index
int64
0
100k
blob_id
stringlengths
40
40
code
stringlengths
7
7.27M
steps
listlengths
1
1.25k
error
bool
2 classes
99,300
6f9e1aad4a3275b21c448c663af52ff44b1988d6
"""A3 - TEST functions using pytest.raises""" import pytest def test_expect_zerodivisionerror_raised(): # passes with pytest.raises(ZeroDivisionError): 2 / 0 def test_expect_zerodivisionerror_not_raised(): # fails with pytest.raises(ZeroDivisionError): 2 / 1 def test_expect_zerodivisionerror_raised_other(): # fails with pytest.raises(ZeroDivisionError): 2 / "not a number" def test_expect_typeerror_raised(): # passes with pytest.raises(TypeError): 2 / "not a number"
[ "\"\"\"A3 - TEST functions using pytest.raises\"\"\"\n\nimport pytest\n\n\ndef test_expect_zerodivisionerror_raised(): # passes\n with pytest.raises(ZeroDivisionError):\n 2 / 0\n\n\ndef test_expect_zerodivisionerror_not_raised(): # fails\n with pytest.raises(ZeroDivisionError):\n 2 / 1\n\n\ndef test_expect_zerodivisionerror_raised_other(): # fails\n with pytest.raises(ZeroDivisionError):\n 2 / \"not a number\"\n\n\ndef test_expect_typeerror_raised(): # passes\n with pytest.raises(TypeError):\n 2 / \"not a number\"\n", "<docstring token>\nimport pytest\n\n\ndef test_expect_zerodivisionerror_raised():\n with pytest.raises(ZeroDivisionError):\n 2 / 0\n\n\ndef test_expect_zerodivisionerror_not_raised():\n with pytest.raises(ZeroDivisionError):\n 2 / 1\n\n\ndef test_expect_zerodivisionerror_raised_other():\n with pytest.raises(ZeroDivisionError):\n 2 / 'not a number'\n\n\ndef test_expect_typeerror_raised():\n with pytest.raises(TypeError):\n 2 / 'not a number'\n", "<docstring token>\n<import token>\n\n\ndef test_expect_zerodivisionerror_raised():\n with pytest.raises(ZeroDivisionError):\n 2 / 0\n\n\ndef test_expect_zerodivisionerror_not_raised():\n with pytest.raises(ZeroDivisionError):\n 2 / 1\n\n\ndef test_expect_zerodivisionerror_raised_other():\n with pytest.raises(ZeroDivisionError):\n 2 / 'not a number'\n\n\ndef test_expect_typeerror_raised():\n with pytest.raises(TypeError):\n 2 / 'not a number'\n", "<docstring token>\n<import token>\n\n\ndef test_expect_zerodivisionerror_raised():\n with pytest.raises(ZeroDivisionError):\n 2 / 0\n\n\ndef test_expect_zerodivisionerror_not_raised():\n with pytest.raises(ZeroDivisionError):\n 2 / 1\n\n\n<function token>\n\n\ndef test_expect_typeerror_raised():\n with pytest.raises(TypeError):\n 2 / 'not a number'\n", "<docstring token>\n<import token>\n<function token>\n\n\ndef test_expect_zerodivisionerror_not_raised():\n with pytest.raises(ZeroDivisionError):\n 2 / 1\n\n\n<function token>\n\n\ndef test_expect_typeerror_raised():\n with pytest.raises(TypeError):\n 2 / 'not a number'\n", "<docstring token>\n<import token>\n<function token>\n\n\ndef test_expect_zerodivisionerror_not_raised():\n with pytest.raises(ZeroDivisionError):\n 2 / 1\n\n\n<function token>\n<function token>\n", "<docstring token>\n<import token>\n<function token>\n<function token>\n<function token>\n<function token>\n" ]
false
99,301
ccebac993b84b2edae8ff37e8c7060349f57b29e
