos'),\n ('12 anos', '12 anos'), ('13 anos', '13 anos'), ('14 anos',\n '14 anos'), ('15 anos', '15 anos'), ('16 anos', '16 anos'), (\n '17 anos', '17 anos'), ('18 anos', '18 anos'), ('19 anos',\n '19 anos'), ('20 anos', '20 anos'), ('21 anos', '21 anos'), (\n '22 anos', '22 anos'), ('23 anos', '23 anos'), ('24 anos',\n '24 anos'), ('25 anos', '25 anos'), ('26 anos', '26 anos'), (\n '27 anos', '27 anos'), ('28 anos', '28 anos'), ('29 anos',\n '29 anos'), ('30 anos', '30 anos'), ('Menos de 1 ano',\n 'Menos de 1 ano')]\n RETURN_OF_PETS = [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6\n ), (7, 7), (8, 8), (9, 9), (10, 10)]\n TYPES_STREET = [('Alameda', 'Alameda'), ('Avenida', 'Avenida'), (\n 'Chcara', 'Chcara'), ('Colnia', 'Colnia'), ('Condomnio',\n 'Condomnio'), ('Conjunto', 'Conjunto'), ('Estao', 'Estao'), (\n 'Estrada', 'Estrada'), ('Favela', 'Favela'), ('Fazenda', 'Fazenda'),\n ('Jardim', 'Jardim'), ('Ladeira', 'Ladeira'), ('Lago', 'Lago'), (\n 'Largo', 'Largo'), ('Loteamento', 'Loteamento'), ('Passarela',\n 'Passarela'), ('Parque', 'Parque'), ('Praa', 'Praa'), ('Praia',\n 'Praia'), ('Rodovia', 'Rodovia'), ('Rua', 'Rua'), ('Setor', 'Setor'\n ), ('Travessa', 'Travessa'), ('Viaduto', 'Viaduto'), ('Vila', 'Vila')]\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial',\n 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), (\n 'Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Doena mental',\n 'Doena mental'), ('Epilepsia', 'Epilesia'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total'), ('No sente cheiro', 'No sente cheiro')\n ]\n\n def get_years():\n now = int(timezone.now().year) + 1\n past = timezone.now().year - 30\n a = []\n for i in reversed(range(past, now)):\n a.append((i, i))\n a = tuple(a)\n return a\n name = models.CharField('Nome', null=True, blank=True, max_length=30)\n pet_description = models.CharField(null=True, blank=True, max_length=700)\n age = models.CharField(null=True, blank=True, max_length=40, choices=\n AGE_OF_PETS, default='')\n age_category = models.CharField(null=True, blank=True, max_length=30,\n choices=AGE_CATEGORY_OF_PETS, default='')\n species = models.CharField(null=True, blank=True, max_length=25,\n choices=SPECIES_OF_PETS, default='')\n primary_breed = models.ForeignKey(Pet_breed, on_delete=models.CASCADE,\n null=True, blank=True, related_name='primary_breed')\n secondary_breed = models.ForeignKey(Pet_breed, on_delete=models.CASCADE,\n null=True, blank=True, related_name='secondary_breed')\n color = models.CharField(null=True, blank=True, max_length=30, choices=\n COLOR_OF_PETS, default='')\n coat = models.CharField(null=True, blank=True, max_length=20, choices=\n COAT_OF_PETS, default='')\n gender = models.CharField(null=True, blank=True, max_length=10, choices\n =GENDER_OF_PETS, default='')\n birth_day = models.CharField(default=0, null=True, blank=True,\n max_length=30, choices=DAY_OF_PETS)\n birth_month = models.CharField(default=0, null=True, blank=True,\n max_length=30, choices=MONTH_OF_PETS)\n birth_year = models.IntegerField(default=0, null=True, blank=True,\n choices=get_years())\n is_microchiped = models.BooleanField(default=0)\n activity_level = models.CharField(null=True, blank=True, max_length=40,\n choices=ACTIVITY_LEVEL_PETS, default='')\n is_basic_trainned = models.BooleanField(default=0)\n confortable_with_kids = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_elder = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_cats = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_dogs = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_men = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n confortable_with_women = models.CharField(null=True, blank=True,\n max_length=100, choices=CONFORTABLE, default='')\n arrival_date = models.CharField(null=True, blank=True, max_length=30,\n default='')\n where_was_found_name = models.CharField(null=True, blank=True,\n max_length=100, default='')\n is_neutered = models.BooleanField(default=0)\n was_rabbies_vaccinated_this_year = models.BooleanField(default=0)\n was_v_vaccinated_this_year = models.BooleanField(default=0)\n was_others_vaccinated_this_year = models.BooleanField(default=0)\n profile_picture = models.ImageField(null=True, blank=True)\n picture_1 = models.ImageField(null=True, blank=True)\n picture_2 = models.ImageField(null=True, blank=True)\n picture_3 = models.ImageField(null=True, blank=True)\n video = models.CharField(null=True, blank=True, max_length=150)\n qty_views = models.IntegerField(default=0)\n qty_favorites = models.IntegerField(default=0)\n qty_msg = models.IntegerField(default=0)\n qty_shares = models.IntegerField(default=0)\n ongs_id = models.ForeignKey(Ongs, on_delete=models.CASCADE, default=1)\n status = models.CharField(null=True, blank=True, max_length=50, choices\n =STATUS_OF_PETS, default='')\n coat_size = models.CharField(null=True, blank=True, max_length=50,\n choices=COAT_SIZE_OF_PETS, default='')\n walk_pull = models.BooleanField(default=0)\n walk_pull_hard = models.BooleanField(default=0)\n walk_dogs = models.BooleanField(default=0)\n walk_people = models.BooleanField(default=0)\n walk_fear = models.BooleanField(default=0)\n color_pattern = models.CharField(null=True, blank=True, max_length=30,\n choices=COLOR_PATTERN_OF_PETS, default='')\n size = models.CharField(null=True, blank=True, max_length=50, choices=\n SIZE_OF_PETS, default='')\n qty_preview_adoptions = models.IntegerField(default=0, choices=\n RETURN_OF_PETS)\n qty_adoptions_app = models.IntegerField(default=0)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n teeth_status = models.CharField(null=True, blank=True, max_length=50,\n choices=STATUS_OF_TEETH, default='')\n combo_adoption_id = models.IntegerField(default=0, null=True, blank=True)\n is_available_adoption = models.BooleanField(default=1)\n where_was_found = models.CharField(null=True, blank=True, max_length=50,\n choices=TYPES_STREET, default='')\n where_was_found_city = models.CharField(null=True, blank=True,\n max_length=100, default='')\n where_was_found_state = models.CharField(null=True, blank=True,\n max_length=100, default='')\n first_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n second_special_need = models.CharField(null=True, blank=True,\n max_length=100, choices=SPECIAL_NEED, default='')\n third_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n is_mixed_breed = models.BooleanField(default=1)\n is_walking_daily = models.BooleanField(default=0)\n is_acupuncture = models.BooleanField(default=0)\n is_physiotherapy = models.BooleanField(default=0)\n is_vermifuged = models.BooleanField(default=0)\n is_lice_free = models.BooleanField(default=0)\n is_dog_meet_necessary = models.BooleanField(default=0)\n walk_alone_dislike = models.BooleanField(default=0)\n walk_alone = models.BooleanField(default=0)\n walk_leash = models.BooleanField(default=0)\n id_at_ong = models.IntegerField(default=0, null=True, blank=True)\n\n def __str__(self):\n return self.name\n\n\n<function token>\n\n\nclass Favorites(models.Model):\n user_id = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.\n CASCADE)\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n\n\nclass Pet_disease_areas(models.Model):\n name = models.CharField(null=True, blank=True, max_length=300)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_disease(models.Model):\n AREA_OF_PETS = [('Cardiologia', 'Cardiologia'), ('Dermatologia',\n 'Dermatologia'), ('Endocrinologia', 'Endocrinologia'), (\n 'Gastroenterologia e Hepatologia',\n 'Gastroenterologia e Hepatologia'), ('Hematologia e Imunologia',\n 'Hematologia e Imunologia'), ('Infecciosas', 'Infecciosas'), (\n 'Intoxicaes e Envenemanentos', 'Intoxicaes e Envenemanentos'), (\n 'Musculoesquelticas', 'Musculoesquelticas'), (\n 'Nefrologia e Urologia', 'Nefrologia e Urologia'), ('Neonatologia',\n 'Neonatologia'), ('Neurologia', 'Neurologia'), ('Oftalmologia',\n 'Oftalmologia'), ('Oncologia', 'Oncologia'), ('Respiratrias',\n 'Respiratrias'), ('Teriogenologia', 'Teriogenologia'), (\n 'Vacinao e Nutrologia', 'Vacinao e Nutrologia'), ('Outras', 'Outras')]\n name = models.CharField(null=True, blank=True, max_length=150)\n area = models.CharField(null=True, blank=True, max_length=100, choices=\n AREA_OF_PETS, default='')\n area_id = models.ForeignKey(Pet_disease_areas, on_delete=models.CASCADE,\n null=True, blank=True)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_health(models.Model):\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial',\n 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), (\n 'Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Doena mental',\n 'Doena mental'), ('Epilepsia', 'Epilesia'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total'), ('No sente cheiro', 'No sente cheiro')\n ]\n STATUS = [('Curado', 'Curado'), ('Em tratamento', 'Em tratamento'), (\n 'Sem verba', 'Sem verba')]\n SPECIAL_TREATMENT = [('Fisioterapia', 'Fisioterapia'), ('Acunpuntura',\n 'Acunpuntura'), ('Caminhada diria', 'Caminhada diria')]\n TYPES = [('Fatal', 'Fatal'), ('Para o resto da vida',\n 'Para o resto da vida'), ('Temporria', 'Temporria')]\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n diagnose_date = models.DateField(null=True, blank=True)\n disease_status = models.CharField(null=True, blank=True, max_length=100,\n choices=STATUS, default='')\n disease_type = models.CharField(null=True, blank=True, max_length=100,\n choices=TYPES, default='')\n internal_notes = models.CharField(null=True, blank=True, max_length=300)\n which_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n which_special_treatment = models.CharField(null=True, blank=True,\n max_length=100, choices=SPECIAL_TREATMENT, default='')\n disease_name = models.CharField(null=True, blank=True, max_length=200)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n\n def __str__(self):\n return self.disease\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass Pet(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def get_years():\n now = int(timezone.now().year) + 1\n past = timezone.now().year - 30\n a = []\n for i in reversed(range(past, now)):\n a.append((i, i))\n a = tuple(a)\n return a\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __str__(self):\n return self.name\n\n\n<function token>\n\n\nclass Favorites(models.Model):\n user_id = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.\n CASCADE)\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n\n\nclass Pet_disease_areas(models.Model):\n name = models.CharField(null=True, blank=True, max_length=300)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_disease(models.Model):\n AREA_OF_PETS = [('Cardiologia', 'Cardiologia'), ('Dermatologia',\n 'Dermatologia'), ('Endocrinologia', 'Endocrinologia'), (\n 'Gastroenterologia e Hepatologia',\n 'Gastroenterologia e Hepatologia'), ('Hematologia e Imunologia',\n 'Hematologia e Imunologia'), ('Infecciosas', 'Infecciosas'), (\n 'Intoxicaes e Envenemanentos', 'Intoxicaes e Envenemanentos'), (\n 'Musculoesquelticas', 'Musculoesquelticas'), (\n 'Nefrologia e Urologia', 'Nefrologia e Urologia'), ('Neonatologia',\n 'Neonatologia'), ('Neurologia', 'Neurologia'), ('Oftalmologia',\n 'Oftalmologia'), ('Oncologia', 'Oncologia'), ('Respiratrias',\n 'Respiratrias'), ('Teriogenologia', 'Teriogenologia'), (\n 'Vacinao e Nutrologia', 'Vacinao e Nutrologia'), ('Outras', 'Outras')]\n name = models.CharField(null=True, blank=True, max_length=150)\n area = models.CharField(null=True, blank=True, max_length=100, choices=\n AREA_OF_PETS, default='')\n area_id = models.ForeignKey(Pet_disease_areas, on_delete=models.CASCADE,\n null=True, blank=True)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_health(models.Model):\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial',\n 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), (\n 'Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Doena mental',\n 'Doena mental'), ('Epilepsia', 'Epilesia'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total'), ('No sente cheiro', 'No sente cheiro')\n ]\n STATUS = [('Curado', 'Curado'), ('Em tratamento', 'Em tratamento'), (\n 'Sem verba', 'Sem verba')]\n SPECIAL_TREATMENT = [('Fisioterapia', 'Fisioterapia'), ('Acunpuntura',\n 'Acunpuntura'), ('Caminhada diria', 'Caminhada diria')]\n TYPES = [('Fatal', 'Fatal'), ('Para o resto da vida',\n 'Para o resto da vida'), ('Temporria', 'Temporria')]\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n diagnose_date = models.DateField(null=True, blank=True)\n disease_status = models.CharField(null=True, blank=True, max_length=100,\n choices=STATUS, default='')\n disease_type = models.CharField(null=True, blank=True, max_length=100,\n choices=TYPES, default='')\n internal_notes = models.CharField(null=True, blank=True, max_length=300)\n which_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n which_special_treatment = models.CharField(null=True, blank=True,\n max_length=100, choices=SPECIAL_TREATMENT, default='')\n disease_name = models.CharField(null=True, blank=True, max_length=200)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n\n def __str__(self):\n return self.disease\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass Pet(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def get_years():\n now = int(timezone.now().year) + 1\n past = timezone.now().year - 30\n a = []\n for i in reversed(range(past, now)):\n a.append((i, i))\n a = tuple(a)\n return a\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n\n\n<function token>\n\n\nclass Favorites(models.Model):\n user_id = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.\n CASCADE)\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n\n\nclass Pet_disease_areas(models.Model):\n name = models.CharField(null=True, blank=True, max_length=300)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_disease(models.Model):\n AREA_OF_PETS = [('Cardiologia', 'Cardiologia'), ('Dermatologia',\n 'Dermatologia'), ('Endocrinologia', 'Endocrinologia'), (\n 'Gastroenterologia e Hepatologia',\n 'Gastroenterologia e Hepatologia'), ('Hematologia e Imunologia',\n 'Hematologia e Imunologia'), ('Infecciosas', 'Infecciosas'), (\n 'Intoxicaes e Envenemanentos', 'Intoxicaes e Envenemanentos'), (\n 'Musculoesquelticas', 'Musculoesquelticas'), (\n 'Nefrologia e Urologia', 'Nefrologia e Urologia'), ('Neonatologia',\n 'Neonatologia'), ('Neurologia', 'Neurologia'), ('Oftalmologia',\n 'Oftalmologia'), ('Oncologia', 'Oncologia'), ('Respiratrias',\n 'Respiratrias'), ('Teriogenologia', 'Teriogenologia'), (\n 'Vacinao e Nutrologia', 'Vacinao e Nutrologia'), ('Outras', 'Outras')]\n name = models.CharField(null=True, blank=True, max_length=150)\n area = models.CharField(null=True, blank=True, max_length=100, choices=\n AREA_OF_PETS, default='')\n area_id = models.ForeignKey(Pet_disease_areas, on_delete=models.CASCADE,\n null=True, blank=True)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_health(models.Model):\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial',\n 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), (\n 'Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Doena mental',\n 'Doena mental'), ('Epilepsia', 'Epilesia'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total'), ('No sente cheiro', 'No sente cheiro')\n ]\n STATUS = [('Curado', 'Curado'), ('Em tratamento', 'Em tratamento'), (\n 'Sem verba', 'Sem verba')]\n SPECIAL_TREATMENT = [('Fisioterapia', 'Fisioterapia'), ('Acunpuntura',\n 'Acunpuntura'), ('Caminhada diria', 'Caminhada diria')]\n TYPES = [('Fatal', 'Fatal'), ('Para o resto da vida',\n 'Para o resto da vida'), ('Temporria', 'Temporria')]\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n diagnose_date = models.DateField(null=True, blank=True)\n disease_status = models.CharField(null=True, blank=True, max_length=100,\n choices=STATUS, default='')\n disease_type = models.CharField(null=True, blank=True, max_length=100,\n choices=TYPES, default='')\n internal_notes = models.CharField(null=True, blank=True, max_length=300)\n which_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n which_special_treatment = models.CharField(null=True, blank=True,\n max_length=100, choices=SPECIAL_TREATMENT, default='')\n disease_name = models.CharField(null=True, blank=True, max_length=200)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n\n def __str__(self):\n return self.disease\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass Pet(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n\n\n<function token>\n\n\nclass Favorites(models.Model):\n user_id = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.\n CASCADE)\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n\n\nclass Pet_disease_areas(models.Model):\n name = models.CharField(null=True, blank=True, max_length=300)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_disease(models.Model):\n AREA_OF_PETS = [('Cardiologia', 'Cardiologia'), ('Dermatologia',\n 'Dermatologia'), ('Endocrinologia', 'Endocrinologia'), (\n 'Gastroenterologia e Hepatologia',\n 'Gastroenterologia e Hepatologia'), ('Hematologia e Imunologia',\n 'Hematologia e Imunologia'), ('Infecciosas', 'Infecciosas'), (\n 'Intoxicaes e Envenemanentos', 'Intoxicaes e Envenemanentos'), (\n 'Musculoesquelticas', 'Musculoesquelticas'), (\n 'Nefrologia e Urologia', 'Nefrologia e Urologia'), ('Neonatologia',\n 'Neonatologia'), ('Neurologia', 'Neurologia'), ('Oftalmologia',\n 'Oftalmologia'), ('Oncologia', 'Oncologia'), ('Respiratrias',\n 'Respiratrias'), ('Teriogenologia', 'Teriogenologia'), (\n 'Vacinao e Nutrologia', 'Vacinao e Nutrologia'), ('Outras', 'Outras')]\n name = models.CharField(null=True, blank=True, max_length=150)\n area = models.CharField(null=True, blank=True, max_length=100, choices=\n AREA_OF_PETS, default='')\n area_id = models.ForeignKey(Pet_disease_areas, on_delete=models.CASCADE,\n null=True, blank=True)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_health(models.Model):\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial',\n 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), (\n 'Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Doena mental',\n 'Doena mental'), ('Epilepsia', 'Epilesia'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total'), ('No sente cheiro', 'No sente cheiro')\n ]\n STATUS = [('Curado', 'Curado'), ('Em tratamento', 'Em tratamento'), (\n 'Sem verba', 'Sem verba')]\n SPECIAL_TREATMENT = [('Fisioterapia', 'Fisioterapia'), ('Acunpuntura',\n 'Acunpuntura'), ('Caminhada diria', 'Caminhada diria')]\n TYPES = [('Fatal', 'Fatal'), ('Para o resto da vida',\n 'Para o resto da vida'), ('Temporria', 'Temporria')]\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n diagnose_date = models.DateField(null=True, blank=True)\n disease_status = models.CharField(null=True, blank=True, max_length=100,\n choices=STATUS, default='')\n disease_type = models.CharField(null=True, blank=True, max_length=100,\n choices=TYPES, default='')\n internal_notes = models.CharField(null=True, blank=True, max_length=300)\n which_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n which_special_treatment = models.CharField(null=True, blank=True,\n max_length=100, choices=SPECIAL_TREATMENT, default='')\n disease_name = models.CharField(null=True, blank=True, max_length=200)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n\n def __str__(self):\n return self.disease\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<function token>\n\n\nclass Favorites(models.Model):\n user_id = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.\n CASCADE)\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n\n\nclass Pet_disease_areas(models.Model):\n name = models.CharField(null=True, blank=True, max_length=300)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_disease(models.Model):\n AREA_OF_PETS = [('Cardiologia', 'Cardiologia'), ('Dermatologia',\n 'Dermatologia'), ('Endocrinologia', 'Endocrinologia'), (\n 'Gastroenterologia e Hepatologia',\n 'Gastroenterologia e Hepatologia'), ('Hematologia e Imunologia',\n 'Hematologia e Imunologia'), ('Infecciosas', 'Infecciosas'), (\n 'Intoxicaes e Envenemanentos', 'Intoxicaes e Envenemanentos'), (\n 'Musculoesquelticas', 'Musculoesquelticas'), (\n 'Nefrologia e Urologia', 'Nefrologia e Urologia'), ('Neonatologia',\n 'Neonatologia'), ('Neurologia', 'Neurologia'), ('Oftalmologia',\n 'Oftalmologia'), ('Oncologia', 'Oncologia'), ('Respiratrias',\n 'Respiratrias'), ('Teriogenologia', 'Teriogenologia'), (\n 'Vacinao e Nutrologia', 'Vacinao e Nutrologia'), ('Outras', 'Outras')]\n name = models.CharField(null=True, blank=True, max_length=150)\n area = models.CharField(null=True, blank=True, max_length=100, choices=\n AREA_OF_PETS, default='')\n area_id = models.ForeignKey(Pet_disease_areas, on_delete=models.CASCADE,\n null=True, blank=True)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_health(models.Model):\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial',\n 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), (\n 'Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Doena mental',\n 'Doena mental'), ('Epilepsia', 'Epilesia'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total'), ('No sente cheiro', 'No sente cheiro')\n ]\n STATUS = [('Curado', 'Curado'), ('Em tratamento', 'Em tratamento'), (\n 'Sem verba', 'Sem verba')]\n SPECIAL_TREATMENT = [('Fisioterapia', 'Fisioterapia'), ('Acunpuntura',\n 'Acunpuntura'), ('Caminhada diria', 'Caminhada diria')]\n TYPES = [('Fatal', 'Fatal'), ('Para o resto da vida',\n 'Para o resto da vida'), ('Temporria', 'Temporria')]\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n diagnose_date = models.DateField(null=True, blank=True)\n disease_status = models.CharField(null=True, blank=True, max_length=100,\n choices=STATUS, default='')\n disease_type = models.CharField(null=True, blank=True, max_length=100,\n choices=TYPES, default='')\n internal_notes = models.CharField(null=True, blank=True, max_length=300)\n which_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n which_special_treatment = models.CharField(null=True, blank=True,\n max_length=100, choices=SPECIAL_TREATMENT, default='')\n disease_name = models.CharField(null=True, blank=True, max_length=200)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n\n def __str__(self):\n return self.disease\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<function token>\n\n\nclass Favorites(models.Model):\n <assignment token>\n <assignment token>\n\n\nclass Pet_disease_areas(models.Model):\n name = models.CharField(null=True, blank=True, max_length=300)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_disease(models.Model):\n AREA_OF_PETS = [('Cardiologia', 'Cardiologia'), ('Dermatologia',\n 'Dermatologia'), ('Endocrinologia', 'Endocrinologia'), (\n 'Gastroenterologia e Hepatologia',\n 'Gastroenterologia e Hepatologia'), ('Hematologia e Imunologia',\n 'Hematologia e Imunologia'), ('Infecciosas', 'Infecciosas'), (\n 'Intoxicaes e Envenemanentos', 'Intoxicaes e Envenemanentos'), (\n 'Musculoesquelticas', 'Musculoesquelticas'), (\n 'Nefrologia e Urologia', 'Nefrologia e Urologia'), ('Neonatologia',\n 'Neonatologia'), ('Neurologia', 'Neurologia'), ('Oftalmologia',\n 'Oftalmologia'), ('Oncologia', 'Oncologia'), ('Respiratrias',\n 'Respiratrias'), ('Teriogenologia', 'Teriogenologia'), (\n 'Vacinao e Nutrologia', 'Vacinao e Nutrologia'), ('Outras', 'Outras')]\n name = models.CharField(null=True, blank=True, max_length=150)\n area = models.CharField(null=True, blank=True, max_length=100, choices=\n AREA_OF_PETS, default='')\n area_id = models.ForeignKey(Pet_disease_areas, on_delete=models.CASCADE,\n null=True, blank=True)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_health(models.Model):\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial',\n 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), (\n 'Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Doena mental',\n 'Doena mental'), ('Epilepsia', 'Epilesia'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total'), ('No sente cheiro', 'No sente cheiro')\n ]\n STATUS = [('Curado', 'Curado'), ('Em tratamento', 'Em tratamento'), (\n 'Sem verba', 'Sem verba')]\n SPECIAL_TREATMENT = [('Fisioterapia', 'Fisioterapia'), ('Acunpuntura',\n 'Acunpuntura'), ('Caminhada diria', 'Caminhada diria')]\n TYPES = [('Fatal', 'Fatal'), ('Para o resto da vida',\n 'Para o resto da vida'), ('Temporria', 'Temporria')]\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n diagnose_date = models.DateField(null=True, blank=True)\n disease_status = models.CharField(null=True, blank=True, max_length=100,\n choices=STATUS, default='')\n disease_type = models.CharField(null=True, blank=True, max_length=100,\n choices=TYPES, default='')\n internal_notes = models.CharField(null=True, blank=True, max_length=300)\n which_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n which_special_treatment = models.CharField(null=True, blank=True,\n max_length=100, choices=SPECIAL_TREATMENT, default='')\n disease_name = models.CharField(null=True, blank=True, max_length=200)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n\n def __str__(self):\n return self.disease\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<function token>\n<class token>\n\n\nclass Pet_disease_areas(models.Model):\n name = models.CharField(null=True, blank=True, max_length=300)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_disease(models.Model):\n AREA_OF_PETS = [('Cardiologia', 'Cardiologia'), ('Dermatologia',\n 'Dermatologia'), ('Endocrinologia', 'Endocrinologia'), (\n 'Gastroenterologia e Hepatologia',\n 'Gastroenterologia e Hepatologia'), ('Hematologia e Imunologia',\n 'Hematologia e Imunologia'), ('Infecciosas', 'Infecciosas'), (\n 'Intoxicaes e Envenemanentos', 'Intoxicaes e Envenemanentos'), (\n 'Musculoesquelticas', 'Musculoesquelticas'), (\n 'Nefrologia e Urologia', 'Nefrologia e Urologia'), ('Neonatologia',\n 'Neonatologia'), ('Neurologia', 'Neurologia'), ('Oftalmologia',\n 'Oftalmologia'), ('Oncologia', 'Oncologia'), ('Respiratrias',\n 'Respiratrias'), ('Teriogenologia', 'Teriogenologia'), (\n 'Vacinao e Nutrologia', 'Vacinao e Nutrologia'), ('Outras', 'Outras')]\n name = models.CharField(null=True, blank=True, max_length=150)\n area = models.CharField(null=True, blank=True, max_length=100, choices=\n AREA_OF_PETS, default='')\n area_id = models.ForeignKey(Pet_disease_areas, on_delete=models.CASCADE,\n null=True, blank=True)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_health(models.Model):\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial',\n 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), (\n 'Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Doena mental',\n 'Doena mental'), ('Epilepsia', 'Epilesia'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total'), ('No sente cheiro', 'No sente cheiro')\n ]\n STATUS = [('Curado', 'Curado'), ('Em tratamento', 'Em tratamento'), (\n 'Sem verba', 'Sem verba')]\n SPECIAL_TREATMENT = [('Fisioterapia', 'Fisioterapia'), ('Acunpuntura',\n 'Acunpuntura'), ('Caminhada diria', 'Caminhada diria')]\n TYPES = [('Fatal', 'Fatal'), ('Para o resto da vida',\n 'Para o resto da vida'), ('Temporria', 'Temporria')]\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n diagnose_date = models.DateField(null=True, blank=True)\n disease_status = models.CharField(null=True, blank=True, max_length=100,\n choices=STATUS, default='')\n disease_type = models.CharField(null=True, blank=True, max_length=100,\n choices=TYPES, default='')\n internal_notes = models.CharField(null=True, blank=True, max_length=300)\n which_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n which_special_treatment = models.CharField(null=True, blank=True,\n max_length=100, choices=SPECIAL_TREATMENT, default='')\n disease_name = models.CharField(null=True, blank=True, max_length=200)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n\n def __str__(self):\n return self.disease\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<function token>\n<class token>\n\n\nclass Pet_disease_areas(models.Model):\n <assignment token>\n\n def __str__(self):\n return self.name\n\n\nclass Pet_disease(models.Model):\n AREA_OF_PETS = [('Cardiologia', 'Cardiologia'), ('Dermatologia',\n 'Dermatologia'), ('Endocrinologia', 'Endocrinologia'), (\n 'Gastroenterologia e Hepatologia',\n 'Gastroenterologia e Hepatologia'), ('Hematologia e Imunologia',\n 'Hematologia e Imunologia'), ('Infecciosas', 'Infecciosas'), (\n 'Intoxicaes e Envenemanentos', 'Intoxicaes e Envenemanentos'), (\n 'Musculoesquelticas', 'Musculoesquelticas'), (\n 'Nefrologia e Urologia', 'Nefrologia e Urologia'), ('Neonatologia',\n 'Neonatologia'), ('Neurologia', 'Neurologia'), ('Oftalmologia',\n 'Oftalmologia'), ('Oncologia', 'Oncologia'), ('Respiratrias',\n 'Respiratrias'), ('Teriogenologia', 'Teriogenologia'), (\n 'Vacinao e Nutrologia', 'Vacinao e Nutrologia'), ('Outras', 'Outras')]\n name = models.CharField(null=True, blank=True, max_length=150)\n area = models.CharField(null=True, blank=True, max_length=100, choices=\n AREA_OF_PETS, default='')\n area_id = models.ForeignKey(Pet_disease_areas, on_delete=models.CASCADE,\n null=True, blank=True)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_health(models.Model):\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial',\n 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), (\n 'Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Doena mental',\n 'Doena mental'), ('Epilepsia', 'Epilesia'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total'), ('No sente cheiro', 'No sente cheiro')\n ]\n STATUS = [('Curado', 'Curado'), ('Em tratamento', 'Em tratamento'), (\n 'Sem verba', 'Sem verba')]\n SPECIAL_TREATMENT = [('Fisioterapia', 'Fisioterapia'), ('Acunpuntura',\n 'Acunpuntura'), ('Caminhada diria', 'Caminhada diria')]\n TYPES = [('Fatal', 'Fatal'), ('Para o resto da vida',\n 'Para o resto da vida'), ('Temporria', 'Temporria')]\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n diagnose_date = models.DateField(null=True, blank=True)\n disease_status = models.CharField(null=True, blank=True, max_length=100,\n choices=STATUS, default='')\n disease_type = models.CharField(null=True, blank=True, max_length=100,\n choices=TYPES, default='')\n internal_notes = models.CharField(null=True, blank=True, max_length=300)\n which_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n which_special_treatment = models.CharField(null=True, blank=True,\n max_length=100, choices=SPECIAL_TREATMENT, default='')\n disease_name = models.CharField(null=True, blank=True, max_length=200)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n\n def __str__(self):\n return self.disease\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<function token>\n<class token>\n\n\nclass Pet_disease_areas(models.Model):\n <assignment token>\n <function token>\n\n\nclass Pet_disease(models.Model):\n AREA_OF_PETS = [('Cardiologia', 'Cardiologia'), ('Dermatologia',\n 'Dermatologia'), ('Endocrinologia', 'Endocrinologia'), (\n 'Gastroenterologia e Hepatologia',\n 'Gastroenterologia e Hepatologia'), ('Hematologia e Imunologia',\n 'Hematologia e Imunologia'), ('Infecciosas', 'Infecciosas'), (\n 'Intoxicaes e Envenemanentos', 'Intoxicaes e Envenemanentos'), (\n 'Musculoesquelticas', 'Musculoesquelticas'), (\n 'Nefrologia e Urologia', 'Nefrologia e Urologia'), ('Neonatologia',\n 'Neonatologia'), ('Neurologia', 'Neurologia'), ('Oftalmologia',\n 'Oftalmologia'), ('Oncologia', 'Oncologia'), ('Respiratrias',\n 'Respiratrias'), ('Teriogenologia', 'Teriogenologia'), (\n 'Vacinao e Nutrologia', 'Vacinao e Nutrologia'), ('Outras', 'Outras')]\n name = models.CharField(null=True, blank=True, max_length=150)\n area = models.CharField(null=True, blank=True, max_length=100, choices=\n AREA_OF_PETS, default='')\n area_id = models.ForeignKey(Pet_disease_areas, on_delete=models.CASCADE,\n null=True, blank=True)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_health(models.Model):\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial',\n 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), (\n 'Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Doena mental',\n 'Doena mental'), ('Epilepsia', 'Epilesia'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total'), ('No sente cheiro', 'No sente cheiro')\n ]\n STATUS = [('Curado', 'Curado'), ('Em tratamento', 'Em tratamento'), (\n 'Sem verba', 'Sem verba')]\n SPECIAL_TREATMENT = [('Fisioterapia', 'Fisioterapia'), ('Acunpuntura',\n 'Acunpuntura'), ('Caminhada diria', 'Caminhada diria')]\n TYPES = [('Fatal', 'Fatal'), ('Para o resto da vida',\n 'Para o resto da vida'), ('Temporria', 'Temporria')]\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n diagnose_date = models.DateField(null=True, blank=True)\n disease_status = models.CharField(null=True, blank=True, max_length=100,\n choices=STATUS, default='')\n disease_type = models.CharField(null=True, blank=True, max_length=100,\n choices=TYPES, default='')\n internal_notes = models.CharField(null=True, blank=True, max_length=300)\n which_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n which_special_treatment = models.CharField(null=True, blank=True,\n max_length=100, choices=SPECIAL_TREATMENT, default='')\n disease_name = models.CharField(null=True, blank=True, max_length=200)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n\n def __str__(self):\n return self.disease\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<function token>\n<class token>\n<class token>\n\n\nclass Pet_disease(models.Model):\n AREA_OF_PETS = [('Cardiologia', 'Cardiologia'), ('Dermatologia',\n 'Dermatologia'), ('Endocrinologia', 'Endocrinologia'), (\n 'Gastroenterologia e Hepatologia',\n 'Gastroenterologia e Hepatologia'), ('Hematologia e Imunologia',\n 'Hematologia e Imunologia'), ('Infecciosas', 'Infecciosas'), (\n 'Intoxicaes e Envenemanentos', 'Intoxicaes e Envenemanentos'), (\n 'Musculoesquelticas', 'Musculoesquelticas'), (\n 'Nefrologia e Urologia', 'Nefrologia e Urologia'), ('Neonatologia',\n 'Neonatologia'), ('Neurologia', 'Neurologia'), ('Oftalmologia',\n 'Oftalmologia'), ('Oncologia', 'Oncologia'), ('Respiratrias',\n 'Respiratrias'), ('Teriogenologia', 'Teriogenologia'), (\n 'Vacinao e Nutrologia', 'Vacinao e Nutrologia'), ('Outras', 'Outras')]\n name = models.CharField(null=True, blank=True, max_length=150)\n area = models.CharField(null=True, blank=True, max_length=100, choices=\n AREA_OF_PETS, default='')\n area_id = models.ForeignKey(Pet_disease_areas, on_delete=models.CASCADE,\n null=True, blank=True)\n\n def __str__(self):\n return self.name\n\n\nclass Pet_health(models.Model):\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial',\n 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), (\n 'Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Doena mental',\n 'Doena mental'), ('Epilepsia', 'Epilesia'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total'), ('No sente cheiro', 'No sente cheiro')\n ]\n STATUS = [('Curado', 'Curado'), ('Em tratamento', 'Em tratamento'), (\n 'Sem verba', 'Sem verba')]\n SPECIAL_TREATMENT = [('Fisioterapia', 'Fisioterapia'), ('Acunpuntura',\n 'Acunpuntura'), ('Caminhada diria', 'Caminhada diria')]\n TYPES = [('Fatal', 'Fatal'), ('Para o resto da vida',\n 'Para o resto da vida'), ('Temporria', 'Temporria')]\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n diagnose_date = models.DateField(null=True, blank=True)\n disease_status = models.CharField(null=True, blank=True, max_length=100,\n choices=STATUS, default='')\n disease_type = models.CharField(null=True, blank=True, max_length=100,\n choices=TYPES, default='')\n internal_notes = models.CharField(null=True, blank=True, max_length=300)\n which_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n which_special_treatment = models.CharField(null=True, blank=True,\n max_length=100, choices=SPECIAL_TREATMENT, default='')\n disease_name = models.CharField(null=True, blank=True, max_length=200)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n\n def __str__(self):\n return self.disease\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<function token>\n<class token>\n<class token>\n\n\nclass Pet_disease(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __str__(self):\n return self.name\n\n\nclass Pet_health(models.Model):\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial',\n 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), (\n 'Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Doena mental',\n 'Doena mental'), ('Epilepsia', 'Epilesia'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total'), ('No sente cheiro', 'No sente cheiro')\n ]\n STATUS = [('Curado', 'Curado'), ('Em tratamento', 'Em tratamento'), (\n 'Sem verba', 'Sem verba')]\n SPECIAL_TREATMENT = [('Fisioterapia', 'Fisioterapia'), ('Acunpuntura',\n 'Acunpuntura'), ('Caminhada diria', 'Caminhada diria')]\n TYPES = [('Fatal', 'Fatal'), ('Para o resto da vida',\n 'Para o resto da vida'), ('Temporria', 'Temporria')]\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n diagnose_date = models.DateField(null=True, blank=True)\n disease_status = models.CharField(null=True, blank=True, max_length=100,\n choices=STATUS, default='')\n disease_type = models.CharField(null=True, blank=True, max_length=100,\n choices=TYPES, default='')\n internal_notes = models.CharField(null=True, blank=True, max_length=300)\n which_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n which_special_treatment = models.CharField(null=True, blank=True,\n max_length=100, choices=SPECIAL_TREATMENT, default='')\n disease_name = models.CharField(null=True, blank=True, max_length=200)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n\n def __str__(self):\n return self.disease\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<function token>\n<class token>\n<class token>\n\n\nclass Pet_disease(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n\n\nclass Pet_health(models.Model):\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial',\n 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), (\n 'Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Doena mental',\n 'Doena mental'), ('Epilepsia', 'Epilesia'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total'), ('No sente cheiro', 'No sente cheiro')\n ]\n STATUS = [('Curado', 'Curado'), ('Em tratamento', 'Em tratamento'), (\n 'Sem verba', 'Sem verba')]\n SPECIAL_TREATMENT = [('Fisioterapia', 'Fisioterapia'), ('Acunpuntura',\n 'Acunpuntura'), ('Caminhada diria', 'Caminhada diria')]\n TYPES = [('Fatal', 'Fatal'), ('Para o resto da vida',\n 'Para o resto da vida'), ('Temporria', 'Temporria')]\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n diagnose_date = models.DateField(null=True, blank=True)\n disease_status = models.CharField(null=True, blank=True, max_length=100,\n choices=STATUS, default='')\n disease_type = models.CharField(null=True, blank=True, max_length=100,\n choices=TYPES, default='')\n internal_notes = models.CharField(null=True, blank=True, max_length=300)\n which_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n which_special_treatment = models.CharField(null=True, blank=True,\n max_length=100, choices=SPECIAL_TREATMENT, default='')\n disease_name = models.CharField(null=True, blank=True, max_length=200)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n\n def __str__(self):\n return self.disease\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<function token>\n<class token>\n<class token>\n<class token>\n\n\nclass Pet_health(models.Model):\n SPECIAL_NEED = [('3 patas funcionais', '3 patas funcionais'), (\n '2 patas funcionais', '2 patas funcionais'), ('1 pata funcional',\n '1 pata funcional'), ('0 patas funcionais', '0 patas funcionais'),\n ('No pode mastigar', 'No pode mastigar'), ('Cegueira parcial',\n 'Cegueira parcial'), ('Cegueira total', 'Cegueira total'), (\n 'Necessidade de remdios para sempre',\n 'Necessidade de remdios para sempre'), (\n 'Necessidade de terapias para sempre', 'Necessidade de terapias'),\n ('Necessidade de terapias e remdios para sempre',\n 'Necessidade de terapias e remdios para sempre'), ('Doena mental',\n 'Doena mental'), ('Epilepsia', 'Epilesia'), ('Rabo amputado',\n 'Rabo amputado'), ('Surdez parcial', 'Surdez parcial'), (\n 'Surdez total', 'Surdez total'), ('No sente cheiro', 'No sente cheiro')\n ]\n STATUS = [('Curado', 'Curado'), ('Em tratamento', 'Em tratamento'), (\n 'Sem verba', 'Sem verba')]\n SPECIAL_TREATMENT = [('Fisioterapia', 'Fisioterapia'), ('Acunpuntura',\n 'Acunpuntura'), ('Caminhada diria', 'Caminhada diria')]\n TYPES = [('Fatal', 'Fatal'), ('Para o resto da vida',\n 'Para o resto da vida'), ('Temporria', 'Temporria')]\n pet_id = models.ForeignKey(Pet, on_delete=models.CASCADE)\n diagnose_date = models.DateField(null=True, blank=True)\n disease_status = models.CharField(null=True, blank=True, max_length=100,\n choices=STATUS, default='')\n disease_type = models.CharField(null=True, blank=True, max_length=100,\n choices=TYPES, default='')\n internal_notes = models.CharField(null=True, blank=True, max_length=300)\n which_special_need = models.CharField(null=True, blank=True, max_length\n =100, choices=SPECIAL_NEED, default='')\n which_special_treatment = models.CharField(null=True, blank=True,\n max_length=100, choices=SPECIAL_TREATMENT, default='')\n disease_name = models.CharField(null=True, blank=True, max_length=200)\n created_at = models.DateField(auto_now_add=True)\n updated_at = models.DateField(auto_now=True)\n\n def __str__(self):\n return self.disease\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<function token>\n<class token>\n<class token>\n<class token>\n\n\nclass Pet_health(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __str__(self):\n return self.disease\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<function token>\n<class token>\n<class token>\n<class token>\n\n\nclass Pet_health(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<function token>\n<class token>\n<class token>\n<class token>\n<class token>\n" ]
false
99,045
f3dd9bc175f5a86f2f41a8aaac04c68583264859
# -*- coding: utf-8 -*- """ Created on Wed Oct 20 18:51:32 2021 @author: Kathleen Lucía Torres Mancilla 298944 Francisco Javier Vite Mimila 299043 Linear Solve: Gradiente descendente Dejar en una función el método del gradiente. """ import numpy as np ''' El objetivo es resolver Ax = b Entonces para ello, hicimos lo siguiente: Ax - b --> Discrepancia de un tanto para un x tanteado Por facilidad, definimos el error cuadrado total como (Ax - b)^2 Que matricialmente se puede expresar como: (Ax - b)' (Ax - b) = Error total cuadrado Derivamos y encontramos que: dE = 2A'Ax - 2A'b La idea es minimizar el error total cuadrado, porque al hacerlo, llegaríamos al único mínimo del paraboloide que es cuando (Ax - b)^2 = 0 y entonces, esto implicaría que Ax = b y por ende x sería la solución del sistema de ecuaciones. ''' #A = [[1,2,3],[1,2,3],[1,2,4]] #mi_producto(A, transpuesta(A)) #x_nuevo = x_viejo - k * Gradiente #Sistema de ecuaciones que se va a resolver: A_coef = np.array([[2.0, 1.0, -3.0], [5.0, -4.0, 1.0], [1.0, -1.0, -4.0]]) b_coef = np.array([7.0, -19.0, 4.0]) x_sol = np.array([1.0, 1.0, 1.0]) def gradient(x, A, b): element_1 = np.dot(np.transpose(A),np.dot(A, x)) element_2 = np.dot(np.transpose(A), b) return element_1 - element_2 def linear_solve(M, v, x_start, umbral, max_iter): k = 0.002 for i in range(max_iter): print(x_start) x_start = x_start - k * gradient(x_start, M, v) current_v = np.dot(M,x_start) error_np = np.sum(np.abs(current_v-v)) if error_np < umbral: return x_start print(linear_solve(A_coef, b_coef, x_sol, 0.001, 10000)) ''' #def linear_solve(A, b, x_start, umbral = 0.001, max_iter = 1000) ### #Tasa de aprendizaje. k = 0.002 #Parámetros de ajuste o hiperparámetros for i in range(1000): print(x_sol) x_sol = x_sol - k * gradient(x_sol, A_coef, b_coef) print(np.dot(A_coef,x_sol)) '''
[ "# -*- coding: utf-8 -*-\r\n\"\"\"\r\nCreated on Wed Oct 20 18:51:32 2021\r\n\r\n@author: Kathleen Lucía Torres Mancilla 298944\r\n Francisco Javier Vite Mimila 299043\r\n \r\nLinear Solve: Gradiente descendente\r\n\r\nDejar en una función el método del gradiente.\r\n\r\n\"\"\"\r\nimport numpy as np\r\n'''\r\nEl objetivo es resolver Ax = b\r\nEntonces para ello, hicimos lo siguiente:\r\n\r\nAx - b --> Discrepancia de un tanto para un x tanteado\r\n\r\nPor facilidad, definimos el error cuadrado total como\r\n\r\n(Ax - b)^2 \r\n\r\nQue matricialmente se puede expresar como:\r\n\r\n(Ax - b)' (Ax - b) = Error total cuadrado\r\n\r\nDerivamos y encontramos que:\r\n\r\ndE = 2A'Ax - 2A'b \r\n\r\nLa idea es minimizar el error total cuadrado, porque\r\nal hacerlo, llegaríamos al único mínimo del paraboloide\r\nque es cuando (Ax - b)^2 = 0 y entonces, esto implicaría\r\nque Ax = b y por ende x sería la solución del sistema de \r\necuaciones.\r\n'''\r\n\r\n#A = [[1,2,3],[1,2,3],[1,2,4]]\r\n\r\n#mi_producto(A, transpuesta(A))\r\n#x_nuevo = x_viejo - k * Gradiente\r\n \r\n#Sistema de ecuaciones que se va a resolver:\r\nA_coef = np.array([[2.0, 1.0, -3.0], [5.0, -4.0, 1.0], [1.0, -1.0, -4.0]])\r\nb_coef = np.array([7.0, -19.0, 4.0])\r\n\r\nx_sol = np.array([1.0, 1.0, 1.0])\r\n\r\n\r\ndef gradient(x, A, b):\r\n\telement_1 = np.dot(np.transpose(A),np.dot(A, x))\r\n\telement_2 = np.dot(np.transpose(A), b)\r\n\treturn element_1 - element_2\r\n\r\ndef linear_solve(M, v, x_start, umbral, max_iter):\r\n k = 0.002\r\n for i in range(max_iter):\r\n print(x_start)\r\n x_start = x_start - k * gradient(x_start, M, v)\r\n current_v = np.dot(M,x_start)\r\n error_np = np.sum(np.abs(current_v-v))\r\n if error_np < umbral:\r\n return x_start\r\n\r\nprint(linear_solve(A_coef, b_coef, x_sol, 0.001, 10000))\r\n'''\r\n#def linear_solve(A, b, x_start, umbral = 0.001, max_iter = 1000)\r\n###\r\n\r\n#Tasa de aprendizaje.\r\nk = 0.002 #Parámetros de ajuste o hiperparámetros\r\nfor i in range(1000):\r\n\tprint(x_sol)\r\n\tx_sol = x_sol - k * gradient(x_sol, A_coef, b_coef)\r\n\r\nprint(np.dot(A_coef,x_sol))\r\n'''\r\n", "<docstring token>\nimport numpy as np\n<docstring token>\nA_coef = np.array([[2.0, 1.0, -3.0], [5.0, -4.0, 1.0], [1.0, -1.0, -4.0]])\nb_coef = np.array([7.0, -19.0, 4.0])\nx_sol = np.array([1.0, 1.0, 1.0])\n\n\ndef gradient(x, A, b):\n element_1 = np.dot(np.transpose(A), np.dot(A, x))\n element_2 = np.dot(np.transpose(A), b)\n return element_1 - element_2\n\n\ndef linear_solve(M, v, x_start, umbral, max_iter):\n k = 0.002\n for i in range(max_iter):\n print(x_start)\n x_start = x_start - k * gradient(x_start, M, v)\n current_v = np.dot(M, x_start)\n error_np = np.sum(np.abs(current_v - v))\n if error_np < umbral:\n return x_start\n\n\nprint(linear_solve(A_coef, b_coef, x_sol, 0.001, 10000))\n<docstring token>\n", "<docstring token>\n<import token>\n<docstring token>\nA_coef = np.array([[2.0, 1.0, -3.0], [5.0, -4.0, 1.0], [1.0, -1.0, -4.0]])\nb_coef = np.array([7.0, -19.0, 4.0])\nx_sol = np.array([1.0, 1.0, 1.0])\n\n\ndef gradient(x, A, b):\n element_1 = np.dot(np.transpose(A), np.dot(A, x))\n element_2 = np.dot(np.transpose(A), b)\n return element_1 - element_2\n\n\ndef linear_solve(M, v, x_start, umbral, max_iter):\n k = 0.002\n for i in range(max_iter):\n print(x_start)\n x_start = x_start - k * gradient(x_start, M, v)\n current_v = np.dot(M, x_start)\n error_np = np.sum(np.abs(current_v - v))\n if error_np < umbral:\n return x_start\n\n\nprint(linear_solve(A_coef, b_coef, x_sol, 0.001, 10000))\n<docstring token>\n", "<docstring token>\n<import token>\n<docstring token>\n<assignment token>\n\n\ndef gradient(x, A, b):\n element_1 = np.dot(np.transpose(A), np.dot(A, x))\n element_2 = np.dot(np.transpose(A), b)\n return element_1 - element_2\n\n\ndef linear_solve(M, v, x_start, umbral, max_iter):\n k = 0.002\n for i in range(max_iter):\n print(x_start)\n x_start = x_start - k * gradient(x_start, M, v)\n current_v = np.dot(M, x_start)\n error_np = np.sum(np.abs(current_v - v))\n if error_np < umbral:\n return x_start\n\n\nprint(linear_solve(A_coef, b_coef, x_sol, 0.001, 10000))\n<docstring token>\n", "<docstring token>\n<import token>\n<docstring token>\n<assignment token>\n\n\ndef gradient(x, A, b):\n element_1 = np.dot(np.transpose(A), np.dot(A, x))\n element_2 = np.dot(np.transpose(A), b)\n return element_1 - element_2\n\n\ndef linear_solve(M, v, x_start, umbral, max_iter):\n k = 0.002\n for i in range(max_iter):\n print(x_start)\n x_start = x_start - k * gradient(x_start, M, v)\n current_v = np.dot(M, x_start)\n error_np = np.sum(np.abs(current_v - v))\n if error_np < umbral:\n return x_start\n\n\n<code token>\n<docstring token>\n", "<docstring token>\n<import token>\n<docstring token>\n<assignment token>\n<function token>\n\n\ndef linear_solve(M, v, x_start, umbral, max_iter):\n k = 0.002\n for i in range(max_iter):\n print(x_start)\n x_start = x_start - k * gradient(x_start, M, v)\n current_v = np.dot(M, x_start)\n error_np = np.sum(np.abs(current_v - v))\n if error_np < umbral:\n return x_start\n\n\n<code token>\n<docstring token>\n", "<docstring token>\n<import token>\n<docstring token>\n<assignment token>\n<function token>\n<function token>\n<code token>\n<docstring token>\n" ]
false
99,046
19700cd7719caa1c2f571c40db547065d097036e
#!/usr/bin/env python import argparse import subprocess import math def printHelp(): print(''' Usage: divides *.xml into n jobs, and renders the b'th block. For example, python render.py -b 3 -n 10 teapot_0000.xml, teapot_0001.xml, ... teapot_0099.xml renders out teapot_0020.xml ... teapot_0029.xml to render out all the frames, just do python render teapot_*.xml ''') def main(): parser = argparse.ArgumentParser(description='Parallel Render Mitsuba Frames to movie') parser.add_argument('-i',type=int, help="bth block to render") parser.add_argument('-b',type=int, help="number of blocks to render") parser.add_argument('xmlFiles', type=str, nargs='+') try: args = parser.parse_args() except: printHelp() i = args.i b = args.b xmlFiles = args.xmlFiles n = len(xmlFiles) x = int(math.ceil(n/b)) if i is not None and b is not None: print("i=",i) print("b=",b) print("x=",x) start = (i-1)*x end = (i)*x if (i != b) else n # any rounding errors are assigned to the last block. xmlFiles = xmlFiles[start:end] # j - parallelize when applicable, suppress logs, dont overwrite existing images cmds = ['mitsuba','-xp','8'] cmds.extend(xmlFiles) print(cmds) subprocess.call(cmds) if __name__ == "__main__": main()
[ "#!/usr/bin/env python\n\nimport argparse\nimport subprocess\nimport math\n\ndef printHelp():\n\tprint('''\nUsage: \ndivides *.xml into n jobs, and renders the b'th block.\nFor example, \n\npython render.py -b 3 -n 10 teapot_0000.xml, teapot_0001.xml, ... teapot_0099.xml\n\nrenders out teapot_0020.xml ... teapot_0029.xml \n\nto render out all the frames, just do python render teapot_*.xml\n''')\n\ndef main():\n\tparser = argparse.ArgumentParser(description='Parallel Render Mitsuba Frames to movie')\n\tparser.add_argument('-i',type=int, help=\"bth block to render\")\n\tparser.add_argument('-b',type=int, help=\"number of blocks to render\")\n\tparser.add_argument('xmlFiles', type=str, nargs='+')\n\t\n\ttry:\n\t\targs = parser.parse_args()\n\texcept:\n\t\tprintHelp()\n\n\ti = args.i\n\tb = args.b\n\txmlFiles = args.xmlFiles\n\tn = len(xmlFiles)\n\tx = int(math.ceil(n/b))\n\tif i is not None and b is not None:\n\t\tprint(\"i=\",i)\n\t\tprint(\"b=\",b)\n\t\tprint(\"x=\",x)\n\t\tstart = (i-1)*x\n\t\tend = (i)*x if (i != b) else n # any rounding errors are assigned to the last block.\n\t\txmlFiles = xmlFiles[start:end]\n\t\t\t\n\t# j - parallelize when applicable, suppress logs, dont overwrite existing images\n\tcmds = ['mitsuba','-xp','8']\n\tcmds.extend(xmlFiles)\n\tprint(cmds)\n\tsubprocess.call(cmds)\n\t\nif __name__ == \"__main__\":\n\tmain()", "import argparse\nimport subprocess\nimport math\n\n\ndef printHelp():\n print(\n \"\"\"\nUsage: \ndivides *.xml into n jobs, and renders the b'th block.\nFor example, \n\npython render.py -b 3 -n 10 teapot_0000.xml, teapot_0001.xml, ... teapot_0099.xml\n\nrenders out teapot_0020.xml ... teapot_0029.xml \n\nto render out all the frames, just do python render teapot_*.xml\n\"\"\"\n )\n\n\ndef main():\n parser = argparse.ArgumentParser(description=\n 'Parallel Render Mitsuba Frames to movie')\n parser.add_argument('-i', type=int, help='bth block to render')\n parser.add_argument('-b', type=int, help='number of blocks to render')\n parser.add_argument('xmlFiles', type=str, nargs='+')\n try:\n args = parser.parse_args()\n except:\n printHelp()\n i = args.i\n b = args.b\n xmlFiles = args.xmlFiles\n n = len(xmlFiles)\n x = int(math.ceil(n / b))\n if i is not None and b is not None:\n print('i=', i)\n print('b=', b)\n print('x=', x)\n start = (i - 1) * x\n end = i * x if i != b else n\n xmlFiles = xmlFiles[start:end]\n cmds = ['mitsuba', '-xp', '8']\n cmds.extend(xmlFiles)\n print(cmds)\n subprocess.call(cmds)\n\n\nif __name__ == '__main__':\n main()\n", "<import token>\n\n\ndef printHelp():\n print(\n \"\"\"\nUsage: \ndivides *.xml into n jobs, and renders the b'th block.\nFor example, \n\npython render.py -b 3 -n 10 teapot_0000.xml, teapot_0001.xml, ... teapot_0099.xml\n\nrenders out teapot_0020.xml ... teapot_0029.xml \n\nto render out all the frames, just do python render teapot_*.xml\n\"\"\"\n )\n\n\ndef main():\n parser = argparse.ArgumentParser(description=\n 'Parallel Render Mitsuba Frames to movie')\n parser.add_argument('-i', type=int, help='bth block to render')\n parser.add_argument('-b', type=int, help='number of blocks to render')\n parser.add_argument('xmlFiles', type=str, nargs='+')\n try:\n args = parser.parse_args()\n except:\n printHelp()\n i = args.i\n b = args.b\n xmlFiles = args.xmlFiles\n n = len(xmlFiles)\n x = int(math.ceil(n / b))\n if i is not None and b is not None:\n print('i=', i)\n print('b=', b)\n print('x=', x)\n start = (i - 1) * x\n end = i * x if i != b else n\n xmlFiles = xmlFiles[start:end]\n cmds = ['mitsuba', '-xp', '8']\n cmds.extend(xmlFiles)\n print(cmds)\n subprocess.call(cmds)\n\n\nif __name__ == '__main__':\n main()\n", "<import token>\n\n\ndef printHelp():\n print(\n \"\"\"\nUsage: \ndivides *.xml into n jobs, and renders the b'th block.\nFor example, \n\npython render.py -b 3 -n 10 teapot_0000.xml, teapot_0001.xml, ... teapot_0099.xml\n\nrenders out teapot_0020.xml ... teapot_0029.xml \n\nto render out all the frames, just do python render teapot_*.xml\n\"\"\"\n )\n\n\ndef main():\n parser = argparse.ArgumentParser(description=\n 'Parallel Render Mitsuba Frames to movie')\n parser.add_argument('-i', type=int, help='bth block to render')\n parser.add_argument('-b', type=int, help='number of blocks to render')\n parser.add_argument('xmlFiles', type=str, nargs='+')\n try:\n args = parser.parse_args()\n except:\n printHelp()\n i = args.i\n b = args.b\n xmlFiles = args.xmlFiles\n n = len(xmlFiles)\n x = int(math.ceil(n / b))\n if i is not None and b is not None:\n print('i=', i)\n print('b=', b)\n print('x=', x)\n start = (i - 1) * x\n end = i * x if i != b else n\n xmlFiles = xmlFiles[start:end]\n cmds = ['mitsuba', '-xp', '8']\n cmds.extend(xmlFiles)\n print(cmds)\n subprocess.call(cmds)\n\n\n<code token>\n", "<import token>\n<function token>\n\n\ndef main():\n parser = argparse.ArgumentParser(description=\n 'Parallel Render Mitsuba Frames to movie')\n parser.add_argument('-i', type=int, help='bth block to render')\n parser.add_argument('-b', type=int, help='number of blocks to render')\n parser.add_argument('xmlFiles', type=str, nargs='+')\n try:\n args = parser.parse_args()\n except:\n printHelp()\n i = args.i\n b = args.b\n xmlFiles = args.xmlFiles\n n = len(xmlFiles)\n x = int(math.ceil(n / b))\n if i is not None and b is not None:\n print('i=', i)\n print('b=', b)\n print('x=', x)\n start = (i - 1) * x\n end = i * x if i != b else n\n xmlFiles = xmlFiles[start:end]\n cmds = ['mitsuba', '-xp', '8']\n cmds.extend(xmlFiles)\n print(cmds)\n subprocess.call(cmds)\n\n\n<code token>\n", "<import token>\n<function token>\n<function token>\n<code token>\n" ]
false
99,047
893fb5b1b39869dddc5f8303b5635289c8e13b5c
from BaseControlPlots import BaseControlPlots from ROOT import TLorentzVector as TLV from ROOT import TTree, TBranch from itertools import combinations # to make jets combinations from copy import copy from fold import fold from math import sqrt, cos, pi #from reconstruct import max_b2b from reconstruct import recoNeutrino, recoWlnu2Mt # variables for in tree tree_vars = [ "Njets20","Nbjets30", "jet1Pt","jet2Pt", "bjet1Pt","bjet2Pt", "Pt_bb","Pt_bl","Pt_j1l", "Pt_b1lnu", "Pt_b2lnu", "Pt_jjl", "Pt_jjb1", "Pt_jjb2", "leptonPt","MET", "DeltaR_j1l","DeltaR_j2l", "DeltaR_b1l","DeltaR_b2l", "DeltaR_bb1","DeltaR_jj", "DeltaR_jjl","DeltaR_jjb", "DeltaPhi_j1lbb", "DeltaPhi_lMET","DeltaPhi_jjlnu", "M_bb_closest", "M_jjlnu", "M_jjb1", "M_jjb2", "M_b1lnu", "M_b2lnu", "M_bl", "M_jjl", "M_jj", "M_j1l", "MT_lnu","MT_jjlnu" ] # Requirements: # event.muons # event.electrons class CleanUpControlPlots(BaseControlPlots): """A class to create control plots for leptons""" def __init__(self, dir=None, dataset=None, mode="plots"): # create output file if needed. If no file is given, it means it is delegated BaseControlPlots.__init__(self, dir=dir, purpose="cleanup", dataset=dataset, mode=mode) def beginJob(self): # declare tree and branches self.addTree("cleanup","Variables for MVA") for var in tree_vars: self.addBranch("cleanup",var) self.add("Njets20","jets multiplicity (Pt > 20 GeV)",15,0,15) self.add("Njets30","jets multiplicity (Pt > 30 GeV)",15,0,15) self.add("Nbjets30","bjets multiplicity (Pt > 30 GeV)",5,0,5) self.add("Nbjets30_cut_PUPPI","bjets multiplicity (Pt > 30 GeV)",5,0,5) self.add("Nbjets30_cut_all","bjets multiplicity (Pt > 30 GeV)",5,0,5) self.add("jet1Pt","leading jet Pt",100,0,250) self.add("jet2Pt","second leading jet Pt",100,0,250) self.add("bjet1Pt","leading b-jet Pt",100,0,250) self.add("bjet2Pt","second leading b-jet Pt",100,0,250) self.add("Pt_bb","closest bjets pair Pt",100,0,500) self.add("Pt_bl","closest bjet-lepton Pt",100,0,500) self.add("Pt_b1lnu","second closest bjet-lepton-neutrino Pt",100,0,500) self.add("Pt_b2lnu","closest bjet-lepton-neutrino Pt",100,0,500) self.add("Pt_j1l","closest jet-lepton Pt",100,0,500) self.add("Pt_jjl","leading jets-lepton Pt",100,0,500) self.add("Pt_jjb1","leading jets-bjet Pt",100,0,500) self.add("Pt_jjb2","leading jets-bjet Pt",100,0,500) self.add("Eta_bb","closest bjet pair Eta",100,0,500) self.add("leptonPt","lepton Pt",100,0,250) self.add("MET","MET",100,0,300) self.add("M_jj","leading jet-jet Mass",100,0,300) self.add("M_jjb1","hadronic top reco Mass",100,0,700) self.add("M_jjb2","hadronic top reco Mass",100,0,700) self.add2D("M_jjb_2D","M_jjb1 vs. M_jjb2",100,0,700,100,0,700) self.add2D("M_jj_NPU","NPU vs. M_jj",80,0,300,80,80,200) self.add("M_jjl","leading jets-lepton Mass",100,0,450) self.add("M_jjlnu","leading jets-lepton-MET Mass",100,0,800) self.add("M_j1l","closest jet-lepton Mass",100,0,450) self.add("M_bb_leading","leading bjet-bjet Mass",100,0,300) self.add("M_bb_closest","closest bjet-bjet Mass",100,0,300) self.add("M_bb_farthest","farthest bjet-bjet Mass",100,0,300) self.add("M_bl","closest bjet-lepton Mass",100,0,300) self.add("MT_lnu","Wlnu Mt",100,0,200) self.add("MT_jjlnu","HWW Mt",100,0,300) self.add("M_b1lnu","leptonic top reco Mass",100,0,500) self.add("M_b2lnu","leptonic top reco Mass",100,0,500) self.add2D("M_blnu_2D","M_b1lnu vs. M_b2lnu",100,0,500,100,0,500) self.add("DeltaR_jj","leading jet-jet DeltaR",100,0,4.5) self.add("DeltaR_j1l","closest jet-lepton DeltaR",100,0,4) self.add("DeltaR_j2l","2nd closest jet-lepton DeltaR",100,0,4) self.add("DeltaR_jjl","leading jets-lepton DeltaR",100,0,4.5) self.add("DeltaR_jjb","leading jets-bjet DeltaR",100,0,4.5) self.add("DeltaR_j1lbb","closest jet-lepton-bjets DeltaR",100,0,4.5) self.add("DeltaR_jjlbb","leading jets-lepton-bjets DeltaR",100,0,4.5) self.add("DeltaR_jjbbl","leading jets-bjet-bjet-lepton DeltaR",100,0,4.5) self.add("DeltaR_bb1","closest bjet-bjet pair DeltaR",100,0,4) self.add("DeltaR_b1l","farthest bjet-lepton DeltaR",100,0,4) self.add("DeltaR_b2l","2nd farthest bjet-lepton DeltaR",100,0,4) self.add("DeltaPhi_jj","leading jet-jet DeltaPhi",100,0,3.5) self.add("DeltaPhi_j1l","closest jet-lepton DeltaPhi",100,0,3.5) self.add("DeltaPhi_j2l","2nd closest jet-lepton DeltaPhi",100,0,3.5) self.add("DeltaPhi_jjl","leading jets-lepton DeltaPhi",100,0,3.5) self.add("DeltaPhi_jjb","leading jets-bjet DeltaPhi",100,0,3.5) self.add("DeltaPhi_j1lbb","closest jet-lepton-bjets DeltaPhi",100,0,3.5) self.add("DeltaPhi_jjlbb","leading jets-lepton-bjets DeltaPhi",100,0,3.5) self.add("DeltaPhi_jjbbl","leading jets-bjet-bjet-lepton DeltaPhi",100,0,3.5) self.add("DeltaPhi_bb1","closest bjet-bjet pair DeltaPhi",100,0,3.5) self.add("DeltaPhi_b1l","farthest bjet-lepton DeltaPhi",100,0,3.5) self.add("DeltaPhi_b2l","2nd farthest bjet-lepton DeltaPhi",100,0,3.5) self.add("DeltaPhi_lMET","lepton-MET DeltaPhi",100,0,3.5) self.add("DeltaPhi_jjlnu","jets-lepton-MET DeltaPhi",100,0,3.5) self.add2D("DeltaEtaDeltaPhi_jj","leading jet-jet DeltaPhi vs. DeltaEta",50,0,3.5,50,0,3.2) self.add2D("DeltaEtaDeltaPhi_j1l","closest jet-lepton combination DeltaPhi vs. DeltaEta",50,0,3.5,50,0,3.2) self.add2D("DeltaEtaDeltaPhi_j2l","2nd closest jet-lepton combination DeltaPhi vs. DeltaEta",50,0,3.5,50,0,3.2) self.add2D("DeltaEtaDeltaPhi_j3l","3rd closest jet-lepton combination DeltaPhi vs. DeltaEta",50,0,3.5,50,0,3.2) self.add2D("DeltaEtaDeltaPhi_jjl","leading jets-lepton DeltaPhi vs. DeltaEta",50,0,3.5,50,0,3.2) self.add2D("DeltaEtaDeltaPhi_jjb","leading jets-bjet DeltaPhi vs. DeltaEta",50,0,3.5,50,0,3.2) self.add2D("DeltaEtaDeltaPhi_j1lbb","closest jet-lepton-bjets DeltaPhi vs. DeltaEta",50,0,3.5,50,0,3.2) self.add2D("DeltaEtaDeltaPhi_jjlbb","leading jets-lepton-bjets DeltaPhi vs. DeltaEta",50,0,3.5,50,0,3.2) self.add2D("DeltaEtaDeltaPhi_jjbbl","leading jets-bjet-bjet-lepton DeltaPhi vs. DeltaEta",50,0,3.5,50,0,3.2) self.add2D("DeltaEtaDeltaPhi_bb1","closest bjet-bjet DeltaPhi vs. DeltaEta",50,0,3.5,50,0,3.2) self.add2D("DeltaEtaDeltaPhi_b1l","farthest bjet-lepton DeltaPhi vs. DeltaEta",50,0,3.5,50,0,3.2) self.add2D("DeltaEtaDeltaPhi_b2l","2nd farthest bjet-lepton DeltaPhi vs. DeltaEta",50,0,3.5,50,0,3.2) # self.add2D("NVerticesNJets","all jet multiplicity vs. number vertices",20,100,190,15,0,15) # self.add2D("NVerticesNPUPPIJets","PUPPI jet multiplicity vs. number vertices",20,100,190,15,0,15) # get information def process(self, event): result = { } jets = event.cleanedJets20[:] # remove closest b-jets pair down below alljets = [ j for j in event.jets if j.PT > 20 and abs(j.Eta) < 2.5 ] bjets = event.bjets30[:] result["Njets20"] = len(event.cleanedJets20) result["Njets30"] = len(event.cleanedJets30) result["Nbjets30"] = len(event.bjets30) if len(jets) > 3 and len(event.leadingLeptons) == 1 and event.met[0].MET > 20: result["Nbjets30_cut_PUPPI"] = len(event.bjets30) result["Nbjets30_cut_all"] = len([ j for j in alljets if j.BTag and j.PT > 30 ]) NPU = event.npu[0] # result["NVerticesNJets"] = [[ NPU.HT, len(alljets) ]] # result["NVerticesNPUPPIJets"] = [[ NPU.HT, len(jets) ]] lepton = None p_neutrino = None MET = event.met[0] if len(event.leadingLeptons): lepton = event.leadingLeptons[0] p_neutrino = recoNeutrino(lepton.TLV,MET) # bjet - bjet bl = [ ] p_bl = None if lepton and bjets: bl = sorted( bjets, key=lambda j: TLV.DeltaR(j.TLV,lepton.TLV), reverse=True ) # farthest->closest DeltaPhi = fold(abs(lepton.Phi - bl[0].Phi)) DeltaEta = abs(lepton.Eta - bl[0].Eta) p_bl = lepton.TLV+bl[-1].TLV result["M_bl"] = p_bl.M() # closest b-jet with lepton result["Pt_bl"] = p_bl.Pt() result["DeltaR_b1l"] = TLV.DeltaR(lepton.TLV,bl[0].TLV) result["DeltaPhi_b1l"] = DeltaPhi result["DeltaEtaDeltaPhi_b1l"] = [[ DeltaEta, DeltaPhi ]] if len(bl)>1: DeltaPhi = fold(abs(lepton.Phi - bl[1].Phi)) DeltaEta = abs(lepton.Eta - bl[1].Eta) result["M_bb_farthest"] = (bl[0].TLV+bl[1].TLV).M() result["DeltaR_b2l"] = TLV.DeltaR(lepton.TLV,bl[1].TLV) result["DeltaPhi_b2l"] = DeltaPhi result["DeltaEtaDeltaPhi_b2l"] = [[ DeltaEta, DeltaPhi ]] # bjet comb DeltaR_bb_closest = 1000 # >> pi bjet_closest = [ ] p_bb1 = None for j1, j2 in combinations(bjets,2): p_bb = j1.TLV + j2.TLV DeltaR = TLV.DeltaR(j1.TLV, j2.TLV) if DeltaR < DeltaR_bb_closest: bjet_closest = [j1,j2] p_bb1 = p_bb result["M_bb_closest"] = p_bb.M() result["Pt_bb"] = p_bb.Pt() result["DeltaR_bb1"] = TLV.DeltaR(j1.TLV,j2.TLV) result["DeltaPhi_bb1"] = fold(abs(j1.Phi - j2.Phi)) result["DeltaEtaDeltaPhi_bb1"] = [[ abs(j1.Eta - j2.Eta), result["DeltaPhi_bb1"] ]] DeltaR_bb_closest = DeltaR if len(bjets)>1: result["M_bb_leading"] = (bjets[0].TLV+bjets[1].TLV).M() # leading non-b-jets for bjet in bjet_closest: # remove closest bjet pair from jet list jets.remove(bjet) if len(jets)>0: result["jet1Pt"] = jets[0].PT if len(jets)>1: result["jet2Pt"] = jets[1].PT # leading bjets if len(bjets)>1: result["bjet1Pt"] = bjet_closest[0].PT result["bjet2Pt"] = bjet_closest[1].PT elif len(bjets): result["bjet1Pt"] = bjets[0].PT # jet comb if len(jets)>1: # 120 GeV upper mass limit # jets120 = [ js for js in combinations(jets[:4],2) if (js[0].TLV+js[1].TLV).M() < 120 ] # if len(jets120): # jets = max( jets120, key = lambda js: (js[0].TLV+js[1].TLV).Pt()) p_jj = jets[0].TLV + jets[1].TLV result["M_jj"] = p_jj.M() result["DeltaR_jj"] = TLV.DeltaR(jets[0].TLV, jets[1].TLV) result["DeltaPhi_jj"] = fold(abs(jets[0].Phi - jets[1].Phi)) result["DeltaEtaDeltaPhi_jj"] = [[ abs(jets[0].Eta - jets[1].Eta), result["DeltaPhi_jj"] ]] result["M_jj_NPU"] = [[ p_jj.M(), NPU.HT ]] # jjl if lepton: p_jjl = p_jj + lepton.TLV result["M_jjl"] = p_jjl.M() result["Pt_jjl"] = p_jjl.Pt() result["M_jjlnu"] = (p_jj + lepton.TLV + p_neutrino).M() result["DeltaR_jjl"] = TLV.DeltaR(p_jj,lepton.TLV) result["DeltaPhi_jjl"] = fold(abs(p_jj.Phi()-lepton.Phi)) result["DeltaEtaDeltaPhi_jjl"] = [[ abs(p_jj.Eta() - lepton.Eta), result["DeltaPhi_jjl"] ]] result["DeltaPhi_jjlnu"] = fold(abs(p_jjl.Phi()-MET.Phi)) result["MT_jjlnu"] = sqrt(2 * MET.MET * p_jjl.Pt() * (1-cos( p_jjl.Phi() - MET.Phi)) ) if len(bl)>1: p_blnu = bl[-2].TLV + lepton.TLV + p_neutrino p_b2lnu = bl[-1].TLV + lepton.TLV + p_neutrino result["M_b1lnu"] = p_blnu.M() result["M_b2lnu"] = p_b2lnu.M() # take bjet closest result["M_blnu_2D"] = [[ result["M_b1lnu"], result["M_b2lnu"] ]] result["Pt_b1lnu"] = p_blnu.Pt() result["Pt_b2lnu"] = p_b2lnu.Pt() if len(event.cleanedJets20)>3: # take bjet second closest to lepton jets_tt = event.cleanedJets20[:] jets_tt.remove(bl[-1]) jets_tt.remove(bl[-2]) # 120 GeV upper mass limit # jets120 = [ js for js in combinations(jets_tt[:4],2) if (js[0].TLV+js[1].TLV).M() < 120 ] # if len(jets120): # jets_tt = max( jets120, key = lambda js: (js[0].TLV+js[1].TLV).Pt()) p_jj = jets_tt[0].TLV + jets_tt[1].TLV p_jjb = p_jj + bl[-2].TLV p_jjb2 = p_jj + bl[-1].TLV result["M_jjl"] = p_jjl.M() result["M_jjb1"] = p_jjb.M() result["M_jjb2"] = p_jjb2.M() result["M_jjb_2D"] = [[ result["M_jjb1"], result["M_jjb2"] ]] result["Pt_jjb1"] = p_jjb.Pt() result["Pt_jjb2"] = p_jjb2.Pt() result["DeltaR_jjb"] = TLV.DeltaR(p_jj,bl[-2].TLV) result["DeltaPhi_jjb"] = fold(abs(p_jj.Phi()-bl[-2].Phi)) result["DeltaEtaDeltaPhi_jjb"] = [[ abs(p_jj.Eta() - bl[-2].Eta), result["DeltaPhi_jjb"] ]] result["DeltaR_jjlbb"] = TLV.DeltaR(p_jjl,p_bb1) result["DeltaPhi_jjlbb"] = fold(abs(p_jjl.Phi()-p_bb1.Phi())) result["DeltaEtaDeltaPhi_jjlbb"] = [[ abs(p_jjl.Eta() - p_bb1.Eta()), result["DeltaPhi_jjlbb"] ]] result["DeltaR_jjbbl"] = TLV.DeltaR(p_jjb,p_bl) result["DeltaPhi_jjbbl"] = fold(abs(p_jjb.Phi()-p_bl.Phi())) result["DeltaEtaDeltaPhi_jjbbl"] = [[ abs(p_jjb.Eta() - p_bl.Eta()), result["DeltaPhi_jjbbl"] ]] if lepton: # MET - lepton result["leptonPt"] = lepton.PT result["MET"] = MET.MET result["DeltaPhi_lMET"] = abs(MET.Phi-lepton.Phi) result["MT_lnu"] = recoWlnu2Mt(lepton,MET) # jet i - lepton ji = sorted(jets, key=lambda j: TLV.DeltaR(j.TLV,lepton.TLV))[:3] # closest jets if len(ji)>0 and p_bb1: p_j1l = lepton.TLV+ji[0].TLV result["M_j1l"] = p_j1l.M() result["Pt_j1l"] = p_j1l.Pt() result["DeltaR_j1l"] = TLV.DeltaR(lepton.TLV,ji[0].TLV) result["DeltaPhi_j1l"] = fold(abs(lepton.Phi - ji[0].Phi)) result["DeltaEtaDeltaPhi_j1l"] = [[ abs(lepton.Eta - ji[0].Eta), result["DeltaPhi_j1l"] ]] result["DeltaR_j1lbb"] = TLV.DeltaR(p_j1l,p_bb1) result["DeltaPhi_j1lbb"] = fold(abs(p_j1l.Phi()-p_bb1.Phi())) result["DeltaEtaDeltaPhi_j1lbb"] = [[ abs(p_j1l.Eta() - p_bb1.Eta()), result["DeltaPhi_j1lbb"] ]] if len(ji)>1: # result["M_j2l"] = (lepton.TLV+ji[1].TLV).M() result["DeltaR_j2l"] = TLV.DeltaR(lepton.TLV,ji[1].TLV) result["DeltaPhi_j2l"] = fold(abs(lepton.Phi - ji[1].Phi)) result["DeltaEtaDeltaPhi_j2l"] = [[ abs(lepton.Eta - ji[1].Eta), result["DeltaPhi_j2l"] ]] if len(ji)>2: result["DeltaEtaDeltaPhi_j3l"] = [[ abs(lepton.Eta - ji[2].Eta), fold(abs(lepton.Phi - ji[2].Phi)) ]] # respect the order of branches when adding variables # result["cleanup"] = [ result[var] for var in result if var in tree_vars ] result["cleanup"] = [ ] for var in tree_vars: if var in result: result["cleanup"].append(result[var]) else: # if one variable does not exist for this event, no tree del result["cleanup"] break return result if __name__=="__main__": import sys from DelphesAnalysis.BaseControlPlots import runTest runTest(sys.argv[1], CleanUpControlPlots())
[ "from BaseControlPlots import BaseControlPlots\nfrom ROOT import TLorentzVector as TLV\nfrom ROOT import TTree, TBranch\nfrom itertools import combinations # to make jets combinations\nfrom copy import copy\nfrom fold import fold\nfrom math import sqrt, cos, pi\n#from reconstruct import max_b2b\nfrom reconstruct import recoNeutrino, recoWlnu2Mt\n\n# variables for in tree\ntree_vars = [ \"Njets20\",\"Nbjets30\",\n \"jet1Pt\",\"jet2Pt\",\n \"bjet1Pt\",\"bjet2Pt\",\n \"Pt_bb\",\"Pt_bl\",\"Pt_j1l\",\n \"Pt_b1lnu\", \"Pt_b2lnu\",\n \"Pt_jjl\", \"Pt_jjb1\", \"Pt_jjb2\",\n \"leptonPt\",\"MET\",\n \"DeltaR_j1l\",\"DeltaR_j2l\",\n \"DeltaR_b1l\",\"DeltaR_b2l\",\n \"DeltaR_bb1\",\"DeltaR_jj\",\n \"DeltaR_jjl\",\"DeltaR_jjb\",\n \"DeltaPhi_j1lbb\",\n \"DeltaPhi_lMET\",\"DeltaPhi_jjlnu\",\n \"M_bb_closest\", \"M_jjlnu\",\n \"M_jjb1\", \"M_jjb2\",\n \"M_b1lnu\", \"M_b2lnu\",\n \"M_bl\", \"M_jjl\",\n \"M_jj\", \"M_j1l\",\n \"MT_lnu\",\"MT_jjlnu\" ]\n\n# Requirements:\n# event.muons\n# event.electrons\n\nclass CleanUpControlPlots(BaseControlPlots):\n \"\"\"A class to create control plots for leptons\"\"\"\n\n def __init__(self, dir=None, dataset=None, mode=\"plots\"):\n # create output file if needed. If no file is given, it means it is delegated\n BaseControlPlots.__init__(self, dir=dir, purpose=\"cleanup\", dataset=dataset, mode=mode)\n\n def beginJob(self):\n \n # declare tree and branches\n self.addTree(\"cleanup\",\"Variables for MVA\")\n for var in tree_vars:\n self.addBranch(\"cleanup\",var)\n\n self.add(\"Njets20\",\"jets multiplicity (Pt > 20 GeV)\",15,0,15)\n self.add(\"Njets30\",\"jets multiplicity (Pt > 30 GeV)\",15,0,15)\n self.add(\"Nbjets30\",\"bjets multiplicity (Pt > 30 GeV)\",5,0,5)\n self.add(\"Nbjets30_cut_PUPPI\",\"bjets multiplicity (Pt > 30 GeV)\",5,0,5)\n self.add(\"Nbjets30_cut_all\",\"bjets multiplicity (Pt > 30 GeV)\",5,0,5)\n \n self.add(\"jet1Pt\",\"leading jet Pt\",100,0,250)\n self.add(\"jet2Pt\",\"second leading jet Pt\",100,0,250)\n self.add(\"bjet1Pt\",\"leading b-jet Pt\",100,0,250)\n self.add(\"bjet2Pt\",\"second leading b-jet Pt\",100,0,250)\n self.add(\"Pt_bb\",\"closest bjets pair Pt\",100,0,500)\n self.add(\"Pt_bl\",\"closest bjet-lepton Pt\",100,0,500)\n self.add(\"Pt_b1lnu\",\"second closest bjet-lepton-neutrino Pt\",100,0,500)\n self.add(\"Pt_b2lnu\",\"closest bjet-lepton-neutrino Pt\",100,0,500)\n self.add(\"Pt_j1l\",\"closest jet-lepton Pt\",100,0,500)\n self.add(\"Pt_jjl\",\"leading jets-lepton Pt\",100,0,500)\n self.add(\"Pt_jjb1\",\"leading jets-bjet Pt\",100,0,500)\n self.add(\"Pt_jjb2\",\"leading jets-bjet Pt\",100,0,500)\n self.add(\"Eta_bb\",\"closest bjet pair Eta\",100,0,500)\n self.add(\"leptonPt\",\"lepton Pt\",100,0,250)\n self.add(\"MET\",\"MET\",100,0,300)\n\n self.add(\"M_jj\",\"leading jet-jet Mass\",100,0,300)\n self.add(\"M_jjb1\",\"hadronic top reco Mass\",100,0,700)\n self.add(\"M_jjb2\",\"hadronic top reco Mass\",100,0,700)\n self.add2D(\"M_jjb_2D\",\"M_jjb1 vs. M_jjb2\",100,0,700,100,0,700)\n self.add2D(\"M_jj_NPU\",\"NPU vs. M_jj\",80,0,300,80,80,200)\n \n\n self.add(\"M_jjl\",\"leading jets-lepton Mass\",100,0,450)\n self.add(\"M_jjlnu\",\"leading jets-lepton-MET Mass\",100,0,800)\n self.add(\"M_j1l\",\"closest jet-lepton Mass\",100,0,450)\n self.add(\"M_bb_leading\",\"leading bjet-bjet Mass\",100,0,300)\n self.add(\"M_bb_closest\",\"closest bjet-bjet Mass\",100,0,300)\n self.add(\"M_bb_farthest\",\"farthest bjet-bjet Mass\",100,0,300)\n self.add(\"M_bl\",\"closest bjet-lepton Mass\",100,0,300)\n self.add(\"MT_lnu\",\"Wlnu Mt\",100,0,200)\n self.add(\"MT_jjlnu\",\"HWW Mt\",100,0,300)\n self.add(\"M_b1lnu\",\"leptonic top reco Mass\",100,0,500)\n self.add(\"M_b2lnu\",\"leptonic top reco Mass\",100,0,500)\n self.add2D(\"M_blnu_2D\",\"M_b1lnu vs. M_b2lnu\",100,0,500,100,0,500)\n \n self.add(\"DeltaR_jj\",\"leading jet-jet DeltaR\",100,0,4.5)\n self.add(\"DeltaR_j1l\",\"closest jet-lepton DeltaR\",100,0,4)\n self.add(\"DeltaR_j2l\",\"2nd closest jet-lepton DeltaR\",100,0,4)\n self.add(\"DeltaR_jjl\",\"leading jets-lepton DeltaR\",100,0,4.5)\n self.add(\"DeltaR_jjb\",\"leading jets-bjet DeltaR\",100,0,4.5)\n self.add(\"DeltaR_j1lbb\",\"closest jet-lepton-bjets DeltaR\",100,0,4.5)\n self.add(\"DeltaR_jjlbb\",\"leading jets-lepton-bjets DeltaR\",100,0,4.5)\n self.add(\"DeltaR_jjbbl\",\"leading jets-bjet-bjet-lepton DeltaR\",100,0,4.5)\n self.add(\"DeltaR_bb1\",\"closest bjet-bjet pair DeltaR\",100,0,4)\n self.add(\"DeltaR_b1l\",\"farthest bjet-lepton DeltaR\",100,0,4)\n self.add(\"DeltaR_b2l\",\"2nd farthest bjet-lepton DeltaR\",100,0,4)\n\n self.add(\"DeltaPhi_jj\",\"leading jet-jet DeltaPhi\",100,0,3.5)\n self.add(\"DeltaPhi_j1l\",\"closest jet-lepton DeltaPhi\",100,0,3.5)\n self.add(\"DeltaPhi_j2l\",\"2nd closest jet-lepton DeltaPhi\",100,0,3.5)\n self.add(\"DeltaPhi_jjl\",\"leading jets-lepton DeltaPhi\",100,0,3.5)\n self.add(\"DeltaPhi_jjb\",\"leading jets-bjet DeltaPhi\",100,0,3.5)\n self.add(\"DeltaPhi_j1lbb\",\"closest jet-lepton-bjets DeltaPhi\",100,0,3.5)\n self.add(\"DeltaPhi_jjlbb\",\"leading jets-lepton-bjets DeltaPhi\",100,0,3.5)\n self.add(\"DeltaPhi_jjbbl\",\"leading jets-bjet-bjet-lepton DeltaPhi\",100,0,3.5)\n self.add(\"DeltaPhi_bb1\",\"closest bjet-bjet pair DeltaPhi\",100,0,3.5)\n self.add(\"DeltaPhi_b1l\",\"farthest bjet-lepton DeltaPhi\",100,0,3.5)\n self.add(\"DeltaPhi_b2l\",\"2nd farthest bjet-lepton DeltaPhi\",100,0,3.5)\n self.add(\"DeltaPhi_lMET\",\"lepton-MET DeltaPhi\",100,0,3.5)\n self.add(\"DeltaPhi_jjlnu\",\"jets-lepton-MET DeltaPhi\",100,0,3.5)\n\n self.add2D(\"DeltaEtaDeltaPhi_jj\",\"leading jet-jet DeltaPhi vs. DeltaEta\",50,0,3.5,50,0,3.2)\n self.add2D(\"DeltaEtaDeltaPhi_j1l\",\"closest jet-lepton combination DeltaPhi vs. DeltaEta\",50,0,3.5,50,0,3.2)\n self.add2D(\"DeltaEtaDeltaPhi_j2l\",\"2nd closest jet-lepton combination DeltaPhi vs. DeltaEta\",50,0,3.5,50,0,3.2)\n self.add2D(\"DeltaEtaDeltaPhi_j3l\",\"3rd closest jet-lepton combination DeltaPhi vs. DeltaEta\",50,0,3.5,50,0,3.2)\n self.add2D(\"DeltaEtaDeltaPhi_jjl\",\"leading jets-lepton DeltaPhi vs. DeltaEta\",50,0,3.5,50,0,3.2)\n self.add2D(\"DeltaEtaDeltaPhi_jjb\",\"leading jets-bjet DeltaPhi vs. DeltaEta\",50,0,3.5,50,0,3.2)\n self.add2D(\"DeltaEtaDeltaPhi_j1lbb\",\"closest jet-lepton-bjets DeltaPhi vs. DeltaEta\",50,0,3.5,50,0,3.2)\n self.add2D(\"DeltaEtaDeltaPhi_jjlbb\",\"leading jets-lepton-bjets DeltaPhi vs. DeltaEta\",50,0,3.5,50,0,3.2)\n self.add2D(\"DeltaEtaDeltaPhi_jjbbl\",\"leading jets-bjet-bjet-lepton DeltaPhi vs. DeltaEta\",50,0,3.5,50,0,3.2)\n self.add2D(\"DeltaEtaDeltaPhi_bb1\",\"closest bjet-bjet DeltaPhi vs. DeltaEta\",50,0,3.5,50,0,3.2)\n self.add2D(\"DeltaEtaDeltaPhi_b1l\",\"farthest bjet-lepton DeltaPhi vs. DeltaEta\",50,0,3.5,50,0,3.2)\n self.add2D(\"DeltaEtaDeltaPhi_b2l\",\"2nd farthest bjet-lepton DeltaPhi vs. DeltaEta\",50,0,3.5,50,0,3.2)\n\n# self.add2D(\"NVerticesNJets\",\"all jet multiplicity vs. number vertices\",20,100,190,15,0,15)\n# self.add2D(\"NVerticesNPUPPIJets\",\"PUPPI jet multiplicity vs. number vertices\",20,100,190,15,0,15)\n\n\n\n # get information\n def process(self, event):\n \n result = { }\n \n jets = event.cleanedJets20[:] # remove closest b-jets pair down below\n alljets = [ j for j in event.jets if j.PT > 20 and abs(j.Eta) < 2.5 ]\n bjets = event.bjets30[:]\n result[\"Njets20\"] = len(event.cleanedJets20)\n result[\"Njets30\"] = len(event.cleanedJets30)\n result[\"Nbjets30\"] = len(event.bjets30)\n \n if len(jets) > 3 and len(event.leadingLeptons) == 1 and event.met[0].MET > 20: \n result[\"Nbjets30_cut_PUPPI\"] = len(event.bjets30) \n result[\"Nbjets30_cut_all\"] = len([ j for j in alljets if j.BTag and j.PT > 30 ])\n \n NPU = event.npu[0]\n# result[\"NVerticesNJets\"] = [[ NPU.HT, len(alljets) ]]\n# result[\"NVerticesNPUPPIJets\"] = [[ NPU.HT, len(jets) ]]\n\n lepton = None\n p_neutrino = None\n MET = event.met[0]\n if len(event.leadingLeptons):\n lepton = event.leadingLeptons[0]\n p_neutrino = recoNeutrino(lepton.TLV,MET)\n\n # bjet - bjet\n bl = [ ]\n p_bl = None\n if lepton and bjets:\n bl = sorted( bjets, key=lambda j: TLV.DeltaR(j.TLV,lepton.TLV), reverse=True ) # farthest->closest\n DeltaPhi = fold(abs(lepton.Phi - bl[0].Phi))\n DeltaEta = abs(lepton.Eta - bl[0].Eta)\n p_bl = lepton.TLV+bl[-1].TLV\n result[\"M_bl\"] = p_bl.M() # closest b-jet with lepton\n result[\"Pt_bl\"] = p_bl.Pt()\n result[\"DeltaR_b1l\"] = TLV.DeltaR(lepton.TLV,bl[0].TLV)\n result[\"DeltaPhi_b1l\"] = DeltaPhi\n result[\"DeltaEtaDeltaPhi_b1l\"] = [[ DeltaEta, DeltaPhi ]]\n if len(bl)>1:\n DeltaPhi = fold(abs(lepton.Phi - bl[1].Phi))\n DeltaEta = abs(lepton.Eta - bl[1].Eta)\n result[\"M_bb_farthest\"] = (bl[0].TLV+bl[1].TLV).M()\n result[\"DeltaR_b2l\"] = TLV.DeltaR(lepton.TLV,bl[1].TLV)\n result[\"DeltaPhi_b2l\"] = DeltaPhi\n result[\"DeltaEtaDeltaPhi_b2l\"] = [[ DeltaEta, DeltaPhi ]]\n \n # bjet comb\n DeltaR_bb_closest = 1000 # >> pi\n bjet_closest = [ ]\n p_bb1 = None\n for j1, j2 in combinations(bjets,2):\n p_bb = j1.TLV + j2.TLV\n DeltaR = TLV.DeltaR(j1.TLV, j2.TLV)\n\n if DeltaR < DeltaR_bb_closest:\n bjet_closest = [j1,j2]\n p_bb1 = p_bb\n result[\"M_bb_closest\"] = p_bb.M()\n result[\"Pt_bb\"] = p_bb.Pt()\n result[\"DeltaR_bb1\"] = TLV.DeltaR(j1.TLV,j2.TLV)\n result[\"DeltaPhi_bb1\"] = fold(abs(j1.Phi - j2.Phi))\n result[\"DeltaEtaDeltaPhi_bb1\"] = [[ abs(j1.Eta - j2.Eta),\n result[\"DeltaPhi_bb1\"] ]]\n DeltaR_bb_closest = DeltaR\n \n if len(bjets)>1:\n result[\"M_bb_leading\"] = (bjets[0].TLV+bjets[1].TLV).M()\n\n # leading non-b-jets\n for bjet in bjet_closest: # remove closest bjet pair from jet list\n jets.remove(bjet)\n if len(jets)>0:\n result[\"jet1Pt\"] = jets[0].PT\n if len(jets)>1:\n result[\"jet2Pt\"] = jets[1].PT\n \n # leading bjets\n if len(bjets)>1:\n result[\"bjet1Pt\"] = bjet_closest[0].PT\n result[\"bjet2Pt\"] = bjet_closest[1].PT\n elif len(bjets):\n result[\"bjet1Pt\"] = bjets[0].PT\n\n\n # jet comb\n if len(jets)>1:\n \n # 120 GeV upper mass limit\n# jets120 = [ js for js in combinations(jets[:4],2) if (js[0].TLV+js[1].TLV).M() < 120 ]\n# if len(jets120):\n# jets = max( jets120, key = lambda js: (js[0].TLV+js[1].TLV).Pt())\n \n p_jj = jets[0].TLV + jets[1].TLV\n result[\"M_jj\"] = p_jj.M()\n result[\"DeltaR_jj\"] = TLV.DeltaR(jets[0].TLV, jets[1].TLV)\n result[\"DeltaPhi_jj\"] = fold(abs(jets[0].Phi - jets[1].Phi))\n result[\"DeltaEtaDeltaPhi_jj\"] = [[ abs(jets[0].Eta - jets[1].Eta),\n result[\"DeltaPhi_jj\"] ]]\n result[\"M_jj_NPU\"] = [[ p_jj.M(), NPU.HT ]]\n \n # jjl\n if lepton:\n p_jjl = p_jj + lepton.TLV\n result[\"M_jjl\"] = p_jjl.M()\n result[\"Pt_jjl\"] = p_jjl.Pt()\n result[\"M_jjlnu\"] = (p_jj + lepton.TLV + p_neutrino).M()\n result[\"DeltaR_jjl\"] = TLV.DeltaR(p_jj,lepton.TLV)\n result[\"DeltaPhi_jjl\"] = fold(abs(p_jj.Phi()-lepton.Phi))\n result[\"DeltaEtaDeltaPhi_jjl\"] = [[ abs(p_jj.Eta() - lepton.Eta),\n result[\"DeltaPhi_jjl\"] ]]\n result[\"DeltaPhi_jjlnu\"] = fold(abs(p_jjl.Phi()-MET.Phi))\n result[\"MT_jjlnu\"] = sqrt(2 * MET.MET * p_jjl.Pt() * (1-cos( p_jjl.Phi() - MET.Phi)) )\n if len(bl)>1:\n p_blnu = bl[-2].TLV + lepton.TLV + p_neutrino\n p_b2lnu = bl[-1].TLV + lepton.TLV + p_neutrino\n result[\"M_b1lnu\"] = p_blnu.M()\n result[\"M_b2lnu\"] = p_b2lnu.M() # take bjet closest\n result[\"M_blnu_2D\"] = [[ result[\"M_b1lnu\"], result[\"M_b2lnu\"] ]]\n result[\"Pt_b1lnu\"] = p_blnu.Pt()\n result[\"Pt_b2lnu\"] = p_b2lnu.Pt()\n if len(event.cleanedJets20)>3: # take bjet second closest to lepton\n jets_tt = event.cleanedJets20[:]\n jets_tt.remove(bl[-1])\n jets_tt.remove(bl[-2])\n \n # 120 GeV upper mass limit\n# jets120 = [ js for js in combinations(jets_tt[:4],2) if (js[0].TLV+js[1].TLV).M() < 120 ]\n# if len(jets120):\n# jets_tt = max( jets120, key = lambda js: (js[0].TLV+js[1].TLV).Pt())\n \n p_jj = jets_tt[0].TLV + jets_tt[1].TLV\n p_jjb = p_jj + bl[-2].TLV\n p_jjb2 = p_jj + bl[-1].TLV\n result[\"M_jjl\"] = p_jjl.M()\n result[\"M_jjb1\"] = p_jjb.M()\n result[\"M_jjb2\"] = p_jjb2.M()\n result[\"M_jjb_2D\"] = [[ result[\"M_jjb1\"], result[\"M_jjb2\"] ]]\n result[\"Pt_jjb1\"] = p_jjb.Pt()\n result[\"Pt_jjb2\"] = p_jjb2.Pt()\n result[\"DeltaR_jjb\"] = TLV.DeltaR(p_jj,bl[-2].TLV)\n result[\"DeltaPhi_jjb\"] = fold(abs(p_jj.Phi()-bl[-2].Phi))\n result[\"DeltaEtaDeltaPhi_jjb\"] = [[ abs(p_jj.Eta() - bl[-2].Eta),\n result[\"DeltaPhi_jjb\"] ]]\n result[\"DeltaR_jjlbb\"] = TLV.DeltaR(p_jjl,p_bb1)\n result[\"DeltaPhi_jjlbb\"] = fold(abs(p_jjl.Phi()-p_bb1.Phi()))\n result[\"DeltaEtaDeltaPhi_jjlbb\"] = [[ abs(p_jjl.Eta() - p_bb1.Eta()),\n result[\"DeltaPhi_jjlbb\"] ]]\n result[\"DeltaR_jjbbl\"] = TLV.DeltaR(p_jjb,p_bl)\n result[\"DeltaPhi_jjbbl\"] = fold(abs(p_jjb.Phi()-p_bl.Phi()))\n result[\"DeltaEtaDeltaPhi_jjbbl\"] = [[ abs(p_jjb.Eta() - p_bl.Eta()),\n result[\"DeltaPhi_jjbbl\"] ]]\n \n \n if lepton:\n \n # MET - lepton\n result[\"leptonPt\"] = lepton.PT\n result[\"MET\"] = MET.MET\n result[\"DeltaPhi_lMET\"] = abs(MET.Phi-lepton.Phi)\n result[\"MT_lnu\"] = recoWlnu2Mt(lepton,MET)\n \n # jet i - lepton\n ji = sorted(jets, key=lambda j: TLV.DeltaR(j.TLV,lepton.TLV))[:3] # closest jets\n if len(ji)>0 and p_bb1:\n p_j1l = lepton.TLV+ji[0].TLV\n result[\"M_j1l\"] = p_j1l.M()\n result[\"Pt_j1l\"] = p_j1l.Pt()\n result[\"DeltaR_j1l\"] = TLV.DeltaR(lepton.TLV,ji[0].TLV)\n result[\"DeltaPhi_j1l\"] = fold(abs(lepton.Phi - ji[0].Phi))\n result[\"DeltaEtaDeltaPhi_j1l\"] = [[ abs(lepton.Eta - ji[0].Eta),\n result[\"DeltaPhi_j1l\"] ]]\n result[\"DeltaR_j1lbb\"] = TLV.DeltaR(p_j1l,p_bb1)\n result[\"DeltaPhi_j1lbb\"] = fold(abs(p_j1l.Phi()-p_bb1.Phi()))\n result[\"DeltaEtaDeltaPhi_j1lbb\"] = [[ abs(p_j1l.Eta() - p_bb1.Eta()),\n result[\"DeltaPhi_j1lbb\"] ]]\n \n if len(ji)>1:\n# result[\"M_j2l\"] = (lepton.TLV+ji[1].TLV).M()\n result[\"DeltaR_j2l\"] = TLV.DeltaR(lepton.TLV,ji[1].TLV)\n result[\"DeltaPhi_j2l\"] = fold(abs(lepton.Phi - ji[1].Phi))\n result[\"DeltaEtaDeltaPhi_j2l\"] = [[ abs(lepton.Eta - ji[1].Eta),\n result[\"DeltaPhi_j2l\"] ]]\n if len(ji)>2:\n result[\"DeltaEtaDeltaPhi_j3l\"] = [[ abs(lepton.Eta - ji[2].Eta),\n fold(abs(lepton.Phi - ji[2].Phi)) ]]\n \n \n # respect the order of branches when adding variables\n# result[\"cleanup\"] = [ result[var] for var in result if var in tree_vars ]\n result[\"cleanup\"] = [ ]\n for var in tree_vars:\n if var in result:\n result[\"cleanup\"].append(result[var])\n else: # if one variable does not exist for this event, no tree\n del result[\"cleanup\"]\n break\n\n return result\n\n\n\n\nif __name__==\"__main__\":\n import sys\n from DelphesAnalysis.BaseControlPlots import runTest\n runTest(sys.argv[1], CleanUpControlPlots())\n\n", "from BaseControlPlots import BaseControlPlots\nfrom ROOT import TLorentzVector as TLV\nfrom ROOT import TTree, TBranch\nfrom itertools import combinations\nfrom copy import copy\nfrom fold import fold\nfrom math import sqrt, cos, pi\nfrom reconstruct import recoNeutrino, recoWlnu2Mt\ntree_vars = ['Njets20', 'Nbjets30', 'jet1Pt', 'jet2Pt', 'bjet1Pt',\n 'bjet2Pt', 'Pt_bb', 'Pt_bl', 'Pt_j1l', 'Pt_b1lnu', 'Pt_b2lnu', 'Pt_jjl',\n 'Pt_jjb1', 'Pt_jjb2', 'leptonPt', 'MET', 'DeltaR_j1l', 'DeltaR_j2l',\n 'DeltaR_b1l', 'DeltaR_b2l', 'DeltaR_bb1', 'DeltaR_jj', 'DeltaR_jjl',\n 'DeltaR_jjb', 'DeltaPhi_j1lbb', 'DeltaPhi_lMET', 'DeltaPhi_jjlnu',\n 'M_bb_closest', 'M_jjlnu', 'M_jjb1', 'M_jjb2', 'M_b1lnu', 'M_b2lnu',\n 'M_bl', 'M_jjl', 'M_jj', 'M_j1l', 'MT_lnu', 'MT_jjlnu']\n\n\nclass CleanUpControlPlots(BaseControlPlots):\n \"\"\"A class to create control plots for leptons\"\"\"\n\n def __init__(self, dir=None, dataset=None, mode='plots'):\n BaseControlPlots.__init__(self, dir=dir, purpose='cleanup', dataset\n =dataset, mode=mode)\n\n def beginJob(self):\n self.addTree('cleanup', 'Variables for MVA')\n for var in tree_vars:\n self.addBranch('cleanup', var)\n self.add('Njets20', 'jets multiplicity (Pt > 20 GeV)', 15, 0, 15)\n self.add('Njets30', 'jets multiplicity (Pt > 30 GeV)', 15, 0, 15)\n self.add('Nbjets30', 'bjets multiplicity (Pt > 30 GeV)', 5, 0, 5)\n self.add('Nbjets30_cut_PUPPI', 'bjets multiplicity (Pt > 30 GeV)', \n 5, 0, 5)\n self.add('Nbjets30_cut_all', 'bjets multiplicity (Pt > 30 GeV)', 5,\n 0, 5)\n self.add('jet1Pt', 'leading jet Pt', 100, 0, 250)\n self.add('jet2Pt', 'second leading jet Pt', 100, 0, 250)\n self.add('bjet1Pt', 'leading b-jet Pt', 100, 0, 250)\n self.add('bjet2Pt', 'second leading b-jet Pt', 100, 0, 250)\n self.add('Pt_bb', 'closest bjets pair Pt', 100, 0, 500)\n self.add('Pt_bl', 'closest bjet-lepton Pt', 100, 0, 500)\n self.add('Pt_b1lnu', 'second closest bjet-lepton-neutrino Pt', 100,\n 0, 500)\n self.add('Pt_b2lnu', 'closest bjet-lepton-neutrino Pt', 100, 0, 500)\n self.add('Pt_j1l', 'closest jet-lepton Pt', 100, 0, 500)\n self.add('Pt_jjl', 'leading jets-lepton Pt', 100, 0, 500)\n self.add('Pt_jjb1', 'leading jets-bjet Pt', 100, 0, 500)\n self.add('Pt_jjb2', 'leading jets-bjet Pt', 100, 0, 500)\n self.add('Eta_bb', 'closest bjet pair Eta', 100, 0, 500)\n self.add('leptonPt', 'lepton Pt', 100, 0, 250)\n self.add('MET', 'MET', 100, 0, 300)\n self.add('M_jj', 'leading jet-jet Mass', 100, 0, 300)\n self.add('M_jjb1', 'hadronic top reco Mass', 100, 0, 700)\n self.add('M_jjb2', 'hadronic top reco Mass', 100, 0, 700)\n self.add2D('M_jjb_2D', 'M_jjb1 vs. M_jjb2', 100, 0, 700, 100, 0, 700)\n self.add2D('M_jj_NPU', 'NPU vs. M_jj', 80, 0, 300, 80, 80, 200)\n self.add('M_jjl', 'leading jets-lepton Mass', 100, 0, 450)\n self.add('M_jjlnu', 'leading jets-lepton-MET Mass', 100, 0, 800)\n self.add('M_j1l', 'closest jet-lepton Mass', 100, 0, 450)\n self.add('M_bb_leading', 'leading bjet-bjet Mass', 100, 0, 300)\n self.add('M_bb_closest', 'closest bjet-bjet Mass', 100, 0, 300)\n self.add('M_bb_farthest', 'farthest bjet-bjet Mass', 100, 0, 300)\n self.add('M_bl', 'closest bjet-lepton Mass', 100, 0, 300)\n self.add('MT_lnu', 'Wlnu Mt', 100, 0, 200)\n self.add('MT_jjlnu', 'HWW Mt', 100, 0, 300)\n self.add('M_b1lnu', 'leptonic top reco Mass', 100, 0, 500)\n self.add('M_b2lnu', 'leptonic top reco Mass', 100, 0, 500)\n self.add2D('M_blnu_2D', 'M_b1lnu vs. M_b2lnu', 100, 0, 500, 100, 0, 500\n )\n self.add('DeltaR_jj', 'leading jet-jet DeltaR', 100, 0, 4.5)\n self.add('DeltaR_j1l', 'closest jet-lepton DeltaR', 100, 0, 4)\n self.add('DeltaR_j2l', '2nd closest jet-lepton DeltaR', 100, 0, 4)\n self.add('DeltaR_jjl', 'leading jets-lepton DeltaR', 100, 0, 4.5)\n self.add('DeltaR_jjb', 'leading jets-bjet DeltaR', 100, 0, 4.5)\n self.add('DeltaR_j1lbb', 'closest jet-lepton-bjets DeltaR', 100, 0, 4.5\n )\n self.add('DeltaR_jjlbb', 'leading jets-lepton-bjets DeltaR', 100, 0,\n 4.5)\n self.add('DeltaR_jjbbl', 'leading jets-bjet-bjet-lepton DeltaR', \n 100, 0, 4.5)\n self.add('DeltaR_bb1', 'closest bjet-bjet pair DeltaR', 100, 0, 4)\n self.add('DeltaR_b1l', 'farthest bjet-lepton DeltaR', 100, 0, 4)\n self.add('DeltaR_b2l', '2nd farthest bjet-lepton DeltaR', 100, 0, 4)\n self.add('DeltaPhi_jj', 'leading jet-jet DeltaPhi', 100, 0, 3.5)\n self.add('DeltaPhi_j1l', 'closest jet-lepton DeltaPhi', 100, 0, 3.5)\n self.add('DeltaPhi_j2l', '2nd closest jet-lepton DeltaPhi', 100, 0, 3.5\n )\n self.add('DeltaPhi_jjl', 'leading jets-lepton DeltaPhi', 100, 0, 3.5)\n self.add('DeltaPhi_jjb', 'leading jets-bjet DeltaPhi', 100, 0, 3.5)\n self.add('DeltaPhi_j1lbb', 'closest jet-lepton-bjets DeltaPhi', 100,\n 0, 3.5)\n self.add('DeltaPhi_jjlbb', 'leading jets-lepton-bjets DeltaPhi', \n 100, 0, 3.5)\n self.add('DeltaPhi_jjbbl', 'leading jets-bjet-bjet-lepton DeltaPhi',\n 100, 0, 3.5)\n self.add('DeltaPhi_bb1', 'closest bjet-bjet pair DeltaPhi', 100, 0, 3.5\n )\n self.add('DeltaPhi_b1l', 'farthest bjet-lepton DeltaPhi', 100, 0, 3.5)\n self.add('DeltaPhi_b2l', '2nd farthest bjet-lepton DeltaPhi', 100, \n 0, 3.5)\n self.add('DeltaPhi_lMET', 'lepton-MET DeltaPhi', 100, 0, 3.5)\n self.add('DeltaPhi_jjlnu', 'jets-lepton-MET DeltaPhi', 100, 0, 3.5)\n self.add2D('DeltaEtaDeltaPhi_jj',\n 'leading jet-jet DeltaPhi vs. DeltaEta', 50, 0, 3.5, 50, 0, 3.2)\n self.add2D('DeltaEtaDeltaPhi_j1l',\n 'closest jet-lepton combination DeltaPhi vs. DeltaEta', 50, 0, \n 3.5, 50, 0, 3.2)\n self.add2D('DeltaEtaDeltaPhi_j2l',\n '2nd closest jet-lepton combination DeltaPhi vs. DeltaEta', 50,\n 0, 3.5, 50, 0, 3.2)\n self.add2D('DeltaEtaDeltaPhi_j3l',\n '3rd closest jet-lepton combination DeltaPhi vs. DeltaEta', 50,\n 0, 3.5, 50, 0, 3.2)\n self.add2D('DeltaEtaDeltaPhi_jjl',\n 'leading jets-lepton DeltaPhi vs. DeltaEta', 50, 0, 3.5, 50, 0, 3.2\n )\n self.add2D('DeltaEtaDeltaPhi_jjb',\n 'leading jets-bjet DeltaPhi vs. DeltaEta', 50, 0, 3.5, 50, 0, 3.2)\n self.add2D('DeltaEtaDeltaPhi_j1lbb',\n 'closest jet-lepton-bjets DeltaPhi vs. DeltaEta', 50, 0, 3.5, \n 50, 0, 3.2)\n self.add2D('DeltaEtaDeltaPhi_jjlbb',\n 'leading jets-lepton-bjets DeltaPhi vs. DeltaEta', 50, 0, 3.5, \n 50, 0, 3.2)\n self.add2D('DeltaEtaDeltaPhi_jjbbl',\n 'leading jets-bjet-bjet-lepton DeltaPhi vs. DeltaEta', 50, 0, \n 3.5, 50, 0, 3.2)\n self.add2D('DeltaEtaDeltaPhi_bb1',\n 'closest bjet-bjet DeltaPhi vs. DeltaEta', 50, 0, 3.5, 50, 0, 3.2)\n self.add2D('DeltaEtaDeltaPhi_b1l',\n 'farthest bjet-lepton DeltaPhi vs. DeltaEta', 50, 0, 3.5, 50, 0,\n 3.2)\n self.add2D('DeltaEtaDeltaPhi_b2l',\n '2nd farthest bjet-lepton DeltaPhi vs. DeltaEta', 50, 0, 3.5, \n 50, 0, 3.2)\n\n def process(self, event):\n result = {}\n jets = event.cleanedJets20[:]\n alljets = [j for j in event.jets if j.PT > 20 and abs(j.Eta) < 2.5]\n bjets = event.bjets30[:]\n result['Njets20'] = len(event.cleanedJets20)\n result['Njets30'] = len(event.cleanedJets30)\n result['Nbjets30'] = len(event.bjets30)\n if len(jets) > 3 and len(event.leadingLeptons) == 1 and event.met[0\n ].MET > 20:\n result['Nbjets30_cut_PUPPI'] = len(event.bjets30)\n result['Nbjets30_cut_all'] = len([j for j in alljets if j.BTag and\n j.PT > 30])\n NPU = event.npu[0]\n lepton = None\n p_neutrino = None\n MET = event.met[0]\n if len(event.leadingLeptons):\n lepton = event.leadingLeptons[0]\n p_neutrino = recoNeutrino(lepton.TLV, MET)\n bl = []\n p_bl = None\n if lepton and bjets:\n bl = sorted(bjets, key=lambda j: TLV.DeltaR(j.TLV, lepton.TLV),\n reverse=True)\n DeltaPhi = fold(abs(lepton.Phi - bl[0].Phi))\n DeltaEta = abs(lepton.Eta - bl[0].Eta)\n p_bl = lepton.TLV + bl[-1].TLV\n result['M_bl'] = p_bl.M()\n result['Pt_bl'] = p_bl.Pt()\n result['DeltaR_b1l'] = TLV.DeltaR(lepton.TLV, bl[0].TLV)\n result['DeltaPhi_b1l'] = DeltaPhi\n result['DeltaEtaDeltaPhi_b1l'] = [[DeltaEta, DeltaPhi]]\n if len(bl) > 1:\n DeltaPhi = fold(abs(lepton.Phi - bl[1].Phi))\n DeltaEta = abs(lepton.Eta - bl[1].Eta)\n result['M_bb_farthest'] = (bl[0].TLV + bl[1].TLV).M()\n result['DeltaR_b2l'] = TLV.DeltaR(lepton.TLV, bl[1].TLV)\n result['DeltaPhi_b2l'] = DeltaPhi\n result['DeltaEtaDeltaPhi_b2l'] = [[DeltaEta, DeltaPhi]]\n DeltaR_bb_closest = 1000\n bjet_closest = []\n p_bb1 = None\n for j1, j2 in combinations(bjets, 2):\n p_bb = j1.TLV + j2.TLV\n DeltaR = TLV.DeltaR(j1.TLV, j2.TLV)\n if DeltaR < DeltaR_bb_closest:\n bjet_closest = [j1, j2]\n p_bb1 = p_bb\n result['M_bb_closest'] = p_bb.M()\n result['Pt_bb'] = p_bb.Pt()\n result['DeltaR_bb1'] = TLV.DeltaR(j1.TLV, j2.TLV)\n result['DeltaPhi_bb1'] = fold(abs(j1.Phi - j2.Phi))\n result['DeltaEtaDeltaPhi_bb1'] = [[abs(j1.Eta - j2.Eta),\n result['DeltaPhi_bb1']]]\n DeltaR_bb_closest = DeltaR\n if len(bjets) > 1:\n result['M_bb_leading'] = (bjets[0].TLV + bjets[1].TLV).M()\n for bjet in bjet_closest:\n jets.remove(bjet)\n if len(jets) > 0:\n result['jet1Pt'] = jets[0].PT\n if len(jets) > 1:\n result['jet2Pt'] = jets[1].PT\n if len(bjets) > 1:\n result['bjet1Pt'] = bjet_closest[0].PT\n result['bjet2Pt'] = bjet_closest[1].PT\n elif len(bjets):\n result['bjet1Pt'] = bjets[0].PT\n if len(jets) > 1:\n p_jj = jets[0].TLV + jets[1].TLV\n result['M_jj'] = p_jj.M()\n result['DeltaR_jj'] = TLV.DeltaR(jets[0].TLV, jets[1].TLV)\n result['DeltaPhi_jj'] = fold(abs(jets[0].Phi - jets[1].Phi))\n result['DeltaEtaDeltaPhi_jj'] = [[abs(jets[0].Eta - jets[1].Eta\n ), result['DeltaPhi_jj']]]\n result['M_jj_NPU'] = [[p_jj.M(), NPU.HT]]\n if lepton:\n p_jjl = p_jj + lepton.TLV\n result['M_jjl'] = p_jjl.M()\n result['Pt_jjl'] = p_jjl.Pt()\n result['M_jjlnu'] = (p_jj + lepton.TLV + p_neutrino).M()\n result['DeltaR_jjl'] = TLV.DeltaR(p_jj, lepton.TLV)\n result['DeltaPhi_jjl'] = fold(abs(p_jj.Phi() - lepton.Phi))\n result['DeltaEtaDeltaPhi_jjl'] = [[abs(p_jj.Eta() - lepton.\n Eta), result['DeltaPhi_jjl']]]\n result['DeltaPhi_jjlnu'] = fold(abs(p_jjl.Phi() - MET.Phi))\n result['MT_jjlnu'] = sqrt(2 * MET.MET * p_jjl.Pt() * (1 -\n cos(p_jjl.Phi() - MET.Phi)))\n if len(bl) > 1:\n p_blnu = bl[-2].TLV + lepton.TLV + p_neutrino\n p_b2lnu = bl[-1].TLV + lepton.TLV + p_neutrino\n result['M_b1lnu'] = p_blnu.M()\n result['M_b2lnu'] = p_b2lnu.M()\n result['M_blnu_2D'] = [[result['M_b1lnu'], result[\n 'M_b2lnu']]]\n result['Pt_b1lnu'] = p_blnu.Pt()\n result['Pt_b2lnu'] = p_b2lnu.Pt()\n if len(event.cleanedJets20) > 3:\n jets_tt = event.cleanedJets20[:]\n jets_tt.remove(bl[-1])\n jets_tt.remove(bl[-2])\n p_jj = jets_tt[0].TLV + jets_tt[1].TLV\n p_jjb = p_jj + bl[-2].TLV\n p_jjb2 = p_jj + bl[-1].TLV\n result['M_jjl'] = p_jjl.M()\n result['M_jjb1'] = p_jjb.M()\n result['M_jjb2'] = p_jjb2.M()\n result['M_jjb_2D'] = [[result['M_jjb1'], result[\n 'M_jjb2']]]\n result['Pt_jjb1'] = p_jjb.Pt()\n result['Pt_jjb2'] = p_jjb2.Pt()\n result['DeltaR_jjb'] = TLV.DeltaR(p_jj, bl[-2].TLV)\n result['DeltaPhi_jjb'] = fold(abs(p_jj.Phi() - bl[-\n 2].Phi))\n result['DeltaEtaDeltaPhi_jjb'] = [[abs(p_jj.Eta() -\n bl[-2].Eta), result['DeltaPhi_jjb']]]\n result['DeltaR_jjlbb'] = TLV.DeltaR(p_jjl, p_bb1)\n result['DeltaPhi_jjlbb'] = fold(abs(p_jjl.Phi() -\n p_bb1.Phi()))\n result['DeltaEtaDeltaPhi_jjlbb'] = [[abs(p_jjl.Eta(\n ) - p_bb1.Eta()), result['DeltaPhi_jjlbb']]]\n result['DeltaR_jjbbl'] = TLV.DeltaR(p_jjb, p_bl)\n result['DeltaPhi_jjbbl'] = fold(abs(p_jjb.Phi() -\n p_bl.Phi()))\n result['DeltaEtaDeltaPhi_jjbbl'] = [[abs(p_jjb.Eta(\n ) - p_bl.Eta()), result['DeltaPhi_jjbbl']]]\n if lepton:\n result['leptonPt'] = lepton.PT\n result['MET'] = MET.MET\n result['DeltaPhi_lMET'] = abs(MET.Phi - lepton.Phi)\n result['MT_lnu'] = recoWlnu2Mt(lepton, MET)\n ji = sorted(jets, key=lambda j: TLV.DeltaR(j.TLV, lepton.TLV))[:3]\n if len(ji) > 0 and p_bb1:\n p_j1l = lepton.TLV + ji[0].TLV\n result['M_j1l'] = p_j1l.M()\n result['Pt_j1l'] = p_j1l.Pt()\n result['DeltaR_j1l'] = TLV.DeltaR(lepton.TLV, ji[0].TLV)\n result['DeltaPhi_j1l'] = fold(abs(lepton.Phi - ji[0].Phi))\n result['DeltaEtaDeltaPhi_j1l'] = [[abs(lepton.Eta - ji[0].\n Eta), result['DeltaPhi_j1l']]]\n result['DeltaR_j1lbb'] = TLV.DeltaR(p_j1l, p_bb1)\n result['DeltaPhi_j1lbb'] = fold(abs(p_j1l.Phi() - p_bb1.Phi()))\n result['DeltaEtaDeltaPhi_j1lbb'] = [[abs(p_j1l.Eta() -\n p_bb1.Eta()), result['DeltaPhi_j1lbb']]]\n if len(ji) > 1:\n result['DeltaR_j2l'] = TLV.DeltaR(lepton.TLV, ji[1].TLV)\n result['DeltaPhi_j2l'] = fold(abs(lepton.Phi - ji[1].Phi))\n result['DeltaEtaDeltaPhi_j2l'] = [[abs(lepton.Eta - ji[\n 1].Eta), result['DeltaPhi_j2l']]]\n if len(ji) > 2:\n result['DeltaEtaDeltaPhi_j3l'] = [[abs(lepton.Eta -\n ji[2].Eta), fold(abs(lepton.Phi - ji[2].Phi))]]\n result['cleanup'] = []\n for var in tree_vars:\n if var in result:\n result['cleanup'].append(result[var])\n else:\n del result['cleanup']\n break\n return result\n\n\nif __name__ == '__main__':\n import sys\n from DelphesAnalysis.BaseControlPlots import runTest\n runTest(sys.argv[1], CleanUpControlPlots())\n", "<import token>\ntree_vars = ['Njets20', 'Nbjets30', 'jet1Pt', 'jet2Pt', 'bjet1Pt',\n 'bjet2Pt', 'Pt_bb', 'Pt_bl', 'Pt_j1l', 'Pt_b1lnu', 'Pt_b2lnu', 'Pt_jjl',\n 'Pt_jjb1', 'Pt_jjb2', 'leptonPt', 'MET', 'DeltaR_j1l', 'DeltaR_j2l',\n 'DeltaR_b1l', 'DeltaR_b2l', 'DeltaR_bb1', 'DeltaR_jj', 'DeltaR_jjl',\n 'DeltaR_jjb', 'DeltaPhi_j1lbb', 'DeltaPhi_lMET', 'DeltaPhi_jjlnu',\n 'M_bb_closest', 'M_jjlnu', 'M_jjb1', 'M_jjb2', 'M_b1lnu', 'M_b2lnu',\n 'M_bl', 'M_jjl', 'M_jj', 'M_j1l', 'MT_lnu', 'MT_jjlnu']\n\n\nclass CleanUpControlPlots(BaseControlPlots):\n \"\"\"A class to create control plots for leptons\"\"\"\n\n def __init__(self, dir=None, dataset=None, mode='plots'):\n BaseControlPlots.__init__(self, dir=dir, purpose='cleanup', dataset\n =dataset, mode=mode)\n\n def beginJob(self):\n self.addTree('cleanup', 'Variables for MVA')\n for var in tree_vars:\n self.addBranch('cleanup', var)\n self.add('Njets20', 'jets multiplicity (Pt > 20 GeV)', 15, 0, 15)\n self.add('Njets30', 'jets multiplicity (Pt > 30 GeV)', 15, 0, 15)\n self.add('Nbjets30', 'bjets multiplicity (Pt > 30 GeV)', 5, 0, 5)\n self.add('Nbjets30_cut_PUPPI', 'bjets multiplicity (Pt > 30 GeV)', \n 5, 0, 5)\n self.add('Nbjets30_cut_all', 'bjets multiplicity (Pt > 30 GeV)', 5,\n 0, 5)\n self.add('jet1Pt', 'leading jet Pt', 100, 0, 250)\n self.add('jet2Pt', 'second leading jet Pt', 100, 0, 250)\n self.add('bjet1Pt', 'leading b-jet Pt', 100, 0, 250)\n self.add('bjet2Pt', 'second leading b-jet Pt', 100, 0, 250)\n self.add('Pt_bb', 'closest bjets pair Pt', 100, 0, 500)\n self.add('Pt_bl', 'closest bjet-lepton Pt', 100, 0, 500)\n self.add('Pt_b1lnu', 'second closest bjet-lepton-neutrino Pt', 100,\n 0, 500)\n self.add('Pt_b2lnu', 'closest bjet-lepton-neutrino Pt', 100, 0, 500)\n self.add('Pt_j1l', 'closest jet-lepton Pt', 100, 0, 500)\n self.add('Pt_jjl', 'leading jets-lepton Pt', 100, 0, 500)\n self.add('Pt_jjb1', 'leading jets-bjet Pt', 100, 0, 500)\n self.add('Pt_jjb2', 'leading jets-bjet Pt', 100, 0, 500)\n self.add('Eta_bb', 'closest bjet pair Eta', 100, 0, 500)\n self.add('leptonPt', 'lepton Pt', 100, 0, 250)\n self.add('MET', 'MET', 100, 0, 300)\n self.add('M_jj', 'leading jet-jet Mass', 100, 0, 300)\n self.add('M_jjb1', 'hadronic top reco Mass', 100, 0, 700)\n self.add('M_jjb2', 'hadronic top reco Mass', 100, 0, 700)\n self.add2D('M_jjb_2D', 'M_jjb1 vs. M_jjb2', 100, 0, 700, 100, 0, 700)\n self.add2D('M_jj_NPU', 'NPU vs. M_jj', 80, 0, 300, 80, 80, 200)\n self.add('M_jjl', 'leading jets-lepton Mass', 100, 0, 450)\n self.add('M_jjlnu', 'leading jets-lepton-MET Mass', 100, 0, 800)\n self.add('M_j1l', 'closest jet-lepton Mass', 100, 0, 450)\n self.add('M_bb_leading', 'leading bjet-bjet Mass', 100, 0, 300)\n self.add('M_bb_closest', 'closest bjet-bjet Mass', 100, 0, 300)\n self.add('M_bb_farthest', 'farthest bjet-bjet Mass', 100, 0, 300)\n self.add('M_bl', 'closest bjet-lepton Mass', 100, 0, 300)\n self.add('MT_lnu', 'Wlnu Mt', 100, 0, 200)\n self.add('MT_jjlnu', 'HWW Mt', 100, 0, 300)\n self.add('M_b1lnu', 'leptonic top reco Mass', 100, 0, 500)\n self.add('M_b2lnu', 'leptonic top reco Mass', 100, 0, 500)\n self.add2D('M_blnu_2D', 'M_b1lnu vs. M_b2lnu', 100, 0, 500, 100, 0, 500\n )\n self.add('DeltaR_jj', 'leading jet-jet DeltaR', 100, 0, 4.5)\n self.add('DeltaR_j1l', 'closest jet-lepton DeltaR', 100, 0, 4)\n self.add('DeltaR_j2l', '2nd closest jet-lepton DeltaR', 100, 0, 4)\n self.add('DeltaR_jjl', 'leading jets-lepton DeltaR', 100, 0, 4.5)\n self.add('DeltaR_jjb', 'leading jets-bjet DeltaR', 100, 0, 4.5)\n self.add('DeltaR_j1lbb', 'closest jet-lepton-bjets DeltaR', 100, 0, 4.5\n )\n self.add('DeltaR_jjlbb', 'leading jets-lepton-bjets DeltaR', 100, 0,\n 4.5)\n self.add('DeltaR_jjbbl', 'leading jets-bjet-bjet-lepton DeltaR', \n 100, 0, 4.5)\n self.add('DeltaR_bb1', 'closest bjet-bjet pair DeltaR', 100, 0, 4)\n self.add('DeltaR_b1l', 'farthest bjet-lepton DeltaR', 100, 0, 4)\n self.add('DeltaR_b2l', '2nd farthest bjet-lepton DeltaR', 100, 0, 4)\n self.add('DeltaPhi_jj', 'leading jet-jet DeltaPhi', 100, 0, 3.5)\n self.add('DeltaPhi_j1l', 'closest jet-lepton DeltaPhi', 100, 0, 3.5)\n self.add('DeltaPhi_j2l', '2nd closest jet-lepton DeltaPhi', 100, 0, 3.5\n )\n self.add('DeltaPhi_jjl', 'leading jets-lepton DeltaPhi', 100, 0, 3.5)\n self.add('DeltaPhi_jjb', 'leading jets-bjet DeltaPhi', 100, 0, 3.5)\n self.add('DeltaPhi_j1lbb', 'closest jet-lepton-bjets DeltaPhi', 100,\n 0, 3.5)\n self.add('DeltaPhi_jjlbb', 'leading jets-lepton-bjets DeltaPhi', \n 100, 0, 3.5)\n self.add('DeltaPhi_jjbbl', 'leading jets-bjet-bjet-lepton DeltaPhi',\n 100, 0, 3.5)\n self.add('DeltaPhi_bb1', 'closest bjet-bjet pair DeltaPhi', 100, 0, 3.5\n )\n self.add('DeltaPhi_b1l', 'farthest bjet-lepton DeltaPhi', 100, 0, 3.5)\n self.add('DeltaPhi_b2l', '2nd farthest bjet-lepton DeltaPhi', 100, \n 0, 3.5)\n self.add('DeltaPhi_lMET', 'lepton-MET DeltaPhi', 100, 0, 3.5)\n self.add('DeltaPhi_jjlnu', 'jets-lepton-MET DeltaPhi', 100, 0, 3.5)\n self.add2D('DeltaEtaDeltaPhi_jj',\n 'leading jet-jet DeltaPhi vs. DeltaEta', 50, 0, 3.5, 50, 0, 3.2)\n self.add2D('DeltaEtaDeltaPhi_j1l',\n 'closest jet-lepton combination DeltaPhi vs. DeltaEta', 50, 0, \n 3.5, 50, 0, 3.2)\n self.add2D('DeltaEtaDeltaPhi_j2l',\n '2nd closest jet-lepton combination DeltaPhi vs. DeltaEta', 50,\n 0, 3.5, 50, 0, 3.2)\n self.add2D('DeltaEtaDeltaPhi_j3l',\n '3rd closest jet-lepton combination DeltaPhi vs. DeltaEta', 50,\n 0, 3.5, 50, 0, 3.2)\n self.add2D('DeltaEtaDeltaPhi_jjl',\n 'leading jets-lepton DeltaPhi vs. DeltaEta', 50, 0, 3.5, 50, 0, 3.2\n )\n self.add2D('DeltaEtaDeltaPhi_jjb',\n 'leading jets-bjet DeltaPhi vs. DeltaEta', 50, 0, 3.5, 50, 0, 3.2)\n self.add2D('DeltaEtaDeltaPhi_j1lbb',\n 'closest jet-lepton-bjets DeltaPhi vs. DeltaEta', 50, 0, 3.5, \n 50, 0, 3.2)\n self.add2D('DeltaEtaDeltaPhi_jjlbb',\n 'leading jets-lepton-bjets DeltaPhi vs. DeltaEta', 50, 0, 3.5, \n 50, 0, 3.2)\n self.add2D('DeltaEtaDeltaPhi_jjbbl',\n 'leading jets-bjet-bjet-lepton DeltaPhi vs. DeltaEta', 50, 0, \n 3.5, 50, 0, 3.2)\n self.add2D('DeltaEtaDeltaPhi_bb1',\n 'closest bjet-bjet DeltaPhi vs. DeltaEta', 50, 0, 3.5, 50, 0, 3.2)\n self.add2D('DeltaEtaDeltaPhi_b1l',\n 'farthest bjet-lepton DeltaPhi vs. DeltaEta', 50, 0, 3.5, 50, 0,\n 3.2)\n self.add2D('DeltaEtaDeltaPhi_b2l',\n '2nd farthest bjet-lepton DeltaPhi vs. DeltaEta', 50, 0, 3.5, \n 50, 0, 3.2)\n\n def process(self, event):\n result = {}\n jets = event.cleanedJets20[:]\n alljets = [j for j in event.jets if j.PT > 20 and abs(j.Eta) < 2.5]\n bjets = event.bjets30[:]\n result['Njets20'] = len(event.cleanedJets20)\n result['Njets30'] = len(event.cleanedJets30)\n result['Nbjets30'] = len(event.bjets30)\n if len(jets) > 3 and len(event.leadingLeptons) == 1 and event.met[0\n ].MET > 20:\n result['Nbjets30_cut_PUPPI'] = len(event.bjets30)\n result['Nbjets30_cut_all'] = len([j for j in alljets if j.BTag and\n j.PT > 30])\n NPU = event.npu[0]\n lepton = None\n p_neutrino = None\n MET = event.met[0]\n if len(event.leadingLeptons):\n lepton = event.leadingLeptons[0]\n p_neutrino = recoNeutrino(lepton.TLV, MET)\n bl = []\n p_bl = None\n if lepton and bjets:\n bl = sorted(bjets, key=lambda j: TLV.DeltaR(j.TLV, lepton.TLV),\n reverse=True)\n DeltaPhi = fold(abs(lepton.Phi - bl[0].Phi))\n DeltaEta = abs(lepton.Eta - bl[0].Eta)\n p_bl = lepton.TLV + bl[-1].TLV\n result['M_bl'] = p_bl.M()\n result['Pt_bl'] = p_bl.Pt()\n result['DeltaR_b1l'] = TLV.DeltaR(lepton.TLV, bl[0].TLV)\n result['DeltaPhi_b1l'] = DeltaPhi\n result['DeltaEtaDeltaPhi_b1l'] = [[DeltaEta, DeltaPhi]]\n if len(bl) > 1:\n DeltaPhi = fold(abs(lepton.Phi - bl[1].Phi))\n DeltaEta = abs(lepton.Eta - bl[1].Eta)\n result['M_bb_farthest'] = (bl[0].TLV + bl[1].TLV).M()\n result['DeltaR_b2l'] = TLV.DeltaR(lepton.TLV, bl[1].TLV)\n result['DeltaPhi_b2l'] = DeltaPhi\n result['DeltaEtaDeltaPhi_b2l'] = [[DeltaEta, DeltaPhi]]\n DeltaR_bb_closest = 1000\n bjet_closest = []\n p_bb1 = None\n for j1, j2 in combinations(bjets, 2):\n p_bb = j1.TLV + j2.TLV\n DeltaR = TLV.DeltaR(j1.TLV, j2.TLV)\n if DeltaR < DeltaR_bb_closest:\n bjet_closest = [j1, j2]\n p_bb1 = p_bb\n result['M_bb_closest'] = p_bb.M()\n result['Pt_bb'] = p_bb.Pt()\n result['DeltaR_bb1'] = TLV.DeltaR(j1.TLV, j2.TLV)\n result['DeltaPhi_bb1'] = fold(abs(j1.Phi - j2.Phi))\n result['DeltaEtaDeltaPhi_bb1'] = [[abs(j1.Eta - j2.Eta),\n result['DeltaPhi_bb1']]]\n DeltaR_bb_closest = DeltaR\n if len(bjets) > 1:\n result['M_bb_leading'] = (bjets[0].TLV + bjets[1].TLV).M()\n for bjet in bjet_closest:\n jets.remove(bjet)\n if len(jets) > 0:\n result['jet1Pt'] = jets[0].PT\n if len(jets) > 1:\n result['jet2Pt'] = jets[1].PT\n if len(bjets) > 1:\n result['bjet1Pt'] = bjet_closest[0].PT\n result['bjet2Pt'] = bjet_closest[1].PT\n elif len(bjets):\n result['bjet1Pt'] = bjets[0].PT\n if len(jets) > 1:\n p_jj = jets[0].TLV + jets[1].TLV\n result['M_jj'] = p_jj.M()\n result['DeltaR_jj'] = TLV.DeltaR(jets[0].TLV, jets[1].TLV)\n result['DeltaPhi_jj'] = fold(abs(jets[0].Phi - jets[1].Phi))\n result['DeltaEtaDeltaPhi_jj'] = [[abs(jets[0].Eta - jets[1].Eta\n ), result['DeltaPhi_jj']]]\n result['M_jj_NPU'] = [[p_jj.M(), NPU.HT]]\n if lepton:\n p_jjl = p_jj + lepton.TLV\n result['M_jjl'] = p_jjl.M()\n result['Pt_jjl'] = p_jjl.Pt()\n result['M_jjlnu'] = (p_jj + lepton.TLV + p_neutrino).M()\n result['DeltaR_jjl'] = TLV.DeltaR(p_jj, lepton.TLV)\n result['DeltaPhi_jjl'] = fold(abs(p_jj.Phi() - lepton.Phi))\n result['DeltaEtaDeltaPhi_jjl'] = [[abs(p_jj.Eta() - lepton.\n Eta), result['DeltaPhi_jjl']]]\n result['DeltaPhi_jjlnu'] = fold(abs(p_jjl.Phi() - MET.Phi))\n result['MT_jjlnu'] = sqrt(2 * MET.MET * p_jjl.Pt() * (1 -\n cos(p_jjl.Phi() - MET.Phi)))\n if len(bl) > 1:\n p_blnu = bl[-2].TLV + lepton.TLV + p_neutrino\n p_b2lnu = bl[-1].TLV + lepton.TLV + p_neutrino\n result['M_b1lnu'] = p_blnu.M()\n result['M_b2lnu'] = p_b2lnu.M()\n result['M_blnu_2D'] = [[result['M_b1lnu'], result[\n 'M_b2lnu']]]\n result['Pt_b1lnu'] = p_blnu.Pt()\n result['Pt_b2lnu'] = p_b2lnu.Pt()\n if len(event.cleanedJets20) > 3:\n jets_tt = event.cleanedJets20[:]\n jets_tt.remove(bl[-1])\n jets_tt.remove(bl[-2])\n p_jj = jets_tt[0].TLV + jets_tt[1].TLV\n p_jjb = p_jj + bl[-2].TLV\n p_jjb2 = p_jj + bl[-1].TLV\n result['M_jjl'] = p_jjl.M()\n result['M_jjb1'] = p_jjb.M()\n result['M_jjb2'] = p_jjb2.M()\n result['M_jjb_2D'] = [[result['M_jjb1'], result[\n 'M_jjb2']]]\n result['Pt_jjb1'] = p_jjb.Pt()\n result['Pt_jjb2'] = p_jjb2.Pt()\n result['DeltaR_jjb'] = TLV.DeltaR(p_jj, bl[-2].TLV)\n result['DeltaPhi_jjb'] = fold(abs(p_jj.Phi() - bl[-\n 2].Phi))\n result['DeltaEtaDeltaPhi_jjb'] = [[abs(p_jj.Eta() -\n bl[-2].Eta), result['DeltaPhi_jjb']]]\n result['DeltaR_jjlbb'] = TLV.DeltaR(p_jjl, p_bb1)\n result['DeltaPhi_jjlbb'] = fold(abs(p_jjl.Phi() -\n p_bb1.Phi()))\n result['DeltaEtaDeltaPhi_jjlbb'] = [[abs(p_jjl.Eta(\n ) - p_bb1.Eta()), result['DeltaPhi_jjlbb']]]\n result['DeltaR_jjbbl'] = TLV.DeltaR(p_jjb, p_bl)\n result['DeltaPhi_jjbbl'] = fold(abs(p_jjb.Phi() -\n p_bl.Phi()))\n result['DeltaEtaDeltaPhi_jjbbl'] = [[abs(p_jjb.Eta(\n ) - p_bl.Eta()), result['DeltaPhi_jjbbl']]]\n if lepton:\n result['leptonPt'] = lepton.PT\n result['MET'] = MET.MET\n result['DeltaPhi_lMET'] = abs(MET.Phi - lepton.Phi)\n result['MT_lnu'] = recoWlnu2Mt(lepton, MET)\n ji = sorted(jets, key=lambda j: TLV.DeltaR(j.TLV, lepton.TLV))[:3]\n if len(ji) > 0 and p_bb1:\n p_j1l = lepton.TLV + ji[0].TLV\n result['M_j1l'] = p_j1l.M()\n result['Pt_j1l'] = p_j1l.Pt()\n result['DeltaR_j1l'] = TLV.DeltaR(lepton.TLV, ji[0].TLV)\n result['DeltaPhi_j1l'] = fold(abs(lepton.Phi - ji[0].Phi))\n result['DeltaEtaDeltaPhi_j1l'] = [[abs(lepton.Eta - ji[0].\n Eta), result['DeltaPhi_j1l']]]\n result['DeltaR_j1lbb'] = TLV.DeltaR(p_j1l, p_bb1)\n result['DeltaPhi_j1lbb'] = fold(abs(p_j1l.Phi() - p_bb1.Phi()))\n result['DeltaEtaDeltaPhi_j1lbb'] = [[abs(p_j1l.Eta() -\n p_bb1.Eta()), result['DeltaPhi_j1lbb']]]\n if len(ji) > 1:\n result['DeltaR_j2l'] = TLV.DeltaR(lepton.TLV, ji[1].TLV)\n result['DeltaPhi_j2l'] = fold(abs(lepton.Phi - ji[1].Phi))\n result['DeltaEtaDeltaPhi_j2l'] = [[abs(lepton.Eta - ji[\n 1].Eta), result['DeltaPhi_j2l']]]\n if len(ji) > 2:\n result['DeltaEtaDeltaPhi_j3l'] = [[abs(lepton.Eta -\n ji[2].Eta), fold(abs(lepton.Phi - ji[2].Phi))]]\n result['cleanup'] = []\n for var in tree_vars:\n if var in result:\n result['cleanup'].append(result[var])\n else:\n del result['cleanup']\n break\n return result\n\n\nif __name__ == '__main__':\n import sys\n from DelphesAnalysis.BaseControlPlots import runTest\n runTest(sys.argv[1], CleanUpControlPlots())\n", "<import token>\n<assignment token>\n\n\nclass CleanUpControlPlots(BaseControlPlots):\n \"\"\"A class to create control plots for leptons\"\"\"\n\n def __init__(self, dir=None, dataset=None, mode='plots'):\n BaseControlPlots.__init__(self, dir=dir, purpose='cleanup', dataset\n =dataset, mode=mode)\n\n def beginJob(self):\n self.addTree('cleanup', 'Variables for MVA')\n for var in tree_vars:\n self.addBranch('cleanup', var)\n self.add('Njets20', 'jets multiplicity (Pt > 20 GeV)', 15, 0, 15)\n self.add('Njets30', 'jets multiplicity (Pt > 30 GeV)', 15, 0, 15)\n self.add('Nbjets30', 'bjets multiplicity (Pt > 30 GeV)', 5, 0, 5)\n self.add('Nbjets30_cut_PUPPI', 'bjets multiplicity (Pt > 30 GeV)', \n 5, 0, 5)\n self.add('Nbjets30_cut_all', 'bjets multiplicity (Pt > 30 GeV)', 5,\n 0, 5)\n self.add('jet1Pt', 'leading jet Pt', 100, 0, 250)\n self.add('jet2Pt', 'second leading jet Pt', 100, 0, 250)\n self.add('bjet1Pt', 'leading b-jet Pt', 100, 0, 250)\n self.add('bjet2Pt', 'second leading b-jet Pt', 100, 0, 250)\n self.add('Pt_bb', 'closest bjets pair Pt', 100, 0, 500)\n self.add('Pt_bl', 'closest bjet-lepton Pt', 100, 0, 500)\n self.add('Pt_b1lnu', 'second closest bjet-lepton-neutrino Pt', 100,\n 0, 500)\n self.add('Pt_b2lnu', 'closest bjet-lepton-neutrino Pt', 100, 0, 500)\n self.add('Pt_j1l', 'closest jet-lepton Pt', 100, 0, 500)\n self.add('Pt_jjl', 'leading jets-lepton Pt', 100, 0, 500)\n self.add('Pt_jjb1', 'leading jets-bjet Pt', 100, 0, 500)\n self.add('Pt_jjb2', 'leading jets-bjet Pt', 100, 0, 500)\n self.add('Eta_bb', 'closest bjet pair Eta', 100, 0, 500)\n self.add('leptonPt', 'lepton Pt', 100, 0, 250)\n self.add('MET', 'MET', 100, 0, 300)\n self.add('M_jj', 'leading jet-jet Mass', 100, 0, 300)\n self.add('M_jjb1', 'hadronic top reco Mass', 100, 0, 700)\n self.add('M_jjb2', 'hadronic top reco Mass', 100, 0, 700)\n self.add2D('M_jjb_2D', 'M_jjb1 vs. M_jjb2', 100, 0, 700, 100, 0, 700)\n self.add2D('M_jj_NPU', 'NPU vs. M_jj', 80, 0, 300, 80, 80, 200)\n self.add('M_jjl', 'leading jets-lepton Mass', 100, 0, 450)\n self.add('M_jjlnu', 'leading jets-lepton-MET Mass', 100, 0, 800)\n self.add('M_j1l', 'closest jet-lepton Mass', 100, 0, 450)\n self.add('M_bb_leading', 'leading bjet-bjet Mass', 100, 0, 300)\n self.add('M_bb_closest', 'closest bjet-bjet Mass', 100, 0, 300)\n self.add('M_bb_farthest', 'farthest bjet-bjet Mass', 100, 0, 300)\n self.add('M_bl', 'closest bjet-lepton Mass', 100, 0, 300)\n self.add('MT_lnu', 'Wlnu Mt', 100, 0, 200)\n self.add('MT_jjlnu', 'HWW Mt', 100, 0, 300)\n self.add('M_b1lnu', 'leptonic top reco Mass', 100, 0, 500)\n self.add('M_b2lnu', 'leptonic top reco Mass', 100, 0, 500)\n self.add2D('M_blnu_2D', 'M_b1lnu vs. M_b2lnu', 100, 0, 500, 100, 0, 500\n )\n self.add('DeltaR_jj', 'leading jet-jet DeltaR', 100, 0, 4.5)\n self.add('DeltaR_j1l', 'closest jet-lepton DeltaR', 100, 0, 4)\n self.add('DeltaR_j2l', '2nd closest jet-lepton DeltaR', 100, 0, 4)\n self.add('DeltaR_jjl', 'leading jets-lepton DeltaR', 100, 0, 4.5)\n self.add('DeltaR_jjb', 'leading jets-bjet DeltaR', 100, 0, 4.5)\n self.add('DeltaR_j1lbb', 'closest jet-lepton-bjets DeltaR', 100, 0, 4.5\n )\n self.add('DeltaR_jjlbb', 'leading jets-lepton-bjets DeltaR', 100, 0,\n 4.5)\n self.add('DeltaR_jjbbl', 'leading jets-bjet-bjet-lepton DeltaR', \n 100, 0, 4.5)\n self.add('DeltaR_bb1', 'closest bjet-bjet pair DeltaR', 100, 0, 4)\n self.add('DeltaR_b1l', 'farthest bjet-lepton DeltaR', 100, 0, 4)\n self.add('DeltaR_b2l', '2nd farthest bjet-lepton DeltaR', 100, 0, 4)\n self.add('DeltaPhi_jj', 'leading jet-jet DeltaPhi', 100, 0, 3.5)\n self.add('DeltaPhi_j1l', 'closest jet-lepton DeltaPhi', 100, 0, 3.5)\n self.add('DeltaPhi_j2l', '2nd closest jet-lepton DeltaPhi', 100, 0, 3.5\n )\n self.add('DeltaPhi_jjl', 'leading jets-lepton DeltaPhi', 100, 0, 3.5)\n self.add('DeltaPhi_jjb', 'leading jets-bjet DeltaPhi', 100, 0, 3.5)\n self.add('DeltaPhi_j1lbb', 'closest jet-lepton-bjets DeltaPhi', 100,\n 0, 3.5)\n self.add('DeltaPhi_jjlbb', 'leading jets-lepton-bjets DeltaPhi', \n 100, 0, 3.5)\n self.add('DeltaPhi_jjbbl', 'leading jets-bjet-bjet-lepton DeltaPhi',\n 100, 0, 3.5)\n self.add('DeltaPhi_bb1', 'closest bjet-bjet pair DeltaPhi', 100, 0, 3.5\n )\n self.add('DeltaPhi_b1l', 'farthest bjet-lepton DeltaPhi', 100, 0, 3.5)\n self.add('DeltaPhi_b2l', '2nd farthest bjet-lepton DeltaPhi', 100, \n 0, 3.5)\n self.add('DeltaPhi_lMET', 'lepton-MET DeltaPhi', 100, 0, 3.5)\n self.add('DeltaPhi_jjlnu', 'jets-lepton-MET DeltaPhi', 100, 0, 3.5)\n self.add2D('DeltaEtaDeltaPhi_jj',\n 'leading jet-jet DeltaPhi vs. DeltaEta', 50, 0, 3.5, 50, 0, 3.2)\n self.add2D('DeltaEtaDeltaPhi_j1l',\n 'closest jet-lepton combination DeltaPhi vs. DeltaEta', 50, 0, \n 3.5, 50, 0, 3.2)\n self.add2D('DeltaEtaDeltaPhi_j2l',\n '2nd closest jet-lepton combination DeltaPhi vs. DeltaEta', 50,\n 0, 3.5, 50, 0, 3.2)\n self.add2D('DeltaEtaDeltaPhi_j3l',\n '3rd closest jet-lepton combination DeltaPhi vs. DeltaEta', 50,\n 0, 3.5, 50, 0, 3.2)\n self.add2D('DeltaEtaDeltaPhi_jjl',\n 'leading jets-lepton DeltaPhi vs. DeltaEta', 50, 0, 3.5, 50, 0, 3.2\n )\n self.add2D('DeltaEtaDeltaPhi_jjb',\n 'leading jets-bjet DeltaPhi vs. DeltaEta', 50, 0, 3.5, 50, 0, 3.2)\n self.add2D('DeltaEtaDeltaPhi_j1lbb',\n 'closest jet-lepton-bjets DeltaPhi vs. DeltaEta', 50, 0, 3.5, \n 50, 0, 3.2)\n self.add2D('DeltaEtaDeltaPhi_jjlbb',\n 'leading jets-lepton-bjets DeltaPhi vs. DeltaEta', 50, 0, 3.5, \n 50, 0, 3.2)\n self.add2D('DeltaEtaDeltaPhi_jjbbl',\n 'leading jets-bjet-bjet-lepton DeltaPhi vs. DeltaEta', 50, 0, \n 3.5, 50, 0, 3.2)\n self.add2D('DeltaEtaDeltaPhi_bb1',\n 'closest bjet-bjet DeltaPhi vs. DeltaEta', 50, 0, 3.5, 50, 0, 3.2)\n self.add2D('DeltaEtaDeltaPhi_b1l',\n 'farthest bjet-lepton DeltaPhi vs. DeltaEta', 50, 0, 3.5, 50, 0,\n 3.2)\n self.add2D('DeltaEtaDeltaPhi_b2l',\n '2nd farthest bjet-lepton DeltaPhi vs. DeltaEta', 50, 0, 3.5, \n 50, 0, 3.2)\n\n def process(self, event):\n result = {}\n jets = event.cleanedJets20[:]\n alljets = [j for j in event.jets if j.PT > 20 and abs(j.Eta) < 2.5]\n bjets = event.bjets30[:]\n result['Njets20'] = len(event.cleanedJets20)\n result['Njets30'] = len(event.cleanedJets30)\n result['Nbjets30'] = len(event.bjets30)\n if len(jets) > 3 and len(event.leadingLeptons) == 1 and event.met[0\n ].MET > 20:\n result['Nbjets30_cut_PUPPI'] = len(event.bjets30)\n result['Nbjets30_cut_all'] = len([j for j in alljets if j.BTag and\n j.PT > 30])\n NPU = event.npu[0]\n lepton = None\n p_neutrino = None\n MET = event.met[0]\n if len(event.leadingLeptons):\n lepton = event.leadingLeptons[0]\n p_neutrino = recoNeutrino(lepton.TLV, MET)\n bl = []\n p_bl = None\n if lepton and bjets:\n bl = sorted(bjets, key=lambda j: TLV.DeltaR(j.TLV, lepton.TLV),\n reverse=True)\n DeltaPhi = fold(abs(lepton.Phi - bl[0].Phi))\n DeltaEta = abs(lepton.Eta - bl[0].Eta)\n p_bl = lepton.TLV + bl[-1].TLV\n result['M_bl'] = p_bl.M()\n result['Pt_bl'] = p_bl.Pt()\n result['DeltaR_b1l'] = TLV.DeltaR(lepton.TLV, bl[0].TLV)\n result['DeltaPhi_b1l'] = DeltaPhi\n result['DeltaEtaDeltaPhi_b1l'] = [[DeltaEta, DeltaPhi]]\n if len(bl) > 1:\n DeltaPhi = fold(abs(lepton.Phi - bl[1].Phi))\n DeltaEta = abs(lepton.Eta - bl[1].Eta)\n result['M_bb_farthest'] = (bl[0].TLV + bl[1].TLV).M()\n result['DeltaR_b2l'] = TLV.DeltaR(lepton.TLV, bl[1].TLV)\n result['DeltaPhi_b2l'] = DeltaPhi\n result['DeltaEtaDeltaPhi_b2l'] = [[DeltaEta, DeltaPhi]]\n DeltaR_bb_closest = 1000\n bjet_closest = []\n p_bb1 = None\n for j1, j2 in combinations(bjets, 2):\n p_bb = j1.TLV + j2.TLV\n DeltaR = TLV.DeltaR(j1.TLV, j2.TLV)\n if DeltaR < DeltaR_bb_closest:\n bjet_closest = [j1, j2]\n p_bb1 = p_bb\n result['M_bb_closest'] = p_bb.M()\n result['Pt_bb'] = p_bb.Pt()\n result['DeltaR_bb1'] = TLV.DeltaR(j1.TLV, j2.TLV)\n result['DeltaPhi_bb1'] = fold(abs(j1.Phi - j2.Phi))\n result['DeltaEtaDeltaPhi_bb1'] = [[abs(j1.Eta - j2.Eta),\n result['DeltaPhi_bb1']]]\n DeltaR_bb_closest = DeltaR\n if len(bjets) > 1:\n result['M_bb_leading'] = (bjets[0].TLV + bjets[1].TLV).M()\n for bjet in bjet_closest:\n jets.remove(bjet)\n if len(jets) > 0:\n result['jet1Pt'] = jets[0].PT\n if len(jets) > 1:\n result['jet2Pt'] = jets[1].PT\n if len(bjets) > 1:\n result['bjet1Pt'] = bjet_closest[0].PT\n result['bjet2Pt'] = bjet_closest[1].PT\n elif len(bjets):\n result['bjet1Pt'] = bjets[0].PT\n if len(jets) > 1:\n p_jj = jets[0].TLV + jets[1].TLV\n result['M_jj'] = p_jj.M()\n result['DeltaR_jj'] = TLV.DeltaR(jets[0].TLV, jets[1].TLV)\n result['DeltaPhi_jj'] = fold(abs(jets[0].Phi - jets[1].Phi))\n result['DeltaEtaDeltaPhi_jj'] = [[abs(jets[0].Eta - jets[1].Eta\n ), result['DeltaPhi_jj']]]\n result['M_jj_NPU'] = [[p_jj.M(), NPU.HT]]\n if lepton:\n p_jjl = p_jj + lepton.TLV\n result['M_jjl'] = p_jjl.M()\n result['Pt_jjl'] = p_jjl.Pt()\n result['M_jjlnu'] = (p_jj + lepton.TLV + p_neutrino).M()\n result['DeltaR_jjl'] = TLV.DeltaR(p_jj, lepton.TLV)\n result['DeltaPhi_jjl'] = fold(abs(p_jj.Phi() - lepton.Phi))\n result['DeltaEtaDeltaPhi_jjl'] = [[abs(p_jj.Eta() - lepton.\n Eta), result['DeltaPhi_jjl']]]\n result['DeltaPhi_jjlnu'] = fold(abs(p_jjl.Phi() - MET.Phi))\n result['MT_jjlnu'] = sqrt(2 * MET.MET * p_jjl.Pt() * (1 -\n cos(p_jjl.Phi() - MET.Phi)))\n if len(bl) > 1:\n p_blnu = bl[-2].TLV + lepton.TLV + p_neutrino\n p_b2lnu = bl[-1].TLV + lepton.TLV + p_neutrino\n result['M_b1lnu'] = p_blnu.M()\n result['M_b2lnu'] = p_b2lnu.M()\n result['M_blnu_2D'] = [[result['M_b1lnu'], result[\n 'M_b2lnu']]]\n result['Pt_b1lnu'] = p_blnu.Pt()\n result['Pt_b2lnu'] = p_b2lnu.Pt()\n if len(event.cleanedJets20) > 3:\n jets_tt = event.cleanedJets20[:]\n jets_tt.remove(bl[-1])\n jets_tt.remove(bl[-2])\n p_jj = jets_tt[0].TLV + jets_tt[1].TLV\n p_jjb = p_jj + bl[-2].TLV\n p_jjb2 = p_jj + bl[-1].TLV\n result['M_jjl'] = p_jjl.M()\n result['M_jjb1'] = p_jjb.M()\n result['M_jjb2'] = p_jjb2.M()\n result['M_jjb_2D'] = [[result['M_jjb1'], result[\n 'M_jjb2']]]\n result['Pt_jjb1'] = p_jjb.Pt()\n result['Pt_jjb2'] = p_jjb2.Pt()\n result['DeltaR_jjb'] = TLV.DeltaR(p_jj, bl[-2].TLV)\n result['DeltaPhi_jjb'] = fold(abs(p_jj.Phi() - bl[-\n 2].Phi))\n result['DeltaEtaDeltaPhi_jjb'] = [[abs(p_jj.Eta() -\n bl[-2].Eta), result['DeltaPhi_jjb']]]\n result['DeltaR_jjlbb'] = TLV.DeltaR(p_jjl, p_bb1)\n result['DeltaPhi_jjlbb'] = fold(abs(p_jjl.Phi() -\n p_bb1.Phi()))\n result['DeltaEtaDeltaPhi_jjlbb'] = [[abs(p_jjl.Eta(\n ) - p_bb1.Eta()), result['DeltaPhi_jjlbb']]]\n result['DeltaR_jjbbl'] = TLV.DeltaR(p_jjb, p_bl)\n result['DeltaPhi_jjbbl'] = fold(abs(p_jjb.Phi() -\n p_bl.Phi()))\n result['DeltaEtaDeltaPhi_jjbbl'] = [[abs(p_jjb.Eta(\n ) - p_bl.Eta()), result['DeltaPhi_jjbbl']]]\n if lepton:\n result['leptonPt'] = lepton.PT\n result['MET'] = MET.MET\n result['DeltaPhi_lMET'] = abs(MET.Phi - lepton.Phi)\n result['MT_lnu'] = recoWlnu2Mt(lepton, MET)\n ji = sorted(jets, key=lambda j: TLV.DeltaR(j.TLV, lepton.TLV))[:3]\n if len(ji) > 0 and p_bb1:\n p_j1l = lepton.TLV + ji[0].TLV\n result['M_j1l'] = p_j1l.M()\n result['Pt_j1l'] = p_j1l.Pt()\n result['DeltaR_j1l'] = TLV.DeltaR(lepton.TLV, ji[0].TLV)\n result['DeltaPhi_j1l'] = fold(abs(lepton.Phi - ji[0].Phi))\n result['DeltaEtaDeltaPhi_j1l'] = [[abs(lepton.Eta - ji[0].\n Eta), result['DeltaPhi_j1l']]]\n result['DeltaR_j1lbb'] = TLV.DeltaR(p_j1l, p_bb1)\n result['DeltaPhi_j1lbb'] = fold(abs(p_j1l.Phi() - p_bb1.Phi()))\n result['DeltaEtaDeltaPhi_j1lbb'] = [[abs(p_j1l.Eta() -\n p_bb1.Eta()), result['DeltaPhi_j1lbb']]]\n if len(ji) > 1:\n result['DeltaR_j2l'] = TLV.DeltaR(lepton.TLV, ji[1].TLV)\n result['DeltaPhi_j2l'] = fold(abs(lepton.Phi - ji[1].Phi))\n result['DeltaEtaDeltaPhi_j2l'] = [[abs(lepton.Eta - ji[\n 1].Eta), result['DeltaPhi_j2l']]]\n if len(ji) > 2:\n result['DeltaEtaDeltaPhi_j3l'] = [[abs(lepton.Eta -\n ji[2].Eta), fold(abs(lepton.Phi - ji[2].Phi))]]\n result['cleanup'] = []\n for var in tree_vars:\n if var in result:\n result['cleanup'].append(result[var])\n else:\n del result['cleanup']\n break\n return result\n\n\nif __name__ == '__main__':\n import sys\n from DelphesAnalysis.BaseControlPlots import runTest\n runTest(sys.argv[1], CleanUpControlPlots())\n", "<import token>\n<assignment token>\n\n\nclass CleanUpControlPlots(BaseControlPlots):\n \"\"\"A class to create control plots for leptons\"\"\"\n\n def __init__(self, dir=None, dataset=None, mode='plots'):\n BaseControlPlots.__init__(self, dir=dir, purpose='cleanup', dataset\n =dataset, mode=mode)\n\n def beginJob(self):\n self.addTree('cleanup', 'Variables for MVA')\n for var in tree_vars:\n self.addBranch('cleanup', var)\n self.add('Njets20', 'jets multiplicity (Pt > 20 GeV)', 15, 0, 15)\n self.add('Njets30', 'jets multiplicity (Pt > 30 GeV)', 15, 0, 15)\n self.add('Nbjets30', 'bjets multiplicity (Pt > 30 GeV)', 5, 0, 5)\n self.add('Nbjets30_cut_PUPPI', 'bjets multiplicity (Pt > 30 GeV)', \n 5, 0, 5)\n self.add('Nbjets30_cut_all', 'bjets multiplicity (Pt > 30 GeV)', 5,\n 0, 5)\n self.add('jet1Pt', 'leading jet Pt', 100, 0, 250)\n self.add('jet2Pt', 'second leading jet Pt', 100, 0, 250)\n self.add('bjet1Pt', 'leading b-jet Pt', 100, 0, 250)\n self.add('bjet2Pt', 'second leading b-jet Pt', 100, 0, 250)\n self.add('Pt_bb', 'closest bjets pair Pt', 100, 0, 500)\n self.add('Pt_bl', 'closest bjet-lepton Pt', 100, 0, 500)\n self.add('Pt_b1lnu', 'second closest bjet-lepton-neutrino Pt', 100,\n 0, 500)\n self.add('Pt_b2lnu', 'closest bjet-lepton-neutrino Pt', 100, 0, 500)\n self.add('Pt_j1l', 'closest jet-lepton Pt', 100, 0, 500)\n self.add('Pt_jjl', 'leading jets-lepton Pt', 100, 0, 500)\n self.add('Pt_jjb1', 'leading jets-bjet Pt', 100, 0, 500)\n self.add('Pt_jjb2', 'leading jets-bjet Pt', 100, 0, 500)\n self.add('Eta_bb', 'closest bjet pair Eta', 100, 0, 500)\n self.add('leptonPt', 'lepton Pt', 100, 0, 250)\n self.add('MET', 'MET', 100, 0, 300)\n self.add('M_jj', 'leading jet-jet Mass', 100, 0, 300)\n self.add('M_jjb1', 'hadronic top reco Mass', 100, 0, 700)\n self.add('M_jjb2', 'hadronic top reco Mass', 100, 0, 700)\n self.add2D('M_jjb_2D', 'M_jjb1 vs. M_jjb2', 100, 0, 700, 100, 0, 700)\n self.add2D('M_jj_NPU', 'NPU vs. M_jj', 80, 0, 300, 80, 80, 200)\n self.add('M_jjl', 'leading jets-lepton Mass', 100, 0, 450)\n self.add('M_jjlnu', 'leading jets-lepton-MET Mass', 100, 0, 800)\n self.add('M_j1l', 'closest jet-lepton Mass', 100, 0, 450)\n self.add('M_bb_leading', 'leading bjet-bjet Mass', 100, 0, 300)\n self.add('M_bb_closest', 'closest bjet-bjet Mass', 100, 0, 300)\n self.add('M_bb_farthest', 'farthest bjet-bjet Mass', 100, 0, 300)\n self.add('M_bl', 'closest bjet-lepton Mass', 100, 0, 300)\n self.add('MT_lnu', 'Wlnu Mt', 100, 0, 200)\n self.add('MT_jjlnu', 'HWW Mt', 100, 0, 300)\n self.add('M_b1lnu', 'leptonic top reco Mass', 100, 0, 500)\n self.add('M_b2lnu', 'leptonic top reco Mass', 100, 0, 500)\n self.add2D('M_blnu_2D', 'M_b1lnu vs. M_b2lnu', 100, 0, 500, 100, 0, 500\n )\n self.add('DeltaR_jj', 'leading jet-jet DeltaR', 100, 0, 4.5)\n self.add('DeltaR_j1l', 'closest jet-lepton DeltaR', 100, 0, 4)\n self.add('DeltaR_j2l', '2nd closest jet-lepton DeltaR', 100, 0, 4)\n self.add('DeltaR_jjl', 'leading jets-lepton DeltaR', 100, 0, 4.5)\n self.add('DeltaR_jjb', 'leading jets-bjet DeltaR', 100, 0, 4.5)\n self.add('DeltaR_j1lbb', 'closest jet-lepton-bjets DeltaR', 100, 0, 4.5\n )\n self.add('DeltaR_jjlbb', 'leading jets-lepton-bjets DeltaR', 100, 0,\n 4.5)\n self.add('DeltaR_jjbbl', 'leading jets-bjet-bjet-lepton DeltaR', \n 100, 0, 4.5)\n self.add('DeltaR_bb1', 'closest bjet-bjet pair DeltaR', 100, 0, 4)\n self.add('DeltaR_b1l', 'farthest bjet-lepton DeltaR', 100, 0, 4)\n self.add('DeltaR_b2l', '2nd farthest bjet-lepton DeltaR', 100, 0, 4)\n self.add('DeltaPhi_jj', 'leading jet-jet DeltaPhi', 100, 0, 3.5)\n self.add('DeltaPhi_j1l', 'closest jet-lepton DeltaPhi', 100, 0, 3.5)\n self.add('DeltaPhi_j2l', '2nd closest jet-lepton DeltaPhi', 100, 0, 3.5\n )\n self.add('DeltaPhi_jjl', 'leading jets-lepton DeltaPhi', 100, 0, 3.5)\n self.add('DeltaPhi_jjb', 'leading jets-bjet DeltaPhi', 100, 0, 3.5)\n self.add('DeltaPhi_j1lbb', 'closest jet-lepton-bjets DeltaPhi', 100,\n 0, 3.5)\n self.add('DeltaPhi_jjlbb', 'leading jets-lepton-bjets DeltaPhi', \n 100, 0, 3.5)\n self.add('DeltaPhi_jjbbl', 'leading jets-bjet-bjet-lepton DeltaPhi',\n 100, 0, 3.5)\n self.add('DeltaPhi_bb1', 'closest bjet-bjet pair DeltaPhi', 100, 0, 3.5\n )\n self.add('DeltaPhi_b1l', 'farthest bjet-lepton DeltaPhi', 100, 0, 3.5)\n self.add('DeltaPhi_b2l', '2nd farthest bjet-lepton DeltaPhi', 100, \n 0, 3.5)\n self.add('DeltaPhi_lMET', 'lepton-MET DeltaPhi', 100, 0, 3.5)\n self.add('DeltaPhi_jjlnu', 'jets-lepton-MET DeltaPhi', 100, 0, 3.5)\n self.add2D('DeltaEtaDeltaPhi_jj',\n 'leading jet-jet DeltaPhi vs. DeltaEta', 50, 0, 3.5, 50, 0, 3.2)\n self.add2D('DeltaEtaDeltaPhi_j1l',\n 'closest jet-lepton combination DeltaPhi vs. DeltaEta', 50, 0, \n 3.5, 50, 0, 3.2)\n self.add2D('DeltaEtaDeltaPhi_j2l',\n '2nd closest jet-lepton combination DeltaPhi vs. DeltaEta', 50,\n 0, 3.5, 50, 0, 3.2)\n self.add2D('DeltaEtaDeltaPhi_j3l',\n '3rd closest jet-lepton combination DeltaPhi vs. DeltaEta', 50,\n 0, 3.5, 50, 0, 3.2)\n self.add2D('DeltaEtaDeltaPhi_jjl',\n 'leading jets-lepton DeltaPhi vs. DeltaEta', 50, 0, 3.5, 50, 0, 3.2\n )\n self.add2D('DeltaEtaDeltaPhi_jjb',\n 'leading jets-bjet DeltaPhi vs. DeltaEta', 50, 0, 3.5, 50, 0, 3.2)\n self.add2D('DeltaEtaDeltaPhi_j1lbb',\n 'closest jet-lepton-bjets DeltaPhi vs. DeltaEta', 50, 0, 3.5, \n 50, 0, 3.2)\n self.add2D('DeltaEtaDeltaPhi_jjlbb',\n 'leading jets-lepton-bjets DeltaPhi vs. DeltaEta', 50, 0, 3.5, \n 50, 0, 3.2)\n self.add2D('DeltaEtaDeltaPhi_jjbbl',\n 'leading jets-bjet-bjet-lepton DeltaPhi vs. DeltaEta', 50, 0, \n 3.5, 50, 0, 3.2)\n self.add2D('DeltaEtaDeltaPhi_bb1',\n 'closest bjet-bjet DeltaPhi vs. DeltaEta', 50, 0, 3.5, 50, 0, 3.2)\n self.add2D('DeltaEtaDeltaPhi_b1l',\n 'farthest bjet-lepton DeltaPhi vs. DeltaEta', 50, 0, 3.5, 50, 0,\n 3.2)\n self.add2D('DeltaEtaDeltaPhi_b2l',\n '2nd farthest bjet-lepton DeltaPhi vs. DeltaEta', 50, 0, 3.5, \n 50, 0, 3.2)\n\n def process(self, event):\n result = {}\n jets = event.cleanedJets20[:]\n alljets = [j for j in event.jets if j.PT > 20 and abs(j.Eta) < 2.5]\n bjets = event.bjets30[:]\n result['Njets20'] = len(event.cleanedJets20)\n result['Njets30'] = len(event.cleanedJets30)\n result['Nbjets30'] = len(event.bjets30)\n if len(jets) > 3 and len(event.leadingLeptons) == 1 and event.met[0\n ].MET > 20:\n result['Nbjets30_cut_PUPPI'] = len(event.bjets30)\n result['Nbjets30_cut_all'] = len([j for j in alljets if j.BTag and\n j.PT > 30])\n NPU = event.npu[0]\n lepton = None\n p_neutrino = None\n MET = event.met[0]\n if len(event.leadingLeptons):\n lepton = event.leadingLeptons[0]\n p_neutrino = recoNeutrino(lepton.TLV, MET)\n bl = []\n p_bl = None\n if lepton and bjets:\n bl = sorted(bjets, key=lambda j: TLV.DeltaR(j.TLV, lepton.TLV),\n reverse=True)\n DeltaPhi = fold(abs(lepton.Phi - bl[0].Phi))\n DeltaEta = abs(lepton.Eta - bl[0].Eta)\n p_bl = lepton.TLV + bl[-1].TLV\n result['M_bl'] = p_bl.M()\n result['Pt_bl'] = p_bl.Pt()\n result['DeltaR_b1l'] = TLV.DeltaR(lepton.TLV, bl[0].TLV)\n result['DeltaPhi_b1l'] = DeltaPhi\n result['DeltaEtaDeltaPhi_b1l'] = [[DeltaEta, DeltaPhi]]\n if len(bl) > 1:\n DeltaPhi = fold(abs(lepton.Phi - bl[1].Phi))\n DeltaEta = abs(lepton.Eta - bl[1].Eta)\n result['M_bb_farthest'] = (bl[0].TLV + bl[1].TLV).M()\n result['DeltaR_b2l'] = TLV.DeltaR(lepton.TLV, bl[1].TLV)\n result['DeltaPhi_b2l'] = DeltaPhi\n result['DeltaEtaDeltaPhi_b2l'] = [[DeltaEta, DeltaPhi]]\n DeltaR_bb_closest = 1000\n bjet_closest = []\n p_bb1 = None\n for j1, j2 in combinations(bjets, 2):\n p_bb = j1.TLV + j2.TLV\n DeltaR = TLV.DeltaR(j1.TLV, j2.TLV)\n if DeltaR < DeltaR_bb_closest:\n bjet_closest = [j1, j2]\n p_bb1 = p_bb\n result['M_bb_closest'] = p_bb.M()\n result['Pt_bb'] = p_bb.Pt()\n result['DeltaR_bb1'] = TLV.DeltaR(j1.TLV, j2.TLV)\n result['DeltaPhi_bb1'] = fold(abs(j1.Phi - j2.Phi))\n result['DeltaEtaDeltaPhi_bb1'] = [[abs(j1.Eta - j2.Eta),\n result['DeltaPhi_bb1']]]\n DeltaR_bb_closest = DeltaR\n if len(bjets) > 1:\n result['M_bb_leading'] = (bjets[0].TLV + bjets[1].TLV).M()\n for bjet in bjet_closest:\n jets.remove(bjet)\n if len(jets) > 0:\n result['jet1Pt'] = jets[0].PT\n if len(jets) > 1:\n result['jet2Pt'] = jets[1].PT\n if len(bjets) > 1:\n result['bjet1Pt'] = bjet_closest[0].PT\n result['bjet2Pt'] = bjet_closest[1].PT\n elif len(bjets):\n result['bjet1Pt'] = bjets[0].PT\n if len(jets) > 1:\n p_jj = jets[0].TLV + jets[1].TLV\n result['M_jj'] = p_jj.M()\n result['DeltaR_jj'] = TLV.DeltaR(jets[0].TLV, jets[1].TLV)\n result['DeltaPhi_jj'] = fold(abs(jets[0].Phi - jets[1].Phi))\n result['DeltaEtaDeltaPhi_jj'] = [[abs(jets[0].Eta - jets[1].Eta\n ), result['DeltaPhi_jj']]]\n result['M_jj_NPU'] = [[p_jj.M(), NPU.HT]]\n if lepton:\n p_jjl = p_jj + lepton.TLV\n result['M_jjl'] = p_jjl.M()\n result['Pt_jjl'] = p_jjl.Pt()\n result['M_jjlnu'] = (p_jj + lepton.TLV + p_neutrino).M()\n result['DeltaR_jjl'] = TLV.DeltaR(p_jj, lepton.TLV)\n result['DeltaPhi_jjl'] = fold(abs(p_jj.Phi() - lepton.Phi))\n result['DeltaEtaDeltaPhi_jjl'] = [[abs(p_jj.Eta() - lepton.\n Eta), result['DeltaPhi_jjl']]]\n result['DeltaPhi_jjlnu'] = fold(abs(p_jjl.Phi() - MET.Phi))\n result['MT_jjlnu'] = sqrt(2 * MET.MET * p_jjl.Pt() * (1 -\n cos(p_jjl.Phi() - MET.Phi)))\n if len(bl) > 1:\n p_blnu = bl[-2].TLV + lepton.TLV + p_neutrino\n p_b2lnu = bl[-1].TLV + lepton.TLV + p_neutrino\n result['M_b1lnu'] = p_blnu.M()\n result['M_b2lnu'] = p_b2lnu.M()\n result['M_blnu_2D'] = [[result['M_b1lnu'], result[\n 'M_b2lnu']]]\n result['Pt_b1lnu'] = p_blnu.Pt()\n result['Pt_b2lnu'] = p_b2lnu.Pt()\n if len(event.cleanedJets20) > 3:\n jets_tt = event.cleanedJets20[:]\n jets_tt.remove(bl[-1])\n jets_tt.remove(bl[-2])\n p_jj = jets_tt[0].TLV + jets_tt[1].TLV\n p_jjb = p_jj + bl[-2].TLV\n p_jjb2 = p_jj + bl[-1].TLV\n result['M_jjl'] = p_jjl.M()\n result['M_jjb1'] = p_jjb.M()\n result['M_jjb2'] = p_jjb2.M()\n result['M_jjb_2D'] = [[result['M_jjb1'], result[\n 'M_jjb2']]]\n result['Pt_jjb1'] = p_jjb.Pt()\n result['Pt_jjb2'] = p_jjb2.Pt()\n result['DeltaR_jjb'] = TLV.DeltaR(p_jj, bl[-2].TLV)\n result['DeltaPhi_jjb'] = fold(abs(p_jj.Phi() - bl[-\n 2].Phi))\n result['DeltaEtaDeltaPhi_jjb'] = [[abs(p_jj.Eta() -\n bl[-2].Eta), result['DeltaPhi_jjb']]]\n result['DeltaR_jjlbb'] = TLV.DeltaR(p_jjl, p_bb1)\n result['DeltaPhi_jjlbb'] = fold(abs(p_jjl.Phi() -\n p_bb1.Phi()))\n result['DeltaEtaDeltaPhi_jjlbb'] = [[abs(p_jjl.Eta(\n ) - p_bb1.Eta()), result['DeltaPhi_jjlbb']]]\n result['DeltaR_jjbbl'] = TLV.DeltaR(p_jjb, p_bl)\n result['DeltaPhi_jjbbl'] = fold(abs(p_jjb.Phi() -\n p_bl.Phi()))\n result['DeltaEtaDeltaPhi_jjbbl'] = [[abs(p_jjb.Eta(\n ) - p_bl.Eta()), result['DeltaPhi_jjbbl']]]\n if lepton:\n result['leptonPt'] = lepton.PT\n result['MET'] = MET.MET\n result['DeltaPhi_lMET'] = abs(MET.Phi - lepton.Phi)\n result['MT_lnu'] = recoWlnu2Mt(lepton, MET)\n ji = sorted(jets, key=lambda j: TLV.DeltaR(j.TLV, lepton.TLV))[:3]\n if len(ji) > 0 and p_bb1:\n p_j1l = lepton.TLV + ji[0].TLV\n result['M_j1l'] = p_j1l.M()\n result['Pt_j1l'] = p_j1l.Pt()\n result['DeltaR_j1l'] = TLV.DeltaR(lepton.TLV, ji[0].TLV)\n result['DeltaPhi_j1l'] = fold(abs(lepton.Phi - ji[0].Phi))\n result['DeltaEtaDeltaPhi_j1l'] = [[abs(lepton.Eta - ji[0].\n Eta), result['DeltaPhi_j1l']]]\n result['DeltaR_j1lbb'] = TLV.DeltaR(p_j1l, p_bb1)\n result['DeltaPhi_j1lbb'] = fold(abs(p_j1l.Phi() - p_bb1.Phi()))\n result['DeltaEtaDeltaPhi_j1lbb'] = [[abs(p_j1l.Eta() -\n p_bb1.Eta()), result['DeltaPhi_j1lbb']]]\n if len(ji) > 1:\n result['DeltaR_j2l'] = TLV.DeltaR(lepton.TLV, ji[1].TLV)\n result['DeltaPhi_j2l'] = fold(abs(lepton.Phi - ji[1].Phi))\n result['DeltaEtaDeltaPhi_j2l'] = [[abs(lepton.Eta - ji[\n 1].Eta), result['DeltaPhi_j2l']]]\n if len(ji) > 2:\n result['DeltaEtaDeltaPhi_j3l'] = [[abs(lepton.Eta -\n ji[2].Eta), fold(abs(lepton.Phi - ji[2].Phi))]]\n result['cleanup'] = []\n for var in tree_vars:\n if var in result:\n result['cleanup'].append(result[var])\n else:\n del result['cleanup']\n break\n return result\n\n\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass CleanUpControlPlots(BaseControlPlots):\n <docstring token>\n\n def __init__(self, dir=None, dataset=None, mode='plots'):\n BaseControlPlots.__init__(self, dir=dir, purpose='cleanup', dataset\n =dataset, mode=mode)\n\n def beginJob(self):\n self.addTree('cleanup', 'Variables for MVA')\n for var in tree_vars:\n self.addBranch('cleanup', var)\n self.add('Njets20', 'jets multiplicity (Pt > 20 GeV)', 15, 0, 15)\n self.add('Njets30', 'jets multiplicity (Pt > 30 GeV)', 15, 0, 15)\n self.add('Nbjets30', 'bjets multiplicity (Pt > 30 GeV)', 5, 0, 5)\n self.add('Nbjets30_cut_PUPPI', 'bjets multiplicity (Pt > 30 GeV)', \n 5, 0, 5)\n self.add('Nbjets30_cut_all', 'bjets multiplicity (Pt > 30 GeV)', 5,\n 0, 5)\n self.add('jet1Pt', 'leading jet Pt', 100, 0, 250)\n self.add('jet2Pt', 'second leading jet Pt', 100, 0, 250)\n self.add('bjet1Pt', 'leading b-jet Pt', 100, 0, 250)\n self.add('bjet2Pt', 'second leading b-jet Pt', 100, 0, 250)\n self.add('Pt_bb', 'closest bjets pair Pt', 100, 0, 500)\n self.add('Pt_bl', 'closest bjet-lepton Pt', 100, 0, 500)\n self.add('Pt_b1lnu', 'second closest bjet-lepton-neutrino Pt', 100,\n 0, 500)\n self.add('Pt_b2lnu', 'closest bjet-lepton-neutrino Pt', 100, 0, 500)\n self.add('Pt_j1l', 'closest jet-lepton Pt', 100, 0, 500)\n self.add('Pt_jjl', 'leading jets-lepton Pt', 100, 0, 500)\n self.add('Pt_jjb1', 'leading jets-bjet Pt', 100, 0, 500)\n self.add('Pt_jjb2', 'leading jets-bjet Pt', 100, 0, 500)\n self.add('Eta_bb', 'closest bjet pair Eta', 100, 0, 500)\n self.add('leptonPt', 'lepton Pt', 100, 0, 250)\n self.add('MET', 'MET', 100, 0, 300)\n self.add('M_jj', 'leading jet-jet Mass', 100, 0, 300)\n self.add('M_jjb1', 'hadronic top reco Mass', 100, 0, 700)\n self.add('M_jjb2', 'hadronic top reco Mass', 100, 0, 700)\n self.add2D('M_jjb_2D', 'M_jjb1 vs. M_jjb2', 100, 0, 700, 100, 0, 700)\n self.add2D('M_jj_NPU', 'NPU vs. M_jj', 80, 0, 300, 80, 80, 200)\n self.add('M_jjl', 'leading jets-lepton Mass', 100, 0, 450)\n self.add('M_jjlnu', 'leading jets-lepton-MET Mass', 100, 0, 800)\n self.add('M_j1l', 'closest jet-lepton Mass', 100, 0, 450)\n self.add('M_bb_leading', 'leading bjet-bjet Mass', 100, 0, 300)\n self.add('M_bb_closest', 'closest bjet-bjet Mass', 100, 0, 300)\n self.add('M_bb_farthest', 'farthest bjet-bjet Mass', 100, 0, 300)\n self.add('M_bl', 'closest bjet-lepton Mass', 100, 0, 300)\n self.add('MT_lnu', 'Wlnu Mt', 100, 0, 200)\n self.add('MT_jjlnu', 'HWW Mt', 100, 0, 300)\n self.add('M_b1lnu', 'leptonic top reco Mass', 100, 0, 500)\n self.add('M_b2lnu', 'leptonic top reco Mass', 100, 0, 500)\n self.add2D('M_blnu_2D', 'M_b1lnu vs. M_b2lnu', 100, 0, 500, 100, 0, 500\n )\n self.add('DeltaR_jj', 'leading jet-jet DeltaR', 100, 0, 4.5)\n self.add('DeltaR_j1l', 'closest jet-lepton DeltaR', 100, 0, 4)\n self.add('DeltaR_j2l', '2nd closest jet-lepton DeltaR', 100, 0, 4)\n self.add('DeltaR_jjl', 'leading jets-lepton DeltaR', 100, 0, 4.5)\n self.add('DeltaR_jjb', 'leading jets-bjet DeltaR', 100, 0, 4.5)\n self.add('DeltaR_j1lbb', 'closest jet-lepton-bjets DeltaR', 100, 0, 4.5\n )\n self.add('DeltaR_jjlbb', 'leading jets-lepton-bjets DeltaR', 100, 0,\n 4.5)\n self.add('DeltaR_jjbbl', 'leading jets-bjet-bjet-lepton DeltaR', \n 100, 0, 4.5)\n self.add('DeltaR_bb1', 'closest bjet-bjet pair DeltaR', 100, 0, 4)\n self.add('DeltaR_b1l', 'farthest bjet-lepton DeltaR', 100, 0, 4)\n self.add('DeltaR_b2l', '2nd farthest bjet-lepton DeltaR', 100, 0, 4)\n self.add('DeltaPhi_jj', 'leading jet-jet DeltaPhi', 100, 0, 3.5)\n self.add('DeltaPhi_j1l', 'closest jet-lepton DeltaPhi', 100, 0, 3.5)\n self.add('DeltaPhi_j2l', '2nd closest jet-lepton DeltaPhi', 100, 0, 3.5\n )\n self.add('DeltaPhi_jjl', 'leading jets-lepton DeltaPhi', 100, 0, 3.5)\n self.add('DeltaPhi_jjb', 'leading jets-bjet DeltaPhi', 100, 0, 3.5)\n self.add('DeltaPhi_j1lbb', 'closest jet-lepton-bjets DeltaPhi', 100,\n 0, 3.5)\n self.add('DeltaPhi_jjlbb', 'leading jets-lepton-bjets DeltaPhi', \n 100, 0, 3.5)\n self.add('DeltaPhi_jjbbl', 'leading jets-bjet-bjet-lepton DeltaPhi',\n 100, 0, 3.5)\n self.add('DeltaPhi_bb1', 'closest bjet-bjet pair DeltaPhi', 100, 0, 3.5\n )\n self.add('DeltaPhi_b1l', 'farthest bjet-lepton DeltaPhi', 100, 0, 3.5)\n self.add('DeltaPhi_b2l', '2nd farthest bjet-lepton DeltaPhi', 100, \n 0, 3.5)\n self.add('DeltaPhi_lMET', 'lepton-MET DeltaPhi', 100, 0, 3.5)\n self.add('DeltaPhi_jjlnu', 'jets-lepton-MET DeltaPhi', 100, 0, 3.5)\n self.add2D('DeltaEtaDeltaPhi_jj',\n 'leading jet-jet DeltaPhi vs. DeltaEta', 50, 0, 3.5, 50, 0, 3.2)\n self.add2D('DeltaEtaDeltaPhi_j1l',\n 'closest jet-lepton combination DeltaPhi vs. DeltaEta', 50, 0, \n 3.5, 50, 0, 3.2)\n self.add2D('DeltaEtaDeltaPhi_j2l',\n '2nd closest jet-lepton combination DeltaPhi vs. DeltaEta', 50,\n 0, 3.5, 50, 0, 3.2)\n self.add2D('DeltaEtaDeltaPhi_j3l',\n '3rd closest jet-lepton combination DeltaPhi vs. DeltaEta', 50,\n 0, 3.5, 50, 0, 3.2)\n self.add2D('DeltaEtaDeltaPhi_jjl',\n 'leading jets-lepton DeltaPhi vs. DeltaEta', 50, 0, 3.5, 50, 0, 3.2\n )\n self.add2D('DeltaEtaDeltaPhi_jjb',\n 'leading jets-bjet DeltaPhi vs. DeltaEta', 50, 0, 3.5, 50, 0, 3.2)\n self.add2D('DeltaEtaDeltaPhi_j1lbb',\n 'closest jet-lepton-bjets DeltaPhi vs. DeltaEta', 50, 0, 3.5, \n 50, 0, 3.2)\n self.add2D('DeltaEtaDeltaPhi_jjlbb',\n 'leading jets-lepton-bjets DeltaPhi vs. DeltaEta', 50, 0, 3.5, \n 50, 0, 3.2)\n self.add2D('DeltaEtaDeltaPhi_jjbbl',\n 'leading jets-bjet-bjet-lepton DeltaPhi vs. DeltaEta', 50, 0, \n 3.5, 50, 0, 3.2)\n self.add2D('DeltaEtaDeltaPhi_bb1',\n 'closest bjet-bjet DeltaPhi vs. DeltaEta', 50, 0, 3.5, 50, 0, 3.2)\n self.add2D('DeltaEtaDeltaPhi_b1l',\n 'farthest bjet-lepton DeltaPhi vs. DeltaEta', 50, 0, 3.5, 50, 0,\n 3.2)\n self.add2D('DeltaEtaDeltaPhi_b2l',\n '2nd farthest bjet-lepton DeltaPhi vs. DeltaEta', 50, 0, 3.5, \n 50, 0, 3.2)\n\n def process(self, event):\n result = {}\n jets = event.cleanedJets20[:]\n alljets = [j for j in event.jets if j.PT > 20 and abs(j.Eta) < 2.5]\n bjets = event.bjets30[:]\n result['Njets20'] = len(event.cleanedJets20)\n result['Njets30'] = len(event.cleanedJets30)\n result['Nbjets30'] = len(event.bjets30)\n if len(jets) > 3 and len(event.leadingLeptons) == 1 and event.met[0\n ].MET > 20:\n result['Nbjets30_cut_PUPPI'] = len(event.bjets30)\n result['Nbjets30_cut_all'] = len([j for j in alljets if j.BTag and\n j.PT > 30])\n NPU = event.npu[0]\n lepton = None\n p_neutrino = None\n MET = event.met[0]\n if len(event.leadingLeptons):\n lepton = event.leadingLeptons[0]\n p_neutrino = recoNeutrino(lepton.TLV, MET)\n bl = []\n p_bl = None\n if lepton and bjets:\n bl = sorted(bjets, key=lambda j: TLV.DeltaR(j.TLV, lepton.TLV),\n reverse=True)\n DeltaPhi = fold(abs(lepton.Phi - bl[0].Phi))\n DeltaEta = abs(lepton.Eta - bl[0].Eta)\n p_bl = lepton.TLV + bl[-1].TLV\n result['M_bl'] = p_bl.M()\n result['Pt_bl'] = p_bl.Pt()\n result['DeltaR_b1l'] = TLV.DeltaR(lepton.TLV, bl[0].TLV)\n result['DeltaPhi_b1l'] = DeltaPhi\n result['DeltaEtaDeltaPhi_b1l'] = [[DeltaEta, DeltaPhi]]\n if len(bl) > 1:\n DeltaPhi = fold(abs(lepton.Phi - bl[1].Phi))\n DeltaEta = abs(lepton.Eta - bl[1].Eta)\n result['M_bb_farthest'] = (bl[0].TLV + bl[1].TLV).M()\n result['DeltaR_b2l'] = TLV.DeltaR(lepton.TLV, bl[1].TLV)\n result['DeltaPhi_b2l'] = DeltaPhi\n result['DeltaEtaDeltaPhi_b2l'] = [[DeltaEta, DeltaPhi]]\n DeltaR_bb_closest = 1000\n bjet_closest = []\n p_bb1 = None\n for j1, j2 in combinations(bjets, 2):\n p_bb = j1.TLV + j2.TLV\n DeltaR = TLV.DeltaR(j1.TLV, j2.TLV)\n if DeltaR < DeltaR_bb_closest:\n bjet_closest = [j1, j2]\n p_bb1 = p_bb\n result['M_bb_closest'] = p_bb.M()\n result['Pt_bb'] = p_bb.Pt()\n result['DeltaR_bb1'] = TLV.DeltaR(j1.TLV, j2.TLV)\n result['DeltaPhi_bb1'] = fold(abs(j1.Phi - j2.Phi))\n result['DeltaEtaDeltaPhi_bb1'] = [[abs(j1.Eta - j2.Eta),\n result['DeltaPhi_bb1']]]\n DeltaR_bb_closest = DeltaR\n if len(bjets) > 1:\n result['M_bb_leading'] = (bjets[0].TLV + bjets[1].TLV).M()\n for bjet in bjet_closest:\n jets.remove(bjet)\n if len(jets) > 0:\n result['jet1Pt'] = jets[0].PT\n if len(jets) > 1:\n result['jet2Pt'] = jets[1].PT\n if len(bjets) > 1:\n result['bjet1Pt'] = bjet_closest[0].PT\n result['bjet2Pt'] = bjet_closest[1].PT\n elif len(bjets):\n result['bjet1Pt'] = bjets[0].PT\n if len(jets) > 1:\n p_jj = jets[0].TLV + jets[1].TLV\n result['M_jj'] = p_jj.M()\n result['DeltaR_jj'] = TLV.DeltaR(jets[0].TLV, jets[1].TLV)\n result['DeltaPhi_jj'] = fold(abs(jets[0].Phi - jets[1].Phi))\n result['DeltaEtaDeltaPhi_jj'] = [[abs(jets[0].Eta - jets[1].Eta\n ), result['DeltaPhi_jj']]]\n result['M_jj_NPU'] = [[p_jj.M(), NPU.HT]]\n if lepton:\n p_jjl = p_jj + lepton.TLV\n result['M_jjl'] = p_jjl.M()\n result['Pt_jjl'] = p_jjl.Pt()\n result['M_jjlnu'] = (p_jj + lepton.TLV + p_neutrino).M()\n result['DeltaR_jjl'] = TLV.DeltaR(p_jj, lepton.TLV)\n result['DeltaPhi_jjl'] = fold(abs(p_jj.Phi() - lepton.Phi))\n result['DeltaEtaDeltaPhi_jjl'] = [[abs(p_jj.Eta() - lepton.\n Eta), result['DeltaPhi_jjl']]]\n result['DeltaPhi_jjlnu'] = fold(abs(p_jjl.Phi() - MET.Phi))\n result['MT_jjlnu'] = sqrt(2 * MET.MET * p_jjl.Pt() * (1 -\n cos(p_jjl.Phi() - MET.Phi)))\n if len(bl) > 1:\n p_blnu = bl[-2].TLV + lepton.TLV + p_neutrino\n p_b2lnu = bl[-1].TLV + lepton.TLV + p_neutrino\n result['M_b1lnu'] = p_blnu.M()\n result['M_b2lnu'] = p_b2lnu.M()\n result['M_blnu_2D'] = [[result['M_b1lnu'], result[\n 'M_b2lnu']]]\n result['Pt_b1lnu'] = p_blnu.Pt()\n result['Pt_b2lnu'] = p_b2lnu.Pt()\n if len(event.cleanedJets20) > 3:\n jets_tt = event.cleanedJets20[:]\n jets_tt.remove(bl[-1])\n jets_tt.remove(bl[-2])\n p_jj = jets_tt[0].TLV + jets_tt[1].TLV\n p_jjb = p_jj + bl[-2].TLV\n p_jjb2 = p_jj + bl[-1].TLV\n result['M_jjl'] = p_jjl.M()\n result['M_jjb1'] = p_jjb.M()\n result['M_jjb2'] = p_jjb2.M()\n result['M_jjb_2D'] = [[result['M_jjb1'], result[\n 'M_jjb2']]]\n result['Pt_jjb1'] = p_jjb.Pt()\n result['Pt_jjb2'] = p_jjb2.Pt()\n result['DeltaR_jjb'] = TLV.DeltaR(p_jj, bl[-2].TLV)\n result['DeltaPhi_jjb'] = fold(abs(p_jj.Phi() - bl[-\n 2].Phi))\n result['DeltaEtaDeltaPhi_jjb'] = [[abs(p_jj.Eta() -\n bl[-2].Eta), result['DeltaPhi_jjb']]]\n result['DeltaR_jjlbb'] = TLV.DeltaR(p_jjl, p_bb1)\n result['DeltaPhi_jjlbb'] = fold(abs(p_jjl.Phi() -\n p_bb1.Phi()))\n result['DeltaEtaDeltaPhi_jjlbb'] = [[abs(p_jjl.Eta(\n ) - p_bb1.Eta()), result['DeltaPhi_jjlbb']]]\n result['DeltaR_jjbbl'] = TLV.DeltaR(p_jjb, p_bl)\n result['DeltaPhi_jjbbl'] = fold(abs(p_jjb.Phi() -\n p_bl.Phi()))\n result['DeltaEtaDeltaPhi_jjbbl'] = [[abs(p_jjb.Eta(\n ) - p_bl.Eta()), result['DeltaPhi_jjbbl']]]\n if lepton:\n result['leptonPt'] = lepton.PT\n result['MET'] = MET.MET\n result['DeltaPhi_lMET'] = abs(MET.Phi - lepton.Phi)\n result['MT_lnu'] = recoWlnu2Mt(lepton, MET)\n ji = sorted(jets, key=lambda j: TLV.DeltaR(j.TLV, lepton.TLV))[:3]\n if len(ji) > 0 and p_bb1:\n p_j1l = lepton.TLV + ji[0].TLV\n result['M_j1l'] = p_j1l.M()\n result['Pt_j1l'] = p_j1l.Pt()\n result['DeltaR_j1l'] = TLV.DeltaR(lepton.TLV, ji[0].TLV)\n result['DeltaPhi_j1l'] = fold(abs(lepton.Phi - ji[0].Phi))\n result['DeltaEtaDeltaPhi_j1l'] = [[abs(lepton.Eta - ji[0].\n Eta), result['DeltaPhi_j1l']]]\n result['DeltaR_j1lbb'] = TLV.DeltaR(p_j1l, p_bb1)\n result['DeltaPhi_j1lbb'] = fold(abs(p_j1l.Phi() - p_bb1.Phi()))\n result['DeltaEtaDeltaPhi_j1lbb'] = [[abs(p_j1l.Eta() -\n p_bb1.Eta()), result['DeltaPhi_j1lbb']]]\n if len(ji) > 1:\n result['DeltaR_j2l'] = TLV.DeltaR(lepton.TLV, ji[1].TLV)\n result['DeltaPhi_j2l'] = fold(abs(lepton.Phi - ji[1].Phi))\n result['DeltaEtaDeltaPhi_j2l'] = [[abs(lepton.Eta - ji[\n 1].Eta), result['DeltaPhi_j2l']]]\n if len(ji) > 2:\n result['DeltaEtaDeltaPhi_j3l'] = [[abs(lepton.Eta -\n ji[2].Eta), fold(abs(lepton.Phi - ji[2].Phi))]]\n result['cleanup'] = []\n for var in tree_vars:\n if var in result:\n result['cleanup'].append(result[var])\n else:\n del result['cleanup']\n break\n return result\n\n\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass CleanUpControlPlots(BaseControlPlots):\n <docstring token>\n\n def __init__(self, dir=None, dataset=None, mode='plots'):\n BaseControlPlots.__init__(self, dir=dir, purpose='cleanup', dataset\n =dataset, mode=mode)\n <function token>\n\n def process(self, event):\n result = {}\n jets = event.cleanedJets20[:]\n alljets = [j for j in event.jets if j.PT > 20 and abs(j.Eta) < 2.5]\n bjets = event.bjets30[:]\n result['Njets20'] = len(event.cleanedJets20)\n result['Njets30'] = len(event.cleanedJets30)\n result['Nbjets30'] = len(event.bjets30)\n if len(jets) > 3 and len(event.leadingLeptons) == 1 and event.met[0\n ].MET > 20:\n result['Nbjets30_cut_PUPPI'] = len(event.bjets30)\n result['Nbjets30_cut_all'] = len([j for j in alljets if j.BTag and\n j.PT > 30])\n NPU = event.npu[0]\n lepton = None\n p_neutrino = None\n MET = event.met[0]\n if len(event.leadingLeptons):\n lepton = event.leadingLeptons[0]\n p_neutrino = recoNeutrino(lepton.TLV, MET)\n bl = []\n p_bl = None\n if lepton and bjets:\n bl = sorted(bjets, key=lambda j: TLV.DeltaR(j.TLV, lepton.TLV),\n reverse=True)\n DeltaPhi = fold(abs(lepton.Phi - bl[0].Phi))\n DeltaEta = abs(lepton.Eta - bl[0].Eta)\n p_bl = lepton.TLV + bl[-1].TLV\n result['M_bl'] = p_bl.M()\n result['Pt_bl'] = p_bl.Pt()\n result['DeltaR_b1l'] = TLV.DeltaR(lepton.TLV, bl[0].TLV)\n result['DeltaPhi_b1l'] = DeltaPhi\n result['DeltaEtaDeltaPhi_b1l'] = [[DeltaEta, DeltaPhi]]\n if len(bl) > 1:\n DeltaPhi = fold(abs(lepton.Phi - bl[1].Phi))\n DeltaEta = abs(lepton.Eta - bl[1].Eta)\n result['M_bb_farthest'] = (bl[0].TLV + bl[1].TLV).M()\n result['DeltaR_b2l'] = TLV.DeltaR(lepton.TLV, bl[1].TLV)\n result['DeltaPhi_b2l'] = DeltaPhi\n result['DeltaEtaDeltaPhi_b2l'] = [[DeltaEta, DeltaPhi]]\n DeltaR_bb_closest = 1000\n bjet_closest = []\n p_bb1 = None\n for j1, j2 in combinations(bjets, 2):\n p_bb = j1.TLV + j2.TLV\n DeltaR = TLV.DeltaR(j1.TLV, j2.TLV)\n if DeltaR < DeltaR_bb_closest:\n bjet_closest = [j1, j2]\n p_bb1 = p_bb\n result['M_bb_closest'] = p_bb.M()\n result['Pt_bb'] = p_bb.Pt()\n result['DeltaR_bb1'] = TLV.DeltaR(j1.TLV, j2.TLV)\n result['DeltaPhi_bb1'] = fold(abs(j1.Phi - j2.Phi))\n result['DeltaEtaDeltaPhi_bb1'] = [[abs(j1.Eta - j2.Eta),\n result['DeltaPhi_bb1']]]\n DeltaR_bb_closest = DeltaR\n if len(bjets) > 1:\n result['M_bb_leading'] = (bjets[0].TLV + bjets[1].TLV).M()\n for bjet in bjet_closest:\n jets.remove(bjet)\n if len(jets) > 0:\n result['jet1Pt'] = jets[0].PT\n if len(jets) > 1:\n result['jet2Pt'] = jets[1].PT\n if len(bjets) > 1:\n result['bjet1Pt'] = bjet_closest[0].PT\n result['bjet2Pt'] = bjet_closest[1].PT\n elif len(bjets):\n result['bjet1Pt'] = bjets[0].PT\n if len(jets) > 1:\n p_jj = jets[0].TLV + jets[1].TLV\n result['M_jj'] = p_jj.M()\n result['DeltaR_jj'] = TLV.DeltaR(jets[0].TLV, jets[1].TLV)\n result['DeltaPhi_jj'] = fold(abs(jets[0].Phi - jets[1].Phi))\n result['DeltaEtaDeltaPhi_jj'] = [[abs(jets[0].Eta - jets[1].Eta\n ), result['DeltaPhi_jj']]]\n result['M_jj_NPU'] = [[p_jj.M(), NPU.HT]]\n if lepton:\n p_jjl = p_jj + lepton.TLV\n result['M_jjl'] = p_jjl.M()\n result['Pt_jjl'] = p_jjl.Pt()\n result['M_jjlnu'] = (p_jj + lepton.TLV + p_neutrino).M()\n result['DeltaR_jjl'] = TLV.DeltaR(p_jj, lepton.TLV)\n result['DeltaPhi_jjl'] = fold(abs(p_jj.Phi() - lepton.Phi))\n result['DeltaEtaDeltaPhi_jjl'] = [[abs(p_jj.Eta() - lepton.\n Eta), result['DeltaPhi_jjl']]]\n result['DeltaPhi_jjlnu'] = fold(abs(p_jjl.Phi() - MET.Phi))\n result['MT_jjlnu'] = sqrt(2 * MET.MET * p_jjl.Pt() * (1 -\n cos(p_jjl.Phi() - MET.Phi)))\n if len(bl) > 1:\n p_blnu = bl[-2].TLV + lepton.TLV + p_neutrino\n p_b2lnu = bl[-1].TLV + lepton.TLV + p_neutrino\n result['M_b1lnu'] = p_blnu.M()\n result['M_b2lnu'] = p_b2lnu.M()\n result['M_blnu_2D'] = [[result['M_b1lnu'], result[\n 'M_b2lnu']]]\n result['Pt_b1lnu'] = p_blnu.Pt()\n result['Pt_b2lnu'] = p_b2lnu.Pt()\n if len(event.cleanedJets20) > 3:\n jets_tt = event.cleanedJets20[:]\n jets_tt.remove(bl[-1])\n jets_tt.remove(bl[-2])\n p_jj = jets_tt[0].TLV + jets_tt[1].TLV\n p_jjb = p_jj + bl[-2].TLV\n p_jjb2 = p_jj + bl[-1].TLV\n result['M_jjl'] = p_jjl.M()\n result['M_jjb1'] = p_jjb.M()\n result['M_jjb2'] = p_jjb2.M()\n result['M_jjb_2D'] = [[result['M_jjb1'], result[\n 'M_jjb2']]]\n result['Pt_jjb1'] = p_jjb.Pt()\n result['Pt_jjb2'] = p_jjb2.Pt()\n result['DeltaR_jjb'] = TLV.DeltaR(p_jj, bl[-2].TLV)\n result['DeltaPhi_jjb'] = fold(abs(p_jj.Phi() - bl[-\n 2].Phi))\n result['DeltaEtaDeltaPhi_jjb'] = [[abs(p_jj.Eta() -\n bl[-2].Eta), result['DeltaPhi_jjb']]]\n result['DeltaR_jjlbb'] = TLV.DeltaR(p_jjl, p_bb1)\n result['DeltaPhi_jjlbb'] = fold(abs(p_jjl.Phi() -\n p_bb1.Phi()))\n result['DeltaEtaDeltaPhi_jjlbb'] = [[abs(p_jjl.Eta(\n ) - p_bb1.Eta()), result['DeltaPhi_jjlbb']]]\n result['DeltaR_jjbbl'] = TLV.DeltaR(p_jjb, p_bl)\n result['DeltaPhi_jjbbl'] = fold(abs(p_jjb.Phi() -\n p_bl.Phi()))\n result['DeltaEtaDeltaPhi_jjbbl'] = [[abs(p_jjb.Eta(\n ) - p_bl.Eta()), result['DeltaPhi_jjbbl']]]\n if lepton:\n result['leptonPt'] = lepton.PT\n result['MET'] = MET.MET\n result['DeltaPhi_lMET'] = abs(MET.Phi - lepton.Phi)\n result['MT_lnu'] = recoWlnu2Mt(lepton, MET)\n ji = sorted(jets, key=lambda j: TLV.DeltaR(j.TLV, lepton.TLV))[:3]\n if len(ji) > 0 and p_bb1:\n p_j1l = lepton.TLV + ji[0].TLV\n result['M_j1l'] = p_j1l.M()\n result['Pt_j1l'] = p_j1l.Pt()\n result['DeltaR_j1l'] = TLV.DeltaR(lepton.TLV, ji[0].TLV)\n result['DeltaPhi_j1l'] = fold(abs(lepton.Phi - ji[0].Phi))\n result['DeltaEtaDeltaPhi_j1l'] = [[abs(lepton.Eta - ji[0].\n Eta), result['DeltaPhi_j1l']]]\n result['DeltaR_j1lbb'] = TLV.DeltaR(p_j1l, p_bb1)\n result['DeltaPhi_j1lbb'] = fold(abs(p_j1l.Phi() - p_bb1.Phi()))\n result['DeltaEtaDeltaPhi_j1lbb'] = [[abs(p_j1l.Eta() -\n p_bb1.Eta()), result['DeltaPhi_j1lbb']]]\n if len(ji) > 1:\n result['DeltaR_j2l'] = TLV.DeltaR(lepton.TLV, ji[1].TLV)\n result['DeltaPhi_j2l'] = fold(abs(lepton.Phi - ji[1].Phi))\n result['DeltaEtaDeltaPhi_j2l'] = [[abs(lepton.Eta - ji[\n 1].Eta), result['DeltaPhi_j2l']]]\n if len(ji) > 2:\n result['DeltaEtaDeltaPhi_j3l'] = [[abs(lepton.Eta -\n ji[2].Eta), fold(abs(lepton.Phi - ji[2].Phi))]]\n result['cleanup'] = []\n for var in tree_vars:\n if var in result:\n result['cleanup'].append(result[var])\n else:\n del result['cleanup']\n break\n return result\n\n\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass CleanUpControlPlots(BaseControlPlots):\n <docstring token>\n <function token>\n <function token>\n\n def process(self, event):\n result = {}\n jets = event.cleanedJets20[:]\n alljets = [j for j in event.jets if j.PT > 20 and abs(j.Eta) < 2.5]\n bjets = event.bjets30[:]\n result['Njets20'] = len(event.cleanedJets20)\n result['Njets30'] = len(event.cleanedJets30)\n result['Nbjets30'] = len(event.bjets30)\n if len(jets) > 3 and len(event.leadingLeptons) == 1 and event.met[0\n ].MET > 20:\n result['Nbjets30_cut_PUPPI'] = len(event.bjets30)\n result['Nbjets30_cut_all'] = len([j for j in alljets if j.BTag and\n j.PT > 30])\n NPU = event.npu[0]\n lepton = None\n p_neutrino = None\n MET = event.met[0]\n if len(event.leadingLeptons):\n lepton = event.leadingLeptons[0]\n p_neutrino = recoNeutrino(lepton.TLV, MET)\n bl = []\n p_bl = None\n if lepton and bjets:\n bl = sorted(bjets, key=lambda j: TLV.DeltaR(j.TLV, lepton.TLV),\n reverse=True)\n DeltaPhi = fold(abs(lepton.Phi - bl[0].Phi))\n DeltaEta = abs(lepton.Eta - bl[0].Eta)\n p_bl = lepton.TLV + bl[-1].TLV\n result['M_bl'] = p_bl.M()\n result['Pt_bl'] = p_bl.Pt()\n result['DeltaR_b1l'] = TLV.DeltaR(lepton.TLV, bl[0].TLV)\n result['DeltaPhi_b1l'] = DeltaPhi\n result['DeltaEtaDeltaPhi_b1l'] = [[DeltaEta, DeltaPhi]]\n if len(bl) > 1:\n DeltaPhi = fold(abs(lepton.Phi - bl[1].Phi))\n DeltaEta = abs(lepton.Eta - bl[1].Eta)\n result['M_bb_farthest'] = (bl[0].TLV + bl[1].TLV).M()\n result['DeltaR_b2l'] = TLV.DeltaR(lepton.TLV, bl[1].TLV)\n result['DeltaPhi_b2l'] = DeltaPhi\n result['DeltaEtaDeltaPhi_b2l'] = [[DeltaEta, DeltaPhi]]\n DeltaR_bb_closest = 1000\n bjet_closest = []\n p_bb1 = None\n for j1, j2 in combinations(bjets, 2):\n p_bb = j1.TLV + j2.TLV\n DeltaR = TLV.DeltaR(j1.TLV, j2.TLV)\n if DeltaR < DeltaR_bb_closest:\n bjet_closest = [j1, j2]\n p_bb1 = p_bb\n result['M_bb_closest'] = p_bb.M()\n result['Pt_bb'] = p_bb.Pt()\n result['DeltaR_bb1'] = TLV.DeltaR(j1.TLV, j2.TLV)\n result['DeltaPhi_bb1'] = fold(abs(j1.Phi - j2.Phi))\n result['DeltaEtaDeltaPhi_bb1'] = [[abs(j1.Eta - j2.Eta),\n result['DeltaPhi_bb1']]]\n DeltaR_bb_closest = DeltaR\n if len(bjets) > 1:\n result['M_bb_leading'] = (bjets[0].TLV + bjets[1].TLV).M()\n for bjet in bjet_closest:\n jets.remove(bjet)\n if len(jets) > 0:\n result['jet1Pt'] = jets[0].PT\n if len(jets) > 1:\n result['jet2Pt'] = jets[1].PT\n if len(bjets) > 1:\n result['bjet1Pt'] = bjet_closest[0].PT\n result['bjet2Pt'] = bjet_closest[1].PT\n elif len(bjets):\n result['bjet1Pt'] = bjets[0].PT\n if len(jets) > 1:\n p_jj = jets[0].TLV + jets[1].TLV\n result['M_jj'] = p_jj.M()\n result['DeltaR_jj'] = TLV.DeltaR(jets[0].TLV, jets[1].TLV)\n result['DeltaPhi_jj'] = fold(abs(jets[0].Phi - jets[1].Phi))\n result['DeltaEtaDeltaPhi_jj'] = [[abs(jets[0].Eta - jets[1].Eta\n ), result['DeltaPhi_jj']]]\n result['M_jj_NPU'] = [[p_jj.M(), NPU.HT]]\n if lepton:\n p_jjl = p_jj + lepton.TLV\n result['M_jjl'] = p_jjl.M()\n result['Pt_jjl'] = p_jjl.Pt()\n result['M_jjlnu'] = (p_jj + lepton.TLV + p_neutrino).M()\n result['DeltaR_jjl'] = TLV.DeltaR(p_jj, lepton.TLV)\n result['DeltaPhi_jjl'] = fold(abs(p_jj.Phi() - lepton.Phi))\n result['DeltaEtaDeltaPhi_jjl'] = [[abs(p_jj.Eta() - lepton.\n Eta), result['DeltaPhi_jjl']]]\n result['DeltaPhi_jjlnu'] = fold(abs(p_jjl.Phi() - MET.Phi))\n result['MT_jjlnu'] = sqrt(2 * MET.MET * p_jjl.Pt() * (1 -\n cos(p_jjl.Phi() - MET.Phi)))\n if len(bl) > 1:\n p_blnu = bl[-2].TLV + lepton.TLV + p_neutrino\n p_b2lnu = bl[-1].TLV + lepton.TLV + p_neutrino\n result['M_b1lnu'] = p_blnu.M()\n result['M_b2lnu'] = p_b2lnu.M()\n result['M_blnu_2D'] = [[result['M_b1lnu'], result[\n 'M_b2lnu']]]\n result['Pt_b1lnu'] = p_blnu.Pt()\n result['Pt_b2lnu'] = p_b2lnu.Pt()\n if len(event.cleanedJets20) > 3:\n jets_tt = event.cleanedJets20[:]\n jets_tt.remove(bl[-1])\n jets_tt.remove(bl[-2])\n p_jj = jets_tt[0].TLV + jets_tt[1].TLV\n p_jjb = p_jj + bl[-2].TLV\n p_jjb2 = p_jj + bl[-1].TLV\n result['M_jjl'] = p_jjl.M()\n result['M_jjb1'] = p_jjb.M()\n result['M_jjb2'] = p_jjb2.M()\n result['M_jjb_2D'] = [[result['M_jjb1'], result[\n 'M_jjb2']]]\n result['Pt_jjb1'] = p_jjb.Pt()\n result['Pt_jjb2'] = p_jjb2.Pt()\n result['DeltaR_jjb'] = TLV.DeltaR(p_jj, bl[-2].TLV)\n result['DeltaPhi_jjb'] = fold(abs(p_jj.Phi() - bl[-\n 2].Phi))\n result['DeltaEtaDeltaPhi_jjb'] = [[abs(p_jj.Eta() -\n bl[-2].Eta), result['DeltaPhi_jjb']]]\n result['DeltaR_jjlbb'] = TLV.DeltaR(p_jjl, p_bb1)\n result['DeltaPhi_jjlbb'] = fold(abs(p_jjl.Phi() -\n p_bb1.Phi()))\n result['DeltaEtaDeltaPhi_jjlbb'] = [[abs(p_jjl.Eta(\n ) - p_bb1.Eta()), result['DeltaPhi_jjlbb']]]\n result['DeltaR_jjbbl'] = TLV.DeltaR(p_jjb, p_bl)\n result['DeltaPhi_jjbbl'] = fold(abs(p_jjb.Phi() -\n p_bl.Phi()))\n result['DeltaEtaDeltaPhi_jjbbl'] = [[abs(p_jjb.Eta(\n ) - p_bl.Eta()), result['DeltaPhi_jjbbl']]]\n if lepton:\n result['leptonPt'] = lepton.PT\n result['MET'] = MET.MET\n result['DeltaPhi_lMET'] = abs(MET.Phi - lepton.Phi)\n result['MT_lnu'] = recoWlnu2Mt(lepton, MET)\n ji = sorted(jets, key=lambda j: TLV.DeltaR(j.TLV, lepton.TLV))[:3]\n if len(ji) > 0 and p_bb1:\n p_j1l = lepton.TLV + ji[0].TLV\n result['M_j1l'] = p_j1l.M()\n result['Pt_j1l'] = p_j1l.Pt()\n result['DeltaR_j1l'] = TLV.DeltaR(lepton.TLV, ji[0].TLV)\n result['DeltaPhi_j1l'] = fold(abs(lepton.Phi - ji[0].Phi))\n result['DeltaEtaDeltaPhi_j1l'] = [[abs(lepton.Eta - ji[0].\n Eta), result['DeltaPhi_j1l']]]\n result['DeltaR_j1lbb'] = TLV.DeltaR(p_j1l, p_bb1)\n result['DeltaPhi_j1lbb'] = fold(abs(p_j1l.Phi() - p_bb1.Phi()))\n result['DeltaEtaDeltaPhi_j1lbb'] = [[abs(p_j1l.Eta() -\n p_bb1.Eta()), result['DeltaPhi_j1lbb']]]\n if len(ji) > 1:\n result['DeltaR_j2l'] = TLV.DeltaR(lepton.TLV, ji[1].TLV)\n result['DeltaPhi_j2l'] = fold(abs(lepton.Phi - ji[1].Phi))\n result['DeltaEtaDeltaPhi_j2l'] = [[abs(lepton.Eta - ji[\n 1].Eta), result['DeltaPhi_j2l']]]\n if len(ji) > 2:\n result['DeltaEtaDeltaPhi_j3l'] = [[abs(lepton.Eta -\n ji[2].Eta), fold(abs(lepton.Phi - ji[2].Phi))]]\n result['cleanup'] = []\n for var in tree_vars:\n if var in result:\n result['cleanup'].append(result[var])\n else:\n del result['cleanup']\n break\n return result\n\n\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass CleanUpControlPlots(BaseControlPlots):\n <docstring token>\n <function token>\n <function token>\n <function token>\n\n\n<code token>\n", "<import token>\n<assignment token>\n<class token>\n<code token>\n" ]
false
99,048
65ee92fd6ef98331114e8dcab2aee9305282789d
# encoding: utf-8 from __future__ import unicode_literals from django.db import models class Hobby(models.Model): name = models.CharField(max_length=50, verbose_name="Hobby name") def __str__(self): return self.name class Meta: """ Meta class for Hobbies """ verbose_name_plural = 'Hobby'
[ "# encoding: utf-8\nfrom __future__ import unicode_literals\nfrom django.db import models\n\nclass Hobby(models.Model):\n\n name = models.CharField(max_length=50, verbose_name=\"Hobby name\")\n \n def __str__(self):\n return self.name\n\n class Meta:\n \"\"\"\n Meta class for Hobbies\n \"\"\"\n verbose_name_plural = 'Hobby'", "from __future__ import unicode_literals\nfrom django.db import models\n\n\nclass Hobby(models.Model):\n name = models.CharField(max_length=50, verbose_name='Hobby name')\n\n def __str__(self):\n return self.name\n\n\n class Meta:\n \"\"\"\n Meta class for Hobbies\n \"\"\"\n verbose_name_plural = 'Hobby'\n", "<import token>\n\n\nclass Hobby(models.Model):\n name = models.CharField(max_length=50, verbose_name='Hobby name')\n\n def __str__(self):\n return self.name\n\n\n class Meta:\n \"\"\"\n Meta class for Hobbies\n \"\"\"\n verbose_name_plural = 'Hobby'\n", "<import token>\n\n\nclass Hobby(models.Model):\n <assignment token>\n\n def __str__(self):\n return self.name\n\n\n class Meta:\n \"\"\"\n Meta class for Hobbies\n \"\"\"\n verbose_name_plural = 'Hobby'\n", "<import token>\n\n\nclass Hobby(models.Model):\n <assignment token>\n <function token>\n\n\n class Meta:\n \"\"\"\n Meta class for Hobbies\n \"\"\"\n verbose_name_plural = 'Hobby'\n", "<import token>\n<class token>\n" ]
false
99,049
8011fa08c8da28ad02627e454865236a7cc3e5e1
import pandas as pd import numpy as np from io import StringIO from AlgorithmImports import * class RedditStockSentiment(QCAlgorithm): def Initialize(self): self.SetStartDate(2021,3, 1) # Set Start Date self.SetEndDate(2021, 6, 18) #Set End Date self.SetCash(100000) # Set Strategy Cash self.tickers = ["CLNE", "AMC","BB","PLTR","NVDA","TSLA","CLOV","GME","AMD","CLF","UWMC","WKHS","AAPL","AMZN","TLRY","PRPL","SOFI","NIO","DKNG","NNDM","ET","CRSR","ITUB","ASO","BABA","GLD","ARVL","WISH","VIAC","SNDL","GOEV","WOOF","SENS","NET","ME","HUYA","DIS","GOOGL","MSFT","SPCE","TIL","RKT","JPM","EM","APP","LEV","F","SQQQ","TQQQ","CVAC","ARKK","SLV","FB","NOK","OCGN","SQ","XPEV","JD","VZIO","XLF","HYLN","GE","NFLX","ROPE","WEN","FSR","TLT","SPOT","MT","TTD","BA","SI","FUBO","PYPL","WFC","ENPH","BAC","XOM","INTC","PSFE","TAL","ZM","COIN","TRCH","SCR","ROOT","QS","SKLZ","ATOS","GEO","UVXY","SHOP","RBLX","DE","GM","LI","UPS","DASH","ROKU","NKLA","WTI","CHPT","SWBI","FINV","VXRT","OXY","WIT","MX","PLUG","ZNGA","TM","MARA","IDEX","ADBE","ABNB","DDS","WMT","TX","IWM","ASAN","RIOT","MVIS","MNMD","PINS","ARKF","BBY","GUSH","PENN","NNOX","STEM","BYND","LUV","NUE","IOVA","NEE","PS","MRO","OGS","RUN","XLE","FCEL","MCD","UPST","ETSY","JMIA","DIA","BNGO","SDC","EDU","UBER","ZIM","OPEN","MSOS","MOO","NKE","HD","RNG","PATH","WLK","RAIN","FCX","SNAP","CPNG","MAPS","INO","LEN","SOLO","PTON","MU","HSY"] self.investP = 1/len(self.tickers) #Equal weight portfolio self.SetWarmup(TimeSpan.FromDays(65)) # self.Settings.RebalancePortfolioOnInsightChanges = False # self.Settings.RebalancePortfolioOnSecurityChanges = False # self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel(lambda time: None)) # self.SetPortfolioConstruction(InsightWeightingPortfolioConstructionModel( # rebalancingParam = timedelta(days = 30), # portfolioBias = PortfolioBias.Long)) self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel(self.RebalanceFunction)) for stock in self.tickers: self.AddEquity(stock, Resolution.Daily) #Sets resolution to hour bars self.AddRiskManagement(TrailingStopRiskManagementModel(0.08)) #Risk management self.trade = True #OnData will run when the program when the program is first executed csv = self.Download("https://raw.githubusercontent.com/sommohapatra/reddit_sentiment/main/Reddit_Sentiment_Equity_new.csv") #Downloads data self.df = pd.read_csv(StringIO(csv)) #Read into a dataframe self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.At(10, 30), self.runDaily) #Runs runDaily (sets self.trade to True) at 8:30am Chicago time def RebalanceFunction(self, time): # for performance only run rebalance logic once a week, monday if time.weekday() != 0: return None def OnData(self, data): algYear = self.Time.year algMonth = self.Time.month algDay = self.Time.day if(algYear == 2021 and algMonth == 3 and algDay == 2): self.MarketOrder("PYPL", 36) def runDaily(self): self.trade = True # class PortfolioRebalanceOnCustomFuncRegressionAlgorithm(QCAlgorithm): # def Initialize(self): # ''' Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' # self.UniverseSettings.Resolution = Resolution.Daily # self.SetStartDate(2015, 1, 1) # self.SetEndDate(2018, 1, 1) # self.Settings.RebalancePortfolioOnInsightChanges = False; # self.Settings.RebalancePortfolioOnSecurityChanges = False; # self.SetUniverseSelection(CustomUniverseSelectionModel("CustomUniverseSelectionModel", lambda time: [ "AAPL", "IBM", "FB", "SPY", "AIG", "BAC", "BNO" ])) # self.SetAlpha(ConstantAlphaModel(InsightType.Price, InsightDirection.Up, TimeSpan.FromMinutes(20), 0.025, None)); # self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel(self.RebalanceFunction)) # self.SetExecution(ImmediateExecutionModel()) # self.lastRebalanceTime = self.StartDate # def RebalanceFunction(self, time): # # for performance only run rebalance logic once a week, monday # if time.weekday() != 0: # return None # if self.lastRebalanceTime == self.StartDate: # # initial rebalance # self.lastRebalanceTime = time; # return time; # deviation = 0; # count = sum(1 for security in self.Securities.Values if security.Invested) # if count > 0: # self.lastRebalanceTime = time; # portfolioValuePerSecurity = self.Portfolio.TotalPortfolioValue / count; # for security in self.Securities.Values: # if not security.Invested: # continue # reservedBuyingPowerForCurrentPosition = (security.BuyingPowerModel.GetReservedBuyingPowerForPosition( # ReservedBuyingPowerForPositionParameters(security)).AbsoluteUsedBuyingPower # * security.BuyingPowerModel.GetLeverage(security)) # see GH issue 4107 # # we sum up deviation for each security # deviation += (portfolioValuePerSecurity - reservedBuyingPowerForCurrentPosition) / portfolioValuePerSecurity; # # if securities are deviated 1.5% from their theoretical share of TotalPortfolioValue we rebalance # if deviation >= 0.015: # return time # return None # def OnOrderEvent(self, orderEvent): # if orderEvent.Status == OrderStatus.Submitted: # if self.UtcTime != self.lastRebalanceTime or self.UtcTime.weekday() != 0: # raise ValueError(f"{self.UtcTime} {orderEvent.Symbol}")