import inspect from common.base_page import BasePage from selenium.webdriver.common.by import By class Content(BasePage): def search(self, audit_state: int = None, shelve_state: int = None): """ 搜索 :param audit_state: 2 正常,4 等待手动审核,7 手动审核拒绝 :param shelve_state: 2 上架,3 即将上架,4 已下架 :return: 审核状态 """ self.log_name = 'Content.search' _elem = { '审核状态': 'span[title="审核状态"]', '上架状态': 'span[title="上架状态"]', '状态选择': 'li.select2-results__option', '搜索按钮': '//button[text()="Search"]', '搜索结果审核状态': 'td.field-state', '搜索结果上架状态': 'td.field-upshelve_status', } self.find(locator=_elem['审核状态']).click() self.finds(locator=_elem['状态选择'])[audit_state].click() if inspect.stack()[1][3] != 'test_topic_discuss_search': self.find(locator=_elem['上架状态']).click() self.finds(locator=_elem['状态选择'])[shelve_state].click() self.find(By.XPATH, _elem['搜索按钮']).click() try: res = self.finds(locator=_elem['搜索结果审核状态'])[0].text except TypeError: return None else: return res def refuse_audit(self): """ 拒绝审核第一篇 :return: 审核状态 """ self.log_name = 'Content.refuse_audit' _elem = { '内容选中': 'input[name="_selected_action"]', '操作框': 'select[name="action"]', '拒绝审核': 'option[value="reject_published"]', 'GO': 'button[title = "Run the selected action"]', '搜索结果审核状态': 'td.field-state', } self.finds(locator=_elem['内容选中'])[0].click() self.find(locator=_elem['操作框']).click() self.find(locator=_elem['拒绝审核']).click() self.find(locator=_elem['GO']).click() res = self.finds(locator=_elem['搜索结果审核状态'])[0].text return res def agree_audit(self): """ 通过审核第一篇 :return: 审核状态 """ self.log_name = 'Content.agree_audit' _elem = { '内容选中': 'input[name="_selected_action"]', '操作框': 'select[name="action"]', '通过审核': 'option[value="make_published"]', 'GO': 'button[title = "Run the selected action"]', '搜索结果审核状态': 'td.field-state', } self.finds(locator=_elem['内容选中'])[0].click() self.find(locator=_elem['操作框']).click() self.find(locator=_elem['通过审核']).click() self.find(locator=_elem['GO']).click() res = self.finds(locator=_elem['搜索结果审核状态'])[0].text return res def preview(self, audit_state): """ 预览 :param audit_state: 审核状态 :return: """ self.log_name = 'Content.preview' _elem = { '标题': 'td.field-title', '话题': 'td.field-topic', '审核状态': 'span[title="审核状态"]', '状态选择': 'li.select2-results__option', '搜索按钮': '//button[text()="Search"]', '预览': '//a[text()="预览"]', '头像': 'img._2MPl-uOjTQqEjiB7-jYa9c', '当前内容无法查看': '//h2[text()="当前内容无法查看~"]' } self.find(locator=_elem['审核状态']).click() self.finds(locator=_elem['状态选择'])[audit_state].click() self.find(By.XPATH, _elem['搜索按钮']).click() if inspect.stack()[1][3] == 'test_topic_discuss_preview': exc_title = '呼啦宝贝-' + self.finds(locator=_elem['话题'])[0].text # 获取当前内容title else: exc_title = '呼啦宝贝-' + self.finds(locator=_elem['标题'])[0].text # 获取当前内容title self.finds(by=By.XPATH, locator=_elem['预览'])[0].click() # 打开了新的标签页 self.driver.switch_to.window(self.driver.window_handles[-1]) # 切换到第2个标签页 res_title = self.driver.title # 获取页面title self.driver.switch_to.window(self.driver.window_handles[0]) # 切换到第1个标签页 return exc_title == res_title