[ "import pandas as pd\nimport numpy as np\nfrom io import StringIO\nfrom AlgorithmImports import *\n\nclass RedditStockSentiment(QCAlgorithm):\n\n def Initialize(self):\n self.SetStartDate(2021,3, 1) # Set Start Date\n self.SetEndDate(2021, 6, 18) #Set End Date\n self.SetCash(100000) # Set Strategy Cash\n self.tickers = [\"CLNE\", \"AMC\",\"BB\",\"PLTR\",\"NVDA\",\"TSLA\",\"CLOV\",\"GME\",\"AMD\",\"CLF\",\"UWMC\",\"WKHS\",\"AAPL\",\"AMZN\",\"TLRY\",\"PRPL\",\"SOFI\",\"NIO\",\"DKNG\",\"NNDM\",\"ET\",\"CRSR\",\"ITUB\",\"ASO\",\"BABA\",\"GLD\",\"ARVL\",\"WISH\",\"VIAC\",\"SNDL\",\"GOEV\",\"WOOF\",\"SENS\",\"NET\",\"ME\",\"HUYA\",\"DIS\",\"GOOGL\",\"MSFT\",\"SPCE\",\"TIL\",\"RKT\",\"JPM\",\"EM\",\"APP\",\"LEV\",\"F\",\"SQQQ\",\"TQQQ\",\"CVAC\",\"ARKK\",\"SLV\",\"FB\",\"NOK\",\"OCGN\",\"SQ\",\"XPEV\",\"JD\",\"VZIO\",\"XLF\",\"HYLN\",\"GE\",\"NFLX\",\"ROPE\",\"WEN\",\"FSR\",\"TLT\",\"SPOT\",\"MT\",\"TTD\",\"BA\",\"SI\",\"FUBO\",\"PYPL\",\"WFC\",\"ENPH\",\"BAC\",\"XOM\",\"INTC\",\"PSFE\",\"TAL\",\"ZM\",\"COIN\",\"TRCH\",\"SCR\",\"ROOT\",\"QS\",\"SKLZ\",\"ATOS\",\"GEO\",\"UVXY\",\"SHOP\",\"RBLX\",\"DE\",\"GM\",\"LI\",\"UPS\",\"DASH\",\"ROKU\",\"NKLA\",\"WTI\",\"CHPT\",\"SWBI\",\"FINV\",\"VXRT\",\"OXY\",\"WIT\",\"MX\",\"PLUG\",\"ZNGA\",\"TM\",\"MARA\",\"IDEX\",\"ADBE\",\"ABNB\",\"DDS\",\"WMT\",\"TX\",\"IWM\",\"ASAN\",\"RIOT\",\"MVIS\",\"MNMD\",\"PINS\",\"ARKF\",\"BBY\",\"GUSH\",\"PENN\",\"NNOX\",\"STEM\",\"BYND\",\"LUV\",\"NUE\",\"IOVA\",\"NEE\",\"PS\",\"MRO\",\"OGS\",\"RUN\",\"XLE\",\"FCEL\",\"MCD\",\"UPST\",\"ETSY\",\"JMIA\",\"DIA\",\"BNGO\",\"SDC\",\"EDU\",\"UBER\",\"ZIM\",\"OPEN\",\"MSOS\",\"MOO\",\"NKE\",\"HD\",\"RNG\",\"PATH\",\"WLK\",\"RAIN\",\"FCX\",\"SNAP\",\"CPNG\",\"MAPS\",\"INO\",\"LEN\",\"SOLO\",\"PTON\",\"MU\",\"HSY\"]\n self.investP = 1/len(self.tickers) #Equal weight portfolio\n self.SetWarmup(TimeSpan.FromDays(65))\n\n # self.Settings.RebalancePortfolioOnInsightChanges = False\n # self.Settings.RebalancePortfolioOnSecurityChanges = False\n # self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel(lambda time: None))\n # self.SetPortfolioConstruction(InsightWeightingPortfolioConstructionModel(\n # rebalancingParam = timedelta(days = 30), \n # portfolioBias = PortfolioBias.Long))\n self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel(self.RebalanceFunction))\n\n for stock in self.tickers:\n self.AddEquity(stock, Resolution.Daily) #Sets resolution to hour bars\n \n self.AddRiskManagement(TrailingStopRiskManagementModel(0.08)) #Risk management\n \n self.trade = True #OnData will run when the program when the program is first executed\n \n csv = self.Download(\"https://raw.githubusercontent.com/sommohapatra/reddit_sentiment/main/Reddit_Sentiment_Equity_new.csv\") #Downloads data\n self.df = pd.read_csv(StringIO(csv)) #Read into a dataframe\n \n self.Schedule.On(self.DateRules.EveryDay(), \n self.TimeRules.At(10, 30), \n self.runDaily) #Runs runDaily (sets self.trade to True) at 8:30am Chicago time\n\n def RebalanceFunction(self, time):\n # for performance only run rebalance logic once a week, monday\n if time.weekday() != 0:\n return None\n\n def OnData(self, data):\n algYear = self.Time.year\n algMonth = self.Time.month\n algDay = self.Time.day\n if(algYear == 2021 and algMonth == 3 and algDay == 2):\n self.MarketOrder(\"PYPL\", 36)\n\n\n def runDaily(self):\n self.trade = True\n\n# class PortfolioRebalanceOnCustomFuncRegressionAlgorithm(QCAlgorithm):\n# def Initialize(self):\n# ''' Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.'''\n\n# self.UniverseSettings.Resolution = Resolution.Daily\n\n# self.SetStartDate(2015, 1, 1)\n# self.SetEndDate(2018, 1, 1)\n\n# self.Settings.RebalancePortfolioOnInsightChanges = False;\n# self.Settings.RebalancePortfolioOnSecurityChanges = False;\n\n# self.SetUniverseSelection(CustomUniverseSelectionModel(\"CustomUniverseSelectionModel\", lambda time: [ \"AAPL\", \"IBM\", \"FB\", \"SPY\", \"AIG\", \"BAC\", \"BNO\" ]))\n# self.SetAlpha(ConstantAlphaModel(InsightType.Price, InsightDirection.Up, TimeSpan.FromMinutes(20), 0.025, None));\n# self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel(self.RebalanceFunction))\n# self.SetExecution(ImmediateExecutionModel())\n# self.lastRebalanceTime = self.StartDate\n\n# def RebalanceFunction(self, time):\n# # for performance only run rebalance logic once a week, monday\n# if time.weekday() != 0:\n# return None\n\n# if self.lastRebalanceTime == self.StartDate:\n# # initial rebalance\n# self.lastRebalanceTime = time;\n# return time;\n\n# deviation = 0;\n# count = sum(1 for security in self.Securities.Values if security.Invested)\n# if count > 0:\n# self.lastRebalanceTime = time;\n# portfolioValuePerSecurity = self.Portfolio.TotalPortfolioValue / count;\n# for security in self.Securities.Values:\n# if not security.Invested:\n# continue\n# reservedBuyingPowerForCurrentPosition = (security.BuyingPowerModel.GetReservedBuyingPowerForPosition(\n# ReservedBuyingPowerForPositionParameters(security)).AbsoluteUsedBuyingPower\n# * security.BuyingPowerModel.GetLeverage(security)) # see GH issue 4107\n# # we sum up deviation for each security\n# deviation += (portfolioValuePerSecurity - reservedBuyingPowerForCurrentPosition) / portfolioValuePerSecurity;\n\n# # if securities are deviated 1.5% from their theoretical share of TotalPortfolioValue we rebalance\n# if deviation >= 0.015:\n# return time\n# return None\n\n# def OnOrderEvent(self, orderEvent):\n# if orderEvent.Status == OrderStatus.Submitted:\n# if self.UtcTime != self.lastRebalanceTime or self.UtcTime.weekday() != 0:\n# raise ValueError(f\"{self.UtcTime} {orderEvent.Symbol}\")\n", "import pandas as pd\nimport numpy as np\nfrom io import StringIO\nfrom AlgorithmImports import *\n\n\nclass RedditStockSentiment(QCAlgorithm):\n\n def Initialize(self):\n self.SetStartDate(2021, 3, 1)\n self.SetEndDate(2021, 6, 18)\n self.SetCash(100000)\n self.tickers = ['CLNE', 'AMC', 'BB', 'PLTR', 'NVDA', 'TSLA', 'CLOV',\n 'GME', 'AMD', 'CLF', 'UWMC', 'WKHS', 'AAPL', 'AMZN', 'TLRY',\n 'PRPL', 'SOFI', 'NIO', 'DKNG', 'NNDM', 'ET', 'CRSR', 'ITUB',\n 'ASO', 'BABA', 'GLD', 'ARVL', 'WISH', 'VIAC', 'SNDL', 'GOEV',\n 'WOOF', 'SENS', 'NET', 'ME', 'HUYA', 'DIS', 'GOOGL', 'MSFT',\n 'SPCE', 'TIL', 'RKT', 'JPM', 'EM', 'APP', 'LEV', 'F', 'SQQQ',\n 'TQQQ', 'CVAC', 'ARKK', 'SLV', 'FB', 'NOK', 'OCGN', 'SQ',\n 'XPEV', 'JD', 'VZIO', 'XLF', 'HYLN', 'GE', 'NFLX', 'ROPE',\n 'WEN', 'FSR', 'TLT', 'SPOT', 'MT', 'TTD', 'BA', 'SI', 'FUBO',\n 'PYPL', 'WFC', 'ENPH', 'BAC', 'XOM', 'INTC', 'PSFE', 'TAL',\n 'ZM', 'COIN', 'TRCH', 'SCR', 'ROOT', 'QS', 'SKLZ', 'ATOS',\n 'GEO', 'UVXY', 'SHOP', 'RBLX', 'DE', 'GM', 'LI', 'UPS', 'DASH',\n 'ROKU', 'NKLA', 'WTI', 'CHPT', 'SWBI', 'FINV', 'VXRT', 'OXY',\n 'WIT', 'MX', 'PLUG', 'ZNGA', 'TM', 'MARA', 'IDEX', 'ADBE',\n 'ABNB', 'DDS', 'WMT', 'TX', 'IWM', 'ASAN', 'RIOT', 'MVIS',\n 'MNMD', 'PINS', 'ARKF', 'BBY', 'GUSH', 'PENN', 'NNOX', 'STEM',\n 'BYND', 'LUV', 'NUE', 'IOVA', 'NEE', 'PS', 'MRO', 'OGS', 'RUN',\n 'XLE', 'FCEL', 'MCD', 'UPST', 'ETSY', 'JMIA', 'DIA', 'BNGO',\n 'SDC', 'EDU', 'UBER', 'ZIM', 'OPEN', 'MSOS', 'MOO', 'NKE', 'HD',\n 'RNG', 'PATH', 'WLK', 'RAIN', 'FCX', 'SNAP', 'CPNG', 'MAPS',\n 'INO', 'LEN', 'SOLO', 'PTON', 'MU', 'HSY']\n self.investP = 1 / len(self.tickers)\n self.SetWarmup(TimeSpan.FromDays(65))\n self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel\n (self.RebalanceFunction))\n for stock in self.tickers:\n self.AddEquity(stock, Resolution.Daily)\n self.AddRiskManagement(TrailingStopRiskManagementModel(0.08))\n self.trade = True\n csv = self.Download(\n 'https://raw.githubusercontent.com/sommohapatra/reddit_sentiment/main/Reddit_Sentiment_Equity_new.csv'\n )\n self.df = pd.read_csv(StringIO(csv))\n self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.At(10, \n 30), self.runDaily)\n\n def RebalanceFunction(self, time):\n if time.weekday() != 0:\n return None\n\n def OnData(self, data):\n algYear = self.Time.year\n algMonth = self.Time.month\n algDay = self.Time.day\n if algYear == 2021 and algMonth == 3 and algDay == 2:\n self.MarketOrder('PYPL', 36)\n\n def runDaily(self):\n self.trade = True\n", "<import token>\n\n\nclass RedditStockSentiment(QCAlgorithm):\n\n def Initialize(self):\n self.SetStartDate(2021, 3, 1)\n self.SetEndDate(2021, 6, 18)\n self.SetCash(100000)\n self.tickers = ['CLNE', 'AMC', 'BB', 'PLTR', 'NVDA', 'TSLA', 'CLOV',\n 'GME', 'AMD', 'CLF', 'UWMC', 'WKHS', 'AAPL', 'AMZN', 'TLRY',\n 'PRPL', 'SOFI', 'NIO', 'DKNG', 'NNDM', 'ET', 'CRSR', 'ITUB',\n 'ASO', 'BABA', 'GLD', 'ARVL', 'WISH', 'VIAC', 'SNDL', 'GOEV',\n 'WOOF', 'SENS', 'NET', 'ME', 'HUYA', 'DIS', 'GOOGL', 'MSFT',\n 'SPCE', 'TIL', 'RKT', 'JPM', 'EM', 'APP', 'LEV', 'F', 'SQQQ',\n 'TQQQ', 'CVAC', 'ARKK', 'SLV', 'FB', 'NOK', 'OCGN', 'SQ',\n 'XPEV', 'JD', 'VZIO', 'XLF', 'HYLN', 'GE', 'NFLX', 'ROPE',\n 'WEN', 'FSR', 'TLT', 'SPOT', 'MT', 'TTD', 'BA', 'SI', 'FUBO',\n 'PYPL', 'WFC', 'ENPH', 'BAC', 'XOM', 'INTC', 'PSFE', 'TAL',\n 'ZM', 'COIN', 'TRCH', 'SCR', 'ROOT', 'QS', 'SKLZ', 'ATOS',\n 'GEO', 'UVXY', 'SHOP', 'RBLX', 'DE', 'GM', 'LI', 'UPS', 'DASH',\n 'ROKU', 'NKLA', 'WTI', 'CHPT', 'SWBI', 'FINV', 'VXRT', 'OXY',\n 'WIT', 'MX', 'PLUG', 'ZNGA', 'TM', 'MARA', 'IDEX', 'ADBE',\n 'ABNB', 'DDS', 'WMT', 'TX', 'IWM', 'ASAN', 'RIOT', 'MVIS',\n 'MNMD', 'PINS', 'ARKF', 'BBY', 'GUSH', 'PENN', 'NNOX', 'STEM',\n 'BYND', 'LUV', 'NUE', 'IOVA', 'NEE', 'PS', 'MRO', 'OGS', 'RUN',\n 'XLE', 'FCEL', 'MCD', 'UPST', 'ETSY', 'JMIA', 'DIA', 'BNGO',\n 'SDC', 'EDU', 'UBER', 'ZIM', 'OPEN', 'MSOS', 'MOO', 'NKE', 'HD',\n 'RNG', 'PATH', 'WLK', 'RAIN', 'FCX', 'SNAP', 'CPNG', 'MAPS',\n 'INO', 'LEN', 'SOLO', 'PTON', 'MU', 'HSY']\n self.investP = 1 / len(self.tickers)\n self.SetWarmup(TimeSpan.FromDays(65))\n self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel\n (self.RebalanceFunction))\n for stock in self.tickers:\n self.AddEquity(stock, Resolution.Daily)\n self.AddRiskManagement(TrailingStopRiskManagementModel(0.08))\n self.trade = True\n csv = self.Download(\n 'https://raw.githubusercontent.com/sommohapatra/reddit_sentiment/main/Reddit_Sentiment_Equity_new.csv'\n )\n self.df = pd.read_csv(StringIO(csv))\n self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.At(10, \n 30), self.runDaily)\n\n def RebalanceFunction(self, time):\n if time.weekday() != 0:\n return None\n\n def OnData(self, data):\n algYear = self.Time.year\n algMonth = self.Time.month\n algDay = self.Time.day\n if algYear == 2021 and algMonth == 3 and algDay == 2:\n self.MarketOrder('PYPL', 36)\n\n def runDaily(self):\n self.trade = True\n", "<import token>\n\n\nclass RedditStockSentiment(QCAlgorithm):\n\n def Initialize(self):\n self.SetStartDate(2021, 3, 1)\n self.SetEndDate(2021, 6, 18)\n self.SetCash(100000)\n self.tickers = ['CLNE', 'AMC', 'BB', 'PLTR', 'NVDA', 'TSLA', 'CLOV',\n 'GME', 'AMD', 'CLF', 'UWMC', 'WKHS', 'AAPL', 'AMZN', 'TLRY',\n 'PRPL', 'SOFI', 'NIO', 'DKNG', 'NNDM', 'ET', 'CRSR', 'ITUB',\n 'ASO', 'BABA', 'GLD', 'ARVL', 'WISH', 'VIAC', 'SNDL', 'GOEV',\n 'WOOF', 'SENS', 'NET', 'ME', 'HUYA', 'DIS', 'GOOGL', 'MSFT',\n 'SPCE', 'TIL', 'RKT', 'JPM', 'EM', 'APP', 'LEV', 'F', 'SQQQ',\n 'TQQQ', 'CVAC', 'ARKK', 'SLV', 'FB', 'NOK', 'OCGN', 'SQ',\n 'XPEV', 'JD', 'VZIO', 'XLF', 'HYLN', 'GE', 'NFLX', 'ROPE',\n 'WEN', 'FSR', 'TLT', 'SPOT', 'MT', 'TTD', 'BA', 'SI', 'FUBO',\n 'PYPL', 'WFC', 'ENPH', 'BAC', 'XOM', 'INTC', 'PSFE', 'TAL',\n 'ZM', 'COIN', 'TRCH', 'SCR', 'ROOT', 'QS', 'SKLZ', 'ATOS',\n 'GEO', 'UVXY', 'SHOP', 'RBLX', 'DE', 'GM', 'LI', 'UPS', 'DASH',\n 'ROKU', 'NKLA', 'WTI', 'CHPT', 'SWBI', 'FINV', 'VXRT', 'OXY',\n 'WIT', 'MX', 'PLUG', 'ZNGA', 'TM', 'MARA', 'IDEX', 'ADBE',\n 'ABNB', 'DDS', 'WMT', 'TX', 'IWM', 'ASAN', 'RIOT', 'MVIS',\n 'MNMD', 'PINS', 'ARKF', 'BBY', 'GUSH', 'PENN', 'NNOX', 'STEM',\n 'BYND', 'LUV', 'NUE', 'IOVA', 'NEE', 'PS', 'MRO', 'OGS', 'RUN',\n 'XLE', 'FCEL', 'MCD', 'UPST', 'ETSY', 'JMIA', 'DIA', 'BNGO',\n 'SDC', 'EDU', 'UBER', 'ZIM', 'OPEN', 'MSOS', 'MOO', 'NKE', 'HD',\n 'RNG', 'PATH', 'WLK', 'RAIN', 'FCX', 'SNAP', 'CPNG', 'MAPS',\n 'INO', 'LEN', 'SOLO', 'PTON', 'MU', 'HSY']\n self.investP = 1 / len(self.tickers)\n self.SetWarmup(TimeSpan.FromDays(65))\n self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel\n (self.RebalanceFunction))\n for stock in self.tickers:\n self.AddEquity(stock, Resolution.Daily)\n self.AddRiskManagement(TrailingStopRiskManagementModel(0.08))\n self.trade = True\n csv = self.Download(\n 'https://raw.githubusercontent.com/sommohapatra/reddit_sentiment/main/Reddit_Sentiment_Equity_new.csv'\n )\n self.df = pd.read_csv(StringIO(csv))\n self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.At(10, \n 30), self.runDaily)\n\n def RebalanceFunction(self, time):\n if time.weekday() != 0:\n return None\n <function token>\n\n def runDaily(self):\n self.trade = True\n", "<import token>\n\n\nclass RedditStockSentiment(QCAlgorithm):\n\n def Initialize(self):\n self.SetStartDate(2021, 3, 1)\n self.SetEndDate(2021, 6, 18)\n self.SetCash(100000)\n self.tickers = ['CLNE', 'AMC', 'BB', 'PLTR', 'NVDA', 'TSLA', 'CLOV',\n 'GME', 'AMD', 'CLF', 'UWMC', 'WKHS', 'AAPL', 'AMZN', 'TLRY',\n 'PRPL', 'SOFI', 'NIO', 'DKNG', 'NNDM', 'ET', 'CRSR', 'ITUB',\n 'ASO', 'BABA', 'GLD', 'ARVL', 'WISH', 'VIAC', 'SNDL', 'GOEV',\n 'WOOF', 'SENS', 'NET', 'ME', 'HUYA', 'DIS', 'GOOGL', 'MSFT',\n 'SPCE', 'TIL', 'RKT', 'JPM', 'EM', 'APP', 'LEV', 'F', 'SQQQ',\n 'TQQQ', 'CVAC', 'ARKK', 'SLV', 'FB', 'NOK', 'OCGN', 'SQ',\n 'XPEV', 'JD', 'VZIO', 'XLF', 'HYLN', 'GE', 'NFLX', 'ROPE',\n 'WEN', 'FSR', 'TLT', 'SPOT', 'MT', 'TTD', 'BA', 'SI', 'FUBO',\n 'PYPL', 'WFC', 'ENPH', 'BAC', 'XOM', 'INTC', 'PSFE', 'TAL',\n 'ZM', 'COIN', 'TRCH', 'SCR', 'ROOT', 'QS', 'SKLZ', 'ATOS',\n 'GEO', 'UVXY', 'SHOP', 'RBLX', 'DE', 'GM', 'LI', 'UPS', 'DASH',\n 'ROKU', 'NKLA', 'WTI', 'CHPT', 'SWBI', 'FINV', 'VXRT', 'OXY',\n 'WIT', 'MX', 'PLUG', 'ZNGA', 'TM', 'MARA', 'IDEX', 'ADBE',\n 'ABNB', 'DDS', 'WMT', 'TX', 'IWM', 'ASAN', 'RIOT', 'MVIS',\n 'MNMD', 'PINS', 'ARKF', 'BBY', 'GUSH', 'PENN', 'NNOX', 'STEM',\n 'BYND', 'LUV', 'NUE', 'IOVA', 'NEE', 'PS', 'MRO', 'OGS', 'RUN',\n 'XLE', 'FCEL', 'MCD', 'UPST', 'ETSY', 'JMIA', 'DIA', 'BNGO',\n 'SDC', 'EDU', 'UBER', 'ZIM', 'OPEN', 'MSOS', 'MOO', 'NKE', 'HD',\n 'RNG', 'PATH', 'WLK', 'RAIN', 'FCX', 'SNAP', 'CPNG', 'MAPS',\n 'INO', 'LEN', 'SOLO', 'PTON', 'MU', 'HSY']\n self.investP = 1 / len(self.tickers)\n self.SetWarmup(TimeSpan.FromDays(65))\n self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel\n (self.RebalanceFunction))\n for stock in self.tickers:\n self.AddEquity(stock, Resolution.Daily)\n self.AddRiskManagement(TrailingStopRiskManagementModel(0.08))\n self.trade = True\n csv = self.Download(\n 'https://raw.githubusercontent.com/sommohapatra/reddit_sentiment/main/Reddit_Sentiment_Equity_new.csv'\n )\n self.df = pd.read_csv(StringIO(csv))\n self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.At(10, \n 30), self.runDaily)\n\n def RebalanceFunction(self, time):\n if time.weekday() != 0:\n return None\n <function token>\n <function token>\n", "<import token>\n\n\nclass RedditStockSentiment(QCAlgorithm):\n <function token>\n\n def RebalanceFunction(self, time):\n if time.weekday() != 0:\n return None\n <function token>\n <function token>\n", "<import token>\n\n\nclass RedditStockSentiment(QCAlgorithm):\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n<class token>\n" ]
false
99,050
c05aaf1e67420cfd76b4a0b2a7543a15ebf0a329
#! /usr/bin/python # -*- coding: utf-8 -*- from elixir import * from security import Security import messages import gettext import locale from entity import User from entity import Account import service from datetime import datetime,timedelta security = Security() metadata.bind = 'sqlite:///accounts.sqlite' metadata.bind.encoding = 'utf-8' metadata.bind.echo = False setup_all() create_all() commit = session.commit class UserService: def add(self,name,email,password): user = User(name=name,email=email,password=security.password_hash(password)) commit() def get_user(self,email): return User.query.filter(User.email==email).first() def get_accounts(self,user): return user.accounts def update_password(self,user,old_password,new_password): accounts = user.accounts for account in accounts: name = security.decrypt(old_password,account.name) account.name = security.encrypt(new_password,name) title = security.decrypt(old_password,account.title) account.title = security.encrypt(new_password,title) login = security.decrypt(old_password,account.login) account.login = security.encrypt(new_password,login) password = security.decrypt(old_password,account.password) account.password = security.encrypt(new_password,password) site = security.decrypt(old_password,account.site) account.site = security.encrypt(new_password,site) description = security.decrypt(old_password,account.description) account.description = security.encrypt(new_password,description) user.password = security.password_hash(new_password) commit() def update_email(self,user,email): user.email = email commit() def update_name(self,user,name): user.name = name commit() class AccountService: def add(self,name,title,login,password,site,description,user_password,user): name = security.encrypt(user_password,name) title = security.encrypt(user_password,title) login = security.encrypt(user_password,login) password = security.encrypt(user_password,password) site = security.encrypt(user_password,site) description = security.encrypt(user_password,description) account = Account(name=name,title=title,login=login,password=password,site=site,description=description,user=user) commit() def get_account(self,user_password,name,user): accounts = user.accounts for account in accounts: if security.decrypt(user_password,account.name) == name: return account return None def find_account(self,user_password,default,user): accounts = user.accounts found_accounts = [] default = default.lower() for account in accounts: if (security.decrypt(user_password,account.name).lower().find(default) != -1): found_accounts.append(account) continue if (security.decrypt(user_password,account.title).lower().find(default) != -1): found_accounts.append(account) continue if (security.decrypt(user_password,account.login).lower().find(default) != -1): found_accounts.append(account) continue if (security.decrypt(user_password,account.site).lower().find(default) != -1): found_accounts.append(account) continue if (security.decrypt(user_password,account.description).lower().find(default) != -1): found_accounts.append(account) continue return found_accounts def find_account_custom(self,user_password,name,title,login,site,description,user): accounts = user.accounts found_accounts = [] for account in accounts: if (name is not None and security.decrypt(user_password,account.name).lower().find(name.lower()) != -1): found_accounts.append(account) continue if (title is not None and security.decrypt(user_password,account.title).lower().find(title.lower()) != -1): found_accounts.append(account) continue if (login is not None and security.decrypt(user_password,account.login).lower().find(login.lower()) != -1): found_accounts.append(account) continue if (site is not None and security.decrypt(user_password,account.site).lower().find(site.lower()) != -1): found_accounts.append(account) continue if (description is not None and security.decrypt(user_password,account.description).lower().find(description.lower()) != -1): found_accounts.append(account) continue return found_accounts def delete_account(self,account): account.delete() commit() def update(self,name,title,login,password,site,description,user_password,account): if name is not None: account.name = security.encrypt(user_password,name) if title is not None: account.title = security.encrypt(user_password,title) if login is not None: account.login = security.encrypt(user_password,login) if password is not None: account.password = security.encrypt(user_password,password) if site is not None: account.site = security.encrypt(user_password,site) if description is not None: account.description - security.encrypt(user_password,description) commit() class AuthenticationService: def __init__(self): self.user = None self.message_error = None self.time_login = None self.logged = False self.typed_password = None self.time_session = 1 def authenticate(self,email,password): userService = UserService() self.user = userService.get_user(email) if self.user is None: self.message_error = messages.authentication_email_error return False if security.password_matches(password,self.user.password): self.time_login = datetime.now() self.logged = True self.typed_password = password return True else: self.message_error = messages.authentication_password_error return False def get_login(self): return self.user.login def password_is_right(self,password): return security.password_matches(password,self.user.password) def logout(self): self.user = None self.message_error = None self.time_login = None self.logged = False self.typed_password = None def session_is_expired(self): if datetime.now()-timedelta(minutes=self.time_session) >= self.time_login: return True else: return False def info_session(self): begin = self.time_login end = self.time_login + timedelta(minutes=self.time_session) return (begin,end)
[ "#! /usr/bin/python\n# -*- coding: utf-8 -*- \n\nfrom elixir import *\nfrom security import Security\nimport messages\nimport gettext \nimport locale\nfrom entity import User\nfrom entity import Account\nimport service\nfrom datetime import datetime,timedelta\n\nsecurity = Security()\nmetadata.bind = 'sqlite:///accounts.sqlite'\nmetadata.bind.encoding = 'utf-8'\nmetadata.bind.echo = False\nsetup_all()\ncreate_all()\ncommit = session.commit\n\nclass UserService:\n \n def add(self,name,email,password):\n user = User(name=name,email=email,password=security.password_hash(password))\n commit()\n \n def get_user(self,email):\n return User.query.filter(User.email==email).first()\n \n def get_accounts(self,user):\n return user.accounts\n\n def update_password(self,user,old_password,new_password):\n accounts = user.accounts\n for account in accounts:\n name = security.decrypt(old_password,account.name)\n account.name = security.encrypt(new_password,name)\n\n title = security.decrypt(old_password,account.title)\n account.title = security.encrypt(new_password,title)\n\n login = security.decrypt(old_password,account.login)\n account.login = security.encrypt(new_password,login)\n\n password = security.decrypt(old_password,account.password)\n account.password = security.encrypt(new_password,password)\n\n site = security.decrypt(old_password,account.site)\n account.site = security.encrypt(new_password,site)\n\n description = security.decrypt(old_password,account.description)\n account.description = security.encrypt(new_password,description)\n user.password = security.password_hash(new_password)\n commit()\n \n def update_email(self,user,email):\n user.email = email\n commit()\n\n def update_name(self,user,name):\n user.name = name\n commit()\n\nclass AccountService:\n \n def add(self,name,title,login,password,site,description,user_password,user):\n name = security.encrypt(user_password,name)\n title = security.encrypt(user_password,title)\n login = security.encrypt(user_password,login)\n password = security.encrypt(user_password,password)\n site = security.encrypt(user_password,site)\n description = security.encrypt(user_password,description)\n account = Account(name=name,title=title,login=login,password=password,site=site,description=description,user=user)\n commit()\n \n def get_account(self,user_password,name,user):\n accounts = user.accounts\n for account in accounts:\n if security.decrypt(user_password,account.name) == name:\n return account\n return None\n \n def find_account(self,user_password,default,user):\n accounts = user.accounts\n found_accounts = []\n default = default.lower()\n for account in accounts:\n if (security.decrypt(user_password,account.name).lower().find(default) != -1):\n found_accounts.append(account)\n continue\n if (security.decrypt(user_password,account.title).lower().find(default) != -1):\n found_accounts.append(account)\n continue\n if (security.decrypt(user_password,account.login).lower().find(default) != -1):\n found_accounts.append(account)\n continue\n if (security.decrypt(user_password,account.site).lower().find(default) != -1):\n found_accounts.append(account)\n continue\n if (security.decrypt(user_password,account.description).lower().find(default) != -1):\n found_accounts.append(account)\n continue\n return found_accounts\n \n def find_account_custom(self,user_password,name,title,login,site,description,user):\n accounts = user.accounts\n found_accounts = []\n for account in accounts:\n if (name is not None and security.decrypt(user_password,account.name).lower().find(name.lower()) != -1):\n found_accounts.append(account)\n continue\n if (title is not None and security.decrypt(user_password,account.title).lower().find(title.lower()) != -1):\n found_accounts.append(account)\n continue\n if (login is not None and security.decrypt(user_password,account.login).lower().find(login.lower()) != -1):\n found_accounts.append(account)\n continue\n if (site is not None and security.decrypt(user_password,account.site).lower().find(site.lower()) != -1):\n found_accounts.append(account)\n continue\n if (description is not None and security.decrypt(user_password,account.description).lower().find(description.lower()) != -1):\n found_accounts.append(account)\n continue\n return found_accounts\n\n def delete_account(self,account):\n account.delete()\n commit()\n\n def update(self,name,title,login,password,site,description,user_password,account):\n if name is not None:\n account.name = security.encrypt(user_password,name)\n if title is not None:\n account.title = security.encrypt(user_password,title)\n if login is not None:\n account.login = security.encrypt(user_password,login)\n if password is not None:\n account.password = security.encrypt(user_password,password)\n if site is not None:\n account.site = security.encrypt(user_password,site)\n if description is not None:\n account.description - security.encrypt(user_password,description)\n commit()\n\n \nclass AuthenticationService:\n \n def __init__(self):\n self.user = None\n self.message_error = None\n self.time_login = None\n self.logged = False\n self.typed_password = None\n self.time_session = 1\n \n def authenticate(self,email,password):\n userService = UserService()\n self.user = userService.get_user(email)\n if self.user is None:\n self.message_error = messages.authentication_email_error\n return False\n if security.password_matches(password,self.user.password):\n self.time_login = datetime.now()\n self.logged = True\n self.typed_password = password\n return True\n else:\n self.message_error = messages.authentication_password_error\n return False\n \n def get_login(self):\n return self.user.login\n\n def password_is_right(self,password):\n return security.password_matches(password,self.user.password) \n \n def logout(self):\n self.user = None\n self.message_error = None\n self.time_login = None\n self.logged = False\n self.typed_password = None\n\n \n def session_is_expired(self):\n if datetime.now()-timedelta(minutes=self.time_session) >= self.time_login:\n return True\n else:\n return False\n \n def info_session(self):\n begin = self.time_login\n end = self.time_login + timedelta(minutes=self.time_session)\n return (begin,end)\n \n \n \n \n", "from elixir import *\nfrom security import Security\nimport messages\nimport gettext\nimport locale\nfrom entity import User\nfrom entity import Account\nimport service\nfrom datetime import datetime, timedelta\nsecurity = Security()\nmetadata.bind = 'sqlite:///accounts.sqlite'\nmetadata.bind.encoding = 'utf-8'\nmetadata.bind.echo = False\nsetup_all()\ncreate_all()\ncommit = session.commit\n\n\nclass UserService:\n\n def add(self, name, email, password):\n user = User(name=name, email=email, password=security.password_hash\n (password))\n commit()\n\n def get_user(self, email):\n return User.query.filter(User.email == email).first()\n\n def get_accounts(self, user):\n return user.accounts\n\n def update_password(self, user, old_password, new_password):\n accounts = user.accounts\n for account in accounts:\n name = security.decrypt(old_password, account.name)\n account.name = security.encrypt(new_password, name)\n title = security.decrypt(old_password, account.title)\n account.title = security.encrypt(new_password, title)\n login = security.decrypt(old_password, account.login)\n account.login = security.encrypt(new_password, login)\n password = security.decrypt(old_password, account.password)\n account.password = security.encrypt(new_password, password)\n site = security.decrypt(old_password, account.site)\n account.site = security.encrypt(new_password, site)\n description = security.decrypt(old_password, account.description)\n account.description = security.encrypt(new_password, description)\n user.password = security.password_hash(new_password)\n commit()\n\n def update_email(self, user, email):\n user.email = email\n commit()\n\n def update_name(self, user, name):\n user.name = name\n commit()\n\n\nclass AccountService:\n\n def add(self, name, title, login, password, site, description,\n user_password, user):\n name = security.encrypt(user_password, name)\n title = security.encrypt(user_password, title)\n login = security.encrypt(user_password, login)\n password = security.encrypt(user_password, password)\n site = security.encrypt(user_password, site)\n description = security.encrypt(user_password, description)\n account = Account(name=name, title=title, login=login, password=\n password, site=site, description=description, user=user)\n commit()\n\n def get_account(self, user_password, name, user):\n accounts = user.accounts\n for account in accounts:\n if security.decrypt(user_password, account.name) == name:\n return account\n return None\n\n def find_account(self, user_password, default, user):\n accounts = user.accounts\n found_accounts = []\n default = default.lower()\n for account in accounts:\n if security.decrypt(user_password, account.name).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.title).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.login).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.site).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.description).lower(\n ).find(default) != -1:\n found_accounts.append(account)\n continue\n return found_accounts\n\n def find_account_custom(self, user_password, name, title, login, site,\n description, user):\n accounts = user.accounts\n found_accounts = []\n for account in accounts:\n if name is not None and security.decrypt(user_password, account\n .name).lower().find(name.lower()) != -1:\n found_accounts.append(account)\n continue\n if title is not None and security.decrypt(user_password,\n account.title).lower().find(title.lower()) != -1:\n found_accounts.append(account)\n continue\n if login is not None and security.decrypt(user_password,\n account.login).lower().find(login.lower()) != -1:\n found_accounts.append(account)\n continue\n if site is not None and security.decrypt(user_password, account\n .site).lower().find(site.lower()) != -1:\n found_accounts.append(account)\n continue\n if description is not None and security.decrypt(user_password,\n account.description).lower().find(description.lower()) != -1:\n found_accounts.append(account)\n continue\n return found_accounts\n\n def delete_account(self, account):\n account.delete()\n commit()\n\n def update(self, name, title, login, password, site, description,\n user_password, account):\n if name is not None:\n account.name = security.encrypt(user_password, name)\n if title is not None:\n account.title = security.encrypt(user_password, title)\n if login is not None:\n account.login = security.encrypt(user_password, login)\n if password is not None:\n account.password = security.encrypt(user_password, password)\n if site is not None:\n account.site = security.encrypt(user_password, site)\n if description is not None:\n account.description - security.encrypt(user_password, description)\n commit()\n\n\nclass AuthenticationService:\n\n def __init__(self):\n self.user = None\n self.message_error = None\n self.time_login = None\n self.logged = False\n self.typed_password = None\n self.time_session = 1\n\n def authenticate(self, email, password):\n userService = UserService()\n self.user = userService.get_user(email)\n if self.user is None:\n self.message_error = messages.authentication_email_error\n return False\n if security.password_matches(password, self.user.password):\n self.time_login = datetime.now()\n self.logged = True\n self.typed_password = password\n return True\n else:\n self.message_error = messages.authentication_password_error\n return False\n\n def get_login(self):\n return self.user.login\n\n def password_is_right(self, password):\n return security.password_matches(password, self.user.password)\n\n def logout(self):\n self.user = None\n self.message_error = None\n self.time_login = None\n self.logged = False\n self.typed_password = None\n\n def session_is_expired(self):\n if datetime.now() - timedelta(minutes=self.time_session\n ) >= self.time_login:\n return True\n else:\n return False\n\n def info_session(self):\n begin = self.time_login\n end = self.time_login + timedelta(minutes=self.time_session)\n return begin, end\n", "<import token>\nsecurity = Security()\nmetadata.bind = 'sqlite:///accounts.sqlite'\nmetadata.bind.encoding = 'utf-8'\nmetadata.bind.echo = False\nsetup_all()\ncreate_all()\ncommit = session.commit\n\n\nclass UserService:\n\n def add(self, name, email, password):\n user = User(name=name, email=email, password=security.password_hash\n (password))\n commit()\n\n def get_user(self, email):\n return User.query.filter(User.email == email).first()\n\n def get_accounts(self, user):\n return user.accounts\n\n def update_password(self, user, old_password, new_password):\n accounts = user.accounts\n for account in accounts:\n name = security.decrypt(old_password, account.name)\n account.name = security.encrypt(new_password, name)\n title = security.decrypt(old_password, account.title)\n account.title = security.encrypt(new_password, title)\n login = security.decrypt(old_password, account.login)\n account.login = security.encrypt(new_password, login)\n password = security.decrypt(old_password, account.password)\n account.password = security.encrypt(new_password, password)\n site = security.decrypt(old_password, account.site)\n account.site = security.encrypt(new_password, site)\n description = security.decrypt(old_password, account.description)\n account.description = security.encrypt(new_password, description)\n user.password = security.password_hash(new_password)\n commit()\n\n def update_email(self, user, email):\n user.email = email\n commit()\n\n def update_name(self, user, name):\n user.name = name\n commit()\n\n\nclass AccountService:\n\n def add(self, name, title, login, password, site, description,\n user_password, user):\n name = security.encrypt(user_password, name)\n title = security.encrypt(user_password, title)\n login = security.encrypt(user_password, login)\n password = security.encrypt(user_password, password)\n site = security.encrypt(user_password, site)\n description = security.encrypt(user_password, description)\n account = Account(name=name, title=title, login=login, password=\n password, site=site, description=description, user=user)\n commit()\n\n def get_account(self, user_password, name, user):\n accounts = user.accounts\n for account in accounts:\n if security.decrypt(user_password, account.name) == name:\n return account\n return None\n\n def find_account(self, user_password, default, user):\n accounts = user.accounts\n found_accounts = []\n default = default.lower()\n for account in accounts:\n if security.decrypt(user_password, account.name).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.title).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.login).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.site).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.description).lower(\n ).find(default) != -1:\n found_accounts.append(account)\n continue\n return found_accounts\n\n def find_account_custom(self, user_password, name, title, login, site,\n description, user):\n accounts = user.accounts\n found_accounts = []\n for account in accounts:\n if name is not None and security.decrypt(user_password, account\n .name).lower().find(name.lower()) != -1:\n found_accounts.append(account)\n continue\n if title is not None and security.decrypt(user_password,\n account.title).lower().find(title.lower()) != -1:\n found_accounts.append(account)\n continue\n if login is not None and security.decrypt(user_password,\n account.login).lower().find(login.lower()) != -1:\n found_accounts.append(account)\n continue\n if site is not None and security.decrypt(user_password, account\n .site).lower().find(site.lower()) != -1:\n found_accounts.append(account)\n continue\n if description is not None and security.decrypt(user_password,\n account.description).lower().find(description.lower()) != -1:\n found_accounts.append(account)\n continue\n return found_accounts\n\n def delete_account(self, account):\n account.delete()\n commit()\n\n def update(self, name, title, login, password, site, description,\n user_password, account):\n if name is not None:\n account.name = security.encrypt(user_password, name)\n if title is not None:\n account.title = security.encrypt(user_password, title)\n if login is not None:\n account.login = security.encrypt(user_password, login)\n if password is not None:\n account.password = security.encrypt(user_password, password)\n if site is not None:\n account.site = security.encrypt(user_password, site)\n if description is not None:\n account.description - security.encrypt(user_password, description)\n commit()\n\n\nclass AuthenticationService:\n\n def __init__(self):\n self.user = None\n self.message_error = None\n self.time_login = None\n self.logged = False\n self.typed_password = None\n self.time_session = 1\n\n def authenticate(self, email, password):\n userService = UserService()\n self.user = userService.get_user(email)\n if self.user is None:\n self.message_error = messages.authentication_email_error\n return False\n if security.password_matches(password, self.user.password):\n self.time_login = datetime.now()\n self.logged = True\n self.typed_password = password\n return True\n else:\n self.message_error = messages.authentication_password_error\n return False\n\n def get_login(self):\n return self.user.login\n\n def password_is_right(self, password):\n return security.password_matches(password, self.user.password)\n\n def logout(self):\n self.user = None\n self.message_error = None\n self.time_login = None\n self.logged = False\n self.typed_password = None\n\n def session_is_expired(self):\n if datetime.now() - timedelta(minutes=self.time_session\n ) >= self.time_login:\n return True\n else:\n return False\n\n def info_session(self):\n begin = self.time_login\n end = self.time_login + timedelta(minutes=self.time_session)\n return begin, end\n", "<import token>\n<assignment token>\nsetup_all()\ncreate_all()\n<assignment token>\n\n\nclass UserService:\n\n def add(self, name, email, password):\n user = User(name=name, email=email, password=security.password_hash\n (password))\n commit()\n\n def get_user(self, email):\n return User.query.filter(User.email == email).first()\n\n def get_accounts(self, user):\n return user.accounts\n\n def update_password(self, user, old_password, new_password):\n accounts = user.accounts\n for account in accounts:\n name = security.decrypt(old_password, account.name)\n account.name = security.encrypt(new_password, name)\n title = security.decrypt(old_password, account.title)\n account.title = security.encrypt(new_password, title)\n login = security.decrypt(old_password, account.login)\n account.login = security.encrypt(new_password, login)\n password = security.decrypt(old_password, account.password)\n account.password = security.encrypt(new_password, password)\n site = security.decrypt(old_password, account.site)\n account.site = security.encrypt(new_password, site)\n description = security.decrypt(old_password, account.description)\n account.description = security.encrypt(new_password, description)\n user.password = security.password_hash(new_password)\n commit()\n\n def update_email(self, user, email):\n user.email = email\n commit()\n\n def update_name(self, user, name):\n user.name = name\n commit()\n\n\nclass AccountService:\n\n def add(self, name, title, login, password, site, description,\n user_password, user):\n name = security.encrypt(user_password, name)\n title = security.encrypt(user_password, title)\n login = security.encrypt(user_password, login)\n password = security.encrypt(user_password, password)\n site = security.encrypt(user_password, site)\n description = security.encrypt(user_password, description)\n account = Account(name=name, title=title, login=login, password=\n password, site=site, description=description, user=user)\n commit()\n\n def get_account(self, user_password, name, user):\n accounts = user.accounts\n for account in accounts:\n if security.decrypt(user_password, account.name) == name:\n return account\n return None\n\n def find_account(self, user_password, default, user):\n accounts = user.accounts\n found_accounts = []\n default = default.lower()\n for account in accounts:\n if security.decrypt(user_password, account.name).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.title).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.login).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.site).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.description).lower(\n ).find(default) != -1:\n found_accounts.append(account)\n continue\n return found_accounts\n\n def find_account_custom(self, user_password, name, title, login, site,\n description, user):\n accounts = user.accounts\n found_accounts = []\n for account in accounts:\n if name is not None and security.decrypt(user_password, account\n .name).lower().find(name.lower()) != -1:\n found_accounts.append(account)\n continue\n if title is not None and security.decrypt(user_password,\n account.title).lower().find(title.lower()) != -1:\n found_accounts.append(account)\n continue\n if login is not None and security.decrypt(user_password,\n account.login).lower().find(login.lower()) != -1:\n found_accounts.append(account)\n continue\n if site is not None and security.decrypt(user_password, account\n .site).lower().find(site.lower()) != -1:\n found_accounts.append(account)\n continue\n if description is not None and security.decrypt(user_password,\n account.description).lower().find(description.lower()) != -1:\n found_accounts.append(account)\n continue\n return found_accounts\n\n def delete_account(self, account):\n account.delete()\n commit()\n\n def update(self, name, title, login, password, site, description,\n user_password, account):\n if name is not None:\n account.name = security.encrypt(user_password, name)\n if title is not None:\n account.title = security.encrypt(user_password, title)\n if login is not None:\n account.login = security.encrypt(user_password, login)\n if password is not None:\n account.password = security.encrypt(user_password, password)\n if site is not None:\n account.site = security.encrypt(user_password, site)\n if description is not None:\n account.description - security.encrypt(user_password, description)\n commit()\n\n\nclass AuthenticationService:\n\n def __init__(self):\n self.user = None\n self.message_error = None\n self.time_login = None\n self.logged = False\n self.typed_password = None\n self.time_session = 1\n\n def authenticate(self, email, password):\n userService = UserService()\n self.user = userService.get_user(email)\n if self.user is None:\n self.message_error = messages.authentication_email_error\n return False\n if security.password_matches(password, self.user.password):\n self.time_login = datetime.now()\n self.logged = True\n self.typed_password = password\n return True\n else:\n self.message_error = messages.authentication_password_error\n return False\n\n def get_login(self):\n return self.user.login\n\n def password_is_right(self, password):\n return security.password_matches(password, self.user.password)\n\n def logout(self):\n self.user = None\n self.message_error = None\n self.time_login = None\n self.logged = False\n self.typed_password = None\n\n def session_is_expired(self):\n if datetime.now() - timedelta(minutes=self.time_session\n ) >= self.time_login:\n return True\n else:\n return False\n\n def info_session(self):\n begin = self.time_login\n end = self.time_login + timedelta(minutes=self.time_session)\n return begin, end\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n\n\nclass UserService:\n\n def add(self, name, email, password):\n user = User(name=name, email=email, password=security.password_hash\n (password))\n commit()\n\n def get_user(self, email):\n return User.query.filter(User.email == email).first()\n\n def get_accounts(self, user):\n return user.accounts\n\n def update_password(self, user, old_password, new_password):\n accounts = user.accounts\n for account in accounts:\n name = security.decrypt(old_password, account.name)\n account.name = security.encrypt(new_password, name)\n title = security.decrypt(old_password, account.title)\n account.title = security.encrypt(new_password, title)\n login = security.decrypt(old_password, account.login)\n account.login = security.encrypt(new_password, login)\n password = security.decrypt(old_password, account.password)\n account.password = security.encrypt(new_password, password)\n site = security.decrypt(old_password, account.site)\n account.site = security.encrypt(new_password, site)\n description = security.decrypt(old_password, account.description)\n account.description = security.encrypt(new_password, description)\n user.password = security.password_hash(new_password)\n commit()\n\n def update_email(self, user, email):\n user.email = email\n commit()\n\n def update_name(self, user, name):\n user.name = name\n commit()\n\n\nclass AccountService:\n\n def add(self, name, title, login, password, site, description,\n user_password, user):\n name = security.encrypt(user_password, name)\n title = security.encrypt(user_password, title)\n login = security.encrypt(user_password, login)\n password = security.encrypt(user_password, password)\n site = security.encrypt(user_password, site)\n description = security.encrypt(user_password, description)\n account = Account(name=name, title=title, login=login, password=\n password, site=site, description=description, user=user)\n commit()\n\n def get_account(self, user_password, name, user):\n accounts = user.accounts\n for account in accounts:\n if security.decrypt(user_password, account.name) == name:\n return account\n return None\n\n def find_account(self, user_password, default, user):\n accounts = user.accounts\n found_accounts = []\n default = default.lower()\n for account in accounts:\n if security.decrypt(user_password, account.name).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.title).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.login).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.site).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.description).lower(\n ).find(default) != -1:\n found_accounts.append(account)\n continue\n return found_accounts\n\n def find_account_custom(self, user_password, name, title, login, site,\n description, user):\n accounts = user.accounts\n found_accounts = []\n for account in accounts:\n if name is not None and security.decrypt(user_password, account\n .name).lower().find(name.lower()) != -1:\n found_accounts.append(account)\n continue\n if title is not None and security.decrypt(user_password,\n account.title).lower().find(title.lower()) != -1:\n found_accounts.append(account)\n continue\n if login is not None and security.decrypt(user_password,\n account.login).lower().find(login.lower()) != -1:\n found_accounts.append(account)\n continue\n if site is not None and security.decrypt(user_password, account\n .site).lower().find(site.lower()) != -1:\n found_accounts.append(account)\n continue\n if description is not None and security.decrypt(user_password,\n account.description).lower().find(description.lower()) != -1:\n found_accounts.append(account)\n continue\n return found_accounts\n\n def delete_account(self, account):\n account.delete()\n commit()\n\n def update(self, name, title, login, password, site, description,\n user_password, account):\n if name is not None:\n account.name = security.encrypt(user_password, name)\n if title is not None:\n account.title = security.encrypt(user_password, title)\n if login is not None:\n account.login = security.encrypt(user_password, login)\n if password is not None:\n account.password = security.encrypt(user_password, password)\n if site is not None:\n account.site = security.encrypt(user_password, site)\n if description is not None:\n account.description - security.encrypt(user_password, description)\n commit()\n\n\nclass AuthenticationService:\n\n def __init__(self):\n self.user = None\n self.message_error = None\n self.time_login = None\n self.logged = False\n self.typed_password = None\n self.time_session = 1\n\n def authenticate(self, email, password):\n userService = UserService()\n self.user = userService.get_user(email)\n if self.user is None:\n self.message_error = messages.authentication_email_error\n return False\n if security.password_matches(password, self.user.password):\n self.time_login = datetime.now()\n self.logged = True\n self.typed_password = password\n return True\n else:\n self.message_error = messages.authentication_password_error\n return False\n\n def get_login(self):\n return self.user.login\n\n def password_is_right(self, password):\n return security.password_matches(password, self.user.password)\n\n def logout(self):\n self.user = None\n self.message_error = None\n self.time_login = None\n self.logged = False\n self.typed_password = None\n\n def session_is_expired(self):\n if datetime.now() - timedelta(minutes=self.time_session\n ) >= self.time_login:\n return True\n else:\n return False\n\n def info_session(self):\n begin = self.time_login\n end = self.time_login + timedelta(minutes=self.time_session)\n return begin, end\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n\n\nclass UserService:\n\n def add(self, name, email, password):\n user = User(name=name, email=email, password=security.password_hash\n (password))\n commit()\n <function token>\n\n def get_accounts(self, user):\n return user.accounts\n\n def update_password(self, user, old_password, new_password):\n accounts = user.accounts\n for account in accounts:\n name = security.decrypt(old_password, account.name)\n account.name = security.encrypt(new_password, name)\n title = security.decrypt(old_password, account.title)\n account.title = security.encrypt(new_password, title)\n login = security.decrypt(old_password, account.login)\n account.login = security.encrypt(new_password, login)\n password = security.decrypt(old_password, account.password)\n account.password = security.encrypt(new_password, password)\n site = security.decrypt(old_password, account.site)\n account.site = security.encrypt(new_password, site)\n description = security.decrypt(old_password, account.description)\n account.description = security.encrypt(new_password, description)\n user.password = security.password_hash(new_password)\n commit()\n\n def update_email(self, user, email):\n user.email = email\n commit()\n\n def update_name(self, user, name):\n user.name = name\n commit()\n\n\nclass AccountService:\n\n def add(self, name, title, login, password, site, description,\n user_password, user):\n name = security.encrypt(user_password, name)\n title = security.encrypt(user_password, title)\n login = security.encrypt(user_password, login)\n password = security.encrypt(user_password, password)\n site = security.encrypt(user_password, site)\n description = security.encrypt(user_password, description)\n account = Account(name=name, title=title, login=login, password=\n password, site=site, description=description, user=user)\n commit()\n\n def get_account(self, user_password, name, user):\n accounts = user.accounts\n for account in accounts:\n if security.decrypt(user_password, account.name) == name:\n return account\n return None\n\n def find_account(self, user_password, default, user):\n accounts = user.accounts\n found_accounts = []\n default = default.lower()\n for account in accounts:\n if security.decrypt(user_password, account.name).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.title).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.login).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.site).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.description).lower(\n ).find(default) != -1:\n found_accounts.append(account)\n continue\n return found_accounts\n\n def find_account_custom(self, user_password, name, title, login, site,\n description, user):\n accounts = user.accounts\n found_accounts = []\n for account in accounts:\n if name is not None and security.decrypt(user_password, account\n .name).lower().find(name.lower()) != -1:\n found_accounts.append(account)\n continue\n if title is not None and security.decrypt(user_password,\n account.title).lower().find(title.lower()) != -1:\n found_accounts.append(account)\n continue\n if login is not None and security.decrypt(user_password,\n account.login).lower().find(login.lower()) != -1:\n found_accounts.append(account)\n continue\n if site is not None and security.decrypt(user_password, account\n .site).lower().find(site.lower()) != -1:\n found_accounts.append(account)\n continue\n if description is not None and security.decrypt(user_password,\n account.description).lower().find(description.lower()) != -1:\n found_accounts.append(account)\n continue\n return found_accounts\n\n def delete_account(self, account):\n account.delete()\n commit()\n\n def update(self, name, title, login, password, site, description,\n user_password, account):\n if name is not None:\n account.name = security.encrypt(user_password, name)\n if title is not None:\n account.title = security.encrypt(user_password, title)\n if login is not None:\n account.login = security.encrypt(user_password, login)\n if password is not None:\n account.password = security.encrypt(user_password, password)\n if site is not None:\n account.site = security.encrypt(user_password, site)\n if description is not None:\n account.description - security.encrypt(user_password, description)\n commit()\n\n\nclass AuthenticationService:\n\n def __init__(self):\n self.user = None\n self.message_error = None\n self.time_login = None\n self.logged = False\n self.typed_password = None\n self.time_session = 1\n\n def authenticate(self, email, password):\n userService = UserService()\n self.user = userService.get_user(email)\n if self.user is None:\n self.message_error = messages.authentication_email_error\n return False\n if security.password_matches(password, self.user.password):\n self.time_login = datetime.now()\n self.logged = True\n self.typed_password = password\n return True\n else:\n self.message_error = messages.authentication_password_error\n return False\n\n def get_login(self):\n return self.user.login\n\n def password_is_right(self, password):\n return security.password_matches(password, self.user.password)\n\n def logout(self):\n self.user = None\n self.message_error = None\n self.time_login = None\n self.logged = False\n self.typed_password = None\n\n def session_is_expired(self):\n if datetime.now() - timedelta(minutes=self.time_session\n ) >= self.time_login:\n return True\n else:\n return False\n\n def info_session(self):\n begin = self.time_login\n end = self.time_login + timedelta(minutes=self.time_session)\n return begin, end\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n\n\nclass UserService:\n\n def add(self, name, email, password):\n user = User(name=name, email=email, password=security.password_hash\n (password))\n commit()\n <function token>\n\n def get_accounts(self, user):\n return user.accounts\n <function token>\n\n def update_email(self, user, email):\n user.email = email\n commit()\n\n def update_name(self, user, name):\n user.name = name\n commit()\n\n\nclass AccountService:\n\n def add(self, name, title, login, password, site, description,\n user_password, user):\n name = security.encrypt(user_password, name)\n title = security.encrypt(user_password, title)\n login = security.encrypt(user_password, login)\n password = security.encrypt(user_password, password)\n site = security.encrypt(user_password, site)\n description = security.encrypt(user_password, description)\n account = Account(name=name, title=title, login=login, password=\n password, site=site, description=description, user=user)\n commit()\n\n def get_account(self, user_password, name, user):\n accounts = user.accounts\n for account in accounts:\n if security.decrypt(user_password, account.name) == name:\n return account\n return None\n\n def find_account(self, user_password, default, user):\n accounts = user.accounts\n found_accounts = []\n default = default.lower()\n for account in accounts:\n if security.decrypt(user_password, account.name).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.title).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.login).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.site).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.description).lower(\n ).find(default) != -1:\n found_accounts.append(account)\n continue\n return found_accounts\n\n def find_account_custom(self, user_password, name, title, login, site,\n description, user):\n accounts = user.accounts\n found_accounts = []\n for account in accounts:\n if name is not None and security.decrypt(user_password, account\n .name).lower().find(name.lower()) != -1:\n found_accounts.append(account)\n continue\n if title is not None and security.decrypt(user_password,\n account.title).lower().find(title.lower()) != -1:\n found_accounts.append(account)\n continue\n if login is not None and security.decrypt(user_password,\n account.login).lower().find(login.lower()) != -1:\n found_accounts.append(account)\n continue\n if site is not None and security.decrypt(user_password, account\n .site).lower().find(site.lower()) != -1:\n found_accounts.append(account)\n continue\n if description is not None and security.decrypt(user_password,\n account.description).lower().find(description.lower()) != -1:\n found_accounts.append(account)\n continue\n return found_accounts\n\n def delete_account(self, account):\n account.delete()\n commit()\n\n def update(self, name, title, login, password, site, description,\n user_password, account):\n if name is not None:\n account.name = security.encrypt(user_password, name)\n if title is not None:\n account.title = security.encrypt(user_password, title)\n if login is not None:\n account.login = security.encrypt(user_password, login)\n if password is not None:\n account.password = security.encrypt(user_password, password)\n if site is not None:\n account.site = security.encrypt(user_password, site)\n if description is not None:\n account.description - security.encrypt(user_password, description)\n commit()\n\n\nclass AuthenticationService:\n\n def __init__(self):\n self.user = None\n self.message_error = None\n self.time_login = None\n self.logged = False\n self.typed_password = None\n self.time_session = 1\n\n def authenticate(self, email, password):\n userService = UserService()\n self.user = userService.get_user(email)\n if self.user is None:\n self.message_error = messages.authentication_email_error\n return False\n if security.password_matches(password, self.user.password):\n self.time_login = datetime.now()\n self.logged = True\n self.typed_password = password\n return True\n else:\n self.message_error = messages.authentication_password_error\n return False\n\n def get_login(self):\n return self.user.login\n\n def password_is_right(self, password):\n return security.password_matches(password, self.user.password)\n\n def logout(self):\n self.user = None\n self.message_error = None\n self.time_login = None\n self.logged = False\n self.typed_password = None\n\n def session_is_expired(self):\n if datetime.now() - timedelta(minutes=self.time_session\n ) >= self.time_login:\n return True\n else:\n return False\n\n def info_session(self):\n begin = self.time_login\n end = self.time_login + timedelta(minutes=self.time_session)\n return begin, end\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n\n\nclass UserService:\n\n def add(self, name, email, password):\n user = User(name=name, email=email, password=security.password_hash\n (password))\n commit()\n <function token>\n\n def get_accounts(self, user):\n return user.accounts\n <function token>\n\n def update_email(self, user, email):\n user.email = email\n commit()\n <function token>\n\n\nclass AccountService:\n\n def add(self, name, title, login, password, site, description,\n user_password, user):\n name = security.encrypt(user_password, name)\n title = security.encrypt(user_password, title)\n login = security.encrypt(user_password, login)\n password = security.encrypt(user_password, password)\n site = security.encrypt(user_password, site)\n description = security.encrypt(user_password, description)\n account = Account(name=name, title=title, login=login, password=\n password, site=site, description=description, user=user)\n commit()\n\n def get_account(self, user_password, name, user):\n accounts = user.accounts\n for account in accounts:\n if security.decrypt(user_password, account.name) == name:\n return account\n return None\n\n def find_account(self, user_password, default, user):\n accounts = user.accounts\n found_accounts = []\n default = default.lower()\n for account in accounts:\n if security.decrypt(user_password, account.name).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.title).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.login).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.site).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.description).lower(\n ).find(default) != -1:\n found_accounts.append(account)\n continue\n return found_accounts\n\n def find_account_custom(self, user_password, name, title, login, site,\n description, user):\n accounts = user.accounts\n found_accounts = []\n for account in accounts:\n if name is not None and security.decrypt(user_password, account\n .name).lower().find(name.lower()) != -1:\n found_accounts.append(account)\n continue\n if title is not None and security.decrypt(user_password,\n account.title).lower().find(title.lower()) != -1:\n found_accounts.append(account)\n continue\n if login is not None and security.decrypt(user_password,\n account.login).lower().find(login.lower()) != -1:\n found_accounts.append(account)\n continue\n if site is not None and security.decrypt(user_password, account\n .site).lower().find(site.lower()) != -1:\n found_accounts.append(account)\n continue\n if description is not None and security.decrypt(user_password,\n account.description).lower().find(description.lower()) != -1:\n found_accounts.append(account)\n continue\n return found_accounts\n\n def delete_account(self, account):\n account.delete()\n commit()\n\n def update(self, name, title, login, password, site, description,\n user_password, account):\n if name is not None:\n account.name = security.encrypt(user_password, name)\n if title is not None:\n account.title = security.encrypt(user_password, title)\n if login is not None:\n account.login = security.encrypt(user_password, login)\n if password is not None:\n account.password = security.encrypt(user_password, password)\n if site is not None:\n account.site = security.encrypt(user_password, site)\n if description is not None:\n account.description - security.encrypt(user_password, description)\n commit()\n\n\nclass AuthenticationService:\n\n def __init__(self):\n self.user = None\n self.message_error = None\n self.time_login = None\n self.logged = False\n self.typed_password = None\n self.time_session = 1\n\n def authenticate(self, email, password):\n userService = UserService()\n self.user = userService.get_user(email)\n if self.user is None:\n self.message_error = messages.authentication_email_error\n return False\n if security.password_matches(password, self.user.password):\n self.time_login = datetime.now()\n self.logged = True\n self.typed_password = password\n return True\n else:\n self.message_error = messages.authentication_password_error\n return False\n\n def get_login(self):\n return self.user.login\n\n def password_is_right(self, password):\n return security.password_matches(password, self.user.password)\n\n def logout(self):\n self.user = None\n self.message_error = None\n self.time_login = None\n self.logged = False\n self.typed_password = None\n\n def session_is_expired(self):\n if datetime.now() - timedelta(minutes=self.time_session\n ) >= self.time_login:\n return True\n else:\n return False\n\n def info_session(self):\n begin = self.time_login\n end = self.time_login + timedelta(minutes=self.time_session)\n return begin, end\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n\n\nclass UserService:\n\n def add(self, name, email, password):\n user = User(name=name, email=email, password=security.password_hash\n (password))\n commit()\n <function token>\n <function token>\n <function token>\n\n def update_email(self, user, email):\n user.email = email\n commit()\n <function token>\n\n\nclass AccountService:\n\n def add(self, name, title, login, password, site, description,\n user_password, user):\n name = security.encrypt(user_password, name)\n title = security.encrypt(user_password, title)\n login = security.encrypt(user_password, login)\n password = security.encrypt(user_password, password)\n site = security.encrypt(user_password, site)\n description = security.encrypt(user_password, description)\n account = Account(name=name, title=title, login=login, password=\n password, site=site, description=description, user=user)\n commit()\n\n def get_account(self, user_password, name, user):\n accounts = user.accounts\n for account in accounts:\n if security.decrypt(user_password, account.name) == name:\n return account\n return None\n\n def find_account(self, user_password, default, user):\n accounts = user.accounts\n found_accounts = []\n default = default.lower()\n for account in accounts:\n if security.decrypt(user_password, account.name).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.title).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.login).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.site).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.description).lower(\n ).find(default) != -1:\n found_accounts.append(account)\n continue\n return found_accounts\n\n def find_account_custom(self, user_password, name, title, login, site,\n description, user):\n accounts = user.accounts\n found_accounts = []\n for account in accounts:\n if name is not None and security.decrypt(user_password, account\n .name).lower().find(name.lower()) != -1:\n found_accounts.append(account)\n continue\n if title is not None and security.decrypt(user_password,\n account.title).lower().find(title.lower()) != -1:\n found_accounts.append(account)\n continue\n if login is not None and security.decrypt(user_password,\n account.login).lower().find(login.lower()) != -1:\n found_accounts.append(account)\n continue\n if site is not None and security.decrypt(user_password, account\n .site).lower().find(site.lower()) != -1:\n found_accounts.append(account)\n continue\n if description is not None and security.decrypt(user_password,\n account.description).lower().find(description.lower()) != -1:\n found_accounts.append(account)\n continue\n return found_accounts\n\n def delete_account(self, account):\n account.delete()\n commit()\n\n def update(self, name, title, login, password, site, description,\n user_password, account):\n if name is not None:\n account.name = security.encrypt(user_password, name)\n if title is not None:\n account.title = security.encrypt(user_password, title)\n if login is not None:\n account.login = security.encrypt(user_password, login)\n if password is not None:\n account.password = security.encrypt(user_password, password)\n if site is not None:\n account.site = security.encrypt(user_password, site)\n if description is not None:\n account.description - security.encrypt(user_password, description)\n commit()\n\n\nclass AuthenticationService:\n\n def __init__(self):\n self.user = None\n self.message_error = None\n self.time_login = None\n self.logged = False\n self.typed_password = None\n self.time_session = 1\n\n def authenticate(self, email, password):\n userService = UserService()\n self.user = userService.get_user(email)\n if self.user is None:\n self.message_error = messages.authentication_email_error\n return False\n if security.password_matches(password, self.user.password):\n self.time_login = datetime.now()\n self.logged = True\n self.typed_password = password\n return True\n else:\n self.message_error = messages.authentication_password_error\n return False\n\n def get_login(self):\n return self.user.login\n\n def password_is_right(self, password):\n return security.password_matches(password, self.user.password)\n\n def logout(self):\n self.user = None\n self.message_error = None\n self.time_login = None\n self.logged = False\n self.typed_password = None\n\n def session_is_expired(self):\n if datetime.now() - timedelta(minutes=self.time_session\n ) >= self.time_login:\n return True\n else:\n return False\n\n def info_session(self):\n begin = self.time_login\n end = self.time_login + timedelta(minutes=self.time_session)\n return begin, end\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n\n\nclass UserService:\n <function token>\n <function token>\n <function token>\n <function token>\n\n def update_email(self, user, email):\n user.email = email\n commit()\n <function token>\n\n\nclass AccountService:\n\n def add(self, name, title, login, password, site, description,\n user_password, user):\n name = security.encrypt(user_password, name)\n title = security.encrypt(user_password, title)\n login = security.encrypt(user_password, login)\n password = security.encrypt(user_password, password)\n site = security.encrypt(user_password, site)\n description = security.encrypt(user_password, description)\n account = Account(name=name, title=title, login=login, password=\n password, site=site, description=description, user=user)\n commit()\n\n def get_account(self, user_password, name, user):\n accounts = user.accounts\n for account in accounts:\n if security.decrypt(user_password, account.name) == name:\n return account\n return None\n\n def find_account(self, user_password, default, user):\n accounts = user.accounts\n found_accounts = []\n default = default.lower()\n for account in accounts:\n if security.decrypt(user_password, account.name).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.title).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.login).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.site).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.description).lower(\n ).find(default) != -1:\n found_accounts.append(account)\n continue\n return found_accounts\n\n def find_account_custom(self, user_password, name, title, login, site,\n description, user):\n accounts = user.accounts\n found_accounts = []\n for account in accounts:\n if name is not None and security.decrypt(user_password, account\n .name).lower().find(name.lower()) != -1:\n found_accounts.append(account)\n continue\n if title is not None and security.decrypt(user_password,\n account.title).lower().find(title.lower()) != -1:\n found_accounts.append(account)\n continue\n if login is not None and security.decrypt(user_password,\n account.login).lower().find(login.lower()) != -1:\n found_accounts.append(account)\n continue\n if site is not None and security.decrypt(user_password, account\n .site).lower().find(site.lower()) != -1:\n found_accounts.append(account)\n continue\n if description is not None and security.decrypt(user_password,\n account.description).lower().find(description.lower()) != -1:\n found_accounts.append(account)\n continue\n return found_accounts\n\n def delete_account(self, account):\n account.delete()\n commit()\n\n def update(self, name, title, login, password, site, description,\n user_password, account):\n if name is not None:\n account.name = security.encrypt(user_password, name)\n if title is not None:\n account.title = security.encrypt(user_password, title)\n if login is not None:\n account.login = security.encrypt(user_password, login)\n if password is not None:\n account.password = security.encrypt(user_password, password)\n if site is not None:\n account.site = security.encrypt(user_password, site)\n if description is not None:\n account.description - security.encrypt(user_password, description)\n commit()\n\n\nclass AuthenticationService:\n\n def __init__(self):\n self.user = None\n self.message_error = None\n self.time_login = None\n self.logged = False\n self.typed_password = None\n self.time_session = 1\n\n def authenticate(self, email, password):\n userService = UserService()\n self.user = userService.get_user(email)\n if self.user is None:\n self.message_error = messages.authentication_email_error\n return False\n if security.password_matches(password, self.user.password):\n self.time_login = datetime.now()\n self.logged = True\n self.typed_password = password\n return True\n else:\n self.message_error = messages.authentication_password_error\n return False\n\n def get_login(self):\n return self.user.login\n\n def password_is_right(self, password):\n return security.password_matches(password, self.user.password)\n\n def logout(self):\n self.user = None\n self.message_error = None\n self.time_login = None\n self.logged = False\n self.typed_password = None\n\n def session_is_expired(self):\n if datetime.now() - timedelta(minutes=self.time_session\n ) >= self.time_login:\n return True\n else:\n return False\n\n def info_session(self):\n begin = self.time_login\n end = self.time_login + timedelta(minutes=self.time_session)\n return begin, end\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n\n\nclass UserService:\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\nclass AccountService:\n\n def add(self, name, title, login, password, site, description,\n user_password, user):\n name = security.encrypt(user_password, name)\n title = security.encrypt(user_password, title)\n login = security.encrypt(user_password, login)\n password = security.encrypt(user_password, password)\n site = security.encrypt(user_password, site)\n description = security.encrypt(user_password, description)\n account = Account(name=name, title=title, login=login, password=\n password, site=site, description=description, user=user)\n commit()\n\n def get_account(self, user_password, name, user):\n accounts = user.accounts\n for account in accounts:\n if security.decrypt(user_password, account.name) == name:\n return account\n return None\n\n def find_account(self, user_password, default, user):\n accounts = user.accounts\n found_accounts = []\n default = default.lower()\n for account in accounts:\n if security.decrypt(user_password, account.name).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.title).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.login).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.site).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.description).lower(\n ).find(default) != -1:\n found_accounts.append(account)\n continue\n return found_accounts\n\n def find_account_custom(self, user_password, name, title, login, site,\n description, user):\n accounts = user.accounts\n found_accounts = []\n for account in accounts:\n if name is not None and security.decrypt(user_password, account\n .name).lower().find(name.lower()) != -1:\n found_accounts.append(account)\n continue\n if title is not None and security.decrypt(user_password,\n account.title).lower().find(title.lower()) != -1:\n found_accounts.append(account)\n continue\n if login is not None and security.decrypt(user_password,\n account.login).lower().find(login.lower()) != -1:\n found_accounts.append(account)\n continue\n if site is not None and security.decrypt(user_password, account\n .site).lower().find(site.lower()) != -1:\n found_accounts.append(account)\n continue\n if description is not None and security.decrypt(user_password,\n account.description).lower().find(description.lower()) != -1:\n found_accounts.append(account)\n continue\n return found_accounts\n\n def delete_account(self, account):\n account.delete()\n commit()\n\n def update(self, name, title, login, password, site, description,\n user_password, account):\n if name is not None:\n account.name = security.encrypt(user_password, name)\n if title is not None:\n account.title = security.encrypt(user_password, title)\n if login is not None:\n account.login = security.encrypt(user_password, login)\n if password is not None:\n account.password = security.encrypt(user_password, password)\n if site is not None:\n account.site = security.encrypt(user_password, site)\n if description is not None:\n account.description - security.encrypt(user_password, description)\n commit()\n\n\nclass AuthenticationService:\n\n def __init__(self):\n self.user = None\n self.message_error = None\n self.time_login = None\n self.logged = False\n self.typed_password = None\n self.time_session = 1\n\n def authenticate(self, email, password):\n userService = UserService()\n self.user = userService.get_user(email)\n if self.user is None:\n self.message_error = messages.authentication_email_error\n return False\n if security.password_matches(password, self.user.password):\n self.time_login = datetime.now()\n self.logged = True\n self.typed_password = password\n return True\n else:\n self.message_error = messages.authentication_password_error\n return False\n\n def get_login(self):\n return self.user.login\n\n def password_is_right(self, password):\n return security.password_matches(password, self.user.password)\n\n def logout(self):\n self.user = None\n self.message_error = None\n self.time_login = None\n self.logged = False\n self.typed_password = None\n\n def session_is_expired(self):\n if datetime.now() - timedelta(minutes=self.time_session\n ) >= self.time_login:\n return True\n else:\n return False\n\n def info_session(self):\n begin = self.time_login\n end = self.time_login + timedelta(minutes=self.time_session)\n return begin, end\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<class token>\n\n\nclass AccountService:\n\n def add(self, name, title, login, password, site, description,\n user_password, user):\n name = security.encrypt(user_password, name)\n title = security.encrypt(user_password, title)\n login = security.encrypt(user_password, login)\n password = security.encrypt(user_password, password)\n site = security.encrypt(user_password, site)\n description = security.encrypt(user_password, description)\n account = Account(name=name, title=title, login=login, password=\n password, site=site, description=description, user=user)\n commit()\n\n def get_account(self, user_password, name, user):\n accounts = user.accounts\n for account in accounts:\n if security.decrypt(user_password, account.name) == name:\n return account\n return None\n\n def find_account(self, user_password, default, user):\n accounts = user.accounts\n found_accounts = []\n default = default.lower()\n for account in accounts:\n if security.decrypt(user_password, account.name).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.title).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.login).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.site).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.description).lower(\n ).find(default) != -1:\n found_accounts.append(account)\n continue\n return found_accounts\n\n def find_account_custom(self, user_password, name, title, login, site,\n description, user):\n accounts = user.accounts\n found_accounts = []\n for account in accounts:\n if name is not None and security.decrypt(user_password, account\n .name).lower().find(name.lower()) != -1:\n found_accounts.append(account)\n continue\n if title is not None and security.decrypt(user_password,\n account.title).lower().find(title.lower()) != -1:\n found_accounts.append(account)\n continue\n if login is not None and security.decrypt(user_password,\n account.login).lower().find(login.lower()) != -1:\n found_accounts.append(account)\n continue\n if site is not None and security.decrypt(user_password, account\n .site).lower().find(site.lower()) != -1:\n found_accounts.append(account)\n continue\n if description is not None and security.decrypt(user_password,\n account.description).lower().find(description.lower()) != -1:\n found_accounts.append(account)\n continue\n return found_accounts\n\n def delete_account(self, account):\n account.delete()\n commit()\n\n def update(self, name, title, login, password, site, description,\n user_password, account):\n if name is not None:\n account.name = security.encrypt(user_password, name)\n if title is not None:\n account.title = security.encrypt(user_password, title)\n if login is not None:\n account.login = security.encrypt(user_password, login)\n if password is not None:\n account.password = security.encrypt(user_password, password)\n if site is not None:\n account.site = security.encrypt(user_password, site)\n if description is not None:\n account.description - security.encrypt(user_password, description)\n commit()\n\n\nclass AuthenticationService:\n\n def __init__(self):\n self.user = None\n self.message_error = None\n self.time_login = None\n self.logged = False\n self.typed_password = None\n self.time_session = 1\n\n def authenticate(self, email, password):\n userService = UserService()\n self.user = userService.get_user(email)\n if self.user is None:\n self.message_error = messages.authentication_email_error\n return False\n if security.password_matches(password, self.user.password):\n self.time_login = datetime.now()\n self.logged = True\n self.typed_password = password\n return True\n else:\n self.message_error = messages.authentication_password_error\n return False\n\n def get_login(self):\n return self.user.login\n\n def password_is_right(self, password):\n return security.password_matches(password, self.user.password)\n\n def logout(self):\n self.user = None\n self.message_error = None\n self.time_login = None\n self.logged = False\n self.typed_password = None\n\n def session_is_expired(self):\n if datetime.now() - timedelta(minutes=self.time_session\n ) >= self.time_login:\n return True\n else:\n return False\n\n def info_session(self):\n begin = self.time_login\n end = self.time_login + timedelta(minutes=self.time_session)\n return begin, end\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<class token>\n\n\nclass AccountService:\n <function token>\n\n def get_account(self, user_password, name, user):\n accounts = user.accounts\n for account in accounts:\n if security.decrypt(user_password, account.name) == name:\n return account\n return None\n\n def find_account(self, user_password, default, user):\n accounts = user.accounts\n found_accounts = []\n default = default.lower()\n for account in accounts:\n if security.decrypt(user_password, account.name).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.title).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.login).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.site).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.description).lower(\n ).find(default) != -1:\n found_accounts.append(account)\n continue\n return found_accounts\n\n def find_account_custom(self, user_password, name, title, login, site,\n description, user):\n accounts = user.accounts\n found_accounts = []\n for account in accounts:\n if name is not None and security.decrypt(user_password, account\n .name).lower().find(name.lower()) != -1:\n found_accounts.append(account)\n continue\n if title is not None and security.decrypt(user_password,\n account.title).lower().find(title.lower()) != -1:\n found_accounts.append(account)\n continue\n if login is not None and security.decrypt(user_password,\n account.login).lower().find(login.lower()) != -1:\n found_accounts.append(account)\n continue\n if site is not None and security.decrypt(user_password, account\n .site).lower().find(site.lower()) != -1:\n found_accounts.append(account)\n continue\n if description is not None and security.decrypt(user_password,\n account.description).lower().find(description.lower()) != -1:\n found_accounts.append(account)\n continue\n return found_accounts\n\n def delete_account(self, account):\n account.delete()\n commit()\n\n def update(self, name, title, login, password, site, description,\n user_password, account):\n if name is not None:\n account.name = security.encrypt(user_password, name)\n if title is not None:\n account.title = security.encrypt(user_password, title)\n if login is not None:\n account.login = security.encrypt(user_password, login)\n if password is not None:\n account.password = security.encrypt(user_password, password)\n if site is not None:\n account.site = security.encrypt(user_password, site)\n if description is not None:\n account.description - security.encrypt(user_password, description)\n commit()\n\n\nclass AuthenticationService:\n\n def __init__(self):\n self.user = None\n self.message_error = None\n self.time_login = None\n self.logged = False\n self.typed_password = None\n self.time_session = 1\n\n def authenticate(self, email, password):\n userService = UserService()\n self.user = userService.get_user(email)\n if self.user is None:\n self.message_error = messages.authentication_email_error\n return False\n if security.password_matches(password, self.user.password):\n self.time_login = datetime.now()\n self.logged = True\n self.typed_password = password\n return True\n else:\n self.message_error = messages.authentication_password_error\n return False\n\n def get_login(self):\n return self.user.login\n\n def password_is_right(self, password):\n return security.password_matches(password, self.user.password)\n\n def logout(self):\n self.user = None\n self.message_error = None\n self.time_login = None\n self.logged = False\n self.typed_password = None\n\n def session_is_expired(self):\n if datetime.now() - timedelta(minutes=self.time_session\n ) >= self.time_login:\n return True\n else:\n return False\n\n def info_session(self):\n begin = self.time_login\n end = self.time_login + timedelta(minutes=self.time_session)\n return begin, end\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<class token>\n\n\nclass AccountService:\n <function token>\n\n def get_account(self, user_password, name, user):\n accounts = user.accounts\n for account in accounts:\n if security.decrypt(user_password, account.name) == name:\n return account\n return None\n\n def find_account(self, user_password, default, user):\n accounts = user.accounts\n found_accounts = []\n default = default.lower()\n for account in accounts:\n if security.decrypt(user_password, account.name).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.title).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.login).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.site).lower().find(\n default) != -1:\n found_accounts.append(account)\n continue\n if security.decrypt(user_password, account.description).lower(\n ).find(default) != -1:\n found_accounts.append(account)\n continue\n return found_accounts\n\n def find_account_custom(self, user_password, name, title, login, site,\n description, user):\n accounts = user.accounts\n found_accounts = []\n for account in accounts:\n if name is not None and security.decrypt(user_password, account\n .name).lower().find(name.lower()) != -1:\n found_accounts.append(account)\n continue\n if title is not None and security.decrypt(user_password,\n account.title).lower().find(title.lower()) != -1:\n found_accounts.append(account)\n continue\n if login is not None and security.decrypt(user_password,\n account.login).lower().find(login.lower()) != -1:\n found_accounts.append(account)\n continue\n if site is not None and security.decrypt(user_password, account\n .site).lower().find(site.lower()) != -1:\n found_accounts.append(account)\n continue\n if description is not None and security.decrypt(user_password,\n account.description).lower().find(description.lower()) != -1:\n found_accounts.append(account)\n continue\n return found_accounts\n\n def delete_account(self, account):\n account.delete()\n commit()\n <function token>\n\n\nclass AuthenticationService:\n\n def __init__(self):\n self.user = None\n self.message_error = None\n self.time_login = None\n self.logged = False\n self.typed_password = None\n self.time_session = 1\n\n def authenticate(self, email, password):\n userService = UserService()\n self.user = userService.get_user(email)\n if self.user is None:\n self.message_error = messages.authentication_email_error\n return False\n if security.password_matches(password, self.user.password):\n self.time_login = datetime.now()\n self.logged = True\n self.typed_password = password\n return True\n else:\n self.message_error = messages.authentication_password_error\n return False\n\n def get_login(self):\n return self.user.login\n\n def password_is_right(self, password):\n return security.password_matches(password, self.user.password)\n\n def logout(self):\n self.user = None\n self.message_error = None\n self.time_login = None\n self.logged = False\n self.typed_password = None\n\n def session_is_expired(self):\n if datetime.now() - timedelta(minutes=self.time_session\n ) >= self.time_login:\n return True\n else:\n return False\n\n def info_session(self):\n begin = self.time_login\n end = self.time_login + timedelta(minutes=self.time_session)\n return begin, end\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<class token>\n\n\nclass AccountService:\n <function token>\n\n def get_account(self, user_password, name, user):\n accounts = user.accounts\n for account in accounts:\n if security.decrypt(user_password, account.name) == name:\n return account\n return None\n <function token>\n\n def find_account_custom(self, user_password, name, title, login, site,\n description, user):\n accounts = user.accounts\n found_accounts = []\n for account in accounts:\n if name is not None and security.decrypt(user_password, account\n .name).lower().find(name.lower()) != -1:\n found_accounts.append(account)\n continue\n if title is not None and security.decrypt(user_password,\n account.title).lower().find(title.lower()) != -1:\n found_accounts.append(account)\n continue\n if login is not None and security.decrypt(user_password,\n account.login).lower().find(login.lower()) != -1:\n found_accounts.append(account)\n continue\n if site is not None and security.decrypt(user_password, account\n .site).lower().find(site.lower()) != -1:\n found_accounts.append(account)\n continue\n if description is not None and security.decrypt(user_password,\n account.description).lower().find(description.lower()) != -1:\n found_accounts.append(account)\n continue\n return found_accounts\n\n def delete_account(self, account):\n account.delete()\n commit()\n <function token>\n\n\nclass AuthenticationService:\n\n def __init__(self):\n self.user = None\n self.message_error = None\n self.time_login = None\n self.logged = False\n self.typed_password = None\n self.time_session = 1\n\n def authenticate(self, email, password):\n userService = UserService()\n self.user = userService.get_user(email)\n if self.user is None:\n self.message_error = messages.authentication_email_error\n return False\n if security.password_matches(password, self.user.password):\n self.time_login = datetime.now()\n self.logged = True\n self.typed_password = password\n return True\n else:\n self.message_error = messages.authentication_password_error\n return False\n\n def get_login(self):\n return self.user.login\n\n def password_is_right(self, password):\n return security.password_matches(password, self.user.password)\n\n def logout(self):\n self.user = None\n self.message_error = None\n self.time_login = None\n self.logged = False\n self.typed_password = None\n\n def session_is_expired(self):\n if datetime.now() - timedelta(minutes=self.time_session\n ) >= self.time_login:\n return True\n else:\n return False\n\n def info_session(self):\n begin = self.time_login\n end = self.time_login + timedelta(minutes=self.time_session)\n return begin, end\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<class token>\n\n\nclass AccountService:\n <function token>\n\n def get_account(self, user_password, name, user):\n accounts = user.accounts\n for account in accounts:\n if security.decrypt(user_password, account.name) == name:\n return account\n return None\n <function token>\n <function token>\n\n def delete_account(self, account):\n account.delete()\n commit()\n <function token>\n\n\nclass AuthenticationService:\n\n def __init__(self):\n self.user = None\n self.message_error = None\n self.time_login = None\n self.logged = False\n self.typed_password = None\n self.time_session = 1\n\n def authenticate(self, email, password):\n userService = UserService()\n self.user = userService.get_user(email)\n if self.user is None:\n self.message_error = messages.authentication_email_error\n return False\n if security.password_matches(password, self.user.password):\n self.time_login = datetime.now()\n self.logged = True\n self.typed_password = password\n return True\n else:\n self.message_error = messages.authentication_password_error\n return False\n\n def get_login(self):\n return self.user.login\n\n def password_is_right(self, password):\n return security.password_matches(password, self.user.password)\n\n def logout(self):\n self.user = None\n self.message_error = None\n self.time_login = None\n self.logged = False\n self.typed_password = None\n\n def session_is_expired(self):\n if datetime.now() - timedelta(minutes=self.time_session\n ) >= self.time_login:\n return True\n else:\n return False\n\n def info_session(self):\n begin = self.time_login\n end = self.time_login + timedelta(minutes=self.time_session)\n return begin, end\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<class token>\n\n\nclass AccountService:\n <function token>\n\n def get_account(self, user_password, name, user):\n accounts = user.accounts\n for account in accounts:\n if security.decrypt(user_password, account.name) == name:\n return account\n return None\n <function token>\n <function token>\n <function token>\n <function token>\n\n\nclass AuthenticationService:\n\n def __init__(self):\n self.user = None\n self.message_error = None\n self.time_login = None\n self.logged = False\n self.typed_password = None\n self.time_session = 1\n\n def authenticate(self, email, password):\n userService = UserService()\n self.user = userService.get_user(email)\n if self.user is None:\n self.message_error = messages.authentication_email_error\n return False\n if security.password_matches(password, self.user.password):\n self.time_login = datetime.now()\n self.logged = True\n self.typed_password = password\n return True\n else:\n self.message_error = messages.authentication_password_error\n return False\n\n def get_login(self):\n return self.user.login\n\n def password_is_right(self, password):\n return security.password_matches(password, self.user.password)\n\n def logout(self):\n self.user = None\n self.message_error = None\n self.time_login = None\n self.logged = False\n self.typed_password = None\n\n def session_is_expired(self):\n if datetime.now() - timedelta(minutes=self.time_session\n ) >= self.time_login:\n return True\n else:\n return False\n\n def info_session(self):\n begin = self.time_login\n end = self.time_login + timedelta(minutes=self.time_session)\n return begin, end\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<class token>\n\n\nclass AccountService:\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\nclass AuthenticationService:\n\n def __init__(self):\n self.user = None\n self.message_error = None\n self.time_login = None\n self.logged = False\n self.typed_password = None\n self.time_session = 1\n\n def authenticate(self, email, password):\n userService = UserService()\n self.user = userService.get_user(email)\n if self.user is None:\n self.message_error = messages.authentication_email_error\n return False\n if security.password_matches(password, self.user.password):\n self.time_login = datetime.now()\n self.logged = True\n self.typed_password = password\n return True\n else:\n self.message_error = messages.authentication_password_error\n return False\n\n def get_login(self):\n return self.user.login\n\n def password_is_right(self, password):\n return security.password_matches(password, self.user.password)\n\n def logout(self):\n self.user = None\n self.message_error = None\n self.time_login = None\n self.logged = False\n self.typed_password = None\n\n def session_is_expired(self):\n if datetime.now() - timedelta(minutes=self.time_session\n ) >= self.time_login:\n return True\n else:\n return False\n\n def info_session(self):\n begin = self.time_login\n end = self.time_login + timedelta(minutes=self.time_session)\n return begin, end\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass AuthenticationService:\n\n def __init__(self):\n self.user = None\n self.message_error = None\n self.time_login = None\n self.logged = False\n self.typed_password = None\n self.time_session = 1\n\n def authenticate(self, email, password):\n userService = UserService()\n self.user = userService.get_user(email)\n if self.user is None:\n self.message_error = messages.authentication_email_error\n return False\n if security.password_matches(password, self.user.password):\n self.time_login = datetime.now()\n self.logged = True\n self.typed_password = password\n return True\n else:\n self.message_error = messages.authentication_password_error\n return False\n\n def get_login(self):\n return self.user.login\n\n def password_is_right(self, password):\n return security.password_matches(password, self.user.password)\n\n def logout(self):\n self.user = None\n self.message_error = None\n self.time_login = None\n self.logged = False\n self.typed_password = None\n\n def session_is_expired(self):\n if datetime.now() - timedelta(minutes=self.time_session\n ) >= self.time_login:\n return True\n else:\n return False\n\n def info_session(self):\n begin = self.time_login\n end = self.time_login + timedelta(minutes=self.time_session)\n return begin, end\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass AuthenticationService:\n\n def __init__(self):\n self.user = None\n self.message_error = None\n self.time_login = None\n self.logged = False\n self.typed_password = None\n self.time_session = 1\n\n def authenticate(self, email, password):\n userService = UserService()\n self.user = userService.get_user(email)\n if self.user is None:\n self.message_error = messages.authentication_email_error\n return False\n if security.password_matches(password, self.user.password):\n self.time_login = datetime.now()\n self.logged = True\n self.typed_password = password\n return True\n else:\n self.message_error = messages.authentication_password_error\n return False\n\n def get_login(self):\n return self.user.login\n <function token>\n\n def logout(self):\n self.user = None\n self.message_error = None\n self.time_login = None\n self.logged = False\n self.typed_password = None\n\n def session_is_expired(self):\n if datetime.now() - timedelta(minutes=self.time_session\n ) >= self.time_login:\n return True\n else:\n return False\n\n def info_session(self):\n begin = self.time_login\n end = self.time_login + timedelta(minutes=self.time_session)\n return begin, end\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass AuthenticationService:\n\n def __init__(self):\n self.user = None\n self.message_error = None\n self.time_login = None\n self.logged = False\n self.typed_password = None\n self.time_session = 1\n\n def authenticate(self, email, password):\n userService = UserService()\n self.user = userService.get_user(email)\n if self.user is None:\n self.message_error = messages.authentication_email_error\n return False\n if security.password_matches(password, self.user.password):\n self.time_login = datetime.now()\n self.logged = True\n self.typed_password = password\n return True\n else:\n self.message_error = messages.authentication_password_error\n return False\n\n def get_login(self):\n return self.user.login\n <function token>\n\n def logout(self):\n self.user = None\n self.message_error = None\n self.time_login = None\n self.logged = False\n self.typed_password = None\n <function token>\n\n def info_session(self):\n begin = self.time_login\n end = self.time_login + timedelta(minutes=self.time_session)\n return begin, end\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass AuthenticationService:\n\n def __init__(self):\n self.user = None\n self.message_error = None\n self.time_login = None\n self.logged = False\n self.typed_password = None\n self.time_session = 1\n\n def authenticate(self, email, password):\n userService = UserService()\n self.user = userService.get_user(email)\n if self.user is None:\n self.message_error = messages.authentication_email_error\n return False\n if security.password_matches(password, self.user.password):\n self.time_login = datetime.now()\n self.logged = True\n self.typed_password = password\n return True\n else:\n self.message_error = messages.authentication_password_error\n return False\n\n def get_login(self):\n return self.user.login\n <function token>\n <function token>\n <function token>\n\n def info_session(self):\n begin = self.time_login\n end = self.time_login + timedelta(minutes=self.time_session)\n return begin, end\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass AuthenticationService:\n <function token>\n\n def authenticate(self, email, password):\n userService = UserService()\n self.user = userService.get_user(email)\n if self.user is None:\n self.message_error = messages.authentication_email_error\n return False\n if security.password_matches(password, self.user.password):\n self.time_login = datetime.now()\n self.logged = True\n self.typed_password = password\n return True\n else:\n self.message_error = messages.authentication_password_error\n return False\n\n def get_login(self):\n return self.user.login\n <function token>\n <function token>\n <function token>\n\n def info_session(self):\n begin = self.time_login\n end = self.time_login + timedelta(minutes=self.time_session)\n return begin, end\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass AuthenticationService:\n <function token>\n <function token>\n\n def get_login(self):\n return self.user.login\n <function token>\n <function token>\n <function token>\n\n def info_session(self):\n begin = self.time_login\n end = self.time_login + timedelta(minutes=self.time_session)\n return begin, end\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass AuthenticationService:\n <function token>\n <function token>\n\n def get_login(self):\n return self.user.login\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass AuthenticationService:\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n" ]
false
99,051
ec02813189adac24de0a29f3a31af31e77e89a6c
#!/usr/bin/env python import json files = [ "authorasproducer.txt", "barthes.txt", "construction.txt", "designerasauthor.txt", "fitz.txt", "foucalt.txt", "laurenrieders.txt", "martha.txt", "michaelrock.txt", "samreith.txt", "schopenhauer.txt", "shakespeare.txt" ] data = {} for filename in files: with open(filename) as f: text = f.read() lines = [] prev = -1 for (i, c) in enumerate(text): if c in ['.', '?', '!', ';']: sentence = text[prev + 1:i + 1] sentence = sentence.strip() # print sentence lines.append(sentence) prev = i data[filename] = lines jsondata = json.dumps(data, indent=2) with open("authorship.json", 'w') as jf: jf.write(jsondata)
[ "#!/usr/bin/env python\n\nimport json\n\nfiles = [\n \"authorasproducer.txt\",\n \"barthes.txt\",\n \"construction.txt\",\n \"designerasauthor.txt\",\n \"fitz.txt\",\n \"foucalt.txt\",\n \"laurenrieders.txt\",\n \"martha.txt\",\n \"michaelrock.txt\",\n \"samreith.txt\",\n \"schopenhauer.txt\",\n \"shakespeare.txt\"\n]\n\ndata = {}\n\nfor filename in files:\n\n with open(filename) as f:\n text = f.read()\n\n lines = []\n prev = -1\n for (i, c) in enumerate(text):\n if c in ['.', '?', '!', ';']:\n sentence = text[prev + 1:i + 1]\n sentence = sentence.strip()\n # print sentence\n lines.append(sentence)\n prev = i\n data[filename] = lines\n\njsondata = json.dumps(data, indent=2)\nwith open(\"authorship.json\", 'w') as jf:\n jf.write(jsondata)\n", "import json\nfiles = ['authorasproducer.txt', 'barthes.txt', 'construction.txt',\n 'designerasauthor.txt', 'fitz.txt', 'foucalt.txt', 'laurenrieders.txt',\n 'martha.txt', 'michaelrock.txt', 'samreith.txt', 'schopenhauer.txt',\n 'shakespeare.txt']\ndata = {}\nfor filename in files:\n with open(filename) as f:\n text = f.read()\n lines = []\n prev = -1\n for i, c in enumerate(text):\n if c in ['.', '?', '!', ';']:\n sentence = text[prev + 1:i + 1]\n sentence = sentence.strip()\n lines.append(sentence)\n prev = i\n data[filename] = lines\njsondata = json.dumps(data, indent=2)\nwith open('authorship.json', 'w') as jf:\n jf.write(jsondata)\n", "<import token>\nfiles = ['authorasproducer.txt', 'barthes.txt', 'construction.txt',\n 'designerasauthor.txt', 'fitz.txt', 'foucalt.txt', 'laurenrieders.txt',\n 'martha.txt', 'michaelrock.txt', 'samreith.txt', 'schopenhauer.txt',\n 'shakespeare.txt']\ndata = {}\nfor filename in files:\n with open(filename) as f:\n text = f.read()\n lines = []\n prev = -1\n for i, c in enumerate(text):\n if c in ['.', '?', '!', ';']:\n sentence = text[prev + 1:i + 1]\n sentence = sentence.strip()\n lines.append(sentence)\n prev = i\n data[filename] = lines\njsondata = json.dumps(data, indent=2)\nwith open('authorship.json', 'w') as jf:\n jf.write(jsondata)\n", "<import token>\n<assignment token>\nfor filename in files:\n with open(filename) as f:\n text = f.read()\n lines = []\n prev = -1\n for i, c in enumerate(text):\n if c in ['.', '?', '!', ';']:\n sentence = text[prev + 1:i + 1]\n sentence = sentence.strip()\n lines.append(sentence)\n prev = i\n data[filename] = lines\n<assignment token>\nwith open('authorship.json', 'w') as jf:\n jf.write(jsondata)\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n" ]
false
99,052
1de36d84c28d8457c5c5674e267fdaed781939e2
# JobHunter # This script pulls from a job website and stores positions into a database. If there is a new posting it notifies the user. # CNA 330 # Carlos Del Villar, [email protected] # collaborated with Eric, Dyllan, youtube. import urllib.request import mysql.connector # Connect to database # You may need to edit the connect function based on your local settings. def connect_to_sql(): conn = mysql.connector.connect (user='root', password='', host='127.0.0.1', database='jobhunter') return conn # Create the table structure def create_tables(cursor, table): cursor.execute ('''CREATE TABLE IF NOT EXISTS Jobs_found (id INT PRIMARY KEY auto_increment, Type varchar(10), Title varchar(100), Description TEXT CHARSET utf8a, Job_id varchar(36), Created_at DATE, Company varchar(100), location varchar(50), How_to_apply varchar(1000)); ''') return # Query the database. # You should not need to edit anything in this function def query_sql(cursor, query): cursor.execute (query) return cursor # Add a new job def add_new_job(cursor, jobdetails): Type = jobdetails['Type'] Title = jobdetails['Title'] Description = jobdetails['Description'] Job_ID = jobdetails['Job_ID'] Created_At = jobdetails['Created_At'] Company = jobdetails['Company'] Location = jobdetails['Location'] How_To_Apply = jobdetails['How_To_Apply'] query = cursor.execute ( "INSERT INTO jobs(ID, Type, Title, Description, Job_ID, Created_at, Company, Location, How_to_apply" ")" "VALUES(%s,%s,%s,%s,%s,%s,%s,%s)", (Type, Title, Description, Job_ID, Created_At, Company, Location, How_To_Apply)) return query_sql (cursor, query) # Check if new job def check_if_job_exists(cursor, jobdetails): ## Add your code here Job_ID = jobdetails['ID'] query = "SELECT * FROM jobs WHERE Job_ID = \"%s\"" % Job_ID return query_sql (cursor, query) def delete_job(cursor, jobdetails): ## Add your code here Job_ID = jobdetails['ID'] query = "DELETE FROM jobs WHERE Job_ID = \"%s\"" % Job_ID return query_sql (cursor, query) # Grab new jobs from a website def fetch_new_jobs(arg_dict): # Code from https://github.com/RTCedu/CNA336/blob/master/Spring2018/Sql.py query = "https://jobs.github.com/positions.json?" + "location=remote" ## Add arguments here jsonpage = 0 try: contents = urllib.request.urlopen (query) response = contents.read () jsonpage = json.loads (response) except: pass return jsonpage # Load a text-based configuration file def load_config_file(filename): argument_dictionary = 0 # Code from https://github.com/RTCedu/CNA336/blob/master/Spring2018/FileIO.py rel_path = os.path.abspath (os.path.dirname (__file__)) file = 0 file_contents = 0 try: file = open (filename, "r") file_contents = file.read () except FileNotFoundError: print ("File not found, it will be created.") file = open (filename, "w") file.write ("") file.close () ## Add in information for argument dictionary return argument_dictionary # Main area of the code. def jobhunt(cursor, arg_dict, add_or_delete_jobs=None): # Fetch jobs from website jobpage = fetch_new_jobs (arg_dict) # print (jobpage) add_or_delete_jobs (jobpage, cursor) ## Add your code here to parse the job page ## Add in your code here to check if the job already exists in the DB ## Add in your code here to notify the user of a new posting ## EXTRA CREDIT: Add your code to delete old entries # Setup portion of the program. Take arguments and set up the script # You should not need to edit anything here. def add_or_delete_job(jobpage, cursor) def main(): # Connect to SQL and get cursor conn = connect_to_sql () cursor = conn.cursor () create_tables (cursor, "table") # Load text file and store arguments into dictionary arg_dict = 0 while (1): jobhunt (cursor, arg_dict) conn.commit () time.sleep (3600) # Sleep for 1h if __name__ == '__main__': main () # JobHunter # This script pulls from a job website and stores positions into a database. If there is a new posting it notifies the user. # CNA 330 # Carlos Del Villar, [email protected] # collaborated with Eric, Dyllan, youtube. import mysql.connector import json import urllib.request import os import time # Connect to database # You may need to edit the connect function based on your local settings. def connect_to_sql(): conn = mysql.connector.connect (user='root', password='', host='127.0.0.1', database='jobhunter') return conn # Create the table structure def create_tables(cursor, table): cursor.execute ('''CREATE TABLE IF NOT EXISTS Jobs_found (id INT PRIMARY KEY auto_increment, Type varchar(10), Title varchar(100), Description TEXT CHARSET utf8a, Job_id varchar(36), Created_at DATE, Company varchar(100), location varchar(50), How_to_apply varchar(1000)); ''') return # Query the database. # You should not need to edit anything in this function def query_sql(cursor, query): cursor.execute (query) return cursor # Add a new job def add_new_job(cursor, jobdetails): Type = jobdetails['Type'] Title = jobdetails['Title'] Description = jobdetails['Description'] Job_ID = jobdetails['Job_ID'] Created_At = jobdetails['Created_At'] Company = jobdetails['Company'] Location = jobdetails['Location'] How_To_Apply = jobdetails['How_To_Apply'] query = cursor.execute ( "INSERT INTO jobs(ID, Type, Title, Description, Job_ID, Created_at, Company, Location, How_to_apply" ")" "VALUES(%s,%s,%s,%s,%s,%s,%s,%s)", (Type, Title, Description, Job_ID, Created_At, Company, Location, How_To_Apply)) return query_sql (cursor, query) # Check if new job def check_if_job_exists(cursor, jobdetails): ## Add your code here Job_ID = jobdetails['ID'] query = "SELECT * FROM jobs WHERE Job_ID = \"%s\"" % Job_ID return query_sql (cursor, query) def delete_job(cursor, jobdetails): ## Add your code here Job_ID = jobdetails['ID'] query = "DELETE FROM jobs WHERE Job_ID = \"%s\"" % Job_ID return query_sql (cursor, query) # Grab new jobs from a website def fetch_new_jobs(arg_dict): # Code from https://github.com/RTCedu/CNA336/blob/master/Spring2018/Sql.py query = "https://jobs.github.com/positions.json?" + "location=remote" ## Add arguments here jsonpage = 0 try: contents = urllib.request.urlopen (query) response = contents.read () jsonpage = json.loads (response) except: pass return jsonpage # Load a text-based configuration file def load_config_file(filename): argument_dictionary = 0 # Code from https://github.com/RTCedu/CNA336/blob/master/Spring2018/FileIO.py file = 0 try: pass except FileNotFoundError: print ("File not found, it will be created.") file = open (filename, "w") file.write ("") file.close () ## Add in information for argument dictionary return argument_dictionary # Main area of the code. def jobhunt(cursor, arg_dict, add_or_delete_jobs=None): # Fetch jobs from website jobpage = fetch_new_jobs (arg_dict) # print (jobpage) add_or_delete_jobs (jobpage, cursor) ## Add your code here to parse the job page ## Add in your code here to check if the job already exists in the DB ## Add in your code here to notify the user of a new posting ## EXTRA CREDIT: Add your code to delete old entries # Setup portion of the program. Take arguments and set up the script # You should not need to edit anything here. def add_or_delete_job(cursor): def main(): # Connect to SQL and get cursor conn = connect_to_sql () cursor = conn.cursor () create_tables (cursor, "table") # Load text file and store arguments into dictionary arg_dict = 0 while (1): jobhunt (cursor, arg_dict) conn.commit () time.sleep (3600) # Sleep for 1h if __name__ == '__main__': main ()
[ "# JobHunter\r\n# This script pulls from a job website and stores positions into a database. If there is a new posting it notifies the user.\r\n# CNA 330\r\n# Carlos Del Villar, [email protected]\r\n# collaborated with Eric, Dyllan, youtube.\r\n\r\nimport urllib.request\r\n\r\nimport mysql.connector\r\n\r\n\r\n# Connect to database\r\n# You may need to edit the connect function based on your local settings.\r\ndef connect_to_sql():\r\n conn = mysql.connector.connect (user='root', password='',\r\n host='127.0.0.1',\r\n database='jobhunter')\r\n return conn\r\n\r\n\r\n# Create the table structure\r\ndef create_tables(cursor, table):\r\n cursor.execute ('''CREATE TABLE IF NOT EXISTS Jobs_found (id INT PRIMARY KEY auto_increment,\r\n Type varchar(10), Title varchar(100), Description TEXT CHARSET utf8a, Job_id varchar(36),\r\n Created_at DATE, Company varchar(100), location varchar(50),\r\n How_to_apply varchar(1000)); ''')\r\n return\r\n\r\n # Query the database.\r\n\r\n\r\n# You should not need to edit anything in this function\r\ndef query_sql(cursor, query):\r\n cursor.execute (query)\r\n return cursor\r\n\r\n\r\n# Add a new job\r\ndef add_new_job(cursor, jobdetails):\r\n Type = jobdetails['Type']\r\n Title = jobdetails['Title']\r\n Description = jobdetails['Description']\r\n Job_ID = jobdetails['Job_ID']\r\n Created_At = jobdetails['Created_At']\r\n Company = jobdetails['Company']\r\n Location = jobdetails['Location']\r\n How_To_Apply = jobdetails['How_To_Apply']\r\n query = cursor.execute (\r\n \"INSERT INTO jobs(ID, Type, Title, Description, Job_ID, Created_at, Company, Location, How_to_apply\" \")\"\r\n \"VALUES(%s,%s,%s,%s,%s,%s,%s,%s)\",\r\n (Type, Title, Description, Job_ID, Created_At, Company, Location, How_To_Apply))\r\n\r\n return query_sql (cursor, query)\r\n\r\n\r\n# Check if new job\r\ndef check_if_job_exists(cursor, jobdetails):\r\n ## Add your code here\r\n Job_ID = jobdetails['ID']\r\n query = \"SELECT * FROM jobs WHERE Job_ID = \\\"%s\\\"\" % Job_ID\r\n return query_sql (cursor, query)\r\n\r\n\r\ndef delete_job(cursor, jobdetails):\r\n ## Add your code here\r\n Job_ID = jobdetails['ID']\r\n query = \"DELETE FROM jobs WHERE Job_ID = \\\"%s\\\"\" % Job_ID\r\n return query_sql (cursor, query)\r\n\r\n\r\n# Grab new jobs from a website\r\ndef fetch_new_jobs(arg_dict):\r\n # Code from https://github.com/RTCedu/CNA336/blob/master/Spring2018/Sql.py\r\n query = \"https://jobs.github.com/positions.json?\" + \"location=remote\" ## Add arguments here\r\n jsonpage = 0\r\n try:\r\n contents = urllib.request.urlopen (query)\r\n response = contents.read ()\r\n jsonpage = json.loads (response)\r\n except:\r\n pass\r\n return jsonpage\r\n\r\n\r\n# Load a text-based configuration file\r\ndef load_config_file(filename):\r\n argument_dictionary = 0\r\n # Code from https://github.com/RTCedu/CNA336/blob/master/Spring2018/FileIO.py\r\n rel_path = os.path.abspath (os.path.dirname (__file__))\r\n file = 0\r\n file_contents = 0\r\n try:\r\n file = open (filename, \"r\")\r\n file_contents = file.read ()\r\n except FileNotFoundError:\r\n print (\"File not found, it will be created.\")\r\n file = open (filename, \"w\")\r\n file.write (\"\")\r\n file.close ()\r\n\r\n ## Add in information for argument dictionary\r\n return argument_dictionary\r\n\r\n\r\n# Main area of the code.\r\ndef jobhunt(cursor, arg_dict, add_or_delete_jobs=None):\r\n # Fetch jobs from website\r\n jobpage = fetch_new_jobs (arg_dict)\r\n # print (jobpage)\r\n add_or_delete_jobs (jobpage, cursor)\r\n ## Add your code here to parse the job page\r\n\r\n ## Add in your code here to check if the job already exists in the DB\r\n\r\n ## Add in your code here to notify the user of a new posting\r\n\r\n ## EXTRA CREDIT: Add your code to delete old entries\r\n\r\n\r\n# Setup portion of the program. Take arguments and set up the script\r\n# You should not need to edit anything here.\r\ndef add_or_delete_job(jobpage, cursor)\r\n\r\n\r\ndef main():\r\n # Connect to SQL and get cursor\r\n conn = connect_to_sql ()\r\n cursor = conn.cursor ()\r\n create_tables (cursor, \"table\")\r\n # Load text file and store arguments into dictionary\r\n arg_dict = 0\r\n while (1):\r\n jobhunt (cursor, arg_dict)\r\n conn.commit ()\r\n time.sleep (3600) # Sleep for 1h\r\n\r\n\r\nif __name__ == '__main__':\r\n main ()\r\n# JobHunter\r\n# This script pulls from a job website and stores positions into a database. If there is a new posting it notifies the user.\r\n# CNA 330\r\n# Carlos Del Villar, [email protected]\r\n# collaborated with Eric, Dyllan, youtube.\r\n\r\nimport mysql.connector\r\nimport json\r\nimport urllib.request\r\nimport os\r\nimport time\r\n\r\n\r\n# Connect to database\r\n# You may need to edit the connect function based on your local settings.\r\ndef connect_to_sql():\r\n conn = mysql.connector.connect (user='root', password='',\r\n host='127.0.0.1',\r\n database='jobhunter')\r\n return conn\r\n\r\n\r\n# Create the table structure\r\ndef create_tables(cursor, table):\r\n cursor.execute ('''CREATE TABLE IF NOT EXISTS Jobs_found (id INT PRIMARY KEY auto_increment,\r\n Type varchar(10), Title varchar(100), Description TEXT CHARSET utf8a, Job_id varchar(36),\r\n Created_at DATE, Company varchar(100), location varchar(50),\r\n How_to_apply varchar(1000)); ''')\r\n return\r\n\r\n # Query the database.\r\n\r\n\r\n# You should not need to edit anything in this function\r\ndef query_sql(cursor, query):\r\n cursor.execute (query)\r\n return cursor\r\n\r\n\r\n# Add a new job\r\ndef add_new_job(cursor, jobdetails):\r\n Type = jobdetails['Type']\r\n Title = jobdetails['Title']\r\n Description = jobdetails['Description']\r\n Job_ID = jobdetails['Job_ID']\r\n Created_At = jobdetails['Created_At']\r\n Company = jobdetails['Company']\r\n Location = jobdetails['Location']\r\n How_To_Apply = jobdetails['How_To_Apply']\r\n query = cursor.execute (\r\n \"INSERT INTO jobs(ID, Type, Title, Description, Job_ID, Created_at, Company, Location, How_to_apply\" \")\"\r\n \"VALUES(%s,%s,%s,%s,%s,%s,%s,%s)\",\r\n (Type, Title, Description, Job_ID, Created_At, Company, Location, How_To_Apply))\r\n\r\n return query_sql (cursor, query)\r\n\r\n\r\n# Check if new job\r\ndef check_if_job_exists(cursor, jobdetails):\r\n ## Add your code here\r\n Job_ID = jobdetails['ID']\r\n query = \"SELECT * FROM jobs WHERE Job_ID = \\\"%s\\\"\" % Job_ID\r\n return query_sql (cursor, query)\r\n\r\n\r\ndef delete_job(cursor, jobdetails):\r\n ## Add your code here\r\n Job_ID = jobdetails['ID']\r\n query = \"DELETE FROM jobs WHERE Job_ID = \\\"%s\\\"\" % Job_ID\r\n return query_sql (cursor, query)\r\n\r\n\r\n# Grab new jobs from a website\r\ndef fetch_new_jobs(arg_dict):\r\n # Code from https://github.com/RTCedu/CNA336/blob/master/Spring2018/Sql.py\r\n query = \"https://jobs.github.com/positions.json?\" + \"location=remote\" ## Add arguments here\r\n jsonpage = 0\r\n try:\r\n contents = urllib.request.urlopen (query)\r\n response = contents.read ()\r\n jsonpage = json.loads (response)\r\n except:\r\n pass\r\n return jsonpage\r\n\r\n\r\n# Load a text-based configuration file\r\ndef load_config_file(filename):\r\n argument_dictionary = 0\r\n # Code from https://github.com/RTCedu/CNA336/blob/master/Spring2018/FileIO.py\r\n file = 0\r\n try:\r\n pass\r\n except FileNotFoundError:\r\n print (\"File not found, it will be created.\")\r\n file = open (filename, \"w\")\r\n file.write (\"\")\r\n file.close ()\r\n\r\n ## Add in information for argument dictionary\r\n return argument_dictionary\r\n\r\n\r\n# Main area of the code.\r\ndef jobhunt(cursor, arg_dict, add_or_delete_jobs=None):\r\n # Fetch jobs from website\r\n jobpage = fetch_new_jobs (arg_dict)\r\n # print (jobpage)\r\n add_or_delete_jobs (jobpage, cursor)\r\n ## Add your code here to parse the job page\r\n\r\n ## Add in your code here to check if the job already exists in the DB\r\n\r\n ## Add in your code here to notify the user of a new posting\r\n\r\n ## EXTRA CREDIT: Add your code to delete old entries\r\n\r\n\r\n# Setup portion of the program. Take arguments and set up the script\r\n# You should not need to edit anything here.\r\ndef add_or_delete_job(cursor):\r\n\r\n\r\ndef main():\r\n # Connect to SQL and get cursor\r\n conn = connect_to_sql ()\r\n cursor = conn.cursor ()\r\n create_tables (cursor, \"table\")\r\n # Load text file and store arguments into dictionary\r\n arg_dict = 0\r\n while (1):\r\n jobhunt (cursor, arg_dict)\r\n conn.commit ()\r\n time.sleep (3600) # Sleep for 1h\r\n\r\n\r\nif __name__ == '__main__':\r\n main ()\r\n" ]
true
99,053
00343a17990e6ef07f18c37079691c6d0a82dcfd
""" Calculate distance and azimuth from to locator positions Author: 9V1KG Klaus D Goepel https://klsin.bpmsg.com https://github.com/9V1KG/maidenhead Created: 2020-05-02 License: http://www.fsf.org/copyleft/gpl.html """ import sys import re from openlocationcode import openlocationcode as olc import maidenhead.maiden from maidenhead.maiden import Maiden, Geodg2dms MY_LOC = "PK04lc68dj" COL = maidenhead.maiden.COL MAIDEN = Maiden() # Initialize class print(""" Maidenhead locator program by 9V1KG https://github.com/9V1KG/maidenhead """) print(f"{COL.green}Calculates distance and azimuth from your locator (\"MY_LOC\"){COL.end}") print(f"My locator: {MY_LOC}") POS_A = MAIDEN.maiden2latlon(MY_LOC) print(f"My pos: {POS_A} Lat/Lon") PDMS_A = Geodg2dms(POS_A) print(f"My pos: " f"{PDMS_A.lat_deg} {PDMS_A.lat_min}'{PDMS_A.lat_sec}\"{PDMS_A.lat_dir}, " f"{PDMS_A.lon_deg} {PDMS_A.lon_min}'{PDMS_A.lon_sec}\"{PDMS_A.lon_dir}" ) opl = olc.encode(POS_A[0], POS_A[1]) print(f"Google map: {opl}\r\n") line = input("Input Maidenhead Locator (4 to 10 char): ") if not re.match(r"([A-Ra-r]{2}\d\d)(([A-Za-z]{2})(\d\d)?){0,2}", line): print("Locator has 2 to 5 character/number pairs, like PK04lc") sys.exit(1) pos_b = MAIDEN.maiden2latlon(line) print(f"Result: {COL.yellow}{pos_b}{COL.end} Lat/Lon") pdms_b = Geodg2dms(pos_b) print(f"Result: " f"{pdms_b.lat_deg} {pdms_b.lat_min}'{pdms_b.lat_sec}\"{pdms_b.lat_dir}, " f"{pdms_b.lon_deg} {pdms_b.lon_min}'{pdms_b.lon_sec}\"{pdms_b.lon_dir}" ) opl = olc.encode(pos_b[0], pos_b[1]) print(f"Google map: {opl}") betw = MAIDEN.dist_az(POS_A, pos_b) print(f"Distance: {COL.yellow}{betw[0]} km{COL.end} " f"Azimuth: {COL.yellow}{betw[1]} deg{COL.end}")
[ "\"\"\"\n Calculate distance and azimuth from to locator positions\n Author: 9V1KG Klaus D Goepel\n https://klsin.bpmsg.com\n https://github.com/9V1KG/maidenhead\n Created: 2020-05-02\n License: http://www.fsf.org/copyleft/gpl.html\n\"\"\"\nimport sys\nimport re\nfrom openlocationcode import openlocationcode as olc\nimport maidenhead.maiden\nfrom maidenhead.maiden import Maiden, Geodg2dms\n\nMY_LOC = \"PK04lc68dj\"\nCOL = maidenhead.maiden.COL\n\nMAIDEN = Maiden() # Initialize class\nprint(\"\"\"\nMaidenhead locator program by 9V1KG\nhttps://github.com/9V1KG/maidenhead\n \"\"\")\nprint(f\"{COL.green}Calculates distance and azimuth from your locator (\\\"MY_LOC\\\"){COL.end}\")\nprint(f\"My locator: {MY_LOC}\")\nPOS_A = MAIDEN.maiden2latlon(MY_LOC)\nprint(f\"My pos: {POS_A} Lat/Lon\")\nPDMS_A = Geodg2dms(POS_A)\nprint(f\"My pos: \"\n f\"{PDMS_A.lat_deg} {PDMS_A.lat_min}'{PDMS_A.lat_sec}\\\"{PDMS_A.lat_dir}, \"\n f\"{PDMS_A.lon_deg} {PDMS_A.lon_min}'{PDMS_A.lon_sec}\\\"{PDMS_A.lon_dir}\"\n )\nopl = olc.encode(POS_A[0], POS_A[1])\nprint(f\"Google map: {opl}\\r\\n\")\n\nline = input(\"Input Maidenhead Locator (4 to 10 char): \")\nif not re.match(r\"([A-Ra-r]{2}\\d\\d)(([A-Za-z]{2})(\\d\\d)?){0,2}\", line):\n print(\"Locator has 2 to 5 character/number pairs, like PK04lc\")\n sys.exit(1)\npos_b = MAIDEN.maiden2latlon(line)\nprint(f\"Result: {COL.yellow}{pos_b}{COL.end} Lat/Lon\")\npdms_b = Geodg2dms(pos_b)\nprint(f\"Result: \"\n f\"{pdms_b.lat_deg} {pdms_b.lat_min}'{pdms_b.lat_sec}\\\"{pdms_b.lat_dir}, \"\n f\"{pdms_b.lon_deg} {pdms_b.lon_min}'{pdms_b.lon_sec}\\\"{pdms_b.lon_dir}\"\n )\nopl = olc.encode(pos_b[0], pos_b[1])\nprint(f\"Google map: {opl}\")\nbetw = MAIDEN.dist_az(POS_A, pos_b)\nprint(f\"Distance: {COL.yellow}{betw[0]} km{COL.end} \"\n f\"Azimuth: {COL.yellow}{betw[1]} deg{COL.end}\")\n", "<docstring token>\nimport sys\nimport re\nfrom openlocationcode import openlocationcode as olc\nimport maidenhead.maiden\nfrom maidenhead.maiden import Maiden, Geodg2dms\nMY_LOC = 'PK04lc68dj'\nCOL = maidenhead.maiden.COL\nMAIDEN = Maiden()\nprint(\n \"\"\"\nMaidenhead locator program by 9V1KG\nhttps://github.com/9V1KG/maidenhead\n \"\"\"\n )\nprint(\n f'{COL.green}Calculates distance and azimuth from your locator (\"MY_LOC\"){COL.end}'\n )\nprint(f'My locator: {MY_LOC}')\nPOS_A = MAIDEN.maiden2latlon(MY_LOC)\nprint(f'My pos: {POS_A} Lat/Lon')\nPDMS_A = Geodg2dms(POS_A)\nprint(\n f'My pos: {PDMS_A.lat_deg} {PDMS_A.lat_min}\\'{PDMS_A.lat_sec}\"{PDMS_A.lat_dir}, {PDMS_A.lon_deg} {PDMS_A.lon_min}\\'{PDMS_A.lon_sec}\"{PDMS_A.lon_dir}'\n )\nopl = olc.encode(POS_A[0], POS_A[1])\nprint(f'Google map: {opl}\\r\\n')\nline = input('Input Maidenhead Locator (4 to 10 char): ')\nif not re.match('([A-Ra-r]{2}\\\\d\\\\d)(([A-Za-z]{2})(\\\\d\\\\d)?){0,2}', line):\n print('Locator has 2 to 5 character/number pairs, like PK04lc')\n sys.exit(1)\npos_b = MAIDEN.maiden2latlon(line)\nprint(f'Result: {COL.yellow}{pos_b}{COL.end} Lat/Lon')\npdms_b = Geodg2dms(pos_b)\nprint(\n f'Result: {pdms_b.lat_deg} {pdms_b.lat_min}\\'{pdms_b.lat_sec}\"{pdms_b.lat_dir}, {pdms_b.lon_deg} {pdms_b.lon_min}\\'{pdms_b.lon_sec}\"{pdms_b.lon_dir}'\n )\nopl = olc.encode(pos_b[0], pos_b[1])\nprint(f'Google map: {opl}')\nbetw = MAIDEN.dist_az(POS_A, pos_b)\nprint(\n f'Distance: {COL.yellow}{betw[0]} km{COL.end} Azimuth: {COL.yellow}{betw[1]} deg{COL.end}'\n )\n", "<docstring token>\n<import token>\nMY_LOC = 'PK04lc68dj'\nCOL = maidenhead.maiden.COL\nMAIDEN = Maiden()\nprint(\n \"\"\"\nMaidenhead locator program by 9V1KG\nhttps://github.com/9V1KG/maidenhead\n \"\"\"\n )\nprint(\n f'{COL.green}Calculates distance and azimuth from your locator (\"MY_LOC\"){COL.end}'\n )\nprint(f'My locator: {MY_LOC}')\nPOS_A = MAIDEN.maiden2latlon(MY_LOC)\nprint(f'My pos: {POS_A} Lat/Lon')\nPDMS_A = Geodg2dms(POS_A)\nprint(\n f'My pos: {PDMS_A.lat_deg} {PDMS_A.lat_min}\\'{PDMS_A.lat_sec}\"{PDMS_A.lat_dir}, {PDMS_A.lon_deg} {PDMS_A.lon_min}\\'{PDMS_A.lon_sec}\"{PDMS_A.lon_dir}'\n )\nopl = olc.encode(POS_A[0], POS_A[1])\nprint(f'Google map: {opl}\\r\\n')\nline = input('Input Maidenhead Locator (4 to 10 char): ')\nif not re.match('([A-Ra-r]{2}\\\\d\\\\d)(([A-Za-z]{2})(\\\\d\\\\d)?){0,2}', line):\n print('Locator has 2 to 5 character/number pairs, like PK04lc')\n sys.exit(1)\npos_b = MAIDEN.maiden2latlon(line)\nprint(f'Result: {COL.yellow}{pos_b}{COL.end} Lat/Lon')\npdms_b = Geodg2dms(pos_b)\nprint(\n f'Result: {pdms_b.lat_deg} {pdms_b.lat_min}\\'{pdms_b.lat_sec}\"{pdms_b.lat_dir}, {pdms_b.lon_deg} {pdms_b.lon_min}\\'{pdms_b.lon_sec}\"{pdms_b.lon_dir}'\n )\nopl = olc.encode(pos_b[0], pos_b[1])\nprint(f'Google map: {opl}')\nbetw = MAIDEN.dist_az(POS_A, pos_b)\nprint(\n f'Distance: {COL.yellow}{betw[0]} km{COL.end} Azimuth: {COL.yellow}{betw[1]} deg{COL.end}'\n )\n", "<docstring token>\n<import token>\n<assignment token>\nprint(\n \"\"\"\nMaidenhead locator program by 9V1KG\nhttps://github.com/9V1KG/maidenhead\n \"\"\"\n )\nprint(\n f'{COL.green}Calculates distance and azimuth from your locator (\"MY_LOC\"){COL.end}'\n )\nprint(f'My locator: {MY_LOC}')\n<assignment token>\nprint(f'My pos: {POS_A} Lat/Lon')\n<assignment token>\nprint(\n f'My pos: {PDMS_A.lat_deg} {PDMS_A.lat_min}\\'{PDMS_A.lat_sec}\"{PDMS_A.lat_dir}, {PDMS_A.lon_deg} {PDMS_A.lon_min}\\'{PDMS_A.lon_sec}\"{PDMS_A.lon_dir}'\n )\n<assignment token>\nprint(f'Google map: {opl}\\r\\n')\n<assignment token>\nif not re.match('([A-Ra-r]{2}\\\\d\\\\d)(([A-Za-z]{2})(\\\\d\\\\d)?){0,2}', line):\n print('Locator has 2 to 5 character/number pairs, like PK04lc')\n sys.exit(1)\n<assignment token>\nprint(f'Result: {COL.yellow}{pos_b}{COL.end} Lat/Lon')\n<assignment token>\nprint(\n f'Result: {pdms_b.lat_deg} {pdms_b.lat_min}\\'{pdms_b.lat_sec}\"{pdms_b.lat_dir}, {pdms_b.lon_deg} {pdms_b.lon_min}\\'{pdms_b.lon_sec}\"{pdms_b.lon_dir}'\n )\n<assignment token>\nprint(f'Google map: {opl}')\n<assignment token>\nprint(\n f'Distance: {COL.yellow}{betw[0]} km{COL.end} Azimuth: {COL.yellow}{betw[1]} deg{COL.end}'\n )\n", "<docstring token>\n<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n" ]
false
99,054
0aac6ab4aabaed23ff811731830e192890897eb2
''' 1. create 1. add new single dataset (via console) 2. read 1. show all datasets 2. show single dataset 3. update 1. update single dataset 4. delete 1. delete all 2. delete single row 5. save/export 6. end program ''' # This functions prints a main menu structure in the console. def show_main_menu(): print("What would you like to do: ") print("1. Create") print("2. Read") print("3. Update") print("4. Delete") print("5. End") # This between min and max valuefunction checks if an integer is input def ask_for_integer_input(min, max): while True: print("Please enter a number between",min, "and",max,"!") answer = input("Input: ") if answer.isdecimal(): if min > int(answer): print("The entered value is too low.") elif max < int(answer): print("The entered value is too high.") else: return int(answer) else: print("The entered value is no integer.") def peek_single_dataset(lines): option3 = ask_for_integer_input(1, len(lines)) print(lines[int(option3)-1]) def show_all_datasets(lines): max_sizes = [] for line in lines: for i, token in enumerate(line.split(';')): if len(max_sizes) <= i: max_sizes.append(len(token.strip())) elif len(token.strip()) > max_sizes[i]: max_sizes[i] = len(token.strip()) for linenumber, line in enumerate(lines): first = str(linenumber) if linenumber else " " print(first.ljust(3),end=' ') for i, token in enumerate(line.split(';')): print(fr"{token.strip()}".ljust(max_sizes[i]+1,'.'), end='') print() def delete_single_dateset(lines): pass def delete_all_datasets(lines): pass def update_single_dataset(lines): pass def add_via_console(lines): pass def create_menu(create_lines): pass def read_menu(read_lines): print("1. Show all") print("2. Show single line") option2 = ask_for_integer_input(1, 2) if option2 == 1: show_all_datasets(read_lines) else: peek_single_dataset(read_lines) def update_menu(update_lines): pass def delete_menu(delete_lines): pass import pathlib # loads the library for object-oriented filesystem paths current_folder = pathlib.Path(__file__).parent.absolute().__str__() import_file_name = "export.csv" path_source = current_folder + "/" + import_file_name print("Importing: " + path_source) with open(path_source) as file: cur_lines = file.readlines() while True: show_main_menu() option = ask_for_integer_input(1, 6) if option == 1: # hier wird importiert oder hinzugefügt create_menu(cur_lines) elif option == 2: # hier wird gefiltert und angezeigt read_menu(cur_lines) elif option == 3: # hier werden vorhandene werte geändert update_menu(cur_lines) elif option == 4: # hier werden vorhanden werte gelöscht delete_menu(cur_lines) elif option == 5: # hier wird das programm beendet #cleanUnicode(path_source) print("good bye") break
[ "'''\n1. create\n 1. add new single dataset (via console)\n2. read\n 1. show all datasets\n 2. show single dataset\n3. update\n 1. update single dataset\n4. delete\n 1. delete all\n 2. delete single row\n5. save/export\n6. end program\n'''\n\n# This functions prints a main menu structure in the console.\ndef show_main_menu():\n print(\"What would you like to do: \")\n print(\"1. Create\")\n print(\"2. Read\")\n print(\"3. Update\")\n print(\"4. Delete\")\n print(\"5. End\")\n \n # This between min and max valuefunction checks if an integer is input\ndef ask_for_integer_input(min, max):\n while True:\n print(\"Please enter a number between\",min, \"and\",max,\"!\")\n answer = input(\"Input: \")\n if answer.isdecimal():\n if min > int(answer):\n print(\"The entered value is too low.\")\n elif max < int(answer):\n print(\"The entered value is too high.\")\n else:\n return int(answer)\n else:\n print(\"The entered value is no integer.\")\n\ndef peek_single_dataset(lines):\n option3 = ask_for_integer_input(1, len(lines))\n print(lines[int(option3)-1])\n\ndef show_all_datasets(lines):\n max_sizes = []\n for line in lines:\n for i, token in enumerate(line.split(';')):\n if len(max_sizes) <= i:\n max_sizes.append(len(token.strip()))\n elif len(token.strip()) > max_sizes[i]:\n max_sizes[i] = len(token.strip())\n for linenumber, line in enumerate(lines):\n first = str(linenumber) if linenumber else \" \"\n print(first.ljust(3),end=' ')\n for i, token in enumerate(line.split(';')):\n print(fr\"{token.strip()}\".ljust(max_sizes[i]+1,'.'), end='')\n print()\n\ndef delete_single_dateset(lines):\n pass\n\ndef delete_all_datasets(lines):\n pass\n\ndef update_single_dataset(lines):\n pass\n\ndef add_via_console(lines):\n pass\n\ndef create_menu(create_lines):\n pass\n\ndef read_menu(read_lines):\n print(\"1. Show all\")\n print(\"2. Show single line\")\n option2 = ask_for_integer_input(1, 2)\n if option2 == 1:\n show_all_datasets(read_lines)\n else:\n peek_single_dataset(read_lines)\n\ndef update_menu(update_lines):\n pass\n\ndef delete_menu(delete_lines):\n pass\n\n\nimport pathlib # loads the library for object-oriented filesystem paths\ncurrent_folder = pathlib.Path(__file__).parent.absolute().__str__()\nimport_file_name = \"export.csv\"\npath_source = current_folder + \"/\" + import_file_name\nprint(\"Importing: \" + path_source)\n\nwith open(path_source) as file:\n cur_lines = file.readlines()\n while True:\n show_main_menu()\n option = ask_for_integer_input(1, 6)\n if option == 1: # hier wird importiert oder hinzugefügt\n create_menu(cur_lines)\n elif option == 2: # hier wird gefiltert und angezeigt\n read_menu(cur_lines)\n elif option == 3: # hier werden vorhandene werte geändert\n update_menu(cur_lines)\n elif option == 4: # hier werden vorhanden werte gelöscht\n delete_menu(cur_lines)\n elif option == 5: # hier wird das programm beendet\n #cleanUnicode(path_source)\n print(\"good bye\")\n break\n", "<docstring token>\n\n\ndef show_main_menu():\n print('What would you like to do: ')\n print('1. Create')\n print('2. Read')\n print('3. Update')\n print('4. Delete')\n print('5. End')\n\n\ndef ask_for_integer_input(min, max):\n while True:\n print('Please enter a number between', min, 'and', max, '!')\n answer = input('Input: ')\n if answer.isdecimal():\n if min > int(answer):\n print('The entered value is too low.')\n elif max < int(answer):\n print('The entered value is too high.')\n else:\n return int(answer)\n else:\n print('The entered value is no integer.')\n\n\ndef peek_single_dataset(lines):\n option3 = ask_for_integer_input(1, len(lines))\n print(lines[int(option3) - 1])\n\n\ndef show_all_datasets(lines):\n max_sizes = []\n for line in lines:\n for i, token in enumerate(line.split(';')):\n if len(max_sizes) <= i:\n max_sizes.append(len(token.strip()))\n elif len(token.strip()) > max_sizes[i]:\n max_sizes[i] = len(token.strip())\n for linenumber, line in enumerate(lines):\n first = str(linenumber) if linenumber else ' '\n print(first.ljust(3), end=' ')\n for i, token in enumerate(line.split(';')):\n print(f'{token.strip()}'.ljust(max_sizes[i] + 1, '.'), end='')\n print()\n\n\ndef delete_single_dateset(lines):\n pass\n\n\ndef delete_all_datasets(lines):\n pass\n\n\ndef update_single_dataset(lines):\n pass\n\n\ndef add_via_console(lines):\n pass\n\n\ndef create_menu(create_lines):\n pass\n\n\ndef read_menu(read_lines):\n print('1. Show all')\n print('2. Show single line')\n option2 = ask_for_integer_input(1, 2)\n if option2 == 1:\n show_all_datasets(read_lines)\n else:\n peek_single_dataset(read_lines)\n\n\ndef update_menu(update_lines):\n pass\n\n\ndef delete_menu(delete_lines):\n pass\n\n\nimport pathlib\ncurrent_folder = pathlib.Path(__file__).parent.absolute().__str__()\nimport_file_name = 'export.csv'\npath_source = current_folder + '/' + import_file_name\nprint('Importing: ' + path_source)\nwith open(path_source) as file:\n cur_lines = file.readlines()\n while True:\n show_main_menu()\n option = ask_for_integer_input(1, 6)\n if option == 1:\n create_menu(cur_lines)\n elif option == 2:\n read_menu(cur_lines)\n elif option == 3:\n update_menu(cur_lines)\n elif option == 4:\n delete_menu(cur_lines)\n elif option == 5:\n print('good bye')\n break\n", "<docstring token>\n\n\ndef show_main_menu():\n print('What would you like to do: ')\n print('1. Create')\n print('2. Read')\n print('3. Update')\n print('4. Delete')\n print('5. End')\n\n\ndef ask_for_integer_input(min, max):\n while True:\n print('Please enter a number between', min, 'and', max, '!')\n answer = input('Input: ')\n if answer.isdecimal():\n if min > int(answer):\n print('The entered value is too low.')\n elif max < int(answer):\n print('The entered value is too high.')\n else:\n return int(answer)\n else:\n print('The entered value is no integer.')\n\n\ndef peek_single_dataset(lines):\n option3 = ask_for_integer_input(1, len(lines))\n print(lines[int(option3) - 1])\n\n\ndef show_all_datasets(lines):\n max_sizes = []\n for line in lines:\n for i, token in enumerate(line.split(';')):\n if len(max_sizes) <= i:\n max_sizes.append(len(token.strip()))\n elif len(token.strip()) > max_sizes[i]:\n max_sizes[i] = len(token.strip())\n for linenumber, line in enumerate(lines):\n first = str(linenumber) if linenumber else ' '\n print(first.ljust(3), end=' ')\n for i, token in enumerate(line.split(';')):\n print(f'{token.strip()}'.ljust(max_sizes[i] + 1, '.'), end='')\n print()\n\n\ndef delete_single_dateset(lines):\n pass\n\n\ndef delete_all_datasets(lines):\n pass\n\n\ndef update_single_dataset(lines):\n pass\n\n\ndef add_via_console(lines):\n pass\n\n\ndef create_menu(create_lines):\n pass\n\n\ndef read_menu(read_lines):\n print('1. Show all')\n print('2. Show single line')\n option2 = ask_for_integer_input(1, 2)\n if option2 == 1:\n show_all_datasets(read_lines)\n else:\n peek_single_dataset(read_lines)\n\n\ndef update_menu(update_lines):\n pass\n\n\ndef delete_menu(delete_lines):\n pass\n\n\n<import token>\ncurrent_folder = pathlib.Path(__file__).parent.absolute().__str__()\nimport_file_name = 'export.csv'\npath_source = current_folder + '/' + import_file_name\nprint('Importing: ' + path_source)\nwith open(path_source) as file:\n cur_lines = file.readlines()\n while True:\n show_main_menu()\n option = ask_for_integer_input(1, 6)\n if option == 1:\n create_menu(cur_lines)\n elif option == 2:\n read_menu(cur_lines)\n elif option == 3:\n update_menu(cur_lines)\n elif option == 4:\n delete_menu(cur_lines)\n elif option == 5:\n print('good bye')\n break\n", "<docstring token>\n\n\ndef show_main_menu():\n print('What would you like to do: ')\n print('1. Create')\n print('2. Read')\n print('3. Update')\n print('4. Delete')\n print('5. End')\n\n\ndef ask_for_integer_input(min, max):\n while True:\n print('Please enter a number between', min, 'and', max, '!')\n answer = input('Input: ')\n if answer.isdecimal():\n if min > int(answer):\n print('The entered value is too low.')\n elif max < int(answer):\n print('The entered value is too high.')\n else:\n return int(answer)\n else:\n print('The entered value is no integer.')\n\n\ndef peek_single_dataset(lines):\n option3 = ask_for_integer_input(1, len(lines))\n print(lines[int(option3) - 1])\n\n\ndef show_all_datasets(lines):\n max_sizes = []\n for line in lines:\n for i, token in enumerate(line.split(';')):\n if len(max_sizes) <= i:\n max_sizes.append(len(token.strip()))\n elif len(token.strip()) > max_sizes[i]:\n max_sizes[i] = len(token.strip())\n for linenumber, line in enumerate(lines):\n first = str(linenumber) if linenumber else ' '\n print(first.ljust(3), end=' ')\n for i, token in enumerate(line.split(';')):\n print(f'{token.strip()}'.ljust(max_sizes[i] + 1, '.'), end='')\n print()\n\n\ndef delete_single_dateset(lines):\n pass\n\n\ndef delete_all_datasets(lines):\n pass\n\n\ndef update_single_dataset(lines):\n pass\n\n\ndef add_via_console(lines):\n pass\n\n\ndef create_menu(create_lines):\n pass\n\n\ndef read_menu(read_lines):\n print('1. Show all')\n print('2. Show single line')\n option2 = ask_for_integer_input(1, 2)\n if option2 == 1:\n show_all_datasets(read_lines)\n else:\n peek_single_dataset(read_lines)\n\n\ndef update_menu(update_lines):\n pass\n\n\ndef delete_menu(delete_lines):\n pass\n\n\n<import token>\n<assignment token>\nprint('Importing: ' + path_source)\nwith open(path_source) as file:\n cur_lines = file.readlines()\n while True:\n show_main_menu()\n option = ask_for_integer_input(1, 6)\n if option == 1:\n create_menu(cur_lines)\n elif option == 2:\n read_menu(cur_lines)\n elif option == 3:\n update_menu(cur_lines)\n elif option == 4:\n delete_menu(cur_lines)\n elif option == 5:\n print('good bye')\n break\n", "<docstring token>\n\n\ndef show_main_menu():\n print('What would you like to do: ')\n print('1. Create')\n print('2. Read')\n print('3. Update')\n print('4. Delete')\n print('5. End')\n\n\ndef ask_for_integer_input(min, max):\n while True:\n print('Please enter a number between', min, 'and', max, '!')\n answer = input('Input: ')\n if answer.isdecimal():\n if min > int(answer):\n print('The entered value is too low.')\n elif max < int(answer):\n print('The entered value is too high.')\n else:\n return int(answer)\n else:\n print('The entered value is no integer.')\n\n\ndef peek_single_dataset(lines):\n option3 = ask_for_integer_input(1, len(lines))\n print(lines[int(option3) - 1])\n\n\ndef show_all_datasets(lines):\n max_sizes = []\n for line in lines:\n for i, token in enumerate(line.split(';')):\n if len(max_sizes) <= i:\n max_sizes.append(len(token.strip()))\n elif len(token.strip()) > max_sizes[i]:\n max_sizes[i] = len(token.strip())\n for linenumber, line in enumerate(lines):\n first = str(linenumber) if linenumber else ' '\n print(first.ljust(3), end=' ')\n for i, token in enumerate(line.split(';')):\n print(f'{token.strip()}'.ljust(max_sizes[i] + 1, '.'), end='')\n print()\n\n\ndef delete_single_dateset(lines):\n pass\n\n\ndef delete_all_datasets(lines):\n pass\n\n\ndef update_single_dataset(lines):\n pass\n\n\ndef add_via_console(lines):\n pass\n\n\ndef create_menu(create_lines):\n pass\n\n\ndef read_menu(read_lines):\n print('1. Show all')\n print('2. Show single line')\n option2 = ask_for_integer_input(1, 2)\n if option2 == 1:\n show_all_datasets(read_lines)\n else:\n peek_single_dataset(read_lines)\n\n\ndef update_menu(update_lines):\n pass\n\n\ndef delete_menu(delete_lines):\n pass\n\n\n<import token>\n<assignment token>\n<code token>\n", "<docstring token>\n\n\ndef show_main_menu():\n print('What would you like to do: ')\n print('1. Create')\n print('2. Read')\n print('3. Update')\n print('4. Delete')\n print('5. End')\n\n\ndef ask_for_integer_input(min, max):\n while True:\n print('Please enter a number between', min, 'and', max, '!')\n answer = input('Input: ')\n if answer.isdecimal():\n if min > int(answer):\n print('The entered value is too low.')\n elif max < int(answer):\n print('The entered value is too high.')\n else:\n return int(answer)\n else:\n print('The entered value is no integer.')\n\n\ndef peek_single_dataset(lines):\n option3 = ask_for_integer_input(1, len(lines))\n print(lines[int(option3) - 1])\n\n\ndef show_all_datasets(lines):\n max_sizes = []\n for line in lines:\n for i, token in enumerate(line.split(';')):\n if len(max_sizes) <= i:\n max_sizes.append(len(token.strip()))\n elif len(token.strip()) > max_sizes[i]:\n max_sizes[i] = len(token.strip())\n for linenumber, line in enumerate(lines):\n first = str(linenumber) if linenumber else ' '\n print(first.ljust(3), end=' ')\n for i, token in enumerate(line.split(';')):\n print(f'{token.strip()}'.ljust(max_sizes[i] + 1, '.'), end='')\n print()\n\n\ndef delete_single_dateset(lines):\n pass\n\n\ndef delete_all_datasets(lines):\n pass\n\n\n<function token>\n\n\ndef add_via_console(lines):\n pass\n\n\ndef create_menu(create_lines):\n pass\n\n\ndef read_menu(read_lines):\n print('1. Show all')\n print('2. Show single line')\n option2 = ask_for_integer_input(1, 2)\n if option2 == 1:\n show_all_datasets(read_lines)\n else:\n peek_single_dataset(read_lines)\n\n\ndef update_menu(update_lines):\n pass\n\n\ndef delete_menu(delete_lines):\n pass\n\n\n<import token>\n<assignment token>\n<code token>\n", "<docstring token>\n\n\ndef show_main_menu():\n print('What would you like to do: ')\n print('1. Create')\n print('2. Read')\n print('3. Update')\n print('4. Delete')\n print('5. End')\n\n\ndef ask_for_integer_input(min, max):\n while True:\n print('Please enter a number between', min, 'and', max, '!')\n answer = input('Input: ')\n if answer.isdecimal():\n if min > int(answer):\n print('The entered value is too low.')\n elif max < int(answer):\n print('The entered value is too high.')\n else:\n return int(answer)\n else:\n print('The entered value is no integer.')\n\n\ndef peek_single_dataset(lines):\n option3 = ask_for_integer_input(1, len(lines))\n print(lines[int(option3) - 1])\n\n\ndef show_all_datasets(lines):\n max_sizes = []\n for line in lines:\n for i, token in enumerate(line.split(';')):\n if len(max_sizes) <= i:\n max_sizes.append(len(token.strip()))\n elif len(token.strip()) > max_sizes[i]:\n max_sizes[i] = len(token.strip())\n for linenumber, line in enumerate(lines):\n first = str(linenumber) if linenumber else ' '\n print(first.ljust(3), end=' ')\n for i, token in enumerate(line.split(';')):\n print(f'{token.strip()}'.ljust(max_sizes[i] + 1, '.'), end='')\n print()\n\n\ndef delete_single_dateset(lines):\n pass\n\n\ndef delete_all_datasets(lines):\n pass\n\n\n<function token>\n\n\ndef add_via_console(lines):\n pass\n\n\ndef create_menu(create_lines):\n pass\n\n\ndef read_menu(read_lines):\n print('1. Show all')\n print('2. Show single line')\n option2 = ask_for_integer_input(1, 2)\n if option2 == 1:\n show_all_datasets(read_lines)\n else:\n peek_single_dataset(read_lines)\n\n\ndef update_menu(update_lines):\n pass\n\n\n<function token>\n<import token>\n<assignment token>\n<code token>\n", "<docstring token>\n\n\ndef show_main_menu():\n print('What would you like to do: ')\n print('1. Create')\n print('2. Read')\n print('3. Update')\n print('4. Delete')\n print('5. End')\n\n\ndef ask_for_integer_input(min, max):\n while True:\n print('Please enter a number between', min, 'and', max, '!')\n answer = input('Input: ')\n if answer.isdecimal():\n if min > int(answer):\n print('The entered value is too low.')\n elif max < int(answer):\n print('The entered value is too high.')\n else:\n return int(answer)\n else:\n print('The entered value is no integer.')\n\n\ndef peek_single_dataset(lines):\n option3 = ask_for_integer_input(1, len(lines))\n print(lines[int(option3) - 1])\n\n\ndef show_all_datasets(lines):\n max_sizes = []\n for line in lines:\n for i, token in enumerate(line.split(';')):\n if len(max_sizes) <= i:\n max_sizes.append(len(token.strip()))\n elif len(token.strip()) > max_sizes[i]:\n max_sizes[i] = len(token.strip())\n for linenumber, line in enumerate(lines):\n first = str(linenumber) if linenumber else ' '\n print(first.ljust(3), end=' ')\n for i, token in enumerate(line.split(';')):\n print(f'{token.strip()}'.ljust(max_sizes[i] + 1, '.'), end='')\n print()\n\n\ndef delete_single_dateset(lines):\n pass\n\n\ndef delete_all_datasets(lines):\n pass\n\n\n<function token>\n<function token>\n\n\ndef create_menu(create_lines):\n pass\n\n\ndef read_menu(read_lines):\n print('1. Show all')\n print('2. Show single line')\n option2 = ask_for_integer_input(1, 2)\n if option2 == 1:\n show_all_datasets(read_lines)\n else:\n peek_single_dataset(read_lines)\n\n\ndef update_menu(update_lines):\n pass\n\n\n<function token>\n<import token>\n<assignment token>\n<code token>\n", "<docstring token>\n\n\ndef show_main_menu():\n print('What would you like to do: ')\n print('1. Create')\n print('2. Read')\n print('3. Update')\n print('4. Delete')\n print('5. End')\n\n\n<function token>\n\n\ndef peek_single_dataset(lines):\n option3 = ask_for_integer_input(1, len(lines))\n print(lines[int(option3) - 1])\n\n\ndef show_all_datasets(lines):\n max_sizes = []\n for line in lines:\n for i, token in enumerate(line.split(';')):\n if len(max_sizes) <= i:\n max_sizes.append(len(token.strip()))\n elif len(token.strip()) > max_sizes[i]:\n max_sizes[i] = len(token.strip())\n for linenumber, line in enumerate(lines):\n first = str(linenumber) if linenumber else ' '\n print(first.ljust(3), end=' ')\n for i, token in enumerate(line.split(';')):\n print(f'{token.strip()}'.ljust(max_sizes[i] + 1, '.'), end='')\n print()\n\n\ndef delete_single_dateset(lines):\n pass\n\n\ndef delete_all_datasets(lines):\n pass\n\n\n<function token>\n<function token>\n\n\ndef create_menu(create_lines):\n pass\n\n\ndef read_menu(read_lines):\n print('1. Show all')\n print('2. Show single line')\n option2 = ask_for_integer_input(1, 2)\n if option2 == 1:\n show_all_datasets(read_lines)\n else:\n peek_single_dataset(read_lines)\n\n\ndef update_menu(update_lines):\n pass\n\n\n<function token>\n<import token>\n<assignment token>\n<code token>\n", "<docstring token>\n<function token>\n<function token>\n\n\ndef peek_single_dataset(lines):\n option3 = ask_for_integer_input(1, len(lines))\n print(lines[int(option3) - 1])\n\n\ndef show_all_datasets(lines):\n max_sizes = []\n for line in lines:\n for i, token in enumerate(line.split(';')):\n if len(max_sizes) <= i:\n max_sizes.append(len(token.strip()))\n elif len(token.strip()) > max_sizes[i]:\n max_sizes[i] = len(token.strip())\n for linenumber, line in enumerate(lines):\n first = str(linenumber) if linenumber else ' '\n print(first.ljust(3), end=' ')\n for i, token in enumerate(line.split(';')):\n print(f'{token.strip()}'.ljust(max_sizes[i] + 1, '.'), end='')\n print()\n\n\ndef delete_single_dateset(lines):\n pass\n\n\ndef delete_all_datasets(lines):\n pass\n\n\n<function token>\n<function token>\n\n\ndef create_menu(create_lines):\n pass\n\n\ndef read_menu(read_lines):\n print('1. Show all')\n print('2. Show single line')\n option2 = ask_for_integer_input(1, 2)\n if option2 == 1:\n show_all_datasets(read_lines)\n else:\n peek_single_dataset(read_lines)\n\n\ndef update_menu(update_lines):\n pass\n\n\n<function token>\n<import token>\n<assignment token>\n<code token>\n", "<docstring token>\n<function token>\n<function token>\n\n\ndef peek_single_dataset(lines):\n option3 = ask_for_integer_input(1, len(lines))\n print(lines[int(option3) - 1])\n\n\ndef show_all_datasets(lines):\n max_sizes = []\n for line in lines:\n for i, token in enumerate(line.split(';')):\n if len(max_sizes) <= i:\n max_sizes.append(len(token.strip()))\n elif len(token.strip()) > max_sizes[i]:\n max_sizes[i] = len(token.strip())\n for linenumber, line in enumerate(lines):\n first = str(linenumber) if linenumber else ' '\n print(first.ljust(3), end=' ')\n for i, token in enumerate(line.split(';')):\n print(f'{token.strip()}'.ljust(max_sizes[i] + 1, '.'), end='')\n print()\n\n\ndef delete_single_dateset(lines):\n pass\n\n\ndef delete_all_datasets(lines):\n pass\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef read_menu(read_lines):\n print('1. Show all')\n print('2. Show single line')\n option2 = ask_for_integer_input(1, 2)\n if option2 == 1:\n show_all_datasets(read_lines)\n else:\n peek_single_dataset(read_lines)\n\n\ndef update_menu(update_lines):\n pass\n\n\n<function token>\n<import token>\n<assignment token>\n<code token>\n", "<docstring token>\n<function token>\n<function token>\n<function token>\n\n\ndef show_all_datasets(lines):\n max_sizes = []\n for line in lines:\n for i, token in enumerate(line.split(';')):\n if len(max_sizes) <= i:\n max_sizes.append(len(token.strip()))\n elif len(token.strip()) > max_sizes[i]:\n max_sizes[i] = len(token.strip())\n for linenumber, line in enumerate(lines):\n first = str(linenumber) if linenumber else ' '\n print(first.ljust(3), end=' ')\n for i, token in enumerate(line.split(';')):\n print(f'{token.strip()}'.ljust(max_sizes[i] + 1, '.'), end='')\n print()\n\n\ndef delete_single_dateset(lines):\n pass\n\n\ndef delete_all_datasets(lines):\n pass\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef read_menu(read_lines):\n print('1. Show all')\n print('2. Show single line')\n option2 = ask_for_integer_input(1, 2)\n if option2 == 1:\n show_all_datasets(read_lines)\n else:\n peek_single_dataset(read_lines)\n\n\ndef update_menu(update_lines):\n pass\n\n\n<function token>\n<import token>\n<assignment token>\n<code token>\n", "<docstring token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef delete_single_dateset(lines):\n pass\n\n\ndef delete_all_datasets(lines):\n pass\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef read_menu(read_lines):\n print('1. Show all')\n print('2. Show single line')\n option2 = ask_for_integer_input(1, 2)\n if option2 == 1:\n show_all_datasets(read_lines)\n else:\n peek_single_dataset(read_lines)\n\n\ndef update_menu(update_lines):\n pass\n\n\n<function token>\n<import token>\n<assignment token>\n<code token>\n", "<docstring token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef delete_single_dateset(lines):\n pass\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef read_menu(read_lines):\n print('1. Show all')\n print('2. Show single line')\n option2 = ask_for_integer_input(1, 2)\n if option2 == 1:\n show_all_datasets(read_lines)\n else:\n peek_single_dataset(read_lines)\n\n\ndef update_menu(update_lines):\n pass\n\n\n<function token>\n<import token>\n<assignment token>\n<code token>\n", "<docstring token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef read_menu(read_lines):\n print('1. Show all')\n print('2. Show single line')\n option2 = ask_for_integer_input(1, 2)\n if option2 == 1:\n show_all_datasets(read_lines)\n else:\n peek_single_dataset(read_lines)\n\n\ndef update_menu(update_lines):\n pass\n\n\n<function token>\n<import token>\n<assignment token>\n<code token>\n", "<docstring token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef update_menu(update_lines):\n pass\n\n\n<function token>\n<import token>\n<assignment token>\n<code token>\n", "<docstring token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<import token>\n<assignment token>\n<code token>\n" ]
false
99,055
f5ddfb4baa24e81e2439db8a9f5234e259536c7e
#nst9fk import random import math import Card import sys def play_a_game(data): hand_number = data[2] + data[3] + data[4] + 1 print("\n\nHand %d:" % hand_number) # Take bet bet = -1 while bet > data[1] or bet <= 0: try: print("You have %d chips." % data[1]) bet = int(input("How many chips to bet for this hand? ")) except ValueError: print("Please enter a valid number of chips to bet!") bet = -1 else: if bet>data[1]: print("You cannot bet more chips than you have!") elif bet==0: print("You cannot bet zero chips!") elif bet<0: print("You cannot bet negative chips!") data[5] = bet # Deal Player Cards print("Dealing Cards...\n") number_aces=0 total=0 # check for aces new_card1 = Card.Card() if new_card1.get_value() == 11: number_aces = 1 new_card2 = Card.Card() if new_card2.get_value() == 11: if number_aces == 1: number_aces = 1 total = new_card1.get_value() + new_card2.get_value() # if you draw two aces, total goes to 12 if total == 22: total = 12 hand = [new_card1,new_card2] # Deal Dealer's Cards dealer_aces=0 dealer_total = 0 dealer_card1 = Card.Card() if dealer_card1.get_value() == 11: dealer_aces = 1 dealer_card2 = Card.Card() if dealer_card2.get_value() == 11: dealer_aces = 1 dealer_total = dealer_card1.get_value() + dealer_card2.get_value() # if you draw two aces, total goes to 12 if dealer_total == 22: dealer_total = 12 dealer_hand = [dealer_card1,dealer_card2] # print hands print("Your hand:") for x in hand: print(x) print("\nDealer's shown card:") print(dealer_hand[0]) # check for blackjacks if total == 21: print("\nBLACKJACK!") data[5] = math.floor(data[5]*1.5) win(data) elif dealer_total == 21: print(dealer_hand[1]) print("\nDealer has Blackjack!") loss(data) # player hit or stand while True: choice = input("\nEnter '1' to hit, anything else to stand: ") if choice == "1": # deal card new_card = Card.Card() print("Card Drawn: " + str(new_card)) if new_card.get_value() == 11: number_aces +=1 total += new_card.get_value() # player busts, check for aces if total > 21: if number_aces > 0: total -= 10 number_aces -= 1 else: print("BUST") print("Your total: %d" % total) loss(data) # player did not bust, add card to hand hand.append(new_card) print("\nYour hand:") for x in hand: print(x) print("\nDealer's shown card:") print(dealer_hand[0]) # repeat until user does not hit else: break # User has stood # Show dealer hand print("\nDealer's hand:") for x in dealer_hand: print(x) # if the dealer is at or above 17, do not print totals # print is covered after the while loop if dealer_total >= 17: print("\nDealer total: %d" % dealer_total) print("Your total: %d" % total) # dealer already has a better hand if dealer_total>total: loss(data) # dealers hand is not better while dealer_total<17 and dealer_total<total: # deal card new_card = Card.Card() print("\nCard Drawn: " + str(new_card)) if new_card.get_value() == 11: dealer_aces +=1 dealer_total += new_card.get_value() # dealer busts, check for aces if dealer_total > 21: if dealer_aces > 0: dealer_total -= 10 dealer_aces -= 1 else: print("New Dealer Total: %d" % dealer_total) print("DEALER BUST\n") win(data) print("New Dealer Total: %d\n" % dealer_total) # dealer did not bust, add card to hand dealer_hand.append(new_card) # repeat until dealer hits or passes 17 or wins # if no-one busted, determine outcome if(dealer_total<22 and total<22): print("Dealer total: %d" % dealer_total) print("Your total: %d" % total) if dealer_total > total: loss(data) elif dealer_total < total: win(data) else: tie(data) # add winnings to user, increase win stat def win(data): print("You Win!") data[2] += 1 data[1] += data[5] post_game_menu(data) # remove losses from user, increase loss stat def loss(data): print("You Lose!") data[3] += 1 data[1] -= data[5] post_game_menu(data) # increase tie stat def tie(data): print("It's a Tie!") data[4] += 1 post_game_menu(data) def load_stats(): # get name to load file name = input("What is your name? ") try: # try reading file of given name data = [name,0,0,0,0,0] f = open(name+".usr","r") data[0] = f.readline() data[1] = f.readline() data[2] = f.readline() data[3] = f.readline() data[4] = f.readline() f.close() except Exception as e: print("data unable to be loaded!") print(e) menu() else: data[0]=data[0].strip("\n") data[1]=int(data[1]) data[2]=int(data[2]) data[3]=int(data[3]) data[4]=int(data[4]) print("Welcome back %s, let's play!" % data[0]) play_a_game(data) def save_stats(data): try: # try writing data of user to file f = open(data[0]+".usr","w") f.write(data[0]+"\n") f.write(str(data[1])+"\n") f.write(str(data[2])+"\n") f.write(str(data[3])+"\n") f.write(str(data[4])+"\n") f.close() except Exception as e: print("Sorry" + data[0] + ", your data was not able to be saved!") print(e) else: print(data[0] +", your data has been saved!") def stats(data): print("\n"+ data[0]+", here are your game play statistics...") print("Chips: %d" % data[1]) print("Wins: %d" % data[2]) print("Losses: %d" % data[3]) print("Ties: %d" % data[4]) try: ratio = data[2] / data[3] except ZeroDivisionError: print("Win/loss ratio: INFINITE") else: print("Win/loss ratio: %.3f" % ratio) post_game_menu(data) def post_game_menu(data): # To prevent being stuck with no chips, players are given 100 more in case they lose all chips to continue play if data[1] == 0: print("You've run out of chips!\nHere is another 100 to get you going!\nGood Luck!") data[1] = 100 print("\n1. Play again") print("2. View statistics") print("3. Quit") choice = input("\nEnter choice: ") if choice == '1': play_a_game(data) elif choice == '2': stats(data) elif choice == '3': save_stats(data) print("Bye!") sys.exit(0) else: print("Invalid choice!") post_game_menu(data) def menu(): print("Let's Play Blackjack!\n") print("1. Start a new player") print("2. Load a player") print("3. Quit") choices =["1", "2", "3"] choice = input("Enter choice: ") while choice not in choices: print(choice + " is not a valid choice!") choice = input("Enter a valid choice [1-3]: ") if choice == '1': name = input("\nWhat is your name? ") print("Hello "+name+". Let's play!") data = [name,100,0,0,0,0] print("You will start with "+str(data[1])+ " chips") play_a_game(data) if choice == '2': load_stats() if choice == '3': print("Bye!") sys.exit(0) menu()
[ "#nst9fk\r\nimport random\r\nimport math\r\nimport Card\r\nimport sys\r\n\r\ndef play_a_game(data):\r\n hand_number = data[2] + data[3] + data[4] + 1\r\n print(\"\\n\\nHand %d:\" % hand_number)\r\n\r\n # Take bet\r\n bet = -1\r\n while bet > data[1] or bet <= 0:\r\n try:\r\n print(\"You have %d chips.\" % data[1])\r\n bet = int(input(\"How many chips to bet for this hand? \"))\r\n except ValueError:\r\n print(\"Please enter a valid number of chips to bet!\")\r\n bet = -1\r\n else:\r\n if bet>data[1]:\r\n print(\"You cannot bet more chips than you have!\")\r\n elif bet==0:\r\n print(\"You cannot bet zero chips!\")\r\n elif bet<0:\r\n print(\"You cannot bet negative chips!\")\r\n data[5] = bet\r\n # Deal Player Cards\r\n print(\"Dealing Cards...\\n\")\r\n number_aces=0\r\n total=0\r\n # check for aces\r\n new_card1 = Card.Card()\r\n if new_card1.get_value() == 11:\r\n number_aces = 1\r\n new_card2 = Card.Card()\r\n if new_card2.get_value() == 11:\r\n if number_aces == 1:\r\n number_aces = 1\r\n total = new_card1.get_value() + new_card2.get_value()\r\n # if you draw two aces, total goes to 12\r\n if total == 22:\r\n total = 12\r\n hand = [new_card1,new_card2]\r\n\r\n # Deal Dealer's Cards\r\n dealer_aces=0\r\n dealer_total = 0\r\n dealer_card1 = Card.Card()\r\n if dealer_card1.get_value() == 11:\r\n dealer_aces = 1\r\n dealer_card2 = Card.Card()\r\n if dealer_card2.get_value() == 11:\r\n dealer_aces = 1\r\n dealer_total = dealer_card1.get_value() + dealer_card2.get_value()\r\n # if you draw two aces, total goes to 12\r\n if dealer_total == 22:\r\n dealer_total = 12\r\n dealer_hand = [dealer_card1,dealer_card2]\r\n\r\n # print hands\r\n print(\"Your hand:\")\r\n for x in hand:\r\n print(x)\r\n print(\"\\nDealer's shown card:\")\r\n print(dealer_hand[0])\r\n\r\n # check for blackjacks\r\n if total == 21:\r\n print(\"\\nBLACKJACK!\")\r\n data[5] = math.floor(data[5]*1.5)\r\n win(data)\r\n elif dealer_total == 21:\r\n print(dealer_hand[1])\r\n print(\"\\nDealer has Blackjack!\")\r\n loss(data)\r\n\r\n \r\n # player hit or stand\r\n while True:\r\n choice = input(\"\\nEnter '1' to hit, anything else to stand: \")\r\n if choice == \"1\":\r\n # deal card\r\n new_card = Card.Card()\r\n print(\"Card Drawn: \" + str(new_card))\r\n if new_card.get_value() == 11:\r\n number_aces +=1\r\n total += new_card.get_value()\r\n # player busts, check for aces\r\n if total > 21:\r\n if number_aces > 0:\r\n total -= 10\r\n number_aces -= 1\r\n else:\r\n print(\"BUST\")\r\n print(\"Your total: %d\" % total)\r\n loss(data)\r\n # player did not bust, add card to hand\r\n hand.append(new_card)\r\n print(\"\\nYour hand:\")\r\n for x in hand:\r\n print(x)\r\n print(\"\\nDealer's shown card:\")\r\n print(dealer_hand[0])\r\n # repeat until user does not hit\r\n else:\r\n break\r\n\r\n # User has stood\r\n # Show dealer hand\r\n print(\"\\nDealer's hand:\")\r\n for x in dealer_hand:\r\n print(x)\r\n # if the dealer is at or above 17, do not print totals\r\n # print is covered after the while loop\r\n if dealer_total >= 17:\r\n print(\"\\nDealer total: %d\" % dealer_total)\r\n print(\"Your total: %d\" % total)\r\n # dealer already has a better hand\r\n if dealer_total>total:\r\n loss(data)\r\n # dealers hand is not better\r\n while dealer_total<17 and dealer_total<total:\r\n # deal card\r\n new_card = Card.Card()\r\n print(\"\\nCard Drawn: \" + str(new_card))\r\n if new_card.get_value() == 11:\r\n dealer_aces +=1\r\n dealer_total += new_card.get_value()\r\n # dealer busts, check for aces\r\n if dealer_total > 21:\r\n if dealer_aces > 0:\r\n dealer_total -= 10\r\n dealer_aces -= 1\r\n else:\r\n print(\"New Dealer Total: %d\" % dealer_total)\r\n print(\"DEALER BUST\\n\")\r\n win(data)\r\n print(\"New Dealer Total: %d\\n\" % dealer_total)\r\n # dealer did not bust, add card to hand\r\n dealer_hand.append(new_card)\r\n \r\n # repeat until dealer hits or passes 17 or wins\r\n # if no-one busted, determine outcome\r\n if(dealer_total<22 and total<22):\r\n print(\"Dealer total: %d\" % dealer_total)\r\n print(\"Your total: %d\" % total)\r\n if dealer_total > total:\r\n loss(data)\r\n elif dealer_total < total:\r\n win(data)\r\n else:\r\n tie(data)\r\n\r\n# add winnings to user, increase win stat\r\ndef win(data):\r\n print(\"You Win!\")\r\n data[2] += 1\r\n data[1] += data[5]\r\n post_game_menu(data)\r\n\r\n# remove losses from user, increase loss stat\r\ndef loss(data):\r\n print(\"You Lose!\")\r\n data[3] += 1\r\n data[1] -= data[5]\r\n post_game_menu(data)\r\n\r\n# increase tie stat\r\ndef tie(data):\r\n print(\"It's a Tie!\")\r\n data[4] += 1\r\n post_game_menu(data)\r\n\r\n\r\ndef load_stats():\r\n # get name to load file\r\n name = input(\"What is your name? \")\r\n try:\r\n # try reading file of given name\r\n data = [name,0,0,0,0,0]\r\n f = open(name+\".usr\",\"r\")\r\n data[0] = f.readline()\r\n data[1] = f.readline()\r\n data[2] = f.readline()\r\n data[3] = f.readline()\r\n data[4] = f.readline()\r\n f.close()\r\n except Exception as e:\r\n print(\"data unable to be loaded!\")\r\n print(e)\r\n menu()\r\n else:\r\n data[0]=data[0].strip(\"\\n\")\r\n data[1]=int(data[1])\r\n data[2]=int(data[2])\r\n data[3]=int(data[3])\r\n data[4]=int(data[4])\r\n print(\"Welcome back %s, let's play!\" % data[0])\r\n play_a_game(data)\r\n\r\ndef save_stats(data):\r\n try:\r\n # try writing data of user to file\r\n f = open(data[0]+\".usr\",\"w\")\r\n f.write(data[0]+\"\\n\")\r\n f.write(str(data[1])+\"\\n\")\r\n f.write(str(data[2])+\"\\n\")\r\n f.write(str(data[3])+\"\\n\")\r\n f.write(str(data[4])+\"\\n\")\r\n f.close()\r\n except Exception as e:\r\n print(\"Sorry\" + data[0] + \", your data was not able to be saved!\")\r\n print(e)\r\n else:\r\n print(data[0] +\", your data has been saved!\")\r\n\r\ndef stats(data):\r\n print(\"\\n\"+ data[0]+\", here are your game play statistics...\")\r\n print(\"Chips: %d\" % data[1])\r\n print(\"Wins: %d\" % data[2])\r\n print(\"Losses: %d\" % data[3])\r\n print(\"Ties: %d\" % data[4])\r\n try:\r\n ratio = data[2] / data[3]\r\n except ZeroDivisionError:\r\n print(\"Win/loss ratio: INFINITE\")\r\n else:\r\n print(\"Win/loss ratio: %.3f\" % ratio)\r\n post_game_menu(data)\r\n \r\ndef post_game_menu(data):\r\n # To prevent being stuck with no chips, players are given 100 more in case they lose all chips to continue play\r\n if data[1] == 0:\r\n print(\"You've run out of chips!\\nHere is another 100 to get you going!\\nGood Luck!\")\r\n data[1] = 100\r\n print(\"\\n1. Play again\")\r\n print(\"2. View statistics\")\r\n print(\"3. Quit\")\r\n choice = input(\"\\nEnter choice: \")\r\n if choice == '1':\r\n play_a_game(data)\r\n elif choice == '2':\r\n stats(data)\r\n elif choice == '3':\r\n save_stats(data)\r\n print(\"Bye!\")\r\n sys.exit(0)\r\n else:\r\n print(\"Invalid choice!\")\r\n post_game_menu(data)\r\n \r\ndef menu():\r\n print(\"Let's Play Blackjack!\\n\")\r\n print(\"1. Start a new player\")\r\n print(\"2. Load a player\")\r\n print(\"3. Quit\")\r\n choices =[\"1\", \"2\", \"3\"]\r\n choice = input(\"Enter choice: \")\r\n\r\n while choice not in choices:\r\n print(choice + \" is not a valid choice!\")\r\n choice = input(\"Enter a valid choice [1-3]: \")\r\n \r\n if choice == '1':\r\n name = input(\"\\nWhat is your name? \")\r\n print(\"Hello \"+name+\". Let's play!\")\r\n data = [name,100,0,0,0,0]\r\n print(\"You will start with \"+str(data[1])+ \" chips\")\r\n play_a_game(data)\r\n if choice == '2':\r\n load_stats()\r\n if choice == '3':\r\n print(\"Bye!\")\r\n sys.exit(0)\r\n \r\n\r\nmenu()\r\n", "import random\nimport math\nimport Card\nimport sys\n\n\ndef play_a_game(data):\n hand_number = data[2] + data[3] + data[4] + 1\n print('\\n\\nHand %d:' % hand_number)\n bet = -1\n while bet > data[1] or bet <= 0:\n try:\n print('You have %d chips.' % data[1])\n bet = int(input('How many chips to bet for this hand? '))\n except ValueError:\n print('Please enter a valid number of chips to bet!')\n bet = -1\n else:\n if bet > data[1]:\n print('You cannot bet more chips than you have!')\n elif bet == 0:\n print('You cannot bet zero chips!')\n elif bet < 0:\n print('You cannot bet negative chips!')\n data[5] = bet\n print('Dealing Cards...\\n')\n number_aces = 0\n total = 0\n new_card1 = Card.Card()\n if new_card1.get_value() == 11:\n number_aces = 1\n new_card2 = Card.Card()\n if new_card2.get_value() == 11:\n if number_aces == 1:\n number_aces = 1\n total = new_card1.get_value() + new_card2.get_value()\n if total == 22:\n total = 12\n hand = [new_card1, new_card2]\n dealer_aces = 0\n dealer_total = 0\n dealer_card1 = Card.Card()\n if dealer_card1.get_value() == 11:\n dealer_aces = 1\n dealer_card2 = Card.Card()\n if dealer_card2.get_value() == 11:\n dealer_aces = 1\n dealer_total = dealer_card1.get_value() + dealer_card2.get_value()\n if dealer_total == 22:\n dealer_total = 12\n dealer_hand = [dealer_card1, dealer_card2]\n print('Your hand:')\n for x in hand:\n print(x)\n print(\"\\nDealer's shown card:\")\n print(dealer_hand[0])\n if total == 21:\n print('\\nBLACKJACK!')\n data[5] = math.floor(data[5] * 1.5)\n win(data)\n elif dealer_total == 21:\n print(dealer_hand[1])\n print('\\nDealer has Blackjack!')\n loss(data)\n while True:\n choice = input(\"\\nEnter '1' to hit, anything else to stand: \")\n if choice == '1':\n new_card = Card.Card()\n print('Card Drawn: ' + str(new_card))\n if new_card.get_value() == 11:\n number_aces += 1\n total += new_card.get_value()\n if total > 21:\n if number_aces > 0:\n total -= 10\n number_aces -= 1\n else:\n print('BUST')\n print('Your total: %d' % total)\n loss(data)\n hand.append(new_card)\n print('\\nYour hand:')\n for x in hand:\n print(x)\n print(\"\\nDealer's shown card:\")\n print(dealer_hand[0])\n else:\n break\n print(\"\\nDealer's hand:\")\n for x in dealer_hand:\n print(x)\n if dealer_total >= 17:\n print('\\nDealer total: %d' % dealer_total)\n print('Your total: %d' % total)\n if dealer_total > total:\n loss(data)\n while dealer_total < 17 and dealer_total < total:\n new_card = Card.Card()\n print('\\nCard Drawn: ' + str(new_card))\n if new_card.get_value() == 11:\n dealer_aces += 1\n dealer_total += new_card.get_value()\n if dealer_total > 21:\n if dealer_aces > 0:\n dealer_total -= 10\n dealer_aces -= 1\n else:\n print('New Dealer Total: %d' % dealer_total)\n print('DEALER BUST\\n')\n win(data)\n print('New Dealer Total: %d\\n' % dealer_total)\n dealer_hand.append(new_card)\n if dealer_total < 22 and total < 22:\n print('Dealer total: %d' % dealer_total)\n print('Your total: %d' % total)\n if dealer_total > total:\n loss(data)\n elif dealer_total < total:\n win(data)\n else:\n tie(data)\n\n\ndef win(data):\n print('You Win!')\n data[2] += 1\n data[1] += data[5]\n post_game_menu(data)\n\n\ndef loss(data):\n print('You Lose!')\n data[3] += 1\n data[1] -= data[5]\n post_game_menu(data)\n\n\ndef tie(data):\n print(\"It's a Tie!\")\n data[4] += 1\n post_game_menu(data)\n\n\ndef load_stats():\n name = input('What is your name? ')\n try:\n data = [name, 0, 0, 0, 0, 0]\n f = open(name + '.usr', 'r')\n data[0] = f.readline()\n data[1] = f.readline()\n data[2] = f.readline()\n data[3] = f.readline()\n data[4] = f.readline()\n f.close()\n except Exception as e:\n print('data unable to be loaded!')\n print(e)\n menu()\n else:\n data[0] = data[0].strip('\\n')\n data[1] = int(data[1])\n data[2] = int(data[2])\n data[3] = int(data[3])\n data[4] = int(data[4])\n print(\"Welcome back %s, let's play!\" % data[0])\n play_a_game(data)\n\n\ndef save_stats(data):\n try:\n f = open(data[0] + '.usr', 'w')\n f.write(data[0] + '\\n')\n f.write(str(data[1]) + '\\n')\n f.write(str(data[2]) + '\\n')\n f.write(str(data[3]) + '\\n')\n f.write(str(data[4]) + '\\n')\n f.close()\n except Exception as e:\n print('Sorry' + data[0] + ', your data was not able to be saved!')\n print(e)\n else:\n print(data[0] + ', your data has been saved!')\n\n\ndef stats(data):\n print('\\n' + data[0] + ', here are your game play statistics...')\n print('Chips: %d' % data[1])\n print('Wins: %d' % data[2])\n print('Losses: %d' % data[3])\n print('Ties: %d' % data[4])\n try:\n ratio = data[2] / data[3]\n except ZeroDivisionError:\n print('Win/loss ratio: INFINITE')\n else:\n print('Win/loss ratio: %.3f' % ratio)\n post_game_menu(data)\n\n\ndef post_game_menu(data):\n if data[1] == 0:\n print(\n \"You've run out of chips!\\nHere is another 100 to get you going!\\nGood Luck!\"\n )\n data[1] = 100\n print('\\n1. Play again')\n print('2. View statistics')\n print('3. Quit')\n choice = input('\\nEnter choice: ')\n if choice == '1':\n play_a_game(data)\n elif choice == '2':\n stats(data)\n elif choice == '3':\n save_stats(data)\n print('Bye!')\n sys.exit(0)\n else:\n print('Invalid choice!')\n post_game_menu(data)\n\n\ndef menu():\n print(\"Let's Play Blackjack!\\n\")\n print('1. Start a new player')\n print('2. Load a player')\n print('3. Quit')\n choices = ['1', '2', '3']\n choice = input('Enter choice: ')\n while choice not in choices:\n print(choice + ' is not a valid choice!')\n choice = input('Enter a valid choice [1-3]: ')\n if choice == '1':\n name = input('\\nWhat is your name? ')\n print('Hello ' + name + \". Let's play!\")\n data = [name, 100, 0, 0, 0, 0]\n print('You will start with ' + str(data[1]) + ' chips')\n play_a_game(data)\n if choice == '2':\n load_stats()\n if choice == '3':\n print('Bye!')\n sys.exit(0)\n\n\nmenu()\n", "<import token>\n\n\ndef play_a_game(data):\n hand_number = data[2] + data[3] + data[4] + 1\n print('\\n\\nHand %d:' % hand_number)\n bet = -1\n while bet > data[1] or bet <= 0:\n try:\n print('You have %d chips.' % data[1])\n bet = int(input('How many chips to bet for this hand? '))\n except ValueError:\n print('Please enter a valid number of chips to bet!')\n bet = -1\n else:\n if bet > data[1]:\n print('You cannot bet more chips than you have!')\n elif bet == 0:\n print('You cannot bet zero chips!')\n elif bet < 0:\n print('You cannot bet negative chips!')\n data[5] = bet\n print('Dealing Cards...\\n')\n number_aces = 0\n total = 0\n new_card1 = Card.Card()\n if new_card1.get_value() == 11:\n number_aces = 1\n new_card2 = Card.Card()\n if new_card2.get_value() == 11:\n if number_aces == 1:\n number_aces = 1\n total = new_card1.get_value() + new_card2.get_value()\n if total == 22:\n total = 12\n hand = [new_card1, new_card2]\n dealer_aces = 0\n dealer_total = 0\n dealer_card1 = Card.Card()\n if dealer_card1.get_value() == 11:\n dealer_aces = 1\n dealer_card2 = Card.Card()\n if dealer_card2.get_value() == 11:\n dealer_aces = 1\n dealer_total = dealer_card1.get_value() + dealer_card2.get_value()\n if dealer_total == 22:\n dealer_total = 12\n dealer_hand = [dealer_card1, dealer_card2]\n print('Your hand:')\n for x in hand:\n print(x)\n print(\"\\nDealer's shown card:\")\n print(dealer_hand[0])\n if total == 21:\n print('\\nBLACKJACK!')\n data[5] = math.floor(data[5] * 1.5)\n win(data)\n elif dealer_total == 21:\n print(dealer_hand[1])\n print('\\nDealer has Blackjack!')\n loss(data)\n while True:\n choice = input(\"\\nEnter '1' to hit, anything else to stand: \")\n if choice == '1':\n new_card = Card.Card()\n print('Card Drawn: ' + str(new_card))\n if new_card.get_value() == 11:\n number_aces += 1\n total += new_card.get_value()\n if total > 21:\n if number_aces > 0:\n total -= 10\n number_aces -= 1\n else:\n print('BUST')\n print('Your total: %d' % total)\n loss(data)\n hand.append(new_card)\n print('\\nYour hand:')\n for x in hand:\n print(x)\n print(\"\\nDealer's shown card:\")\n print(dealer_hand[0])\n else:\n break\n print(\"\\nDealer's hand:\")\n for x in dealer_hand:\n print(x)\n if dealer_total >= 17:\n print('\\nDealer total: %d' % dealer_total)\n print('Your total: %d' % total)\n if dealer_total > total:\n loss(data)\n while dealer_total < 17 and dealer_total < total:\n new_card = Card.Card()\n print('\\nCard Drawn: ' + str(new_card))\n if new_card.get_value() == 11:\n dealer_aces += 1\n dealer_total += new_card.get_value()\n if dealer_total > 21:\n if dealer_aces > 0:\n dealer_total -= 10\n dealer_aces -= 1\n else:\n print('New Dealer Total: %d' % dealer_total)\n print('DEALER BUST\\n')\n win(data)\n print('New Dealer Total: %d\\n' % dealer_total)\n dealer_hand.append(new_card)\n if dealer_total < 22 and total < 22:\n print('Dealer total: %d' % dealer_total)\n print('Your total: %d' % total)\n if dealer_total > total:\n loss(data)\n elif dealer_total < total:\n win(data)\n else:\n tie(data)\n\n\ndef win(data):\n print('You Win!')\n data[2] += 1\n data[1] += data[5]\n post_game_menu(data)\n\n\ndef loss(data):\n print('You Lose!')\n data[3] += 1\n data[1] -= data[5]\n post_game_menu(data)\n\n\ndef tie(data):\n print(\"It's a Tie!\")\n data[4] += 1\n post_game_menu(data)\n\n\ndef load_stats():\n name = input('What is your name? ')\n try:\n data = [name, 0, 0, 0, 0, 0]\n f = open(name + '.usr', 'r')\n data[0] = f.readline()\n data[1] = f.readline()\n data[2] = f.readline()\n data[3] = f.readline()\n data[4] = f.readline()\n f.close()\n except Exception as e:\n print('data unable to be loaded!')\n print(e)\n menu()\n else:\n data[0] = data[0].strip('\\n')\n data[1] = int(data[1])\n data[2] = int(data[2])\n data[3] = int(data[3])\n data[4] = int(data[4])\n print(\"Welcome back %s, let's play!\" % data[0])\n play_a_game(data)\n\n\ndef save_stats(data):\n try:\n f = open(data[0] + '.usr', 'w')\n f.write(data[0] + '\\n')\n f.write(str(data[1]) + '\\n')\n f.write(str(data[2]) + '\\n')\n f.write(str(data[3]) + '\\n')\n f.write(str(data[4]) + '\\n')\n f.close()\n except Exception as e:\n print('Sorry' + data[0] + ', your data was not able to be saved!')\n print(e)\n else:\n print(data[0] + ', your data has been saved!')\n\n\ndef stats(data):\n print('\\n' + data[0] + ', here are your game play statistics...')\n print('Chips: %d' % data[1])\n print('Wins: %d' % data[2])\n print('Losses: %d' % data[3])\n print('Ties: %d' % data[4])\n try:\n ratio = data[2] / data[3]\n except ZeroDivisionError:\n print('Win/loss ratio: INFINITE')\n else:\n print('Win/loss ratio: %.3f' % ratio)\n post_game_menu(data)\n\n\ndef post_game_menu(data):\n if data[1] == 0:\n print(\n \"You've run out of chips!\\nHere is another 100 to get you going!\\nGood Luck!\"\n )\n data[1] = 100\n print('\\n1. Play again')\n print('2. View statistics')\n print('3. Quit')\n choice = input('\\nEnter choice: ')\n if choice == '1':\n play_a_game(data)\n elif choice == '2':\n stats(data)\n elif choice == '3':\n save_stats(data)\n print('Bye!')\n sys.exit(0)\n else:\n print('Invalid choice!')\n post_game_menu(data)\n\n\ndef menu():\n print(\"Let's Play Blackjack!\\n\")\n print('1. Start a new player')\n print('2. Load a player')\n print('3. Quit')\n choices = ['1', '2', '3']\n choice = input('Enter choice: ')\n while choice not in choices:\n print(choice + ' is not a valid choice!')\n choice = input('Enter a valid choice [1-3]: ')\n if choice == '1':\n name = input('\\nWhat is your name? ')\n print('Hello ' + name + \". Let's play!\")\n data = [name, 100, 0, 0, 0, 0]\n print('You will start with ' + str(data[1]) + ' chips')\n play_a_game(data)\n if choice == '2':\n load_stats()\n if choice == '3':\n print('Bye!')\n sys.exit(0)\n\n\nmenu()\n", "<import token>\n\n\ndef play_a_game(data):\n hand_number = data[2] + data[3] + data[4] + 1\n print('\\n\\nHand %d:' % hand_number)\n bet = -1\n while bet > data[1] or bet <= 0:\n try:\n print('You have %d chips.' % data[1])\n bet = int(input('How many chips to bet for this hand? '))\n except ValueError:\n print('Please enter a valid number of chips to bet!')\n bet = -1\n else:\n if bet > data[1]:\n print('You cannot bet more chips than you have!')\n elif bet == 0:\n print('You cannot bet zero chips!')\n elif bet < 0:\n print('You cannot bet negative chips!')\n data[5] = bet\n print('Dealing Cards...\\n')\n number_aces = 0\n total = 0\n new_card1 = Card.Card()\n if new_card1.get_value() == 11:\n number_aces = 1\n new_card2 = Card.Card()\n if new_card2.get_value() == 11:\n if number_aces == 1:\n number_aces = 1\n total = new_card1.get_value() + new_card2.get_value()\n if total == 22:\n total = 12\n hand = [new_card1, new_card2]\n dealer_aces = 0\n dealer_total = 0\n dealer_card1 = Card.Card()\n if dealer_card1.get_value() == 11:\n dealer_aces = 1\n dealer_card2 = Card.Card()\n if dealer_card2.get_value() == 11:\n dealer_aces = 1\n dealer_total = dealer_card1.get_value() + dealer_card2.get_value()\n if dealer_total == 22:\n dealer_total = 12\n dealer_hand = [dealer_card1, dealer_card2]\n print('Your hand:')\n for x in hand:\n print(x)\n print(\"\\nDealer's shown card:\")\n print(dealer_hand[0])\n if total == 21:\n print('\\nBLACKJACK!')\n data[5] = math.floor(data[5] * 1.5)\n win(data)\n elif dealer_total == 21:\n print(dealer_hand[1])\n print('\\nDealer has Blackjack!')\n loss(data)\n while True:\n choice = input(\"\\nEnter '1' to hit, anything else to stand: \")\n if choice == '1':\n new_card = Card.Card()\n print('Card Drawn: ' + str(new_card))\n if new_card.get_value() == 11:\n number_aces += 1\n total += new_card.get_value()\n if total > 21:\n if number_aces > 0:\n total -= 10\n number_aces -= 1\n else:\n print('BUST')\n print('Your total: %d' % total)\n loss(data)\n hand.append(new_card)\n print('\\nYour hand:')\n for x in hand:\n print(x)\n print(\"\\nDealer's shown card:\")\n print(dealer_hand[0])\n else:\n break\n print(\"\\nDealer's hand:\")\n for x in dealer_hand:\n print(x)\n if dealer_total >= 17:\n print('\\nDealer total: %d' % dealer_total)\n print('Your total: %d' % total)\n if dealer_total > total:\n loss(data)\n while dealer_total < 17 and dealer_total < total:\n new_card = Card.Card()\n print('\\nCard Drawn: ' + str(new_card))\n if new_card.get_value() == 11:\n dealer_aces += 1\n dealer_total += new_card.get_value()\n if dealer_total > 21:\n if dealer_aces > 0:\n dealer_total -= 10\n dealer_aces -= 1\n else:\n print('New Dealer Total: %d' % dealer_total)\n print('DEALER BUST\\n')\n win(data)\n print('New Dealer Total: %d\\n' % dealer_total)\n dealer_hand.append(new_card)\n if dealer_total < 22 and total < 22:\n print('Dealer total: %d' % dealer_total)\n print('Your total: %d' % total)\n if dealer_total > total:\n loss(data)\n elif dealer_total < total:\n win(data)\n else:\n tie(data)\n\n\ndef win(data):\n print('You Win!')\n data[2] += 1\n data[1] += data[5]\n post_game_menu(data)\n\n\ndef loss(data):\n print('You Lose!')\n data[3] += 1\n data[1] -= data[5]\n post_game_menu(data)\n\n\ndef tie(data):\n print(\"It's a Tie!\")\n data[4] += 1\n post_game_menu(data)\n\n\ndef load_stats():\n name = input('What is your name? ')\n try:\n data = [name, 0, 0, 0, 0, 0]\n f = open(name + '.usr', 'r')\n data[0] = f.readline()\n data[1] = f.readline()\n data[2] = f.readline()\n data[3] = f.readline()\n data[4] = f.readline()\n f.close()\n except Exception as e:\n print('data unable to be loaded!')\n print(e)\n menu()\n else:\n data[0] = data[0].strip('\\n')\n data[1] = int(data[1])\n data[2] = int(data[2])\n data[3] = int(data[3])\n data[4] = int(data[4])\n print(\"Welcome back %s, let's play!\" % data[0])\n play_a_game(data)\n\n\ndef save_stats(data):\n try:\n f = open(data[0] + '.usr', 'w')\n f.write(data[0] + '\\n')\n f.write(str(data[1]) + '\\n')\n f.write(str(data[2]) + '\\n')\n f.write(str(data[3]) + '\\n')\n f.write(str(data[4]) + '\\n')\n f.close()\n except Exception as e:\n print('Sorry' + data[0] + ', your data was not able to be saved!')\n print(e)\n else:\n print(data[0] + ', your data has been saved!')\n\n\ndef stats(data):\n print('\\n' + data[0] + ', here are your game play statistics...')\n print('Chips: %d' % data[1])\n print('Wins: %d' % data[2])\n print('Losses: %d' % data[3])\n print('Ties: %d' % data[4])\n try:\n ratio = data[2] / data[3]\n except ZeroDivisionError:\n print('Win/loss ratio: INFINITE')\n else:\n print('Win/loss ratio: %.3f' % ratio)\n post_game_menu(data)\n\n\ndef post_game_menu(data):\n if data[1] == 0:\n print(\n \"You've run out of chips!\\nHere is another 100 to get you going!\\nGood Luck!\"\n )\n data[1] = 100\n print('\\n1. Play again')\n print('2. View statistics')\n print('3. Quit')\n choice = input('\\nEnter choice: ')\n if choice == '1':\n play_a_game(data)\n elif choice == '2':\n stats(data)\n elif choice == '3':\n save_stats(data)\n print('Bye!')\n sys.exit(0)\n else:\n print('Invalid choice!')\n post_game_menu(data)\n\n\ndef menu():\n print(\"Let's Play Blackjack!\\n\")\n print('1. Start a new player')\n print('2. Load a player')\n print('3. Quit')\n choices = ['1', '2', '3']\n choice = input('Enter choice: ')\n while choice not in choices:\n print(choice + ' is not a valid choice!')\n choice = input('Enter a valid choice [1-3]: ')\n if choice == '1':\n name = input('\\nWhat is your name? ')\n print('Hello ' + name + \". Let's play!\")\n data = [name, 100, 0, 0, 0, 0]\n print('You will start with ' + str(data[1]) + ' chips')\n play_a_game(data)\n if choice == '2':\n load_stats()\n if choice == '3':\n print('Bye!')\n sys.exit(0)\n\n\n<code token>\n", "<import token>\n\n\ndef play_a_game(data):\n hand_number = data[2] + data[3] + data[4] + 1\n print('\\n\\nHand %d:' % hand_number)\n bet = -1\n while bet > data[1] or bet <= 0:\n try:\n print('You have %d chips.' % data[1])\n bet = int(input('How many chips to bet for this hand? '))\n except ValueError:\n print('Please enter a valid number of chips to bet!')\n bet = -1\n else:\n if bet > data[1]:\n print('You cannot bet more chips than you have!')\n elif bet == 0:\n print('You cannot bet zero chips!')\n elif bet < 0:\n print('You cannot bet negative chips!')\n data[5] = bet\n print('Dealing Cards...\\n')\n number_aces = 0\n total = 0\n new_card1 = Card.Card()\n if new_card1.get_value() == 11:\n number_aces = 1\n new_card2 = Card.Card()\n if new_card2.get_value() == 11:\n if number_aces == 1:\n number_aces = 1\n total = new_card1.get_value() + new_card2.get_value()\n if total == 22:\n total = 12\n hand = [new_card1, new_card2]\n dealer_aces = 0\n dealer_total = 0\n dealer_card1 = Card.Card()\n if dealer_card1.get_value() == 11:\n dealer_aces = 1\n dealer_card2 = Card.Card()\n if dealer_card2.get_value() == 11:\n dealer_aces = 1\n dealer_total = dealer_card1.get_value() + dealer_card2.get_value()\n if dealer_total == 22:\n dealer_total = 12\n dealer_hand = [dealer_card1, dealer_card2]\n print('Your hand:')\n for x in hand:\n print(x)\n print(\"\\nDealer's shown card:\")\n print(dealer_hand[0])\n if total == 21:\n print('\\nBLACKJACK!')\n data[5] = math.floor(data[5] * 1.5)\n win(data)\n elif dealer_total == 21:\n print(dealer_hand[1])\n print('\\nDealer has Blackjack!')\n loss(data)\n while True:\n choice = input(\"\\nEnter '1' to hit, anything else to stand: \")\n if choice == '1':\n new_card = Card.Card()\n print('Card Drawn: ' + str(new_card))\n if new_card.get_value() == 11:\n number_aces += 1\n total += new_card.get_value()\n if total > 21:\n if number_aces > 0:\n total -= 10\n number_aces -= 1\n else:\n print('BUST')\n print('Your total: %d' % total)\n loss(data)\n hand.append(new_card)\n print('\\nYour hand:')\n for x in hand:\n print(x)\n print(\"\\nDealer's shown card:\")\n print(dealer_hand[0])\n else:\n break\n print(\"\\nDealer's hand:\")\n for x in dealer_hand:\n print(x)\n if dealer_total >= 17:\n print('\\nDealer total: %d' % dealer_total)\n print('Your total: %d' % total)\n if dealer_total > total:\n loss(data)\n while dealer_total < 17 and dealer_total < total:\n new_card = Card.Card()\n print('\\nCard Drawn: ' + str(new_card))\n if new_card.get_value() == 11:\n dealer_aces += 1\n dealer_total += new_card.get_value()\n if dealer_total > 21:\n if dealer_aces > 0:\n dealer_total -= 10\n dealer_aces -= 1\n else:\n print('New Dealer Total: %d' % dealer_total)\n print('DEALER BUST\\n')\n win(data)\n print('New Dealer Total: %d\\n' % dealer_total)\n dealer_hand.append(new_card)\n if dealer_total < 22 and total < 22:\n print('Dealer total: %d' % dealer_total)\n print('Your total: %d' % total)\n if dealer_total > total:\n loss(data)\n elif dealer_total < total:\n win(data)\n else:\n tie(data)\n\n\ndef win(data):\n print('You Win!')\n data[2] += 1\n data[1] += data[5]\n post_game_menu(data)\n\n\ndef loss(data):\n print('You Lose!')\n data[3] += 1\n data[1] -= data[5]\n post_game_menu(data)\n\n\ndef tie(data):\n print(\"It's a Tie!\")\n data[4] += 1\n post_game_menu(data)\n\n\ndef load_stats():\n name = input('What is your name? ')\n try:\n data = [name, 0, 0, 0, 0, 0]\n f = open(name + '.usr', 'r')\n data[0] = f.readline()\n data[1] = f.readline()\n data[2] = f.readline()\n data[3] = f.readline()\n data[4] = f.readline()\n f.close()\n except Exception as e:\n print('data unable to be loaded!')\n print(e)\n menu()\n else:\n data[0] = data[0].strip('\\n')\n data[1] = int(data[1])\n data[2] = int(data[2])\n data[3] = int(data[3])\n data[4] = int(data[4])\n print(\"Welcome back %s, let's play!\" % data[0])\n play_a_game(data)\n\n\n<function token>\n\n\ndef stats(data):\n print('\\n' + data[0] + ', here are your game play statistics...')\n print('Chips: %d' % data[1])\n print('Wins: %d' % data[2])\n print('Losses: %d' % data[3])\n print('Ties: %d' % data[4])\n try:\n ratio = data[2] / data[3]\n except ZeroDivisionError:\n print('Win/loss ratio: INFINITE')\n else:\n print('Win/loss ratio: %.3f' % ratio)\n post_game_menu(data)\n\n\ndef post_game_menu(data):\n if data[1] == 0:\n print(\n \"You've run out of chips!\\nHere is another 100 to get you going!\\nGood Luck!\"\n )\n data[1] = 100\n print('\\n1. Play again')\n print('2. View statistics')\n print('3. Quit')\n choice = input('\\nEnter choice: ')\n if choice == '1':\n play_a_game(data)\n elif choice == '2':\n stats(data)\n elif choice == '3':\n save_stats(data)\n print('Bye!')\n sys.exit(0)\n else:\n print('Invalid choice!')\n post_game_menu(data)\n\n\ndef menu():\n print(\"Let's Play Blackjack!\\n\")\n print('1. Start a new player')\n print('2. Load a player')\n print('3. Quit')\n choices = ['1', '2', '3']\n choice = input('Enter choice: ')\n while choice not in choices:\n print(choice + ' is not a valid choice!')\n choice = input('Enter a valid choice [1-3]: ')\n if choice == '1':\n name = input('\\nWhat is your name? ')\n print('Hello ' + name + \". Let's play!\")\n data = [name, 100, 0, 0, 0, 0]\n print('You will start with ' + str(data[1]) + ' chips')\n play_a_game(data)\n if choice == '2':\n load_stats()\n if choice == '3':\n print('Bye!')\n sys.exit(0)\n\n\n<code token>\n", "<import token>\n\n\ndef play_a_game(data):\n hand_number = data[2] + data[3] + data[4] + 1\n print('\\n\\nHand %d:' % hand_number)\n bet = -1\n while bet > data[1] or bet <= 0:\n try:\n print('You have %d chips.' % data[1])\n bet = int(input('How many chips to bet for this hand? '))\n except ValueError:\n print('Please enter a valid number of chips to bet!')\n bet = -1\n else:\n if bet > data[1]:\n print('You cannot bet more chips than you have!')\n elif bet == 0:\n print('You cannot bet zero chips!')\n elif bet < 0:\n print('You cannot bet negative chips!')\n data[5] = bet\n print('Dealing Cards...\\n')\n number_aces = 0\n total = 0\n new_card1 = Card.Card()\n if new_card1.get_value() == 11:\n number_aces = 1\n new_card2 = Card.Card()\n if new_card2.get_value() == 11:\n if number_aces == 1:\n number_aces = 1\n total = new_card1.get_value() + new_card2.get_value()\n if total == 22:\n total = 12\n hand = [new_card1, new_card2]\n dealer_aces = 0\n dealer_total = 0\n dealer_card1 = Card.Card()\n if dealer_card1.get_value() == 11:\n dealer_aces = 1\n dealer_card2 = Card.Card()\n if dealer_card2.get_value() == 11:\n dealer_aces = 1\n dealer_total = dealer_card1.get_value() + dealer_card2.get_value()\n if dealer_total == 22:\n dealer_total = 12\n dealer_hand = [dealer_card1, dealer_card2]\n print('Your hand:')\n for x in hand:\n print(x)\n print(\"\\nDealer's shown card:\")\n print(dealer_hand[0])\n if total == 21:\n print('\\nBLACKJACK!')\n data[5] = math.floor(data[5] * 1.5)\n win(data)\n elif dealer_total == 21:\n print(dealer_hand[1])\n print('\\nDealer has Blackjack!')\n loss(data)\n while True:\n choice = input(\"\\nEnter '1' to hit, anything else to stand: \")\n if choice == '1':\n new_card = Card.Card()\n print('Card Drawn: ' + str(new_card))\n if new_card.get_value() == 11:\n number_aces += 1\n total += new_card.get_value()\n if total > 21:\n if number_aces > 0:\n total -= 10\n number_aces -= 1\n else:\n print('BUST')\n print('Your total: %d' % total)\n loss(data)\n hand.append(new_card)\n print('\\nYour hand:')\n for x in hand:\n print(x)\n print(\"\\nDealer's shown card:\")\n print(dealer_hand[0])\n else:\n break\n print(\"\\nDealer's hand:\")\n for x in dealer_hand:\n print(x)\n if dealer_total >= 17:\n print('\\nDealer total: %d' % dealer_total)\n print('Your total: %d' % total)\n if dealer_total > total:\n loss(data)\n while dealer_total < 17 and dealer_total < total:\n new_card = Card.Card()\n print('\\nCard Drawn: ' + str(new_card))\n if new_card.get_value() == 11:\n dealer_aces += 1\n dealer_total += new_card.get_value()\n if dealer_total > 21:\n if dealer_aces > 0:\n dealer_total -= 10\n dealer_aces -= 1\n else:\n print('New Dealer Total: %d' % dealer_total)\n print('DEALER BUST\\n')\n win(data)\n print('New Dealer Total: %d\\n' % dealer_total)\n dealer_hand.append(new_card)\n if dealer_total < 22 and total < 22:\n print('Dealer total: %d' % dealer_total)\n print('Your total: %d' % total)\n if dealer_total > total:\n loss(data)\n elif dealer_total < total:\n win(data)\n else:\n tie(data)\n\n\ndef win(data):\n print('You Win!')\n data[2] += 1\n data[1] += data[5]\n post_game_menu(data)\n\n\ndef loss(data):\n print('You Lose!')\n data[3] += 1\n data[1] -= data[5]\n post_game_menu(data)\n\n\ndef tie(data):\n print(\"It's a Tie!\")\n data[4] += 1\n post_game_menu(data)\n\n\ndef load_stats():\n name = input('What is your name? ')\n try:\n data = [name, 0, 0, 0, 0, 0]\n f = open(name + '.usr', 'r')\n data[0] = f.readline()\n data[1] = f.readline()\n data[2] = f.readline()\n data[3] = f.readline()\n data[4] = f.readline()\n f.close()\n except Exception as e:\n print('data unable to be loaded!')\n print(e)\n menu()\n else:\n data[0] = data[0].strip('\\n')\n data[1] = int(data[1])\n data[2] = int(data[2])\n data[3] = int(data[3])\n data[4] = int(data[4])\n print(\"Welcome back %s, let's play!\" % data[0])\n play_a_game(data)\n\n\n<function token>\n<function token>\n\n\ndef post_game_menu(data):\n if data[1] == 0:\n print(\n \"You've run out of chips!\\nHere is another 100 to get you going!\\nGood Luck!\"\n )\n data[1] = 100\n print('\\n1. Play again')\n print('2. View statistics')\n print('3. Quit')\n choice = input('\\nEnter choice: ')\n if choice == '1':\n play_a_game(data)\n elif choice == '2':\n stats(data)\n elif choice == '3':\n save_stats(data)\n print('Bye!')\n sys.exit(0)\n else:\n print('Invalid choice!')\n post_game_menu(data)\n\n\ndef menu():\n print(\"Let's Play Blackjack!\\n\")\n print('1. Start a new player')\n print('2. Load a player')\n print('3. Quit')\n choices = ['1', '2', '3']\n choice = input('Enter choice: ')\n while choice not in choices:\n print(choice + ' is not a valid choice!')\n choice = input('Enter a valid choice [1-3]: ')\n if choice == '1':\n name = input('\\nWhat is your name? ')\n print('Hello ' + name + \". Let's play!\")\n data = [name, 100, 0, 0, 0, 0]\n print('You will start with ' + str(data[1]) + ' chips')\n play_a_game(data)\n if choice == '2':\n load_stats()\n if choice == '3':\n print('Bye!')\n sys.exit(0)\n\n\n<code token>\n", "<import token>\n<function token>\n\n\ndef win(data):\n print('You Win!')\n data[2] += 1\n data[1] += data[5]\n post_game_menu(data)\n\n\ndef loss(data):\n print('You Lose!')\n data[3] += 1\n data[1] -= data[5]\n post_game_menu(data)\n\n\ndef tie(data):\n print(\"It's a Tie!\")\n data[4] += 1\n post_game_menu(data)\n\n\ndef load_stats():\n name = input('What is your name? ')\n try:\n data = [name, 0, 0, 0, 0, 0]\n f = open(name + '.usr', 'r')\n data[0] = f.readline()\n data[1] = f.readline()\n data[2] = f.readline()\n data[3] = f.readline()\n data[4] = f.readline()\n f.close()\n except Exception as e:\n print('data unable to be loaded!')\n print(e)\n menu()\n else:\n data[0] = data[0].strip('\\n')\n data[1] = int(data[1])\n data[2] = int(data[2])\n data[3] = int(data[3])\n data[4] = int(data[4])\n print(\"Welcome back %s, let's play!\" % data[0])\n play_a_game(data)\n\n\n<function token>\n<function token>\n\n\ndef post_game_menu(data):\n if data[1] == 0:\n print(\n \"You've run out of chips!\\nHere is another 100 to get you going!\\nGood Luck!\"\n )\n data[1] = 100\n print('\\n1. Play again')\n print('2. View statistics')\n print('3. Quit')\n choice = input('\\nEnter choice: ')\n if choice == '1':\n play_a_game(data)\n elif choice == '2':\n stats(data)\n elif choice == '3':\n save_stats(data)\n print('Bye!')\n sys.exit(0)\n else:\n print('Invalid choice!')\n post_game_menu(data)\n\n\ndef menu():\n print(\"Let's Play Blackjack!\\n\")\n print('1. Start a new player')\n print('2. Load a player')\n print('3. Quit')\n choices = ['1', '2', '3']\n choice = input('Enter choice: ')\n while choice not in choices:\n print(choice + ' is not a valid choice!')\n choice = input('Enter a valid choice [1-3]: ')\n if choice == '1':\n name = input('\\nWhat is your name? ')\n print('Hello ' + name + \". Let's play!\")\n data = [name, 100, 0, 0, 0, 0]\n print('You will start with ' + str(data[1]) + ' chips')\n play_a_game(data)\n if choice == '2':\n load_stats()\n if choice == '3':\n print('Bye!')\n sys.exit(0)\n\n\n<code token>\n", "<import token>\n<function token>\n\n\ndef win(data):\n print('You Win!')\n data[2] += 1\n data[1] += data[5]\n post_game_menu(data)\n\n\n<function token>\n\n\ndef tie(data):\n print(\"It's a Tie!\")\n data[4] += 1\n post_game_menu(data)\n\n\ndef load_stats():\n name = input('What is your name? ')\n try:\n data = [name, 0, 0, 0, 0, 0]\n f = open(name + '.usr', 'r')\n data[0] = f.readline()\n data[1] = f.readline()\n data[2] = f.readline()\n data[3] = f.readline()\n data[4] = f.readline()\n f.close()\n except Exception as e:\n print('data unable to be loaded!')\n print(e)\n menu()\n else:\n data[0] = data[0].strip('\\n')\n data[1] = int(data[1])\n data[2] = int(data[2])\n data[3] = int(data[3])\n data[4] = int(data[4])\n print(\"Welcome back %s, let's play!\" % data[0])\n play_a_game(data)\n\n\n<function token>\n<function token>\n\n\ndef post_game_menu(data):\n if data[1] == 0:\n print(\n \"You've run out of chips!\\nHere is another 100 to get you going!\\nGood Luck!\"\n )\n data[1] = 100\n print('\\n1. Play again')\n print('2. View statistics')\n print('3. Quit')\n choice = input('\\nEnter choice: ')\n if choice == '1':\n play_a_game(data)\n elif choice == '2':\n stats(data)\n elif choice == '3':\n save_stats(data)\n print('Bye!')\n sys.exit(0)\n else:\n print('Invalid choice!')\n post_game_menu(data)\n\n\ndef menu():\n print(\"Let's Play Blackjack!\\n\")\n print('1. Start a new player')\n print('2. Load a player')\n print('3. Quit')\n choices = ['1', '2', '3']\n choice = input('Enter choice: ')\n while choice not in choices:\n print(choice + ' is not a valid choice!')\n choice = input('Enter a valid choice [1-3]: ')\n if choice == '1':\n name = input('\\nWhat is your name? ')\n print('Hello ' + name + \". Let's play!\")\n data = [name, 100, 0, 0, 0, 0]\n print('You will start with ' + str(data[1]) + ' chips')\n play_a_game(data)\n if choice == '2':\n load_stats()\n if choice == '3':\n print('Bye!')\n sys.exit(0)\n\n\n<code token>\n", "<import token>\n<function token>\n\n\ndef win(data):\n print('You Win!')\n data[2] += 1\n data[1] += data[5]\n post_game_menu(data)\n\n\n<function token>\n\n\ndef tie(data):\n print(\"It's a Tie!\")\n data[4] += 1\n post_game_menu(data)\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef post_game_menu(data):\n if data[1] == 0:\n print(\n \"You've run out of chips!\\nHere is another 100 to get you going!\\nGood Luck!\"\n )\n data[1] = 100\n print('\\n1. Play again')\n print('2. View statistics')\n print('3. Quit')\n choice = input('\\nEnter choice: ')\n if choice == '1':\n play_a_game(data)\n elif choice == '2':\n stats(data)\n elif choice == '3':\n save_stats(data)\n print('Bye!')\n sys.exit(0)\n else:\n print('Invalid choice!')\n post_game_menu(data)\n\n\ndef menu():\n print(\"Let's Play Blackjack!\\n\")\n print('1. Start a new player')\n print('2. Load a player')\n print('3. Quit')\n choices = ['1', '2', '3']\n choice = input('Enter choice: ')\n while choice not in choices:\n print(choice + ' is not a valid choice!')\n choice = input('Enter a valid choice [1-3]: ')\n if choice == '1':\n name = input('\\nWhat is your name? ')\n print('Hello ' + name + \". Let's play!\")\n data = [name, 100, 0, 0, 0, 0]\n print('You will start with ' + str(data[1]) + ' chips')\n play_a_game(data)\n if choice == '2':\n load_stats()\n if choice == '3':\n print('Bye!')\n sys.exit(0)\n\n\n<code token>\n", "<import token>\n<function token>\n\n\ndef win(data):\n print('You Win!')\n data[2] += 1\n data[1] += data[5]\n post_game_menu(data)\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef post_game_menu(data):\n if data[1] == 0:\n print(\n \"You've run out of chips!\\nHere is another 100 to get you going!\\nGood Luck!\"\n )\n data[1] = 100\n print('\\n1. Play again')\n print('2. View statistics')\n print('3. Quit')\n choice = input('\\nEnter choice: ')\n if choice == '1':\n play_a_game(data)\n elif choice == '2':\n stats(data)\n elif choice == '3':\n save_stats(data)\n print('Bye!')\n sys.exit(0)\n else:\n print('Invalid choice!')\n post_game_menu(data)\n\n\ndef menu():\n print(\"Let's Play Blackjack!\\n\")\n print('1. Start a new player')\n print('2. Load a player')\n print('3. Quit')\n choices = ['1', '2', '3']\n choice = input('Enter choice: ')\n while choice not in choices:\n print(choice + ' is not a valid choice!')\n choice = input('Enter a valid choice [1-3]: ')\n if choice == '1':\n name = input('\\nWhat is your name? ')\n print('Hello ' + name + \". Let's play!\")\n data = [name, 100, 0, 0, 0, 0]\n print('You will start with ' + str(data[1]) + ' chips')\n play_a_game(data)\n if choice == '2':\n load_stats()\n if choice == '3':\n print('Bye!')\n sys.exit(0)\n\n\n<code token>\n", "<import token>\n<function token>\n\n\ndef win(data):\n print('You Win!')\n data[2] += 1\n data[1] += data[5]\n post_game_menu(data)\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef menu():\n print(\"Let's Play Blackjack!\\n\")\n print('1. Start a new player')\n print('2. Load a player')\n print('3. Quit')\n choices = ['1', '2', '3']\n choice = input('Enter choice: ')\n while choice not in choices:\n print(choice + ' is not a valid choice!')\n choice = input('Enter a valid choice [1-3]: ')\n if choice == '1':\n name = input('\\nWhat is your name? ')\n print('Hello ' + name + \". Let's play!\")\n data = [name, 100, 0, 0, 0, 0]\n print('You will start with ' + str(data[1]) + ' chips')\n play_a_game(data)\n if choice == '2':\n load_stats()\n if choice == '3':\n print('Bye!')\n sys.exit(0)\n\n\n<code token>\n", "<import token>\n<function token>\n\n\ndef win(data):\n print('You Win!')\n data[2] += 1\n data[1] += data[5]\n post_game_menu(data)\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<code token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<code token>\n" ]
false
99,056
2c8f36b4544dec8350e30d09c904273b940a42b3
#!/usr/bin/env python2 """Test module for showing off modules This should never be used in production """ """Sedan class holds information about cars""" class Sedan(): def __init__(self, numwheels): self.numwheels = numwheels def go_forward(self): """Prints 'going forward'""" print "going forward" def test(): """Print out the word test No arguments or returns """ print "hello"
[ "#!/usr/bin/env python2\n\n\"\"\"Test module for showing off modules\n\nThis should never be used in production\n\"\"\"\n\n\"\"\"Sedan class holds information about cars\"\"\"\nclass Sedan():\n def __init__(self, numwheels):\n self.numwheels = numwheels\n\n def go_forward(self):\n \"\"\"Prints 'going forward'\"\"\"\n print \"going forward\"\n\n\ndef test():\n \"\"\"Print out the word test\n\n No arguments or returns\n \"\"\"\n print \"hello\"\n\n" ]
true
99,057
644d0622de99a27d4376ef8bbe0f12b093b618a9
import numpy as np import pandas as pd import plotly.express as px import plotly.graph_objs as go # import plotly.tools as tls import matplotlib.pyplot as plt from scipy.spatial import distance from sklearn.utils.extmath import randomized_svd from tqdm import tqdm class kohonen: """ Matrix SOM Initialize weight matrix For epoch <- 1 to N do Choose input matrix observation randomly - i For k <- 1 to n_node do compute d(input matrix i, weight matrix k) end Best Matching Unit = winning node = node with the smallest distance For k <- 1 to n_node do update weight matrix end end Update weight mi(t + 1) = mi(t) + ⍺(t) * hci(t) [x(t) - mi(t)] Neighborhood function hci(t) = h(dist(rc, ri), t) rc, ri: location vectors of node c and i if Gaussian: hci(t) = exp(-dist^2 / (2 * σ^2(t))) Radius: σ(t) = σ_0 * exp(-t / ƛ) Learning rate: ⍺(t) = ⍺_0 * exp(-t / ƛ) """ def __init__( self, data, xdim, ydim, topo = "rectangular", neighbor = "gaussian", dist = "frobenius", decay = "exponential", seed = None ): """ :param data: 3d array. processed data set for Online SOM Detector :param xdim: Number of x-grid :param ydim: Number of y-grid :param topo: Topology of output space - rectangular or hexagonal :param neighbor: Neighborhood function - gaussian, bubble, or triangular :param dist: Distance function - frobenius, nuclear, mahalanobis (just form of mahalanobis), or :param decay: decaying learning rate and radius - exponential or linear :param seed: Random seed """ np.random.seed(seed = seed) if xdim is None or ydim is None: xdim = int(np.sqrt(5 * np.sqrt(data.shape[0]))) ydim = xdim self.net_dim = np.array([xdim, ydim]) self.ncol = data.shape[2] self.nrow = data.shape[1] # Initialize codebook matrix self.init_weight() # Topology topo_types = ["rectangular", "hexagonal"] if topo not in topo_types: raise ValueError("Invalid topo. Expected one of: %s" % topo_types) self.topo = topo self.init_grid() self.dist_node() # Neighborhood function neighbor_types = ["gaussian", "bubble", "triangular"] if neighbor not in neighbor_types: raise ValueError("Invalid neighbor. Expected one of: %s" % neighbor_types) self.neighbor_func = neighbor # Distance function dist_type = ["frobenius", "nuclear", "mahalanobis", "eros"] if dist not in dist_type: raise ValueError("Invalid dist. Expected one of: %s" % dist_type) self.dist_func = dist # Decay decay_types = ["exponential", "linear"] if decay not in decay_types: raise ValueError("Invalid decay. Expected one of: %s" % decay_types) self.decay_func = decay # som() self.epoch = None self.alpha = None self.sigma = None self.initial_learn = None self.initial_r = None # find_bmu() self.bmu = None # plot self.reconstruction_error = None self.dist_normal = None self.project = None def init_weight(self): self.net = np.random.rand(self.net_dim[0] * self.net_dim[1], self.nrow, self.ncol) def init_grid(self): """ [row_pts, col_pts] xdim x ydim rows (points) [1,1] [2,1] [1,2] [2,2] 2---------> 1--------->^ """ self.pts = np.array( np.meshgrid( np.arange(self.net_dim[0]) + 1, np.arange(self.net_dim[1]) + 1 ) ).reshape(2, np.prod(self.net_dim)).T if self.topo == "hexagonal": self.pts[:, 0] = self.pts[:, 0] + .5 * (self.pts[:, 1] % 2) self.pts[:, 1] = np.sqrt(3) / 2 * self.pts[:, 1] def som(self, data, epoch = 100, init_rate = None, init_radius = None, keep_net = False): """ :param data: 3d array. processed data set for Online SOM Detector :param epoch: epoch number :param init_rate: initial learning rate :param init_radius: initial radius of BMU neighborhood :param keep_net: keep every weight matrix path? """ num_obs = data.shape[0] obs_id = np.arange(num_obs) chose_i = np.empty(1) node_id = None hci = None self.epoch = epoch if keep_net: self.net_path = np.empty( (self.epoch, self.net_dim[0] * self.net_dim[1], self.nrow, self.ncol) ) # learning rate if init_rate is None: init_rate = .1 self.alpha = init_rate self.initial_learn = init_rate # radius of neighborhood if init_radius is None: init_radius = np.quantile(self.dci, q = 2 / 3, axis = None) self.sigma = init_radius self.initial_r = init_radius # time constant (lambda) rate_constant = epoch radius_constant = epoch / np.log(self.sigma) # distance between nodes bmu_dist = self.dci[1, :] rcst_err = np.empty(epoch) for i in tqdm(range(epoch), desc = "epoch"): chose_i = int(np.random.choice(obs_id, size = 1)) # BMU - self.bmu self.find_bmu(data, chose_i) # reconstruction error - sum of distances from BMU rcst_err[i] = np.sum([np.square(self.dist_mat(data, j, self.bmu.astype(int))) for j in range(data.shape[0])]) bmu_dist = self.dci[self.bmu.astype(int), :].flatten() # decay self.sigma = self.decay(init_radius, i + 1, radius_constant) self.alpha = self.decay(init_rate, i + 1, rate_constant) # neighboring nodes (includes BMU) neighbor_neuron = np.argwhere(bmu_dist <= self.sigma).flatten() for k in tqdm(range(neighbor_neuron.shape[0]), desc = "updating"): node_id = neighbor_neuron[k] hci = self.neighborhood(bmu_dist[node_id], self.sigma) # update codebook matrices of neighboring nodes self.net[node_id, :, :] += \ self.alpha * hci * \ (data[chose_i, :, :] - self.net[node_id, :, :]).reshape((self.nrow, self.ncol)) if keep_net: self.net_path[i, :, :, :] = self.net self.reconstruction_error = pd.DataFrame({"Epoch": np.arange(self.epoch) + 1, "Reconstruction Error": rcst_err}) def find_bmu(self, data, index): """ :param data: Processed data set for SOM. :param index: Randomly chosen observation id for input matrix among 3d tensor set. """ dist_code = np.asarray([self.dist_mat(data, index, j) for j in range(self.net.shape[0])]) self.bmu = np.argmin(dist_code) def dist_mat(self, data, index, node): """ :param data: Processed data set for SOM. :param index: Randomly chosen observation id for input matrix among 3d tensor set. :param node: node index :return: distance between input matrix observation and weight matrix of the node """ if self.dist_func == "frobenius": return np.linalg.norm(data[index, :, :] - self.net[node, :, :], "fro") elif self.dist_func == "nuclear": return np.linalg.norm(data[index, :, :] - self.net[node, :, :], "nuc") elif self.dist_func == "mahalanobis": x = data[index, :, :] - self.net[node, :, :] covmat = np.cov(x, rowvar = False) # spectral decomposition sigma = udu.T w, v = np.linalg.eigh(covmat) # inverse = ud^-1u.T w[w == 0] += .0001 covinv = v.dot(np.diag(1 / w)).dot(v.T) ss = x.dot(covinv).dot(x.T) return np.sqrt(np.trace(ss)) elif self.dist_func == "eros": x = data[index, :, :] - self.net[node, :, :] covmat = np.cov(x, rowvar = False) # svd(covariance) u, s, vh = randomized_svd(covmat, n_components = covmat.shape[1], n_iter = 1, random_state = None) # normalize eigenvalue w = s / s.sum() # distance ss = np.multiply(vh, w).dot(vh.T) return np.sqrt(np.trace(ss)) def dist_node(self): """ :return: distance matrix of SOM neuron """ if self.topo == "hexagonal": self.dci = distance.cdist(self.pts, self.pts, "euclidean") elif self.topo == "rectangular": self.dci = distance.cdist(self.pts, self.pts, "chebyshev") def decay(self, init, time, time_constant): """ :param init: initial value :param time: t :param time_constant: lambda :return: decaying value of alpha or sigma """ if self.decay_func == "exponential": return init * np.exp(-time / time_constant) elif self.decay_func == "linear": return init * (1 - time / time_constant) def neighborhood(self, node_distance, radius): """ :param node_distance: Distance between SOM neurons :param radius: Radius of BMU neighborhood :return: Neighborhood function hci """ if self.neighbor_func == "gaussian": return np.exp(-node_distance ** 2 / (2 * (radius ** 2))) elif self.neighbor_func == "bubble": if node_distance <= radius: return 1.0 else: return 0.0 elif self.neighbor_func == "triangular": if node_distance <= radius: return 1 - np.abs(node_distance) / radius else: return 0.0 def dist_weight(self, data, index): """ :param data: Processed data set for SOM :param index: index for data :return: minimum distance between input matrix and weight matrices, its node id (BMU) """ dist_wt = np.asarray([self.dist_mat(data, index, j) for j in tqdm(range(self.net.shape[0]), desc = "bmu")]) return np.min(dist_wt), np.argmin(dist_wt) def plot_error(self): """ :return: line plot of reconstruction error versus epoch """ fig = px.line(self.reconstruction_error, x = "Epoch", y = "Reconstruction Error") fig.show() def plot_heatmap(self, data): """ :return: Heatmap for SOM """ if self.project is None: normal_distance = np.asarray( [self.dist_weight(data, i) for i in tqdm(range(data.shape[0]), desc="mapping")] ) self.dist_normal = normal_distance[:, 0] self.project = normal_distance[:, 1] x = self.project % self.net_dim[0] y = self.project // self.net_dim[0] if self.topo == "rectangular": fig = go.Figure( go.Histogram2d( x = x, y = y, colorscale = "Viridis" ) ) fig.show() elif self.topo == "hexagonal": x = x + .5 * (y % 2) y = np.sqrt(3) / 2 * y # plt_hex = plt.hexbin(x, y) # plt.close() # fig = tls.mpl_to_plotly(plt_hex) plt.hexbin(x, y) plt.show()
[ "import numpy as np\nimport pandas as pd\nimport plotly.express as px\nimport plotly.graph_objs as go\n# import plotly.tools as tls\nimport matplotlib.pyplot as plt\nfrom scipy.spatial import distance\nfrom sklearn.utils.extmath import randomized_svd\nfrom tqdm import tqdm\n\n\nclass kohonen:\n \"\"\"\n Matrix SOM\n Initialize weight matrix\n For epoch <- 1 to N do\n Choose input matrix observation randomly - i\n For k <- 1 to n_node do\n compute d(input matrix i, weight matrix k)\n end\n Best Matching Unit = winning node = node with the smallest distance\n For k <- 1 to n_node do\n update weight matrix\n end\n end\n\n Update weight mi(t + 1) = mi(t) + ⍺(t) * hci(t) [x(t) - mi(t)]\n Neighborhood function hci(t) = h(dist(rc, ri), t)\n rc, ri: location vectors of node c and i\n if Gaussian:\n hci(t) = exp(-dist^2 / (2 * σ^2(t)))\n Radius: σ(t) = σ_0 * exp(-t / ƛ)\n Learning rate: ⍺(t) = ⍺_0 * exp(-t / ƛ)\n \"\"\"\n\n def __init__(\n self, data, xdim, ydim, topo = \"rectangular\", neighbor = \"gaussian\",\n dist = \"frobenius\", decay = \"exponential\", seed = None\n ):\n \"\"\"\n :param data: 3d array. processed data set for Online SOM Detector\n :param xdim: Number of x-grid\n :param ydim: Number of y-grid\n :param topo: Topology of output space - rectangular or hexagonal\n :param neighbor: Neighborhood function - gaussian, bubble, or triangular\n :param dist: Distance function - frobenius, nuclear, mahalanobis (just form of mahalanobis), or\n :param decay: decaying learning rate and radius - exponential or linear\n :param seed: Random seed\n \"\"\"\n np.random.seed(seed = seed)\n if xdim is None or ydim is None:\n xdim = int(np.sqrt(5 * np.sqrt(data.shape[0])))\n ydim = xdim\n self.net_dim = np.array([xdim, ydim])\n self.ncol = data.shape[2]\n self.nrow = data.shape[1]\n # Initialize codebook matrix\n self.init_weight()\n # Topology\n topo_types = [\"rectangular\", \"hexagonal\"]\n if topo not in topo_types:\n raise ValueError(\"Invalid topo. Expected one of: %s\" % topo_types)\n self.topo = topo\n self.init_grid()\n self.dist_node()\n # Neighborhood function\n neighbor_types = [\"gaussian\", \"bubble\", \"triangular\"]\n if neighbor not in neighbor_types:\n raise ValueError(\"Invalid neighbor. Expected one of: %s\" % neighbor_types)\n self.neighbor_func = neighbor\n # Distance function\n dist_type = [\"frobenius\", \"nuclear\", \"mahalanobis\", \"eros\"]\n if dist not in dist_type:\n raise ValueError(\"Invalid dist. Expected one of: %s\" % dist_type)\n self.dist_func = dist\n # Decay\n decay_types = [\"exponential\", \"linear\"]\n if decay not in decay_types:\n raise ValueError(\"Invalid decay. Expected one of: %s\" % decay_types)\n self.decay_func = decay\n # som()\n self.epoch = None\n self.alpha = None\n self.sigma = None\n self.initial_learn = None\n self.initial_r = None\n # find_bmu()\n self.bmu = None\n # plot\n self.reconstruction_error = None\n self.dist_normal = None\n self.project = None\n\n def init_weight(self):\n self.net = np.random.rand(self.net_dim[0] * self.net_dim[1], self.nrow, self.ncol)\n\n def init_grid(self):\n \"\"\"\n [row_pts, col_pts]\n xdim x ydim rows (points)\n [1,1]\n [2,1]\n [1,2]\n [2,2]\n 2--------->\n 1--------->^\n \"\"\"\n self.pts = np.array(\n np.meshgrid(\n np.arange(self.net_dim[0]) + 1,\n np.arange(self.net_dim[1]) + 1\n )\n ).reshape(2, np.prod(self.net_dim)).T\n if self.topo == \"hexagonal\":\n self.pts[:, 0] = self.pts[:, 0] + .5 * (self.pts[:, 1] % 2)\n self.pts[:, 1] = np.sqrt(3) / 2 * self.pts[:, 1]\n\n def som(self, data, epoch = 100, init_rate = None, init_radius = None, keep_net = False):\n \"\"\"\n :param data: 3d array. processed data set for Online SOM Detector\n :param epoch: epoch number\n :param init_rate: initial learning rate\n :param init_radius: initial radius of BMU neighborhood\n :param keep_net: keep every weight matrix path?\n \"\"\"\n num_obs = data.shape[0]\n obs_id = np.arange(num_obs)\n chose_i = np.empty(1)\n node_id = None\n hci = None\n self.epoch = epoch\n if keep_net:\n self.net_path = np.empty(\n (self.epoch, self.net_dim[0] * self.net_dim[1], self.nrow, self.ncol)\n )\n # learning rate\n if init_rate is None:\n init_rate = .1\n self.alpha = init_rate\n self.initial_learn = init_rate\n # radius of neighborhood\n if init_radius is None:\n init_radius = np.quantile(self.dci, q = 2 / 3, axis = None)\n self.sigma = init_radius\n self.initial_r = init_radius\n # time constant (lambda)\n rate_constant = epoch\n radius_constant = epoch / np.log(self.sigma)\n # distance between nodes\n bmu_dist = self.dci[1, :]\n rcst_err = np.empty(epoch)\n for i in tqdm(range(epoch), desc = \"epoch\"):\n chose_i = int(np.random.choice(obs_id, size = 1))\n # BMU - self.bmu\n self.find_bmu(data, chose_i)\n # reconstruction error - sum of distances from BMU\n rcst_err[i] = np.sum([np.square(self.dist_mat(data, j, self.bmu.astype(int))) for j in range(data.shape[0])])\n bmu_dist = self.dci[self.bmu.astype(int), :].flatten()\n # decay\n self.sigma = self.decay(init_radius, i + 1, radius_constant)\n self.alpha = self.decay(init_rate, i + 1, rate_constant)\n # neighboring nodes (includes BMU)\n neighbor_neuron = np.argwhere(bmu_dist <= self.sigma).flatten()\n for k in tqdm(range(neighbor_neuron.shape[0]), desc = \"updating\"):\n node_id = neighbor_neuron[k]\n hci = self.neighborhood(bmu_dist[node_id], self.sigma)\n # update codebook matrices of neighboring nodes\n self.net[node_id, :, :] += \\\n self.alpha * hci * \\\n (data[chose_i, :, :] - self.net[node_id, :, :]).reshape((self.nrow, self.ncol))\n if keep_net:\n self.net_path[i, :, :, :] = self.net\n self.reconstruction_error = pd.DataFrame({\"Epoch\": np.arange(self.epoch) + 1, \"Reconstruction Error\": rcst_err})\n\n def find_bmu(self, data, index):\n \"\"\"\n :param data: Processed data set for SOM.\n :param index: Randomly chosen observation id for input matrix among 3d tensor set.\n \"\"\"\n dist_code = np.asarray([self.dist_mat(data, index, j) for j in range(self.net.shape[0])])\n self.bmu = np.argmin(dist_code)\n\n def dist_mat(self, data, index, node):\n \"\"\"\n :param data: Processed data set for SOM.\n :param index: Randomly chosen observation id for input matrix among 3d tensor set.\n :param node: node index\n :return: distance between input matrix observation and weight matrix of the node\n \"\"\"\n if self.dist_func == \"frobenius\":\n return np.linalg.norm(data[index, :, :] - self.net[node, :, :], \"fro\")\n elif self.dist_func == \"nuclear\":\n return np.linalg.norm(data[index, :, :] - self.net[node, :, :], \"nuc\")\n elif self.dist_func == \"mahalanobis\":\n x = data[index, :, :] - self.net[node, :, :]\n covmat = np.cov(x, rowvar = False)\n # spectral decomposition sigma = udu.T\n w, v = np.linalg.eigh(covmat)\n # inverse = ud^-1u.T\n w[w == 0] += .0001\n covinv = v.dot(np.diag(1 / w)).dot(v.T)\n ss = x.dot(covinv).dot(x.T)\n return np.sqrt(np.trace(ss))\n elif self.dist_func == \"eros\":\n x = data[index, :, :] - self.net[node, :, :]\n covmat = np.cov(x, rowvar = False)\n # svd(covariance)\n u, s, vh = randomized_svd(covmat, n_components = covmat.shape[1], n_iter = 1, random_state = None)\n # normalize eigenvalue\n w = s / s.sum()\n # distance\n ss = np.multiply(vh, w).dot(vh.T)\n return np.sqrt(np.trace(ss))\n\n def dist_node(self):\n \"\"\"\n :return: distance matrix of SOM neuron\n \"\"\"\n if self.topo == \"hexagonal\":\n self.dci = distance.cdist(self.pts, self.pts, \"euclidean\")\n elif self.topo == \"rectangular\":\n self.dci = distance.cdist(self.pts, self.pts, \"chebyshev\")\n\n def decay(self, init, time, time_constant):\n \"\"\"\n :param init: initial value\n :param time: t\n :param time_constant: lambda\n :return: decaying value of alpha or sigma\n \"\"\"\n if self.decay_func == \"exponential\":\n return init * np.exp(-time / time_constant)\n elif self.decay_func == \"linear\":\n return init * (1 - time / time_constant)\n\n def neighborhood(self, node_distance, radius):\n \"\"\"\n :param node_distance: Distance between SOM neurons\n :param radius: Radius of BMU neighborhood\n :return: Neighborhood function hci\n \"\"\"\n if self.neighbor_func == \"gaussian\":\n return np.exp(-node_distance ** 2 / (2 * (radius ** 2)))\n elif self.neighbor_func == \"bubble\":\n if node_distance <= radius:\n return 1.0\n else:\n return 0.0\n elif self.neighbor_func == \"triangular\":\n if node_distance <= radius:\n return 1 - np.abs(node_distance) / radius\n else:\n return 0.0\n\n def dist_weight(self, data, index):\n \"\"\"\n :param data: Processed data set for SOM\n :param index: index for data\n :return: minimum distance between input matrix and weight matrices, its node id (BMU)\n \"\"\"\n dist_wt = np.asarray([self.dist_mat(data, index, j) for j in tqdm(range(self.net.shape[0]), desc = \"bmu\")])\n return np.min(dist_wt), np.argmin(dist_wt)\n\n def plot_error(self):\n \"\"\"\n :return: line plot of reconstruction error versus epoch\n \"\"\"\n fig = px.line(self.reconstruction_error, x = \"Epoch\", y = \"Reconstruction Error\")\n fig.show()\n\n def plot_heatmap(self, data):\n \"\"\"\n :return: Heatmap for SOM\n \"\"\"\n if self.project is None:\n normal_distance = np.asarray(\n [self.dist_weight(data, i) for i in tqdm(range(data.shape[0]), desc=\"mapping\")]\n )\n self.dist_normal = normal_distance[:, 0]\n self.project = normal_distance[:, 1]\n x = self.project % self.net_dim[0]\n y = self.project // self.net_dim[0]\n if self.topo == \"rectangular\":\n fig = go.Figure(\n go.Histogram2d(\n x = x,\n y = y,\n colorscale = \"Viridis\"\n )\n )\n fig.show()\n elif self.topo == \"hexagonal\":\n x = x + .5 * (y % 2)\n y = np.sqrt(3) / 2 * y\n # plt_hex = plt.hexbin(x, y)\n # plt.close()\n # fig = tls.mpl_to_plotly(plt_hex)\n plt.hexbin(x, y)\n plt.show()\n", "import numpy as np\nimport pandas as pd\nimport plotly.express as px\nimport plotly.graph_objs as go\nimport matplotlib.pyplot as plt\nfrom scipy.spatial import distance\nfrom sklearn.utils.extmath import randomized_svd\nfrom tqdm import tqdm\n\n\nclass kohonen:\n \"\"\"\n Matrix SOM\n Initialize weight matrix\n For epoch <- 1 to N do\n Choose input matrix observation randomly - i\n For k <- 1 to n_node do\n compute d(input matrix i, weight matrix k)\n end\n Best Matching Unit = winning node = node with the smallest distance\n For k <- 1 to n_node do\n update weight matrix\n end\n end\n\n Update weight mi(t + 1) = mi(t) + ⍺(t) * hci(t) [x(t) - mi(t)]\n Neighborhood function hci(t) = h(dist(rc, ri), t)\n rc, ri: location vectors of node c and i\n if Gaussian:\n hci(t) = exp(-dist^2 / (2 * σ^2(t)))\n Radius: σ(t) = σ_0 * exp(-t / ƛ)\n Learning rate: ⍺(t) = ⍺_0 * exp(-t / ƛ)\n \"\"\"\n\n def __init__(self, data, xdim, ydim, topo='rectangular', neighbor=\n 'gaussian', dist='frobenius', decay='exponential', seed=None):\n \"\"\"\n :param data: 3d array. processed data set for Online SOM Detector\n :param xdim: Number of x-grid\n :param ydim: Number of y-grid\n :param topo: Topology of output space - rectangular or hexagonal\n :param neighbor: Neighborhood function - gaussian, bubble, or triangular\n :param dist: Distance function - frobenius, nuclear, mahalanobis (just form of mahalanobis), or\n :param decay: decaying learning rate and radius - exponential or linear\n :param seed: Random seed\n \"\"\"\n np.random.seed(seed=seed)\n if xdim is None or ydim is None:\n xdim = int(np.sqrt(5 * np.sqrt(data.shape[0])))\n ydim = xdim\n self.net_dim = np.array([xdim, ydim])\n self.ncol = data.shape[2]\n self.nrow = data.shape[1]\n self.init_weight()\n topo_types = ['rectangular', 'hexagonal']\n if topo not in topo_types:\n raise ValueError('Invalid topo. Expected one of: %s' % topo_types)\n self.topo = topo\n self.init_grid()\n self.dist_node()\n neighbor_types = ['gaussian', 'bubble', 'triangular']\n if neighbor not in neighbor_types:\n raise ValueError('Invalid neighbor. Expected one of: %s' %\n neighbor_types)\n self.neighbor_func = neighbor\n dist_type = ['frobenius', 'nuclear', 'mahalanobis', 'eros']\n if dist not in dist_type:\n raise ValueError('Invalid dist. Expected one of: %s' % dist_type)\n self.dist_func = dist\n decay_types = ['exponential', 'linear']\n if decay not in decay_types:\n raise ValueError('Invalid decay. Expected one of: %s' % decay_types\n )\n self.decay_func = decay\n self.epoch = None\n self.alpha = None\n self.sigma = None\n self.initial_learn = None\n self.initial_r = None\n self.bmu = None\n self.reconstruction_error = None\n self.dist_normal = None\n self.project = None\n\n def init_weight(self):\n self.net = np.random.rand(self.net_dim[0] * self.net_dim[1], self.\n nrow, self.ncol)\n\n def init_grid(self):\n \"\"\"\n [row_pts, col_pts]\n xdim x ydim rows (points)\n [1,1]\n [2,1]\n [1,2]\n [2,2]\n 2--------->\n 1--------->^\n \"\"\"\n self.pts = np.array(np.meshgrid(np.arange(self.net_dim[0]) + 1, np.\n arange(self.net_dim[1]) + 1)).reshape(2, np.prod(self.net_dim)).T\n if self.topo == 'hexagonal':\n self.pts[:, 0] = self.pts[:, 0] + 0.5 * (self.pts[:, 1] % 2)\n self.pts[:, 1] = np.sqrt(3) / 2 * self.pts[:, 1]\n\n def som(self, data, epoch=100, init_rate=None, init_radius=None,\n keep_net=False):\n \"\"\"\n :param data: 3d array. processed data set for Online SOM Detector\n :param epoch: epoch number\n :param init_rate: initial learning rate\n :param init_radius: initial radius of BMU neighborhood\n :param keep_net: keep every weight matrix path?\n \"\"\"\n num_obs = data.shape[0]\n obs_id = np.arange(num_obs)\n chose_i = np.empty(1)\n node_id = None\n hci = None\n self.epoch = epoch\n if keep_net:\n self.net_path = np.empty((self.epoch, self.net_dim[0] * self.\n net_dim[1], self.nrow, self.ncol))\n if init_rate is None:\n init_rate = 0.1\n self.alpha = init_rate\n self.initial_learn = init_rate\n if init_radius is None:\n init_radius = np.quantile(self.dci, q=2 / 3, axis=None)\n self.sigma = init_radius\n self.initial_r = init_radius\n rate_constant = epoch\n radius_constant = epoch / np.log(self.sigma)\n bmu_dist = self.dci[1, :]\n rcst_err = np.empty(epoch)\n for i in tqdm(range(epoch), desc='epoch'):\n chose_i = int(np.random.choice(obs_id, size=1))\n self.find_bmu(data, chose_i)\n rcst_err[i] = np.sum([np.square(self.dist_mat(data, j, self.bmu\n .astype(int))) for j in range(data.shape[0])])\n bmu_dist = self.dci[self.bmu.astype(int), :].flatten()\n self.sigma = self.decay(init_radius, i + 1, radius_constant)\n self.alpha = self.decay(init_rate, i + 1, rate_constant)\n neighbor_neuron = np.argwhere(bmu_dist <= self.sigma).flatten()\n for k in tqdm(range(neighbor_neuron.shape[0]), desc='updating'):\n node_id = neighbor_neuron[k]\n hci = self.neighborhood(bmu_dist[node_id], self.sigma)\n self.net[node_id, :, :] += self.alpha * hci * (data[chose_i,\n :, :] - self.net[node_id, :, :]).reshape((self.nrow,\n self.ncol))\n if keep_net:\n self.net_path[i, :, :, :] = self.net\n self.reconstruction_error = pd.DataFrame({'Epoch': np.arange(self.\n epoch) + 1, 'Reconstruction Error': rcst_err})\n\n def find_bmu(self, data, index):\n \"\"\"\n :param data: Processed data set for SOM.\n :param index: Randomly chosen observation id for input matrix among 3d tensor set.\n \"\"\"\n dist_code = np.asarray([self.dist_mat(data, index, j) for j in\n range(self.net.shape[0])])\n self.bmu = np.argmin(dist_code)\n\n def dist_mat(self, data, index, node):\n \"\"\"\n :param data: Processed data set for SOM.\n :param index: Randomly chosen observation id for input matrix among 3d tensor set.\n :param node: node index\n :return: distance between input matrix observation and weight matrix of the node\n \"\"\"\n if self.dist_func == 'frobenius':\n return np.linalg.norm(data[index, :, :] - self.net[node, :, :],\n 'fro')\n elif self.dist_func == 'nuclear':\n return np.linalg.norm(data[index, :, :] - self.net[node, :, :],\n 'nuc')\n elif self.dist_func == 'mahalanobis':\n x = data[index, :, :] - self.net[node, :, :]\n covmat = np.cov(x, rowvar=False)\n w, v = np.linalg.eigh(covmat)\n w[w == 0] += 0.0001\n covinv = v.dot(np.diag(1 / w)).dot(v.T)\n ss = x.dot(covinv).dot(x.T)\n return np.sqrt(np.trace(ss))\n elif self.dist_func == 'eros':\n x = data[index, :, :] - self.net[node, :, :]\n covmat = np.cov(x, rowvar=False)\n u, s, vh = randomized_svd(covmat, n_components=covmat.shape[1],\n n_iter=1, random_state=None)\n w = s / s.sum()\n ss = np.multiply(vh, w).dot(vh.T)\n return np.sqrt(np.trace(ss))\n\n def dist_node(self):\n \"\"\"\n :return: distance matrix of SOM neuron\n \"\"\"\n if self.topo == 'hexagonal':\n self.dci = distance.cdist(self.pts, self.pts, 'euclidean')\n elif self.topo == 'rectangular':\n self.dci = distance.cdist(self.pts, self.pts, 'chebyshev')\n\n def decay(self, init, time, time_constant):\n \"\"\"\n :param init: initial value\n :param time: t\n :param time_constant: lambda\n :return: decaying value of alpha or sigma\n \"\"\"\n if self.decay_func == 'exponential':\n return init * np.exp(-time / time_constant)\n elif self.decay_func == 'linear':\n return init * (1 - time / time_constant)\n\n def neighborhood(self, node_distance, radius):\n \"\"\"\n :param node_distance: Distance between SOM neurons\n :param radius: Radius of BMU neighborhood\n :return: Neighborhood function hci\n \"\"\"\n if self.neighbor_func == 'gaussian':\n return np.exp(-node_distance ** 2 / (2 * radius ** 2))\n elif self.neighbor_func == 'bubble':\n if node_distance <= radius:\n return 1.0\n else:\n return 0.0\n elif self.neighbor_func == 'triangular':\n if node_distance <= radius:\n return 1 - np.abs(node_distance) / radius\n else:\n return 0.0\n\n def dist_weight(self, data, index):\n \"\"\"\n :param data: Processed data set for SOM\n :param index: index for data\n :return: minimum distance between input matrix and weight matrices, its node id (BMU)\n \"\"\"\n dist_wt = np.asarray([self.dist_mat(data, index, j) for j in tqdm(\n range(self.net.shape[0]), desc='bmu')])\n return np.min(dist_wt), np.argmin(dist_wt)\n\n def plot_error(self):\n \"\"\"\n :return: line plot of reconstruction error versus epoch\n \"\"\"\n fig = px.line(self.reconstruction_error, x='Epoch', y=\n 'Reconstruction Error')\n fig.show()\n\n def plot_heatmap(self, data):\n \"\"\"\n :return: Heatmap for SOM\n \"\"\"\n if self.project is None:\n normal_distance = np.asarray([self.dist_weight(data, i) for i in\n tqdm(range(data.shape[0]), desc='mapping')])\n self.dist_normal = normal_distance[:, 0]\n self.project = normal_distance[:, 1]\n x = self.project % self.net_dim[0]\n y = self.project // self.net_dim[0]\n if self.topo == 'rectangular':\n fig = go.Figure(go.Histogram2d(x=x, y=y, colorscale='Viridis'))\n fig.show()\n elif self.topo == 'hexagonal':\n x = x + 0.5 * (y % 2)\n y = np.sqrt(3) / 2 * y\n plt.hexbin(x, y)\n plt.show()\n", "<import token>\n\n\nclass kohonen:\n \"\"\"\n Matrix SOM\n Initialize weight matrix\n For epoch <- 1 to N do\n Choose input matrix observation randomly - i\n For k <- 1 to n_node do\n compute d(input matrix i, weight matrix k)\n end\n Best Matching Unit = winning node = node with the smallest distance\n For k <- 1 to n_node do\n update weight matrix\n end\n end\n\n Update weight mi(t + 1) = mi(t) + ⍺(t) * hci(t) [x(t) - mi(t)]\n Neighborhood function hci(t) = h(dist(rc, ri), t)\n rc, ri: location vectors of node c and i\n if Gaussian:\n hci(t) = exp(-dist^2 / (2 * σ^2(t)))\n Radius: σ(t) = σ_0 * exp(-t / ƛ)\n Learning rate: ⍺(t) = ⍺_0 * exp(-t / ƛ)\n \"\"\"\n\n def __init__(self, data, xdim, ydim, topo='rectangular', neighbor=\n 'gaussian', dist='frobenius', decay='exponential', seed=None):\n \"\"\"\n :param data: 3d array. processed data set for Online SOM Detector\n :param xdim: Number of x-grid\n :param ydim: Number of y-grid\n :param topo: Topology of output space - rectangular or hexagonal\n :param neighbor: Neighborhood function - gaussian, bubble, or triangular\n :param dist: Distance function - frobenius, nuclear, mahalanobis (just form of mahalanobis), or\n :param decay: decaying learning rate and radius - exponential or linear\n :param seed: Random seed\n \"\"\"\n np.random.seed(seed=seed)\n if xdim is None or ydim is None:\n xdim = int(np.sqrt(5 * np.sqrt(data.shape[0])))\n ydim = xdim\n self.net_dim = np.array([xdim, ydim])\n self.ncol = data.shape[2]\n self.nrow = data.shape[1]\n self.init_weight()\n topo_types = ['rectangular', 'hexagonal']\n if topo not in topo_types:\n raise ValueError('Invalid topo. Expected one of: %s' % topo_types)\n self.topo = topo\n self.init_grid()\n self.dist_node()\n neighbor_types = ['gaussian', 'bubble', 'triangular']\n if neighbor not in neighbor_types:\n raise ValueError('Invalid neighbor. Expected one of: %s' %\n neighbor_types)\n self.neighbor_func = neighbor\n dist_type = ['frobenius', 'nuclear', 'mahalanobis', 'eros']\n if dist not in dist_type:\n raise ValueError('Invalid dist. Expected one of: %s' % dist_type)\n self.dist_func = dist\n decay_types = ['exponential', 'linear']\n if decay not in decay_types:\n raise ValueError('Invalid decay. Expected one of: %s' % decay_types\n )\n self.decay_func = decay\n self.epoch = None\n self.alpha = None\n self.sigma = None\n self.initial_learn = None\n self.initial_r = None\n self.bmu = None\n self.reconstruction_error = None\n self.dist_normal = None\n self.project = None\n\n def init_weight(self):\n self.net = np.random.rand(self.net_dim[0] * self.net_dim[1], self.\n nrow, self.ncol)\n\n def init_grid(self):\n \"\"\"\n [row_pts, col_pts]\n xdim x ydim rows (points)\n [1,1]\n [2,1]\n [1,2]\n [2,2]\n 2--------->\n 1--------->^\n \"\"\"\n self.pts = np.array(np.meshgrid(np.arange(self.net_dim[0]) + 1, np.\n arange(self.net_dim[1]) + 1)).reshape(2, np.prod(self.net_dim)).T\n if self.topo == 'hexagonal':\n self.pts[:, 0] = self.pts[:, 0] + 0.5 * (self.pts[:, 1] % 2)\n self.pts[:, 1] = np.sqrt(3) / 2 * self.pts[:, 1]\n\n def som(self, data, epoch=100, init_rate=None, init_radius=None,\n keep_net=False):\n \"\"\"\n :param data: 3d array. processed data set for Online SOM Detector\n :param epoch: epoch number\n :param init_rate: initial learning rate\n :param init_radius: initial radius of BMU neighborhood\n :param keep_net: keep every weight matrix path?\n \"\"\"\n num_obs = data.shape[0]\n obs_id = np.arange(num_obs)\n chose_i = np.empty(1)\n node_id = None\n hci = None\n self.epoch = epoch\n if keep_net:\n self.net_path = np.empty((self.epoch, self.net_dim[0] * self.\n net_dim[1], self.nrow, self.ncol))\n if init_rate is None:\n init_rate = 0.1\n self.alpha = init_rate\n self.initial_learn = init_rate\n if init_radius is None:\n init_radius = np.quantile(self.dci, q=2 / 3, axis=None)\n self.sigma = init_radius\n self.initial_r = init_radius\n rate_constant = epoch\n radius_constant = epoch / np.log(self.sigma)\n bmu_dist = self.dci[1, :]\n rcst_err = np.empty(epoch)\n for i in tqdm(range(epoch), desc='epoch'):\n chose_i = int(np.random.choice(obs_id, size=1))\n self.find_bmu(data, chose_i)\n rcst_err[i] = np.sum([np.square(self.dist_mat(data, j, self.bmu\n .astype(int))) for j in range(data.shape[0])])\n bmu_dist = self.dci[self.bmu.astype(int), :].flatten()\n self.sigma = self.decay(init_radius, i + 1, radius_constant)\n self.alpha = self.decay(init_rate, i + 1, rate_constant)\n neighbor_neuron = np.argwhere(bmu_dist <= self.sigma).flatten()\n for k in tqdm(range(neighbor_neuron.shape[0]), desc='updating'):\n node_id = neighbor_neuron[k]\n hci = self.neighborhood(bmu_dist[node_id], self.sigma)\n self.net[node_id, :, :] += self.alpha * hci * (data[chose_i,\n :, :] - self.net[node_id, :, :]).reshape((self.nrow,\n self.ncol))\n if keep_net:\n self.net_path[i, :, :, :] = self.net\n self.reconstruction_error = pd.DataFrame({'Epoch': np.arange(self.\n epoch) + 1, 'Reconstruction Error': rcst_err})\n\n def find_bmu(self, data, index):\n \"\"\"\n :param data: Processed data set for SOM.\n :param index: Randomly chosen observation id for input matrix among 3d tensor set.\n \"\"\"\n dist_code = np.asarray([self.dist_mat(data, index, j) for j in\n range(self.net.shape[0])])\n self.bmu = np.argmin(dist_code)\n\n def dist_mat(self, data, index, node):\n \"\"\"\n :param data: Processed data set for SOM.\n :param index: Randomly chosen observation id for input matrix among 3d tensor set.\n :param node: node index\n :return: distance between input matrix observation and weight matrix of the node\n \"\"\"\n if self.dist_func == 'frobenius':\n return np.linalg.norm(data[index, :, :] - self.net[node, :, :],\n 'fro')\n elif self.dist_func == 'nuclear':\n return np.linalg.norm(data[index, :, :] - self.net[node, :, :],\n 'nuc')\n elif self.dist_func == 'mahalanobis':\n x = data[index, :, :] - self.net[node, :, :]\n covmat = np.cov(x, rowvar=False)\n w, v = np.linalg.eigh(covmat)\n w[w == 0] += 0.0001\n covinv = v.dot(np.diag(1 / w)).dot(v.T)\n ss = x.dot(covinv).dot(x.T)\n return np.sqrt(np.trace(ss))\n elif self.dist_func == 'eros':\n x = data[index, :, :] - self.net[node, :, :]\n covmat = np.cov(x, rowvar=False)\n u, s, vh = randomized_svd(covmat, n_components=covmat.shape[1],\n n_iter=1, random_state=None)\n w = s / s.sum()\n ss = np.multiply(vh, w).dot(vh.T)\n return np.sqrt(np.trace(ss))\n\n def dist_node(self):\n \"\"\"\n :return: distance matrix of SOM neuron\n \"\"\"\n if self.topo == 'hexagonal':\n self.dci = distance.cdist(self.pts, self.pts, 'euclidean')\n elif self.topo == 'rectangular':\n self.dci = distance.cdist(self.pts, self.pts, 'chebyshev')\n\n def decay(self, init, time, time_constant):\n \"\"\"\n :param init: initial value\n :param time: t\n :param time_constant: lambda\n :return: decaying value of alpha or sigma\n \"\"\"\n if self.decay_func == 'exponential':\n return init * np.exp(-time / time_constant)\n elif self.decay_func == 'linear':\n return init * (1 - time / time_constant)\n\n def neighborhood(self, node_distance, radius):\n \"\"\"\n :param node_distance: Distance between SOM neurons\n :param radius: Radius of BMU neighborhood\n :return: Neighborhood function hci\n \"\"\"\n if self.neighbor_func == 'gaussian':\n return np.exp(-node_distance ** 2 / (2 * radius ** 2))\n elif self.neighbor_func == 'bubble':\n if node_distance <= radius:\n return 1.0\n else:\n return 0.0\n elif self.neighbor_func == 'triangular':\n if node_distance <= radius:\n return 1 - np.abs(node_distance) / radius\n else:\n return 0.0\n\n def dist_weight(self, data, index):\n \"\"\"\n :param data: Processed data set for SOM\n :param index: index for data\n :return: minimum distance between input matrix and weight matrices, its node id (BMU)\n \"\"\"\n dist_wt = np.asarray([self.dist_mat(data, index, j) for j in tqdm(\n range(self.net.shape[0]), desc='bmu')])\n return np.min(dist_wt), np.argmin(dist_wt)\n\n def plot_error(self):\n \"\"\"\n :return: line plot of reconstruction error versus epoch\n \"\"\"\n fig = px.line(self.reconstruction_error, x='Epoch', y=\n 'Reconstruction Error')\n fig.show()\n\n def plot_heatmap(self, data):\n \"\"\"\n :return: Heatmap for SOM\n \"\"\"\n if self.project is None:\n normal_distance = np.asarray([self.dist_weight(data, i) for i in\n tqdm(range(data.shape[0]), desc='mapping')])\n self.dist_normal = normal_distance[:, 0]\n self.project = normal_distance[:, 1]\n x = self.project % self.net_dim[0]\n y = self.project // self.net_dim[0]\n if self.topo == 'rectangular':\n fig = go.Figure(go.Histogram2d(x=x, y=y, colorscale='Viridis'))\n fig.show()\n elif self.topo == 'hexagonal':\n x = x + 0.5 * (y % 2)\n y = np.sqrt(3) / 2 * y\n plt.hexbin(x, y)\n plt.show()\n", "<import token>\n\n\nclass kohonen:\n <docstring token>\n\n def __init__(self, data, xdim, ydim, topo='rectangular', neighbor=\n 'gaussian', dist='frobenius', decay='exponential', seed=None):\n \"\"\"\n :param data: 3d array. processed data set for Online SOM Detector\n :param xdim: Number of x-grid\n :param ydim: Number of y-grid\n :param topo: Topology of output space - rectangular or hexagonal\n :param neighbor: Neighborhood function - gaussian, bubble, or triangular\n :param dist: Distance function - frobenius, nuclear, mahalanobis (just form of mahalanobis), or\n :param decay: decaying learning rate and radius - exponential or linear\n :param seed: Random seed\n \"\"\"\n np.random.seed(seed=seed)\n if xdim is None or ydim is None:\n xdim = int(np.sqrt(5 * np.sqrt(data.shape[0])))\n ydim = xdim\n self.net_dim = np.array([xdim, ydim])\n self.ncol = data.shape[2]\n self.nrow = data.shape[1]\n self.init_weight()\n topo_types = ['rectangular', 'hexagonal']\n if topo not in topo_types:\n raise ValueError('Invalid topo. Expected one of: %s' % topo_types)\n self.topo = topo\n self.init_grid()\n self.dist_node()\n neighbor_types = ['gaussian', 'bubble', 'triangular']\n if neighbor not in neighbor_types:\n raise ValueError('Invalid neighbor. Expected one of: %s' %\n neighbor_types)\n self.neighbor_func = neighbor\n dist_type = ['frobenius', 'nuclear', 'mahalanobis', 'eros']\n if dist not in dist_type:\n raise ValueError('Invalid dist. Expected one of: %s' % dist_type)\n self.dist_func = dist\n decay_types = ['exponential', 'linear']\n if decay not in decay_types:\n raise ValueError('Invalid decay. Expected one of: %s' % decay_types\n )\n self.decay_func = decay\n self.epoch = None\n self.alpha = None\n self.sigma = None\n self.initial_learn = None\n self.initial_r = None\n self.bmu = None\n self.reconstruction_error = None\n self.dist_normal = None\n self.project = None\n\n def init_weight(self):\n self.net = np.random.rand(self.net_dim[0] * self.net_dim[1], self.\n nrow, self.ncol)\n\n def init_grid(self):\n \"\"\"\n [row_pts, col_pts]\n xdim x ydim rows (points)\n [1,1]\n [2,1]\n [1,2]\n [2,2]\n 2--------->\n 1--------->^\n \"\"\"\n self.pts = np.array(np.meshgrid(np.arange(self.net_dim[0]) + 1, np.\n arange(self.net_dim[1]) + 1)).reshape(2, np.prod(self.net_dim)).T\n if self.topo == 'hexagonal':\n self.pts[:, 0] = self.pts[:, 0] + 0.5 * (self.pts[:, 1] % 2)\n self.pts[:, 1] = np.sqrt(3) / 2 * self.pts[:, 1]\n\n def som(self, data, epoch=100, init_rate=None, init_radius=None,\n keep_net=False):\n \"\"\"\n :param data: 3d array. processed data set for Online SOM Detector\n :param epoch: epoch number\n :param init_rate: initial learning rate\n :param init_radius: initial radius of BMU neighborhood\n :param keep_net: keep every weight matrix path?\n \"\"\"\n num_obs = data.shape[0]\n obs_id = np.arange(num_obs)\n chose_i = np.empty(1)\n node_id = None\n hci = None\n self.epoch = epoch\n if keep_net:\n self.net_path = np.empty((self.epoch, self.net_dim[0] * self.\n net_dim[1], self.nrow, self.ncol))\n if init_rate is None:\n init_rate = 0.1\n self.alpha = init_rate\n self.initial_learn = init_rate\n if init_radius is None:\n init_radius = np.quantile(self.dci, q=2 / 3, axis=None)\n self.sigma = init_radius\n self.initial_r = init_radius\n rate_constant = epoch\n radius_constant = epoch / np.log(self.sigma)\n bmu_dist = self.dci[1, :]\n rcst_err = np.empty(epoch)\n for i in tqdm(range(epoch), desc='epoch'):\n chose_i = int(np.random.choice(obs_id, size=1))\n self.find_bmu(data, chose_i)\n rcst_err[i] = np.sum([np.square(self.dist_mat(data, j, self.bmu\n .astype(int))) for j in range(data.shape[0])])\n bmu_dist = self.dci[self.bmu.astype(int), :].flatten()\n self.sigma = self.decay(init_radius, i + 1, radius_constant)\n self.alpha = self.decay(init_rate, i + 1, rate_constant)\n neighbor_neuron = np.argwhere(bmu_dist <= self.sigma).flatten()\n for k in tqdm(range(neighbor_neuron.shape[0]), desc='updating'):\n node_id = neighbor_neuron[k]\n hci = self.neighborhood(bmu_dist[node_id], self.sigma)\n self.net[node_id, :, :] += self.alpha * hci * (data[chose_i,\n :, :] - self.net[node_id, :, :]).reshape((self.nrow,\n self.ncol))\n if keep_net:\n self.net_path[i, :, :, :] = self.net\n self.reconstruction_error = pd.DataFrame({'Epoch': np.arange(self.\n epoch) + 1, 'Reconstruction Error': rcst_err})\n\n def find_bmu(self, data, index):\n \"\"\"\n :param data: Processed data set for SOM.\n :param index: Randomly chosen observation id for input matrix among 3d tensor set.\n \"\"\"\n dist_code = np.asarray([self.dist_mat(data, index, j) for j in\n range(self.net.shape[0])])\n self.bmu = np.argmin(dist_code)\n\n def dist_mat(self, data, index, node):\n \"\"\"\n :param data: Processed data set for SOM.\n :param index: Randomly chosen observation id for input matrix among 3d tensor set.\n :param node: node index\n :return: distance between input matrix observation and weight matrix of the node\n \"\"\"\n if self.dist_func == 'frobenius':\n return np.linalg.norm(data[index, :, :] - self.net[node, :, :],\n 'fro')\n elif self.dist_func == 'nuclear':\n return np.linalg.norm(data[index, :, :] - self.net[node, :, :],\n 'nuc')\n elif self.dist_func == 'mahalanobis':\n x = data[index, :, :] - self.net[node, :, :]\n covmat = np.cov(x, rowvar=False)\n w, v = np.linalg.eigh(covmat)\n w[w == 0] += 0.0001\n covinv = v.dot(np.diag(1 / w)).dot(v.T)\n ss = x.dot(covinv).dot(x.T)\n return np.sqrt(np.trace(ss))\n elif self.dist_func == 'eros':\n x = data[index, :, :] - self.net[node, :, :]\n covmat = np.cov(x, rowvar=False)\n u, s, vh = randomized_svd(covmat, n_components=covmat.shape[1],\n n_iter=1, random_state=None)\n w = s / s.sum()\n ss = np.multiply(vh, w).dot(vh.T)\n return np.sqrt(np.trace(ss))\n\n def dist_node(self):\n \"\"\"\n :return: distance matrix of SOM neuron\n \"\"\"\n if self.topo == 'hexagonal':\n self.dci = distance.cdist(self.pts, self.pts, 'euclidean')\n elif self.topo == 'rectangular':\n self.dci = distance.cdist(self.pts, self.pts, 'chebyshev')\n\n def decay(self, init, time, time_constant):\n \"\"\"\n :param init: initial value\n :param time: t\n :param time_constant: lambda\n :return: decaying value of alpha or sigma\n \"\"\"\n if self.decay_func == 'exponential':\n return init * np.exp(-time / time_constant)\n elif self.decay_func == 'linear':\n return init * (1 - time / time_constant)\n\n def neighborhood(self, node_distance, radius):\n \"\"\"\n :param node_distance: Distance between SOM neurons\n :param radius: Radius of BMU neighborhood\n :return: Neighborhood function hci\n \"\"\"\n if self.neighbor_func == 'gaussian':\n return np.exp(-node_distance ** 2 / (2 * radius ** 2))\n elif self.neighbor_func == 'bubble':\n if node_distance <= radius:\n return 1.0\n else:\n return 0.0\n elif self.neighbor_func == 'triangular':\n if node_distance <= radius:\n return 1 - np.abs(node_distance) / radius\n else:\n return 0.0\n\n def dist_weight(self, data, index):\n \"\"\"\n :param data: Processed data set for SOM\n :param index: index for data\n :return: minimum distance between input matrix and weight matrices, its node id (BMU)\n \"\"\"\n dist_wt = np.asarray([self.dist_mat(data, index, j) for j in tqdm(\n range(self.net.shape[0]), desc='bmu')])\n return np.min(dist_wt), np.argmin(dist_wt)\n\n def plot_error(self):\n \"\"\"\n :return: line plot of reconstruction error versus epoch\n \"\"\"\n fig = px.line(self.reconstruction_error, x='Epoch', y=\n 'Reconstruction Error')\n fig.show()\n\n def plot_heatmap(self, data):\n \"\"\"\n :return: Heatmap for SOM\n \"\"\"\n if self.project is None:\n normal_distance = np.asarray([self.dist_weight(data, i) for i in\n tqdm(range(data.shape[0]), desc='mapping')])\n self.dist_normal = normal_distance[:, 0]\n self.project = normal_distance[:, 1]\n x = self.project % self.net_dim[0]\n y = self.project // self.net_dim[0]\n if self.topo == 'rectangular':\n fig = go.Figure(go.Histogram2d(x=x, y=y, colorscale='Viridis'))\n fig.show()\n elif self.topo == 'hexagonal':\n x = x + 0.5 * (y % 2)\n y = np.sqrt(3) / 2 * y\n plt.hexbin(x, y)\n plt.show()\n", "<import token>\n\n\nclass kohonen:\n <docstring token>\n\n def __init__(self, data, xdim, ydim, topo='rectangular', neighbor=\n 'gaussian', dist='frobenius', decay='exponential', seed=None):\n \"\"\"\n :param data: 3d array. processed data set for Online SOM Detector\n :param xdim: Number of x-grid\n :param ydim: Number of y-grid\n :param topo: Topology of output space - rectangular or hexagonal\n :param neighbor: Neighborhood function - gaussian, bubble, or triangular\n :param dist: Distance function - frobenius, nuclear, mahalanobis (just form of mahalanobis), or\n :param decay: decaying learning rate and radius - exponential or linear\n :param seed: Random seed\n \"\"\"\n np.random.seed(seed=seed)\n if xdim is None or ydim is None:\n xdim = int(np.sqrt(5 * np.sqrt(data.shape[0])))\n ydim = xdim\n self.net_dim = np.array([xdim, ydim])\n self.ncol = data.shape[2]\n self.nrow = data.shape[1]\n self.init_weight()\n topo_types = ['rectangular', 'hexagonal']\n if topo not in topo_types:\n raise ValueError('Invalid topo. Expected one of: %s' % topo_types)\n self.topo = topo\n self.init_grid()\n self.dist_node()\n neighbor_types = ['gaussian', 'bubble', 'triangular']\n if neighbor not in neighbor_types:\n raise ValueError('Invalid neighbor. Expected one of: %s' %\n neighbor_types)\n self.neighbor_func = neighbor\n dist_type = ['frobenius', 'nuclear', 'mahalanobis', 'eros']\n if dist not in dist_type:\n raise ValueError('Invalid dist. Expected one of: %s' % dist_type)\n self.dist_func = dist\n decay_types = ['exponential', 'linear']\n if decay not in decay_types:\n raise ValueError('Invalid decay. Expected one of: %s' % decay_types\n )\n self.decay_func = decay\n self.epoch = None\n self.alpha = None\n self.sigma = None\n self.initial_learn = None\n self.initial_r = None\n self.bmu = None\n self.reconstruction_error = None\n self.dist_normal = None\n self.project = None\n\n def init_weight(self):\n self.net = np.random.rand(self.net_dim[0] * self.net_dim[1], self.\n nrow, self.ncol)\n\n def init_grid(self):\n \"\"\"\n [row_pts, col_pts]\n xdim x ydim rows (points)\n [1,1]\n [2,1]\n [1,2]\n [2,2]\n 2--------->\n 1--------->^\n \"\"\"\n self.pts = np.array(np.meshgrid(np.arange(self.net_dim[0]) + 1, np.\n arange(self.net_dim[1]) + 1)).reshape(2, np.prod(self.net_dim)).T\n if self.topo == 'hexagonal':\n self.pts[:, 0] = self.pts[:, 0] + 0.5 * (self.pts[:, 1] % 2)\n self.pts[:, 1] = np.sqrt(3) / 2 * self.pts[:, 1]\n\n def som(self, data, epoch=100, init_rate=None, init_radius=None,\n keep_net=False):\n \"\"\"\n :param data: 3d array. processed data set for Online SOM Detector\n :param epoch: epoch number\n :param init_rate: initial learning rate\n :param init_radius: initial radius of BMU neighborhood\n :param keep_net: keep every weight matrix path?\n \"\"\"\n num_obs = data.shape[0]\n obs_id = np.arange(num_obs)\n chose_i = np.empty(1)\n node_id = None\n hci = None\n self.epoch = epoch\n if keep_net:\n self.net_path = np.empty((self.epoch, self.net_dim[0] * self.\n net_dim[1], self.nrow, self.ncol))\n if init_rate is None:\n init_rate = 0.1\n self.alpha = init_rate\n self.initial_learn = init_rate\n if init_radius is None:\n init_radius = np.quantile(self.dci, q=2 / 3, axis=None)\n self.sigma = init_radius\n self.initial_r = init_radius\n rate_constant = epoch\n radius_constant = epoch / np.log(self.sigma)\n bmu_dist = self.dci[1, :]\n rcst_err = np.empty(epoch)\n for i in tqdm(range(epoch), desc='epoch'):\n chose_i = int(np.random.choice(obs_id, size=1))\n self.find_bmu(data, chose_i)\n rcst_err[i] = np.sum([np.square(self.dist_mat(data, j, self.bmu\n .astype(int))) for j in range(data.shape[0])])\n bmu_dist = self.dci[self.bmu.astype(int), :].flatten()\n self.sigma = self.decay(init_radius, i + 1, radius_constant)\n self.alpha = self.decay(init_rate, i + 1, rate_constant)\n neighbor_neuron = np.argwhere(bmu_dist <= self.sigma).flatten()\n for k in tqdm(range(neighbor_neuron.shape[0]), desc='updating'):\n node_id = neighbor_neuron[k]\n hci = self.neighborhood(bmu_dist[node_id], self.sigma)\n self.net[node_id, :, :] += self.alpha * hci * (data[chose_i,\n :, :] - self.net[node_id, :, :]).reshape((self.nrow,\n self.ncol))\n if keep_net:\n self.net_path[i, :, :, :] = self.net\n self.reconstruction_error = pd.DataFrame({'Epoch': np.arange(self.\n epoch) + 1, 'Reconstruction Error': rcst_err})\n <function token>\n\n def dist_mat(self, data, index, node):\n \"\"\"\n :param data: Processed data set for SOM.\n :param index: Randomly chosen observation id for input matrix among 3d tensor set.\n :param node: node index\n :return: distance between input matrix observation and weight matrix of the node\n \"\"\"\n if self.dist_func == 'frobenius':\n return np.linalg.norm(data[index, :, :] - self.net[node, :, :],\n 'fro')\n elif self.dist_func == 'nuclear':\n return np.linalg.norm(data[index, :, :] - self.net[node, :, :],\n 'nuc')\n elif self.dist_func == 'mahalanobis':\n x = data[index, :, :] - self.net[node, :, :]\n covmat = np.cov(x, rowvar=False)\n w, v = np.linalg.eigh(covmat)\n w[w == 0] += 0.0001\n covinv = v.dot(np.diag(1 / w)).dot(v.T)\n ss = x.dot(covinv).dot(x.T)\n return np.sqrt(np.trace(ss))\n elif self.dist_func == 'eros':\n x = data[index, :, :] - self.net[node, :, :]\n covmat = np.cov(x, rowvar=False)\n u, s, vh = randomized_svd(covmat, n_components=covmat.shape[1],\n n_iter=1, random_state=None)\n w = s / s.sum()\n ss = np.multiply(vh, w).dot(vh.T)\n return np.sqrt(np.trace(ss))\n\n def dist_node(self):\n \"\"\"\n :return: distance matrix of SOM neuron\n \"\"\"\n if self.topo == 'hexagonal':\n self.dci = distance.cdist(self.pts, self.pts, 'euclidean')\n elif self.topo == 'rectangular':\n self.dci = distance.cdist(self.pts, self.pts, 'chebyshev')\n\n def decay(self, init, time, time_constant):\n \"\"\"\n :param init: initial value\n :param time: t\n :param time_constant: lambda\n :return: decaying value of alpha or sigma\n \"\"\"\n if self.decay_func == 'exponential':\n return init * np.exp(-time / time_constant)\n elif self.decay_func == 'linear':\n return init * (1 - time / time_constant)\n\n def neighborhood(self, node_distance, radius):\n \"\"\"\n :param node_distance: Distance between SOM neurons\n :param radius: Radius of BMU neighborhood\n :return: Neighborhood function hci\n \"\"\"\n if self.neighbor_func == 'gaussian':\n return np.exp(-node_distance ** 2 / (2 * radius ** 2))\n elif self.neighbor_func == 'bubble':\n if node_distance <= radius:\n return 1.0\n else:\n return 0.0\n elif self.neighbor_func == 'triangular':\n if node_distance <= radius:\n return 1 - np.abs(node_distance) / radius\n else:\n return 0.0\n\n def dist_weight(self, data, index):\n \"\"\"\n :param data: Processed data set for SOM\n :param index: index for data\n :return: minimum distance between input matrix and weight matrices, its node id (BMU)\n \"\"\"\n dist_wt = np.asarray([self.dist_mat(data, index, j) for j in tqdm(\n range(self.net.shape[0]), desc='bmu')])\n return np.min(dist_wt), np.argmin(dist_wt)\n\n def plot_error(self):\n \"\"\"\n :return: line plot of reconstruction error versus epoch\n \"\"\"\n fig = px.line(self.reconstruction_error, x='Epoch', y=\n 'Reconstruction Error')\n fig.show()\n\n def plot_heatmap(self, data):\n \"\"\"\n :return: Heatmap for SOM\n \"\"\"\n if self.project is None:\n normal_distance = np.asarray([self.dist_weight(data, i) for i in\n tqdm(range(data.shape[0]), desc='mapping')])\n self.dist_normal = normal_distance[:, 0]\n self.project = normal_distance[:, 1]\n x = self.project % self.net_dim[0]\n y = self.project // self.net_dim[0]\n if self.topo == 'rectangular':\n fig = go.Figure(go.Histogram2d(x=x, y=y, colorscale='Viridis'))\n fig.show()\n elif self.topo == 'hexagonal':\n x = x + 0.5 * (y % 2)\n y = np.sqrt(3) / 2 * y\n plt.hexbin(x, y)\n plt.show()\n", "<import token>\n\n\nclass kohonen:\n <docstring token>\n\n def __init__(self, data, xdim, ydim, topo='rectangular', neighbor=\n 'gaussian', dist='frobenius', decay='exponential', seed=None):\n \"\"\"\n :param data: 3d array. processed data set for Online SOM Detector\n :param xdim: Number of x-grid\n :param ydim: Number of y-grid\n :param topo: Topology of output space - rectangular or hexagonal\n :param neighbor: Neighborhood function - gaussian, bubble, or triangular\n :param dist: Distance function - frobenius, nuclear, mahalanobis (just form of mahalanobis), or\n :param decay: decaying learning rate and radius - exponential or linear\n :param seed: Random seed\n \"\"\"\n np.random.seed(seed=seed)\n if xdim is None or ydim is None:\n xdim = int(np.sqrt(5 * np.sqrt(data.shape[0])))\n ydim = xdim\n self.net_dim = np.array([xdim, ydim])\n self.ncol = data.shape[2]\n self.nrow = data.shape[1]\n self.init_weight()\n topo_types = ['rectangular', 'hexagonal']\n if topo not in topo_types:\n raise ValueError('Invalid topo. Expected one of: %s' % topo_types)\n self.topo = topo\n self.init_grid()\n self.dist_node()\n neighbor_types = ['gaussian', 'bubble', 'triangular']\n if neighbor not in neighbor_types:\n raise ValueError('Invalid neighbor. Expected one of: %s' %\n neighbor_types)\n self.neighbor_func = neighbor\n dist_type = ['frobenius', 'nuclear', 'mahalanobis', 'eros']\n if dist not in dist_type:\n raise ValueError('Invalid dist. Expected one of: %s' % dist_type)\n self.dist_func = dist\n decay_types = ['exponential', 'linear']\n if decay not in decay_types:\n raise ValueError('Invalid decay. Expected one of: %s' % decay_types\n )\n self.decay_func = decay\n self.epoch = None\n self.alpha = None\n self.sigma = None\n self.initial_learn = None\n self.initial_r = None\n self.bmu = None\n self.reconstruction_error = None\n self.dist_normal = None\n self.project = None\n\n def init_weight(self):\n self.net = np.random.rand(self.net_dim[0] * self.net_dim[1], self.\n nrow, self.ncol)\n\n def init_grid(self):\n \"\"\"\n [row_pts, col_pts]\n xdim x ydim rows (points)\n [1,1]\n [2,1]\n [1,2]\n [2,2]\n 2--------->\n 1--------->^\n \"\"\"\n self.pts = np.array(np.meshgrid(np.arange(self.net_dim[0]) + 1, np.\n arange(self.net_dim[1]) + 1)).reshape(2, np.prod(self.net_dim)).T\n if self.topo == 'hexagonal':\n self.pts[:, 0] = self.pts[:, 0] + 0.5 * (self.pts[:, 1] % 2)\n self.pts[:, 1] = np.sqrt(3) / 2 * self.pts[:, 1]\n\n def som(self, data, epoch=100, init_rate=None, init_radius=None,\n keep_net=False):\n \"\"\"\n :param data: 3d array. processed data set for Online SOM Detector\n :param epoch: epoch number\n :param init_rate: initial learning rate\n :param init_radius: initial radius of BMU neighborhood\n :param keep_net: keep every weight matrix path?\n \"\"\"\n num_obs = data.shape[0]\n obs_id = np.arange(num_obs)\n chose_i = np.empty(1)\n node_id = None\n hci = None\n self.epoch = epoch\n if keep_net:\n self.net_path = np.empty((self.epoch, self.net_dim[0] * self.\n net_dim[1], self.nrow, self.ncol))\n if init_rate is None:\n init_rate = 0.1\n self.alpha = init_rate\n self.initial_learn = init_rate\n if init_radius is None:\n init_radius = np.quantile(self.dci, q=2 / 3, axis=None)\n self.sigma = init_radius\n self.initial_r = init_radius\n rate_constant = epoch\n radius_constant = epoch / np.log(self.sigma)\n bmu_dist = self.dci[1, :]\n rcst_err = np.empty(epoch)\n for i in tqdm(range(epoch), desc='epoch'):\n chose_i = int(np.random.choice(obs_id, size=1))\n self.find_bmu(data, chose_i)\n rcst_err[i] = np.sum([np.square(self.dist_mat(data, j, self.bmu\n .astype(int))) for j in range(data.shape[0])])\n bmu_dist = self.dci[self.bmu.astype(int), :].flatten()\n self.sigma = self.decay(init_radius, i + 1, radius_constant)\n self.alpha = self.decay(init_rate, i + 1, rate_constant)\n neighbor_neuron = np.argwhere(bmu_dist <= self.sigma).flatten()\n for k in tqdm(range(neighbor_neuron.shape[0]), desc='updating'):\n node_id = neighbor_neuron[k]\n hci = self.neighborhood(bmu_dist[node_id], self.sigma)\n self.net[node_id, :, :] += self.alpha * hci * (data[chose_i,\n :, :] - self.net[node_id, :, :]).reshape((self.nrow,\n self.ncol))\n if keep_net:\n self.net_path[i, :, :, :] = self.net\n self.reconstruction_error = pd.DataFrame({'Epoch': np.arange(self.\n epoch) + 1, 'Reconstruction Error': rcst_err})\n <function token>\n <function token>\n\n def dist_node(self):\n \"\"\"\n :return: distance matrix of SOM neuron\n \"\"\"\n if self.topo == 'hexagonal':\n self.dci = distance.cdist(self.pts, self.pts, 'euclidean')\n elif self.topo == 'rectangular':\n self.dci = distance.cdist(self.pts, self.pts, 'chebyshev')\n\n def decay(self, init, time, time_constant):\n \"\"\"\n :param init: initial value\n :param time: t\n :param time_constant: lambda\n :return: decaying value of alpha or sigma\n \"\"\"\n if self.decay_func == 'exponential':\n return init * np.exp(-time / time_constant)\n elif self.decay_func == 'linear':\n return init * (1 - time / time_constant)\n\n def neighborhood(self, node_distance, radius):\n \"\"\"\n :param node_distance: Distance between SOM neurons\n :param radius: Radius of BMU neighborhood\n :return: Neighborhood function hci\n \"\"\"\n if self.neighbor_func == 'gaussian':\n return np.exp(-node_distance ** 2 / (2 * radius ** 2))\n elif self.neighbor_func == 'bubble':\n if node_distance <= radius:\n return 1.0\n else:\n return 0.0\n elif self.neighbor_func == 'triangular':\n if node_distance <= radius:\n return 1 - np.abs(node_distance) / radius\n else:\n return 0.0\n\n def dist_weight(self, data, index):\n \"\"\"\n :param data: Processed data set for SOM\n :param index: index for data\n :return: minimum distance between input matrix and weight matrices, its node id (BMU)\n \"\"\"\n dist_wt = np.asarray([self.dist_mat(data, index, j) for j in tqdm(\n range(self.net.shape[0]), desc='bmu')])\n return np.min(dist_wt), np.argmin(dist_wt)\n\n def plot_error(self):\n \"\"\"\n :return: line plot of reconstruction error versus epoch\n \"\"\"\n fig = px.line(self.reconstruction_error, x='Epoch', y=\n 'Reconstruction Error')\n fig.show()\n\n def plot_heatmap(self, data):\n \"\"\"\n :return: Heatmap for SOM\n \"\"\"\n if self.project is None:\n normal_distance = np.asarray([self.dist_weight(data, i) for i in\n tqdm(range(data.shape[0]), desc='mapping')])\n self.dist_normal = normal_distance[:, 0]\n self.project = normal_distance[:, 1]\n x = self.project % self.net_dim[0]\n y = self.project // self.net_dim[0]\n if self.topo == 'rectangular':\n fig = go.Figure(go.Histogram2d(x=x, y=y, colorscale='Viridis'))\n fig.show()\n elif self.topo == 'hexagonal':\n x = x + 0.5 * (y % 2)\n y = np.sqrt(3) / 2 * y\n plt.hexbin(x, y)\n plt.show()\n", "<import token>\n\n\nclass kohonen:\n <docstring token>\n\n def __init__(self, data, xdim, ydim, topo='rectangular', neighbor=\n 'gaussian', dist='frobenius', decay='exponential', seed=None):\n \"\"\"\n :param data: 3d array. processed data set for Online SOM Detector\n :param xdim: Number of x-grid\n :param ydim: Number of y-grid\n :param topo: Topology of output space - rectangular or hexagonal\n :param neighbor: Neighborhood function - gaussian, bubble, or triangular\n :param dist: Distance function - frobenius, nuclear, mahalanobis (just form of mahalanobis), or\n :param decay: decaying learning rate and radius - exponential or linear\n :param seed: Random seed\n \"\"\"\n np.random.seed(seed=seed)\n if xdim is None or ydim is None:\n xdim = int(np.sqrt(5 * np.sqrt(data.shape[0])))\n ydim = xdim\n self.net_dim = np.array([xdim, ydim])\n self.ncol = data.shape[2]\n self.nrow = data.shape[1]\n self.init_weight()\n topo_types = ['rectangular', 'hexagonal']\n if topo not in topo_types:\n raise ValueError('Invalid topo. Expected one of: %s' % topo_types)\n self.topo = topo\n self.init_grid()\n self.dist_node()\n neighbor_types = ['gaussian', 'bubble', 'triangular']\n if neighbor not in neighbor_types:\n raise ValueError('Invalid neighbor. Expected one of: %s' %\n neighbor_types)\n self.neighbor_func = neighbor\n dist_type = ['frobenius', 'nuclear', 'mahalanobis', 'eros']\n if dist not in dist_type:\n raise ValueError('Invalid dist. Expected one of: %s' % dist_type)\n self.dist_func = dist\n decay_types = ['exponential', 'linear']\n if decay not in decay_types:\n raise ValueError('Invalid decay. Expected one of: %s' % decay_types\n )\n self.decay_func = decay\n self.epoch = None\n self.alpha = None\n self.sigma = None\n self.initial_learn = None\n self.initial_r = None\n self.bmu = None\n self.reconstruction_error = None\n self.dist_normal = None\n self.project = None\n\n def init_weight(self):\n self.net = np.random.rand(self.net_dim[0] * self.net_dim[1], self.\n nrow, self.ncol)\n\n def init_grid(self):\n \"\"\"\n [row_pts, col_pts]\n xdim x ydim rows (points)\n [1,1]\n [2,1]\n [1,2]\n [2,2]\n 2--------->\n 1--------->^\n \"\"\"\n self.pts = np.array(np.meshgrid(np.arange(self.net_dim[0]) + 1, np.\n arange(self.net_dim[1]) + 1)).reshape(2, np.prod(self.net_dim)).T\n if self.topo == 'hexagonal':\n self.pts[:, 0] = self.pts[:, 0] + 0.5 * (self.pts[:, 1] % 2)\n self.pts[:, 1] = np.sqrt(3) / 2 * self.pts[:, 1]\n\n def som(self, data, epoch=100, init_rate=None, init_radius=None,\n keep_net=False):\n \"\"\"\n :param data: 3d array. processed data set for Online SOM Detector\n :param epoch: epoch number\n :param init_rate: initial learning rate\n :param init_radius: initial radius of BMU neighborhood\n :param keep_net: keep every weight matrix path?\n \"\"\"\n num_obs = data.shape[0]\n obs_id = np.arange(num_obs)\n chose_i = np.empty(1)\n node_id = None\n hci = None\n self.epoch = epoch\n if keep_net:\n self.net_path = np.empty((self.epoch, self.net_dim[0] * self.\n net_dim[1], self.nrow, self.ncol))\n if init_rate is None:\n init_rate = 0.1\n self.alpha = init_rate\n self.initial_learn = init_rate\n if init_radius is None:\n init_radius = np.quantile(self.dci, q=2 / 3, axis=None)\n self.sigma = init_radius\n self.initial_r = init_radius\n rate_constant = epoch\n radius_constant = epoch / np.log(self.sigma)\n bmu_dist = self.dci[1, :]\n rcst_err = np.empty(epoch)\n for i in tqdm(range(epoch), desc='epoch'):\n chose_i = int(np.random.choice(obs_id, size=1))\n self.find_bmu(data, chose_i)\n rcst_err[i] = np.sum([np.square(self.dist_mat(data, j, self.bmu\n .astype(int))) for j in range(data.shape[0])])\n bmu_dist = self.dci[self.bmu.astype(int), :].flatten()\n self.sigma = self.decay(init_radius, i + 1, radius_constant)\n self.alpha = self.decay(init_rate, i + 1, rate_constant)\n neighbor_neuron = np.argwhere(bmu_dist <= self.sigma).flatten()\n for k in tqdm(range(neighbor_neuron.shape[0]), desc='updating'):\n node_id = neighbor_neuron[k]\n hci = self.neighborhood(bmu_dist[node_id], self.sigma)\n self.net[node_id, :, :] += self.alpha * hci * (data[chose_i,\n :, :] - self.net[node_id, :, :]).reshape((self.nrow,\n self.ncol))\n if keep_net:\n self.net_path[i, :, :, :] = self.net\n self.reconstruction_error = pd.DataFrame({'Epoch': np.arange(self.\n epoch) + 1, 'Reconstruction Error': rcst_err})\n <function token>\n <function token>\n\n def dist_node(self):\n \"\"\"\n :return: distance matrix of SOM neuron\n \"\"\"\n if self.topo == 'hexagonal':\n self.dci = distance.cdist(self.pts, self.pts, 'euclidean')\n elif self.topo == 'rectangular':\n self.dci = distance.cdist(self.pts, self.pts, 'chebyshev')\n\n def decay(self, init, time, time_constant):\n \"\"\"\n :param init: initial value\n :param time: t\n :param time_constant: lambda\n :return: decaying value of alpha or sigma\n \"\"\"\n if self.decay_func == 'exponential':\n return init * np.exp(-time / time_constant)\n elif self.decay_func == 'linear':\n return init * (1 - time / time_constant)\n\n def neighborhood(self, node_distance, radius):\n \"\"\"\n :param node_distance: Distance between SOM neurons\n :param radius: Radius of BMU neighborhood\n :return: Neighborhood function hci\n \"\"\"\n if self.neighbor_func == 'gaussian':\n return np.exp(-node_distance ** 2 / (2 * radius ** 2))\n elif self.neighbor_func == 'bubble':\n if node_distance <= radius:\n return 1.0\n else:\n return 0.0\n elif self.neighbor_func == 'triangular':\n if node_distance <= radius:\n return 1 - np.abs(node_distance) / radius\n else:\n return 0.0\n\n def dist_weight(self, data, index):\n \"\"\"\n :param data: Processed data set for SOM\n :param index: index for data\n :return: minimum distance between input matrix and weight matrices, its node id (BMU)\n \"\"\"\n dist_wt = np.asarray([self.dist_mat(data, index, j) for j in tqdm(\n range(self.net.shape[0]), desc='bmu')])\n return np.min(dist_wt), np.argmin(dist_wt)\n\n def plot_error(self):\n \"\"\"\n :return: line plot of reconstruction error versus epoch\n \"\"\"\n fig = px.line(self.reconstruction_error, x='Epoch', y=\n 'Reconstruction Error')\n fig.show()\n <function token>\n", "<import token>\n\n\nclass kohonen:\n <docstring token>\n\n def __init__(self, data, xdim, ydim, topo='rectangular', neighbor=\n 'gaussian', dist='frobenius', decay='exponential', seed=None):\n \"\"\"\n :param data: 3d array. processed data set for Online SOM Detector\n :param xdim: Number of x-grid\n :param ydim: Number of y-grid\n :param topo: Topology of output space - rectangular or hexagonal\n :param neighbor: Neighborhood function - gaussian, bubble, or triangular\n :param dist: Distance function - frobenius, nuclear, mahalanobis (just form of mahalanobis), or\n :param decay: decaying learning rate and radius - exponential or linear\n :param seed: Random seed\n \"\"\"\n np.random.seed(seed=seed)\n if xdim is None or ydim is None:\n xdim = int(np.sqrt(5 * np.sqrt(data.shape[0])))\n ydim = xdim\n self.net_dim = np.array([xdim, ydim])\n self.ncol = data.shape[2]\n self.nrow = data.shape[1]\n self.init_weight()\n topo_types = ['rectangular', 'hexagonal']\n if topo not in topo_types:\n raise ValueError('Invalid topo. Expected one of: %s' % topo_types)\n self.topo = topo\n self.init_grid()\n self.dist_node()\n neighbor_types = ['gaussian', 'bubble', 'triangular']\n if neighbor not in neighbor_types:\n raise ValueError('Invalid neighbor. Expected one of: %s' %\n neighbor_types)\n self.neighbor_func = neighbor\n dist_type = ['frobenius', 'nuclear', 'mahalanobis', 'eros']\n if dist not in dist_type:\n raise ValueError('Invalid dist. Expected one of: %s' % dist_type)\n self.dist_func = dist\n decay_types = ['exponential', 'linear']\n if decay not in decay_types:\n raise ValueError('Invalid decay. Expected one of: %s' % decay_types\n )\n self.decay_func = decay\n self.epoch = None\n self.alpha = None\n self.sigma = None\n self.initial_learn = None\n self.initial_r = None\n self.bmu = None\n self.reconstruction_error = None\n self.dist_normal = None\n self.project = None\n <function token>\n\n def init_grid(self):\n \"\"\"\n [row_pts, col_pts]\n xdim x ydim rows (points)\n [1,1]\n [2,1]\n [1,2]\n [2,2]\n 2--------->\n 1--------->^\n \"\"\"\n self.pts = np.array(np.meshgrid(np.arange(self.net_dim[0]) + 1, np.\n arange(self.net_dim[1]) + 1)).reshape(2, np.prod(self.net_dim)).T\n if self.topo == 'hexagonal':\n self.pts[:, 0] = self.pts[:, 0] + 0.5 * (self.pts[:, 1] % 2)\n self.pts[:, 1] = np.sqrt(3) / 2 * self.pts[:, 1]\n\n def som(self, data, epoch=100, init_rate=None, init_radius=None,\n keep_net=False):\n \"\"\"\n :param data: 3d array. processed data set for Online SOM Detector\n :param epoch: epoch number\n :param init_rate: initial learning rate\n :param init_radius: initial radius of BMU neighborhood\n :param keep_net: keep every weight matrix path?\n \"\"\"\n num_obs = data.shape[0]\n obs_id = np.arange(num_obs)\n chose_i = np.empty(1)\n node_id = None\n hci = None\n self.epoch = epoch\n if keep_net:\n self.net_path = np.empty((self.epoch, self.net_dim[0] * self.\n net_dim[1], self.nrow, self.ncol))\n if init_rate is None:\n init_rate = 0.1\n self.alpha = init_rate\n self.initial_learn = init_rate\n if init_radius is None:\n init_radius = np.quantile(self.dci, q=2 / 3, axis=None)\n self.sigma = init_radius\n self.initial_r = init_radius\n rate_constant = epoch\n radius_constant = epoch / np.log(self.sigma)\n bmu_dist = self.dci[1, :]\n rcst_err = np.empty(epoch)\n for i in tqdm(range(epoch), desc='epoch'):\n chose_i = int(np.random.choice(obs_id, size=1))\n self.find_bmu(data, chose_i)\n rcst_err[i] = np.sum([np.square(self.dist_mat(data, j, self.bmu\n .astype(int))) for j in range(data.shape[0])])\n bmu_dist = self.dci[self.bmu.astype(int), :].flatten()\n self.sigma = self.decay(init_radius, i + 1, radius_constant)\n self.alpha = self.decay(init_rate, i + 1, rate_constant)\n neighbor_neuron = np.argwhere(bmu_dist <= self.sigma).flatten()\n for k in tqdm(range(neighbor_neuron.shape[0]), desc='updating'):\n node_id = neighbor_neuron[k]\n hci = self.neighborhood(bmu_dist[node_id], self.sigma)\n self.net[node_id, :, :] += self.alpha * hci * (data[chose_i,\n :, :] - self.net[node_id, :, :]).reshape((self.nrow,\n self.ncol))\n if keep_net:\n self.net_path[i, :, :, :] = self.net\n self.reconstruction_error = pd.DataFrame({'Epoch': np.arange(self.\n epoch) + 1, 'Reconstruction Error': rcst_err})\n <function token>\n <function token>\n\n def dist_node(self):\n \"\"\"\n :return: distance matrix of SOM neuron\n \"\"\"\n if self.topo == 'hexagonal':\n self.dci = distance.cdist(self.pts, self.pts, 'euclidean')\n elif self.topo == 'rectangular':\n self.dci = distance.cdist(self.pts, self.pts, 'chebyshev')\n\n def decay(self, init, time, time_constant):\n \"\"\"\n :param init: initial value\n :param time: t\n :param time_constant: lambda\n :return: decaying value of alpha or sigma\n \"\"\"\n if self.decay_func == 'exponential':\n return init * np.exp(-time / time_constant)\n elif self.decay_func == 'linear':\n return init * (1 - time / time_constant)\n\n def neighborhood(self, node_distance, radius):\n \"\"\"\n :param node_distance: Distance between SOM neurons\n :param radius: Radius of BMU neighborhood\n :return: Neighborhood function hci\n \"\"\"\n if self.neighbor_func == 'gaussian':\n return np.exp(-node_distance ** 2 / (2 * radius ** 2))\n elif self.neighbor_func == 'bubble':\n if node_distance <= radius:\n return 1.0\n else:\n return 0.0\n elif self.neighbor_func == 'triangular':\n if node_distance <= radius:\n return 1 - np.abs(node_distance) / radius\n else:\n return 0.0\n\n def dist_weight(self, data, index):\n \"\"\"\n :param data: Processed data set for SOM\n :param index: index for data\n :return: minimum distance between input matrix and weight matrices, its node id (BMU)\n \"\"\"\n dist_wt = np.asarray([self.dist_mat(data, index, j) for j in tqdm(\n range(self.net.shape[0]), desc='bmu')])\n return np.min(dist_wt), np.argmin(dist_wt)\n\n def plot_error(self):\n \"\"\"\n :return: line plot of reconstruction error versus epoch\n \"\"\"\n fig = px.line(self.reconstruction_error, x='Epoch', y=\n 'Reconstruction Error')\n fig.show()\n <function token>\n", "<import token>\n\n\nclass kohonen:\n <docstring token>\n\n def __init__(self, data, xdim, ydim, topo='rectangular', neighbor=\n 'gaussian', dist='frobenius', decay='exponential', seed=None):\n \"\"\"\n :param data: 3d array. processed data set for Online SOM Detector\n :param xdim: Number of x-grid\n :param ydim: Number of y-grid\n :param topo: Topology of output space - rectangular or hexagonal\n :param neighbor: Neighborhood function - gaussian, bubble, or triangular\n :param dist: Distance function - frobenius, nuclear, mahalanobis (just form of mahalanobis), or\n :param decay: decaying learning rate and radius - exponential or linear\n :param seed: Random seed\n \"\"\"\n np.random.seed(seed=seed)\n if xdim is None or ydim is None:\n xdim = int(np.sqrt(5 * np.sqrt(data.shape[0])))\n ydim = xdim\n self.net_dim = np.array([xdim, ydim])\n self.ncol = data.shape[2]\n self.nrow = data.shape[1]\n self.init_weight()\n topo_types = ['rectangular', 'hexagonal']\n if topo not in topo_types:\n raise ValueError('Invalid topo. Expected one of: %s' % topo_types)\n self.topo = topo\n self.init_grid()\n self.dist_node()\n neighbor_types = ['gaussian', 'bubble', 'triangular']\n if neighbor not in neighbor_types:\n raise ValueError('Invalid neighbor. Expected one of: %s' %\n neighbor_types)\n self.neighbor_func = neighbor\n dist_type = ['frobenius', 'nuclear', 'mahalanobis', 'eros']\n if dist not in dist_type:\n raise ValueError('Invalid dist. Expected one of: %s' % dist_type)\n self.dist_func = dist\n decay_types = ['exponential', 'linear']\n if decay not in decay_types:\n raise ValueError('Invalid decay. Expected one of: %s' % decay_types\n )\n self.decay_func = decay\n self.epoch = None\n self.alpha = None\n self.sigma = None\n self.initial_learn = None\n self.initial_r = None\n self.bmu = None\n self.reconstruction_error = None\n self.dist_normal = None\n self.project = None\n <function token>\n\n def init_grid(self):\n \"\"\"\n [row_pts, col_pts]\n xdim x ydim rows (points)\n [1,1]\n [2,1]\n [1,2]\n [2,2]\n 2--------->\n 1--------->^\n \"\"\"\n self.pts = np.array(np.meshgrid(np.arange(self.net_dim[0]) + 1, np.\n arange(self.net_dim[1]) + 1)).reshape(2, np.prod(self.net_dim)).T\n if self.topo == 'hexagonal':\n self.pts[:, 0] = self.pts[:, 0] + 0.5 * (self.pts[:, 1] % 2)\n self.pts[:, 1] = np.sqrt(3) / 2 * self.pts[:, 1]\n\n def som(self, data, epoch=100, init_rate=None, init_radius=None,\n keep_net=False):\n \"\"\"\n :param data: 3d array. processed data set for Online SOM Detector\n :param epoch: epoch number\n :param init_rate: initial learning rate\n :param init_radius: initial radius of BMU neighborhood\n :param keep_net: keep every weight matrix path?\n \"\"\"\n num_obs = data.shape[0]\n obs_id = np.arange(num_obs)\n chose_i = np.empty(1)\n node_id = None\n hci = None\n self.epoch = epoch\n if keep_net:\n self.net_path = np.empty((self.epoch, self.net_dim[0] * self.\n net_dim[1], self.nrow, self.ncol))\n if init_rate is None:\n init_rate = 0.1\n self.alpha = init_rate\n self.initial_learn = init_rate\n if init_radius is None:\n init_radius = np.quantile(self.dci, q=2 / 3, axis=None)\n self.sigma = init_radius\n self.initial_r = init_radius\n rate_constant = epoch\n radius_constant = epoch / np.log(self.sigma)\n bmu_dist = self.dci[1, :]\n rcst_err = np.empty(epoch)\n for i in tqdm(range(epoch), desc='epoch'):\n chose_i = int(np.random.choice(obs_id, size=1))\n self.find_bmu(data, chose_i)\n rcst_err[i] = np.sum([np.square(self.dist_mat(data, j, self.bmu\n .astype(int))) for j in range(data.shape[0])])\n bmu_dist = self.dci[self.bmu.astype(int), :].flatten()\n self.sigma = self.decay(init_radius, i + 1, radius_constant)\n self.alpha = self.decay(init_rate, i + 1, rate_constant)\n neighbor_neuron = np.argwhere(bmu_dist <= self.sigma).flatten()\n for k in tqdm(range(neighbor_neuron.shape[0]), desc='updating'):\n node_id = neighbor_neuron[k]\n hci = self.neighborhood(bmu_dist[node_id], self.sigma)\n self.net[node_id, :, :] += self.alpha * hci * (data[chose_i,\n :, :] - self.net[node_id, :, :]).reshape((self.nrow,\n self.ncol))\n if keep_net:\n self.net_path[i, :, :, :] = self.net\n self.reconstruction_error = pd.DataFrame({'Epoch': np.arange(self.\n epoch) + 1, 'Reconstruction Error': rcst_err})\n <function token>\n <function token>\n <function token>\n\n def decay(self, init, time, time_constant):\n \"\"\"\n :param init: initial value\n :param time: t\n :param time_constant: lambda\n :return: decaying value of alpha or sigma\n \"\"\"\n if self.decay_func == 'exponential':\n return init * np.exp(-time / time_constant)\n elif self.decay_func == 'linear':\n return init * (1 - time / time_constant)\n\n def neighborhood(self, node_distance, radius):\n \"\"\"\n :param node_distance: Distance between SOM neurons\n :param radius: Radius of BMU neighborhood\n :return: Neighborhood function hci\n \"\"\"\n if self.neighbor_func == 'gaussian':\n return np.exp(-node_distance ** 2 / (2 * radius ** 2))\n elif self.neighbor_func == 'bubble':\n if node_distance <= radius:\n return 1.0\n else:\n return 0.0\n elif self.neighbor_func == 'triangular':\n if node_distance <= radius:\n return 1 - np.abs(node_distance) / radius\n else:\n return 0.0\n\n def dist_weight(self, data, index):\n \"\"\"\n :param data: Processed data set for SOM\n :param index: index for data\n :return: minimum distance between input matrix and weight matrices, its node id (BMU)\n \"\"\"\n dist_wt = np.asarray([self.dist_mat(data, index, j) for j in tqdm(\n range(self.net.shape[0]), desc='bmu')])\n return np.min(dist_wt), np.argmin(dist_wt)\n\n def plot_error(self):\n \"\"\"\n :return: line plot of reconstruction error versus epoch\n \"\"\"\n fig = px.line(self.reconstruction_error, x='Epoch', y=\n 'Reconstruction Error')\n fig.show()\n <function token>\n", "<import token>\n\n\nclass kohonen:\n <docstring token>\n <function token>\n <function token>\n\n def init_grid(self):\n \"\"\"\n [row_pts, col_pts]\n xdim x ydim rows (points)\n [1,1]\n [2,1]\n [1,2]\n [2,2]\n 2--------->\n 1--------->^\n \"\"\"\n self.pts = np.array(np.meshgrid(np.arange(self.net_dim[0]) + 1, np.\n arange(self.net_dim[1]) + 1)).reshape(2, np.prod(self.net_dim)).T\n if self.topo == 'hexagonal':\n self.pts[:, 0] = self.pts[:, 0] + 0.5 * (self.pts[:, 1] % 2)\n self.pts[:, 1] = np.sqrt(3) / 2 * self.pts[:, 1]\n\n def som(self, data, epoch=100, init_rate=None, init_radius=None,\n keep_net=False):\n \"\"\"\n :param data: 3d array. processed data set for Online SOM Detector\n :param epoch: epoch number\n :param init_rate: initial learning rate\n :param init_radius: initial radius of BMU neighborhood\n :param keep_net: keep every weight matrix path?\n \"\"\"\n num_obs = data.shape[0]\n obs_id = np.arange(num_obs)\n chose_i = np.empty(1)\n node_id = None\n hci = None\n self.epoch = epoch\n if keep_net:\n self.net_path = np.empty((self.epoch, self.net_dim[0] * self.\n net_dim[1], self.nrow, self.ncol))\n if init_rate is None:\n init_rate = 0.1\n self.alpha = init_rate\n self.initial_learn = init_rate\n if init_radius is None:\n init_radius = np.quantile(self.dci, q=2 / 3, axis=None)\n self.sigma = init_radius\n self.initial_r = init_radius\n rate_constant = epoch\n radius_constant = epoch / np.log(self.sigma)\n bmu_dist = self.dci[1, :]\n rcst_err = np.empty(epoch)\n for i in tqdm(range(epoch), desc='epoch'):\n chose_i = int(np.random.choice(obs_id, size=1))\n self.find_bmu(data, chose_i)\n rcst_err[i] = np.sum([np.square(self.dist_mat(data, j, self.bmu\n .astype(int))) for j in range(data.shape[0])])\n bmu_dist = self.dci[self.bmu.astype(int), :].flatten()\n self.sigma = self.decay(init_radius, i + 1, radius_constant)\n self.alpha = self.decay(init_rate, i + 1, rate_constant)\n neighbor_neuron = np.argwhere(bmu_dist <= self.sigma).flatten()\n for k in tqdm(range(neighbor_neuron.shape[0]), desc='updating'):\n node_id = neighbor_neuron[k]\n hci = self.neighborhood(bmu_dist[node_id], self.sigma)\n self.net[node_id, :, :] += self.alpha * hci * (data[chose_i,\n :, :] - self.net[node_id, :, :]).reshape((self.nrow,\n self.ncol))\n if keep_net:\n self.net_path[i, :, :, :] = self.net\n self.reconstruction_error = pd.DataFrame({'Epoch': np.arange(self.\n epoch) + 1, 'Reconstruction Error': rcst_err})\n <function token>\n <function token>\n <function token>\n\n def decay(self, init, time, time_constant):\n \"\"\"\n :param init: initial value\n :param time: t\n :param time_constant: lambda\n :return: decaying value of alpha or sigma\n \"\"\"\n if self.decay_func == 'exponential':\n return init * np.exp(-time / time_constant)\n elif self.decay_func == 'linear':\n return init * (1 - time / time_constant)\n\n def neighborhood(self, node_distance, radius):\n \"\"\"\n :param node_distance: Distance between SOM neurons\n :param radius: Radius of BMU neighborhood\n :return: Neighborhood function hci\n \"\"\"\n if self.neighbor_func == 'gaussian':\n return np.exp(-node_distance ** 2 / (2 * radius ** 2))\n elif self.neighbor_func == 'bubble':\n if node_distance <= radius:\n return 1.0\n else:\n return 0.0\n elif self.neighbor_func == 'triangular':\n if node_distance <= radius:\n return 1 - np.abs(node_distance) / radius\n else:\n return 0.0\n\n def dist_weight(self, data, index):\n \"\"\"\n :param data: Processed data set for SOM\n :param index: index for data\n :return: minimum distance between input matrix and weight matrices, its node id (BMU)\n \"\"\"\n dist_wt = np.asarray([self.dist_mat(data, index, j) for j in tqdm(\n range(self.net.shape[0]), desc='bmu')])\n return np.min(dist_wt), np.argmin(dist_wt)\n\n def plot_error(self):\n \"\"\"\n :return: line plot of reconstruction error versus epoch\n \"\"\"\n fig = px.line(self.reconstruction_error, x='Epoch', y=\n 'Reconstruction Error')\n fig.show()\n <function token>\n", "<import token>\n\n\nclass kohonen:\n <docstring token>\n <function token>\n <function token>\n\n def init_grid(self):\n \"\"\"\n [row_pts, col_pts]\n xdim x ydim rows (points)\n [1,1]\n [2,1]\n [1,2]\n [2,2]\n 2--------->\n 1--------->^\n \"\"\"\n self.pts = np.array(np.meshgrid(np.arange(self.net_dim[0]) + 1, np.\n arange(self.net_dim[1]) + 1)).reshape(2, np.prod(self.net_dim)).T\n if self.topo == 'hexagonal':\n self.pts[:, 0] = self.pts[:, 0] + 0.5 * (self.pts[:, 1] % 2)\n self.pts[:, 1] = np.sqrt(3) / 2 * self.pts[:, 1]\n\n def som(self, data, epoch=100, init_rate=None, init_radius=None,\n keep_net=False):\n \"\"\"\n :param data: 3d array. processed data set for Online SOM Detector\n :param epoch: epoch number\n :param init_rate: initial learning rate\n :param init_radius: initial radius of BMU neighborhood\n :param keep_net: keep every weight matrix path?\n \"\"\"\n num_obs = data.shape[0]\n obs_id = np.arange(num_obs)\n chose_i = np.empty(1)\n node_id = None\n hci = None\n self.epoch = epoch\n if keep_net:\n self.net_path = np.empty((self.epoch, self.net_dim[0] * self.\n net_dim[1], self.nrow, self.ncol))\n if init_rate is None:\n init_rate = 0.1\n self.alpha = init_rate\n self.initial_learn = init_rate\n if init_radius is None:\n init_radius = np.quantile(self.dci, q=2 / 3, axis=None)\n self.sigma = init_radius\n self.initial_r = init_radius\n rate_constant = epoch\n radius_constant = epoch / np.log(self.sigma)\n bmu_dist = self.dci[1, :]\n rcst_err = np.empty(epoch)\n for i in tqdm(range(epoch), desc='epoch'):\n chose_i = int(np.random.choice(obs_id, size=1))\n self.find_bmu(data, chose_i)\n rcst_err[i] = np.sum([np.square(self.dist_mat(data, j, self.bmu\n .astype(int))) for j in range(data.shape[0])])\n bmu_dist = self.dci[self.bmu.astype(int), :].flatten()\n self.sigma = self.decay(init_radius, i + 1, radius_constant)\n self.alpha = self.decay(init_rate, i + 1, rate_constant)\n neighbor_neuron = np.argwhere(bmu_dist <= self.sigma).flatten()\n for k in tqdm(range(neighbor_neuron.shape[0]), desc='updating'):\n node_id = neighbor_neuron[k]\n hci = self.neighborhood(bmu_dist[node_id], self.sigma)\n self.net[node_id, :, :] += self.alpha * hci * (data[chose_i,\n :, :] - self.net[node_id, :, :]).reshape((self.nrow,\n self.ncol))\n if keep_net:\n self.net_path[i, :, :, :] = self.net\n self.reconstruction_error = pd.DataFrame({'Epoch': np.arange(self.\n epoch) + 1, 'Reconstruction Error': rcst_err})\n <function token>\n <function token>\n <function token>\n\n def decay(self, init, time, time_constant):\n \"\"\"\n :param init: initial value\n :param time: t\n :param time_constant: lambda\n :return: decaying value of alpha or sigma\n \"\"\"\n if self.decay_func == 'exponential':\n return init * np.exp(-time / time_constant)\n elif self.decay_func == 'linear':\n return init * (1 - time / time_constant)\n\n def neighborhood(self, node_distance, radius):\n \"\"\"\n :param node_distance: Distance between SOM neurons\n :param radius: Radius of BMU neighborhood\n :return: Neighborhood function hci\n \"\"\"\n if self.neighbor_func == 'gaussian':\n return np.exp(-node_distance ** 2 / (2 * radius ** 2))\n elif self.neighbor_func == 'bubble':\n if node_distance <= radius:\n return 1.0\n else:\n return 0.0\n elif self.neighbor_func == 'triangular':\n if node_distance <= radius:\n return 1 - np.abs(node_distance) / radius\n else:\n return 0.0\n\n def dist_weight(self, data, index):\n \"\"\"\n :param data: Processed data set for SOM\n :param index: index for data\n :return: minimum distance between input matrix and weight matrices, its node id (BMU)\n \"\"\"\n dist_wt = np.asarray([self.dist_mat(data, index, j) for j in tqdm(\n range(self.net.shape[0]), desc='bmu')])\n return np.min(dist_wt), np.argmin(dist_wt)\n <function token>\n <function token>\n", "<import token>\n\n\nclass kohonen:\n <docstring token>\n <function token>\n <function token>\n <function token>\n\n def som(self, data, epoch=100, init_rate=None, init_radius=None,\n keep_net=False):\n \"\"\"\n :param data: 3d array. processed data set for Online SOM Detector\n :param epoch: epoch number\n :param init_rate: initial learning rate\n :param init_radius: initial radius of BMU neighborhood\n :param keep_net: keep every weight matrix path?\n \"\"\"\n num_obs = data.shape[0]\n obs_id = np.arange(num_obs)\n chose_i = np.empty(1)\n node_id = None\n hci = None\n self.epoch = epoch\n if keep_net:\n self.net_path = np.empty((self.epoch, self.net_dim[0] * self.\n net_dim[1], self.nrow, self.ncol))\n if init_rate is None:\n init_rate = 0.1\n self.alpha = init_rate\n self.initial_learn = init_rate\n if init_radius is None:\n init_radius = np.quantile(self.dci, q=2 / 3, axis=None)\n self.sigma = init_radius\n self.initial_r = init_radius\n rate_constant = epoch\n radius_constant = epoch / np.log(self.sigma)\n bmu_dist = self.dci[1, :]\n rcst_err = np.empty(epoch)\n for i in tqdm(range(epoch), desc='epoch'):\n chose_i = int(np.random.choice(obs_id, size=1))\n self.find_bmu(data, chose_i)\n rcst_err[i] = np.sum([np.square(self.dist_mat(data, j, self.bmu\n .astype(int))) for j in range(data.shape[0])])\n bmu_dist = self.dci[self.bmu.astype(int), :].flatten()\n self.sigma = self.decay(init_radius, i + 1, radius_constant)\n self.alpha = self.decay(init_rate, i + 1, rate_constant)\n neighbor_neuron = np.argwhere(bmu_dist <= self.sigma).flatten()\n for k in tqdm(range(neighbor_neuron.shape[0]), desc='updating'):\n node_id = neighbor_neuron[k]\n hci = self.neighborhood(bmu_dist[node_id], self.sigma)\n self.net[node_id, :, :] += self.alpha * hci * (data[chose_i,\n :, :] - self.net[node_id, :, :]).reshape((self.nrow,\n self.ncol))\n if keep_net:\n self.net_path[i, :, :, :] = self.net\n self.reconstruction_error = pd.DataFrame({'Epoch': np.arange(self.\n epoch) + 1, 'Reconstruction Error': rcst_err})\n <function token>\n <function token>\n <function token>\n\n def decay(self, init, time, time_constant):\n \"\"\"\n :param init: initial value\n :param time: t\n :param time_constant: lambda\n :return: decaying value of alpha or sigma\n \"\"\"\n if self.decay_func == 'exponential':\n return init * np.exp(-time / time_constant)\n elif self.decay_func == 'linear':\n return init * (1 - time / time_constant)\n\n def neighborhood(self, node_distance, radius):\n \"\"\"\n :param node_distance: Distance between SOM neurons\n :param radius: Radius of BMU neighborhood\n :return: Neighborhood function hci\n \"\"\"\n if self.neighbor_func == 'gaussian':\n return np.exp(-node_distance ** 2 / (2 * radius ** 2))\n elif self.neighbor_func == 'bubble':\n if node_distance <= radius:\n return 1.0\n else:\n return 0.0\n elif self.neighbor_func == 'triangular':\n if node_distance <= radius:\n return 1 - np.abs(node_distance) / radius\n else:\n return 0.0\n\n def dist_weight(self, data, index):\n \"\"\"\n :param data: Processed data set for SOM\n :param index: index for data\n :return: minimum distance between input matrix and weight matrices, its node id (BMU)\n \"\"\"\n dist_wt = np.asarray([self.dist_mat(data, index, j) for j in tqdm(\n range(self.net.shape[0]), desc='bmu')])\n return np.min(dist_wt), np.argmin(dist_wt)\n <function token>\n <function token>\n", "<import token>\n\n\nclass kohonen:\n <docstring token>\n <function token>\n <function token>\n <function token>\n\n def som(self, data, epoch=100, init_rate=None, init_radius=None,\n keep_net=False):\n \"\"\"\n :param data: 3d array. processed data set for Online SOM Detector\n :param epoch: epoch number\n :param init_rate: initial learning rate\n :param init_radius: initial radius of BMU neighborhood\n :param keep_net: keep every weight matrix path?\n \"\"\"\n num_obs = data.shape[0]\n obs_id = np.arange(num_obs)\n chose_i = np.empty(1)\n node_id = None\n hci = None\n self.epoch = epoch\n if keep_net:\n self.net_path = np.empty((self.epoch, self.net_dim[0] * self.\n net_dim[1], self.nrow, self.ncol))\n if init_rate is None:\n init_rate = 0.1\n self.alpha = init_rate\n self.initial_learn = init_rate\n if init_radius is None:\n init_radius = np.quantile(self.dci, q=2 / 3, axis=None)\n self.sigma = init_radius\n self.initial_r = init_radius\n rate_constant = epoch\n radius_constant = epoch / np.log(self.sigma)\n bmu_dist = self.dci[1, :]\n rcst_err = np.empty(epoch)\n for i in tqdm(range(epoch), desc='epoch'):\n chose_i = int(np.random.choice(obs_id, size=1))\n self.find_bmu(data, chose_i)\n rcst_err[i] = np.sum([np.square(self.dist_mat(data, j, self.bmu\n .astype(int))) for j in range(data.shape[0])])\n bmu_dist = self.dci[self.bmu.astype(int), :].flatten()\n self.sigma = self.decay(init_radius, i + 1, radius_constant)\n self.alpha = self.decay(init_rate, i + 1, rate_constant)\n neighbor_neuron = np.argwhere(bmu_dist <= self.sigma).flatten()\n for k in tqdm(range(neighbor_neuron.shape[0]), desc='updating'):\n node_id = neighbor_neuron[k]\n hci = self.neighborhood(bmu_dist[node_id], self.sigma)\n self.net[node_id, :, :] += self.alpha * hci * (data[chose_i,\n :, :] - self.net[node_id, :, :]).reshape((self.nrow,\n self.ncol))\n if keep_net:\n self.net_path[i, :, :, :] = self.net\n self.reconstruction_error = pd.DataFrame({'Epoch': np.arange(self.\n epoch) + 1, 'Reconstruction Error': rcst_err})\n <function token>\n <function token>\n <function token>\n <function token>\n\n def neighborhood(self, node_distance, radius):\n \"\"\"\n :param node_distance: Distance between SOM neurons\n :param radius: Radius of BMU neighborhood\n :return: Neighborhood function hci\n \"\"\"\n if self.neighbor_func == 'gaussian':\n return np.exp(-node_distance ** 2 / (2 * radius ** 2))\n elif self.neighbor_func == 'bubble':\n if node_distance <= radius:\n return 1.0\n else:\n return 0.0\n elif self.neighbor_func == 'triangular':\n if node_distance <= radius:\n return 1 - np.abs(node_distance) / radius\n else:\n return 0.0\n\n def dist_weight(self, data, index):\n \"\"\"\n :param data: Processed data set for SOM\n :param index: index for data\n :return: minimum distance between input matrix and weight matrices, its node id (BMU)\n \"\"\"\n dist_wt = np.asarray([self.dist_mat(data, index, j) for j in tqdm(\n range(self.net.shape[0]), desc='bmu')])\n return np.min(dist_wt), np.argmin(dist_wt)\n <function token>\n <function token>\n", "<import token>\n\n\nclass kohonen:\n <docstring token>\n <function token>\n <function token>\n <function token>\n\n def som(self, data, epoch=100, init_rate=None, init_radius=None,\n keep_net=False):\n \"\"\"\n :param data: 3d array. processed data set for Online SOM Detector\n :param epoch: epoch number\n :param init_rate: initial learning rate\n :param init_radius: initial radius of BMU neighborhood\n :param keep_net: keep every weight matrix path?\n \"\"\"\n num_obs = data.shape[0]\n obs_id = np.arange(num_obs)\n chose_i = np.empty(1)\n node_id = None\n hci = None\n self.epoch = epoch\n if keep_net:\n self.net_path = np.empty((self.epoch, self.net_dim[0] * self.\n net_dim[1], self.nrow, self.ncol))\n if init_rate is None:\n init_rate = 0.1\n self.alpha = init_rate\n self.initial_learn = init_rate\n if init_radius is None:\n init_radius = np.quantile(self.dci, q=2 / 3, axis=None)\n self.sigma = init_radius\n self.initial_r = init_radius\n rate_constant = epoch\n radius_constant = epoch / np.log(self.sigma)\n bmu_dist = self.dci[1, :]\n rcst_err = np.empty(epoch)\n for i in tqdm(range(epoch), desc='epoch'):\n chose_i = int(np.random.choice(obs_id, size=1))\n self.find_bmu(data, chose_i)\n rcst_err[i] = np.sum([np.square(self.dist_mat(data, j, self.bmu\n .astype(int))) for j in range(data.shape[0])])\n bmu_dist = self.dci[self.bmu.astype(int), :].flatten()\n self.sigma = self.decay(init_radius, i + 1, radius_constant)\n self.alpha = self.decay(init_rate, i + 1, rate_constant)\n neighbor_neuron = np.argwhere(bmu_dist <= self.sigma).flatten()\n for k in tqdm(range(neighbor_neuron.shape[0]), desc='updating'):\n node_id = neighbor_neuron[k]\n hci = self.neighborhood(bmu_dist[node_id], self.sigma)\n self.net[node_id, :, :] += self.alpha * hci * (data[chose_i,\n :, :] - self.net[node_id, :, :]).reshape((self.nrow,\n self.ncol))\n if keep_net:\n self.net_path[i, :, :, :] = self.net\n self.reconstruction_error = pd.DataFrame({'Epoch': np.arange(self.\n epoch) + 1, 'Reconstruction Error': rcst_err})\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def dist_weight(self, data, index):\n \"\"\"\n :param data: Processed data set for SOM\n :param index: index for data\n :return: minimum distance between input matrix and weight matrices, its node id (BMU)\n \"\"\"\n dist_wt = np.asarray([self.dist_mat(data, index, j) for j in tqdm(\n range(self.net.shape[0]), desc='bmu')])\n return np.min(dist_wt), np.argmin(dist_wt)\n <function token>\n <function token>\n", "<import token>\n\n\nclass kohonen:\n <docstring token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def dist_weight(self, data, index):\n \"\"\"\n :param data: Processed data set for SOM\n :param index: index for data\n :return: minimum distance between input matrix and weight matrices, its node id (BMU)\n \"\"\"\n dist_wt = np.asarray([self.dist_mat(data, index, j) for j in tqdm(\n range(self.net.shape[0]), desc='bmu')])\n return np.min(dist_wt), np.argmin(dist_wt)\n <function token>\n <function token>\n", "<import token>\n\n\nclass kohonen:\n <docstring token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n<class token>\n" ]
false
99,058
1af7c0b42ca65a0926cf4f903393f4987f9346de
class Solution: def allPathsSourceTarget(self, graph): """ :type graph: List[List[int]] :rtype: List[List[int]] """ result_list = [] _ = self.dfs(graph, result_list, 0, [0]) return result_list def dfs(self, graph, result_list, pos, path): if not graph[pos]: result_list.append(path) return for v in graph[pos]: _ = self.dfs(graph, result_list, v, path + [v])
[ "class Solution:\n def allPathsSourceTarget(self, graph):\n \"\"\"\n :type graph: List[List[int]]\n :rtype: List[List[int]]\n \"\"\"\n result_list = []\n \n _ = self.dfs(graph, result_list, 0, [0])\n \n return result_list\n \n def dfs(self, graph, result_list, pos, path):\n if not graph[pos]:\n result_list.append(path)\n return\n \n for v in graph[pos]:\n _ = self.dfs(graph, result_list, v, path + [v])", "class Solution:\n\n def allPathsSourceTarget(self, graph):\n \"\"\"\n :type graph: List[List[int]]\n :rtype: List[List[int]]\n \"\"\"\n result_list = []\n _ = self.dfs(graph, result_list, 0, [0])\n return result_list\n\n def dfs(self, graph, result_list, pos, path):\n if not graph[pos]:\n result_list.append(path)\n return\n for v in graph[pos]:\n _ = self.dfs(graph, result_list, v, path + [v])\n", "class Solution:\n <function token>\n\n def dfs(self, graph, result_list, pos, path):\n if not graph[pos]:\n result_list.append(path)\n return\n for v in graph[pos]:\n _ = self.dfs(graph, result_list, v, path + [v])\n", "class Solution:\n <function token>\n <function token>\n", "<class token>\n" ]
false
99,059
c0027e8daa689c6898e83f0df320bc92b3d0a030
# coding:utf8 from PIL import Image from PIL import ImageEnhance from PIL import ImageFilter import math import os import time from xml.dom.minidom import parse import xml.dom.minidom DIR_ROOT = "assets\\atlas_ui" # 使用minidom解析器打开 XML 文档 DOMTree = xml.dom.minidom.parse(DIR_ROOT + "\\package.xml") movies = DOMTree.getElementsByTagName("image") isSet = False for data in movies: dataName = data.getAttribute("name") if dataName.find("@") != -1 and dataName.find("_") != -1 and not data.getAttribute("scale"): isSet = True print(dataName) arr = dataName.split("@")[1].split(".")[0].split("_") img = Image.open(DIR_ROOT + data.getAttribute("path") + dataName) imgW = img.size[0] imgH = img.size[1] outData = [arr[0], arr[1]] outData.append(str(imgW - int(arr[0]) - int(arr[2]))) outData.append(str(imgH - int(arr[1]) - int(arr[3]))) scale9grid = ",".join(outData) print("scale9grid => " + scale9grid) data.setAttribute('scale', "9grid") #设置attrib data.setAttribute('scale9grid', scale9grid) #设置attrib if isSet: with open(DIR_ROOT + "\\package.xml", "w") as f: DOMTree.writexml(f,indent='',addindent='',newl='',encoding='UTF-8')
[ "# coding:utf8\n\nfrom PIL import Image\nfrom PIL import ImageEnhance\nfrom PIL import ImageFilter\nimport math\nimport os\nimport time\n\nfrom xml.dom.minidom import parse\nimport xml.dom.minidom\n\nDIR_ROOT = \"assets\\\\atlas_ui\"\n# 使用minidom解析器打开 XML 文档\nDOMTree = xml.dom.minidom.parse(DIR_ROOT + \"\\\\package.xml\")\nmovies = DOMTree.getElementsByTagName(\"image\")\nisSet = False\nfor data in movies:\n dataName = data.getAttribute(\"name\")\n if dataName.find(\"@\") != -1 and dataName.find(\"_\") != -1 and not data.getAttribute(\"scale\"):\n isSet = True\n print(dataName)\n arr = dataName.split(\"@\")[1].split(\".\")[0].split(\"_\")\n img = Image.open(DIR_ROOT + data.getAttribute(\"path\") + dataName)\n imgW = img.size[0]\n imgH = img.size[1]\n outData = [arr[0], arr[1]]\n outData.append(str(imgW - int(arr[0]) - int(arr[2])))\n outData.append(str(imgH - int(arr[1]) - int(arr[3])))\n scale9grid = \",\".join(outData)\n print(\"scale9grid => \" + scale9grid)\n data.setAttribute('scale', \"9grid\") #设置attrib\n data.setAttribute('scale9grid', scale9grid) #设置attrib\nif isSet:\n with open(DIR_ROOT + \"\\\\package.xml\", \"w\") as f:\n DOMTree.writexml(f,indent='',addindent='',newl='',encoding='UTF-8')", "from PIL import Image\nfrom PIL import ImageEnhance\nfrom PIL import ImageFilter\nimport math\nimport os\nimport time\nfrom xml.dom.minidom import parse\nimport xml.dom.minidom\nDIR_ROOT = 'assets\\\\atlas_ui'\nDOMTree = xml.dom.minidom.parse(DIR_ROOT + '\\\\package.xml')\nmovies = DOMTree.getElementsByTagName('image')\nisSet = False\nfor data in movies:\n dataName = data.getAttribute('name')\n if dataName.find('@') != -1 and dataName.find('_'\n ) != -1 and not data.getAttribute('scale'):\n isSet = True\n print(dataName)\n arr = dataName.split('@')[1].split('.')[0].split('_')\n img = Image.open(DIR_ROOT + data.getAttribute('path') + dataName)\n imgW = img.size[0]\n imgH = img.size[1]\n outData = [arr[0], arr[1]]\n outData.append(str(imgW - int(arr[0]) - int(arr[2])))\n outData.append(str(imgH - int(arr[1]) - int(arr[3])))\n scale9grid = ','.join(outData)\n print('scale9grid => ' + scale9grid)\n data.setAttribute('scale', '9grid')\n data.setAttribute('scale9grid', scale9grid)\nif isSet:\n with open(DIR_ROOT + '\\\\package.xml', 'w') as f:\n DOMTree.writexml(f, indent='', addindent='', newl='', encoding='UTF-8')\n", "<import token>\nDIR_ROOT = 'assets\\\\atlas_ui'\nDOMTree = xml.dom.minidom.parse(DIR_ROOT + '\\\\package.xml')\nmovies = DOMTree.getElementsByTagName('image')\nisSet = False\nfor data in movies:\n dataName = data.getAttribute('name')\n if dataName.find('@') != -1 and dataName.find('_'\n ) != -1 and not data.getAttribute('scale'):\n isSet = True\n print(dataName)\n arr = dataName.split('@')[1].split('.')[0].split('_')\n img = Image.open(DIR_ROOT + data.getAttribute('path') + dataName)\n imgW = img.size[0]\n imgH = img.size[1]\n outData = [arr[0], arr[1]]\n outData.append(str(imgW - int(arr[0]) - int(arr[2])))\n outData.append(str(imgH - int(arr[1]) - int(arr[3])))\n scale9grid = ','.join(outData)\n print('scale9grid => ' + scale9grid)\n data.setAttribute('scale', '9grid')\n data.setAttribute('scale9grid', scale9grid)\nif isSet:\n with open(DIR_ROOT + '\\\\package.xml', 'w') as f:\n DOMTree.writexml(f, indent='', addindent='', newl='', encoding='UTF-8')\n", "<import token>\n<assignment token>\nfor data in movies:\n dataName = data.getAttribute('name')\n if dataName.find('@') != -1 and dataName.find('_'\n ) != -1 and not data.getAttribute('scale'):\n isSet = True\n print(dataName)\n arr = dataName.split('@')[1].split('.')[0].split('_')\n img = Image.open(DIR_ROOT + data.getAttribute('path') + dataName)\n imgW = img.size[0]\n imgH = img.size[1]\n outData = [arr[0], arr[1]]\n outData.append(str(imgW - int(arr[0]) - int(arr[2])))\n outData.append(str(imgH - int(arr[1]) - int(arr[3])))\n scale9grid = ','.join(outData)\n print('scale9grid => ' + scale9grid)\n data.setAttribute('scale', '9grid')\n data.setAttribute('scale9grid', scale9grid)\nif isSet:\n with open(DIR_ROOT + '\\\\package.xml', 'w') as f:\n DOMTree.writexml(f, indent='', addindent='', newl='', encoding='UTF-8')\n", "<import token>\n<assignment token>\n<code token>\n" ]
false
99,060
ae15754551d2c81532324da61efef68053a394a8
import numpy as np import pylab as pl file = open("trainingdata.txt",buffering=1) nDoc = int(file.readline())
[ "import numpy as np\nimport pylab as pl\n\nfile = open(\"trainingdata.txt\",buffering=1)\nnDoc = int(file.readline())\n", "import numpy as np\nimport pylab as pl\nfile = open('trainingdata.txt', buffering=1)\nnDoc = int(file.readline())\n", "<import token>\nfile = open('trainingdata.txt', buffering=1)\nnDoc = int(file.readline())\n", "<import token>\n<assignment token>\n" ]
false
99,061
df86061ce7038be19531a1b8154e34c86d9f867d
ii = [('CookGHP3.py', 1), ('LyelCPG2.py', 1), ('AubePRP2.py', 13), ('PettTHE.py', 1), ('AubePRP.py', 1), ('CoolWHM.py', 3), ('BuckWGM.py', 1), ('MereHHB.py', 1), ('WilkJMC.py', 1), ('MackCNH.py', 3), ('FitzRNS.py', 1), ('MackCNH2.py', 3), ('ClarGE3.py', 6), ('DibdTRL.py', 14), ('LyelCPG3.py', 3), ('BowrJMM3.py', 1)]
[ "ii = [('CookGHP3.py', 1), ('LyelCPG2.py', 1), ('AubePRP2.py', 13), ('PettTHE.py', 1), ('AubePRP.py', 1), ('CoolWHM.py', 3), ('BuckWGM.py', 1), ('MereHHB.py', 1), ('WilkJMC.py', 1), ('MackCNH.py', 3), ('FitzRNS.py', 1), ('MackCNH2.py', 3), ('ClarGE3.py', 6), ('DibdTRL.py', 14), ('LyelCPG3.py', 3), ('BowrJMM3.py', 1)]", "ii = [('CookGHP3.py', 1), ('LyelCPG2.py', 1), ('AubePRP2.py', 13), (\n 'PettTHE.py', 1), ('AubePRP.py', 1), ('CoolWHM.py', 3), ('BuckWGM.py', \n 1), ('MereHHB.py', 1), ('WilkJMC.py', 1), ('MackCNH.py', 3), (\n 'FitzRNS.py', 1), ('MackCNH2.py', 3), ('ClarGE3.py', 6), ('DibdTRL.py',\n 14), ('LyelCPG3.py', 3), ('BowrJMM3.py', 1)]\n", "<assignment token>\n" ]
false
99,062
b077542e34b80821034a279e138e7a716e21d155
# -*- coding: utf-8 -*- from django.db import models from models import MODERATION_STATUS_APPROVED class MetaManager(type(models.Manager)): def __new__(cls, name, bases, attrs): return super(MetaManager, cls).__new__(cls, name, bases, attrs) class ModeratorManagerFactory(object): @staticmethod def get(bases): if not isinstance(bases, tuple): bases = (bases,) bases = (ModeratorManager,) + bases return MetaManager(ModeratorManager.__name__, bases, {'use_for_related_fields': True}) class ModeratorManager(models.Manager): def get_queryset(self): return super(ModeratorManager, self).get_queryset()\ .filter(moderator_entry__moderation_status=MODERATION_STATUS_APPROVED) def unmoderated(self): return super(ModeratorManager, self).get_queryset()
[ "# -*- coding: utf-8 -*-\n\n\nfrom django.db import models\n\nfrom models import MODERATION_STATUS_APPROVED\n\n\nclass MetaManager(type(models.Manager)):\n def __new__(cls, name, bases, attrs):\n return super(MetaManager, cls).__new__(cls, name, bases, attrs)\n\n\nclass ModeratorManagerFactory(object):\n @staticmethod\n def get(bases):\n if not isinstance(bases, tuple):\n bases = (bases,)\n\n bases = (ModeratorManager,) + bases\n\n return MetaManager(ModeratorManager.__name__, bases,\n {'use_for_related_fields': True})\n\n\nclass ModeratorManager(models.Manager):\n def get_queryset(self):\n return super(ModeratorManager, self).get_queryset()\\\n .filter(moderator_entry__moderation_status=MODERATION_STATUS_APPROVED)\n\n def unmoderated(self):\n return super(ModeratorManager, self).get_queryset()\n", "from django.db import models\nfrom models import MODERATION_STATUS_APPROVED\n\n\nclass MetaManager(type(models.Manager)):\n\n def __new__(cls, name, bases, attrs):\n return super(MetaManager, cls).__new__(cls, name, bases, attrs)\n\n\nclass ModeratorManagerFactory(object):\n\n @staticmethod\n def get(bases):\n if not isinstance(bases, tuple):\n bases = bases,\n bases = (ModeratorManager,) + bases\n return MetaManager(ModeratorManager.__name__, bases, {\n 'use_for_related_fields': True})\n\n\nclass ModeratorManager(models.Manager):\n\n def get_queryset(self):\n return super(ModeratorManager, self).get_queryset().filter(\n moderator_entry__moderation_status=MODERATION_STATUS_APPROVED)\n\n def unmoderated(self):\n return super(ModeratorManager, self).get_queryset()\n", "<import token>\n\n\nclass MetaManager(type(models.Manager)):\n\n def __new__(cls, name, bases, attrs):\n return super(MetaManager, cls).__new__(cls, name, bases, attrs)\n\n\nclass ModeratorManagerFactory(object):\n\n @staticmethod\n def get(bases):\n if not isinstance(bases, tuple):\n bases = bases,\n bases = (ModeratorManager,) + bases\n return MetaManager(ModeratorManager.__name__, bases, {\n 'use_for_related_fields': True})\n\n\nclass ModeratorManager(models.Manager):\n\n def get_queryset(self):\n return super(ModeratorManager, self).get_queryset().filter(\n moderator_entry__moderation_status=MODERATION_STATUS_APPROVED)\n\n def unmoderated(self):\n return super(ModeratorManager, self).get_queryset()\n", "<import token>\n\n\nclass MetaManager(type(models.Manager)):\n <function token>\n\n\nclass ModeratorManagerFactory(object):\n\n @staticmethod\n def get(bases):\n if not isinstance(bases, tuple):\n bases = bases,\n bases = (ModeratorManager,) + bases\n return MetaManager(ModeratorManager.__name__, bases, {\n 'use_for_related_fields': True})\n\n\nclass ModeratorManager(models.Manager):\n\n def get_queryset(self):\n return super(ModeratorManager, self).get_queryset().filter(\n moderator_entry__moderation_status=MODERATION_STATUS_APPROVED)\n\n def unmoderated(self):\n return super(ModeratorManager, self).get_queryset()\n", "<import token>\n<class token>\n\n\nclass ModeratorManagerFactory(object):\n\n @staticmethod\n def get(bases):\n if not isinstance(bases, tuple):\n bases = bases,\n bases = (ModeratorManager,) + bases\n return MetaManager(ModeratorManager.__name__, bases, {\n 'use_for_related_fields': True})\n\n\nclass ModeratorManager(models.Manager):\n\n def get_queryset(self):\n return super(ModeratorManager, self).get_queryset().filter(\n moderator_entry__moderation_status=MODERATION_STATUS_APPROVED)\n\n def unmoderated(self):\n return super(ModeratorManager, self).get_queryset()\n", "<import token>\n<class token>\n\n\nclass ModeratorManagerFactory(object):\n <function token>\n\n\nclass ModeratorManager(models.Manager):\n\n def get_queryset(self):\n return super(ModeratorManager, self).get_queryset().filter(\n moderator_entry__moderation_status=MODERATION_STATUS_APPROVED)\n\n def unmoderated(self):\n return super(ModeratorManager, self).get_queryset()\n", "<import token>\n<class token>\n<class token>\n\n\nclass ModeratorManager(models.Manager):\n\n def get_queryset(self):\n return super(ModeratorManager, self).get_queryset().filter(\n moderator_entry__moderation_status=MODERATION_STATUS_APPROVED)\n\n def unmoderated(self):\n return super(ModeratorManager, self).get_queryset()\n", "<import token>\n<class token>\n<class token>\n\n\nclass ModeratorManager(models.Manager):\n\n def get_queryset(self):\n return super(ModeratorManager, self).get_queryset().filter(\n moderator_entry__moderation_status=MODERATION_STATUS_APPROVED)\n <function token>\n", "<import token>\n<class token>\n<class token>\n\n\nclass ModeratorManager(models.Manager):\n <function token>\n <function token>\n", "<import token>\n<class token>\n<class token>\n<class token>\n" ]
false
99,063
1d9a06b028fd87332fa30c42f06e3e6dc791c504
from org.eclipse.swt import SWT from org.eclipse.swt.widgets import Shell, ToolBar, ToolItem, Listener def addItem(i, bar): item = ToolItem(bar, SWT.PUSH) item.setText("Item " + str(i)) class PrintListener(Listener): def handleEvent(self, e): print "Selected item", i newItem = ToolItem(bar, SWT.PUSH) newItem.setText("Extra Item " + str(i)) bar.pack() item.addListener(SWT.Selection, PrintListener()) shell = Shell() bar = ToolBar(shell, SWT.BORDER) for i in range(8): addItem(i, bar) bar.pack() shell.open() display = shell.getDisplay() while not shell.isDisposed(): if not display.readAndDispatch(): display.sleep() display.dispose()
[ "from org.eclipse.swt import SWT\nfrom org.eclipse.swt.widgets import Shell, ToolBar, ToolItem, Listener\n\ndef addItem(i, bar):\n item = ToolItem(bar, SWT.PUSH)\n item.setText(\"Item \" + str(i))\n class PrintListener(Listener):\n def handleEvent(self, e):\n print \"Selected item\", i\n newItem = ToolItem(bar, SWT.PUSH)\n newItem.setText(\"Extra Item \" + str(i))\n bar.pack()\n\n item.addListener(SWT.Selection, PrintListener())\n\nshell = Shell()\nbar = ToolBar(shell, SWT.BORDER)\nfor i in range(8):\n addItem(i, bar)\n \nbar.pack()\nshell.open()\ndisplay = shell.getDisplay()\nwhile not shell.isDisposed():\n if not display.readAndDispatch():\n display.sleep()\n \ndisplay.dispose()\n" ]
true
99,064
c16436863ccc38b07235f67dcf3e7ae5923def61
# -*- coding: utf-8 -*- """Lab10 Juan Jose- EoML.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1GIKbtGE9V2_m9EkY03FaIWb1OfR7-367 # Laboratorio 10 En este laboratorio encontraremos el valor óptimo de k en k-mean clustering con una gráfica de distancia cuadrada media respecto a k """ import pandas as pd from sklearn.preprocessing import StandardScaler from sklearn.cluster import KMeans import matplotlib.pyplot as plt print("Todos los paquetes han sido importados:") """Trabajaremos sobre la base de datos de casas de Wholesales costumers, que se encuentra en [Machine Learning Repository](http://archive.ics.uci.edu/ml/datasets/Wholesale+customers). 1. Enumera qué variables son continuas y qué variables son categóricas 2. Despliega la estadística descriptiva de las variables continuas del dataset para explorarlo 3. Convierte las variables categóricas en binarias usando pd.get_dummies. 4. Estandariza las variables usando una escala estándar (StandardScaler). Explica por qué este paso es importante. 5. En un rango de 1 a 15 para k, realiza el clustering sobre los datos y para cada k guarda el valor de la distancia cuadrada media. 6. Haz una gráfica de k contra la distancia cuadrada media. ¿Qué criterio puedes usar para identificar el valor óptimo de k? ¿Qué pasa cuando k se aproxima a n, la cantidad de observaciones? 7. Repite el clustering ahora usando el valor óptimo de k. Ubica la posición de cada centroide y comenta acerca de cada uno (por ejemplo, ¿qué valores para cada variable caracterizan a cada centroide?) #Upload File """ from google.colab import files uploaded = files.upload() import io data= pd.read_csv(io.BytesIO(uploaded['Wholesale customers data.csv'])) """#1Enumera las columnas continuas""" cols = data.columns num_cols = data._get_numeric_data().columns list(set(cols) - set(num_cols)) """#2 Estadística descriptiva""" data.describe() """#3 Convertir variables categóricas en binarias. No hay entonces no lo hice. #4 Estandarizar las variables """ scaler = StandardScaler() scaled_df = scaler.fit_transform(data) #Es importante para estandarizar la data que la media=0 y la desviación=1 para aplicar ML """#5 k-mean cluster""" X = data.iloc[:,3:8].values K = 15 m=X.shape[0] n=X.shape[1] n_iter=100 Centroids=np.array([]).reshape(n,0) for i in range(K): rand=np.random.randint(0,m-1) Centroids=np.c_[Centroids,X[rand]] EuclidianDistance=np.array([]).reshape(m,0) for k in range(K): tempDist=np.sum((X-Centroids[:,k])**2,axis=1) EuclidianDistance=np.c_[EuclidianDistance,tempDist] C=np.argmin(EuclidianDistance,axis=1)+1 Y={} for k in range(K): Y[k+1]=np.array([]).reshape(2,0) for i in range(m): Y[C[i]]=np.c_[Y[C[i]],X[i]] for k in range(K): Y[k+1]=Y[k+1].T for k in range(K): Centroids[:,k]=np.mean(Y[k+1],axis=0) for i in range(n_iter): EuclidianDistance=np.array([]).reshape(m,0) for k in range(K): tempDist=np.sum((X-Centroids[:,k])**2,axis=1) EuclidianDistance=np.c_[EuclidianDistance,tempDist] C=np.argmin(EuclidianDistance,axis=1)+1 Y={} for k in range(K): Y[k+1]=np.array([]).reshape(2,0) for i in range(m): Y[C[i]]=np.c_[Y[C[i]],X[i]] for k in range(K): Y[k+1]=Y[k+1].T for k in range(K): Centroids[:,k]=np.mean(Y[k+1],axis=0) Output=Y """#6 Graph""" color=['red','blue','green','cyan','magenta'] labels=['cluster1','cluster2','cluster3','cluster4','cluster5'] for k in range(K): plt.scatter(Output[k+1][:,0],Output[k+1][:,1],c=color[k],label=labels[k]) plt.scatter(Centroids[0,:],Centroids[1,:],s=300,c='yellow',label='Centroids') plt.xlabel('Income') plt.ylabel('Number of transactions') plt.legend() plt.show() """#7 Valor optimo de k"""
[ "# -*- coding: utf-8 -*-\n\"\"\"Lab10 Juan Jose- EoML.ipynb\n\nAutomatically generated by Colaboratory.\n\nOriginal file is located at\n https://colab.research.google.com/drive/1GIKbtGE9V2_m9EkY03FaIWb1OfR7-367\n\n# Laboratorio 10\n\nEn este laboratorio encontraremos el valor óptimo de k en k-mean clustering con una gráfica de distancia cuadrada media respecto a k\n\"\"\"\n\nimport pandas as pd\nfrom sklearn.preprocessing import StandardScaler\nfrom sklearn.cluster import KMeans\n\nimport matplotlib.pyplot as plt\n\nprint(\"Todos los paquetes han sido importados:\")\n\n\"\"\"Trabajaremos sobre la base de datos de casas de Wholesales costumers, que se encuentra en [Machine Learning Repository](http://archive.ics.uci.edu/ml/datasets/Wholesale+customers).\n\n1. Enumera qué variables son continuas y qué variables son categóricas\n2. Despliega la estadística descriptiva de las variables continuas del dataset para explorarlo\n3. Convierte las variables categóricas en binarias usando pd.get_dummies.\n4. Estandariza las variables usando una escala estándar (StandardScaler). Explica por qué este paso es importante.\n5. En un rango de 1 a 15 para k, realiza el clustering sobre los datos y para cada k guarda el valor de la distancia cuadrada media.\n6. Haz una gráfica de k contra la distancia cuadrada media. ¿Qué criterio puedes usar para identificar el valor óptimo de k? ¿Qué pasa cuando k se aproxima a n, la cantidad de observaciones?\n7. Repite el clustering ahora usando el valor óptimo de k. Ubica la posición de cada centroide y comenta acerca de cada uno (por ejemplo, ¿qué valores para cada variable caracterizan a cada centroide?)\n\n#Upload File\n\"\"\"\n\nfrom google.colab import files\nuploaded = files.upload()\nimport io\ndata= pd.read_csv(io.BytesIO(uploaded['Wholesale customers data.csv']))\n\n\"\"\"#1Enumera las columnas continuas\"\"\"\n\ncols = data.columns\n\nnum_cols = data._get_numeric_data().columns\n\nlist(set(cols) - set(num_cols))\n\n\"\"\"#2 Estadística descriptiva\"\"\"\n\ndata.describe()\n\n\"\"\"#3 Convertir variables categóricas en binarias.\n\nNo hay entonces no lo hice.\n\n#4 Estandarizar las variables\n\"\"\"\n\nscaler = StandardScaler()\nscaled_df = scaler.fit_transform(data)\n\n#Es importante para estandarizar la data que la media=0 y la desviación=1 para aplicar ML\n\n\"\"\"#5 k-mean cluster\"\"\"\n\nX = data.iloc[:,3:8].values\nK = 15\nm=X.shape[0] \nn=X.shape[1] \nn_iter=100\nCentroids=np.array([]).reshape(n,0) \nfor i in range(K):\n rand=np.random.randint(0,m-1)\n Centroids=np.c_[Centroids,X[rand]]\n\nEuclidianDistance=np.array([]).reshape(m,0)\nfor k in range(K):\n tempDist=np.sum((X-Centroids[:,k])**2,axis=1)\n EuclidianDistance=np.c_[EuclidianDistance,tempDist]\nC=np.argmin(EuclidianDistance,axis=1)+1\n\nY={}\nfor k in range(K):\n Y[k+1]=np.array([]).reshape(2,0)\n \nfor i in range(m):\n Y[C[i]]=np.c_[Y[C[i]],X[i]]\n \nfor k in range(K):\n Y[k+1]=Y[k+1].T\n \nfor k in range(K):\n Centroids[:,k]=np.mean(Y[k+1],axis=0)\n\nfor i in range(n_iter):\n EuclidianDistance=np.array([]).reshape(m,0)\n for k in range(K):\n tempDist=np.sum((X-Centroids[:,k])**2,axis=1)\n EuclidianDistance=np.c_[EuclidianDistance,tempDist]\n C=np.argmin(EuclidianDistance,axis=1)+1\n Y={}\n for k in range(K):\n Y[k+1]=np.array([]).reshape(2,0)\n for i in range(m):\n Y[C[i]]=np.c_[Y[C[i]],X[i]]\n \n for k in range(K):\n Y[k+1]=Y[k+1].T\n \n for k in range(K):\n Centroids[:,k]=np.mean(Y[k+1],axis=0)\n Output=Y\n\n\"\"\"#6 Graph\"\"\"\n\ncolor=['red','blue','green','cyan','magenta']\nlabels=['cluster1','cluster2','cluster3','cluster4','cluster5']\nfor k in range(K):\n plt.scatter(Output[k+1][:,0],Output[k+1][:,1],c=color[k],label=labels[k])\nplt.scatter(Centroids[0,:],Centroids[1,:],s=300,c='yellow',label='Centroids')\nplt.xlabel('Income')\nplt.ylabel('Number of transactions')\nplt.legend()\nplt.show()\n\n\"\"\"#7 Valor optimo de k\"\"\"" ]