[ "import inspect\nfrom common.base_page import BasePage\nfrom selenium.webdriver.common.by import By\n\n\nclass Content(BasePage):\n\n def search(self, audit_state: int = None, shelve_state: int = None):\n \"\"\"\n 搜索\n :param audit_state: 2 正常,4 等待手动审核,7 手动审核拒绝\n :param shelve_state: 2 上架,3 即将上架,4 已下架\n :return: 审核状态\n \"\"\"\n self.log_name = 'Content.search'\n _elem = {\n '审核状态': 'span[title=\"审核状态\"]',\n '上架状态': 'span[title=\"上架状态\"]',\n '状态选择': 'li.select2-results__option',\n '搜索按钮': '//button[text()=\"Search\"]',\n '搜索结果审核状态': 'td.field-state',\n '搜索结果上架状态': 'td.field-upshelve_status',\n }\n self.find(locator=_elem['审核状态']).click()\n self.finds(locator=_elem['状态选择'])[audit_state].click()\n if inspect.stack()[1][3] != 'test_topic_discuss_search':\n self.find(locator=_elem['上架状态']).click()\n self.finds(locator=_elem['状态选择'])[shelve_state].click()\n self.find(By.XPATH, _elem['搜索按钮']).click()\n try:\n res = self.finds(locator=_elem['搜索结果审核状态'])[0].text\n except TypeError:\n return None\n else:\n return res\n\n def refuse_audit(self):\n \"\"\"\n 拒绝审核第一篇\n :return: 审核状态\n \"\"\"\n self.log_name = 'Content.refuse_audit'\n _elem = {\n '内容选中': 'input[name=\"_selected_action\"]',\n '操作框': 'select[name=\"action\"]',\n '拒绝审核': 'option[value=\"reject_published\"]',\n 'GO': 'button[title = \"Run the selected action\"]',\n '搜索结果审核状态': 'td.field-state',\n }\n self.finds(locator=_elem['内容选中'])[0].click()\n self.find(locator=_elem['操作框']).click()\n self.find(locator=_elem['拒绝审核']).click()\n self.find(locator=_elem['GO']).click()\n res = self.finds(locator=_elem['搜索结果审核状态'])[0].text\n return res\n\n def agree_audit(self):\n \"\"\"\n 通过审核第一篇\n :return: 审核状态\n \"\"\"\n self.log_name = 'Content.agree_audit'\n _elem = {\n '内容选中': 'input[name=\"_selected_action\"]',\n '操作框': 'select[name=\"action\"]',\n '通过审核': 'option[value=\"make_published\"]',\n 'GO': 'button[title = \"Run the selected action\"]',\n '搜索结果审核状态': 'td.field-state',\n }\n self.finds(locator=_elem['内容选中'])[0].click()\n self.find(locator=_elem['操作框']).click()\n self.find(locator=_elem['通过审核']).click()\n self.find(locator=_elem['GO']).click()\n res = self.finds(locator=_elem['搜索结果审核状态'])[0].text\n return res\n\n def preview(self, audit_state):\n \"\"\"\n 预览\n :param audit_state: 审核状态\n :return:\n \"\"\"\n self.log_name = 'Content.preview'\n _elem = {\n '标题': 'td.field-title',\n '话题': 'td.field-topic',\n '审核状态': 'span[title=\"审核状态\"]',\n '状态选择': 'li.select2-results__option',\n '搜索按钮': '//button[text()=\"Search\"]',\n '预览': '//a[text()=\"预览\"]',\n '头像': 'img._2MPl-uOjTQqEjiB7-jYa9c',\n '当前内容无法查看': '//h2[text()=\"当前内容无法查看~\"]'\n }\n self.find(locator=_elem['审核状态']).click()\n self.finds(locator=_elem['状态选择'])[audit_state].click()\n self.find(By.XPATH, _elem['搜索按钮']).click()\n if inspect.stack()[1][3] == 'test_topic_discuss_preview':\n exc_title = '呼啦宝贝-' + self.finds(locator=_elem['话题'])[0].text # 获取当前内容title\n else:\n exc_title = '呼啦宝贝-' + self.finds(locator=_elem['标题'])[0].text # 获取当前内容title\n self.finds(by=By.XPATH, locator=_elem['预览'])[0].click() # 打开了新的标签页\n self.driver.switch_to.window(self.driver.window_handles[-1]) # 切换到第2个标签页\n res_title = self.driver.title # 获取页面title\n self.driver.switch_to.window(self.driver.window_handles[0]) # 切换到第1个标签页\n return exc_title == res_title\n", "import inspect\nfrom common.base_page import BasePage\nfrom selenium.webdriver.common.by import By\n\n\nclass Content(BasePage):\n\n def search(self, audit_state: int=None, shelve_state: int=None):\n \"\"\"\n 搜索\n :param audit_state: 2 正常,4 等待手动审核,7 手动审核拒绝\n :param shelve_state: 2 上架,3 即将上架,4 已下架\n :return: 审核状态\n \"\"\"\n self.log_name = 'Content.search'\n _elem = {'审核状态': 'span[title=\"审核状态\"]', '上架状态': 'span[title=\"上架状态\"]',\n '状态选择': 'li.select2-results__option', '搜索按钮':\n '//button[text()=\"Search\"]', '搜索结果审核状态': 'td.field-state',\n '搜索结果上架状态': 'td.field-upshelve_status'}\n self.find(locator=_elem['审核状态']).click()\n self.finds(locator=_elem['状态选择'])[audit_state].click()\n if inspect.stack()[1][3] != 'test_topic_discuss_search':\n self.find(locator=_elem['上架状态']).click()\n self.finds(locator=_elem['状态选择'])[shelve_state].click()\n self.find(By.XPATH, _elem['搜索按钮']).click()\n try:\n res = self.finds(locator=_elem['搜索结果审核状态'])[0].text\n except TypeError:\n return None\n else:\n return res\n\n def refuse_audit(self):\n \"\"\"\n 拒绝审核第一篇\n :return: 审核状态\n \"\"\"\n self.log_name = 'Content.refuse_audit'\n _elem = {'内容选中': 'input[name=\"_selected_action\"]', '操作框':\n 'select[name=\"action\"]', '拒绝审核':\n 'option[value=\"reject_published\"]', 'GO':\n 'button[title = \"Run the selected action\"]', '搜索结果审核状态':\n 'td.field-state'}\n self.finds(locator=_elem['内容选中'])[0].click()\n self.find(locator=_elem['操作框']).click()\n self.find(locator=_elem['拒绝审核']).click()\n self.find(locator=_elem['GO']).click()\n res = self.finds(locator=_elem['搜索结果审核状态'])[0].text\n return res\n\n def agree_audit(self):\n \"\"\"\n 通过审核第一篇\n :return: 审核状态\n \"\"\"\n self.log_name = 'Content.agree_audit'\n _elem = {'内容选中': 'input[name=\"_selected_action\"]', '操作框':\n 'select[name=\"action\"]', '通过审核':\n 'option[value=\"make_published\"]', 'GO':\n 'button[title = \"Run the selected action\"]', '搜索结果审核状态':\n 'td.field-state'}\n self.finds(locator=_elem['内容选中'])[0].click()\n self.find(locator=_elem['操作框']).click()\n self.find(locator=_elem['通过审核']).click()\n self.find(locator=_elem['GO']).click()\n res = self.finds(locator=_elem['搜索结果审核状态'])[0].text\n return res\n\n def preview(self, audit_state):\n \"\"\"\n 预览\n :param audit_state: 审核状态\n :return:\n \"\"\"\n self.log_name = 'Content.preview'\n _elem = {'标题': 'td.field-title', '话题': 'td.field-topic', '审核状态':\n 'span[title=\"审核状态\"]', '状态选择': 'li.select2-results__option',\n '搜索按钮': '//button[text()=\"Search\"]', '预览': '//a[text()=\"预览\"]',\n '头像': 'img._2MPl-uOjTQqEjiB7-jYa9c', '当前内容无法查看':\n '//h2[text()=\"当前内容无法查看~\"]'}\n self.find(locator=_elem['审核状态']).click()\n self.finds(locator=_elem['状态选择'])[audit_state].click()\n self.find(By.XPATH, _elem['搜索按钮']).click()\n if inspect.stack()[1][3] == 'test_topic_discuss_preview':\n exc_title = '呼啦宝贝-' + self.finds(locator=_elem['话题'])[0].text\n else:\n exc_title = '呼啦宝贝-' + self.finds(locator=_elem['标题'])[0].text\n self.finds(by=By.XPATH, locator=_elem['预览'])[0].click()\n self.driver.switch_to.window(self.driver.window_handles[-1])\n res_title = self.driver.title\n self.driver.switch_to.window(self.driver.window_handles[0])\n return exc_title == res_title\n", "<import token>\n\n\nclass Content(BasePage):\n\n def search(self, audit_state: int=None, shelve_state: int=None):\n \"\"\"\n 搜索\n :param audit_state: 2 正常,4 等待手动审核,7 手动审核拒绝\n :param shelve_state: 2 上架,3 即将上架,4 已下架\n :return: 审核状态\n \"\"\"\n self.log_name = 'Content.search'\n _elem = {'审核状态': 'span[title=\"审核状态\"]', '上架状态': 'span[title=\"上架状态\"]',\n '状态选择': 'li.select2-results__option', '搜索按钮':\n '//button[text()=\"Search\"]', '搜索结果审核状态': 'td.field-state',\n '搜索结果上架状态': 'td.field-upshelve_status'}\n self.find(locator=_elem['审核状态']).click()\n self.finds(locator=_elem['状态选择'])[audit_state].click()\n if inspect.stack()[1][3] != 'test_topic_discuss_search':\n self.find(locator=_elem['上架状态']).click()\n self.finds(locator=_elem['状态选择'])[shelve_state].click()\n self.find(By.XPATH, _elem['搜索按钮']).click()\n try:\n res = self.finds(locator=_elem['搜索结果审核状态'])[0].text\n except TypeError:\n return None\n else:\n return res\n\n def refuse_audit(self):\n \"\"\"\n 拒绝审核第一篇\n :return: 审核状态\n \"\"\"\n self.log_name = 'Content.refuse_audit'\n _elem = {'内容选中': 'input[name=\"_selected_action\"]', '操作框':\n 'select[name=\"action\"]', '拒绝审核':\n 'option[value=\"reject_published\"]', 'GO':\n 'button[title = \"Run the selected action\"]', '搜索结果审核状态':\n 'td.field-state'}\n self.finds(locator=_elem['内容选中'])[0].click()\n self.find(locator=_elem['操作框']).click()\n self.find(locator=_elem['拒绝审核']).click()\n self.find(locator=_elem['GO']).click()\n res = self.finds(locator=_elem['搜索结果审核状态'])[0].text\n return res\n\n def agree_audit(self):\n \"\"\"\n 通过审核第一篇\n :return: 审核状态\n \"\"\"\n self.log_name = 'Content.agree_audit'\n _elem = {'内容选中': 'input[name=\"_selected_action\"]', '操作框':\n 'select[name=\"action\"]', '通过审核':\n 'option[value=\"make_published\"]', 'GO':\n 'button[title = \"Run the selected action\"]', '搜索结果审核状态':\n 'td.field-state'}\n self.finds(locator=_elem['内容选中'])[0].click()\n self.find(locator=_elem['操作框']).click()\n self.find(locator=_elem['通过审核']).click()\n self.find(locator=_elem['GO']).click()\n res = self.finds(locator=_elem['搜索结果审核状态'])[0].text\n return res\n\n def preview(self, audit_state):\n \"\"\"\n 预览\n :param audit_state: 审核状态\n :return:\n \"\"\"\n self.log_name = 'Content.preview'\n _elem = {'标题': 'td.field-title', '话题': 'td.field-topic', '审核状态':\n 'span[title=\"审核状态\"]', '状态选择': 'li.select2-results__option',\n '搜索按钮': '//button[text()=\"Search\"]', '预览': '//a[text()=\"预览\"]',\n '头像': 'img._2MPl-uOjTQqEjiB7-jYa9c', '当前内容无法查看':\n '//h2[text()=\"当前内容无法查看~\"]'}\n self.find(locator=_elem['审核状态']).click()\n self.finds(locator=_elem['状态选择'])[audit_state].click()\n self.find(By.XPATH, _elem['搜索按钮']).click()\n if inspect.stack()[1][3] == 'test_topic_discuss_preview':\n exc_title = '呼啦宝贝-' + self.finds(locator=_elem['话题'])[0].text\n else:\n exc_title = '呼啦宝贝-' + self.finds(locator=_elem['标题'])[0].text\n self.finds(by=By.XPATH, locator=_elem['预览'])[0].click()\n self.driver.switch_to.window(self.driver.window_handles[-1])\n res_title = self.driver.title\n self.driver.switch_to.window(self.driver.window_handles[0])\n return exc_title == res_title\n", "<import token>\n\n\nclass Content(BasePage):\n\n def search(self, audit_state: int=None, shelve_state: int=None):\n \"\"\"\n 搜索\n :param audit_state: 2 正常,4 等待手动审核,7 手动审核拒绝\n :param shelve_state: 2 上架,3 即将上架,4 已下架\n :return: 审核状态\n \"\"\"\n self.log_name = 'Content.search'\n _elem = {'审核状态': 'span[title=\"审核状态\"]', '上架状态': 'span[title=\"上架状态\"]',\n '状态选择': 'li.select2-results__option', '搜索按钮':\n '//button[text()=\"Search\"]', '搜索结果审核状态': 'td.field-state',\n '搜索结果上架状态': 'td.field-upshelve_status'}\n self.find(locator=_elem['审核状态']).click()\n