true
99,065
c714d9e762d9821a5ab4897019d72a3ddd5ccd61
import logging import traceback from RPi import GPIO from time import sleep from multiprocessing import Process from constants import LOG_CONFIG, MAIN_LIGHT_PINS, CROSS_LIGHT_PINS, BOUNCE_TIME, BUTTON_PIN, DISPLAY_PINS from rgb import RGB from button import Button from digit_display import DigitDisplay logging.basicConfig(**LOG_CONFIG) log = logging.getLogger(__name__) def main(): try: # GPIO.setmode(GPIO.BCM) log.debug('main Successfully Setup') test_green() except KeyboardInterrupt: log.debug('User ended the program') except Exception as e: var = traceback.format_exc() log.debug(e) log.debug(str(var)) finally: GPIO.cleanup() log.debug('Main Cleaned Up') def button_tests(): def cb(): log.debug('Entered Button cb') sleep(5) log.debug('Exiting Button cb') button = Button(BUTTON_PIN, BOUNCE_TIME, cb) while True: pass def main_light_tests(): main_light = RGB(**MAIN_LIGHT_PINS) log.debug('main_light Successfully Setup') log.debug('Turning Red Light on for main_light') main_light.red() sleep(2) log.debug('Turning Blue Light on for main_light') main_light.blue() sleep(2) log.debug('Turning Green Light on for main_light') main_light.green() sleep(2) def cross_light_tests(): cross_light = RGB(**CROSS_LIGHT_PINS) log.debug('cross_light Successfully Setup') log.debug('Turning Red Light on for cross_light') cross_light.red() sleep(2) log.debug('Turning Blue Light on for cross_light') cross_light.blue() sleep(2) log.debug('Turning Green Light on for cross_light') cross_light.green() sleep(2) def multi_threading(): import threading def test(): for i in range(5): log.debug(i) sleep(1) threading.Thread(target=test) threading.Thread(target=test) def display_tests(): GPIO.setmode(GPIO.BCM) d = DigitDisplay(DISPLAY_PINS) for x in range(10): d.display(x) sleep(1) while True: pass def test_green(): GPIO.setmode(GPIO.BCM) cross_light = RGB(**CROSS_LIGHT_PINS) cross_light.green() while True: pass if __name__ == '__main__': main()
[ "import logging\nimport traceback\nfrom RPi import GPIO\nfrom time import sleep\nfrom multiprocessing import Process\n\nfrom constants import LOG_CONFIG, MAIN_LIGHT_PINS, CROSS_LIGHT_PINS, BOUNCE_TIME, BUTTON_PIN, DISPLAY_PINS\nfrom rgb import RGB\nfrom button import Button\nfrom digit_display import DigitDisplay\n\nlogging.basicConfig(**LOG_CONFIG)\nlog = logging.getLogger(__name__)\n\ndef main():\n try:\n # GPIO.setmode(GPIO.BCM)\n\n log.debug('main Successfully Setup')\n test_green()\n\n except KeyboardInterrupt:\n log.debug('User ended the program')\n\n except Exception as e:\n var = traceback.format_exc()\n log.debug(e)\n log.debug(str(var))\n\n finally:\n GPIO.cleanup()\n log.debug('Main Cleaned Up')\n\ndef button_tests():\n def cb():\n log.debug('Entered Button cb')\n sleep(5)\n log.debug('Exiting Button cb')\n button = Button(BUTTON_PIN, BOUNCE_TIME, cb)\n\n while True:\n pass\n\ndef main_light_tests():\n main_light = RGB(**MAIN_LIGHT_PINS)\n log.debug('main_light Successfully Setup')\n\n log.debug('Turning Red Light on for main_light')\n main_light.red()\n sleep(2)\n\n log.debug('Turning Blue Light on for main_light')\n main_light.blue()\n sleep(2)\n\n log.debug('Turning Green Light on for main_light')\n main_light.green()\n sleep(2)\n\ndef cross_light_tests():\n cross_light = RGB(**CROSS_LIGHT_PINS)\n log.debug('cross_light Successfully Setup')\n\n log.debug('Turning Red Light on for cross_light')\n cross_light.red()\n sleep(2)\n\n log.debug('Turning Blue Light on for cross_light')\n cross_light.blue()\n sleep(2)\n\n log.debug('Turning Green Light on for cross_light')\n cross_light.green()\n sleep(2)\n\ndef multi_threading():\n import threading\n def test():\n for i in range(5):\n log.debug(i)\n sleep(1)\n\n threading.Thread(target=test)\n threading.Thread(target=test)\n\ndef display_tests():\n GPIO.setmode(GPIO.BCM)\n d = DigitDisplay(DISPLAY_PINS)\n\n for x in range(10):\n d.display(x)\n sleep(1)\n\n while True:\n pass\n\ndef test_green():\n GPIO.setmode(GPIO.BCM)\n cross_light = RGB(**CROSS_LIGHT_PINS)\n cross_light.green()\n while True:\n pass\n\n\n\nif __name__ == '__main__':\n main()\n", "import logging\nimport traceback\nfrom RPi import GPIO\nfrom time import sleep\nfrom multiprocessing import Process\nfrom constants import LOG_CONFIG, MAIN_LIGHT_PINS, CROSS_LIGHT_PINS, BOUNCE_TIME, BUTTON_PIN, DISPLAY_PINS\nfrom rgb import RGB\nfrom button import Button\nfrom digit_display import DigitDisplay\nlogging.basicConfig(**LOG_CONFIG)\nlog = logging.getLogger(__name__)\n\n\ndef main():\n try:\n log.debug('main Successfully Setup')\n test_green()\n except KeyboardInterrupt:\n log.debug('User ended the program')\n except Exception as e:\n var = traceback.format_exc()\n log.debug(e)\n log.debug(str(var))\n finally:\n GPIO.cleanup()\n log.debug('Main Cleaned Up')\n\n\ndef button_tests():\n\n def cb():\n log.debug('Entered Button cb')\n sleep(5)\n log.debug('Exiting Button cb')\n button = Button(BUTTON_PIN, BOUNCE_TIME, cb)\n while True:\n pass\n\n\ndef main_light_tests():\n main_light = RGB(**MAIN_LIGHT_PINS)\n log.debug('main_light Successfully Setup')\n log.debug('Turning Red Light on for main_light')\n main_light.red()\n sleep(2)\n log.debug('Turning Blue Light on for main_light')\n main_light.blue()\n sleep(2)\n log.debug('Turning Green Light on for main_light')\n main_light.green()\n sleep(2)\n\n\ndef cross_light_tests():\n cross_light = RGB(**CROSS_LIGHT_PINS)\n log.debug('cross_light Successfully Setup')\n log.debug('Turning Red Light on for cross_light')\n cross_light.red()\n sleep(2)\n log.debug('Turning Blue Light on for cross_light')\n cross_light.blue()\n sleep(2)\n log.debug('Turning Green Light on for cross_light')\n cross_light.green()\n sleep(2)\n\n\ndef multi_threading():\n import threading\n\n def test():\n for i in range(5):\n log.debug(i)\n sleep(1)\n threading.Thread(target=test)\n threading.Thread(target=test)\n\n\ndef display_tests():\n GPIO.setmode(GPIO.BCM)\n d = DigitDisplay(DISPLAY_PINS)\n for x in range(10):\n d.display(x)\n sleep(1)\n while True:\n pass\n\n\ndef test_green():\n GPIO.setmode(GPIO.BCM)\n cross_light = RGB(**CROSS_LIGHT_PINS)\n cross_light.green()\n while True:\n pass\n\n\nif __name__ == '__main__':\n main()\n", "<import token>\nlogging.basicConfig(**LOG_CONFIG)\nlog = logging.getLogger(__name__)\n\n\ndef main():\n try:\n log.debug('main Successfully Setup')\n test_green()\n except KeyboardInterrupt:\n log.debug('User ended the program')\n except Exception as e:\n var = traceback.format_exc()\n log.debug(e)\n log.debug(str(var))\n finally:\n GPIO.cleanup()\n log.debug('Main Cleaned Up')\n\n\ndef button_tests():\n\n def cb():\n log.debug('Entered Button cb')\n sleep(5)\n log.debug('Exiting Button cb')\n button = Button(BUTTON_PIN, BOUNCE_TIME, cb)\n while True:\n pass\n\n\ndef main_light_tests():\n main_light = RGB(**MAIN_LIGHT_PINS)\n log.debug('main_light Successfully Setup')\n log.debug('Turning Red Light on for main_light')\n main_light.red()\n sleep(2)\n log.debug('Turning Blue Light on for main_light')\n main_light.blue()\n sleep(2)\n log.debug('Turning Green Light on for main_light')\n main_light.green()\n sleep(2)\n\n\ndef cross_light_tests():\n cross_light = RGB(**CROSS_LIGHT_PINS)\n log.debug('cross_light Successfully Setup')\n log.debug('Turning Red Light on for cross_light')\n cross_light.red()\n sleep(2)\n log.debug('Turning Blue Light on for cross_light')\n cross_light.blue()\n sleep(2)\n log.debug('Turning Green Light on for cross_light')\n cross_light.green()\n sleep(2)\n\n\ndef multi_threading():\n import threading\n\n def test():\n for i in range(5):\n log.debug(i)\n sleep(1)\n threading.Thread(target=test)\n threading.Thread(target=test)\n\n\ndef display_tests():\n GPIO.setmode(GPIO.BCM)\n d = DigitDisplay(DISPLAY_PINS)\n for x in range(10):\n d.display(x)\n sleep(1)\n while True:\n pass\n\n\ndef test_green():\n GPIO.setmode(GPIO.BCM)\n cross_light = RGB(**CROSS_LIGHT_PINS)\n cross_light.green()\n while True:\n pass\n\n\nif __name__ == '__main__':\n main()\n", "<import token>\nlogging.basicConfig(**LOG_CONFIG)\n<assignment token>\n\n\ndef main():\n try:\n log.debug('main Successfully Setup')\n test_green()\n except KeyboardInterrupt:\n log.debug('User ended the program')\n except Exception as e:\n var = traceback.format_exc()\n log.debug(e)\n log.debug(str(var))\n finally:\n GPIO.cleanup()\n log.debug('Main Cleaned Up')\n\n\ndef button_tests():\n\n def cb():\n log.debug('Entered Button cb')\n sleep(5)\n log.debug('Exiting Button cb')\n button = Button(BUTTON_PIN, BOUNCE_TIME, cb)\n while True:\n pass\n\n\ndef main_light_tests():\n main_light = RGB(**MAIN_LIGHT_PINS)\n log.debug('main_light Successfully Setup')\n log.debug('Turning Red Light on for main_light')\n main_light.red()\n sleep(2)\n log.debug('Turning Blue Light on for main_light')\n main_light.blue()\n sleep(2)\n log.debug('Turning Green Light on for main_light')\n main_light.green()\n sleep(2)\n\n\ndef cross_light_tests():\n cross_light = RGB(**CROSS_LIGHT_PINS)\n log.debug('cross_light Successfully Setup')\n log.debug('Turning Red Light on for cross_light')\n cross_light.red()\n sleep(2)\n log.debug('Turning Blue Light on for cross_light')\n cross_light.blue()\n sleep(2)\n log.debug('Turning Green Light on for cross_light')\n cross_light.green()\n sleep(2)\n\n\ndef multi_threading():\n import threading\n\n def test():\n for i in range(5):\n log.debug(i)\n sleep(1)\n threading.Thread(target=test)\n threading.Thread(target=test)\n\n\ndef display_tests():\n GPIO.setmode(GPIO.BCM)\n d = DigitDisplay(DISPLAY_PINS)\n for x in range(10):\n d.display(x)\n sleep(1)\n while True:\n pass\n\n\ndef test_green():\n GPIO.setmode(GPIO.BCM)\n cross_light = RGB(**CROSS_LIGHT_PINS)\n cross_light.green()\n while True:\n pass\n\n\nif __name__ == '__main__':\n main()\n", "<import token>\n<code token>\n<assignment token>\n\n\ndef main():\n try:\n log.debug('main Successfully Setup')\n test_green()\n except KeyboardInterrupt:\n log.debug('User ended the program')\n except Exception as e:\n var = traceback.format_exc()\n log.debug(e)\n log.debug(str(var))\n finally:\n GPIO.cleanup()\n log.debug('Main Cleaned Up')\n\n\ndef button_tests():\n\n def cb():\n log.debug('Entered Button cb')\n sleep(5)\n log.debug('Exiting Button cb')\n button = Button(BUTTON_PIN, BOUNCE_TIME, cb)\n while True:\n pass\n\n\ndef main_light_tests():\n main_light = RGB(**MAIN_LIGHT_PINS)\n log.debug('main_light Successfully Setup')\n log.debug('Turning Red Light on for main_light')\n main_light.red()\n sleep(2)\n log.debug('Turning Blue Light on for main_light')\n main_light.blue()\n sleep(2)\n log.debug('Turning Green Light on for main_light')\n main_light.green()\n sleep(2)\n\n\ndef cross_light_tests():\n cross_light = RGB(**CROSS_LIGHT_PINS)\n log.debug('cross_light Successfully Setup')\n log.debug('Turning Red Light on for cross_light')\n cross_light.red()\n sleep(2)\n log.debug('Turning Blue Light on for cross_light')\n cross_light.blue()\n sleep(2)\n log.debug('Turning Green Light on for cross_light')\n cross_light.green()\n sleep(2)\n\n\ndef multi_threading():\n import threading\n\n def test():\n for i in range(5):\n log.debug(i)\n sleep(1)\n threading.Thread(target=test)\n threading.Thread(target=test)\n\n\ndef display_tests():\n GPIO.setmode(GPIO.BCM)\n d = DigitDisplay(DISPLAY_PINS)\n for x in range(10):\n d.display(x)\n sleep(1)\n while True:\n pass\n\n\ndef test_green():\n GPIO.setmode(GPIO.BCM)\n cross_light = RGB(**CROSS_LIGHT_PINS)\n cross_light.green()\n while True:\n pass\n\n\n<code token>\n", "<import token>\n<code token>\n<assignment token>\n\n\ndef main():\n try:\n log.debug('main Successfully Setup')\n test_green()\n except KeyboardInterrupt:\n log.debug('User ended the program')\n except Exception as e:\n var = traceback.format_exc()\n log.debug(e)\n log.debug(str(var))\n finally:\n GPIO.cleanup()\n log.debug('Main Cleaned Up')\n\n\n<function token>\n\n\ndef main_light_tests():\n main_light = RGB(**MAIN_LIGHT_PINS)\n log.debug('main_light Successfully Setup')\n log.debug('Turning Red Light on for main_light')\n main_light.red()\n sleep(2)\n log.debug('Turning Blue Light on for main_light')\n main_light.blue()\n sleep(2)\n log.debug('Turning Green Light on for main_light')\n main_light.green()\n sleep(2)\n\n\ndef cross_light_tests():\n cross_light = RGB(**CROSS_LIGHT_PINS)\n log.debug('cross_light Successfully Setup')\n log.debug('Turning Red Light on for cross_light')\n cross_light.red()\n sleep(2)\n log.debug('Turning Blue Light on for cross_light')\n cross_light.blue()\n sleep(2)\n log.debug('Turning Green Light on for cross_light')\n cross_light.green()\n sleep(2)\n\n\ndef multi_threading():\n import threading\n\n def test():\n for i in range(5):\n log.debug(i)\n sleep(1)\n threading.Thread(target=test)\n threading.Thread(target=test)\n\n\ndef display_tests():\n GPIO.setmode(GPIO.BCM)\n d = DigitDisplay(DISPLAY_PINS)\n for x in range(10):\n d.display(x)\n sleep(1)\n while True:\n pass\n\n\ndef test_green():\n GPIO.setmode(GPIO.BCM)\n cross_light = RGB(**CROSS_LIGHT_PINS)\n cross_light.green()\n while True:\n pass\n\n\n<code token>\n", "<import token>\n<code token>\n<assignment token>\n\n\ndef main():\n try:\n log.debug('main Successfully Setup')\n test_green()\n except KeyboardInterrupt:\n log.debug('User ended the program')\n except Exception as e:\n var = traceback.format_exc()\n log.debug(e)\n log.debug(str(var))\n finally:\n GPIO.cleanup()\n log.debug('Main Cleaned Up')\n\n\n<function token>\n\n\ndef main_light_tests():\n main_light = RGB(**MAIN_LIGHT_PINS)\n log.debug('main_light Successfully Setup')\n log.debug('Turning Red Light on for main_light')\n main_light.red()\n sleep(2)\n log.debug('Turning Blue Light on for main_light')\n main_light.blue()\n sleep(2)\n log.debug('Turning Green Light on for main_light')\n main_light.green()\n sleep(2)\n\n\ndef cross_light_tests():\n cross_light = RGB(**CROSS_LIGHT_PINS)\n log.debug('cross_light Successfully Setup')\n log.debug('Turning Red Light on for cross_light')\n cross_light.red()\n sleep(2)\n log.debug('Turning Blue Light on for cross_light')\n cross_light.blue()\n sleep(2)\n log.debug('Turning Green Light on for cross_light')\n cross_light.green()\n sleep(2)\n\n\n<function token>\n\n\ndef display_tests():\n GPIO.setmode(GPIO.BCM)\n d = DigitDisplay(DISPLAY_PINS)\n for x in range(10):\n d.display(x)\n sleep(1)\n while True:\n pass\n\n\ndef test_green():\n GPIO.setmode(GPIO.BCM)\n cross_light = RGB(**CROSS_LIGHT_PINS)\n cross_light.green()\n while True:\n pass\n\n\n<code token>\n", "<import token>\n<code token>\n<assignment token>\n<function token>\n<function token>\n\n\ndef main_light_tests():\n main_light = RGB(**MAIN_LIGHT_PINS)\n log.debug('main_light Successfully Setup')\n log.debug('Turning Red Light on for main_light')\n main_light.red()\n sleep(2)\n log.debug('Turning Blue Light on for main_light')\n main_light.blue()\n sleep(2)\n log.debug('Turning Green Light on for main_light')\n main_light.green()\n sleep(2)\n\n\ndef cross_light_tests():\n cross_light = RGB(**CROSS_LIGHT_PINS)\n log.debug('cross_light Successfully Setup')\n log.debug('Turning Red Light on for cross_light')\n cross_light.red()\n sleep(2)\n log.debug('Turning Blue Light on for cross_light')\n cross_light.blue()\n sleep(2)\n log.debug('Turning Green Light on for cross_light')\n cross_light.green()\n sleep(2)\n\n\n<function token>\n\n\ndef display_tests():\n GPIO.setmode(GPIO.BCM)\n d = DigitDisplay(DISPLAY_PINS)\n for x in range(10):\n d.display(x)\n sleep(1)\n while True:\n pass\n\n\ndef test_green():\n GPIO.setmode(GPIO.BCM)\n cross_light = RGB(**CROSS_LIGHT_PINS)\n cross_light.green()\n while True:\n pass\n\n\n<code token>\n", "<import token>\n<code token>\n<assignment token>\n<function token>\n<function token>\n\n\ndef main_light_tests():\n main_light = RGB(**MAIN_LIGHT_PINS)\n log.debug('main_light Successfully Setup')\n log.debug('Turning Red Light on for main_light')\n main_light.red()\n sleep(2)\n log.debug('Turning Blue Light on for main_light')\n main_light.blue()\n sleep(2)\n log.debug('Turning Green Light on for main_light')\n main_light.green()\n sleep(2)\n\n\ndef cross_light_tests():\n cross_light = RGB(**CROSS_LIGHT_PINS)\n log.debug('cross_light Successfully Setup')\n log.debug('Turning Red Light on for cross_light')\n cross_light.red()\n sleep(2)\n log.debug('Turning Blue Light on for cross_light')\n cross_light.blue()\n sleep(2)\n log.debug('Turning Green Light on for cross_light')\n cross_light.green()\n sleep(2)\n\n\n<function token>\n<function token>\n\n\ndef test_green():\n GPIO.setmode(GPIO.BCM)\n cross_light = RGB(**CROSS_LIGHT_PINS)\n cross_light.green()\n while True:\n pass\n\n\n<code token>\n", "<import token>\n<code token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n\n\ndef cross_light_tests():\n cross_light = RGB(**CROSS_LIGHT_PINS)\n log.debug('cross_light Successfully Setup')\n log.debug('Turning Red Light on for cross_light')\n cross_light.red()\n sleep(2)\n log.debug('Turning Blue Light on for cross_light')\n cross_light.blue()\n sleep(2)\n log.debug('Turning Green Light on for cross_light')\n cross_light.green()\n sleep(2)\n\n\n<function token>\n<function token>\n\n\ndef test_green():\n GPIO.setmode(GPIO.BCM)\n cross_light = RGB(**CROSS_LIGHT_PINS)\n cross_light.green()\n while True:\n pass\n\n\n<code token>\n", "<import token>\n<code token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef test_green():\n GPIO.setmode(GPIO.BCM)\n cross_light = RGB(**CROSS_LIGHT_PINS)\n cross_light.green()\n while True:\n pass\n\n\n<code token>\n", "<import token>\n<code token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<code token>\n" ]
false
99,066
3dff43c6018a930139687f092a00145ffc478ef7
# Generate female voice syllablde using Google TTS API # Go to home directory that contains env folder and run source env/bin/activate # Then run the Python script with python EyeSound_generate.py # from gtts import gTTS from gtts import * # syllables = ["fa", "to", "se", "pu", "ti", "mi", "ro", "pe", "fa", "lu", "to", "la", "si", "su", "fe", "le", "si", "so", "la", "mu", "fe", "ga", "fo", "fe", "fu", "pi", "li", "mo", "re", "sa", "su", "po", "fa", "fi", "gu", "le", "me", "pi", "fo", "ta", "tu", "pe", "la", "ro", "re", "ru", "fi", "ri", "po", "le", "ga", "fu", "go", "ra", "gui", "ru", "pe", "se", "li", "mo", "pa", "pu", "me", "sa", "po", "ge", "tu", "gui", "fi", "to", "fe", "pa", "pu", "ro", "pa", "ri", "pu", "ge", "pe", "ri", "to", "ra", "ru", "te", "ma", "go", "me", "lu", "li", "ti", "lo", "me", "ra", "mu", "so", "ga", "pi", "tu", "re", "re", "mi", "po", "ga", "gu", "se", "ra", "mo", "te", "su", "mi", "si", "so", "ge", "ta", "ru", "fo", "ta", "ti", "mu", "se", "fe", "ti", "go", "ma", "lu", "ge", "pa", "lo", "pe", "gu", "ri", "pi", "go", "te", "la", "tu", "mo", "ma", "li", "fu", "me", "ge", "fi", "lo", "fa", "fu", "re", "ta", "so", "le", "mu", "si", "gui", "fo", "se", "ma", "gu", "lo", "sa", "mi", "lu", "te", "te", "gui", "ro", "sa", "su", "le", "ru", "ri", "la", "me", "to", "lu", "te", "mi", "ga", "to", "gui", "lo", "me", "ga", "tu", "re", "lo", "ma", "pi", "gu", "lo", "fu", "ti", "fa", "se", "po", "ru", "re", "si", "ta", "po", "pi", "mo", "le", "sa", "lu", "fe", "mo", "fa", "li", "tu", "ro", "mu", "mi", "pa", "ge", "go", "gu", "ge", "li", "fa", "lo", "ti", "so", "te", "pa", "mu", "ge", "to", "ta", "ti", "ru", "so", "tu", "li", "ga", "re", "lo", "tu", "le", "ri", "sa", "ro", "mi", "po", "se", "ra", "fu", "te", "fo", "ra", "mi", "mu", "fo", "su", "gui", "ra", "le", "ro", "su", "fe", "pi", "ma", "mo", "si", "ro", "ge", "ma", "gu", "se", "go", "sa", "ri", "pu", "go", "gu", "pi", "ma", "pe", "fo", "fu", "se", "gui", "ra", "so", "ri", "to", "re", "la", "su", "le", "po", "ga", "fi", "fu", "mo", "lu", "si", "ta", "fe", "mo", "pu", "me", "ti", "pa", "go", "li", "fo", "pe", "fa", "ru", "me", "so", "pa", "si", "lu", "to", "pu", "fi", "sa", "te", "so", "mu", "pe", "fi", "la", "fo", "fi", "go", "fe", "ta", "pu", "pe", "ro", "la", "gui", "su", "po", "ro", "gu", "ma", "me", "mi", "ga", "fi", "go", "pu", "le", "fa", "mu", "fe", "mo", "ti", "te", "to", "li", "pa", "gu", "se", "to", "lu", "ga", "ge", "ri", "la", "gui", "mo", "mu", "te", "ga", "fu", "te", "ro", "mi", "ge", "fo", "pi", "sa", "lu", "le", "fo", "su", "sa", "le", "fi", "pa", "li", "fo", "tu", "pe", "pa", "ru", "ge", "go", "si", "me", "ro", "ti", "ma", "mu", "me", "lo", "pu", "fa", "se", "ti", "ma", "ri", "so", "ru", "fe", "ma", "lu", "se", "to", "li", "fe", "go", "ri", "la", "pu", "fe", "mo", "mu", "ta", "pe", "pi", "sa", "mi", "to", "su", "re", "ta", "gu", "le", "po", "pi", "se", "mo", "si", "fa", "fu", "re", "po", "tu", "ra", "re", "gui", "ta", "si", "po", "fu", "ge", "la", "tu", "re", "lo", "ri", "le", "lo", "mi", "ta", "su", "ge", "go", "fu", "pa", "te", "li", "ra", "ti", "lo", "gu", "se", "sa", "su", "pe", "so", "gui", "pe", "po", "gui", "ga", "ru", "pe", "so", "ru", "la", "fe", "si", "fa", "pi", "ro", "lu", "me", "ra", "pu", "me", "fo", "fi", "re", "so", "fi", "ra", "tu", "te", "fo", "sa", "li", "mu", "fe", "ri", "sa", "me", "fo", "mu", "sa", "gui", "po", "le", "su", "me", "fi", "ta", "so", "pu", "ra", "go", "ga", "mi", "tu", "pe", "pi", "ga", "le", "po", "ru", "fa", "ri", "mo", "se", "fu", "pe", "si", "la", "ro", "tu", "ma", "lo", "la", "pi", "gu", "re", "fi", "la", "re", "so", "su", "la", "ti", "fo", "me", "gu", "se", "ri", "pa", "go", "mu", "fa", "to", "fa", "ti", "pu", "me", "li", "fa", "fe", "to", "tu", "ma", "mi", "go", "pe", "mu", "ge", "gui", "ga", "po", "gu", "ga", "po", "pa", "gui", "lu", "le", "gui", "ma", "ge", "ro", "gu", "ga", "li", "ro", "ge", "pu", "te", "li", "fa", "to", "lu", "sa", "ro", "ta", "ri", "su", "te", "si", "ta", "pe", "go", "pu", "pa", "pi", "lo", "te", "ru", "fe", "pi", "sa", "fo", "fu", "pa", "so", "ra", "si", "fu", "se", "mi", "pa", "te", "mo", "fu", "ta", "si", "to", "re", "tu", "le", "mi", "ma", "mo", "su", "ta", "mo", "ma", "fi", "ru", "ge", "ti", "ra", "se", "lo", "lu", "ra", "fi", "so", "fe", "lu", "re", "ti", "ra", "lo", "ru", "la", "tu", "fa", "se", "ro", "ti", "li", "ge", "pa", "tu", "fo", "gu", "mo", "gui", "se", "ta", "me", "ra", "po", "pu", "li", "gui", "lu", "la", "fe", "go", "gui", "gui", "pe", "ma", "lu", "go", "tu", "go", "pi", "le", "ra", "re", "ta", "to", "tu", "ri", "si", "mu", "ra", "le", "to", "mi", "ti", "le", "fa", "gu", "so", "pu", "ro", "li", "re", "la", "ge", "fa", "so", "lu", "ti", "pi", "fu", "pa", "pe", "so", "pi", "ri", "se", "ga", "pu", "to", "ru", "so", "mi", "fe", "ma", "le", "ga", "fo", "ru", "fi", "ri", "gu", "ma", "me", "fo", "fi", "si", "re", "la", "mu", "po", "lu", "po", "ti", "me", "pa", "fe", "pa", "lo", "su", "gui", "fi", "pu", "ga", "te", "mo", "si", "fi", "te", "sa", "fu", "ro", "su", "lo", "fi", "te", "sa", "pe", "ma", "ro", "gu", "si", "ti", "su", "sa", "ge", "lo", "ri", "mi", "fe", "ra", "ru", "mo", "mu", "to", "ri", "ge", "fa", "te", "sa", "mo", "fu", "pi", "mi", "ru", "ta", "re", "po", "li", "pi", "me", "ta", "su", "lo", "fu", "fo", "si", "pe", "ga", "se", "la", "go", "mu", "mi", "li", "ra", "ri", "le", "lu", "go", "ri", "te", "to", "pa", "pu", "ma", "ti", "ru", "pe", "go", "su", "si", "te", "ra", "po", "ga", "ma", "gui", "fe", "tu", "mo", "fi", "re", "mo", "ma", "lu", "la", "mi", "fu", "re", "to", "ru", "ri", "me", "sa", "so", "fa", "pa", "li", "re", "pu", "to", "li", "pe", "go", "ga", "su", "sa", "ri", "pu", "me", "so", "lu", "pi", "ge", "ma", "lo", "ra", "fa", "fi", "se", "fu", "ro", "pi", "me", "po", "ta", "fu", "ga", "pi", "su", "te", "mo", "gu", "mi", "pe", "pa", "mo", "ma", "ta", "si", "te", "ru", "so", "gui", "se", "so", "la", "mu", "fa", "li", "lu", "se", "lo", "fu", "li", "le", "la", "ro", "sa", "ga", "ti", "pe", "mu", "fo", "mi", "ge", "lo", "sa", "ru", "pa", "gui", "gu", "ge", "ro", "tu", "gui", "se", "ga", "to", "pa", "la", "pi", "me", "su", "lo", "si", "fe", "ro", "ra", "tu", "ta", "fi", "tu", "fe", "fo", "mu", "ti", "re", "fa", "fo", "ta", "sa", "mi", "ge", "gu", "po", "ti", "le", "fo", "fa", "gu", "ra", "si", "mu", "le", "po", "pu", "fi", "fe", "ta", "go", "la", "po", "te", "mu", "pi", "ma", "su", "ga", "ge", "mi", "so", "gu", "li", "re", "pa", "to", "mu", "mo", "se", "sa", "li", "me", "mo", "le", "gu", "li", "fa", "pu", "la", "re", "li", "lo", "ru", "mi", "te", "ma", "go", "ru", "so", "le", "ga", "fi", "pe", "lo", "ge", "tu", "mi", "ta", "lu", "ra", "me", "fi", "mo", "tu", "fi", "ge", "sa", "po", "gu", "ro", "re", "la", "si", "re", "to", "pe", "ru", "ti", "ra", "fu", "ta", "le", "ri", "po", "lu", "ti", "me", "fa", "lo", "fu", "lo", "pe", "ra", "gui", "ge", "so", "se", "fu", "ri", "la", "gu", "ma", "fe", "pi", "to", "fu", "gui", "fe", "ga", "so", "tu", "po", "ge", "fa", "mi", "se", "ro", "fe", "su", "si", "pa", "ru", "fa", "pe", "gui", "go", "mu", "ri", "le", "ra", "mo", "pu", "to", "me", "ma", "pi", "te", "fo", "me", "pu", "gui", "sa", "mu", "sa", "se", "si", "ro", "su", "si", "pe", "ta", "fo", "su", "fo", "te", "pa", "ri", "fe", "go", "re", "lu", "fi", "ga", "tu", "pa", "te", "ti", "fo", "pu", "pi", "se", "la", "ro", "lu", "go", "fe", "ta", "ti", "le", "fa", "so", "gui", "su", "ge", "po", "pa", "li", "te", "lu", "fa", "ru", "se", "gui", "to", "mo", "ga", "pi", "ru", "fe", "su", "ra", "go", "pi", "gu", "te", "go", "ma", "pi", "le", "mu", "ta", "gu", "ge", "ti", "so", "go", "sa", "ri", "mu", "ge", "tu", "la", "to", "fi", "lu", "le", "to", "sa", "ri", "se", "gu", "ga", "su", "fe", "mi", "ro", "to", "ma", "mi", "tu", "pe", "gu", "pa", "po", "mi", "mu", "me", "mo", "ta", "gui", "re", "tu", "sa", "mu", "te", "li", "fo", "ro", "ta", "si", "pu", "le", "pu", "sa", "fo", "ti", "pu", "pe", "fo", "la", "ti", "ge", "su", "ma", "lu", "le", "pi", "lo", "fo", "la", "fi", "su", "te", "fu", "ma", "lo", "si", "tu", "se", "lo", "ra", "fi", "me", "ru", "pa", "fu", "me", "fi", "mo", "po", "fa", "gui", "lu", "se", "ru", "ga", "mo", "ri", "ru", "re", "so", "fa", "si", "pe", "fu", "ra", "tu", "pe", "ri", "po", "lo", "ra", "ti", "fu", "re", "lu", "ta", "ro", "li", "fu", "fe", "ro", "ga", "mi", "fe", "pu", "la", "pu", "re", "si", "go", "so", "pa", "li", "gu", "me", "mu", "mi", "ga", "te", "ru", "lo", "fe", "li", "go", "gu", "la", "te", "ga", "ro", "gu", "gui", "mo", "fa", "me", "pi", "lu", "fe", "ri", "fa", "le", "tu", "fo", "se", "fi", "fo", "pu", "ra", "re", "la", "go", "pu", "ti", "to", "ma", "pe", "si", "pu", "me", "gui", "ma", "re", "gu", "po", "le", "pi", "mo", "mu", "ga", "ge", "ma", "to", "su", "si", "so", "ga", "fe", "mi", "mu", "se", "ti", "ta", "me", "su", "to", "pe", "gui", "lo", "lu", "ta", "fe", "fa", "po", "fu", "pi", "ro", "ta", "le", "li", "fu", "re", "si", "ra", "se", "fu", "ro", "te", "mi", "so", "ru", "ma", "se", "pa", "mo", "tu", "ri", "po", "pa", "te", "fi", "gu", "te", "li", "sa", "ge", "mu", "mo", "ge", "ti", "ro", "su", "pa", "pe", "ra", "so", "ru", "fi", "go", "ra", "ge", "ri", "tu", "le", "pi", "pa", "pe", "pu", "go", "re", "si", "po", "fu", "fa", "le", "ta", "fo", "lu", "li", "fo", "sa", "re", "ti", "su", "ge", "fi", "la", "fe", "lu", "so", "me", "ri", "to", "tu", "sa", "me", "sa", "lo", "mu", "mi", "lo", "la", "se", "gui", "ru", "pe", "ga", "li", "le", "fo", "su", "se", "ro", "ri", "gu", "pa", "fi", "le", "fa", "po", "mu", "se", "mi", "gu", "sa", "go", "go", "pa", "si", "fe", "po", "lu", "ge", "fo", "mi", "fu", "ra", "ri", "re", "ta", "go", "gu", "te", "fi", "mu", "la", "to", "po", "la", "ri", "pe", "ro", "ru", "pe", "go", "fi", "pu", "ma", "pi", "pe", "ma", "mo", "ru", "le", "gui", "ru", "ra", "lo", "so", "ra", "mi", "re", "so", "fu", "fe", "to", "ti", "tu", "fa", "li", "ge", "la", "fo", "lu", "fe", "li", "su", "ga", "po", "lo", "ta", "pi", "ge", "to", "gu", "me", "lo", "gui", "lu", "sa", "gui", "te", "pa", "ro", "tu", "pe", "si", "pu", "pa", "so", "fo", "sa", "ti", "te", "mo", "mu", "le", "po", "si", "mu", "ta", "mi", "me", "ra", "so", "fu", "ge", "ri", "fu", "ta", "ro", "mo", "ma", "gui", "se", "lo", "tu", "te", "so", "li", "su", "ga", "ti", "se", "sa", "lo", "pu", "me", "pi", "tu", "fa", "mo", "to", "fa", "fi", "me", "go", "pu", "re", "mo", "pi", "ru", "la", "si", "fe", "ga", "to", "su", "re", "ti", "lu", "ma", "fo", "ro", "pe", "pi", "lo", "ga", "tu", "ga", "ri", "le", "ro", "pu", "gu", "re", "so", "ga", "si", "ta", "tu", "fo", "ge", "mi", "pi", "me", "ri", "go", "pa", "gu", "ma", "gui", "re", "so", "gu", "ru", "fe", "go", "ta", "ti", "ma", "gu", "ro", "fe", "fi", "fi", "fe", "mi", "fo", "ra", "pu", "ra", "fi", "me", "fo", "fu", "tu", "me", "lo", "sa", "pi", "ga", "pu", "go", "re", "si", "mi", "te", "si", "so", "ta", "su", "fa", "pi", "te", "lo", "mu", "fu", "le", "to", "pa", "mi", "pa", "mu", "lo", "te", "gui", "ri", "ge", "ti", "mo", "fa", "ru", "pa", "ti", "pe", "po", "su", "su", "pe", "fo", "ma", "fi", "sa", "fu", "po", "pe", "ri", "gui", "le", "fi", "po", "sa", "mu", "la", "li", "se", "go", "tu", "lu", "se", "po", "ra", "ri", "la", "lu", "mo", "le", "ti", "li", "re", "gui", "ro", "ma", "fu", "ta", "si", "ge", "to", "lu", "mu", "te", "ro", "fa", "gui", "fa", "su", "so", "se", "pi", "si", "se", "li", "to", "la", "lu", "sa", "mi", "fe", "mo", "ru", "pu", "ge", "mo", "la", "li", "ra", "ru", "to", "me", "li", "ti", "la", "ti", "lu", "se", "lo", "mo", "fa", "re", "fu", "si", "tu", "la", "fe", "lo", "fi", "lu", "gui", "re", "mo", "pa", "ro", "ra", "pi", "tu", "re", "ro", "ro", "ma", "te", "mu", "gui", "gu", "ra", "me", "po", "gui", "gu", "fi", "ge", "lo", "ga", "mo", "ta", "fi", "gu", "me", "go", "so", "sa", "ge", "su", "li", "su", "ga", "ge", "so", "ti", "su", "li", "se", "so", "ra", "po", "sa", "ri", "mu", "fe", "to", "po", "pa", "le", "gu", "ri", "ru", "fa", "re", "mo", "mi", "mu", "pi", "pe", "fo", "ma", "to", "fa", "si", "pu", "ge", "fo", "go", "ra", "fe", "lu", "ti", "mu", "ta", "pe", "ro", "pi", "ru", "mi", "fe", "ro", "fa", "fo", "pa", "mi", "ru", "le", "po", "to", "ta", "se", "ru", "pi", "lu", "pa", "le", "to", "li", "pu", "si", "me", "to", "sa", "go", "ma", "gui", "fu", "te", "so", "fo", "la", "me", "tu", "fi", "fu", "sa", "te", "go", "si", "fu", "ri", "le", "go", "ta", "lo", "ga", "li", "su", "pe", "mo", "lo", "ga", "pe", "pu", "mi", "pu", "ma", "se", "fo", "ri", "tu", "ti", "te", "po", "la", "so", "ta", "re", "ro", "pi", "ru", "gui", "fu", "se", "ga", "mo", "fi", "fa", "po", "se", "gu", "re", "ma", "pi", "to", "pu", "mo", "ga", "le", "go", "si", "lu", "ri", "su", "te", "ta", "fo", "ti", "ra", "mo", "pe", "pu", "te", "pa", "si", "fo", "lu", "fo", "la", "se", "po", "gui", "pu", "li", "gu", "re", "ma", "to", "li", "ma", "so", "me", "lu", "me", "ga", "gui", "po", "su", "go", "pa", "pe", "mo", "fi", "tu", "pi", "ru", "me", "pa", "po", "si", "ta", "ro", "ge", "fu", "pe", "sa", "fi", "so", "ru", "ro", "ra", "fe", "to", "mi", "su", "mi", "lu", "le", "la", "so", "gui", "pa", "go", "le", "ru", "le", "ta", "ti", "lo", "fu", "po", "sa", "ge", "lo", "li", "mu", "si", "pu", "fe", "ra", "go", "mi", "ga", "lo", "fe", "su", "ge", "ra", "li", "mo", "tu", "to", "fa", "te", "fo", "ti", "fu", "ti", "tu", "ge", "fa", "lo", "pi", "la", "fo", "te", "tu", "se", "fa", "ri", "go", "mu", "so", "ma", "me", "so", "ri", "gu", "fi", "mu", "pe", "sa", "ro", "ri", "sa", "to", "re", "mu", "fe", "la", "mi", "ro", "gu", "lo", "sa", "ge", "lu", "ri", "go", "gu", "ri", "go", "ra", "le", "lu", "ri", "re", "so", "ga", "me", "su", "gui", "fa", "to", "so", "ma", "re", "ru", "si", "lo", "fu", "si", "lo", "pa", "re", "fu", "gui", "fe", "mo", "ta", "ge", "gu", "si", "sa", "lo", "fo", "la", "pe", "gu", "mi", "mo", "tu", "gui", "mo", "sa", "me", "ru", "pi", "pe", "po", "sa", "re", "ru", "ri", "pa", "mo", "to", "ra", "fe", "fu", "ti", "ro", "pu", "mi", "so", "la", "pe", "pu", "mi", "ge", "fo", "fa", "le", "lu", "fi", "ra", "so", "ro", "fa", "le", "tu", "fi", "to", "ru", "ti", "to", "ma", "ge", "gu", "fi", "te", "lo", "la", "fe", "fu", "ti", "ga", "fo", "mo", "ta", "te", "mu", "gui", "fo", "mu", "fi", "fo", "fa", "fe", "mu", "ti", "le", "go", "ra", "te", "tu", "li", "ta", "ro", "go", "pa", "se", "su", "li", "so", "lu", "pi", "ro", "ta", "te", "su", "si", "se", "to", "ma", "se", "pu", "mi", "la", "po", "lo", "ga", "me", "pu", "pi", "po", "su", "li", "po", "ga", "se", "tu", "li", "me", "ro", "pa", "pe", "mu", "pi", "ma", "go", "po", "fu", "ta", "mi", "le", "po", "ge", "ma", "gu", "li", "to", "ge", "po", "li", "ga", "gu", "ru", "fe", "lo", "sa", "li", "pe", "tu", "ga", "pi", "se", "so", "pe", "ra", "fu", "ri", "fo", "me", "fo", "pi", "la", "pu", "gu", "se", "ro", "ra", "fi", "se", "gu", "la", "fi", "te", "go", "te", "fa", "pu", "si", "go", "re", "mo", "ti", "ra", "lu", "pu", "le", "po", "ga", "ri", "te", "pu", "sa", "gui", "ge", "lo", "le", "la", "su", "gui", "mo", "te", "lo", "gui", "sa", "tu", "mu", "te", "fo", "fa", "ti", "re", "su", "fa", "si", "re", "mo", "me", "ta", "tu", "pi", "so", "le", "ro", "mi", "ma", "mu", "tu", "me", "mo", "la", "mi", "fe", "mu", "pa", "ti", "pe", "fo", "fe", "sa", "ru", "mi", "lo", "se", "to", "fi", "fa", "fu", "fu", "re", "so", "ta", "si", "le", "lu", "ra", "li", "me", "ro", "se", "ga", "lu", "fi", "ro", "fe", "so", "si", "ta", "ru", "lu", "pe", "to", "ma", "pi", "ge", "ru", "ma", "ri", "fe", "to", "re", "pa", "mu", "ti", "po", "pe", "go", "ri", "pa", "su", "su", "ge", "go", "pa", "gui", "me", "ge", "ru", "ta", "ti", "mo", "su", "li", "me", "lo", "pa", "ge", "po", "mi", "pa", "fu", "ta", "te", "ti", "su", "mo", "po", "te", "su", "fa", "si", "lo", "fu", "pi", "ge", "mo", "fa", "pe", "go", "li", "ra", "su", "ma", "fe", "li", "mu", "to", "go", "fe", "fu", "ma", "ri", "to", "mu", "ti", "le", "po", "sa", "me", "so", "ri", "ga", "pu", "la", "ge", "mi", "gu", "lo", "fo", "re", "gu", "ra", "fi", "po", "gu", "gui", "re", "ro", "ta", "re", "to", "fi", "la", "tu", "sa", "me", "pi", "tu", "po", "to", "me", "tu", "pa", "pi", "so", "ru", "si", "te", "fo", "ma", "se", "mo", "pi", "sa", "ru", "fa", "re", "si", "ru", "fo", "ro", "se", "mu", "ga", "mi", "fo", "lu", "fi", "pe", "go", "la", "te", "lo", "gui", "fa", "mu", "ra", "se", "gui", "fu", "so", "so", "le", "pu", "sa", "gui", "go", "tu", "ri", "fe", "so", "ga", "fe", "fo", "si", "ma", "lu", "pa", "le", "fi", "lu", "go", "mo", "pe", "lu", "la", "li", "ro", "pu", "mi", "se", "to", "ra", "le", "ro", "ti", "ta", "gu", "ga", "pe", "ri", "pu", "ro", "lo", "lo", "gui", "la", "me", "gu", "se", "ri", "to", "ma", "tu", "mo", "pe", "ri", "fa", "lu", "sa", "ri", "se", "fu", "po", "ri", "ro", "si", "ra", "fe", "mu", "le", "ti", "lo", "pa", "gu", "lo", "se", "ti", "sa", "tu", "la", "gui", "ge", "su", "ro", "ti", "fo", "ri", "ga", "le", "lu", "ge", "gui", "go", "sa", "fu", "fo", "re", "fi", "ma", "ru", "ga", "ti", "re", "mu", "mo", "pi", "mo", "fi", "pa", "ge", "pu", "re", "li", "ro", "ra", "su", "to", "ge", "pi", "ga", "su", "pa", "pi", "fe", "ru", "lo", "li", "go", "pi", "ta", "pe", "su", "pe", "fi", "fo", "fa", "ru", "ro", "fe", "li", "ta", "pu", "ta", "mi", "te", "tu", "so", "fi", "to", "mi", "sa", "re", "ru", "te", "si", "mo", "ta", "pu", "po", "le", "si", "ra", "fu", "ra", "si", "pe", "gu", "to", "gui", "po", "li", "fa", "te", "tu", "fe", "pi", "so", "ga", "lu", "go", "me", "gui", "la", "gu", "ma", "fi", "me", "pu", "fo", "si", "so", "ti", "ma", "se", "fu", "me", "mi", "po", "la", "mu", "so", "te", "mi", "pa", "mu", "fa", "li", "le", "lu", "go", "mi", "me", "pa", "pu", "mi", "mo", "mo", "mu", "ma", "ge", "si", "su", "so", "ra", "mi", "ge", "fo", "fe", "ta", "ti", "fu", "ro", "re", "ra", "lu", "fi", "lo", "so", "fu", "ga", "se", "ri", "mu", "to", "ma", "si", "te", "ro", "le", "ra", "ri", "tu", "so", "ge", "ma", "su", "gui", "to", "to", "ru", "pa", "le", "ti", "pu", "fo", "la", "fi", "pe", "so", "re", "sa", "si", "pu", "fo", "se", "ta", "tu", "ri", "go", "lo", "pu", "la", "me", "gui", "fu", "go", "ta", "li", "se", "go", "pe", "pa", "gui", "mu", "po", "le", "fa", "ru", "li", "fo", "ro", "lu", "fa", "pe", "mi", "lu", "mo", "fa", "pi", "me", "to", "ge", "fa", "mi", "ru", "go", "te", "la", "fu", "si", "so", "fo", "tu", "sa", "te", "pi", "gu", "lo", "sa", "gui", "re", "lo", "se", "la", "pi", "gu", "mo", "fe", "ga", "gu", "ti", "po", "po", "gu", "ta", "re", "li", "tu", "po", "pa", "ri", "fe", "po", "me", "ga", "fi", "su", "to", "pe", "sa", "mu", "pi", "ro", "go", "su", "ra", "fe", "fi", "ru", "ro", "ga", "ti", "le", "mo", "te", "ma", "li", "lu", "lo", "lu", "ro", "ti", "sa", "fe", "me", "ta", "su", "so", "li", "fo", "mu", "ga", "gui", "se", "me", "fi", "gu", "ro", "la", "si", "su", "fo", "pi", "ta", "ge", "fe", "sa", "pu", "go", "pi", "mo", "lu", "fa", "li", "te", "re", "si", "su", "so", "ra", "gui", "ru", "so", "ri", "ma", "te", "ge", "la", "fu", "po", "ri", "to", "fu", "ta", "ri", "re", "te", "gui", "tu", "mo", "ta", "mi", "mu", "po", "fi", "la", "le", "te", "ma", "gu", "to", "si", "po", "tu", "pa", "ti", "le", "le", "ti", "ru", "po", "sa", "li", "pu", "go", "mi", "pa", "me", "pe", "fa", "ru", "mo", "fi", "go", "ru", "ra", "si", "fe", "ge", "mi", "lu", "lo", "ga", "ri", "fu", "to", "li", "ra", "pe", "re", "pa", "tu", "ro", "mi", "so", "su", "la", "pi", "ge", "se", "pi", "mu", "fo", "pa", "pi", "tu", "lo", "gui", "fa", "re", "le", "ra", "lu", "lo", "gui", "lo", "pu", "ma", "mi", "pe", "fe", "ri", "pu", "to", "fa", "ti", "gu", "mo", "si", "ga", "se", "se", "ga", "mu", "fo", "ti", "ro", "gu", "sa", "fi", "me", "pe", "li", "fu", "go", "ma", "fi", "tu", "pa", "me", "si", "to", "le", "ta", "lu", "so", "li", "se", "sa", "pu", "po", "ri", "go", "pa", "le", "su", "ri", "go", "gu", "ta", "ge", "pi", "go", "ge", "sa", "pu", "po", "si", "te", "pa", "su", "so", "gui", "fo", "fa", "me", "tu", "pi", "so", "fu", "ra", "le", "ri", "ro", "se", "la", "ru", "to", "pi", "ge", "ta", "fu", "to", "ti", "po", "ga", "te", "pu", "ti", "ro", "ru", "sa", "te", "ti", "so", "pe", "ra", "fu", "go", "ti", "pe", "ga", "gu", "ro", "fi", "to", "ma", "fe", "gu", "mi", "mo", "pu", "ga", "pe", "gui", "fo", "fe", "ga", "mu", "ro", "fi", "re", "fa", "lu", "mo", "si", "so", "ra", "re", "fu", "gui", "fo", "su", "ma", "fe", "mi", "mo", "re", "fa", "su", "mo", "gui", "me", "la", "mu", "go", "pi", "lo", "sa", "se", "lu", "li", "po", "lu", "fa", "se", "fi", "po", "te", "pa", "tu", "fo", "mi", "le", "ra", "tu", "fo", "li", "ro", "ta", "ge", "mu", "fi", "to", "mu", "la", "re", "li", "lo", "me", "ma", "gu", "lo", "ri", "fe", "ma", "ru", "lo", "mi", "mo", "la", "pe", "ru", "si", "lo", "ra", "fi", "te", "gu", "lo", "su", "fe", "so", "la", "ti", "ru", "pa", "fi", "pe", "po", "ta", "ri", "po", "lu", "pe", "ro", "fa", "li", "me", "su", "go", "tu", "ge", "ro", "ma", "si", "tu", "ra", "gui", "te", "to", "fa", "si", "ro", "mu", "re", "po", "ta", "pi", "fe", "ru", "mo", "ru", "me", "to", "ta", "fi", "gu", "fa", "si", "ge", "so", "sa", "li", "so", "pu", "me", "fo", "ma", "si", "pe", "lu", "po", "fu", "re", "po", "fa", "li", "mu", "sa", "pi", "se", "fo", "ma", "gui", "mo", "fu", "fe", "lo", "pa", "gui", "re", "fu", "so", "gu", "se", "go", "sa", "gui", "su", "la", "mi", "le", "ro", "la", "mi", "fo", "su", "te", "go", "ga", "ti", "se", "pu", "to", "mu", "le", "lo", "ra", "mi", "lu", "ta", "ri", "me", "lo", "ra", "fi", "to", "tu", "ge", "so", "la", "ri", "le", "tu", "fo", "lu", "te", "mo", "ga", "ri", "pu", "ma", "li", "fe", "mo", "ga", "pi", "go", "ru", "se", "mo", "sa", "mi", "ge", "mu", "ro", "pu", "pe", "fo", "pa", "pi", "fu", "ga", "ti", "re", "go", "pa", "ti", "lo", "gu", "le", "to", "ru", "ra", "po", "se", "pi", "te", "so", "ri", "lu", "sa", "pu", "si", "fa", "go", "se", "me", "su", "li", "la", "mo", "ta", "pu", "ga", "ro", "re", "ri", "se", "fo", "li", "tu", "fa", "mu", "pi", "pa", "mo", "te", "ge", "pu", "gui", "ga", "so", "ga", "lu", "sa", "fo", "fe", "li", "pe", "lo", "ti", "su", "ga", "ru", "li", "sa", "ro", "me", "fe", "lu", "fi", "pa", "ro", "la", "mu", "fa", "lo", "ge", "ti", "re", "ro", "fi", "gu", "ma", "fu", "ri", "ma", "so", "le", "se", "gu", "ti", "ma", "go", "ma", "tu", "pa", "go", "le", "gui", "me", "go", "gui", "ru", "ra", "su", "mi", "ra", "fo", "fe", "re", "fu", "mi", "fa", "po", "fa", "fu", "ma", "so", "te", "mi", "fe", "mo", "pi", "pu", "pa", "gu", "gui", "ta", "lo", "ge", "pe", "tu", "pi", "ra", "lo", "ra", "su", "la", "mo", "pe", "fi", "le", "to", "si", "mu", "la", "tu", "fi", "la", "po", "re", "le", "mu", "si", "sa", "fo", "sa", "gu", "ta", "to", "me", "si", "ge", "po", "mi", "fu", "ta", "lu", "ti", "ga", "to", "pe", "te", "ru", "ri", "ta", "to", "pa", "ge", "ro", "pa", "ri", "su", "mo", "mi", "la", "pu", "pe", "ta", "tu", "pe", "mo", "gui", "ri", "le", "ro", "mu", "ga", "to", "pe", "to", "ta", "li", "ru", "ro", "pi", "fa", "su", "se", "pa", "fu", "me", "so", "ti", "si", "se", "to", "fu", "la", "fo", "fe", "go", "ra", "ti", "fu", "po", "ti", "pa", "lu", "fe", "fa", "lu", "ge", "fo", "ri", "gui", "pe", "go", "tu", "sa", "po", "me", "lo", "la", "mi", "mu", "to", "fi", "ra", "tu", "le", "ga", "mu", "te", "lo", "si", "li", "re", "mo", "su", "ra", "so", "te", "so", "sa", "gui", "gu", "so", "gui", "ga", "mu", "te", "la", "ru", "fe", "po", "mi", "ti", "fe", "so", "ru", "fa", "ro", "se", "fo", "ga", "pi", "lu", "lo", "ri", "sa", "gu", "re", "sa", "gu", "se", "go", "pi", "pi", "ge", "po", "pu", "ma", "lo", "re", "mo", "ma", "fi", "pu", "go", "li", "ma", "ru", "ge", "ra", "pu", "le", "ro", "fi", "mi", "me", "lo", "lu", "pa", "go", "le", "po", "fa", "si", "tu", "fo", "si", "ta", "fu", "me", "ma", "su", "re", "to", "li", "fi", "te", "fo", "gu", "ta", "mo", "fu", "li", "fo", "se", "ra", "ti", "sa", "mu", "pe", "fo", "go", "ga", "mi", "fe", "ru", "to", "pe", "mu", "ta", "si", "so", "pu", "mi", "po", "ge", "ga", "ri", "ra", "tu", "fe", "lo", "ro", "fa", "si", "pe", "gu", "ro", "ge", "pu", "pa", "ri", "mo", "mu", "pi", "mo", "me", "la", "gui", "fa", "gu", "te", "to", "to", "ra", "li", "te", "fu", "go", "fe", "fu", "ra", "mi", "ro", "lu", "ti", "so", "le", "pa", "li", "ta", "su", "se", "go", "mo", "ta", "gui", "se", "su", "lo", "re", "lu", "fa", "li", "po", "su", "fi", "lo", "te", "fa", "mi", "pa", "ru", "ge", "ro", "lo", "la", "fi", "me", "tu", "so", "me", "ru", "sa", "ti", "to", "ru", "si", "ro", "fe", "ta", "fi", "ma", "pu", "re", "po", "po", "ma", "pi", "ge", "lu", "fo", "te", "tu", "ga", "fi", "lo", "gu", "gui", "go", "re", "sa", "pi", "ga", "fu", "le", "so", "fo", "pa", "ti", "le", "pu", "po", "se", "su", "la", "gui", "go", "tu", "ri", "to", "pe", "ma", "si", "la", "lu", "me", "mo", "so", "sa", "ri", "re", "mu", "mo", "le", "gu", "ma", "pi", "fo", "pa", "le", "tu", "mo", "fi", "pi", "la", "fu", "ge", "mo", "pa", "to", "si", "fu", "re", "fu", "fe", "sa", "pi", "so", "pe", "la", "pe", "su", "po", "ti", "mi", "pa", "tu", "pe", "po", "ga", "so", "fi", "ru", "le", "su", "le", "la", "ti", "po", "se", "ma", "fe", "mu", "ro", "si", "ri", "ga", "ru", "re", "fo", "ma", "fo", "ti", "gu", "fe", "pu", "me", "fa", "si", "go", "ge", "sa", "me", "lu", "so", "gui", "si", "ra", "su", "te", "lo", "ra", "mo", "mi", "pu", "ge", "tu", "te", "ta", "mi", "lo", "te", "fa", "re", "fu", "go", "mi", "gui", "fa", "lu", "fe", "go", "la", "ro", "gui", "lu", "te", "mu", "pe", "ga", "gui", "mo", "re", "ga", "te", "pu", "fo", "ri", "li", "sa", "pu", "le", "ro", "fa", "po", "ri", "mu", "se", "ru", "ge", "pa", "ri", "ro", "le", "ta", "se", "gu", "lo", "li", "ti", "ma", "gu", "se", "to", "sa", "lo", "pi", "su", "pe", "gu", "se", "ra", "li", "fo", "fe", "ra", "ge", "ru", "to", "pi", "fi", "ta", "mu", "me", "so", "ta", "go", "li", "tu", "me", "lu", "re", "ma", "fi", "to", "me", "mo", "ru", "pa", "pe", "fi", "fu", "ri", "to", "me", "ga", "pi", "po", "pe", "ru", "fa", "se", "ru", "pa", "ri", "go", "pa", "lo", "tu", "fa", "le", "si", "pu", "pi", "ro", "ge", "ma", "ri", "lo", "re", "tu", "ga", "te", "gu", "ra", "ti", "mo", "la", "to", "pu", "sa", "te", "mi", "mu", "ti", "go", "re", "ra", "ti", "to", "te", "pu", "ma", "le", "tu", "fa", "mi", "to", "ta", "ro", "gu", "ga", "se", "ti", "ru", "mi", "mo", "le", "la", "si", "ro", "le", "fu", "la", "fe", "su", "ta", "si", "lo", "ma", "fo", "mu", "la", "ge", "ri", "su", "gui", "po", "pe", "sa", "mi", "so", "ge", "mu", "ra", "me", "fu", "ga", "li", "so", "fa", "go", "fu", "ta", "me", "gui", "tu", "si", "so", "te", "fa", "li", "mo", "fe", "lu", "ta", "pe", "mu", "la", "fi", "ro", "ga", "po", "lu", "ma", "fe", "pi", "lu", "li", "lo", "se", "ta", "gui", "fo", "me", "su", "pa", "ge", "pu", "ma", "pi", "fo", "ra", "so", "su", "ra", "re", "li", "gu", "fi", "fo", "fe", "pa", "fi", "go", "se", "gu", "sa", "re", "lu", "sa", "gui", "po", "sa", "tu", "gui", "to", "ga", "me", "ma", "so", "ti", "su", "me", "sa", "go", "ru", "fi", "le", "pu", "le", "ta", "si", "go", "fo", "ru", "ti", "ro", "ma", "fe", "fa", "po", "ri", "ru", "te", "ga", "ro", "gu", "mi", "te", "tu", "re", "ra", "mi", "mo", "to", "gu", "li", "fo", "ta", "re", "ta", "mo", "fi", "mu", "re", "ta", "po", "tu", "pi", "me", "lu", "pe", "sa", "pi", "ro", "po", "pu", "pi", "mo", "sa", "le", "sa", "to", "si", "lu", "se", "fa", "mo", "lu", "ti", "pe", "fu", "se", "fa", "ri", "lo", "lo", "su", "ri", "so", "pa", "ge", "pa", "fo", "pi", "tu", "pe", "pa", "so", "mu", "ri", "ge", "ru", "fe", "ma", "li", "fo", "ro", "fu", "si", "po", "fa", "pe", "la", "go", "li", "fu", "ge", "la", "fo", "fu", "gui", "fe", "mu", "me", "pa", "ti", "to", "go", "lu", "fi", "go", "ra", "te", "ga", "ro", "gui", "gu", "le", "ra", "lo", "su", "si", "se", "gu", "te", "la", "gui", "so", "so", "mu", "mi", "lo", "la", "se", "ra", "lo", "mi", "pu", "fe", "ma", "to", "pu", "li", "re", "su", "ge", "ga", "fi", "po", "mo", "so", "tu", "re", "mi", "ra", "su", "pa", "to", "fi", "le", "li", "mu", "fa", "me", "mo", "fo", "pi", "se", "ma", "fu", "ru", "po", "su", "me", "ti", "fa", "lu", "ma", "lo", "ri", "se", "gui", "tu", "ra", "te", "to", "to", "fi", "re", "fa", "gu", "lu", "lo", "gu", "le", "li", "sa", "fu", "la", "so", "si", "re", "pi", "su", "ma", "ge", "ro", "po", "gui", "le", "ra", "ru", "mu", "fo", "ru", "pe", "pi", "la", "gu", "sa", "go", "pi", "pe", "ti", "gu", "sa", "re", "fo", "lo", "ri", "pe", "ta", "pu", "su", "to", "pu", "se", "fi", "ta", "ru", "ta", "fo", "li", "ge", "fi", "fu", "ga", "le", "po", "ro", "ti", "me", "ga", "lu", "fu", "go", "fu", "fe", "gui", "pa", "mu", "fa", "ro", "ti", "me", "si", "lu", "ta", "fe", "so", "go", "li", "fe", "la", "su", "tu", "mo", "lu", "te", "ri", "ma", "tu", "ga", "po", "gui", "te", "ri", "ru", "la", "se", "lo", "so", "mi", "ge", "pa", "mu", "gu", "ro", "mu", "ge", "si", "ga", "pu", "ra", "mo", "mi", "fe", "mi", "pu", "pa", "pe", "go", "mo", "si", "te", "sa", "tu", "pu", "ro", "te", "ti", "sa", "su", "fi", "pu", "ta", "to", "me", "lo", "mi", "ge", "ru", "ga", "pi", "ra", "po", "se", "gu", "ro", "go", "pe", "ri", "ga", "ru", "gui", "mu", "ma", "po", "te", "so", "si", "pe", "mu", "pa", "ti", "ta", "so", "le", "tu", "to", "lo", "fe", "fi", "la", "lu", "si", "su", "fa", "ro", "re", "mo", "li", "me", "gu", "ta", "li", "ma", "fo", "re", "mu", "lo", "mo", "ge", "gui", "ra", "fu", "ri", "tu", "ga", "lo", "pe", "fo", "ti", "le", "lu", "fa", "gui", "sa", "go", "ge", "su", "fo", "to", "le", "pi", "ta", "tu", "ti", "gu", "ra", "fo", "ge", "to", "fi", "re", "fu", "ma", "fi", "la", "to", "me", "ru", "go", "so", "se", "mi", "pa", "gu", "mi", "ru", "sa", "so", "le", "ro", "ri", "se", "pu", "sa", "mi", "pa", "mo", "fe", "pu", "mo", "po", "re", "si", "fa", "pu", "li", "lu", "la", "mo", "fe", "go", "gui", "te", "tu", "ra", "si", "fa", "ro", "pe", "fu", "po", "fo", "me", "li", "ma", "mu", "pi", "fu", "pa", "go", "se", "po", "pi", "fe", "su", "la", "ri", "ga", "lo", "te", "lu", "so", "ri", "fa", "fu", "te", "lo", "mi", "ra", "te", "lo", "su", "ga", "lo", "fe", "gui", "tu", "pe", "pu", "fo", "ti", "sa", "si", "si", "ra", "tu", "ge", "mo", "pi", "la", "le", "mo", "tu", "ma", "ro", "pe", "li", "gu", "ge", "fu", "lo", "fi", "fa", "fi", "ti", "ta", "su", "fe", "so", "ri", "fa", "re", "po", "mu", "fa", "fo", "le", "pi", "lu", "fe", "su", "ro", "mi", "pa", "pi", "fi", "ga", "mu", "se", "fo", "ti", "sa", "se", "so", "gu", "pa", "so", "re", "si", "ru", "re", "tu", "mo", "li", "la", "ri", "pi", "pa", "lu", "le", "po", "li", "ma", "me", "fo", "fu", "ta", "to", "ge", "fi", "fu", "te", "ru", "po", "gui", "ga", "mi", "li", "sa", "pu", "pe", "to", "si", "ta", "fe", "to", "ru", "la", "mo", "me", "mi", "pu", "le", "mu", "to", "si", "ma", "li", "mi", "ma", "gu", "me", "ro", "fi", "ga", "ge", "ro", "pu", "ra", "go", "te", "ti", "su", "se", "lu", "go", "pi", "ra", "ti", "gui", "la", "ru", "re", "go", "gui", "pa", "pe", "go", "lu", "sa", "po", "se", "ri", "mu", "me", "gu", "so", "ri", "ta", "gui"] syllables = ["toh"] unique_syllables = list(dict.fromkeys(syllables)) for x in unique_syllables: tts = gTTS(x, lang='es') filename = "%s.mp3" % x tts.save(filename)
[ "\n# Generate female voice syllablde using Google TTS API\n\n# Go to home directory that contains env folder and run source env/bin/activate\n# Then run the Python script with python EyeSound_generate.py\n\n# from gtts import gTTS\n\nfrom gtts import *\n\n# syllables = [\"fa\", \"to\", \"se\", \"pu\", \"ti\", \"mi\", \"ro\", \"pe\", \"fa\", \"lu\", \"to\", \"la\", \"si\", \"su\", \"fe\", \"le\", \"si\", \"so\", \"la\", \"mu\", \"fe\", \"ga\", \"fo\", \"fe\", \"fu\", \"pi\", \"li\", \"mo\", \"re\", \"sa\", \"su\", \"po\", \"fa\", \"fi\", \"gu\", \"le\", \"me\", \"pi\", \"fo\", \"ta\", \"tu\", \"pe\", \"la\", \"ro\", \"re\", \"ru\", \"fi\", \"ri\", \"po\", \"le\", \"ga\", \"fu\", \"go\", \"ra\", \"gui\", \"ru\", \"pe\", \"se\", \"li\", \"mo\", \"pa\", \"pu\", \"me\", \"sa\", \"po\", \"ge\", \"tu\", \"gui\", \"fi\", \"to\", \"fe\", \"pa\", \"pu\", \"ro\", \"pa\", \"ri\", \"pu\", \"ge\", \"pe\", \"ri\", \"to\", \"ra\", \"ru\", \"te\", \"ma\", \"go\", \"me\", \"lu\", \"li\", \"ti\", \"lo\", \"me\", \"ra\", \"mu\", \"so\", \"ga\", \"pi\", \"tu\", \"re\", \"re\", \"mi\", \"po\", \"ga\", \"gu\", \"se\", \"ra\", \"mo\", \"te\", \"su\", \"mi\", \"si\", \"so\", \"ge\", \"ta\", \"ru\", \"fo\", \"ta\", \"ti\", \"mu\", \"se\", \"fe\", \"ti\", \"go\", \"ma\", \"lu\", \"ge\", \"pa\", \"lo\", \"pe\", \"gu\", \"ri\", \"pi\", \"go\", \"te\", \"la\", \"tu\", \"mo\", \"ma\", \"li\", \"fu\", \"me\", \"ge\", \"fi\", \"lo\", \"fa\", \"fu\", \"re\", \"ta\", \"so\", \"le\", \"mu\", \"si\", \"gui\", \"fo\", \"se\", \"ma\", \"gu\", \"lo\", \"sa\", \"mi\", \"lu\", \"te\", \"te\", \"gui\", \"ro\", \"sa\", \"su\", \"le\", \"ru\", \"ri\", \"la\", \"me\", \"to\", \"lu\", \"te\", \"mi\", \"ga\", \"to\", \"gui\", \"lo\", \"me\", \"ga\", \"tu\", \"re\", \"lo\", \"ma\", \"pi\", \"gu\", \"lo\", \"fu\", \"ti\", \"fa\", \"se\", \"po\", \"ru\", \"re\", \"si\", \"ta\", \"po\", \"pi\", \"mo\", \"le\", \"sa\", \"lu\", \"fe\", \"mo\", \"fa\", \"li\", \"tu\", \"ro\", \"mu\", \"mi\", \"pa\", \"ge\", \"go\", \"gu\", \"ge\", \"li\", \"fa\", \"lo\", \"ti\", \"so\", \"te\", \"pa\", \"mu\", \"ge\", \"to\", \"ta\", \"ti\", \"ru\", \"so\", \"tu\", \"li\", \"ga\", \"re\", \"lo\", \"tu\", \"le\", \"ri\", \"sa\", \"ro\", \"mi\", \"po\", \"se\", \"ra\", \"fu\", \"te\", \"fo\", \"ra\", \"mi\", \"mu\", \"fo\", \"su\", \"gui\", \"ra\", \"le\", \"ro\", \"su\", \"fe\", \"pi\", \"ma\", \"mo\", \"si\", \"ro\", \"ge\", \"ma\", \"gu\", \"se\", \"go\", \"sa\", \"ri\", \"pu\", \"go\", \"gu\", \"pi\", \"ma\", \"pe\", \"fo\", \"fu\", \"se\", \"gui\", \"ra\", \"so\", \"ri\", \"to\", \"re\", \"la\", \"su\", \"le\", \"po\", \"ga\", \"fi\", \"fu\", \"mo\", \"lu\", \"si\", \"ta\", \"fe\", \"mo\", \"pu\", \"me\", \"ti\", \"pa\", \"go\", \"li\", \"fo\", \"pe\", \"fa\", \"ru\", \"me\", \"so\", \"pa\", \"si\", \"lu\", \"to\", \"pu\", \"fi\", \"sa\", \"te\", \"so\", \"mu\", \"pe\", \"fi\", \"la\", \"fo\", \"fi\", \"go\", \"fe\", \"ta\", \"pu\", \"pe\", \"ro\", \"la\", \"gui\", \"su\", \"po\", \"ro\", \"gu\", \"ma\", \"me\", \"mi\", \"ga\", \"fi\", \"go\", \"pu\", \"le\", \"fa\", \"mu\", \"fe\", \"mo\", \"ti\", \"te\", \"to\", \"li\", \"pa\", \"gu\", \"se\", \"to\", \"lu\", \"ga\", \"ge\", \"ri\", \"la\", \"gui\", \"mo\", \"mu\", \"te\", \"ga\", \"fu\", \"te\", \"ro\", \"mi\", \"ge\", \"fo\", \"pi\", \"sa\", \"lu\", \"le\", \"fo\", \"su\", \"sa\", \"le\", \"fi\", \"pa\", \"li\", \"fo\", \"tu\", \"pe\", \"pa\", \"ru\", \"ge\", \"go\", \"si\", \"me\", \"ro\", \"ti\", \"ma\", \"mu\", \"me\", \"lo\", \"pu\", \"fa\", \"se\", \"ti\", \"ma\", \"ri\", \"so\", \"ru\", \"fe\", \"ma\", \"lu\", \"se\", \"to\", \"li\", \"fe\", \"go\", \"ri\", \"la\", \"pu\", \"fe\", \"mo\", \"mu\", \"ta\", \"pe\", \"pi\", \"sa\", \"mi\", \"to\", \"su\", \"re\", \"ta\", \"gu\", \"le\", \"po\", \"pi\", \"se\", \"mo\", \"si\", \"fa\", \"fu\", \"re\", \"po\", \"tu\", \"ra\", \"re\", \"gui\", \"ta\", \"si\", \"po\", \"fu\", \"ge\", \"la\", \"tu\", \"re\", \"lo\", \"ri\", \"le\", \"lo\", \"mi\", \"ta\", \"su\", \"ge\", \"go\", \"fu\", \"pa\", \"te\", \"li\", \"ra\", \"ti\", \"lo\", \"gu\", \"se\", \"sa\", \"su\", \"pe\", \"so\", \"gui\", \"pe\", \"po\", \"gui\", \"ga\", \"ru\", \"pe\", \"so\", \"ru\", \"la\", \"fe\", \"si\", \"fa\", \"pi\", \"ro\", \"lu\", \"me\", \"ra\", \"pu\", \"me\", \"fo\", \"fi\", \"re\", \"so\", \"fi\", \"ra\", \"tu\", \"te\", \"fo\", \"sa\", \"li\", \"mu\", \"fe\", \"ri\", \"sa\", \"me\", \"fo\", \"mu\", \"sa\", \"gui\", \"po\", \"le\", \"su\", \"me\", \"fi\", \"ta\", \"so\", \"pu\", \"ra\", \"go\", \"ga\", \"mi\", \"tu\", \"pe\", \"pi\", \"ga\", \"le\", \"po\", \"ru\", \"fa\", \"ri\", \"mo\", \"se\", \"fu\", \"pe\", \"si\", \"la\", \"ro\", \"tu\", \"ma\", \"lo\", \"la\", \"pi\", \"gu\", \"re\", \"fi\", \"la\", \"re\", \"so\", \"su\", \"la\", \"ti\", \"fo\", \"me\", \"gu\", \"se\", \"ri\", \"pa\", \"go\", \"mu\", \"fa\", \"to\", \"fa\", \"ti\", \"pu\", \"me\", \"li\", \"fa\", \"fe\", \"to\", \"tu\", \"ma\", \"mi\", \"go\", \"pe\", \"mu\", \"ge\", \"gui\", \"ga\", \"po\", \"gu\", \"ga\", \"po\", \"pa\", \"gui\", \"lu\", \"le\", \"gui\", \"ma\", \"ge\", \"ro\", \"gu\", \"ga\", \"li\", \"ro\", \"ge\", \"pu\", \"te\", \"li\", \"fa\", \"to\", \"lu\", \"sa\", \"ro\", \"ta\", \"ri\", \"su\", \"te\", \"si\", \"ta\", \"pe\", \"go\", \"pu\", \"pa\", \"pi\", \"lo\", \"te\", \"ru\", \"fe\", \"pi\", \"sa\", \"fo\", \"fu\", \"pa\", \"so\", \"ra\", \"si\", \"fu\", \"se\", \"mi\", \"pa\", \"te\", \"mo\", \"fu\", \"ta\", \"si\", \"to\", \"re\", \"tu\", \"le\", \"mi\", \"ma\", \"mo\", \"su\", \"ta\", \"mo\", \"ma\", \"fi\", \"ru\", \"ge\", \"ti\", \"ra\", \"se\", \"lo\", \"lu\", \"ra\", \"fi\", \"so\", \"fe\", \"lu\", \"re\", \"ti\", \"ra\", \"lo\", \"ru\", \"la\", \"tu\", \"fa\", \"se\", \"ro\", \"ti\", \"li\", \"ge\", \"pa\", \"tu\", \"fo\", \"gu\", \"mo\", \"gui\", \"se\", \"ta\", \"me\", \"ra\", \"po\", \"pu\", \"li\", \"gui\", \"lu\", \"la\", \"fe\", \"go\", \"gui\", \"gui\", \"pe\", \"ma\", \"lu\", \"go\", \"tu\", \"go\", \"pi\", \"le\", \"ra\", \"re\", \"ta\", \"to\", \"tu\", \"ri\", \"si\", \"mu\", \"ra\", \"le\", \"to\", \"mi\", \"ti\", \"le\", \"fa\", \"gu\", \"so\", \"pu\", \"ro\", \"li\", \"re\", \"la\", \"ge\", \"fa\", \"so\", \"lu\", \"ti\", \"pi\", \"fu\", \"pa\", \"pe\", \"so\", \"pi\", \"ri\", \"se\", \"ga\", \"pu\", \"to\", \"ru\", \"so\", \"mi\", \"fe\", \"ma\", \"le\", \"ga\", \"fo\", \"ru\", \"fi\", \"ri\", \"gu\", \"ma\", \"me\", \"fo\", \"fi\", \"si\", \"re\", \"la\", \"mu\", \"po\", \"lu\", \"po\", \"ti\", \"me\", \"pa\", \"fe\", \"pa\", \"lo\", \"su\", \"gui\", \"fi\", \"pu\", \"ga\", \"te\", \"mo\", \"si\", \"fi\", \"te\", \"sa\", \"fu\", \"ro\", \"su\", \"lo\", \"fi\", \"te\", \"sa\", \"pe\", \"ma\", \"ro\", \"gu\", \"si\", \"ti\", \"su\", \"sa\", \"ge\", \"lo\", \"ri\", \"mi\", \"fe\", \"ra\", \"ru\", \"mo\", \"mu\", \"to\", \"ri\", \"ge\", \"fa\", \"te\", \"sa\", \"mo\", \"fu\", \"pi\", \"mi\", \"ru\", \"ta\", \"re\", \"po\", \"li\", \"pi\", \"me\", \"ta\", \"su\", \"lo\", \"fu\", \"fo\", \"si\", \"pe\", \"ga\", \"se\", \"la\", \"go\", \"mu\", \"mi\", \"li\", \"ra\", \"ri\", \"le\", \"lu\", \"go\", \"ri\", \"te\", \"to\", \"pa\", \"pu\", \"ma\", \"ti\", \"ru\", \"pe\", \"go\", \"su\", \"si\", \"te\", \"ra\", \"po\", \"ga\", \"ma\", \"gui\", \"fe\", \"tu\", \"mo\", \"fi\", \"re\", \"mo\", \"ma\", \"lu\", \"la\", \"mi\", \"fu\", \"re\", \"to\", \"ru\", \"ri\", \"me\", \"sa\", \"so\", \"fa\", \"pa\", \"li\", \"re\", \"pu\", \"to\", \"li\", \"pe\", \"go\", \"ga\", \"su\", \"sa\", \"ri\", \"pu\", \"me\", \"so\", \"lu\", \"pi\", \"ge\", \"ma\", \"lo\", \"ra\", \"fa\", \"fi\", \"se\", \"fu\", \"ro\", \"pi\", \"me\", \"po\", \"ta\", \"fu\", \"ga\", \"pi\", \"su\", \"te\", \"mo\", \"gu\", \"mi\", \"pe\", \"pa\", \"mo\", \"ma\", \"ta\", \"si\", \"te\", \"ru\", \"so\", \"gui\", \"se\", \"so\", \"la\", \"mu\", \"fa\", \"li\", \"lu\", \"se\", \"lo\", \"fu\", \"li\", \"le\", \"la\", \"ro\", \"sa\", \"ga\", \"ti\", \"pe\", \"mu\", \"fo\", \"mi\", \"ge\", \"lo\", \"sa\", \"ru\", \"pa\", \"gui\", \"gu\", \"ge\", \"ro\", \"tu\", \"gui\", \"se\", \"ga\", \"to\", \"pa\", \"la\", \"pi\", \"me\", \"su\", \"lo\", \"si\", \"fe\", \"ro\", \"ra\", \"tu\", \"ta\", \"fi\", \"tu\", \"fe\", \"fo\", \"mu\", \"ti\", \"re\", \"fa\", \"fo\", \"ta\", \"sa\", \"mi\", \"ge\", \"gu\", \"po\", \"ti\", \"le\", \"fo\", \"fa\", \"gu\", \"ra\", \"si\", \"mu\", \"le\", \"po\", \"pu\", \"fi\", \"fe\", \"ta\", \"go\", \"la\", \"po\", \"te\", \"mu\", \"pi\", \"ma\", \"su\", \"ga\", \"ge\", \"mi\", \"so\", \"gu\", \"li\", \"re\", \"pa\", \"to\", \"mu\", \"mo\", \"se\", \"sa\", \"li\", \"me\", \"mo\", \"le\", \"gu\", \"li\", \"fa\", \"pu\", \"la\", \"re\", \"li\", \"lo\", \"ru\", \"mi\", \"te\", \"ma\", \"go\", \"ru\", \"so\", \"le\", \"ga\", \"fi\", \"pe\", \"lo\", \"ge\", \"tu\", \"mi\", \"ta\", \"lu\", \"ra\", \"me\", \"fi\", \"mo\", \"tu\", \"fi\", \"ge\", \"sa\", \"po\", \"gu\", \"ro\", \"re\", \"la\", \"si\", \"re\", \"to\", \"pe\", \"ru\", \"ti\", \"ra\", \"fu\", \"ta\", \"le\", \"ri\", \"po\", \"lu\", \"ti\", \"me\", \"fa\", \"lo\", \"fu\", \"lo\", \"pe\", \"ra\", \"gui\", \"ge\", \"so\", \"se\", \"fu\", \"ri\", \"la\", \"gu\", \"ma\", \"fe\", \"pi\", \"to\", \"fu\", \"gui\", \"fe\", \"ga\", \"so\", \"tu\", \"po\", \"ge\", \"fa\", \"mi\", \"se\", \"ro\", \"fe\", \"su\", \"si\", \"pa\", \"ru\", \"fa\", \"pe\", \"gui\", \"go\", \"mu\", \"ri\", \"le\", \"ra\", \"mo\", \"pu\", \"to\", \"me\", \"ma\", \"pi\", \"te\", \"fo\", \"me\", \"pu\", \"gui\", \"sa\", \"mu\", \"sa\", \"se\", \"si\", \"ro\", \"su\", \"si\", \"pe\", \"ta\", \"fo\", \"su\", \"fo\", \"te\", \"pa\", \"ri\", \"fe\", \"go\", \"re\", \"lu\", \"fi\", \"ga\", \"tu\", \"pa\", \"te\", \"ti\", \"fo\", \"pu\", \"pi\", \"se\", \"la\", \"ro\", \"lu\", \"go\", \"fe\", \"ta\", \"ti\", \"le\", \"fa\", \"so\", \"gui\", \"su\", \"ge\", \"po\", \"pa\", \"li\", \"te\", \"lu\", \"fa\", \"ru\", \"se\", \"gui\", \"to\", \"mo\", \"ga\", \"pi\", \"ru\", \"fe\", \"su\", \"ra\", \"go\", \"pi\", \"gu\", \"te\", \"go\", \"ma\", \"pi\", \"le\", \"mu\", \"ta\", \"gu\", \"ge\", \"ti\", \"so\", \"go\", \"sa\", \"ri\", \"mu\", \"ge\", \"tu\", \"la\", \"to\", \"fi\", \"lu\", \"le\", \"to\", \"sa\", \"ri\", \"se\", \"gu\", \"ga\", \"su\", \"fe\", \"mi\", \"ro\", \"to\", \"ma\", \"mi\", \"tu\", \"pe\", \"gu\", \"pa\", \"po\", \"mi\", \"mu\", \"me\", \"mo\", \"ta\", \"gui\", \"re\", \"tu\", \"sa\", \"mu\", \"te\", \"li\", \"fo\", \"ro\", \"ta\", \"si\", \"pu\", \"le\", \"pu\", \"sa\", \"fo\", \"ti\", \"pu\", \"pe\", \"fo\", \"la\", \"ti\", \"ge\", \"su\", \"ma\", \"lu\", \"le\", \"pi\", \"lo\", \"fo\", \"la\", \"fi\", \"su\", \"te\", \"fu\", \"ma\", \"lo\", \"si\", \"tu\", \"se\", \"lo\", \"ra\", \"fi\", \"me\", \"ru\", \"pa\", \"fu\", \"me\", \"fi\", \"mo\", \"po\", \"fa\", \"gui\", \"lu\", \"se\", \"ru\", \"ga\", \"mo\", \"ri\", \"ru\", \"re\", \"so\", \"fa\", \"si\", \"pe\", \"fu\", \"ra\", \"tu\", \"pe\", \"ri\", \"po\", \"lo\", \"ra\", \"ti\", \"fu\", \"re\", \"lu\", \"ta\", \"ro\", \"li\", \"fu\", \"fe\", \"ro\", \"ga\", \"mi\", \"fe\", \"pu\", \"la\", \"pu\", \"re\", \"si\", \"go\", \"so\", \"pa\", \"li\", \"gu\", \"me\", \"mu\", \"mi\", \"ga\", \"te\", \"ru\", \"lo\", \"fe\", \"li\", \"go\", \"gu\", \"la\", \"te\", \"ga\", \"ro\", \"gu\", \"gui\", \"mo\", \"fa\", \"me\", \"pi\", \"lu\", \"fe\", \"ri\", \"fa\", \"le\", \"tu\", \"fo\", \"se\", \"fi\", \"fo\", \"pu\", \"ra\", \"re\", \"la\", \"go\", \"pu\", \"ti\", \"to\", \"ma\", \"pe\", \"si\", \"pu\", \"me\", \"gui\", \"ma\", \"re\", \"gu\", \"po\", \"le\", \"pi\", \"mo\", \"mu\", \"ga\", \"ge\", \"ma\", \"to\", \"su\", \"si\", \"so\", \"ga\", \"fe\", \"mi\", \"mu\", \"se\", \"ti\", \"ta\", \"me\", \"su\", \"to\", \"pe\", \"gui\", \"lo\", \"lu\", \"ta\", \"fe\", \"fa\", \"po\", \"fu\", \"pi\", \"ro\", \"ta\", \"le\", \"li\", \"fu\", \"re\", \"si\", \"ra\", \"se\", \"fu\", \"ro\", \"te\", \"mi\", \"so\", \"ru\", \"ma\", \"se\", \"pa\", \"mo\", \"tu\", \"ri\", \"po\", \"pa\", \"te\", \"fi\", \"gu\", \"te\", \"li\", \"sa\", \"ge\", \"mu\", \"mo\", \"ge\", \"ti\", \"ro\", \"su\", \"pa\", \"pe\", \"ra\", \"so\", \"ru\", \"fi\", \"go\", \"ra\", \"ge\", \"ri\", \"tu\", \"le\", \"pi\", \"pa\", \"pe\", \"pu\", \"go\", \"re\", \"si\", \"po\", \"fu\", \"fa\", \"le\", \"ta\", \"fo\", \"lu\", \"li\", \"fo\", \"sa\", \"re\", \"ti\", \"su\", \"ge\", \"fi\", \"la\", \"fe\", \"lu\", \"so\", \"me\", \"ri\", \"to\", \"tu\", \"sa\", \"me\", \"sa\", \"lo\", \"mu\", \"mi\", \"lo\", \"la\", \"se\", \"gui\", \"ru\", \"pe\", \"ga\", \"li\", \"le\", \"fo\", \"su\", \"se\", \"ro\", \"ri\", \"gu\", \"pa\", \"fi\", \"le\", \"fa\", \"po\", \"mu\", \"se\", \"mi\", \"gu\", \"sa\", \"go\", \"go\", \"pa\", \"si\", \"fe\", \"po\", \"lu\", \"ge\", \"fo\", \"mi\", \"fu\", \"ra\", \"ri\", \"re\", \"ta\", \"go\", \"gu\", \"te\", \"fi\", \"mu\", \"la\", \"to\", \"po\", \"la\", \"ri\", \"pe\", \"ro\", \"ru\", \"pe\", \"go\", \"fi\", \"pu\", \"ma\", \"pi\", \"pe\", \"ma\", \"mo\", \"ru\", \"le\", \"gui\", \"ru\", \"ra\", \"lo\", \"so\", \"ra\", \"mi\", \"re\", \"so\", \"fu\", \"fe\", \"to\", \"ti\", \"tu\", \"fa\", \"li\", \"ge\", \"la\", \"fo\", \"lu\", \"fe\", \"li\", \"su\", \"ga\", \"po\", \"lo\", \"ta\", \"pi\", \"ge\", \"to\", \"gu\", \"me\", \"lo\", \"gui\", \"lu\", \"sa\", \"gui\", \"te\", \"pa\", \"ro\", \"tu\", \"pe\", \"si\", \"pu\", \"pa\", \"so\", \"fo\", \"sa\", \"ti\", \"te\", \"mo\", \"mu\", \"le\", \"po\", \"si\", \"mu\", \"ta\", \"mi\", \"me\", \"ra\", \"so\", \"fu\", \"ge\", \"ri\", \"fu\", \"ta\", \"ro\", \"mo\", \"ma\", \"gui\", \"se\", \"lo\", \"tu\", \"te\", \"so\", \"li\", \"su\", \"ga\", \"ti\", \"se\", \"sa\", \"lo\", \"pu\", \"me\", \"pi\", \"tu\", \"fa\", \"mo\", \"to\", \"fa\", \"fi\", \"me\", \"go\", \"pu\", \"re\", \"mo\", \"pi\", \"ru\", \"la\", \"si\", \"fe\", \"ga\", \"to\", \"su\", \"re\", \"ti\", \"lu\", \"ma\", \"fo\", \"ro\", \"pe\", \"pi\", \"lo\", \"ga\", \"tu\", \"ga\", \"ri\", \"le\", \"ro\", \"pu\", \"gu\", \"re\", \"so\", \"ga\", \"si\", \"ta\", \"tu\", \"fo\", \"ge\", \"mi\", \"pi\", \"me\", \"ri\", \"go\", \"pa\", \"gu\", \"ma\", \"gui\", \"re\", \"so\", \"gu\", \"ru\", \"fe\", \"go\", \"ta\", \"ti\", \"ma\", \"gu\", \"ro\", \"fe\", \"fi\", \"fi\", \"fe\", \"mi\", \"fo\", \"ra\", \"pu\", \"ra\", \"fi\", \"me\", \"fo\", \"fu\", \"tu\", \"me\", \"lo\", \"sa\", \"pi\", \"ga\", \"pu\", \"go\", \"re\", \"si\", \"mi\", \"te\", \"si\", \"so\", \"ta\", \"su\", \"fa\", \"pi\", \"te\", \"lo\", \"mu\", \"fu\", \"le\", \"to\", \"pa\", \"mi\", \"pa\", \"mu\", \"lo\", \"te\", \"gui\", \"ri\", \"ge\", \"ti\", \"mo\", \"fa\", \"ru\", \"pa\", \"ti\", \"pe\", \"po\", \"su\", \"su\", \"pe\", \"fo\", \"ma\", \"fi\", \"sa\", \"fu\", \"po\", \"pe\", \"ri\", \"gui\", \"le\", \"fi\", \"po\", \"sa\", \"mu\", \"la\", \"li\", \"se\", \"go\", \"tu\", \"lu\", \"se\", \"po\", \"ra\", \"ri\", \"la\", \"lu\", \"mo\", \"le\", \"ti\", \"li\", \"re\", \"gui\", \"ro\", \"ma\", \"fu\", \"ta\", \"si\", \"ge\", \"to\", \"lu\", \"mu\", \"te\", \"ro\", \"fa\", \"gui\", \"fa\", \"su\", \"so\", \"se\", \"pi\", \"si\", \"se\", \"li\", \"to\", \"la\", \"lu\", \"sa\", \"mi\", \"fe\", \"mo\", \"ru\", \"pu\", \"ge\", \"mo\", \"la\", \"li\", \"ra\", \"ru\", \"to\", \"me\", \"li\", \"ti\", \"la\", \"ti\", \"lu\", \"se\", \"lo\", \"mo\", \"fa\", \"re\", \"fu\", \"si\", \"tu\", \"la\", \"fe\", \"lo\", \"fi\", \"lu\", \"gui\", \"re\", \"mo\", \"pa\", \"ro\", \"ra\", \"pi\", \"tu\", \"re\", \"ro\", \"ro\", \"ma\", \"te\", \"mu\", \"gui\", \"gu\", \"ra\", \"me\", \"po\", \"gui\", \"gu\", \"fi\", \"ge\", \"lo\", \"ga\", \"mo\", \"ta\", \"fi\", \"gu\", \"me\", \"go\", \"so\", \"sa\", \"ge\", \"su\", \"li\", \"su\", \"ga\", \"ge\", \"so\", \"ti\", \"su\", \"li\", \"se\", \"so\", \"ra\", \"po\", \"sa\", \"ri\", \"mu\", \"fe\", \"to\", \"po\", \"pa\", \"le\", \"gu\", \"ri\", \"ru\", \"fa\", \"re\", \"mo\", \"mi\", \"mu\", \"pi\", \"pe\", \"fo\", \"ma\", \"to\", \"fa\", \"si\", \"pu\", \"ge\", \"fo\", \"go\", \"ra\", \"fe\", \"lu\", \"ti\", \"mu\", \"ta\", \"pe\", \"ro\", \"pi\", \"ru\", \"mi\", \"fe\", \"ro\", \"fa\", \"fo\", \"pa\", \"mi\", \"ru\", \"le\", \"po\", \"to\", \"ta\", \"se\", \"ru\", \"pi\", \"lu\", \"pa\", \"le\", \"to\", \"li\", \"pu\", \"si\", \"me\", \"to\", \"sa\", \"go\", \"ma\", \"gui\", \"fu\", \"te\", \"so\", \"fo\", \"la\", \"me\", \"tu\", \"fi\", \"fu\", \"sa\", \"te\", \"go\", \"si\", \"fu\", \"ri\", \"le\", \"go\", \"ta\", \"lo\", \"ga\", \"li\", \"su\", \"pe\", \"mo\", \"lo\", \"ga\", \"pe\", \"pu\", \"mi\", \"pu\", \"ma\", \"se\", \"fo\", \"ri\", \"tu\", \"ti\", \"te\", \"po\", \"la\", \"so\", \"ta\", \"re\", \"ro\", \"pi\", \"ru\", \"gui\", \"fu\", \"se\", \"ga\", \"mo\", \"fi\", \"fa\", \"po\", \"se\", \"gu\", \"re\", \"ma\", \"pi\", \"to\", \"pu\", \"mo\", \"ga\", \"le\", \"go\", \"si\", \"lu\", \"ri\", \"su\", \"te\", \"ta\", \"fo\", \"ti\", \"ra\", \"mo\", \"pe\", \"pu\", \"te\", \"pa\", \"si\", \"fo\", \"lu\", \"fo\", \"la\", \"se\", \"po\", \"gui\", \"pu\", \"li\", \"gu\", \"re\", \"ma\", \"to\", \"li\", \"ma\", \"so\", \"me\", \"lu\", \"me\", \"ga\", \"gui\", \"po\", \"su\", \"go\", \"pa\", \"pe\", \"mo\", \"fi\", \"tu\", \"pi\", \"ru\", \"me\", \"pa\", \"po\", \"si\", \"ta\", \"ro\", \"ge\", \"fu\", \"pe\", \"sa\", \"fi\", \"so\", \"ru\", \"ro\", \"ra\", \"fe\", \"to\", \"mi\", \"su\", \"mi\", \"lu\", \"le\", \"la\", \"so\", \"gui\", \"pa\", \"go\", \"le\", \"ru\", \"le\", \"ta\", \"ti\", \"lo\", \"fu\", \"po\", \"sa\", \"ge\", \"lo\", \"li\", \"mu\", \"si\", \"pu\", \"fe\", \"ra\", \"go\", \"mi\", \"ga\", \"lo\", \"fe\", \"su\", \"ge\", \"ra\", \"li\", \"mo\", \"tu\", \"to\", \"fa\", \"te\", \"fo\", \"ti\", \"fu\", \"ti\", \"tu\", \"ge\", \"fa\", \"lo\", \"pi\", \"la\", \"fo\", \"te\", \"tu\", \"se\", \"fa\", \"ri\", \"go\", \"mu\", \"so\", \"ma\", \"me\", \"so\", \"ri\", \"gu\", \"fi\", \"mu\", \"pe\", \"sa\", \"ro\", \"ri\", \"sa\", \"to\", \"re\", \"mu\", \"fe\", \"la\", \"mi\", \"ro\", \"gu\", \"lo\", \"sa\", \"ge\", \"lu\", \"ri\", \"go\", \"gu\", \"ri\", \"go\", \"ra\", \"le\", \"lu\", \"ri\", \"re\", \"so\", \"ga\", \"me\", \"su\", \"gui\", \"fa\", \"to\", \"so\", \"ma\", \"re\", \"ru\", \"si\", \"lo\", \"fu\", \"si\", \"lo\", \"pa\", \"re\", \"fu\", \"gui\", \"fe\", \"mo\", \"ta\", \"ge\", \"gu\", \"si\", \"sa\", \"lo\", \"fo\", \"la\", \"pe\", \"gu\", \"mi\", \"mo\", \"tu\", \"gui\", \"mo\", \"sa\", \"me\", \"ru\", \"pi\", \"pe\", \"po\", \"sa\", \"re\", \"ru\", \"ri\", \"pa\", \"mo\", \"to\", \"ra\", \"fe\", \"fu\", \"ti\", \"ro\", \"pu\", \"mi\", \"so\", \"la\", \"pe\", \"pu\", \"mi\", \"ge\", \"fo\", \"fa\", \"le\", \"lu\", \"fi\", \"ra\", \"so\", \"ro\", \"fa\", \"le\", \"tu\", \"fi\", \"to\", \"ru\", \"ti\", \"to\", \"ma\", \"ge\", \"gu\", \"fi\", \"te\", \"lo\", \"la\", \"fe\", \"fu\", \"ti\", \"ga\", \"fo\", \"mo\", \"ta\", \"te\", \"mu\", \"gui\", \"fo\", \"mu\", \"fi\", \"fo\", \"fa\", \"fe\", \"mu\", \"ti\", \"le\", \"go\", \"ra\", \"te\", \"tu\", \"li\", \"ta\", \"ro\", \"go\", \"pa\", \"se\", \"su\", \"li\", \"so\", \"lu\", \"pi\", \"ro\", \"ta\", \"te\", \"su\", \"si\", \"se\", \"to\", \"ma\", \"se\", \"pu\", \"mi\", \"la\", \"po\", \"lo\", \"ga\", \"me\", \"pu\", \"pi\", \"po\", \"su\", \"li\", \"po\", \"ga\", \"se\", \"tu\", \"li\", \"me\", \"ro\", \"pa\", \"pe\", \"mu\", \"pi\", \"ma\", \"go\", \"po\", \"fu\", \"ta\", \"mi\", \"le\", \"po\", \"ge\", \"ma\", \"gu\", \"li\", \"to\", \"ge\", \"po\", \"li\", \"ga\", \"gu\", \"ru\", \"fe\", \"lo\", \"sa\", \"li\", \"pe\", \"tu\", \"ga\", \"pi\", \"se\", \"so\", \"pe\", \"ra\", \"fu\", \"ri\", \"fo\", \"me\", \"fo\", \"pi\", \"la\", \"pu\", \"gu\", \"se\", \"ro\", \"ra\", \"fi\", \"se\", \"gu\", \"la\", \"fi\", \"te\", \"go\", \"te\", \"fa\", \"pu\", \"si\", \"go\", \"re\", \"mo\", \"ti\", \"ra\", \"lu\", \"pu\", \"le\", \"po\", \"ga\", \"ri\", \"te\", \"pu\", \"sa\", \"gui\", \"ge\", \"lo\", \"le\", \"la\", \"su\", \"gui\", \"mo\", \"te\", \"lo\", \"gui\", \"sa\", \"tu\", \"mu\", \"te\", \"fo\", \"fa\", \"ti\", \"re\", \"su\", \"fa\", \"si\", \"re\", \"mo\", \"me\", \"ta\", \"tu\", \"pi\", \"so\", \"le\", \"ro\", \"mi\", \"ma\", \"mu\", \"tu\", \"me\", \"mo\", \"la\", \"mi\", \"fe\", \"mu\", \"pa\", \"ti\", \"pe\", \"fo\", \"fe\", \"sa\", \"ru\", \"mi\", \"lo\", \"se\", \"to\", \"fi\", \"fa\", \"fu\", \"fu\", \"re\", \"so\", \"ta\", \"si\", \"le\", \"lu\", \"ra\", \"li\", \"me\", \"ro\", \"se\", \"ga\", \"lu\", \"fi\", \"ro\", \"fe\", \"so\", \"si\", \"ta\", \"ru\", \"lu\", \"pe\", \"to\", \"ma\", \"pi\", \"ge\", \"ru\", \"ma\", \"ri\", \"fe\", \"to\", \"re\", \"pa\", \"mu\", \"ti\", \"po\", \"pe\", \"go\", \"ri\", \"pa\", \"su\", \"su\", \"ge\", \"go\", \"pa\", \"gui\", \"me\", \"ge\", \"ru\", \"ta\", \"ti\", \"mo\", \"su\", \"li\", \"me\", \"lo\", \"pa\", \"ge\", \"po\", \"mi\", \"pa\", \"fu\", \"ta\", \"te\", \"ti\", \"su\", \"mo\", \"po\", \"te\", \"su\", \"fa\", \"si\", \"lo\", \"fu\", \"pi\", \"ge\", \"mo\", \"fa\", \"pe\", \"go\", \"li\", \"ra\", \"su\", \"ma\", \"fe\", \"li\", \"mu\", \"to\", \"go\", \"fe\", \"fu\", \"ma\", \"ri\", \"to\", \"mu\", \"ti\", \"le\", \"po\", \"sa\", \"me\", \"so\", \"ri\", \"ga\", \"pu\", \"la\", \"ge\", \"mi\", \"gu\", \"lo\", \"fo\", \"re\", \"gu\", \"ra\", \"fi\", \"po\", \"gu\", \"gui\", \"re\", \"ro\", \"ta\", \"re\", \"to\", \"fi\", \"la\", \"tu\", \"sa\", \"me\", \"pi\", \"tu\", \"po\", \"to\", \"me\", \"tu\", \"pa\", \"pi\", \"so\", \"ru\", \"si\", \"te\", \"fo\", \"ma\", \"se\", \"mo\", \"pi\", \"sa\", \"ru\", \"fa\", \"re\", \"si\", \"ru\", \"fo\", \"ro\", \"se\", \"mu\", \"ga\", \"mi\", \"fo\", \"lu\", \"fi\", \"pe\", \"go\", \"la\", \"te\", \"lo\", \"gui\", \"fa\", \"mu\", \"ra\", \"se\", \"gui\", \"fu\", \"so\", \"so\", \"le\", \"pu\", \"sa\", \"gui\", \"go\", \"tu\", \"ri\", \"fe\", \"so\", \"ga\", \"fe\", \"fo\", \"si\", \"ma\", \"lu\", \"pa\", \"le\", \"fi\", \"lu\", \"go\", \"mo\", \"pe\", \"lu\", \"la\", \"li\", \"ro\", \"pu\", \"mi\", \"se\", \"to\", \"ra\", \"le\", \"ro\", \"ti\", \"ta\", \"gu\", \"ga\", \"pe\", \"ri\", \"pu\", \"ro\", \"lo\", \"lo\", \"gui\", \"la\", \"me\", \"gu\", \"se\", \"ri\", \"to\", \"ma\", \"tu\", \"mo\", \"pe\", \"ri\", \"fa\", \"lu\", \"sa\", \"ri\", \"se\", \"fu\", \"po\", \"ri\", \"ro\", \"si\", \"ra\", \"fe\", \"mu\", \"le\", \"ti\", \"lo\", \"pa\", \"gu\", \"lo\", \"se\", \"ti\", \"sa\", \"tu\", \"la\", \"gui\", \"ge\", \"su\", \"ro\", \"ti\", \"fo\", \"ri\", \"ga\", \"le\", \"lu\", \"ge\", \"gui\", \"go\", \"sa\", \"fu\", \"fo\", \"re\", \"fi\", \"ma\", \"ru\", \"ga\", \"ti\", \"re\", \"mu\", \"mo\", \"pi\", \"mo\", \"fi\", \"pa\", \"ge\", \"pu\", \"re\", \"li\", \"ro\", \"ra\", \"su\", \"to\", \"ge\", \"pi\", \"ga\", \"su\", \"pa\", \"pi\", \"fe\", \"ru\", \"lo\", \"li\", \"go\", \"pi\", \"ta\", \"pe\", \"su\", \"pe\", \"fi\", \"fo\", \"fa\", \"ru\", \"ro\", \"fe\", \"li\", \"ta\", \"pu\", \"ta\", \"mi\", \"te\", \"tu\", \"so\", \"fi\", \"to\", \"mi\", \"sa\", \"re\", \"ru\", \"te\", \"si\", \"mo\", \"ta\", \"pu\", \"po\", \"le\", \"si\", \"ra\", \"fu\", \"ra\", \"si\", \"pe\", \"gu\", \"to\", \"gui\", \"po\", \"li\", \"fa\", \"te\", \"tu\", \"fe\", \"pi\", \"so\", \"ga\", \"lu\", \"go\", \"me\", \"gui\", \"la\", \"gu\", \"ma\", \"fi\", \"me\", \"pu\", \"fo\", \"si\", \"so\", \"ti\", \"ma\", \"se\", \"fu\", \"me\", \"mi\", \"po\", \"la\", \"mu\", \"so\", \"te\", \"mi\", \"pa\", \"mu\", \"fa\", \"li\", \"le\", \"lu\", \"go\", \"mi\", \"me\", \"pa\", \"pu\", \"mi\", \"mo\", \"mo\", \"mu\", \"ma\", \"ge\", \"si\", \"su\", \"so\", \"ra\", \"mi\", \"ge\", \"fo\", \"fe\", \"ta\", \"ti\", \"fu\", \"ro\", \"re\", \"ra\", \"lu\", \"fi\", \"lo\", \"so\", \"fu\", \"ga\", \"se\", \"ri\", \"mu\", \"to\", \"ma\", \"si\", \"te\", \"ro\", \"le\", \"ra\", \"ri\", \"tu\", \"so\", \"ge\", \"ma\", \"su\", \"gui\", \"to\", \"to\", \"ru\", \"pa\", \"le\", \"ti\", \"pu\", \"fo\", \"la\", \"fi\", \"pe\", \"so\", \"re\", \"sa\", \"si\", \"pu\", \"fo\", \"se\", \"ta\", \"tu\", \"ri\", \"go\", \"lo\", \"pu\", \"la\", \"me\", \"gui\", \"fu\", \"go\", \"ta\", \"li\", \"se\", \"go\", \"pe\", \"pa\", \"gui\", \"mu\", \"po\", \"le\", \"fa\", \"ru\", \"li\", \"fo\", \"ro\", \"lu\", \"fa\", \"pe\", \"mi\", \"lu\", \"mo\", \"fa\", \"pi\", \"me\", \"to\", \"ge\", \"fa\", \"mi\", \"ru\", \"go\", \"te\", \"la\", \"fu\", \"si\", \"so\", \"fo\", \"tu\", \"sa\", \"te\", \"pi\", \"gu\", \"lo\", \"sa\", \"gui\", \"re\", \"lo\", \"se\", \"la\", \"pi\", \"gu\", \"mo\", \"fe\", \"ga\", \"gu\", \"ti\", \"po\", \"po\", \"gu\", \"ta\", \"re\", \"li\", \"tu\", \"po\", \"pa\", \"ri\", \"fe\", \"po\", \"me\", \"ga\", \"fi\", \"su\", \"to\", \"pe\", \"sa\", \"mu\", \"pi\", \"ro\", \"go\", \"su\", \"ra\", \"fe\", \"fi\", \"ru\", \"ro\", \"ga\", \"ti\", \"le\", \"mo\", \"te\", \"ma\", \"li\", \"lu\", \"lo\", \"lu\", \"ro\", \"ti\", \"sa\", \"fe\", \"me\", \"ta\", \"su\", \"so\", \"li\", \"fo\", \"mu\", \"ga\", \"gui\", \"se\", \"me\", \"fi\", \"gu\", \"ro\", \"la\", \"si\", \"su\", \"fo\", \"pi\", \"ta\", \"ge\", \"fe\", \"sa\", \"pu\", \"go\", \"pi\", \"mo\", \"lu\", \"fa\", \"li\", \"te\", \"re\", \"si\", \"su\", \"so\", \"ra\", \"gui\", \"ru\", \"so\", \"ri\", \"ma\", \"te\", \"ge\", \"la\", \"fu\", \"po\", \"ri\", \"to\", \"fu\", \"ta\", \"ri\", \"re\", \"te\", \"gui\", \"tu\", \"mo\", \"ta\", \"mi\", \"mu\", \"po\", \"fi\", \"la\", \"le\", \"te\", \"ma\", \"gu\", \"to\", \"si\", \"po\", \"tu\", \"pa\", \"ti\", \"le\", \"le\", \"ti\", \"ru\", \"po\", \"sa\", \"li\", \"pu\", \"go\", \"mi\", \"pa\", \"me\", \"pe\", \"fa\", \"ru\", \"mo\", \"fi\", \"go\", \"ru\", \"ra\", \"si\", \"fe\", \"ge\", \"mi\", \"lu\", \"lo\", \"ga\", \"ri\", \"fu\", \"to\", \"li\", \"ra\", \"pe\", \"re\", \"pa\", \"tu\", \"ro\", \"mi\", \"so\", \"su\", \"la\", \"pi\", \"ge\", \"se\", \"pi\", \"mu\", \"fo\", \"pa\", \"pi\", \"tu\", \"lo\", \"gui\", \"fa\", \"re\", \"le\", \"ra\", \"lu\", \"lo\", \"gui\", \"lo\", \"pu\", \"ma\", \"mi\", \"pe\", \"fe\", \"ri\", \"pu\", \"to\", \"fa\", \"ti\", \"gu\", \"mo\", \"si\", \"ga\", \"se\", \"se\", \"ga\", \"mu\", \"fo\", \"ti\", \"ro\", \"gu\", \"sa\", \"fi\", \"me\", \"pe\", \"li\", \"fu\", \"go\", \"ma\", \"fi\", \"tu\", \"pa\", \"me\", \"si\", \"to\", \"le\", \"ta\", \"lu\", \"so\", \"li\", \"se\", \"sa\", \"pu\", \"po\", \"ri\", \"go\", \"pa\", \"le\", \"su\", \"ri\", \"go\", \"gu\", \"ta\", \"ge\", \"pi\", \"go\", \"ge\", \"sa\", \"pu\", \"po\", \"si\", \"te\", \"pa\", \"su\", \"so\", \"gui\", \"fo\", \"fa\", \"me\", \"tu\", \"pi\", \"so\", \"fu\", \"ra\", \"le\", \"ri\", \"ro\", \"se\", \"la\", \"ru\", \"to\", \"pi\", \"ge\", \"ta\", \"fu\", \"to\", \"ti\", \"po\", \"ga\", \"te\", \"pu\", \"ti\", \"ro\", \"ru\", \"sa\", \"te\", \"ti\", \"so\", \"pe\", \"ra\", \"fu\", \"go\", \"ti\", \"pe\", \"ga\", \"gu\", \"ro\", \"fi\", \"to\", \"ma\", \"fe\", \"gu\", \"mi\", \"mo\", \"pu\", \"ga\", \"pe\", \"gui\", \"fo\", \"fe\", \"ga\", \"mu\", \"ro\", \"fi\", \"re\", \"fa\", \"lu\", \"mo\", \"si\", \"so\", \"ra\", \"re\", \"fu\", \"gui\", \"fo\", \"su\", \"ma\", \"fe\", \"mi\", \"mo\", \"re\", \"fa\", \"su\", \"mo\", \"gui\", \"me\", \"la\", \"mu\", \"go\", \"pi\", \"lo\", \"sa\", \"se\", \"lu\", \"li\", \"po\", \"lu\", \"fa\", \"se\", \"fi\", \"po\", \"te\", \"pa\", \"tu\", \"fo\", \"mi\", \"le\", \"ra\", \"tu\", \"fo\", \"li\", \"ro\", \"ta\", \"ge\", \"mu\", \"fi\", \"to\", \"mu\", \"la\", \"re\", \"li\", \"lo\", \"me\", \"ma\", \"gu\", \"lo\", \"ri\", \"fe\", \"ma\", \"ru\", \"lo\", \"mi\", \"mo\", \"la\", \"pe\", \"ru\", \"si\", \"lo\", \"ra\", \"fi\", \"te\", \"gu\", \"lo\", \"su\", \"fe\", \"so\", \"la\", \"ti\", \"ru\", \"pa\", \"fi\", \"pe\", \"po\", \"ta\", \"ri\", \"po\", \"lu\", \"pe\", \"ro\", \"fa\", \"li\", \"me\", \"su\", \"go\", \"tu\", \"ge\", \"ro\", \"ma\", \"si\", \"tu\", \"ra\", \"gui\", \"te\", \"to\", \"fa\", \"si\", \"ro\", \"mu\", \"re\", \"po\", \"ta\", \"pi\", \"fe\", \"ru\", \"mo\", \"ru\", \"me\", \"to\", \"ta\", \"fi\", \"gu\", \"fa\", \"si\", \"ge\", \"so\", \"sa\", \"li\", \"so\", \"pu\", \"me\", \"fo\", \"ma\", \"si\", \"pe\", \"lu\", \"po\", \"fu\", \"re\", \"po\", \"fa\", \"li\", \"mu\", \"sa\", \"pi\", \"se\", \"fo\", \"ma\", \"gui\", \"mo\", \"fu\", \"fe\", \"lo\", \"pa\", \"gui\", \"re\", \"fu\", \"so\", \"gu\", \"se\", \"go\", \"sa\", \"gui\", \"su\", \"la\", \"mi\", \"le\", \"ro\", \"la\", \"mi\", \"fo\", \"su\", \"te\", \"go\", \"ga\", \"ti\", \"se\", \"pu\", \"to\", \"mu\", \"le\", \"lo\", \"ra\", \"mi\", \"lu\", \"ta\", \"ri\", \"me\", \"lo\", \"ra\", \"fi\", \"to\", \"tu\", \"ge\", \"so\", \"la\", \"ri\", \"le\", \"tu\", \"fo\", \"lu\", \"te\", \"mo\", \"ga\", \"ri\", \"pu\", \"ma\", \"li\", \"fe\", \"mo\", \"ga\", \"pi\", \"go\", \"ru\", \"se\", \"mo\", \"sa\", \"mi\", \"ge\", \"mu\", \"ro\", \"pu\", \"pe\", \"fo\", \"pa\", \"pi\", \"fu\", \"ga\", \"ti\", \"re\", \"go\", \"pa\", \"ti\", \"lo\", \"gu\", \"le\", \"to\", \"ru\", \"ra\", \"po\", \"se\", \"pi\", \"te\", \"so\", \"ri\", \"lu\", \"sa\", \"pu\", \"si\", \"fa\", \"go\", \"se\", \"me\", \"su\", \"li\", \"la\", \"mo\", \"ta\", \"pu\", \"ga\", \"ro\", \"re\", \"ri\", \"se\", \"fo\", \"li\", \"tu\", \"fa\", \"mu\", \"pi\", \"pa\", \"mo\", \"te\", \"ge\", \"pu\", \"gui\", \"ga\", \"so\", \"ga\", \"lu\", \"sa\", \"fo\", \"fe\", \"li\", \"pe\", \"lo\", \"ti\", \"su\", \"ga\", \"ru\", \"li\", \"sa\", \"ro\", \"me\", \"fe\", \"lu\", \"fi\", \"pa\", \"ro\", \"la\", \"mu\", \"fa\", \"lo\", \"ge\", \"ti\", \"re\", \"ro\", \"fi\", \"gu\", \"ma\", \"fu\", \"ri\", \"ma\", \"so\", \"le\", \"se\", \"gu\", \"ti\", \"ma\", \"go\", \"ma\", \"tu\", \"pa\", \"go\", \"le\", \"gui\", \"me\", \"go\", \"gui\", \"ru\", \"ra\", \"su\", \"mi\", \"ra\", \"fo\", \"fe\", \"re\", \"fu\", \"mi\", \"fa\", \"po\", \"fa\", \"fu\", \"ma\", \"so\", \"te\", \"mi\", \"fe\", \"mo\", \"pi\", \"pu\", \"pa\", \"gu\", \"gui\", \"ta\", \"lo\", \"ge\", \"pe\", \"tu\", \"pi\", \"ra\", \"lo\", \"ra\", \"su\", \"la\", \"mo\", \"pe\", \"fi\", \"le\", \"to\", \"si\", \"mu\", \"la\", \"tu\", \"fi\", \"la\", \"po\", \"re\", \"le\", \"mu\", \"si\", \"sa\", \"fo\", \"sa\", \"gu\", \"ta\", \"to\", \"me\", \"si\", \"ge\", \"po\", \"mi\", \"fu\", \"ta\", \"lu\", \"ti\", \"ga\", \"to\", \"pe\", \"te\", \"ru\", \"ri\", \"ta\", \"to\", \"pa\", \"ge\", \"ro\", \"pa\", \"ri\", \"su\", \"mo\", \"mi\", \"la\", \"pu\", \"pe\", \"ta\", \"tu\", \"pe\", \"mo\", \"gui\", \"ri\", \"le\", \"ro\", \"mu\", \"ga\", \"to\", \"pe\", \"to\", \"ta\", \"li\", \"ru\", \"ro\", \"pi\", \"fa\", \"su\", \"se\", \"pa\", \"fu\", \"me\", \"so\", \"ti\", \"si\", \"se\", \"to\", \"fu\", \"la\", \"fo\", \"fe\", \"go\", \"ra\", \"ti\", \"fu\", \"po\", \"ti\", \"pa\", \"lu\", \"fe\", \"fa\", \"lu\", \"ge\", \"fo\", \"ri\", \"gui\", \"pe\", \"go\", \"tu\", \"sa\", \"po\", \"me\", \"lo\", \"la\", \"mi\", \"mu\", \"to\", \"fi\", \"ra\", \"tu\", \"le\", \"ga\", \"mu\", \"te\", \"lo\", \"si\", \"li\", \"re\", \"mo\", \"su\", \"ra\", \"so\", \"te\", \"so\", \"sa\", \"gui\", \"gu\", \"so\", \"gui\", \"ga\", \"mu\", \"te\", \"la\", \"ru\", \"fe\", \"po\", \"mi\", \"ti\", \"fe\", \"so\", \"ru\", \"fa\", \"ro\", \"se\", \"fo\", \"ga\", \"pi\", \"lu\", \"lo\", \"ri\", \"sa\", \"gu\", \"re\", \"sa\", \"gu\", \"se\", \"go\", \"pi\", \"pi\", \"ge\", \"po\", \"pu\", \"ma\", \"lo\", \"re\", \"mo\", \"ma\", \"fi\", \"pu\", \"go\", \"li\", \"ma\", \"ru\", \"ge\", \"ra\", \"pu\", \"le\", \"ro\", \"fi\", \"mi\", \"me\", \"lo\", \"lu\", \"pa\", \"go\", \"le\", \"po\", \"fa\", \"si\", \"tu\", \"fo\", \"si\", \"ta\", \"fu\", \"me\", \"ma\", \"su\", \"re\", \"to\", \"li\", \"fi\", \"te\", \"fo\", \"gu\", \"ta\", \"mo\", \"fu\", \"li\", \"fo\", \"se\", \"ra\", \"ti\", \"sa\", \"mu\", \"pe\", \"fo\", \"go\", \"ga\", \"mi\", \"fe\", \"ru\", \"to\", \"pe\", \"mu\", \"ta\", \"si\", \"so\", \"pu\", \"mi\", \"po\", \"ge\", \"ga\", \"ri\", \"ra\", \"tu\", \"fe\", \"lo\", \"ro\", \"fa\", \"si\", \"pe\", \"gu\", \"ro\", \"ge\", \"pu\", \"pa\", \"ri\", \"mo\", \"mu\", \"pi\", \"mo\", \"me\", \"la\", \"gui\", \"fa\", \"gu\", \"te\", \"to\", \"to\", \"ra\", \"li\", \"te\", \"fu\", \"go\", \"fe\", \"fu\", \"ra\", \"mi\", \"ro\", \"lu\", \"ti\", \"so\", \"le\", \"pa\", \"li\", \"ta\", \"su\", \"se\", \"go\", \"mo\", \"ta\", \"gui\", \"se\", \"su\", \"lo\", \"re\", \"lu\", \"fa\", \"li\", \"po\", \"su\", \"fi\", \"lo\", \"te\", \"fa\", \"mi\", \"pa\", \"ru\", \"ge\", \"ro\", \"lo\", \"la\", \"fi\", \"me\", \"tu\", \"so\", \"me\", \"ru\", \"sa\", \"ti\", \"to\", \"ru\", \"si\", \"ro\", \"fe\", \"ta\", \"fi\", \"ma\", \"pu\", \"re\", \"po\", \"po\", \"ma\", \"pi\", \"ge\", \"lu\", \"fo\", \"te\", \"tu\", \"ga\", \"fi\", \"lo\", \"gu\", \"gui\", \"go\", \"re\", \"sa\", \"pi\", \"ga\", \"fu\", \"le\", \"so\", \"fo\", \"pa\", \"ti\", \"le\", \"pu\", \"po\", \"se\", \"su\", \"la\", \"gui\", \"go\", \"tu\", \"ri\", \"to\", \"pe\", \"ma\", \"si\", \"la\", \"lu\", \"me\", \"mo\", \"so\", \"sa\", \"ri\", \"re\", \"mu\", \"mo\", \"le\", \"gu\", \"ma\", \"pi\", \"fo\", \"pa\", \"le\", \"tu\", \"mo\", \"fi\", \"pi\", \"la\", \"fu\", \"ge\", \"mo\", \"pa\", \"to\", \"si\", \"fu\", \"re\", \"fu\", \"fe\", \"sa\", \"pi\", \"so\", \"pe\", \"la\", \"pe\", \"su\", \"po\", \"ti\", \"mi\", \"pa\", \"tu\", \"pe\", \"po\", \"ga\", \"so\", \"fi\", \"ru\", \"le\", \"su\", \"le\", \"la\", \"ti\", \"po\", \"se\", \"ma\", \"fe\", \"mu\", \"ro\", \"si\", \"ri\", \"ga\", \"ru\", \"re\", \"fo\", \"ma\", \"fo\", \"ti\", \"gu\", \"fe\", \"pu\", \"me\", \"fa\", \"si\", \"go\", \"ge\", \"sa\", \"me\", \"lu\", \"so\", \"gui\", \"si\", \"ra\", \"su\", \"te\", \"lo\", \"ra\", \"mo\", \"mi\", \"pu\", \"ge\", \"tu\", \"te\", \"ta\", \"mi\", \"lo\", \"te\", \"fa\", \"re\", \"fu\", \"go\", \"mi\", \"gui\", \"fa\", \"lu\", \"fe\", \"go\", \"la\", \"ro\", \"gui\", \"lu\", \"te\", \"mu\", \"pe\", \"ga\", \"gui\", \"mo\", \"re\", \"ga\", \"te\", \"pu\", \"fo\", \"ri\", \"li\", \"sa\", \"pu\", \"le\", \"ro\", \"fa\", \"po\", \"ri\", \"mu\", \"se\", \"ru\", \"ge\", \"pa\", \"ri\", \"ro\", \"le\", \"ta\", \"se\", \"gu\", \"lo\", \"li\", \"ti\", \"ma\", \"gu\", \"se\", \"to\", \"sa\", \"lo\", \"pi\", \"su\", \"pe\", \"gu\", \"se\", \"ra\", \"li\", \"fo\", \"fe\", \"ra\", \"ge\", \"ru\", \"to\", \"pi\", \"fi\", \"ta\", \"mu\", \"me\", \"so\", \"ta\", \"go\", \"li\", \"tu\", \"me\", \"lu\", \"re\", \"ma\", \"fi\", \"to\", \"me\", \"mo\", \"ru\", \"pa\", \"pe\", \"fi\", \"fu\", \"ri\", \"to\", \"me\", \"ga\", \"pi\", \"po\", \"pe\", \"ru\", \"fa\", \"se\", \"ru\", \"pa\", \"ri\", \"go\", \"pa\", \"lo\", \"tu\", \"fa\", \"le\", \"si\", \"pu\", \"pi\", \"ro\", \"ge\", \"ma\", \"ri\", \"lo\", \"re\", \"tu\", \"ga\", \"te\", \"gu\", \"ra\", \"ti\", \"mo\", \"la\", \"to\", \"pu\", \"sa\", \"te\", \"mi\", \"mu\", \"ti\", \"go\", \"re\", \"ra\", \"ti\", \"to\", \"te\", \"pu\", \"ma\", \"le\", \"tu\", \"fa\", \"mi\", \"to\", \"ta\", \"ro\", \"gu\", \"ga\", \"se\", \"ti\", \"ru\", \"mi\", \"mo\", \"le\", \"la\", \"si\", \"ro\", \"le\", \"fu\", \"la\", \"fe\", \"su\", \"ta\", \"si\", \"lo\", \"ma\", \"fo\", \"mu\", \"la\", \"ge\", \"ri\", \"su\", \"gui\", \"po\", \"pe\", \"sa\", \"mi\", \"so\", \"ge\", \"mu\", \"ra\", \"me\", \"fu\", \"ga\", \"li\", \"so\", \"fa\", \"go\", \"fu\", \"ta\", \"me\", \"gui\", \"tu\", \"si\", \"so\", \"te\", \"fa\", \"li\", \"mo\", \"fe\", \"lu\", \"ta\", \"pe\", \"mu\", \"la\", \"fi\", \"ro\", \"ga\", \"po\", \"lu\", \"ma\", \"fe\", \"pi\", \"lu\", \"li\", \"lo\", \"se\", \"ta\", \"gui\", \"fo\", \"me\", \"su\", \"pa\", \"ge\", \"pu\", \"ma\", \"pi\", \"fo\", \"ra\", \"so\", \"su\", \"ra\", \"re\", \"li\", \"gu\", \"fi\", \"fo\", \"fe\", \"pa\", \"fi\", \"go\", \"se\", \"gu\", \"sa\", \"re\", \"lu\", \"sa\", \"gui\", \"po\", \"sa\", \"tu\", \"gui\", \"to\", \"ga\", \"me\", \"ma\", \"so\", \"ti\", \"su\", \"me\", \"sa\", \"go\", \"ru\", \"fi\", \"le\", \"pu\", \"le\", \"ta\", \"si\", \"go\", \"fo\", \"ru\", \"ti\", \"ro\", \"ma\", \"fe\", \"fa\", \"po\", \"ri\", \"ru\", \"te\", \"ga\", \"ro\", \"gu\", \"mi\", \"te\", \"tu\", \"re\", \"ra\", \"mi\", \"mo\", \"to\", \"gu\", \"li\", \"fo\", \"ta\", \"re\", \"ta\", \"mo\", \"fi\", \"mu\", \"re\", \"ta\", \"po\", \"tu\", \"pi\", \"me\", \"lu\", \"pe\", \"sa\", \"pi\", \"ro\", \"po\", \"pu\", \"pi\", \"mo\", \"sa\", \"le\", \"sa\", \"to\", \"si\", \"lu\", \"se\", \"fa\", \"mo\", \"lu\", \"ti\", \"pe\", \"fu\", \"se\", \"fa\", \"ri\", \"lo\", \"lo\", \"su\", \"ri\", \"so\", \"pa\", \"ge\", \"pa\", \"fo\", \"pi\", \"tu\", \"pe\", \"pa\", \"so\", \"mu\", \"ri\", \"ge\", \"ru\", \"fe\", \"ma\", \"li\", \"fo\", \"ro\", \"fu\", \"si\", \"po\", \"fa\", \"pe\", \"la\", \"go\", \"li\", \"fu\", \"ge\", \"la\", \"fo\", \"fu\", \"gui\", \"fe\", \"mu\", \"me\", \"pa\", \"ti\", \"to\", \"go\", \"lu\", \"fi\", \"go\", \"ra\", \"te\", \"ga\", \"ro\", \"gui\", \"gu\", \"le\", \"ra\", \"lo\", \"su\", \"si\", \"se\", \"gu\", \"te\", \"la\", \"gui\", \"so\", \"so\", \"mu\", \"mi\", \"lo\", \"la\", \"se\", \"ra\", \"lo\", \"mi\", \"pu\", \"fe\", \"ma\", \"to\", \"pu\", \"li\", \"re\", \"su\", \"ge\", \"ga\", \"fi\", \"po\", \"mo\", \"so\", \"tu\", \"re\", \"mi\", \"ra\", \"su\", \"pa\", \"to\", \"fi\", \"le\", \"li\", \"mu\", \"fa\", \"me\", \"mo\", \"fo\", \"pi\", \"se\", \"ma\", \"fu\", \"ru\", \"po\", \"su\", \"me\", \"ti\", \"fa\", \"lu\", \"ma\", \"lo\", \"ri\", \"se\", \"gui\", \"tu\", \"ra\", \"te\", \"to\", \"to\", \"fi\", \"re\", \"fa\", \"gu\", \"lu\", \"lo\", \"gu\", \"le\", \"li\", \"sa\", \"fu\", \"la\", \"so\", \"si\", \"re\", \"pi\", \"su\", \"ma\", \"ge\", \"ro\", \"po\", \"gui\", \"le\", \"ra\", \"ru\", \"mu\", \"fo\", \"ru\", \"pe\", \"pi\", \"la\", \"gu\", \"sa\", \"go\", \"pi\", \"pe\", \"ti\", \"gu\", \"sa\", \"re\", \"fo\", \"lo\", \"ri\", \"pe\", \"ta\", \"pu\", \"su\", \"to\", \"pu\", \"se\", \"fi\", \"ta\", \"ru\", \"ta\", \"fo\", \"li\", \"ge\", \"fi\", \"fu\", \"ga\", \"le\", \"po\", \"ro\", \"ti\", \"me\", \"ga\", \"lu\", \"fu\", \"go\", \"fu\", \"fe\", \"gui\", \"pa\", \"mu\", \"fa\", \"ro\", \"ti\", \"me\", \"si\", \"lu\", \"ta\", \"fe\", \"so\", \"go\", \"li\", \"fe\", \"la\", \"su\", \"tu\", \"mo\", \"lu\", \"te\", \"ri\", \"ma\", \"tu\", \"ga\", \"po\", \"gui\", \"te\", \"ri\", \"ru\", \"la\", \"se\", \"lo\", \"so\", \"mi\", \"ge\", \"pa\", \"mu\", \"gu\", \"ro\", \"mu\", \"ge\", \"si\", \"ga\", \"pu\", \"ra\", \"mo\", \"mi\", \"fe\", \"mi\", \"pu\", \"pa\", \"pe\", \"go\", \"mo\", \"si\", \"te\", \"sa\", \"tu\", \"pu\", \"ro\", \"te\", \"ti\", \"sa\", \"su\", \"fi\", \"pu\", \"ta\", \"to\", \"me\", \"lo\", \"mi\", \"ge\", \"ru\", \"ga\", \"pi\", \"ra\", \"po\", \"se\", \"gu\", \"ro\", \"go\", \"pe\", \"ri\", \"ga\", \"ru\", \"gui\", \"mu\", \"ma\", \"po\", \"te\", \"so\", \"si\", \"pe\", \"mu\", \"pa\", \"ti\", \"ta\", \"so\", \"le\", \"tu\", \"to\", \"lo\", \"fe\", \"fi\", \"la\", \"lu\", \"si\", \"su\", \"fa\", \"ro\", \"re\", \"mo\", \"li\", \"me\", \"gu\", \"ta\", \"li\", \"ma\", \"fo\", \"re\", \"mu\", \"lo\", \"mo\", \"ge\", \"gui\", \"ra\", \"fu\", \"ri\", \"tu\", \"ga\", \"lo\", \"pe\", \"fo\", \"ti\", \"le\", \"lu\", \"fa\", \"gui\", \"sa\", \"go\", \"ge\", \"su\", \"fo\", \"to\", \"le\", \"pi\", \"ta\", \"tu\", \"ti\", \"gu\", \"ra\", \"fo\", \"ge\", \"to\", \"fi\", \"re\", \"fu\", \"ma\", \"fi\", \"la\", \"to\", \"me\", \"ru\", \"go\", \"so\", \"se\", \"mi\", \"pa\", \"gu\", \"mi\", \"ru\", \"sa\", \"so\", \"le\", \"ro\", \"ri\", \"se\", \"pu\", \"sa\", \"mi\", \"pa\", \"mo\", \"fe\", \"pu\", \"mo\", \"po\", \"re\", \"si\", \"fa\", \"pu\", \"li\", \"lu\", \"la\", \"mo\", \"fe\", \"go\", \"gui\", \"te\", \"tu\", \"ra\", \"si\", \"fa\", \"ro\", \"pe\", \"fu\", \"po\", \"fo\", \"me\", \"li\", \"ma\", \"mu\", \"pi\", \"fu\", \"pa\", \"go\", \"se\", \"po\", \"pi\", \"fe\", \"su\", \"la\", \"ri\", \"ga\", \"lo\", \"te\", \"lu\", \"so\", \"ri\", \"fa\", \"fu\", \"te\", \"lo\", \"mi\", \"ra\", \"te\", \"lo\", \"su\", \"ga\", \"lo\", \"fe\", \"gui\", \"tu\", \"pe\", \"pu\", \"fo\", \"ti\", \"sa\", \"si\", \"si\", \"ra\", \"tu\", \"ge\", \"mo\", \"pi\", \"la\", \"le\", \"mo\", \"tu\", \"ma\", \"ro\", \"pe\", \"li\", \"gu\", \"ge\", \"fu\", \"lo\", \"fi\", \"fa\", \"fi\", \"ti\", \"ta\", \"su\", \"fe\", \"so\", \"ri\", \"fa\", \"re\", \"po\", \"mu\", \"fa\", \"fo\", \"le\", \"pi\", \"lu\", \"fe\", \"su\", \"ro\", \"mi\", \"pa\", \"pi\", \"fi\", \"ga\", \"mu\", \"se\", \"fo\", \"ti\", \"sa\", \"se\", \"so\", \"gu\", \"pa\", \"so\", \"re\", \"si\", \"ru\", \"re\", \"tu\", \"mo\", \"li\", \"la\", \"ri\", \"pi\", \"pa\", \"lu\", \"le\", \"po\", \"li\", \"ma\", \"me\", \"fo\", \"fu\", \"ta\", \"to\", \"ge\", \"fi\", \"fu\", \"te\", \"ru\", \"po\", \"gui\", \"ga\", \"mi\", \"li\", \"sa\", \"pu\", \"pe\", \"to\", \"si\", \"ta\", \"fe\", \"to\", \"ru\", \"la\", \"mo\", \"me\", \"mi\", \"pu\", \"le\", \"mu\", \"to\", \"si\", \"ma\", \"li\", \"mi\", \"ma\", \"gu\", \"me\", \"ro\", \"fi\", \"ga\", \"ge\", \"ro\", \"pu\", \"ra\", \"go\", \"te\", \"ti\", \"su\", \"se\", \"lu\", \"go\", \"pi\", \"ra\", \"ti\", \"gui\", \"la\", \"ru\", \"re\", \"go\", \"gui\", \"pa\", \"pe\", \"go\", \"lu\", \"sa\", \"po\", \"se\", \"ri\", \"mu\", \"me\", \"gu\", \"so\", \"ri\", \"ta\", \"gui\"]\n\nsyllables = [\"toh\"]\n\nunique_syllables = list(dict.fromkeys(syllables))\n\nfor x in unique_syllables:\n tts = gTTS(x, lang='es')\n filename = \"%s.mp3\" % x\n tts.save(filename)\n\n", "from gtts import *\nsyllables = ['toh']\nunique_syllables = list(dict.fromkeys(syllables))\nfor x in unique_syllables:\n tts = gTTS(x, lang='es')\n filename = '%s.mp3' % x\n tts.save(filename)\n", "<import token>\nsyllables = ['toh']\nunique_syllables = list(dict.fromkeys(syllables))\nfor x in unique_syllables:\n tts = gTTS(x, lang='es')\n filename = '%s.mp3' % x\n tts.save(filename)\n", "<import token>\n<assignment token>\nfor x in unique_syllables:\n tts = gTTS(x, lang='es')\n filename = '%s.mp3' % x\n tts.save(filename)\n", "<import token>\n<assignment token>\n<code token>\n" ]
false
99,067
922604603455919976ba8f7452490a979b1d5db9
#!/usr/bin/env python import feedparser import Tkinter import ttk import tkMessageBox import tkHyperlinkManager import webbrowser class App(ttk.Frame): def __init__(self, parent): self.root = parent ttk.Frame.__init__(self, parent) self.parent = parent self.feedslist = [] self.feedstitles = [] self.readFeedsFromFile() self.initUI() def initUI(self): self.currentarticleindex = 0 self.menu = Tkinter.Menu(self.parent) self.root.config(menu = self.menu) self.fileMenu = Tkinter.Menu(self.menu) self.menu.add_cascade(label="File", menu = self.fileMenu) self.fileMenu.add_command(label="Import new feed...", command=self.hello) self.fileMenu.add_separator() self.fileMenu.add_command(label="Exit", command=self.root.destroy) self.parent.title("KLOPyRSSReader2013") self.pack(fill = Tkinter.BOTH, expand=1) self.style = ttk.Style() self.root.minsize(600,400) ttk.Style.configure(self.style, "TFrame", background="#333") self.lb = Tkinter.Listbox(self, width=36) #bind doubleclick to onDouble-function self.lb.bind("<Double-Button-1>", self.onDouble) self.lb.grid(row = 0, column = 0, sticky=Tkinter.NW) self.textbox = Tkinter.Text(self, width=48, wrap=Tkinter.WORD, state=Tkinter.DISABLED) self.textbox.grid(row = 0, column = 1, columnspan=4, rowspan=4, sticky=Tkinter.NW) #self.textbox.insert(0.0, "Hello world!") self.hyperlinkManager = tkHyperlinkManager.HyperlinkManager(self.textbox) self.currentfeed = "" self.currentfeedarticles = "(N/A)" self.previousbutton = Tkinter.Button(self, text="Previous article", command=self.previousButtonClick) self.previousbutton.grid(row=4, column=1, sticky=Tkinter.W) self.label = Tkinter.Label(self, text =" ") self.label.grid(row=4, column=2) self.nextbutton = Tkinter.Button(self, text="Next article", command=self.nextButtonClick) self.nextbutton.grid(row=4, column=4, sticky=Tkinter.E) self.deletefeedbutton = Tkinter.Button(self, text="Delete selcted feed", command = lambda: self.deleteFeed(self.lb.curselection()[0])) self.deletefeedbutton.grid(row = 4, column = 0, sticky = Tkinter.W) for i in self.feedslist: d = feedparser.parse(i) self.feedstitles.append(d.feed.title) #when inserting feeds into the listbox, use the user-given name instead of URL #we could also use the title of the feed, maybe that's even better for i in self.feedstitles: self.lb.insert(Tkinter.END, i) def hello(self): top = self.top = Tkinter.Toplevel(self) Tkinter.Label(top, text="URL:").pack() self.e = Tkinter.Entry(top, text="default") self.e.pack(padx=5) b = Tkinter.Button(top, text="OK", command=self.ok) c = Tkinter.Button(top, text="Cancel", command = self.cancel) b.pack() c.pack() def ok(self): feed = self.e.get() print "value is " + feed self.insertFeedToFile(feed) self.top.destroy() def cancel(self): self.top.destroy() def readFeedsFromFile(self): with open("feeds.txt") as f: for line in f.readlines(): string = line.lstrip() if (string[0] == '#'): continue self.feedslist.append(string) def deleteFeed(self, index): indx = int(index) url = self.feedslist.pop(indx) self.feedstitles.pop(indx) f = open("feeds.txt", "r") lines = f.readlines() f.close() f = open("feeds.txt", "w") for line in lines: if line != url: f.write(line) f.close() self.refreshFeedsList() def insertFeedToFile(self, feed): self.feedslist.append(feed) with open("feeds.txt", "a") as f: f.write(feed) self.refreshFeedsList() def refreshFeedsList(self): self.lb.delete(0, Tkinter.END) self.feedstitles = [] for i in self.feedslist: d = feedparser.parse(i) self.feedstitles.append(d.feed.title) for i in self.feedstitles: self.lb.insert(Tkinter.END, i) #refreshes the feed by selecting it and sets the current index to 0 def onDouble(self, event): self.currentarticleindex = 0 widget = event.widget selection = widget.curselection() index = selection[0] self.currentfeed = feedparser.parse(self.feedslist[int(index)]) self.currentfeedarticles = len(self.currentfeed.entries) self.label.config(text = str(self.currentarticleindex + 1) + "/" + str(self.currentfeedarticles)) self.loadArticle() def linkClick(self, link): webbrowser.open(link) def loadArticle(self): #hack to fix if we somehow read beyond the articles that exist in the feed if self.currentarticleindex + 1 > len(self.currentfeed.entries): self.currentarticleindex = len(self.currentfeed.entries) - 1 title = self.currentfeed.entries[self.currentarticleindex].title link = self.currentfeed.entries[self.currentarticleindex].link description = self.currentfeed.entries[self.currentarticleindex].description description = description.replace("&#8217;", "\'").replace("&#8211;", "-") self.textbox.config(state=Tkinter.NORMAL) self.textbox.delete(1.0, Tkinter.END) self.textbox.insert(Tkinter.END, title, self.hyperlinkManager.add(lambda: self.linkClick(link))) self.textbox.insert(Tkinter.END, "\r\n\r\n") self.textbox.insert(Tkinter.END, description) self.textbox.config(state=Tkinter.DISABLED) def nextButtonClick(self): self.currentarticleindex = self.currentarticleindex + 1 self.label.config(text = str(self.currentarticleindex + 1) + "/" + str(self.currentfeedarticles)) self.loadArticle() def previousButtonClick(self): if self.currentarticleindex == 0: return else: self.currentarticleindex = self.currentarticleindex - 1 self.loadArticle() self.label.config(text = str(self.currentarticleindex + 1) + "/" + str(self.currentfeedarticles)) if __name__ == "__main__": #d = feedparser.parse(feedsList[0]) #print "Title: " + d.entries[0].title #print "Link: " + d.entries[0].link #print "Desc: " + d.entries[0].description.replace("&#8217;", "\'").replace("&amp;", "&") #print "Published: " + d.entries[0].published #print "Updated: " + d.entries[0].updated #print "Id " + d.entries[0].id root = Tkinter.Tk() app = App(root) root.mainloop()
[ "#!/usr/bin/env python\n\nimport feedparser\nimport Tkinter\nimport ttk\nimport tkMessageBox\nimport tkHyperlinkManager\nimport webbrowser\n\nclass App(ttk.Frame):\n def __init__(self, parent):\n self.root = parent\n ttk.Frame.__init__(self, parent)\n self.parent = parent\n self.feedslist = []\n self.feedstitles = []\n self.readFeedsFromFile()\n self.initUI()\n \n def initUI(self):\n self.currentarticleindex = 0\n self.menu = Tkinter.Menu(self.parent)\n self.root.config(menu = self.menu)\n self.fileMenu = Tkinter.Menu(self.menu)\n self.menu.add_cascade(label=\"File\", menu = self.fileMenu)\n self.fileMenu.add_command(label=\"Import new feed...\", command=self.hello)\n self.fileMenu.add_separator()\n self.fileMenu.add_command(label=\"Exit\", command=self.root.destroy)\n self.parent.title(\"KLOPyRSSReader2013\")\n self.pack(fill = Tkinter.BOTH, expand=1)\n self.style = ttk.Style()\n self.root.minsize(600,400)\n ttk.Style.configure(self.style, \"TFrame\", background=\"#333\")\n \n self.lb = Tkinter.Listbox(self, width=36)\n #bind doubleclick to onDouble-function\n self.lb.bind(\"<Double-Button-1>\", self.onDouble)\n self.lb.grid(row = 0, column = 0, sticky=Tkinter.NW)\n \n self.textbox = Tkinter.Text(self, width=48, wrap=Tkinter.WORD, state=Tkinter.DISABLED)\n self.textbox.grid(row = 0, column = 1, columnspan=4, rowspan=4, sticky=Tkinter.NW)\n #self.textbox.insert(0.0, \"Hello world!\")\n\n self.hyperlinkManager = tkHyperlinkManager.HyperlinkManager(self.textbox)\n\n self.currentfeed = \"\"\n self.currentfeedarticles = \"(N/A)\"\n\n self.previousbutton = Tkinter.Button(self, text=\"Previous article\", command=self.previousButtonClick)\n self.previousbutton.grid(row=4, column=1, sticky=Tkinter.W)\n\n self.label = Tkinter.Label(self, text =\" \")\n self.label.grid(row=4, column=2)\n\n self.nextbutton = Tkinter.Button(self, text=\"Next article\", command=self.nextButtonClick)\n self.nextbutton.grid(row=4, column=4, sticky=Tkinter.E)\n\n self.deletefeedbutton = Tkinter.Button(self, text=\"Delete selcted feed\", command = lambda: self.deleteFeed(self.lb.curselection()[0]))\n self.deletefeedbutton.grid(row = 4, column = 0, sticky = Tkinter.W)\n\n for i in self.feedslist:\n d = feedparser.parse(i)\n self.feedstitles.append(d.feed.title)\n\n #when inserting feeds into the listbox, use the user-given name instead of URL\n #we could also use the title of the feed, maybe that's even better\n for i in self.feedstitles:\n self.lb.insert(Tkinter.END, i)\n\n def hello(self):\n top = self.top = Tkinter.Toplevel(self)\n\n Tkinter.Label(top, text=\"URL:\").pack()\n \n self.e = Tkinter.Entry(top, text=\"default\")\n self.e.pack(padx=5)\n\n b = Tkinter.Button(top, text=\"OK\", command=self.ok)\n c = Tkinter.Button(top, text=\"Cancel\", command = self.cancel)\n b.pack()\n c.pack()\n\n def ok(self):\n feed = self.e.get()\n print \"value is \" + feed\n \n self.insertFeedToFile(feed)\n\n self.top.destroy()\n\n def cancel(self):\n self.top.destroy()\n \n def readFeedsFromFile(self):\n with open(\"feeds.txt\") as f:\n for line in f.readlines():\n string = line.lstrip()\n if (string[0] == '#'):\n continue\n self.feedslist.append(string)\n\n def deleteFeed(self, index):\n indx = int(index)\n url = self.feedslist.pop(indx)\n self.feedstitles.pop(indx)\n\n f = open(\"feeds.txt\", \"r\")\n lines = f.readlines()\n f.close()\n \n\n f = open(\"feeds.txt\", \"w\")\n for line in lines:\n if line != url:\n f.write(line)\n f.close()\n\n self.refreshFeedsList()\n\n def insertFeedToFile(self, feed):\n self.feedslist.append(feed)\n with open(\"feeds.txt\", \"a\") as f:\n f.write(feed)\n\n self.refreshFeedsList()\n\n def refreshFeedsList(self):\n self.lb.delete(0, Tkinter.END)\n self.feedstitles = []\n for i in self.feedslist:\n d = feedparser.parse(i)\n self.feedstitles.append(d.feed.title)\n\n for i in self.feedstitles:\n self.lb.insert(Tkinter.END, i)\n \n #refreshes the feed by selecting it and sets the current index to 0\n def onDouble(self, event):\n self.currentarticleindex = 0\n widget = event.widget\n selection = widget.curselection()\n index = selection[0]\n self.currentfeed = feedparser.parse(self.feedslist[int(index)])\n self.currentfeedarticles = len(self.currentfeed.entries)\n self.label.config(text = str(self.currentarticleindex + 1) + \"/\" + str(self.currentfeedarticles))\n self.loadArticle()\n\n\n def linkClick(self, link):\n webbrowser.open(link)\n\n def loadArticle(self):\n #hack to fix if we somehow read beyond the articles that exist in the feed\n if self.currentarticleindex + 1 > len(self.currentfeed.entries):\n self.currentarticleindex = len(self.currentfeed.entries) - 1\n\n title = self.currentfeed.entries[self.currentarticleindex].title\n link = self.currentfeed.entries[self.currentarticleindex].link\n description = self.currentfeed.entries[self.currentarticleindex].description\n description = description.replace(\"&#8217;\", \"\\'\").replace(\"&#8211;\", \"-\")\n self.textbox.config(state=Tkinter.NORMAL)\n self.textbox.delete(1.0, Tkinter.END)\n self.textbox.insert(Tkinter.END, title, self.hyperlinkManager.add(lambda: self.linkClick(link)))\n self.textbox.insert(Tkinter.END, \"\\r\\n\\r\\n\")\n self.textbox.insert(Tkinter.END, description)\n self.textbox.config(state=Tkinter.DISABLED)\n\n def nextButtonClick(self):\n self.currentarticleindex = self.currentarticleindex + 1\n self.label.config(text = str(self.currentarticleindex + 1) + \"/\" + str(self.currentfeedarticles))\n self.loadArticle()\n\n def previousButtonClick(self):\n if self.currentarticleindex == 0:\n return\n else:\n self.currentarticleindex = self.currentarticleindex - 1\n self.loadArticle()\n self.label.config(text = str(self.currentarticleindex + 1) + \"/\" + str(self.currentfeedarticles))\n\nif __name__ == \"__main__\":\n #d = feedparser.parse(feedsList[0])\n #print \"Title: \" + d.entries[0].title\n #print \"Link: \" + d.entries[0].link\n #print \"Desc: \" + d.entries[0].description.replace(\"&#8217;\", \"\\'\").replace(\"&amp;\", \"&\")\n #print \"Published: \" + d.entries[0].published\n #print \"Updated: \" + d.entries[0].updated\n #print \"Id \" + d.entries[0].id\n root = Tkinter.Tk()\n app = App(root)\n root.mainloop()\n\n" ]
true
99,068
90e58011d1fa8a92c44a559e3f027bf8dad12600
import pyglet pyglet.resource.path = ['resources'] pyglet.resource.reindex() player_image = pyglet.resource.image("player.png") bullet_image = pyglet.resource.image("bullet.png") asteroid_image = pyglet.resource.image("asteroid.png") def center_image(image): """Sets an image's anchor point to its center""" image.anchor_x = image.width/2 image.anchor_y = image.height/2 center_image(player_image) center_image(bullet_image) center_image(asteroid_image) score_label = pyglet.text.Label(text="Score: 0", x=10, y=575) level_label = pyglet.text.Label(text="My Amazing Game", x=400, y=575, anchor_x='center') player_ship = pyglet.sprite.Sprite(img=player_image, x=400, y=300)
[ "import pyglet\npyglet.resource.path = ['resources']\npyglet.resource.reindex()\n\nplayer_image = pyglet.resource.image(\"player.png\")\nbullet_image = pyglet.resource.image(\"bullet.png\")\nasteroid_image = pyglet.resource.image(\"asteroid.png\")\n\ndef center_image(image):\n \"\"\"Sets an image's anchor point to its center\"\"\"\n image.anchor_x = image.width/2\n image.anchor_y = image.height/2\n\ncenter_image(player_image)\ncenter_image(bullet_image)\ncenter_image(asteroid_image)\n\nscore_label = pyglet.text.Label(text=\"Score: 0\", x=10, y=575)\nlevel_label = pyglet.text.Label(text=\"My Amazing Game\", \n x=400, y=575, anchor_x='center')\n\nplayer_ship = pyglet.sprite.Sprite(img=player_image, x=400, y=300)", "import pyglet\npyglet.resource.path = ['resources']\npyglet.resource.reindex()\nplayer_image = pyglet.resource.image('player.png')\nbullet_image = pyglet.resource.image('bullet.png')\nasteroid_image = pyglet.resource.image('asteroid.png')\n\n\ndef center_image(image):\n \"\"\"Sets an image's anchor point to its center\"\"\"\n image.anchor_x = image.width / 2\n image.anchor_y = image.height / 2\n\n\ncenter_image(player_image)\ncenter_image(bullet_image)\ncenter_image(asteroid_image)\nscore_label = pyglet.text.Label(text='Score: 0', x=10, y=575)\nlevel_label = pyglet.text.Label(text='My Amazing Game', x=400, y=575,\n anchor_x='center')\nplayer_ship = pyglet.sprite.Sprite(img=player_image, x=400, y=300)\n", "<import token>\npyglet.resource.path = ['resources']\npyglet.resource.reindex()\nplayer_image = pyglet.resource.image('player.png')\nbullet_image = pyglet.resource.image('bullet.png')\nasteroid_image = pyglet.resource.image('asteroid.png')\n\n\ndef center_image(image):\n \"\"\"Sets an image's anchor point to its center\"\"\"\n image.anchor_x = image.width / 2\n image.anchor_y = image.height / 2\n\n\ncenter_image(player_image)\ncenter_image(bullet_image)\ncenter_image(asteroid_image)\nscore_label = pyglet.text.Label(text='Score: 0', x=10, y=575)\nlevel_label = pyglet.text.Label(text='My Amazing Game', x=400, y=575,\n anchor_x='center')\nplayer_ship = pyglet.sprite.Sprite(img=player_image, x=400, y=300)\n", "<import token>\n<assignment token>\npyglet.resource.reindex()\n<assignment token>\n\n\ndef center_image(image):\n \"\"\"Sets an image's anchor point to its center\"\"\"\n image.anchor_x = image.width / 2\n image.anchor_y = image.height / 2\n\n\ncenter_image(player_image)\ncenter_image(bullet_image)\ncenter_image(asteroid_image)\n<assignment token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n\n\ndef center_image(image):\n \"\"\"Sets an image's anchor point to its center\"\"\"\n image.anchor_x = image.width / 2\n image.anchor_y = image.height / 2\n\n\n<code token>\n<assignment token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<function token>\n<code token>\n<assignment token>\n" ]
false
99,069
ed6445c0bd134eb7ce0ba48133e279bed13c3fb8
import requests class LoginApi: def __init__(self): self.login_url="http://182.92.81.159/api/sys/login" pass def login(self,mobile,password): jsonData={ "mobile":mobile, "password":password } return requests.post(self.login_url,json=jsonData)
[ "import requests\nclass LoginApi:\n def __init__(self):\n self.login_url=\"http://182.92.81.159/api/sys/login\"\n pass\n\n def login(self,mobile,password):\n jsonData={\n \"mobile\":mobile,\n \"password\":password\n }\n return requests.post(self.login_url,json=jsonData)", "import requests\n\n\nclass LoginApi:\n\n def __init__(self):\n self.login_url = 'http://182.92.81.159/api/sys/login'\n pass\n\n def login(self, mobile, password):\n jsonData = {'mobile': mobile, 'password': password}\n return requests.post(self.login_url, json=jsonData)\n", "<import token>\n\n\nclass LoginApi:\n\n def __init__(self):\n self.login_url = 'http://182.92.81.159/api/sys/login'\n pass\n\n def login(self, mobile, password):\n jsonData = {'mobile': mobile, 'password': password}\n return requests.post(self.login_url, json=jsonData)\n", "<import token>\n\n\nclass LoginApi:\n\n def __init__(self):\n self.login_url = 'http://182.92.81.159/api/sys/login'\n pass\n <function token>\n", "<import token>\n\n\nclass LoginApi:\n <function token>\n <function token>\n", "<import token>\n<class token>\n" ]
false
99,070
6fda74df5d4f1c62f10af0c07deee6db2f8afc41
import telnetlib from time import sleep from requests import Session from bs4 import BeautifulSoup as bs import re import csv current_id = 0 flag = False current_user = '' HOST = '192.168.0.1' router_username = b'admin' router_password = b'admin' with telnetlib.Telnet(HOST) as tn: tn.read_until(b"username:", 2) tn.write(router_username + b'\n') tn.write(router_password + b'\n') sleep(2) tn.write(b'wan show connection info\n') tn.read_until(b'username=') current_user = tn.read_very_eager().decode('ascii').splitlines()[0] sleep(2) tn.write(b'logout\n') f_idpass = open("idpass.txt", "r") c_idpass = list(csv.reader(f_idpass)) c = 0 for idpass in c_idpass: un = idpass[0].strip() if un == current_user : current_id = c break c += 1 # runs every 5 mins while True: f_idpass = open("idpass.txt", "r") router_username = b'admin' router_password = b'admin' HOST = '192.168.0.1' minute_thresh = 5750 c_usages = [] c_idpass = list(csv.reader(f_idpass)) minute_limit = 0 for idpass in c_idpass: try: un = idpass[0].strip() pw = idpass[1].strip() # un = l[(2*i)-2] # ps = l[(2*i)-1] with Session() as s: site = s.get("http://10.220.20.12/index.php/home/loginProcess") bs_content = bs(site.content, "html.parser") login_data = {"username":un,"password":pw} s.post("http://10.220.20.12/index.php/home/loginProcess",login_data) home_page = s.get("http://10.220.20.12/index.php/home/dashboard") soup = bs(home_page.content, "lxml") table = soup.table c = 1 li = [] try: table_rows = table.find_all('tr') for tr in table_rows: td = tr.find_all('td') row = [i.text for i in td] if c == 2 or c == 6 or c == 5 : li.append(row[1]) c += 1 # update list and sort string1 = li[2] string2 = li[1] minute_limit = int(re.search(r'\d+', string2).group()) # limit minute_used = int(re.search(r'\d+', string1).group()) # used minutes print(f'{un}\t\t{minute_used}') minute_thresh = int(.96 * float(minute_limit)) c_usages.append([un, pw, minute_limit - minute_used]) except Exception as e: print (e) except: continue print (current_id) if int(minute_limit - c_usages[current_id][2]) > minute_thresh: current_id = (current_id + 1) % len(c_usages) flag = True else : if flag == True : username = c_usages[current_id][0] password = c_usages[current_id][1] print (username) with telnetlib.Telnet(HOST) as tn: tn.read_until(b"username:", 2) tn.write(router_username + b'\n') tn.write(router_password + b'\n') sleep(2) tn.write(b'wan set service ewan_pppoe --protocol pppoe --username ' + username.encode('ascii') + b' --password ' + password.encode('ascii') + b' --secondConnection sec_conn_dynip\n') sleep(2) tn.write(b'logout\n') flag = False sleep(300) #t = input("Press enter to terminate")
[ "import telnetlib\nfrom time import sleep\nfrom requests import Session\nfrom bs4 import BeautifulSoup as bs\nimport re\nimport csv\n\ncurrent_id = 0\nflag = False\ncurrent_user = ''\n\nHOST = '192.168.0.1'\nrouter_username = b'admin'\nrouter_password = b'admin'\n\nwith telnetlib.Telnet(HOST) as tn:\n tn.read_until(b\"username:\", 2)\n tn.write(router_username + b'\\n')\n tn.write(router_password + b'\\n')\n\n sleep(2)\n tn.write(b'wan show connection info\\n')\n\n tn.read_until(b'username=')\n \n current_user = tn.read_very_eager().decode('ascii').splitlines()[0]\n \n sleep(2)\n tn.write(b'logout\\n')\n\nf_idpass = open(\"idpass.txt\", \"r\")\nc_idpass = list(csv.reader(f_idpass))\n\nc = 0 \nfor idpass in c_idpass:\n\n un = idpass[0].strip()\n\n if un == current_user :\n current_id = c\n break\n c += 1\n\n# runs every 5 mins\nwhile True:\n f_idpass = open(\"idpass.txt\", \"r\")\n\n router_username = b'admin'\n router_password = b'admin'\n\n HOST = '192.168.0.1'\n\n minute_thresh = 5750\n c_usages = []\n\n c_idpass = list(csv.reader(f_idpass))\n \n minute_limit = 0\n\n for idpass in c_idpass:\n\n try:\n un = idpass[0].strip()\n pw = idpass[1].strip()\n\n # un = l[(2*i)-2]\n # ps = l[(2*i)-1]\n \n with Session() as s:\n site = s.get(\"http://10.220.20.12/index.php/home/loginProcess\")\n bs_content = bs(site.content, \"html.parser\")\n login_data = {\"username\":un,\"password\":pw}\n s.post(\"http://10.220.20.12/index.php/home/loginProcess\",login_data)\n home_page = s.get(\"http://10.220.20.12/index.php/home/dashboard\")\n soup = bs(home_page.content, \"lxml\")\n\n table = soup.table\n\n c = 1\n li = []\n\n try:\n table_rows = table.find_all('tr')\n for tr in table_rows:\n td = tr.find_all('td')\n row = [i.text for i in td]\n if c == 2 or c == 6 or c == 5 :\n li.append(row[1])\n c += 1\n\n # update list and sort\n string1 = li[2]\n string2 = li[1]\n minute_limit = int(re.search(r'\\d+', string2).group()) # limit\n minute_used = int(re.search(r'\\d+', string1).group()) # used minutes\n print(f'{un}\\t\\t{minute_used}')\n\n minute_thresh = int(.96 * float(minute_limit))\n c_usages.append([un, pw, minute_limit - minute_used])\n \n except Exception as e:\n print (e)\n except:\n continue\n \n print (current_id)\n if int(minute_limit - c_usages[current_id][2]) > minute_thresh:\n current_id = (current_id + 1) % len(c_usages)\n flag = True\n \n else :\n if flag == True :\n username = c_usages[current_id][0]\n password = c_usages[current_id][1]\n print (username)\n\n with telnetlib.Telnet(HOST) as tn:\n tn.read_until(b\"username:\", 2)\n tn.write(router_username + b'\\n')\n tn.write(router_password + b'\\n')\n\n sleep(2)\n tn.write(b'wan set service ewan_pppoe --protocol pppoe --username ' + username.encode('ascii') + b' --password ' + password.encode('ascii') + b' --secondConnection sec_conn_dynip\\n')\n \n sleep(2)\n tn.write(b'logout\\n')\n flag = False \n \n sleep(300)\n\n#t = input(\"Press enter to terminate\")\n", "import telnetlib\nfrom time import sleep\nfrom requests import Session\nfrom bs4 import BeautifulSoup as bs\nimport re\nimport csv\ncurrent_id = 0\nflag = False\ncurrent_user = ''\nHOST = '192.168.0.1'\nrouter_username = b'admin'\nrouter_password = b'admin'\nwith telnetlib.Telnet(HOST) as tn:\n tn.read_until(b'username:', 2)\n tn.write(router_username + b'\\n')\n tn.write(router_password + b'\\n')\n sleep(2)\n tn.write(b'wan show connection info\\n')\n tn.read_until(b'username=')\n current_user = tn.read_very_eager().decode('ascii').splitlines()[0]\n sleep(2)\n tn.write(b'logout\\n')\nf_idpass = open('idpass.txt', 'r')\nc_idpass = list(csv.reader(f_idpass))\nc = 0\nfor idpass in c_idpass:\n un = idpass[0].strip()\n if un == current_user:\n current_id = c\n break\n c += 1\nwhile True:\n f_idpass = open('idpass.txt', 'r')\n router_username = b'admin'\n router_password = b'admin'\n HOST = '192.168.0.1'\n minute_thresh = 5750\n c_usages = []\n c_idpass = list(csv.reader(f_idpass))\n minute_limit = 0\n for idpass in c_idpass:\n try:\n un = idpass[0].strip()\n pw = idpass[1].strip()\n with Session() as s:\n site = s.get('http://10.220.20.12/index.php/home/loginProcess')\n bs_content = bs(site.content, 'html.parser')\n login_data = {'username': un, 'password': pw}\n s.post('http://10.220.20.12/index.php/home/loginProcess',\n login_data)\n home_page = s.get(\n 'http://10.220.20.12/index.php/home/dashboard')\n soup = bs(home_page.content, 'lxml')\n table = soup.table\n c = 1\n li = []\n try:\n table_rows = table.find_all('tr')\n for tr in table_rows:\n td = tr.find_all('td')\n row = [i.text for i in td]\n if c == 2 or c == 6 or c == 5:\n li.append(row[1])\n c += 1\n string1 = li[2]\n string2 = li[1]\n minute_limit = int(re.search('\\\\d+', string2).group())\n minute_used = int(re.search('\\\\d+', string1).group())\n print(f'{un}\\t\\t{minute_used}')\n minute_thresh = int(0.96 * float(minute_limit))\n c_usages.append([un, pw, minute_limit - minute_used])\n except Exception as e:\n print(e)\n except:\n continue\n print(current_id)\n if int(minute_limit - c_usages[current_id][2]) > minute_thresh:\n current_id = (current_id + 1) % len(c_usages)\n flag = True\n elif flag == True:\n username = c_usages[current_id][0]\n password = c_usages[current_id][1]\n print(username)\n with telnetlib.Telnet(HOST) as tn:\n tn.read_until(b'username:', 2)\n tn.write(router_username + b'\\n')\n tn.write(router_password + b'\\n')\n sleep(2)\n tn.write(\n b'wan set service ewan_pppoe --protocol pppoe --username ' +\n username.encode('ascii') + b' --password ' + password.\n encode('ascii') + b' --secondConnection sec_conn_dynip\\n')\n sleep(2)\n tn.write(b'logout\\n')\n flag = False\n sleep(300)\n", "<import token>\ncurrent_id = 0\nflag = False\ncurrent_user = ''\nHOST = '192.168.0.1'\nrouter_username = b'admin'\nrouter_password = b'admin'\nwith telnetlib.Telnet(HOST) as tn:\n tn.read_until(b'username:', 2)\n tn.write(router_username + b'\\n')\n tn.write(router_password + b'\\n')\n sleep(2)\n tn.write(b'wan show connection info\\n')\n tn.read_until(b'username=')\n current_user = tn.read_very_eager().decode('ascii').splitlines()[0]\n sleep(2)\n tn.write(b'logout\\n')\nf_idpass = open('idpass.txt', 'r')\nc_idpass = list(csv.reader(f_idpass))\nc = 0\nfor idpass in c_idpass:\n un = idpass[0].strip()\n if un == current_user:\n current_id = c\n break\n c += 1\nwhile True:\n f_idpass = open('idpass.txt', 'r')\n router_username = b'admin'\n router_password = b'admin'\n HOST = '192.168.0.1'\n minute_thresh = 5750\n c_usages = []\n c_idpass = list(csv.reader(f_idpass))\n minute_limit = 0\n for idpass in c_idpass:\n try:\n un = idpass[0].strip()\n pw = idpass[1].strip()\n with Session() as s:\n site = s.get('http://10.220.20.12/index.php/home/loginProcess')\n bs_content = bs(site.content, 'html.parser')\n login_data = {'username': un, 'password': pw}\n s.post('http://10.220.20.12/index.php/home/loginProcess',\n login_data)\n home_page = s.get(\n 'http://10.220.20.12/index.php/home/dashboard')\n soup = bs(home_page.content, 'lxml')\n table = soup.table\n c = 1\n li = []\n try:\n table_rows = table.find_all('tr')\n for tr in table_rows:\n td = tr.find_all('td')\n row = [i.text for i in td]\n if c == 2 or c == 6 or c == 5:\n li.append(row[1])\n c += 1\n string1 = li[2]\n string2 = li[1]\n minute_limit = int(re.search('\\\\d+', string2).group())\n minute_used = int(re.search('\\\\d+', string1).group())\n print(f'{un}\\t\\t{minute_used}')\n minute_thresh = int(0.96 * float(minute_limit))\n c_usages.append([un, pw, minute_limit - minute_used])\n except Exception as e:\n print(e)\n except:\n continue\n print(current_id)\n if int(minute_limit - c_usages[current_id][2]) > minute_thresh:\n current_id = (current_id + 1) % len(c_usages)\n flag = True\n elif flag == True:\n username = c_usages[current_id][0]\n password = c_usages[current_id][1]\n print(username)\n with telnetlib.Telnet(HOST) as tn:\n tn.read_until(b'username:', 2)\n tn.write(router_username + b'\\n')\n tn.write(router_password + b'\\n')\n sleep(2)\n tn.write(\n b'wan set service ewan_pppoe --protocol pppoe --username ' +\n username.encode('ascii') + b' --password ' + password.\n encode('ascii') + b' --secondConnection sec_conn_dynip\\n')\n sleep(2)\n tn.write(b'logout\\n')\n flag = False\n sleep(300)\n", "<import token>\n<assignment token>\nwith telnetlib.Telnet(HOST) as tn:\n tn.read_until(b'username:', 2)\n tn.write(router_username + b'\\n')\n tn.write(router_password + b'\\n')\n sleep(2)\n tn.write(b'wan show connection info\\n')\n tn.read_until(b'username=')\n current_user = tn.read_very_eager().decode('ascii').splitlines()[0]\n sleep(2)\n tn.write(b'logout\\n')\n<assignment token>\nfor idpass in c_idpass:\n un = idpass[0].strip()\n if un == current_user:\n current_id = c\n break\n c += 1\nwhile True:\n f_idpass = open('idpass.txt', 'r')\n router_username = b'admin'\n router_password = b'admin'\n HOST = '192.168.0.1'\n minute_thresh = 5750\n c_usages = []\n c_idpass = list(csv.reader(f_idpass))\n minute_limit = 0\n for idpass in c_idpass:\n try:\n un = idpass[0].strip()\n pw = idpass[1].strip()\n with Session() as s:\n site = s.get('http://10.220.20.12/index.php/home/loginProcess')\n bs_content = bs(site.content, 'html.parser')\n login_data = {'username': un, 'password': pw}\n s.post('http://10.220.20.12/index.php/home/loginProcess',\n login_data)\n home_page = s.get(\n 'http://10.220.20.12/index.php/home/dashboard')\n soup = bs(home_page.content, 'lxml')\n table = soup.table\n c = 1\n li = []\n try:\n table_rows = table.find_all('tr')\n for tr in table_rows:\n td = tr.find_all('td')\n row = [i.text for i in td]\n if c == 2 or c == 6 or c == 5:\n li.append(row[1])\n c += 1\n string1 = li[2]\n string2 = li[1]\n minute_limit = int(re.search('\\\\d+', string2).group())\n minute_used = int(re.search('\\\\d+', string1).group())\n print(f'{un}\\t\\t{minute_used}')\n minute_thresh = int(0.96 * float(minute_limit))\n c_usages.append([un, pw, minute_limit - minute_used])\n except Exception as e:\n print(e)\n except:\n continue\n print(current_id)\n if int(minute_limit - c_usages[current_id][2]) > minute_thresh:\n current_id = (current_id + 1) % len(c_usages)\n flag = True\n elif flag == True:\n username = c_usages[current_id][0]\n password = c_usages[current_id][1]\n print(username)\n with telnetlib.Telnet(HOST) as tn:\n tn.read_until(b'username:', 2)\n tn.write(router_username + b'\\n')\n tn.write(router_password + b'\\n')\n sleep(2)\n tn.write(\n b'wan set service ewan_pppoe --protocol pppoe --username ' +\n username.encode('ascii') + b' --password ' + password.\n encode('ascii') + b' --secondConnection sec_conn_dynip\\n')\n sleep(2)\n tn.write(b'logout\\n')\n flag = False\n sleep(300)\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n" ]
false
99,071
a2fb08013aa2d92c6d06870c17e4c2f1fbde40f3
import pandas as pd import mysql.connector as cn conn=cn.connect(host='localhost', user='root', passwd='root', database='emp') qry1='select * from info' df=pd.read_sql(qry1 , conn) print(df)
[ "import pandas as pd\r\nimport mysql.connector as cn\r\n\r\nconn=cn.connect(host='localhost', user='root', passwd='root', database='emp')\r\nqry1='select * from info'\r\ndf=pd.read_sql(qry1 , conn)\r\nprint(df)\r\n", "import pandas as pd\nimport mysql.connector as cn\nconn = cn.connect(host='localhost', user='root', passwd='root', database='emp')\nqry1 = 'select * from info'\ndf = pd.read_sql(qry1, conn)\nprint(df)\n", "<import token>\nconn = cn.connect(host='localhost', user='root', passwd='root', database='emp')\nqry1 = 'select * from info'\ndf = pd.read_sql(qry1, conn)\nprint(df)\n", "<import token>\n<assignment token>\nprint(df)\n", "<import token>\n<assignment token>\n<code token>\n" ]
false
99,072
23c10c35854857e49efbe0059daaf0d5ae4c70d4
from django.contrib import admin from django.db import models from easy_select2.widgets import Select2Multiple from news.models import Entry class EntryAdmin(admin.ModelAdmin): list_display = ('title', 'pub_date', 'author') readonly_fields = ('slug',) exclude = ('author',) formfield_overrides = { models.ManyToManyField: {'widget': Select2Multiple()} } def save_model(self, request, obj, form, change): if not change: obj.author = request.user obj.save() admin.site.register(Entry, EntryAdmin)
[ "from django.contrib import admin\nfrom django.db import models\nfrom easy_select2.widgets import Select2Multiple\nfrom news.models import Entry\n\n\nclass EntryAdmin(admin.ModelAdmin):\n list_display = ('title', 'pub_date', 'author')\n readonly_fields = ('slug',)\n exclude = ('author',)\n\n formfield_overrides = {\n models.ManyToManyField: {'widget': Select2Multiple()}\n }\n\n def save_model(self, request, obj, form, change):\n if not change:\n obj.author = request.user\n obj.save()\n\nadmin.site.register(Entry, EntryAdmin)\n", "from django.contrib import admin\nfrom django.db import models\nfrom easy_select2.widgets import Select2Multiple\nfrom news.models import Entry\n\n\nclass EntryAdmin(admin.ModelAdmin):\n list_display = 'title', 'pub_date', 'author'\n readonly_fields = 'slug',\n exclude = 'author',\n formfield_overrides = {models.ManyToManyField: {'widget':\n Select2Multiple()}}\n\n def save_model(self, request, obj, form, change):\n if not change:\n obj.author = request.user\n obj.save()\n\n\nadmin.site.register(Entry, EntryAdmin)\n", "<import token>\n\n\nclass EntryAdmin(admin.ModelAdmin):\n list_display = 'title', 'pub_date', 'author'\n readonly_fields = 'slug',\n exclude = 'author',\n formfield_overrides = {models.ManyToManyField: {'widget':\n Select2Multiple()}}\n\n def save_model(self, request, obj, form, change):\n if not change:\n obj.author = request.user\n obj.save()\n\n\nadmin.site.register(Entry, EntryAdmin)\n", "<import token>\n\n\nclass EntryAdmin(admin.ModelAdmin):\n list_display = 'title', 'pub_date', 'author'\n readonly_fields = 'slug',\n exclude = 'author',\n formfield_overrides = {models.ManyToManyField: {'widget':\n Select2Multiple()}}\n\n def save_model(self, request, obj, form, change):\n if not change:\n obj.author = request.user\n obj.save()\n\n\n<code token>\n", "<import token>\n\n\nclass EntryAdmin(admin.ModelAdmin):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def save_model(self, request, obj, form, change):\n if not change:\n obj.author = request.user\n obj.save()\n\n\n<code token>\n", "<import token>\n\n\nclass EntryAdmin(admin.ModelAdmin):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n\n\n<code token>\n", "<import token>\n<class token>\n<code token>\n" ]
false
99,073
6305c9b1db91d10aa793c21cfee2dcb89cd528c3
class Calc: def __init__(self, max_value, mod): """combination(max_value, all)""" fact = [-1] * (max_value + 1) fact[0] = 1 fact[1] = 1 for x in range(2, max_value + 1): fact[x] = x * fact[x - 1] % mod invs = [1] * (max_value + 1) invs[max_value] = pow(fact[max_value], mod - 2, mod) for x in range(max_value - 1, 0, -1): invs[x] = invs[x + 1] * (x + 1) % mod self.fact = fact self.invs = invs self.mod = mod def nCr(self, n, r): r = min(n - r, r) if r < 0: return 0 if r == 0: return 1 if r == 1: return n return self.fact[n] * self.invs[r] * self.invs[n - r] % self.mod def nHr(self, n, r): return self.nCr(n - 1 + r, r) class PowPreCalc: def __init__(self, *, b, m, mod): """(b**m)%mod""" res = [1] t = 1 for _ in range(m): t = t * b % mod res.append(t) self._res = res def get_pow(self, m): """(b**m)%mod""" return self._res[m] def main(): MOD = 10 ** 9 + 7 K = int(input()) S = input() N = len(S) calc = Calc(max_value=N - 1 + K, mod=MOD) p26 = PowPreCalc(b=26, m=K, mod=MOD) p25 = PowPreCalc(b=25, m=K, mod=MOD) ans = 0 for tail_len in range(K + 1): ans = (ans + calc.nCr(N - 1 + K - tail_len, N - 1) * p26.get_pow(tail_len) * p25.get_pow(K - tail_len) ) % MOD print(ans) if __name__ == '__main__': main()
[ "class Calc:\n def __init__(self, max_value, mod):\n \"\"\"combination(max_value, all)\"\"\"\n fact = [-1] * (max_value + 1)\n fact[0] = 1\n fact[1] = 1\n for x in range(2, max_value + 1):\n fact[x] = x * fact[x - 1] % mod\n\n invs = [1] * (max_value + 1)\n invs[max_value] = pow(fact[max_value], mod - 2, mod)\n for x in range(max_value - 1, 0, -1):\n invs[x] = invs[x + 1] * (x + 1) % mod\n\n self.fact = fact\n self.invs = invs\n self.mod = mod\n\n def nCr(self, n, r):\n r = min(n - r, r)\n if r < 0: return 0\n if r == 0: return 1\n if r == 1: return n\n return self.fact[n] * self.invs[r] * self.invs[n - r] % self.mod\n\n def nHr(self, n, r):\n return self.nCr(n - 1 + r, r)\n\n\nclass PowPreCalc:\n def __init__(self, *, b, m, mod):\n \"\"\"(b**m)%mod\"\"\"\n res = [1]\n t = 1\n for _ in range(m):\n t = t * b % mod\n res.append(t)\n self._res = res\n\n def get_pow(self, m):\n \"\"\"(b**m)%mod\"\"\"\n return self._res[m]\n\n\ndef main():\n MOD = 10 ** 9 + 7\n\n K = int(input())\n S = input()\n\n N = len(S)\n\n calc = Calc(max_value=N - 1 + K, mod=MOD)\n\n p26 = PowPreCalc(b=26, m=K, mod=MOD)\n p25 = PowPreCalc(b=25, m=K, mod=MOD)\n\n ans = 0\n for tail_len in range(K + 1):\n ans = (ans\n + calc.nCr(N - 1 + K - tail_len, N - 1) * p26.get_pow(tail_len) * p25.get_pow(K - tail_len)\n ) % MOD\n\n print(ans)\n\n\nif __name__ == '__main__':\n main()\n", "class Calc:\n\n def __init__(self, max_value, mod):\n \"\"\"combination(max_value, all)\"\"\"\n fact = [-1] * (max_value + 1)\n fact[0] = 1\n fact[1] = 1\n for x in range(2, max_value + 1):\n fact[x] = x * fact[x - 1] % mod\n invs = [1] * (max_value + 1)\n invs[max_value] = pow(fact[max_value], mod - 2, mod)\n for x in range(max_value - 1, 0, -1):\n invs[x] = invs[x + 1] * (x + 1) % mod\n self.fact = fact\n self.invs = invs\n self.mod = mod\n\n def nCr(self, n, r):\n r = min(n - r, r)\n if r < 0:\n return 0\n if r == 0:\n return 1\n if r == 1:\n return n\n return self.fact[n] * self.invs[r] * self.invs[n - r] % self.mod\n\n def nHr(self, n, r):\n return self.nCr(n - 1 + r, r)\n\n\nclass PowPreCalc:\n\n def __init__(self, *, b, m, mod):\n \"\"\"(b**m)%mod\"\"\"\n res = [1]\n t = 1\n for _ in range(m):\n t = t * b % mod\n res.append(t)\n self._res = res\n\n def get_pow(self, m):\n \"\"\"(b**m)%mod\"\"\"\n return self._res[m]\n\n\ndef main():\n MOD = 10 ** 9 + 7\n K = int(input())\n S = input()\n N = len(S)\n calc = Calc(max_value=N - 1 + K, mod=MOD)\n p26 = PowPreCalc(b=26, m=K, mod=MOD)\n p25 = PowPreCalc(b=25, m=K, mod=MOD)\n ans = 0\n for tail_len in range(K + 1):\n ans = (ans + calc.nCr(N - 1 + K - tail_len, N - 1) * p26.get_pow(\n tail_len) * p25.get_pow(K - tail_len)) % MOD\n print(ans)\n\n\nif __name__ == '__main__':\n main()\n", "class Calc:\n\n def __init__(self, max_value, mod):\n \"\"\"combination(max_value, all)\"\"\"\n fact = [-1] * (max_value + 1)\n fact[0] = 1\n fact[1] = 1\n for x in range(2, max_value + 1):\n fact[x] = x * fact[x - 1] % mod\n invs = [1] * (max_value + 1)\n invs[max_value] = pow(fact[max_value], mod - 2, mod)\n for x in range(max_value - 1, 0, -1):\n invs[x] = invs[x + 1] * (x + 1) % mod\n self.fact = fact\n self.invs = invs\n self.mod = mod\n\n def nCr(self, n, r):\n r = min(n - r, r)\n if r < 0:\n return 0\n if r == 0:\n return 1\n if r == 1:\n return n\n return self.fact[n] * self.invs[r] * self.invs[n - r] % self.mod\n\n def nHr(self, n, r):\n return self.nCr(n - 1 + r, r)\n\n\nclass PowPreCalc:\n\n def __init__(self, *, b, m, mod):\n \"\"\"(b**m)%mod\"\"\"\n res = [1]\n t = 1\n for _ in range(m):\n t = t * b % mod\n res.append(t)\n self._res = res\n\n def get_pow(self, m):\n \"\"\"(b**m)%mod\"\"\"\n return self._res[m]\n\n\ndef main():\n MOD = 10 ** 9 + 7\n K = int(input())\n S = input()\n N = len(S)\n calc = Calc(max_value=N - 1 + K, mod=MOD)\n p26 = PowPreCalc(b=26, m=K, mod=MOD)\n p25 = PowPreCalc(b=25, m=K, mod=MOD)\n ans = 0\n for tail_len in range(K + 1):\n ans = (ans + calc.nCr(N - 1 + K - tail_len, N - 1) * p26.get_pow(\n tail_len) * p25.get_pow(K - tail_len)) % MOD\n print(ans)\n\n\n<code token>\n", "class Calc:\n\n def __init__(self, max_value, mod):\n \"\"\"combination(max_value, all)\"\"\"\n fact = [-1] * (max_value + 1)\n fact[0] = 1\n fact[1] = 1\n for x in range(2, max_value + 1):\n fact[x] = x * fact[x - 1] % mod\n invs = [1] * (max_value + 1)\n invs[max_value] = pow(fact[max_value], mod - 2, mod)\n for x in range(max_value - 1, 0, -1):\n invs[x] = invs[x + 1] * (x + 1) % mod\n self.fact = fact\n self.invs = invs\n self.mod = mod\n\n def nCr(self, n, r):\n r = min(n - r, r)\n if r < 0:\n return 0\n if r == 0:\n return 1\n if r == 1:\n return n\n return self.fact[n] * self.invs[r] * self.invs[n - r] % self.mod\n\n def nHr(self, n, r):\n return self.nCr(n - 1 + r, r)\n\n\nclass PowPreCalc:\n\n def __init__(self, *, b, m, mod):\n \"\"\"(b**m)%mod\"\"\"\n res = [1]\n t = 1\n for _ in range(m):\n t = t * b % mod\n res.append(t)\n self._res = res\n\n def get_pow(self, m):\n \"\"\"(b**m)%mod\"\"\"\n return self._res[m]\n\n\n<function token>\n<code token>\n", "class Calc:\n\n def __init__(self, max_value, mod):\n \"\"\"combination(max_value, all)\"\"\"\n fact = [-1] * (max_value + 1)\n fact[0] = 1\n fact[1] = 1\n for x in range(2, max_value + 1):\n fact[x] = x * fact[x - 1] % mod\n invs = [1] * (max_value + 1)\n invs[max_value] = pow(fact[max_value], mod - 2, mod)\n for x in range(max_value - 1, 0, -1):\n invs[x] = invs[x + 1] * (x + 1) % mod\n self.fact = fact\n self.invs = invs\n self.mod = mod\n\n def nCr(self, n, r):\n r = min(n - r, r)\n if r < 0:\n return 0\n if r == 0:\n return 1\n if r == 1:\n return n\n return self.fact[n] * self.invs[r] * self.invs[n - r] % self.mod\n <function token>\n\n\nclass PowPreCalc:\n\n def __init__(self, *, b, m, mod):\n \"\"\"(b**m)%mod\"\"\"\n res = [1]\n t = 1\n for _ in range(m):\n t = t * b % mod\n res.append(t)\n self._res = res\n\n def get_pow(self, m):\n \"\"\"(b**m)%mod\"\"\"\n return self._res[m]\n\n\n<function token>\n<code token>\n", "class Calc:\n <function token>\n\n def nCr(self, n, r):\n r = min(n - r, r)\n if r < 0:\n return 0\n if r == 0:\n return 1\n if r == 1:\n return n\n return self.fact[n] * self.invs[r] * self.invs[n - r] % self.mod\n <function token>\n\n\nclass PowPreCalc:\n\n def __init__(self, *, b, m, mod):\n \"\"\"(b**m)%mod\"\"\"\n res = [1]\n t = 1\n for _ in range(m):\n t = t * b % mod\n res.append(t)\n self._res = res\n\n def get_pow(self, m):\n \"\"\"(b**m)%mod\"\"\"\n return self._res[m]\n\n\n<function token>\n<code token>\n", "class Calc:\n <function token>\n <function token>\n <function token>\n\n\nclass PowPreCalc:\n\n def __init__(self, *, b, m, mod):\n \"\"\"(b**m)%mod\"\"\"\n res = [1]\n t = 1\n for _ in range(m):\n t = t * b % mod\n res.append(t)\n self._res = res\n\n def get_pow(self, m):\n \"\"\"(b**m)%mod\"\"\"\n return self._res[m]\n\n\n<function token>\n<code token>\n", "<class token>\n\n\nclass PowPreCalc:\n\n def __init__(self, *, b, m, mod):\n \"\"\"(b**m)%mod\"\"\"\n res = [1]\n t = 1\n for _ in range(m):\n t = t * b % mod\n res.append(t)\n self._res = res\n\n def get_pow(self, m):\n \"\"\"(b**m)%mod\"\"\"\n return self._res[m]\n\n\n<function token>\n<code token>\n", "<class token>\n\n\nclass PowPreCalc:\n <function token>\n\n def get_pow(self, m):\n \"\"\"(b**m)%mod\"\"\"\n return self._res[m]\n\n\n<function token>\n<code token>\n", "<class token>\n\n\nclass PowPreCalc:\n <function token>\n <function token>\n\n\n<function token>\n<code token>\n", "<class token>\n<class token>\n<function token>\n<code token>\n" ]
false
99,074
d407888fdfb3e6d3fecf3a6940636d6ec1aea5e5
n = int(input()) num = list(map(int, input().split())) res = [] for i in range(1, n+1): cnt = 0 x = num.index(i) tmp = num[0:x] for j in tmp: if j > i: cnt += 1 res.append(cnt) for i in res: print(i, end=" ")
[ "n = int(input())\nnum = list(map(int, input().split()))\n\nres = []\n\nfor i in range(1, n+1):\n cnt = 0\n x = num.index(i)\n tmp = num[0:x]\n for j in tmp:\n if j > i:\n cnt += 1\n res.append(cnt)\n\nfor i in res:\n print(i, end=\" \")\n ", "n = int(input())\nnum = list(map(int, input().split()))\nres = []\nfor i in range(1, n + 1):\n cnt = 0\n x = num.index(i)\n tmp = num[0:x]\n for j in tmp:\n if j > i:\n cnt += 1\n res.append(cnt)\nfor i in res:\n print(i, end=' ')\n", "<assignment token>\nfor i in range(1, n + 1):\n cnt = 0\n x = num.index(i)\n tmp = num[0:x]\n for j in tmp:\n if j > i:\n cnt += 1\n res.append(cnt)\nfor i in res:\n print(i, end=' ')\n", "<assignment token>\n<code token>\n" ]
false
99,075
bd6d7699e8f4e0d82fefa51a0c26762e33acd4d0
from django.core.management.base import BaseCommand, CommandError from optparse import make_option class Command(BaseCommand): option_list = BaseCommand.option_list + ( make_option('--file', dest='file', default='/tmp/backup.gz', help='gz file to restore from'), make_option('--analyze_only', dest='analyze_only', action='store_true', default=False, help='donot read file, just analyze') ) help = 'Restore reports from file' def handle(self, *args, **options): import reports.logic import analysis.logic self.stdout.write('analyze_only = %s' % (options['analyze_only'])) self.stdout.write('file = %s' % (options['file'])) if not options['analyze_only']: reports.logic.restore_reports(options['file']) analysis.logic.analyze_raw_reports()
[ "from django.core.management.base import BaseCommand, CommandError\nfrom optparse import make_option\n\nclass Command(BaseCommand):\n option_list = BaseCommand.option_list + ( \n make_option('--file',\n dest='file',\n default='/tmp/backup.gz',\n help='gz file to restore from'),\n make_option('--analyze_only',\n dest='analyze_only',\n action='store_true',\n default=False,\n help='donot read file, just analyze')\n )\n \n help = 'Restore reports from file'\n def handle(self, *args, **options):\n import reports.logic\n import analysis.logic\n self.stdout.write('analyze_only = %s' % (options['analyze_only']))\n self.stdout.write('file = %s' % (options['file']))\n if not options['analyze_only']:\n reports.logic.restore_reports(options['file'])\n analysis.logic.analyze_raw_reports()\n\n \n \n", "from django.core.management.base import BaseCommand, CommandError\nfrom optparse import make_option\n\n\nclass Command(BaseCommand):\n option_list = BaseCommand.option_list + (make_option('--file', dest=\n 'file', default='/tmp/backup.gz', help='gz file to restore from'),\n make_option('--analyze_only', dest='analyze_only', action=\n 'store_true', default=False, help='donot read file, just analyze'))\n help = 'Restore reports from file'\n\n def handle(self, *args, **options):\n import reports.logic\n import analysis.logic\n self.stdout.write('analyze_only = %s' % options['analyze_only'])\n self.stdout.write('file = %s' % options['file'])\n if not options['analyze_only']:\n reports.logic.restore_reports(options['file'])\n analysis.logic.analyze_raw_reports()\n", "<import token>\n\n\nclass Command(BaseCommand):\n option_list = BaseCommand.option_list + (make_option('--file', dest=\n 'file', default='/tmp/backup.gz', help='gz file to restore from'),\n make_option('--analyze_only', dest='analyze_only', action=\n 'store_true', default=False, help='donot read file, just analyze'))\n help = 'Restore reports from file'\n\n def handle(self, *args, **options):\n import reports.logic\n import analysis.logic\n self.stdout.write('analyze_only = %s' % options['analyze_only'])\n self.stdout.write('file = %s' % options['file'])\n if not options['analyze_only']:\n reports.logic.restore_reports(options['file'])\n analysis.logic.analyze_raw_reports()\n", "<import token>\n\n\nclass Command(BaseCommand):\n <assignment token>\n <assignment token>\n\n def handle(self, *args, **options):\n import reports.logic\n import analysis.logic\n self.stdout.write('analyze_only = %s' % options['analyze_only'])\n self.stdout.write('file = %s' % options['file'])\n if not options['analyze_only']:\n reports.logic.restore_reports(options['file'])\n analysis.logic.analyze_raw_reports()\n", "<import token>\n\n\nclass Command(BaseCommand):\n <assignment token>\n <assignment token>\n <function token>\n", "<import token>\n<class token>\n" ]
false
99,076
49ba2676f44055fbb3eeb75b2a8f929ea3227dc1
def possible(stones, k, mid): count = 0 for stone in stones: # 음수인 경우는 건너지 못한 경우이므로 이 구간마다 count += 1 해주기 if stone - mid < 0: count += 1 # 연속된 음수가 k개인 경우 바로 False를 리턴한다. if count >= k: return False # 연속되지 않은 경우이므로 count = 0으로 초기화 else: count = 0 return True def solution(stones, k): answer = 0 # 초기값 설정 start, end = 1, max(stones) while start <= end: mid = (start + end) // 2 # 해당 인원이 징검다리를 건널 수 있는지 체크 if possible(stones, k, mid): answer = max(answer, mid) start = mid + 1 else: end = mid - 1 return answer
[ "def possible(stones, k, mid):\n count = 0\n for stone in stones:\n # 음수인 경우는 건너지 못한 경우이므로 이 구간마다 count += 1 해주기\n if stone - mid < 0:\n count += 1\n # 연속된 음수가 k개인 경우 바로 False를 리턴한다.\n if count >= k:\n return False\n # 연속되지 않은 경우이므로 count = 0으로 초기화\n else:\n count = 0\n return True\n\n\ndef solution(stones, k):\n answer = 0\n # 초기값 설정\n start, end = 1, max(stones)\n while start <= end:\n mid = (start + end) // 2\n\n # 해당 인원이 징검다리를 건널 수 있는지 체크\n if possible(stones, k, mid):\n answer = max(answer, mid)\n start = mid + 1\n else:\n end = mid - 1\n return answer", "def possible(stones, k, mid):\n count = 0\n for stone in stones:\n if stone - mid < 0:\n count += 1\n if count >= k:\n return False\n else:\n count = 0\n return True\n\n\ndef solution(stones, k):\n answer = 0\n start, end = 1, max(stones)\n while start <= end:\n mid = (start + end) // 2\n if possible(stones, k, mid):\n answer = max(answer, mid)\n start = mid + 1\n else:\n end = mid - 1\n return answer\n", "<function token>\n\n\ndef solution(stones, k):\n answer = 0\n start, end = 1, max(stones)\n while start <= end:\n mid = (start + end) // 2\n if possible(stones, k, mid):\n answer = max(answer, mid)\n start = mid + 1\n else:\n end = mid - 1\n return answer\n", "<function token>\n<function token>\n" ]
false
99,077
cc10cb7b6ed1938641812f8df01351ef38e92f9d
""" Function: Construct a gene object with its location Created: 2013-07-31 Author: Chelsea Ju """ class Gene: def __init__(self, name, chr, strand, start, end): self.name = name self.chr = chr self.strand = strand self.start = int(start) self.end = int(end) self.primary = 0 self.secondary = 0 self.size = self.end - self.start + 1 def __repr__(self): return repr((self.name, self.chr, self.strand, self.start, self.end, self.size)) def set_name(self, name): self.name = name def set_start(self, position): self.start = position def set_end(self, position): self.end = position def set_size(self, length): exon_length = length.split(",") self.size = sum(int(x) for x in exon_length) def add_primary_fragment(self, count): self.primary += count def add_secondary_fragment(self, count): self.secondary += count def set_primary_fragment(self, count): self.primary = count def set_secondary_fragment(self, count): self.secondary = count def get_fragment(self, type = 0): # type = 0 : combine primary and secondary # type = 1 : primary fragments # type = 2 : secondary fragments if(type == 0): return float(self.primary) + float(self.secondary) elif(type == 1): return float(self.primary) elif(type == 2): return float(self.secondary) else: print ("Invalid Fragments Type: %d" %(type)) sys.exit(2) def get_fpkm(self,total_fragment, type = 0): # type = 0 : combine primary and secondary # type = 1 : primary fragments # type = 2 : secondary fragments try: self.size != 0 except: print("Gene size can not be zero") sys.exit(2) try: total_fragment < 1 except: print ("Invalid total fragment count") sys.exit(2) if(type == 0): return (float(self.primary) + float(self.secondary))* float(10**9) / (float(self.size) * float(total_fragment)) elif(type == 1): return (float(self.primary) * float(10**9)) / (float(self.size) * float(total_fragment)) elif(type == 2): return (float(self.secondary) * float(10**9))/ (float(self.size) * float(total_fragment)) else: print ("Invalid fragments type: %d" %(type)) sys.exit(2)
[ "\"\"\"\nFunction: Construct a gene object with its location\nCreated: 2013-07-31\nAuthor: Chelsea Ju\n\"\"\"\nclass Gene:\n \n def __init__(self, name, chr, strand, start, end):\n self.name = name\n self.chr = chr\n self.strand = strand\n self.start = int(start)\n self.end = int(end)\n self.primary = 0\n self.secondary = 0\n self.size = self.end - self.start + 1\n \n def __repr__(self):\n return repr((self.name, self.chr, self.strand, self.start, self.end, self.size))\n\n def set_name(self, name):\n self.name = name\n \n def set_start(self, position):\n self.start = position\n \n def set_end(self, position):\n self.end = position\n\n def set_size(self, length):\n exon_length = length.split(\",\")\n self.size = sum(int(x) for x in exon_length) \n\n def add_primary_fragment(self, count):\n self.primary += count\n\n def add_secondary_fragment(self, count):\n self.secondary += count\n\n def set_primary_fragment(self, count):\n self.primary = count\n\n def set_secondary_fragment(self, count):\n self.secondary = count\n\n \n def get_fragment(self, type = 0):\n # type = 0 : combine primary and secondary\n # type = 1 : primary fragments\n # type = 2 : secondary fragments\n\n if(type == 0):\n return float(self.primary) + float(self.secondary)\n elif(type == 1):\n return float(self.primary)\n elif(type == 2):\n return float(self.secondary)\n else:\n print (\"Invalid Fragments Type: %d\" %(type))\n sys.exit(2)\n\n \n def get_fpkm(self,total_fragment, type = 0):\n # type = 0 : combine primary and secondary\n # type = 1 : primary fragments\n # type = 2 : secondary fragments\n try:\n self.size != 0\n except:\n print(\"Gene size can not be zero\")\n sys.exit(2)\n \n try:\n total_fragment < 1\n except:\n print (\"Invalid total fragment count\")\n sys.exit(2)\n\n if(type == 0):\n return (float(self.primary) + float(self.secondary))* float(10**9) / (float(self.size) * float(total_fragment))\n elif(type == 1):\n return (float(self.primary) * float(10**9)) / (float(self.size) * float(total_fragment))\n elif(type == 2):\n return (float(self.secondary) * float(10**9))/ (float(self.size) * float(total_fragment))\n else:\n print (\"Invalid fragments type: %d\" %(type))\n sys.exit(2)", "<docstring token>\n\n\nclass Gene:\n\n def __init__(self, name, chr, strand, start, end):\n self.name = name\n self.chr = chr\n self.strand = strand\n self.start = int(start)\n self.end = int(end)\n self.primary = 0\n self.secondary = 0\n self.size = self.end - self.start + 1\n\n def __repr__(self):\n return repr((self.name, self.chr, self.strand, self.start, self.end,\n self.size))\n\n def set_name(self, name):\n self.name = name\n\n def set_start(self, position):\n self.start = position\n\n def set_end(self, position):\n self.end = position\n\n def set_size(self, length):\n exon_length = length.split(',')\n self.size = sum(int(x) for x in exon_length)\n\n def add_primary_fragment(self, count):\n self.primary += count\n\n def add_secondary_fragment(self, count):\n self.secondary += count\n\n def set_primary_fragment(self, count):\n self.primary = count\n\n def set_secondary_fragment(self, count):\n self.secondary = count\n\n def get_fragment(self, type=0):\n if type == 0:\n return float(self.primary) + float(self.secondary)\n elif type == 1:\n return float(self.primary)\n elif type == 2:\n return float(self.secondary)\n else:\n print('Invalid Fragments Type: %d' % type)\n sys.exit(2)\n\n def get_fpkm(self, total_fragment, type=0):\n try:\n self.size != 0\n except:\n print('Gene size can not be zero')\n sys.exit(2)\n try:\n total_fragment < 1\n except:\n print('Invalid total fragment count')\n sys.exit(2)\n if type == 0:\n return (float(self.primary) + float(self.secondary)) * float(10 **\n 9) / (float(self.size) * float(total_fragment))\n elif type == 1:\n return float(self.primary) * float(10 ** 9) / (float(self.size) *\n float(total_fragment))\n elif type == 2:\n return float(self.secondary) * float(10 ** 9) / (float(self.\n size) * float(total_fragment))\n else:\n print('Invalid fragments type: %d' % type)\n sys.exit(2)\n", "<docstring token>\n\n\nclass Gene:\n\n def __init__(self, name, chr, strand, start, end):\n self.name = name\n self.chr = chr\n self.strand = strand\n self.start = int(start)\n self.end = int(end)\n self.primary = 0\n self.secondary = 0\n self.size = self.end - self.start + 1\n\n def __repr__(self):\n return repr((self.name, self.chr, self.strand, self.start, self.end,\n self.size))\n\n def set_name(self, name):\n self.name = name\n <function token>\n\n def set_end(self, position):\n self.end = position\n\n def set_size(self, length):\n exon_length = length.split(',')\n self.size = sum(int(x) for x in exon_length)\n\n def add_primary_fragment(self, count):\n self.primary += count\n\n def add_secondary_fragment(self, count):\n self.secondary += count\n\n def set_primary_fragment(self, count):\n self.primary = count\n\n def set_secondary_fragment(self, count):\n self.secondary = count\n\n def get_fragment(self, type=0):\n if type == 0:\n return float(self.primary) + float(self.secondary)\n elif type == 1:\n return float(self.primary)\n elif type == 2:\n return float(self.secondary)\n else:\n print('Invalid Fragments Type: %d' % type)\n sys.exit(2)\n\n def get_fpkm(self, total_fragment, type=0):\n try:\n self.size != 0\n except:\n print('Gene size can not be zero')\n sys.exit(2)\n try:\n total_fragment < 1\n except:\n print('Invalid total fragment count')\n sys.exit(2)\n if type == 0:\n return (float(self.primary) + float(self.secondary)) * float(10 **\n 9) / (float(self.size) * float(total_fragment))\n elif type == 1:\n return float(self.primary) * float(10 ** 9) / (float(self.size) *\n float(total_fragment))\n elif type == 2:\n return float(self.secondary) * float(10 ** 9) / (float(self.\n size) * float(total_fragment))\n else:\n print('Invalid fragments type: %d' % type)\n sys.exit(2)\n", "<docstring token>\n\n\nclass Gene:\n\n def __init__(self, name, chr, strand, start, end):\n self.name = name\n self.chr = chr\n self.strand = strand\n self.start = int(start)\n self.end = int(end)\n self.primary = 0\n self.secondary = 0\n self.size = self.end - self.start + 1\n\n def __repr__(self):\n return repr((self.name, self.chr, self.strand, self.start, self.end,\n self.size))\n\n def set_name(self, name):\n self.name = name\n <function token>\n\n def set_end(self, position):\n self.end = position\n\n def set_size(self, length):\n exon_length = length.split(',')\n self.size = sum(int(x) for x in exon_length)\n\n def add_primary_fragment(self, count):\n self.primary += count\n\n def add_secondary_fragment(self, count):\n self.secondary += count\n\n def set_primary_fragment(self, count):\n self.primary = count\n <function token>\n\n def get_fragment(self, type=0):\n if type == 0:\n return float(self.primary) + float(self.secondary)\n elif type == 1:\n return float(self.primary)\n elif type == 2:\n return float(self.secondary)\n else:\n print('Invalid Fragments Type: %d' % type)\n sys.exit(2)\n\n def get_fpkm(self, total_fragment, type=0):\n try:\n self.size != 0\n except:\n print('Gene size can not be zero')\n sys.exit(2)\n try:\n total_fragment < 1\n except:\n print('Invalid total fragment count')\n sys.exit(2)\n if type == 0:\n return (float(self.primary) + float(self.secondary)) * float(10 **\n 9) / (float(self.size) * float(total_fragment))\n elif type == 1:\n return float(self.primary) * float(10 ** 9) / (float(self.size) *\n float(total_fragment))\n elif type == 2:\n return float(self.secondary) * float(10 ** 9) / (float(self.\n size) * float(total_fragment))\n else:\n print('Invalid fragments type: %d' % type)\n sys.exit(2)\n", "<docstring token>\n\n\nclass Gene:\n\n def __init__(self, name, chr, strand, start, end):\n self.name = name\n self.chr = chr\n self.strand = strand\n self.start = int(start)\n self.end = int(end)\n self.primary = 0\n self.secondary = 0\n self.size = self.end - self.start + 1\n\n def __repr__(self):\n return repr((self.name, self.chr, self.strand, self.start, self.end,\n self.size))\n\n def set_name(self, name):\n self.name = name\n <function token>\n\n def set_end(self, position):\n self.end = position\n\n def set_size(self, length):\n exon_length = length.split(',')\n self.size = sum(int(x) for x in exon_length)\n\n def add_primary_fragment(self, count):\n self.primary += count\n <function token>\n\n def set_primary_fragment(self, count):\n self.primary = count\n <function token>\n\n def get_fragment(self, type=0):\n if type == 0:\n return float(self.primary) + float(self.secondary)\n elif type == 1:\n return float(self.primary)\n elif type == 2:\n return float(self.secondary)\n else:\n print('Invalid Fragments Type: %d' % type)\n sys.exit(2)\n\n def get_fpkm(self, total_fragment, type=0):\n try:\n self.size != 0\n except:\n print('Gene size can not be zero')\n sys.exit(2)\n try:\n total_fragment < 1\n except:\n print('Invalid total fragment count')\n sys.exit(2)\n if type == 0:\n return (float(self.primary) + float(self.secondary)) * float(10 **\n 9) / (float(self.size) * float(total_fragment))\n elif type == 1:\n return float(self.primary) * float(10 ** 9) / (float(self.size) *\n float(total_fragment))\n elif type == 2:\n return float(self.secondary) * float(10 ** 9) / (float(self.\n size) * float(total_fragment))\n else:\n print('Invalid fragments type: %d' % type)\n sys.exit(2)\n", "<docstring token>\n\n\nclass Gene:\n\n def __init__(self, name, chr, strand, start, end):\n self.name = name\n self.chr = chr\n self.strand = strand\n self.start = int(start)\n self.end = int(end)\n self.primary = 0\n self.secondary = 0\n self.size = self.end - self.start + 1\n\n def __repr__(self):\n return repr((self.name, self.chr, self.strand, self.start, self.end,\n self.size))\n\n def set_name(self, name):\n self.name = name\n <function token>\n\n def set_end(self, position):\n self.end = position\n\n def set_size(self, length):\n exon_length = length.split(',')\n self.size = sum(int(x) for x in exon_length)\n\n def add_primary_fragment(self, count):\n self.primary += count\n <function token>\n\n def set_primary_fragment(self, count):\n self.primary = count\n <function token>\n <function token>\n\n def get_fpkm(self, total_fragment, type=0):\n try:\n self.size != 0\n except:\n print('Gene size can not be zero')\n sys.exit(2)\n try:\n total_fragment < 1\n except:\n print('Invalid total fragment count')\n sys.exit(2)\n if type == 0:\n return (float(self.primary) + float(self.secondary)) * float(10 **\n 9) / (float(self.size) * float(total_fragment))\n elif type == 1:\n return float(self.primary) * float(10 ** 9) / (float(self.size) *\n float(total_fragment))\n elif type == 2:\n return float(self.secondary) * float(10 ** 9) / (float(self.\n size) * float(total_fragment))\n else:\n print('Invalid fragments type: %d' % type)\n sys.exit(2)\n", "<docstring token>\n\n\nclass Gene:\n <function token>\n\n def __repr__(self):\n return repr((self.name, self.chr, self.strand, self.start, self.end,\n self.size))\n\n def set_name(self, name):\n self.name = name\n <function token>\n\n def set_end(self, position):\n self.end = position\n\n def set_size(self, length):\n exon_length = length.split(',')\n self.size = sum(int(x) for x in exon_length)\n\n def add_primary_fragment(self, count):\n self.primary += count\n <function token>\n\n def set_primary_fragment(self, count):\n self.primary = count\n <function token>\n <function token>\n\n def get_fpkm(self, total_fragment, type=0):\n try:\n self.size != 0\n except:\n print('Gene size can not be zero')\n sys.exit(2)\n try:\n total_fragment < 1\n except:\n print('Invalid total fragment count')\n sys.exit(2)\n if type == 0:\n return (float(self.primary) + float(self.secondary)) * float(10 **\n 9) / (float(self.size) * float(total_fragment))\n elif type == 1:\n return float(self.primary) * float(10 ** 9) / (float(self.size) *\n float(total_fragment))\n elif type == 2:\n return float(self.secondary) * float(10 ** 9) / (float(self.\n size) * float(total_fragment))\n else:\n print('Invalid fragments type: %d' % type)\n sys.exit(2)\n", "<docstring token>\n\n\nclass Gene:\n <function token>\n\n def __repr__(self):\n return repr((self.name, self.chr, self.strand, self.start, self.end,\n self.size))\n\n def set_name(self, name):\n self.name = name\n <function token>\n <function token>\n\n def set_size(self, length):\n exon_length = length.split(',')\n self.size = sum(int(x) for x in exon_length)\n\n def add_primary_fragment(self, count):\n self.primary += count\n <function token>\n\n def set_primary_fragment(self, count):\n self.primary = count\n <function token>\n <function token>\n\n def get_fpkm(self, total_fragment, type=0):\n try:\n self.size != 0\n except:\n print('Gene size can not be zero')\n sys.exit(2)\n try:\n total_fragment < 1\n except:\n print('Invalid total fragment count')\n sys.exit(2)\n if type == 0:\n return (float(self.primary) + float(self.secondary)) * float(10 **\n 9) / (float(self.size) * float(total_fragment))\n elif type == 1:\n return float(self.primary) * float(10 ** 9) / (float(self.size) *\n float(total_fragment))\n elif type == 2:\n return float(self.secondary) * float(10 ** 9) / (float(self.\n size) * float(total_fragment))\n else:\n print('Invalid fragments type: %d' % type)\n sys.exit(2)\n", "<docstring token>\n\n\nclass Gene:\n <function token>\n\n def __repr__(self):\n return repr((self.name, self.chr, self.strand, self.start, self.end,\n self.size))\n\n def set_name(self, name):\n self.name = name\n <function token>\n <function token>\n\n def set_size(self, length):\n exon_length = length.split(',')\n self.size = sum(int(x) for x in exon_length)\n\n def add_primary_fragment(self, count):\n self.primary += count\n <function token>\n <function token>\n <function token>\n <function token>\n\n def get_fpkm(self, total_fragment, type=0):\n try:\n self.size != 0\n except:\n print('Gene size can not be zero')\n sys.exit(2)\n try:\n total_fragment < 1\n except:\n print('Invalid total fragment count')\n sys.exit(2)\n if type == 0:\n return (float(self.primary) + float(self.secondary)) * float(10 **\n 9) / (float(self.size) * float(total_fragment))\n elif type == 1:\n return float(self.primary) * float(10 ** 9) / (float(self.size) *\n float(total_fragment))\n elif type == 2:\n return float(self.secondary) * float(10 ** 9) / (float(self.\n size) * float(total_fragment))\n else:\n print('Invalid fragments type: %d' % type)\n sys.exit(2)\n", "<docstring token>\n\n\nclass Gene:\n <function token>\n\n def __repr__(self):\n return repr((self.name, self.chr, self.strand, self.start, self.end,\n self.size))\n <function token>\n <function token>\n <function token>\n\n def set_size(self, length):\n exon_length = length.split(',')\n self.size = sum(int(x) for x in exon_length)\n\n def add_primary_fragment(self, count):\n self.primary += count\n <function token>\n <function token>\n <function token>\n <function token>\n\n def get_fpkm(self, total_fragment, type=0):\n try:\n self.size != 0\n except:\n print('Gene size can not be zero')\n sys.exit(2)\n try:\n total_fragment < 1\n except:\n print('Invalid total fragment count')\n sys.exit(2)\n if type == 0:\n return (float(self.primary) + float(self.secondary)) * float(10 **\n 9) / (float(self.size) * float(total_fragment))\n elif type == 1:\n return float(self.primary) * float(10 ** 9) / (float(self.size) *\n float(total_fragment))\n elif type == 2:\n return float(self.secondary) * float(10 ** 9) / (float(self.\n size) * float(total_fragment))\n else:\n print('Invalid fragments type: %d' % type)\n sys.exit(2)\n", "<docstring token>\n\n\nclass Gene:\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def set_size(self, length):\n exon_length = length.split(',')\n self.size = sum(int(x) for x in exon_length)\n\n def add_primary_fragment(self, count):\n self.primary += count\n <function token>\n <function token>\n <function token>\n <function token>\n\n def get_fpkm(self, total_fragment, type=0):\n try:\n self.size != 0\n except:\n print('Gene size can not be zero')\n sys.exit(2)\n try:\n total_fragment < 1\n except:\n print('Invalid total fragment count')\n sys.exit(2)\n if type == 0:\n return (float(self.primary) + float(self.secondary)) * float(10 **\n 9) / (float(self.size) * float(total_fragment))\n elif type == 1:\n return float(self.primary) * float(10 ** 9) / (float(self.size) *\n float(total_fragment))\n elif type == 2:\n return float(self.secondary) * float(10 ** 9) / (float(self.\n size) * float(total_fragment))\n else:\n print('Invalid fragments type: %d' % type)\n sys.exit(2)\n", "<docstring token>\n\n\nclass Gene:\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def set_size(self, length):\n exon_length = length.split(',')\n self.size = sum(int(x) for x in exon_length)\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def get_fpkm(self, total_fragment, type=0):\n try:\n self.size != 0\n except:\n print('Gene size can not be zero')\n sys.exit(2)\n try:\n total_fragment < 1\n except:\n print('Invalid total fragment count')\n sys.exit(2)\n if type == 0:\n return (float(self.primary) + float(self.secondary)) * float(10 **\n 9) / (float(self.size) * float(total_fragment))\n elif type == 1:\n return float(self.primary) * float(10 ** 9) / (float(self.size) *\n float(total_fragment))\n elif type == 2:\n return float(self.secondary) * float(10 ** 9) / (float(self.\n size) * float(total_fragment))\n else:\n print('Invalid fragments type: %d' % type)\n sys.exit(2)\n", "<docstring token>\n\n\nclass Gene:\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def get_fpkm(self, total_fragment, type=0):\n try:\n self.size != 0\n except:\n print('Gene size can not be zero')\n sys.exit(2)\n try:\n total_fragment < 1\n except:\n print('Invalid total fragment count')\n sys.exit(2)\n if type == 0:\n return (float(self.primary) + float(self.secondary)) * float(10 **\n 9) / (float(self.size) * float(total_fragment))\n elif type == 1:\n return float(self.primary) * float(10 ** 9) / (float(self.size) *\n float(total_fragment))\n elif type == 2:\n return float(self.secondary) * float(10 ** 9) / (float(self.\n size) * float(total_fragment))\n else:\n print('Invalid fragments type: %d' % type)\n sys.exit(2)\n", "<docstring token>\n\n\nclass Gene:\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<docstring token>\n<class token>\n" ]
false
99,078
00596ecd9bfe00284a92f18b2fde686e37d40b56
""" 4880.토너먼트 카드게임 """ def cardGames(s,l) : if s == l : return personCards[s-1] else : p1 = cardGames(s, (s+l)//2) p2 = cardGames((s+l)//2+1,l) if abs(p1[1]-p2[1]) == 1: if p1[1] > p2[1] : return p1 return p2 elif abs(p1[1]-p2[1]) == 2: if p1[1] > p2[1] : return p2 return p1 else : # 비기는 경우 return p1 T = int(input()) for test_case in range(1,T+1) : n = int(input()) cards = list(map(int,input().split())) personCards = [[i+1,cards[i]] for i in range(len(cards))] winner = cardGames(1, n) print(f'#{test_case} {winner[0]}')
[ "\"\"\"\n4880.토너먼트 카드게임\n\"\"\"\ndef cardGames(s,l) :\n if s == l :\n return personCards[s-1]\n else :\n p1 = cardGames(s, (s+l)//2)\n p2 = cardGames((s+l)//2+1,l)\n if abs(p1[1]-p2[1]) == 1:\n if p1[1] > p2[1] :\n return p1\n return p2\n elif abs(p1[1]-p2[1]) == 2:\n if p1[1] > p2[1] :\n return p2\n return p1\n else :\n # 비기는 경우\n return p1\n\n\nT = int(input())\nfor test_case in range(1,T+1) :\n n = int(input())\n cards = list(map(int,input().split()))\n\n personCards = [[i+1,cards[i]] for i in range(len(cards))]\n\n winner = cardGames(1, n)\n print(f'#{test_case} {winner[0]}')", "<docstring token>\n\n\ndef cardGames(s, l):\n if s == l:\n return personCards[s - 1]\n else:\n p1 = cardGames(s, (s + l) // 2)\n p2 = cardGames((s + l) // 2 + 1, l)\n if abs(p1[1] - p2[1]) == 1:\n if p1[1] > p2[1]:\n return p1\n return p2\n elif abs(p1[1] - p2[1]) == 2:\n if p1[1] > p2[1]:\n return p2\n return p1\n else:\n return p1\n\n\nT = int(input())\nfor test_case in range(1, T + 1):\n n = int(input())\n cards = list(map(int, input().split()))\n personCards = [[i + 1, cards[i]] for i in range(len(cards))]\n winner = cardGames(1, n)\n print(f'#{test_case} {winner[0]}')\n", "<docstring token>\n\n\ndef cardGames(s, l):\n if s == l:\n return personCards[s - 1]\n else:\n p1 = cardGames(s, (s + l) // 2)\n p2 = cardGames((s + l) // 2 + 1, l)\n if abs(p1[1] - p2[1]) == 1:\n if p1[1] > p2[1]:\n return p1\n return p2\n elif abs(p1[1] - p2[1]) == 2:\n if p1[1] > p2[1]:\n return p2\n return p1\n else:\n return p1\n\n\n<assignment token>\nfor test_case in range(1, T + 1):\n n = int(input())\n cards = list(map(int, input().split()))\n personCards = [[i + 1, cards[i]] for i in range(len(cards))]\n winner = cardGames(1, n)\n print(f'#{test_case} {winner[0]}')\n", "<docstring token>\n\n\ndef cardGames(s, l):\n if s == l:\n return personCards[s - 1]\n else:\n p1 = cardGames(s, (s + l) // 2)\n p2 = cardGames((s + l) // 2 + 1, l)\n if abs(p1[1] - p2[1]) == 1:\n if p1[1] > p2[1]:\n return p1\n return p2\n elif abs(p1[1] - p2[1]) == 2:\n if p1[1] > p2[1]:\n return p2\n return p1\n else:\n return p1\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<function token>\n<assignment token>\n<code token>\n" ]
false
99,079
7a452758bf63eee91237e5ea16067298a1fc2bfc
#!/usr/bin/env python3 # # Write a program that outputs the string representation of numbers from 1 to n. # But for multiples of three it should output “Fizz” instead of the number and # for the multiples of five output “Buzz”. For numbers which are multiples of # both three and five output “FizzBuzz”. def fizzbuzz(n): ''' return a list of strings ''' return ['Fizz' * (not i % 3) + 'Buzz' * (not i % 5) or str(i) for i in range(1, n + 1 )] def fizzbuzz_firstattempt(n): ''' return a list of strings ''' str_list = [] for idx in range(1, n + 1): num_str = '' if idx % 3 == 0: num_str += 'Fizz' if idx % 5 == 0: num_str += 'Buzz' if idx % 3 != 0 and idx % 5 != 0: num_str += str(idx) str_list.append(num_str) return str_list # Tests for string in fizzbuzz(15): print(string) print() print(fizzbuzz(0))
[ "#!/usr/bin/env python3\n#\n# Write a program that outputs the string representation of numbers from 1 to n.\n# But for multiples of three it should output “Fizz” instead of the number and \n# for the multiples of five output “Buzz”. For numbers which are multiples of \n# both three and five output “FizzBuzz”.\n\n\ndef fizzbuzz(n):\n ''' return a list of strings '''\n return ['Fizz' * (not i % 3) + 'Buzz' * (not i % 5) or str(i)\n for i in range(1, n + 1 )]\n\n\ndef fizzbuzz_firstattempt(n):\n ''' return a list of strings '''\n str_list = []\n\n for idx in range(1, n + 1):\n num_str = ''\n if idx % 3 == 0:\n num_str += 'Fizz'\n if idx % 5 == 0:\n num_str += 'Buzz'\n if idx % 3 != 0 and idx % 5 != 0:\n num_str += str(idx)\n str_list.append(num_str)\n\n return str_list\n\n\n# Tests\nfor string in fizzbuzz(15):\n print(string)\nprint()\nprint(fizzbuzz(0))\n", "def fizzbuzz(n):\n \"\"\" return a list of strings \"\"\"\n return [('Fizz' * (not i % 3) + 'Buzz' * (not i % 5) or str(i)) for i in\n range(1, n + 1)]\n\n\ndef fizzbuzz_firstattempt(n):\n \"\"\" return a list of strings \"\"\"\n str_list = []\n for idx in range(1, n + 1):\n num_str = ''\n if idx % 3 == 0:\n num_str += 'Fizz'\n if idx % 5 == 0:\n num_str += 'Buzz'\n if idx % 3 != 0 and idx % 5 != 0:\n num_str += str(idx)\n str_list.append(num_str)\n return str_list\n\n\nfor string in fizzbuzz(15):\n print(string)\nprint()\nprint(fizzbuzz(0))\n", "def fizzbuzz(n):\n \"\"\" return a list of strings \"\"\"\n return [('Fizz' * (not i % 3) + 'Buzz' * (not i % 5) or str(i)) for i in\n range(1, n + 1)]\n\n\ndef fizzbuzz_firstattempt(n):\n \"\"\" return a list of strings \"\"\"\n str_list = []\n for idx in range(1, n + 1):\n num_str = ''\n if idx % 3 == 0:\n num_str += 'Fizz'\n if idx % 5 == 0:\n num_str += 'Buzz'\n if idx % 3 != 0 and idx % 5 != 0:\n num_str += str(idx)\n str_list.append(num_str)\n return str_list\n\n\n<code token>\n", "<function token>\n\n\ndef fizzbuzz_firstattempt(n):\n \"\"\" return a list of strings \"\"\"\n str_list = []\n for idx in range(1, n + 1):\n num_str = ''\n if idx % 3 == 0:\n num_str += 'Fizz'\n if idx % 5 == 0:\n num_str += 'Buzz'\n if idx % 3 != 0 and idx % 5 != 0:\n num_str += str(idx)\n str_list.append(num_str)\n return str_list\n\n\n<code token>\n", "<function token>\n<function token>\n<code token>\n" ]
false
99,080
ff1f2c86d3dbbd04131bf4751b32b18e8ea476bd
# coding=utf-8 __author__ = 'kk' __cookies_file__ = './cookies.dat' import scrapy from scrapy.selector import HtmlXPathSelector import copy import logging import urllib2 import urllib import cookielib import zlib class TestItem(scrapy.Item): id = scrapy.Field() name = scrapy.Field() img = scrapy.Field() description = scrapy.Field() class MySpider(scrapy.Spider): name = 'myspider' allowed_domains = ['saraba1st.com'] #可选。包含了spider允许爬取的域名列表 # rules #CrawlSpider # link_extractor 是一个 Link Extractor 对象。 其定义了如何从爬取到的页面提取链接。 # start_urls = [ # 'http://bbs.saraba1st.com/2b/forum-75-1.html?mobile=1' # ] base_url = 'http://bbs.saraba1st.com/2b/' headers = { "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8", "Accept-Encoding": "gzip,deflate,sdch", "Accept-Language": "zh-CN,zh;q=0.8", "Connection": "keep-alive", "Content-Type":" application/x-www-form-urlencoded; charset=UTF-8", "User-Agent": "Mozilla/5.0 (iPhone; U; CPU iPhone OS 4_3_2 like Mac OS X; en-us) AppleWebKit/533.17.9 (KHTML, like Gecko) Version/5.0.2 Mobile/8H7 Safari/6533.18.5", } def parse(self, response): self.log('开始解析:%s' % response.url) print response.meta sel = scrapy.selector.Selector(response) div_class = sel.xpath('//div[@class="bm_c"]') print "xxxxxxxxx", div_class.extract() # sel = scrapy.Selector(response) # hxs = HtmlXPathSelector(response) # # # for h3 in response.xpath('//h3').extract(): # # yield TestItem(title=h3) # # # # path():返回selectors列表, 每一个select表示一个xpath参数表达式选择的节点. # # extract():返回一个unicode字符串,该字符串为XPath选择器返回的数据 # # re(): 返回unicode字符串列表,字符串作为参数由正则表达式提取出来 # items = [] # imgs = response.xpath('//div[@id="xcnr_zx"]//img') # # for img in div.xpath('//img/@title').extract(): # # yield TestItem(img=img) # for img in imgs: # item = TestItem() # item['id'] = img.xpath('@alt').extract() # item['img'] = img.xpath('@title').extract() # item['name'] = img.xpath('@class').extract() # items.append(item) # print items # return items # items.extend([self.make_requests_from_url(url).replace(callback=self.parse_post) # for url in posts]) # for url in response.xpath('//a/@href').extract(): # yield scrapy.Request(url, callback=self.parse) # def __init__(self, category=None, *args, **kwargs): # super(MySpider, self).__init__(*args, **kwargs) # self.start_urls = ['http://www.geimian.com/%s' % category] def start_requests(self): self.log('start before,but not run start_urls') cJar = cookielib.LWPCookieJar() file_object = False try: file_object = open(__cookies_file__) cJar._really_load(file_object, file_object, False, False) except : print 'wenjian bucunzai ' cookiess = dict() for item in cJar: cookiess[item.name] = item.value print cookiess if file_object: file_object.close() return [scrapy.Request('http://bbs.saraba1st.com/2b/forum-75-1.html?mobile=1', meta={'cookiejar': 1}, cookies=cookiess, headers=self.headers, callback=self.check_login)] def check_login(self, response): sel = scrapy.selector.Selector(response) div_class = sel.xpath('//div[@class="pd2"]') # print "xxxxxxxxx", div_class.xpath('//a[text()="%s"]/@href' % u'登录').extract()[0] if div_class.xpath('//a/text()').extract()[0] == u'登录': print '未登录' # l6751902 login_url = self.base_url + div_class.xpath('//a[text()="%s"]/@href' % u'登录').extract()[0].encode('utf-8') print 'login_url', login_url return [scrapy.Request(login_url, meta = {'cookiejar' : response.meta['cookiejar']}, headers = self.headers, callback = self.logged_in)] else: print '登录成功 cookie' self.parse(response) # return [scrapy.Request('http://bbs.saraba1st.com/2b/forum-75-1.html?mobile=1', meta = {'cookiejar' : 1}, headers = self.headers,dont_filter = True)] def logged_in(self, response): sel = scrapy.selector.Selector(response) print "xxxxxxxxx", sel.xpath('//input[@name="formhash"]').extract() formhash = sel.xpath('//input[@name="formhash"]/@value').extract()[0].encode('utf-8') self.log("formhash:%s" % formhash, logging.INFO) login_head = copy.deepcopy(self.headers) login_head['Origin'] = 'http://bbs.saraba1st.com' login_head['Referer'] = 'http://bbs.saraba1st.com/2b/member.php?mod=logging&action=login&mobile=1' # http://bbs.saraba1st.com/2b/member.php?mod=logging&action=login&loginsubmit=yes&loginhash=LnDKp&mobile=yes if self.getCookies(formhash, login_head): self.log("重新cookies成功!!~~", logging.INFO) self.start_requests() else: self.log("重新获取cookies失败!!~~", logging.ERROR) # return [scrapy.FormRequest.from_response(response, # meta = {'cookiejar' : response.meta['cookiejar']}, # headers = login_head, # formdata = { # 'formhash': formhash, # 'referer':'http://bbs.saraba1st.com/2b/member.php?mod=clearcookies&formhash=%s&mobile=1' % formhash, # 'fastloginfield':'username', # 'username': 'l6751902', # 'password': 'l35331963', # 'submit':'登录', # 'questionid':'0', # 'answer':'', # 'cookietime':'2592000' # }, # callback = self.after_login, # dont_filter = True # )] def after_login(self, response): sel = scrapy.selector.Selector(response) div_class = sel.xpath('//div[@class="pd2"]') if div_class.xpath('//a/text()').extract()[0] == u'登录': self.log('登录失败', logging.WARNING) else: self.log('登录成功', logging.INFO) return [scrapy.Request('http://bbs.saraba1st.com/2b/forum-75-1.html?mobile=1', meta = {'cookiejar' : response.meta['cookiejar']}, headers = self.headers,dont_filter = True)] # def parse_start_url(self, response): #CrawlSpider # # 当start_url的请求返回时,该方法被调用。 该方法分析最初的返回值并必须返回一个 Item对象或者 一个 Request 对象或者 一个可迭代的包含二者对象。 # pass # def make_requests_from_url(self, url): # # 该方法接受一个URL并返回用于爬取的 Request 对象。 该方法在初始化request时被start_requests() 调用,也被用于转化url为request。 # # 默认未被复写(overridden)的情况下,该方法返回的Request对象中, parse() 作为回调函数,dont_filter参数也被设置为开启。 # pass def getCookies(self, formhash, login_head): data = {'formhash': formhash, 'referer': 'http://bbs.saraba1st.com/2b/member.php?mod=clearcookies&formhash=%s&mobile=1' % formhash, 'fastloginfield': 'username', 'username': 'l6751902', 'password': 'l35331963', 'submit': '登录', 'questionid': '0', 'answer': '', 'cookietime': '2592000'} post_data = urllib.urlencode(data) #将post消息化成可以让服务器编码的方式 cJar = cookielib.LWPCookieJar() #获取cookiejar实例 opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cJar)) website = 'http://bbs.saraba1st.com/2b/member.php?mod=logging&action=login&loginsubmit=yes&loginhash=LnDKp&mobile=yes' req = urllib2.Request(website, post_data, login_head) response = opener.open(req) cJar.save(__cookies_file__) content = response.read() gzipped = response.headers.get('Content-Encoding') if gzipped: html = zlib.decompress(content, 16+zlib.MAX_WBITS) else: html = content # print html if 'l6751902' in html: return True return False if __name__ == "__main__": pass
[ "# coding=utf-8\n__author__ = 'kk'\n\n__cookies_file__ = './cookies.dat'\n\nimport scrapy\nfrom scrapy.selector import HtmlXPathSelector\nimport copy\nimport logging\n\nimport urllib2\nimport urllib\nimport cookielib\n\nimport zlib\n\n\nclass TestItem(scrapy.Item):\n id = scrapy.Field()\n name = scrapy.Field()\n img = scrapy.Field()\n description = scrapy.Field()\n\n\nclass MySpider(scrapy.Spider):\n name = 'myspider'\n allowed_domains = ['saraba1st.com'] #可选。包含了spider允许爬取的域名列表\n # rules #CrawlSpider\n # link_extractor 是一个 Link Extractor 对象。 其定义了如何从爬取到的页面提取链接。\n # start_urls = [\n # 'http://bbs.saraba1st.com/2b/forum-75-1.html?mobile=1'\n # ]\n base_url = 'http://bbs.saraba1st.com/2b/'\n\n headers = {\n \"Accept\": \"text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8\",\n \"Accept-Encoding\": \"gzip,deflate,sdch\",\n \"Accept-Language\": \"zh-CN,zh;q=0.8\",\n \"Connection\": \"keep-alive\",\n \"Content-Type\":\" application/x-www-form-urlencoded; charset=UTF-8\",\n \"User-Agent\": \"Mozilla/5.0 (iPhone; U; CPU iPhone OS 4_3_2 like Mac OS X; en-us) AppleWebKit/533.17.9 (KHTML, like Gecko) Version/5.0.2 Mobile/8H7 Safari/6533.18.5\",\n }\n\n def parse(self, response):\n self.log('开始解析:%s' % response.url)\n print response.meta\n\n sel = scrapy.selector.Selector(response)\n div_class = sel.xpath('//div[@class=\"bm_c\"]')\n print \"xxxxxxxxx\", div_class.extract()\n\n # sel = scrapy.Selector(response)\n # hxs = HtmlXPathSelector(response)\n #\n # # for h3 in response.xpath('//h3').extract():\n # # yield TestItem(title=h3)\n #\n #\n # # path():返回selectors列表, 每一个select表示一个xpath参数表达式选择的节点.\n # # extract():返回一个unicode字符串,该字符串为XPath选择器返回的数据\n # # re(): 返回unicode字符串列表,字符串作为参数由正则表达式提取出来\n # items = []\n # imgs = response.xpath('//div[@id=\"xcnr_zx\"]//img')\n # # for img in div.xpath('//img/@title').extract():\n # # yield TestItem(img=img)\n # for img in imgs:\n # item = TestItem()\n # item['id'] = img.xpath('@alt').extract()\n # item['img'] = img.xpath('@title').extract()\n # item['name'] = img.xpath('@class').extract()\n # items.append(item)\n # print items\n # return items\n\n # items.extend([self.make_requests_from_url(url).replace(callback=self.parse_post)\n # for url in posts])\n\n\n\n # for url in response.xpath('//a/@href').extract():\n # yield scrapy.Request(url, callback=self.parse)\n\n # def __init__(self, category=None, *args, **kwargs):\n # super(MySpider, self).__init__(*args, **kwargs)\n # self.start_urls = ['http://www.geimian.com/%s' % category]\n\n def start_requests(self):\n self.log('start before,but not run start_urls')\n\n cJar = cookielib.LWPCookieJar()\n file_object = False\n try:\n file_object = open(__cookies_file__)\n cJar._really_load(file_object, file_object, False, False)\n except :\n print 'wenjian bucunzai '\n\n cookiess = dict()\n for item in cJar:\n cookiess[item.name] = item.value\n print cookiess\n\n if file_object:\n file_object.close()\n return [scrapy.Request('http://bbs.saraba1st.com/2b/forum-75-1.html?mobile=1', meta={'cookiejar': 1}, cookies=cookiess, headers=self.headers, callback=self.check_login)]\n\n def check_login(self, response):\n sel = scrapy.selector.Selector(response)\n div_class = sel.xpath('//div[@class=\"pd2\"]')\n\n # print \"xxxxxxxxx\", div_class.xpath('//a[text()=\"%s\"]/@href' % u'登录').extract()[0]\n if div_class.xpath('//a/text()').extract()[0] == u'登录':\n print '未登录'\n # l6751902\n login_url = self.base_url + div_class.xpath('//a[text()=\"%s\"]/@href' % u'登录').extract()[0].encode('utf-8')\n print 'login_url', login_url\n return [scrapy.Request(login_url, meta = {'cookiejar' : response.meta['cookiejar']}, headers = self.headers, callback = self.logged_in)]\n else:\n print '登录成功 cookie'\n self.parse(response)\n # return [scrapy.Request('http://bbs.saraba1st.com/2b/forum-75-1.html?mobile=1', meta = {'cookiejar' : 1}, headers = self.headers,dont_filter = True)]\n\n\n def logged_in(self, response):\n sel = scrapy.selector.Selector(response)\n print \"xxxxxxxxx\", sel.xpath('//input[@name=\"formhash\"]').extract()\n formhash = sel.xpath('//input[@name=\"formhash\"]/@value').extract()[0].encode('utf-8')\n self.log(\"formhash:%s\" % formhash, logging.INFO)\n\n login_head = copy.deepcopy(self.headers)\n login_head['Origin'] = 'http://bbs.saraba1st.com'\n login_head['Referer'] = 'http://bbs.saraba1st.com/2b/member.php?mod=logging&action=login&mobile=1'\n # http://bbs.saraba1st.com/2b/member.php?mod=logging&action=login&loginsubmit=yes&loginhash=LnDKp&mobile=yes\n if self.getCookies(formhash, login_head):\n self.log(\"重新cookies成功!!~~\", logging.INFO)\n self.start_requests()\n else:\n self.log(\"重新获取cookies失败!!~~\", logging.ERROR)\n # return [scrapy.FormRequest.from_response(response,\n # meta = {'cookiejar' : response.meta['cookiejar']},\n # headers = login_head,\n # formdata = {\n # 'formhash': formhash,\n # 'referer':'http://bbs.saraba1st.com/2b/member.php?mod=clearcookies&formhash=%s&mobile=1' % formhash,\n # 'fastloginfield':'username',\n # 'username': 'l6751902',\n # 'password': 'l35331963',\n # 'submit':'登录',\n # 'questionid':'0',\n # 'answer':'',\n # 'cookietime':'2592000'\n # },\n # callback = self.after_login,\n # dont_filter = True\n # )]\n\n def after_login(self, response):\n sel = scrapy.selector.Selector(response)\n div_class = sel.xpath('//div[@class=\"pd2\"]')\n if div_class.xpath('//a/text()').extract()[0] == u'登录':\n self.log('登录失败', logging.WARNING)\n else:\n self.log('登录成功', logging.INFO)\n return [scrapy.Request('http://bbs.saraba1st.com/2b/forum-75-1.html?mobile=1', meta = {'cookiejar' : response.meta['cookiejar']}, headers = self.headers,dont_filter = True)]\n\n\n # def parse_start_url(self, response): #CrawlSpider\n # # 当start_url的请求返回时,该方法被调用。 该方法分析最初的返回值并必须返回一个 Item对象或者 一个 Request 对象或者 一个可迭代的包含二者对象。\n # pass\n\n # def make_requests_from_url(self, url):\n # # 该方法接受一个URL并返回用于爬取的 Request 对象。 该方法在初始化request时被start_requests() 调用,也被用于转化url为request。\n # # 默认未被复写(overridden)的情况下,该方法返回的Request对象中, parse() 作为回调函数,dont_filter参数也被设置为开启。\n # pass\n\n def getCookies(self, formhash, login_head):\n data = {'formhash': formhash,\n 'referer': 'http://bbs.saraba1st.com/2b/member.php?mod=clearcookies&formhash=%s&mobile=1' % formhash,\n 'fastloginfield': 'username',\n 'username': 'l6751902',\n 'password': 'l35331963',\n 'submit': '登录',\n 'questionid': '0',\n 'answer': '',\n 'cookietime': '2592000'}\n post_data = urllib.urlencode(data) #将post消息化成可以让服务器编码的方式\n cJar = cookielib.LWPCookieJar() #获取cookiejar实例\n opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cJar))\n website = 'http://bbs.saraba1st.com/2b/member.php?mod=logging&action=login&loginsubmit=yes&loginhash=LnDKp&mobile=yes'\n req = urllib2.Request(website, post_data, login_head)\n response = opener.open(req)\n cJar.save(__cookies_file__)\n\n content = response.read()\n gzipped = response.headers.get('Content-Encoding')\n if gzipped:\n html = zlib.decompress(content, 16+zlib.MAX_WBITS)\n else:\n html = content\n\n # print html\n if 'l6751902' in html:\n return True\n return False\n\n\n\nif __name__ == \"__main__\":\n pass\n" ]
true
99,081
cfea97561fdbcf6c108e2f3beb4919b9225e6192
import numpy as np import torch import torchvision.transforms as transform from PIL import Image from torchvision import models from torchsummary import summary from torchvision.utils import make_grid import matplotlib.pyplot as plt import torch.nn as nn class Transformer(nn.Module): def __init__(self, input_size, output_size): super().__init__()
[ "import numpy as np\nimport torch\nimport torchvision.transforms as transform\nfrom PIL import Image\nfrom torchvision import models\nfrom torchsummary import summary\nfrom torchvision.utils import make_grid\nimport matplotlib.pyplot as plt\nimport torch.nn as nn\n\nclass Transformer(nn.Module):\n def __init__(self, input_size, output_size):\n super().__init__()", "import numpy as np\nimport torch\nimport torchvision.transforms as transform\nfrom PIL import Image\nfrom torchvision import models\nfrom torchsummary import summary\nfrom torchvision.utils import make_grid\nimport matplotlib.pyplot as plt\nimport torch.nn as nn\n\n\nclass Transformer(nn.Module):\n\n def __init__(self, input_size, output_size):\n super().__init__()\n", "<import token>\n\n\nclass Transformer(nn.Module):\n\n def __init__(self, input_size, output_size):\n super().__init__()\n", "<import token>\n\n\nclass Transformer(nn.Module):\n <function token>\n", "<import token>\n<class token>\n" ]
false
99,082
77ef6f54da1da89336ea4c430cd1e83e0696ec29
from django.db import models from django.utils import timezone # Create your models here. class User(models.Model): name = models.CharField(max_length=75) contact_no = models.CharField(max_length=14) email = models.EmailField() active_items = models.ForeignKey('Item') active_bids = models.ForeignKey('Bid') def __str__(self): return self.name class Item(models.Model): item_name = models.CharField(max_length=75) item_desc = models.TextField(max_length=1000) sale_price = models.DecimalField(max_digits=8, decimal_places=2) post_date = models.DateTimeField('Date Posted ', auto_now_add=True, default=timezone.now()) for_sale = models.BooleanField(default=False) def __str__(self): return self.item_name class Bid(models.Model): bid_no = models.AutoField(primary_key=True,default=-1) bid_amt = models.DecimalField(max_digits=8, decimal_places=2) post_date = models.DateTimeField(auto_now_add=True, default=timezone.now()) accepted = models.BooleanField(default=False) item_to_sell = models.ForeignKey('Item',default=0) def __str__(self): return self.bid_no
[ "from django.db import models\nfrom django.utils import timezone\n\n# Create your models here.\nclass User(models.Model):\n\tname = models.CharField(max_length=75)\n\tcontact_no = models.CharField(max_length=14)\n\temail = models.EmailField()\n\tactive_items = models.ForeignKey('Item')\n\tactive_bids = models.ForeignKey('Bid')\n\n\tdef __str__(self):\n\t\treturn self.name\n\nclass Item(models.Model):\n\titem_name = models.CharField(max_length=75)\n\titem_desc = models.TextField(max_length=1000)\n\tsale_price = models.DecimalField(max_digits=8, decimal_places=2)\n\tpost_date = models.DateTimeField('Date Posted ', auto_now_add=True, default=timezone.now())\n\tfor_sale = models.BooleanField(default=False)\n\ndef __str__(self):\n\t\treturn self.item_name\n\nclass Bid(models.Model):\n\tbid_no = models.AutoField(primary_key=True,default=-1)\n\tbid_amt = models.DecimalField(max_digits=8, decimal_places=2)\n\tpost_date = models.DateTimeField(auto_now_add=True, default=timezone.now())\n\taccepted = models.BooleanField(default=False)\n\titem_to_sell = models.ForeignKey('Item',default=0)\n\ndef __str__(self):\n\treturn self.bid_no", "from django.db import models\nfrom django.utils import timezone\n\n\nclass User(models.Model):\n name = models.CharField(max_length=75)\n contact_no = models.CharField(max_length=14)\n email = models.EmailField()\n active_items = models.ForeignKey('Item')\n active_bids = models.ForeignKey('Bid')\n\n def __str__(self):\n return self.name\n\n\nclass Item(models.Model):\n item_name = models.CharField(max_length=75)\n item_desc = models.TextField(max_length=1000)\n sale_price = models.DecimalField(max_digits=8, decimal_places=2)\n post_date = models.DateTimeField('Date Posted ', auto_now_add=True,\n default=timezone.now())\n for_sale = models.BooleanField(default=False)\n\n\ndef __str__(self):\n return self.item_name\n\n\nclass Bid(models.Model):\n bid_no = models.AutoField(primary_key=True, default=-1)\n bid_amt = models.DecimalField(max_digits=8, decimal_places=2)\n post_date = models.DateTimeField(auto_now_add=True, default=timezone.now())\n accepted = models.BooleanField(default=False)\n item_to_sell = models.ForeignKey('Item', default=0)\n\n\ndef __str__(self):\n return self.bid_no\n", "<import token>\n\n\nclass User(models.Model):\n name = models.CharField(max_length=75)\n contact_no = models.CharField(max_length=14)\n email = models.EmailField()\n active_items = models.ForeignKey('Item')\n active_bids = models.ForeignKey('Bid')\n\n def __str__(self):\n return self.name\n\n\nclass Item(models.Model):\n item_name = models.CharField(max_length=75)\n item_desc = models.TextField(max_length=1000)\n sale_price = models.DecimalField(max_digits=8, decimal_places=2)\n post_date = models.DateTimeField('Date Posted ', auto_now_add=True,\n default=timezone.now())\n for_sale = models.BooleanField(default=False)\n\n\ndef __str__(self):\n return self.item_name\n\n\nclass Bid(models.Model):\n bid_no = models.AutoField(primary_key=True, default=-1)\n bid_amt = models.DecimalField(max_digits=8, decimal_places=2)\n post_date = models.DateTimeField(auto_now_add=True, default=timezone.now())\n accepted = models.BooleanField(default=False)\n item_to_sell = models.ForeignKey('Item', default=0)\n\n\ndef __str__(self):\n return self.bid_no\n", "<import token>\n\n\nclass User(models.Model):\n name = models.CharField(max_length=75)\n contact_no = models.CharField(max_length=14)\n email = models.EmailField()\n active_items = models.ForeignKey('Item')\n active_bids = models.ForeignKey('Bid')\n\n def __str__(self):\n return self.name\n\n\nclass Item(models.Model):\n item_name = models.CharField(max_length=75)\n item_desc = models.TextField(max_length=1000)\n sale_price = models.DecimalField(max_digits=8, decimal_places=2)\n post_date = models.DateTimeField('Date Posted ', auto_now_add=True,\n default=timezone.now())\n for_sale = models.BooleanField(default=False)\n\n\n<function token>\n\n\nclass Bid(models.Model):\n bid_no = models.AutoField(primary_key=True, default=-1)\n bid_amt = models.DecimalField(max_digits=8, decimal_places=2)\n post_date = models.DateTimeField(auto_now_add=True, default=timezone.now())\n accepted = models.BooleanField(default=False)\n item_to_sell = models.ForeignKey('Item', default=0)\n\n\ndef __str__(self):\n return self.bid_no\n", "<import token>\n\n\nclass User(models.Model):\n name = models.CharField(max_length=75)\n contact_no = models.CharField(max_length=14)\n email = models.EmailField()\n active_items = models.ForeignKey('Item')\n active_bids = models.ForeignKey('Bid')\n\n def __str__(self):\n return self.name\n\n\nclass Item(models.Model):\n item_name = models.CharField(max_length=75)\n item_desc = models.TextField(max_length=1000)\n sale_price = models.DecimalField(max_digits=8, decimal_places=2)\n post_date = models.DateTimeField('Date Posted ', auto_now_add=True,\n default=timezone.now())\n for_sale = models.BooleanField(default=False)\n\n\n<function token>\n\n\nclass Bid(models.Model):\n bid_no = models.AutoField(primary_key=True, default=-1)\n bid_amt = models.DecimalField(max_digits=8, decimal_places=2)\n post_date = models.DateTimeField(auto_now_add=True, default=timezone.now())\n accepted = models.BooleanField(default=False)\n item_to_sell = models.ForeignKey('Item', default=0)\n\n\n<function token>\n", "<import token>\n\n\nclass User(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __str__(self):\n return self.name\n\n\nclass Item(models.Model):\n item_name = models.CharField(max_length=75)\n item_desc = models.TextField(max_length=1000)\n sale_price = models.DecimalField(max_digits=8, decimal_places=2)\n post_date = models.DateTimeField('Date Posted ', auto_now_add=True,\n default=timezone.now())\n for_sale = models.BooleanField(default=False)\n\n\n<function token>\n\n\nclass Bid(models.Model):\n bid_no = models.AutoField(primary_key=True, default=-1)\n bid_amt = models.DecimalField(max_digits=8, decimal_places=2)\n post_date = models.DateTimeField(auto_now_add=True, default=timezone.now())\n accepted = models.BooleanField(default=False)\n item_to_sell = models.ForeignKey('Item', default=0)\n\n\n<function token>\n", "<import token>\n\n\nclass User(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n\n\nclass Item(models.Model):\n item_name = models.CharField(max_length=75)\n item_desc = models.TextField(max_length=1000)\n sale_price = models.DecimalField(max_digits=8, decimal_places=2)\n post_date = models.DateTimeField('Date Posted ', auto_now_add=True,\n default=timezone.now())\n for_sale = models.BooleanField(default=False)\n\n\n<function token>\n\n\nclass Bid(models.Model):\n bid_no = models.AutoField(primary_key=True, default=-1)\n bid_amt = models.DecimalField(max_digits=8, decimal_places=2)\n post_date = models.DateTimeField(auto_now_add=True, default=timezone.now())\n accepted = models.BooleanField(default=False)\n item_to_sell = models.ForeignKey('Item', default=0)\n\n\n<function token>\n", "<import token>\n<class token>\n\n\nclass Item(models.Model):\n item_name = models.CharField(max_length=75)\n item_desc = models.TextField(max_length=1000)\n sale_price = models.DecimalField(max_digits=8, decimal_places=2)\n post_date = models.DateTimeField('Date Posted ', auto_now_add=True,\n default=timezone.now())\n for_sale = models.BooleanField(default=False)\n\n\n<function token>\n\n\nclass Bid(models.Model):\n bid_no = models.AutoField(primary_key=True, default=-1)\n bid_amt = models.DecimalField(max_digits=8, decimal_places=2)\n post_date = models.DateTimeField(auto_now_add=True, default=timezone.now())\n accepted = models.BooleanField(default=False)\n item_to_sell = models.ForeignKey('Item', default=0)\n\n\n<function token>\n", "<import token>\n<class token>\n\n\nclass Item(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n\n<function token>\n\n\nclass Bid(models.Model):\n bid_no = models.AutoField(primary_key=True, default=-1)\n bid_amt = models.DecimalField(max_digits=8, decimal_places=2)\n post_date = models.DateTimeField(auto_now_add=True, default=timezone.now())\n accepted = models.BooleanField(default=False)\n item_to_sell = models.ForeignKey('Item', default=0)\n\n\n<function token>\n", "<import token>\n<class token>\n<class token>\n<function token>\n\n\nclass Bid(models.Model):\n bid_no = models.AutoField(primary_key=True, default=-1)\n bid_amt = models.DecimalField(max_digits=8, decimal_places=2)\n post_date = models.DateTimeField(auto_now_add=True, default=timezone.now())\n accepted = models.BooleanField(default=False)\n item_to_sell = models.ForeignKey('Item', default=0)\n\n\n<function token>\n", "<import token>\n<class token>\n<class token>\n<function token>\n\n\nclass Bid(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n\n<function token>\n", "<import token>\n<class token>\n<class token>\n<function token>\n<class token>\n<function token>\n" ]
false
99,083
b8de141da71d65665961fdb9044f7e7068156805
from .calc_euc import ( get_euc_masks,calc_euc) from .calc_rho_stf import ( calc_rho_moc, meridional_trsp_at_rho, calc_rho_section_stf, section_trsp_at_rho, get_rho_bins) from .llcmap import atlantic_map from .read_mds import read_mds, read_single_mds from .plot_2d import ( global_and_stereo_map, plot_depth_slice) __all__ = [ 'llcmap', 'calc_euc', 'calc_rho_moc', 'meridional_trsp_at_rho', 'calc_rho_section_stf', 'section_trsp_at_rho', 'get_rho_bins', 'read_mds', 'read_single_mds', 'global_and_stereo_map', 'plot_depth_slice', ]
[ "from .calc_euc import (\n get_euc_masks,calc_euc)\nfrom .calc_rho_stf import (\n calc_rho_moc, meridional_trsp_at_rho,\n calc_rho_section_stf, section_trsp_at_rho,\n get_rho_bins)\n\nfrom .llcmap import atlantic_map\n\nfrom .read_mds import read_mds, read_single_mds\n\nfrom .plot_2d import (\n global_and_stereo_map, plot_depth_slice)\n\n__all__ = [\n 'llcmap',\n 'calc_euc',\n 'calc_rho_moc',\n 'meridional_trsp_at_rho',\n 'calc_rho_section_stf',\n 'section_trsp_at_rho',\n 'get_rho_bins',\n 'read_mds',\n 'read_single_mds',\n 'global_and_stereo_map',\n 'plot_depth_slice',\n]\n", "from .calc_euc import get_euc_masks, calc_euc\nfrom .calc_rho_stf import calc_rho_moc, meridional_trsp_at_rho, calc_rho_section_stf, section_trsp_at_rho, get_rho_bins\nfrom .llcmap import atlantic_map\nfrom .read_mds import read_mds, read_single_mds\nfrom .plot_2d import global_and_stereo_map, plot_depth_slice\n__all__ = ['llcmap', 'calc_euc', 'calc_rho_moc', 'meridional_trsp_at_rho',\n 'calc_rho_section_stf', 'section_trsp_at_rho', 'get_rho_bins',\n 'read_mds', 'read_single_mds', 'global_and_stereo_map', 'plot_depth_slice']\n", "<import token>\n__all__ = ['llcmap', 'calc_euc', 'calc_rho_moc', 'meridional_trsp_at_rho',\n 'calc_rho_section_stf', 'section_trsp_at_rho', 'get_rho_bins',\n 'read_mds', 'read_single_mds', 'global_and_stereo_map', 'plot_depth_slice']\n", "<import token>\n<assignment token>\n" ]
false
99,084
86ff629384eaa3021c714d622be5484a72efadd3
# -*- coding: utf-8 -*- # snapshottest: v1 - https://goo.gl/zC4yUc from __future__ import unicode_literals from snapshottest import Snapshot snapshots = Snapshot() snapshots['test_create_mutation 1'] = { 'data': { 'createProduct': { 'product': { 'id': '1', 'images': [ { 'photo': '/media/test/photo_1.jpg', 'photoThumbnail': '/media/test/CACHE/images/photo_1/1c92775827def316cb8d32c40de1bb70.jpg' }, { 'photo': '/media/test/photo_2.jpg', 'photoThumbnail': '/media/test/CACHE/images/photo_2/2929c69a42230a9d8aee6e969c0e7669.jpg' } ], 'name': 'product' } } } }
[ "# -*- coding: utf-8 -*-\n# snapshottest: v1 - https://goo.gl/zC4yUc\nfrom __future__ import unicode_literals\n\nfrom snapshottest import Snapshot\n\n\nsnapshots = Snapshot()\n\nsnapshots['test_create_mutation 1'] = {\n 'data': {\n 'createProduct': {\n 'product': {\n 'id': '1',\n 'images': [\n {\n 'photo': '/media/test/photo_1.jpg',\n 'photoThumbnail': '/media/test/CACHE/images/photo_1/1c92775827def316cb8d32c40de1bb70.jpg'\n },\n {\n 'photo': '/media/test/photo_2.jpg',\n 'photoThumbnail': '/media/test/CACHE/images/photo_2/2929c69a42230a9d8aee6e969c0e7669.jpg'\n }\n ],\n 'name': 'product'\n }\n }\n }\n}\n", "from __future__ import unicode_literals\nfrom snapshottest import Snapshot\nsnapshots = Snapshot()\nsnapshots['test_create_mutation 1'] = {'data': {'createProduct': {'product':\n {'id': '1', 'images': [{'photo': '/media/test/photo_1.jpg',\n 'photoThumbnail':\n '/media/test/CACHE/images/photo_1/1c92775827def316cb8d32c40de1bb70.jpg'\n }, {'photo': '/media/test/photo_2.jpg', 'photoThumbnail':\n '/media/test/CACHE/images/photo_2/2929c69a42230a9d8aee6e969c0e7669.jpg'\n }], 'name': 'product'}}}}\n", "<import token>\nsnapshots = Snapshot()\nsnapshots['test_create_mutation 1'] = {'data': {'createProduct': {'product':\n {'id': '1', 'images': [{'photo': '/media/test/photo_1.jpg',\n 'photoThumbnail':\n '/media/test/CACHE/images/photo_1/1c92775827def316cb8d32c40de1bb70.jpg'\n }, {'photo': '/media/test/photo_2.jpg', 'photoThumbnail':\n '/media/test/CACHE/images/photo_2/2929c69a42230a9d8aee6e969c0e7669.jpg'\n }], 'name': 'product'}}}}\n", "<import token>\n<assignment token>\n" ]
false
99,085
c80fafa9482d4eecf46b74e1bea3b7e07cb185b6
# Generated by Django 3.1.1 on 2020-10-15 15:44 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('employees', '0002_employee_picture'), ] operations = [ migrations.AddField( model_name='employee', name='dateFired', field=models.DateTimeField(blank=True, null=True), ), migrations.AddField( model_name='employee', name='dateHired', field=models.DateTimeField(blank=True, null=True), ), migrations.AddField( model_name='employee', name='notes', field=models.TextField(blank=True), ), ]
[ "# Generated by Django 3.1.1 on 2020-10-15 15:44\n\nfrom django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('employees', '0002_employee_picture'),\n ]\n\n operations = [\n migrations.AddField(\n model_name='employee',\n name='dateFired',\n field=models.DateTimeField(blank=True, null=True),\n ),\n migrations.AddField(\n model_name='employee',\n name='dateHired',\n field=models.DateTimeField(blank=True, null=True),\n ),\n migrations.AddField(\n model_name='employee',\n name='notes',\n field=models.TextField(blank=True),\n ),\n ]\n", "from django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n dependencies = [('employees', '0002_employee_picture')]\n operations = [migrations.AddField(model_name='employee', name=\n 'dateFired', field=models.DateTimeField(blank=True, null=True)),\n migrations.AddField(model_name='employee', name='dateHired', field=\n models.DateTimeField(blank=True, null=True)), migrations.AddField(\n model_name='employee', name='notes', field=models.TextField(blank=\n True))]\n", "<import token>\n\n\nclass Migration(migrations.Migration):\n dependencies = [('employees', '0002_employee_picture')]\n operations = [migrations.AddField(model_name='employee', name=\n 'dateFired', field=models.DateTimeField(blank=True, null=True)),\n migrations.AddField(model_name='employee', name='dateHired', field=\n models.DateTimeField(blank=True, null=True)), migrations.AddField(\n model_name='employee', name='notes', field=models.TextField(blank=\n True))]\n", "<import token>\n\n\nclass Migration(migrations.Migration):\n <assignment token>\n <assignment token>\n", "<import token>\n<class token>\n" ]
false
99,086
9b583054ec5a0afe1b4ee4ce5c05eda450037fb4
import pandas as pdb import numpy as np import scipy.io as spio import matplotlib.pyplot as plt from matplotlib import cm import sys import mysql.connector fig = plt.figure() ax1 = fig.add_subplot(221) ax1.set_axis_bgcolor('grey') ax1.axis("Off") ax2 = fig.add_subplot(222) ax3 = fig.add_subplot(223) ax4 = fig.add_subplot(224) ax1.title.set_text('First Plot') ax2.title.set_text('Second Plot') ax3.title.set_text('Third Plot') ax4.title.set_text('Fourth Plot') plt.show() x = np.linspace(0, 2 * np.pi, 400) y = np.sin(x ** 2) # Four axes, returned as a 2-d array f, axarr = plt.subplots(2, 2) axarr[0, 0].plot(x, y) axarr[0, 0].set_title('Axis [0,0]') axarr[0, 0].set_yticklabels([]) axarr[0, 0].set_xticklabels([]) axarr[0, 0].set_axis_bgcolor('white') axarr[0, 1].scatter(x, y) axarr[0, 1].set_title('Axis [0,1]') axarr[0, 0].set_axis_bgcolor('grey') #axarr[0, 1].axis("Off") axarr[1, 0].plot(x, y ** 2) axarr[1, 0].set_title('Axis [1,0]') #axarr[1, 0].axis("Off") axarr[1, 1].scatter(x, y ** 2) axarr[1, 1].set_title('Axis [1,1]') #axarr[1, 1].axis("Off") # Fine-tune figure; hide x ticks for top plots and y ticks for right plots #plt.setp([a.get_xticklabels() for a in axarr[0, :]], visible=False) #plt.setp([a.get_yticklabels() for a in axarr[:, 1]], visible=False) plt.show()
[ "import pandas as pdb\nimport numpy as np\nimport scipy.io as spio\nimport matplotlib.pyplot as plt\nfrom matplotlib import cm\nimport sys\nimport mysql.connector\n\nfig = plt.figure()\nax1 = fig.add_subplot(221)\nax1.set_axis_bgcolor('grey')\nax1.axis(\"Off\")\nax2 = fig.add_subplot(222)\nax3 = fig.add_subplot(223)\nax4 = fig.add_subplot(224)\nax1.title.set_text('First Plot')\nax2.title.set_text('Second Plot')\nax3.title.set_text('Third Plot')\nax4.title.set_text('Fourth Plot')\nplt.show()\n\n\n\nx = np.linspace(0, 2 * np.pi, 400)\ny = np.sin(x ** 2)\n\n# Four axes, returned as a 2-d array\nf, axarr = plt.subplots(2, 2)\naxarr[0, 0].plot(x, y)\naxarr[0, 0].set_title('Axis [0,0]')\naxarr[0, 0].set_yticklabels([])\naxarr[0, 0].set_xticklabels([])\n\naxarr[0, 0].set_axis_bgcolor('white')\n\naxarr[0, 1].scatter(x, y)\naxarr[0, 1].set_title('Axis [0,1]')\naxarr[0, 0].set_axis_bgcolor('grey')\n#axarr[0, 1].axis(\"Off\")\naxarr[1, 0].plot(x, y ** 2)\naxarr[1, 0].set_title('Axis [1,0]')\n#axarr[1, 0].axis(\"Off\")\naxarr[1, 1].scatter(x, y ** 2)\naxarr[1, 1].set_title('Axis [1,1]')\n#axarr[1, 1].axis(\"Off\")\n# Fine-tune figure; hide x ticks for top plots and y ticks for right plots\n#plt.setp([a.get_xticklabels() for a in axarr[0, :]], visible=False)\n#plt.setp([a.get_yticklabels() for a in axarr[:, 1]], visible=False)\n\nplt.show()", "import pandas as pdb\nimport numpy as np\nimport scipy.io as spio\nimport matplotlib.pyplot as plt\nfrom matplotlib import cm\nimport sys\nimport mysql.connector\nfig = plt.figure()\nax1 = fig.add_subplot(221)\nax1.set_axis_bgcolor('grey')\nax1.axis('Off')\nax2 = fig.add_subplot(222)\nax3 = fig.add_subplot(223)\nax4 = fig.add_subplot(224)\nax1.title.set_text('First Plot')\nax2.title.set_text('Second Plot')\nax3.title.set_text('Third Plot')\nax4.title.set_text('Fourth Plot')\nplt.show()\nx = np.linspace(0, 2 * np.pi, 400)\ny = np.sin(x ** 2)\nf, axarr = plt.subplots(2, 2)\naxarr[0, 0].plot(x, y)\naxarr[0, 0].set_title('Axis [0,0]')\naxarr[0, 0].set_yticklabels([])\naxarr[0, 0].set_xticklabels([])\naxarr[0, 0].set_axis_bgcolor('white')\naxarr[0, 1].scatter(x, y)\naxarr[0, 1].set_title('Axis [0,1]')\naxarr[0, 0].set_axis_bgcolor('grey')\naxarr[1, 0].plot(x, y ** 2)\naxarr[1, 0].set_title('Axis [1,0]')\naxarr[1, 1].scatter(x, y ** 2)\naxarr[1, 1].set_title('Axis [1,1]')\nplt.show()\n", "<import token>\nfig = plt.figure()\nax1 = fig.add_subplot(221)\nax1.set_axis_bgcolor('grey')\nax1.axis('Off')\nax2 = fig.add_subplot(222)\nax3 = fig.add_subplot(223)\nax4 = fig.add_subplot(224)\nax1.title.set_text('First Plot')\nax2.title.set_text('Second Plot')\nax3.title.set_text('Third Plot')\nax4.title.set_text('Fourth Plot')\nplt.show()\nx = np.linspace(0, 2 * np.pi, 400)\ny = np.sin(x ** 2)\nf, axarr = plt.subplots(2, 2)\naxarr[0, 0].plot(x, y)\naxarr[0, 0].set_title('Axis [0,0]')\naxarr[0, 0].set_yticklabels([])\naxarr[0, 0].set_xticklabels([])\naxarr[0, 0].set_axis_bgcolor('white')\naxarr[0, 1].scatter(x, y)\naxarr[0, 1].set_title('Axis [0,1]')\naxarr[0, 0].set_axis_bgcolor('grey')\naxarr[1, 0].plot(x, y ** 2)\naxarr[1, 0].set_title('Axis [1,0]')\naxarr[1, 1].scatter(x, y ** 2)\naxarr[1, 1].set_title('Axis [1,1]')\nplt.show()\n", "<import token>\n<assignment token>\nax1.set_axis_bgcolor('grey')\nax1.axis('Off')\n<assignment token>\nax1.title.set_text('First Plot')\nax2.title.set_text('Second Plot')\nax3.title.set_text('Third Plot')\nax4.title.set_text('Fourth Plot')\nplt.show()\n<assignment token>\naxarr[0, 0].plot(x, y)\naxarr[0, 0].set_title('Axis [0,0]')\naxarr[0, 0].set_yticklabels([])\naxarr[0, 0].set_xticklabels([])\naxarr[0, 0].set_axis_bgcolor('white')\naxarr[0, 1].scatter(x, y)\naxarr[0, 1].set_title('Axis [0,1]')\naxarr[0, 0].set_axis_bgcolor('grey')\naxarr[1, 0].plot(x, y ** 2)\naxarr[1, 0].set_title('Axis [1,0]')\naxarr[1, 1].scatter(x, y ** 2)\naxarr[1, 1].set_title('Axis [1,1]')\nplt.show()\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n" ]
false
99,087
c6d648818992030617324df52815216fbd1dc64d
# coding=utf-8 # 型号:mpu6050 import smbus class GyroscopeDriver: # 全局变量 GRAVITIY_MS2 = 9.80665 address = None bus = None # 缩放修饰符 # 加速度计灵敏度 ACCEL_SCALE_MODIFIER_2G = 16384.0 ACCEL_SCALE_MODIFIER_4G = 8192.0 ACCEL_SCALE_MODIFIER_8G = 4096.0 ACCEL_SCALE_MODIFIER_16G = 2048.0 # 陀螺仪灵敏度 GYRO_SCALE_MODIFIER_250DEG = 131.0 GYRO_SCALE_MODIFIER_500DEG = 65.5 GYRO_SCALE_MODIFIER_1000DEG = 32.8 GYRO_SCALE_MODIFIER_2000DEG = 16.4 # 预定义范围 ACCEL_RANGE_2G = 0x00 ACCEL_RANGE_4G = 0x08 ACCEL_RANGE_8G = 0x10 ACCEL_RANGE_16G = 0x18 GYRO_RANGE_250DEG = 0x00 GYRO_RANGE_500DEG = 0x08 GYRO_RANGE_1000DEG = 0x10 GYRO_RANGE_2000DEG = 0x18 # MPU-6050 寄存器 PWR_MGMT_1 = 0x6B PWR_MGMT_2 = 0x6C ACCEL_XOUT0 = 0x3B ACCEL_YOUT0 = 0x3D ACCEL_ZOUT0 = 0x3F TEMP_OUT0 = 0x41 GYRO_XOUT0 = 0x43 GYRO_YOUT0 = 0x45 GYRO_ZOUT0 = 0x47 ACCEL_CONFIG = 0x1C GYRO_CONFIG = 0x1B def __init__(self, address=0x68, bus=1): self.address = address self.bus = smbus.SMBus(bus) # 唤醒 MPU-6050 self.bus.write_byte_data(self.address, self.PWR_MGMT_1, 0x00) # I2C 通信方法 def read_i2c_word(self, register): # 读取两个寄存器中的值并合并 high = self.bus.read_byte_data(self.address, register) low = self.bus.read_byte_data(self.address, register + 1) value = (high << 8) + low if value >= 0x8000: return -((65535 - value) + 1) else: return value # MPU-6050 Methods def get_temp(self): # 读取温度计的值,并以摄氏度返回 raw_temp = self.read_i2c_word(self.TEMP_OUT0) # 得到实际温度 actual_temp = (raw_temp / 340.0) + 36.53 return actual_temp def set_accel_range(self, accel_range): # 设置加速度计的范围 # 先清空 self.bus.write_byte_data(self.address, self.ACCEL_CONFIG, 0x00) # 设置新值 self.bus.write_byte_data(self.address, self.ACCEL_CONFIG, accel_range) def read_accel_range(self, raw=False): # 读取加速度计的范围 # 如果raw为真,返回原始值 # 否则根据型号返回值 raw_data = self.bus.read_byte_data(self.address, self.ACCEL_CONFIG) if raw is True: return raw_data elif raw is False: if raw_data == self.ACCEL_RANGE_2G: return 2 elif raw_data == self.ACCEL_RANGE_4G: return 4 elif raw_data == self.ACCEL_RANGE_8G: return 8 elif raw_data == self.ACCEL_RANGE_16G: return 16 else: return -1 def get_accel_data(self, g=False): # 获取加速度计中的数据 # 如果g为真,返回g中的数据,否则以 m /s^2 返回 x = self.read_i2c_word(self.ACCEL_XOUT0) y = self.read_i2c_word(self.ACCEL_YOUT0) z = self.read_i2c_word(self.ACCEL_ZOUT0) accel_scale_modifier = None accel_range = self.read_accel_range(True) if accel_range == self.ACCEL_RANGE_2G: accel_scale_modifier = self.ACCEL_SCALE_MODIFIER_2G elif accel_range == self.ACCEL_RANGE_4G: accel_scale_modifier = self.ACCEL_SCALE_MODIFIER_4G elif accel_range == self.ACCEL_RANGE_8G: accel_scale_modifier = self.ACCEL_SCALE_MODIFIER_8G elif accel_range == self.ACCEL_RANGE_16G: accel_scale_modifier = self.ACCEL_SCALE_MODIFIER_16G else: print("Unkown range - accel_scale_modifier set to self.ACCEL_SCALE_MODIFIER_2G") accel_scale_modifier = self.ACCEL_SCALE_MODIFIER_2G x = x / accel_scale_modifier y = y / accel_scale_modifier z = z / accel_scale_modifier if g is True: return {'x': x, 'y': y, 'z': z} elif g is False: x = x * self.GRAVITIY_MS2 y = y * self.GRAVITIY_MS2 z = z * self.GRAVITIY_MS2 return {'x': x, 'y': y, 'z': z} def set_gyro_range(self, gyro_range): # 设置陀螺仪范围 # 先设置为0 self.bus.write_byte_data(self.address, self.GYRO_CONFIG, 0x00) # 设置新值 self.bus.write_byte_data(self.address, self.GYRO_CONFIG, gyro_range) def read_gyro_range(self, raw=False): # 读取陀螺仪范围 # 如果raw为真,返回原始值 # 如果raw为假,根据型号返回值 raw_data = self.bus.read_byte_data(self.address, self.GYRO_CONFIG) if raw is True: return raw_data elif raw is False: if raw_data == self.GYRO_RANGE_250DEG: return 250 elif raw_data == self.GYRO_RANGE_500DEG: return 500 elif raw_data == self.GYRO_RANGE_1000DEG: return 1000 elif raw_data == self.GYRO_RANGE_2000DEG: return 2000 else: return -1 def get_gyro_data(self): # 读取陀螺仪中的数据 x = self.read_i2c_word(self.GYRO_XOUT0) y = self.read_i2c_word(self.GYRO_YOUT0) z = self.read_i2c_word(self.GYRO_ZOUT0) gyro_scale_modifier = None gyro_range = self.read_gyro_range(True) if gyro_range == self.GYRO_RANGE_250DEG: gyro_scale_modifier = self.GYRO_SCALE_MODIFIER_250DEG elif gyro_range == self.GYRO_RANGE_500DEG: gyro_scale_modifier = self.GYRO_SCALE_MODIFIER_500DEG elif gyro_range == self.GYRO_RANGE_1000DEG: gyro_scale_modifier = self.GYRO_SCALE_MODIFIER_1000DEG elif gyro_range == self.GYRO_RANGE_2000DEG: gyro_scale_modifier = self.GYRO_SCALE_MODIFIER_2000DEG else: print("Unkown range - gyro_scale_modifier set to self.GYRO_SCALE_MODIFIER_250DEG") gyro_scale_modifier = self.GYRO_SCALE_MODIFIER_250DEG x = x / gyro_scale_modifier y = y / gyro_scale_modifier z = z / gyro_scale_modifier return {'x': x, 'y': y, 'z': z} def get_all_data(self): # 返回所有可以获得的值 temp = self.get_temp() accel = self.get_accel_data() gyro = self.get_gyro_data() return [accel, gyro, temp] if __name__ == "__main__": mpu = GyroscopeDriver(0x68) print(mpu.get_temp()) accel_data = mpu.get_accel_data() print "accel_data:" print(accel_data['x']) print(accel_data['y']) print(accel_data['z']) gyro_data = mpu.get_gyro_data() print "gyro_data:" print(gyro_data['x']) print(gyro_data['y']) print(gyro_data['z'])
[ "# coding=utf-8\r\n# 型号:mpu6050\r\nimport smbus\r\n\r\n\r\nclass GyroscopeDriver:\r\n\r\n # 全局变量\r\n GRAVITIY_MS2 = 9.80665\r\n address = None\r\n bus = None\r\n\r\n # 缩放修饰符\r\n # 加速度计灵敏度\r\n ACCEL_SCALE_MODIFIER_2G = 16384.0\r\n ACCEL_SCALE_MODIFIER_4G = 8192.0\r\n ACCEL_SCALE_MODIFIER_8G = 4096.0\r\n ACCEL_SCALE_MODIFIER_16G = 2048.0\r\n\r\n # 陀螺仪灵敏度\r\n GYRO_SCALE_MODIFIER_250DEG = 131.0\r\n GYRO_SCALE_MODIFIER_500DEG = 65.5\r\n GYRO_SCALE_MODIFIER_1000DEG = 32.8\r\n GYRO_SCALE_MODIFIER_2000DEG = 16.4\r\n\r\n # 预定义范围\r\n ACCEL_RANGE_2G = 0x00\r\n ACCEL_RANGE_4G = 0x08\r\n ACCEL_RANGE_8G = 0x10\r\n ACCEL_RANGE_16G = 0x18\r\n\r\n GYRO_RANGE_250DEG = 0x00\r\n GYRO_RANGE_500DEG = 0x08\r\n GYRO_RANGE_1000DEG = 0x10\r\n GYRO_RANGE_2000DEG = 0x18\r\n\r\n # MPU-6050 寄存器\r\n PWR_MGMT_1 = 0x6B\r\n PWR_MGMT_2 = 0x6C\r\n\r\n ACCEL_XOUT0 = 0x3B\r\n ACCEL_YOUT0 = 0x3D\r\n ACCEL_ZOUT0 = 0x3F\r\n\r\n TEMP_OUT0 = 0x41\r\n\r\n GYRO_XOUT0 = 0x43\r\n GYRO_YOUT0 = 0x45\r\n GYRO_ZOUT0 = 0x47\r\n\r\n ACCEL_CONFIG = 0x1C\r\n GYRO_CONFIG = 0x1B\r\n\r\n def __init__(self, address=0x68, bus=1):\r\n self.address = address\r\n self.bus = smbus.SMBus(bus)\r\n # 唤醒 MPU-6050\r\n self.bus.write_byte_data(self.address, self.PWR_MGMT_1, 0x00)\r\n\r\n # I2C 通信方法\r\n\r\n def read_i2c_word(self, register):\r\n # 读取两个寄存器中的值并合并\r\n high = self.bus.read_byte_data(self.address, register)\r\n low = self.bus.read_byte_data(self.address, register + 1)\r\n\r\n value = (high << 8) + low\r\n\r\n if value >= 0x8000:\r\n return -((65535 - value) + 1)\r\n else:\r\n return value\r\n\r\n # MPU-6050 Methods\r\n\r\n def get_temp(self):\r\n # 读取温度计的值,并以摄氏度返回\r\n raw_temp = self.read_i2c_word(self.TEMP_OUT0)\r\n\r\n # 得到实际温度\r\n actual_temp = (raw_temp / 340.0) + 36.53\r\n\r\n return actual_temp\r\n\r\n def set_accel_range(self, accel_range):\r\n # 设置加速度计的范围\r\n # 先清空\r\n self.bus.write_byte_data(self.address, self.ACCEL_CONFIG, 0x00)\r\n\r\n # 设置新值\r\n self.bus.write_byte_data(self.address, self.ACCEL_CONFIG, accel_range)\r\n\r\n def read_accel_range(self, raw=False):\r\n # 读取加速度计的范围\r\n # 如果raw为真,返回原始值\r\n # 否则根据型号返回值\r\n raw_data = self.bus.read_byte_data(self.address, self.ACCEL_CONFIG)\r\n\r\n if raw is True:\r\n return raw_data\r\n elif raw is False:\r\n if raw_data == self.ACCEL_RANGE_2G:\r\n return 2\r\n elif raw_data == self.ACCEL_RANGE_4G:\r\n return 4\r\n elif raw_data == self.ACCEL_RANGE_8G:\r\n return 8\r\n elif raw_data == self.ACCEL_RANGE_16G:\r\n return 16\r\n else:\r\n return -1\r\n\r\n def get_accel_data(self, g=False):\r\n # 获取加速度计中的数据\r\n # 如果g为真,返回g中的数据,否则以 m /s^2 返回\r\n x = self.read_i2c_word(self.ACCEL_XOUT0)\r\n y = self.read_i2c_word(self.ACCEL_YOUT0)\r\n z = self.read_i2c_word(self.ACCEL_ZOUT0)\r\n\r\n accel_scale_modifier = None\r\n accel_range = self.read_accel_range(True)\r\n\r\n if accel_range == self.ACCEL_RANGE_2G:\r\n accel_scale_modifier = self.ACCEL_SCALE_MODIFIER_2G\r\n elif accel_range == self.ACCEL_RANGE_4G:\r\n accel_scale_modifier = self.ACCEL_SCALE_MODIFIER_4G\r\n elif accel_range == self.ACCEL_RANGE_8G:\r\n accel_scale_modifier = self.ACCEL_SCALE_MODIFIER_8G\r\n elif accel_range == self.ACCEL_RANGE_16G:\r\n accel_scale_modifier = self.ACCEL_SCALE_MODIFIER_16G\r\n else:\r\n print(\"Unkown range - accel_scale_modifier set to self.ACCEL_SCALE_MODIFIER_2G\")\r\n accel_scale_modifier = self.ACCEL_SCALE_MODIFIER_2G\r\n\r\n x = x / accel_scale_modifier\r\n y = y / accel_scale_modifier\r\n z = z / accel_scale_modifier\r\n\r\n if g is True:\r\n return {'x': x, 'y': y, 'z': z}\r\n elif g is False:\r\n x = x * self.GRAVITIY_MS2\r\n y = y * self.GRAVITIY_MS2\r\n z = z * self.GRAVITIY_MS2\r\n return {'x': x, 'y': y, 'z': z}\r\n\r\n def set_gyro_range(self, gyro_range):\r\n # 设置陀螺仪范围\r\n # 先设置为0\r\n self.bus.write_byte_data(self.address, self.GYRO_CONFIG, 0x00)\r\n\r\n # 设置新值\r\n self.bus.write_byte_data(self.address, self.GYRO_CONFIG, gyro_range)\r\n\r\n def read_gyro_range(self, raw=False):\r\n # 读取陀螺仪范围\r\n # 如果raw为真,返回原始值\r\n # 如果raw为假,根据型号返回值\r\n raw_data = self.bus.read_byte_data(self.address, self.GYRO_CONFIG)\r\n\r\n if raw is True:\r\n return raw_data\r\n elif raw is False:\r\n if raw_data == self.GYRO_RANGE_250DEG:\r\n return 250\r\n elif raw_data == self.GYRO_RANGE_500DEG:\r\n return 500\r\n elif raw_data == self.GYRO_RANGE_1000DEG:\r\n return 1000\r\n elif raw_data == self.GYRO_RANGE_2000DEG:\r\n return 2000\r\n else:\r\n return -1\r\n\r\n def get_gyro_data(self):\r\n # 读取陀螺仪中的数据\r\n x = self.read_i2c_word(self.GYRO_XOUT0)\r\n y = self.read_i2c_word(self.GYRO_YOUT0)\r\n z = self.read_i2c_word(self.GYRO_ZOUT0)\r\n\r\n gyro_scale_modifier = None\r\n gyro_range = self.read_gyro_range(True)\r\n\r\n if gyro_range == self.GYRO_RANGE_250DEG:\r\n gyro_scale_modifier = self.GYRO_SCALE_MODIFIER_250DEG\r\n elif gyro_range == self.GYRO_RANGE_500DEG:\r\n gyro_scale_modifier = self.GYRO_SCALE_MODIFIER_500DEG\r\n elif gyro_range == self.GYRO_RANGE_1000DEG:\r\n gyro_scale_modifier = self.GYRO_SCALE_MODIFIER_1000DEG\r\n elif gyro_range == self.GYRO_RANGE_2000DEG:\r\n gyro_scale_modifier = self.GYRO_SCALE_MODIFIER_2000DEG\r\n else:\r\n print(\"Unkown range - gyro_scale_modifier set to self.GYRO_SCALE_MODIFIER_250DEG\")\r\n gyro_scale_modifier = self.GYRO_SCALE_MODIFIER_250DEG\r\n\r\n x = x / gyro_scale_modifier\r\n y = y / gyro_scale_modifier\r\n z = z / gyro_scale_modifier\r\n\r\n return {'x': x, 'y': y, 'z': z}\r\n\r\n def get_all_data(self):\r\n # 返回所有可以获得的值\r\n temp = self.get_temp()\r\n accel = self.get_accel_data()\r\n gyro = self.get_gyro_data()\r\n\r\n return [accel, gyro, temp]\r\n\r\n\r\nif __name__ == \"__main__\":\r\n mpu = GyroscopeDriver(0x68)\r\n print(mpu.get_temp())\r\n accel_data = mpu.get_accel_data()\r\n print \"accel_data:\"\r\n print(accel_data['x'])\r\n print(accel_data['y'])\r\n print(accel_data['z'])\r\n gyro_data = mpu.get_gyro_data()\r\n print \"gyro_data:\"\r\n print(gyro_data['x'])\r\n print(gyro_data['y'])\r\n print(gyro_data['z'])\r\n" ]
true
99,088
f899a67e5f438ace462f4a4436318920381393ba
num = int(input("Enter number \n")) if(num==0 or num>0 or num<0): if(num==0): print(num ,"is ZERO") elif(num>=1): print(f"{num} Number is Positive") else: print(f"{num} Number is Negative")
[ "num = int(input(\"Enter number \\n\"))\r\n\r\nif(num==0 or num>0 or num<0):\r\n if(num==0):\r\n print(num ,\"is ZERO\")\r\n elif(num>=1):\r\n print(f\"{num} Number is Positive\")\r\n else:\r\n print(f\"{num} Number is Negative\") ", "num = int(input('Enter number \\n'))\nif num == 0 or num > 0 or num < 0:\n if num == 0:\n print(num, 'is ZERO')\n elif num >= 1:\n print(f'{num} Number is Positive')\n else:\n print(f'{num} Number is Negative')\n", "<assignment token>\nif num == 0 or num > 0 or num < 0:\n if num == 0:\n print(num, 'is ZERO')\n elif num >= 1:\n print(f'{num} Number is Positive')\n else:\n print(f'{num} Number is Negative')\n", "<assignment token>\n<code token>\n" ]
false
99,089
37c8f8d49e5e8703d458b1e022ba19bcab1fc59b
""" The goal of this file is to have all the information on a graph. """ import sys, os, inspect currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(currentdir) sys.path.insert(0, parentdir) import numpy as np import matplotlib.pyplot as plt import copy import exceptions inf = np.inf #Change this bool according to the situation non_oriented = False class Vertice: """" All the information of one vertice are contained here. """ def __init__(self, index, coordinates): """ Entry : index of the vertice in list_of_vertices and the coordinates of the vertice. """ self.index = index self.coordinates = np.array([coordinates[0],coordinates[1]]) self._edges_list = [] # no neighbour by default self.priority = inf # priority by default self.visited = False # vertice is by default not visited self.cost_dijkstra = inf # cost is by default inf self.antecedent = -inf # antecedent not defined before using Dijkstra #implemente apres passage par panda self.index_edges_list = []#seulement implemente apres passage par panda #database self.id = None #identifiant idfm de la gare self.gare_name = None #nom de la gare self.color = None #couleur de la gare self.is_a_station= True # boolean True, si le noeud est veritablement une gare. False sinon def get_lines_connected(self): list_of_line = [] for edge in self._edges_list: if edge.id not in list_of_line: list_of_line.append(edge.id) return list_of_line @property def edges_list(self): """ Returns the list of neighbour. """ return self._edges_list # We suppose that the index and the coordinates never change. # The other properties can. @edges_list.setter def edges_list(self, edges_list): """ An element of edges_list is an edge """ for e in edges_list: exceptions.check_pertinent_edge(self, e) self._edges_list = edges_list def neighbours_list(self, list_tuple, id=0): self._edges_list.clear() """interface with old constructor , tuple=(neighbour_vertice,cost) is an element of list_tuple """ for tuple in list_tuple: E = Edge(self, tuple[0], id, tuple[1]) self._edges_list.append(E) def number_of_neighbours(self): return len(self._edges_list) def is_linked(self, other): """returns True if there is an edge between self and other""" for edge in self._edges_list: if other.index == edge.linked[1].index: return True return False def push_edge(self, edge, coords_verif=False): if coords_verif: exceptions.check_pertinent_edge_coords_verif(self, edge) else: exceptions.check_pertinent_edge(self, edge) self._edges_list.append(edge) """ def cost_between(self, other): for edge in self._edges_list: [vertice, vertice_voisin] = edge.linked if vertice_voisin == other: return edge.given_cost""" def __repr__(self): return f"Vertice {str(self.index)}" def __lt__(self, other): return self.priority < other.priority class Edge: def __init__(self, vertice1, vertice2, id, given_cost=0): self.linked = [vertice1,vertice2] self.id = id #identifiant de la liaison. ici id=nom de la ligne a laqualle appartient la liaison self._given_cost = given_cost #cout de deplacement de la liason donne par l'utilisateur ou la base de donnee #data_base self.color=None #couleur de la liason self.connection_with_displayable=None #indice de la liason developpee( trace reel) dans la table de connection connection_table_edge_and_diplayable_edge de la classe graph self.index=None def set_given_cost(self,cost): self._given_cost=cost #ne pas mettre @property ici, on veut une methode pas un attribut def euclidian_cost(self): return np.sqrt(self.square_euclidian_cost()) def square_euclidian_cost(self): return np.dot(np.transpose(self.linked[0].coordinates-self.linked[1].coordinates),(self.linked[0].coordinates-self.linked[1].coordinates)) def customized_cost1(self): V_metro = 25.1 / 3.6 #vitesse moyenne en km/h /3.6 -> vitesse moyenne en m/s V_train = 49.6 / 3.6 V_tram = 18 / 3.6 V_pieton = 4 / 3.6 if self.id in ["A","B","C","D","E","H","I","J","K","L","M","N","P","R","U","TER","GL"]: return self._given_cost/V_train if self.id in [str(i) for i in range(1,15)]+["ORL","CDG","3b","7b"]: return self._given_cost/V_metro if self.id in ["T"+str(i) for i in range(1,12)]+["T3A","T3B","FUN"]: return self._given_cost/V_tram if self.id in ["RER Walk"]: return self._given_cost/V_pieton raise ValueError(" Dans customized_cost1 " +self.id+" non pris en compte dans le calcul de distance") def __eq__(self,other): """2 edges are equal iff same cordinates and same id """ boul0 = self.linked[0].coordinates[0]==other.linked[0].coordinates[0] and self.linked[0].coordinates[1]==other.linked[0].coordinates[1] boul1 = self.linked[1].coordinates[0]==other.linked[1].coordinates[0] and self.linked[1].coordinates[1]==other.linked[1].coordinates[1] boulid = self.id==other.id return boul0 and boul1 and boulid def __ne__(self,other): """2 edges are not equal iff they are not equal :) """ return (self==other)==False #ne pas mettre @property ici, on veut une methode pas un attribut def given_cost(self): return self._given_cost def __repr__(self): return f"Edge [{str(self.linked[0].index)}, {str(self.linked[1].index)}] !oriented!" class Graph: """ All the information of a graph are contained here. """ def __init__(self,list_of_vertices): """ Entry : the list of vertices. """ self.list_of_vertices = list_of_vertices self.number_of_vertices = len(list_of_vertices) self.connection_table_edge_and_diplayable_edge=[] self.list_of_edges=[] self.number_of_disp_edges=0 self.number_of_edges=0 def push_diplayable_edge(self,bidim_array): self.connection_table_edge_and_diplayable_edge.append(copy.deepcopy(bidim_array)) self.number_of_disp_edges+=1 def push_edge(self,e): self.number_of_edges+=1 self.list_of_edges.append(e) def push_edge_without_doublons(self, e): if e not in self.list_of_edges: self.number_of_edges+=1 self.list_of_edges.append(e) def push_vertice(self,vertice): self.list_of_vertices.append(vertice) self.number_of_vertices += 1 def push_vertice_without_doublons(self, vertice): bool,index = self.is_vertice_in_graph_based_on_xy_with_tolerance(vertice,10**(-8)) #bool,index = self.is_vertice_in_graph_based_on_xy(vertice) if bool == False: self.push_vertice(vertice) else: vertice.coordinates=self.list_of_vertices[index].coordinates for edge in vertice.edges_list: if edge not in self.list_of_vertices[index].edges_list: self.list_of_vertices[index].push_edge(edge,True) def is_vertice_in_graph_based_on_xy(self,vertice): for i in range(self.number_of_vertices): v = self.list_of_vertices[i] if v.coordinates[0] == vertice.coordinates[0] and v.coordinates[1] == vertice.coordinates[1]: return True,i return False,None def is_vertice_in_graph_based_on_xy_with_tolerance(self, vertice, epsilon): for i in range(self.number_of_vertices): v = self.list_of_vertices[i] if ((v.coordinates[0] - vertice.coordinates[0])**2) + ((v.coordinates[1] - vertice.coordinates[1])**2) < epsilon: return True, i return False, None def __getitem__(self, key):#implement instance[key] if key >= 0 and key < self.number_of_vertices: return self.list_of_vertices[key] else : raise IndexError def laplace_matrix(self): """ Returns the laplace matrix. """ n = self.number_of_vertices laplace_matrix = np.zeros((n, n)) for i in range(n): laplace_matrix[i][i] = 1 vertice = self.list_of_vertices[i] for edge in vertice.edges_list: laplace_matrix[i][edge.linked[1].index] = 1 return laplace_matrix def A_matrix(self,type_cost=Edge.given_cost): """ Returns the laplace matrix. """ n = self.number_of_vertices A_matrix = np.zeros((n, n)) for i in range(n): vertice = self.list_of_vertices[i] for edge in vertice.edges_list: cost = type_cost(edge) A_matrix[i][edge.linked[1].index] = cost A_matrix[edge.linked[1].index][i] = cost return A_matrix def pairs_of_vertices(self): """Returns the pairs of connected vertices. Beware ! There might be non-connected vertices in the graph. """ pairs_of_vertices = [] for vertice in self.list_of_vertices: for edge in vertice.edges_list: if non_oriented: if (vertice, edge.linked[1]) and (edge.linked[1], vertice) not in pairs_of_vertices: pairs_of_vertices.append((vertice, edge.linked[1])) if not non_oriented: if (vertice, edge.linked[1]) not in pairs_of_vertices: pairs_of_vertices.append((vertice, edge.linked[1])) return pairs_of_vertices def number_of_edges(self): a=self.pairs_of_vertices() assert self.number_of_edges==len(a), "problem in Graph.pairs_of_vertices" return self.number_of_edges def search_index_by_coordinates(self,coord): """search the index of vertice at coordinates: """ for i in range(len(self.list_of_vertices)): if self[i].coordinates[0]==coord[0] and self[i].coordinates[1]==coord[1]: return i def set_right_edges(self): """verify that the graph is coherent """ for v in self: for e in v.edges_list: e.linked[0]=v e.linked[1]=self[self.search_index_by_coordinates(e.linked[1].coordinates)] for e in self.list_of_edges: e.linked[0]=self[self.search_index_by_coordinates(e.linked[0].coordinates)] e.linked[1]=self[self.search_index_by_coordinates(e.linked[1].coordinates)] def plot(self): plt.clf() for v in self._list_of_vertices: c = f"#{v.color}" plt.scatter(v.coordinates[0], v.coordinates[1], color=c) for e in v.edges_list: c = f"#{e.color}" x = e.linked[0].coordinates[0] y = e.linked[0].coordinates[1] dx = e.linked[1].coordinates[0] - x dy = e.linked[1].coordinates[1] - y plt.plot([x,x+dx], [y,y+dy], color=c) # plt.arrow(x,y,dx,dy) plt.axis = 'off' plt.show() def plot_dev(self): plt.clf() for v in self._list_of_vertices: c = f"#{v.color}" plt.scatter(v.coordinates[0], v.coordinates[1], color=c) for e in v.edges_list: c = f"#{e.color}" for i in range(len(self.connection_table_edge_and_diplayable_edge[e.connection_with_displayable])-1): x = self.connection_table_edge_and_diplayable_edge[e.connection_with_displayable][i][0] y = self.connection_table_edge_and_diplayable_edge[e.connection_with_displayable][i][1] dx = self.connection_table_edge_and_diplayable_edge[e.connection_with_displayable][i+1][0]-x dy = self.connection_table_edge_and_diplayable_edge[e.connection_with_displayable][i+1][1]-y plt.plot([x,x+dx], [y,y+dy], color=c) plt.axis = 'off' plt.show()
[ "\"\"\" The goal of this file is to have all the information on a graph. \"\"\"\nimport sys, os, inspect\ncurrentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))\nparentdir = os.path.dirname(currentdir)\nsys.path.insert(0, parentdir)\n\n\nimport numpy as np\nimport matplotlib.pyplot as plt\nimport copy\nimport exceptions\ninf = np.inf\n\n#Change this bool according to the situation\nnon_oriented = False\n\nclass Vertice:\n \"\"\"\" All the information of one vertice are contained here. \"\"\"\n\n def __init__(self, index, coordinates):\n \"\"\" Entry : index of the vertice in list_of_vertices\n and the coordinates of the vertice. \"\"\"\n self.index = index\n self.coordinates = np.array([coordinates[0],coordinates[1]])\n self._edges_list = [] # no neighbour by default\n self.priority = inf # priority by default\n self.visited = False # vertice is by default not visited\n self.cost_dijkstra = inf # cost is by default inf\n self.antecedent = -inf # antecedent not defined before using Dijkstra\n #implemente apres passage par panda\n self.index_edges_list = []#seulement implemente apres passage par panda\n\n\n #database\n self.id = None #identifiant idfm de la gare\n self.gare_name = None #nom de la gare\n self.color = None #couleur de la gare\n self.is_a_station= True # boolean True, si le noeud est veritablement une gare. False sinon\n\n def get_lines_connected(self):\n list_of_line = []\n for edge in self._edges_list:\n if edge.id not in list_of_line:\n list_of_line.append(edge.id)\n return list_of_line\n\n @property\n def edges_list(self):\n \"\"\" Returns the list of neighbour. \"\"\"\n return self._edges_list\n\n # We suppose that the index and the coordinates never change.\n # The other properties can.\n\n @edges_list.setter\n def edges_list(self, edges_list):\n \"\"\" An element of edges_list is an edge \"\"\"\n for e in edges_list:\n exceptions.check_pertinent_edge(self, e)\n self._edges_list = edges_list\n\n def neighbours_list(self, list_tuple, id=0):\n self._edges_list.clear()\n \"\"\"interface with old constructor , tuple=(neighbour_vertice,cost) is an element of list_tuple \"\"\"\n for tuple in list_tuple:\n E = Edge(self, tuple[0], id, tuple[1])\n self._edges_list.append(E)\n\n def number_of_neighbours(self):\n return len(self._edges_list)\n\n def is_linked(self, other):\n \"\"\"returns True if there is an edge between self and other\"\"\"\n for edge in self._edges_list:\n if other.index == edge.linked[1].index:\n return True\n return False\n\n def push_edge(self, edge, coords_verif=False):\n if coords_verif:\n exceptions.check_pertinent_edge_coords_verif(self, edge)\n else:\n exceptions.check_pertinent_edge(self, edge)\n self._edges_list.append(edge)\n\n \"\"\"\n def cost_between(self, other):\n for edge in self._edges_list:\n [vertice, vertice_voisin] = edge.linked\n if vertice_voisin == other:\n return edge.given_cost\"\"\"\n\n def __repr__(self):\n return f\"Vertice {str(self.index)}\"\n\n def __lt__(self, other):\n return self.priority < other.priority\n\nclass Edge:\n def __init__(self, vertice1, vertice2, id, given_cost=0):\n self.linked = [vertice1,vertice2]\n self.id = id #identifiant de la liaison. ici id=nom de la ligne a laqualle appartient la liaison\n self._given_cost = given_cost #cout de deplacement de la liason donne par l'utilisateur ou la base de donnee\n #data_base\n self.color=None #couleur de la liason\n self.connection_with_displayable=None #indice de la liason developpee( trace reel) dans la table de connection connection_table_edge_and_diplayable_edge de la classe graph\n self.index=None\n def set_given_cost(self,cost):\n self._given_cost=cost\n #ne pas mettre @property ici, on veut une methode pas un attribut\n def euclidian_cost(self):\n return np.sqrt(self.square_euclidian_cost())\n def square_euclidian_cost(self):\n return np.dot(np.transpose(self.linked[0].coordinates-self.linked[1].coordinates),(self.linked[0].coordinates-self.linked[1].coordinates))\n def customized_cost1(self):\n V_metro = 25.1 / 3.6 #vitesse moyenne en km/h /3.6 -> vitesse moyenne en m/s\n V_train = 49.6 / 3.6\n V_tram = 18 / 3.6\n V_pieton = 4 / 3.6\n if self.id in [\"A\",\"B\",\"C\",\"D\",\"E\",\"H\",\"I\",\"J\",\"K\",\"L\",\"M\",\"N\",\"P\",\"R\",\"U\",\"TER\",\"GL\"]:\n return self._given_cost/V_train\n if self.id in [str(i) for i in range(1,15)]+[\"ORL\",\"CDG\",\"3b\",\"7b\"]:\n return self._given_cost/V_metro\n if self.id in [\"T\"+str(i) for i in range(1,12)]+[\"T3A\",\"T3B\",\"FUN\"]:\n return self._given_cost/V_tram\n if self.id in [\"RER Walk\"]:\n return self._given_cost/V_pieton\n raise ValueError(\" Dans customized_cost1 \" +self.id+\" non pris en compte dans le calcul de distance\")\n\n def __eq__(self,other):\n \"\"\"2 edges are equal iff same cordinates and same id \"\"\"\n boul0 = self.linked[0].coordinates[0]==other.linked[0].coordinates[0] and self.linked[0].coordinates[1]==other.linked[0].coordinates[1]\n boul1 = self.linked[1].coordinates[0]==other.linked[1].coordinates[0] and self.linked[1].coordinates[1]==other.linked[1].coordinates[1]\n boulid = self.id==other.id\n return boul0 and boul1 and boulid\n def __ne__(self,other):\n \"\"\"2 edges are not equal iff they are not equal :) \"\"\"\n return (self==other)==False\n #ne pas mettre @property ici, on veut une methode pas un attribut\n def given_cost(self):\n return self._given_cost\n def __repr__(self):\n return f\"Edge [{str(self.linked[0].index)}, {str(self.linked[1].index)}] !oriented!\"\n\n\n\nclass Graph:\n \"\"\" All the information of a graph are contained here. \"\"\"\n def __init__(self,list_of_vertices):\n \"\"\" Entry : the list of vertices. \"\"\"\n self.list_of_vertices = list_of_vertices\n self.number_of_vertices = len(list_of_vertices)\n self.connection_table_edge_and_diplayable_edge=[]\n self.list_of_edges=[]\n self.number_of_disp_edges=0\n self.number_of_edges=0\n\n def push_diplayable_edge(self,bidim_array):\n self.connection_table_edge_and_diplayable_edge.append(copy.deepcopy(bidim_array))\n self.number_of_disp_edges+=1\n def push_edge(self,e):\n self.number_of_edges+=1\n self.list_of_edges.append(e)\n\n def push_edge_without_doublons(self, e):\n if e not in self.list_of_edges:\n self.number_of_edges+=1\n self.list_of_edges.append(e)\n\n\n def push_vertice(self,vertice):\n self.list_of_vertices.append(vertice)\n self.number_of_vertices += 1\n\n def push_vertice_without_doublons(self, vertice):\n bool,index = self.is_vertice_in_graph_based_on_xy_with_tolerance(vertice,10**(-8))\n #bool,index = self.is_vertice_in_graph_based_on_xy(vertice)\n if bool == False:\n self.push_vertice(vertice)\n else:\n vertice.coordinates=self.list_of_vertices[index].coordinates\n for edge in vertice.edges_list:\n if edge not in self.list_of_vertices[index].edges_list:\n self.list_of_vertices[index].push_edge(edge,True)\n\n\n def is_vertice_in_graph_based_on_xy(self,vertice):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if v.coordinates[0] == vertice.coordinates[0] and v.coordinates[1] == vertice.coordinates[1]:\n return True,i\n return False,None\n\n def is_vertice_in_graph_based_on_xy_with_tolerance(self, vertice, epsilon):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if ((v.coordinates[0] - vertice.coordinates[0])**2) + ((v.coordinates[1] - vertice.coordinates[1])**2) < epsilon:\n return True, i\n return False, None\n\n\n def __getitem__(self, key):#implement instance[key]\n if key >= 0 and key < self.number_of_vertices:\n return self.list_of_vertices[key]\n else :\n raise IndexError\n\n def laplace_matrix(self):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n laplace_matrix = np.zeros((n, n))\n for i in range(n):\n laplace_matrix[i][i] = 1\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n laplace_matrix[i][edge.linked[1].index] = 1\n return laplace_matrix\n\n def A_matrix(self,type_cost=Edge.given_cost):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n A_matrix = np.zeros((n, n))\n for i in range(n):\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n cost = type_cost(edge)\n A_matrix[i][edge.linked[1].index] = cost\n A_matrix[edge.linked[1].index][i] = cost\n return A_matrix\n\n def pairs_of_vertices(self):\n \"\"\"Returns the pairs of connected vertices.\n Beware ! There might be non-connected vertices in the graph. \"\"\"\n pairs_of_vertices = []\n for vertice in self.list_of_vertices:\n for edge in vertice.edges_list:\n if non_oriented:\n if (vertice, edge.linked[1]) and (edge.linked[1], vertice) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n if not non_oriented:\n if (vertice, edge.linked[1]) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n return pairs_of_vertices\n\n def number_of_edges(self):\n a=self.pairs_of_vertices()\n assert self.number_of_edges==len(a), \"problem in Graph.pairs_of_vertices\"\n return self.number_of_edges\n\n def search_index_by_coordinates(self,coord):\n \"\"\"search the index of vertice at coordinates: \"\"\"\n for i in range(len(self.list_of_vertices)):\n if self[i].coordinates[0]==coord[0] and self[i].coordinates[1]==coord[1]:\n return i\n\n def set_right_edges(self):\n \"\"\"verify that the graph is coherent \"\"\"\n for v in self:\n for e in v.edges_list:\n e.linked[0]=v\n e.linked[1]=self[self.search_index_by_coordinates(e.linked[1].coordinates)]\n for e in self.list_of_edges:\n e.linked[0]=self[self.search_index_by_coordinates(e.linked[0].coordinates)]\n e.linked[1]=self[self.search_index_by_coordinates(e.linked[1].coordinates)]\n\n\n def plot(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f\"#{v.color}\"\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f\"#{e.color}\"\n x = e.linked[0].coordinates[0]\n y = e.linked[0].coordinates[1]\n dx = e.linked[1].coordinates[0] - x\n dy = e.linked[1].coordinates[1] - y\n plt.plot([x,x+dx], [y,y+dy], color=c)\n # plt.arrow(x,y,dx,dy)\n plt.axis = 'off'\n plt.show()\n\n def plot_dev(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f\"#{v.color}\"\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f\"#{e.color}\"\n for i in range(len(self.connection_table_edge_and_diplayable_edge[e.connection_with_displayable])-1):\n x = self.connection_table_edge_and_diplayable_edge[e.connection_with_displayable][i][0]\n y = self.connection_table_edge_and_diplayable_edge[e.connection_with_displayable][i][1]\n dx = self.connection_table_edge_and_diplayable_edge[e.connection_with_displayable][i+1][0]-x\n dy = self.connection_table_edge_and_diplayable_edge[e.connection_with_displayable][i+1][1]-y\n plt.plot([x,x+dx], [y,y+dy], color=c)\n plt.axis = 'off'\n plt.show()\n", "<docstring token>\nimport sys, os, inspect\ncurrentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.\n currentframe())))\nparentdir = os.path.dirname(currentdir)\nsys.path.insert(0, parentdir)\nimport numpy as np\nimport matplotlib.pyplot as plt\nimport copy\nimport exceptions\ninf = np.inf\nnon_oriented = False\n\n\nclass Vertice:\n \"\"\"\" All the information of one vertice are contained here. \"\"\"\n\n def __init__(self, index, coordinates):\n \"\"\" Entry : index of the vertice in list_of_vertices\n and the coordinates of the vertice. \"\"\"\n self.index = index\n self.coordinates = np.array([coordinates[0], coordinates[1]])\n self._edges_list = []\n self.priority = inf\n self.visited = False\n self.cost_dijkstra = inf\n self.antecedent = -inf\n self.index_edges_list = []\n self.id = None\n self.gare_name = None\n self.color = None\n self.is_a_station = True\n\n def get_lines_connected(self):\n list_of_line = []\n for edge in self._edges_list:\n if edge.id not in list_of_line:\n list_of_line.append(edge.id)\n return list_of_line\n\n @property\n def edges_list(self):\n \"\"\" Returns the list of neighbour. \"\"\"\n return self._edges_list\n\n @edges_list.setter\n def edges_list(self, edges_list):\n \"\"\" An element of edges_list is an edge \"\"\"\n for e in edges_list:\n exceptions.check_pertinent_edge(self, e)\n self._edges_list = edges_list\n\n def neighbours_list(self, list_tuple, id=0):\n self._edges_list.clear()\n \"\"\"interface with old constructor , tuple=(neighbour_vertice,cost) is an element of list_tuple \"\"\"\n for tuple in list_tuple:\n E = Edge(self, tuple[0], id, tuple[1])\n self._edges_list.append(E)\n\n def number_of_neighbours(self):\n return len(self._edges_list)\n\n def is_linked(self, other):\n \"\"\"returns True if there is an edge between self and other\"\"\"\n for edge in self._edges_list:\n if other.index == edge.linked[1].index:\n return True\n return False\n\n def push_edge(self, edge, coords_verif=False):\n if coords_verif:\n exceptions.check_pertinent_edge_coords_verif(self, edge)\n else:\n exceptions.check_pertinent_edge(self, edge)\n self._edges_list.append(edge)\n \"\"\"\n def cost_between(self, other):\n for edge in self._edges_list:\n [vertice, vertice_voisin] = edge.linked\n if vertice_voisin == other:\n return edge.given_cost\"\"\"\n\n def __repr__(self):\n return f'Vertice {str(self.index)}'\n\n def __lt__(self, other):\n return self.priority < other.priority\n\n\nclass Edge:\n\n def __init__(self, vertice1, vertice2, id, given_cost=0):\n self.linked = [vertice1, vertice2]\n self.id = id\n self._given_cost = given_cost\n self.color = None\n self.connection_with_displayable = None\n self.index = None\n\n def set_given_cost(self, cost):\n self._given_cost = cost\n\n def euclidian_cost(self):\n return np.sqrt(self.square_euclidian_cost())\n\n def square_euclidian_cost(self):\n return np.dot(np.transpose(self.linked[0].coordinates - self.linked\n [1].coordinates), self.linked[0].coordinates - self.linked[1].\n coordinates)\n\n def customized_cost1(self):\n V_metro = 25.1 / 3.6\n V_train = 49.6 / 3.6\n V_tram = 18 / 3.6\n V_pieton = 4 / 3.6\n if self.id in ['A', 'B', 'C', 'D', 'E', 'H', 'I', 'J', 'K', 'L',\n 'M', 'N', 'P', 'R', 'U', 'TER', 'GL']:\n return self._given_cost / V_train\n if self.id in [str(i) for i in range(1, 15)] + ['ORL', 'CDG', '3b',\n '7b']:\n return self._given_cost / V_metro\n if self.id in [('T' + str(i)) for i in range(1, 12)] + ['T3A',\n 'T3B', 'FUN']:\n return self._given_cost / V_tram\n if self.id in ['RER Walk']:\n return self._given_cost / V_pieton\n raise ValueError(' Dans customized_cost1 ' + self.id +\n ' non pris en compte dans le calcul de distance')\n\n def __eq__(self, other):\n \"\"\"2 edges are equal iff same cordinates and same id \"\"\"\n boul0 = self.linked[0].coordinates[0] == other.linked[0].coordinates[0\n ] and self.linked[0].coordinates[1] == other.linked[0].coordinates[\n 1]\n boul1 = self.linked[1].coordinates[0] == other.linked[1].coordinates[0\n ] and self.linked[1].coordinates[1] == other.linked[1].coordinates[\n 1]\n boulid = self.id == other.id\n return boul0 and boul1 and boulid\n\n def __ne__(self, other):\n \"\"\"2 edges are not equal iff they are not equal :) \"\"\"\n return (self == other) == False\n\n def given_cost(self):\n return self._given_cost\n\n def __repr__(self):\n return (\n f'Edge [{str(self.linked[0].index)}, {str(self.linked[1].index)}] !oriented!'\n )\n\n\nclass Graph:\n \"\"\" All the information of a graph are contained here. \"\"\"\n\n def __init__(self, list_of_vertices):\n \"\"\" Entry : the list of vertices. \"\"\"\n self.list_of_vertices = list_of_vertices\n self.number_of_vertices = len(list_of_vertices)\n self.connection_table_edge_and_diplayable_edge = []\n self.list_of_edges = []\n self.number_of_disp_edges = 0\n self.number_of_edges = 0\n\n def push_diplayable_edge(self, bidim_array):\n self.connection_table_edge_and_diplayable_edge.append(copy.deepcopy\n (bidim_array))\n self.number_of_disp_edges += 1\n\n def push_edge(self, e):\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_edge_without_doublons(self, e):\n if e not in self.list_of_edges:\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_vertice(self, vertice):\n self.list_of_vertices.append(vertice)\n self.number_of_vertices += 1\n\n def push_vertice_without_doublons(self, vertice):\n bool, index = self.is_vertice_in_graph_based_on_xy_with_tolerance(\n vertice, 10 ** -8)\n if bool == False:\n self.push_vertice(vertice)\n else:\n vertice.coordinates = self.list_of_vertices[index].coordinates\n for edge in vertice.edges_list:\n if edge not in self.list_of_vertices[index].edges_list:\n self.list_of_vertices[index].push_edge(edge, True)\n\n def is_vertice_in_graph_based_on_xy(self, vertice):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if v.coordinates[0] == vertice.coordinates[0] and v.coordinates[1\n ] == vertice.coordinates[1]:\n return True, i\n return False, None\n\n def is_vertice_in_graph_based_on_xy_with_tolerance(self, vertice, epsilon):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if (v.coordinates[0] - vertice.coordinates[0]) ** 2 + (v.\n coordinates[1] - vertice.coordinates[1]) ** 2 < epsilon:\n return True, i\n return False, None\n\n def __getitem__(self, key):\n if key >= 0 and key < self.number_of_vertices:\n return self.list_of_vertices[key]\n else:\n raise IndexError\n\n def laplace_matrix(self):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n laplace_matrix = np.zeros((n, n))\n for i in range(n):\n laplace_matrix[i][i] = 1\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n laplace_matrix[i][edge.linked[1].index] = 1\n return laplace_matrix\n\n def A_matrix(self, type_cost=Edge.given_cost):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n A_matrix = np.zeros((n, n))\n for i in range(n):\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n cost = type_cost(edge)\n A_matrix[i][edge.linked[1].index] = cost\n A_matrix[edge.linked[1].index][i] = cost\n return A_matrix\n\n def pairs_of_vertices(self):\n \"\"\"Returns the pairs of connected vertices.\n Beware ! There might be non-connected vertices in the graph. \"\"\"\n pairs_of_vertices = []\n for vertice in self.list_of_vertices:\n for edge in vertice.edges_list:\n if non_oriented:\n if (vertice, edge.linked[1]) and (edge.linked[1], vertice\n ) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n if not non_oriented:\n if (vertice, edge.linked[1]) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n return pairs_of_vertices\n\n def number_of_edges(self):\n a = self.pairs_of_vertices()\n assert self.number_of_edges == len(a\n ), 'problem in Graph.pairs_of_vertices'\n return self.number_of_edges\n\n def search_index_by_coordinates(self, coord):\n \"\"\"search the index of vertice at coordinates: \"\"\"\n for i in range(len(self.list_of_vertices)):\n if self[i].coordinates[0] == coord[0] and self[i].coordinates[1\n ] == coord[1]:\n return i\n\n def set_right_edges(self):\n \"\"\"verify that the graph is coherent \"\"\"\n for v in self:\n for e in v.edges_list:\n e.linked[0] = v\n e.linked[1] = self[self.search_index_by_coordinates(e.\n linked[1].coordinates)]\n for e in self.list_of_edges:\n e.linked[0] = self[self.search_index_by_coordinates(e.linked[0]\n .coordinates)]\n e.linked[1] = self[self.search_index_by_coordinates(e.linked[1]\n .coordinates)]\n\n def plot(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n x = e.linked[0].coordinates[0]\n y = e.linked[0].coordinates[1]\n dx = e.linked[1].coordinates[0] - x\n dy = e.linked[1].coordinates[1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n\n def plot_dev(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n for i in range(len(self.\n connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable]) - 1):\n x = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][0]\n y = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][1]\n dx = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][0] - x\n dy = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n", "<docstring token>\n<import token>\ncurrentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.\n currentframe())))\nparentdir = os.path.dirname(currentdir)\nsys.path.insert(0, parentdir)\n<import token>\ninf = np.inf\nnon_oriented = False\n\n\nclass Vertice:\n \"\"\"\" All the information of one vertice are contained here. \"\"\"\n\n def __init__(self, index, coordinates):\n \"\"\" Entry : index of the vertice in list_of_vertices\n and the coordinates of the vertice. \"\"\"\n self.index = index\n self.coordinates = np.array([coordinates[0], coordinates[1]])\n self._edges_list = []\n self.priority = inf\n self.visited = False\n self.cost_dijkstra = inf\n self.antecedent = -inf\n self.index_edges_list = []\n self.id = None\n self.gare_name = None\n self.color = None\n self.is_a_station = True\n\n def get_lines_connected(self):\n list_of_line = []\n for edge in self._edges_list:\n if edge.id not in list_of_line:\n list_of_line.append(edge.id)\n return list_of_line\n\n @property\n def edges_list(self):\n \"\"\" Returns the list of neighbour. \"\"\"\n return self._edges_list\n\n @edges_list.setter\n def edges_list(self, edges_list):\n \"\"\" An element of edges_list is an edge \"\"\"\n for e in edges_list:\n exceptions.check_pertinent_edge(self, e)\n self._edges_list = edges_list\n\n def neighbours_list(self, list_tuple, id=0):\n self._edges_list.clear()\n \"\"\"interface with old constructor , tuple=(neighbour_vertice,cost) is an element of list_tuple \"\"\"\n for tuple in list_tuple:\n E = Edge(self, tuple[0], id, tuple[1])\n self._edges_list.append(E)\n\n def number_of_neighbours(self):\n return len(self._edges_list)\n\n def is_linked(self, other):\n \"\"\"returns True if there is an edge between self and other\"\"\"\n for edge in self._edges_list:\n if other.index == edge.linked[1].index:\n return True\n return False\n\n def push_edge(self, edge, coords_verif=False):\n if coords_verif:\n exceptions.check_pertinent_edge_coords_verif(self, edge)\n else:\n exceptions.check_pertinent_edge(self, edge)\n self._edges_list.append(edge)\n \"\"\"\n def cost_between(self, other):\n for edge in self._edges_list:\n [vertice, vertice_voisin] = edge.linked\n if vertice_voisin == other:\n return edge.given_cost\"\"\"\n\n def __repr__(self):\n return f'Vertice {str(self.index)}'\n\n def __lt__(self, other):\n return self.priority < other.priority\n\n\nclass Edge:\n\n def __init__(self, vertice1, vertice2, id, given_cost=0):\n self.linked = [vertice1, vertice2]\n self.id = id\n self._given_cost = given_cost\n self.color = None\n self.connection_with_displayable = None\n self.index = None\n\n def set_given_cost(self, cost):\n self._given_cost = cost\n\n def euclidian_cost(self):\n return np.sqrt(self.square_euclidian_cost())\n\n def square_euclidian_cost(self):\n return np.dot(np.transpose(self.linked[0].coordinates - self.linked\n [1].coordinates), self.linked[0].coordinates - self.linked[1].\n coordinates)\n\n def customized_cost1(self):\n V_metro = 25.1 / 3.6\n V_train = 49.6 / 3.6\n V_tram = 18 / 3.6\n V_pieton = 4 / 3.6\n if self.id in ['A', 'B', 'C', 'D', 'E', 'H', 'I', 'J', 'K', 'L',\n 'M', 'N', 'P', 'R', 'U', 'TER', 'GL']:\n return self._given_cost / V_train\n if self.id in [str(i) for i in range(1, 15)] + ['ORL', 'CDG', '3b',\n '7b']:\n return self._given_cost / V_metro\n if self.id in [('T' + str(i)) for i in range(1, 12)] + ['T3A',\n 'T3B', 'FUN']:\n return self._given_cost / V_tram\n if self.id in ['RER Walk']:\n return self._given_cost / V_pieton\n raise ValueError(' Dans customized_cost1 ' + self.id +\n ' non pris en compte dans le calcul de distance')\n\n def __eq__(self, other):\n \"\"\"2 edges are equal iff same cordinates and same id \"\"\"\n boul0 = self.linked[0].coordinates[0] == other.linked[0].coordinates[0\n ] and self.linked[0].coordinates[1] == other.linked[0].coordinates[\n 1]\n boul1 = self.linked[1].coordinates[0] == other.linked[1].coordinates[0\n ] and self.linked[1].coordinates[1] == other.linked[1].coordinates[\n 1]\n boulid = self.id == other.id\n return boul0 and boul1 and boulid\n\n def __ne__(self, other):\n \"\"\"2 edges are not equal iff they are not equal :) \"\"\"\n return (self == other) == False\n\n def given_cost(self):\n return self._given_cost\n\n def __repr__(self):\n return (\n f'Edge [{str(self.linked[0].index)}, {str(self.linked[1].index)}] !oriented!'\n )\n\n\nclass Graph:\n \"\"\" All the information of a graph are contained here. \"\"\"\n\n def __init__(self, list_of_vertices):\n \"\"\" Entry : the list of vertices. \"\"\"\n self.list_of_vertices = list_of_vertices\n self.number_of_vertices = len(list_of_vertices)\n self.connection_table_edge_and_diplayable_edge = []\n self.list_of_edges = []\n self.number_of_disp_edges = 0\n self.number_of_edges = 0\n\n def push_diplayable_edge(self, bidim_array):\n self.connection_table_edge_and_diplayable_edge.append(copy.deepcopy\n (bidim_array))\n self.number_of_disp_edges += 1\n\n def push_edge(self, e):\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_edge_without_doublons(self, e):\n if e not in self.list_of_edges:\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_vertice(self, vertice):\n self.list_of_vertices.append(vertice)\n self.number_of_vertices += 1\n\n def push_vertice_without_doublons(self, vertice):\n bool, index = self.is_vertice_in_graph_based_on_xy_with_tolerance(\n vertice, 10 ** -8)\n if bool == False:\n self.push_vertice(vertice)\n else:\n vertice.coordinates = self.list_of_vertices[index].coordinates\n for edge in vertice.edges_list:\n if edge not in self.list_of_vertices[index].edges_list:\n self.list_of_vertices[index].push_edge(edge, True)\n\n def is_vertice_in_graph_based_on_xy(self, vertice):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if v.coordinates[0] == vertice.coordinates[0] and v.coordinates[1\n ] == vertice.coordinates[1]:\n return True, i\n return False, None\n\n def is_vertice_in_graph_based_on_xy_with_tolerance(self, vertice, epsilon):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if (v.coordinates[0] - vertice.coordinates[0]) ** 2 + (v.\n coordinates[1] - vertice.coordinates[1]) ** 2 < epsilon:\n return True, i\n return False, None\n\n def __getitem__(self, key):\n if key >= 0 and key < self.number_of_vertices:\n return self.list_of_vertices[key]\n else:\n raise IndexError\n\n def laplace_matrix(self):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n laplace_matrix = np.zeros((n, n))\n for i in range(n):\n laplace_matrix[i][i] = 1\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n laplace_matrix[i][edge.linked[1].index] = 1\n return laplace_matrix\n\n def A_matrix(self, type_cost=Edge.given_cost):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n A_matrix = np.zeros((n, n))\n for i in range(n):\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n cost = type_cost(edge)\n A_matrix[i][edge.linked[1].index] = cost\n A_matrix[edge.linked[1].index][i] = cost\n return A_matrix\n\n def pairs_of_vertices(self):\n \"\"\"Returns the pairs of connected vertices.\n Beware ! There might be non-connected vertices in the graph. \"\"\"\n pairs_of_vertices = []\n for vertice in self.list_of_vertices:\n for edge in vertice.edges_list:\n if non_oriented:\n if (vertice, edge.linked[1]) and (edge.linked[1], vertice\n ) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n if not non_oriented:\n if (vertice, edge.linked[1]) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n return pairs_of_vertices\n\n def number_of_edges(self):\n a = self.pairs_of_vertices()\n assert self.number_of_edges == len(a\n ), 'problem in Graph.pairs_of_vertices'\n return self.number_of_edges\n\n def search_index_by_coordinates(self, coord):\n \"\"\"search the index of vertice at coordinates: \"\"\"\n for i in range(len(self.list_of_vertices)):\n if self[i].coordinates[0] == coord[0] and self[i].coordinates[1\n ] == coord[1]:\n return i\n\n def set_right_edges(self):\n \"\"\"verify that the graph is coherent \"\"\"\n for v in self:\n for e in v.edges_list:\n e.linked[0] = v\n e.linked[1] = self[self.search_index_by_coordinates(e.\n linked[1].coordinates)]\n for e in self.list_of_edges:\n e.linked[0] = self[self.search_index_by_coordinates(e.linked[0]\n .coordinates)]\n e.linked[1] = self[self.search_index_by_coordinates(e.linked[1]\n .coordinates)]\n\n def plot(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n x = e.linked[0].coordinates[0]\n y = e.linked[0].coordinates[1]\n dx = e.linked[1].coordinates[0] - x\n dy = e.linked[1].coordinates[1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n\n def plot_dev(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n for i in range(len(self.\n connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable]) - 1):\n x = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][0]\n y = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][1]\n dx = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][0] - x\n dy = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n", "<docstring token>\n<import token>\n<assignment token>\nsys.path.insert(0, parentdir)\n<import token>\n<assignment token>\n\n\nclass Vertice:\n \"\"\"\" All the information of one vertice are contained here. \"\"\"\n\n def __init__(self, index, coordinates):\n \"\"\" Entry : index of the vertice in list_of_vertices\n and the coordinates of the vertice. \"\"\"\n self.index = index\n self.coordinates = np.array([coordinates[0], coordinates[1]])\n self._edges_list = []\n self.priority = inf\n self.visited = False\n self.cost_dijkstra = inf\n self.antecedent = -inf\n self.index_edges_list = []\n self.id = None\n self.gare_name = None\n self.color = None\n self.is_a_station = True\n\n def get_lines_connected(self):\n list_of_line = []\n for edge in self._edges_list:\n if edge.id not in list_of_line:\n list_of_line.append(edge.id)\n return list_of_line\n\n @property\n def edges_list(self):\n \"\"\" Returns the list of neighbour. \"\"\"\n return self._edges_list\n\n @edges_list.setter\n def edges_list(self, edges_list):\n \"\"\" An element of edges_list is an edge \"\"\"\n for e in edges_list:\n exceptions.check_pertinent_edge(self, e)\n self._edges_list = edges_list\n\n def neighbours_list(self, list_tuple, id=0):\n self._edges_list.clear()\n \"\"\"interface with old constructor , tuple=(neighbour_vertice,cost) is an element of list_tuple \"\"\"\n for tuple in list_tuple:\n E = Edge(self, tuple[0], id, tuple[1])\n self._edges_list.append(E)\n\n def number_of_neighbours(self):\n return len(self._edges_list)\n\n def is_linked(self, other):\n \"\"\"returns True if there is an edge between self and other\"\"\"\n for edge in self._edges_list:\n if other.index == edge.linked[1].index:\n return True\n return False\n\n def push_edge(self, edge, coords_verif=False):\n if coords_verif:\n exceptions.check_pertinent_edge_coords_verif(self, edge)\n else:\n exceptions.check_pertinent_edge(self, edge)\n self._edges_list.append(edge)\n \"\"\"\n def cost_between(self, other):\n for edge in self._edges_list:\n [vertice, vertice_voisin] = edge.linked\n if vertice_voisin == other:\n return edge.given_cost\"\"\"\n\n def __repr__(self):\n return f'Vertice {str(self.index)}'\n\n def __lt__(self, other):\n return self.priority < other.priority\n\n\nclass Edge:\n\n def __init__(self, vertice1, vertice2, id, given_cost=0):\n self.linked = [vertice1, vertice2]\n self.id = id\n self._given_cost = given_cost\n self.color = None\n self.connection_with_displayable = None\n self.index = None\n\n def set_given_cost(self, cost):\n self._given_cost = cost\n\n def euclidian_cost(self):\n return np.sqrt(self.square_euclidian_cost())\n\n def square_euclidian_cost(self):\n return np.dot(np.transpose(self.linked[0].coordinates - self.linked\n [1].coordinates), self.linked[0].coordinates - self.linked[1].\n coordinates)\n\n def customized_cost1(self):\n V_metro = 25.1 / 3.6\n V_train = 49.6 / 3.6\n V_tram = 18 / 3.6\n V_pieton = 4 / 3.6\n if self.id in ['A', 'B', 'C', 'D', 'E', 'H', 'I', 'J', 'K', 'L',\n 'M', 'N', 'P', 'R', 'U', 'TER', 'GL']:\n return self._given_cost / V_train\n if self.id in [str(i) for i in range(1, 15)] + ['ORL', 'CDG', '3b',\n '7b']:\n return self._given_cost / V_metro\n if self.id in [('T' + str(i)) for i in range(1, 12)] + ['T3A',\n 'T3B', 'FUN']:\n return self._given_cost / V_tram\n if self.id in ['RER Walk']:\n return self._given_cost / V_pieton\n raise ValueError(' Dans customized_cost1 ' + self.id +\n ' non pris en compte dans le calcul de distance')\n\n def __eq__(self, other):\n \"\"\"2 edges are equal iff same cordinates and same id \"\"\"\n boul0 = self.linked[0].coordinates[0] == other.linked[0].coordinates[0\n ] and self.linked[0].coordinates[1] == other.linked[0].coordinates[\n 1]\n boul1 = self.linked[1].coordinates[0] == other.linked[1].coordinates[0\n ] and self.linked[1].coordinates[1] == other.linked[1].coordinates[\n 1]\n boulid = self.id == other.id\n return boul0 and boul1 and boulid\n\n def __ne__(self, other):\n \"\"\"2 edges are not equal iff they are not equal :) \"\"\"\n return (self == other) == False\n\n def given_cost(self):\n return self._given_cost\n\n def __repr__(self):\n return (\n f'Edge [{str(self.linked[0].index)}, {str(self.linked[1].index)}] !oriented!'\n )\n\n\nclass Graph:\n \"\"\" All the information of a graph are contained here. \"\"\"\n\n def __init__(self, list_of_vertices):\n \"\"\" Entry : the list of vertices. \"\"\"\n self.list_of_vertices = list_of_vertices\n self.number_of_vertices = len(list_of_vertices)\n self.connection_table_edge_and_diplayable_edge = []\n self.list_of_edges = []\n self.number_of_disp_edges = 0\n self.number_of_edges = 0\n\n def push_diplayable_edge(self, bidim_array):\n self.connection_table_edge_and_diplayable_edge.append(copy.deepcopy\n (bidim_array))\n self.number_of_disp_edges += 1\n\n def push_edge(self, e):\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_edge_without_doublons(self, e):\n if e not in self.list_of_edges:\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_vertice(self, vertice):\n self.list_of_vertices.append(vertice)\n self.number_of_vertices += 1\n\n def push_vertice_without_doublons(self, vertice):\n bool, index = self.is_vertice_in_graph_based_on_xy_with_tolerance(\n vertice, 10 ** -8)\n if bool == False:\n self.push_vertice(vertice)\n else:\n vertice.coordinates = self.list_of_vertices[index].coordinates\n for edge in vertice.edges_list:\n if edge not in self.list_of_vertices[index].edges_list:\n self.list_of_vertices[index].push_edge(edge, True)\n\n def is_vertice_in_graph_based_on_xy(self, vertice):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if v.coordinates[0] == vertice.coordinates[0] and v.coordinates[1\n ] == vertice.coordinates[1]:\n return True, i\n return False, None\n\n def is_vertice_in_graph_based_on_xy_with_tolerance(self, vertice, epsilon):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if (v.coordinates[0] - vertice.coordinates[0]) ** 2 + (v.\n coordinates[1] - vertice.coordinates[1]) ** 2 < epsilon:\n return True, i\n return False, None\n\n def __getitem__(self, key):\n if key >= 0 and key < self.number_of_vertices:\n return self.list_of_vertices[key]\n else:\n raise IndexError\n\n def laplace_matrix(self):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n laplace_matrix = np.zeros((n, n))\n for i in range(n):\n laplace_matrix[i][i] = 1\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n laplace_matrix[i][edge.linked[1].index] = 1\n return laplace_matrix\n\n def A_matrix(self, type_cost=Edge.given_cost):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n A_matrix = np.zeros((n, n))\n for i in range(n):\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n cost = type_cost(edge)\n A_matrix[i][edge.linked[1].index] = cost\n A_matrix[edge.linked[1].index][i] = cost\n return A_matrix\n\n def pairs_of_vertices(self):\n \"\"\"Returns the pairs of connected vertices.\n Beware ! There might be non-connected vertices in the graph. \"\"\"\n pairs_of_vertices = []\n for vertice in self.list_of_vertices:\n for edge in vertice.edges_list:\n if non_oriented:\n if (vertice, edge.linked[1]) and (edge.linked[1], vertice\n ) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n if not non_oriented:\n if (vertice, edge.linked[1]) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n return pairs_of_vertices\n\n def number_of_edges(self):\n a = self.pairs_of_vertices()\n assert self.number_of_edges == len(a\n ), 'problem in Graph.pairs_of_vertices'\n return self.number_of_edges\n\n def search_index_by_coordinates(self, coord):\n \"\"\"search the index of vertice at coordinates: \"\"\"\n for i in range(len(self.list_of_vertices)):\n if self[i].coordinates[0] == coord[0] and self[i].coordinates[1\n ] == coord[1]:\n return i\n\n def set_right_edges(self):\n \"\"\"verify that the graph is coherent \"\"\"\n for v in self:\n for e in v.edges_list:\n e.linked[0] = v\n e.linked[1] = self[self.search_index_by_coordinates(e.\n linked[1].coordinates)]\n for e in self.list_of_edges:\n e.linked[0] = self[self.search_index_by_coordinates(e.linked[0]\n .coordinates)]\n e.linked[1] = self[self.search_index_by_coordinates(e.linked[1]\n .coordinates)]\n\n def plot(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n x = e.linked[0].coordinates[0]\n y = e.linked[0].coordinates[1]\n dx = e.linked[1].coordinates[0] - x\n dy = e.linked[1].coordinates[1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n\n def plot_dev(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n for i in range(len(self.\n connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable]) - 1):\n x = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][0]\n y = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][1]\n dx = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][0] - x\n dy = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n", "<docstring token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n\n\nclass Vertice:\n \"\"\"\" All the information of one vertice are contained here. \"\"\"\n\n def __init__(self, index, coordinates):\n \"\"\" Entry : index of the vertice in list_of_vertices\n and the coordinates of the vertice. \"\"\"\n self.index = index\n self.coordinates = np.array([coordinates[0], coordinates[1]])\n self._edges_list = []\n self.priority = inf\n self.visited = False\n self.cost_dijkstra = inf\n self.antecedent = -inf\n self.index_edges_list = []\n self.id = None\n self.gare_name = None\n self.color = None\n self.is_a_station = True\n\n def get_lines_connected(self):\n list_of_line = []\n for edge in self._edges_list:\n if edge.id not in list_of_line:\n list_of_line.append(edge.id)\n return list_of_line\n\n @property\n def edges_list(self):\n \"\"\" Returns the list of neighbour. \"\"\"\n return self._edges_list\n\n @edges_list.setter\n def edges_list(self, edges_list):\n \"\"\" An element of edges_list is an edge \"\"\"\n for e in edges_list:\n exceptions.check_pertinent_edge(self, e)\n self._edges_list = edges_list\n\n def neighbours_list(self, list_tuple, id=0):\n self._edges_list.clear()\n \"\"\"interface with old constructor , tuple=(neighbour_vertice,cost) is an element of list_tuple \"\"\"\n for tuple in list_tuple:\n E = Edge(self, tuple[0], id, tuple[1])\n self._edges_list.append(E)\n\n def number_of_neighbours(self):\n return len(self._edges_list)\n\n def is_linked(self, other):\n \"\"\"returns True if there is an edge between self and other\"\"\"\n for edge in self._edges_list:\n if other.index == edge.linked[1].index:\n return True\n return False\n\n def push_edge(self, edge, coords_verif=False):\n if coords_verif:\n exceptions.check_pertinent_edge_coords_verif(self, edge)\n else:\n exceptions.check_pertinent_edge(self, edge)\n self._edges_list.append(edge)\n \"\"\"\n def cost_between(self, other):\n for edge in self._edges_list:\n [vertice, vertice_voisin] = edge.linked\n if vertice_voisin == other:\n return edge.given_cost\"\"\"\n\n def __repr__(self):\n return f'Vertice {str(self.index)}'\n\n def __lt__(self, other):\n return self.priority < other.priority\n\n\nclass Edge:\n\n def __init__(self, vertice1, vertice2, id, given_cost=0):\n self.linked = [vertice1, vertice2]\n self.id = id\n self._given_cost = given_cost\n self.color = None\n self.connection_with_displayable = None\n self.index = None\n\n def set_given_cost(self, cost):\n self._given_cost = cost\n\n def euclidian_cost(self):\n return np.sqrt(self.square_euclidian_cost())\n\n def square_euclidian_cost(self):\n return np.dot(np.transpose(self.linked[0].coordinates - self.linked\n [1].coordinates), self.linked[0].coordinates - self.linked[1].\n coordinates)\n\n def customized_cost1(self):\n V_metro = 25.1 / 3.6\n V_train = 49.6 / 3.6\n V_tram = 18 / 3.6\n V_pieton = 4 / 3.6\n if self.id in ['A', 'B', 'C', 'D', 'E', 'H', 'I', 'J', 'K', 'L',\n 'M', 'N', 'P', 'R', 'U', 'TER', 'GL']:\n return self._given_cost / V_train\n if self.id in [str(i) for i in range(1, 15)] + ['ORL', 'CDG', '3b',\n '7b']:\n return self._given_cost / V_metro\n if self.id in [('T' + str(i)) for i in range(1, 12)] + ['T3A',\n 'T3B', 'FUN']:\n return self._given_cost / V_tram\n if self.id in ['RER Walk']:\n return self._given_cost / V_pieton\n raise ValueError(' Dans customized_cost1 ' + self.id +\n ' non pris en compte dans le calcul de distance')\n\n def __eq__(self, other):\n \"\"\"2 edges are equal iff same cordinates and same id \"\"\"\n boul0 = self.linked[0].coordinates[0] == other.linked[0].coordinates[0\n ] and self.linked[0].coordinates[1] == other.linked[0].coordinates[\n 1]\n boul1 = self.linked[1].coordinates[0] == other.linked[1].coordinates[0\n ] and self.linked[1].coordinates[1] == other.linked[1].coordinates[\n 1]\n boulid = self.id == other.id\n return boul0 and boul1 and boulid\n\n def __ne__(self, other):\n \"\"\"2 edges are not equal iff they are not equal :) \"\"\"\n return (self == other) == False\n\n def given_cost(self):\n return self._given_cost\n\n def __repr__(self):\n return (\n f'Edge [{str(self.linked[0].index)}, {str(self.linked[1].index)}] !oriented!'\n )\n\n\nclass Graph:\n \"\"\" All the information of a graph are contained here. \"\"\"\n\n def __init__(self, list_of_vertices):\n \"\"\" Entry : the list of vertices. \"\"\"\n self.list_of_vertices = list_of_vertices\n self.number_of_vertices = len(list_of_vertices)\n self.connection_table_edge_and_diplayable_edge = []\n self.list_of_edges = []\n self.number_of_disp_edges = 0\n self.number_of_edges = 0\n\n def push_diplayable_edge(self, bidim_array):\n self.connection_table_edge_and_diplayable_edge.append(copy.deepcopy\n (bidim_array))\n self.number_of_disp_edges += 1\n\n def push_edge(self, e):\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_edge_without_doublons(self, e):\n if e not in self.list_of_edges:\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_vertice(self, vertice):\n self.list_of_vertices.append(vertice)\n self.number_of_vertices += 1\n\n def push_vertice_without_doublons(self, vertice):\n bool, index = self.is_vertice_in_graph_based_on_xy_with_tolerance(\n vertice, 10 ** -8)\n if bool == False:\n self.push_vertice(vertice)\n else:\n vertice.coordinates = self.list_of_vertices[index].coordinates\n for edge in vertice.edges_list:\n if edge not in self.list_of_vertices[index].edges_list:\n self.list_of_vertices[index].push_edge(edge, True)\n\n def is_vertice_in_graph_based_on_xy(self, vertice):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if v.coordinates[0] == vertice.coordinates[0] and v.coordinates[1\n ] == vertice.coordinates[1]:\n return True, i\n return False, None\n\n def is_vertice_in_graph_based_on_xy_with_tolerance(self, vertice, epsilon):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if (v.coordinates[0] - vertice.coordinates[0]) ** 2 + (v.\n coordinates[1] - vertice.coordinates[1]) ** 2 < epsilon:\n return True, i\n return False, None\n\n def __getitem__(self, key):\n if key >= 0 and key < self.number_of_vertices:\n return self.list_of_vertices[key]\n else:\n raise IndexError\n\n def laplace_matrix(self):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n laplace_matrix = np.zeros((n, n))\n for i in range(n):\n laplace_matrix[i][i] = 1\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n laplace_matrix[i][edge.linked[1].index] = 1\n return laplace_matrix\n\n def A_matrix(self, type_cost=Edge.given_cost):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n A_matrix = np.zeros((n, n))\n for i in range(n):\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n cost = type_cost(edge)\n A_matrix[i][edge.linked[1].index] = cost\n A_matrix[edge.linked[1].index][i] = cost\n return A_matrix\n\n def pairs_of_vertices(self):\n \"\"\"Returns the pairs of connected vertices.\n Beware ! There might be non-connected vertices in the graph. \"\"\"\n pairs_of_vertices = []\n for vertice in self.list_of_vertices:\n for edge in vertice.edges_list:\n if non_oriented:\n if (vertice, edge.linked[1]) and (edge.linked[1], vertice\n ) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n if not non_oriented:\n if (vertice, edge.linked[1]) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n return pairs_of_vertices\n\n def number_of_edges(self):\n a = self.pairs_of_vertices()\n assert self.number_of_edges == len(a\n ), 'problem in Graph.pairs_of_vertices'\n return self.number_of_edges\n\n def search_index_by_coordinates(self, coord):\n \"\"\"search the index of vertice at coordinates: \"\"\"\n for i in range(len(self.list_of_vertices)):\n if self[i].coordinates[0] == coord[0] and self[i].coordinates[1\n ] == coord[1]:\n return i\n\n def set_right_edges(self):\n \"\"\"verify that the graph is coherent \"\"\"\n for v in self:\n for e in v.edges_list:\n e.linked[0] = v\n e.linked[1] = self[self.search_index_by_coordinates(e.\n linked[1].coordinates)]\n for e in self.list_of_edges:\n e.linked[0] = self[self.search_index_by_coordinates(e.linked[0]\n .coordinates)]\n e.linked[1] = self[self.search_index_by_coordinates(e.linked[1]\n .coordinates)]\n\n def plot(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n x = e.linked[0].coordinates[0]\n y = e.linked[0].coordinates[1]\n dx = e.linked[1].coordinates[0] - x\n dy = e.linked[1].coordinates[1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n\n def plot_dev(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n for i in range(len(self.\n connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable]) - 1):\n x = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][0]\n y = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][1]\n dx = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][0] - x\n dy = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n", "<docstring token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n\n\nclass Vertice:\n <docstring token>\n\n def __init__(self, index, coordinates):\n \"\"\" Entry : index of the vertice in list_of_vertices\n and the coordinates of the vertice. \"\"\"\n self.index = index\n self.coordinates = np.array([coordinates[0], coordinates[1]])\n self._edges_list = []\n self.priority = inf\n self.visited = False\n self.cost_dijkstra = inf\n self.antecedent = -inf\n self.index_edges_list = []\n self.id = None\n self.gare_name = None\n self.color = None\n self.is_a_station = True\n\n def get_lines_connected(self):\n list_of_line = []\n for edge in self._edges_list:\n if edge.id not in list_of_line:\n list_of_line.append(edge.id)\n return list_of_line\n\n @property\n def edges_list(self):\n \"\"\" Returns the list of neighbour. \"\"\"\n return self._edges_list\n\n @edges_list.setter\n def edges_list(self, edges_list):\n \"\"\" An element of edges_list is an edge \"\"\"\n for e in edges_list:\n exceptions.check_pertinent_edge(self, e)\n self._edges_list = edges_list\n\n def neighbours_list(self, list_tuple, id=0):\n self._edges_list.clear()\n \"\"\"interface with old constructor , tuple=(neighbour_vertice,cost) is an element of list_tuple \"\"\"\n for tuple in list_tuple:\n E = Edge(self, tuple[0], id, tuple[1])\n self._edges_list.append(E)\n\n def number_of_neighbours(self):\n return len(self._edges_list)\n\n def is_linked(self, other):\n \"\"\"returns True if there is an edge between self and other\"\"\"\n for edge in self._edges_list:\n if other.index == edge.linked[1].index:\n return True\n return False\n\n def push_edge(self, edge, coords_verif=False):\n if coords_verif:\n exceptions.check_pertinent_edge_coords_verif(self, edge)\n else:\n exceptions.check_pertinent_edge(self, edge)\n self._edges_list.append(edge)\n <docstring token>\n\n def __repr__(self):\n return f'Vertice {str(self.index)}'\n\n def __lt__(self, other):\n return self.priority < other.priority\n\n\nclass Edge:\n\n def __init__(self, vertice1, vertice2, id, given_cost=0):\n self.linked = [vertice1, vertice2]\n self.id = id\n self._given_cost = given_cost\n self.color = None\n self.connection_with_displayable = None\n self.index = None\n\n def set_given_cost(self, cost):\n self._given_cost = cost\n\n def euclidian_cost(self):\n return np.sqrt(self.square_euclidian_cost())\n\n def square_euclidian_cost(self):\n return np.dot(np.transpose(self.linked[0].coordinates - self.linked\n [1].coordinates), self.linked[0].coordinates - self.linked[1].\n coordinates)\n\n def customized_cost1(self):\n V_metro = 25.1 / 3.6\n V_train = 49.6 / 3.6\n V_tram = 18 / 3.6\n V_pieton = 4 / 3.6\n if self.id in ['A', 'B', 'C', 'D', 'E', 'H', 'I', 'J', 'K', 'L',\n 'M', 'N', 'P', 'R', 'U', 'TER', 'GL']:\n return self._given_cost / V_train\n if self.id in [str(i) for i in range(1, 15)] + ['ORL', 'CDG', '3b',\n '7b']:\n return self._given_cost / V_metro\n if self.id in [('T' + str(i)) for i in range(1, 12)] + ['T3A',\n 'T3B', 'FUN']:\n return self._given_cost / V_tram\n if self.id in ['RER Walk']:\n return self._given_cost / V_pieton\n raise ValueError(' Dans customized_cost1 ' + self.id +\n ' non pris en compte dans le calcul de distance')\n\n def __eq__(self, other):\n \"\"\"2 edges are equal iff same cordinates and same id \"\"\"\n boul0 = self.linked[0].coordinates[0] == other.linked[0].coordinates[0\n ] and self.linked[0].coordinates[1] == other.linked[0].coordinates[\n 1]\n boul1 = self.linked[1].coordinates[0] == other.linked[1].coordinates[0\n ] and self.linked[1].coordinates[1] == other.linked[1].coordinates[\n 1]\n boulid = self.id == other.id\n return boul0 and boul1 and boulid\n\n def __ne__(self, other):\n \"\"\"2 edges are not equal iff they are not equal :) \"\"\"\n return (self == other) == False\n\n def given_cost(self):\n return self._given_cost\n\n def __repr__(self):\n return (\n f'Edge [{str(self.linked[0].index)}, {str(self.linked[1].index)}] !oriented!'\n )\n\n\nclass Graph:\n \"\"\" All the information of a graph are contained here. \"\"\"\n\n def __init__(self, list_of_vertices):\n \"\"\" Entry : the list of vertices. \"\"\"\n self.list_of_vertices = list_of_vertices\n self.number_of_vertices = len(list_of_vertices)\n self.connection_table_edge_and_diplayable_edge = []\n self.list_of_edges = []\n self.number_of_disp_edges = 0\n self.number_of_edges = 0\n\n def push_diplayable_edge(self, bidim_array):\n self.connection_table_edge_and_diplayable_edge.append(copy.deepcopy\n (bidim_array))\n self.number_of_disp_edges += 1\n\n def push_edge(self, e):\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_edge_without_doublons(self, e):\n if e not in self.list_of_edges:\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_vertice(self, vertice):\n self.list_of_vertices.append(vertice)\n self.number_of_vertices += 1\n\n def push_vertice_without_doublons(self, vertice):\n bool, index = self.is_vertice_in_graph_based_on_xy_with_tolerance(\n vertice, 10 ** -8)\n if bool == False:\n self.push_vertice(vertice)\n else:\n vertice.coordinates = self.list_of_vertices[index].coordinates\n for edge in vertice.edges_list:\n if edge not in self.list_of_vertices[index].edges_list:\n self.list_of_vertices[index].push_edge(edge, True)\n\n def is_vertice_in_graph_based_on_xy(self, vertice):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if v.coordinates[0] == vertice.coordinates[0] and v.coordinates[1\n ] == vertice.coordinates[1]:\n return True, i\n return False, None\n\n def is_vertice_in_graph_based_on_xy_with_tolerance(self, vertice, epsilon):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if (v.coordinates[0] - vertice.coordinates[0]) ** 2 + (v.\n coordinates[1] - vertice.coordinates[1]) ** 2 < epsilon:\n return True, i\n return False, None\n\n def __getitem__(self, key):\n if key >= 0 and key < self.number_of_vertices:\n return self.list_of_vertices[key]\n else:\n raise IndexError\n\n def laplace_matrix(self):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n laplace_matrix = np.zeros((n, n))\n for i in range(n):\n laplace_matrix[i][i] = 1\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n laplace_matrix[i][edge.linked[1].index] = 1\n return laplace_matrix\n\n def A_matrix(self, type_cost=Edge.given_cost):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n A_matrix = np.zeros((n, n))\n for i in range(n):\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n cost = type_cost(edge)\n A_matrix[i][edge.linked[1].index] = cost\n A_matrix[edge.linked[1].index][i] = cost\n return A_matrix\n\n def pairs_of_vertices(self):\n \"\"\"Returns the pairs of connected vertices.\n Beware ! There might be non-connected vertices in the graph. \"\"\"\n pairs_of_vertices = []\n for vertice in self.list_of_vertices:\n for edge in vertice.edges_list:\n if non_oriented:\n if (vertice, edge.linked[1]) and (edge.linked[1], vertice\n ) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n if not non_oriented:\n if (vertice, edge.linked[1]) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n return pairs_of_vertices\n\n def number_of_edges(self):\n a = self.pairs_of_vertices()\n assert self.number_of_edges == len(a\n ), 'problem in Graph.pairs_of_vertices'\n return self.number_of_edges\n\n def search_index_by_coordinates(self, coord):\n \"\"\"search the index of vertice at coordinates: \"\"\"\n for i in range(len(self.list_of_vertices)):\n if self[i].coordinates[0] == coord[0] and self[i].coordinates[1\n ] == coord[1]:\n return i\n\n def set_right_edges(self):\n \"\"\"verify that the graph is coherent \"\"\"\n for v in self:\n for e in v.edges_list:\n e.linked[0] = v\n e.linked[1] = self[self.search_index_by_coordinates(e.\n linked[1].coordinates)]\n for e in self.list_of_edges:\n e.linked[0] = self[self.search_index_by_coordinates(e.linked[0]\n .coordinates)]\n e.linked[1] = self[self.search_index_by_coordinates(e.linked[1]\n .coordinates)]\n\n def plot(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n x = e.linked[0].coordinates[0]\n y = e.linked[0].coordinates[1]\n dx = e.linked[1].coordinates[0] - x\n dy = e.linked[1].coordinates[1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n\n def plot_dev(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n for i in range(len(self.\n connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable]) - 1):\n x = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][0]\n y = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][1]\n dx = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][0] - x\n dy = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n", "<docstring token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n\n\nclass Vertice:\n <docstring token>\n\n def __init__(self, index, coordinates):\n \"\"\" Entry : index of the vertice in list_of_vertices\n and the coordinates of the vertice. \"\"\"\n self.index = index\n self.coordinates = np.array([coordinates[0], coordinates[1]])\n self._edges_list = []\n self.priority = inf\n self.visited = False\n self.cost_dijkstra = inf\n self.antecedent = -inf\n self.index_edges_list = []\n self.id = None\n self.gare_name = None\n self.color = None\n self.is_a_station = True\n\n def get_lines_connected(self):\n list_of_line = []\n for edge in self._edges_list:\n if edge.id not in list_of_line:\n list_of_line.append(edge.id)\n return list_of_line\n\n @property\n def edges_list(self):\n \"\"\" Returns the list of neighbour. \"\"\"\n return self._edges_list\n\n @edges_list.setter\n def edges_list(self, edges_list):\n \"\"\" An element of edges_list is an edge \"\"\"\n for e in edges_list:\n exceptions.check_pertinent_edge(self, e)\n self._edges_list = edges_list\n\n def neighbours_list(self, list_tuple, id=0):\n self._edges_list.clear()\n \"\"\"interface with old constructor , tuple=(neighbour_vertice,cost) is an element of list_tuple \"\"\"\n for tuple in list_tuple:\n E = Edge(self, tuple[0], id, tuple[1])\n self._edges_list.append(E)\n\n def number_of_neighbours(self):\n return len(self._edges_list)\n\n def is_linked(self, other):\n \"\"\"returns True if there is an edge between self and other\"\"\"\n for edge in self._edges_list:\n if other.index == edge.linked[1].index:\n return True\n return False\n\n def push_edge(self, edge, coords_verif=False):\n if coords_verif:\n exceptions.check_pertinent_edge_coords_verif(self, edge)\n else:\n exceptions.check_pertinent_edge(self, edge)\n self._edges_list.append(edge)\n <docstring token>\n\n def __repr__(self):\n return f'Vertice {str(self.index)}'\n <function token>\n\n\nclass Edge:\n\n def __init__(self, vertice1, vertice2, id, given_cost=0):\n self.linked = [vertice1, vertice2]\n self.id = id\n self._given_cost = given_cost\n self.color = None\n self.connection_with_displayable = None\n self.index = None\n\n def set_given_cost(self, cost):\n self._given_cost = cost\n\n def euclidian_cost(self):\n return np.sqrt(self.square_euclidian_cost())\n\n def square_euclidian_cost(self):\n return np.dot(np.transpose(self.linked[0].coordinates - self.linked\n [1].coordinates), self.linked[0].coordinates - self.linked[1].\n coordinates)\n\n def customized_cost1(self):\n V_metro = 25.1 / 3.6\n V_train = 49.6 / 3.6\n V_tram = 18 / 3.6\n V_pieton = 4 / 3.6\n if self.id in ['A', 'B', 'C', 'D', 'E', 'H', 'I', 'J', 'K', 'L',\n 'M', 'N', 'P', 'R', 'U', 'TER', 'GL']:\n return self._given_cost / V_train\n if self.id in [str(i) for i in range(1, 15)] + ['ORL', 'CDG', '3b',\n '7b']:\n return self._given_cost / V_metro\n if self.id in [('T' + str(i)) for i in range(1, 12)] + ['T3A',\n 'T3B', 'FUN']:\n return self._given_cost / V_tram\n if self.id in ['RER Walk']:\n return self._given_cost / V_pieton\n raise ValueError(' Dans customized_cost1 ' + self.id +\n ' non pris en compte dans le calcul de distance')\n\n def __eq__(self, other):\n \"\"\"2 edges are equal iff same cordinates and same id \"\"\"\n boul0 = self.linked[0].coordinates[0] == other.linked[0].coordinates[0\n ] and self.linked[0].coordinates[1] == other.linked[0].coordinates[\n 1]\n boul1 = self.linked[1].coordinates[0] == other.linked[1].coordinates[0\n ] and self.linked[1].coordinates[1] == other.linked[1].coordinates[\n 1]\n boulid = self.id == other.id\n return boul0 and boul1 and boulid\n\n def __ne__(self, other):\n \"\"\"2 edges are not equal iff they are not equal :) \"\"\"\n return (self == other) == False\n\n def given_cost(self):\n return self._given_cost\n\n def __repr__(self):\n return (\n f'Edge [{str(self.linked[0].index)}, {str(self.linked[1].index)}] !oriented!'\n )\n\n\nclass Graph:\n \"\"\" All the information of a graph are contained here. \"\"\"\n\n def __init__(self, list_of_vertices):\n \"\"\" Entry : the list of vertices. \"\"\"\n self.list_of_vertices = list_of_vertices\n self.number_of_vertices = len(list_of_vertices)\n self.connection_table_edge_and_diplayable_edge = []\n self.list_of_edges = []\n self.number_of_disp_edges = 0\n self.number_of_edges = 0\n\n def push_diplayable_edge(self, bidim_array):\n self.connection_table_edge_and_diplayable_edge.append(copy.deepcopy\n (bidim_array))\n self.number_of_disp_edges += 1\n\n def push_edge(self, e):\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_edge_without_doublons(self, e):\n if e not in self.list_of_edges:\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_vertice(self, vertice):\n self.list_of_vertices.append(vertice)\n self.number_of_vertices += 1\n\n def push_vertice_without_doublons(self, vertice):\n bool, index = self.is_vertice_in_graph_based_on_xy_with_tolerance(\n vertice, 10 ** -8)\n if bool == False:\n self.push_vertice(vertice)\n else:\n vertice.coordinates = self.list_of_vertices[index].coordinates\n for edge in vertice.edges_list:\n if edge not in self.list_of_vertices[index].edges_list:\n self.list_of_vertices[index].push_edge(edge, True)\n\n def is_vertice_in_graph_based_on_xy(self, vertice):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if v.coordinates[0] == vertice.coordinates[0] and v.coordinates[1\n ] == vertice.coordinates[1]:\n return True, i\n return False, None\n\n def is_vertice_in_graph_based_on_xy_with_tolerance(self, vertice, epsilon):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if (v.coordinates[0] - vertice.coordinates[0]) ** 2 + (v.\n coordinates[1] - vertice.coordinates[1]) ** 2 < epsilon:\n return True, i\n return False, None\n\n def __getitem__(self, key):\n if key >= 0 and key < self.number_of_vertices:\n return self.list_of_vertices[key]\n else:\n raise IndexError\n\n def laplace_matrix(self):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n laplace_matrix = np.zeros((n, n))\n for i in range(n):\n laplace_matrix[i][i] = 1\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n laplace_matrix[i][edge.linked[1].index] = 1\n return laplace_matrix\n\n def A_matrix(self, type_cost=Edge.given_cost):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n A_matrix = np.zeros((n, n))\n for i in range(n):\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n cost = type_cost(edge)\n A_matrix[i][edge.linked[1].index] = cost\n A_matrix[edge.linked[1].index][i] = cost\n return A_matrix\n\n def pairs_of_vertices(self):\n \"\"\"Returns the pairs of connected vertices.\n Beware ! There might be non-connected vertices in the graph. \"\"\"\n pairs_of_vertices = []\n for vertice in self.list_of_vertices:\n for edge in vertice.edges_list:\n if non_oriented:\n if (vertice, edge.linked[1]) and (edge.linked[1], vertice\n ) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n if not non_oriented:\n if (vertice, edge.linked[1]) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n return pairs_of_vertices\n\n def number_of_edges(self):\n a = self.pairs_of_vertices()\n assert self.number_of_edges == len(a\n ), 'problem in Graph.pairs_of_vertices'\n return self.number_of_edges\n\n def search_index_by_coordinates(self, coord):\n \"\"\"search the index of vertice at coordinates: \"\"\"\n for i in range(len(self.list_of_vertices)):\n if self[i].coordinates[0] == coord[0] and self[i].coordinates[1\n ] == coord[1]:\n return i\n\n def set_right_edges(self):\n \"\"\"verify that the graph is coherent \"\"\"\n for v in self:\n for e in v.edges_list:\n e.linked[0] = v\n e.linked[1] = self[self.search_index_by_coordinates(e.\n linked[1].coordinates)]\n for e in self.list_of_edges:\n e.linked[0] = self[self.search_index_by_coordinates(e.linked[0]\n .coordinates)]\n e.linked[1] = self[self.search_index_by_coordinates(e.linked[1]\n .coordinates)]\n\n def plot(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n x = e.linked[0].coordinates[0]\n y = e.linked[0].coordinates[1]\n dx = e.linked[1].coordinates[0] - x\n dy = e.linked[1].coordinates[1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n\n def plot_dev(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n for i in range(len(self.\n connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable]) - 1):\n x = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][0]\n y = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][1]\n dx = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][0] - x\n dy = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n", "<docstring token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n\n\nclass Vertice:\n <docstring token>\n\n def __init__(self, index, coordinates):\n \"\"\" Entry : index of the vertice in list_of_vertices\n and the coordinates of the vertice. \"\"\"\n self.index = index\n self.coordinates = np.array([coordinates[0], coordinates[1]])\n self._edges_list = []\n self.priority = inf\n self.visited = False\n self.cost_dijkstra = inf\n self.antecedent = -inf\n self.index_edges_list = []\n self.id = None\n self.gare_name = None\n self.color = None\n self.is_a_station = True\n\n def get_lines_connected(self):\n list_of_line = []\n for edge in self._edges_list:\n if edge.id not in list_of_line:\n list_of_line.append(edge.id)\n return list_of_line\n\n @property\n def edges_list(self):\n \"\"\" Returns the list of neighbour. \"\"\"\n return self._edges_list\n\n @edges_list.setter\n def edges_list(self, edges_list):\n \"\"\" An element of edges_list is an edge \"\"\"\n for e in edges_list:\n exceptions.check_pertinent_edge(self, e)\n self._edges_list = edges_list\n <function token>\n\n def number_of_neighbours(self):\n return len(self._edges_list)\n\n def is_linked(self, other):\n \"\"\"returns True if there is an edge between self and other\"\"\"\n for edge in self._edges_list:\n if other.index == edge.linked[1].index:\n return True\n return False\n\n def push_edge(self, edge, coords_verif=False):\n if coords_verif:\n exceptions.check_pertinent_edge_coords_verif(self, edge)\n else:\n exceptions.check_pertinent_edge(self, edge)\n self._edges_list.append(edge)\n <docstring token>\n\n def __repr__(self):\n return f'Vertice {str(self.index)}'\n <function token>\n\n\nclass Edge:\n\n def __init__(self, vertice1, vertice2, id, given_cost=0):\n self.linked = [vertice1, vertice2]\n self.id = id\n self._given_cost = given_cost\n self.color = None\n self.connection_with_displayable = None\n self.index = None\n\n def set_given_cost(self, cost):\n self._given_cost = cost\n\n def euclidian_cost(self):\n return np.sqrt(self.square_euclidian_cost())\n\n def square_euclidian_cost(self):\n return np.dot(np.transpose(self.linked[0].coordinates - self.linked\n [1].coordinates), self.linked[0].coordinates - self.linked[1].\n coordinates)\n\n def customized_cost1(self):\n V_metro = 25.1 / 3.6\n V_train = 49.6 / 3.6\n V_tram = 18 / 3.6\n V_pieton = 4 / 3.6\n if self.id in ['A', 'B', 'C', 'D', 'E', 'H', 'I', 'J', 'K', 'L',\n 'M', 'N', 'P', 'R', 'U', 'TER', 'GL']:\n return self._given_cost / V_train\n if self.id in [str(i) for i in range(1, 15)] + ['ORL', 'CDG', '3b',\n '7b']:\n return self._given_cost / V_metro\n if self.id in [('T' + str(i)) for i in range(1, 12)] + ['T3A',\n 'T3B', 'FUN']:\n return self._given_cost / V_tram\n if self.id in ['RER Walk']:\n return self._given_cost / V_pieton\n raise ValueError(' Dans customized_cost1 ' + self.id +\n ' non pris en compte dans le calcul de distance')\n\n def __eq__(self, other):\n \"\"\"2 edges are equal iff same cordinates and same id \"\"\"\n boul0 = self.linked[0].coordinates[0] == other.linked[0].coordinates[0\n ] and self.linked[0].coordinates[1] == other.linked[0].coordinates[\n 1]\n boul1 = self.linked[1].coordinates[0] == other.linked[1].coordinates[0\n ] and self.linked[1].coordinates[1] == other.linked[1].coordinates[\n 1]\n boulid = self.id == other.id\n return boul0 and boul1 and boulid\n\n def __ne__(self, other):\n \"\"\"2 edges are not equal iff they are not equal :) \"\"\"\n return (self == other) == False\n\n def given_cost(self):\n return self._given_cost\n\n def __repr__(self):\n return (\n f'Edge [{str(self.linked[0].index)}, {str(self.linked[1].index)}] !oriented!'\n )\n\n\nclass Graph:\n \"\"\" All the information of a graph are contained here. \"\"\"\n\n def __init__(self, list_of_vertices):\n \"\"\" Entry : the list of vertices. \"\"\"\n self.list_of_vertices = list_of_vertices\n self.number_of_vertices = len(list_of_vertices)\n self.connection_table_edge_and_diplayable_edge = []\n self.list_of_edges = []\n self.number_of_disp_edges = 0\n self.number_of_edges = 0\n\n def push_diplayable_edge(self, bidim_array):\n self.connection_table_edge_and_diplayable_edge.append(copy.deepcopy\n (bidim_array))\n self.number_of_disp_edges += 1\n\n def push_edge(self, e):\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_edge_without_doublons(self, e):\n if e not in self.list_of_edges:\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_vertice(self, vertice):\n self.list_of_vertices.append(vertice)\n self.number_of_vertices += 1\n\n def push_vertice_without_doublons(self, vertice):\n bool, index = self.is_vertice_in_graph_based_on_xy_with_tolerance(\n vertice, 10 ** -8)\n if bool == False:\n self.push_vertice(vertice)\n else:\n vertice.coordinates = self.list_of_vertices[index].coordinates\n for edge in vertice.edges_list:\n if edge not in self.list_of_vertices[index].edges_list:\n self.list_of_vertices[index].push_edge(edge, True)\n\n def is_vertice_in_graph_based_on_xy(self, vertice):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if v.coordinates[0] == vertice.coordinates[0] and v.coordinates[1\n ] == vertice.coordinates[1]:\n return True, i\n return False, None\n\n def is_vertice_in_graph_based_on_xy_with_tolerance(self, vertice, epsilon):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if (v.coordinates[0] - vertice.coordinates[0]) ** 2 + (v.\n coordinates[1] - vertice.coordinates[1]) ** 2 < epsilon:\n return True, i\n return False, None\n\n def __getitem__(self, key):\n if key >= 0 and key < self.number_of_vertices:\n return self.list_of_vertices[key]\n else:\n raise IndexError\n\n def laplace_matrix(self):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n laplace_matrix = np.zeros((n, n))\n for i in range(n):\n laplace_matrix[i][i] = 1\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n laplace_matrix[i][edge.linked[1].index] = 1\n return laplace_matrix\n\n def A_matrix(self, type_cost=Edge.given_cost):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n A_matrix = np.zeros((n, n))\n for i in range(n):\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n cost = type_cost(edge)\n A_matrix[i][edge.linked[1].index] = cost\n A_matrix[edge.linked[1].index][i] = cost\n return A_matrix\n\n def pairs_of_vertices(self):\n \"\"\"Returns the pairs of connected vertices.\n Beware ! There might be non-connected vertices in the graph. \"\"\"\n pairs_of_vertices = []\n for vertice in self.list_of_vertices:\n for edge in vertice.edges_list:\n if non_oriented:\n if (vertice, edge.linked[1]) and (edge.linked[1], vertice\n ) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n if not non_oriented:\n if (vertice, edge.linked[1]) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n return pairs_of_vertices\n\n def number_of_edges(self):\n a = self.pairs_of_vertices()\n assert self.number_of_edges == len(a\n ), 'problem in Graph.pairs_of_vertices'\n return self.number_of_edges\n\n def search_index_by_coordinates(self, coord):\n \"\"\"search the index of vertice at coordinates: \"\"\"\n for i in range(len(self.list_of_vertices)):\n if self[i].coordinates[0] == coord[0] and self[i].coordinates[1\n ] == coord[1]:\n return i\n\n def set_right_edges(self):\n \"\"\"verify that the graph is coherent \"\"\"\n for v in self:\n for e in v.edges_list:\n e.linked[0] = v\n e.linked[1] = self[self.search_index_by_coordinates(e.\n linked[1].coordinates)]\n for e in self.list_of_edges:\n e.linked[0] = self[self.search_index_by_coordinates(e.linked[0]\n .coordinates)]\n e.linked[1] = self[self.search_index_by_coordinates(e.linked[1]\n .coordinates)]\n\n def plot(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n x = e.linked[0].coordinates[0]\n y = e.linked[0].coordinates[1]\n dx = e.linked[1].coordinates[0] - x\n dy = e.linked[1].coordinates[1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n\n def plot_dev(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n for i in range(len(self.\n connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable]) - 1):\n x = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][0]\n y = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][1]\n dx = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][0] - x\n dy = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n", "<docstring token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n\n\nclass Vertice:\n <docstring token>\n\n def __init__(self, index, coordinates):\n \"\"\" Entry : index of the vertice in list_of_vertices\n and the coordinates of the vertice. \"\"\"\n self.index = index\n self.coordinates = np.array([coordinates[0], coordinates[1]])\n self._edges_list = []\n self.priority = inf\n self.visited = False\n self.cost_dijkstra = inf\n self.antecedent = -inf\n self.index_edges_list = []\n self.id = None\n self.gare_name = None\n self.color = None\n self.is_a_station = True\n\n def get_lines_connected(self):\n list_of_line = []\n for edge in self._edges_list:\n if edge.id not in list_of_line:\n list_of_line.append(edge.id)\n return list_of_line\n\n @property\n def edges_list(self):\n \"\"\" Returns the list of neighbour. \"\"\"\n return self._edges_list\n\n @edges_list.setter\n def edges_list(self, edges_list):\n \"\"\" An element of edges_list is an edge \"\"\"\n for e in edges_list:\n exceptions.check_pertinent_edge(self, e)\n self._edges_list = edges_list\n <function token>\n\n def number_of_neighbours(self):\n return len(self._edges_list)\n <function token>\n\n def push_edge(self, edge, coords_verif=False):\n if coords_verif:\n exceptions.check_pertinent_edge_coords_verif(self, edge)\n else:\n exceptions.check_pertinent_edge(self, edge)\n self._edges_list.append(edge)\n <docstring token>\n\n def __repr__(self):\n return f'Vertice {str(self.index)}'\n <function token>\n\n\nclass Edge:\n\n def __init__(self, vertice1, vertice2, id, given_cost=0):\n self.linked = [vertice1, vertice2]\n self.id = id\n self._given_cost = given_cost\n self.color = None\n self.connection_with_displayable = None\n self.index = None\n\n def set_given_cost(self, cost):\n self._given_cost = cost\n\n def euclidian_cost(self):\n return np.sqrt(self.square_euclidian_cost())\n\n def square_euclidian_cost(self):\n return np.dot(np.transpose(self.linked[0].coordinates - self.linked\n [1].coordinates), self.linked[0].coordinates - self.linked[1].\n coordinates)\n\n def customized_cost1(self):\n V_metro = 25.1 / 3.6\n V_train = 49.6 / 3.6\n V_tram = 18 / 3.6\n V_pieton = 4 / 3.6\n if self.id in ['A', 'B', 'C', 'D', 'E', 'H', 'I', 'J', 'K', 'L',\n 'M', 'N', 'P', 'R', 'U', 'TER', 'GL']:\n return self._given_cost / V_train\n if self.id in [str(i) for i in range(1, 15)] + ['ORL', 'CDG', '3b',\n '7b']:\n return self._given_cost / V_metro\n if self.id in [('T' + str(i)) for i in range(1, 12)] + ['T3A',\n 'T3B', 'FUN']:\n return self._given_cost / V_tram\n if self.id in ['RER Walk']:\n return self._given_cost / V_pieton\n raise ValueError(' Dans customized_cost1 ' + self.id +\n ' non pris en compte dans le calcul de distance')\n\n def __eq__(self, other):\n \"\"\"2 edges are equal iff same cordinates and same id \"\"\"\n boul0 = self.linked[0].coordinates[0] == other.linked[0].coordinates[0\n ] and self.linked[0].coordinates[1] == other.linked[0].coordinates[\n 1]\n boul1 = self.linked[1].coordinates[0] == other.linked[1].coordinates[0\n ] and self.linked[1].coordinates[1] == other.linked[1].coordinates[\n 1]\n boulid = self.id == other.id\n return boul0 and boul1 and boulid\n\n def __ne__(self, other):\n \"\"\"2 edges are not equal iff they are not equal :) \"\"\"\n return (self == other) == False\n\n def given_cost(self):\n return self._given_cost\n\n def __repr__(self):\n return (\n f'Edge [{str(self.linked[0].index)}, {str(self.linked[1].index)}] !oriented!'\n )\n\n\nclass Graph:\n \"\"\" All the information of a graph are contained here. \"\"\"\n\n def __init__(self, list_of_vertices):\n \"\"\" Entry : the list of vertices. \"\"\"\n self.list_of_vertices = list_of_vertices\n self.number_of_vertices = len(list_of_vertices)\n self.connection_table_edge_and_diplayable_edge = []\n self.list_of_edges = []\n self.number_of_disp_edges = 0\n self.number_of_edges = 0\n\n def push_diplayable_edge(self, bidim_array):\n self.connection_table_edge_and_diplayable_edge.append(copy.deepcopy\n (bidim_array))\n self.number_of_disp_edges += 1\n\n def push_edge(self, e):\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_edge_without_doublons(self, e):\n if e not in self.list_of_edges:\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_vertice(self, vertice):\n self.list_of_vertices.append(vertice)\n self.number_of_vertices += 1\n\n def push_vertice_without_doublons(self, vertice):\n bool, index = self.is_vertice_in_graph_based_on_xy_with_tolerance(\n vertice, 10 ** -8)\n if bool == False:\n self.push_vertice(vertice)\n else:\n vertice.coordinates = self.list_of_vertices[index].coordinates\n for edge in vertice.edges_list:\n if edge not in self.list_of_vertices[index].edges_list:\n self.list_of_vertices[index].push_edge(edge, True)\n\n def is_vertice_in_graph_based_on_xy(self, vertice):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if v.coordinates[0] == vertice.coordinates[0] and v.coordinates[1\n ] == vertice.coordinates[1]:\n return True, i\n return False, None\n\n def is_vertice_in_graph_based_on_xy_with_tolerance(self, vertice, epsilon):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if (v.coordinates[0] - vertice.coordinates[0]) ** 2 + (v.\n coordinates[1] - vertice.coordinates[1]) ** 2 < epsilon:\n return True, i\n return False, None\n\n def __getitem__(self, key):\n if key >= 0 and key < self.number_of_vertices:\n return self.list_of_vertices[key]\n else:\n raise IndexError\n\n def laplace_matrix(self):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n laplace_matrix = np.zeros((n, n))\n for i in range(n):\n laplace_matrix[i][i] = 1\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n laplace_matrix[i][edge.linked[1].index] = 1\n return laplace_matrix\n\n def A_matrix(self, type_cost=Edge.given_cost):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n A_matrix = np.zeros((n, n))\n for i in range(n):\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n cost = type_cost(edge)\n A_matrix[i][edge.linked[1].index] = cost\n A_matrix[edge.linked[1].index][i] = cost\n return A_matrix\n\n def pairs_of_vertices(self):\n \"\"\"Returns the pairs of connected vertices.\n Beware ! There might be non-connected vertices in the graph. \"\"\"\n pairs_of_vertices = []\n for vertice in self.list_of_vertices:\n for edge in vertice.edges_list:\n if non_oriented:\n if (vertice, edge.linked[1]) and (edge.linked[1], vertice\n ) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n if not non_oriented:\n if (vertice, edge.linked[1]) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n return pairs_of_vertices\n\n def number_of_edges(self):\n a = self.pairs_of_vertices()\n assert self.number_of_edges == len(a\n ), 'problem in Graph.pairs_of_vertices'\n return self.number_of_edges\n\n def search_index_by_coordinates(self, coord):\n \"\"\"search the index of vertice at coordinates: \"\"\"\n for i in range(len(self.list_of_vertices)):\n if self[i].coordinates[0] == coord[0] and self[i].coordinates[1\n ] == coord[1]:\n return i\n\n def set_right_edges(self):\n \"\"\"verify that the graph is coherent \"\"\"\n for v in self:\n for e in v.edges_list:\n e.linked[0] = v\n e.linked[1] = self[self.search_index_by_coordinates(e.\n linked[1].coordinates)]\n for e in self.list_of_edges:\n e.linked[0] = self[self.search_index_by_coordinates(e.linked[0]\n .coordinates)]\n e.linked[1] = self[self.search_index_by_coordinates(e.linked[1]\n .coordinates)]\n\n def plot(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n x = e.linked[0].coordinates[0]\n y = e.linked[0].coordinates[1]\n dx = e.linked[1].coordinates[0] - x\n dy = e.linked[1].coordinates[1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n\n def plot_dev(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n for i in range(len(self.\n connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable]) - 1):\n x = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][0]\n y = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][1]\n dx = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][0] - x\n dy = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n", "<docstring token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n\n\nclass Vertice:\n <docstring token>\n\n def __init__(self, index, coordinates):\n \"\"\" Entry : index of the vertice in list_of_vertices\n and the coordinates of the vertice. \"\"\"\n self.index = index\n self.coordinates = np.array([coordinates[0], coordinates[1]])\n self._edges_list = []\n self.priority = inf\n self.visited = False\n self.cost_dijkstra = inf\n self.antecedent = -inf\n self.index_edges_list = []\n self.id = None\n self.gare_name = None\n self.color = None\n self.is_a_station = True\n <function token>\n\n @property\n def edges_list(self):\n \"\"\" Returns the list of neighbour. \"\"\"\n return self._edges_list\n\n @edges_list.setter\n def edges_list(self, edges_list):\n \"\"\" An element of edges_list is an edge \"\"\"\n for e in edges_list:\n exceptions.check_pertinent_edge(self, e)\n self._edges_list = edges_list\n <function token>\n\n def number_of_neighbours(self):\n return len(self._edges_list)\n <function token>\n\n def push_edge(self, edge, coords_verif=False):\n if coords_verif:\n exceptions.check_pertinent_edge_coords_verif(self, edge)\n else:\n exceptions.check_pertinent_edge(self, edge)\n self._edges_list.append(edge)\n <docstring token>\n\n def __repr__(self):\n return f'Vertice {str(self.index)}'\n <function token>\n\n\nclass Edge:\n\n def __init__(self, vertice1, vertice2, id, given_cost=0):\n self.linked = [vertice1, vertice2]\n self.id = id\n self._given_cost = given_cost\n self.color = None\n self.connection_with_displayable = None\n self.index = None\n\n def set_given_cost(self, cost):\n self._given_cost = cost\n\n def euclidian_cost(self):\n return np.sqrt(self.square_euclidian_cost())\n\n def square_euclidian_cost(self):\n return np.dot(np.transpose(self.linked[0].coordinates - self.linked\n [1].coordinates), self.linked[0].coordinates - self.linked[1].\n coordinates)\n\n def customized_cost1(self):\n V_metro = 25.1 / 3.6\n V_train = 49.6 / 3.6\n V_tram = 18 / 3.6\n V_pieton = 4 / 3.6\n if self.id in ['A', 'B', 'C', 'D', 'E', 'H', 'I', 'J', 'K', 'L',\n 'M', 'N', 'P', 'R', 'U', 'TER', 'GL']:\n return self._given_cost / V_train\n if self.id in [str(i) for i in range(1, 15)] + ['ORL', 'CDG', '3b',\n '7b']:\n return self._given_cost / V_metro\n if self.id in [('T' + str(i)) for i in range(1, 12)] + ['T3A',\n 'T3B', 'FUN']:\n return self._given_cost / V_tram\n if self.id in ['RER Walk']:\n return self._given_cost / V_pieton\n raise ValueError(' Dans customized_cost1 ' + self.id +\n ' non pris en compte dans le calcul de distance')\n\n def __eq__(self, other):\n \"\"\"2 edges are equal iff same cordinates and same id \"\"\"\n boul0 = self.linked[0].coordinates[0] == other.linked[0].coordinates[0\n ] and self.linked[0].coordinates[1] == other.linked[0].coordinates[\n 1]\n boul1 = self.linked[1].coordinates[0] == other.linked[1].coordinates[0\n ] and self.linked[1].coordinates[1] == other.linked[1].coordinates[\n 1]\n boulid = self.id == other.id\n return boul0 and boul1 and boulid\n\n def __ne__(self, other):\n \"\"\"2 edges are not equal iff they are not equal :) \"\"\"\n return (self == other) == False\n\n def given_cost(self):\n return self._given_cost\n\n def __repr__(self):\n return (\n f'Edge [{str(self.linked[0].index)}, {str(self.linked[1].index)}] !oriented!'\n )\n\n\nclass Graph:\n \"\"\" All the information of a graph are contained here. \"\"\"\n\n def __init__(self, list_of_vertices):\n \"\"\" Entry : the list of vertices. \"\"\"\n self.list_of_vertices = list_of_vertices\n self.number_of_vertices = len(list_of_vertices)\n self.connection_table_edge_and_diplayable_edge = []\n self.list_of_edges = []\n self.number_of_disp_edges = 0\n self.number_of_edges = 0\n\n def push_diplayable_edge(self, bidim_array):\n self.connection_table_edge_and_diplayable_edge.append(copy.deepcopy\n (bidim_array))\n self.number_of_disp_edges += 1\n\n def push_edge(self, e):\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_edge_without_doublons(self, e):\n if e not in self.list_of_edges:\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_vertice(self, vertice):\n self.list_of_vertices.append(vertice)\n self.number_of_vertices += 1\n\n def push_vertice_without_doublons(self, vertice):\n bool, index = self.is_vertice_in_graph_based_on_xy_with_tolerance(\n vertice, 10 ** -8)\n if bool == False:\n self.push_vertice(vertice)\n else:\n vertice.coordinates = self.list_of_vertices[index].coordinates\n for edge in vertice.edges_list:\n if edge not in self.list_of_vertices[index].edges_list:\n self.list_of_vertices[index].push_edge(edge, True)\n\n def is_vertice_in_graph_based_on_xy(self, vertice):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if v.coordinates[0] == vertice.coordinates[0] and v.coordinates[1\n ] == vertice.coordinates[1]:\n return True, i\n return False, None\n\n def is_vertice_in_graph_based_on_xy_with_tolerance(self, vertice, epsilon):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if (v.coordinates[0] - vertice.coordinates[0]) ** 2 + (v.\n coordinates[1] - vertice.coordinates[1]) ** 2 < epsilon:\n return True, i\n return False, None\n\n def __getitem__(self, key):\n if key >= 0 and key < self.number_of_vertices:\n return self.list_of_vertices[key]\n else:\n raise IndexError\n\n def laplace_matrix(self):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n laplace_matrix = np.zeros((n, n))\n for i in range(n):\n laplace_matrix[i][i] = 1\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n laplace_matrix[i][edge.linked[1].index] = 1\n return laplace_matrix\n\n def A_matrix(self, type_cost=Edge.given_cost):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n A_matrix = np.zeros((n, n))\n for i in range(n):\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n cost = type_cost(edge)\n A_matrix[i][edge.linked[1].index] = cost\n A_matrix[edge.linked[1].index][i] = cost\n return A_matrix\n\n def pairs_of_vertices(self):\n \"\"\"Returns the pairs of connected vertices.\n Beware ! There might be non-connected vertices in the graph. \"\"\"\n pairs_of_vertices = []\n for vertice in self.list_of_vertices:\n for edge in vertice.edges_list:\n if non_oriented:\n if (vertice, edge.linked[1]) and (edge.linked[1], vertice\n ) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n if not non_oriented:\n if (vertice, edge.linked[1]) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n return pairs_of_vertices\n\n def number_of_edges(self):\n a = self.pairs_of_vertices()\n assert self.number_of_edges == len(a\n ), 'problem in Graph.pairs_of_vertices'\n return self.number_of_edges\n\n def search_index_by_coordinates(self, coord):\n \"\"\"search the index of vertice at coordinates: \"\"\"\n for i in range(len(self.list_of_vertices)):\n if self[i].coordinates[0] == coord[0] and self[i].coordinates[1\n ] == coord[1]:\n return i\n\n def set_right_edges(self):\n \"\"\"verify that the graph is coherent \"\"\"\n for v in self:\n for e in v.edges_list:\n e.linked[0] = v\n e.linked[1] = self[self.search_index_by_coordinates(e.\n linked[1].coordinates)]\n for e in self.list_of_edges:\n e.linked[0] = self[self.search_index_by_coordinates(e.linked[0]\n .coordinates)]\n e.linked[1] = self[self.search_index_by_coordinates(e.linked[1]\n .coordinates)]\n\n def plot(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n x = e.linked[0].coordinates[0]\n y = e.linked[0].coordinates[1]\n dx = e.linked[1].coordinates[0] - x\n dy = e.linked[1].coordinates[1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n\n def plot_dev(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n for i in range(len(self.\n connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable]) - 1):\n x = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][0]\n y = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][1]\n dx = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][0] - x\n dy = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n", "<docstring token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n\n\nclass Vertice:\n <docstring token>\n\n def __init__(self, index, coordinates):\n \"\"\" Entry : index of the vertice in list_of_vertices\n and the coordinates of the vertice. \"\"\"\n self.index = index\n self.coordinates = np.array([coordinates[0], coordinates[1]])\n self._edges_list = []\n self.priority = inf\n self.visited = False\n self.cost_dijkstra = inf\n self.antecedent = -inf\n self.index_edges_list = []\n self.id = None\n self.gare_name = None\n self.color = None\n self.is_a_station = True\n <function token>\n\n @property\n def edges_list(self):\n \"\"\" Returns the list of neighbour. \"\"\"\n return self._edges_list\n\n @edges_list.setter\n def edges_list(self, edges_list):\n \"\"\" An element of edges_list is an edge \"\"\"\n for e in edges_list:\n exceptions.check_pertinent_edge(self, e)\n self._edges_list = edges_list\n <function token>\n\n def number_of_neighbours(self):\n return len(self._edges_list)\n <function token>\n <function token>\n <docstring token>\n\n def __repr__(self):\n return f'Vertice {str(self.index)}'\n <function token>\n\n\nclass Edge:\n\n def __init__(self, vertice1, vertice2, id, given_cost=0):\n self.linked = [vertice1, vertice2]\n self.id = id\n self._given_cost = given_cost\n self.color = None\n self.connection_with_displayable = None\n self.index = None\n\n def set_given_cost(self, cost):\n self._given_cost = cost\n\n def euclidian_cost(self):\n return np.sqrt(self.square_euclidian_cost())\n\n def square_euclidian_cost(self):\n return np.dot(np.transpose(self.linked[0].coordinates - self.linked\n [1].coordinates), self.linked[0].coordinates - self.linked[1].\n coordinates)\n\n def customized_cost1(self):\n V_metro = 25.1 / 3.6\n V_train = 49.6 / 3.6\n V_tram = 18 / 3.6\n V_pieton = 4 / 3.6\n if self.id in ['A', 'B', 'C', 'D', 'E', 'H', 'I', 'J', 'K', 'L',\n 'M', 'N', 'P', 'R', 'U', 'TER', 'GL']:\n return self._given_cost / V_train\n if self.id in [str(i) for i in range(1, 15)] + ['ORL', 'CDG', '3b',\n '7b']:\n return self._given_cost / V_metro\n if self.id in [('T' + str(i)) for i in range(1, 12)] + ['T3A',\n 'T3B', 'FUN']:\n return self._given_cost / V_tram\n if self.id in ['RER Walk']:\n return self._given_cost / V_pieton\n raise ValueError(' Dans customized_cost1 ' + self.id +\n ' non pris en compte dans le calcul de distance')\n\n def __eq__(self, other):\n \"\"\"2 edges are equal iff same cordinates and same id \"\"\"\n boul0 = self.linked[0].coordinates[0] == other.linked[0].coordinates[0\n ] and self.linked[0].coordinates[1] == other.linked[0].coordinates[\n 1]\n boul1 = self.linked[1].coordinates[0] == other.linked[1].coordinates[0\n ] and self.linked[1].coordinates[1] == other.linked[1].coordinates[\n 1]\n boulid = self.id == other.id\n return boul0 and boul1 and boulid\n\n def __ne__(self, other):\n \"\"\"2 edges are not equal iff they are not equal :) \"\"\"\n return (self == other) == False\n\n def given_cost(self):\n return self._given_cost\n\n def __repr__(self):\n return (\n f'Edge [{str(self.linked[0].index)}, {str(self.linked[1].index)}] !oriented!'\n )\n\n\nclass Graph:\n \"\"\" All the information of a graph are contained here. \"\"\"\n\n def __init__(self, list_of_vertices):\n \"\"\" Entry : the list of vertices. \"\"\"\n self.list_of_vertices = list_of_vertices\n self.number_of_vertices = len(list_of_vertices)\n self.connection_table_edge_and_diplayable_edge = []\n self.list_of_edges = []\n self.number_of_disp_edges = 0\n self.number_of_edges = 0\n\n def push_diplayable_edge(self, bidim_array):\n self.connection_table_edge_and_diplayable_edge.append(copy.deepcopy\n (bidim_array))\n self.number_of_disp_edges += 1\n\n def push_edge(self, e):\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_edge_without_doublons(self, e):\n if e not in self.list_of_edges:\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_vertice(self, vertice):\n self.list_of_vertices.append(vertice)\n self.number_of_vertices += 1\n\n def push_vertice_without_doublons(self, vertice):\n bool, index = self.is_vertice_in_graph_based_on_xy_with_tolerance(\n vertice, 10 ** -8)\n if bool == False:\n self.push_vertice(vertice)\n else:\n vertice.coordinates = self.list_of_vertices[index].coordinates\n for edge in vertice.edges_list:\n if edge not in self.list_of_vertices[index].edges_list:\n self.list_of_vertices[index].push_edge(edge, True)\n\n def is_vertice_in_graph_based_on_xy(self, vertice):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if v.coordinates[0] == vertice.coordinates[0] and v.coordinates[1\n ] == vertice.coordinates[1]:\n return True, i\n return False, None\n\n def is_vertice_in_graph_based_on_xy_with_tolerance(self, vertice, epsilon):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if (v.coordinates[0] - vertice.coordinates[0]) ** 2 + (v.\n coordinates[1] - vertice.coordinates[1]) ** 2 < epsilon:\n return True, i\n return False, None\n\n def __getitem__(self, key):\n if key >= 0 and key < self.number_of_vertices:\n return self.list_of_vertices[key]\n else:\n raise IndexError\n\n def laplace_matrix(self):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n laplace_matrix = np.zeros((n, n))\n for i in range(n):\n laplace_matrix[i][i] = 1\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n laplace_matrix[i][edge.linked[1].index] = 1\n return laplace_matrix\n\n def A_matrix(self, type_cost=Edge.given_cost):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n A_matrix = np.zeros((n, n))\n for i in range(n):\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n cost = type_cost(edge)\n A_matrix[i][edge.linked[1].index] = cost\n A_matrix[edge.linked[1].index][i] = cost\n return A_matrix\n\n def pairs_of_vertices(self):\n \"\"\"Returns the pairs of connected vertices.\n Beware ! There might be non-connected vertices in the graph. \"\"\"\n pairs_of_vertices = []\n for vertice in self.list_of_vertices:\n for edge in vertice.edges_list:\n if non_oriented:\n if (vertice, edge.linked[1]) and (edge.linked[1], vertice\n ) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n if not non_oriented:\n if (vertice, edge.linked[1]) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n return pairs_of_vertices\n\n def number_of_edges(self):\n a = self.pairs_of_vertices()\n assert self.number_of_edges == len(a\n ), 'problem in Graph.pairs_of_vertices'\n return self.number_of_edges\n\n def search_index_by_coordinates(self, coord):\n \"\"\"search the index of vertice at coordinates: \"\"\"\n for i in range(len(self.list_of_vertices)):\n if self[i].coordinates[0] == coord[0] and self[i].coordinates[1\n ] == coord[1]:\n return i\n\n def set_right_edges(self):\n \"\"\"verify that the graph is coherent \"\"\"\n for v in self:\n for e in v.edges_list:\n e.linked[0] = v\n e.linked[1] = self[self.search_index_by_coordinates(e.\n linked[1].coordinates)]\n for e in self.list_of_edges:\n e.linked[0] = self[self.search_index_by_coordinates(e.linked[0]\n .coordinates)]\n e.linked[1] = self[self.search_index_by_coordinates(e.linked[1]\n .coordinates)]\n\n def plot(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n x = e.linked[0].coordinates[0]\n y = e.linked[0].coordinates[1]\n dx = e.linked[1].coordinates[0] - x\n dy = e.linked[1].coordinates[1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n\n def plot_dev(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n for i in range(len(self.\n connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable]) - 1):\n x = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][0]\n y = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][1]\n dx = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][0] - x\n dy = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n", "<docstring token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n\n\nclass Vertice:\n <docstring token>\n <function token>\n <function token>\n\n @property\n def edges_list(self):\n \"\"\" Returns the list of neighbour. \"\"\"\n return self._edges_list\n\n @edges_list.setter\n def edges_list(self, edges_list):\n \"\"\" An element of edges_list is an edge \"\"\"\n for e in edges_list:\n exceptions.check_pertinent_edge(self, e)\n self._edges_list = edges_list\n <function token>\n\n def number_of_neighbours(self):\n return len(self._edges_list)\n <function token>\n <function token>\n <docstring token>\n\n def __repr__(self):\n return f'Vertice {str(self.index)}'\n <function token>\n\n\nclass Edge:\n\n def __init__(self, vertice1, vertice2, id, given_cost=0):\n self.linked = [vertice1, vertice2]\n self.id = id\n self._given_cost = given_cost\n self.color = None\n self.connection_with_displayable = None\n self.index = None\n\n def set_given_cost(self, cost):\n self._given_cost = cost\n\n def euclidian_cost(self):\n return np.sqrt(self.square_euclidian_cost())\n\n def square_euclidian_cost(self):\n return np.dot(np.transpose(self.linked[0].coordinates - self.linked\n [1].coordinates), self.linked[0].coordinates - self.linked[1].\n coordinates)\n\n def customized_cost1(self):\n V_metro = 25.1 / 3.6\n V_train = 49.6 / 3.6\n V_tram = 18 / 3.6\n V_pieton = 4 / 3.6\n if self.id in ['A', 'B', 'C', 'D', 'E', 'H', 'I', 'J', 'K', 'L',\n 'M', 'N', 'P', 'R', 'U', 'TER', 'GL']:\n return self._given_cost / V_train\n if self.id in [str(i) for i in range(1, 15)] + ['ORL', 'CDG', '3b',\n '7b']:\n return self._given_cost / V_metro\n if self.id in [('T' + str(i)) for i in range(1, 12)] + ['T3A',\n 'T3B', 'FUN']:\n return self._given_cost / V_tram\n if self.id in ['RER Walk']:\n return self._given_cost / V_pieton\n raise ValueError(' Dans customized_cost1 ' + self.id +\n ' non pris en compte dans le calcul de distance')\n\n def __eq__(self, other):\n \"\"\"2 edges are equal iff same cordinates and same id \"\"\"\n boul0 = self.linked[0].coordinates[0] == other.linked[0].coordinates[0\n ] and self.linked[0].coordinates[1] == other.linked[0].coordinates[\n 1]\n boul1 = self.linked[1].coordinates[0] == other.linked[1].coordinates[0\n ] and self.linked[1].coordinates[1] == other.linked[1].coordinates[\n 1]\n boulid = self.id == other.id\n return boul0 and boul1 and boulid\n\n def __ne__(self, other):\n \"\"\"2 edges are not equal iff they are not equal :) \"\"\"\n return (self == other) == False\n\n def given_cost(self):\n return self._given_cost\n\n def __repr__(self):\n return (\n f'Edge [{str(self.linked[0].index)}, {str(self.linked[1].index)}] !oriented!'