self.finds(locator=_elem['状态选择'])[audit_state].click()\n if inspect.stack()[1][3] != 'test_topic_discuss_search':\n self.find(locator=_elem['上架状态']).click()\n self.finds(locator=_elem['状态选择'])[shelve_state].click()\n self.find(By.XPATH, _elem['搜索按钮']).click()\n try:\n res = self.finds(locator=_elem['搜索结果审核状态'])[0].text\n except TypeError:\n return None\n else:\n return res\n <function token>\n\n def agree_audit(self):\n \"\"\"\n 通过审核第一篇\n :return: 审核状态\n \"\"\"\n self.log_name = 'Content.agree_audit'\n _elem = {'内容选中': 'input[name=\"_selected_action\"]', '操作框':\n 'select[name=\"action\"]', '通过审核':\n 'option[value=\"make_published\"]', 'GO':\n 'button[title = \"Run the selected action\"]', '搜索结果审核状态':\n 'td.field-state'}\n self.finds(locator=_elem['内容选中'])[0].click()\n self.find(locator=_elem['操作框']).click()\n self.find(locator=_elem['通过审核']).click()\n self.find(locator=_elem['GO']).click()\n res = self.finds(locator=_elem['搜索结果审核状态'])[0].text\n return res\n\n def preview(self, audit_state):\n \"\"\"\n 预览\n :param audit_state: 审核状态\n :return:\n \"\"\"\n self.log_name = 'Content.preview'\n _elem = {'标题': 'td.field-title', '话题': 'td.field-topic', '审核状态':\n 'span[title=\"审核状态\"]', '状态选择': 'li.select2-results__option',\n '搜索按钮': '//button[text()=\"Search\"]', '预览': '//a[text()=\"预览\"]',\n '头像': 'img._2MPl-uOjTQqEjiB7-jYa9c', '当前内容无法查看':\n '//h2[text()=\"当前内容无法查看~\"]'}\n self.find(locator=_elem['审核状态']).click()\n self.finds(locator=_elem['状态选择'])[audit_state].click()\n self.find(By.XPATH, _elem['搜索按钮']).click()\n if inspect.stack()[1][3] == 'test_topic_discuss_preview':\n exc_title = '呼啦宝贝-' + self.finds(locator=_elem['话题'])[0].text\n else:\n exc_title = '呼啦宝贝-' + self.finds(locator=_elem['标题'])[0].text\n self.finds(by=By.XPATH, locator=_elem['预览'])[0].click()\n self.driver.switch_to.window(self.driver.window_handles[-1])\n res_title = self.driver.title\n self.driver.switch_to.window(self.driver.window_handles[0])\n return exc_title == res_title\n", "<import token>\n\n\nclass Content(BasePage):\n\n def search(self, audit_state: int=None, shelve_state: int=None):\n \"\"\"\n 搜索\n :param audit_state: 2 正常,4 等待手动审核,7 手动审核拒绝\n :param shelve_state: 2 上架,3 即将上架,4 已下架\n :return: 审核状态\n \"\"\"\n self.log_name = 'Content.search'\n _elem = {'审核状态': 'span[title=\"审核状态\"]', '上架状态': 'span[title=\"上架状态\"]',\n '状态选择': 'li.select2-results__option', '搜索按钮':\n '//button[text()=\"Search\"]', '搜索结果审核状态': 'td.field-state',\n '搜索结果上架状态': 'td.field-upshelve_status'}\n self.find(locator=_elem['审核状态']).click()\n self.finds(locator=_elem['状态选择'])[audit_state].click()\n if inspect.stack()[1][3] != 'test_topic_discuss_search':\n self.find(locator=_elem['上架状态']).click()\n self.finds(locator=_elem['状态选择'])[shelve_state].click()\n self.find(By.XPATH, _elem['搜索按钮']).click()\n try:\n res = self.finds(locator=_elem['搜索结果审核状态'])[0].text\n except TypeError:\n return None\n else:\n return res\n <function token>\n\n def agree_audit(self):\n \"\"\"\n 通过审核第一篇\n :return: 审核状态\n \"\"\"\n self.log_name = 'Content.agree_audit'\n _elem = {'内容选中': 'input[name=\"_selected_action\"]', '操作框':\n 'select[name=\"action\"]', '通过审核':\n 'option[value=\"make_published\"]', 'GO':\n 'button[title = \"Run the selected action\"]', '搜索结果审核状态':\n 