\n )\n\n\nclass Graph:\n \"\"\" All the information of a graph are contained here. \"\"\"\n\n def __init__(self, list_of_vertices):\n \"\"\" Entry : the list of vertices. \"\"\"\n self.list_of_vertices = list_of_vertices\n self.number_of_vertices = len(list_of_vertices)\n self.connection_table_edge_and_diplayable_edge = []\n self.list_of_edges = []\n self.number_of_disp_edges = 0\n self.number_of_edges = 0\n\n def push_diplayable_edge(self, bidim_array):\n self.connection_table_edge_and_diplayable_edge.append(copy.deepcopy\n (bidim_array))\n self.number_of_disp_edges += 1\n\n def push_edge(self, e):\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_edge_without_doublons(self, e):\n if e not in self.list_of_edges:\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_vertice(self, vertice):\n self.list_of_vertices.append(vertice)\n self.number_of_vertices += 1\n\n def push_vertice_without_doublons(self, vertice):\n bool, index = self.is_vertice_in_graph_based_on_xy_with_tolerance(\n vertice, 10 ** -8)\n if bool == False:\n self.push_vertice(vertice)\n else:\n vertice.coordinates = self.list_of_vertices[index].coordinates\n for edge in vertice.edges_list:\n if edge not in self.list_of_vertices[index].edges_list:\n self.list_of_vertices[index].push_edge(edge, True)\n\n def is_vertice_in_graph_based_on_xy(self, vertice):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if v.coordinates[0] == vertice.coordinates[0] and v.coordinates[1\n ] == vertice.coordinates[1]:\n return True, i\n return False, None\n\n def is_vertice_in_graph_based_on_xy_with_tolerance(self, vertice, epsilon):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if (v.coordinates[0] - vertice.coordinates[0]) ** 2 + (v.\n coordinates[1] - vertice.coordinates[1]) ** 2 < epsilon:\n return True, i\n return False, None\n\n def __getitem__(self, key):\n if key >= 0 and key < self.number_of_vertices:\n return self.list_of_vertices[key]\n else:\n raise IndexError\n\n def laplace_matrix(self):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n laplace_matrix = np.zeros((n, n))\n for i in range(n):\n laplace_matrix[i][i] = 1\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n laplace_matrix[i][edge.linked[1].index] = 1\n return laplace_matrix\n\n def A_matrix(self, type_cost=Edge.given_cost):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n A_matrix = np.zeros((n, n))\n for i in range(n):\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n cost = type_cost(edge)\n A_matrix[i][edge.linked[1].index] = cost\n A_matrix[edge.linked[1].index][i] = cost\n return A_matrix\n\n def pairs_of_vertices(self):\n \"\"\"Returns the pairs of connected vertices.\n Beware ! There might be non-connected vertices in the graph. \"\"\"\n pairs_of_vertices = []\n for vertice in self.list_of_vertices:\n for edge in vertice.edges_list:\n if non_oriented:\n if (vertice, edge.linked[1]) and (edge.linked[1], vertice\n ) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n if not non_oriented:\n if (vertice, edge.linked[1]) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n return pairs_of_vertices\n\n def number_of_edges(self):\n a = self.pairs_of_vertices()\n assert self.number_of_edges == len(a\n ), 'problem in Graph.pairs_of_vertices'\n return self.number_of_edges\n\n def search_index_by_coordinates(self, coord):\n \"\"\"search the index of vertice at coordinates: \"\"\"\n for i in range(len(self.list_of_vertices)):\n if self[i].coordinates[0] == coord[0] and self[i].coordinates[1\n ] == coord[1]:\n return i\n\n def set_right_edges(self):\n \"\"\"verify that the graph is coherent \"\"\"\n for v in self:\n for e in v.edges_list:\n e.linked[0] = v\n e.linked[1] = self[self.search_index_by_coordinates(e.\n linked[1].coordinates)]\n for e in self.list_of_edges:\n e.linked[0] = self[self.search_index_by_coordinates(e.linked[0]\n .coordinates)]\n e.linked[1] = self[self.search_index_by_coordinates(e.linked[1]\n .coordinates)]\n\n def plot(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n x = e.linked[0].coordinates[0]\n y = e.linked[0].coordinates[1]\n dx = e.linked[1].coordinates[0] - x\n dy = e.linked[1].coordinates[1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n\n def plot_dev(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n for i in range(len(self.\n connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable]) - 1):\n x = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][0]\n y = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][1]\n dx = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][0] - x\n dy = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n", "<docstring token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n\n\nclass Vertice:\n <docstring token>\n <function token>\n <function token>\n <function token>\n\n @edges_list.setter\n def edges_list(self, edges_list):\n \"\"\" An element of edges_list is an edge \"\"\"\n for e in edges_list:\n exceptions.check_pertinent_edge(self, e)\n self._edges_list = edges_list\n <function token>\n\n def number_of_neighbours(self):\n return len(self._edges_list)\n <function token>\n <function token>\n <docstring token>\n\n def __repr__(self):\n return f'Vertice {str(self.index)}'\n <function token>\n\n\nclass Edge:\n\n def __init__(self, vertice1, vertice2, id, given_cost=0):\n self.linked = [vertice1, vertice2]\n self.id = id\n self._given_cost = given_cost\n self.color = None\n self.connection_with_displayable = None\n self.index = None\n\n def set_given_cost(self, cost):\n self._given_cost = cost\n\n def euclidian_cost(self):\n return np.sqrt(self.square_euclidian_cost())\n\n def square_euclidian_cost(self):\n return np.dot(np.transpose(self.linked[0].coordinates - self.linked\n [1].coordinates), self.linked[0].coordinates - self.linked[1].\n coordinates)\n\n def customized_cost1(self):\n V_metro = 25.1 / 3.6\n V_train = 49.6 / 3.6\n V_tram = 18 / 3.6\n V_pieton = 4 / 3.6\n if self.id in ['A', 'B', 'C', 'D', 'E', 'H', 'I', 'J', 'K', 'L',\n 'M', 'N', 'P', 'R', 'U', 'TER', 'GL']:\n return self._given_cost / V_train\n if self.id in [str(i) for i in range(1, 15)] + ['ORL', 'CDG', '3b',\n '7b']:\n return self._given_cost / V_metro\n if self.id in [('T' + str(i)) for i in range(1, 12)] + ['T3A',\n 'T3B', 'FUN']:\n return self._given_cost / V_tram\n if self.id in ['RER Walk']:\n return self._given_cost / V_pieton\n raise ValueError(' Dans customized_cost1 ' + self.id +\n ' non pris en compte dans le calcul de distance')\n\n def __eq__(self, other):\n \"\"\"2 edges are equal iff same cordinates and same id \"\"\"\n boul0 = self.linked[0].coordinates[0] == other.linked[0].coordinates[0\n ] and self.linked[0].coordinates[1] == other.linked[0].coordinates[\n 1]\n boul1 = self.linked[1].coordinates[0] == other.linked[1].coordinates[0\n ] and self.linked[1].coordinates[1] == other.linked[1].coordinates[\n 1]\n boulid = self.id == other.id\n return boul0 and boul1 and boulid\n\n def __ne__(self, other):\n \"\"\"2 edges are not equal iff they are not equal :) \"\"\"\n return (self == other) == False\n\n def given_cost(self):\n return self._given_cost\n\n def __repr__(self):\n return (\n f'Edge [{str(self.linked[0].index)}, {str(self.linked[1].index)}] !oriented!'\n )\n\n\nclass Graph:\n \"\"\" All the information of a graph are contained here. \"\"\"\n\n def __init__(self, list_of_vertices):\n \"\"\" Entry : the list of vertices. \"\"\"\n self.list_of_vertices = list_of_vertices\n self.number_of_vertices = len(list_of_vertices)\n self.connection_table_edge_and_diplayable_edge = []\n self.list_of_edges = []\n self.number_of_disp_edges = 0\n self.number_of_edges = 0\n\n def push_diplayable_edge(self, bidim_array):\n self.connection_table_edge_and_diplayable_edge.append(copy.deepcopy\n (bidim_array))\n self.number_of_disp_edges += 1\n\n def push_edge(self, e):\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_edge_without_doublons(self, e):\n if e not in self.list_of_edges:\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_vertice(self, vertice):\n self.list_of_vertices.append(vertice)\n self.number_of_vertices += 1\n\n def push_vertice_without_doublons(self, vertice):\n bool, index = self.is_vertice_in_graph_based_on_xy_with_tolerance(\n vertice, 10 ** -8)\n if bool == False:\n self.push_vertice(vertice)\n else:\n vertice.coordinates = self.list_of_vertices[index].coordinates\n for edge in vertice.edges_list:\n if edge not in self.list_of_vertices[index].edges_list:\n self.list_of_vertices[index].push_edge(edge, True)\n\n def is_vertice_in_graph_based_on_xy(self, vertice):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if v.coordinates[0] == vertice.coordinates[0] and v.coordinates[1\n ] == vertice.coordinates[1]:\n return True, i\n return False, None\n\n def is_vertice_in_graph_based_on_xy_with_tolerance(self, vertice, epsilon):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if (v.coordinates[0] - vertice.coordinates[0]) ** 2 + (v.\n coordinates[1] - vertice.coordinates[1]) ** 2 < epsilon:\n return True, i\n return False, None\n\n def __getitem__(self, key):\n if key >= 0 and key < self.number_of_vertices:\n return self.list_of_vertices[key]\n else:\n raise IndexError\n\n def laplace_matrix(self):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n laplace_matrix = np.zeros((n, n))\n for i in range(n):\n laplace_matrix[i][i] = 1\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n laplace_matrix[i][edge.linked[1].index] = 1\n return laplace_matrix\n\n def A_matrix(self, type_cost=Edge.given_cost):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n A_matrix = np.zeros((n, n))\n for i in range(n):\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n cost = type_cost(edge)\n A_matrix[i][edge.linked[1].index] = cost\n A_matrix[edge.linked[1].index][i] = cost\n return A_matrix\n\n def pairs_of_vertices(self):\n \"\"\"Returns the pairs of connected vertices.\n Beware ! There might be non-connected vertices in the graph. \"\"\"\n pairs_of_vertices = []\n for vertice in self.list_of_vertices:\n for edge in vertice.edges_list:\n if non_oriented:\n if (vertice, edge.linked[1]) and (edge.linked[1], vertice\n ) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n if not non_oriented:\n if (vertice, edge.linked[1]) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n return pairs_of_vertices\n\n def number_of_edges(self):\n a = self.pairs_of_vertices()\n assert self.number_of_edges == len(a\n ), 'problem in Graph.pairs_of_vertices'\n return self.number_of_edges\n\n def search_index_by_coordinates(self, coord):\n \"\"\"search the index of vertice at coordinates: \"\"\"\n for i in range(len(self.list_of_vertices)):\n if self[i].coordinates[0] == coord[0] and self[i].coordinates[1\n ] == coord[1]:\n return i\n\n def set_right_edges(self):\n \"\"\"verify that the graph is coherent \"\"\"\n for v in self:\n for e in v.edges_list:\n e.linked[0] = v\n e.linked[1] = self[self.search_index_by_coordinates(e.\n linked[1].coordinates)]\n for e in self.list_of_edges:\n e.linked[0] = self[self.search_index_by_coordinates(e.linked[0]\n .coordinates)]\n e.linked[1] = self[self.search_index_by_coordinates(e.linked[1]\n .coordinates)]\n\n def plot(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n x = e.linked[0].coordinates[0]\n y = e.linked[0].coordinates[1]\n dx = e.linked[1].coordinates[0] - x\n dy = e.linked[1].coordinates[1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n\n def plot_dev(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n for i in range(len(self.\n connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable]) - 1):\n x = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][0]\n y = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][1]\n dx = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][0] - x\n dy = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n", "<docstring token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n\n\nclass Vertice:\n <docstring token>\n <function token>\n <function token>\n <function token>\n\n @edges_list.setter\n def edges_list(self, edges_list):\n \"\"\" An element of edges_list is an edge \"\"\"\n for e in edges_list:\n exceptions.check_pertinent_edge(self, e)\n self._edges_list = edges_list\n <function token>\n\n def number_of_neighbours(self):\n return len(self._edges_list)\n <function token>\n <function token>\n <docstring token>\n <function token>\n <function token>\n\n\nclass Edge:\n\n def __init__(self, vertice1, vertice2, id, given_cost=0):\n self.linked = [vertice1, vertice2]\n self.id = id\n self._given_cost = given_cost\n self.color = None\n self.connection_with_displayable = None\n self.index = None\n\n def set_given_cost(self, cost):\n self._given_cost = cost\n\n def euclidian_cost(self):\n return np.sqrt(self.square_euclidian_cost())\n\n def square_euclidian_cost(self):\n return np.dot(np.transpose(self.linked[0].coordinates - self.linked\n [1].coordinates), self.linked[0].coordinates - self.linked[1].\n coordinates)\n\n def customized_cost1(self):\n V_metro = 25.1 / 3.6\n V_train = 49.6 / 3.6\n V_tram = 18 / 3.6\n V_pieton = 4 / 3.6\n if self.id in ['A', 'B', 'C', 'D', 'E', 'H', 'I', 'J', 'K', 'L',\n 'M', 'N', 'P', 'R', 'U', 'TER', 'GL']:\n return self._given_cost / V_train\n if self.id in [str(i) for i in range(1, 15)] + ['ORL', 'CDG', '3b',\n '7b']:\n return self._given_cost / V_metro\n if self.id in [('T' + str(i)) for i in range(1, 12)] + ['T3A',\n 'T3B', 'FUN']:\n return self._given_cost / V_tram\n if self.id in ['RER Walk']:\n return self._given_cost / V_pieton\n raise ValueError(' Dans customized_cost1 ' + self.id +\n ' non pris en compte dans le calcul de distance')\n\n def __eq__(self, other):\n \"\"\"2 edges are equal iff same cordinates and same id \"\"\"\n boul0 = self.linked[0].coordinates[0] == other.linked[0].coordinates[0\n ] and self.linked[0].coordinates[1] == other.linked[0].coordinates[\n 1]\n boul1 = self.linked[1].coordinates[0] == other.linked[1].coordinates[0\n ] and self.linked[1].coordinates[1] == other.linked[1].coordinates[\n 1]\n boulid = self.id == other.id\n return boul0 and boul1 and boulid\n\n def __ne__(self, other):\n \"\"\"2 edges are not equal iff they are not equal :) \"\"\"\n return (self == other) == False\n\n def given_cost(self):\n return self._given_cost\n\n def __repr__(self):\n return (\n f'Edge [{str(self.linked[0].index)}, {str(self.linked[1].index)}] !oriented!'\n )\n\n\nclass Graph:\n \"\"\" All the information of a graph are contained here. \"\"\"\n\n def __init__(self, list_of_vertices):\n \"\"\" Entry : the list of vertices. \"\"\"\n self.list_of_vertices = list_of_vertices\n self.number_of_vertices = len(list_of_vertices)\n self.connection_table_edge_and_diplayable_edge = []\n self.list_of_edges = []\n self.number_of_disp_edges = 0\n self.number_of_edges = 0\n\n def push_diplayable_edge(self, bidim_array):\n self.connection_table_edge_and_diplayable_edge.append(copy.deepcopy\n (bidim_array))\n self.number_of_disp_edges += 1\n\n def push_edge(self, e):\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_edge_without_doublons(self, e):\n if e not in self.list_of_edges:\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_vertice(self, vertice):\n self.list_of_vertices.append(vertice)\n self.number_of_vertices += 1\n\n def push_vertice_without_doublons(self, vertice):\n bool, index = self.is_vertice_in_graph_based_on_xy_with_tolerance(\n vertice, 10 ** -8)\n if bool == False:\n self.push_vertice(vertice)\n else:\n vertice.coordinates = self.list_of_vertices[index].coordinates\n for edge in vertice.edges_list:\n if edge not in self.list_of_vertices[index].edges_list:\n self.list_of_vertices[index].push_edge(edge, True)\n\n def is_vertice_in_graph_based_on_xy(self, vertice):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if v.coordinates[0] == vertice.coordinates[0] and v.coordinates[1\n ] == vertice.coordinates[1]:\n return True, i\n return False, None\n\n def is_vertice_in_graph_based_on_xy_with_tolerance(self, vertice, epsilon):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if (v.coordinates[0] - vertice.coordinates[0]) ** 2 + (v.\n coordinates[1] - vertice.coordinates[1]) ** 2 < epsilon:\n return True, i\n return False, None\n\n def __getitem__(self, key):\n if key >= 0 and key < self.number_of_vertices:\n return self.list_of_vertices[key]\n else:\n raise IndexError\n\n def laplace_matrix(self):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n laplace_matrix = np.zeros((n, n))\n for i in range(n):\n laplace_matrix[i][i] = 1\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n laplace_matrix[i][edge.linked[1].index] = 1\n return laplace_matrix\n\n def A_matrix(self, type_cost=Edge.given_cost):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n A_matrix = np.zeros((n, n))\n for i in range(n):\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n cost = type_cost(edge)\n A_matrix[i][edge.linked[1].index] = cost\n A_matrix[edge.linked[1].index][i] = cost\n return A_matrix\n\n def pairs_of_vertices(self):\n \"\"\"Returns the pairs of connected vertices.\n Beware ! There might be non-connected vertices in the graph. \"\"\"\n pairs_of_vertices = []\n for vertice in self.list_of_vertices:\n for edge in vertice.edges_list:\n if non_oriented:\n if (vertice, edge.linked[1]) and (edge.linked[1], vertice\n ) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n if not non_oriented:\n if (vertice, edge.linked[1]) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n return pairs_of_vertices\n\n def number_of_edges(self):\n a = self.pairs_of_vertices()\n assert self.number_of_edges == len(a\n ), 'problem in Graph.pairs_of_vertices'\n return self.number_of_edges\n\n def search_index_by_coordinates(self, coord):\n \"\"\"search the index of vertice at coordinates: \"\"\"\n for i in range(len(self.list_of_vertices)):\n if self[i].coordinates[0] == coord[0] and self[i].coordinates[1\n ] == coord[1]:\n return i\n\n def set_right_edges(self):\n \"\"\"verify that the graph is coherent \"\"\"\n for v in self:\n for e in v.edges_list:\n e.linked[0] = v\n e.linked[1] = self[self.search_index_by_coordinates(e.\n linked[1].coordinates)]\n for e in self.list_of_edges:\n e.linked[0] = self[self.search_index_by_coordinates(e.linked[0]\n .coordinates)]\n e.linked[1] = self[self.search_index_by_coordinates(e.linked[1]\n .coordinates)]\n\n def plot(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n x = e.linked[0].coordinates[0]\n y = e.linked[0].coordinates[1]\n dx = e.linked[1].coordinates[0] - x\n dy = e.linked[1].coordinates[1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n\n def plot_dev(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n for i in range(len(self.\n connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable]) - 1):\n x = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][0]\n y = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][1]\n dx = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][0] - x\n dy = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n", "<docstring token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n\n\nclass Vertice:\n <docstring token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def number_of_neighbours(self):\n return len(self._edges_list)\n <function token>\n <function token>\n <docstring token>\n <function token>\n <function token>\n\n\nclass Edge:\n\n def __init__(self, vertice1, vertice2, id, given_cost=0):\n self.linked = [vertice1, vertice2]\n self.id = id\n self._given_cost = given_cost\n self.color = None\n self.connection_with_displayable = None\n self.index = None\n\n def set_given_cost(self, cost):\n self._given_cost = cost\n\n def euclidian_cost(self):\n return np.sqrt(self.square_euclidian_cost())\n\n def square_euclidian_cost(self):\n return np.dot(np.transpose(self.linked[0].coordinates - self.linked\n [1].coordinates), self.linked[0].coordinates - self.linked[1].\n coordinates)\n\n def customized_cost1(self):\n V_metro = 25.1 / 3.6\n V_train = 49.6 / 3.6\n V_tram = 18 / 3.6\n V_pieton = 4 / 3.6\n if self.id in ['A', 'B', 'C', 'D', 'E', 'H', 'I', 'J', 'K', 'L',\n 'M', 'N', 'P', 'R', 'U', 'TER', 'GL']:\n return self._given_cost / V_train\n if self.id in [str(i) for i in range(1, 15)] + ['ORL', 'CDG', '3b',\n '7b']:\n return self._given_cost / V_metro\n if self.id in [('T' + str(i)) for i in range(1, 12)] + ['T3A',\n 'T3B', 'FUN']:\n return self._given_cost / V_tram\n if self.id in ['RER Walk']:\n return self._given_cost / V_pieton\n raise ValueError(' Dans customized_cost1 ' + self.id +\n ' non pris en compte dans le calcul de distance')\n\n def __eq__(self, other):\n \"\"\"2 edges are equal iff same cordinates and same id \"\"\"\n boul0 = self.linked[0].coordinates[0] == other.linked[0].coordinates[0\n ] and self.linked[0].coordinates[1] == other.linked[0].coordinates[\n 1]\n boul1 = self.linked[1].coordinates[0] == other.linked[1].coordinates[0\n ] and self.linked[1].coordinates[1] == other.linked[1].coordinates[\n 1]\n boulid = self.id == other.id\n return boul0 and boul1 and boulid\n\n def __ne__(self, other):\n \"\"\"2 edges are not equal iff they are not equal :) \"\"\"\n return (self == other) == False\n\n def given_cost(self):\n return self._given_cost\n\n def __repr__(self):\n return (\n f'Edge [{str(self.linked[0].index)}, {str(self.linked[1].index)}] !oriented!'\n )\n\n\nclass Graph:\n \"\"\" All the information of a graph are contained here. \"\"\"\n\n def __init__(self, list_of_vertices):\n \"\"\" Entry : the list of vertices. \"\"\"\n self.list_of_vertices = list_of_vertices\n self.number_of_vertices = len(list_of_vertices)\n self.connection_table_edge_and_diplayable_edge = []\n self.list_of_edges = []\n self.number_of_disp_edges = 0\n self.number_of_edges = 0\n\n def push_diplayable_edge(self, bidim_array):\n self.connection_table_edge_and_diplayable_edge.append(copy.deepcopy\n (bidim_array))\n self.number_of_disp_edges += 1\n\n def push_edge(self, e):\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_edge_without_doublons(self, e):\n if e not in self.list_of_edges:\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_vertice(self, vertice):\n self.list_of_vertices.append(vertice)\n self.number_of_vertices += 1\n\n def push_vertice_without_doublons(self, vertice):\n bool, index = self.is_vertice_in_graph_based_on_xy_with_tolerance(\n vertice, 10 ** -8)\n if bool == False:\n self.push_vertice(vertice)\n else:\n vertice.coordinates = self.list_of_vertices[index].coordinates\n for edge in vertice.edges_list:\n if edge not in self.list_of_vertices[index].edges_list:\n self.list_of_vertices[index].push_edge(edge, True)\n\n def is_vertice_in_graph_based_on_xy(self, vertice):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if v.coordinates[0] == vertice.coordinates[0] and v.coordinates[1\n ] == vertice.coordinates[1]:\n return True, i\n return False, None\n\n def is_vertice_in_graph_based_on_xy_with_tolerance(self, vertice, epsilon):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if (v.coordinates[0] - vertice.coordinates[0]) ** 2 + (v.\n coordinates[1] - vertice.coordinates[1]) ** 2 < epsilon:\n return True, i\n return False, None\n\n def __getitem__(self, key):\n if key >= 0 and key < self.number_of_vertices:\n return self.list_of_vertices[key]\n else:\n raise IndexError\n\n def laplace_matrix(self):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n laplace_matrix = np.zeros((n, n))\n for i in range(n):\n laplace_matrix[i][i] = 1\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n laplace_matrix[i][edge.linked[1].index] = 1\n return laplace_matrix\n\n def A_matrix(self, type_cost=Edge.given_cost):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n A_matrix = np.zeros((n, n))\n for i in range(n):\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n cost = type_cost(edge)\n A_matrix[i][edge.linked[1].index] = cost\n A_matrix[edge.linked[1].index][i] = cost\n return A_matrix\n\n def pairs_of_vertices(self):\n \"\"\"Returns the pairs of connected vertices.\n Beware ! There might be non-connected vertices in the graph. \"\"\"\n pairs_of_vertices = []\n for vertice in self.list_of_vertices:\n for edge in vertice.edges_list:\n if non_oriented:\n if (vertice, edge.linked[1]) and (edge.linked[1], vertice\n ) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n if not non_oriented:\n if (vertice, edge.linked[1]) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n return pairs_of_vertices\n\n def number_of_edges(self):\n a = self.pairs_of_vertices()\n assert self.number_of_edges == len(a\n ), 'problem in Graph.pairs_of_vertices'\n return self.number_of_edges\n\n def search_index_by_coordinates(self, coord):\n \"\"\"search the index of vertice at coordinates: \"\"\"\n for i in range(len(self.list_of_vertices)):\n if self[i].coordinates[0] == coord[0] and self[i].coordinates[1\n ] == coord[1]:\n return i\n\n def set_right_edges(self):\n \"\"\"verify that the graph is coherent \"\"\"\n for v in self:\n for e in v.edges_list:\n e.linked[0] = v\n e.linked[1] = self[self.search_index_by_coordinates(e.\n linked[1].coordinates)]\n for e in self.list_of_edges:\n e.linked[0] = self[self.search_index_by_coordinates(e.linked[0]\n .coordinates)]\n e.linked[1] = self[self.search_index_by_coordinates(e.linked[1]\n .coordinates)]\n\n def plot(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n x = e.linked[0].coordinates[0]\n y = e.linked[0].coordinates[1]\n dx = e.linked[1].coordinates[0] - x\n dy = e.linked[1].coordinates[1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n\n def plot_dev(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n for i in range(len(self.\n connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable]) - 1):\n x = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][0]\n y = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][1]\n dx = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][0] - x\n dy = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n", "<docstring token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n\n\nclass Vertice:\n <docstring token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <docstring token>\n <function token>\n <function token>\n\n\nclass Edge:\n\n def __init__(self, vertice1, vertice2, id, given_cost=0):\n self.linked = [vertice1, vertice2]\n self.id = id\n self._given_cost = given_cost\n self.color = None\n self.connection_with_displayable = None\n self.index = None\n\n def set_given_cost(self, cost):\n self._given_cost = cost\n\n def euclidian_cost(self):\n return np.sqrt(self.square_euclidian_cost())\n\n def square_euclidian_cost(self):\n return np.dot(np.transpose(self.linked[0].coordinates - self.linked\n [1].coordinates), self.linked[0].coordinates - self.linked[1].\n coordinates)\n\n def customized_cost1(self):\n V_metro = 25.1 / 3.6\n V_train = 49.6 / 3.6\n V_tram = 18 / 3.6\n V_pieton = 4 / 3.6\n if self.id in ['A', 'B', 'C', 'D', 'E', 'H', 'I', 'J', 'K', 'L',\n 'M', 'N', 'P', 'R', 'U', 'TER', 'GL']:\n return self._given_cost / V_train\n if self.id in [str(i) for i in range(1, 15)] + ['ORL', 'CDG', '3b',\n '7b']:\n return self._given_cost / V_metro\n if self.id in [('T' + str(i)) for i in range(1, 12)] + ['T3A',\n 'T3B', 'FUN']:\n return self._given_cost / V_tram\n if self.id in ['RER Walk']:\n return self._given_cost / V_pieton\n raise ValueError(' Dans customized_cost1 ' + self.id +\n ' non pris en compte dans le calcul de distance')\n\n def __eq__(self, other):\n \"\"\"2 edges are equal iff same cordinates and same id \"\"\"\n boul0 = self.linked[0].coordinates[0] == other.linked[0].coordinates[0\n ] and self.linked[0].coordinates[1] == other.linked[0].coordinates[\n 1]\n boul1 = self.linked[1].coordinates[0] == other.linked[1].coordinates[0\n ] and self.linked[1].coordinates[1] == other.linked[1].coordinates[\n 1]\n boulid = self.id == other.id\n return boul0 and boul1 and boulid\n\n def __ne__(self, other):\n \"\"\"2 edges are not equal iff they are not equal :) \"\"\"\n return (self == other) == False\n\n def given_cost(self):\n return self._given_cost\n\n def __repr__(self):\n return (\n f'Edge [{str(self.linked[0].index)}, {str(self.linked[1].index)}] !oriented!'\n )\n\n\nclass Graph:\n \"\"\" All the information of a graph are contained here. \"\"\"\n\n def __init__(self, list_of_vertices):\n \"\"\" Entry : the list of vertices. \"\"\"\n self.list_of_vertices = list_of_vertices\n self.number_of_vertices = len(list_of_vertices)\n self.connection_table_edge_and_diplayable_edge = []\n self.list_of_edges = []\n self.number_of_disp_edges = 0\n self.number_of_edges = 0\n\n def push_diplayable_edge(self, bidim_array):\n self.connection_table_edge_and_diplayable_edge.append(copy.deepcopy\n (bidim_array))\n self.number_of_disp_edges += 1\n\n def push_edge(self, e):\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_edge_without_doublons(self, e):\n if e not in self.list_of_edges:\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_vertice(self, vertice):\n self.list_of_vertices.append(vertice)\n self.number_of_vertices += 1\n\n def push_vertice_without_doublons(self, vertice):\n bool, index = self.is_vertice_in_graph_based_on_xy_with_tolerance(\n vertice, 10 ** -8)\n if bool == False:\n self.push_vertice(vertice)\n else:\n vertice.coordinates = self.list_of_vertices[index].coordinates\n for edge in vertice.edges_list:\n if edge not in self.list_of_vertices[index].edges_list:\n self.list_of_vertices[index].push_edge(edge, True)\n\n def is_vertice_in_graph_based_on_xy(self, vertice):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if v.coordinates[0] == vertice.coordinates[0] and v.coordinates[1\n ] == vertice.coordinates[1]:\n return True, i\n return False, None\n\n def is_vertice_in_graph_based_on_xy_with_tolerance(self, vertice, epsilon):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if (v.coordinates[0] - vertice.coordinates[0]) ** 2 + (v.\n coordinates[1] - vertice.coordinates[1]) ** 2 < epsilon:\n return True, i\n return False, None\n\n def __getitem__(self, key):\n if key >= 0 and key < self.number_of_vertices:\n return self.list_of_vertices[key]\n else:\n raise IndexError\n\n def laplace_matrix(self):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n laplace_matrix = np.zeros((n, n))\n for i in range(n):\n laplace_matrix[i][i] = 1\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n laplace_matrix[i][edge.linked[1].index] = 1\n return laplace_matrix\n\n def A_matrix(self, type_cost=Edge.given_cost):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n A_matrix = np.zeros((n, n))\n for i in range(n):\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n cost = type_cost(edge)\n A_matrix[i][edge.linked[1].index] = cost\n A_matrix[edge.linked[1].index][i] = cost\n return A_matrix\n\n def pairs_of_vertices(self):\n \"\"\"Returns the pairs of connected vertices.\n Beware ! There might be non-connected vertices in the graph. \"\"\"\n pairs_of_vertices = []\n for vertice in self.list_of_vertices:\n for edge in vertice.edges_list:\n if non_oriented:\n if (vertice, edge.linked[1]) and (edge.linked[1], vertice\n ) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n if not non_oriented:\n if (vertice, edge.linked[1]) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n return pairs_of_vertices\n\n def number_of_edges(self):\n a = self.pairs_of_vertices()\n assert self.number_of_edges == len(a\n ), 'problem in Graph.pairs_of_vertices'\n return self.number_of_edges\n\n def search_index_by_coordinates(self, coord):\n \"\"\"search the index of vertice at coordinates: \"\"\"\n for i in range(len(self.list_of_vertices)):\n if self[i].coordinates[0] == coord[0] and self[i].coordinates[1\n ] == coord[1]:\n return i\n\n def set_right_edges(self):\n \"\"\"verify that the graph is coherent \"\"\"\n for v in self:\n for e in v.edges_list:\n e.linked[0] = v\n e.linked[1] = self[self.search_index_by_coordinates(e.\n linked[1].coordinates)]\n for e in self.list_of_edges:\n e.linked[0] = self[self.search_index_by_coordinates(e.linked[0]\n .coordinates)]\n e.linked[1] = self[self.search_index_by_coordinates(e.linked[1]\n .coordinates)]\n\n def plot(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n x = e.linked[0].coordinates[0]\n y = e.linked[0].coordinates[1]\n dx = e.linked[1].coordinates[0] - x\n dy = e.linked[1].coordinates[1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n\n def plot_dev(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n for i in range(len(self.\n connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable]) - 1):\n x = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][0]\n y = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][1]\n dx = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][0] - x\n dy = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n", "<docstring token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n<class token>\n\n\nclass Edge:\n\n def __init__(self, vertice1, vertice2, id, given_cost=0):\n self.linked = [vertice1, vertice2]\n self.id = id\n self._given_cost = given_cost\n self.color = None\n self.connection_with_displayable = None\n self.index = None\n\n def set_given_cost(self, cost):\n self._given_cost = cost\n\n def euclidian_cost(self):\n return np.sqrt(self.square_euclidian_cost())\n\n def square_euclidian_cost(self):\n return np.dot(np.transpose(self.linked[0].coordinates - self.linked\n [1].coordinates), self.linked[0].coordinates - self.linked[1].\n coordinates)\n\n def customized_cost1(self):\n V_metro = 25.1 / 3.6\n V_train = 49.6 / 3.6\n V_tram = 18 / 3.6\n V_pieton = 4 / 3.6\n if self.id in ['A', 'B', 'C', 'D', 'E', 'H', 'I', 'J', 'K', 'L',\n 'M', 'N', 'P', 'R', 'U', 'TER', 'GL']:\n return self._given_cost / V_train\n if self.id in [str(i) for i in range(1, 15)] + ['ORL', 'CDG', '3b',\n '7b']:\n return self._given_cost / V_metro\n if self.id in [('T' + str(i)) for i in range(1, 12)] + ['T3A',\n 'T3B', 'FUN']:\n return self._given_cost / V_tram\n if self.id in ['RER Walk']:\n return self._given_cost / V_pieton\n raise ValueError(' Dans customized_cost1 ' + self.id +\n ' non pris en compte dans le calcul de distance')\n\n def __eq__(self, other):\n \"\"\"2 edges are equal iff same cordinates and same id \"\"\"\n boul0 = self.linked[0].coordinates[0] == other.linked[0].coordinates[0\n ] and self.linked[0].coordinates[1] == other.linked[0].coordinates[\n 1]\n boul1 = self.linked[1].coordinates[0] == other.linked[1].coordinates[0\n ] and self.linked[1].coordinates[1] == other.linked[1].coordinates[\n 1]\n boulid = self.id == other.id\n return boul0 and boul1 and boulid\n\n def __ne__(self, other):\n \"\"\"2 edges are not equal iff they are not equal :) \"\"\"\n return (self == other) == False\n\n def given_cost(self):\n return self._given_cost\n\n def __repr__(self):\n return (\n f'Edge [{str(self.linked[0].index)}, {str(self.linked[1].index)}] !oriented!'\n )\n\n\nclass Graph:\n \"\"\" All the information of a graph are contained here. \"\"\"\n\n def __init__(self, list_of_vertices):\n \"\"\" Entry : the list of vertices. \"\"\"\n self.list_of_vertices = list_of_vertices\n self.number_of_vertices = len(list_of_vertices)\n self.connection_table_edge_and_diplayable_edge = []\n self.list_of_edges = []\n self.number_of_disp_edges = 0\n self.number_of_edges = 0\n\n def push_diplayable_edge(self, bidim_array):\n self.connection_table_edge_and_diplayable_edge.append(copy.deepcopy\n (bidim_array))\n self.number_of_disp_edges += 1\n\n def push_edge(self, e):\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_edge_without_doublons(self, e):\n if e not in self.list_of_edges:\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_vertice(self, vertice):\n self.list_of_vertices.append(vertice)\n self.number_of_vertices += 1\n\n def push_vertice_without_doublons(self, vertice):\n bool, index = self.is_vertice_in_graph_based_on_xy_with_tolerance(\n vertice, 10 ** -8)\n if bool == False:\n self.push_vertice(vertice)\n else:\n vertice.coordinates = self.list_of_vertices[index].coordinates\n for edge in vertice.edges_list:\n if edge not in self.list_of_vertices[index].edges_list:\n self.list_of_vertices[index].push_edge(edge, True)\n\n def is_vertice_in_graph_based_on_xy(self, vertice):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if v.coordinates[0] == vertice.coordinates[0] and v.coordinates[1\n ] == vertice.coordinates[1]:\n return True, i\n return False, None\n\n def is_vertice_in_graph_based_on_xy_with_tolerance(self, vertice, epsilon):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if (v.coordinates[0] - vertice.coordinates[0]) ** 2 + (v.\n coordinates[1] - vertice.coordinates[1]) ** 2 < epsilon:\n return True, i\n return False, None\n\n def __getitem__(self, key):\n if key >= 0 and key < self.number_of_vertices:\n return self.list_of_vertices[key]\n else:\n raise IndexError\n\n def laplace_matrix(self):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n laplace_matrix = np.zeros((n, n))\n for i in range(n):\n laplace_matrix[i][i] = 1\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n laplace_matrix[i][edge.linked[1].index] = 1\n return laplace_matrix\n\n def A_matrix(self, type_cost=Edge.given_cost):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n A_matrix = np.zeros((n, n))\n for i in range(n):\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n cost = type_cost(edge)\n A_matrix[i][edge.linked[1].index] = cost\n A_matrix[edge.linked[1].index][i] = cost\n return A_matrix\n\n def pairs_of_vertices(self):\n \"\"\"Returns the pairs of connected vertices.\n Beware ! There might be non-connected vertices in the graph. \"\"\"\n pairs_of_vertices = []\n for vertice in self.list_of_vertices:\n for edge in vertice.edges_list:\n if non_oriented:\n if (vertice, edge.linked[1]) and (edge.linked[1], vertice\n ) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n if not non_oriented:\n if (vertice, edge.linked[1]) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n return pairs_of_vertices\n\n def number_of_edges(self):\n a = self.pairs_of_vertices()\n assert self.number_of_edges == len(a\n ), 'problem in Graph.pairs_of_vertices'\n return self.number_of_edges\n\n def search_index_by_coordinates(self, coord):\n \"\"\"search the index of vertice at coordinates: \"\"\"\n for i in range(len(self.list_of_vertices)):\n if self[i].coordinates[0] == coord[0] and self[i].coordinates[1\n ] == coord[1]:\n return i\n\n def set_right_edges(self):\n \"\"\"verify that the graph is coherent \"\"\"\n for v in self:\n for e in v.edges_list:\n e.linked[0] = v\n e.linked[1] = self[self.search_index_by_coordinates(e.\n linked[1].coordinates)]\n for e in self.list_of_edges:\n e.linked[0] = self[self.search_index_by_coordinates(e.linked[0]\n .coordinates)]\n e.linked[1] = self[self.search_index_by_coordinates(e.linked[1]\n .coordinates)]\n\n def plot(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n x = e.linked[0].coordinates[0]\n y = e.linked[0].coordinates[1]\n dx = e.linked[1].coordinates[0] - x\n dy = e.linked[1].coordinates[1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n\n def plot_dev(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n for i in range(len(self.\n connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable]) - 1):\n x = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][0]\n y = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][1]\n dx = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][0] - x\n dy = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n", "<docstring token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n<class token>\n\n\nclass Edge:\n\n def __init__(self, vertice1, vertice2, id, given_cost=0):\n self.linked = [vertice1, vertice2]\n self.id = id\n self._given_cost = given_cost\n self.color = None\n self.connection_with_displayable = None\n self.index = None\n\n def set_given_cost(self, cost):\n self._given_cost = cost\n\n def euclidian_cost(self):\n return np.sqrt(self.square_euclidian_cost())\n\n def square_euclidian_cost(self):\n return np.dot(np.transpose(self.linked[0].coordinates - self.linked\n [1].coordinates), self.linked[0].coordinates - self.linked[1].\n coordinates)\n\n def customized_cost1(self):\n V_metro = 25.1 / 3.6\n V_train = 49.6 / 3.6\n V_tram = 18 / 3.6\n V_pieton = 4 / 3.6\n if self.id in ['A', 'B', 'C', 'D', 'E', 'H', 'I', 'J', 'K', 'L',\n 'M', 'N', 'P', 'R', 'U', 'TER', 'GL']:\n return self._given_cost / V_train\n if self.id in [str(i) for i in range(1, 15)] + ['ORL', 'CDG', '3b',\n '7b']:\n return self._given_cost / V_metro\n if self.id in [('T' + str(i)) for i in range(1, 12)] + ['T3A',\n 'T3B', 'FUN']:\n return self._given_cost / V_tram\n if self.id in ['RER Walk']:\n return self._given_cost / V_pieton\n raise ValueError(' Dans customized_cost1 ' + self.id +\n ' non pris en compte dans le calcul de distance')\n\n def __eq__(self, other):\n \"\"\"2 edges are equal iff same cordinates and same id \"\"\"\n boul0 = self.linked[0].coordinates[0] == other.linked[0].coordinates[0\n ] and self.linked[0].coordinates[1] == other.linked[0].coordinates[\n 1]\n boul1 = self.linked[1].coordinates[0] == other.linked[1].coordinates[0\n ] and self.linked[1].coordinates[1] == other.linked[1].coordinates[\n 1]\n boulid = self.id == other.id\n return boul0 and boul1 and boulid\n\n def __ne__(self, other):\n \"\"\"2 edges are not equal iff they are not equal :) \"\"\"\n return (self == other) == False\n <function token>\n\n def __repr__(self):\n return (\n f'Edge [{str(self.linked[0].index)}, {str(self.linked[1].index)}] !oriented!'\n )\n\n\nclass Graph:\n \"\"\" All the information of a graph are contained here. \"\"\"\n\n def __init__(self, list_of_vertices):\n \"\"\" Entry : the list of vertices. \"\"\"\n self.list_of_vertices = list_of_vertices\n self.number_of_vertices = len(list_of_vertices)\n self.connection_table_edge_and_diplayable_edge = []\n self.list_of_edges = []\n self.number_of_disp_edges = 0\n self.number_of_edges = 0\n\n def push_diplayable_edge(self, bidim_array):\n self.connection_table_edge_and_diplayable_edge.append(copy.deepcopy\n (bidim_array))\n self.number_of_disp_edges += 1\n\n def push_edge(self, e):\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_edge_without_doublons(self, e):\n if e not in self.list_of_edges:\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_vertice(self, vertice):\n self.list_of_vertices.append(vertice)\n self.number_of_vertices += 1\n\n def push_vertice_without_doublons(self, vertice):\n bool, index = self.is_vertice_in_graph_based_on_xy_with_tolerance(\n vertice, 10 ** -8)\n if bool == False:\n self.push_vertice(vertice)\n else:\n vertice.coordinates = self.list_of_vertices[index].coordinates\n for edge in vertice.edges_list:\n if edge not in self.list_of_vertices[index].edges_list:\n self.list_of_vertices[index].push_edge(edge, True)\n\n def is_vertice_in_graph_based_on_xy(self, vertice):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if v.coordinates[0] == vertice.coordinates[0] and v.coordinates[1\n ] == vertice.coordinates[1]:\n return True, i\n return False, None\n\n def is_vertice_in_graph_based_on_xy_with_tolerance(self, vertice, epsilon):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if (v.coordinates[0] - vertice.coordinates[0]) ** 2 + (v.\n coordinates[1] - vertice.coordinates[1]) ** 2 < epsilon:\n return True, i\n return False, None\n\n def __getitem__(self, key):\n if key >= 0 and key < self.number_of_vertices:\n return self.list_of_vertices[key]\n else:\n raise IndexError\n\n def laplace_matrix(self):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n laplace_matrix = np.zeros((n, n))\n for i in range(n):\n laplace_matrix[i][i] = 1\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n laplace_matrix[i][edge.linked[1].index] = 1\n return laplace_matrix\n\n def A_matrix(self, type_cost=Edge.given_cost):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n A_matrix = np.zeros((n, n))\n for i in range(n):\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n cost = type_cost(edge)\n A_matrix[i][edge.linked[1].index] = cost\n A_matrix[edge.linked[1].index][i] = cost\n return A_matrix\n\n def pairs_of_vertices(self):\n \"\"\"Returns the pairs of connected vertices.\n Beware ! There might be non-connected vertices in the graph. \"\"\"\n pairs_of_vertices = []\n for vertice in self.list_of_vertices:\n for edge in vertice.edges_list:\n if non_oriented:\n if (vertice, edge.linked[1]) and (edge.linked[1], vertice\n ) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n if not non_oriented:\n if (vertice, edge.linked[1]) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n return pairs_of_vertices\n\n def number_of_edges(self):\n a = self.pairs_of_vertices()\n assert self.number_of_edges == len(a\n ), 'problem in Graph.pairs_of_vertices'\n return self.number_of_edges\n\n def search_index_by_coordinates(self, coord):\n \"\"\"search the index of vertice at coordinates: \"\"\"\n for i in range(len(self.list_of_vertices)):\n if self[i].coordinates[0] == coord[0] and self[i].coordinates[1\n ] == coord[1]:\n return i\n\n def set_right_edges(self):\n \"\"\"verify that the graph is coherent \"\"\"\n for v in self:\n for e in v.edges_list:\n e.linked[0] = v\n e.linked[1] = self[self.search_index_by_coordinates(e.\n linked[1].coordinates)]\n for e in self.list_of_edges:\n e.linked[0] = self[self.search_index_by_coordinates(e.linked[0]\n .coordinates)]\n e.linked[1] = self[self.search_index_by_coordinates(e.linked[1]\n .coordinates)]\n\n def plot(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n x = e.linked[0].coordinates[0]\n y = e.linked[0].coordinates[1]\n dx = e.linked[1].coordinates[0] - x\n dy = e.linked[1].coordinates[1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n\n def plot_dev(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n for i in range(len(self.\n connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable]) - 1):\n x = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][0]\n y = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][1]\n dx = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][0] - x\n dy = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n", "<docstring token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n<class token>\n\n\nclass Edge:\n\n def __init__(self, vertice1, vertice2, id, given_cost=0):\n self.linked = [vertice1, vertice2]\n self.id = id\n self._given_cost = given_cost\n self.color = None\n self.connection_with_displayable = None\n self.index = None\n\n def set_given_cost(self, cost):\n self._given_cost = cost\n\n def euclidian_cost(self):\n return np.sqrt(self.square_euclidian_cost())\n <function token>\n\n def customized_cost1(self):\n V_metro = 25.1 / 3.6\n V_train = 49.6 / 3.6\n V_tram = 18 / 3.6\n V_pieton = 4 / 3.6\n if self.id in ['A', 'B', 'C', 'D', 'E', 'H', 'I', 'J', 'K', 'L',\n 'M', 'N', 'P', 'R', 'U', 'TER', 'GL']:\n return self._given_cost / V_train\n if self.id in [str(i) for i in range(1, 15)] + ['ORL', 'CDG', '3b',\n '7b']:\n return self._given_cost / V_metro\n if self.id in [('T' + str(i)) for i in range(1, 12)] + ['T3A',\n 'T3B', 'FUN']:\n return self._given_cost / V_tram\n if self.id in ['RER Walk']:\n return self._given_cost / V_pieton\n raise ValueError(' Dans customized_cost1 ' + self.id +\n ' non pris en compte dans le calcul de distance')\n\n def __eq__(self, other):\n \"\"\"2 edges are equal iff same cordinates and same id \"\"\"\n boul0 = self.linked[0].coordinates[0] == other.linked[0].coordinates[0\n ] and self.linked[0].coordinates[1] == other.linked[0].coordinates[\n 1]\n boul1 = self.linked[1].coordinates[0] == other.linked[1].coordinates[0\n ] and self.linked[1].coordinates[1] == other.linked[1].coordinates[\n 1]\n boulid = self.id == other.id\n return boul0 and boul1 and boulid\n\n def __ne__(self, other):\n \"\"\"2 edges are not equal iff they are not equal :) \"\"\"\n return (self == other) == False\n <function token>\n\n def __repr__(self):\n return (\n f'Edge [{str(self.linked[0].index)}, {str(self.linked[1].index)}] !oriented!'\n )\n\n\nclass Graph:\n \"\"\" All the information of a graph are contained here. \"\"\"\n\n def __init__(self, list_of_vertices):\n \"\"\" Entry : the list of vertices. \"\"\"\n self.list_of_vertices = list_of_vertices\n self.number_of_vertices = len(list_of_vertices)\n self.connection_table_edge_and_diplayable_edge = []\n self.list_of_edges = []\n self.number_of_disp_edges = 0\n self.number_of_edges = 0\n\n def push_diplayable_edge(self, bidim_array):\n self.connection_table_edge_and_diplayable_edge.append(copy.deepcopy\n (bidim_array))\n self.number_of_disp_edges += 1\n\n def push_edge(self, e):\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_edge_without_doublons(self, e):\n if e not in self.list_of_edges:\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_vertice(self, vertice):\n self.list_of_vertices.append(vertice)\n self.number_of_vertices += 1\n\n def push_vertice_without_doublons(self, vertice):\n bool, index = self.is_vertice_in_graph_based_on_xy_with_tolerance(\n vertice, 10 ** -8)\n if bool == False:\n self.push_vertice(vertice)\n else:\n vertice.coordinates = self.list_of_vertices[index].coordinates\n for edge in vertice.edges_list:\n if edge not in self.list_of_vertices[index].edges_list:\n self.list_of_vertices[index].push_edge(edge, True)\n\n def is_vertice_in_graph_based_on_xy(self, vertice):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if v.coordinates[0] == vertice.coordinates[0] and v.coordinates[1\n ] == vertice.coordinates[1]:\n return True, i\n return False, None\n\n def is_vertice_in_graph_based_on_xy_with_tolerance(self, vertice, epsilon):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if (v.coordinates[0] - vertice.coordinates[0]) ** 2 + (v.\n coordinates[1] - vertice.coordinates[1]) ** 2 < epsilon:\n return True, i\n return False, None\n\n def __getitem__(self, key):\n if key >= 0 and key < self.number_of_vertices:\n return self.list_of_vertices[key]\n else:\n raise IndexError\n\n def laplace_matrix(self):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n laplace_matrix = np.zeros((n, n))\n for i in range(n):\n laplace_matrix[i][i] = 1\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n laplace_matrix[i][edge.linked[1].index] = 1\n return laplace_matrix\n\n def A_matrix(self, type_cost=Edge.given_cost):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n A_matrix = np.zeros((n, n))\n for i in range(n):\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n cost = type_cost(edge)\n A_matrix[i][edge.linked[1].index] = cost\n A_matrix[edge.linked[1].index][i] = cost\n return A_matrix\n\n def pairs_of_vertices(self):\n \"\"\"Returns the pairs of connected vertices.\n Beware ! There might be non-connected vertices in the graph. \"\"\"\n pairs_of_vertices = []\n for vertice in self.list_of_vertices:\n for edge in vertice.edges_list:\n if non_oriented:\n if (vertice, edge.linked[1]) and (edge.linked[1], vertice\n ) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n if not non_oriented:\n if (vertice, edge.linked[1]) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n return pairs_of_vertices\n\n def number_of_edges(self):\n a = self.pairs_of_vertices()\n assert self.number_of_edges == len(a\n ), 'problem in Graph.pairs_of_vertices'\n return self.number_of_edges\n\n def search_index_by_coordinates(self, coord):\n \"\"\"search the index of vertice at coordinates: \"\"\"\n for i in range(len(self.list_of_vertices)):\n if self[i].coordinates[0] == coord[0] and self[i].coordinates[1\n ] == coord[1]:\n return i\n\n def set_right_edges(self):\n \"\"\"verify that the graph is coherent \"\"\"\n for v in self:\n for e in v.edges_list:\n e.linked[0] = v\n e.linked[1] = self[self.search_index_by_coordinates(e.\n linked[1].coordinates)]\n for e in self.list_of_edges:\n e.linked[0] = self[self.search_index_by_coordinates(e.linked[0]\n .coordinates)]\n e.linked[1] = self[self.search_index_by_coordinates(e.linked[1]\n .coordinates)]\n\n def plot(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n x = e.linked[0].coordinates[0]\n y = e.linked[0].coordinates[1]\n dx = e.linked[1].coordinates[0] - x\n dy = e.linked[1].coordinates[1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n\n def plot_dev(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n for i in range(len(self.\n connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable]) - 1):\n x = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][0]\n y = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][1]\n dx = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][0] - x\n dy = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n", "<docstring token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n<class token>\n\n\nclass Edge:\n\n def __init__(self, vertice1, vertice2, id, given_cost=0):\n self.linked = [vertice1, vertice2]\n self.id = id\n self._given_cost = given_cost\n self.color = None\n self.connection_with_displayable = None\n self.index = None\n\n def set_given_cost(self, cost):\n self._given_cost = cost\n\n def euclidian_cost(self):\n return np.sqrt(self.square_euclidian_cost())\n <function token>\n <function token>\n\n def __eq__(self, other):\n \"\"\"2 edges are equal iff same cordinates and same id \"\"\"\n boul0 = self.linked[0].coordinates[0] == other.linked[0].coordinates[0\n ] and self.linked[0].coordinates[1] == other.linked[0].coordinates[\n 1]\n boul1 = self.linked[1].coordinates[0] == other.linked[1].coordinates[0\n ] and self.linked[1].coordinates[1] == other.linked[1].coordinates[\n 1]\n boulid = self.id == other.id\n return boul0 and boul1 and boulid\n\n def __ne__(self, other):\n \"\"\"2 edges are not equal iff they are not equal :) \"\"\"\n return (self == other) == False\n <function token>\n\n def __repr__(self):\n return (\n f'Edge [{str(self.linked[0].index)}, {str(self.linked[1].index)}] !oriented!'\n )\n\n\nclass Graph:\n \"\"\" All the information of a graph are contained here. \"\"\"\n\n def __init__(self, list_of_vertices):\n \"\"\" Entry : the list of vertices. \"\"\"\n self.list_of_vertices = list_of_vertices\n self.number_of_vertices = len(list_of_vertices)\n self.connection_table_edge_and_diplayable_edge = []\n self.list_of_edges = []\n self.number_of_disp_edges = 0\n self.number_of_edges = 0\n\n def push_diplayable_edge(self, bidim_array):\n self.connection_table_edge_and_diplayable_edge.append(copy.deepcopy\n (bidim_array))\n self.number_of_disp_edges += 1\n\n def push_edge(self, e):\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_edge_without_doublons(self, e):\n if e not in self.list_of_edges:\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_vertice(self, vertice):\n self.list_of_vertices.append(vertice)\n self.number_of_vertices += 1\n\n def push_vertice_without_doublons(self, vertice):\n bool, index = self.is_vertice_in_graph_based_on_xy_with_tolerance(\n vertice, 10 ** -8)\n if bool == False:\n self.push_vertice(vertice)\n else:\n vertice.coordinates = self.list_of_vertices[index].coordinates\n for edge in vertice.edges_list:\n if edge not in self.list_of_vertices[index].edges_list:\n self.list_of_vertices[index].push_edge(edge, True)\n\n def is_vertice_in_graph_based_on_xy(self, vertice):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if v.coordinates[0] == vertice.coordinates[0] and v.coordinates[1\n ] == vertice.coordinates[1]:\n return True, i\n return False, None\n\n def is_vertice_in_graph_based_on_xy_with_tolerance(self, vertice, epsilon):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if (v.coordinates[0] - vertice.coordinates[0]) ** 2 + (v.\n coordinates[1] - vertice.coordinates[1]) ** 2 < epsilon:\n return True, i\n return False, None\n\n def __getitem__(self, key):\n if key >= 0 and key < self.number_of_vertices:\n return self.list_of_vertices[key]\n else:\n raise IndexError\n\n def laplace_matrix(self):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n laplace_matrix = np.zeros((n, n))\n for i in range(n):\n laplace_matrix[i][i] = 1\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n laplace_matrix[i][edge.linked[1].index] = 1\n return laplace_matrix\n\n def A_matrix(self, type_cost=Edge.given_cost):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n A_matrix = np.zeros((n, n))\n for i in range(n):\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n cost = type_cost(edge)\n A_matrix[i][edge.linked[1].index] = cost\n A_matrix[edge.linked[1].index][i] = cost\n return A_matrix\n\n def pairs_of_vertices(self):\n \"\"\"Returns the pairs of connected vertices.\n Beware ! There might be non-connected vertices in the graph. \"\"\"\n pairs_of_vertices = []\n for vertice in self.list_of_vertices:\n for edge in vertice.edges_list:\n if non_oriented:\n if (vertice, edge.linked[1]) and (edge.linked[1], vertice\n ) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n if not non_oriented:\n if (vertice, edge.linked[1]) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n return pairs_of_vertices\n\n def number_of_edges(self):\n a = self.pairs_of_vertices()\n assert self.number_of_edges == len(a\n ), 'problem in Graph.pairs_of_vertices'\n return self.number_of_edges\n\n def search_index_by_coordinates(self, coord):\n \"\"\"search the index of vertice at coordinates: \"\"\"\n for i in range(len(self.list_of_vertices)):\n if self[i].coordinates[0] == coord[0] and self[i].coordinates[1\n ] == coord[1]:\n return i\n\n def set_right_edges(self):\n \"\"\"verify that the graph is coherent \"\"\"\n for v in self:\n for e in v.edges_list:\n e.linked[0] = v\n e.linked[1] = self[self.search_index_by_coordinates(e.\n linked[1].coordinates)]\n for e in self.list_of_edges:\n e.linked[0] = self[self.search_index_by_coordinates(e.linked[0]\n .coordinates)]\n e.linked[1] = self[self.search_index_by_coordinates(e.linked[1]\n .coordinates)]\n\n def plot(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n x = e.linked[0].coordinates[0]\n y = e.linked[0].coordinates[1]\n dx = e.linked[1].coordinates[0] - x\n dy = e.linked[1].coordinates[1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n\n def plot_dev(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n for i in range(len(self.\n connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable]) - 1):\n x = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][0]\n y = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][1]\n dx = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][0] - x\n dy = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n", "<docstring token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n<class token>\n\n\nclass Edge:\n\n def __init__(self, vertice1, vertice2, id, given_cost=0):\n self.linked = [vertice1, vertice2]\n self.id = id\n self._given_cost = given_cost\n self.color = None\n self.connection_with_displayable = None\n self.index = None\n\n def set_given_cost(self, cost):\n self._given_cost = cost\n\n def euclidian_cost(self):\n return np.sqrt(self.square_euclidian_cost())\n <function token>\n <function token>\n <function token>\n\n def __ne__(self, other):\n \"\"\"2 edges are not equal iff they are not equal :) \"\"\"\n return (self == other) == False\n <function token>\n\n def __repr__(self):\n return (\n f'Edge [{str(self.linked[0].index)}, {str(self.linked[1].index)}] !oriented!'\n )\n\n\nclass Graph:\n \"\"\" All the information of a graph are contained here. \"\"\"\n\n def __init__(self, list_of_vertices):\n \"\"\" Entry : the list of vertices. \"\"\"\n self.list_of_vertices = list_of_vertices\n self.number_of_vertices = len(list_of_vertices)\n self.connection_table_edge_and_diplayable_edge = []\n self.list_of_edges = []\n self.number_of_disp_edges = 0\n self.number_of_edges = 0\n\n def push_diplayable_edge(self, bidim_array):\n self.connection_table_edge_and_diplayable_edge.append(copy.deepcopy\n (bidim_array))\n self.number_of_disp_edges += 1\n\n def push_edge(self, e):\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_edge_without_doublons(self, e):\n if e not in self.list_of_edges:\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_vertice(self, vertice):\n self.list_of_vertices.append(vertice)\n self.number_of_vertices += 1\n\n def push_vertice_without_doublons(self, vertice):\n bool, index = self.is_vertice_in_graph_based_on_xy_with_tolerance(\n vertice, 10 ** -8)\n if bool == False:\n self.push_vertice(vertice)\n else:\n vertice.coordinates = self.list_of_vertices[index].coordinates\n for edge in vertice.edges_list:\n if edge not in self.list_of_vertices[index].edges_list:\n self.list_of_vertices[index].push_edge(edge, True)\n\n def is_vertice_in_graph_based_on_xy(self, vertice):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if v.coordinates[0] == vertice.coordinates[0] and v.coordinates[1\n ] == vertice.coordinates[1]:\n return True, i\n return False, None\n\n def is_vertice_in_graph_based_on_xy_with_tolerance(self, vertice, epsilon):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if (v.coordinates[0] - vertice.coordinates[0]) ** 2 + (v.\n coordinates[1] - vertice.coordinates[1]) ** 2 < epsilon:\n return True, i\n return False, None\n\n def __getitem__(self, key):\n if key >= 0 and key < self.number_of_vertices:\n return self.list_of_vertices[key]\n else:\n raise IndexError\n\n def laplace_matrix(self):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n laplace_matrix = np.zeros((n, n))\n for i in range(n):\n laplace_matrix[i][i] = 1\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n laplace_matrix[i][edge.linked[1].index] = 1\n return laplace_matrix\n\n def A_matrix(self, type_cost=Edge.given_cost):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n A_matrix = np.zeros((n, n))\n for i in range(n):\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n cost = type_cost(edge)\n A_matrix[i][edge.linked[1].index] = cost\n A_matrix[edge.linked[1].index][i] = cost\n return A_matrix\n\n def pairs_of_vertices(self):\n \"\"\"Returns the pairs of connected vertices.\n Beware ! There might be non-connected vertices in the graph. \"\"\"\n pairs_of_vertices = []\n for vertice in self.list_of_vertices:\n for edge in vertice.edges_list:\n if non_oriented:\n if (vertice, edge.linked[1]) and (edge.linked[1], vertice\n ) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n if not non_oriented:\n if (vertice, edge.linked[1]) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n return pairs_of_vertices\n\n def number_of_edges(self):\n a = self.pairs_of_vertices()\n assert self.number_of_edges == len(a\n ), 'problem in Graph.pairs_of_vertices'\n return self.number_of_edges\n\n def search_index_by_coordinates(self, coord):\n \"\"\"search the index of vertice at coordinates: \"\"\"\n for i in range(len(self.list_of_vertices)):\n if self[i].coordinates[0] == coord[0] and self[i].coordinates[1\n ] == coord[1]:\n return i\n\n def set_right_edges(self):\n \"\"\"verify that the graph is coherent \"\"\"\n for v in self:\n for e in v.edges_list:\n e.linked[0] = v\n e.linked[1] = self[self.search_index_by_coordinates(e.\n linked[1].coordinates)]\n for e in self.list_of_edges:\n e.linked[0] = self[self.search_index_by_coordinates(e.linked[0]\n .coordinates)]\n e.linked[1] = self[self.search_index_by_coordinates(e.linked[1]\n .coordinates)]\n\n def plot(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n x = e.linked[0].coordinates[0]\n y = e.linked[0].coordinates[1]\n dx = e.linked[1].coordinates[0] - x\n dy = e.linked[1].coordinates[1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n\n def plot_dev(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n for i in range(len(self.\n connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable]) - 1):\n x = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][0]\n y = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][1]\n dx = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][0] - x\n dy = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n", "<docstring token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n<class token>\n\n\nclass Edge:\n\n def __init__(self, vertice1, vertice2, id, given_cost=0):\n self.linked = [vertice1, vertice2]\n self.id = id\n self._given_cost = given_cost\n self.color = None\n self.connection_with_displayable = None\n self.index = None\n <function token>\n\n def euclidian_cost(self):\n return np.sqrt(self.square_euclidian_cost())\n <function token>\n <function token>\n <function token>\n\n def __ne__(self, other):\n \"\"\"2 edges are not equal iff they are not equal :) \"\"\"\n return (self == other) == False\n <function token>\n\n def __repr__(self):\n return (\n f'Edge [{str(self.linked[0].index)}, {str(self.linked[1].index)}] !oriented!'\n )\n\n\nclass Graph:\n \"\"\" All the information of a graph are contained here. \"\"\"\n\n def __init__(self, list_of_vertices):\n \"\"\" Entry : the list of vertices. \"\"\"\n self.list_of_vertices = list_of_vertices\n self.number_of_vertices = len(list_of_vertices)\n self.connection_table_edge_and_diplayable_edge = []\n self.list_of_edges = []\n self.number_of_disp_edges = 0\n self.number_of_edges = 0\n\n def push_diplayable_edge(self, bidim_array):\n self.connection_table_edge_and_diplayable_edge.append(copy.deepcopy\n (bidim_array))\n self.number_of_disp_edges += 1\n\n def push_edge(self, e):\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_edge_without_doublons(self, e):\n if e not in self.list_of_edges:\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_vertice(self, vertice):\n self.list_of_vertices.append(vertice)\n self.number_of_vertices += 1\n\n def push_vertice_without_doublons(self, vertice):\n bool, index = self.is_vertice_in_graph_based_on_xy_with_tolerance(\n vertice, 10 ** -8)\n if bool == False:\n self.push_vertice(vertice)\n else:\n vertice.coordinates = self.list_of_vertices[index].coordinates\n for edge in vertice.edges_list:\n if edge not in self.list_of_vertices[index].edges_list:\n self.list_of_vertices[index].push_edge(edge, True)\n\n def is_vertice_in_graph_based_on_xy(self, vertice):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if v.coordinates[0] == vertice.coordinates[0] and v.coordinates[1\n ] == vertice.coordinates[1]:\n return True, i\n return False, None\n\n def is_vertice_in_graph_based_on_xy_with_tolerance(self, vertice, epsilon):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if (v.coordinates[0] - vertice.coordinates[0]) ** 2 + (v.\n coordinates[1] - vertice.coordinates[1]) ** 2 < epsilon:\n return True, i\n return False, None\n\n def __getitem__(self, key):\n if key >= 0 and key < self.number_of_vertices:\n return self.list_of_vertices[key]\n else:\n raise IndexError\n\n def laplace_matrix(self):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n laplace_matrix = np.zeros((n, n))\n for i in range(n):\n laplace_matrix[i][i] = 1\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n laplace_matrix[i][edge.linked[1].index] = 1\n return laplace_matrix\n\n def A_matrix(self, type_cost=Edge.given_cost):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n A_matrix = np.zeros((n, n))\n for i in range(n):\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n cost = type_cost(edge)\n A_matrix[i][edge.linked[1].index] = cost\n A_matrix[edge.linked[1].index][i] = cost\n return A_matrix\n\n def pairs_of_vertices(self):\n \"\"\"Returns the pairs of connected vertices.\n Beware ! There might be non-connected vertices in the graph. \"\"\"\n pairs_of_vertices = []\n for vertice in self.list_of_vertices:\n for edge in vertice.edges_list:\n if non_oriented:\n if (vertice, edge.linked[1]) and (edge.linked[1], vertice\n ) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n if not non_oriented:\n if (vertice, edge.linked[1]) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n return pairs_of_vertices\n\n def number_of_edges(self):\n a = self.pairs_of_vertices()\n assert self.number_of_edges == len(a\n ), 'problem in Graph.pairs_of_vertices'\n return self.number_of_edges\n\n def search_index_by_coordinates(self, coord):\n \"\"\"search the index of vertice at coordinates: \"\"\"\n for i in range(len(self.list_of_vertices)):\n if self[i].coordinates[0] == coord[0] and self[i].coordinates[1\n ] == coord[1]:\n return i\n\n def set_right_edges(self):\n \"\"\"verify that the graph is coherent \"\"\"\n for v in self:\n for e in v.edges_list:\n e.linked[0] = v\n e.linked[1] = self[self.search_index_by_coordinates(e.\n linked[1].coordinates)]\n for e in self.list_of_edges:\n e.linked[0] = self[self.search_index_by_coordinates(e.linked[0]\n .coordinates)]\n e.linked[1] = self[self.search_index_by_coordinates(e.linked[1]\n .coordinates)]\n\n def plot(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n x = e.linked[0].coordinates[0]\n y = e.linked[0].coordinates[1]\n dx = e.linked[1].coordinates[0] - x\n dy = e.linked[1].coordinates[1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n\n def plot_dev(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n for i in range(len(self.\n connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable]) - 1):\n x = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][0]\n y = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][1]\n dx = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][0] - x\n dy = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n", "<docstring token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n<class token>\n\n\nclass Edge:\n\n def __init__(self, vertice1, vertice2, id, given_cost=0):\n self.linked = [vertice1, vertice2]\n self.id = id\n self._given_cost = given_cost\n self.color = None\n self.connection_with_displayable = None\n self.index = None\n <function token>\n\n def euclidian_cost(self):\n return np.sqrt(self.square_euclidian_cost())\n <function token>\n <function token>\n <function token>\n\n def __ne__(self, other):\n \"\"\"2 edges are not equal iff they are not equal :) \"\"\"\n return (self == other) == False\n <function token>\n <function token>\n\n\nclass Graph:\n \"\"\" All the information of a graph are contained here. \"\"\"\n\n def __init__(self, list_of_vertices):\n \"\"\" Entry : the list of vertices. \"\"\"\n self.list_of_vertices = list_of_vertices\n self.number_of_vertices = len(list_of_vertices)\n self.connection_table_edge_and_diplayable_edge = []\n self.list_of_edges = []\n self.number_of_disp_edges = 0\n self.number_of_edges = 0\n\n def push_diplayable_edge(self, bidim_array):\n self.connection_table_edge_and_diplayable_edge.append(copy.deepcopy\n (bidim_array))\n self.number_of_disp_edges += 1\n\n def push_edge(self, e):\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_edge_without_doublons(self, e):\n if e not in self.list_of_edges:\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_vertice(self, vertice):\n self.list_of_vertices.append(vertice)\n self.number_of_vertices += 1\n\n def push_vertice_without_doublons(self, vertice):\n bool, index = self.is_vertice_in_graph_based_on_xy_with_tolerance(\n vertice, 10 ** -8)\n if bool == False:\n self.push_vertice(vertice)\n else:\n vertice.coordinates = self.list_of_vertices[index].coordinates\n for edge in vertice.edges_list:\n if edge not in self.list_of_vertices[index].edges_list:\n self.list_of_vertices[index].push_edge(edge, True)\n\n def is_vertice_in_graph_based_on_xy(self, vertice):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if v.coordinates[0] == vertice.coordinates[0] and v.coordinates[1\n ] == vertice.coordinates[1]:\n return True, i\n return False, None\n\n def is_vertice_in_graph_based_on_xy_with_tolerance(self, vertice, epsilon):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if (v.coordinates[0] - vertice.coordinates[0]) ** 2 + (v.\n coordinates[1] - vertice.coordinates[1]) ** 2 < epsilon:\n return True, i\n return False, None\n\n def __getitem__(self, key):\n if key >= 0 and key < self.number_of_vertices:\n return self.list_of_vertices[key]\n else:\n raise IndexError\n\n def laplace_matrix(self):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n laplace_matrix = np.zeros((n, n))\n for i in range(n):\n laplace_matrix[i][i] = 1\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n laplace_matrix[i][edge.linked[1].index] = 1\n return laplace_matrix\n\n def A_matrix(self, type_cost=Edge.given_cost):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n A_matrix = np.zeros((n, n))\n for i in range(n):\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n cost = type_cost(edge)\n A_matrix[i][edge.linked[1].index] = cost\n A_matrix[edge.linked[1].index][i] = cost\n return A_matrix\n\n def pairs_of_vertices(self):\n \"\"\"Returns the pairs of connected vertices.\n Beware ! There might be non-connected vertices in the graph. \"\"\"\n pairs_of_vertices = []\n for vertice in self.list_of_vertices:\n for edge in vertice.edges_list:\n if non_oriented:\n if (vertice, edge.linked[1]) and (edge.linked[1], vertice\n ) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n if not non_oriented:\n if (vertice, edge.linked[1]) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n return pairs_of_vertices\n\n def number_of_edges(self):\n a = self.pairs_of_vertices()\n assert self.number_of_edges == len(a\n ), 'problem in Graph.pairs_of_vertices'\n return self.number_of_edges\n\n def search_index_by_coordinates(self, coord):\n \"\"\"search the index of vertice at coordinates: \"\"\"\n for i in range(len(self.list_of_vertices)):\n if self[i].coordinates[0] == coord[0] and self[i].coordinates[1\n ] == coord[1]:\n return i\n\n def set_right_edges(self):\n \"\"\"verify that the graph is coherent \"\"\"\n for v in self:\n for e in v.edges_list:\n e.linked[0] = v\n e.linked[1] = self[self.search_index_by_coordinates(e.\n linked[1].coordinates)]\n for e in self.list_of_edges:\n e.linked[0] = self[self.search_index_by_coordinates(e.linked[0]\n .coordinates)]\n e.linked[1] = self[self.search_index_by_coordinates(e.linked[1]\n .coordinates)]\n\n def plot(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n x = e.linked[0].coordinates[0]\n y = e.linked[0].coordinates[1]\n dx = e.linked[1].coordinates[0] - x\n dy = e.linked[1].coordinates[1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n\n def plot_dev(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n for i in range(len(self.\n connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable]) - 1):\n x = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][0]\n y = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][1]\n dx = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][0] - x\n dy = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n", "<docstring token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n<class token>\n\n\nclass Edge:\n\n def __init__(self, vertice1, vertice2, id, given_cost=0):\n self.linked = [vertice1, vertice2]\n self.id = id\n self._given_cost = given_cost\n self.color = None\n self.connection_with_displayable = None\n self.index = None\n <function token>\n\n def euclidian_cost(self):\n return np.sqrt(self.square_euclidian_cost())\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\nclass Graph:\n \"\"\" All the information of a graph are contained here. \"\"\"\n\n def __init__(self, list_of_vertices):\n \"\"\" Entry : the list of vertices. \"\"\"\n self.list_of_vertices = list_of_vertices\n self.number_of_vertices = len(list_of_vertices)\n self.connection_table_edge_and_diplayable_edge = []\n self.list_of_edges = []\n self.number_of_disp_edges = 0\n self.number_of_edges = 0\n\n def push_diplayable_edge(self, bidim_array):\n self.connection_table_edge_and_diplayable_edge.append(copy.deepcopy\n (bidim_array))\n self.number_of_disp_edges += 1\n\n def push_edge(self, e):\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_edge_without_doublons(self, e):\n if e not in self.list_of_edges:\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_vertice(self, vertice):\n self.list_of_vertices.append(vertice)\n self.number_of_vertices += 1\n\n def push_vertice_without_doublons(self, vertice):\n bool, index = self.is_vertice_in_graph_based_on_xy_with_tolerance(\n vertice, 10 ** -8)\n if bool == False:\n self.push_vertice(vertice)\n else:\n vertice.coordinates = self.list_of_vertices[index].coordinates\n for edge in vertice.edges_list:\n if edge not in self.list_of_vertices[index].edges_list:\n self.list_of_vertices[index].push_edge(edge, True)\n\n def is_vertice_in_graph_based_on_xy(self, vertice):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if v.coordinates[0] == vertice.coordinates[0] and v.coordinates[1\n ] == vertice.coordinates[1]:\n return True, i\n return False, None\n\n def is_vertice_in_graph_based_on_xy_with_tolerance(self, vertice, epsilon):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if (v.coordinates[0] - vertice.coordinates[0]) ** 2 + (v.\n coordinates[1] - vertice.coordinates[1]) ** 2 < epsilon:\n return True, i\n return False, None\n\n def __getitem__(self, key):\n if key >= 0 and key < self.number_of_vertices:\n return self.list_of_vertices[key]\n else:\n raise IndexError\n\n def laplace_matrix(self):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n laplace_matrix = np.zeros((n, n))\n for i in range(n):\n laplace_matrix[i][i] = 1\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n laplace_matrix[i][edge.linked[1].index] = 1\n return laplace_matrix\n\n def A_matrix(self, type_cost=Edge.given_cost):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n A_matrix = np.zeros((n, n))\n for i in range(n):\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n cost = type_cost(edge)\n A_matrix[i][edge.linked[1].index] = cost\n A_matrix[edge.linked[1].index][i] = cost\n return A_matrix\n\n def pairs_of_vertices(self):\n \"\"\"Returns the pairs of connected vertices.\n Beware ! There might be non-connected vertices in the graph. \"\"\"\n pairs_of_vertices = []\n for vertice in self.list_of_vertices:\n for edge in vertice.edges_list:\n if non_oriented:\n if (vertice, edge.linked[1]) and (edge.linked[1], vertice\n ) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n if not non_oriented:\n if (vertice, edge.linked[1]) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n return pairs_of_vertices\n\n def number_of_edges(self):\n a = self.pairs_of_vertices()\n assert self.number_of_edges == len(a\n ), 'problem in Graph.pairs_of_vertices'\n return self.number_of_edges\n\n def search_index_by_coordinates(self, coord):\n \"\"\"search the index of vertice at coordinates: \"\"\"\n for i in range(len(self.list_of_vertices)):\n if self[i].coordinates[0] == coord[0] and self[i].coordinates[1\n ] == coord[1]:\n return i\n\n def set_right_edges(self):\n \"\"\"verify that the graph is coherent \"\"\"\n for v in self:\n for e in v.edges_list:\n e.linked[0] = v\n e.linked[1] = self[self.search_index_by_coordinates(e.\n linked[1].coordinates)]\n for e in self.list_of_edges:\n e.linked[0] = self[self.search_index_by_coordinates(e.linked[0]\n .coordinates)]\n e.linked[1] = self[self.search_index_by_coordinates(e.linked[1]\n .coordinates)]\n\n def plot(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n x = e.linked[0].coordinates[0]\n y = e.linked[0].coordinates[1]\n dx = e.linked[1].coordinates[0] - x\n dy = e.linked[1].coordinates[1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n\n def plot_dev(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n for i in range(len(self.\n connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable]) - 1):\n x = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][0]\n y = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][1]\n dx = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][0] - x\n dy = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n", "<docstring token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n<class token>\n\n\nclass Edge:\n\n def __init__(self, vertice1, vertice2, id, given_cost=0):\n self.linked = [vertice1, vertice2]\n self.id = id\n self._given_cost = given_cost\n self.color = None\n self.connection_with_displayable = None\n self.index = None\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\nclass Graph:\n \"\"\" All the information of a graph are contained here. \"\"\"\n\n def __init__(self, list_of_vertices):\n \"\"\" Entry : the list of vertices. \"\"\"\n self.list_of_vertices = list_of_vertices\n self.number_of_vertices = len(list_of_vertices)\n self.connection_table_edge_and_diplayable_edge = []\n self.list_of_edges = []\n self.number_of_disp_edges = 0\n self.number_of_edges = 0\n\n def push_diplayable_edge(self, bidim_array):\n self.connection_table_edge_and_diplayable_edge.append(copy.deepcopy\n (bidim_array))\n self.number_of_disp_edges += 1\n\n def push_edge(self, e):\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_edge_without_doublons(self, e):\n if e not in self.list_of_edges:\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_vertice(self, vertice):\n self.list_of_vertices.append(vertice)\n self.number_of_vertices += 1\n\n def push_vertice_without_doublons(self, vertice):\n bool, index = self.is_vertice_in_graph_based_on_xy_with_tolerance(\n vertice, 10 ** -8)\n if bool == False:\n self.push_vertice(vertice)\n else:\n vertice.coordinates = self.list_of_vertices[index].coordinates\n for edge in vertice.edges_list:\n if edge not in self.list_of_vertices[index].edges_list:\n self.list_of_vertices[index].push_edge(edge, True)\n\n def is_vertice_in_graph_based_on_xy(self, vertice):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if v.coordinates[0] == vertice.coordinates[0] and v.coordinates[1\n ] == vertice.coordinates[1]:\n return True, i\n return False, None\n\n def is_vertice_in_graph_based_on_xy_with_tolerance(self, vertice, epsilon):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if (v.coordinates[0] - vertice.coordinates[0]) ** 2 + (v.\n coordinates[1] - vertice.coordinates[1]) ** 2 < epsilon:\n return True, i\n return False, None\n\n def __getitem__(self, key):\n if key >= 0 and key < self.number_of_vertices:\n return self.list_of_vertices[key]\n else:\n raise IndexError\n\n def laplace_matrix(self):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n laplace_matrix = np.zeros((n, n))\n for i in range(n):\n laplace_matrix[i][i] = 1\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n laplace_matrix[i][edge.linked[1].index] = 1\n return laplace_matrix\n\n def A_matrix(self, type_cost=Edge.given_cost):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n A_matrix = np.zeros((n, n))\n for i in range(n):\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n cost = type_cost(edge)\n A_matrix[i][edge.linked[1].index] = cost\n A_matrix[edge.linked[1].index][i] = cost\n return A_matrix\n\n def pairs_of_vertices(self):\n \"\"\"Returns the pairs of connected vertices.\n Beware ! There might be non-connected vertices in the graph. \"\"\"\n pairs_of_vertices = []\n for vertice in self.list_of_vertices:\n for edge in vertice.edges_list:\n if non_oriented:\n if (vertice, edge.linked[1]) and (edge.linked[1], vertice\n ) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n if not non_oriented:\n if (vertice, edge.linked[1]) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n return pairs_of_vertices\n\n def number_of_edges(self):\n a = self.pairs_of_vertices()\n assert self.number_of_edges == len(a\n ), 'problem in Graph.pairs_of_vertices'\n return self.number_of_edges\n\n def search_index_by_coordinates(self, coord):\n \"\"\"search the index of vertice at coordinates: \"\"\"\n for i in range(len(self.list_of_vertices)):\n if self[i].coordinates[0] == coord[0] and self[i].coordinates[1\n ] == coord[1]:\n return i\n\n def set_right_edges(self):\n \"\"\"verify that the graph is coherent \"\"\"\n for v in self:\n for e in v.edges_list:\n e.linked[0] = v\n e.linked[1] = self[self.search_index_by_coordinates(e.\n linked[1].coordinates)]\n for e in self.list_of_edges:\n e.linked[0] = self[self.search_index_by_coordinates(e.linked[0]\n .coordinates)]\n e.linked[1] = self[self.search_index_by_coordinates(e.linked[1]\n .coordinates)]\n\n def plot(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n x = e.linked[0].coordinates[0]\n y = e.linked[0].coordinates[1]\n dx = e.linked[1].coordinates[0] - x\n dy = e.linked[1].coordinates[1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n\n def plot_dev(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n for i in range(len(self.\n connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable]) - 1):\n x = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][0]\n y = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][1]\n dx = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][0] - x\n dy = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n", "<docstring token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n<class token>\n\n\nclass Edge:\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\nclass Graph:\n \"\"\" All the information of a graph are contained here. \"\"\"\n\n def __init__(self, list_of_vertices):\n \"\"\" Entry : the list of vertices. \"\"\"\n self.list_of_vertices = list_of_vertices\n self.number_of_vertices = len(list_of_vertices)\n self.connection_table_edge_and_diplayable_edge = []\n self.list_of_edges = []\n self.number_of_disp_edges = 0\n self.number_of_edges = 0\n\n def push_diplayable_edge(self, bidim_array):\n self.connection_table_edge_and_diplayable_edge.append(copy.deepcopy\n (bidim_array))\n self.number_of_disp_edges += 1\n\n def push_edge(self, e):\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_edge_without_doublons(self, e):\n if e not in self.list_of_edges:\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_vertice(self, vertice):\n self.list_of_vertices.append(vertice)\n self.number_of_vertices += 1\n\n def push_vertice_without_doublons(self, vertice):\n bool, index = self.is_vertice_in_graph_based_on_xy_with_tolerance(\n vertice, 10 ** -8)\n if bool == False:\n self.push_vertice(vertice)\n else:\n vertice.coordinates = self.list_of_vertices[index].coordinates\n for edge in vertice.edges_list:\n if edge not in self.list_of_vertices[index].edges_list:\n self.list_of_vertices[index].push_edge(edge, True)\n\n def is_vertice_in_graph_based_on_xy(self, vertice):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if v.coordinates[0] == vertice.coordinates[0] and v.coordinates[1\n ] == vertice.coordinates[1]:\n return True, i\n return False, None\n\n def is_vertice_in_graph_based_on_xy_with_tolerance(self, vertice, epsilon):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if (v.coordinates[0] - vertice.coordinates[0]) ** 2 + (v.\n coordinates[1] - vertice.coordinates[1]) ** 2 < epsilon:\n return True, i\n return False, None\n\n def __getitem__(self, key):\n if key >= 0 and key < self.number_of_vertices:\n return self.list_of_vertices[key]\n else:\n raise IndexError\n\n def laplace_matrix(self):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n laplace_matrix = np.zeros((n, n))\n for i in range(n):\n laplace_matrix[i][i] = 1\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n laplace_matrix[i][edge.linked[1].index] = 1\n return laplace_matrix\n\n def A_matrix(self, type_cost=Edge.given_cost):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n A_matrix = np.zeros((n, n))\n for i in range(n):\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n cost = type_cost(edge)\n A_matrix[i][edge.linked[1].index] = cost\n A_matrix[edge.linked[1].index][i] = cost\n return A_matrix\n\n def pairs_of_vertices(self):\n \"\"\"Returns the pairs of connected vertices.\n Beware ! There might be non-connected vertices in the graph. \"\"\"\n pairs_of_vertices = []\n for vertice in self.list_of_vertices:\n for edge in vertice.edges_list:\n if non_oriented:\n if (vertice, edge.linked[1]) and (edge.linked[1], vertice\n ) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n if not non_oriented:\n if (vertice, edge.linked[1]) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n return pairs_of_vertices\n\n def number_of_edges(self):\n a = self.pairs_of_vertices()\n assert self.number_of_edges == len(a\n ), 'problem in Graph.pairs_of_vertices'\n return self.number_of_edges\n\n def search_index_by_coordinates(self, coord):\n \"\"\"search the index of vertice at coordinates: \"\"\"\n for i in range(len(self.list_of_vertices)):\n if self[i].coordinates[0] == coord[0] and self[i].coordinates[1\n ] == coord[1]:\n return i\n\n def set_right_edges(self):\n \"\"\"verify that the graph is coherent \"\"\"\n for v in self:\n for e in v.edges_list:\n e.linked[0] = v\n e.linked[1] = self[self.search_index_by_coordinates(e.\n linked[1].coordinates)]\n for e in self.list_of_edges:\n e.linked[0] = self[self.search_index_by_coordinates(e.linked[0]\n .coordinates)]\n e.linked[1] = self[self.search_index_by_coordinates(e.linked[1]\n .coordinates)]\n\n def plot(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n x = e.linked[0].coordinates[0]\n y = e.linked[0].coordinates[1]\n dx = e.linked[1].coordinates[0] - x\n dy = e.linked[1].coordinates[1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n\n def plot_dev(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n for i in range(len(self.\n connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable]) - 1):\n x = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][0]\n y = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][1]\n dx = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][0] - x\n dy = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n", "<docstring token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass Graph:\n \"\"\" All the information of a graph are contained here. \"\"\"\n\n def __init__(self, list_of_vertices):\n \"\"\" Entry : the list of vertices. \"\"\"\n self.list_of_vertices = list_of_vertices\n self.number_of_vertices = len(list_of_vertices)\n self.connection_table_edge_and_diplayable_edge = []\n self.list_of_edges = []\n self.number_of_disp_edges = 0\n self.number_of_edges = 0\n\n def push_diplayable_edge(self, bidim_array):\n self.connection_table_edge_and_diplayable_edge.append(copy.deepcopy\n (bidim_array))\n self.number_of_disp_edges += 1\n\n def push_edge(self, e):\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_edge_without_doublons(self, e):\n if e not in self.list_of_edges:\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_vertice(self, vertice):\n self.list_of_vertices.append(vertice)\n self.number_of_vertices += 1\n\n def push_vertice_without_doublons(self, vertice):\n bool, index = self.is_vertice_in_graph_based_on_xy_with_tolerance(\n vertice, 10 ** -8)\n if bool == False:\n self.push_vertice(vertice)\n else:\n vertice.coordinates = self.list_of_vertices[index].coordinates\n for edge in vertice.edges_list:\n if edge not in self.list_of_vertices[index].edges_list:\n self.list_of_vertices[index].push_edge(edge, True)\n\n def is_vertice_in_graph_based_on_xy(self, vertice):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if v.coordinates[0] == vertice.coordinates[0] and v.coordinates[1\n ] == vertice.coordinates[1]:\n return True, i\n return False, None\n\n def is_vertice_in_graph_based_on_xy_with_tolerance(self, vertice, epsilon):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if (v.coordinates[0] - vertice.coordinates[0]) ** 2 + (v.\n coordinates[1] - vertice.coordinates[1]) ** 2 < epsilon:\n return True, i\n return False, None\n\n def __getitem__(self, key):\n if key >= 0 and key < self.number_of_vertices:\n return self.list_of_vertices[key]\n else:\n raise IndexError\n\n def laplace_matrix(self):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n laplace_matrix = np.zeros((n, n))\n for i in range(n):\n laplace_matrix[i][i] = 1\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n laplace_matrix[i][edge.linked[1].index] = 1\n return laplace_matrix\n\n def A_matrix(self, type_cost=Edge.given_cost):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n A_matrix = np.zeros((n, n))\n for i in range(n):\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n cost = type_cost(edge)\n A_matrix[i][edge.linked[1].index] = cost\n A_matrix[edge.linked[1].index][i] = cost\n return A_matrix\n\n def pairs_of_vertices(self):\n \"\"\"Returns the pairs of connected vertices.\n Beware ! There might be non-connected vertices in the graph. \"\"\"\n pairs_of_vertices = []\n for vertice in self.list_of_vertices:\n for edge in vertice.edges_list:\n if non_oriented:\n if (vertice, edge.linked[1]) and (edge.linked[1], vertice\n ) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n if not non_oriented:\n if (vertice, edge.linked[1]) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n return pairs_of_vertices\n\n def number_of_edges(self):\n a = self.pairs_of_vertices()\n assert self.number_of_edges == len(a\n ), 'problem in Graph.pairs_of_vertices'\n return self.number_of_edges\n\n def search_index_by_coordinates(self, coord):\n \"\"\"search the index of vertice at coordinates: \"\"\"\n for i in range(len(self.list_of_vertices)):\n if self[i].coordinates[0] == coord[0] and self[i].coordinates[1\n ] == coord[1]:\n return i\n\n def set_right_edges(self):\n \"\"\"verify that the graph is coherent \"\"\"\n for v in self:\n for e in v.edges_list:\n e.linked[0] = v\n e.linked[1] = self[self.search_index_by_coordinates(e.\n linked[1].coordinates)]\n for e in self.list_of_edges:\n e.linked[0] = self[self.search_index_by_coordinates(e.linked[0]\n .coordinates)]\n e.linked[1] = self[self.search_index_by_coordinates(e.linked[1]\n .coordinates)]\n\n def plot(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n x = e.linked[0].coordinates[0]\n y = e.linked[0].coordinates[1]\n dx = e.linked[1].coordinates[0] - x\n dy = e.linked[1].coordinates[1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n\n def plot_dev(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n for i in range(len(self.\n connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable]) - 1):\n x = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][0]\n y = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][1]\n dx = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][0] - x\n dy = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n", "<docstring token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass Graph:\n <docstring token>\n\n def __init__(self, list_of_vertices):\n \"\"\" Entry : the list of vertices. \"\"\"\n self.list_of_vertices = list_of_vertices\n self.number_of_vertices = len(list_of_vertices)\n self.connection_table_edge_and_diplayable_edge = []\n self.list_of_edges = []\n self.number_of_disp_edges = 0\n self.number_of_edges = 0\n\n def push_diplayable_edge(self, bidim_array):\n self.connection_table_edge_and_diplayable_edge.append(copy.deepcopy\n (bidim_array))\n self.number_of_disp_edges += 1\n\n def push_edge(self, e):\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_edge_without_doublons(self, e):\n if e not in self.list_of_edges:\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_vertice(self, vertice):\n self.list_of_vertices.append(vertice)\n self.number_of_vertices += 1\n\n def push_vertice_without_doublons(self, vertice):\n bool, index = self.is_vertice_in_graph_based_on_xy_with_tolerance(\n vertice, 10 ** -8)\n if bool == False:\n self.push_vertice(vertice)\n else:\n vertice.coordinates = self.list_of_vertices[index].coordinates\n for edge in vertice.edges_list:\n if edge not in self.list_of_vertices[index].edges_list:\n self.list_of_vertices[index].push_edge(edge, True)\n\n def is_vertice_in_graph_based_on_xy(self, vertice):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if v.coordinates[0] == vertice.coordinates[0] and v.coordinates[1\n ] == vertice.coordinates[1]:\n return True, i\n return False, None\n\n def is_vertice_in_graph_based_on_xy_with_tolerance(self, vertice, epsilon):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if (v.coordinates[0] - vertice.coordinates[0]) ** 2 + (v.\n coordinates[1] - vertice.coordinates[1]) ** 2 < epsilon:\n return True, i\n return False, None\n\n def __getitem__(self, key):\n if key >= 0 and key < self.number_of_vertices:\n return self.list_of_vertices[key]\n else:\n raise IndexError\n\n def laplace_matrix(self):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n laplace_matrix = np.zeros((n, n))\n for i in range(n):\n laplace_matrix[i][i] = 1\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n laplace_matrix[i][edge.linked[1].index] = 1\n return laplace_matrix\n\n def A_matrix(self, type_cost=Edge.given_cost):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n A_matrix = np.zeros((n, n))\n for i in range(n):\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n cost = type_cost(edge)\n A_matrix[i][edge.linked[1].index] = cost\n A_matrix[edge.linked[1].index][i] = cost\n return A_matrix\n\n def pairs_of_vertices(self):\n \"\"\"Returns the pairs of connected vertices.\n Beware ! There might be non-connected vertices in the graph. \"\"\"\n pairs_of_vertices = []\n for vertice in self.list_of_vertices:\n for edge in vertice.edges_list:\n if non_oriented:\n if (vertice, edge.linked[1]) and (edge.linked[1], vertice\n ) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n if not non_oriented:\n if (vertice, edge.linked[1]) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n return pairs_of_vertices\n\n def number_of_edges(self):\n a = self.pairs_of_vertices()\n assert self.number_of_edges == len(a\n ), 'problem in Graph.pairs_of_vertices'\n return self.number_of_edges\n\n def search_index_by_coordinates(self, coord):\n \"\"\"search the index of vertice at coordinates: \"\"\"\n for i in range(len(self.list_of_vertices)):\n if self[i].coordinates[0] == coord[0] and self[i].coordinates[1\n ] == coord[1]:\n return i\n\n def set_right_edges(self):\n \"\"\"verify that the graph is coherent \"\"\"\n for v in self:\n for e in v.edges_list:\n e.linked[0] = v\n e.linked[1] = self[self.search_index_by_coordinates(e.\n linked[1].coordinates)]\n for e in self.list_of_edges:\n e.linked[0] = self[self.search_index_by_coordinates(e.linked[0]\n .coordinates)]\n e.linked[1] = self[self.search_index_by_coordinates(e.linked[1]\n .coordinates)]\n\n def plot(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n x = e.linked[0].coordinates[0]\n y = e.linked[0].coordinates[1]\n dx = e.linked[1].coordinates[0] - x\n dy = e.linked[1].coordinates[1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n\n def plot_dev(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n for i in range(len(self.\n connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable]) - 1):\n x = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][0]\n y = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][1]\n dx = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][0] - x\n dy = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n", "<docstring token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass Graph:\n <docstring token>\n\n def __init__(self, list_of_vertices):\n \"\"\" Entry : the list of vertices. \"\"\"\n self.list_of_vertices = list_of_vertices\n self.number_of_vertices = len(list_of_vertices)\n self.connection_table_edge_and_diplayable_edge = []\n self.list_of_edges = []\n self.number_of_disp_edges = 0\n self.number_of_edges = 0\n\n def push_diplayable_edge(self, bidim_array):\n self.connection_table_edge_and_diplayable_edge.append(copy.deepcopy\n (bidim_array))\n self.number_of_disp_edges += 1\n\n def push_edge(self, e):\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_edge_without_doublons(self, e):\n if e not in self.list_of_edges:\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_vertice(self, vertice):\n self.list_of_vertices.append(vertice)\n self.number_of_vertices += 1\n\n def push_vertice_without_doublons(self, vertice):\n bool, index = self.is_vertice_in_graph_based_on_xy_with_tolerance(\n vertice, 10 ** -8)\n if bool == False:\n self.push_vertice(vertice)\n else:\n vertice.coordinates = self.list_of_vertices[index].coordinates\n for edge in vertice.edges_list:\n if edge not in self.list_of_vertices[index].edges_list:\n self.list_of_vertices[index].push_edge(edge, True)\n\n def is_vertice_in_graph_based_on_xy(self, vertice):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if v.coordinates[0] == vertice.coordinates[0] and v.coordinates[1\n ] == vertice.coordinates[1]:\n return True, i\n return False, None\n\n def is_vertice_in_graph_based_on_xy_with_tolerance(self, vertice, epsilon):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if (v.coordinates[0] - vertice.coordinates[0]) ** 2 + (v.\n coordinates[1] - vertice.coordinates[1]) ** 2 < epsilon:\n return True, i\n return False, None\n\n def __getitem__(self, key):\n if key >= 0 and key < self.number_of_vertices:\n return self.list_of_vertices[key]\n else:\n raise IndexError\n\n def laplace_matrix(self):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n laplace_matrix = np.zeros((n, n))\n for i in range(n):\n laplace_matrix[i][i] = 1\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n laplace_matrix[i][edge.linked[1].index] = 1\n return laplace_matrix\n\n def A_matrix(self, type_cost=Edge.given_cost):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n A_matrix = np.zeros((n, n))\n for i in range(n):\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n cost = type_cost(edge)\n A_matrix[i][edge.linked[1].index] = cost\n A_matrix[edge.linked[1].index][i] = cost\n return A_matrix\n\n def pairs_of_vertices(self):\n \"\"\"Returns the pairs of connected vertices.\n Beware ! There might be non-connected vertices in the graph. \"\"\"\n pairs_of_vertices = []\n for vertice in self.list_of_vertices:\n for edge in vertice.edges_list:\n if non_oriented:\n if (vertice, edge.linked[1]) and (edge.linked[1], vertice\n ) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n if not non_oriented:\n if (vertice, edge.linked[1]) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n return pairs_of_vertices\n\n def number_of_edges(self):\n a = self.pairs_of_vertices()\n assert self.number_of_edges == len(a\n ), 'problem in Graph.pairs_of_vertices'\n return self.number_of_edges\n <function token>\n\n def set_right_edges(self):\n \"\"\"verify that the graph is coherent \"\"\"\n for v in self:\n for e in v.edges_list:\n e.linked[0] = v\n e.linked[1] = self[self.search_index_by_coordinates(e.\n linked[1].coordinates)]\n for e in self.list_of_edges:\n e.linked[0] = self[self.search_index_by_coordinates(e.linked[0]\n .coordinates)]\n e.linked[1] = self[self.search_index_by_coordinates(e.linked[1]\n .coordinates)]\n\n def plot(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n x = e.linked[0].coordinates[0]\n y = e.linked[0].coordinates[1]\n dx = e.linked[1].coordinates[0] - x\n dy = e.linked[1].coordinates[1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n\n def plot_dev(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n for i in range(len(self.\n connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable]) - 1):\n x = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][0]\n y = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][1]\n dx = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][0] - x\n dy = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n", "<docstring token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass Graph:\n <docstring token>\n\n def __init__(self, list_of_vertices):\n \"\"\" Entry : the list of vertices. \"\"\"\n self.list_of_vertices = list_of_vertices\n self.number_of_vertices = len(list_of_vertices)\n self.connection_table_edge_and_diplayable_edge = []\n self.list_of_edges = []\n self.number_of_disp_edges = 0\n self.number_of_edges = 0\n\n def push_diplayable_edge(self, bidim_array):\n self.connection_table_edge_and_diplayable_edge.append(copy.deepcopy\n (bidim_array))\n self.number_of_disp_edges += 1\n\n def push_edge(self, e):\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_edge_without_doublons(self, e):\n if e not in self.list_of_edges:\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_vertice(self, vertice):\n self.list_of_vertices.append(vertice)\n self.number_of_vertices += 1\n\n def push_vertice_without_doublons(self, vertice):\n bool, index = self.is_vertice_in_graph_based_on_xy_with_tolerance(\n vertice, 10 ** -8)\n if bool == False:\n self.push_vertice(vertice)\n else:\n vertice.coordinates = self.list_of_vertices[index].coordinates\n for edge in vertice.edges_list:\n if edge not in self.list_of_vertices[index].edges_list:\n self.list_of_vertices[index].push_edge(edge, True)\n\n def is_vertice_in_graph_based_on_xy(self, vertice):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if v.coordinates[0] == vertice.coordinates[0] and v.coordinates[1\n ] == vertice.coordinates[1]:\n return True, i\n return False, None\n\n def is_vertice_in_graph_based_on_xy_with_tolerance(self, vertice, epsilon):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if (v.coordinates[0] - vertice.coordinates[0]) ** 2 + (v.\n coordinates[1] - vertice.coordinates[1]) ** 2 < epsilon:\n return True, i\n return False, None\n\n def __getitem__(self, key):\n if key >= 0 and key < self.number_of_vertices:\n return self.list_of_vertices[key]\n else:\n raise IndexError\n\n def laplace_matrix(self):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n laplace_matrix = np.zeros((n, n))\n for i in range(n):\n laplace_matrix[i][i] = 1\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n laplace_matrix[i][edge.linked[1].index] = 1\n return laplace_matrix\n\n def A_matrix(self, type_cost=Edge.given_cost):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n A_matrix = np.zeros((n, n))\n for i in range(n):\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n cost = type_cost(edge)\n A_matrix[i][edge.linked[1].index] = cost\n A_matrix[edge.linked[1].index][i] = cost\n return A_matrix\n\n def pairs_of_vertices(self):\n \"\"\"Returns the pairs of connected vertices.\n Beware ! There might be non-connected vertices in the graph. \"\"\"\n pairs_of_vertices = []\n for vertice in self.list_of_vertices:\n for edge in vertice.edges_list:\n if non_oriented:\n if (vertice, edge.linked[1]) and (edge.linked[1], vertice\n ) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n if not non_oriented:\n if (vertice, edge.linked[1]) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n return pairs_of_vertices\n\n def number_of_edges(self):\n a = self.pairs_of_vertices()\n assert self.number_of_edges == len(a\n ), 'problem in Graph.pairs_of_vertices'\n return self.number_of_edges\n <function token>\n\n def set_right_edges(self):\n \"\"\"verify that the graph is coherent \"\"\"\n for v in self:\n for e in v.edges_list:\n e.linked[0] = v\n e.linked[1] = self[self.search_index_by_coordinates(e.\n linked[1].coordinates)]\n for e in self.list_of_edges:\n e.linked[0] = self[self.search_index_by_coordinates(e.linked[0]\n .coordinates)]\n e.linked[1] = self[self.search_index_by_coordinates(e.linked[1]\n .coordinates)]\n <function token>\n\n def plot_dev(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n for i in range(len(self.\n connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable]) - 1):\n x = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][0]\n y = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][1]\n dx = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][0] - x\n dy = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n", "<docstring token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass Graph:\n <docstring token>\n\n def __init__(self, list_of_vertices):\n \"\"\" Entry : the list of vertices. \"\"\"\n self.list_of_vertices = list_of_vertices\n self.number_of_vertices = len(list_of_vertices)\n self.connection_table_edge_and_diplayable_edge = []\n self.list_of_edges = []\n self.number_of_disp_edges = 0\n self.number_of_edges = 0\n\n def push_diplayable_edge(self, bidim_array):\n self.connection_table_edge_and_diplayable_edge.append(copy.deepcopy\n (bidim_array))\n self.number_of_disp_edges += 1\n <function token>\n\n def push_edge_without_doublons(self, e):\n if e not in self.list_of_edges:\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n\n def push_vertice(self, vertice):\n self.list_of_vertices.append(vertice)\n self.number_of_vertices += 1\n\n def push_vertice_without_doublons(self, vertice):\n bool, index = self.is_vertice_in_graph_based_on_xy_with_tolerance(\n vertice, 10 ** -8)\n if bool == False:\n self.push_vertice(vertice)\n else:\n vertice.coordinates = self.list_of_vertices[index].coordinates\n for edge in vertice.edges_list:\n if edge not in self.list_of_vertices[index].edges_list:\n self.list_of_vertices[index].push_edge(edge, True)\n\n def is_vertice_in_graph_based_on_xy(self, vertice):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if v.coordinates[0] == vertice.coordinates[0] and v.coordinates[1\n ] == vertice.coordinates[1]:\n return True, i\n return False, None\n\n def is_vertice_in_graph_based_on_xy_with_tolerance(self, vertice, epsilon):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if (v.coordinates[0] - vertice.coordinates[0]) ** 2 + (v.\n coordinates[1] - vertice.coordinates[1]) ** 2 < epsilon:\n return True, i\n return False, None\n\n def __getitem__(self, key):\n if key >= 0 and key < self.number_of_vertices:\n return self.list_of_vertices[key]\n else:\n raise IndexError\n\n def laplace_matrix(self):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n laplace_matrix = np.zeros((n, n))\n for i in range(n):\n laplace_matrix[i][i] = 1\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n laplace_matrix[i][edge.linked[1].index] = 1\n return laplace_matrix\n\n def A_matrix(self, type_cost=Edge.given_cost):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n A_matrix = np.zeros((n, n))\n for i in range(n):\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n cost = type_cost(edge)\n A_matrix[i][edge.linked[1].index] = cost\n A_matrix[edge.linked[1].index][i] = cost\n return A_matrix\n\n def pairs_of_vertices(self):\n \"\"\"Returns the pairs of connected vertices.\n Beware ! There might be non-connected vertices in the graph. \"\"\"\n pairs_of_vertices = []\n for vertice in self.list_of_vertices:\n for edge in vertice.edges_list:\n if non_oriented:\n if (vertice, edge.linked[1]) and (edge.linked[1], vertice\n ) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n if not non_oriented:\n if (vertice, edge.linked[1]) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n return pairs_of_vertices\n\n def number_of_edges(self):\n a = self.pairs_of_vertices()\n assert self.number_of_edges == len(a\n ), 'problem in Graph.pairs_of_vertices'\n return self.number_of_edges\n <function token>\n\n def set_right_edges(self):\n \"\"\"verify that the graph is coherent \"\"\"\n for v in self:\n for e in v.edges_list:\n e.linked[0] = v\n e.linked[1] = self[self.search_index_by_coordinates(e.\n linked[1].coordinates)]\n for e in self.list_of_edges:\n e.linked[0] = self[self.search_index_by_coordinates(e.linked[0]\n .coordinates)]\n e.linked[1] = self[self.search_index_by_coordinates(e.linked[1]\n .coordinates)]\n <function token>\n\n def plot_dev(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n for i in range(len(self.\n connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable]) - 1):\n x = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][0]\n y = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][1]\n dx = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][0] - x\n dy = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n", "<docstring token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass Graph:\n <docstring token>\n\n def __init__(self, list_of_vertices):\n \"\"\" Entry : the list of vertices. \"\"\"\n self.list_of_vertices = list_of_vertices\n self.number_of_vertices = len(list_of_vertices)\n self.connection_table_edge_and_diplayable_edge = []\n self.list_of_edges = []\n self.number_of_disp_edges = 0\n self.number_of_edges = 0\n\n def push_diplayable_edge(self, bidim_array):\n self.connection_table_edge_and_diplayable_edge.append(copy.deepcopy\n (bidim_array))\n self.number_of_disp_edges += 1\n <function token>\n\n def push_edge_without_doublons(self, e):\n if e not in self.list_of_edges:\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n <function token>\n\n def push_vertice_without_doublons(self, vertice):\n bool, index = self.is_vertice_in_graph_based_on_xy_with_tolerance(\n vertice, 10 ** -8)\n if bool == False:\n self.push_vertice(vertice)\n else:\n vertice.coordinates = self.list_of_vertices[index].coordinates\n for edge in vertice.edges_list:\n if edge not in self.list_of_vertices[index].edges_list:\n self.list_of_vertices[index].push_edge(edge, True)\n\n def is_vertice_in_graph_based_on_xy(self, vertice):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if v.coordinates[0] == vertice.coordinates[0] and v.coordinates[1\n ] == vertice.coordinates[1]:\n return True, i\n return False, None\n\n def is_vertice_in_graph_based_on_xy_with_tolerance(self, vertice, epsilon):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if (v.coordinates[0] - vertice.coordinates[0]) ** 2 + (v.\n coordinates[1] - vertice.coordinates[1]) ** 2 < epsilon:\n return True, i\n return False, None\n\n def __getitem__(self, key):\n if key >= 0 and key < self.number_of_vertices:\n return self.list_of_vertices[key]\n else:\n raise IndexError\n\n def laplace_matrix(self):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n laplace_matrix = np.zeros((n, n))\n for i in range(n):\n laplace_matrix[i][i] = 1\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n laplace_matrix[i][edge.linked[1].index] = 1\n return laplace_matrix\n\n def A_matrix(self, type_cost=Edge.given_cost):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n A_matrix = np.zeros((n, n))\n for i in range(n):\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n cost = type_cost(edge)\n A_matrix[i][edge.linked[1].index] = cost\n A_matrix[edge.linked[1].index][i] = cost\n return A_matrix\n\n def pairs_of_vertices(self):\n \"\"\"Returns the pairs of connected vertices.\n Beware ! There might be non-connected vertices in the graph. \"\"\"\n pairs_of_vertices = []\n for vertice in self.list_of_vertices:\n for edge in vertice.edges_list:\n if non_oriented:\n if (vertice, edge.linked[1]) and (edge.linked[1], vertice\n ) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n if not non_oriented:\n if (vertice, edge.linked[1]) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n return pairs_of_vertices\n\n def number_of_edges(self):\n a = self.pairs_of_vertices()\n assert self.number_of_edges == len(a\n ), 'problem in Graph.pairs_of_vertices'\n return self.number_of_edges\n <function token>\n\n def set_right_edges(self):\n \"\"\"verify that the graph is coherent \"\"\"\n for v in self:\n for e in v.edges_list:\n e.linked[0] = v\n e.linked[1] = self[self.search_index_by_coordinates(e.\n linked[1].coordinates)]\n for e in self.list_of_edges:\n e.linked[0] = self[self.search_index_by_coordinates(e.linked[0]\n .coordinates)]\n e.linked[1] = self[self.search_index_by_coordinates(e.linked[1]\n .coordinates)]\n <function token>\n\n def plot_dev(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n for i in range(len(self.\n connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable]) - 1):\n x = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][0]\n y = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][1]\n dx = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][0] - x\n dy = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n", "<docstring token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass Graph:\n <docstring token>\n\n def __init__(self, list_of_vertices):\n \"\"\" Entry : the list of vertices. \"\"\"\n self.list_of_vertices = list_of_vertices\n self.number_of_vertices = len(list_of_vertices)\n self.connection_table_edge_and_diplayable_edge = []\n self.list_of_edges = []\n self.number_of_disp_edges = 0\n self.number_of_edges = 0\n <function token>\n <function token>\n\n def push_edge_without_doublons(self, e):\n if e not in self.list_of_edges:\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n <function token>\n\n def push_vertice_without_doublons(self, vertice):\n bool, index = self.is_vertice_in_graph_based_on_xy_with_tolerance(\n vertice, 10 ** -8)\n if bool == False:\n self.push_vertice(vertice)\n else:\n vertice.coordinates = self.list_of_vertices[index].coordinates\n for edge in vertice.edges_list:\n if edge not in self.list_of_vertices[index].edges_list:\n self.list_of_vertices[index].push_edge(edge, True)\n\n def is_vertice_in_graph_based_on_xy(self, vertice):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if v.coordinates[0] == vertice.coordinates[0] and v.coordinates[1\n ] == vertice.coordinates[1]:\n return True, i\n return False, None\n\n def is_vertice_in_graph_based_on_xy_with_tolerance(self, vertice, epsilon):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if (v.coordinates[0] - vertice.coordinates[0]) ** 2 + (v.\n coordinates[1] - vertice.coordinates[1]) ** 2 < epsilon:\n return True, i\n return False, None\n\n def __getitem__(self, key):\n if key >= 0 and key < self.number_of_vertices:\n return self.list_of_vertices[key]\n else:\n raise IndexError\n\n def laplace_matrix(self):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n laplace_matrix = np.zeros((n, n))\n for i in range(n):\n laplace_matrix[i][i] = 1\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n laplace_matrix[i][edge.linked[1].index] = 1\n return laplace_matrix\n\n def A_matrix(self, type_cost=Edge.given_cost):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n A_matrix = np.zeros((n, n))\n for i in range(n):\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n cost = type_cost(edge)\n A_matrix[i][edge.linked[1].index] = cost\n A_matrix[edge.linked[1].index][i] = cost\n return A_matrix\n\n def pairs_of_vertices(self):\n \"\"\"Returns the pairs of connected vertices.\n Beware ! There might be non-connected vertices in the graph. \"\"\"\n pairs_of_vertices = []\n for vertice in self.list_of_vertices:\n for edge in vertice.edges_list:\n if non_oriented:\n if (vertice, edge.linked[1]) and (edge.linked[1], vertice\n ) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n if not non_oriented:\n if (vertice, edge.linked[1]) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n return pairs_of_vertices\n\n def number_of_edges(self):\n a = self.pairs_of_vertices()\n assert self.number_of_edges == len(a\n ), 'problem in Graph.pairs_of_vertices'\n return self.number_of_edges\n <function token>\n\n def set_right_edges(self):\n \"\"\"verify that the graph is coherent \"\"\"\n for v in self:\n for e in v.edges_list:\n e.linked[0] = v\n e.linked[1] = self[self.search_index_by_coordinates(e.\n linked[1].coordinates)]\n for e in self.list_of_edges:\n e.linked[0] = self[self.search_index_by_coordinates(e.linked[0]\n .coordinates)]\n e.linked[1] = self[self.search_index_by_coordinates(e.linked[1]\n .coordinates)]\n <function token>\n\n def plot_dev(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n for i in range(len(self.\n connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable]) - 1):\n x = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][0]\n y = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][1]\n dx = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][0] - x\n dy = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n", "<docstring token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass Graph:\n <docstring token>\n <function token>\n <function token>\n <function token>\n\n def push_edge_without_doublons(self, e):\n if e not in self.list_of_edges:\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n <function token>\n\n def push_vertice_without_doublons(self, vertice):\n bool, index = self.is_vertice_in_graph_based_on_xy_with_tolerance(\n vertice, 10 ** -8)\n if bool == False:\n self.push_vertice(vertice)\n else:\n vertice.coordinates = self.list_of_vertices[index].coordinates\n for edge in vertice.edges_list:\n if edge not in self.list_of_vertices[index].edges_list:\n self.list_of_vertices[index].push_edge(edge, True)\n\n def is_vertice_in_graph_based_on_xy(self, vertice):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if v.coordinates[0] == vertice.coordinates[0] and v.coordinates[1\n ] == vertice.coordinates[1]:\n return True, i\n return False, None\n\n def is_vertice_in_graph_based_on_xy_with_tolerance(self, vertice, epsilon):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if (v.coordinates[0] - vertice.coordinates[0]) ** 2 + (v.\n coordinates[1] - vertice.coordinates[1]) ** 2 < epsilon:\n return True, i\n return False, None\n\n def __getitem__(self, key):\n if key >= 0 and key < self.number_of_vertices:\n return self.list_of_vertices[key]\n else:\n raise IndexError\n\n def laplace_matrix(self):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n laplace_matrix = np.zeros((n, n))\n for i in range(n):\n laplace_matrix[i][i] = 1\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n laplace_matrix[i][edge.linked[1].index] = 1\n return laplace_matrix\n\n def A_matrix(self, type_cost=Edge.given_cost):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n A_matrix = np.zeros((n, n))\n for i in range(n):\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n cost = type_cost(edge)\n A_matrix[i][edge.linked[1].index] = cost\n A_matrix[edge.linked[1].index][i] = cost\n return A_matrix\n\n def pairs_of_vertices(self):\n \"\"\"Returns the pairs of connected vertices.\n Beware ! There might be non-connected vertices in the graph. \"\"\"\n pairs_of_vertices = []\n for vertice in self.list_of_vertices:\n for edge in vertice.edges_list:\n if non_oriented:\n if (vertice, edge.linked[1]) and (edge.linked[1], vertice\n ) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n if not non_oriented:\n if (vertice, edge.linked[1]) not in pairs_of_vertices:\n pairs_of_vertices.append((vertice, edge.linked[1]))\n return pairs_of_vertices\n\n def number_of_edges(self):\n a = self.pairs_of_vertices()\n assert self.number_of_edges == len(a\n ), 'problem in Graph.pairs_of_vertices'\n return self.number_of_edges\n <function token>\n\n def set_right_edges(self):\n \"\"\"verify that the graph is coherent \"\"\"\n for v in self:\n for e in v.edges_list:\n e.linked[0] = v\n e.linked[1] = self[self.search_index_by_coordinates(e.\n linked[1].coordinates)]\n for e in self.list_of_edges:\n e.linked[0] = self[self.search_index_by_coordinates(e.linked[0]\n .coordinates)]\n e.linked[1] = self[self.search_index_by_coordinates(e.linked[1]\n .coordinates)]\n <function token>\n\n def plot_dev(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n for i in range(len(self.\n connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable]) - 1):\n x = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][0]\n y = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][1]\n dx = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][0] - x\n dy = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n", "<docstring token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass Graph:\n <docstring token>\n <function token>\n <function token>\n <function token>\n\n def push_edge_without_doublons(self, e):\n if e not in self.list_of_edges:\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n <function token>\n\n def push_vertice_without_doublons(self, vertice):\n bool, index = self.is_vertice_in_graph_based_on_xy_with_tolerance(\n vertice, 10 ** -8)\n if bool == False:\n self.push_vertice(vertice)\n else:\n vertice.coordinates = self.list_of_vertices[index].coordinates\n for edge in vertice.edges_list:\n if edge not in self.list_of_vertices[index].edges_list:\n self.list_of_vertices[index].push_edge(edge, True)\n\n def is_vertice_in_graph_based_on_xy(self, vertice):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if v.coordinates[0] == vertice.coordinates[0] and v.coordinates[1\n ] == vertice.coordinates[1]:\n return True, i\n return False, None\n\n def is_vertice_in_graph_based_on_xy_with_tolerance(self, vertice, epsilon):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if (v.coordinates[0] - vertice.coordinates[0]) ** 2 + (v.\n coordinates[1] - vertice.coordinates[1]) ** 2 < epsilon:\n return True, i\n return False, None\n\n def __getitem__(self, key):\n if key >= 0 and key < self.number_of_vertices:\n return self.list_of_vertices[key]\n else:\n raise IndexError\n\n def laplace_matrix(self):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n laplace_matrix = np.zeros((n, n))\n for i in range(n):\n laplace_matrix[i][i] = 1\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n laplace_matrix[i][edge.linked[1].index] = 1\n return laplace_matrix\n\n def A_matrix(self, type_cost=Edge.given_cost):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n A_matrix = np.zeros((n, n))\n for i in range(n):\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n cost = type_cost(edge)\n A_matrix[i][edge.linked[1].index] = cost\n A_matrix[edge.linked[1].index][i] = cost\n return A_matrix\n <function token>\n\n def number_of_edges(self):\n a = self.pairs_of_vertices()\n assert self.number_of_edges == len(a\n ), 'problem in Graph.pairs_of_vertices'\n return self.number_of_edges\n <function token>\n\n def set_right_edges(self):\n \"\"\"verify that the graph is coherent \"\"\"\n for v in self:\n for e in v.edges_list:\n e.linked[0] = v\n e.linked[1] = self[self.search_index_by_coordinates(e.\n linked[1].coordinates)]\n for e in self.list_of_edges:\n e.linked[0] = self[self.search_index_by_coordinates(e.linked[0]\n .coordinates)]\n e.linked[1] = self[self.search_index_by_coordinates(e.linked[1]\n .coordinates)]\n <function token>\n\n def plot_dev(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n for i in range(len(self.\n connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable]) - 1):\n x = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][0]\n y = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][1]\n dx = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][0] - x\n dy = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n", "<docstring token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass Graph:\n <docstring token>\n <function token>\n <function token>\n <function token>\n\n def push_edge_without_doublons(self, e):\n if e not in self.list_of_edges:\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n <function token>\n\n def push_vertice_without_doublons(self, vertice):\n bool, index = self.is_vertice_in_graph_based_on_xy_with_tolerance(\n vertice, 10 ** -8)\n if bool == False:\n self.push_vertice(vertice)\n else:\n vertice.coordinates = self.list_of_vertices[index].coordinates\n for edge in vertice.edges_list:\n if edge not in self.list_of_vertices[index].edges_list:\n self.list_of_vertices[index].push_edge(edge, True)\n\n def is_vertice_in_graph_based_on_xy(self, vertice):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if v.coordinates[0] == vertice.coordinates[0] and v.coordinates[1\n ] == vertice.coordinates[1]:\n return True, i\n return False, None\n\n def is_vertice_in_graph_based_on_xy_with_tolerance(self, vertice, epsilon):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if (v.coordinates[0] - vertice.coordinates[0]) ** 2 + (v.\n coordinates[1] - vertice.coordinates[1]) ** 2 < epsilon:\n return True, i\n return False, None\n <function token>\n\n def laplace_matrix(self):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n laplace_matrix = np.zeros((n, n))\n for i in range(n):\n laplace_matrix[i][i] = 1\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n laplace_matrix[i][edge.linked[1].index] = 1\n return laplace_matrix\n\n def A_matrix(self, type_cost=Edge.given_cost):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n A_matrix = np.zeros((n, n))\n for i in range(n):\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n cost = type_cost(edge)\n A_matrix[i][edge.linked[1].index] = cost\n A_matrix[edge.linked[1].index][i] = cost\n return A_matrix\n <function token>\n\n def number_of_edges(self):\n a = self.pairs_of_vertices()\n assert self.number_of_edges == len(a\n ), 'problem in Graph.pairs_of_vertices'\n return self.number_of_edges\n <function token>\n\n def set_right_edges(self):\n \"\"\"verify that the graph is coherent \"\"\"\n for v in self:\n for e in v.edges_list:\n e.linked[0] = v\n e.linked[1] = self[self.search_index_by_coordinates(e.\n linked[1].coordinates)]\n for e in self.list_of_edges:\n e.linked[0] = self[self.search_index_by_coordinates(e.linked[0]\n .coordinates)]\n e.linked[1] = self[self.search_index_by_coordinates(e.linked[1]\n .coordinates)]\n <function token>\n\n def plot_dev(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n for i in range(len(self.\n connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable]) - 1):\n x = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][0]\n y = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][1]\n dx = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][0] - x\n dy = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n", "<docstring token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass Graph:\n <docstring token>\n <function token>\n <function token>\n <function token>\n\n def push_edge_without_doublons(self, e):\n if e not in self.list_of_edges:\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n <function token>\n\n def push_vertice_without_doublons(self, vertice):\n bool, index = self.is_vertice_in_graph_based_on_xy_with_tolerance(\n vertice, 10 ** -8)\n if bool == False:\n self.push_vertice(vertice)\n else:\n vertice.coordinates = self.list_of_vertices[index].coordinates\n for edge in vertice.edges_list:\n if edge not in self.list_of_vertices[index].edges_list:\n self.list_of_vertices[index].push_edge(edge, True)\n\n def is_vertice_in_graph_based_on_xy(self, vertice):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if v.coordinates[0] == vertice.coordinates[0] and v.coordinates[1\n ] == vertice.coordinates[1]:\n return True, i\n return False, None\n\n def is_vertice_in_graph_based_on_xy_with_tolerance(self, vertice, epsilon):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if (v.coordinates[0] - vertice.coordinates[0]) ** 2 + (v.\n coordinates[1] - vertice.coordinates[1]) ** 2 < epsilon:\n return True, i\n return False, None\n <function token>\n\n def laplace_matrix(self):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n laplace_matrix = np.zeros((n, n))\n for i in range(n):\n laplace_matrix[i][i] = 1\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n laplace_matrix[i][edge.linked[1].index] = 1\n return laplace_matrix\n <function token>\n <function token>\n\n def number_of_edges(self):\n a = self.pairs_of_vertices()\n assert self.number_of_edges == len(a\n ), 'problem in Graph.pairs_of_vertices'\n return self.number_of_edges\n <function token>\n\n def set_right_edges(self):\n \"\"\"verify that the graph is coherent \"\"\"\n for v in self:\n for e in v.edges_list:\n e.linked[0] = v\n e.linked[1] = self[self.search_index_by_coordinates(e.\n linked[1].coordinates)]\n for e in self.list_of_edges:\n e.linked[0] = self[self.search_index_by_coordinates(e.linked[0]\n .coordinates)]\n e.linked[1] = self[self.search_index_by_coordinates(e.linked[1]\n .coordinates)]\n <function token>\n\n def plot_dev(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n for i in range(len(self.\n connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable]) - 1):\n x = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][0]\n y = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][1]\n dx = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][0] - x\n dy = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n", "<docstring token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass Graph:\n <docstring token>\n <function token>\n <function token>\n <function token>\n\n def push_edge_without_doublons(self, e):\n if e not in self.list_of_edges:\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n <function token>\n <function token>\n\n def is_vertice_in_graph_based_on_xy(self, vertice):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if v.coordinates[0] == vertice.coordinates[0] and v.coordinates[1\n ] == vertice.coordinates[1]:\n return True, i\n return False, None\n\n def is_vertice_in_graph_based_on_xy_with_tolerance(self, vertice, epsilon):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if (v.coordinates[0] - vertice.coordinates[0]) ** 2 + (v.\n coordinates[1] - vertice.coordinates[1]) ** 2 < epsilon:\n return True, i\n return False, None\n <function token>\n\n def laplace_matrix(self):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n laplace_matrix = np.zeros((n, n))\n for i in range(n):\n laplace_matrix[i][i] = 1\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n laplace_matrix[i][edge.linked[1].index] = 1\n return laplace_matrix\n <function token>\n <function token>\n\n def number_of_edges(self):\n a = self.pairs_of_vertices()\n assert self.number_of_edges == len(a\n ), 'problem in Graph.pairs_of_vertices'\n return self.number_of_edges\n <function token>\n\n def set_right_edges(self):\n \"\"\"verify that the graph is coherent \"\"\"\n for v in self:\n for e in v.edges_list:\n e.linked[0] = v\n e.linked[1] = self[self.search_index_by_coordinates(e.\n linked[1].coordinates)]\n for e in self.list_of_edges:\n e.linked[0] = self[self.search_index_by_coordinates(e.linked[0]\n .coordinates)]\n e.linked[1] = self[self.search_index_by_coordinates(e.linked[1]\n .coordinates)]\n <function token>\n\n def plot_dev(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n for i in range(len(self.\n connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable]) - 1):\n x = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][0]\n y = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][1]\n dx = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][0] - x\n dy = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n", "<docstring token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass Graph:\n <docstring token>\n <function token>\n <function token>\n <function token>\n\n def push_edge_without_doublons(self, e):\n if e not in self.list_of_edges:\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n <function token>\n <function token>\n\n def is_vertice_in_graph_based_on_xy(self, vertice):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if v.coordinates[0] == vertice.coordinates[0] and v.coordinates[1\n ] == vertice.coordinates[1]:\n return True, i\n return False, None\n\n def is_vertice_in_graph_based_on_xy_with_tolerance(self, vertice, epsilon):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if (v.coordinates[0] - vertice.coordinates[0]) ** 2 + (v.\n coordinates[1] - vertice.coordinates[1]) ** 2 < epsilon:\n return True, i\n return False, None\n <function token>\n\n def laplace_matrix(self):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n laplace_matrix = np.zeros((n, n))\n for i in range(n):\n laplace_matrix[i][i] = 1\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n laplace_matrix[i][edge.linked[1].index] = 1\n return laplace_matrix\n <function token>\n <function token>\n <function token>\n <function token>\n\n def set_right_edges(self):\n \"\"\"verify that the graph is coherent \"\"\"\n for v in self:\n for e in v.edges_list:\n e.linked[0] = v\n e.linked[1] = self[self.search_index_by_coordinates(e.\n linked[1].coordinates)]\n for e in self.list_of_edges:\n e.linked[0] = self[self.search_index_by_coordinates(e.linked[0]\n .coordinates)]\n e.linked[1] = self[self.search_index_by_coordinates(e.linked[1]\n .coordinates)]\n <function token>\n\n def plot_dev(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n for i in range(len(self.\n connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable]) - 1):\n x = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][0]\n y = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][1]\n dx = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][0] - x\n dy = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n", "<docstring token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass Graph:\n <docstring token>\n <function token>\n <function token>\n <function token>\n\n def push_edge_without_doublons(self, e):\n if e not in self.list_of_edges:\n self.number_of_edges += 1\n self.list_of_edges.append(e)\n <function token>\n <function token>\n <function token>\n\n def is_vertice_in_graph_based_on_xy_with_tolerance(self, vertice, epsilon):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if (v.coordinates[0] - vertice.coordinates[0]) ** 2 + (v.\n coordinates[1] - vertice.coordinates[1]) ** 2 < epsilon:\n return True, i\n return False, None\n <function token>\n\n def laplace_matrix(self):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n laplace_matrix = np.zeros((n, n))\n for i in range(n):\n laplace_matrix[i][i] = 1\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n laplace_matrix[i][edge.linked[1].index] = 1\n return laplace_matrix\n <function token>\n <function token>\n <function token>\n <function token>\n\n def set_right_edges(self):\n \"\"\"verify that the graph is coherent \"\"\"\n for v in self:\n for e in v.edges_list:\n e.linked[0] = v\n e.linked[1] = self[self.search_index_by_coordinates(e.\n linked[1].coordinates)]\n for e in self.list_of_edges:\n e.linked[0] = self[self.search_index_by_coordinates(e.linked[0]\n .coordinates)]\n e.linked[1] = self[self.search_index_by_coordinates(e.linked[1]\n .coordinates)]\n <function token>\n\n def plot_dev(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n for i in range(len(self.\n connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable]) - 1):\n x = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][0]\n y = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][1]\n dx = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][0] - x\n dy = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n", "<docstring token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass Graph:\n <docstring token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def is_vertice_in_graph_based_on_xy_with_tolerance(self, vertice, epsilon):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if (v.coordinates[0] - vertice.coordinates[0]) ** 2 + (v.\n coordinates[1] - vertice.coordinates[1]) ** 2 < epsilon:\n return True, i\n return False, None\n <function token>\n\n def laplace_matrix(self):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n laplace_matrix = np.zeros((n, n))\n for i in range(n):\n laplace_matrix[i][i] = 1\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n laplace_matrix[i][edge.linked[1].index] = 1\n return laplace_matrix\n <function token>\n <function token>\n <function token>\n <function token>\n\n def set_right_edges(self):\n \"\"\"verify that the graph is coherent \"\"\"\n for v in self:\n for e in v.edges_list:\n e.linked[0] = v\n e.linked[1] = self[self.search_index_by_coordinates(e.\n linked[1].coordinates)]\n for e in self.list_of_edges:\n e.linked[0] = self[self.search_index_by_coordinates(e.linked[0]\n .coordinates)]\n e.linked[1] = self[self.search_index_by_coordinates(e.linked[1]\n .coordinates)]\n <function token>\n\n def plot_dev(self):\n plt.clf()\n for v in self._list_of_vertices:\n c = f'#{v.color}'\n plt.scatter(v.coordinates[0], v.coordinates[1], color=c)\n for e in v.edges_list:\n c = f'#{e.color}'\n for i in range(len(self.\n connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable]) - 1):\n x = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][0]\n y = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i][1]\n dx = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][0] - x\n dy = self.connection_table_edge_and_diplayable_edge[e.\n connection_with_displayable][i + 1][1] - y\n plt.plot([x, x + dx], [y, y + dy], color=c)\n plt.axis = 'off'\n plt.show()\n", "<docstring token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass Graph:\n <docstring token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def is_vertice_in_graph_based_on_xy_with_tolerance(self, vertice, epsilon):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if (v.coordinates[0] - vertice.coordinates[0]) ** 2 + (v.\n coordinates[1] - vertice.coordinates[1]) ** 2 < epsilon:\n return True, i\n return False, None\n <function token>\n\n def laplace_matrix(self):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n laplace_matrix = np.zeros((n, n))\n for i in range(n):\n laplace_matrix[i][i] = 1\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n laplace_matrix[i][edge.linked[1].index] = 1\n return laplace_matrix\n <function token>\n <function token>\n <function token>\n <function token>\n\n def set_right_edges(self):\n \"\"\"verify that the graph is coherent \"\"\"\n for v in self:\n for e in v.edges_list:\n e.linked[0] = v\n e.linked[1] = self[self.search_index_by_coordinates(e.\n linked[1].coordinates)]\n for e in self.list_of_edges:\n e.linked[0] = self[self.search_index_by_coordinates(e.linked[0]\n .coordinates)]\n e.linked[1] = self[self.search_index_by_coordinates(e.linked[1]\n .coordinates)]\n <function token>\n <function token>\n", "<docstring token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass Graph:\n <docstring token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def is_vertice_in_graph_based_on_xy_with_tolerance(self, vertice, epsilon):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if (v.coordinates[0] - vertice.coordinates[0]) ** 2 + (v.\n coordinates[1] - vertice.coordinates[1]) ** 2 < epsilon:\n return True, i\n return False, None\n <function token>\n\n def laplace_matrix(self):\n \"\"\" Returns the laplace matrix. \"\"\"\n n = self.number_of_vertices\n laplace_matrix = np.zeros((n, n))\n for i in range(n):\n laplace_matrix[i][i] = 1\n vertice = self.list_of_vertices[i]\n for edge in vertice.edges_list:\n laplace_matrix[i][edge.linked[1].index] = 1\n return laplace_matrix\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<docstring token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass Graph:\n <docstring token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def is_vertice_in_graph_based_on_xy_with_tolerance(self, vertice, epsilon):\n for i in range(self.number_of_vertices):\n v = self.list_of_vertices[i]\n if (v.coordinates[0] - vertice.coordinates[0]) ** 2 + (v.\n coordinates[1] - vertice.coordinates[1]) ** 2 < epsilon:\n return True, i\n return False, None\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<docstring token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass Graph:\n <docstring token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<docstring token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n" ]
false
99,090
69e0ad377442a0a0af58bec5da75e17d657914d3
# Create your views here. from django.http import HttpResponse from django.shortcuts import render_to_response from appvimeo.models import search_posts from django.template.loader import get_template from django.template import Context def home(request): if 'q' in request.GET and request.GET['q']: message = 'You searched for: %r' % request.GET['q'] else: messge = 'you submitted an empty form' if 'q' in request.GET and request.GET['q']: q = request.GET['q'] entry = search_posts.objects.filter(name__icontains=q) return render_to_response('searchvimeo.html',locals())
[ "# Create your views here.\nfrom django.http import HttpResponse\nfrom django.shortcuts import render_to_response\nfrom appvimeo.models import search_posts\nfrom django.template.loader import get_template\nfrom django.template import Context\n\n\ndef home(request):\n\n \n if 'q' in request.GET and request.GET['q']:\n message = 'You searched for: %r' % request.GET['q']\n else:\n messge = 'you submitted an empty form' \n if 'q' in request.GET and request.GET['q']:\n q = request.GET['q']\n entry = search_posts.objects.filter(name__icontains=q)\n\n return render_to_response('searchvimeo.html',locals())\n\n\n", "from django.http import HttpResponse\nfrom django.shortcuts import render_to_response\nfrom appvimeo.models import search_posts\nfrom django.template.loader import get_template\nfrom django.template import Context\n\n\ndef home(request):\n if 'q' in request.GET and request.GET['q']:\n message = 'You searched for: %r' % request.GET['q']\n else:\n messge = 'you submitted an empty form'\n if 'q' in request.GET and request.GET['q']:\n q = request.GET['q']\n entry = search_posts.objects.filter(name__icontains=q)\n return render_to_response('searchvimeo.html', locals())\n", "<import token>\n\n\ndef home(request):\n if 'q' in request.GET and request.GET['q']:\n message = 'You searched for: %r' % request.GET['q']\n else:\n messge = 'you submitted an empty form'\n if 'q' in request.GET and request.GET['q']:\n q = request.GET['q']\n entry = search_posts.objects.filter(name__icontains=q)\n return render_to_response('searchvimeo.html', locals())\n", "<import token>\n<function token>\n" ]
false
99,091
c7065857ac98cb80fdd8b6b1aa03d6e566e89d0c
version https://git-lfs.github.com/spec/v1 oid sha256:f105c568cf2a42d027eb8c97378cfe8f7c33abab872f300055ef6fbb5290f2cb size 1666
[ "version https://git-lfs.github.com/spec/v1\noid sha256:f105c568cf2a42d027eb8c97378cfe8f7c33abab872f300055ef6fbb5290f2cb\nsize 1666\n" ]
true
99,092
d1c4cc16c356a07c259f3c3e5cad0c16869eeb33
import glob import pygame from pygame.locals import * import sys import random WIDTH = 1920 HEIGHT = 1080 FPS = 30 BLACK = (0, 0, 0) WHITE = (255, 255, 255) BLUE = (0, 0, 255) GREEN = (0, 255, 0) RED = (255, 0, 0) YELLOW = (255, 216, 0) text = (207, 95, 63) BACKGROUND = pygame.image.load("assets/img/bg2.png") INTRO = pygame.image.load("assets/img/start.png") WIN = pygame.image.load("assets/img/win.png") screen = pygame.display.set_mode((WIDTH, HEIGHT), FULLSCREEN) class NoMiniGame: def __init__(self): self.x = 0 self.y = 0 self.close_x = 0 self.close_y = 0 self.close = pygame.image.load("assets/img/close.png") self.img = None self.path = path = "assets/img/nominigame" self.load_image() self.random_move() self.random_move_close() def load_image(self): imgs = glob.glob(self.path + "/*.png") # print(imgs) self.img = pygame.image.load(random.choice(imgs)) def draw(self, screen): screen.blit(self.img, self.get_rect()) screen.blit(self.close, self.get_rect_close()) def move(self, x, y): self.x = x self.y = y def random_move(self): rect = self.get_rect() x_offset = WIDTH - rect.width y_offset = HEIGHT - rect.height if x_offset != 0: self.x = random.randrange(0, x_offset) if y_offset != 0: self.y = random.randrange(0, y_offset) def get_rect(self): image = self.img rect = image.get_rect() rect.x = self.x rect.y = self.y return rect def get_rect_close(self): image = self.close rect = image.get_rect() rect.x = self.close_x rect.y = self.close_y return rect def random_move_close(self): rect = self.get_rect() close_rect = self.get_rect_close() self.close_x = random.randrange(self.x, self.x + rect.width - close_rect.width) self.close_y = random.randrange(self.y, self.y + rect.height - close_rect.height) def check_close(self, x, y): rect = self.get_rect_close() return (self.close_x < x < self.close_x + rect.width) and (self.close_y < y < self.close_y + rect.height) def check_ad_click(self, x, y): rect = self.get_rect() return (self.x < x < self.x + rect.width) and (self.close_y < y < self.close_y + rect.height) ads = [NoMiniGame()] ad_streak = 0 ad_countdown_min = 2 ad_countdown_max = 5 ad_countdown = random.randrange(ad_countdown_min, ad_countdown_max) count = 0 score = 10000 intro = True win = False if __name__ == "__main__": pygame.mixer.init(frequency=22050, size=-16, channels=2, buffer=512) pygame.init() clock = pygame.time.Clock() mainLoop = True font = pygame.font.SysFont("monospace", 50) screen.blit(BACKGROUND, BACKGROUND.get_rect()) while mainLoop: pygame.event.pump() clock.tick(FPS) keys = pygame.key.get_pressed() mx, my = pygame.mouse.get_pos() if keys[pygame.K_ESCAPE] or keys[pygame.K_q]: pygame.quit() sys.exit(0) ev = pygame.event.get() if intro: ads = [NoMiniGame()] for event in ev: if event.type == pygame.MOUSEBUTTONUP: intro = False screen.blit(INTRO, (0, 0, HEIGHT, WIDTH)) else: if win and len(ads) == 0: for event in ev: if event.type == pygame.MOUSEBUTTONUP: intro = True win = False screen.blit(WIN, (0, 0, HEIGHT, WIDTH)) label = font.render("SCORE = " + str(score), 1, text) screen.blit(label, (0, 0)) else: screen.blit(BACKGROUND, (0, 0, HEIGHT, WIDTH)) count += 1 if count >= ad_countdown * (FPS / 3): ads.append(NoMiniGame()) ad_countdown = random.randrange(ad_countdown_min, ad_countdown_max) score -= 100 if len(ads) >= 20: intro = True count = 0 # proceed events for event in ev: if event.type == pygame.MOUSEBUTTONUP: for ad in ads: if ad.check_close(mx, my): ads.remove(ad) break elif ad.check_ad_click(mx, my): ads.append(NoMiniGame()) ad_countdown = random.randrange(ad_countdown_min, ad_countdown_max) score -= 100 if len(ads) >= 20: intro = True if len(ads) <= 1: ad_streak += 1 if ad_streak > 10 * FPS: win = True else: ad_streak = 0 for ad in ads: ad.draw(screen) pygame.display.flip() pygame.quit()
[ "\nimport glob\n\nimport pygame\nfrom pygame.locals import *\nimport sys\nimport random\n\nWIDTH = 1920\nHEIGHT = 1080\nFPS = 30\n\nBLACK = (0, 0, 0)\nWHITE = (255, 255, 255)\nBLUE = (0, 0, 255)\nGREEN = (0, 255, 0)\nRED = (255, 0, 0)\nYELLOW = (255, 216, 0)\ntext = (207, 95, 63)\n\nBACKGROUND = pygame.image.load(\"assets/img/bg2.png\")\n\nINTRO = pygame.image.load(\"assets/img/start.png\")\n\nWIN = pygame.image.load(\"assets/img/win.png\")\n\nscreen = pygame.display.set_mode((WIDTH, HEIGHT), FULLSCREEN)\n\n\nclass NoMiniGame:\n def __init__(self):\n self.x = 0\n self.y = 0\n\n self.close_x = 0\n self.close_y = 0\n self.close = pygame.image.load(\"assets/img/close.png\")\n\n self.img = None\n self.path = path = \"assets/img/nominigame\"\n self.load_image()\n self.random_move()\n self.random_move_close()\n\n def load_image(self):\n imgs = glob.glob(self.path + \"/*.png\")\n # print(imgs)\n self.img = pygame.image.load(random.choice(imgs))\n\n def draw(self, screen):\n screen.blit(self.img, self.get_rect())\n\n screen.blit(self.close, self.get_rect_close())\n\n def move(self, x, y):\n self.x = x\n self.y = y\n\n def random_move(self):\n rect = self.get_rect()\n x_offset = WIDTH - rect.width\n y_offset = HEIGHT - rect.height\n if x_offset != 0:\n self.x = random.randrange(0, x_offset)\n if y_offset != 0:\n self.y = random.randrange(0, y_offset)\n\n def get_rect(self):\n image = self.img\n rect = image.get_rect()\n rect.x = self.x\n rect.y = self.y\n\n return rect\n\n def get_rect_close(self):\n image = self.close\n rect = image.get_rect()\n rect.x = self.close_x\n rect.y = self.close_y\n\n return rect\n\n def random_move_close(self):\n rect = self.get_rect()\n close_rect = self.get_rect_close()\n self.close_x = random.randrange(self.x, self.x + rect.width - close_rect.width)\n self.close_y = random.randrange(self.y, self.y + rect.height - close_rect.height)\n\n def check_close(self, x, y):\n rect = self.get_rect_close()\n return (self.close_x < x < self.close_x + rect.width) and (self.close_y < y < self.close_y + rect.height)\n\n def check_ad_click(self, x, y):\n rect = self.get_rect()\n return (self.x < x < self.x + rect.width) and (self.close_y < y < self.close_y + rect.height)\n\n\nads = [NoMiniGame()]\nad_streak = 0\nad_countdown_min = 2\nad_countdown_max = 5\nad_countdown = random.randrange(ad_countdown_min, ad_countdown_max)\ncount = 0\n\nscore = 10000\n\nintro = True\nwin = False\n\nif __name__ == \"__main__\":\n pygame.mixer.init(frequency=22050, size=-16, channels=2, buffer=512)\n pygame.init()\n clock = pygame.time.Clock()\n mainLoop = True\n font = pygame.font.SysFont(\"monospace\", 50)\n screen.blit(BACKGROUND, BACKGROUND.get_rect())\n\n while mainLoop:\n pygame.event.pump()\n clock.tick(FPS)\n\n keys = pygame.key.get_pressed()\n mx, my = pygame.mouse.get_pos()\n\n if keys[pygame.K_ESCAPE] or keys[pygame.K_q]:\n pygame.quit()\n sys.exit(0)\n ev = pygame.event.get()\n\n if intro:\n ads = [NoMiniGame()]\n for event in ev:\n if event.type == pygame.MOUSEBUTTONUP:\n intro = False\n screen.blit(INTRO, (0, 0, HEIGHT, WIDTH))\n else:\n if win and len(ads) == 0:\n for event in ev:\n if event.type == pygame.MOUSEBUTTONUP:\n intro = True\n win = False\n screen.blit(WIN, (0, 0, HEIGHT, WIDTH))\n label = font.render(\"SCORE = \" + str(score), 1, text)\n screen.blit(label, (0, 0))\n\n else:\n screen.blit(BACKGROUND, (0, 0, HEIGHT, WIDTH))\n count += 1\n if count >= ad_countdown * (FPS / 3):\n ads.append(NoMiniGame())\n ad_countdown = random.randrange(ad_countdown_min, ad_countdown_max)\n score -= 100\n if len(ads) >= 20:\n intro = True\n count = 0\n\n # proceed events\n for event in ev:\n if event.type == pygame.MOUSEBUTTONUP:\n for ad in ads:\n if ad.check_close(mx, my):\n ads.remove(ad)\n break\n elif ad.check_ad_click(mx, my):\n ads.append(NoMiniGame())\n ad_countdown = random.randrange(ad_countdown_min, ad_countdown_max)\n score -= 100\n if len(ads) >= 20:\n intro = True\n if len(ads) <= 1:\n ad_streak += 1\n if ad_streak > 10 * FPS:\n win = True\n else:\n ad_streak = 0\n\n for ad in ads:\n ad.draw(screen)\n\n pygame.display.flip()\n\n pygame.quit()\n", "import glob\nimport pygame\nfrom pygame.locals import *\nimport sys\nimport random\nWIDTH = 1920\nHEIGHT = 1080\nFPS = 30\nBLACK = 0, 0, 0\nWHITE = 255, 255, 255\nBLUE = 0, 0, 255\nGREEN = 0, 255, 0\nRED = 255, 0, 0\nYELLOW = 255, 216, 0\ntext = 207, 95, 63\nBACKGROUND = pygame.image.load('assets/img/bg2.png')\nINTRO = pygame.image.load('assets/img/start.png')\nWIN = pygame.image.load('assets/img/win.png')\nscreen = pygame.display.set_mode((WIDTH, HEIGHT), FULLSCREEN)\n\n\nclass NoMiniGame:\n\n def __init__(self):\n self.x = 0\n self.y = 0\n self.close_x = 0\n self.close_y = 0\n self.close = pygame.image.load('assets/img/close.png')\n self.img = None\n self.path = path = 'assets/img/nominigame'\n self.load_image()\n self.random_move()\n self.random_move_close()\n\n def load_image(self):\n imgs = glob.glob(self.path + '/*.png')\n self.img = pygame.image.load(random.choice(imgs))\n\n def draw(self, screen):\n screen.blit(self.img, self.get_rect())\n screen.blit(self.close, self.get_rect_close())\n\n def move(self, x, y):\n self.x = x\n self.y = y\n\n def random_move(self):\n rect = self.get_rect()\n x_offset = WIDTH - rect.width\n y_offset = HEIGHT - rect.height\n if x_offset != 0:\n self.x = random.randrange(0, x_offset)\n if y_offset != 0:\n self.y = random.randrange(0, y_offset)\n\n def get_rect(self):\n image = self.img\n rect = image.get_rect()\n rect.x = self.x\n rect.y = self.y\n return rect\n\n def get_rect_close(self):\n image = self.close\n rect = image.get_rect()\n rect.x = self.close_x\n rect.y = self.close_y\n return rect\n\n def random_move_close(self):\n rect = self.get_rect()\n close_rect = self.get_rect_close()\n self.close_x = random.randrange(self.x, self.x + rect.width -\n close_rect.width)\n self.close_y = random.randrange(self.y, self.y + rect.height -\n close_rect.height)\n\n def check_close(self, x, y):\n rect = self.get_rect_close()\n return (self.close_x < x < self.close_x + rect.width and self.\n close_y < y < self.close_y + rect.height)\n\n def check_ad_click(self, x, y):\n rect = self.get_rect()\n return (self.x < x < self.x + rect.width and self.close_y < y < \n self.close_y + rect.height)\n\n\nads = [NoMiniGame()]\nad_streak = 0\nad_countdown_min = 2\nad_countdown_max = 5\nad_countdown = random.randrange(ad_countdown_min, ad_countdown_max)\ncount = 0\nscore = 10000\nintro = True\nwin = False\nif __name__ == '__main__':\n pygame.mixer.init(frequency=22050, size=-16, channels=2, buffer=512)\n pygame.init()\n clock = pygame.time.Clock()\n mainLoop = True\n font = pygame.font.SysFont('monospace', 50)\n screen.blit(BACKGROUND, BACKGROUND.get_rect())\n while mainLoop:\n pygame.event.pump()\n clock.tick(FPS)\n keys = pygame.key.get_pressed()\n mx, my = pygame.mouse.get_pos()\n if keys[pygame.K_ESCAPE] or keys[pygame.K_q]:\n pygame.quit()\n sys.exit(0)\n ev = pygame.event.get()\n if intro:\n ads = [NoMiniGame()]\n for event in ev:\n if event.type == pygame.MOUSEBUTTONUP:\n intro = False\n screen.blit(INTRO, (0, 0, HEIGHT, WIDTH))\n elif win and len(ads) == 0:\n for event in ev:\n if event.type == pygame.MOUSEBUTTONUP:\n intro = True\n win = False\n screen.blit(WIN, (0, 0, HEIGHT, WIDTH))\n label = font.render('SCORE = ' + str(score), 1, text)\n screen.blit(label, (0, 0))\n else:\n screen.blit(BACKGROUND, (0, 0, HEIGHT, WIDTH))\n count += 1\n if count >= ad_countdown * (FPS / 3):\n ads.append(NoMiniGame())\n ad_countdown = random.randrange(ad_countdown_min,\n ad_countdown_max)\n score -= 100\n if len(ads) >= 20:\n intro = True\n count = 0\n for event in ev:\n if event.type == pygame.MOUSEBUTTONUP:\n for ad in ads:\n if ad.check_close(mx, my):\n ads.remove(ad)\n break\n elif ad.check_ad_click(mx, my):\n ads.append(NoMiniGame())\n ad_countdown = random.randrange(ad_countdown_min,\n ad_countdown_max)\n score -= 100\n if len(ads) >= 20:\n intro = True\n if len(ads) <= 1:\n ad_streak += 1\n if ad_streak > 10 * FPS:\n win = True\n else:\n ad_streak = 0\n for ad in ads:\n ad.draw(screen)\n pygame.display.flip()\n pygame.quit()\n", "<import token>\nWIDTH = 1920\nHEIGHT = 1080\nFPS = 30\nBLACK = 0, 0, 0\nWHITE = 255, 255, 255\nBLUE = 0, 0, 255\nGREEN = 0, 255, 0\nRED = 255, 0, 0\nYELLOW = 255, 216, 0\ntext = 207, 95, 63\nBACKGROUND = pygame.image.load('assets/img/bg2.png')\nINTRO = pygame.image.load('assets/img/start.png')\nWIN = pygame.image.load('assets/img/win.png')\nscreen = pygame.display.set_mode((WIDTH, HEIGHT), FULLSCREEN)\n\n\nclass NoMiniGame:\n\n def __init__(self):\n self.x = 0\n self.y = 0\n self.close_x = 0\n self.close_y = 0\n self.close = pygame.image.load('assets/img/close.png')\n self.img = None\n self.path = path = 'assets/img/nominigame'\n self.load_image()\n self.random_move()\n self.random_move_close()\n\n def load_image(self):\n imgs = glob.glob(self.path + '/*.png')\n self.img = pygame.image.load(random.choice(imgs))\n\n def draw(self, screen):\n screen.blit(self.img, self.get_rect())\n screen.blit(self.close, self.get_rect_close())\n\n def move(self, x, y):\n self.x = x\n self.y = y\n\n def random_move(self):\n rect = self.get_rect()\n x_offset = WIDTH - rect.width\n y_offset = HEIGHT - rect.height\n if x_offset != 0:\n self.x = random.randrange(0, x_offset)\n if y_offset != 0:\n self.y = random.randrange(0, y_offset)\n\n def get_rect(self):\n image = self.img\n rect = image.get_rect()\n rect.x = self.x\n rect.y = self.y\n return rect\n\n def get_rect_close(self):\n image = self.close\n rect = image.get_rect()\n rect.x = self.close_x\n rect.y = self.close_y\n return rect\n\n def random_move_close(self):\n rect = self.get_rect()\n close_rect = self.get_rect_close()\n self.close_x = random.randrange(self.x, self.x + rect.width -\n close_rect.width)\n self.close_y = random.randrange(self.y, self.y + rect.height -\n close_rect.height)\n\n def check_close(self, x, y):\n rect = self.get_rect_close()\n return (self.close_x < x < self.close_x + rect.width and self.\n close_y < y < self.close_y + rect.height)\n\n def check_ad_click(self, x, y):\n rect = self.get_rect()\n return (self.x < x < self.x + rect.width and self.close_y < y < \n self.close_y + rect.height)\n\n\nads = [NoMiniGame()]\nad_streak = 0\nad_countdown_min = 2\nad_countdown_max = 5\nad_countdown = random.randrange(ad_countdown_min, ad_countdown_max)\ncount = 0\nscore = 10000\nintro = True\nwin = False\nif __name__ == '__main__':\n pygame.mixer.init(frequency=22050, size=-16, channels=2, buffer=512)\n pygame.init()\n clock = pygame.time.Clock()\n mainLoop = True\n font = pygame.font.SysFont('monospace', 50)\n screen.blit(BACKGROUND, BACKGROUND.get_rect())\n while mainLoop:\n pygame.event.pump()\n clock.tick(FPS)\n keys = pygame.key.get_pressed()\n mx, my = pygame.mouse.get_pos()\n if keys[pygame.K_ESCAPE] or keys[pygame.K_q]:\n pygame.quit()\n sys.exit(0)\n ev = pygame.event.get()\n if intro:\n ads = [NoMiniGame()]\n for event in ev:\n if event.type == pygame.MOUSEBUTTONUP:\n intro = False\n screen.blit(INTRO, (0, 0, HEIGHT, WIDTH))\n elif win and len(ads) == 0:\n for event in ev:\n if event.type == pygame.MOUSEBUTTONUP:\n intro = True\n win = False\n screen.blit(WIN, (0, 0, HEIGHT, WIDTH))\n label = font.render('SCORE = ' + str(score), 1, text)\n screen.blit(label, (0, 0))\n else:\n screen.blit(BACKGROUND, (0, 0, HEIGHT, WIDTH))\n count += 1\n if count >= ad_countdown * (FPS / 3):\n ads.append(NoMiniGame())\n ad_countdown = random.randrange(ad_countdown_min,\n ad_countdown_max)\n score -= 100\n if len(ads) >= 20:\n intro = True\n count = 0\n for event in ev:\n if event.type == pygame.MOUSEBUTTONUP:\n for ad in ads:\n if ad.check_close(mx, my):\n ads.remove(ad)\n break\n elif ad.check_ad_click(mx, my):\n ads.append(NoMiniGame())\n ad_countdown = random.randrange(ad_countdown_min,\n ad_countdown_max)\n score -= 100\n if len(ads) >= 20:\n intro = True\n if len(ads) <= 1:\n ad_streak += 1\n if ad_streak > 10 * FPS:\n win = True\n else:\n ad_streak = 0\n for ad in ads:\n ad.draw(screen)\n pygame.display.flip()\n pygame.quit()\n", "<import token>\n<assignment token>\n\n\nclass NoMiniGame:\n\n def __init__(self):\n self.x = 0\n self.y = 0\n self.close_x = 0\n self.close_y = 0\n self.close = pygame.image.load('assets/img/close.png')\n self.img = None\n self.path = path = 'assets/img/nominigame'\n self.load_image()\n self.random_move()\n self.random_move_close()\n\n def load_image(self):\n imgs = glob.glob(self.path + '/*.png')\n self.img = pygame.image.load(random.choice(imgs))\n\n def draw(self, screen):\n screen.blit(self.img, self.get_rect())\n screen.blit(self.close, self.get_rect_close())\n\n def move(self, x, y):\n self.x = x\n self.y = y\n\n def random_move(self):\n rect = self.get_rect()\n x_offset = WIDTH - rect.width\n y_offset = HEIGHT - rect.height\n if x_offset != 0:\n self.x = random.randrange(0, x_offset)\n if y_offset != 0:\n self.y = random.randrange(0, y_offset)\n\n def get_rect(self):\n image = self.img\n rect = image.get_rect()\n rect.x = self.x\n rect.y = self.y\n return rect\n\n def get_rect_close(self):\n image = self.close\n rect = image.get_rect()\n rect.x = self.close_x\n rect.y = self.close_y\n return rect\n\n def random_move_close(self):\n rect = self.get_rect()\n close_rect = self.get_rect_close()\n self.close_x = random.randrange(self.x, self.x + rect.width -\n close_rect.width)\n self.close_y = random.randrange(self.y, self.y + rect.height -\n close_rect.height)\n\n def check_close(self, x, y):\n rect = self.get_rect_close()\n return (self.close_x < x < self.close_x + rect.width and self.\n close_y < y < self.close_y + rect.height)\n\n def check_ad_click(self, x, y):\n rect = self.get_rect()\n return (self.x < x < self.x + rect.width and self.close_y < y < \n self.close_y + rect.height)\n\n\n<assignment token>\nif __name__ == '__main__':\n pygame.mixer.init(frequency=22050, size=-16, channels=2, buffer=512)\n pygame.init()\n clock = pygame.time.Clock()\n mainLoop = True\n font = pygame.font.SysFont('monospace', 50)\n screen.blit(BACKGROUND, BACKGROUND.get_rect())\n while mainLoop:\n pygame.event.pump()\n clock.tick(FPS)\n keys = pygame.key.get_pressed()\n mx, my = pygame.mouse.get_pos()\n if keys[pygame.K_ESCAPE] or keys[pygame.K_q]:\n pygame.quit()\n sys.exit(0)\n ev = pygame.event.get()\n if intro:\n ads = [NoMiniGame()]\n for event in ev:\n if event.type == pygame.MOUSEBUTTONUP:\n intro = False\n screen.blit(INTRO, (0, 0, HEIGHT, WIDTH))\n elif win and len(ads) == 0:\n for event in ev:\n if event.type == pygame.MOUSEBUTTONUP:\n intro = True\n win = False\n screen.blit(WIN, (0, 0, HEIGHT, WIDTH))\n label = font.render('SCORE = ' + str(score), 1, text)\n screen.blit(label, (0, 0))\n else:\n screen.blit(BACKGROUND, (0, 0, HEIGHT, WIDTH))\n count += 1\n if count >= ad_countdown * (FPS / 3):\n ads.append(NoMiniGame())\n ad_countdown = random.randrange(ad_countdown_min,\n ad_countdown_max)\n score -= 100\n if len(ads) >= 20:\n intro = True\n count = 0\n for event in ev:\n if event.type == pygame.MOUSEBUTTONUP:\n for ad in ads:\n if ad.check_close(mx, my):\n ads.remove(ad)\n break\n elif ad.check_ad_click(mx, my):\n ads.append(NoMiniGame())\n ad_countdown = random.randrange(ad_countdown_min,\n ad_countdown_max)\n score -= 100\n if len(ads) >= 20:\n intro = True\n if len(ads) <= 1:\n ad_streak += 1\n if ad_streak > 10 * FPS:\n win = True\n else:\n ad_streak = 0\n for ad in ads:\n ad.draw(screen)\n pygame.display.flip()\n pygame.quit()\n", "<import token>\n<assignment token>\n\n\nclass NoMiniGame:\n\n def __init__(self):\n self.x = 0\n self.y = 0\n self.close_x = 0\n self.close_y = 0\n self.close = pygame.image.load('assets/img/close.png')\n self.img = None\n self.path = path = 'assets/img/nominigame'\n self.load_image()\n self.random_move()\n self.random_move_close()\n\n def load_image(self):\n imgs = glob.glob(self.path + '/*.png')\n self.img = pygame.image.load(random.choice(imgs))\n\n def draw(self, screen):\n screen.blit(self.img, self.get_rect())\n screen.blit(self.close, self.get_rect_close())\n\n def move(self, x, y):\n self.x = x\n self.y = y\n\n def random_move(self):\n rect = self.get_rect()\n x_offset = WIDTH - rect.width\n y_offset = HEIGHT - rect.height\n if x_offset != 0:\n self.x = random.randrange(0, x_offset)\n if y_offset != 0:\n self.y = random.randrange(0, y_offset)\n\n def get_rect(self):\n image = self.img\n rect = image.get_rect()\n rect.x = self.x\n rect.y = self.y\n return rect\n\n def get_rect_close(self):\n image = self.close\n rect = image.get_rect()\n rect.x = self.close_x\n rect.y = self.close_y\n return rect\n\n def random_move_close(self):\n rect = self.get_rect()\n close_rect = self.get_rect_close()\n self.close_x = random.randrange(self.x, self.x + rect.width -\n close_rect.width)\n self.close_y = random.randrange(self.y, self.y + rect.height -\n close_rect.height)\n\n def check_close(self, x, y):\n rect = self.get_rect_close()\n return (self.close_x < x < self.close_x + rect.width and self.\n close_y < y < self.close_y + rect.height)\n\n def check_ad_click(self, x, y):\n rect = self.get_rect()\n return (self.x < x < self.x + rect.width and self.close_y < y < \n self.close_y + rect.height)\n\n\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass NoMiniGame:\n\n def __init__(self):\n self.x = 0\n self.y = 0\n self.close_x = 0\n self.close_y = 0\n self.close = pygame.image.load('assets/img/close.png')\n self.img = None\n self.path = path = 'assets/img/nominigame'\n self.load_image()\n self.random_move()\n self.random_move_close()\n\n def load_image(self):\n imgs = glob.glob(self.path + '/*.png')\n self.img = pygame.image.load(random.choice(imgs))\n\n def draw(self, screen):\n screen.blit(self.img, self.get_rect())\n screen.blit(self.close, self.get_rect_close())\n\n def move(self, x, y):\n self.x = x\n self.y = y\n <function token>\n\n def get_rect(self):\n image = self.img\n rect = image.get_rect()\n rect.x = self.x\n rect.y = self.y\n return rect\n\n def get_rect_close(self):\n image = self.close\n rect = image.get_rect()\n rect.x = self.close_x\n rect.y = self.close_y\n return rect\n\n def random_move_close(self):\n rect = self.get_rect()\n close_rect = self.get_rect_close()\n self.close_x = random.randrange(self.x, self.x + rect.width -\n close_rect.width)\n self.close_y = random.randrange(self.y, self.y + rect.height -\n close_rect.height)\n\n def check_close(self, x, y):\n rect = self.get_rect_close()\n return (self.close_x < x < self.close_x + rect.width and self.\n close_y < y < self.close_y + rect.height)\n\n def check_ad_click(self, x, y):\n rect = self.get_rect()\n return (self.x < x < self.x + rect.width and self.close_y < y < \n self.close_y + rect.height)\n\n\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass NoMiniGame:\n\n def __init__(self):\n self.x = 0\n self.y = 0\n self.close_x = 0\n self.close_y = 0\n self.close = pygame.image.load('assets/img/close.png')\n self.img = None\n self.path = path = 'assets/img/nominigame'\n self.load_image()\n self.random_move()\n self.random_move_close()\n <function token>\n\n def draw(self, screen):\n screen.blit(self.img, self.get_rect())\n screen.blit(self.close, self.get_rect_close())\n\n def move(self, x, y):\n self.x = x\n self.y = y\n <function token>\n\n def get_rect(self):\n image = self.img\n rect = image.get_rect()\n rect.x = self.x\n rect.y = self.y\n return rect\n\n def get_rect_close(self):\n image = self.close\n rect = image.get_rect()\n rect.x = self.close_x\n rect.y = self.close_y\n return rect\n\n def random_move_close(self):\n rect = self.get_rect()\n close_rect = self.get_rect_close()\n self.close_x = random.randrange(self.x, self.x + rect.width -\n close_rect.width)\n self.close_y = random.randrange(self.y, self.y + rect.height -\n close_rect.height)\n\n def check_close(self, x, y):\n rect = self.get_rect_close()\n return (self.close_x < x < self.close_x + rect.width and self.\n close_y < y < self.close_y + rect.height)\n\n def check_ad_click(self, x, y):\n rect = self.get_rect()\n return (self.x < x < self.x + rect.width and self.close_y < y < \n self.close_y + rect.height)\n\n\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass NoMiniGame:\n\n def __init__(self):\n self.x = 0\n self.y = 0\n self.close_x = 0\n self.close_y = 0\n self.close = pygame.image.load('assets/img/close.png')\n self.img = None\n self.path = path = 'assets/img/nominigame'\n self.load_image()\n self.random_move()\n self.random_move_close()\n <function token>\n\n def draw(self, screen):\n screen.blit(self.img, self.get_rect())\n screen.blit(self.close, self.get_rect_close())\n\n def move(self, x, y):\n self.x = x\n self.y = y\n <function token>\n\n def get_rect(self):\n image = self.img\n rect = image.get_rect()\n rect.x = self.x\n rect.y = self.y\n return rect\n\n def get_rect_close(self):\n image = self.close\n rect = image.get_rect()\n rect.x = self.close_x\n rect.y = self.close_y\n return rect\n <function token>\n\n def check_close(self, x, y):\n rect = self.get_rect_close()\n return (self.close_x < x < self.close_x + rect.width and self.\n close_y < y < self.close_y + rect.height)\n\n def check_ad_click(self, x, y):\n rect = self.get_rect()\n return (self.x < x < self.x + rect.width and self.close_y < y < \n self.close_y + rect.height)\n\n\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass NoMiniGame:\n <function token>\n <function token>\n\n def draw(self, screen):\n screen.blit(self.img, self.get_rect())\n screen.blit(self.close, self.get_rect_close())\n\n def move(self, x, y):\n self.x = x\n self.y = y\n <function token>\n\n def get_rect(self):\n image = self.img\n rect = image.get_rect()\n rect.x = self.x\n rect.y = self.y\n return rect\n\n def get_rect_close(self):\n image = self.close\n rect = image.get_rect()\n rect.x = self.close_x\n rect.y = self.close_y\n return rect\n <function token>\n\n def check_close(self, x, y):\n rect = self.get_rect_close()\n return (self.close_x < x < self.close_x + rect.width and self.\n close_y < y < self.close_y + rect.height)\n\n def check_ad_click(self, x, y):\n rect = self.get_rect()\n return (self.x < x < self.x + rect.width and self.close_y < y < \n self.close_y + rect.height)\n\n\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass NoMiniGame:\n <function token>\n <function token>\n\n def draw(self, screen):\n screen.blit(self.img, self.get_rect())\n screen.blit(self.close, self.get_rect_close())\n\n def move(self, x, y):\n self.x = x\n self.y = y\n <function token>\n <function token>\n\n def get_rect_close(self):\n image = self.close\n rect = image.get_rect()\n rect.x = self.close_x\n rect.y = self.close_y\n return rect\n <function token>\n\n def check_close(self, x, y):\n rect = self.get_rect_close()\n return (self.close_x < x < self.close_x + rect.width and self.\n close_y < y < self.close_y + rect.height)\n\n def check_ad_click(self, x, y):\n rect = self.get_rect()\n return (self.x < x < self.x + rect.width and self.close_y < y < \n self.close_y + rect.height)\n\n\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass NoMiniGame:\n <function token>\n <function token>\n\n def draw(self, screen):\n screen.blit(self.img, self.get_rect())\n screen.blit(self.close, self.get_rect_close())\n\n def move(self, x, y):\n self.x = x\n self.y = y\n <function token>\n <function token>\n\n def get_rect_close(self):\n image = self.close\n rect = image.get_rect()\n rect.x = self.close_x\n rect.y = self.close_y\n return rect\n <function token>\n <function token>\n\n def check_ad_click(self, x, y):\n rect = self.get_rect()\n return (self.x < x < self.x + rect.width and self.close_y < y < \n self.close_y + rect.height)\n\n\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass NoMiniGame:\n <function token>\n <function token>\n\n def draw(self, screen):\n screen.blit(self.img, self.get_rect())\n screen.blit(self.close, self.get_rect_close())\n\n def move(self, x, y):\n self.x = x\n self.y = y\n <function token>\n <function token>\n\n def get_rect_close(self):\n image = self.close\n rect = image.get_rect()\n rect.x = self.close_x\n rect.y = self.close_y\n return rect\n <function token>\n <function token>\n <function token>\n\n\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass NoMiniGame:\n <function token>\n <function token>\n\n def draw(self, screen):\n screen.blit(self.img, self.get_rect())\n screen.blit(self.close, self.get_rect_close())\n <function token>\n <function token>\n <function token>\n\n def get_rect_close(self):\n image = self.close\n rect = image.get_rect()\n rect.x = self.close_x\n rect.y = self.close_y\n return rect\n <function token>\n <function token>\n <function token>\n\n\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass NoMiniGame:\n <function token>\n <function token>\n\n def draw(self, screen):\n screen.blit(self.img, self.get_rect())\n screen.blit(self.close, self.get_rect_close())\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass NoMiniGame:\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<class token>\n<assignment token>\n<code token>\n" ]
false
99,093
7ed647e992d42f22537f174683960237243a66f3
#################################### # Main File #################################### from gui import run #################################### ## run without preloaded data run.runApp() ## run with preloaded data # run.runApp(preloadedData=True)
[ "####################################\n# Main File\n####################################\n\nfrom gui import run\n\n####################################\n\n## run without preloaded data\nrun.runApp()\n\n## run with preloaded data\n# run.runApp(preloadedData=True)", "from gui import run\nrun.runApp()\n", "<import token>\nrun.runApp()\n", "<import token>\n<code token>\n" ]
false
99,094
98191c0a159315e68acbd1917d6016684aa4fcfd
# Generated by Django 2.1.2 on 2018-10-30 12:19 import datetime from django.db import migrations, models import django.db.models.deletion from django.utils.timezone import utc class Migration(migrations.Migration): dependencies = [ ('crypto_track', '0010_auto_20181029_1557'), ] operations = [ migrations.AddField( model_name='cryptocandle', name='trend_date', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='crypto_track.PyTrends'), ), migrations.AlterField( model_name='cryptocandle', name='update_timestamp', field=models.DateTimeField(default=datetime.datetime(2018, 10, 30, 12, 19, 57, 587809, tzinfo=utc)), ), ]
[ "# Generated by Django 2.1.2 on 2018-10-30 12:19\n\nimport datetime\nfrom django.db import migrations, models\nimport django.db.models.deletion\nfrom django.utils.timezone import utc\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('crypto_track', '0010_auto_20181029_1557'),\n ]\n\n operations = [\n migrations.AddField(\n model_name='cryptocandle',\n name='trend_date',\n field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='crypto_track.PyTrends'),\n ),\n migrations.AlterField(\n model_name='cryptocandle',\n name='update_timestamp',\n field=models.DateTimeField(default=datetime.datetime(2018, 10, 30, 12, 19, 57, 587809, tzinfo=utc)),\n ),\n ]\n", "import datetime\nfrom django.db import migrations, models\nimport django.db.models.deletion\nfrom django.utils.timezone import utc\n\n\nclass Migration(migrations.Migration):\n dependencies = [('crypto_track', '0010_auto_20181029_1557')]\n operations = [migrations.AddField(model_name='cryptocandle', name=\n 'trend_date', field=models.ForeignKey(null=True, on_delete=django.\n db.models.deletion.SET_NULL, to='crypto_track.PyTrends')),\n migrations.AlterField(model_name='cryptocandle', name=\n 'update_timestamp', field=models.DateTimeField(default=datetime.\n datetime(2018, 10, 30, 12, 19, 57, 587809, tzinfo=utc)))]\n", "<import token>\n\n\nclass Migration(migrations.Migration):\n dependencies = [('crypto_track', '0010_auto_20181029_1557')]\n operations = [migrations.AddField(model_name='cryptocandle', name=\n 'trend_date', field=models.ForeignKey(null=True, on_delete=django.\n db.models.deletion.SET_NULL, to='crypto_track.PyTrends')),\n migrations.AlterField(model_name='cryptocandle', name=\n 'update_timestamp', field=models.DateTimeField(default=datetime.\n datetime(2018, 10, 30, 12, 19, 57, 587809, tzinfo=utc)))]\n", "<import token>\n\n\nclass Migration(migrations.Migration):\n <assignment token>\n <assignment token>\n", "<import token>\n<class token>\n" ]
false
99,095
5a4e6285b8d4abf2609ad8d927e72fdbeb6be096
# -*- coding: utf-8 -*- from os import listdir from os.path import isfile, join from nltk import FreqDist from GoH import utilities from GoH import reports from GoH import charts import pandas as pd import numpy as np import operator from bokeh.plotting import figure, output_file, output_notebook, save, show import re from collections import defaultdict def identify_errors(tokens, dictionary): """Compare words in documents to words in dictionary. Args: tokens (list): List of all tokens in the document. dictionary (set): The set of approved words. Returns: set : Returns the set of tokens in the documents that are not also dictionary words. """ return set(tokens).difference(dictionary) def get_error_stats(errors, tokens): """ Returns a dictionary recording each error and its frequency in the document. Uses the FreqDist function from NLTK. Args: errors (set): Set of errors identified in `identify_errors`. tokens (list): Tokenized content of the file being evaluated. """ freq_distribution = FreqDist(tokens) error_report = {} for error in list(errors): error_count = freq_distribution[error] error_report.update({error:error_count}) return error_report def total_errors(error_report): """ Calculates the total errors recorded in the document. Args: error_report (dict): Dictionary of errors and counts generated using `get_error_stats` function. """ return(sum(error_report.values())) def error_rate(error_total, tokens): """ Calculates the error rate of the document to 3 decimal places. Arguments: error_total -- Integer. Calculated using the `total_errors` function from the dictionary of errors and their counts. tokens -- List of tokens that compose the text """ if len(tokens) > 0: return(float("{0:.3f}".format(error_total/len(tokens)))) else: return(np.nan) def generate_doc_report(text, spelling_dictionary): """ Creates a report (dictionary) on each document that includes: - number of tokens (num_tokens) - number of unique tokens (num_unique_tokens) - number of errors (num_errors) - error rate for the document (error_rate) - dictionary of the errors and their counts (errors) Uses a number of functions, including: - `GoH.utilities.strip_punct` - `GoH.utilities.tokenize_text` - `GoH.utilities.to_lower` - `GoH.utilities.identify_errors` - `GoH.reports.get_error_stats` - `GoH.reports.total_errors` - `GoH.reports.error_rate` Arguments: - text -- the content of the file being evaluated - spelling_dictionary -- a set containing the collection of verified words. """ text = utilities.strip_punct(text) tokens = utilities.tokenize_text(text) tokens = utilities.to_lower(tokens) errors = identify_errors(tokens, spelling_dictionary) error_report = get_error_stats(errors, tokens) error_total = total_errors(error_report) rate = error_rate(error_total, tokens) return {'num_tokens': len(tokens), 'num_unique_tokens': len(set(tokens)), 'num_errors': error_total, 'error_rate': rate, 'errors': error_report} def process_directory(directory, spelling_dictionary): """ Composit function for processing an entire directory of files. Returns the statistics on the whole directory as a list of dictionaries. Uses the following functions: - `GoH.utilities.readfile` - `GoH.reports.generate_doc_report` Arguments: - directory -- the location of the directory of files to evaluate. - spelling_dictionary -- the set containing all verified words against which the document is evaluated. """ corpus = (f for f in listdir(directory) if not f.startswith('.') and isfile(join(directory, f))) statistics = [] for document in corpus: content = utilities.readfile(directory, document) stats = generate_doc_report(content, spelling_dictionary) stats.update({"doc_id": document}) statistics.append(stats) return(statistics) def get_errors_summary(statistics): """ Get statistics on the errors for the whole directory. Creates a dictionary (errors_summary) from all the reported errors/frequencies that records the error (as key) and the total count for that error (as value). Developed using: http://stackoverflow.com/questions/11011756, http://stackoverflow.com/questions/27801945/ """ all_errors = (report['errors'] for report in statistics) errors_summary = defaultdict(int) for doc in all_errors: for key, value in doc.items(): errors_summary[key] += value return errors_summary def top_errors(errors_summary, min_count): """ Use the errors_summary to report the top errors. """ # Subset errors_summary using the min_count frequent_errors = {key: value for key, value in errors_summary.items() if value > min_count} # return sorted list of all errors with a count higher than the min_count return sorted(frequent_errors.items(), key=operator.itemgetter(1), reverse=True) def long_errors(errors_summary, min_length=10): """ Use the error_summary to isolate tokens that are longer thatn the min_length. Used to identify strings of words that have been run together due to the failure of the OCR engine to recognize whitespace. Arguments: - errors_summary -- """ errors = list(errors_summary.keys()) return ([x for x in errors if len(x) > min_length], min_length) def tokens_with_special_characters(errors_summary): errors = list(errors_summary.keys()) special_characters = [] for error in errors: if re.search("[^a-z0-9-']", error): special_characters.append(error) else: pass sc_dict = dict(map(lambda key: (key, errors_summary.get(key, None)), special_characters)) return sorted(sc_dict.items(), key=operator.itemgetter(1), reverse=True) def docs_with_high_error_rate(corpus_statistics, min_error_rate=.2): # Gather list of doc_id and num_errors docs_2_errors = {} for report in corpus_statistics: docs_2_errors.update({report['doc_id']: report['error_rate']}) # Subset dictionary to get only records with error_rate above minimum problem_docs = {key: value for key, value in docs_2_errors.items() if value > min_error_rate} # return dictionary with doc_id and error_count if error rate higher than min_error_rate return sorted(problem_docs.items(), key=operator.itemgetter(1), reverse=True) def docs_with_low_token_count(corpus_statistics, max_token_count=350): # Gather list of doc_ids and total token count docs_2_tokens = {} for report in corpus_statistics: docs_2_tokens.update({report['doc_id']: report['num_tokens']}) # Subset dictionary to get only records wth value below the max short_docs = {key: value for key, value in docs_2_tokens.items() if value < max_token_count} # return dictionary with doc_id and token_count if count is lower than max_token_count return (short_docs, max_token_count) def token_count(df): return df['num_tokens'].sum() def average_verified_rate(df): """ To compute average error rate, add up the total number of tokens and the total number of errors """ total_tokens = token_count(df) total_errors = df['num_errors'].sum() if total_tokens > 0: return (total_tokens - total_errors)/total_tokens else: return np.nan def average_error_rate(df): error_sum = df['error_rate'].sum() total_docs = len(df.index) return error_sum/total_docs def overview_report(directory, spelling_dictionary, title): corpus_statistics = process_directory(directory, spelling_dictionary) df = utilities.stats_to_df(corpus_statistics) print("Directory: {}\n".format(directory)) print("Average verified rate: {}\n".format(average_verified_rate(df))) print("Average of error rates: {}\n".format(average_error_rate(df))) print("Total token count: {}\n".format(token_count(df))) charts.chart_error_rate_distribution(df, title) # chart_error_rate_per_doc( df, title ) return corpus_statistics def overview_statistics(directory, spelling_dictionary, title): """ """ corpus_statistics = process_directory(directory, spelling_dictionary) return utilities.stats_to_df(corpus_statistics)
[ "# -*- coding: utf-8 -*-\n\nfrom os import listdir\nfrom os.path import isfile, join\nfrom nltk import FreqDist\nfrom GoH import utilities\nfrom GoH import reports\nfrom GoH import charts\nimport pandas as pd\nimport numpy as np\nimport operator\nfrom bokeh.plotting import figure, output_file, output_notebook, save, show\nimport re\nfrom collections import defaultdict\n\n\n\ndef identify_errors(tokens, dictionary):\n \"\"\"Compare words in documents to words in dictionary. \n\n Args:\n tokens (list): List of all tokens in the document.\n dictionary (set): The set of approved words.\n Returns:\n set : Returns the set of tokens in the documents that are not \n also dictionary words.\n \"\"\"\n return set(tokens).difference(dictionary)\n\n\ndef get_error_stats(errors, tokens):\n \"\"\" Returns a dictionary recording each error and its \n frequency in the document.\n\n Uses the FreqDist function from NLTK.\n\n Args:\n errors (set): Set of errors identified in `identify_errors`.\n tokens (list): Tokenized content of the file being evaluated.\n \"\"\"\n freq_distribution = FreqDist(tokens) \n \n error_report = {}\n for error in list(errors):\n error_count = freq_distribution[error]\n error_report.update({error:error_count})\n \n return error_report \n\n\ndef total_errors(error_report):\n \"\"\" Calculates the total errors recorded in the document.\n\n Args:\n error_report (dict): Dictionary of errors and counts generated\n using `get_error_stats` function.\n \"\"\"\n return(sum(error_report.values()))\n\n\ndef error_rate(error_total, tokens):\n \"\"\" Calculates the error rate of the document to 3 decimal places.\n\n Arguments:\n error_total -- Integer. Calculated using the `total_errors` \n function from the dictionary of errors and their counts.\n tokens -- List of tokens that compose the text\n \"\"\"\n if len(tokens) > 0:\n return(float(\"{0:.3f}\".format(error_total/len(tokens))))\n else:\n return(np.nan)\n\n \ndef generate_doc_report(text, spelling_dictionary):\n \"\"\" \n Creates a report (dictionary) on each document that includes:\n - number of tokens (num_tokens)\n - number of unique tokens (num_unique_tokens)\n - number of errors (num_errors)\n - error rate for the document (error_rate)\n - dictionary of the errors and their counts (errors)\n\n Uses a number of functions, including:\n - `GoH.utilities.strip_punct`\n - `GoH.utilities.tokenize_text`\n - `GoH.utilities.to_lower`\n - `GoH.utilities.identify_errors`\n - `GoH.reports.get_error_stats`\n - `GoH.reports.total_errors`\n - `GoH.reports.error_rate`\n\n Arguments:\n - text -- the content of the file being evaluated\n - spelling_dictionary -- a set containing the collection of verified words.\n \"\"\"\n text = utilities.strip_punct(text)\n tokens = utilities.tokenize_text(text)\n tokens = utilities.to_lower(tokens)\n errors = identify_errors(tokens, spelling_dictionary)\n error_report = get_error_stats(errors, tokens)\n error_total = total_errors(error_report)\n rate = error_rate(error_total, tokens)\n return {'num_tokens': len(tokens),\n 'num_unique_tokens': len(set(tokens)),\n 'num_errors': error_total,\n 'error_rate': rate,\n 'errors': error_report}\n\n\ndef process_directory(directory, spelling_dictionary):\n \"\"\" \n Composit function for processing an entire directory of files.\n Returns the statistics on the whole directory as a list of dictionaries.\n\n Uses the following functions:\n - `GoH.utilities.readfile`\n - `GoH.reports.generate_doc_report`\n\n Arguments:\n - directory -- the location of the directory of files to evaluate.\n - spelling_dictionary -- the set containing all verified words against which\n the document is evaluated.\n \"\"\"\n corpus = (f for f in listdir(directory) if not f.startswith('.') and isfile(join(directory, f)))\n \n statistics = []\n for document in corpus:\n content = utilities.readfile(directory, document)\n stats = generate_doc_report(content, spelling_dictionary)\n stats.update({\"doc_id\": document})\n statistics.append(stats)\n \n return(statistics) \n\n\ndef get_errors_summary(statistics):\n \"\"\"\n Get statistics on the errors for the whole directory.\n Creates a dictionary (errors_summary) from all the reported errors/frequencies\n that records the error (as key) and the total count for that error (as value).\n Developed using: http://stackoverflow.com/questions/11011756, \n http://stackoverflow.com/questions/27801945/\n \"\"\"\n all_errors = (report['errors'] for report in statistics) \n \n errors_summary = defaultdict(int)\n for doc in all_errors:\n for key, value in doc.items():\n errors_summary[key] += value\n\n return errors_summary\n\n\ndef top_errors(errors_summary, min_count):\n \"\"\" \n Use the errors_summary to report the top errors.\n \"\"\"\n\n # Subset errors_summary using the min_count\n frequent_errors = {key: value for key, value in errors_summary.items() if value > min_count}\n\n # return sorted list of all errors with a count higher than the min_count\n return sorted(frequent_errors.items(), key=operator.itemgetter(1), reverse=True)\n\n\ndef long_errors(errors_summary, min_length=10):\n \"\"\"\n Use the error_summary to isolate tokens that are longer thatn the min_length. \n Used to identify strings of words that have been run together due to the failure\n of the OCR engine to recognize whitespace.\n\n Arguments:\n - errors_summary -- \n \"\"\"\n errors = list(errors_summary.keys())\n\n return ([x for x in errors if len(x) > min_length], min_length)\n\n\ndef tokens_with_special_characters(errors_summary):\n errors = list(errors_summary.keys())\n\n special_characters = []\n for error in errors:\n if re.search(\"[^a-z0-9-']\", error):\n special_characters.append(error)\n else:\n pass\n\n sc_dict = dict(map(lambda key: (key, errors_summary.get(key, None)), special_characters))\n\n return sorted(sc_dict.items(), key=operator.itemgetter(1), reverse=True)\n\n\ndef docs_with_high_error_rate(corpus_statistics, min_error_rate=.2):\n # Gather list of doc_id and num_errors\n docs_2_errors = {}\n for report in corpus_statistics:\n docs_2_errors.update({report['doc_id']: report['error_rate']})\n\n # Subset dictionary to get only records with error_rate above minimum\n problem_docs = {key: value for key, value in docs_2_errors.items() if value > min_error_rate}\n\n # return dictionary with doc_id and error_count if error rate higher than min_error_rate\n return sorted(problem_docs.items(), key=operator.itemgetter(1), reverse=True)\n\n\ndef docs_with_low_token_count(corpus_statistics, max_token_count=350):\n # Gather list of doc_ids and total token count\n docs_2_tokens = {}\n for report in corpus_statistics:\n docs_2_tokens.update({report['doc_id']: report['num_tokens']})\n\n # Subset dictionary to get only records wth value below the max\n short_docs = {key: value for key, value in docs_2_tokens.items() if value < max_token_count}\n\n # return dictionary with doc_id and token_count if count is lower than max_token_count\n return (short_docs, max_token_count)\n\n\ndef token_count(df):\n return df['num_tokens'].sum()\n\n\ndef average_verified_rate(df):\n \"\"\" To compute average error rate, add up the total number of tokens\n and the total number of errors \"\"\"\n total_tokens = token_count(df)\n total_errors = df['num_errors'].sum()\n\n if total_tokens > 0:\n return (total_tokens - total_errors)/total_tokens\n else:\n return np.nan\n\n\ndef average_error_rate(df):\n error_sum = df['error_rate'].sum()\n total_docs = len(df.index)\n\n return error_sum/total_docs\n\n\ndef overview_report(directory, spelling_dictionary, title):\n corpus_statistics = process_directory(directory, spelling_dictionary)\n\n df = utilities.stats_to_df(corpus_statistics)\n\n print(\"Directory: {}\\n\".format(directory))\n print(\"Average verified rate: {}\\n\".format(average_verified_rate(df)))\n print(\"Average of error rates: {}\\n\".format(average_error_rate(df)))\n print(\"Total token count: {}\\n\".format(token_count(df)))\n\n charts.chart_error_rate_distribution(df, title)\n # chart_error_rate_per_doc( df, title )\n\n return corpus_statistics\n\ndef overview_statistics(directory, spelling_dictionary, title):\n \"\"\"\n \"\"\"\n corpus_statistics = process_directory(directory, spelling_dictionary)\n\n return utilities.stats_to_df(corpus_statistics)", "from os import listdir\nfrom os.path import isfile, join\nfrom nltk import FreqDist\nfrom GoH import utilities\nfrom GoH import reports\nfrom GoH import charts\nimport pandas as pd\nimport numpy as np\nimport operator\nfrom bokeh.plotting import figure, output_file, output_notebook, save, show\nimport re\nfrom collections import defaultdict\n\n\ndef identify_errors(tokens, dictionary):\n \"\"\"Compare words in documents to words in dictionary. \n\n Args:\n tokens (list): List of all tokens in the document.\n dictionary (set): The set of approved words.\n Returns:\n set : Returns the set of tokens in the documents that are not \n also dictionary words.\n \"\"\"\n return set(tokens).difference(dictionary)\n\n\ndef get_error_stats(errors, tokens):\n \"\"\" Returns a dictionary recording each error and its \n frequency in the document.\n\n Uses the FreqDist function from NLTK.\n\n Args:\n errors (set): Set of errors identified in `identify_errors`.\n tokens (list): Tokenized content of the file being evaluated.\n \"\"\"\n freq_distribution = FreqDist(tokens)\n error_report = {}\n for error in list(errors):\n error_count = freq_distribution[error]\n error_report.update({error: error_count})\n return error_report\n\n\ndef total_errors(error_report):\n \"\"\" Calculates the total errors recorded in the document.\n\n Args:\n error_report (dict): Dictionary of errors and counts generated\n using `get_error_stats` function.\n \"\"\"\n return sum(error_report.values())\n\n\ndef error_rate(error_total, tokens):\n \"\"\" Calculates the error rate of the document to 3 decimal places.\n\n Arguments:\n error_total -- Integer. Calculated using the `total_errors` \n function from the dictionary of errors and their counts.\n tokens -- List of tokens that compose the text\n \"\"\"\n if len(tokens) > 0:\n return float('{0:.3f}'.format(error_total / len(tokens)))\n else:\n return np.nan\n\n\ndef generate_doc_report(text, spelling_dictionary):\n \"\"\" \n Creates a report (dictionary) on each document that includes:\n - number of tokens (num_tokens)\n - number of unique tokens (num_unique_tokens)\n - number of errors (num_errors)\n - error rate for the document (error_rate)\n - dictionary of the errors and their counts (errors)\n\n Uses a number of functions, including:\n - `GoH.utilities.strip_punct`\n - `GoH.utilities.tokenize_text`\n - `GoH.utilities.to_lower`\n - `GoH.utilities.identify_errors`\n - `GoH.reports.get_error_stats`\n - `GoH.reports.total_errors`\n - `GoH.reports.error_rate`\n\n Arguments:\n - text -- the content of the file being evaluated\n - spelling_dictionary -- a set containing the collection of verified words.\n \"\"\"\n text = utilities.strip_punct(text)\n tokens = utilities.tokenize_text(text)\n tokens = utilities.to_lower(tokens)\n errors = identify_errors(tokens, spelling_dictionary)\n error_report = get_error_stats(errors, tokens)\n error_total = total_errors(error_report)\n rate = error_rate(error_total, tokens)\n return {'num_tokens': len(tokens), 'num_unique_tokens': len(set(tokens)\n ), 'num_errors': error_total, 'error_rate': rate, 'errors':\n error_report}\n\n\ndef process_directory(directory, spelling_dictionary):\n \"\"\" \n Composit function for processing an entire directory of files.\n Returns the statistics on the whole directory as a list of dictionaries.\n\n Uses the following functions:\n - `GoH.utilities.readfile`\n - `GoH.reports.generate_doc_report`\n\n Arguments:\n - directory -- the location of the directory of files to evaluate.\n - spelling_dictionary -- the set containing all verified words against which\n the document is evaluated.\n \"\"\"\n corpus = (f for f in listdir(directory) if not f.startswith('.') and\n isfile(join(directory, f)))\n statistics = []\n for document in corpus:\n content = utilities.readfile(directory, document)\n stats = generate_doc_report(content, spelling_dictionary)\n stats.update({'doc_id': document})\n statistics.append(stats)\n return statistics\n\n\ndef get_errors_summary(statistics):\n \"\"\"\n Get statistics on the errors for the whole directory.\n Creates a dictionary (errors_summary) from all the reported errors/frequencies\n that records the error (as key) and the total count for that error (as value).\n Developed using: http://stackoverflow.com/questions/11011756, \n http://stackoverflow.com/questions/27801945/\n \"\"\"\n all_errors = (report['errors'] for report in statistics)\n errors_summary = defaultdict(int)\n for doc in all_errors:\n for key, value in doc.items():\n errors_summary[key] += value\n return errors_summary\n\n\ndef top_errors(errors_summary, min_count):\n \"\"\" \n Use the errors_summary to report the top errors.\n \"\"\"\n frequent_errors = {key: value for key, value in errors_summary.items() if\n value > min_count}\n return sorted(frequent_errors.items(), key=operator.itemgetter(1),\n reverse=True)\n\n\ndef long_errors(errors_summary, min_length=10):\n \"\"\"\n Use the error_summary to isolate tokens that are longer thatn the min_length. \n Used to identify strings of words that have been run together due to the failure\n of the OCR engine to recognize whitespace.\n\n Arguments:\n - errors_summary -- \n \"\"\"\n errors = list(errors_summary.keys())\n return [x for x in errors if len(x) > min_length], min_length\n\n\ndef tokens_with_special_characters(errors_summary):\n errors = list(errors_summary.keys())\n special_characters = []\n for error in errors:\n if re.search(\"[^a-z0-9-']\", error):\n special_characters.append(error)\n else:\n pass\n sc_dict = dict(map(lambda key: (key, errors_summary.get(key, None)),\n special_characters))\n return sorted(sc_dict.items(), key=operator.itemgetter(1), reverse=True)\n\n\ndef docs_with_high_error_rate(corpus_statistics, min_error_rate=0.2):\n docs_2_errors = {}\n for report in corpus_statistics:\n docs_2_errors.update({report['doc_id']: report['error_rate']})\n problem_docs = {key: value for key, value in docs_2_errors.items() if \n value > min_error_rate}\n return sorted(problem_docs.items(), key=operator.itemgetter(1), reverse\n =True)\n\n\ndef docs_with_low_token_count(corpus_statistics, max_token_count=350):\n docs_2_tokens = {}\n for report in corpus_statistics:\n docs_2_tokens.update({report['doc_id']: report['num_tokens']})\n short_docs = {key: value for key, value in docs_2_tokens.items() if \n value < max_token_count}\n return short_docs, max_token_count\n\n\ndef token_count(df):\n return df['num_tokens'].sum()\n\n\ndef average_verified_rate(df):\n \"\"\" To compute average error rate, add up the total number of tokens\n and the total number of errors \"\"\"\n total_tokens = token_count(df)\n total_errors = df['num_errors'].sum()\n if total_tokens > 0:\n return (total_tokens - total_errors) / total_tokens\n else:\n return np.nan\n\n\ndef average_error_rate(df):\n error_sum = df['error_rate'].sum()\n total_docs = len(df.index)\n return error_sum / total_docs\n\n\ndef overview_report(directory, spelling_dictionary, title):\n corpus_statistics = process_directory(directory, spelling_dictionary)\n df = utilities.stats_to_df(corpus_statistics)\n print('Directory: {}\\n'.format(directory))\n print('Average verified rate: {}\\n'.format(average_verified_rate(df)))\n print('Average of error rates: {}\\n'.format(average_error_rate(df)))\n print('Total token count: {}\\n'.format(token_count(df)))\n charts.chart_error_rate_distribution(df, title)\n return corpus_statistics\n\n\ndef overview_statistics(directory, spelling_dictionary, title):\n \"\"\"\n \"\"\"\n corpus_statistics = process_directory(directory, spelling_dictionary)\n return utilities.stats_to_df(corpus_statistics)\n", "<import token>\n\n\ndef identify_errors(tokens, dictionary):\n \"\"\"Compare words in documents to words in dictionary. \n\n Args:\n tokens (list): List of all tokens in the document.\n dictionary (set): The set of approved words.\n Returns:\n set : Returns the set of tokens in the documents that are not \n also dictionary words.\n \"\"\"\n return set(tokens).difference(dictionary)\n\n\ndef get_error_stats(errors, tokens):\n \"\"\" Returns a dictionary recording each error and its \n frequency in the document.\n\n Uses the FreqDist function from NLTK.\n\n Args:\n errors (set): Set of errors identified in `identify_errors`.\n tokens (list): Tokenized content of the file being evaluated.\n \"\"\"\n freq_distribution = FreqDist(tokens)\n error_report = {}\n for error in list(errors):\n error_count = freq_distribution[error]\n error_report.update({error: error_count})\n return error_report\n\n\ndef total_errors(error_report):\n \"\"\" Calculates the total errors recorded in the document.\n\n Args:\n error_report (dict): Dictionary of errors and counts generated\n using `get_error_stats` function.\n \"\"\"\n return sum(error_report.values())\n\n\ndef error_rate(error_total, tokens):\n \"\"\" Calculates the error rate of the document to 3 decimal places.\n\n Arguments:\n error_total -- Integer. Calculated using the `total_errors` \n function from the dictionary of errors and their counts.\n tokens -- List of tokens that compose the text\n \"\"\"\n if len(tokens) > 0:\n return float('{0:.3f}'.format(error_total / len(tokens)))\n else:\n return np.nan\n\n\ndef generate_doc_report(text, spelling_dictionary):\n \"\"\" \n Creates a report (dictionary) on each document that includes:\n - number of tokens (num_tokens)\n - number of unique tokens (num_unique_tokens)\n - number of errors (num_errors)\n - error rate for the document (error_rate)\n - dictionary of the errors and their counts (errors)\n\n Uses a number of functions, including:\n - `GoH.utilities.strip_punct`\n - `GoH.utilities.tokenize_text`\n - `GoH.utilities.to_lower`\n - `GoH.utilities.identify_errors`\n - `GoH.reports.get_error_stats`\n - `GoH.reports.total_errors`\n - `GoH.reports.error_rate`\n\n Arguments:\n - text -- the content of the file being evaluated\n - spelling_dictionary -- a set containing the collection of verified words.\n \"\"\"\n text = utilities.strip_punct(text)\n tokens = utilities.tokenize_text(text)\n tokens = utilities.to_lower(tokens)\n errors = identify_errors(tokens, spelling_dictionary)\n error_report = get_error_stats(errors, tokens)\n error_total = total_errors(error_report)\n rate = error_rate(error_total, tokens)\n return {'num_tokens': len(tokens), 'num_unique_tokens': len(set(tokens)\n ), 'num_errors': error_total, 'error_rate': rate, 'errors':\n error_report}\n\n\ndef process_directory(directory, spelling_dictionary):\n \"\"\" \n Composit function for processing an entire directory of files.\n Returns the statistics on the whole directory as a list of dictionaries.\n\n Uses the following functions:\n - `GoH.utilities.readfile`\n - `GoH.reports.generate_doc_report`\n\n Arguments:\n - directory -- the location of the directory of files to evaluate.\n - spelling_dictionary -- the set containing all verified words against which\n the document is evaluated.\n \"\"\"\n corpus = (f for f in listdir(directory) if not f.startswith('.') and\n isfile(join(directory, f)))\n statistics = []\n for document in corpus:\n content = utilities.readfile(directory, document)\n stats = generate_doc_report(content, spelling_dictionary)\n stats.update({'doc_id': document})\n statistics.append(stats)\n return statistics\n\n\ndef get_errors_summary(statistics):\n \"\"\"\n Get statistics on the errors for the whole directory.\n Creates a dictionary (errors_summary) from all the reported errors/frequencies\n that records the error (as key) and the total count for that error (as value).\n Developed using: http://stackoverflow.com/questions/11011756, \n http://stackoverflow.com/questions/27801945/\n \"\"\"\n all_errors = (report['errors'] for report in statistics)\n errors_summary = defaultdict(int)\n for doc in all_errors:\n for key, value in doc.items():\n errors_summary[key] += value\n return errors_summary\n\n\ndef top_errors(errors_summary, min_count):\n \"\"\" \n Use the errors_summary to report the top errors.\n \"\"\"\n frequent_errors = {key: value for key, value in errors_summary.items() if\n value > min_count}\n return sorted(frequent_errors.items(), key=operator.itemgetter(1),\n reverse=True)\n\n\ndef long_errors(errors_summary, min_length=10):\n \"\"\"\n Use the error_summary to isolate tokens that are longer thatn the min_length. \n Used to identify strings of words that have been run together due to the failure\n of the OCR engine to recognize whitespace.\n\n Arguments:\n - errors_summary -- \n \"\"\"\n errors = list(errors_summary.keys())\n return [x for x in errors if len(x) > min_length], min_length\n\n\ndef tokens_with_special_characters(errors_summary):\n errors = list(errors_summary.keys())\n special_characters = []\n for error in errors:\n if re.search(\"[^a-z0-9-']\", error):\n special_characters.append(error)\n else:\n pass\n sc_dict = dict(map(lambda key: (key, errors_summary.get(key, None)),\n special_characters))\n return sorted(sc_dict.items(), key=operator.itemgetter(1), reverse=True)\n\n\ndef docs_with_high_error_rate(corpus_statistics, min_error_rate=0.2):\n docs_2_errors = {}\n for report in corpus_statistics:\n docs_2_errors.update({report['doc_id']: report['error_rate']})\n problem_docs = {key: value for key, value in docs_2_errors.items() if \n value > min_error_rate}\n return sorted(problem_docs.items(), key=operator.itemgetter(1), reverse\n =True)\n\n\ndef docs_with_low_token_count(corpus_statistics, max_token_count=350):\n docs_2_tokens = {}\n for report in corpus_statistics:\n docs_2_tokens.update({report['doc_id']: report['num_tokens']})\n short_docs = {key: value for key, value in docs_2_tokens.items() if \n value < max_token_count}\n return short_docs, max_token_count\n\n\ndef token_count(df):\n return df['num_tokens'].sum()\n\n\ndef average_verified_rate(df):\n \"\"\" To compute average error rate, add up the total number of tokens\n and the total number of errors \"\"\"\n total_tokens = token_count(df)\n total_errors = df['num_errors'].sum()\n if total_tokens > 0:\n return (total_tokens - total_errors) / total_tokens\n else:\n return np.nan\n\n\ndef average_error_rate(df):\n error_sum = df['error_rate'].sum()\n total_docs = len(df.index)\n return error_sum / total_docs\n\n\ndef overview_report(directory, spelling_dictionary, title):\n corpus_statistics = process_directory(directory, spelling_dictionary)\n df = utilities.stats_to_df(corpus_statistics)\n print('Directory: {}\\n'.format(directory))\n print('Average verified rate: {}\\n'.format(average_verified_rate(df)))\n print('Average of error rates: {}\\n'.format(average_error_rate(df)))\n print('Total token count: {}\\n'.format(token_count(df)))\n charts.chart_error_rate_distribution(df, title)\n return corpus_statistics\n\n\ndef overview_statistics(directory, spelling_dictionary, title):\n \"\"\"\n \"\"\"\n corpus_statistics = process_directory(directory, spelling_dictionary)\n return utilities.stats_to_df(corpus_statistics)\n", "<import token>\n\n\ndef identify_errors(tokens, dictionary):\n \"\"\"Compare words in documents to words in dictionary. \n\n Args:\n tokens (list): List of all tokens in the document.\n dictionary (set): The set of approved words.\n Returns:\n set : Returns the set of tokens in the documents that are not \n also dictionary words.\n \"\"\"\n return set(tokens).difference(dictionary)\n\n\ndef get_error_stats(errors, tokens):\n \"\"\" Returns a dictionary recording each error and its \n frequency in the document.\n\n Uses the FreqDist function from NLTK.\n\n Args:\n errors (set): Set of errors identified in `identify_errors`.\n tokens (list): Tokenized content of the file being evaluated.\n \"\"\"\n freq_distribution = FreqDist(tokens)\n error_report = {}\n for error in list(errors):\n error_count = freq_distribution[error]\n error_report.update({error: error_count})\n return error_report\n\n\ndef total_errors(error_report):\n \"\"\" Calculates the total errors recorded in the document.\n\n Args:\n error_report (dict): Dictionary of errors and counts generated\n using `get_error_stats` function.\n \"\"\"\n return sum(error_report.values())\n\n\n<function token>\n\n\ndef generate_doc_report(text, spelling_dictionary):\n \"\"\" \n Creates a report (dictionary) on each document that includes:\n - number of tokens (num_tokens)\n - number of unique tokens (num_unique_tokens)\n - number of errors (num_errors)\n - error rate for the document (error_rate)\n - dictionary of the errors and their counts (errors)\n\n Uses a number of functions, including:\n - `GoH.utilities.strip_punct`\n - `GoH.utilities.tokenize_text`\n - `GoH.utilities.to_lower`\n - `GoH.utilities.identify_errors`\n - `GoH.reports.get_error_stats`\n - `GoH.reports.total_errors`\n - `GoH.reports.error_rate`\n\n Arguments:\n - text -- the content of the file being evaluated\n - spelling_dictionary -- a set containing the collection of verified words.\n \"\"\"\n text = utilities.strip_punct(text)\n tokens = utilities.tokenize_text(text)\n tokens = utilities.to_lower(tokens)\n errors = identify_errors(tokens, spelling_dictionary)\n error_report = get_error_stats(errors, tokens)\n error_total = total_errors(error_report)\n rate = error_rate(error_total, tokens)\n return {'num_tokens': len(tokens), 'num_unique_tokens': len(set(tokens)\n ), 'num_errors': error_total, 'error_rate': rate, 'errors':\n error_report}\n\n\ndef process_directory(directory, spelling_dictionary):\n \"\"\" \n Composit function for processing an entire directory of files.\n Returns the statistics on the whole directory as a list of dictionaries.\n\n Uses the following functions:\n - `GoH.utilities.readfile`\n - `GoH.reports.generate_doc_report`\n\n Arguments:\n - directory -- the location of the directory of files to evaluate.\n - spelling_dictionary -- the set containing all verified words against which\n the document is evaluated.\n \"\"\"\n corpus = (f for f in listdir(directory) if not f.startswith('.') and\n isfile(join(directory, f)))\n statistics = []\n for document in corpus:\n content = utilities.readfile(directory, document)\n stats = generate_doc_report(content, spelling_dictionary)\n stats.update({'doc_id': document})\n statistics.append(stats)\n return statistics\n\n\ndef get_errors_summary(statistics):\n \"\"\"\n Get statistics on the errors for the whole directory.\n Creates a dictionary (errors_summary) from all the reported errors/frequencies\n that records the error (as key) and the total count for that error (as value).\n Developed using: http://stackoverflow.com/questions/11011756, \n http://stackoverflow.com/questions/27801945/\n \"\"\"\n all_errors = (report['errors'] for report in statistics)\n errors_summary = defaultdict(int)\n for doc in all_errors:\n for key, value in doc.items():\n errors_summary[key] += value\n return errors_summary\n\n\ndef top_errors(errors_summary, min_count):\n \"\"\" \n Use the errors_summary to report the top errors.\n \"\"\"\n frequent_errors = {key: value for key, value in errors_summary.items() if\n value > min_count}\n return sorted(frequent_errors.items(), key=operator.itemgetter(1),\n reverse=True)\n\n\ndef long_errors(errors_summary, min_length=10):\n \"\"\"\n Use the error_summary to isolate tokens that are longer thatn the min_length. \n Used to identify strings of words that have been run together due to the failure\n of the OCR engine to recognize whitespace.\n\n Arguments:\n - errors_summary -- \n \"\"\"\n errors = list(errors_summary.keys())\n return [x for x in errors if len(x) > min_length], min_length\n\n\ndef tokens_with_special_characters(errors_summary):\n errors = list(errors_summary.keys())\n special_characters = []\n for error in errors:\n if re.search(\"[^a-z0-9-']\", error):\n special_characters.append(error)\n else:\n pass\n sc_dict = dict(map(lambda key: (key, errors_summary.get(key, None)),\n special_characters))\n return sorted(sc_dict.items(), key=operator.itemgetter(1), reverse=True)\n\n\ndef docs_with_high_error_rate(corpus_statistics, min_error_rate=0.2):\n docs_2_errors = {}\n for report in corpus_statistics:\n docs_2_errors.update({report['doc_id']: report['error_rate']})\n problem_docs = {key: value for key, value in docs_2_errors.items() if \n value > min_error_rate}\n return sorted(problem_docs.items(), key=operator.itemgetter(1), reverse\n =True)\n\n\ndef docs_with_low_token_count(corpus_statistics, max_token_count=350):\n docs_2_tokens = {}\n for report in corpus_statistics:\n docs_2_tokens.update({report['doc_id']: report['num_tokens']})\n short_docs = {key: value for key, value in docs_2_tokens.items() if \n value < max_token_count}\n return short_docs, max_token_count\n\n\ndef token_count(df):\n return df['num_tokens'].sum()\n\n\ndef average_verified_rate(df):\n \"\"\" To compute average error rate, add up the total number of tokens\n and the total number of errors \"\"\"\n total_tokens = token_count(df)\n total_errors = df['num_errors'].sum()\n if total_tokens > 0:\n return (total_tokens - total_errors) / total_tokens\n else:\n return np.nan\n\n\ndef average_error_rate(df):\n error_sum = df['error_rate'].sum()\n total_docs = len(df.index)\n return error_sum / total_docs\n\n\ndef overview_report(directory, spelling_dictionary, title):\n corpus_statistics = process_directory(directory, spelling_dictionary)\n df = utilities.stats_to_df(corpus_statistics)\n print('Directory: {}\\n'.format(directory))\n print('Average verified rate: {}\\n'.format(average_verified_rate(df)))\n print('Average of error rates: {}\\n'.format(average_error_rate(df)))\n print('Total token count: {}\\n'.format(token_count(df)))\n charts.chart_error_rate_distribution(df, title)\n return corpus_statistics\n\n\ndef overview_statistics(directory, spelling_dictionary, title):\n \"\"\"\n \"\"\"\n corpus_statistics = process_directory(directory, spelling_dictionary)\n return utilities.stats_to_df(corpus_statistics)\n", "<import token>\n\n\ndef identify_errors(tokens, dictionary):\n \"\"\"Compare words in documents to words in dictionary. \n\n Args:\n tokens (list): List of all tokens in the document.\n dictionary (set): The set of approved words.\n Returns:\n set : Returns the set of tokens in the documents that are not \n also dictionary words.\n \"\"\"\n return set(tokens).difference(dictionary)\n\n\ndef get_error_stats(errors, tokens):\n \"\"\" Returns a dictionary recording each error and its \n frequency in the document.\n\n Uses the FreqDist function from NLTK.\n\n Args:\n errors (set): Set of errors identified in `identify_errors`.\n tokens (list): Tokenized content of the file being evaluated.\n \"\"\"\n freq_distribution = FreqDist(tokens)\n error_report = {}\n for error in list(errors):\n error_count = freq_distribution[error]\n error_report.update({error: error_count})\n return error_report\n\n\ndef total_errors(error_report):\n \"\"\" Calculates the total errors recorded in the document.\n\n Args:\n error_report (dict): Dictionary of errors and counts generated\n using `get_error_stats` function.\n \"\"\"\n return sum(error_report.values())\n\n\n<function token>\n\n\ndef generate_doc_report(text, spelling_dictionary):\n \"\"\" \n Creates a report (dictionary) on each document that includes:\n - number of tokens (num_tokens)\n - number of unique tokens (num_unique_tokens)\n - number of errors (num_errors)\n - error rate for the document (error_rate)\n - dictionary of the errors and their counts (errors)\n\n Uses a number of functions, including:\n - `GoH.utilities.strip_punct`\n - `GoH.utilities.tokenize_text`\n - `GoH.utilities.to_lower`\n - `GoH.utilities.identify_errors`\n - `GoH.reports.get_error_stats`\n - `GoH.reports.total_errors`\n - `GoH.reports.error_rate`\n\n Arguments:\n - text -- the content of the file being evaluated\n - spelling_dictionary -- a set containing the collection of verified words.\n \"\"\"\n text = utilities.strip_punct(text)\n tokens = utilities.tokenize_text(text)\n tokens = utilities.to_lower(tokens)\n errors = identify_errors(tokens, spelling_dictionary)\n error_report = get_error_stats(errors, tokens)\n error_total = total_errors(error_report)\n rate = error_rate(error_total, tokens)\n return {'num_tokens': len(tokens), 'num_unique_tokens': len(set(tokens)\n ), 'num_errors': error_total, 'error_rate': rate, 'errors':\n error_report}\n\n\ndef process_directory(directory, spelling_dictionary):\n \"\"\" \n Composit function for processing an entire directory of files.\n Returns the statistics on the whole directory as a list of dictionaries.\n\n Uses the following functions:\n - `GoH.utilities.readfile`\n - `GoH.reports.generate_doc_report`\n\n Arguments:\n - directory -- the location of the directory of files to evaluate.\n - spelling_dictionary -- the set containing all verified words against which\n the document is evaluated.\n \"\"\"\n corpus = (f for f in listdir(directory) if not f.startswith('.') and\n isfile(join(directory, f)))\n statistics = []\n for document in corpus:\n content = utilities.readfile(directory, document)\n stats = generate_doc_report(content, spelling_dictionary)\n stats.update({'doc_id': document})\n statistics.append(stats)\n return statistics\n\n\ndef get_errors_summary(statistics):\n \"\"\"\n Get statistics on the errors for the whole directory.\n Creates a dictionary (errors_summary) from all the reported errors/frequencies\n that records the error (as key) and the total count for that error (as value).\n Developed using: http://stackoverflow.com/questions/11011756, \n http://stackoverflow.com/questions/27801945/\n \"\"\"\n all_errors = (report['errors'] for report in statistics)\n errors_summary = defaultdict(int)\n for doc in all_errors:\n for key, value in doc.items():\n errors_summary[key] += value\n return errors_summary\n\n\ndef top_errors(errors_summary, min_count):\n \"\"\" \n Use the errors_summary to report the top errors.\n \"\"\"\n frequent_errors = {key: value for key, value in errors_summary.items() if\n value > min_count}\n return sorted(frequent_errors.items(), key=operator.itemgetter(1),\n reverse=True)\n\n\ndef long_errors(errors_summary, min_length=10):\n \"\"\"\n Use the error_summary to isolate tokens that are longer thatn the min_length. \n Used to identify strings of words that have been run together due to the failure\n of the OCR engine to recognize whitespace.\n\n Arguments:\n - errors_summary -- \n \"\"\"\n errors = list(errors_summary.keys())\n return [x for x in errors if len(x) > min_length], min_length\n\n\n<function token>\n\n\ndef docs_with_high_error_rate(corpus_statistics, min_error_rate=0.2):\n docs_2_errors = {}\n for report in corpus_statistics:\n docs_2_errors.update({report['doc_id']: report['error_rate']})\n problem_docs = {key: value for key, value in docs_2_errors.items() if \n value > min_error_rate}\n return sorted(problem_docs.items(), key=operator.itemgetter(1), reverse\n =True)\n\n\ndef docs_with_low_token_count(corpus_statistics, max_token_count=350):\n docs_2_tokens = {}\n for report in corpus_statistics:\n docs_2_tokens.update({report['doc_id']: report['num_tokens']})\n short_docs = {key: value for key, value in docs_2_tokens.items() if \n value < max_token_count}\n return short_docs, max_token_count\n\n\ndef token_count(df):\n return df['num_tokens'].sum()\n\n\ndef average_verified_rate(df):\n \"\"\" To compute average error rate, add up the total number of tokens\n and the total number of errors \"\"\"\n total_tokens = token_count(df)\n total_errors = df['num_errors'].sum()\n if total_tokens > 0:\n return (total_tokens - total_errors) / total_tokens\n else:\n return np.nan\n\n\ndef average_error_rate(df):\n error_sum = df['error_rate'].sum()\n total_docs = len(df.index)\n return error_sum / total_docs\n\n\ndef overview_report(directory, spelling_dictionary, title):\n corpus_statistics = process_directory(directory, spelling_dictionary)\n df = utilities.stats_to_df(corpus_statistics)\n print('Directory: {}\\n'.format(directory))\n print('Average verified rate: {}\\n'.format(average_verified_rate(df)))\n print('Average of error rates: {}\\n'.format(average_error_rate(df)))\n print('Total token count: {}\\n'.format(token_count(df)))\n charts.chart_error_rate_distribution(df, title)\n return corpus_statistics\n\n\ndef overview_statistics(directory, spelling_dictionary, title):\n \"\"\"\n \"\"\"\n corpus_statistics = process_directory(directory, spelling_dictionary)\n return utilities.stats_to_df(corpus_statistics)\n", "<import token>\n\n\ndef identify_errors(tokens, dictionary):\n \"\"\"Compare words in documents to words in dictionary. \n\n Args:\n tokens (list): List of all tokens in the document.\n dictionary (set): The set of approved words.\n Returns:\n set : Returns the set of tokens in the documents that are not \n also dictionary words.\n \"\"\"\n return set(tokens).difference(dictionary)\n\n\ndef get_error_stats(errors, tokens):\n \"\"\" Returns a dictionary recording each error and its \n frequency in the document.\n\n Uses the FreqDist function from NLTK.\n\n Args:\n errors (set): Set of errors identified in `identify_errors`.\n tokens (list): Tokenized content of the file being evaluated.\n \"\"\"\n freq_distribution = FreqDist(tokens)\n error_report = {}\n for error in list(errors):\n error_count = freq_distribution[error]\n error_report.update({error: error_count})\n return error_report\n\n\ndef total_errors(error_report):\n \"\"\" Calculates the total errors recorded in the document.\n\n Args:\n error_report (dict): Dictionary of errors and counts generated\n using `get_error_stats` function.\n \"\"\"\n return sum(error_report.values())\n\n\n<function token>\n\n\ndef generate_doc_report(text, spelling_dictionary):\n \"\"\" \n Creates a report (dictionary) on each document that includes:\n - number of tokens (num_tokens)\n - number of unique tokens (num_unique_tokens)\n - number of errors (num_errors)\n - error rate for the document (error_rate)\n - dictionary of the errors and their counts (errors)\n\n Uses a number of functions, including:\n - `GoH.utilities.strip_punct`\n - `GoH.utilities.tokenize_text`\n - `GoH.utilities.to_lower`\n - `GoH.utilities.identify_errors`\n - `GoH.reports.get_error_stats`\n - `GoH.reports.total_errors`\n - `GoH.reports.error_rate`\n\n Arguments:\n - text -- the content of the file being evaluated\n - spelling_dictionary -- a set containing the collection of verified words.\n \"\"\"\n text = utilities.strip_punct(text)\n tokens = utilities.tokenize_text(text)\n tokens = utilities.to_lower(tokens)\n errors = identify_errors(tokens, spelling_dictionary)\n error_report = get_error_stats(errors, tokens)\n error_total = total_errors(error_report)\n rate = error_rate(error_total, tokens)\n return {'num_tokens': len(tokens), 'num_unique_tokens': len(set(tokens)\n ), 'num_errors': error_total, 'error_rate': rate, 'errors':\n error_report}\n\n\ndef process_directory(directory, spelling_dictionary):\n \"\"\" \n Composit function for processing an entire directory of files.\n Returns the statistics on the whole directory as a list of dictionaries.\n\n Uses the following functions:\n - `GoH.utilities.readfile`\n - `GoH.reports.generate_doc_report`\n\n Arguments:\n - directory -- the location of the directory of files to evaluate.\n - spelling_dictionary -- the set containing all verified words against which\n the document is evaluated.\n \"\"\"\n corpus = (f for f in listdir(directory) if not f.startswith('.') and\n isfile(join(directory, f)))\n statistics = []\n for document in corpus:\n content = utilities.readfile(directory, document)\n stats = generate_doc_report(content, spelling_dictionary)\n stats.update({'doc_id': document})\n statistics.append(stats)\n return statistics\n\n\ndef get_errors_summary(statistics):\n \"\"\"\n Get statistics on the errors for the whole directory.\n Creates a dictionary (errors_summary) from all the reported errors/frequencies\n that records the error (as key) and the total count for that error (as value).\n Developed using: http://stackoverflow.com/questions/11011756, \n http://stackoverflow.com/questions/27801945/\n \"\"\"\n all_errors = (report['errors'] for report in statistics)\n errors_summary = defaultdict(int)\n for doc in all_errors:\n for key, value in doc.items():\n errors_summary[key] += value\n return errors_summary\n\n\ndef top_errors(errors_summary, min_count):\n \"\"\" \n Use the errors_summary to report the top errors.\n \"\"\"\n frequent_errors = {key: value for key, value in errors_summary.items() if\n value > min_count}\n return sorted(frequent_errors.items(), key=operator.itemgetter(1),\n reverse=True)\n\n\ndef long_errors(errors_summary, min_length=10):\n \"\"\"\n Use the error_summary to isolate tokens that are longer thatn the min_length. \n Used to identify strings of words that have been run together due to the failure\n of the OCR engine to recognize whitespace.\n\n Arguments:\n - errors_summary -- \n \"\"\"\n errors = list(errors_summary.keys())\n return [x for x in errors if len(x) > min_length], min_length\n\n\n<function token>\n\n\ndef docs_with_high_error_rate(corpus_statistics, min_error_rate=0.2):\n docs_2_errors = {}\n for report in corpus_statistics:\n docs_2_errors.update({report['doc_id']: report['error_rate']})\n problem_docs = {key: value for key, value in docs_2_errors.items() if \n value > min_error_rate}\n return sorted(problem_docs.items(), key=operator.itemgetter(1), reverse\n =True)\n\n\ndef docs_with_low_token_count(corpus_statistics, max_token_count=350):\n docs_2_tokens = {}\n for report in corpus_statistics:\n docs_2_tokens.update({report['doc_id']: report['num_tokens']})\n short_docs = {key: value for key, value in docs_2_tokens.items() if \n value < max_token_count}\n return short_docs, max_token_count\n\n\ndef token_count(df):\n return df['num_tokens'].sum()\n\n\ndef average_verified_rate(df):\n \"\"\" To compute average error rate, add up the total number of tokens\n and the total number of errors \"\"\"\n total_tokens = token_count(df)\n total_errors = df['num_errors'].sum()\n if total_tokens > 0:\n return (total_tokens - total_errors) / total_tokens\n else:\n return np.nan\n\n\ndef average_error_rate(df):\n error_sum = df['error_rate'].sum()\n total_docs = len(df.index)\n return error_sum / total_docs\n\n\ndef overview_report(directory, spelling_dictionary, title):\n corpus_statistics = process_directory(directory, spelling_dictionary)\n df = utilities.stats_to_df(corpus_statistics)\n print('Directory: {}\\n'.format(directory))\n print('Average verified rate: {}\\n'.format(average_verified_rate(df)))\n print('Average of error rates: {}\\n'.format(average_error_rate(df)))\n print('Total token count: {}\\n'.format(token_count(df)))\n charts.chart_error_rate_distribution(df, title)\n return corpus_statistics\n\n\n<function token>\n", "<import token>\n\n\ndef identify_errors(tokens, dictionary):\n \"\"\"Compare words in documents to words in dictionary. \n\n Args:\n tokens (list): List of all tokens in the document.\n dictionary (set): The set of approved words.\n Returns:\n set : Returns the set of tokens in the documents that are not \n also dictionary words.\n \"\"\"\n return set(tokens).difference(dictionary)\n\n\ndef get_error_stats(errors, tokens):\n \"\"\" Returns a dictionary recording each error and its \n frequency in the document.\n\n Uses the FreqDist function from NLTK.\n\n Args:\n errors (set): Set of errors identified in `identify_errors`.\n tokens (list): Tokenized content of the file being evaluated.\n \"\"\"\n freq_distribution = FreqDist(tokens)\n error_report = {}\n for error in list(errors):\n error_count = freq_distribution[error]\n error_report.update({error: error_count})\n return error_report\n\n\ndef total_errors(error_report):\n \"\"\" Calculates the total errors recorded in the document.\n\n Args:\n error_report (dict): Dictionary of errors and counts generated\n using `get_error_stats` function.\n \"\"\"\n return sum(error_report.values())\n\n\n<function token>\n<function token>\n\n\ndef process_directory(directory, spelling_dictionary):\n \"\"\" \n Composit function for processing an entire directory of files.\n Returns the statistics on the whole directory as a list of dictionaries.\n\n Uses the following functions:\n - `GoH.utilities.readfile`\n - `GoH.reports.generate_doc_report`\n\n Arguments:\n - directory -- the location of the directory of files to evaluate.\n - spelling_dictionary -- the set containing all verified words against which\n the document is evaluated.\n \"\"\"\n corpus = (f for f in listdir(directory) if not f.startswith('.') and\n isfile(join(directory, f)))\n statistics = []\n for document in corpus:\n content = utilities.readfile(directory, document)\n stats = generate_doc_report(content, spelling_dictionary)\n stats.update({'doc_id': document})\n statistics.append(stats)\n return statistics\n\n\ndef get_errors_summary(statistics):\n \"\"\"\n Get statistics on the errors for the whole directory.\n Creates a dictionary (errors_summary) from all the reported errors/frequencies\n that records the error (as key) and the total count for that error (as value).\n Developed using: http://stackoverflow.com/questions/11011756, \n http://stackoverflow.com/questions/27801945/\n \"\"\"\n all_errors = (report['errors'] for report in statistics)\n errors_summary = defaultdict(int)\n for doc in all_errors:\n for key, value in doc.items():\n errors_summary[key] += value\n return errors_summary\n\n\ndef top_errors(errors_summary, min_count):\n \"\"\" \n Use the errors_summary to report the top errors.\n \"\"\"\n frequent_errors = {key: value for key, value in errors_summary.items() if\n value > min_count}\n return sorted(frequent_errors.items(), key=operator.itemgetter(1),\n reverse=True)\n\n\ndef long_errors(errors_summary, min_length=10):\n \"\"\"\n Use the error_summary to isolate tokens that are longer thatn the min_length. \n Used to identify strings of words that have been run together due to the failure\n of the OCR engine to recognize whitespace.\n\n Arguments:\n - errors_summary -- \n \"\"\"\n errors = list(errors_summary.keys())\n return [x for x in errors if len(x) > min_length], min_length\n\n\n<function token>\n\n\ndef docs_with_high_error_rate(corpus_statistics, min_error_rate=0.2):\n docs_2_errors = {}\n for report in corpus_statistics:\n docs_2_errors.update({report['doc_id']: report['error_rate']})\n problem_docs = {key: value for key, value in docs_2_errors.items() if \n value > min_error_rate}\n return sorted(problem_docs.items(), key=operator.itemgetter(1), reverse\n =True)\n\n\ndef docs_with_low_token_count(corpus_statistics, max_token_count=350):\n docs_2_tokens = {}\n for report in corpus_statistics:\n docs_2_tokens.update({report['doc_id']: report['num_tokens']})\n short_docs = {key: value for key, value in docs_2_tokens.items() if \n value < max_token_count}\n return short_docs, max_token_count\n\n\ndef token_count(df):\n return df['num_tokens'].sum()\n\n\ndef average_verified_rate(df):\n \"\"\" To compute average error rate, add up the total number of tokens\n and the total number of errors \"\"\"\n total_tokens = token_count(df)\n total_errors = df['num_errors'].sum()\n if total_tokens > 0:\n return (total_tokens - total_errors) / total_tokens\n else:\n return np.nan\n\n\ndef average_error_rate(df):\n error_sum = df['error_rate'].sum()\n total_docs = len(df.index)\n return error_sum / total_docs\n\n\ndef overview_report(directory, spelling_dictionary, title):\n corpus_statistics = process_directory(directory, spelling_dictionary)\n df = utilities.stats_to_df(corpus_statistics)\n print('Directory: {}\\n'.format(directory))\n print('Average verified rate: {}\\n'.format(average_verified_rate(df)))\n print('Average of error rates: {}\\n'.format(average_error_rate(df)))\n print('Total token count: {}\\n'.format(token_count(df)))\n charts.chart_error_rate_distribution(df, title)\n return corpus_statistics\n\n\n<function token>\n", "<import token>\n\n\ndef identify_errors(tokens, dictionary):\n \"\"\"Compare words in documents to words in dictionary. \n\n Args:\n tokens (list): List of all tokens in the document.\n dictionary (set): The set of approved words.\n Returns:\n set : Returns the set of tokens in the documents that are not \n also dictionary words.\n \"\"\"\n return set(tokens).difference(dictionary)\n\n\ndef get_error_stats(errors, tokens):\n \"\"\" Returns a dictionary recording each error and its \n frequency in the document.\n\n Uses the FreqDist function from NLTK.\n\n Args:\n errors (set): Set of errors identified in `identify_errors`.\n tokens (list): Tokenized content of the file being evaluated.\n \"\"\"\n freq_distribution = FreqDist(tokens)\n error_report = {}\n for error in list(errors):\n error_count = freq_distribution[error]\n error_report.update({error: error_count})\n return error_report\n\n\ndef total_errors(error_report):\n \"\"\" Calculates the total errors recorded in the document.\n\n Args:\n error_report (dict): Dictionary of errors and counts generated\n using `get_error_stats` function.\n \"\"\"\n return sum(error_report.values())\n\n\n<function token>\n<function token>\n\n\ndef process_directory(directory, spelling_dictionary):\n \"\"\" \n Composit function for processing an entire directory of files.\n Returns the statistics on the whole directory as a list of dictionaries.\n\n Uses the following functions:\n - `GoH.utilities.readfile`\n - `GoH.reports.generate_doc_report`\n\n Arguments:\n - directory -- the location of the directory of files to evaluate.\n - spelling_dictionary -- the set containing all verified words against which\n the document is evaluated.\n \"\"\"\n corpus = (f for f in listdir(directory) if not f.startswith('.') and\n isfile(join(directory, f)))\n statistics = []\n for document in corpus:\n content = utilities.readfile(directory, document)\n stats = generate_doc_report(content, spelling_dictionary)\n stats.update({'doc_id': document})\n statistics.append(stats)\n return statistics\n\n\n<function token>\n\n\ndef top_errors(errors_summary, min_count):\n \"\"\" \n Use the errors_summary to report the top errors.\n \"\"\"\n frequent_errors = {key: value for key, value in errors_summary.items() if\n value > min_count}\n return sorted(frequent_errors.items(), key=operator.itemgetter(1),\n reverse=True)\n\n\ndef long_errors(errors_summary, min_length=10):\n \"\"\"\n Use the error_summary to isolate tokens that are longer thatn the min_length. \n Used to identify strings of words that have been run together due to the failure\n of the OCR engine to recognize whitespace.\n\n Arguments:\n - errors_summary -- \n \"\"\"\n errors = list(errors_summary.keys())\n return [x for x in errors if len(x) > min_length], min_length\n\n\n<function token>\n\n\ndef docs_with_high_error_rate(corpus_statistics, min_error_rate=0.2):\n docs_2_errors = {}\n for report in corpus_statistics:\n docs_2_errors.update({report['doc_id']: report['error_rate']})\n problem_docs = {key: value for key, value in docs_2_errors.items() if \n value > min_error_rate}\n return sorted(problem_docs.items(), key=operator.itemgetter(1), reverse\n =True)\n\n\ndef docs_with_low_token_count(corpus_statistics, max_token_count=350):\n docs_2_tokens = {}\n for report in corpus_statistics:\n docs_2_tokens.update({report['doc_id']: report['num_tokens']})\n short_docs = {key: value for key, value in docs_2_tokens.items() if \n value < max_token_count}\n return short_docs, max_token_count\n\n\ndef token_count(df):\n return df['num_tokens'].sum()\n\n\ndef average_verified_rate(df):\n \"\"\" To compute average error rate, add up the total number of tokens\n and the total number of errors \"\"\"\n total_tokens = token_count(df)\n total_errors = df['num_errors'].sum()\n if total_tokens > 0:\n return (total_tokens - total_errors) / total_tokens\n else:\n return np.nan\n\n\ndef average_error_rate(df):\n error_sum = df['error_rate'].sum()\n total_docs = len(df.index)\n return error_sum / total_docs\n\n\ndef overview_report(directory, spelling_dictionary, title):\n corpus_statistics = process_directory(directory, spelling_dictionary)\n df = utilities.stats_to_df(corpus_statistics)\n print('Directory: {}\\n'.format(directory))\n print('Average verified rate: {}\\n'.format(average_verified_rate(df)))\n print('Average of error rates: {}\\n'.format(average_error_rate(df)))\n print('Total token count: {}\\n'.format(token_count(df)))\n charts.chart_error_rate_distribution(df, title)\n return corpus_statistics\n\n\n<function token>\n", "<import token>\n\n\ndef identify_errors(tokens, dictionary):\n \"\"\"Compare words in documents to words in dictionary. \n\n Args:\n tokens (list): List of all tokens in the document.\n dictionary (set): The set of approved words.\n Returns:\n set : Returns the set of tokens in the documents that are not \n also dictionary words.\n \"\"\"\n return set(tokens).difference(dictionary)\n\n\ndef get_error_stats(errors, tokens):\n \"\"\" Returns a dictionary recording each error and its \n frequency in the document.\n\n Uses the FreqDist function from NLTK.\n\n Args:\n errors (set): Set of errors identified in `identify_errors`.\n tokens (list): Tokenized content of the file being evaluated.\n \"\"\"\n freq_distribution = FreqDist(tokens)\n error_report = {}\n for error in list(errors):\n error_count = freq_distribution[error]\n error_report.update({error: error_count})\n return error_report\n\n\ndef total_errors(error_report):\n \"\"\" Calculates the total errors recorded in the document.\n\n Args:\n error_report (dict): Dictionary of errors and counts generated\n using `get_error_stats` function.\n \"\"\"\n return sum(error_report.values())\n\n\n<function token>\n<function token>\n\n\ndef process_directory(directory, spelling_dictionary):\n \"\"\" \n Composit function for processing an entire directory of files.\n Returns the statistics on the whole directory as a list of dictionaries.\n\n Uses the following functions:\n - `GoH.utilities.readfile`\n - `GoH.reports.generate_doc_report`\n\n Arguments:\n - directory -- the location of the directory of files to evaluate.\n - spelling_dictionary -- the set containing all verified words against which\n the document is evaluated.\n \"\"\"\n corpus = (f for f in listdir(directory) if not f.startswith('.') and\n isfile(join(directory, f)))\n statistics = []\n for document in corpus:\n content = utilities.readfile(directory, document)\n stats = generate_doc_report(content, spelling_dictionary)\n stats.update({'doc_id': document})\n statistics.append(stats)\n return statistics\n\n\n<function token>\n\n\ndef top_errors(errors_summary, min_count):\n \"\"\" \n Use the errors_summary to report the top errors.\n \"\"\"\n frequent_errors = {key: value for key, value in errors_summary.items() if\n value > min_count}\n return sorted(frequent_errors.items(), key=operator.itemgetter(1),\n reverse=True)\n\n\ndef long_errors(errors_summary, min_length=10):\n \"\"\"\n Use the error_summary to isolate tokens that are longer thatn the min_length. \n Used to identify strings of words that have been run together due to the failure\n of the OCR engine to recognize whitespace.\n\n Arguments:\n - errors_summary -- \n \"\"\"\n errors = list(errors_summary.keys())\n return [x for x in errors if len(x) > min_length], min_length\n\n\n<function token>\n\n\ndef docs_with_high_error_rate(corpus_statistics, min_error_rate=0.2):\n docs_2_errors = {}\n for report in corpus_statistics:\n docs_2_errors.update({report['doc_id']: report['error_rate']})\n problem_docs = {key: value for key, value in docs_2_errors.items() if \n value > min_error_rate}\n return sorted(problem_docs.items(), key=operator.itemgetter(1), reverse\n =True)\n\n\n<function token>\n\n\ndef token_count(df):\n return df['num_tokens'].sum()\n\n\ndef average_verified_rate(df):\n \"\"\" To compute average error rate, add up the total number of tokens\n and the total number of errors \"\"\"\n total_tokens = token_count(df)\n total_errors = df['num_errors'].sum()\n if total_tokens > 0:\n return (total_tokens - total_errors) / total_tokens\n else:\n return np.nan\n\n\ndef average_error_rate(df):\n error_sum = df['error_rate'].sum()\n total_docs = len(df.index)\n return error_sum / total_docs\n\n\ndef overview_report(directory, spelling_dictionary, title):\n corpus_statistics = process_directory(directory, spelling_dictionary)\n df = utilities.stats_to_df(corpus_statistics)\n print('Directory: {}\\n'.format(directory))\n print('Average verified rate: {}\\n'.format(average_verified_rate(df)))\n print('Average of error rates: {}\\n'.format(average_error_rate(df)))\n print('Total token count: {}\\n'.format(token_count(df)))\n charts.chart_error_rate_distribution(df, title)\n return corpus_statistics\n\n\n<function token>\n", "<import token>\n\n\ndef identify_errors(tokens, dictionary):\n \"\"\"Compare words in documents to words in dictionary. \n\n Args:\n tokens (list): List of all tokens in the document.\n dictionary (set): The set of approved words.\n Returns:\n set : Returns the set of tokens in the documents that are not \n also dictionary words.\n \"\"\"\n return set(tokens).difference(dictionary)\n\n\ndef get_error_stats(errors, tokens):\n \"\"\" Returns a dictionary recording each error and its \n frequency in the document.\n\n Uses the FreqDist function from NLTK.\n\n Args:\n errors (set): Set of errors identified in `identify_errors`.\n tokens (list): Tokenized content of the file being evaluated.\n \"\"\"\n freq_distribution = FreqDist(tokens)\n error_report = {}\n for error in list(errors):\n error_count = freq_distribution[error]\n error_report.update({error: error_count})\n return error_report\n\n\ndef total_errors(error_report):\n \"\"\" Calculates the total errors recorded in the document.\n\n Args:\n error_report (dict): Dictionary of errors and counts generated\n using `get_error_stats` function.\n \"\"\"\n return sum(error_report.values())\n\n\n<function token>\n<function token>\n\n\ndef process_directory(directory, spelling_dictionary):\n \"\"\" \n Composit function for processing an entire directory of files.\n Returns the statistics on the whole directory as a list of dictionaries.\n\n Uses the following functions:\n - `GoH.utilities.readfile`\n - `GoH.reports.generate_doc_report`\n\n Arguments:\n - directory -- the location of the directory of files to evaluate.\n - spelling_dictionary -- the set containing all verified words against which\n the document is evaluated.\n \"\"\"\n corpus = (f for f in listdir(directory) if not f.startswith('.') and\n isfile(join(directory, f)))\n statistics = []\n for document in corpus:\n content = utilities.readfile(directory, document)\n stats = generate_doc_report(content, spelling_dictionary)\n stats.update({'doc_id': document})\n statistics.append(stats)\n return statistics\n\n\n<function token>\n\n\ndef top_errors(errors_summary, min_count):\n \"\"\" \n Use the errors_summary to report the top errors.\n \"\"\"\n frequent_errors = {key: value for key, value in errors_summary.items() if\n value > min_count}\n return sorted(frequent_errors.items(), key=operator.itemgetter(1),\n reverse=True)\n\n\ndef long_errors(errors_summary, min_length=10):\n \"\"\"\n Use the error_summary to isolate tokens that are longer thatn the min_length. \n Used to identify strings of words that have been run together due to the failure\n of the OCR engine to recognize whitespace.\n\n Arguments:\n - errors_summary -- \n \"\"\"\n errors = list(errors_summary.keys())\n return [x for x in errors if len(x) > min_length], min_length\n\n\n<function token>\n\n\ndef docs_with_high_error_rate(corpus_statistics, min_error_rate=0.2):\n docs_2_errors = {}\n for report in corpus_statistics:\n docs_2_errors.update({report['doc_id']: report['error_rate']})\n problem_docs = {key: value for key, value in docs_2_errors.items() if \n value > min_error_rate}\n return sorted(problem_docs.items(), key=operator.itemgetter(1), reverse\n =True)\n\n\n<function token>\n\n\ndef token_count(df):\n return df['num_tokens'].sum()\n\n\n<function token>\n\n\ndef average_error_rate(df):\n error_sum = df['error_rate'].sum()\n total_docs = len(df.index)\n return error_sum / total_docs\n\n\ndef overview_report(directory, spelling_dictionary, title):\n corpus_statistics = process_directory(directory, spelling_dictionary)\n df = utilities.stats_to_df(corpus_statistics)\n print('Directory: {}\\n'.format(directory))\n print('Average verified rate: {}\\n'.format(average_verified_rate(df)))\n print('Average of error rates: {}\\n'.format(average_error_rate(df)))\n print('Total token count: {}\\n'.format(token_count(df)))\n charts.chart_error_rate_distribution(df, title)\n return corpus_statistics\n\n\n<function token>\n", "<import token>\n\n\ndef identify_errors(tokens, dictionary):\n \"\"\"Compare words in documents to words in dictionary. \n\n Args:\n tokens (list): List of all tokens in the document.\n dictionary (set): The set of approved words.\n Returns:\n set : Returns the set of tokens in the documents that are not \n also dictionary words.\n \"\"\"\n return set(tokens).difference(dictionary)\n\n\ndef get_error_stats(errors, tokens):\n \"\"\" Returns a dictionary recording each error and its \n frequency in the document.\n\n Uses the FreqDist function from NLTK.\n\n Args:\n errors (set): Set of errors identified in `identify_errors`.\n tokens (list): Tokenized content of the file being evaluated.\n \"\"\"\n freq_distribution = FreqDist(tokens)\n error_report = {}\n for error in list(errors):\n error_count = freq_distribution[error]\n error_report.update({error: error_count})\n return error_report\n\n\ndef total_errors(error_report):\n \"\"\" Calculates the total errors recorded in the document.\n\n Args:\n error_report (dict): Dictionary of errors and counts generated\n using `get_error_stats` function.\n \"\"\"\n return sum(error_report.values())\n\n\n<function token>\n<function token>\n\n\ndef process_directory(directory, spelling_dictionary):\n \"\"\" \n Composit function for processing an entire directory of files.\n Returns the statistics on the whole directory as a list of dictionaries.\n\n Uses the following functions:\n - `GoH.utilities.readfile`\n - `GoH.reports.generate_doc_report`\n\n Arguments:\n - directory -- the location of the directory of files to evaluate.\n - spelling_dictionary -- the set containing all verified words against which\n the document is evaluated.\n \"\"\"\n corpus = (f for f in listdir(directory) if not f.startswith('.') and\n isfile(join(directory, f)))\n statistics = []\n for document in corpus:\n content = utilities.readfile(directory, document)\n stats = generate_doc_report(content, spelling_dictionary)\n stats.update({'doc_id': document})\n statistics.append(stats)\n return statistics\n\n\n<function token>\n\n\ndef top_errors(errors_summary, min_count):\n \"\"\" \n Use the errors_summary to report the top errors.\n \"\"\"\n frequent_errors = {key: value for key, value in errors_summary.items() if\n value > min_count}\n return sorted(frequent_errors.items(), key=operator.itemgetter(1),\n reverse=True)\n\n\n<function token>\n<function token>\n\n\ndef docs_with_high_error_rate(corpus_statistics, min_error_rate=0.2):\n docs_2_errors = {}\n for report in corpus_statistics:\n docs_2_errors.update({report['doc_id']: report['error_rate']})\n problem_docs = {key: value for key, value in docs_2_errors.items() if \n value > min_error_rate}\n return sorted(problem_docs.items(), key=operator.itemgetter(1), reverse\n =True)\n\n\n<function token>\n\n\ndef token_count(df):\n return df['num_tokens'].sum()\n\n\n<function token>\n\n\ndef average_error_rate(df):\n error_sum = df['error_rate'].sum()\n total_docs = len(df.index)\n return error_sum / total_docs\n\n\ndef overview_report(directory, spelling_dictionary, title):\n corpus_statistics = process_directory(directory, spelling_dictionary)\n df = utilities.stats_to_df(corpus_statistics)\n print('Directory: {}\\n'.format(directory))\n print('Average verified rate: {}\\n'.format(average_verified_rate(df)))\n print('Average of error rates: {}\\n'.format(average_error_rate(df)))\n print('Total token count: {}\\n'.format(token_count(df)))\n charts.chart_error_rate_distribution(df, title)\n return corpus_statistics\n\n\n<function token>\n", "<import token>\n\n\ndef identify_errors(tokens, dictionary):\n \"\"\"Compare words in documents to words in dictionary. \n\n Args:\n tokens (list): List of all tokens in the document.\n dictionary (set): The set of approved words.\n Returns:\n set : Returns the set of tokens in the documents that are not \n also dictionary words.\n \"\"\"\n return set(tokens).difference(dictionary)\n\n\ndef get_error_stats(errors, tokens):\n \"\"\" Returns a dictionary recording each error and its \n frequency in the document.\n\n Uses the FreqDist function from NLTK.\n\n Args:\n errors (set): Set of errors identified in `identify_errors`.\n tokens (list): Tokenized content of the file being evaluated.\n \"\"\"\n freq_distribution = FreqDist(tokens)\n error_report = {}\n for error in list(errors):\n error_count = freq_distribution[error]\n error_report.update({error: error_count})\n return error_report\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef process_directory(directory, spelling_dictionary):\n \"\"\" \n Composit function for processing an entire directory of files.\n Returns the statistics on the whole directory as a list of dictionaries.\n\n Uses the following functions:\n - `GoH.utilities.readfile`\n - `GoH.reports.generate_doc_report`\n\n Arguments:\n - directory -- the location of the directory of files to evaluate.\n - spelling_dictionary -- the set containing all verified words against which\n the document is evaluated.\n \"\"\"\n corpus = (f for f in listdir(directory) if not f.startswith('.') and\n isfile(join(directory, f)))\n statistics = []\n for document in corpus:\n content = utilities.readfile(directory, document)\n stats = generate_doc_report(content, spelling_dictionary)\n stats.update({'doc_id': document})\n statistics.append(stats)\n return statistics\n\n\n<function token>\n\n\ndef top_errors(errors_summary, min_count):\n \"\"\" \n Use the errors_summary to report the top errors.\n \"\"\"\n frequent_errors = {key: value for key, value in errors_summary.items() if\n value > min_count}\n return sorted(frequent_errors.items(), key=operator.itemgetter(1),\n reverse=True)\n\n\n<function token>\n<function token>\n\n\ndef docs_with_high_error_rate(corpus_statistics, min_error_rate=0.2):\n docs_2_errors = {}\n for report in corpus_statistics:\n docs_2_errors.update({report['doc_id']: report['error_rate']})\n problem_docs = {key: value for key, value in docs_2_errors.items() if \n value > min_error_rate}\n return sorted(problem_docs.items(), key=operator.itemgetter(1), reverse\n =True)\n\n\n<function token>\n\n\ndef token_count(df):\n return df['num_tokens'].sum()\n\n\n<function token>\n\n\ndef average_error_rate(df):\n error_sum = df['error_rate'].sum()\n total_docs = len(df.index)\n return error_sum / total_docs\n\n\ndef overview_report(directory, spelling_dictionary, title):\n corpus_statistics = process_directory(directory, spelling_dictionary)\n df = utilities.stats_to_df(corpus_statistics)\n print('Directory: {}\\n'.format(directory))\n print('Average verified rate: {}\\n'.format(average_verified_rate(df)))\n print('Average of error rates: {}\\n'.format(average_error_rate(df)))\n print('Total token count: {}\\n'.format(token_count(df)))\n charts.chart_error_rate_distribution(df, title)\n return corpus_statistics\n\n\n<function token>\n", "<import token>\n\n\ndef identify_errors(tokens, dictionary):\n \"\"\"Compare words in documents to words in dictionary. \n\n Args:\n tokens (list): List of all tokens in the document.\n dictionary (set): The set of approved words.\n Returns:\n set : Returns the set of tokens in the documents that are not \n also dictionary words.\n \"\"\"\n return set(tokens).difference(dictionary)\n\n\ndef get_error_stats(errors, tokens):\n \"\"\" Returns a dictionary recording each error and its \n frequency in the document.\n\n Uses the FreqDist function from NLTK.\n\n Args:\n errors (set): Set of errors identified in `identify_errors`.\n tokens (list): Tokenized content of the file being evaluated.\n \"\"\"\n freq_distribution = FreqDist(tokens)\n error_report = {}\n for error in list(errors):\n error_count = freq_distribution[error]\n error_report.update({error: error_count})\n return error_report\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef process_directory(directory, spelling_dictionary):\n \"\"\" \n Composit function for processing an entire directory of files.\n Returns the statistics on the whole directory as a list of dictionaries.\n\n Uses the following functions:\n - `GoH.utilities.readfile`\n - `GoH.reports.generate_doc_report`\n\n Arguments:\n - directory -- the location of the directory of files to evaluate.\n - spelling_dictionary -- the set containing all verified words against which\n the document is evaluated.\n \"\"\"\n corpus = (f for f in listdir(directory) if not f.startswith('.') and\n isfile(join(directory, f)))\n statistics = []\n for document in corpus:\n content = utilities.readfile(directory, document)\n stats = generate_doc_report(content, spelling_dictionary)\n stats.update({'doc_id': document})\n statistics.append(stats)\n return statistics\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef docs_with_high_error_rate(corpus_statistics, min_error_rate=0.2):\n docs_2_errors = {}\n for report in corpus_statistics:\n docs_2_errors.update({report['doc_id']: report['error_rate']})\n problem_docs = {key: value for key, value in docs_2_errors.items() if \n value > min_error_rate}\n return sorted(problem_docs.items(), key=operator.itemgetter(1), reverse\n =True)\n\n\n<function token>\n\n\ndef token_count(df):\n return df['num_tokens'].sum()\n\n\n<function token>\n\n\ndef average_error_rate(df):\n error_sum = df['error_rate'].sum()\n total_docs = len(df.index)\n return error_sum / total_docs\n\n\ndef overview_report(directory, spelling_dictionary, title):\n corpus_statistics = process_directory(directory, spelling_dictionary)\n df = utilities.stats_to_df(corpus_statistics)\n print('Directory: {}\\n'.format(directory))\n print('Average verified rate: {}\\n'.format(average_verified_rate(df)))\n print('Average of error rates: {}\\n'.format(average_error_rate(df)))\n print('Total token count: {}\\n'.format(token_count(df)))\n charts.chart_error_rate_distribution(df, title)\n return corpus_statistics\n\n\n<function token>\n", "<import token>\n\n\ndef identify_errors(tokens, dictionary):\n \"\"\"Compare words in documents to words in dictionary. \n\n Args:\n tokens (list): List of all tokens in the document.\n dictionary (set): The set of approved words.\n Returns:\n set : Returns the set of tokens in the documents that are not \n also dictionary words.\n \"\"\"\n return set(tokens).difference(dictionary)\n\n\ndef get_error_stats(errors, tokens):\n \"\"\" Returns a dictionary recording each error and its \n frequency in the document.\n\n Uses the FreqDist function from NLTK.\n\n Args:\n errors (set): Set of errors identified in `identify_errors`.\n tokens (list): Tokenized content of the file being evaluated.\n \"\"\"\n freq_distribution = FreqDist(tokens)\n error_report = {}\n for error in list(errors):\n error_count = freq_distribution[error]\n error_report.update({error: error_count})\n return error_report\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef process_directory(directory, spelling_dictionary):\n \"\"\" \n Composit function for processing an entire directory of files.\n Returns the statistics on the whole directory as a list of dictionaries.\n\n Uses the following functions:\n - `GoH.utilities.readfile`\n - `GoH.reports.generate_doc_report`\n\n Arguments:\n - directory -- the location of the directory of files to evaluate.\n - spelling_dictionary -- the set containing all verified words against which\n the document is evaluated.\n \"\"\"\n corpus = (f for f in listdir(directory) if not f.startswith('.') and\n isfile(join(directory, f)))\n statistics = []\n for document in corpus:\n content = utilities.readfile(directory, document)\n stats = generate_doc_report(content, spelling_dictionary)\n stats.update({'doc_id': document})\n statistics.append(stats)\n return statistics\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef docs_with_high_error_rate(corpus_statistics, min_error_rate=0.2):\n docs_2_errors = {}\n for report in corpus_statistics:\n docs_2_errors.update({report['doc_id']: report['error_rate']})\n problem_docs = {key: value for key, value in docs_2_errors.items() if \n value > min_error_rate}\n return sorted(problem_docs.items(), key=operator.itemgetter(1), reverse\n =True)\n\n\n<function token>\n\n\ndef token_count(df):\n return df['num_tokens'].sum()\n\n\n<function token>\n<function token>\n\n\ndef overview_report(directory, spelling_dictionary, title):\n corpus_statistics = process_directory(directory, spelling_dictionary)\n df = utilities.stats_to_df(corpus_statistics)\n print('Directory: {}\\n'.format(directory))\n print('Average verified rate: {}\\n'.format(average_verified_rate(df)))\n print('Average of error rates: {}\\n'.format(average_error_rate(df)))\n print('Total token count: {}\\n'.format(token_count(df)))\n charts.chart_error_rate_distribution(df, title)\n return corpus_statistics\n\n\n<function token>\n", "<import token>\n\n\ndef identify_errors(tokens, dictionary):\n \"\"\"Compare words in documents to words in dictionary. \n\n Args:\n tokens (list): List of all tokens in the document.\n dictionary (set): The set of approved words.\n Returns:\n set : Returns the set of tokens in the documents that are not \n also dictionary words.\n \"\"\"\n return set(tokens).difference(dictionary)\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef process_directory(directory, spelling_dictionary):\n \"\"\" \n Composit function for processing an entire directory of files.\n Returns the statistics on the whole directory as a list of dictionaries.\n\n Uses the following functions:\n - `GoH.utilities.readfile`\n - `GoH.reports.generate_doc_report`\n\n Arguments:\n - directory -- the location of the directory of files to evaluate.\n - spelling_dictionary -- the set containing all verified words against which\n the document is evaluated.\n \"\"\"\n corpus = (f for f in listdir(directory) if not f.startswith('.') and\n isfile(join(directory, f)))\n statistics = []\n for document in corpus:\n content = utilities.readfile(directory, document)\n stats = generate_doc_report(content, spelling_dictionary)\n stats.update({'doc_id': document})\n statistics.append(stats)\n return statistics\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef docs_with_high_error_rate(corpus_statistics, min_error_rate=0.2):\n docs_2_errors = {}\n for report in corpus_statistics:\n docs_2_errors.update({report['doc_id']: report['error_rate']})\n problem_docs = {key: value for key, value in docs_2_errors.items() if \n value > min_error_rate}\n return sorted(problem_docs.items(), key=operator.itemgetter(1), reverse\n =True)\n\n\n<function token>\n\n\ndef token_count(df):\n return df['num_tokens'].sum()\n\n\n<function token>\n<function token>\n\n\ndef overview_report(directory, spelling_dictionary, title):\n corpus_statistics = process_directory(directory, spelling_dictionary)\n df = utilities.stats_to_df(corpus_statistics)\n print('Directory: {}\\n'.format(directory))\n print('Average verified rate: {}\\n'.format(average_verified_rate(df)))\n print('Average of error rates: {}\\n'.format(average_error_rate(df)))\n print('Total token count: {}\\n'.format(token_count(df)))\n charts.chart_error_rate_distribution(df, title)\n return corpus_statistics\n\n\n<function token>\n", "<import token>\n\n\ndef identify_errors(tokens, dictionary):\n \"\"\"Compare words in documents to words in dictionary. \n\n Args:\n tokens (list): List of all tokens in the document.\n dictionary (set): The set of approved words.\n Returns:\n set : Returns the set of tokens in the documents that are not \n also dictionary words.\n \"\"\"\n return set(tokens).difference(dictionary)\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef process_directory(directory, spelling_dictionary):\n \"\"\" \n Composit function for processing an entire directory of files.\n Returns the statistics on the whole directory as a list of dictionaries.\n\n Uses the following functions:\n - `GoH.utilities.readfile`\n - `GoH.reports.generate_doc_report`\n\n Arguments:\n - directory -- the location of the directory of files to evaluate.\n - spelling_dictionary -- the set containing all verified words against which\n the document is evaluated.\n \"\"\"\n corpus = (f for f in listdir(directory) if not f.startswith('.') and\n isfile(join(directory, f)))\n statistics = []\n for document in corpus:\n content = utilities.readfile(directory, document)\n stats = generate_doc_report(content, spelling_dictionary)\n stats.update({'doc_id': document})\n statistics.append(stats)\n return statistics\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef docs_with_high_error_rate(corpus_statistics, min_error_rate=0.2):\n docs_2_errors = {}\n for report in corpus_statistics:\n docs_2_errors.update({report['doc_id']: report['error_rate']})\n problem_docs = {key: value for key, value in docs_2_errors.items() if \n value > min_error_rate}\n return sorted(problem_docs.items(), key=operator.itemgetter(1), reverse\n =True)\n\n\n<function token>\n\n\ndef token_count(df):\n return df['num_tokens'].sum()\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n", "<import token>\n\n\ndef identify_errors(tokens, dictionary):\n \"\"\"Compare words in documents to words in dictionary. \n\n Args:\n tokens (list): List of all tokens in the document.\n dictionary (set): The set of approved words.\n Returns:\n set : Returns the set of tokens in the documents that are not \n also dictionary words.\n \"\"\"\n return set(tokens).difference(dictionary)\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef process_directory(directory, spelling_dictionary):\n \"\"\" \n Composit function for processing an entire directory of files.\n Returns the statistics on the whole directory as a list of dictionaries.\n\n Uses the following functions:\n - `GoH.utilities.readfile`\n - `GoH.reports.generate_doc_report`\n\n Arguments:\n - directory -- the location of the directory of files to evaluate.\n - spelling_dictionary -- the set containing all verified words against which\n the document is evaluated.\n \"\"\"\n corpus = (f for f in listdir(directory) if not f.startswith('.') and\n isfile(join(directory, f)))\n statistics = []\n for document in corpus:\n content = utilities.readfile(directory, document)\n stats = generate_doc_report(content, spelling_dictionary)\n stats.update({'doc_id': document})\n statistics.append(stats)\n return statistics\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef docs_with_high_error_rate(corpus_statistics, min_error_rate=0.2):\n docs_2_errors = {}\n for report in corpus_statistics:\n docs_2_errors.update({report['doc_id']: report['error_rate']})\n problem_docs = {key: value for key, value in docs_2_errors.items() if \n value > min_error_rate}\n return sorted(problem_docs.items(), key=operator.itemgetter(1), reverse\n =True)\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n", "<import token>\n\n\ndef identify_errors(tokens, dictionary):\n \"\"\"Compare words in documents to words in dictionary. \n\n Args:\n tokens (list): List of all tokens in the document.\n dictionary (set): The set of approved words.\n Returns:\n set : Returns the set of tokens in the documents that are not \n also dictionary words.\n \"\"\"\n return set(tokens).difference(dictionary)\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef docs_with_high_error_rate(corpus_statistics, min_error_rate=0.2):\n docs_2_errors = {}\n for report in corpus_statistics:\n docs_2_errors.update({report['doc_id']: report['error_rate']})\n problem_docs = {key: value for key, value in docs_2_errors.items() if \n value > min_error_rate}\n return sorted(problem_docs.items(), key=operator.itemgetter(1), reverse\n =True)\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n", "<import token>\n\n\ndef identify_errors(tokens, dictionary):\n \"\"\"Compare words in documents to words in dictionary. \n\n Args:\n tokens (list): List of all tokens in the document.\n dictionary (set): The set of approved words.\n Returns:\n set : Returns the set of tokens in the documents that are not \n also dictionary words.\n \"\"\"\n return set(tokens).difference(dictionary)\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n" ]
false
99,096
9e4b6301e5251a11bb433e981d753ad1080f37e9
import webbrowser import os os.system('clear') print('powered by: stephen') print('+fps') nerdola = input('iniciar contador e aumentador de fps? S/N ') if (nerdola == 'S' ): while True: webbrowser.open('https://www.xvideos.com/') webbrowser.open('https://youtu.be/dQw4w9WgXcQ') else: print('tabom....')
[ "import webbrowser\nimport os\n\nos.system('clear')\n\nprint('powered by: stephen')\n\nprint('+fps')\n\nnerdola = input('iniciar contador e aumentador de fps? S/N ')\n\nif (nerdola == 'S' ):\n\n while True:\n webbrowser.open('https://www.xvideos.com/')\n\n webbrowser.open('https://youtu.be/dQw4w9WgXcQ')\n\nelse: \n print('tabom....')", "import webbrowser\nimport os\nos.system('clear')\nprint('powered by: stephen')\nprint('+fps')\nnerdola = input('iniciar contador e aumentador de fps? S/N ')\nif nerdola == 'S':\n while True:\n webbrowser.open('https://www.xvideos.com/')\n webbrowser.open('https://youtu.be/dQw4w9WgXcQ')\nelse:\n print('tabom....')\n", "<import token>\nos.system('clear')\nprint('powered by: stephen')\nprint('+fps')\nnerdola = input('iniciar contador e aumentador de fps? S/N ')\nif nerdola == 'S':\n while True:\n webbrowser.open('https://www.xvideos.com/')\n webbrowser.open('https://youtu.be/dQw4w9WgXcQ')\nelse:\n print('tabom....')\n", "<import token>\nos.system('clear')\nprint('powered by: stephen')\nprint('+fps')\n<assignment token>\nif nerdola == 'S':\n while True:\n webbrowser.open('https://www.xvideos.com/')\n webbrowser.open('https://youtu.be/dQw4w9WgXcQ')\nelse:\n print('tabom....')\n", "<import token>\n<code token>\n<assignment token>\n<code token>\n" ]
false
99,097
a0f70673a1b74f01c5ac52d3cff327b44c4049d2
# -*- coding: utf-8 -*- """ Created on September 2019 @authors: Osvaldo M Velarde - Damián Dellavale - Javier Velez @title: Module - "comodulogram" """ import numpy as np from sklearn.preprocessing import scale from scipy.signal import hilbert import filtering def function_setCFCcfg(CFCin): """ Description: In this function we compute the structures for the "x" and "y" axis of the comodulogram. Inputs: - CFCin: Structure. Parameters of the comodulogram. - 'fXmin': Numeric value. Minimum frequency for the LF band [Hz]. - 'fXmax': Numeric value. Maximum frequency for the LF band [Hz]. - 'fYmin': Numeric value. Minimum frequency for the HF band [Hz]. - 'fYmax': Numeric value. Maximum frequency for the HF band [Hz]. - 'fXres': Numeric value. Frequency resolution for the LF band [Hz]. - 'fYres': Numeric value. Frequency resolution for the HF band [Hz]. - 'fXlookAt': String. Parameter of the signal observed in the range of frequency corresponding to the "x" axis. - 'fYlookAt': String. Parameter of the signal observed in the range of frequency corresponding to the "y" axis. - 'nX': Int value. Harmonic number for detection of fbX.n:fbY.n phase locking. - 'nY': Int value. Harmonic number for detection of fbX.n:fbY.n phase locking. - 'BPFXcfg': Structure. Band-Pass Filter configuration for the comodulogram's "x" axis. - 'BPFYcfg': Structure. Band-Pass Filter configuration for the comodulogram's "y" axis. - 'LPFcfg': Structure. Low-Pass Filter configuration to smooth the frequency time series. The LPF Filter is used to smooth the frequency time series (fYlookAt = 'FREQUENCY' or 'PHASEofFREQUENCY'). - 'saveBPFsignal': {0,1}. Flag to return the Band-Pass Filtered signals. 0 - Return a NaN. 1 - Return the filtered signals. - 'Nbins': Int value. Number of phase/amplitude bins used to compute the Histograms (p) of the comodulogram. - 'sameNumberOfCycles': {0,1}. Flag to configure the processing mode for signal x: 0 - Do not truncate the signal "x" to obtain the same number of cycles. 1 - Process the same number of cycles of signal "x" for all "fX" frequencies. - 'CFCmethod': String. {'plv','mi'} Defines the approach to compute the Cross frequency Coupling (PLV / methods to compute the MI). - 'verbose': Boolean {0,1}. 0: no message are shown. 1: show the messages. - 'perMethod': String. Method by which the surrogated time series are built. Options * 'trialShuffling' * 'sampleShuffling' * 'FFTphaseShuffling' * 'cutShuffling' - 'Nper': Int value. Number of permutations. It defines the number of surrogate histograms per repetition. It is worth noting that in each repetition, "Nper" surrogate histograms of size "Nbins x NfY x NfX" are stored in memory (RAM). - 'Nrep': Int value. Number of repetitions. In each repetition a ".mat" file is written to disk, containing "Nper" surrogate histograms of size "Nbins x NfY x NfX". As a consequence, the final number of surrogate histograms is "Nper x Nrep". - 'Pvalue': Numeric value. P-value for the statistically significant level. - 'corrMultComp': String {'Bonferroni', 'pixelBased'}. Method to correct for multiple comparisons. - 'fs': Numeric value. Outputs: - CFCout: Structure. Parameters of the comodulogram. -'fXcfg', 'fYcfg': Structure. Parameters of the Frequency Band in "x(y)" axis. - 'start': Numeric value. Start frequency [Hz]. - 'end': Numeric value. End frequency [Hz]. - 'res': Numeric value. Frequency resolution [Hz]. Define the frequency separation between two consecutive BPFs. - 'BPFcfg': Structure. Band-Pass Filter configuration for the comodulogram's "x(y)" axis. - 'lookAt': String. Parameter of the signal (phase/amplitude) observed in the range of frequency corresponding to the "x(y)" axis [none] (string). - 'n': Int value. Harmonic number for detection of fbX.n:fbY.n phase locking. Ref: Detection of n,m Phase Locking from Noisy Data (Tass, 1998).pdf - 'LPFcfg' Structure. Low-Pass Filter configuration to smooth the frequency time series (structure array). The LPF Filter is used to smooth the frequency time series (fYlookAt = 'FREQUENCY' or 'PHASEofFREQUENCY'). - 'saveBPFsignal': Boolean. Flag to return the Band-Pass Filtered signals. 0: Return a NaN. 1: Return the filtered signals. - 'Nbins': Int value. Number of phase/amplitude bins used to compute the Histograms (p) of the comodulogram. - 'sameNumberOfCycles': Boolean. Flag to configure the processing mode for signal x. 0: Do not truncate the signal "x" to obtain the same number of cycles. 1: Process the same number of cycles of signal "x" for all "fX" frequencies. - 'CFCmethod' - 'verbose' - 'perMethod' - 'Nper' - 'Nrep' - 'Pvalue' - 'corrMultComp' - 'fs' """ # Default values of the outputs -------------------------------------------------- fXcfg = {'start': CFCin['fXmin'], 'end': CFCin['fXmax'], 'res': CFCin['fXres'], 'BPFcfg': CFCin['BPFXcfg'], 'lookAt': CFCin['fXlookAt'], 'n': CFCin['nX'], 'Nbins': CFCin['Nbins'], 'sameNumberOfCycles': CFCin['sameNumberOfCycles'], 'saveBPFsignal': CFCin['saveBPFsignal']} fYcfg = {'start': CFCin['fYmin'], 'end': CFCin['fYmax'], 'res': CFCin['fYres'], 'BPFcfg': CFCin['BPFYcfg'], 'lookAt': CFCin['fYlookAt'], 'n': CFCin['nY'], 'saveBPFsignal': CFCin['saveBPFsignal']} if fYcfg['lookAt'].lower == 'frequency' or fYcfg['lookAt'].lower == 'phaseoffrequency': fYcfg['LPFcfg'] = CFCin['LPFcfg'] # -------------------------------------------------------------------------------- # Compute the start frequency for "x" axis taking into account the bandwidth of the band-pass filter. if CFCin['fXmin'] <= CFCin['BPFXcfg']['Bw']/2: fXcfg['start'] = CFCin['fXmin'] + CFCin['BPFXcfg']['Bw']/2 # Compute the vector of frequency for the "x" axis ------------------------------- fXcfg['BPFcfg']['f0'] = np.linspace(fXcfg['start'],fXcfg['end'],np.ceil((fXcfg['end']-fXcfg['start'])/fXcfg['res'])) #np.arange(fXcfg['start'],fXcfg['end']+fXcfg['res'],fXcfg['res']) # Compute the adaptive number of BPFs connected in series ------------------------ if 'times' in fXcfg['BPFcfg'].keys() and len(fXcfg['BPFcfg']['times'])>1: fXcfg['BPFcfg']['times'] = np.linspace(fXcfg['BPFcfg']['times'][0],fXcfg['BPFcfg']['times'][-1],len(fXcfg['BPFcfg']['times'])) # Compute the bandwidth for the BPFs in the "y" axis ----------------------------- if type(fYcfg['BPFcfg']['Bw']*1.0) == float: #Constant bandwidth fYcfg['BPFcfg']['Bw'] = fYcfg['BPFcfg']['Bw']*np.ones(np.shape(fXcfg['BPFcfg']['f0'])) else: # Adaptive fYcfg['BPFcfg']['Bw'] = 2*fXcfg['BPFcfg']['f0'] # Compute the start frequency for "y" axis taking into account the bandwidth of the band-pass filter. if fYcfg['start'] <= fYcfg['BPFcfg']['Bw'][0]/2: fYcfg['start'] = fYcfg['start'] + fYcfg['BPFcfg']['Bw'][0]/2 # Compute the vector of frequency for the "y" axis -------------------------------- fYcfg['BPFcfg']['f0'] = np.linspace(fYcfg['start'],fYcfg['end'],np.ceil((fYcfg['end']-fYcfg['start'])/fYcfg['res'])) #fYcfg['BPFcfg']['f0'] = np.arange(fYcfg['start'],fYcfg['end']+fYcfg['res'],fYcfg['res']) # Compute the adaptive number of BPFs connected in series ------------------------- if 'times' in fYcfg['BPFcfg'].keys() and len(fYcfg['BPFcfg']['times'])>1: fYcfg['BPFcfg']['times'] = np.linspace(fYcfg['BPFcfg']['times'][0],fYcfg['BPFcfg']['times'][-1],len(fYcfg['BPFcfg']['times'])) # Compute the output structure ---------------------------------------------------- CFCout = {'fXcfg': fXcfg, 'fYcfg': fYcfg, 'CFCmethod': CFCin['CFCmethod'], 'verbose': CFCin['verbose'], 'perMethod': CFCin['perMethod'], 'Nper': CFCin['Nper'], 'Nrep': CFCin['Nrep'], 'Pvalue': CFCin['Pvalue'], 'corrMultComp': CFCin['corrMultComp'], 'fs': CFCin['fs']} return CFCout # -------------------------------------------------------------------------------------- # -------------------------------------------------------------------------------------- FILTERS_SWITCHER = {'function_FDF': filtering.function_FDF, 'function_eegfilt':filtering.function_eegfilt, 'function_butterBPF':filtering.function_butterBPF} # -------------------------------------------------------------------------------------- # -------------------------------------------------------------------------------------- def function_comodulogramBPF(signal,BPFcfg,fs,indSettlingExt): """ Description: In this function we implement the Band-Pass Filtering of the input signal. The input signal is supposed to be a raw (unfiltered) time series. Inputs: - signal: Numeric array (Nsamples x 1). Data. - BPFcfg: Structure. Band-Pass Filter configuration for the comodulogram's "x(y)" axis. - 'function': string {'function_butterBPF', 'function_eegfilt', 'function_FDF'} It specifies the function for the Band-Pass Filter: * 'function_butterBPF', a BPF IIR filter is implemented using a series connection of a High-Pass followed by a Low-Pass Butterworth filters. * 'function_eegfilt', a BPF FIR filter is implemented using the "eegfilt.m" function from EEGLAB toolbox. * 'function_FDF', a Frequency Domain Filtering is implemented using a window function. - fs: Numeric value. Sampling rate [Hz]. - indSettlingExt: Int value. External index for cutting out the transient response of the BPFs. If "indSettlingExt" is empty or NaN, the index for the longest settling time is used. Outputs: - indSettlingMax: Int value. Index corresponding to the longest transient response of the BPFs. - BPFsignal: Numeric array (Nsamples x Nf x NBw). Band-Pass Filtered signals. where: Ns = np.shape[signal,0]. Number of samples. Nf = len(fcfg['BPFcfg']['f0']). Number of frequencies. NBw = len(fcfg['BPFcfg']['Bw']). Number of Bandwidths. """ # Argument completion ------------------------------------------------------ # if (nargin < 4)||isempty(signal)... # ||isempty(BPFcfg)... # ||isempty(fs)... # ||isempty(indSettlingExt),... # error('MATLAB:function_comodulogramBPF','Input argument error.'); # end if 'f1' in BPFcfg.keys() and 'f2' in BPFcfg.keys(): # Compute the cutoff frequencies. BPFcfg['f0'] = (BPFcfg['f1'] + BPFcfg['f2']) / 2 # Arithmetic mean. # BPFcfg['f0'] = np.sqrt(BPFcfg['f1'] * BPFcfg['f2']) %Geometric mean. # %Ref: https://en.wikipedia.org/wiki/Center_frequency BPFcfg['Bw'] = BPFcfg['f2'] - BPFcfg['f1'] #elseif ~isfield(BPFcfg, 'f0') || ~isfield(BPFcfg, 'Bw'), # error('MATLAB:function_comodulogramBPF','Error in the BPF configuration (BPFcfg).'); # -------------------------------------------------------------------------- # Check the input arguments ------------------------------------------------ #assert(size(signal,2)==1, 'Input argument error in function "function_comodulogramBPF": The signal must be a column array.'); #assert(isstruct(BPFcfg), 'Input argument error in function "function_comodulogramBPF": BPFcfg must be a structure array.'); #assert(isnumeric(indSettlingExt)&&(indSettlingExt>0)&&(length(indSettlingExt)==1),... # 'Input argument error in function "function_comodulogramBPFandFeature": The value for "indSettlingExt" is not valid.'); # -------------------------------------------------------------------------- # Default values of the outputs -------------------------------------------- Nf = np.size(BPFcfg['f0']) # Number of frequencies. NBw = np.size(BPFcfg['Bw']) # Number of Bandwidths. fnyq = fs/2 # [Hz] Nyquist frequency. Ncycle = np.round(fs / np.atleast_1d(BPFcfg['f0'])[0]) # Compute the samples per period for the minimum frequency. Ns = np.shape(signal)[0] # Compute the number of samples of the input signal. Ns_cropped = Ns - 2*(indSettlingExt-1) # Compute the final length of the time series after clipping. # if Ncycle >= Ns_cropped: # error('MATLAB:function_comodulogramBPF',... # 'The time series is too short: it does not include at least one period of the minimum frequency.') # -------------------------------------------------------------------------- # Initializes the index corresponding to the maximum settling time with the external value. indSettlingMax = indSettlingExt # -------------------------------------------------------------------------- ## Band-Pass Filtering ----------------------------------------------------- BPFsignal = np.zeros((Ns_cropped, Nf, NBw)) # Memory pre-allocation. for ii in range(NBw): # Loop for Bandwidths. BPFsignal_local = np.zeros((Ns, Nf)) # Memory pre-allocation. indSettling = np.zeros((1, Nf)) # Memory pre-allocation. for jj in range(Nf): # Loop for frequencies. BPFcfg_local = BPFcfg # Extract the parameters for the BPF configuration. BPFcfg_local['Bw'] = np.atleast_1d(BPFcfg['Bw'])[ii] BPFcfg_local['f0'] = np.atleast_1d(BPFcfg['f0'])[jj] # Do not compute the cases in which, # 1) the lower cutoff frequency is lesser than or equal to zero. # 2) the higher cutoff frequency is greater than or equal to one. # Ref: Lega 2014 PAC in human hippocampus.pdf if (BPFcfg_local['f0']-BPFcfg_local['Bw']/2)<=fs/Ns or (BPFcfg_local['f0']+BPFcfg_local['Bw']/2)/fnyq>=1: continue # ------------------------------------------------------------------- filter_function = FILTERS_SWITCHER.get(BPFcfg_local['function'], lambda: "Invalid method") # Switch for filter selection. BPFsignal_localjj, indSettling[jj], _ , _ = filter_function(signal, BPFcfg_local, fs) BPFsignal_local[:,jj] = np.real(np.squeeze(BPFsignal_localjj)) # VER: Para el caso butterBPF, se ejecutaba esto antes de filter_function # case 'function_butterBPF', # Band-Pass Filter (IIR) using a series connection of a High-Pass followed by a Low-Pass Butterworth filters. # if length(BPFcfg_local.times)>1, %Adaptive number of BPFs connected in series. # BPFcfg_local.times = BPFcfg.times(jj); # ----------------------------------------------------------------------- # Cut out the transient response of the BPFs ----------------------------- indSettlingMax = max([indSettling, indSettlingMax]) # Compute the index for the largest settling time. if indSettlingMax > indSettlingExt: # Compare the internal and external settling time indices. print('Un msj no implementado- function_comodulogramBPF_v1_225') #warning('MATLAB:function_comodulogramBPF',... # 'The transient response have not completely removed using "indSettlingExt":'); #display(['Relative difference = ' num2str(100*(indSettlingExt-indSettlingMax)/indSettlingMax) '%.']); BPFsignal_local = BPFsignal_local[indSettlingExt-1:BPFsignal_local.shape[0]-(indSettlingExt-1),:] # Cutting out the BPFs' transient response. # ----------------------------------------------------------------------- BPFsignal[:,:,ii] = BPFsignal_local #This is required in the case of a single Bandwidth. #if NBw==1: # BPFsignal = np.squeeze(BPFsignal) return BPFsignal, indSettlingMax # -------------------------------------------------------------------------------------- # -------------------------------------------------------------------------------------- # -------------------------------------------------------------------------------------- # -------------------------------------------------------------------------------------- def function_feature_phase(signal): """ Description: Compute the phase of the z-scored BPF signal. Remark: Before the computation of the phase signal, the time series should be normalized, de-trended, or mean-subtracted to have the DC-component removed. this ensures that phase values are not limited in range. Ref: Assessing transient cross-frequency coupling in EEG data (Cohen 2008).pdf Angle [rad] in (-pi,pi] """ return np.angle(hilbert(scale(signal),axis=0)) def function_feature_amplitude(signal): """ Description: Compute the amplitude (signal envelope). Amplitude envelope of the signal (AM demodulation). """ return np.abs(hilbert(signal,axis=0)) def function_feature_phofamp(signal): """ Description: Phase of the signal's amplitude envelope. Remark: Before the computation of the phase signal, the time series should be normalized, de-trended, or mean-subtracted to have the DC-component removed; this ensures that phase values are not limited in range. Ref: Assessing transient cross-frequency coupling in EEG data (Cohen 2008).pdf """ BPFfeature = np.abs(hilbert(signal,axis=0)) # Compute the amplitudes (signal envelope). BPFfeature = scale(BPFfeature) # Normalization in order to avoid phase skew. BPFfeature = np.angle(hilbert(BPFfeature,axis=0)) # Compute the phase of the envelope. [rad] range:(-pi,pi] return BPFfeature def function_feature_frequency(signal): print('Sin implementar. Devuelve 0') return 0 def function_feature_phoffreq(signal): print('Sin implementar. Devuelve 0') return 0 LIST_FEATURES = {'phase':function_feature_phase, 'amplitude':function_feature_amplitude, 'phaseofamplitude':function_feature_phofamp, 'frequency':function_feature_frequency, 'phaseoffrequency':function_feature_phoffreq} # -------------------------------------------------------------------------------------- # -------------------------------------------------------------------------------------- def function_comodulogramFeature(signal,fcfg,fs,indSettlingExt): """ Description: In this function we implement the extraction of the phase/amplitude/frequency time series from the input signals. The input signals are supposed to be previously Band-Pass Filtered signals around the frequency bands of interest. Inputs: - signal. Numeric array (Ns x Nf x NBw) Band-Pass Filtered signals. Notation: Ns: Number of samples. Nf: Number of frequencies. len(fcfg['BPFcfg']['f0']) NBw: Number of Bandwidths. len(fcfg['BPFcfg']['Bw']) - fcfg. Structure. Parameters of the Frequency Band in "x(y)" axis. - 'start': Numeric value. Start frequency [Hz]. - 'end': Numeric value. End frequency [Hz]. - 'res': Numeric value. Frequency resolution [Hz]. Define the frequency separation between two consecutive BPFs. - 'BPFcfg': Structure. Band-Pass Filter configuration for the comodulogram's "x(y)" axis. - 'lookAt': String. Parameter of the signal (phase/amplitude/frequency) observed in the range of frequency corresponding to the "x(y)" axis [none]. - 'LPFcfg': Structure. Low-Pass Filter configuration to smooth the frequency time series. The LPF Filter is used to smooth the frequency time series (fYlookAt = 'FREQUENCY' or 'PHASEofFREQUENCY'). - 'saveBPFsignal': Boolean value. Flag to return the Band-Pass Filtered signals. *0: Return a NaN. *1: Return the filtered signals. - 'Nbins': Integer value. Number of phase/amplitude/frequency bins used to compute the Histograms (p) of the comodulogram. - 'sameNumberOfCycles': Boolean value. Flag to configure the processing mode for signal x. *0: Do not truncate the signal "x" to obtain the same number of cycles. *1: Process the same number of cycles of signal "x" for all "fX" frequencies. - fs: Numeric value. Sampling rate [Hz]. - indSettlingExt: Integer value. External index for cutting out the transient response of the BPFs. If "indSettlingExt" is empty or NaN, the index for the longest settling time is used. Outputs: - BPFfeature: Numeric array (Ns x NF x NBw) Phase/amplitud/frequency time series for the "x" or "y" axis of the comodulogram - croppedSignal: Numeric array (Ns-2*(indSettlingExt-1) x Nf x NBw) Cropped Band-Pass Filtered signals (in the case of saveBPFsignal=1) """ # %Argument completion ------------------------------------------------------ # if (nargin < 4)||isempty(signal)... # ||isempty(fcfg)... # ||isempty(fs)... # ||isempty(indSettlingExt),... # error('MATLAB:function_comodulogramFeature','Input argument error.'); # end if 'f1' in fcfg['BPFcfg'].keys() and 'f2' in fcfg['BPFcfg'].keys(): # Compute the cutoff frequencies. fcfg['BPFcfg']['f0'] = (fcfg['BPFcfg']['f1'] + fcfg['BPFcfg']['f2']) / 2 # Arithmetic mean. #%fcfg.BPFcfg.f0 = sqrt(fcfg.BPFcfg.f1 * fcfg.BPFcfg.f2); %Geometric mean. #%Ref: https://en.wikipedia.org/wiki/Center_frequency fcfg['BPFcfg']['Bw'] = fcfg['BPFcfg']['f2'] - fcfg['BPFcfg']['f1'] #elif ~isfield(fcfg.BPFcfg, 'f0') || ~isfield(fcfg.BPFcfg, 'Bw'), # error('MATLAB:function_comodulogramFeature','Error in the BPF configuration (BPFcfg).'); # Check the input arguments ------------------------------------------------ # assert(max(size(signal))==size(signal,1), 'Input argument error in function "function_comodulogramFeature": The signal must be a column array.'); # assert(isstruct(fcfg), 'Input argument error in function "function_comodulogramFeature": fcfg must be a structure array.'); # assert(isstruct(fcfg.BPFcfg), 'Input argument error in function "function_comodulogramFeature": BPFcfg structure not found.'); # assert(isnumeric(indSettlingExt)&&(indSettlingExt>0)&&(length(indSettlingExt)==1),... # 'Input argument error in function "function_comodulogramBPFandFeature": The value for "indSettlingExt" is not valid.'); # Default values of the outputs -------------------------------------------- croppedSignal = [] Nf = np.size(fcfg['BPFcfg']['f0']) # Number of frequencies. NBw = np.size(fcfg['BPFcfg']['Bw']) # Number of Bandwidths. fnyq = fs/2 # [Hz] Nyquist frequency. Ns = np.shape(signal)[0] # Compute the number of samples of the input signal. Ns_cropped = Ns - 2*(indSettlingExt-1) # Compute the final length of the time series after clipping. # -------------------------------------------------------------------------- # Feature extraction ------------------------------------------------------- BPFfeature = np.zeros((Ns_cropped, Nf, NBw)) # Memory pre-allocation for speed up the loop. if fcfg['saveBPFsignal']: croppedSignal = np.zeros((Ns_cropped, Nf, NBw)) for ii in range(NBw): # Loop for Bandwidths. signal_local = signal[:,:,ii] # Selection and computation of features -------------------------------- feature = fcfg['lookAt'].lower() function_feature = LIST_FEATURES.get(feature, lambda: "Invalid method") BPFfeature_local= function_feature(signal_local) # ---------------------------------------------------------------------- BPFfeature_local = BPFfeature_local[indSettlingExt-1:BPFfeature_local.shape[0]-(indSettlingExt-1),:] # We remove the transient due to the Hilbert transform. BPFfeature[:,:,ii] = BPFfeature_local if fcfg['saveBPFsignal']: # Cutting out the transient response AFTER the phase/amplitude/frequency extraction. croppedSignal[:,:,ii] = signal_local[indSettlingExt-1:signal_local.shape[0]-(indSettlingExt-1),:] # ---------------------------------------------------------------------- # This is required in the case of a single Bandwidth. (VER) # if NBw==1: # BPFfeature = np.squeeze(BPFfeature) # croppedSignal = np.squeeze(croppedSignal) return BPFfeature, croppedSignal # -------------------------------------------------------------------------------------- # -------------------------------------------------------------------------------------- def function_PLV(x,y, wx, wy, CFCcfg): """ Description: In this function we compute the Phase Locking Values. Refs: [1] /PhaseLockingValue/function_PhaseLockingValue_v1.m [2] Measuring Phase-Amplitude Coupling Between Neuronal Oscillations (Tort, 2010).pdf, p. 1198 [3] High gamma power is phase-locked to theta oscillations (Canolty, 2006).pdf [4] Phase Locking from Noisy Data (Tass, 1998).pdf Ref: Detection of n,m Phase Locking from Noisy Data (Tass, 1998).pdf Inputs: - x: Numeric array (Nsamples x NfX). Data for the comodulogram's "x" axis (matrix: samples x NfX). - y: Numeric array (Nsamples x NfY x NfX). Data for the comodulogram's "y" axis (matrix: samples x NfY x NfX). - wx: Numeric array (Nsamples x NfX). Weights related to the comodulogram's "x" axis (matrix: samples x NfX). - wy: Numeric array (Nsamples x NfY x NfX). Weights related to the comodulogram's "y" axis (matrix: samples x NfY x NfX). - CFCcfc: structure. Parameters of the comodulogram (structure array) - 'fXcfg': structure. Parameters of the Frequency Band in "x" axis. - 'fYcfg': structure. Parameters of the Frequency Band in "y" axis. -'start': Numeric value. Start frequency [Hz]. -'end': Numeric value. End frequency [Hz]. -'res': Numeric value. Frequency resolution. Define the frequency separation between two consecutive BPFs. -'BPFcfg': Structure. Band-Pass Filter configuration for the comodulogram's axis. -'lookAt': String. Parameter of the signal (phase/amplitude) observed in the range of frequency [none] (string). -'n': Int value. Harmonic number for detection of phase locking. -'saveBPFsignal': {0,1}. Flag to return the Band-Pass Filtered signals. 0 - Return a NaN. 1 - Return the filtered signals. -'Nbins': Int value. Number of phase/amplitude bins used to compute the Histograms (p) of the comodulogram. -'sameNumberOfCycles': {0,1}. Flag to configure the processing mode for signal x. 0 - Do not truncate the signal "x" to obtain the same number of cycles. 1 - Process the same number of cycles of signal "x" for all "fX" frequencies. - 'CFCmethod': String. Defines the approach to compute the Cross frequency Coupling. E.g: 'plv'. - 'verbose': Boolean. Display flag. - 'perMethod': {'trialShuffling', 'sampleShuffling', 'FFTphaseShuffling', 'cutShuffling'}. Method by which the surrogated time series are built. - 'Nper': Int value. Number of permutations. It defines the number of surrogate histograms per repetition. It is worth noting that in each repetition, "Nper" surrogate histograms of size "Nbins x NfY x NfX" are stored in memory (RAM). - 'Nrep': Int value. Number of repetitions. In each repetition a ".mat" file is written to disk, containing "Nper" surrogate histograms of size "Nbins x NfY x NfX". As a consequence, the final number of surrogate histograms is "Nper x Nrep". - 'Pvalue': Numeric value. P-value for the statistically significant level. - 'corrMultComp': {'Bonferroni', 'pixelBased'} Method to correct for multiple comparisons. - 'fs': Numeric value. Sampling rate [Hz]. Outputs: - PLV: Numeric array (NfY x NfX). Phase Locking Value. - wxPLV: Numeric array (NfY x NfX). Weighted Phase Locking Values using the wx weights (matrix: NfY x NfX). - wyPLV: Numeric array (NfY x NfX). Weighted Phase Locking Values using the wy weights (matrix: NfY x NfX). NfX = length(CFCcfg['fXcfg']['BPFcfg']['f0']) NfY = length(CFCcfg['fYcfg']['BPFcfg']['f0']) """ ## Argument completion # if (nargin < 5)||isempty(x)||isempty(y)||isempty(CFCcfg),... # error('MATLAB:function_PLV','Input argument error.'); # end ## Check the input arguments # assert(isstruct(CFCcfg), 'Input argument error in function "function_PLV": CFCcfg must be a structure array.'); # if ~isfield(CFCcfg.fXcfg, 'n')||isempty(CFCcfg.fXcfg.n)||isnan(CFCcfg.fXcfg.n), # CFCcfg.fXcfg.n = 1; %Default value. # warning('MATLAB:function_PLV', ['"CFCcfg.fXcfg.n" is not specified, the default value is used: CFCcfg.fXcfg.n = ',... # num2str(CFCcfg.fXcfg.n)]); # end # if ~isfield(CFCcfg.fYcfg, 'n')||isempty(CFCcfg.fYcfg.n)||isnan(CFCcfg.fYcfg.n), # CFCcfg.fYcfg.n = 1; %Default value. # warning('MATLAB:function_PLV', ['"CFCcfg.fYcfg.n" is not specified, the default value is used: CFCcfg.fYcfg.n = ',... # num2str(CFCcfg.fYcfg.n)]); # end # assert(length(size(x))==2 &&... # size(x,2)==length(CFCcfg.fXcfg.BPFcfg.f0) &&... # size(x,1)==max(size(x)),... # 'Input argument error in function "function_PLV": Wrong shape of the input matrix "x".'); # assert(length(size(y))<=3 &&... # size(y,3)==length(CFCcfg.fXcfg.BPFcfg.f0) &&... # size(y,2)==length(CFCcfg.fYcfg.BPFcfg.f0) &&... # size(y,1)==max(size(y)),... # 'Input argument error in function "function_PLV": Wrong shape of the input matrix "y".'); # if ~isempty(wx), # assert(isequal(size(wx),size(x)),... # 'Input argument error in function "function_PLV": Wrong shape of the input matrix "wx".'); # end # if ~isempty(wy), # assert(isequal(size(wy),size(y)),... # 'Input argument error in function "function_PLV": Wrong shape of the input matrix "wy".'); # end # Default values of the outputs ---------------------------------- wxPLV = [] wyPLV = [] # ---------------------------------------------------------------- # Parameters ----------------------------------------------------- NfX = np.size(CFCcfg['fXcfg']['BPFcfg']['f0']) # Compute the length of the frequency vectors. NfY = np.size(CFCcfg['fYcfg']['BPFcfg']['f0']) # Compute the length of the frequency vectors. Ns = np.shape(x)[0] # Number of samples nX = CFCcfg['fXcfg']['n'] # Compute the harmonic number for detection of nX:nY phase locking nY = CFCcfg['fYcfg']['n'] # Compute the harmonic number for detection of nX:nY phase locking # ---------------------------------------------------------------- # Compute the modulation index "PLV" --------------------------------------- PLV = np.zeros((NfY,NfX),dtype=complex) # Memory pre-allocation for speed up the loop. for ii in range(NfY): # Loop across the "y" frequencies. PLV[ii,:] = np.sum(np.exp(1j * (nX*x - nY*y[:,ii,:])),0) / Ns # --------------------------------------------------------------------------- # # Compute the modulation index "wxPLV" ------------------------------------- # if ~isempty(wx): # wxPLV = np.zeros((NfY,NfX)) # Memory pre-allocation for speed up the loop. # for ii in range(NfY): # Loop across the "y" frequencies. # wxPLV(ii,:) = sum(wx.*exp(1j*(nX*x-nY*squeeze(y(:,ii,:)))),1) / Ns; # # ------------------------------------------------------------------------- # # Compute the modulation index "wyPLV" ------------------------------------- # if ~isempty(wy): # wyPLV = np.zeros((NfY,NfX)) # Memory pre-allocation for speed up the loop. # for ii in range(NfY): # Loop across the "y" frequencies. # wyPLV(ii,:) = sum(squeeze(wy(:,ii,:)).*exp(1j*(nX*x-nY*squeeze(y(:,ii,:)))),1) / Ns; # # ------------------------------------------------------------------------- return PLV, wxPLV, wyPLV # -------------------------------------------------------------------------------------- # --------------------------------------------------------------------------------------
[ "# -*- coding: utf-8 -*-\n\"\"\"\nCreated on September 2019\n@authors: Osvaldo M Velarde - Damián Dellavale - Javier Velez\n@title: Module - \"comodulogram\"\n\"\"\"\n\nimport numpy as np\n\nfrom sklearn.preprocessing import scale\nfrom scipy.signal import hilbert\n\nimport filtering\n\ndef function_setCFCcfg(CFCin):\n\n\t\"\"\"\n\tDescription:\n\tIn this function we compute the structures for the \"x\" and \"y\" axis of the comodulogram.\n\n\tInputs:\n\t- CFCin: Structure. Parameters of the comodulogram.\n\t\t\t\t- 'fXmin': Numeric value. Minimum frequency for the LF band [Hz].\n\t\t\t\t- 'fXmax': Numeric value. Maximum frequency for the LF band [Hz].\n\t\t\t\t- 'fYmin': Numeric value. Minimum frequency for the HF band [Hz].\n\t\t\t\t- 'fYmax': Numeric value. Maximum frequency for the HF band [Hz].\n\t\t\t\t- 'fXres': Numeric value. Frequency resolution for the LF band [Hz].\n\t\t\t\t- 'fYres': Numeric value. Frequency resolution for the HF band [Hz].\n\t\t\t\t- 'fXlookAt': String. \n\t\t\t\t\t\t\t Parameter of the signal observed in the range of\n\t \t frequency corresponding to the \"x\" axis.\n\t\t\t\t- 'fYlookAt': String.\n\t\t\t\t\t\t\t Parameter of the signal observed in the range of\n \t frequency corresponding to the \"y\" axis.\n\t\t\t\t- 'nX': Int value. Harmonic number for detection of fbX.n:fbY.n phase locking.\n\t\t\t\t- 'nY': Int value. Harmonic number for detection of fbX.n:fbY.n phase locking.\n\t\t\t\t- 'BPFXcfg': Structure. Band-Pass Filter configuration for the comodulogram's \"x\" axis.\n\t\t\t\t- 'BPFYcfg': Structure. Band-Pass Filter configuration for the comodulogram's \"y\" axis.\n\t\t\t\t- 'LPFcfg': Structure. Low-Pass Filter configuration to smooth the frequency time series.\n \tThe LPF Filter is used to smooth the frequency time series \n\t\t\t\t\t\t\t(fYlookAt = 'FREQUENCY' or 'PHASEofFREQUENCY').\n\t\t\t\t- 'saveBPFsignal': {0,1}. Flag to return the Band-Pass Filtered signals.\n 0 - Return a NaN.\n 1 - Return the filtered signals.\n\t\t\t\t- 'Nbins': Int value. \n\t\t\t\t\t\t Number of phase/amplitude bins used to compute the Histograms (p) of the comodulogram. \n\t\t\t\t- 'sameNumberOfCycles': {0,1}. Flag to configure the processing mode for signal x:\n 0 - Do not truncate the signal \"x\" to obtain the same number of cycles.\n 1 - Process the same number of cycles of signal \"x\" for all \"fX\" frequencies.\n\t\t\t\t- 'CFCmethod': String. {'plv','mi'}\n\t\t\t\t\t\t\tDefines the approach to compute the Cross frequency Coupling \n\t\t\t\t\t\t\t(PLV / methods to compute the MI).\n\t\t\t\t- 'verbose': Boolean {0,1}. \n\t\t\t\t\t\t\t 0: no message are shown.\n \t 1: show the messages.\n\t\t\t\t- 'perMethod': String. Method by which the surrogated time series are built. Options\n\t\t\t\t\t\t\t* 'trialShuffling'\n\t\t\t\t\t\t\t* 'sampleShuffling'\n \t* 'FFTphaseShuffling'\n \t* 'cutShuffling'\n\t\t\t\t- 'Nper': Int value. Number of permutations.\n\t\t\t\t\t\t It defines the number of surrogate histograms per\n\t\t\t\t\t\t repetition. It is worth noting that in each repetition, \"Nper\" surrogate histograms of size\n\t\t\t\t\t\t \"Nbins x NfY x NfX\" are stored in memory (RAM).\n\t\t\t\t- 'Nrep': Int value. Number of repetitions.\n\t\t\t\t\t\t In each repetition a \".mat\" file is written to disk,\n\t\t\t\t\t\t containing \"Nper\" surrogate histograms of size \"Nbins x NfY x NfX\". \n\t\t\t\t\t\t As a consequence, the final number of surrogate histograms is \"Nper x Nrep\".\n\t\t\t\t- 'Pvalue': Numeric value. P-value for the statistically significant level.\n\t\t\t\t- 'corrMultComp': String {'Bonferroni', 'pixelBased'}.\n\t\t\t\t\t\t\t\t Method to correct for multiple comparisons.\n\t\t\t\t- 'fs': Numeric value.\n\n\tOutputs:\n\t- CFCout: Structure. Parameters of the comodulogram.\n\t\t\t\t-'fXcfg', 'fYcfg': Structure. Parameters of the Frequency Band in \"x(y)\" axis.\n\t\t\t\t\t\t\t\t\t- 'start': \tNumeric value. Start frequency [Hz].\n\t\t\t\t\t\t\t\t\t- 'end':\tNumeric value. End frequency [Hz].\n\t\t\t\t\t\t\t\t\t- 'res': \tNumeric value. Frequency resolution [Hz].\n\t\t\t\t\t\t\t\t\t\t\t\tDefine the frequency separation between two consecutive BPFs.\n\t\t\t\t\t\t\t\t\t- 'BPFcfg': Structure. \n\t\t\t\t\t\t\t\t\t\t\t\tBand-Pass Filter configuration for the comodulogram's \"x(y)\" axis.\n\t\t\t\t\t\t\t\t\t- 'lookAt': String. Parameter of the signal (phase/amplitude) observed in the range of\n\t\t\t\t\t\t\t\t\t\t\t\tfrequency corresponding to the \"x(y)\" axis [none] (string).\n\t\t\t\t\t\t\t\t\t- 'n': Int value. Harmonic number for detection of fbX.n:fbY.n phase locking.\n\t\t\t\t\t\t\t\t\t\t\t\tRef: Detection of n,m Phase Locking from Noisy Data (Tass, 1998).pdf \n\t\t\t\t\t\t\t\t\t- 'LPFcfg' Structure.\n\t\t\t\t\t\t\t\t\t\t\t\tLow-Pass Filter configuration to smooth the frequency time series (structure array).\n \t\tThe LPF Filter is used to smooth the frequency time series (fYlookAt = 'FREQUENCY'\n \t\tor 'PHASEofFREQUENCY').\n\t\t\t\t\t\t\t\t\t- 'saveBPFsignal': Boolean. Flag to return the Band-Pass Filtered signals.\n\t\t\t\t\t\t\t\t\t\t\t\t0: Return a NaN.\n\t\t\t\t\t\t\t\t\t\t\t\t1: Return the filtered signals.\n\t\t\t\t\t\t\t\t\t- 'Nbins': Int value. Number of phase/amplitude bins used to compute the Histograms \n\t\t\t\t\t\t\t\t\t\t\t\t(p) of the comodulogram. \n \t\t- 'sameNumberOfCycles': Boolean. Flag to configure the processing mode for signal x.\n 0: Do not truncate the signal \"x\" to obtain the same number of cycles.\n 1: Process the same number of cycles of signal \"x\" for all \"fX\" frequencies.\n\t\t\t\t- 'CFCmethod'\n\t\t\t\t- 'verbose'\n\t\t\t\t- 'perMethod'\n\t\t\t\t- 'Nper'\n\t\t\t\t- 'Nrep'\n\t\t\t\t- 'Pvalue'\n\t\t\t\t- 'corrMultComp'\n\t\t\t\t- 'fs'\n\t\"\"\"\n\n\t# Default values of the outputs --------------------------------------------------\n\tfXcfg = {'start': CFCin['fXmin'], 'end': CFCin['fXmax'], 'res': CFCin['fXres'],\n\t\t \t 'BPFcfg': CFCin['BPFXcfg'], 'lookAt': CFCin['fXlookAt'],\n\t\t \t 'n': CFCin['nX'], 'Nbins': CFCin['Nbins'],\n\t\t \t 'sameNumberOfCycles': CFCin['sameNumberOfCycles'],\n\t\t \t 'saveBPFsignal': CFCin['saveBPFsignal']}\n\n\tfYcfg = {'start': CFCin['fYmin'], 'end': CFCin['fYmax'], 'res': CFCin['fYres'],\n\t\t\t 'BPFcfg': CFCin['BPFYcfg'], 'lookAt': CFCin['fYlookAt'],\n\t\t \t 'n': CFCin['nY'],\n\t\t \t 'saveBPFsignal': CFCin['saveBPFsignal']}\n\n\tif fYcfg['lookAt'].lower == 'frequency' or fYcfg['lookAt'].lower == 'phaseoffrequency':\n\t\tfYcfg['LPFcfg'] = CFCin['LPFcfg']\n\t# --------------------------------------------------------------------------------\n\n\t# Compute the start frequency for \"x\" axis taking into account the bandwidth of the band-pass filter.\n\tif CFCin['fXmin'] <= CFCin['BPFXcfg']['Bw']/2:\n\t\tfXcfg['start'] = CFCin['fXmin'] + CFCin['BPFXcfg']['Bw']/2\n\n\t# Compute the vector of frequency for the \"x\" axis ------------------------------- \n\tfXcfg['BPFcfg']['f0'] = np.linspace(fXcfg['start'],fXcfg['end'],np.ceil((fXcfg['end']-fXcfg['start'])/fXcfg['res']))\n\t#np.arange(fXcfg['start'],fXcfg['end']+fXcfg['res'],fXcfg['res'])\n\n\t# Compute the adaptive number of BPFs connected in series ------------------------\n\tif 'times' in fXcfg['BPFcfg'].keys() and len(fXcfg['BPFcfg']['times'])>1:\n\t\tfXcfg['BPFcfg']['times'] = np.linspace(fXcfg['BPFcfg']['times'][0],fXcfg['BPFcfg']['times'][-1],len(fXcfg['BPFcfg']['times']))\n\n\t# Compute the bandwidth for the BPFs in the \"y\" axis ----------------------------- \n\tif type(fYcfg['BPFcfg']['Bw']*1.0) == float: \t#Constant bandwidth\t\t\t\n\t\tfYcfg['BPFcfg']['Bw'] = fYcfg['BPFcfg']['Bw']*np.ones(np.shape(fXcfg['BPFcfg']['f0']))\n\telse:\t\t\t\t\t\t\t\t\t\t\t# Adaptive\n\t\tfYcfg['BPFcfg']['Bw'] = 2*fXcfg['BPFcfg']['f0']\n\n\t# Compute the start frequency for \"y\" axis taking into account the bandwidth of the band-pass filter.\n\tif fYcfg['start'] <= fYcfg['BPFcfg']['Bw'][0]/2:\n\t\tfYcfg['start'] = fYcfg['start'] + fYcfg['BPFcfg']['Bw'][0]/2\n\n\t# Compute the vector of frequency for the \"y\" axis --------------------------------\n\tfYcfg['BPFcfg']['f0'] = np.linspace(fYcfg['start'],fYcfg['end'],np.ceil((fYcfg['end']-fYcfg['start'])/fYcfg['res'])) \n\t#fYcfg['BPFcfg']['f0'] = np.arange(fYcfg['start'],fYcfg['end']+fYcfg['res'],fYcfg['res']) \n\n\t# Compute the adaptive number of BPFs connected in series -------------------------\n\tif 'times' in fYcfg['BPFcfg'].keys() and len(fYcfg['BPFcfg']['times'])>1:\n\t\tfYcfg['BPFcfg']['times'] = np.linspace(fYcfg['BPFcfg']['times'][0],fYcfg['BPFcfg']['times'][-1],len(fYcfg['BPFcfg']['times']))\n\n\t# Compute the output structure ----------------------------------------------------\n\tCFCout = {'fXcfg': fXcfg, 'fYcfg': fYcfg,\n\t \t\t \t'CFCmethod': CFCin['CFCmethod'],\n\t\t\t\t'verbose': CFCin['verbose'], 'perMethod': CFCin['perMethod'],\n\t\t\t\t'Nper': CFCin['Nper'], 'Nrep': CFCin['Nrep'],\n\t\t\t\t'Pvalue': CFCin['Pvalue'], 'corrMultComp': CFCin['corrMultComp'],\n\t\t\t\t'fs': CFCin['fs']}\n\n\treturn CFCout\n\n# --------------------------------------------------------------------------------------\n# --------------------------------------------------------------------------------------\n\nFILTERS_SWITCHER = {'function_FDF': filtering.function_FDF,\n 'function_eegfilt':filtering.function_eegfilt,\n 'function_butterBPF':filtering.function_butterBPF} \n\n# --------------------------------------------------------------------------------------\n# --------------------------------------------------------------------------------------\n\ndef function_comodulogramBPF(signal,BPFcfg,fs,indSettlingExt):\n\n \"\"\"\n Description:\n In this function we implement the Band-Pass Filtering of the input signal.\n The input signal is supposed to be a raw (unfiltered) time series.\n\n\n Inputs:\n - signal: Numeric array (Nsamples x 1). Data.\n - BPFcfg: Structure. \n Band-Pass Filter configuration for the comodulogram's \"x(y)\" axis.\n - 'function': string {'function_butterBPF', 'function_eegfilt', 'function_FDF'}\n It specifies the function for the Band-Pass Filter:\n * 'function_butterBPF', a BPF IIR filter is implemented using a series connection of a\n High-Pass followed by a Low-Pass Butterworth filters.\n * 'function_eegfilt', a BPF FIR filter is implemented using the \"eegfilt.m\" function from\n EEGLAB toolbox.\n * 'function_FDF', a Frequency Domain Filtering is implemented using a window function. \n - fs: Numeric value. Sampling rate [Hz].\n - indSettlingExt: Int value. External index for cutting out the transient response of the BPFs.\n If \"indSettlingExt\" is empty or NaN, the index for the longest settling time is used.\n\n Outputs:\n - indSettlingMax: Int value. Index corresponding to the longest transient response of the BPFs.\n - BPFsignal: Numeric array (Nsamples x Nf x NBw). Band-Pass Filtered signals.\n where: Ns = np.shape[signal,0]. Number of samples.\n Nf = len(fcfg['BPFcfg']['f0']). Number of frequencies.\n NBw = len(fcfg['BPFcfg']['Bw']). Number of Bandwidths.\n \"\"\"\n\n # Argument completion ------------------------------------------------------\n # if (nargin < 4)||isempty(signal)...\n # ||isempty(BPFcfg)...\n # ||isempty(fs)...\n # ||isempty(indSettlingExt),...\n # error('MATLAB:function_comodulogramBPF','Input argument error.');\n # end\n\n if 'f1' in BPFcfg.keys() and 'f2' in BPFcfg.keys():\n # Compute the cutoff frequencies.\n BPFcfg['f0'] = (BPFcfg['f1'] + BPFcfg['f2']) / 2 # Arithmetic mean.\n # BPFcfg['f0'] = np.sqrt(BPFcfg['f1'] * BPFcfg['f2']) %Geometric mean.\n # %Ref: https://en.wikipedia.org/wiki/Center_frequency\n BPFcfg['Bw'] = BPFcfg['f2'] - BPFcfg['f1']\n #elseif ~isfield(BPFcfg, 'f0') || ~isfield(BPFcfg, 'Bw'),\n # error('MATLAB:function_comodulogramBPF','Error in the BPF configuration (BPFcfg).');\n\n # --------------------------------------------------------------------------\n\n # Check the input arguments ------------------------------------------------\n #assert(size(signal,2)==1, 'Input argument error in function \"function_comodulogramBPF\": The signal must be a column array.');\n #assert(isstruct(BPFcfg), 'Input argument error in function \"function_comodulogramBPF\": BPFcfg must be a structure array.');\n #assert(isnumeric(indSettlingExt)&&(indSettlingExt>0)&&(length(indSettlingExt)==1),...\n # 'Input argument error in function \"function_comodulogramBPFandFeature\": The value for \"indSettlingExt\" is not valid.');\n # --------------------------------------------------------------------------\n\n # Default values of the outputs --------------------------------------------\n Nf = np.size(BPFcfg['f0']) # Number of frequencies.\n NBw = np.size(BPFcfg['Bw']) # Number of Bandwidths.\n fnyq = fs/2 # [Hz] Nyquist frequency.\n Ncycle = np.round(fs / np.atleast_1d(BPFcfg['f0'])[0]) # Compute the samples per period for the minimum frequency. \n Ns = np.shape(signal)[0] # Compute the number of samples of the input signal.\n Ns_cropped = Ns - 2*(indSettlingExt-1) # Compute the final length of the time series after clipping.\n\n # if Ncycle >= Ns_cropped:\n # error('MATLAB:function_comodulogramBPF',...\n # 'The time series is too short: it does not include at least one period of the minimum frequency.')\n\n # --------------------------------------------------------------------------\n\n # Initializes the index corresponding to the maximum settling time with the external value.\n indSettlingMax = indSettlingExt\n # --------------------------------------------------------------------------\n\n ## Band-Pass Filtering -----------------------------------------------------\n \n BPFsignal = np.zeros((Ns_cropped, Nf, NBw)) # Memory pre-allocation.\n\n for ii in range(NBw): # Loop for Bandwidths.\n BPFsignal_local = np.zeros((Ns, Nf)) # Memory pre-allocation.\n indSettling = np.zeros((1, Nf)) # Memory pre-allocation.\n\n for jj in range(Nf): # Loop for frequencies.\n BPFcfg_local = BPFcfg # Extract the parameters for the BPF configuration.\n BPFcfg_local['Bw'] = np.atleast_1d(BPFcfg['Bw'])[ii]\n BPFcfg_local['f0'] = np.atleast_1d(BPFcfg['f0'])[jj] \n\n # Do not compute the cases in which,\n # 1) the lower cutoff frequency is lesser than or equal to zero.\n # 2) the higher cutoff frequency is greater than or equal to one.\n # Ref: Lega 2014 PAC in human hippocampus.pdf\n\n if (BPFcfg_local['f0']-BPFcfg_local['Bw']/2)<=fs/Ns or (BPFcfg_local['f0']+BPFcfg_local['Bw']/2)/fnyq>=1:\n continue\n # -------------------------------------------------------------------\n\n filter_function = FILTERS_SWITCHER.get(BPFcfg_local['function'], lambda: \"Invalid method\") # Switch for filter selection.\n BPFsignal_localjj, indSettling[jj], _ , _ = filter_function(signal, BPFcfg_local, fs)\n BPFsignal_local[:,jj] = np.real(np.squeeze(BPFsignal_localjj))\n \n # VER: Para el caso butterBPF, se ejecutaba esto antes de filter_function\n # case 'function_butterBPF', # Band-Pass Filter (IIR) using a series connection of a High-Pass followed by a Low-Pass Butterworth filters.\n # if length(BPFcfg_local.times)>1, %Adaptive number of BPFs connected in series.\n # BPFcfg_local.times = BPFcfg.times(jj);\n \n # -----------------------------------------------------------------------\n \n # Cut out the transient response of the BPFs -----------------------------\n indSettlingMax = max([indSettling, indSettlingMax]) # Compute the index for the largest settling time.\n\n if indSettlingMax > indSettlingExt: # Compare the internal and external settling time indices.\n print('Un msj no implementado- function_comodulogramBPF_v1_225')\n #warning('MATLAB:function_comodulogramBPF',...\n # 'The transient response have not completely removed using \"indSettlingExt\":');\n #display(['Relative difference = ' num2str(100*(indSettlingExt-indSettlingMax)/indSettlingMax) '%.']); \n\n BPFsignal_local = BPFsignal_local[indSettlingExt-1:BPFsignal_local.shape[0]-(indSettlingExt-1),:] # Cutting out the BPFs' transient response. \n # -----------------------------------------------------------------------\n\n BPFsignal[:,:,ii] = BPFsignal_local\n\n #This is required in the case of a single Bandwidth.\n #if NBw==1:\n # BPFsignal = np.squeeze(BPFsignal)\n\n return BPFsignal, indSettlingMax\n\n# --------------------------------------------------------------------------------------\n# --------------------------------------------------------------------------------------\n\n# --------------------------------------------------------------------------------------\n# --------------------------------------------------------------------------------------\n\ndef function_feature_phase(signal):\n \"\"\" \n Description:\n Compute the phase of the z-scored BPF signal.\n\n Remark:\n Before the computation of the phase signal, the time series should be\n normalized, de-trended, or mean-subtracted to have the DC-component removed.\n this ensures that phase values are not limited in range.\n \n Ref: \n Assessing transient cross-frequency coupling in EEG data (Cohen 2008).pdf\n\n Angle [rad] in (-pi,pi]\n \"\"\"\n\n return np.angle(hilbert(scale(signal),axis=0))\n\ndef function_feature_amplitude(signal):\n \"\"\" \n Description:\n Compute the amplitude (signal envelope).\n Amplitude envelope of the signal (AM demodulation).\n\n \"\"\"\n\n return np.abs(hilbert(signal,axis=0))\n\ndef function_feature_phofamp(signal):\n \"\"\" \n Description:\n Phase of the signal's amplitude envelope.\n \n Remark:\n Before the computation of the phase signal, the time series should be\n normalized, de-trended, or mean-subtracted to have the DC-component removed;\n this ensures that phase values are not limited in range.\n \n Ref: Assessing transient cross-frequency coupling in EEG data (Cohen 2008).pdf\n\n \"\"\"\n\n BPFfeature = np.abs(hilbert(signal,axis=0)) # Compute the amplitudes (signal envelope).\n BPFfeature = scale(BPFfeature) # Normalization in order to avoid phase skew. \n BPFfeature = np.angle(hilbert(BPFfeature,axis=0)) # Compute the phase of the envelope. [rad] range:(-pi,pi]\n\n return BPFfeature\n\ndef function_feature_frequency(signal):\n print('Sin implementar. Devuelve 0')\n return 0\n\ndef function_feature_phoffreq(signal):\n print('Sin implementar. Devuelve 0')\n return 0\n\nLIST_FEATURES = {'phase':function_feature_phase,\n 'amplitude':function_feature_amplitude,\n 'phaseofamplitude':function_feature_phofamp,\n 'frequency':function_feature_frequency,\n 'phaseoffrequency':function_feature_phoffreq}\n\n# --------------------------------------------------------------------------------------\n# --------------------------------------------------------------------------------------\n\ndef function_comodulogramFeature(signal,fcfg,fs,indSettlingExt):\n\n \"\"\"\n Description:\n In this function we implement the extraction of the phase/amplitude/frequency \n time series from the input signals. The input signals are supposed to be \n previously Band-Pass Filtered signals around the frequency bands of interest.\n\n Inputs:\n - signal. Numeric array (Ns x Nf x NBw)\n Band-Pass Filtered signals. Notation:\n Ns: Number of samples.\n Nf: Number of frequencies. len(fcfg['BPFcfg']['f0'])\n NBw: Number of Bandwidths. len(fcfg['BPFcfg']['Bw'])\n\n - fcfg. Structure. Parameters of the Frequency Band in \"x(y)\" axis.\n - 'start': Numeric value. Start frequency [Hz].\n - 'end': Numeric value. End frequency [Hz].\n - 'res': Numeric value. Frequency resolution [Hz].\n Define the frequency separation between two consecutive BPFs. \n - 'BPFcfg': Structure.\n Band-Pass Filter configuration for the comodulogram's \"x(y)\" axis.\n - 'lookAt': String. Parameter of the signal (phase/amplitude/frequency) observed in the range of\n frequency corresponding to the \"x(y)\" axis [none].\n - 'LPFcfg': Structure. Low-Pass Filter configuration to smooth the frequency time series.\n The LPF Filter is used to smooth the frequency time series (fYlookAt = 'FREQUENCY' or 'PHASEofFREQUENCY').\n - 'saveBPFsignal': Boolean value. Flag to return the Band-Pass Filtered signals.\n *0: Return a NaN.\n *1: Return the filtered signals. \n - 'Nbins': Integer value. \n Number of phase/amplitude/frequency bins used to compute the Histograms (p) of the comodulogram. \n\n - 'sameNumberOfCycles': Boolean value. Flag to configure the processing mode for signal x.\n *0: Do not truncate the signal \"x\" to obtain the same number of cycles.\n *1: Process the same number of cycles of signal \"x\" for all \"fX\" frequencies.\n - fs: Numeric value. Sampling rate [Hz].\n - indSettlingExt: Integer value. \n External index for cutting out the transient response of the BPFs.\n If \"indSettlingExt\" is empty or NaN, the index for the longest settling time is used.\n\n Outputs:\n - BPFfeature: Numeric array (Ns x NF x NBw)\n Phase/amplitud/frequency time series for the \"x\" or \"y\" axis of the comodulogram\n\n - croppedSignal: Numeric array (Ns-2*(indSettlingExt-1) x Nf x NBw) \n Cropped Band-Pass Filtered signals (in the case of saveBPFsignal=1)\n \"\"\"\n\n # %Argument completion ------------------------------------------------------\n # if (nargin < 4)||isempty(signal)...\n # ||isempty(fcfg)...\n # ||isempty(fs)...\n # ||isempty(indSettlingExt),...\n # error('MATLAB:function_comodulogramFeature','Input argument error.');\n # end\n\n if 'f1' in fcfg['BPFcfg'].keys() and 'f2' in fcfg['BPFcfg'].keys():\n # Compute the cutoff frequencies.\n fcfg['BPFcfg']['f0'] = (fcfg['BPFcfg']['f1'] + fcfg['BPFcfg']['f2']) / 2 # Arithmetic mean.\n #%fcfg.BPFcfg.f0 = sqrt(fcfg.BPFcfg.f1 * fcfg.BPFcfg.f2); %Geometric mean.\n #%Ref: https://en.wikipedia.org/wiki/Center_frequency\n fcfg['BPFcfg']['Bw'] = fcfg['BPFcfg']['f2'] - fcfg['BPFcfg']['f1']\n #elif ~isfield(fcfg.BPFcfg, 'f0') || ~isfield(fcfg.BPFcfg, 'Bw'),\n # error('MATLAB:function_comodulogramFeature','Error in the BPF configuration (BPFcfg).');\n\n # Check the input arguments ------------------------------------------------\n # assert(max(size(signal))==size(signal,1), 'Input argument error in function \"function_comodulogramFeature\": The signal must be a column array.');\n # assert(isstruct(fcfg), 'Input argument error in function \"function_comodulogramFeature\": fcfg must be a structure array.');\n # assert(isstruct(fcfg.BPFcfg), 'Input argument error in function \"function_comodulogramFeature\": BPFcfg structure not found.');\n # assert(isnumeric(indSettlingExt)&&(indSettlingExt>0)&&(length(indSettlingExt)==1),...\n # 'Input argument error in function \"function_comodulogramBPFandFeature\": The value for \"indSettlingExt\" is not valid.');\n\n\n # Default values of the outputs --------------------------------------------\n croppedSignal = []\n Nf = np.size(fcfg['BPFcfg']['f0']) # Number of frequencies.\n NBw = np.size(fcfg['BPFcfg']['Bw']) # Number of Bandwidths.\n fnyq = fs/2 # [Hz] Nyquist frequency.\n Ns = np.shape(signal)[0] # Compute the number of samples of the input signal.\n Ns_cropped = Ns - 2*(indSettlingExt-1) # Compute the final length of the time series after clipping.\n # --------------------------------------------------------------------------\n \n # Feature extraction -------------------------------------------------------\n BPFfeature = np.zeros((Ns_cropped, Nf, NBw)) # Memory pre-allocation for speed up the loop.\n\n if fcfg['saveBPFsignal']:\n croppedSignal = np.zeros((Ns_cropped, Nf, NBw))\n\n for ii in range(NBw): # Loop for Bandwidths.\n\n signal_local = signal[:,:,ii]\n \n # Selection and computation of features --------------------------------\n feature = fcfg['lookAt'].lower()\n function_feature = LIST_FEATURES.get(feature, lambda: \"Invalid method\")\n BPFfeature_local= function_feature(signal_local)\n\n # ----------------------------------------------------------------------\n\n BPFfeature_local = BPFfeature_local[indSettlingExt-1:BPFfeature_local.shape[0]-(indSettlingExt-1),:] # We remove the transient due to the Hilbert transform. \n BPFfeature[:,:,ii] = BPFfeature_local\n\n if fcfg['saveBPFsignal']:\n # Cutting out the transient response AFTER the phase/amplitude/frequency extraction.\n croppedSignal[:,:,ii] = signal_local[indSettlingExt-1:signal_local.shape[0]-(indSettlingExt-1),:] \n\n # ----------------------------------------------------------------------\n # This is required in the case of a single Bandwidth. (VER)\n # if NBw==1:\n # BPFfeature = np.squeeze(BPFfeature)\n # croppedSignal = np.squeeze(croppedSignal)\n\n return BPFfeature, croppedSignal\n\n# --------------------------------------------------------------------------------------\n# --------------------------------------------------------------------------------------\n\ndef function_PLV(x,y, wx, wy, CFCcfg):\n\t\"\"\"\n\tDescription: \n\tIn this function we compute the Phase Locking Values.\n\n\tRefs:\n\t[1] /PhaseLockingValue/function_PhaseLockingValue_v1.m\n\t[2] Measuring Phase-Amplitude Coupling Between Neuronal Oscillations (Tort, 2010).pdf, p. 1198\n\t[3] High gamma power is phase-locked to theta oscillations (Canolty, 2006).pdf\n\t[4] Phase Locking from Noisy Data (Tass, 1998).pdf\n Ref: Detection of n,m Phase Locking from Noisy Data (Tass, 1998).pdf \n\n\tInputs:\n\t\t- x: Numeric array (Nsamples x NfX).\n\t\t \t Data for the comodulogram's \"x\" axis (matrix: samples x NfX).\n\t\t- y: Numeric array (Nsamples x NfY x NfX). \n\t\t Data for the comodulogram's \"y\" axis (matrix: samples x NfY x NfX).\n\t\t- wx: Numeric array (Nsamples x NfX). \n\t\t\t Weights related to the comodulogram's \"x\" axis (matrix: samples x NfX).\n\t\t- wy: Numeric array (Nsamples x NfY x NfX).\n\t\t Weights related to the comodulogram's \"y\" axis (matrix: samples x NfY x NfX).\n\t\t- CFCcfc: structure. \n\t\t\t\t Parameters of the comodulogram (structure array)\n\t\t\t\t - 'fXcfg': structure.\n\t\t\t\t \t\t\t Parameters of the Frequency Band in \"x\" axis.\n\t\t\t\t - 'fYcfg': structure. \n\t\t\t\t \t\t\t Parameters of the Frequency Band in \"y\" axis.\n\t\t\t\t \t\t\t-'start': Numeric value. Start frequency [Hz].\n\t\t\t\t \t\t\t-'end': Numeric value. End frequency [Hz].\n\t\t\t\t \t\t\t-'res': Numeric value. Frequency resolution.\n\t\t\t\t \t\t\t\t\t Define the frequency separation between two consecutive BPFs.\n\t\t\t\t \t\t\t-'BPFcfg': Structure. Band-Pass Filter configuration for the comodulogram's axis.\n\t\t\t\t\t\t\t-'lookAt': String.\n\t\t\t\t\t\t\t\t\t Parameter of the signal (phase/amplitude) observed in the range of\n\t\t\t\t\t\t\t\t\t frequency [none] (string).\n\t\t\t\t\t\t\t-'n': Int value. Harmonic number for detection of phase locking.\n\t\t\t\t\t\t\t-'saveBPFsignal': {0,1}. Flag to return the Band-Pass Filtered signals. \n\t\t\t\t\t\t\t\t\t\t\t 0 - Return a NaN.\n 1 - Return the filtered signals.\n -'Nbins': Int value.\n \t\t Number of phase/amplitude bins used to compute the Histograms (p) of the comodulogram. \n -'sameNumberOfCycles': {0,1}. Flag to configure the processing mode for signal x.\n \t\t\t\t\t 0 - Do not truncate the signal \"x\" to obtain the same number \n \t\t\t\t\t \t of cycles.\n 1 - Process the same number of cycles of signal \"x\" for all \n\t\t\t\t\t\t\t\t\t\t\t\t\t \"fX\" frequencies.\n\t\t\t\t - 'CFCmethod': String.\n\t\t\t\t \t\t\t\t Defines the approach to compute the Cross frequency Coupling. E.g: 'plv'.\n\t\t\t\t - 'verbose': Boolean. Display flag. \n\t\t\t\t - 'perMethod': {'trialShuffling', 'sampleShuffling', 'FFTphaseShuffling', 'cutShuffling'}. \n\t\t\t\t \t\t\t\t Method by which the surrogated time series are built.\n\t\t\t\t - 'Nper': Int value. \n\t\t\t\t \t\t Number of permutations. It defines the number of surrogate histograms per\n repetition. It is worth noting that in each repetition, \"Nper\" surrogate \n\t\t\t\t\t\t\thistograms of size \"Nbins x NfY x NfX\" are stored in memory (RAM).\n\t\t\t\t - 'Nrep': Int value.\n\t\t\t\t Number of repetitions. In each repetition a \".mat\" file is written to disk,\n\t containing \"Nper\" surrogate histograms of size \"Nbins x NfY x NfX\". \n \tAs a consequence, the final number of surrogate histograms is \"Nper x Nrep\".\n\t\t\t\t - 'Pvalue': Numeric value. P-value for the statistically significant level.\n\t\t\t\t - 'corrMultComp': {'Bonferroni', 'pixelBased'} Method to correct for multiple comparisons.\n\t\t\t\t - 'fs': Numeric value. Sampling rate [Hz].\n\n\tOutputs:\n\t\t- PLV: Numeric array (NfY x NfX).\n\t\t\t Phase Locking Value.\n\t\t- wxPLV: Numeric array (NfY x NfX).\n\t\t\t\t Weighted Phase Locking Values using the wx weights (matrix: NfY x NfX).\n\t\t- wyPLV: Numeric array (NfY x NfX). \n\t\t\t\t Weighted Phase Locking Values using the wy weights (matrix: NfY x NfX).\n\n\t \t\t\t NfX = length(CFCcfg['fXcfg']['BPFcfg']['f0'])\n\t \t\t\t NfY = length(CFCcfg['fYcfg']['BPFcfg']['f0'])\n\t\"\"\"\n\n\t## Argument completion\n\n\t# if (nargin < 5)||isempty(x)||isempty(y)||isempty(CFCcfg),...\n\t# error('MATLAB:function_PLV','Input argument error.');\n\t# end\n\n\t## Check the input arguments\n\t# assert(isstruct(CFCcfg), 'Input argument error in function \"function_PLV\": CFCcfg must be a structure array.');\n\n\t# if ~isfield(CFCcfg.fXcfg, 'n')||isempty(CFCcfg.fXcfg.n)||isnan(CFCcfg.fXcfg.n),\n\t# CFCcfg.fXcfg.n = 1; %Default value.\n\t# warning('MATLAB:function_PLV', ['\"CFCcfg.fXcfg.n\" is not specified, the default value is used: CFCcfg.fXcfg.n = ',...\n\t# num2str(CFCcfg.fXcfg.n)]); \n\t# end \n\n\t# if ~isfield(CFCcfg.fYcfg, 'n')||isempty(CFCcfg.fYcfg.n)||isnan(CFCcfg.fYcfg.n),\n\t# CFCcfg.fYcfg.n = 1; %Default value.\n\t# warning('MATLAB:function_PLV', ['\"CFCcfg.fYcfg.n\" is not specified, the default value is used: CFCcfg.fYcfg.n = ',...\n\t# num2str(CFCcfg.fYcfg.n)]); \n\t# end \n\n\t# assert(length(size(x))==2 &&...\n\t# size(x,2)==length(CFCcfg.fXcfg.BPFcfg.f0) &&...\n\t# size(x,1)==max(size(x)),...\n\t# 'Input argument error in function \"function_PLV\": Wrong shape of the input matrix \"x\".');\n\n\t# assert(length(size(y))<=3 &&...\n\t# size(y,3)==length(CFCcfg.fXcfg.BPFcfg.f0) &&...\n\t# size(y,2)==length(CFCcfg.fYcfg.BPFcfg.f0) &&...\n\t# size(y,1)==max(size(y)),...\n\t# 'Input argument error in function \"function_PLV\": Wrong shape of the input matrix \"y\".');\n\n\t# if ~isempty(wx),\n\t# assert(isequal(size(wx),size(x)),...\n\t# 'Input argument error in function \"function_PLV\": Wrong shape of the input matrix \"wx\".');\n\t# end\n\n\t# if ~isempty(wy),\n\t# assert(isequal(size(wy),size(y)),...\n\t# 'Input argument error in function \"function_PLV\": Wrong shape of the input matrix \"wy\".');\n\t# end\n\n\t# Default values of the outputs ----------------------------------\n\twxPLV = []\n\twyPLV = []\n\t# ----------------------------------------------------------------\n\n\t# Parameters -----------------------------------------------------\n\tNfX = np.size(CFCcfg['fXcfg']['BPFcfg']['f0']) # Compute the length of the frequency vectors.\n\tNfY = np.size(CFCcfg['fYcfg']['BPFcfg']['f0']) # Compute the length of the frequency vectors.\n\tNs = np.shape(x)[0]\t# Number of samples\n\tnX = CFCcfg['fXcfg']['n'] # Compute the harmonic number for detection of nX:nY phase locking\n\tnY = CFCcfg['fYcfg']['n'] # Compute the harmonic number for detection of nX:nY phase locking\n\t# ----------------------------------------------------------------\n\n\t# Compute the modulation index \"PLV\" ---------------------------------------\n\tPLV = np.zeros((NfY,NfX),dtype=complex) # Memory pre-allocation for speed up the loop. \n\n\tfor ii in range(NfY): # Loop across the \"y\" frequencies.\n\t\tPLV[ii,:] = np.sum(np.exp(1j * (nX*x - nY*y[:,ii,:])),0) / Ns\n\t# ---------------------------------------------------------------------------\n\n\t# # Compute the modulation index \"wxPLV\" -------------------------------------\n\t# if ~isempty(wx):\n\t# \twxPLV = np.zeros((NfY,NfX)) # Memory pre-allocation for speed up the loop.\n\t# \tfor ii in range(NfY): # Loop across the \"y\" frequencies.\n\t# \t\twxPLV(ii,:) = sum(wx.*exp(1j*(nX*x-nY*squeeze(y(:,ii,:)))),1) / Ns;\n\t# # -------------------------------------------------------------------------\n\n\t# # Compute the modulation index \"wyPLV\" -------------------------------------\n\t# if ~isempty(wy):\n\t# \twyPLV = np.zeros((NfY,NfX)) # Memory pre-allocation for speed up the loop.\n\t# \tfor ii in range(NfY): # Loop across the \"y\" frequencies.\n\t# \t\twyPLV(ii,:) = sum(squeeze(wy(:,ii,:)).*exp(1j*(nX*x-nY*squeeze(y(:,ii,:)))),1) / Ns;\n\t# # -------------------------------------------------------------------------\n\n\treturn PLV, wxPLV, wyPLV\n\n# --------------------------------------------------------------------------------------\n# --------------------------------------------------------------------------------------", "<docstring token>\nimport numpy as np\nfrom sklearn.preprocessing import scale\nfrom scipy.signal import hilbert\nimport filtering\n\n\ndef function_setCFCcfg(CFCin):\n \"\"\"\n\tDescription:\n\tIn this function we compute the structures for the \"x\" and \"y\" axis of the comodulogram.\n\n\tInputs:\n\t- CFCin: Structure. Parameters of the comodulogram.\n\t\t\t\t- 'fXmin': Numeric value. Minimum frequency for the LF band [Hz].\n\t\t\t\t- 'fXmax': Numeric value. Maximum frequency for the LF band [Hz].\n\t\t\t\t- 'fYmin': Numeric value. Minimum frequency for the HF band [Hz].\n\t\t\t\t- 'fYmax': Numeric value. Maximum frequency for the HF band [Hz].\n\t\t\t\t- 'fXres': Numeric value. Frequency resolution for the LF band [Hz].\n\t\t\t\t- 'fYres': Numeric value. Frequency resolution for the HF band [Hz].\n\t\t\t\t- 'fXlookAt': String. \n\t\t\t\t\t\t\t Parameter of the signal observed in the range of\n\t \t frequency corresponding to the \"x\" axis.\n\t\t\t\t- 'fYlookAt': String.\n\t\t\t\t\t\t\t Parameter of the signal observed in the range of\n \t frequency corresponding to the \"y\" axis.\n\t\t\t\t- 'nX': Int value. Harmonic number for detection of fbX.n:fbY.n phase locking.\n\t\t\t\t- 'nY': Int value. Harmonic number for detection of fbX.n:fbY.n phase locking.\n\t\t\t\t- 'BPFXcfg': Structure. Band-Pass Filter configuration for the comodulogram's \"x\" axis.\n\t\t\t\t- 'BPFYcfg': Structure. Band-Pass Filter configuration for the comodulogram's \"y\" axis.\n\t\t\t\t- 'LPFcfg': Structure. Low-Pass Filter configuration to smooth the frequency time series.\n \tThe LPF Filter is used to smooth the frequency time series \n\t\t\t\t\t\t\t(fYlookAt = 'FREQUENCY' or 'PHASEofFREQUENCY').\n\t\t\t\t- 'saveBPFsignal': {0,1}. Flag to return the Band-Pass Filtered signals.\n 0 - Return a NaN.\n 1 - Return the filtered signals.\n\t\t\t\t- 'Nbins': Int value. \n\t\t\t\t\t\t Number of phase/amplitude bins used to compute the Histograms (p) of the comodulogram. \n\t\t\t\t- 'sameNumberOfCycles': {0,1}. Flag to configure the processing mode for signal x:\n 0 - Do not truncate the signal \"x\" to obtain the same number of cycles.\n 1 - Process the same number of cycles of signal \"x\" for all \"fX\" frequencies.\n\t\t\t\t- 'CFCmethod': String. {'plv','mi'}\n\t\t\t\t\t\t\tDefines the approach to compute the Cross frequency Coupling \n\t\t\t\t\t\t\t(PLV / methods to compute the MI).\n\t\t\t\t- 'verbose': Boolean {0,1}. \n\t\t\t\t\t\t\t 0: no message are shown.\n \t 1: show the messages.\n\t\t\t\t- 'perMethod': String. Method by which the surrogated time series are built. Options\n\t\t\t\t\t\t\t* 'trialShuffling'\n\t\t\t\t\t\t\t* 'sampleShuffling'\n \t* 'FFTphaseShuffling'\n \t* 'cutShuffling'\n\t\t\t\t- 'Nper': Int value. Number of permutations.\n\t\t\t\t\t\t It defines the number of surrogate histograms per\n\t\t\t\t\t\t repetition. It is worth noting that in each repetition, \"Nper\" surrogate histograms of size\n\t\t\t\t\t\t \"Nbins x NfY x NfX\" are stored in memory (RAM).\n\t\t\t\t- 'Nrep': Int value. Number of repetitions.\n\t\t\t\t\t\t In each repetition a \".mat\" file is written to disk,\n\t\t\t\t\t\t containing \"Nper\" surrogate histograms of size \"Nbins x NfY x NfX\". \n\t\t\t\t\t\t As a consequence, the final number of surrogate histograms is \"Nper x Nrep\".\n\t\t\t\t- 'Pvalue': Numeric value. P-value for the statistically significant level.\n\t\t\t\t- 'corrMultComp': String {'Bonferroni', 'pixelBased'}.\n\t\t\t\t\t\t\t\t Method to correct for multiple comparisons.\n\t\t\t\t- 'fs': Numeric value.\n\n\tOutputs:\n\t- CFCout: Structure. Parameters of the comodulogram.\n\t\t\t\t-'fXcfg', 'fYcfg': Structure. Parameters of the Frequency Band in \"x(y)\" axis.\n\t\t\t\t\t\t\t\t\t- 'start': \tNumeric value. Start frequency [Hz].\n\t\t\t\t\t\t\t\t\t- 'end':\tNumeric value. End frequency [Hz].\n\t\t\t\t\t\t\t\t\t- 'res': \tNumeric value. Frequency resolution [Hz].\n\t\t\t\t\t\t\t\t\t\t\t\tDefine the frequency separation between two consecutive BPFs.\n\t\t\t\t\t\t\t\t\t- 'BPFcfg': Structure. \n\t\t\t\t\t\t\t\t\t\t\t\tBand-Pass Filter configuration for the comodulogram's \"x(y)\" axis.\n\t\t\t\t\t\t\t\t\t- 'lookAt': String. Parameter of the signal (phase/amplitude) observed in the range of\n\t\t\t\t\t\t\t\t\t\t\t\tfrequency corresponding to the \"x(y)\" axis [none] (string).\n\t\t\t\t\t\t\t\t\t- 'n': Int value. Harmonic number for detection of fbX.n:fbY.n phase locking.\n\t\t\t\t\t\t\t\t\t\t\t\tRef: Detection of n,m Phase Locking from Noisy Data (Tass, 1998).pdf \n\t\t\t\t\t\t\t\t\t- 'LPFcfg' Structure.\n\t\t\t\t\t\t\t\t\t\t\t\tLow-Pass Filter configuration to smooth the frequency time series (structure array).\n \t\tThe LPF Filter is used to smooth the frequency time series (fYlookAt = 'FREQUENCY'\n \t\tor 'PHASEofFREQUENCY').\n\t\t\t\t\t\t\t\t\t- 'saveBPFsignal': Boolean. Flag to return the Band-Pass Filtered signals.\n\t\t\t\t\t\t\t\t\t\t\t\t0: Return a NaN.\n\t\t\t\t\t\t\t\t\t\t\t\t1: Return the filtered signals.\n\t\t\t\t\t\t\t\t\t- 'Nbins': Int value. Number of phase/amplitude bins used to compute the Histograms \n\t\t\t\t\t\t\t\t\t\t\t\t(p) of the comodulogram. \n \t\t- 'sameNumberOfCycles': Boolean. Flag to configure the processing mode for signal x.\n 0: Do not truncate the signal \"x\" to obtain the same number of cycles.\n 1: Process the same number of cycles of signal \"x\" for all \"fX\" frequencies.\n\t\t\t\t- 'CFCmethod'\n\t\t\t\t- 'verbose'\n\t\t\t\t- 'perMethod'\n\t\t\t\t- 'Nper'\n\t\t\t\t- 'Nrep'\n\t\t\t\t- 'Pvalue'\n\t\t\t\t- 'corrMultComp'\n\t\t\t\t- 'fs'\n\t\"\"\"\n fXcfg = {'start': CFCin['fXmin'], 'end': CFCin['fXmax'], 'res': CFCin[\n 'fXres'], 'BPFcfg': CFCin['BPFXcfg'], 'lookAt': CFCin['fXlookAt'],\n 'n': CFCin['nX'], 'Nbins': CFCin['Nbins'], 'sameNumberOfCycles':\n CFCin['sameNumberOfCycles'], 'saveBPFsignal': CFCin['saveBPFsignal']}\n fYcfg = {'start': CFCin['fYmin'], 'end': CFCin['fYmax'], 'res': CFCin[\n 'fYres'], 'BPFcfg': CFCin['BPFYcfg'], 'lookAt': CFCin['fYlookAt'],\n 'n': CFCin['nY'], 'saveBPFsignal': CFCin['saveBPFsignal']}\n if fYcfg['lookAt'].lower == 'frequency' or fYcfg['lookAt'\n ].lower == 'phaseoffrequency':\n fYcfg['LPFcfg'] = CFCin['LPFcfg']\n if CFCin['fXmin'] <= CFCin['BPFXcfg']['Bw'] / 2:\n fXcfg['start'] = CFCin['fXmin'] + CFCin['BPFXcfg']['Bw'] / 2\n fXcfg['BPFcfg']['f0'] = np.linspace(fXcfg['start'], fXcfg['end'], np.\n ceil((fXcfg['end'] - fXcfg['start']) / fXcfg['res']))\n if 'times' in fXcfg['BPFcfg'].keys() and len(fXcfg['BPFcfg']['times']) > 1:\n fXcfg['BPFcfg']['times'] = np.linspace(fXcfg['BPFcfg']['times'][0],\n fXcfg['BPFcfg']['times'][-1], len(fXcfg['BPFcfg']['times']))\n if type(fYcfg['BPFcfg']['Bw'] * 1.0) == float:\n fYcfg['BPFcfg']['Bw'] = fYcfg['BPFcfg']['Bw'] * np.ones(np.shape(\n fXcfg['BPFcfg']['f0']))\n else:\n fYcfg['BPFcfg']['Bw'] = 2 * fXcfg['BPFcfg']['f0']\n if fYcfg['start'] <= fYcfg['BPFcfg']['Bw'][0] / 2:\n fYcfg['start'] = fYcfg['start'] + fYcfg['BPFcfg']['Bw'][0] / 2\n fYcfg['BPFcfg']['f0'] = np.linspace(fYcfg['start'], fYcfg['end'], np.\n ceil((fYcfg['end'] - fYcfg['start']) / fYcfg['res']))\n if 'times' in fYcfg['BPFcfg'].keys() and len(fYcfg['BPFcfg']['times']) > 1:\n fYcfg['BPFcfg']['times'] = np.linspace(fYcfg['BPFcfg']['times'][0],\n fYcfg['BPFcfg']['times'][-1], len(fYcfg['BPFcfg']['times']))\n CFCout = {'fXcfg': fXcfg, 'fYcfg': fYcfg, 'CFCmethod': CFCin[\n 'CFCmethod'], 'verbose': CFCin['verbose'], 'perMethod': CFCin[\n 'perMethod'], 'Nper': CFCin['Nper'], 'Nrep': CFCin['Nrep'],\n 'Pvalue': CFCin['Pvalue'], 'corrMultComp': CFCin['corrMultComp'],\n 'fs': CFCin['fs']}\n return CFCout\n\n\nFILTERS_SWITCHER = {'function_FDF': filtering.function_FDF,\n 'function_eegfilt': filtering.function_eegfilt, 'function_butterBPF':\n filtering.function_butterBPF}\n\n\ndef function_comodulogramBPF(signal, BPFcfg, fs, indSettlingExt):\n \"\"\"\n Description:\n In this function we implement the Band-Pass Filtering of the input signal.\n The input signal is supposed to be a raw (unfiltered) time series.\n\n\n Inputs:\n - signal: Numeric array (Nsamples x 1). Data.\n - BPFcfg: Structure. \n Band-Pass Filter configuration for the comodulogram's \"x(y)\" axis.\n - 'function': string {'function_butterBPF', 'function_eegfilt', 'function_FDF'}\n It specifies the function for the Band-Pass Filter:\n * 'function_butterBPF', a BPF IIR filter is implemented using a series connection of a\n High-Pass followed by a Low-Pass Butterworth filters.\n * 'function_eegfilt', a BPF FIR filter is implemented using the \"eegfilt.m\" function from\n EEGLAB toolbox.\n * 'function_FDF', a Frequency Domain Filtering is implemented using a window function. \n - fs: Numeric value. Sampling rate [Hz].\n - indSettlingExt: Int value. External index for cutting out the transient response of the BPFs.\n If \"indSettlingExt\" is empty or NaN, the index for the longest settling time is used.\n\n Outputs:\n - indSettlingMax: Int value. Index corresponding to the longest transient response of the BPFs.\n - BPFsignal: Numeric array (Nsamples x Nf x NBw). Band-Pass Filtered signals.\n where: Ns = np.shape[signal,0]. Number of samples.\n Nf = len(fcfg['BPFcfg']['f0']). Number of frequencies.\n NBw = len(fcfg['BPFcfg']['Bw']). Number of Bandwidths.\n \"\"\"\n if 'f1' in BPFcfg.keys() and 'f2' in BPFcfg.keys():\n BPFcfg['f0'] = (BPFcfg['f1'] + BPFcfg['f2']) / 2\n BPFcfg['Bw'] = BPFcfg['f2'] - BPFcfg['f1']\n Nf = np.size(BPFcfg['f0'])\n NBw = np.size(BPFcfg['Bw'])\n fnyq = fs / 2\n Ncycle = np.round(fs / np.atleast_1d(BPFcfg['f0'])[0])\n Ns = np.shape(signal)[0]\n Ns_cropped = Ns - 2 * (indSettlingExt - 1)\n indSettlingMax = indSettlingExt\n BPFsignal = np.zeros((Ns_cropped, Nf, NBw))\n for ii in range(NBw):\n BPFsignal_local = np.zeros((Ns, Nf))\n indSettling = np.zeros((1, Nf))\n for jj in range(Nf):\n BPFcfg_local = BPFcfg\n BPFcfg_local['Bw'] = np.atleast_1d(BPFcfg['Bw'])[ii]\n BPFcfg_local['f0'] = np.atleast_1d(BPFcfg['f0'])[jj]\n if BPFcfg_local['f0'] - BPFcfg_local['Bw'] / 2 <= fs / Ns or (\n BPFcfg_local['f0'] + BPFcfg_local['Bw'] / 2) / fnyq >= 1:\n continue\n filter_function = FILTERS_SWITCHER.get(BPFcfg_local['function'],\n lambda : 'Invalid method')\n BPFsignal_localjj, indSettling[jj], _, _ = filter_function(signal,\n BPFcfg_local, fs)\n BPFsignal_local[:, jj] = np.real(np.squeeze(BPFsignal_localjj))\n indSettlingMax = max([indSettling, indSettlingMax])\n if indSettlingMax > indSettlingExt:\n print('Un msj no implementado- function_comodulogramBPF_v1_225')\n BPFsignal_local = BPFsignal_local[indSettlingExt - 1:\n BPFsignal_local.shape[0] - (indSettlingExt - 1), :]\n BPFsignal[:, :, ii] = BPFsignal_local\n return BPFsignal, indSettlingMax\n\n\ndef function_feature_phase(signal):\n \"\"\" \n Description:\n Compute the phase of the z-scored BPF signal.\n\n Remark:\n Before the computation of the phase signal, the time series should be\n normalized, de-trended, or mean-subtracted to have the DC-component removed.\n this ensures that phase values are not limited in range.\n \n Ref: \n Assessing transient cross-frequency coupling in EEG data (Cohen 2008).pdf\n\n Angle [rad] in (-pi,pi]\n \"\"\"\n return np.angle(hilbert(scale(signal), axis=0))\n\n\ndef function_feature_amplitude(signal):\n \"\"\" \n Description:\n Compute the amplitude (signal envelope).\n Amplitude envelope of the signal (AM demodulation).\n\n \"\"\"\n return np.abs(hilbert(signal, axis=0))\n\n\ndef function_feature_phofamp(signal):\n \"\"\" \n Description:\n Phase of the signal's amplitude envelope.\n \n Remark:\n Before the computation of the phase signal, the time series should be\n normalized, de-trended, or mean-subtracted to have the DC-component removed;\n this ensures that phase values are not limited in range.\n \n Ref: Assessing transient cross-frequency coupling in EEG data (Cohen 2008).pdf\n\n \"\"\"\n BPFfeature = np.abs(hilbert(signal, axis=0))\n BPFfeature = scale(BPFfeature)\n BPFfeature = np.angle(hilbert(BPFfeature, axis=0))\n return BPFfeature\n\n\ndef function_feature_frequency(signal):\n print('Sin implementar. Devuelve 0')\n return 0\n\n\ndef function_feature_phoffreq(signal):\n print('Sin implementar. Devuelve 0')\n return 0\n\n\nLIST_FEATURES = {'phase': function_feature_phase, 'amplitude':\n function_feature_amplitude, 'phaseofamplitude':\n function_feature_phofamp, 'frequency': function_feature_frequency,\n 'phaseoffrequency': function_feature_phoffreq}\n\n\ndef function_comodulogramFeature(signal, fcfg, fs, indSettlingExt):\n \"\"\"\n Description:\n In this function we implement the extraction of the phase/amplitude/frequency \n time series from the input signals. The input signals are supposed to be \n previously Band-Pass Filtered signals around the frequency bands of interest.\n\n Inputs:\n - signal. Numeric array (Ns x Nf x NBw)\n Band-Pass Filtered signals. Notation:\n Ns: Number of samples.\n Nf: Number of frequencies. len(fcfg['BPFcfg']['f0'])\n NBw: Number of Bandwidths. len(fcfg['BPFcfg']['Bw'])\n\n - fcfg. Structure. Parameters of the Frequency Band in \"x(y)\" axis.\n - 'start': Numeric value. Start frequency [Hz].\n - 'end': Numeric value. End frequency [Hz].\n - 'res': Numeric value. Frequency resolution [Hz].\n Define the frequency separation between two consecutive BPFs. \n - 'BPFcfg': Structure.\n Band-Pass Filter configuration for the comodulogram's \"x(y)\" axis.\n - 'lookAt': String. Parameter of the signal (phase/amplitude/frequency) observed in the range of\n frequency corresponding to the \"x(y)\" axis [none].\n - 'LPFcfg': Structure. Low-Pass Filter configuration to smooth the frequency time series.\n The LPF Filter is used to smooth the frequency time series (fYlookAt = 'FREQUENCY' or 'PHASEofFREQUENCY').\n - 'saveBPFsignal': Boolean value. Flag to return the Band-Pass Filtered signals.\n *0: Return a NaN.\n *1: Return the filtered signals. \n - 'Nbins': Integer value. \n Number of phase/amplitude/frequency bins used to compute the Histograms (p) of the comodulogram. \n\n - 'sameNumberOfCycles': Boolean value. Flag to configure the processing mode for signal x.\n *0: Do not truncate the signal \"x\" to obtain the same number of cycles.\n *1: Process the same number of cycles of signal \"x\" for all \"fX\" frequencies.\n - fs: Numeric value. Sampling rate [Hz].\n - indSettlingExt: Integer value. \n External index for cutting out the transient response of the BPFs.\n If \"indSettlingExt\" is empty or NaN, the index for the longest settling time is used.\n\n Outputs:\n - BPFfeature: Numeric array (Ns x NF x NBw)\n Phase/amplitud/frequency time series for the \"x\" or \"y\" axis of the comodulogram\n\n - croppedSignal: Numeric array (Ns-2*(indSettlingExt-1) x Nf x NBw) \n Cropped Band-Pass Filtered signals (in the case of saveBPFsignal=1)\n \"\"\"\n if 'f1' in fcfg['BPFcfg'].keys() and 'f2' in fcfg['BPFcfg'].keys():\n fcfg['BPFcfg']['f0'] = (fcfg['BPFcfg']['f1'] + fcfg['BPFcfg']['f2']\n ) / 2\n fcfg['BPFcfg']['Bw'] = fcfg['BPFcfg']['f2'] - fcfg['BPFcfg']['f1']\n croppedSignal = []\n Nf = np.size(fcfg['BPFcfg']['f0'])\n NBw = np.size(fcfg['BPFcfg']['Bw'])\n fnyq = fs / 2\n Ns = np.shape(signal)[0]\n Ns_cropped = Ns - 2 * (indSettlingExt - 1)\n BPFfeature = np.zeros((Ns_cropped, Nf, NBw))\n if fcfg['saveBPFsignal']:\n croppedSignal = np.zeros((Ns_cropped, Nf, NBw))\n for ii in range(NBw):\n signal_local = signal[:, :, ii]\n feature = fcfg['lookAt'].lower()\n function_feature = LIST_FEATURES.get(feature, lambda : 'Invalid method'\n )\n BPFfeature_local = function_feature(signal_local)\n BPFfeature_local = BPFfeature_local[indSettlingExt - 1:\n BPFfeature_local.shape[0] - (indSettlingExt - 1), :]\n BPFfeature[:, :, ii] = BPFfeature_local\n if fcfg['saveBPFsignal']:\n croppedSignal[:, :, ii] = signal_local[indSettlingExt - 1:\n signal_local.shape[0] - (indSettlingExt - 1), :]\n return BPFfeature, croppedSignal\n\n\ndef function_PLV(x, y, wx, wy, CFCcfg):\n \"\"\"\n\tDescription: \n\tIn this function we compute the Phase Locking Values.\n\n\tRefs:\n\t[1] /PhaseLockingValue/function_PhaseLockingValue_v1.m\n\t[2] Measuring Phase-Amplitude Coupling Between Neuronal Oscillations (Tort, 2010).pdf, p. 1198\n\t[3] High gamma power is phase-locked to theta oscillations (Canolty, 2006).pdf\n\t[4] Phase Locking from Noisy Data (Tass, 1998).pdf\n Ref: Detection of n,m Phase Locking from Noisy Data (Tass, 1998).pdf \n\n\tInputs:\n\t\t- x: Numeric array (Nsamples x NfX).\n\t\t \t Data for the comodulogram's \"x\" axis (matrix: samples x NfX).\n\t\t- y: Numeric array (Nsamples x NfY x NfX). \n\t\t Data for the comodulogram's \"y\" axis (matrix: samples x NfY x NfX).\n\t\t- wx: Numeric array (Nsamples x NfX). \n\t\t\t Weights related to the comodulogram's \"x\" axis (matrix: samples x NfX).\n\t\t- wy: Numeric array (Nsamples x NfY x NfX).\n\t\t Weights related to the comodulogram's \"y\" axis (matrix: samples x NfY x NfX).\n\t\t- CFCcfc: structure. \n\t\t\t\t Parameters of the comodulogram (structure array)\n\t\t\t\t - 'fXcfg': structure.\n\t\t\t\t \t\t\t Parameters of the Frequency Band in \"x\" axis.\n\t\t\t\t - 'fYcfg': structure. \n\t\t\t\t \t\t\t Parameters of the Frequency Band in \"y\" axis.\n\t\t\t\t \t\t\t-'start': Numeric value. Start frequency [Hz].\n\t\t\t\t \t\t\t-'end': Numeric value. End frequency [Hz].\n\t\t\t\t \t\t\t-'res': Numeric value. Frequency resolution.\n\t\t\t\t \t\t\t\t\t Define the frequency separation between two consecutive BPFs.\n\t\t\t\t \t\t\t-'BPFcfg': Structure. Band-Pass Filter configuration for the comodulogram's axis.\n\t\t\t\t\t\t\t-'lookAt': String.\n\t\t\t\t\t\t\t\t\t Parameter of the signal (phase/amplitude) observed in the range of\n\t\t\t\t\t\t\t\t\t frequency [none] (string).\n\t\t\t\t\t\t\t-'n': Int value. Harmonic number for detection of phase locking.\n\t\t\t\t\t\t\t-'saveBPFsignal': {0,1}. Flag to return the Band-Pass Filtered signals. \n\t\t\t\t\t\t\t\t\t\t\t 0 - Return a NaN.\n 1 - Return the filtered signals.\n -'Nbins': Int value.\n \t\t Number of phase/amplitude bins used to compute the Histograms (p) of the comodulogram. \n -'sameNumberOfCycles': {0,1}. Flag to configure the processing mode for signal x.\n \t\t\t\t\t 0 - Do not truncate the signal \"x\" to obtain the same number \n \t\t\t\t\t \t of cycles.\n 1 - Process the same number of cycles of signal \"x\" for all \n\t\t\t\t\t\t\t\t\t\t\t\t\t \"fX\" frequencies.\n\t\t\t\t - 'CFCmethod': String.\n\t\t\t\t \t\t\t\t Defines the approach to compute the Cross frequency Coupling. E.g: 'plv'.\n\t\t\t\t - 'verbose': Boolean. Display flag. \n\t\t\t\t - 'perMethod': {'trialShuffling', 'sampleShuffling', 'FFTphaseShuffling', 'cutShuffling'}. \n\t\t\t\t \t\t\t\t Method by which the surrogated time series are built.\n\t\t\t\t - 'Nper': Int value. \n\t\t\t\t \t\t Number of permutations. It defines the number of surrogate histograms per\n repetition. It is worth noting that in each repetition, \"Nper\" surrogate \n\t\t\t\t\t\t\thistograms of size \"Nbins x NfY x NfX\" are stored in memory (RAM).\n\t\t\t\t - 'Nrep': Int value.\n\t\t\t\t Number of repetitions. In each repetition a \".mat\" file is written to disk,\n\t containing \"Nper\" surrogate histograms of size \"Nbins x NfY x NfX\". \n \tAs a consequence, the final number of surrogate histograms is \"Nper x Nrep\".\n\t\t\t\t - 'Pvalue': Numeric value. P-value for the statistically significant level.\n\t\t\t\t - 'corrMultComp': {'Bonferroni', 'pixelBased'} Method to correct for multiple comparisons.\n\t\t\t\t - 'fs': Numeric value. Sampling rate [Hz].\n\n\tOutputs:\n\t\t- PLV: Numeric array (NfY x NfX).\n\t\t\t Phase Locking Value.\n\t\t- wxPLV: Numeric array (NfY x NfX).\n\t\t\t\t Weighted Phase Locking Values using the wx weights (matrix: NfY x NfX).\n\t\t- wyPLV: Numeric array (NfY x NfX). \n\t\t\t\t Weighted Phase Locking Values using the wy weights (matrix: NfY x NfX).\n\n\t \t\t\t NfX = length(CFCcfg['fXcfg']['BPFcfg']['f0'])\n\t \t\t\t NfY = length(CFCcfg['fYcfg']['BPFcfg']['f0'])\n\t\"\"\"\n wxPLV = []\n wyPLV = []\n NfX = np.size(CFCcfg['fXcfg']['BPFcfg']['f0'])\n NfY = np.size(CFCcfg['fYcfg']['BPFcfg']['f0'])\n Ns = np.shape(x)[0]\n nX = CFCcfg['fXcfg']['n']\n nY = CFCcfg['fYcfg']['n']\n PLV = np.zeros((NfY, NfX), dtype=complex)\n for ii in range(NfY):\n PLV[ii, :] = np.sum(np.exp(1.0j * (nX * x - nY * y[:, ii, :])), 0) / Ns\n return PLV, wxPLV, wyPLV\n", "<docstring token>\n<import token>\n\n\ndef function_setCFCcfg(CFCin):\n \"\"\"\n\tDescription:\n\tIn this function we compute the structures for the \"x\" and \"y\" axis of the comodulogram.\n\n\tInputs:\n\t- CFCin: Structure. Parameters of the comodulogram.\n\t\t\t\t- 'fXmin': Numeric value. Minimum frequency for the LF band [Hz].\n\t\t\t\t- 'fXmax': Numeric value. Maximum frequency for the LF band [Hz].\n\t\t\t\t- 'fYmin': Numeric value. Minimum frequency for the HF band [Hz].\n\t\t\t\t- 'fYmax': Numeric value. Maximum frequency for the HF band [Hz].\n\t\t\t\t- 'fXres': Numeric value. Frequency resolution for the LF band [Hz].\n\t\t\t\t- 'fYres': Numeric value. Frequency resolution for the HF band [Hz].\n\t\t\t\t- 'fXlookAt': String. \n\t\t\t\t\t\t\t Parameter of the signal observed in the range of\n\t \t frequency corresponding to the \"x\" axis.\n\t\t\t\t- 'fYlookAt': String.\n\t\t\t\t\t\t\t Parameter of the signal observed in the range of\n \t frequency corresponding to the \"y\" axis.\n\t\t\t\t- 'nX': Int value. Harmonic number for detection of fbX.n:fbY.n phase locking.\n\t\t\t\t- 'nY': Int value. Harmonic number for detection of fbX.n:fbY.n phase locking.\n\t\t\t\t- 'BPFXcfg': Structure. Band-Pass Filter configuration for the comodulogram's \"x\" axis.\n\t\t\t\t- 'BPFYcfg': Structure. Band-Pass Filter configuration for the comodulogram's \"y\" axis.\n\t\t\t\t- 'LPFcfg': Structure. Low-Pass Filter configuration to smooth the frequency time series.\n \tThe LPF Filter is used to smooth the frequency time series \n\t\t\t\t\t\t\t(fYlookAt = 'FREQUENCY' or 'PHASEofFREQUENCY').\n\t\t\t\t- 'saveBPFsignal': {0,1}. Flag to return the Band-Pass Filtered signals.\n 0 - Return a NaN.\n 1 - Return the filtered signals.\n\t\t\t\t- 'Nbins': Int value. \n\t\t\t\t\t\t Number of phase/amplitude bins used to compute the Histograms (p) of the comodulogram. \n\t\t\t\t- 'sameNumberOfCycles': {0,1}. Flag to configure the processing mode for signal x:\n 0 - Do not truncate the signal \"x\" to obtain the same number of cycles.\n 1 - Process the same number of cycles of signal \"x\" for all \"fX\" frequencies.\n\t\t\t\t- 'CFCmethod': String. {'plv','mi'}\n\t\t\t\t\t\t\tDefines the approach to compute the Cross frequency Coupling \n\t\t\t\t\t\t\t(PLV / methods to compute the MI).\n\t\t\t\t- 'verbose': Boolean {0,1}. \n\t\t\t\t\t\t\t 0: no message are shown.\n \t 1: show the messages.\n\t\t\t\t- 'perMethod': String. Method by which the surrogated time series are built. Options\n\t\t\t\t\t\t\t* 'trialShuffling'\n\t\t\t\t\t\t\t* 'sampleShuffling'\n \t* 'FFTphaseShuffling'\n \t* 'cutShuffling'\n\t\t\t\t- 'Nper': Int value. Number of permutations.\n\t\t\t\t\t\t It defines the number of surrogate histograms per\n\t\t\t\t\t\t repetition. It is worth noting that in each repetition, \"Nper\" surrogate histograms of size\n\t\t\t\t\t\t \"Nbins x NfY x NfX\" are stored in memory (RAM).\n\t\t\t\t- 'Nrep': Int value. Number of repetitions.\n\t\t\t\t\t\t In each repetition a \".mat\" file is written to disk,\n\t\t\t\t\t\t containing \"Nper\" surrogate histograms of size \"Nbins x NfY x NfX\". \n\t\t\t\t\t\t As a consequence, the final number of surrogate histograms is \"Nper x Nrep\".\n\t\t\t\t- 'Pvalue': Numeric value. P-value for the statistically significant level.\n\t\t\t\t- 'corrMultComp': String {'Bonferroni', 'pixelBased'}.\n\t\t\t\t\t\t\t\t Method to correct for multiple comparisons.\n\t\t\t\t- 'fs': Numeric value.\n\n\tOutputs:\n\t- CFCout: Structure. Parameters of the comodulogram.\n\t\t\t\t-'fXcfg', 'fYcfg': Structure. Parameters of the Frequency Band in \"x(y)\" axis.\n\t\t\t\t\t\t\t\t\t- 'start': \tNumeric value. Start frequency [Hz].\n\t\t\t\t\t\t\t\t\t- 'end':\tNumeric value. End frequency [Hz].\n\t\t\t\t\t\t\t\t\t- 'res': \tNumeric value. Frequency resolution [Hz].\n\t\t\t\t\t\t\t\t\t\t\t\tDefine the frequency separation between two consecutive BPFs.\n\t\t\t\t\t\t\t\t\t- 'BPFcfg': Structure. \n\t\t\t\t\t\t\t\t\t\t\t\tBand-Pass Filter configuration for the comodulogram's \"x(y)\" axis.\n\t\t\t\t\t\t\t\t\t- 'lookAt': String. Parameter of the signal (phase/amplitude) observed in the range of\n\t\t\t\t\t\t\t\t\t\t\t\tfrequency corresponding to the \"x(y)\" axis [none] (string).\n\t\t\t\t\t\t\t\t\t- 'n': Int value. Harmonic number for detection of fbX.n:fbY.n phase locking.\n\t\t\t\t\t\t\t\t\t\t\t\tRef: Detection of n,m Phase Locking from Noisy Data (Tass, 1998).pdf \n\t\t\t\t\t\t\t\t\t- 'LPFcfg' Structure.\n\t\t\t\t\t\t\t\t\t\t\t\tLow-Pass Filter configuration to smooth the frequency time series (structure array).\n \t\tThe LPF Filter is used to smooth the frequency time series (fYlookAt = 'FREQUENCY'\n \t\tor 'PHASEofFREQUENCY').\n\t\t\t\t\t\t\t\t\t- 'saveBPFsignal': Boolean. Flag to return the Band-Pass Filtered signals.\n\t\t\t\t\t\t\t\t\t\t\t\t0: Return a NaN.\n\t\t\t\t\t\t\t\t\t\t\t\t1: Return the filtered signals.\n\t\t\t\t\t\t\t\t\t- 'Nbins': Int value. Number of phase/amplitude bins used to compute the Histograms \n\t\t\t\t\t\t\t\t\t\t\t\t(p) of the comodulogram. \n \t\t- 'sameNumberOfCycles': Boolean. Flag to configure the processing mode for signal x.\n 0: Do not truncate the signal \"x\" to obtain the same number of cycles.\n 1: Process the same number of cycles of signal \"x\" for all \"fX\" frequencies.\n\t\t\t\t- 'CFCmethod'\n\t\t\t\t- 'verbose'\n\t\t\t\t- 'perMethod'\n\t\t\t\t- 'Nper'\n\t\t\t\t- 'Nrep'\n\t\t\t\t- 'Pvalue'\n\t\t\t\t- 'corrMultComp'\n\t\t\t\t- 'fs'\n\t\"\"\"\n fXcfg = {'start': CFCin['fXmin'], 'end': CFCin['fXmax'], 'res': CFCin[\n 'fXres'], 'BPFcfg': CFCin['BPFXcfg'], 'lookAt': CFCin['fXlookAt'],\n 'n': CFCin['nX'], 'Nbins': CFCin['Nbins'], 'sameNumberOfCycles':\n CFCin['sameNumberOfCycles'], 'saveBPFsignal': CFCin['saveBPFsignal']}\n fYcfg = {'start': CFCin['fYmin'], 'end': CFCin['fYmax'], 'res': CFCin[\n 'fYres'], 'BPFcfg': CFCin['BPFYcfg'], 'lookAt': CFCin['fYlookAt'],\n 'n': CFCin['nY'], 'saveBPFsignal': CFCin['saveBPFsignal']}\n if fYcfg['lookAt'].lower == 'frequency' or fYcfg['lookAt'\n ].lower == 'phaseoffrequency':\n fYcfg['LPFcfg'] = CFCin['LPFcfg']\n if CFCin['fXmin'] <= CFCin['BPFXcfg']['Bw'] / 2:\n fXcfg['start'] = CFCin['fXmin'] + CFCin['BPFXcfg']['Bw'] / 2\n fXcfg['BPFcfg']['f0'] = np.linspace(fXcfg['start'], fXcfg['end'], np.\n ceil((fXcfg['end'] - fXcfg['start']) / fXcfg['res']))\n if 'times' in fXcfg['BPFcfg'].keys() and len(fXcfg['BPFcfg']['times']) > 1:\n fXcfg['BPFcfg']['times'] = np.linspace(fXcfg['BPFcfg']['times'][0],\n fXcfg['BPFcfg']['times'][-1], len(fXcfg['BPFcfg']['times']))\n if type(fYcfg['BPFcfg']['Bw'] * 1.0) == float:\n fYcfg['BPFcfg']['Bw'] = fYcfg['BPFcfg']['Bw'] * np.ones(np.shape(\n fXcfg['BPFcfg']['f0']))\n else:\n fYcfg['BPFcfg']['Bw'] = 2 * fXcfg['BPFcfg']['f0']\n if fYcfg['start'] <= fYcfg['BPFcfg']['Bw'][0] / 2:\n fYcfg['start'] = fYcfg['start'] + fYcfg['BPFcfg']['Bw'][0] / 2\n fYcfg['BPFcfg']['f0'] = np.linspace(fYcfg['start'], fYcfg['end'], np.\n ceil((fYcfg['end'] - fYcfg['start']) / fYcfg['res']))\n if 'times' in fYcfg['BPFcfg'].keys() and len(fYcfg['BPFcfg']['times']) > 1:\n fYcfg['BPFcfg']['times'] = np.linspace(fYcfg['BPFcfg']['times'][0],\n fYcfg['BPFcfg']['times'][-1], len(fYcfg['BPFcfg']['times']))\n CFCout = {'fXcfg': fXcfg, 'fYcfg': fYcfg, 'CFCmethod': CFCin[\n 'CFCmethod'], 'verbose': CFCin['verbose'], 'perMethod': CFCin[\n 'perMethod'], 'Nper': CFCin['Nper'], 'Nrep': CFCin['Nrep'],\n 'Pvalue': CFCin['Pvalue'], 'corrMultComp': CFCin['corrMultComp'],\n 'fs': CFCin['fs']}\n return CFCout\n\n\nFILTERS_SWITCHER = {'function_FDF': filtering.function_FDF,\n 'function_eegfilt': filtering.function_eegfilt, 'function_butterBPF':\n filtering.function_butterBPF}\n\n\ndef function_comodulogramBPF(signal, BPFcfg, fs, indSettlingExt):\n \"\"\"\n Description:\n In this function we implement the Band-Pass Filtering of the input signal.\n The input signal is supposed to be a raw (unfiltered) time series.\n\n\n Inputs:\n - signal: Numeric array (Nsamples x 1). Data.\n - BPFcfg: Structure. \n Band-Pass Filter configuration for the comodulogram's \"x(y)\" axis.\n - 'function': string {'function_butterBPF', 'function_eegfilt', 'function_FDF'}\n It specifies the function for the Band-Pass Filter:\n * 'function_butterBPF', a BPF IIR filter is implemented using a series connection of a\n High-Pass followed by a Low-Pass Butterworth filters.\n * 'function_eegfilt', a BPF FIR filter is implemented using the \"eegfilt.m\" function from\n EEGLAB toolbox.\n * 'function_FDF', a Frequency Domain Filtering is implemented using a window function. \n - fs: Numeric value. Sampling rate [Hz].\n - indSettlingExt: Int value. External index for cutting out the transient response of the BPFs.\n If \"indSettlingExt\" is empty or NaN, the index for the longest settling time is used.\n\n Outputs:\n - indSettlingMax: Int value. Index corresponding to the longest transient response of the BPFs.\n - BPFsignal: Numeric array (Nsamples x Nf x NBw). Band-Pass Filtered signals.\n where: Ns = np.shape[signal,0]. Number of samples.\n Nf = len(fcfg['BPFcfg']['f0']). Number of frequencies.\n NBw = len(fcfg['BPFcfg']['Bw']). Number of Bandwidths.\n \"\"\"\n if 'f1' in BPFcfg.keys() and 'f2' in BPFcfg.keys():\n BPFcfg['f0'] = (BPFcfg['f1'] + BPFcfg['f2']) / 2\n BPFcfg['Bw'] = BPFcfg['f2'] - BPFcfg['f1']\n Nf = np.size(BPFcfg['f0'])\n NBw = np.size(BPFcfg['Bw'])\n fnyq = fs / 2\n Ncycle = np.round(fs / np.atleast_1d(BPFcfg['f0'])[0])\n Ns = np.shape(signal)[0]\n Ns_cropped = Ns - 2 * (indSettlingExt - 1)\n indSettlingMax = indSettlingExt\n BPFsignal = np.zeros((Ns_cropped, Nf, NBw))\n for ii in range(NBw):\n BPFsignal_local = np.zeros((Ns, Nf))\n indSettling = np.zeros((1, Nf))\n for jj in range(Nf):\n BPFcfg_local = BPFcfg\n BPFcfg_local['Bw'] = np.atleast_1d(BPFcfg['Bw'])[ii]\n BPFcfg_local['f0'] = np.atleast_1d(BPFcfg['f0'])[jj]\n if BPFcfg_local['f0'] - BPFcfg_local['Bw'] / 2 <= fs / Ns or (\n BPFcfg_local['f0'] + BPFcfg_local['Bw'] / 2) / fnyq >= 1:\n continue\n filter_function = FILTERS_SWITCHER.get(BPFcfg_local['function'],\n lambda : 'Invalid method')\n BPFsignal_localjj, indSettling[jj], _, _ = filter_function(signal,\n BPFcfg_local, fs)\n BPFsignal_local[:, jj] = np.real(np.squeeze(BPFsignal_localjj))\n indSettlingMax = max([indSettling, indSettlingMax])\n if indSettlingMax > indSettlingExt:\n print('Un msj no implementado- function_comodulogramBPF_v1_225')\n BPFsignal_local = BPFsignal_local[indSettlingExt - 1:\n BPFsignal_local.shape[0] - (indSettlingExt - 1), :]\n BPFsignal[:, :, ii] = BPFsignal_local\n return BPFsignal, indSettlingMax\n\n\ndef function_feature_phase(signal):\n \"\"\" \n Description:\n Compute the phase of the z-scored BPF signal.\n\n Remark:\n Before the computation of the phase signal, the time series should be\n normalized, de-trended, or mean-subtracted to have the DC-component removed.\n this ensures that phase values are not limited in range.\n \n Ref: \n Assessing transient cross-frequency coupling in EEG data (Cohen 2008).pdf\n\n Angle [rad] in (-pi,pi]\n \"\"\"\n return np.angle(hilbert(scale(signal), axis=0))\n\n\ndef function_feature_amplitude(signal):\n \"\"\" \n Description:\n Compute the amplitude (signal envelope).\n Amplitude envelope of the signal (AM demodulation).\n\n \"\"\"\n return np.abs(hilbert(signal, axis=0))\n\n\ndef function_feature_phofamp(signal):\n \"\"\" \n Description:\n Phase of the signal's amplitude envelope.\n \n Remark:\n Before the computation of the phase signal, the time series should be\n normalized, de-trended, or mean-subtracted to have the DC-component removed;\n this ensures that phase values are not limited in range.\n \n Ref: Assessing transient cross-frequency coupling in EEG data (Cohen 2008).pdf\n\n \"\"\"\n BPFfeature = np.abs(hilbert(signal, axis=0))\n BPFfeature = scale(BPFfeature)\n BPFfeature = np.angle(hilbert(BPFfeature, axis=0))\n return BPFfeature\n\n\ndef function_feature_frequency(signal):\n print('Sin implementar. Devuelve 0')\n return 0\n\n\ndef function_feature_phoffreq(signal):\n print('Sin implementar. Devuelve 0')\n return 0\n\n\nLIST_FEATURES = {'phase': function_feature_phase, 'amplitude':\n function_feature_amplitude, 'phaseofamplitude':\n function_feature_phofamp, 'frequency': function_feature_frequency,\n 'phaseoffrequency': function_feature_phoffreq}\n\n\ndef function_comodulogramFeature(signal, fcfg, fs, indSettlingExt):\n \"\"\"\n Description:\n In this function we implement the extraction of the phase/amplitude/frequency \n time series from the input signals. The input signals are supposed to be \n previously Band-Pass Filtered signals around the frequency bands of interest.\n\n Inputs:\n - signal. Numeric array (Ns x Nf x NBw)\n Band-Pass Filtered signals. Notation:\n Ns: Number of samples.\n Nf: Number of frequencies. len(fcfg['BPFcfg']['f0'])\n NBw: Number of Bandwidths. len(fcfg['BPFcfg']['Bw'])\n\n - fcfg. Structure. Parameters of the Frequency Band in \"x(y)\" axis.\n - 'start': Numeric value. Start frequency [Hz].\n - 'end': Numeric value. End frequency [Hz].\n - 'res': Numeric value. Frequency resolution [Hz].\n Define the frequency separation between two consecutive BPFs. \n - 'BPFcfg': Structure.\n Band-Pass Filter configuration for the comodulogram's \"x(y)\" axis.\n - 'lookAt': String. Parameter of the signal (phase/amplitude/frequency) observed in the range of\n frequency corresponding to the \"x(y)\" axis [none].\n - 'LPFcfg': Structure. Low-Pass Filter configuration to smooth the frequency time series.\n The LPF Filter is used to smooth the frequency time series (fYlookAt = 'FREQUENCY' or 'PHASEofFREQUENCY').\n - 'saveBPFsignal': Boolean value. Flag to return the Band-Pass Filtered signals.\n *0: Return a NaN.\n *1: Return the filtered signals. \n - 'Nbins': Integer value. \n Number of phase/amplitude/frequency bins used to compute the Histograms (p) of the comodulogram. \n\n - 'sameNumberOfCycles': Boolean value. Flag to configure the processing mode for signal x.\n *0: Do not truncate the signal \"x\" to obtain the same number of cycles.\n *1: Process the same number of cycles of signal \"x\" for all \"fX\" frequencies.\n - fs: Numeric value. Sampling rate [Hz].\n - indSettlingExt: Integer value. \n External index for cutting out the transient response of the BPFs.\n If \"indSettlingExt\" is empty or NaN, the index for the longest settling time is used.\n\n Outputs:\n - BPFfeature: Numeric array (Ns x NF x NBw)\n Phase/amplitud/frequency time series for the \"x\" or \"y\" axis of the comodulogram\n\n - croppedSignal: Numeric array (Ns-2*(indSettlingExt-1) x Nf x NBw) \n Cropped Band-Pass Filtered signals (in the case of saveBPFsignal=1)\n \"\"\"\n if 'f1' in fcfg['BPFcfg'].keys() and 'f2' in fcfg['BPFcfg'].keys():\n fcfg['BPFcfg']['f0'] = (fcfg['BPFcfg']['f1'] + fcfg['BPFcfg']['f2']\n ) / 2\n fcfg['BPFcfg']['Bw'] = fcfg['BPFcfg']['f2'] - fcfg['BPFcfg']['f1']\n croppedSignal = []\n Nf = np.size(fcfg['BPFcfg']['f0'])\n NBw = np.size(fcfg['BPFcfg']['Bw'])\n fnyq = fs / 2\n Ns = np.shape(signal)[0]\n Ns_cropped = Ns - 2 * (indSettlingExt - 1)\n BPFfeature = np.zeros((Ns_cropped, Nf, NBw))\n if fcfg['saveBPFsignal']:\n croppedSignal = np.zeros((Ns_cropped, Nf, NBw))\n for ii in range(NBw):\n signal_local = signal[:, :, ii]\n feature = fcfg['lookAt'].lower()\n function_feature = LIST_FEATURES.get(feature, lambda : 'Invalid method'\n )\n BPFfeature_local = function_feature(signal_local)\n BPFfeature_local = BPFfeature_local[indSettlingExt - 1:\n BPFfeature_local.shape[0] - (indSettlingExt - 1), :]\n BPFfeature[:, :, ii] = BPFfeature_local\n if fcfg['saveBPFsignal']:\n croppedSignal[:, :, ii] = signal_local[indSettlingExt - 1:\n signal_local.shape[0] - (indSettlingExt - 1), :]\n return BPFfeature, croppedSignal\n\n\ndef function_PLV(x, y, wx, wy, CFCcfg):\n \"\"\"\n\tDescription: \n\tIn this function we compute the Phase Locking Values.\n\n\tRefs:\n\t[1] /PhaseLockingValue/function_PhaseLockingValue_v1.m\n\t[2] Measuring Phase-Amplitude Coupling Between Neuronal Oscillations (Tort, 2010).pdf, p. 1198\n\t[3] High gamma power is phase-locked to theta oscillations (Canolty, 2006).pdf\n\t[4] Phase Locking from Noisy Data (Tass, 1998).pdf\n Ref: Detection of n,m Phase Locking from Noisy Data (Tass, 1998).pdf \n\n\tInputs:\n\t\t- x: Numeric array (Nsamples x NfX).\n\t\t \t Data for the comodulogram's \"x\" axis (matrix: samples x NfX).\n\t\t- y: Numeric array (Nsamples x NfY x NfX). \n\t\t Data for the comodulogram's \"y\" axis (matrix: samples x NfY x NfX).\n\t\t- wx: Numeric array (Nsamples x NfX). \n\t\t\t Weights related to the comodulogram's \"x\" axis (matrix: samples x NfX).\n\t\t- wy: Numeric array (Nsamples x NfY x NfX).\n\t\t Weights related to the comodulogram's \"y\" axis (matrix: samples x NfY x NfX).\n\t\t- CFCcfc: structure. \n\t\t\t\t Parameters of the comodulogram (structure array)\n\t\t\t\t - 'fXcfg': structure.\n\t\t\t\t \t\t\t Parameters of the Frequency Band in \"x\" axis.\n\t\t\t\t - 'fYcfg': structure. \n\t\t\t\t \t\t\t Parameters of the Frequency Band in \"y\" axis.\n\t\t\t\t \t\t\t-'start': Numeric value. Start frequency [Hz].\n\t\t\t\t \t\t\t-'end': Numeric value. End frequency [Hz].\n\t\t\t\t \t\t\t-'res': Numeric value. Frequency resolution.\n\t\t\t\t \t\t\t\t\t Define the frequency separation between two consecutive BPFs.\n\t\t\t\t \t\t\t-'BPFcfg': Structure. Band-Pass Filter configuration for the comodulogram's axis.\n\t\t\t\t\t\t\t-'lookAt': String.\n\t\t\t\t\t\t\t\t\t Parameter of the signal (phase/amplitude) observed in the range of\n\t\t\t\t\t\t\t\t\t frequency [none] (string).\n\t\t\t\t\t\t\t-'n': Int value. Harmonic number for detection of phase locking.\n\t\t\t\t\t\t\t-'saveBPFsignal': {0,1}. Flag to return the Band-Pass Filtered signals. \n\t\t\t\t\t\t\t\t\t\t\t 0 - Return a NaN.\n 1 - Return the filtered signals.\n -'Nbins': Int value.\n \t\t Number of phase/amplitude bins used to compute the Histograms (p) of the comodulogram. \n -'sameNumberOfCycles': {0,1}. Flag to configure the processing mode for signal x.\n \t\t\t\t\t 0 - Do not truncate the signal \"x\" to obtain the same number \n \t\t\t\t\t \t of cycles.\n 1 - Process the same number of cycles of signal \"x\" for all \n\t\t\t\t\t\t\t\t\t\t\t\t\t \"fX\" frequencies.\n\t\t\t\t - 'CFCmethod': String.\n\t\t\t\t \t\t\t\t Defines the approach to compute the Cross frequency Coupling. E.g: 'plv'.\n\t\t\t\t - 'verbose': Boolean. Display flag. \n\t\t\t\t - 'perMethod': {'trialShuffling', 'sampleShuffling', 'FFTphaseShuffling', 'cutShuffling'}. \n\t\t\t\t \t\t\t\t Method by which the surrogated time series are built.\n\t\t\t\t - 'Nper': Int value. \n\t\t\t\t \t\t Number of permutations. It defines the number of surrogate histograms per\n repetition. It is worth noting that in each repetition, \"Nper\" surrogate \n\t\t\t\t\t\t\thistograms of size \"Nbins x NfY x NfX\" are stored in memory (RAM).\n\t\t\t\t - 'Nrep': Int value.\n\t\t\t\t Number of repetitions. In each repetition a \".mat\" file is written to disk,\n\t containing \"Nper\" surrogate histograms of size \"Nbins x NfY x NfX\". \n \tAs a consequence, the final number of surrogate histograms is \"Nper x Nrep\".\n\t\t\t\t - 'Pvalue': Numeric value. P-value for the statistically significant level.\n\t\t\t\t - 'corrMultComp': {'Bonferroni', 'pixelBased'} Method to correct for multiple comparisons.\n\t\t\t\t - 'fs': Numeric value. Sampling rate [Hz].\n\n\tOutputs:\n\t\t- PLV: Numeric array (NfY x NfX).\n\t\t\t Phase Locking Value.\n\t\t- wxPLV: Numeric array (NfY x NfX).\n\t\t\t\t Weighted Phase Locking Values using the wx weights (matrix: NfY x NfX).\n\t\t- wyPLV: Numeric array (NfY x NfX). \n\t\t\t\t Weighted Phase Locking Values using the wy weights (matrix: NfY x NfX).\n\n\t \t\t\t NfX = length(CFCcfg['fXcfg']['BPFcfg']['f0'])\n\t \t\t\t NfY = length(CFCcfg['fYcfg']['BPFcfg']['f0'])\n\t\"\"\"\n wxPLV = []\n wyPLV = []\n NfX = np.size(CFCcfg['fXcfg']['BPFcfg']['f0'])\n NfY = np.size(CFCcfg['fYcfg']['BPFcfg']['f0'])\n Ns = np.shape(x)[0]\n nX = CFCcfg['fXcfg']['n']\n nY = CFCcfg['fYcfg']['n']\n PLV = np.zeros((NfY, NfX), dtype=complex)\n for ii in range(NfY):\n PLV[ii, :] = np.sum(np.exp(1.0j * (nX * x - nY * y[:, ii, :])), 0) / Ns\n return PLV, wxPLV, wyPLV\n", "<docstring token>\n<import token>\n\n\ndef function_setCFCcfg(CFCin):\n \"\"\"\n\tDescription:\n\tIn this function we compute the structures for the \"x\" and \"y\" axis of the comodulogram.\n\n\tInputs:\n\t- CFCin: Structure. Parameters of the comodulogram.\n\t\t\t\t- 'fXmin': Numeric value. Minimum frequency for the LF band [Hz].\n\t\t\t\t- 'fXmax': Numeric value. Maximum frequency for the LF band [Hz].\n\t\t\t\t- 'fYmin': Numeric value. Minimum frequency for the HF band [Hz].\n\t\t\t\t- 'fYmax': Numeric value. Maximum frequency for the HF band [Hz].\n\t\t\t\t- 'fXres': Numeric value. Frequency resolution for the LF band [Hz].\n\t\t\t\t- 'fYres': Numeric value. Frequency resolution for the HF band [Hz].\n\t\t\t\t- 'fXlookAt': String. \n\t\t\t\t\t\t\t Parameter of the signal observed in the range of\n\t \t frequency corresponding to the \"x\" axis.\n\t\t\t\t- 'fYlookAt': String.\n\t\t\t\t\t\t\t Parameter of the signal observed in the range of\n \t frequency corresponding to the \"y\" axis.\n\t\t\t\t- 'nX': Int value. Harmonic number for detection of fbX.n:fbY.n phase locking.\n\t\t\t\t- 'nY': Int value. Harmonic number for detection of fbX.n:fbY.n phase locking.\n\t\t\t\t- 'BPFXcfg': Structure. Band-Pass Filter configuration for the comodulogram's \"x\" axis.\n\t\t\t\t- 'BPFYcfg': Structure. Band-Pass Filter configuration for the comodulogram's \"y\" axis.\n\t\t\t\t- 'LPFcfg': Structure. Low-Pass Filter configuration to smooth the frequency time series.\n \tThe LPF Filter is used to smooth the frequency time series \n\t\t\t\t\t\t\t(fYlookAt = 'FREQUENCY' or 'PHASEofFREQUENCY').\n\t\t\t\t- 'saveBPFsignal': {0,1}. Flag to return the Band-Pass Filtered signals.\n 0 - Return a NaN.\n 1 - Return the filtered signals.\n\t\t\t\t- 'Nbins': Int value. \n\t\t\t\t\t\t Number of phase/amplitude bins used to compute the Histograms (p) of the comodulogram. \n\t\t\t\t- 'sameNumberOfCycles': {0,1}. Flag to configure the processing mode for signal x:\n 0 - Do not truncate the signal \"x\" to obtain the same number of cycles.\n 1 - Process the same number of cycles of signal \"x\" for all \"fX\" frequencies.\n\t\t\t\t- 'CFCmethod': String. {'plv','mi'}\n\t\t\t\t\t\t\tDefines the approach to compute the Cross frequency Coupling \n\t\t\t\t\t\t\t(PLV / methods to compute the MI).\n\t\t\t\t- 'verbose': Boolean {0,1}. \n\t\t\t\t\t\t\t 0: no message are shown.\n \t 1: show the messages.\n\t\t\t\t- 'perMethod': String. Method by which the surrogated time series are built. Options\n\t\t\t\t\t\t\t* 'trialShuffling'\n\t\t\t\t\t\t\t* 'sampleShuffling'\n \t* 'FFTphaseShuffling'\n \t* 'cutShuffling'\n\t\t\t\t- 'Nper': Int value. Number of permutations.\n\t\t\t\t\t\t It defines the number of surrogate histograms per\n\t\t\t\t\t\t repetition. It is worth noting that in each repetition, \"Nper\" surrogate histograms of size\n\t\t\t\t\t\t \"Nbins x NfY x NfX\" are stored in memory (RAM).\n\t\t\t\t- 'Nrep': Int value. Number of repetitions.\n\t\t\t\t\t\t In each repetition a \".mat\" file is written to disk,\n\t\t\t\t\t\t containing \"Nper\" surrogate histograms of size \"Nbins x NfY x NfX\". \n\t\t\t\t\t\t As a consequence, the final number of surrogate histograms is \"Nper x Nrep\".\n\t\t\t\t- 'Pvalue': Numeric value. P-value for the statistically significant level.\n\t\t\t\t- 'corrMultComp': String {'Bonferroni', 'pixelBased'}.\n\t\t\t\t\t\t\t\t Method to correct for multiple comparisons.\n\t\t\t\t- 'fs': Numeric value.\n\n\tOutputs:\n\t- CFCout: Structure. Parameters of the comodulogram.\n\t\t\t\t-'fXcfg', 'fYcfg': Structure. Parameters of the Frequency Band in \"x(y)\" axis.\n\t\t\t\t\t\t\t\t\t- 'start': \tNumeric value. Start frequency [Hz].\n\t\t\t\t\t\t\t\t\t- 'end':\tNumeric value. End frequency [Hz].\n\t\t\t\t\t\t\t\t\t- 'res': \tNumeric value. Frequency resolution [Hz].\n\t\t\t\t\t\t\t\t\t\t\t\tDefine the frequency separation between two consecutive BPFs.\n\t\t\t\t\t\t\t\t\t- 'BPFcfg': Structure. \n\t\t\t\t\t\t\t\t\t\t\t\tBand-Pass Filter configuration for the comodulogram's \"x(y)\" axis.\n\t\t\t\t\t\t\t\t\t- 'lookAt': String. Parameter of the signal (phase/amplitude) observed in the range of\n\t\t\t\t\t\t\t\t\t\t\t\tfrequency corresponding to the \"x(y)\" axis [none] (string).\n\t\t\t\t\t\t\t\t\t- 'n': Int value. Harmonic number for detection of fbX.n:fbY.n phase locking.\n\t\t\t\t\t\t\t\t\t\t\t\tRef: Detection of n,m Phase Locking from Noisy Data (Tass, 1998).pdf \n\t\t\t\t\t\t\t\t\t- 'LPFcfg' Structure.\n\t\t\t\t\t\t\t\t\t\t\t\tLow-Pass Filter configuration to smooth the frequency time series (structure array).\n \t\tThe LPF Filter is used to smooth the frequency time series (fYlookAt = 'FREQUENCY'\n \t\tor 'PHASEofFREQUENCY').\n\t\t\t\t\t\t\t\t\t- 'saveBPFsignal': Boolean. Flag to return the Band-Pass Filtered signals.\n\t\t\t\t\t\t\t\t\t\t\t\t0: Return a NaN.\n\t\t\t\t\t\t\t\t\t\t\t\t1: Return the filtered signals.\n\t\t\t\t\t\t\t\t\t- 'Nbins': Int value. Number of phase/amplitude bins used to compute the Histograms \n\t\t\t\t\t\t\t\t\t\t\t\t(p) of the comodulogram. \n \t\t- 'sameNumberOfCycles': Boolean. Flag to configure the processing mode for signal x.\n 0: Do not truncate the signal \"x\" to obtain the same number of cycles.\n 1: Process the same number of cycles of signal \"x\" for all \"fX\" frequencies.\n\t\t\t\t- 'CFCmethod'\n\t\t\t\t- 'verbose'\n\t\t\t\t- 'perMethod'\n\t\t\t\t- 'Nper'\n\t\t\t\t- 'Nrep'\n\t\t\t\t- 'Pvalue'\n\t\t\t\t- 'corrMultComp'\n\t\t\t\t- 'fs'\n\t\"\"\"\n fXcfg = {'start': CFCin['fXmin'], 'end': CFCin['fXmax'], 'res': CFCin[\n 'fXres'], 'BPFcfg': CFCin['BPFXcfg'], 'lookAt': CFCin['fXlookAt'],\n 'n': CFCin['nX'], 'Nbins': CFCin['Nbins'], 'sameNumberOfCycles':\n CFCin['sameNumberOfCycles'], 'saveBPFsignal': CFCin['saveBPFsignal']}\n fYcfg = {'start': CFCin['fYmin'], 'end': CFCin['fYmax'], 'res': CFCin[\n 'fYres'], 'BPFcfg': CFCin['BPFYcfg'], 'lookAt': CFCin['fYlookAt'],\n 'n': CFCin['nY'], 'saveBPFsignal': CFCin['saveBPFsignal']}\n if fYcfg['lookAt'].lower == 'frequency' or fYcfg['lookAt'\n ].lower == 'phaseoffrequency':\n fYcfg['LPFcfg'] = CFCin['LPFcfg']\n if CFCin['fXmin'] <= CFCin['BPFXcfg']['Bw'] / 2:\n fXcfg['start'] = CFCin['fXmin'] + CFCin['BPFXcfg']['Bw'] / 2\n fXcfg['BPFcfg']['f0'] = np.linspace(fXcfg['start'], fXcfg['end'], np.\n ceil((fXcfg['end'] - fXcfg['start']) / fXcfg['res']))\n if 'times' in fXcfg['BPFcfg'].keys() and len(fXcfg['BPFcfg']['times']) > 1:\n fXcfg['BPFcfg']['times'] = np.linspace(fXcfg['BPFcfg']['times'][0],\n fXcfg['BPFcfg']['times'][-1], len(fXcfg['BPFcfg']['times']))\n if type(fYcfg['BPFcfg']['Bw'] * 1.0) == float:\n fYcfg['BPFcfg']['Bw'] = fYcfg['BPFcfg']['Bw'] * np.ones(np.shape(\n fXcfg['BPFcfg']['f0']))\n else:\n fYcfg['BPFcfg']['Bw'] = 2 * fXcfg['BPFcfg']['f0']\n if fYcfg['start'] <= fYcfg['BPFcfg']['Bw'][0] / 2:\n fYcfg['start'] = fYcfg['start'] + fYcfg['BPFcfg']['Bw'][0] / 2\n fYcfg['BPFcfg']['f0'] = np.linspace(fYcfg['start'], fYcfg['end'], np.\n ceil((fYcfg['end'] - fYcfg['start']) / fYcfg['res']))\n if 'times' in fYcfg['BPFcfg'].keys() and len(fYcfg['BPFcfg']['times']) > 1:\n fYcfg['BPFcfg']['times'] = np.linspace(fYcfg['BPFcfg']['times'][0],\n fYcfg['BPFcfg']['times'][-1], len(fYcfg['BPFcfg']['times']))\n CFCout = {'fXcfg': fXcfg, 'fYcfg': fYcfg, 'CFCmethod': CFCin[\n 'CFCmethod'], 'verbose': CFCin['verbose'], 'perMethod': CFCin[\n 'perMethod'], 'Nper': CFCin['Nper'], 'Nrep': CFCin['Nrep'],\n 'Pvalue': CFCin['Pvalue'], 'corrMultComp': CFCin['corrMultComp'],\n 'fs': CFCin['fs']}\n return CFCout\n\n\n<assignment token>\n\n\ndef function_comodulogramBPF(signal, BPFcfg, fs, indSettlingExt):\n \"\"\"\n Description:\n In this function we implement the Band-Pass Filtering of the input signal.\n The input signal is supposed to be a raw (unfiltered) time series.\n\n\n Inputs:\n - signal: Numeric array (Nsamples x 1). Data.\n - BPFcfg: Structure. \n Band-Pass Filter configuration for the comodulogram's \"x(y)\" axis.\n - 'function': string {'function_butterBPF', 'function_eegfilt', 'function_FDF'}\n It specifies the function for the Band-Pass Filter:\n * 'function_butterBPF', a BPF IIR filter is implemented using a series connection of a\n High-Pass followed by a Low-Pass Butterworth filters.\n * 'function_eegfilt', a BPF FIR filter is implemented using the \"eegfilt.m\" function from\n EEGLAB toolbox.\n * 'function_FDF', a Frequency Domain Filtering is implemented using a window function. \n - fs: Numeric value. Sampling rate [Hz].\n - indSettlingExt: Int value. External index for cutting out the transient response of the BPFs.\n If \"indSettlingExt\" is empty or NaN, the index for the longest settling time is used.\n\n Outputs:\n - indSettlingMax: Int value. Index corresponding to the longest transient response of the BPFs.\n - BPFsignal: Numeric array (Nsamples x Nf x NBw). Band-Pass Filtered signals.\n where: Ns = np.shape[signal,0]. Number of samples.\n Nf = len(fcfg['BPFcfg']['f0']). Number of frequencies.\n NBw = len(fcfg['BPFcfg']['Bw']). Number of Bandwidths.\n \"\"\"\n if 'f1' in BPFcfg.keys() and 'f2' in BPFcfg.keys():\n BPFcfg['f0'] = (BPFcfg['f1'] + BPFcfg['f2']) / 2\n BPFcfg['Bw'] = BPFcfg['f2'] - BPFcfg['f1']\n Nf = np.size(BPFcfg['f0'])\n NBw = np.size(BPFcfg['Bw'])\n fnyq = fs / 2\n Ncycle = np.round(fs / np.atleast_1d(BPFcfg['f0'])[0])\n Ns = np.shape(signal)[0]\n Ns_cropped = Ns - 2 * (indSettlingExt - 1)\n indSettlingMax = indSettlingExt\n BPFsignal = np.zeros((Ns_cropped, Nf, NBw))\n for ii in range(NBw):\n BPFsignal_local = np.zeros((Ns, Nf))\n indSettling = np.zeros((1, Nf))\n for jj in range(Nf):\n BPFcfg_local = BPFcfg\n BPFcfg_local['Bw'] = np.atleast_1d(BPFcfg['Bw'])[ii]\n BPFcfg_local['f0'] = np.atleast_1d(BPFcfg['f0'])[jj]\n if BPFcfg_local['f0'] - BPFcfg_local['Bw'] / 2 <= fs / Ns or (\n BPFcfg_local['f0'] + BPFcfg_local['Bw'] / 2) / fnyq >= 1:\n continue\n filter_function = FILTERS_SWITCHER.get(BPFcfg_local['function'],\n lambda : 'Invalid method')\n BPFsignal_localjj, indSettling[jj], _, _ = filter_function(signal,\n BPFcfg_local, fs)\n BPFsignal_local[:, jj] = np.real(np.squeeze(BPFsignal_localjj))\n indSettlingMax = max([indSettling, indSettlingMax])\n if indSettlingMax > indSettlingExt:\n print('Un msj no implementado- function_comodulogramBPF_v1_225')\n BPFsignal_local = BPFsignal_local[indSettlingExt - 1:\n BPFsignal_local.shape[0] - (indSettlingExt - 1), :]\n BPFsignal[:, :, ii] = BPFsignal_local\n return BPFsignal, indSettlingMax\n\n\ndef function_feature_phase(signal):\n \"\"\" \n Description:\n Compute the phase of the z-scored BPF signal.\n\n Remark:\n Before the computation of the phase signal, the time series should be\n normalized, de-trended, or mean-subtracted to have the DC-component removed.\n this ensures that phase values are not limited in range.\n \n Ref: \n Assessing transient cross-frequency coupling in EEG data (Cohen 2008).pdf\n\n Angle [rad] in (-pi,pi]\n \"\"\"\n return np.angle(hilbert(scale(signal), axis=0))\n\n\ndef function_feature_amplitude(signal):\n \"\"\" \n Description:\n Compute the amplitude (signal envelope).\n Amplitude envelope of the signal (AM demodulation).\n\n \"\"\"\n return np.abs(hilbert(signal, axis=0))\n\n\ndef function_feature_phofamp(signal):\n \"\"\" \n Description:\n Phase of the signal's amplitude envelope.\n \n Remark:\n Before the computation of the phase signal, the time series should be\n normalized, de-trended, or mean-subtracted to have the DC-component removed;\n this ensures that phase values are not limited in range.\n \n Ref: Assessing transient cross-frequency coupling in EEG data (Cohen 2008).pdf\n\n \"\"\"\n BPFfeature = np.abs(hilbert(signal, axis=0))\n BPFfeature = scale(BPFfeature)\n BPFfeature = np.angle(hilbert(BPFfeature, axis=0))\n return BPFfeature\n\n\ndef function_feature_frequency(signal):\n print('Sin implementar. Devuelve 0')\n return 0\n\n\ndef function_feature_phoffreq(signal):\n print('Sin implementar. Devuelve 0')\n return 0\n\n\n<assignment token>\n\n\ndef function_comodulogramFeature(signal, fcfg, fs, indSettlingExt):\n \"\"\"\n Description:\n In this function we implement the extraction of the phase/amplitude/frequency \n time series from the input signals. The input signals are supposed to be \n previously Band-Pass Filtered signals around the frequency bands of interest.\n\n Inputs:\n - signal. Numeric array (Ns x Nf x NBw)\n Band-Pass Filtered signals. Notation:\n Ns: Number of samples.\n Nf: Number of frequencies. len(fcfg['BPFcfg']['f0'])\n NBw: Number of Bandwidths. len(fcfg['BPFcfg']['Bw'])\n\n - fcfg. Structure. Parameters of the Frequency Band in \"x(y)\" axis.\n - 'start': Numeric value. Start frequency [Hz].\n - 'end': Numeric value. End frequency [Hz].\n - 'res': Numeric value. Frequency resolution [Hz].\n Define the frequency separation between two consecutive BPFs. \n - 'BPFcfg': Structure.\n Band-Pass Filter configuration for the comodulogram's \"x(y)\" axis.\n - 'lookAt': String. Parameter of the signal (phase/amplitude/frequency) observed in the range of\n frequency corresponding to the \"x(y)\" axis [none].\n - 'LPFcfg': Structure. Low-Pass Filter configuration to smooth the frequency time series.\n The LPF Filter is used to smooth the frequency time series (fYlookAt = 'FREQUENCY' or 'PHASEofFREQUENCY').\n - 'saveBPFsignal': Boolean value. Flag to return the Band-Pass Filtered signals.\n *0: Return a NaN.\n *1: Return the filtered signals. \n - 'Nbins': Integer value. \n Number of phase/amplitude/frequency bins used to compute the Histograms (p) of the comodulogram. \n\n - 'sameNumberOfCycles': Boolean value. Flag to configure the processing mode for signal x.\n *0: Do not truncate the signal \"x\" to obtain the same number of cycles.\n *1: Process the same number of cycles of signal \"x\" for all \"fX\" frequencies.\n - fs: Numeric value. Sampling rate [Hz].\n - indSettlingExt: Integer value. \n External index for cutting out the transient response of the BPFs.\n If \"indSettlingExt\" is empty or NaN, the index for the longest settling time is used.\n\n Outputs:\n - BPFfeature: Numeric array (Ns x NF x NBw)\n Phase/amplitud/frequency time series for the \"x\" or \"y\" axis of the comodulogram\n\n - croppedSignal: Numeric array (Ns-2*(indSettlingExt-1) x Nf x NBw) \n Cropped Band-Pass Filtered signals (in the case of saveBPFsignal=1)\n \"\"\"\n if 'f1' in fcfg['BPFcfg'].keys() and 'f2' in fcfg['BPFcfg'].keys():\n fcfg['BPFcfg']['f0'] = (fcfg['BPFcfg']['f1'] + fcfg['BPFcfg']['f2']\n ) / 2\n fcfg['BPFcfg']['Bw'] = fcfg['BPFcfg']['f2'] - fcfg['BPFcfg']['f1']\n croppedSignal = []\n Nf = np.size(fcfg['BPFcfg']['f0'])\n NBw = np.size(fcfg['BPFcfg']['Bw'])\n fnyq = fs / 2\n Ns = np.shape(signal)[0]\n Ns_cropped = Ns - 2 * (indSettlingExt - 1)\n BPFfeature = np.zeros((Ns_cropped, Nf, NBw))\n if fcfg['saveBPFsignal']:\n croppedSignal = np.zeros((Ns_cropped, Nf, NBw))\n for ii in range(NBw):\n signal_local = signal[:, :, ii]\n feature = fcfg['lookAt'].lower()\n function_feature = LIST_FEATURES.get(feature, lambda : 'Invalid method'\n )\n BPFfeature_local = function_feature(signal_local)\n BPFfeature_local = BPFfeature_local[indSettlingExt - 1:\n BPFfeature_local.shape[0] - (indSettlingExt - 1), :]\n BPFfeature[:, :, ii] = BPFfeature_local\n if fcfg['saveBPFsignal']:\n croppedSignal[:, :, ii] = signal_local[indSettlingExt - 1:\n signal_local.shape[0] - (indSettlingExt - 1), :]\n return BPFfeature, croppedSignal\n\n\ndef function_PLV(x, y, wx, wy, CFCcfg):\n \"\"\"\n\tDescription: \n\tIn this function we compute the Phase Locking Values.\n\n\tRefs:\n\t[1] /PhaseLockingValue/function_PhaseLockingValue_v1.m\n\t[2] Measuring Phase-Amplitude Coupling Between Neuronal Oscillations (Tort, 2010).pdf, p. 1198\n\t[3] High gamma power is phase-locked to theta oscillations (Canolty, 2006).pdf\n\t[4] Phase Locking from Noisy Data (Tass, 1998).pdf\n Ref: Detection of n,m Phase Locking from Noisy Data (Tass, 1998).pdf \n\n\tInputs:\n\t\t- x: Numeric array (Nsamples x NfX).\n\t\t \t Data for the comodulogram's \"x\" axis (matrix: samples x NfX).\n\t\t- y: Numeric array (Nsamples x NfY x NfX). \n\t\t Data for the comodulogram's \"y\" axis (matrix: samples x NfY x NfX).\n\t\t- wx: Numeric array (Nsamples x NfX). \n\t\t\t Weights related to the comodulogram's \"x\" axis (matrix: samples x NfX).\n\t\t- wy: Numeric array (Nsamples x NfY x NfX).\n\t\t Weights related to the comodulogram's \"y\" axis (matrix: samples x NfY x NfX).\n\t\t- CFCcfc: structure. \n\t\t\t\t Parameters of the comodulogram (structure array)\n\t\t\t\t - 'fXcfg': structure.\n\t\t\t\t \t\t\t Parameters of the Frequency Band in \"x\" axis.\n\t\t\t\t - 'fYcfg': structure. \n\t\t\t\t \t\t\t Parameters of the Frequency Band in \"y\" axis.\n\t\t\t\t \t\t\t-'start': Numeric value. Start frequency [Hz].\n\t\t\t\t \t\t\t-'end': Numeric value. End frequency [Hz].\n\t\t\t\t \t\t\t-'res': Numeric value. Frequency resolution.\n\t\t\t\t \t\t\t\t\t Define the frequency separation between two consecutive BPFs.\n\t\t\t\t \t\t\t-'BPFcfg': Structure. Band-Pass Filter configuration for the comodulogram's axis.\n\t\t\t\t\t\t\t-'lookAt': String.\n\t\t\t\t\t\t\t\t\t Parameter of the signal (phase/amplitude) observed in the range of\n\t\t\t\t\t\t\t\t\t frequency [none] (string).\n\t\t\t\t\t\t\t-'n': Int value. Harmonic number for detection of phase locking.\n\t\t\t\t\t\t\t-'saveBPFsignal': {0,1}. Flag to return the Band-Pass Filtered signals. \n\t\t\t\t\t\t\t\t\t\t\t 0 - Return a NaN.\n 1 - Return the filtered signals.\n -'Nbins': Int value.\n \t\t Number of phase/amplitude bins used to compute the Histograms (p) of the comodulogram. \n -'sameNumberOfCycles': {0,1}. Flag to configure the processing mode for signal x.\n \t\t\t\t\t 0 - Do not truncate the signal \"x\" to obtain the same number \n \t\t\t\t\t \t of cycles.\n 1 - Process the same number of cycles of signal \"x\" for all \n\t\t\t\t\t\t\t\t\t\t\t\t\t \"fX\" frequencies.\n\t\t\t\t - 'CFCmethod': String.\n\t\t\t\t \t\t\t\t Defines the approach to compute the Cross frequency Coupling. E.g: 'plv'.\n\t\t\t\t - 'verbose': Boolean. Display flag. \n\t\t\t\t - 'perMethod': {'trialShuffling', 'sampleShuffling', 'FFTphaseShuffling', 'cutShuffling'}. \n\t\t\t\t \t\t\t\t Method by which the surrogated time series are built.\n\t\t\t\t - 'Nper': Int value. \n\t\t\t\t \t\t Number of permutations. It defines the number of surrogate histograms per\n repetition. It is worth noting that in each repetition, \"Nper\" surrogate \n\t\t\t\t\t\t\thistograms of size \"Nbins x NfY x NfX\" are stored in memory (RAM).\n\t\t\t\t - 'Nrep': Int value.\n\t\t\t\t Number of repetitions. In each repetition a \".mat\" file is written to disk,\n\t containing \"Nper\" surrogate histograms of size \"Nbins x NfY x NfX\". \n \tAs a consequence, the final number of surrogate histograms is \"Nper x Nrep\".\n\t\t\t\t - 'Pvalue': Numeric value. P-value for the statistically significant level.\n\t\t\t\t - 'corrMultComp': {'Bonferroni', 'pixelBased'} Method to correct for multiple comparisons.\n\t\t\t\t - 'fs': Numeric value. Sampling rate [Hz].\n\n\tOutputs:\n\t\t- PLV: Numeric array (NfY x NfX).\n\t\t\t Phase Locking Value.\n\t\t- wxPLV: Numeric array (NfY x NfX).\n\t\t\t\t Weighted Phase Locking Values using the wx weights (matrix: NfY x NfX).\n\t\t- wyPLV: Numeric array (NfY x NfX). \n\t\t\t\t Weighted Phase Locking Values using the wy weights (matrix: NfY x NfX).\n\n\t \t\t\t NfX = length(CFCcfg['fXcfg']['BPFcfg']['f0'])\n\t \t\t\t NfY = length(CFCcfg['fYcfg']['BPFcfg']['f0'])\n\t\"\"\"\n wxPLV = []\n wyPLV = []\n NfX = np.size(CFCcfg['fXcfg']['BPFcfg']['f0'])\n NfY = np.size(CFCcfg['fYcfg']['BPFcfg']['f0'])\n Ns = np.shape(x)[0]\n nX = CFCcfg['fXcfg']['n']\n nY = CFCcfg['fYcfg']['n']\n PLV = np.zeros((NfY, NfX), dtype=complex)\n for ii in range(NfY):\n PLV[ii, :] = np.sum(np.exp(1.0j * (nX * x - nY * y[:, ii, :])), 0) / Ns\n return PLV, wxPLV, wyPLV\n", "<docstring token>\n<import token>\n\n\ndef function_setCFCcfg(CFCin):\n \"\"\"\n\tDescription:\n\tIn this function we compute the structures for the \"x\" and \"y\" axis of the comodulogram.\n\n\tInputs:\n\t- CFCin: Structure. Parameters of the comodulogram.\n\t\t\t\t- 'fXmin': Numeric value. Minimum frequency for the LF band [Hz].\n\t\t\t\t- 'fXmax': Numeric value. Maximum frequency for the LF band [Hz].\n\t\t\t\t- 'fYmin': Numeric value. Minimum frequency for the HF band [Hz].\n\t\t\t\t- 'fYmax': Numeric value. Maximum frequency for the HF band [Hz].\n\t\t\t\t- 'fXres': Numeric value. Frequency resolution for the LF band [Hz].\n\t\t\t\t- 'fYres': Numeric value. Frequency resolution for the HF band [Hz].\n\t\t\t\t- 'fXlookAt': String. \n\t\t\t\t\t\t\t Parameter of the signal observed in the range of\n\t \t frequency corresponding to the \"x\" axis.\n\t\t\t\t- 'fYlookAt': String.\n\t\t\t\t\t\t\t Parameter of the signal observed in the range of\n \t frequency corresponding to the \"y\" axis.\n\t\t\t\t- 'nX': Int value. Harmonic number for detection of fbX.n:fbY.n phase locking.\n\t\t\t\t- 'nY': Int value. Harmonic number for detection of fbX.n:fbY.n phase locking.\n\t\t\t\t- 'BPFXcfg': Structure. Band-Pass Filter configuration for the comodulogram's \"x\" axis.\n\t\t\t\t- 'BPFYcfg': Structure. Band-Pass Filter configuration for the comodulogram's \"y\" axis.\n\t\t\t\t- 'LPFcfg': Structure. Low-Pass Filter configuration to smooth the frequency time series.\n \tThe LPF Filter is used to smooth the frequency time series \n\t\t\t\t\t\t\t(fYlookAt = 'FREQUENCY' or 'PHASEofFREQUENCY').\n\t\t\t\t- 'saveBPFsignal': {0,1}. Flag to return the Band-Pass Filtered signals.\n 0 - Return a NaN.\n 1 - Return the filtered signals.\n\t\t\t\t- 'Nbins': Int value. \n\t\t\t\t\t\t Number of phase/amplitude bins used to compute the Histograms (p) of the comodulogram. \n\t\t\t\t- 'sameNumberOfCycles': {0,1}. Flag to configure the processing mode for signal x:\n 0 - Do not truncate the signal \"x\" to obtain the same number of cycles.\n 1 - Process the same number of cycles of signal \"x\" for all \"fX\" frequencies.\n\t\t\t\t- 'CFCmethod': String. {'plv','mi'}\n\t\t\t\t\t\t\tDefines the approach to compute the Cross frequency Coupling \n\t\t\t\t\t\t\t(PLV / methods to compute the MI).\n\t\t\t\t- 'verbose': Boolean {0,1}. \n\t\t\t\t\t\t\t 0: no message are shown.\n \t 1: show the messages.\n\t\t\t\t- 'perMethod': String. Method by which the surrogated time series are built. Options\n\t\t\t\t\t\t\t* 'trialShuffling'\n\t\t\t\t\t\t\t* 'sampleShuffling'\n \t* 'FFTphaseShuffling'\n \t* 'cutShuffling'\n\t\t\t\t- 'Nper': Int value. Number of permutations.\n\t\t\t\t\t\t It defines the number of surrogate histograms per\n\t\t\t\t\t\t repetition. It is worth noting that in each repetition, \"Nper\" surrogate histograms of size\n\t\t\t\t\t\t \"Nbins x NfY x NfX\" are stored in memory (RAM).\n\t\t\t\t- 'Nrep': Int value. Number of repetitions.\n\t\t\t\t\t\t In each repetition a \".mat\" file is written to disk,\n\t\t\t\t\t\t containing \"Nper\" surrogate histograms of size \"Nbins x NfY x NfX\". \n\t\t\t\t\t\t As a consequence, the final number of surrogate histograms is \"Nper x Nrep\".\n\t\t\t\t- 'Pvalue': Numeric value. P-value for the statistically significant level.\n\t\t\t\t- 'corrMultComp': String {'Bonferroni', 'pixelBased'}.\n\t\t\t\t\t\t\t\t Method to correct for multiple comparisons.\n\t\t\t\t- 'fs': Numeric value.\n\n\tOutputs:\n\t- CFCout: Structure. Parameters of the comodulogram.\n\t\t\t\t-'fXcfg', 'fYcfg': Structure. Parameters of the Frequency Band in \"x(y)\" axis.\n\t\t\t\t\t\t\t\t\t- 'start': \tNumeric value. Start frequency [Hz].\n\t\t\t\t\t\t\t\t\t- 'end':\tNumeric value. End frequency [Hz].\n\t\t\t\t\t\t\t\t\t- 'res': \tNumeric value. Frequency resolution [Hz].\n\t\t\t\t\t\t\t\t\t\t\t\tDefine the frequency separation between two consecutive BPFs.\n\t\t\t\t\t\t\t\t\t- 'BPFcfg': Structure. \n\t\t\t\t\t\t\t\t\t\t\t\tBand-Pass Filter configuration for the comodulogram's \"x(y)\" axis.\n\t\t\t\t\t\t\t\t\t- 'lookAt': String. Parameter of the signal (phase/amplitude) observed in the range of\n\t\t\t\t\t\t\t\t\t\t\t\tfrequency corresponding to the \"x(y)\" axis [none] (string).\n\t\t\t\t\t\t\t\t\t- 'n': Int value. Harmonic number for detection of fbX.n:fbY.n phase locking.\n\t\t\t\t\t\t\t\t\t\t\t\tRef: Detection of n,m Phase Locking from Noisy Data (Tass, 1998).pdf \n\t\t\t\t\t\t\t\t\t- 'LPFcfg' Structure.\n\t\t\t\t\t\t\t\t\t\t\t\tLow-Pass Filter configuration to smooth the frequency time series (structure array).\n \t\tThe LPF Filter is used to smooth the frequency time series (fYlookAt = 'FREQUENCY'\n \t\tor 'PHASEofFREQUENCY').\n\t\t\t\t\t\t\t\t\t- 'saveBPFsignal': Boolean. Flag to return the Band-Pass Filtered signals.\n\t\t\t\t\t\t\t\t\t\t\t\t0: Return a NaN.\n\t\t\t\t\t\t\t\t\t\t\t\t1: Return the filtered signals.\n\t\t\t\t\t\t\t\t\t- 'Nbins': Int value. Number of phase/amplitude bins used to compute the Histograms \n\t\t\t\t\t\t\t\t\t\t\t\t(p) of the comodulogram. \n \t\t- 'sameNumberOfCycles': Boolean. Flag to configure the processing mode for signal x.\n 0: Do not truncate the signal \"x\" to obtain the same number of cycles.\n 1: Process the same number of cycles of signal \"x\" for all \"fX\" frequencies.\n\t\t\t\t- 'CFCmethod'\n\t\t\t\t- 'verbose'\n\t\t\t\t- 'perMethod'\n\t\t\t\t- 'Nper'\n\t\t\t\t- 'Nrep'\n\t\t\t\t- 'Pvalue'\n\t\t\t\t- 'corrMultComp'\n\t\t\t\t- 'fs'\n\t\"\"\"\n fXcfg = {'start': CFCin['fXmin'], 'end': CFCin['fXmax'], 'res': CFCin[\n 'fXres'], 'BPFcfg': CFCin['BPFXcfg'], 'lookAt': CFCin['fXlookAt'],\n 'n': CFCin['nX'], 'Nbins': CFCin['Nbins'], 'sameNumberOfCycles':\n CFCin['sameNumberOfCycles'], 'saveBPFsignal': CFCin['saveBPFsignal']}\n fYcfg = {'start': CFCin['fYmin'], 'end': CFCin['fYmax'], 'res': CFCin[\n 'fYres'], 'BPFcfg': CFCin['BPFYcfg'], 'lookAt': CFCin['fYlookAt'],\n 'n': CFCin['nY'], 'saveBPFsignal': CFCin['saveBPFsignal']}\n if fYcfg['lookAt'].lower == 'frequency' or fYcfg['lookAt'\n ].lower == 'phaseoffrequency':\n fYcfg['LPFcfg'] = CFCin['LPFcfg']\n if CFCin['fXmin'] <= CFCin['BPFXcfg']['Bw'] / 2:\n fXcfg['start'] = CFCin['fXmin'] + CFCin['BPFXcfg']['Bw'] / 2\n fXcfg['BPFcfg']['f0'] = np.linspace(fXcfg['start'], fXcfg['end'], np.\n ceil((fXcfg['end'] - fXcfg['start']) / fXcfg['res']))\n if 'times' in fXcfg['BPFcfg'].keys() and len(fXcfg['BPFcfg']['times']) > 1:\n fXcfg['BPFcfg']['times'] = np.linspace(fXcfg['BPFcfg']['times'][0],\n fXcfg['BPFcfg']['times'][-1], len(fXcfg['BPFcfg']['times']))\n if type(fYcfg['BPFcfg']['Bw'] * 1.0) == float:\n fYcfg['BPFcfg']['Bw'] = fYcfg['BPFcfg']['Bw'] * np.ones(np.shape(\n fXcfg['BPFcfg']['f0']))\n else:\n fYcfg['BPFcfg']['Bw'] = 2 * fXcfg['BPFcfg']['f0']\n if fYcfg['start'] <= fYcfg['BPFcfg']['Bw'][0] / 2:\n fYcfg['start'] = fYcfg['start'] + fYcfg['BPFcfg']['Bw'][0] / 2\n fYcfg['BPFcfg']['f0'] = np.linspace(fYcfg['start'], fYcfg['end'], np.\n ceil((fYcfg['end'] - fYcfg['start']) / fYcfg['res']))\n if 'times' in fYcfg['BPFcfg'].keys() and len(fYcfg['BPFcfg']['times']) > 1:\n fYcfg['BPFcfg']['times'] = np.linspace(fYcfg['BPFcfg']['times'][0],\n fYcfg['BPFcfg']['times'][-1], len(fYcfg['BPFcfg']['times']))\n CFCout = {'fXcfg': fXcfg, 'fYcfg': fYcfg, 'CFCmethod': CFCin[\n 'CFCmethod'], 'verbose': CFCin['verbose'], 'perMethod': CFCin[\n 'perMethod'], 'Nper': CFCin['Nper'], 'Nrep': CFCin['Nrep'],\n 'Pvalue': CFCin['Pvalue'], 'corrMultComp': CFCin['corrMultComp'],\n 'fs': CFCin['fs']}\n return CFCout\n\n\n<assignment token>\n<function token>\n\n\ndef function_feature_phase(signal):\n \"\"\" \n Description:\n Compute the phase of the z-scored BPF signal.\n\n Remark:\n Before the computation of the phase signal, the time series should be\n normalized, de-trended, or mean-subtracted to have the DC-component removed.\n this ensures that phase values are not limited in range.\n \n Ref: \n Assessing transient cross-frequency coupling in EEG data (Cohen 2008).pdf\n\n Angle [rad] in (-pi,pi]\n \"\"\"\n return np.angle(hilbert(scale(signal), axis=0))\n\n\ndef function_feature_amplitude(signal):\n \"\"\" \n Description:\n Compute the amplitude (signal envelope).\n Amplitude envelope of the signal (AM demodulation).\n\n \"\"\"\n return np.abs(hilbert(signal, axis=0))\n\n\ndef function_feature_phofamp(signal):\n \"\"\" \n Description:\n Phase of the signal's amplitude envelope.\n \n Remark:\n Before the computation of the phase signal, the time series should be\n normalized, de-trended, or mean-subtracted to have the DC-component removed;\n this ensures that phase values are not limited in range.\n \n Ref: Assessing transient cross-frequency coupling in EEG data (Cohen 2008).pdf\n\n \"\"\"\n BPFfeature = np.abs(hilbert(signal, axis=0))\n BPFfeature = scale(BPFfeature)\n BPFfeature = np.angle(hilbert(BPFfeature, axis=0))\n return BPFfeature\n\n\ndef function_feature_frequency(signal):\n print('Sin implementar. Devuelve 0')\n return 0\n\n\ndef function_feature_phoffreq(signal):\n print('Sin implementar. Devuelve 0')\n return 0\n\n\n<assignment token>\n\n\ndef function_comodulogramFeature(signal, fcfg, fs, indSettlingExt):\n \"\"\"\n Description:\n In this function we implement the extraction of the phase/amplitude/frequency \n time series from the input signals. The input signals are supposed to be \n previously Band-Pass Filtered signals around the frequency bands of interest.\n\n Inputs:\n - signal. Numeric array (Ns x Nf x NBw)\n Band-Pass Filtered signals. Notation:\n Ns: Number of samples.\n Nf: Number of frequencies. len(fcfg['BPFcfg']['f0'])\n NBw: Number of Bandwidths. len(fcfg['BPFcfg']['Bw'])\n\n - fcfg. Structure. Parameters of the Frequency Band in \"x(y)\" axis.\n - 'start': Numeric value. Start frequency [Hz].\n - 'end': Numeric value. End frequency [Hz].\n - 'res': Numeric value. Frequency resolution [Hz].\n Define the frequency separation between two consecutive BPFs. \n - 'BPFcfg': Structure.\n Band-Pass Filter configuration for the comodulogram's \"x(y)\" axis.\n - 'lookAt': String. Parameter of the signal (phase/amplitude/frequency) observed in the range of\n frequency corresponding to the \"x(y)\" axis [none].\n - 'LPFcfg': Structure. Low-Pass Filter configuration to smooth the frequency time series.\n The LPF Filter is used to smooth the frequency time series (fYlookAt = 'FREQUENCY' or 'PHASEofFREQUENCY').\n - 'saveBPFsignal': Boolean value. Flag to return the Band-Pass Filtered signals.\n *0: Return a NaN.\n *1: Return the filtered signals. \n - 'Nbins': Integer value. \n Number of phase/amplitude/frequency bins used to compute the Histograms (p) of the comodulogram. \n\n - 'sameNumberOfCycles': Boolean value. Flag to configure the processing mode for signal x.\n *0: Do not truncate the signal \"x\" to obtain the same number of cycles.\n *1: Process the same number of cycles of signal \"x\" for all \"fX\" frequencies.\n - fs: Numeric value. Sampling rate [Hz].\n - indSettlingExt: Integer value. \n External index for cutting out the transient response of the BPFs.\n If \"indSettlingExt\" is empty or NaN, the index for the longest settling time is used.\n\n Outputs:\n - BPFfeature: Numeric array (Ns x NF x NBw)\n Phase/amplitud/frequency time series for the \"x\" or \"y\" axis of the comodulogram\n\n - croppedSignal: Numeric array (Ns-2*(indSettlingExt-1) x Nf x NBw) \n Cropped Band-Pass Filtered signals (in the case of saveBPFsignal=1)\n \"\"\"\n if 'f1' in fcfg['BPFcfg'].keys() and 'f2' in fcfg['BPFcfg'].keys():\n fcfg['BPFcfg']['f0'] = (fcfg['BPFcfg']['f1'] + fcfg['BPFcfg']['f2']\n ) / 2\n fcfg['BPFcfg']['Bw'] = fcfg['BPFcfg']['f2'] - fcfg['BPFcfg']['f1']\n croppedSignal = []\n Nf = np.size(fcfg['BPFcfg']['f0'])\n NBw = np.size(fcfg['BPFcfg']['Bw'])\n fnyq = fs / 2\n Ns = np.shape(signal)[0]\n Ns_cropped = Ns - 2 * (indSettlingExt - 1)\n BPFfeature = np.zeros((Ns_cropped, Nf, NBw))\n if fcfg['saveBPFsignal']:\n croppedSignal = np.zeros((Ns_cropped, Nf, NBw))\n for ii in range(NBw):\n signal_local = signal[:, :, ii]\n feature = fcfg['lookAt'].lower()\n function_feature = LIST_FEATURES.get(feature, lambda : 'Invalid method'\n )\n BPFfeature_local = function_feature(signal_local)\n BPFfeature_local = BPFfeature_local[indSettlingExt - 1:\n BPFfeature_local.shape[0] - (indSettlingExt - 1), :]\n BPFfeature[:, :, ii] = BPFfeature_local\n if fcfg['saveBPFsignal']:\n croppedSignal[:, :, ii] = signal_local[indSettlingExt - 1:\n signal_local.shape[0] - (indSettlingExt - 1), :]\n return BPFfeature, croppedSignal\n\n\ndef function_PLV(x, y, wx, wy, CFCcfg):\n \"\"\"\n\tDescription: \n\tIn this function we compute the Phase Locking Values.\n\n\tRefs:\n\t[1] /PhaseLockingValue/function_PhaseLockingValue_v1.m\n\t[2] Measuring Phase-Amplitude Coupling Between Neuronal Oscillations (Tort, 2010).pdf, p. 1198\n\t[3] High gamma power is phase-locked to theta oscillations (Canolty, 2006).pdf\n\t[4] Phase Locking from Noisy Data (Tass, 1998).pdf\n Ref: Detection of n,m Phase Locking from Noisy Data (Tass, 1998).pdf \n\n\tInputs:\n\t\t- x: Numeric array (Nsamples x NfX).\n\t\t \t Data for the comodulogram's \"x\" axis (matrix: samples x NfX).\n\t\t- y: Numeric array (Nsamples x NfY x NfX). \n\t\t Data for the comodulogram's \"y\" axis (matrix: samples x NfY x NfX).\n\t\t- wx: Numeric array (Nsamples x NfX). \n\t\t\t Weights related to the comodulogram's \"x\" axis (matrix: samples x NfX).\n\t\t- wy: Numeric array (Nsamples x NfY x NfX).\n\t\t Weights related to the comodulogram's \"y\" axis (matrix: samples x NfY x NfX).\n\t\t- CFCcfc: structure. \n\t\t\t\t Parameters of the comodulogram (structure array)\n\t\t\t\t - 'fXcfg': structure.\n\t\t\t\t \t\t\t Parameters of the Frequency Band in \"x\" axis.\n\t\t\t\t - 'fYcfg': structure. \n\t\t\t\t \t\t\t Parameters of the Frequency Band in \"y\" axis.\n\t\t\t\t \t\t\t-'start': Numeric value. Start frequency [Hz].\n\t\t\t\t \t\t\t-'end': Numeric value. End frequency [Hz].\n\t\t\t\t \t\t\t-'res': Numeric value. Frequency resolution.\n\t\t\t\t \t\t\t\t\t Define the frequency separation between two consecutive BPFs.\n\t\t\t\t \t\t\t-'BPFcfg': Structure. Band-Pass Filter configuration for the comodulogram's axis.\n\t\t\t\t\t\t\t-'lookAt': String.\n\t\t\t\t\t\t\t\t\t Parameter of the signal (phase/amplitude) observed in the range of\n\t\t\t\t\t\t\t\t\t frequency [none] (string).\n\t\t\t\t\t\t\t-'n': Int value. Harmonic number for detection of phase locking.\n\t\t\t\t\t\t\t-'saveBPFsignal': {0,1}. Flag to return the Band-Pass Filtered signals. \n\t\t\t\t\t\t\t\t\t\t\t 0 - Return a NaN.\n 1 - Return the filtered signals.\n -'Nbins': Int value.\n \t\t Number of phase/amplitude bins used to compute the Histograms (p) of the comodulogram. \n -'sameNumberOfCycles': {0,1}. Flag to configure the processing mode for signal x.\n \t\t\t\t\t 0 - Do not truncate the signal \"x\" to obtain the same number \n \t\t\t\t\t \t of cycles.\n 1 - Process the same number of cycles of signal \"x\" for all \n\t\t\t\t\t\t\t\t\t\t\t\t\t \"fX\" frequencies.\n\t\t\t\t - 'CFCmethod': String.\n\t\t\t\t \t\t\t\t Defines the approach to compute the Cross frequency Coupling. E.g: 'plv'.\n\t\t\t\t - 'verbose': Boolean. Display flag. \n\t\t\t\t - 'perMethod': {'trialShuffling', 'sampleShuffling', 'FFTphaseShuffling', 'cutShuffling'}. \n\t\t\t\t \t\t\t\t Method by which the surrogated time series are built.\n\t\t\t\t - 'Nper': Int value. \n\t\t\t\t \t\t Number of permutations. It defines the number of surrogate histograms per\n repetition. It is worth noting that in each repetition, \"Nper\" surrogate \n\t\t\t\t\t\t\thistograms of size \"Nbins x NfY x NfX\" are stored in memory (RAM).\n\t\t\t\t - 'Nrep': Int value.\n\t\t\t\t Number of repetitions. In each repetition a \".mat\" file is written to disk,\n\t containing \"Nper\" surrogate histograms of size \"Nbins x NfY x NfX\". \n \tAs a consequence, the final number of surrogate histograms is \"Nper x Nrep\".\n\t\t\t\t - 'Pvalue': Numeric value. P-value for the statistically significant level.\n\t\t\t\t - 'corrMultComp': {'Bonferroni', 'pixelBased'} Method to correct for multiple comparisons.\n\t\t\t\t - 'fs': Numeric value. Sampling rate [Hz].\n\n\tOutputs:\n\t\t- PLV: Numeric array (NfY x NfX).\n\t\t\t Phase Locking Value.\n\t\t- wxPLV: Numeric array (NfY x NfX).\n\t\t\t\t Weighted Phase Locking Values using the wx weights (matrix: NfY x NfX).\n\t\t- wyPLV: Numeric array (NfY x NfX). \n\t\t\t\t Weighted Phase Locking Values using the wy weights (matrix: NfY x NfX).\n\n\t \t\t\t NfX = length(CFCcfg['fXcfg']['BPFcfg']['f0'])\n\t \t\t\t NfY = length(CFCcfg['fYcfg']['BPFcfg']['f0'])\n\t\"\"\"\n wxPLV = []\n wyPLV = []\n NfX = np.size(CFCcfg['fXcfg']['BPFcfg']['f0'])\n NfY = np.size(CFCcfg['fYcfg']['BPFcfg']['f0'])\n Ns = np.shape(x)[0]\n nX = CFCcfg['fXcfg']['n']\n nY = CFCcfg['fYcfg']['n']\n PLV = np.zeros((NfY, NfX), dtype=complex)\n for ii in range(NfY):\n PLV[ii, :] = np.sum(np.exp(1.0j * (nX * x - nY * y[:, ii, :])), 0) / Ns\n return PLV, wxPLV, wyPLV\n", "<docstring token>\n<import token>\n\n\ndef function_setCFCcfg(CFCin):\n \"\"\"\n\tDescription:\n\tIn this function we compute the structures for the \"x\" and \"y\" axis of the comodulogram.\n\n\tInputs:\n\t- CFCin: Structure. Parameters of the comodulogram.\n\t\t\t\t- 'fXmin': Numeric value. Minimum frequency for the LF band [Hz].\n\t\t\t\t- 'fXmax': Numeric value. Maximum frequency for the LF band [Hz].\n\t\t\t\t- 'fYmin': Numeric value. Minimum frequency for the HF band [Hz].\n\t\t\t\t- 'fYmax': Numeric value. Maximum frequency for the HF band [Hz].\n\t\t\t\t- 'fXres': Numeric value. Frequency resolution for the LF band [Hz].\n\t\t\t\t- 'fYres': Numeric value. Frequency resolution for the HF band [Hz].\n\t\t\t\t- 'fXlookAt': String. \n\t\t\t\t\t\t\t Parameter of the signal observed in the range of\n\t \t frequency corresponding to the \"x\" axis.\n\t\t\t\t- 'fYlookAt': String.\n\t\t\t\t\t\t\t Parameter of the signal observed in the range of\n \t frequency corresponding to the \"y\" axis.\n\t\t\t\t- 'nX': Int value. Harmonic number for detection of fbX.n:fbY.n phase locking.\n\t\t\t\t- 'nY': Int value. Harmonic number for detection of fbX.n:fbY.n phase locking.\n\t\t\t\t- 'BPFXcfg': Structure. Band-Pass Filter configuration for the comodulogram's \"x\" axis.\n\t\t\t\t- 'BPFYcfg': Structure. Band-Pass Filter configuration for the comodulogram's \"y\" axis.\n\t\t\t\t- 'LPFcfg': Structure. Low-Pass Filter configuration to smooth the frequency time series.\n \tThe LPF Filter is used to smooth the frequency time series \n\t\t\t\t\t\t\t(fYlookAt = 'FREQUENCY' or 'PHASEofFREQUENCY').\n\t\t\t\t- 'saveBPFsignal': {0,1}. Flag to return the Band-Pass Filtered signals.\n 0 - Return a NaN.\n 1 - Return the filtered signals.\n\t\t\t\t- 'Nbins': Int value. \n\t\t\t\t\t\t Number of phase/amplitude bins used to compute the Histograms (p) of the comodulogram. \n\t\t\t\t- 'sameNumberOfCycles': {0,1}. Flag to configure the processing mode for signal x:\n 0 - Do not truncate the signal \"x\" to obtain the same number of cycles.\n 1 - Process the same number of cycles of signal \"x\" for all \"fX\" frequencies.\n\t\t\t\t- 'CFCmethod': String. {'plv','mi'}\n\t\t\t\t\t\t\tDefines the approach to compute the Cross frequency Coupling \n\t\t\t\t\t\t\t(PLV / methods to compute the MI).\n\t\t\t\t- 'verbose': Boolean {0,1}. \n\t\t\t\t\t\t\t 0: no message are shown.\n \t 1: show the messages.\n\t\t\t\t- 'perMethod': String. Method by which the surrogated time series are built. Options\n\t\t\t\t\t\t\t* 'trialShuffling'\n\t\t\t\t\t\t\t* 'sampleShuffling'\n \t* 'FFTphaseShuffling'\n \t* 'cutShuffling'\n\t\t\t\t- 'Nper': Int value. Number of permutations.\n\t\t\t\t\t\t It defines the number of surrogate histograms per\n\t\t\t\t\t\t repetition. It is worth noting that in each repetition, \"Nper\" surrogate histograms of size\n\t\t\t\t\t\t \"Nbins x NfY x NfX\" are stored in memory (RAM).\n\t\t\t\t- 'Nrep': Int value. Number of repetitions.\n\t\t\t\t\t\t In each repetition a \".mat\" file is written to disk,\n\t\t\t\t\t\t containing \"Nper\" surrogate histograms of size \"Nbins x NfY x NfX\". \n\t\t\t\t\t\t As a consequence, the final number of surrogate histograms is \"Nper x Nrep\".\n\t\t\t\t- 'Pvalue': Numeric value. P-value for the statistically significant level.\n\t\t\t\t- 'corrMultComp': String {'Bonferroni', 'pixelBased'}.\n\t\t\t\t\t\t\t\t Method to correct for multiple comparisons.\n\t\t\t\t- 'fs': Numeric value.\n\n\tOutputs:\n\t- CFCout: Structure. Parameters of the comodulogram.\n\t\t\t\t-'fXcfg', 'fYcfg': Structure. Parameters of the Frequency Band in \"x(y)\" axis.\n\t\t\t\t\t\t\t\t\t- 'start': \tNumeric value. Start frequency [Hz].\n\t\t\t\t\t\t\t\t\t- 'end':\tNumeric value. End frequency [Hz].\n\t\t\t\t\t\t\t\t\t- 'res': \tNumeric value. Frequency resolution [Hz].\n\t\t\t\t\t\t\t\t\t\t\t\tDefine the frequency separation between two consecutive BPFs.\n\t\t\t\t\t\t\t\t\t- 'BPFcfg': Structure. \n\t\t\t\t\t\t\t\t\t\t\t\tBand-Pass Filter configuration for the comodulogram's \"x(y)\" axis.\n\t\t\t\t\t\t\t\t\t- 'lookAt': String. Parameter of the signal (phase/amplitude) observed in the range of\n\t\t\t\t\t\t\t\t\t\t\t\tfrequency corresponding to the \"x(y)\" axis [none] (string).\n\t\t\t\t\t\t\t\t\t- 'n': Int value. Harmonic number for detection of fbX.n:fbY.n phase locking.\n\t\t\t\t\t\t\t\t\t\t\t\tRef: Detection of n,m Phase Locking from Noisy Data (Tass, 1998).pdf \n\t\t\t\t\t\t\t\t\t- 'LPFcfg' Structure.\n\t\t\t\t\t\t\t\t\t\t\t\tLow-Pass Filter configuration to smooth the frequency time series (structure array).\n \t\tThe LPF Filter is used to smooth the frequency time series (fYlookAt = 'FREQUENCY'\n \t\tor 'PHASEofFREQUENCY').\n\t\t\t\t\t\t\t\t\t- 'saveBPFsignal': Boolean. Flag to return the Band-Pass Filtered signals.\n\t\t\t\t\t\t\t\t\t\t\t\t0: Return a NaN.\n\t\t\t\t\t\t\t\t\t\t\t\t1: Return the filtered signals.\n\t\t\t\t\t\t\t\t\t- 'Nbins': Int value. Number of phase/amplitude bins used to compute the Histograms \n\t\t\t\t\t\t\t\t\t\t\t\t(p) of the comodulogram. \n \t\t- 'sameNumberOfCycles': Boolean. Flag to configure the processing mode for signal x.\n 0: Do not truncate the signal \"x\" to obtain the same number of cycles.\n 1: Process the same number of cycles of signal \"x\" for all \"fX\" frequencies.\n\t\t\t\t- 'CFCmethod'\n\t\t\t\t- 'verbose'\n\t\t\t\t- 'perMethod'\n\t\t\t\t- 'Nper'\n\t\t\t\t- 'Nrep'\n\t\t\t\t- 'Pvalue'\n\t\t\t\t- 'corrMultComp'\n\t\t\t\t- 'fs'\n\t\"\"\"\n fXcfg = {'start': CFCin['fXmin'], 'end': CFCin['fXmax'], 'res': CFCin[\n 'fXres'], 'BPFcfg': CFCin['BPFXcfg'], 'lookAt': CFCin['fXlookAt'],\n 'n': CFCin['nX'], 'Nbins': CFCin['Nbins'], 'sameNumberOfCycles':\n CFCin['sameNumberOfCycles'], 'saveBPFsignal': CFCin['saveBPFsignal']}\n fYcfg = {'start': CFCin['fYmin'], 'end': CFCin['fYmax'], 'res': CFCin[\n 'fYres'], 'BPFcfg': CFCin['BPFYcfg'], 'lookAt': CFCin['fYlookAt'],\n 'n': CFCin['nY'], 'saveBPFsignal': CFCin['saveBPFsignal']}\n if fYcfg['lookAt'].lower == 'frequency' or fYcfg['lookAt'\n ].lower == 'phaseoffrequency':\n fYcfg['LPFcfg'] = CFCin['LPFcfg']\n if CFCin['fXmin'] <= CFCin['BPFXcfg']['Bw'] / 2:\n fXcfg['start'] = CFCin['fXmin'] + CFCin['BPFXcfg']['Bw'] / 2\n fXcfg['BPFcfg']['f0'] = np.linspace(fXcfg['start'], fXcfg['end'], np.\n ceil((fXcfg['end'] - fXcfg['start']) / fXcfg['res']))\n if 'times' in fXcfg['BPFcfg'].keys() and len(fXcfg['BPFcfg']['times']) > 1:\n fXcfg['BPFcfg']['times'] = np.linspace(fXcfg['BPFcfg']['times'][0],\n fXcfg['BPFcfg']['times'][-1], len(fXcfg['BPFcfg']['times']))\n if type(fYcfg['BPFcfg']['Bw'] * 1.0) == float:\n fYcfg['BPFcfg']['Bw'] = fYcfg['BPFcfg']['Bw'] * np.ones(np.shape(\n fXcfg['BPFcfg']['f0']))\n else:\n fYcfg['BPFcfg']['Bw'] = 2 * fXcfg['BPFcfg']['f0']\n if fYcfg['start'] <= fYcfg['BPFcfg']['Bw'][0] / 2:\n fYcfg['start'] = fYcfg['start'] + fYcfg['BPFcfg']['Bw'][0] / 2\n fYcfg['BPFcfg']['f0'] = np.linspace(fYcfg['start'], fYcfg['end'], np.\n ceil((fYcfg['end'] - fYcfg['start']) / fYcfg['res']))\n if 'times' in fYcfg['BPFcfg'].keys() and len(fYcfg['BPFcfg']['times']) > 1:\n fYcfg['BPFcfg']['times'] = np.linspace(fYcfg['BPFcfg']['times'][0],\n fYcfg['BPFcfg']['times'][-1], len(fYcfg['BPFcfg']['times']))\n CFCout = {'fXcfg': fXcfg, 'fYcfg': fYcfg, 'CFCmethod': CFCin[\n 'CFCmethod'], 'verbose': CFCin['verbose'], 'perMethod': CFCin[\n 'perMethod'], 'Nper': CFCin['Nper'], 'Nrep': CFCin['Nrep'],\n 'Pvalue': CFCin['Pvalue'], 'corrMultComp': CFCin['corrMultComp'],\n 'fs': CFCin['fs']}\n return CFCout\n\n\n<assignment token>\n<function token>\n\n\ndef function_feature_phase(signal):\n \"\"\" \n Description:\n Compute the phase of the z-scored BPF signal.\n\n Remark:\n Before the computation of the phase signal, the time series should be\n normalized, de-trended, or mean-subtracted to have the DC-component removed.\n this ensures that phase values are not limited in range.\n \n Ref: \n Assessing transient cross-frequency coupling in EEG data (Cohen 2008).pdf\n\n Angle [rad] in (-pi,pi]\n \"\"\"\n return np.angle(hilbert(scale(signal), axis=0))\n\n\ndef function_feature_amplitude(signal):\n \"\"\" \n Description:\n Compute the amplitude (signal envelope).\n Amplitude envelope of the signal (AM demodulation).\n\n \"\"\"\n return np.abs(hilbert(signal, axis=0))\n\n\n<function token>\n\n\ndef function_feature_frequency(signal):\n print('Sin implementar. Devuelve 0')\n return 0\n\n\ndef function_feature_phoffreq(signal):\n print('Sin implementar. Devuelve 0')\n return 0\n\n\n<assignment token>\n\n\ndef function_comodulogramFeature(signal, fcfg, fs, indSettlingExt):\n \"\"\"\n Description:\n In this function we implement the extraction of the phase/amplitude/frequency \n time series from the input signals. The input signals are supposed to be \n previously Band-Pass Filtered signals around the frequency bands of interest.\n\n Inputs:\n - signal. Numeric array (Ns x Nf x NBw)\n Band-Pass Filtered signals. Notation:\n Ns: Number of samples.\n Nf: Number of frequencies. len(fcfg['BPFcfg']['f0'])\n NBw: Number of Bandwidths. len(fcfg['BPFcfg']['Bw'])\n\n - fcfg. Structure. Parameters of the Frequency Band in \"x(y)\" axis.\n - 'start': Numeric value. Start frequency [Hz].\n - 'end': Numeric value. End frequency [Hz].\n - 'res': Numeric value. Frequency resolution [Hz].\n Define the frequency separation between two consecutive BPFs. \n - 'BPFcfg': Structure.\n Band-Pass Filter configuration for the comodulogram's \"x(y)\" axis.\n - 'lookAt': String. Parameter of the signal (phase/amplitude/frequency) observed in the range of\n frequency corresponding to the \"x(y)\" axis [none].\n - 'LPFcfg': Structure. Low-Pass Filter configuration to smooth the frequency time series.\n The LPF Filter is used to smooth the frequency time series (fYlookAt = 'FREQUENCY' or 'PHASEofFREQUENCY').\n - 'saveBPFsignal': Boolean value. Flag to return the Band-Pass Filtered signals.\n *0: Return a NaN.\n *1: Return the filtered signals. \n - 'Nbins': Integer value. \n Number of phase/amplitude/frequency bins used to compute the Histograms (p) of the comodulogram. \n\n - 'sameNumberOfCycles': Boolean value. Flag to configure the processing mode for signal x.\n *0: Do not truncate the signal \"x\" to obtain the same number of cycles.\n *1: Process the same number of cycles of signal \"x\" for all \"fX\" frequencies.\n - fs: Numeric value. Sampling rate [Hz].\n - indSettlingExt: Integer value. \n External index for cutting out the transient response of the BPFs.\n If \"indSettlingExt\" is empty or NaN, the index for the longest settling time is used.\n\n Outputs:\n - BPFfeature: Numeric array (Ns x NF x NBw)\n Phase/amplitud/frequency time series for the \"x\" or \"y\" axis of the comodulogram\n\n - croppedSignal: Numeric array (Ns-2*(indSettlingExt-1) x Nf x NBw) \n Cropped Band-Pass Filtered signals (in the case of saveBPFsignal=1)\n \"\"\"\n if 'f1' in fcfg['BPFcfg'].keys() and 'f2' in fcfg['BPFcfg'].keys():\n fcfg['BPFcfg']['f0'] = (fcfg['BPFcfg']['f1'] + fcfg['BPFcfg']['f2']\n ) / 2\n fcfg['BPFcfg']['Bw'] = fcfg['BPFcfg']['f2'] - fcfg['BPFcfg']['f1']\n croppedSignal = []\n Nf = np.size(fcfg['BPFcfg']['f0'])\n NBw = np.size(fcfg['BPFcfg']['Bw'])\n fnyq = fs / 2\n Ns = np.shape(signal)[0]\n Ns_cropped = Ns - 2 * (indSettlingExt - 1)\n BPFfeature = np.zeros((Ns_cropped, Nf, NBw))\n if fcfg['saveBPFsignal']:\n croppedSignal = np.zeros((Ns_cropped, Nf, NBw))\n for ii in range(NBw):\n signal_local = signal[:, :, ii]\n feature = fcfg['lookAt'].lower()\n function_feature = LIST_FEATURES.get(feature, lambda : 'Invalid method'\n )\n BPFfeature_local = function_feature(signal_local)\n BPFfeature_local = BPFfeature_local[indSettlingExt - 1:\n BPFfeature_local.shape[0] - (indSettlingExt - 1), :]\n BPFfeature[:, :, ii] = BPFfeature_local\n if fcfg['saveBPFsignal']:\n croppedSignal[:, :, ii] = signal_local[indSettlingExt - 1:\n signal_local.shape[0] - (indSettlingExt - 1), :]\n return BPFfeature, croppedSignal\n\n\ndef function_PLV(x, y, wx, wy, CFCcfg):\n \"\"\"\n\tDescription: \n\tIn this function we compute the Phase Locking Values.\n\n\tRefs:\n\t[1] /PhaseLockingValue/function_PhaseLockingValue_v1.m\n\t[2] Measuring Phase-Amplitude Coupling Between Neuronal Oscillations (Tort, 2010).pdf, p. 1198\n\t[3] High gamma power is phase-locked to theta oscillations (Canolty, 2006).pdf\n\t[4] Phase Locking from Noisy Data (Tass, 1998).pdf\n Ref: Detection of n,m Phase Locking from Noisy Data (Tass, 1998).pdf \n\n\tInputs:\n\t\t- x: Numeric array (Nsamples x NfX).\n\t\t \t Data for the comodulogram's \"x\" axis (matrix: samples x NfX).\n\t\t- y: Numeric array (Nsamples x NfY x NfX). \n\t\t Data for the comodulogram's \"y\" axis (matrix: samples x NfY x NfX).\n\t\t- wx: Numeric array (Nsamples x NfX). \n\t\t\t Weights related to the comodulogram's \"x\" axis (matrix: samples x NfX).\n\t\t- wy: Numeric array (Nsamples x NfY x NfX).\n\t\t Weights related to the comodulogram's \"y\" axis (matrix: samples x NfY x NfX).\n\t\t- CFCcfc: structure. \n\t\t\t\t Parameters of the comodulogram (structure array)\n\t\t\t\t - 'fXcfg': structure.\n\t\t\t\t \t\t\t Parameters of the Frequency Band in \"x\" axis.\n\t\t\t\t - 'fYcfg': structure. \n\t\t\t\t \t\t\t Parameters of the Frequency Band in \"y\" axis.\n\t\t\t\t \t\t\t-'start': Numeric value. Start frequency [Hz].\n\t\t\t\t \t\t\t-'end': Numeric value. End frequency [Hz].\n\t\t\t\t \t\t\t-'res': Numeric value. Frequency resolution.\n\t\t\t\t \t\t\t\t\t Define the frequency separation between two consecutive BPFs.\n\t\t\t\t \t\t\t-'BPFcfg': Structure. Band-Pass Filter configuration for the comodulogram's axis.\n\t\t\t\t\t\t\t-'lookAt': String.\n\t\t\t\t\t\t\t\t\t Parameter of the signal (phase/amplitude) observed in the range of\n\t\t\t\t\t\t\t\t\t frequency [none] (string).\n\t\t\t\t\t\t\t-'n': Int value. Harmonic number for detection of phase locking.\n\t\t\t\t\t\t\t-'saveBPFsignal': {0,1}. Flag to return the Band-Pass Filtered signals. \n\t\t\t\t\t\t\t\t\t\t\t 0 - Return a NaN.\n 1 - Return the filtered signals.\n -'Nbins': Int value.\n \t\t Number of phase/amplitude bins used to compute the Histograms (p) of the comodulogram. \n -'sameNumberOfCycles': {0,1}. Flag to configure the processing mode for signal x.\n \t\t\t\t\t 0 - Do not truncate the signal \"x\" to obtain the same number \n \t\t\t\t\t \t of cycles.\n 1 - Process the same number of cycles of signal \"x\" for all \n\t\t\t\t\t\t\t\t\t\t\t\t\t \"fX\" frequencies.\n\t\t\t\t - 'CFCmethod': String.\n\t\t\t\t \t\t\t\t Defines the approach to compute the Cross frequency Coupling. E.g: 'plv'.\n\t\t\t\t - 'verbose': Boolean. Display flag. \n\t\t\t\t - 'perMethod': {'trialShuffling', 'sampleShuffling', 'FFTphaseShuffling', 'cutShuffling'}. \n\t\t\t\t \t\t\t\t Method by which the surrogated time series are built.\n\t\t\t\t - 'Nper': Int value. \n\t\t\t\t \t\t Number of permutations. It defines the number of surrogate histograms per\n repetition. It is worth noting that in each repetition, \"Nper\" surrogate \n\t\t\t\t\t\t\thistograms of size \"Nbins x NfY x NfX\" are stored in memory (RAM).\n\t\t\t\t - 'Nrep': Int value.\n\t\t\t\t Number of repetitions. In each repetition a \".mat\" file is written to disk,\n\t containing \"Nper\" surrogate histograms of size \"Nbins x NfY x NfX\". \n \tAs a consequence, the final number of surrogate histograms is \"Nper x Nrep\".\n\t\t\t\t - 'Pvalue': Numeric value. P-value for the statistically significant level.\n\t\t\t\t - 'corrMultComp': {'Bonferroni', 'pixelBased'} Method to correct for multiple comparisons.\n\t\t\t\t - 'fs': Numeric value. Sampling rate [Hz].\n\n\tOutputs:\n\t\t- PLV: Numeric array (NfY x NfX).\n\t\t\t Phase Locking Value.\n\t\t- wxPLV: Numeric array (NfY x NfX).\n\t\t\t\t Weighted Phase Locking Values using the wx weights (matrix: NfY x NfX).\n\t\t- wyPLV: Numeric array (NfY x NfX). \n\t\t\t\t Weighted Phase Locking Values using the wy weights (matrix: NfY x NfX).\n\n\t \t\t\t NfX = length(CFCcfg['fXcfg']['BPFcfg']['f0'])\n\t \t\t\t NfY = length(CFCcfg['fYcfg']['BPFcfg']['f0'])\n\t\"\"\"\n wxPLV = []\n wyPLV = []\n NfX = np.size(CFCcfg['fXcfg']['BPFcfg']['f0'])\n NfY = np.size(CFCcfg['fYcfg']['BPFcfg']['f0'])\n Ns = np.shape(x)[0]\n nX = CFCcfg['fXcfg']['n']\n nY = CFCcfg['fYcfg']['n']\n PLV = np.zeros((NfY, NfX), dtype=complex)\n for ii in range(NfY):\n PLV[ii, :] = np.sum(np.exp(1.0j * (nX * x - nY * y[:, ii, :])), 0) / Ns\n return PLV, wxPLV, wyPLV\n", "<docstring token>\n<import token>\n\n\ndef function_setCFCcfg(CFCin):\n \"\"\"\n\tDescription:\n\tIn this function we compute the structures for the \"x\" and \"y\" axis of the comodulogram.\n\n\tInputs:\n\t- CFCin: Structure. Parameters of the comodulogram.\n\t\t\t\t- 'fXmin': Numeric value. Minimum frequency for the LF band [Hz].\n\t\t\t\t- 'fXmax': Numeric value. Maximum frequency for the LF band [Hz].\n\t\t\t\t- 'fYmin': Numeric value. Minimum frequency for the HF band [Hz].\n\t\t\t\t- 'fYmax': Numeric value. Maximum frequency for the HF band [Hz].\n\t\t\t\t- 'fXres': Numeric value. Frequency resolution for the LF band [Hz].\n\t\t\t\t- 'fYres': Numeric value. Frequency resolution for the HF band [Hz].\n\t\t\t\t- 'fXlookAt': String. \n\t\t\t\t\t\t\t Parameter of the signal observed in the range of\n\t \t frequency corresponding to the \"x\" axis.\n\t\t\t\t- 'fYlookAt': String.\n\t\t\t\t\t\t\t Parameter of the signal observed in the range of\n \t frequency corresponding to the \"y\" axis.\n\t\t\t\t- 'nX': Int value. Harmonic number for detection of fbX.n:fbY.n phase locking.\n\t\t\t\t- 'nY': Int value. Harmonic number for detection of fbX.n:fbY.n phase locking.\n\t\t\t\t- 'BPFXcfg': Structure. Band-Pass Filter configuration for the comodulogram's \"x\" axis.\n\t\t\t\t- 'BPFYcfg': Structure. Band-Pass Filter configuration for the comodulogram's \"y\" axis.\n\t\t\t\t- 'LPFcfg': Structure. Low-Pass Filter configuration to smooth the frequency time series.\n \tThe LPF Filter is used to smooth the frequency time series \n\t\t\t\t\t\t\t(fYlookAt = 'FREQUENCY' or 'PHASEofFREQUENCY').\n\t\t\t\t- 'saveBPFsignal': {0,1}. Flag to return the Band-Pass Filtered signals.\n 0 - Return a NaN.\n 1 - Return the filtered signals.\n\t\t\t\t- 'Nbins': Int value. \n\t\t\t\t\t\t Number of phase/amplitude bins used to compute the Histograms (p) of the comodulogram. \n\t\t\t\t- 'sameNumberOfCycles': {0,1}. Flag to configure the processing mode for signal x:\n 0 - Do not truncate the signal \"x\" to obtain the same number of cycles.\n 1 - Process the same number of cycles of signal \"x\" for all \"fX\" frequencies.\n\t\t\t\t- 'CFCmethod': String. {'plv','mi'}\n\t\t\t\t\t\t\tDefines the approach to compute the Cross frequency Coupling \n\t\t\t\t\t\t\t(PLV / methods to compute the MI).\n\t\t\t\t- 'verbose': Boolean {0,1}. \n\t\t\t\t\t\t\t 0: no message are shown.\n \t 1: show the messages.\n\t\t\t\t- 'perMethod': String. Method by which the surrogated time series are built. Options\n\t\t\t\t\t\t\t* 'trialShuffling'\n\t\t\t\t\t\t\t* 'sampleShuffling'\n \t* 'FFTphaseShuffling'\n \t* 'cutShuffling'\n\t\t\t\t- 'Nper': Int value. Number of permutations.\n\t\t\t\t\t\t It defines the number of surrogate histograms per\n\t\t\t\t\t\t repetition. It is worth noting that in each repetition, \"Nper\" surrogate histograms of size\n\t\t\t\t\t\t \"Nbins x NfY x NfX\" are stored in memory (RAM).\n\t\t\t\t- 'Nrep': Int value. Number of repetitions.\n\t\t\t\t\t\t In each repetition a \".mat\" file is written to disk,\n\t\t\t\t\t\t containing \"Nper\" surrogate histograms of size \"Nbins x NfY x NfX\". \n\t\t\t\t\t\t As a consequence, the final number of surrogate histograms is \"Nper x Nrep\".\n\t\t\t\t- 'Pvalue': Numeric value. P-value for the statistically significant level.\n\t\t\t\t- 'corrMultComp': String {'Bonferroni', 'pixelBased'}.\n\t\t\t\t\t\t\t\t Method to correct for multiple comparisons.\n\t\t\t\t- 'fs': Numeric value.\n\n\tOutputs:\n\t- CFCout: Structure. Parameters of the comodulogram.\n\t\t\t\t-'fXcfg', 'fYcfg': Structure. Parameters of the Frequency Band in \"x(y)\" axis.\n\t\t\t\t\t\t\t\t\t- 'start': \tNumeric value. Start frequency [Hz].\n\t\t\t\t\t\t\t\t\t- 'end':\tNumeric value. End frequency [Hz].\n\t\t\t\t\t\t\t\t\t- 'res': \tNumeric value. Frequency resolution [Hz].\n\t\t\t\t\t\t\t\t\t\t\t\tDefine the frequency separation between two consecutive BPFs.\n\t\t\t\t\t\t\t\t\t- 'BPFcfg': Structure. \n\t\t\t\t\t\t\t\t\t\t\t\tBand-Pass Filter configuration for the comodulogram's \"x(y)\" axis.\n\t\t\t\t\t\t\t\t\t- 'lookAt': String. Parameter of the signal (phase/amplitude) observed in the range of\n\t\t\t\t\t\t\t\t\t\t\t\tfrequency corresponding to the \"x(y)\" axis [none] (string).\n\t\t\t\t\t\t\t\t\t- 'n': Int value. Harmonic number for detection of fbX.n:fbY.n phase locking.\n\t\t\t\t\t\t\t\t\t\t\t\tRef: Detection of n,m Phase Locking from Noisy Data (Tass, 1998).pdf \n\t\t\t\t\t\t\t\t\t- 'LPFcfg' Structure.\n\t\t\t\t\t\t\t\t\t\t\t\tLow-Pass Filter configuration to smooth the frequency time series (structure array).\n \t\tThe LPF Filter is used to smooth the frequency time series (fYlookAt = 'FREQUENCY'\n \t\tor 'PHASEofFREQUENCY').\n\t\t\t\t\t\t\t\t\t- 'saveBPFsignal': Boolean. Flag to return the Band-Pass Filtered signals.\n\t\t\t\t\t\t\t\t\t\t\t\t0: Return a NaN.\n\t\t\t\t\t\t\t\t\t\t\t\t1: Return the filtered signals.\n\t\t\t\t\t\t\t\t\t- 'Nbins': Int value. Number of phase/amplitude bins used to compute the Histograms \n\t\t\t\t\t\t\t\t\t\t\t\t(p) of the comodulogram. \n \t\t- 'sameNumberOfCycles': Boolean. Flag to configure the processing mode for signal x.\n 0: Do not truncate the signal \"x\" to obtain the same number of cycles.\n 1: Process the same number of cycles of signal \"x\" for all \"fX\" frequencies.\n\t\t\t\t- 'CFCmethod'\n\t\t\t\t- 'verbose'\n\t\t\t\t- 'perMethod'\n\t\t\t\t- 'Nper'\n\t\t\t\t- 'Nrep'\n\t\t\t\t- 'Pvalue'\n\t\t\t\t- 'corrMultComp'\n\t\t\t\t- 'fs'\n\t\"\"\"\n fXcfg = {'start': CFCin['fXmin'], 'end': CFCin['fXmax'], 'res': CFCin[\n 'fXres'], 'BPFcfg': CFCin['BPFXcfg'], 'lookAt': CFCin['fXlookAt'],\n 'n': CFCin['nX'], 'Nbins': CFCin['Nbins'], 'sameNumberOfCycles':\n CFCin['sameNumberOfCycles'], 'saveBPFsignal': CFCin['saveBPFsignal']}\n fYcfg = {'start': CFCin['fYmin'], 'end': CFCin['fYmax'], 'res': CFCin[\n 'fYres'], 'BPFcfg': CFCin['BPFYcfg'], 'lookAt': CFCin['fYlookAt'],\n 'n': CFCin['nY'], 'saveBPFsignal': CFCin['saveBPFsignal']}\n if fYcfg['lookAt'].lower == 'frequency' or fYcfg['lookAt'\n ].lower == 'phaseoffrequency':\n fYcfg['LPFcfg'] = CFCin['LPFcfg']\n if CFCin['fXmin'] <= CFCin['BPFXcfg']['Bw'] / 2:\n fXcfg['start'] = CFCin['fXmin'] + CFCin['BPFXcfg']['Bw'] / 2\n fXcfg['BPFcfg']['f0'] = np.linspace(fXcfg['start'], fXcfg['end'], np.\n ceil((fXcfg['end'] - fXcfg['start']) / fXcfg['res']))\n if 'times' in fXcfg['BPFcfg'].keys() and len(fXcfg['BPFcfg']['times']) > 1:\n fXcfg['BPFcfg']['times'] = np.linspace(fXcfg['BPFcfg']['times'][0],\n fXcfg['BPFcfg']['times'][-1], len(fXcfg['BPFcfg']['times']))\n if type(fYcfg['BPFcfg']['Bw'] * 1.0) == float:\n fYcfg['BPFcfg']['Bw'] = fYcfg['BPFcfg']['Bw'] * np.ones(np.shape(\n fXcfg['BPFcfg']['f0']))\n else:\n fYcfg['BPFcfg']['Bw'] = 2 * fXcfg['BPFcfg']['f0']\n if fYcfg['start'] <= fYcfg['BPFcfg']['Bw'][0] / 2:\n fYcfg['start'] = fYcfg['start'] + fYcfg['BPFcfg']['Bw'][0] / 2\n fYcfg['BPFcfg']['f0'] = np.linspace(fYcfg['start'], fYcfg['end'], np.\n ceil((fYcfg['end'] - fYcfg['start']) / fYcfg['res']))\n if 'times' in fYcfg['BPFcfg'].keys() and len(fYcfg['BPFcfg']['times']) > 1:\n fYcfg['BPFcfg']['times'] = np.linspace(fYcfg['BPFcfg']['times'][0],\n fYcfg['BPFcfg']['times'][-1], len(fYcfg['BPFcfg']['times']))\n CFCout = {'fXcfg': fXcfg, 'fYcfg': fYcfg, 'CFCmethod': CFCin[\n 'CFCmethod'], 'verbose': CFCin['verbose'], 'perMethod': CFCin[\n 'perMethod'], 'Nper': CFCin['Nper'], 'Nrep': CFCin['Nrep'],\n 'Pvalue': CFCin['Pvalue'], 'corrMultComp': CFCin['corrMultComp'],\n 'fs': CFCin['fs']}\n return CFCout\n\n\n<assignment token>\n<function token>\n<function token>\n\n\ndef function_feature_amplitude(signal):\n \"\"\" \n Description:\n Compute the amplitude (signal envelope).\n Amplitude envelope of the signal (AM demodulation).\n\n \"\"\"\n return np.abs(hilbert(signal, axis=0))\n\n\n<function token>\n\n\ndef function_feature_frequency(signal):\n print('Sin implementar. Devuelve 0')\n return 0\n\n\ndef function_feature_phoffreq(signal):\n print('Sin implementar. Devuelve 0')\n return 0\n\n\n<assignment token>\n\n\ndef function_comodulogramFeature(signal, fcfg, fs, indSettlingExt):\n \"\"\"\n Description:\n In this function we implement the extraction of the phase/amplitude/frequency \n time series from the input signals. The input signals are supposed to be \n previously Band-Pass Filtered signals around the frequency bands of interest.\n\n Inputs:\n - signal. Numeric array (Ns x Nf x NBw)\n Band-Pass Filtered signals. Notation:\n Ns: Number of samples.\n Nf: Number of frequencies. len(fcfg['BPFcfg']['f0'])\n NBw: Number of Bandwidths. len(fcfg['BPFcfg']['Bw'])\n\n - fcfg. Structure. Parameters of the Frequency Band in \"x(y)\" axis.\n - 'start': Numeric value. Start frequency [Hz].\n - 'end': Numeric value. End frequency [Hz].\n - 'res': Numeric value. Frequency resolution [Hz].\n Define the frequency separation between two consecutive BPFs. \n - 'BPFcfg': Structure.\n Band-Pass Filter configuration for the comodulogram's \"x(y)\" axis.\n - 'lookAt': String. Parameter of the signal (phase/amplitude/frequency) observed in the range of\n frequency corresponding to the \"x(y)\" axis [none].\n - 'LPFcfg': Structure. Low-Pass Filter configuration to smooth the frequency time series.\n The LPF Filter is used to smooth the frequency time series (fYlookAt = 'FREQUENCY' or 'PHASEofFREQUENCY').\n - 'saveBPFsignal': Boolean value. Flag to return the Band-Pass Filtered signals.\n *0: Return a NaN.\n *1: Return the filtered signals. \n - 'Nbins': Integer value. \n Number of phase/amplitude/frequency bins used to compute the Histograms (p) of the comodulogram. \n\n - 'sameNumberOfCycles': Boolean value. Flag to configure the processing mode for signal x.\n *0: Do not truncate the signal \"x\" to obtain the same number of cycles.\n *1: Process the same number of cycles of signal \"x\" for all \"fX\" frequencies.\n - fs: Numeric value. Sampling rate [Hz].\n - indSettlingExt: Integer value. \n External index for cutting out the transient response of the BPFs.\n If \"indSettlingExt\" is empty or NaN, the index for the longest settling time is used.\n\n Outputs:\n - BPFfeature: Numeric array (Ns x NF x NBw)\n Phase/amplitud/frequency time series for the \"x\" or \"y\" axis of the comodulogram\n\n - croppedSignal: Numeric array (Ns-2*(indSettlingExt-1) x Nf x NBw) \n Cropped Band-Pass Filtered signals (in the case of saveBPFsignal=1)\n \"\"\"\n if 'f1' in fcfg['BPFcfg'].keys() and 'f2' in fcfg['BPFcfg'].keys():\n fcfg['BPFcfg']['f0'] = (fcfg['BPFcfg']['f1'] + fcfg['BPFcfg']['f2']\n ) / 2\n fcfg['BPFcfg']['Bw'] = fcfg['BPFcfg']['f2'] - fcfg['BPFcfg']['f1']\n croppedSignal = []\n Nf = np.size(fcfg['BPFcfg']['f0'])\n NBw = np.size(fcfg['BPFcfg']['Bw'])\n fnyq = fs / 2\n Ns = np.shape(signal)[0]\n Ns_cropped = Ns - 2 * (indSettlingExt - 1)\n BPFfeature = np.zeros((Ns_cropped, Nf, NBw))\n if fcfg['saveBPFsignal']:\n croppedSignal = np.zeros((Ns_cropped, Nf, NBw))\n for ii in range(NBw):\n signal_local = signal[:, :, ii]\n feature = fcfg['lookAt'].lower()\n function_feature = LIST_FEATURES.get(feature, lambda : 'Invalid method'\n )\n BPFfeature_local = function_feature(signal_local)\n BPFfeature_local = BPFfeature_local[indSettlingExt - 1:\n BPFfeature_local.shape[0] - (indSettlingExt - 1), :]\n BPFfeature[:, :, ii] = BPFfeature_local\n if fcfg['saveBPFsignal']:\n croppedSignal[:, :, ii] = signal_local[indSettlingExt - 1:\n signal_local.shape[0] - (indSettlingExt - 1), :]\n return BPFfeature, croppedSignal\n\n\ndef function_PLV(x, y, wx, wy, CFCcfg):\n \"\"\"\n\tDescription: \n\tIn this function we compute the Phase Locking Values.\n\n\tRefs:\n\t[1] /PhaseLockingValue/function_PhaseLockingValue_v1.m\n\t[2] Measuring Phase-Amplitude Coupling Between Neuronal Oscillations (Tort, 2010).pdf, p. 1198\n\t[3] High gamma power is phase-locked to theta oscillations (Canolty, 2006).pdf\n\t[4] Phase Locking from Noisy Data (Tass, 1998).pdf\n Ref: Detection of n,m Phase Locking from Noisy Data (Tass, 1998).pdf \n\n\tInputs:\n\t\t- x: Numeric array (Nsamples x NfX).\n\t\t \t Data for the comodulogram's \"x\" axis (matrix: samples x NfX).\n\t\t- y: Numeric array (Nsamples x NfY x NfX). \n\t\t Data for the comodulogram's \"y\" axis (matrix: samples x NfY x NfX).\n\t\t- wx: Numeric array (Nsamples x NfX). \n\t\t\t Weights related to the comodulogram's \"x\" axis (matrix: samples x NfX).\n\t\t- wy: Numeric array (Nsamples x NfY x NfX).\n\t\t Weights related to the comodulogram's \"y\" axis (matrix: samples x NfY x NfX).\n\t\t- CFCcfc: structure. \n\t\t\t\t Parameters of the comodulogram (structure array)\n\t\t\t\t - 'fXcfg': structure.\n\t\t\t\t \t\t\t Parameters of the Frequency Band in \"x\" axis.\n\t\t\t\t - 'fYcfg': structure. \n\t\t\t\t \t\t\t Parameters of the Frequency Band in \"y\" axis.\n\t\t\t\t \t\t\t-'start': Numeric value. Start frequency [Hz].\n\t\t\t\t \t\t\t-'end': Numeric value. End frequency [Hz].\n\t\t\t\t \t\t\t-'res': Numeric value. Frequency resolution.\n\t\t\t\t \t\t\t\t\t Define the frequency separation between two consecutive BPFs.\n\t\t\t\t \t\t\t-'BPFcfg': Structure. Band-Pass Filter configuration for the comodulogram's axis.\n\t\t\t\t\t\t\t-'lookAt': String.\n\t\t\t\t\t\t\t\t\t Parameter of the signal (phase/amplitude) observed in the range of\n\t\t\t\t\t\t\t\t\t frequency [none] (string).\n\t\t\t\t\t\t\t-'n': Int value. Harmonic number for detection of phase locking.\n\t\t\t\t\t\t\t-'saveBPFsignal': {0,1}. Flag to return the Band-Pass Filtered signals. \n\t\t\t\t\t\t\t\t\t\t\t 0 - Return a NaN.\n 1 - Return the filtered signals.\n -'Nbins': Int value.\n \t\t Number of phase/amplitude bins used to compute the Histograms (p) of the comodulogram. \n -'sameNumberOfCycles': {0,1}. Flag to configure the processing mode for signal x.\n \t\t\t\t\t 0 - Do not truncate the signal \"x\" to obtain the same number \n \t\t\t\t\t \t of cycles.\n 1 - Process the same number of cycles of signal \"x\" for all \n\t\t\t\t\t\t\t\t\t\t\t\t\t \"fX\" frequencies.\n\t\t\t\t - 'CFCmethod': String.\n\t\t\t\t \t\t\t\t Defines the approach to compute the Cross frequency Coupling. E.g: 'plv'.\n\t\t\t\t - 'verbose': Boolean. Display flag. \n\t\t\t\t - 'perMethod': {'trialShuffling', 'sampleShuffling', 'FFTphaseShuffling', 'cutShuffling'}. \n\t\t\t\t \t\t\t\t Method by which the surrogated time series are built.\n\t\t\t\t - 'Nper': Int value. \n\t\t\t\t \t\t Number of permutations. It defines the number of surrogate histograms per\n repetition. It is worth noting that in each repetition, \"Nper\" surrogate \n\t\t\t\t\t\t\thistograms of size \"Nbins x NfY x NfX\" are stored in memory (RAM).\n\t\t\t\t - 'Nrep': Int value.\n\t\t\t\t Number of repetitions. In each repetition a \".mat\" file is written to disk,\n\t containing \"Nper\" surrogate histograms of size \"Nbins x NfY x NfX\". \n \tAs a consequence, the final number of surrogate histograms is \"Nper x Nrep\".\n\t\t\t\t - 'Pvalue': Numeric value. P-value for the statistically significant level.\n\t\t\t\t - 'corrMultComp': {'Bonferroni', 'pixelBased'} Method to correct for multiple comparisons.\n\t\t\t\t - 'fs': Numeric value. Sampling rate [Hz].\n\n\tOutputs:\n\t\t- PLV: Numeric array (NfY x NfX).\n\t\t\t Phase Locking Value.\n\t\t- wxPLV: Numeric array (NfY x NfX).\n\t\t\t\t Weighted Phase Locking Values using the wx weights (matrix: NfY x NfX).\n\t\t- wyPLV: Numeric array (NfY x NfX). \n\t\t\t\t Weighted Phase Locking Values using the wy weights (matrix: NfY x NfX).\n\n\t \t\t\t NfX = length(CFCcfg['fXcfg']['BPFcfg']['f0'])\n\t \t\t\t NfY = length(CFCcfg['fYcfg']['BPFcfg']['f0'])\n\t\"\"\"\n wxPLV = []\n wyPLV = []\n NfX = np.size(CFCcfg['fXcfg']['BPFcfg']['f0'])\n NfY = np.size(CFCcfg['fYcfg']['BPFcfg']['f0'])\n Ns = np.shape(x)[0]\n nX = CFCcfg['fXcfg']['n']\n nY = CFCcfg['fYcfg']['n']\n PLV = np.zeros((NfY, NfX), dtype=complex)\n for ii in range(NfY):\n PLV[ii, :] = np.sum(np.exp(1.0j * (nX * x - nY * y[:, ii, :])), 0) / Ns\n return PLV, wxPLV, wyPLV\n", "<docstring token>\n<import token>\n\n\ndef function_setCFCcfg(CFCin):\n \"\"\"\n\tDescription:\n\tIn this function we compute the structures for the \"x\" and \"y\" axis of the comodulogram.\n\n\tInputs:\n\t- CFCin: Structure. Parameters of the comodulogram.\n\t\t\t\t- 'fXmin': Numeric value. Minimum frequency for the LF band [Hz].\n\t\t\t\t- 'fXmax': Numeric value. Maximum frequency for the LF band [Hz].\n\t\t\t\t- 'fYmin': Numeric value. Minimum frequency for the HF band [Hz].\n\t\t\t\t- 'fYmax': Numeric value. Maximum frequency for the HF band [Hz].\n\t\t\t\t- 'fXres': Numeric value. Frequency resolution for the LF band [Hz].\n\t\t\t\t- 'fYres': Numeric value. Frequency resolution for the HF band [Hz].\n\t\t\t\t- 'fXlookAt': String. \n\t\t\t\t\t\t\t Parameter of the signal observed in the range of\n\t \t frequency corresponding to the \"x\" axis.\n\t\t\t\t- 'fYlookAt': String.\n\t\t\t\t\t\t\t Parameter of the signal observed in the range of\n \t frequency corresponding to the \"y\" axis.\n\t\t\t\t- 'nX': Int value. Harmonic number for detection of fbX.n:fbY.n phase locking.\n\t\t\t\t- 'nY': Int value. Harmonic number for detection of fbX.n:fbY.n phase locking.\n\t\t\t\t- 'BPFXcfg': Structure. Band-Pass Filter configuration for the comodulogram's \"x\" axis.\n\t\t\t\t- 'BPFYcfg': Structure. Band-Pass Filter configuration for the comodulogram's \"y\" axis.\n\t\t\t\t- 'LPFcfg': Structure. Low-Pass Filter configuration to smooth the frequency time series.\n \tThe LPF Filter is used to smooth the frequency time series \n\t\t\t\t\t\t\t(fYlookAt = 'FREQUENCY' or 'PHASEofFREQUENCY').\n\t\t\t\t- 'saveBPFsignal': {0,1}. Flag to return the Band-Pass Filtered signals.\n 0 - Return a NaN.\n 1 - Return the filtered signals.\n\t\t\t\t- 'Nbins': Int value. \n\t\t\t\t\t\t Number of phase/amplitude bins used to compute the Histograms (p) of the comodulogram. \n\t\t\t\t- 'sameNumberOfCycles': {0,1}. Flag to configure the processing mode for signal x:\n 0 - Do not truncate the signal \"x\" to obtain the same number of cycles.\n 1 - Process the same number of cycles of signal \"x\" for all \"fX\" frequencies.\n\t\t\t\t- 'CFCmethod': String. {'plv','mi'}\n\t\t\t\t\t\t\tDefines the approach to compute the Cross frequency Coupling \n\t\t\t\t\t\t\t(PLV / methods to compute the MI).\n\t\t\t\t- 'verbose': Boolean {0,1}. \n\t\t\t\t\t\t\t 0: no message are shown.\n \t 1: show the messages.\n\t\t\t\t- 'perMethod': String. Method by which the surrogated time series are built. Options\n\t\t\t\t\t\t\t* 'trialShuffling'\n\t\t\t\t\t\t\t* 'sampleShuffling'\n \t* 'FFTphaseShuffling'\n \t* 'cutShuffling'\n\t\t\t\t- 'Nper': Int value. Number of permutations.\n\t\t\t\t\t\t It defines the number of surrogate histograms per\n\t\t\t\t\t\t repetition. It is worth noting that in each repetition, \"Nper\" surrogate histograms of size\n\t\t\t\t\t\t \"Nbins x NfY x NfX\" are stored in memory (RAM).\n\t\t\t\t- 'Nrep': Int value. Number of repetitions.\n\t\t\t\t\t\t In each repetition a \".mat\" file is written to disk,\n\t\t\t\t\t\t containing \"Nper\" surrogate histograms of size \"Nbins x NfY x NfX\". \n\t\t\t\t\t\t As a consequence, the final number of surrogate histograms is \"Nper x Nrep\".\n\t\t\t\t- 'Pvalue': Numeric value. P-value for the statistically significant level.\n\t\t\t\t- 'corrMultComp': String {'Bonferroni', 'pixelBased'}.\n\t\t\t\t\t\t\t\t Method to correct for multiple comparisons.\n\t\t\t\t- 'fs': Numeric value.\n\n\tOutputs:\n\t- CFCout: Structure. Parameters of the comodulogram.\n\t\t\t\t-'fXcfg', 'fYcfg': Structure. Parameters of the Frequency Band in \"x(y)\" axis.\n\t\t\t\t\t\t\t\t\t- 'start': \tNumeric value. Start frequency [Hz].\n\t\t\t\t\t\t\t\t\t- 'end':\tNumeric value. End frequency [Hz].\n\t\t\t\t\t\t\t\t\t- 'res': \tNumeric value. Frequency resolution [Hz].\n\t\t\t\t\t\t\t\t\t\t\t\tDefine the frequency separation between two consecutive BPFs.\n\t\t\t\t\t\t\t\t\t- 'BPFcfg': Structure. \n\t\t\t\t\t\t\t\t\t\t\t\tBand-Pass Filter configuration for the comodulogram's \"x(y)\" axis.\n\t\t\t\t\t\t\t\t\t- 'lookAt': String. Parameter of the signal (phase/amplitude) observed in the range of\n\t\t\t\t\t\t\t\t\t\t\t\tfrequency corresponding to the \"x(y)\" axis [none] (string).\n\t\t\t\t\t\t\t\t\t- 'n': Int value. Harmonic number for detection of fbX.n:fbY.n phase locking.\n\t\t\t\t\t\t\t\t\t\t\t\tRef: Detection of n,m Phase Locking from Noisy Data (Tass, 1998).pdf \n\t\t\t\t\t\t\t\t\t- 'LPFcfg' Structure.\n\t\t\t\t\t\t\t\t\t\t\t\tLow-Pass Filter configuration to smooth the frequency time series (structure array).\n \t\tThe LPF Filter is used to smooth the frequency time series (fYlookAt = 'FREQUENCY'\n \t\tor 'PHASEofFREQUENCY').\n\t\t\t\t\t\t\t\t\t- 'saveBPFsignal': Boolean. Flag to return the Band-Pass Filtered signals.\n\t\t\t\t\t\t\t\t\t\t\t\t0: Return a NaN.\n\t\t\t\t\t\t\t\t\t\t\t\t1: Return the filtered signals.\n\t\t\t\t\t\t\t\t\t- 'Nbins': Int value. Number of phase/amplitude bins used to compute the Histograms \n\t\t\t\t\t\t\t\t\t\t\t\t(p) of the comodulogram. \n \t\t- 'sameNumberOfCycles': Boolean. Flag to configure the processing mode for signal x.\n 0: Do not truncate the signal \"x\" to obtain the same number of cycles.\n 1: Process the same number of cycles of signal \"x\" for all \"fX\" frequencies.\n\t\t\t\t- 'CFCmethod'\n\t\t\t\t- 'verbose'\n\t\t\t\t- 'perMethod'\n\t\t\t\t- 'Nper'\n\t\t\t\t- 'Nrep'\n\t\t\t\t- 'Pvalue'\n\t\t\t\t- 'corrMultComp'\n\t\t\t\t- 'fs'\n\t\"\"\"\n fXcfg = {'start': CFCin['fXmin'], 'end': CFCin['fXmax'], 'res': CFCin[\n 'fXres'], 'BPFcfg': CFCin['BPFXcfg'], 'lookAt': CFCin['fXlookAt'],\n 'n': CFCin['nX'], 'Nbins': CFCin['Nbins'], 'sameNumberOfCycles':\n CFCin['sameNumberOfCycles'], 'saveBPFsignal': CFCin['saveBPFsignal']}\n fYcfg = {'start': CFCin['fYmin'], 'end': CFCin['fYmax'], 'res': CFCin[\n 'fYres'], 'BPFcfg': CFCin['BPFYcfg'], 'lookAt': CFCin['fYlookAt'],\n 'n': CFCin['nY'], 'saveBPFsignal': CFCin['saveBPFsignal']}\n if fYcfg['lookAt'].lower == 'frequency' or fYcfg['lookAt'\n ].lower == 'phaseoffrequency':\n fYcfg['LPFcfg'] = CFCin['LPFcfg']\n if CFCin['fXmin'] <= CFCin['BPFXcfg']['Bw'] / 2:\n fXcfg['start'] = CFCin['fXmin'] + CFCin['BPFXcfg']['Bw'] / 2\n fXcfg['BPFcfg']['f0'] = np.linspace(fXcfg['start'], fXcfg['end'], np.\n ceil((fXcfg['end'] - fXcfg['start']) / fXcfg['res']))\n if 'times' in fXcfg['BPFcfg'].keys() and len(fXcfg['BPFcfg']['times']) > 1:\n fXcfg['BPFcfg']['times'] = np.linspace(fXcfg['BPFcfg']['times'][0],\n fXcfg['BPFcfg']['times'][-1], len(fXcfg['BPFcfg']['times']))\n if type(fYcfg['BPFcfg']['Bw'] * 1.0) == float:\n fYcfg['BPFcfg']['Bw'] = fYcfg['BPFcfg']['Bw'] * np.ones(np.shape(\n fXcfg['BPFcfg']['f0']))\n else:\n fYcfg['BPFcfg']['Bw'] = 2 * fXcfg['BPFcfg']['f0']\n if fYcfg['start'] <= fYcfg['BPFcfg']['Bw'][0] / 2:\n fYcfg['start'] = fYcfg['start'] + fYcfg['BPFcfg']['Bw'][0] / 2\n fYcfg['BPFcfg']['f0'] = np.linspace(fYcfg['start'], fYcfg['end'], np.\n ceil((fYcfg['end'] - fYcfg['start']) / fYcfg['res']))\n if 'times' in fYcfg['BPFcfg'].keys() and len(fYcfg['BPFcfg']['times']) > 1:\n fYcfg['BPFcfg']['times'] = np.linspace(fYcfg['BPFcfg']['times'][0],\n fYcfg['BPFcfg']['times'][-1], len(fYcfg['BPFcfg']['times']))\n CFCout = {'fXcfg': fXcfg, 'fYcfg': fYcfg, 'CFCmethod': CFCin[\n 'CFCmethod'], 'verbose': CFCin['verbose'], 'perMethod': CFCin[\n 'perMethod'], 'Nper': CFCin['Nper'], 'Nrep': CFCin['Nrep'],\n 'Pvalue': CFCin['Pvalue'], 'corrMultComp': CFCin['corrMultComp'],\n 'fs': CFCin['fs']}\n return CFCout\n\n\n<assignment token>\n<function token>\n<function token>\n\n\ndef function_feature_amplitude(signal):\n \"\"\" \n Description:\n Compute the amplitude (signal envelope).\n Amplitude envelope of the signal (AM demodulation).\n\n \"\"\"\n return np.abs(hilbert(signal, axis=0))\n\n\n<function token>\n<function token>\n\n\ndef function_feature_phoffreq(signal):\n print('Sin implementar. Devuelve 0')\n return 0\n\n\n<assignment token>\n\n\ndef function_comodulogramFeature(signal, fcfg, fs, indSettlingExt):\n \"\"\"\n Description:\n In this function we implement the extraction of the phase/amplitude/frequency \n time series from the input signals. The input signals are supposed to be \n previously Band-Pass Filtered signals around the frequency bands of interest.\n\n Inputs:\n - signal. Numeric array (Ns x Nf x NBw)\n Band-Pass Filtered signals. Notation:\n Ns: Number of samples.\n Nf: Number of frequencies. len(fcfg['BPFcfg']['f0'])\n NBw: Number of Bandwidths. len(fcfg['BPFcfg']['Bw'])\n\n - fcfg. Structure. Parameters of the Frequency Band in \"x(y)\" axis.\n - 'start': Numeric value. Start frequency [Hz].\n - 'end': Numeric value. End frequency [Hz].\n - 'res': Numeric value. Frequency resolution [Hz].\n Define the frequency separation between two consecutive BPFs. \n - 'BPFcfg': Structure.\n Band-Pass Filter configuration for the comodulogram's \"x(y)\" axis.\n - 'lookAt': String. Parameter of the signal (phase/amplitude/frequency) observed in the range of\n frequency corresponding to the \"x(y)\" axis [none].\n - 'LPFcfg': Structure. Low-Pass Filter configuration to smooth the frequency time series.\n The LPF Filter is used to smooth the frequency time series (fYlookAt = 'FREQUENCY' or 'PHASEofFREQUENCY').\n - 'saveBPFsignal': Boolean value. Flag to return the Band-Pass Filtered signals.\n *0: Return a NaN.\n *1: Return the filtered signals. \n - 'Nbins': Integer value. \n Number of phase/amplitude/frequency bins used to compute the Histograms (p) of the comodulogram. \n\n - 'sameNumberOfCycles': Boolean value. Flag to configure the processing mode for signal x.\n *0: Do not truncate the signal \"x\" to obtain the same number of cycles.\n *1: Process the same number of cycles of signal \"x\" for all \"fX\" frequencies.\n - fs: Numeric value. Sampling rate [Hz].\n - indSettlingExt: Integer value. \n External index for cutting out the transient response of the BPFs.\n If \"indSettlingExt\" is empty or NaN, the index for the longest settling time is used.\n\n Outputs:\n - BPFfeature: Numeric array (Ns x NF x NBw)\n Phase/amplitud/frequency time series for the \"x\" or \"y\" axis of the comodulogram\n\n - croppedSignal: Numeric array (Ns-2*(indSettlingExt-1) x Nf x NBw) \n Cropped Band-Pass Filtered signals (in the case of saveBPFsignal=1)\n \"\"\"\n if 'f1' in fcfg['BPFcfg'].keys() and 'f2' in fcfg['BPFcfg'].keys():\n fcfg['BPFcfg']['f0'] = (fcfg['BPFcfg']['f1'] + fcfg['BPFcfg']['f2']\n ) / 2\n fcfg['BPFcfg']['Bw'] = fcfg['BPFcfg']['f2'] - fcfg['BPFcfg']['f1']\n croppedSignal = []\n Nf = np.size(fcfg['BPFcfg']['f0'])\n NBw = np.size(fcfg['BPFcfg']['Bw'])\n fnyq = fs / 2\n Ns = np.shape(signal)[0]\n Ns_cropped = Ns - 2 * (indSettlingExt - 1)\n BPFfeature = np.zeros((Ns_cropped, Nf, NBw))\n if fcfg['saveBPFsignal']:\n croppedSignal = np.zeros((Ns_cropped, Nf, NBw))\n for ii in range(NBw):\n signal_local = signal[:, :, ii]\n feature = fcfg['lookAt'].lower()\n function_feature = LIST_FEATURES.get(feature, lambda : 'Invalid method'\n )\n BPFfeature_local = function_feature(signal_local)\n BPFfeature_local = BPFfeature_local[indSettlingExt - 1:\n BPFfeature_local.shape[0] - (indSettlingExt - 1), :]\n BPFfeature[:, :, ii] = BPFfeature_local\n if fcfg['saveBPFsignal']:\n croppedSignal[:, :, ii] = signal_local[indSettlingExt - 1:\n signal_local.shape[0] - (indSettlingExt - 1), :]\n return BPFfeature, croppedSignal\n\n\ndef function_PLV(x, y, wx, wy, CFCcfg):\n \"\"\"\n\tDescription: \n\tIn this function we compute the Phase Locking Values.\n\n\tRefs:\n\t[1] /PhaseLockingValue/function_PhaseLockingValue_v1.m\n\t[2] Measuring Phase-Amplitude Coupling Between Neuronal Oscillations (Tort, 2010).pdf, p. 1198\n\t[3] High gamma power is phase-locked to theta oscillations (Canolty, 2006).pdf\n\t[4] Phase Locking from Noisy Data (Tass, 1998).pdf\n Ref: Detection of n,m Phase Locking from Noisy Data (Tass, 1998).pdf \n\n\tInputs:\n\t\t- x: Numeric array (Nsamples x NfX).\n\t\t \t Data for the comodulogram's \"x\" axis (matrix: samples x NfX).\n\t\t- y: Numeric array (Nsamples x NfY x NfX). \n\t\t Data for the comodulogram's \"y\" axis (matrix: samples x NfY x NfX).\n\t\t- wx: Numeric array (Nsamples x NfX). \n\t\t\t Weights related to the comodulogram's \"x\" axis (matrix: samples x NfX).\n\t\t- wy: Numeric array (Nsamples x NfY x NfX).\n\t\t Weights related to the comodulogram's \"y\" axis (matrix: samples x NfY x NfX).\n\t\t- CFCcfc: structure. \n\t\t\t\t Parameters of the comodulogram (structure array)\n\t\t\t\t - 'fXcfg': structure.\n\t\t\t\t \t\t\t Parameters of the Frequency Band in \"x\" axis.\n\t\t\t\t - 'fYcfg': structure. \n\t\t\t\t \t\t\t Parameters of the Frequency Band in \"y\" axis.\n\t\t\t\t \t\t\t-'start': Numeric value. Start frequency [Hz].\n\t\t\t\t \t\t\t-'end': Numeric value. End frequency [Hz].\n\t\t\t\t \t\t\t-'res': Numeric value. Frequency resolution.\n\t\t\t\t \t\t\t\t\t Define the frequency separation between two consecutive BPFs.\n\t\t\t\t \t\t\t-'BPFcfg': Structure. Band-Pass Filter configuration for the comodulogram's axis.\n\t\t\t\t\t\t\t-'lookAt': String.\n\t\t\t\t\t\t\t\t\t Parameter of the signal (phase/amplitude) observed in the range of\n\t\t\t\t\t\t\t\t\t frequency [none] (string).\n\t\t\t\t\t\t\t-'n': Int value. Harmonic number for detection of phase locking.\n\t\t\t\t\t\t\t-'saveBPFsignal': {0,1}. Flag to return the Band-Pass Filtered signals. \n\t\t\t\t\t\t\t\t\t\t\t 0 - Return a NaN.\n 1 - Return the filtered signals.\n -'Nbins': Int value.\n \t\t Number of phase/amplitude bins used to compute the Histograms (p) of the comodulogram. \n -'sameNumberOfCycles': {0,1}. Flag to configure the processing mode for signal x.\n \t\t\t\t\t 0 - Do not truncate the signal \"x\" to obtain the same number \n \t\t\t\t\t \t of cycles.\n 1 - Process the same number of cycles of signal \"x\" for all \n\t\t\t\t\t\t\t\t\t\t\t\t\t \"fX\" frequencies.\n\t\t\t\t - 'CFCmethod': String.\n\t\t\t\t \t\t\t\t Defines the approach to compute the Cross frequency Coupling. E.g: 'plv'.\n\t\t\t\t - 'verbose': Boolean. Display flag. \n\t\t\t\t - 'perMethod': {'trialShuffling', 'sampleShuffling', 'FFTphaseShuffling', 'cutShuffling'}. \n\t\t\t\t \t\t\t\t Method by which the surrogated time series are built.\n\t\t\t\t - 'Nper': Int value. \n\t\t\t\t \t\t Number of permutations. It defines the number of surrogate histograms per\n repetition. It is worth noting that in each repetition, \"Nper\" surrogate \n\t\t\t\t\t\t\thistograms of size \"Nbins x NfY x NfX\" are stored in memory (RAM).\n\t\t\t\t - 'Nrep': Int value.\n\t\t\t\t Number of repetitions. In each repetition a \".mat\" file is written to disk,\n\t containing \"Nper\" surrogate histograms of size \"Nbins x NfY x NfX\". \n \tAs a consequence, the final number of surrogate histograms is \"Nper x Nrep\".\n\t\t\t\t - 'Pvalue': Numeric value. P-value for the statistically significant level.\n\t\t\t\t - 'corrMultComp': {'Bonferroni', 'pixelBased'} Method to correct for multiple comparisons.\n\t\t\t\t - 'fs': Numeric value. Sampling rate [Hz].\n\n\tOutputs:\n\t\t- PLV: Numeric array (NfY x NfX).\n\t\t\t Phase Locking Value.\n\t\t- wxPLV: Numeric array (NfY x NfX).\n\t\t\t\t Weighted Phase Locking Values using the wx weights (matrix: NfY x NfX).\n\t\t- wyPLV: Numeric array (NfY x NfX). \n\t\t\t\t Weighted Phase Locking Values using the wy weights (matrix: NfY x NfX).\n\n\t \t\t\t NfX = length(CFCcfg['fXcfg']['BPFcfg']['f0'])\n\t \t\t\t NfY = length(CFCcfg['fYcfg']['BPFcfg']['f0'])\n\t\"\"\"\n wxPLV = []\n wyPLV = []\n NfX = np.size(CFCcfg['fXcfg']['BPFcfg']['f0'])\n NfY = np.size(CFCcfg['fYcfg']['BPFcfg']['f0'])\n Ns = np.shape(x)[0]\n nX = CFCcfg['fXcfg']['n']\n nY = CFCcfg['fYcfg']['n']\n PLV = np.zeros((NfY, NfX), dtype=complex)\n for ii in range(NfY):\n PLV[ii, :] = np.sum(np.exp(1.0j * (nX * x - nY * y[:, ii, :])), 0) / Ns\n return PLV, wxPLV, wyPLV\n", "<docstring token>\n<import token>\n\n\ndef function_setCFCcfg(CFCin):\n \"\"\"\n\tDescription:\n\tIn this function we compute the structures for the \"x\" and \"y\" axis of the comodulogram.\n\n\tInputs:\n\t- CFCin: Structure. Parameters of the comodulogram.\n\t\t\t\t- 'fXmin': Numeric value. Minimum frequency for the LF band [Hz].\n\t\t\t\t- 'fXmax': Numeric value. Maximum frequency for the LF band [Hz].\n\t\t\t\t- 'fYmin': Numeric value. Minimum frequency for the HF band [Hz].\n\t\t\t\t- 'fYmax': Numeric value. Maximum frequency for the HF band [Hz].\n\t\t\t\t- 'fXres': Numeric value. Frequency resolution for the LF band [Hz].\n\t\t\t\t- 'fYres': Numeric value. Frequency resolution for the HF band [Hz].\n\t\t\t\t- 'fXlookAt': String. \n\t\t\t\t\t\t\t Parameter of the signal observed in the range of\n\t \t frequency corresponding to the \"x\" axis.\n\t\t\t\t- 'fYlookAt': String.\n\t\t\t\t\t\t\t Parameter of the signal observed in the range of\n \t frequency corresponding to the \"y\" axis.\n\t\t\t\t- 'nX': Int value. Harmonic number for detection of fbX.n:fbY.n phase locking.\n\t\t\t\t- 'nY': Int value. Harmonic number for detection of fbX.n:fbY.n phase locking.\n\t\t\t\t- 'BPFXcfg': Structure. Band-Pass Filter configuration for the comodulogram's \"x\" axis.\n\t\t\t\t- 'BPFYcfg': Structure. Band-Pass Filter configuration for the comodulogram's \"y\" axis.\n\t\t\t\t- 'LPFcfg': Structure. Low-Pass Filter configuration to smooth the frequency time series.\n \tThe LPF Filter is used to smooth the frequency time series \n\t\t\t\t\t\t\t(fYlookAt = 'FREQUENCY' or 'PHASEofFREQUENCY').\n\t\t\t\t- 'saveBPFsignal': {0,1}. Flag to return the Band-Pass Filtered signals.\n 0 - Return a NaN.\n 1 - Return the filtered signals.\n\t\t\t\t- 'Nbins': Int value. \n\t\t\t\t\t\t Number of phase/amplitude bins used to compute the Histograms (p) of the comodulogram. \n\t\t\t\t- 'sameNumberOfCycles': {0,1}. Flag to configure the processing mode for signal x:\n 0 - Do not truncate the signal \"x\" to obtain the same number of cycles.\n 1 - Process the same number of cycles of signal \"x\" for all \"fX\" frequencies.\n\t\t\t\t- 'CFCmethod': String. {'plv','mi'}\n\t\t\t\t\t\t\tDefines the approach to compute the Cross frequency Coupling \n\t\t\t\t\t\t\t(PLV / methods to compute the MI).\n\t\t\t\t- 'verbose': Boolean {0,1}. \n\t\t\t\t\t\t\t 0: no message are shown.\n \t 1: show the messages.\n\t\t\t\t- 'perMethod': String. Method by which the surrogated time series are built. Options\n\t\t\t\t\t\t\t* 'trialShuffling'\n\t\t\t\t\t\t\t* 'sampleShuffling'\n \t* 'FFTphaseShuffling'\n \t* 'cutShuffling'\n\t\t\t\t- 'Nper': Int value. Number of permutations.\n\t\t\t\t\t\t It defines the number of surrogate histograms per\n\t\t\t\t\t\t repetition. It is worth noting that in each repetition, \"Nper\" surrogate histograms of size\n\t\t\t\t\t\t \"Nbins x NfY x NfX\" are stored in memory (RAM).\n\t\t\t\t- 'Nrep': Int value. Number of repetitions.\n\t\t\t\t\t\t In each repetition a \".mat\" file is written to disk,\n\t\t\t\t\t\t containing \"Nper\" surrogate histograms of size \"Nbins x NfY x NfX\". \n\t\t\t\t\t\t As a consequence, the final number of surrogate histograms is \"Nper x Nrep\".\n\t\t\t\t- 'Pvalue': Numeric value. P-value for the statistically significant level.\n\t\t\t\t- 'corrMultComp': String {'Bonferroni', 'pixelBased'}.\n\t\t\t\t\t\t\t\t Method to correct for multiple comparisons.\n\t\t\t\t- 'fs': Numeric value.\n\n\tOutputs:\n\t- CFCout: Structure. Parameters of the comodulogram.\n\t\t\t\t-'fXcfg', 'fYcfg': Structure. Parameters of the Frequency Band in \"x(y)\" axis.\n\t\t\t\t\t\t\t\t\t- 'start': \tNumeric value. Start frequency [Hz].\n\t\t\t\t\t\t\t\t\t- 'end':\tNumeric value. End frequency [Hz].\n\t\t\t\t\t\t\t\t\t- 'res': \tNumeric value. Frequency resolution [Hz].\n\t\t\t\t\t\t\t\t\t\t\t\tDefine the frequency separation between two consecutive BPFs.\n\t\t\t\t\t\t\t\t\t- 'BPFcfg': Structure. \n\t\t\t\t\t\t\t\t\t\t\t\tBand-Pass Filter configuration for the comodulogram's \"x(y)\" axis.\n\t\t\t\t\t\t\t\t\t- 'lookAt': String. Parameter of the signal (phase/amplitude) observed in the range of\n\t\t\t\t\t\t\t\t\t\t\t\tfrequency corresponding to the \"x(y)\" axis [none] (string).\n\t\t\t\t\t\t\t\t\t- 'n': Int value. Harmonic number for detection of fbX.n:fbY.n phase locking.\n\t\t\t\t\t\t\t\t\t\t\t\tRef: Detection of n,m Phase Locking from Noisy Data (Tass, 1998).pdf \n\t\t\t\t\t\t\t\t\t- 'LPFcfg' Structure.\n\t\t\t\t\t\t\t\t\t\t\t\tLow-Pass Filter configuration to smooth the frequency time series (structure array).\n \t\tThe LPF Filter is used to smooth the frequency time series (fYlookAt = 'FREQUENCY'\n \t\tor 'PHASEofFREQUENCY').\n\t\t\t\t\t\t\t\t\t- 'saveBPFsignal': Boolean. Flag to return the Band-Pass Filtered signals.\n\t\t\t\t\t\t\t\t\t\t\t\t0: Return a NaN.\n\t\t\t\t\t\t\t\t\t\t\t\t1: Return the filtered signals.\n\t\t\t\t\t\t\t\t\t- 'Nbins': Int value. Number of phase/amplitude bins used to compute the Histograms \n\t\t\t\t\t\t\t\t\t\t\t\t(p) of the comodulogram. \n \t\t- 'sameNumberOfCycles': Boolean. Flag to configure the processing mode for signal x.\n 0: Do not truncate the signal \"x\" to obtain the same number of cycles.\n 1: Process the same number of cycles of signal \"x\" for all \"fX\" frequencies.\n\t\t\t\t- 'CFCmethod'\n\t\t\t\t- 'verbose'\n\t\t\t\t- 'perMethod'\n\t\t\t\t- 'Nper'\n\t\t\t\t- 'Nrep'\n\t\t\t\t- 'Pvalue'\n\t\t\t\t- 'corrMultComp'\n\t\t\t\t- 'fs'\n\t\"\"\"\n fXcfg = {'start': CFCin['fXmin'], 'end': CFCin['fXmax'], 'res': CFCin[\n 'fXres'], 'BPFcfg': CFCin['BPFXcfg'], 'lookAt': CFCin['fXlookAt'],\n 'n': CFCin['nX'], 'Nbins': CFCin['Nbins'], 'sameNumberOfCycles':\n CFCin['sameNumberOfCycles'], 'saveBPFsignal': CFCin['saveBPFsignal']}\n fYcfg = {'start': CFCin['fYmin'], 'end': CFCin['fYmax'], 'res': CFCin[\n 'fYres'], 'BPFcfg': CFCin['BPFYcfg'], 'lookAt': CFCin['fYlookAt'],\n 'n': CFCin['nY'], 'saveBPFsignal': CFCin['saveBPFsignal']}\n if fYcfg['lookAt'].lower == 'frequency' or fYcfg['lookAt'\n ].lower == 'phaseoffrequency':\n fYcfg['LPFcfg'] = CFCin['LPFcfg']\n if CFCin['fXmin'] <= CFCin['BPFXcfg']['Bw'] / 2:\n fXcfg['start'] = CFCin['fXmin'] + CFCin['BPFXcfg']['Bw'] / 2\n fXcfg['BPFcfg']['f0'] = np.linspace(fXcfg['start'], fXcfg['end'], np.\n ceil((fXcfg['end'] - fXcfg['start']) / fXcfg['res']))\n if 'times' in fXcfg['BPFcfg'].keys() and len(fXcfg['BPFcfg']['times']) > 1:\n fXcfg['BPFcfg']['times'] = np.linspace(fXcfg['BPFcfg']['times'][0],\n fXcfg['BPFcfg']['times'][-1], len(fXcfg['BPFcfg']['times']))\n if type(fYcfg['BPFcfg']['Bw'] * 1.0) == float:\n fYcfg['BPFcfg']['Bw'] = fYcfg['BPFcfg']['Bw'] * np.ones(np.shape(\n fXcfg['BPFcfg']['f0']))\n else:\n fYcfg['BPFcfg']['Bw'] = 2 * fXcfg['BPFcfg']['f0']\n if fYcfg['start'] <= fYcfg['BPFcfg']['Bw'][0] / 2:\n fYcfg['start'] = fYcfg['start'] + fYcfg['BPFcfg']['Bw'][0] / 2\n fYcfg['BPFcfg']['f0'] = np.linspace(fYcfg['start'], fYcfg['end'], np.\n ceil((fYcfg['end'] - fYcfg['start']) / fYcfg['res']))\n if 'times' in fYcfg['BPFcfg'].keys() and len(fYcfg['BPFcfg']['times']) > 1:\n fYcfg['BPFcfg']['times'] = np.linspace(fYcfg['BPFcfg']['times'][0],\n fYcfg['BPFcfg']['times'][-1], len(fYcfg['BPFcfg']['times']))\n CFCout = {'fXcfg': fXcfg, 'fYcfg': fYcfg, 'CFCmethod': CFCin[\n 'CFCmethod'], 'verbose': CFCin['verbose'], 'perMethod': CFCin[\n 'perMethod'], 'Nper': CFCin['Nper'], 'Nrep': CFCin['Nrep'],\n 'Pvalue': CFCin['Pvalue'], 'corrMultComp': CFCin['corrMultComp'],\n 'fs': CFCin['fs']}\n return CFCout\n\n\n<assignment token>\n<function token>\n<function token>\n\n\ndef function_feature_amplitude(signal):\n \"\"\" \n Description:\n Compute the amplitude (signal envelope).\n Amplitude envelope of the signal (AM demodulation).\n\n \"\"\"\n return np.abs(hilbert(signal, axis=0))\n\n\n<function token>\n<function token>\n\n\ndef function_feature_phoffreq(signal):\n print('Sin implementar. Devuelve 0')\n return 0\n\n\n<assignment token>\n<function token>\n\n\ndef function_PLV(x, y, wx, wy, CFCcfg):\n \"\"\"\n\tDescription: \n\tIn this function we compute the Phase Locking Values.\n\n\tRefs:\n\t[1] /PhaseLockingValue/function_PhaseLockingValue_v1.m\n\t[2] Measuring Phase-Amplitude Coupling Between Neuronal Oscillations (Tort, 2010).pdf, p. 1198\n\t[3] High gamma power is phase-locked to theta oscillations (Canolty, 2006).pdf\n\t[4] Phase Locking from Noisy Data (Tass, 1998).pdf\n Ref: Detection of n,m Phase Locking from Noisy Data (Tass, 1998).pdf \n\n\tInputs:\n\t\t- x: Numeric array (Nsamples x NfX).\n\t\t \t Data for the comodulogram's \"x\" axis (matrix: samples x NfX).\n\t\t- y: Numeric array (Nsamples x NfY x NfX). \n\t\t Data for the comodulogram's \"y\" axis (matrix: samples x NfY x NfX).\n\t\t- wx: Numeric array (Nsamples x NfX). \n\t\t\t Weights related to the comodulogram's \"x\" axis (matrix: samples x NfX).\n\t\t- wy: Numeric array (Nsamples x NfY x NfX).\n\t\t Weights related to the comodulogram's \"y\" axis (matrix: samples x NfY x NfX).\n\t\t- CFCcfc: structure. \n\t\t\t\t Parameters of the comodulogram (structure array)\n\t\t\t\t - 'fXcfg': structure.\n\t\t\t\t \t\t\t Parameters of the Frequency Band in \"x\" axis.\n\t\t\t\t - 'fYcfg': structure. \n\t\t\t\t \t\t\t Parameters of the Frequency Band in \"y\" axis.\n\t\t\t\t \t\t\t-'start': Numeric value. Start frequency [Hz].\n\t\t\t\t \t\t\t-'end': Numeric value. End frequency [Hz].\n\t\t\t\t \t\t\t-'res': Numeric value. Frequency resolution.\n\t\t\t\t \t\t\t\t\t Define the frequency separation between two consecutive BPFs.\n\t\t\t\t \t\t\t-'BPFcfg': Structure. Band-Pass Filter configuration for the comodulogram's axis.\n\t\t\t\t\t\t\t-'lookAt': String.\n\t\t\t\t\t\t\t\t\t Parameter of the signal (phase/amplitude) observed in the range of\n\t\t\t\t\t\t\t\t\t frequency [none] (string).\n\t\t\t\t\t\t\t-'n': Int value. Harmonic number for detection of phase locking.\n\t\t\t\t\t\t\t-'saveBPFsignal': {0,1}. Flag to return the Band-Pass Filtered signals. \n\t\t\t\t\t\t\t\t\t\t\t 0 - Return a NaN.\n 1 - Return the filtered signals.\n -'Nbins': Int value.\n \t\t Number of phase/amplitude bins used to compute the Histograms (p) of the comodulogram. \n -'sameNumberOfCycles': {0,1}. Flag to configure the processing mode for signal x.\n \t\t\t\t\t 0 - Do not truncate the signal \"x\" to obtain the same number \n \t\t\t\t\t \t of cycles.\n 1 - Process the same number of cycles of signal \"x\" for all \n\t\t\t\t\t\t\t\t\t\t\t\t\t \"fX\" frequencies.\n\t\t\t\t - 'CFCmethod': String.\n\t\t\t\t \t\t\t\t Defines the approach to compute the Cross frequency Coupling. E.g: 'plv'.\n\t\t\t\t - 'verbose': Boolean. Display flag. \n\t\t\t\t - 'perMethod': {'trialShuffling', 'sampleShuffling', 'FFTphaseShuffling', 'cutShuffling'}. \n\t\t\t\t \t\t\t\t Method by which the surrogated time series are built.\n\t\t\t\t - 'Nper': Int value. \n\t\t\t\t \t\t Number of permutations. It defines the number of surrogate histograms per\n repetition. It is worth noting that in each repetition, \"Nper\" surrogate \n\t\t\t\t\t\t\thistograms of size \"Nbins x NfY x NfX\" are stored in memory (RAM).\n\t\t\t\t - 'Nrep': Int value.\n\t\t\t\t Number of repetitions. In each repetition a \".mat\" file is written to disk,\n\t containing \"Nper\" surrogate histograms of size \"Nbins x NfY x NfX\". \n \tAs a consequence, the final number of surrogate histograms is \"Nper x Nrep\".\n\t\t\t\t - 'Pvalue': Numeric value. P-value for the statistically significant level.\n\t\t\t\t - 'corrMultComp': {'Bonferroni', 'pixelBased'} Method to correct for multiple comparisons.\n\t\t\t\t - 'fs': Numeric value. Sampling rate [Hz].\n\n\tOutputs:\n\t\t- PLV: Numeric array (NfY x NfX).\n\t\t\t Phase Locking Value.\n\t\t- wxPLV: Numeric array (NfY x NfX).\n\t\t\t\t Weighted Phase Locking Values using the wx weights (matrix: NfY x NfX).\n\t\t- wyPLV: Numeric array (NfY x NfX). \n\t\t\t\t Weighted Phase Locking Values using the wy weights (matrix: NfY x NfX).\n\n\t \t\t\t NfX = length(CFCcfg['fXcfg']['BPFcfg']['f0'])\n\t \t\t\t NfY = length(CFCcfg['fYcfg']['BPFcfg']['f0'])\n\t\"\"\"\n wxPLV = []\n wyPLV = []\n NfX = np.size(CFCcfg['fXcfg']['BPFcfg']['f0'])\n NfY = np.size(CFCcfg['fYcfg']['BPFcfg']['f0'])\n Ns = np.shape(x)[0]\n nX = CFCcfg['fXcfg']['n']\n nY = CFCcfg['fYcfg']['n']\n PLV = np.zeros((NfY, NfX), dtype=complex)\n for ii in range(NfY):\n PLV[ii, :] = np.sum(np.exp(1.0j * (nX * x - nY * y[:, ii, :])), 0) / Ns\n return PLV, wxPLV, wyPLV\n", "<docstring token>\n<import token>\n\n\ndef function_setCFCcfg(CFCin):\n \"\"\"\n\tDescription:\n\tIn this function we compute the structures for the \"x\" and \"y\" axis of the comodulogram.\n\n\tInputs:\n\t- CFCin: Structure. Parameters of the comodulogram.\n\t\t\t\t- 'fXmin': Numeric value. Minimum frequency for the LF band [Hz].\n\t\t\t\t- 'fXmax': Numeric value. Maximum frequency for the LF band [Hz].\n\t\t\t\t- 'fYmin': Numeric value. Minimum frequency for the HF band [Hz].\n\t\t\t\t- 'fYmax': Numeric value. Maximum frequency for the HF band [Hz].\n\t\t\t\t- 'fXres': Numeric value. Frequency resolution for the LF band [Hz].\n\t\t\t\t- 'fYres': Numeric value. Frequency resolution for the HF band [Hz].\n\t\t\t\t- 'fXlookAt': String. \n\t\t\t\t\t\t\t Parameter of the signal observed in the range of\n\t \t frequency corresponding to the \"x\" axis.\n\t\t\t\t- 'fYlookAt': String.\n\t\t\t\t\t\t\t Parameter of the signal observed in the range of\n \t frequency corresponding to the \"y\" axis.\n\t\t\t\t- 'nX': Int value. Harmonic number for detection of fbX.n:fbY.n phase locking.\n\t\t\t\t- 'nY': Int value. Harmonic number for detection of fbX.n:fbY.n phase locking.\n\t\t\t\t- 'BPFXcfg': Structure. Band-Pass Filter configuration for the comodulogram's \"x\" axis.\n\t\t\t\t- 'BPFYcfg': Structure. Band-Pass Filter configuration for the comodulogram's \"y\" axis.\n\t\t\t\t- 'LPFcfg': Structure. Low-Pass Filter configuration to smooth the frequency time series.\n \tThe LPF Filter is used to smooth the frequency time series \n\t\t\t\t\t\t\t(fYlookAt = 'FREQUENCY' or 'PHASEofFREQUENCY').\n\t\t\t\t- 'saveBPFsignal': {0,1}. Flag to return the Band-Pass Filtered signals.\n 0 - Return a NaN.\n 1 - Return the filtered signals.\n\t\t\t\t- 'Nbins': Int value. \n\t\t\t\t\t\t Number of phase/amplitude bins used to compute the Histograms (p) of the comodulogram. \n\t\t\t\t- 'sameNumberOfCycles': {0,1}. Flag to configure the processing mode for signal x:\n 0 - Do not truncate the signal \"x\" to obtain the same number of cycles.\n 1 - Process the same number of cycles of signal \"x\" for all \"fX\" frequencies.\n\t\t\t\t- 'CFCmethod': String. {'plv','mi'}\n\t\t\t\t\t\t\tDefines the approach to compute the Cross frequency Coupling \n\t\t\t\t\t\t\t(PLV / methods to compute the MI).\n\t\t\t\t- 'verbose': Boolean {0,1}. \n\t\t\t\t\t\t\t 0: no message are shown.\n \t 1: show the messages.\n\t\t\t\t- 'perMethod': String. Method by which the surrogated time series are built. Options\n\t\t\t\t\t\t\t* 'trialShuffling'\n\t\t\t\t\t\t\t* 'sampleShuffling'\n \t* 'FFTphaseShuffling'\n \t* 'cutShuffling'\n\t\t\t\t- 'Nper': Int value. Number of permutations.\n\t\t\t\t\t\t It defines the number of surrogate histograms per\n\t\t\t\t\t\t repetition. It is worth noting that in each repetition, \"Nper\" surrogate histograms of size\n\t\t\t\t\t\t \"Nbins x NfY x NfX\" are stored in memory (RAM).\n\t\t\t\t- 'Nrep': Int value. Number of repetitions.\n\t\t\t\t\t\t In each repetition a \".mat\" file is written to disk,\n\t\t\t\t\t\t containing \"Nper\" surrogate histograms of size \"Nbins x NfY x NfX\". \n\t\t\t\t\t\t As a consequence, the final number of surrogate histograms is \"Nper x Nrep\".\n\t\t\t\t- 'Pvalue': Numeric value. P-value for the statistically significant level.\n\t\t\t\t- 'corrMultComp': String {'Bonferroni', 'pixelBased'}.\n\t\t\t\t\t\t\t\t Method to correct for multiple comparisons.\n\t\t\t\t- 'fs': Numeric value.\n\n\tOutputs:\n\t- CFCout: Structure. Parameters of the comodulogram.\n\t\t\t\t-'fXcfg', 'fYcfg': Structure. Parameters of the Frequency Band in \"x(y)\" axis.\n\t\t\t\t\t\t\t\t\t- 'start': \tNumeric value. Start frequency [Hz].\n\t\t\t\t\t\t\t\t\t- 'end':\tNumeric value. End frequency [Hz].\n\t\t\t\t\t\t\t\t\t- 'res': \tNumeric value. Frequency resolution [Hz].\n\t\t\t\t\t\t\t\t\t\t\t\tDefine the frequency separation between two consecutive BPFs.\n\t\t\t\t\t\t\t\t\t- 'BPFcfg': Structure. \n\t\t\t\t\t\t\t\t\t\t\t\tBand-Pass Filter configuration for the comodulogram's \"x(y)\" axis.\n\t\t\t\t\t\t\t\t\t- 'lookAt': String. Parameter of the signal (phase/amplitude) observed in the range of\n\t\t\t\t\t\t\t\t\t\t\t\tfrequency corresponding to the \"x(y)\" axis [none] (string).\n\t\t\t\t\t\t\t\t\t- 'n': Int value. Harmonic number for detection of fbX.n:fbY.n phase locking.\n\t\t\t\t\t\t\t\t\t\t\t\tRef: Detection of n,m Phase Locking from Noisy Data (Tass, 1998).pdf \n\t\t\t\t\t\t\t\t\t- 'LPFcfg' Structure.\n\t\t\t\t\t\t\t\t\t\t\t\tLow-Pass Filter configuration to smooth the frequency time series (structure array).\n \t\tThe LPF Filter is used to smooth the frequency time series (fYlookAt = 'FREQUENCY'\n \t\tor 'PHASEofFREQUENCY').\n\t\t\t\t\t\t\t\t\t- 'saveBPFsignal': Boolean. Flag to return the Band-Pass Filtered signals.\n\t\t\t\t\t\t\t\t\t\t\t\t0: Return a NaN.\n\t\t\t\t\t\t\t\t\t\t\t\t1: Return the filtered signals.\n\t\t\t\t\t\t\t\t\t- 'Nbins': Int value. Number of phase/amplitude bins used to compute the Histograms \n\t\t\t\t\t\t\t\t\t\t\t\t(p) of the comodulogram. \n \t\t- 'sameNumberOfCycles': Boolean. Flag to configure the processing mode for signal x.\n 0: Do not truncate the signal \"x\" to obtain the same number of cycles.\n 1: Process the same number of cycles of signal \"x\" for all \"fX\" frequencies.\n\t\t\t\t- 'CFCmethod'\n\t\t\t\t- 'verbose'\n\t\t\t\t- 'perMethod'\n\t\t\t\t- 'Nper'\n\t\t\t\t- 'Nrep'\n\t\t\t\t- 'Pvalue'\n\t\t\t\t- 'corrMultComp'\n\t\t\t\t- 'fs'\n\t\"\"\"\n fXcfg = {'start': CFCin['fXmin'], 'end': CFCin['fXmax'], 'res': CFCin[\n 'fXres'], 'BPFcfg': CFCin['BPFXcfg'], 'lookAt': CFCin['fXlookAt'],\n 'n': CFCin['nX'], 'Nbins': CFCin['Nbins'], 'sameNumberOfCycles':\n CFCin['sameNumberOfCycles'], 'saveBPFsignal': CFCin['saveBPFsignal']}\n fYcfg = {'start': CFCin['fYmin'], 'end': CFCin['fYmax'], 'res': CFCin[\n 'fYres'], 'BPFcfg': CFCin['BPFYcfg'], 'lookAt': CFCin['fYlookAt'],\n 'n': CFCin['nY'], 'saveBPFsignal': CFCin['saveBPFsignal']}\n if fYcfg['lookAt'].lower == 'frequency' or fYcfg['lookAt'\n ].lower == 'phaseoffrequency':\n fYcfg['LPFcfg'] = CFCin['LPFcfg']\n if CFCin['fXmin'] <= CFCin['BPFXcfg']['Bw'] / 2:\n fXcfg['start'] = CFCin['fXmin'] + CFCin['BPFXcfg']['Bw'] / 2\n fXcfg['BPFcfg']['f0'] = np.linspace(fXcfg['start'], fXcfg['end'], np.\n ceil((fXcfg['end'] - fXcfg['start']) / fXcfg['res']))\n if 'times' in fXcfg['BPFcfg'].keys() and len(fXcfg['BPFcfg']['times']) > 1:\n fXcfg['BPFcfg']['times'] = np.linspace(fXcfg['BPFcfg']['times'][0],\n fXcfg['BPFcfg']['times'][-1], len(fXcfg['BPFcfg']['times']))\n if type(fYcfg['BPFcfg']['Bw'] * 1.0) == float:\n fYcfg['BPFcfg']['Bw'] = fYcfg['BPFcfg']['Bw'] * np.ones(np.shape(\n fXcfg['BPFcfg']['f0']))\n else:\n fYcfg['BPFcfg']['Bw'] = 2 * fXcfg['BPFcfg']['f0']\n if fYcfg['start'] <= fYcfg['BPFcfg']['Bw'][0] / 2:\n fYcfg['start'] = fYcfg['start'] + fYcfg['BPFcfg']['Bw'][0] / 2\n fYcfg['BPFcfg']['f0'] = np.linspace(fYcfg['start'], fYcfg['end'], np.\n ceil((fYcfg['end'] - fYcfg['start']) / fYcfg['res']))\n if 'times' in fYcfg['BPFcfg'].keys() and len(fYcfg['BPFcfg']['times']) > 1:\n fYcfg['BPFcfg']['times'] = np.linspace(fYcfg['BPFcfg']['times'][0],\n fYcfg['BPFcfg']['times'][-1], len(fYcfg['BPFcfg']['times']))\n CFCout = {'fXcfg': fXcfg, 'fYcfg': fYcfg, 'CFCmethod': CFCin[\n 'CFCmethod'], 'verbose': CFCin['verbose'], 'perMethod': CFCin[\n 'perMethod'], 'Nper': CFCin['Nper'], 'Nrep': CFCin['Nrep'],\n 'Pvalue': CFCin['Pvalue'], 'corrMultComp': CFCin['corrMultComp'],\n 'fs': CFCin['fs']}\n return CFCout\n\n\n<assignment token>\n<function token>\n<function token>\n\n\ndef function_feature_amplitude(signal):\n \"\"\" \n Description:\n Compute the amplitude (signal envelope).\n Amplitude envelope of the signal (AM demodulation).\n\n \"\"\"\n return np.abs(hilbert(signal, axis=0))\n\n\n<function token>\n<function token>\n<function token>\n<assignment token>\n<function token>\n\n\ndef function_PLV(x, y, wx, wy, CFCcfg):\n \"\"\"\n\tDescription: \n\tIn this function we compute the Phase Locking Values.\n\n\tRefs:\n\t[1] /PhaseLockingValue/function_PhaseLockingValue_v1.m\n\t[2] Measuring Phase-Amplitude Coupling Between Neuronal Oscillations (Tort, 2010).pdf, p. 1198\n\t[3] High gamma power is phase-locked to theta oscillations (Canolty, 2006).pdf\n\t[4] Phase Locking from Noisy Data (Tass, 1998).pdf\n Ref: Detection of n,m Phase Locking from Noisy Data (Tass, 1998).pdf \n\n\tInputs:\n\t\t- x: Numeric array (Nsamples x NfX).\n\t\t \t Data for the comodulogram's \"x\" axis (matrix: samples x NfX).\n\t\t- y: Numeric array (Nsamples x NfY x NfX). \n\t\t Data for the comodulogram's \"y\" axis (matrix: samples x NfY x NfX).\n\t\t- wx: Numeric array (Nsamples x NfX). \n\t\t\t Weights related to the comodulogram's \"x\" axis (matrix: samples x NfX).\n\t\t- wy: Numeric array (Nsamples x NfY x NfX).\n\t\t Weights related to the comodulogram's \"y\" axis (matrix: samples x NfY x NfX).\n\t\t- CFCcfc: structure. \n\t\t\t\t Parameters of the comodulogram (structure array)\n\t\t\t\t - 'fXcfg': structure.\n\t\t\t\t \t\t\t Parameters of the Frequency Band in \"x\" axis.\n\t\t\t\t - 'fYcfg': structure. \n\t\t\t\t \t\t\t Parameters of the Frequency Band in \"y\" axis.\n\t\t\t\t \t\t\t-'start': Numeric value. Start frequency [Hz].\n\t\t\t\t \t\t\t-'end': Numeric value. End frequency [Hz].\n\t\t\t\t \t\t\t-'res': Numeric value. Frequency resolution.\n\t\t\t\t \t\t\t\t\t Define the frequency separation between two consecutive BPFs.\n\t\t\t\t \t\t\t-'BPFcfg': Structure. Band-Pass Filter configuration for the comodulogram's axis.\n\t\t\t\t\t\t\t-'lookAt': String.\n\t\t\t\t\t\t\t\t\t Parameter of the signal (phase/amplitude) observed in the range of\n\t\t\t\t\t\t\t\t\t frequency [none] (string).\n\t\t\t\t\t\t\t-'n': Int value. Harmonic number for detection of phase locking.\n\t\t\t\t\t\t\t-'saveBPFsignal': {0,1}. Flag to return the Band-Pass Filtered signals. \n\t\t\t\t\t\t\t\t\t\t\t 0 - Return a NaN.\n 1 - Return the filtered signals.\n -'Nbins': Int value.\n \t\t Number of phase/amplitude bins used to compute the Histograms (p) of the comodulogram. \n -'sameNumberOfCycles': {0,1}. Flag to configure the processing mode for signal x.\n \t\t\t\t\t 0 - Do not truncate the signal \"x\" to obtain the same number \n \t\t\t\t\t \t of cycles.\n 1 - Process the same number of cycles of signal \"x\" for all \n\t\t\t\t\t\t\t\t\t\t\t\t\t \"fX\" frequencies.\n\t\t\t\t - 'CFCmethod': String.\n\t\t\t\t \t\t\t\t Defines the approach to compute the Cross frequency Coupling. E.g: 'plv'.\n\t\t\t\t - 'verbose': Boolean. Display flag. \n\t\t\t\t - 'perMethod': {'trialShuffling', 'sampleShuffling', 'FFTphaseShuffling', 'cutShuffling'}. \n\t\t\t\t \t\t\t\t Method by which the surrogated time series are built.\n\t\t\t\t - 'Nper': Int value. \n\t\t\t\t \t\t Number of permutations. It defines the number of surrogate histograms per\n repetition. It is worth noting that in each repetition, \"Nper\" surrogate \n\t\t\t\t\t\t\thistograms of size \"Nbins x NfY x NfX\" are stored in memory (RAM).\n\t\t\t\t - 'Nrep': Int value.\n\t\t\t\t Number of repetitions. In each repetition a \".mat\" file is written to disk,\n\t containing \"Nper\" surrogate histograms of size \"Nbins x NfY x NfX\". \n \tAs a consequence, the final number of surrogate histograms is \"Nper x Nrep\".\n\t\t\t\t - 'Pvalue': Numeric value. P-value for the statistically significant level.\n\t\t\t\t - 'corrMultComp': {'Bonferroni', 'pixelBased'} Method to correct for multiple comparisons.\n\t\t\t\t - 'fs': Numeric value. Sampling rate [Hz].\n\n\tOutputs:\n\t\t- PLV: Numeric array (NfY x NfX).\n\t\t\t Phase Locking Value.\n\t\t- wxPLV: Numeric array (NfY x NfX).\n\t\t\t\t Weighted Phase Locking Values using the wx weights (matrix: NfY x NfX).\n\t\t- wyPLV: Numeric array (NfY x NfX). \n\t\t\t\t Weighted Phase Locking Values using the wy weights (matrix: NfY x NfX).\n\n\t \t\t\t NfX = length(CFCcfg['fXcfg']['BPFcfg']['f0'])\n\t \t\t\t NfY = length(CFCcfg['fYcfg']['BPFcfg']['f0'])\n\t\"\"\"\n wxPLV = []\n wyPLV = []\n NfX = np.size(CFCcfg['fXcfg']['BPFcfg']['f0'])\n NfY = np.size(CFCcfg['fYcfg']['BPFcfg']['f0'])\n Ns = np.shape(x)[0]\n nX = CFCcfg['fXcfg']['n']\n nY = CFCcfg['fYcfg']['n']\n PLV = np.zeros((NfY, NfX), dtype=complex)\n for ii in range(NfY):\n PLV[ii, :] = np.sum(np.exp(1.0j * (nX * x - nY * y[:, ii, :])), 0) / Ns\n return PLV, wxPLV, wyPLV\n", "<docstring token>\n<import token>\n<function token>\n<assignment token>\n<function token>\n<function token>\n\n\ndef function_feature_amplitude(signal):\n \"\"\" \n Description:\n Compute the amplitude (signal envelope).\n Amplitude envelope of the signal (AM demodulation).\n\n \"\"\"\n return np.abs(hilbert(signal, axis=0))\n\n\n<function token>\n<function token>\n<function token>\n<assignment token>\n<function token>\n\n\ndef function_PLV(x, y, wx, wy, CFCcfg):\n \"\"\"\n\tDescription: \n\tIn this function we compute the Phase Locking Values.\n\n\tRefs:\n\t[1] /PhaseLockingValue/function_PhaseLockingValue_v1.m\n\t[2] Measuring Phase-Amplitude Coupling Between Neuronal Oscillations (Tort, 2010).pdf, p. 1198\n\t[3] High gamma power is phase-locked to theta oscillations (Canolty, 2006).pdf\n\t[4] Phase Locking from Noisy Data (Tass, 1998).pdf\n Ref: Detection of n,m Phase Locking from Noisy Data (Tass, 1998).pdf \n\n\tInputs:\n\t\t- x: Numeric array (Nsamples x NfX).\n\t\t \t Data for the comodulogram's \"x\" axis (matrix: samples x NfX).\n\t\t- y: Numeric array (Nsamples x NfY x NfX). \n\t\t Data for the comodulogram's \"y\" axis (matrix: samples x NfY x NfX).\n\t\t- wx: Numeric array (Nsamples x NfX). \n\t\t\t Weights related to the comodulogram's \"x\" axis (matrix: samples x NfX).\n\t\t- wy: Numeric array (Nsamples x NfY x NfX).\n\t\t Weights related to the comodulogram's \"y\" axis (matrix: samples x NfY x NfX).\n\t\t- CFCcfc: structure. \n\t\t\t\t Parameters of the comodulogram (structure array)\n\t\t\t\t - 'fXcfg': structure.\n\t\t\t\t \t\t\t Parameters of the Frequency Band in \"x\" axis.\n\t\t\t\t - 'fYcfg': structure. \n\t\t\t\t \t\t\t Parameters of the Frequency Band in \"y\" axis.\n\t\t\t\t \t\t\t-'start': Numeric value. Start frequency [Hz].\n\t\t\t\t \t\t\t-'end': Numeric value. End frequency [Hz].\n\t\t\t\t \t\t\t-'res': Numeric value. Frequency resolution.\n\t\t\t\t \t\t\t\t\t Define the frequency separation between two consecutive BPFs.\n\t\t\t\t \t\t\t-'BPFcfg': Structure. Band-Pass Filter configuration for the comodulogram's axis.\n\t\t\t\t\t\t\t-'lookAt': String.\n\t\t\t\t\t\t\t\t\t Parameter of the signal (phase/amplitude) observed in the range of\n\t\t\t\t\t\t\t\t\t frequency [none] (string).\n\t\t\t\t\t\t\t-'n': Int value. Harmonic number for detection of phase locking.\n\t\t\t\t\t\t\t-'saveBPFsignal': {0,1}. Flag to return the Band-Pass Filtered signals. \n\t\t\t\t\t\t\t\t\t\t\t 0 - Return a NaN.\n 1 - Return the filtered signals.\n -'Nbins': Int value.\n \t\t Number of phase/amplitude bins used to compute the Histograms (p) of the comodulogram. \n -'sameNumberOfCycles': {0,1}. Flag to configure the processing mode for signal x.\n \t\t\t\t\t 0 - Do not truncate the signal \"x\" to obtain the same number \n \t\t\t\t\t \t of cycles.\n 1 - Process the same number of cycles of signal \"x\" for all \n\t\t\t\t\t\t\t\t\t\t\t\t\t \"fX\" frequencies.\n\t\t\t\t - 'CFCmethod': String.\n\t\t\t\t \t\t\t\t Defines the approach to compute the Cross frequency Coupling. E.g: 'plv'.\n\t\t\t\t - 'verbose': Boolean. Display flag. \n\t\t\t\t - 'perMethod': {'trialShuffling', 'sampleShuffling', 'FFTphaseShuffling', 'cutShuffling'}. \n\t\t\t\t \t\t\t\t Method by which the surrogated time series are built.\n\t\t\t\t - 'Nper': Int value. \n\t\t\t\t \t\t Number of permutations. It defines the number of surrogate histograms per\n repetition. It is worth noting that in each repetition, \"Nper\" surrogate \n\t\t\t\t\t\t\thistograms of size \"Nbins x NfY x NfX\" are stored in memory (RAM).\n\t\t\t\t - 'Nrep': Int value.\n\t\t\t\t Number of repetitions. In each repetition a \".mat\" file is written to disk,\n\t containing \"Nper\" surrogate histograms of size \"Nbins x NfY x NfX\". \n \tAs a consequence, the final number of surrogate histograms is \"Nper x Nrep\".\n\t\t\t\t - 'Pvalue': Numeric value. P-value for the statistically significant level.\n\t\t\t\t - 'corrMultComp': {'Bonferroni', 'pixelBased'} Method to correct for multiple comparisons.\n\t\t\t\t - 'fs': Numeric value. Sampling rate [Hz].\n\n\tOutputs:\n\t\t- PLV: Numeric array (NfY x NfX).\n\t\t\t Phase Locking Value.\n\t\t- wxPLV: Numeric array (NfY x NfX).\n\t\t\t\t Weighted Phase Locking Values using the wx weights (matrix: NfY x NfX).\n\t\t- wyPLV: Numeric array (NfY x NfX). \n\t\t\t\t Weighted Phase Locking Values using the wy weights (matrix: NfY x NfX).\n\n\t \t\t\t NfX = length(CFCcfg['fXcfg']['BPFcfg']['f0'])\n\t \t\t\t NfY = length(CFCcfg['fYcfg']['BPFcfg']['f0'])\n\t\"\"\"\n wxPLV = []\n wyPLV = []\n NfX = np.size(CFCcfg['fXcfg']['BPFcfg']['f0'])\n NfY = np.size(CFCcfg['fYcfg']['BPFcfg']['f0'])\n Ns = np.shape(x)[0]\n nX = CFCcfg['fXcfg']['n']\n nY = CFCcfg['fYcfg']['n']\n PLV = np.zeros((NfY, NfX), dtype=complex)\n for ii in range(NfY):\n PLV[ii, :] = np.sum(np.exp(1.0j * (nX * x - nY * y[:, ii, :])), 0) / Ns\n return PLV, wxPLV, wyPLV\n", "<docstring token>\n<import token>\n<function token>\n<assignment token>\n<function token>\n<function token>\n\n\ndef function_feature_amplitude(signal):\n \"\"\" \n Description:\n Compute the amplitude (signal envelope).\n Amplitude envelope of the signal (AM demodulation).\n\n \"\"\"\n return np.abs(hilbert(signal, axis=0))\n\n\n<function token>\n<function token>\n<function token>\n<assignment token>\n<function token>\n<function token>\n", "<docstring token>\n<import token>\n<function token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<assignment token>\n<function token>\n<function token>\n" ]
false
99,098
8c79017e2a3d1ef3fd85df694b34e026a7e73062
print("hi niggles, how are you!!!")
[ "print(\"hi niggles, how are you!!!\")\n", "print('hi niggles, how are you!!!')\n", "<code token>\n" ]
false
99,099
d4c71f582457a5ec03993d95cccd082e51cd04f0
from django.conf.urls import * from django.contrib.auth.forms import AuthenticationForm from django.views.generic import RedirectView urlpatterns = patterns('', (r'^$', RedirectView.as_view(url='/products/')), (r'^products/', include('products.urls')), (r'^services/', include('services.urls')), (r'^accounts/', include('accounts.urls')), (r'^api/', include('api.urls')), )
[ "from django.conf.urls import *\nfrom django.contrib.auth.forms import AuthenticationForm\nfrom django.views.generic import RedirectView\n\nurlpatterns = patterns('',\n (r'^$', RedirectView.as_view(url='/products/')),\n (r'^products/', include('products.urls')),\n (r'^services/', include('services.urls')),\n (r'^accounts/', include('accounts.urls')),\n (r'^api/', include('api.urls')),\n)", "from django.conf.urls import *\nfrom django.contrib.auth.forms import AuthenticationForm\nfrom django.views.generic import RedirectView\nurlpatterns = patterns('', ('^$', RedirectView.as_view(url='/products/')),\n ('^products/', include('products.urls')), ('^services/', include(\n 'services.urls')), ('^accounts/', include('accounts.urls')), ('^api/',\n include('api.urls')))\n", "<import token>\nurlpatterns = patterns('', ('^$', RedirectView.as_view(url='/products/')),\n ('^products/', include('products.urls')), ('^services/', include(\n 'services.urls')), ('^accounts/', include('accounts.urls')), ('^api/',\n include('api.urls')))\n", "<import token>\n<assignment token>\n" ]
false