'td.field-state'}\n self.finds(locator=_elem['内容选中'])[0].click()\n self.find(locator=_elem['操作框']).click()\n self.find(locator=_elem['通过审核']).click()\n self.find(locator=_elem['GO']).click()\n res = self.finds(locator=_elem['搜索结果审核状态'])[0].text\n return res\n <function token>\n", "<import token>\n\n\nclass Content(BasePage):\n\n def search(self, audit_state: int=None, shelve_state: int=None):\n \"\"\"\n 搜索\n :param audit_state: 2 正常,4 等待手动审核,7 手动审核拒绝\n :param shelve_state: 2 上架,3 即将上架,4 已下架\n :return: 审核状态\n \"\"\"\n self.log_name = 'Content.search'\n _elem = {'审核状态': 'span[title=\"审核状态\"]', '上架状态': 'span[title=\"上架状态\"]',\n '状态选择': 'li.select2-results__option', '搜索按钮':\n '//button[text()=\"Search\"]', '搜索结果审核状态': 'td.field-state',\n '搜索结果上架状态': 'td.field-upshelve_status'}\n self.find(locator=_elem['审核状态']).click()\n self.finds(locator=_elem['状态选择'])[audit_state].click()\n if inspect.stack()[1][3] != 'test_topic_discuss_search':\n self.find(locator=_elem['上架状态']).click()\n self.finds(locator=_elem['状态选择'])[shelve_state].click()\n self.find(By.XPATH, _elem['搜索按钮']).click()\n try:\n res = self.finds(locator=_elem['搜索结果审核状态'])[0].text\n except TypeError:\n return None\n else:\n return res\n <function token>\n <function token>\n <function token>\n", "<import token>\n\n\nclass Content(BasePage):\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n<class token>\n" ]
false
99,302
d1d312dc34751afd9fc5c47daeb7344376af6812
""" 实现一个 MyCalendar 类来存放你的日程安排。如果要添加的时间内没有其他安排,则可以存储这个新的日程安排。 MyCalendar 有一个 book(int start, int end)方法。它意味着在 start 到 end 时间内增加一个日程安排,注意,这里的时间是半开区间,即 [start, end), 实数 x 的范围为, start <= x < end。 当两个日程安排有一些时间上的交叉时(例如两个日程安排都在同一时间内),就会产生重复预订。 每次调用 MyCalendar.book方法时,如果可以将日程安排成功添加到日历中而不会导致重复预订,返回 true。否则,返回 false 并且不要将该日程安排添加到日历中。 请按照以下步骤调用 MyCalendar 类: MyCalendar cal = new MyCalendar(); MyCalendar.book(start, end) 示例 1: MyCalendar(); MyCalendar.book(10, 20); // returns true MyCalendar.book(15, 25); // returns false MyCalendar.book(20, 30); // returns true 解释: 第一个日程安排可以添加到日历中. 第二个日程安排不能添加到日历中,因为时间 15 已经被第一个日程安排预定了。 第三个日程安排可以添加到日历中,因为第一个日程安排并不包含时间 20 。 """ # 2021.03.10 处理时间冲突,我是一流的 class MyCalendar: def __init__(self): self.books = [] def book(self, start: int, end: int) -> bool: for i in self.books: if end > i[0] and start < i[1]: return False self.books.append([start, end]) return True # Your MyCalendar object will be instantiated and called as such: # obj = MyCalendar() # param_1 = obj.book(start,end) # 2021.03.10 平衡树 # 反正我是没看懂 class Node: __slots__ = 'start', 'end', 'left', 'right' def __init__(self, start, end): self.start = start self.end = end self.left = self.right = None def insert(self, node): if node.start >= self.end: if not self.right: self.right = node return True return self.right.insert(node) elif node.end <= self.start: if not self.left: self.left = node return True return self.left.insert(node) else: return False class MyCalendar2(object): def __init__(self): self.root = None def book(self, start, end): if self.root is None: self.root = Node(start, end) return True return self.root.insert(Node(start, end))
[ "\"\"\"\n\n实现一个 MyCalendar 类来存放你的日程安排。如果要添加的时间内没有其他安排,则可以存储这个新的日程安排。\n\nMyCalendar 有一个 book(int start, int end)方法。它意味着在 start 到 end 时间内增加一个日程安排,注意,这里的时间是半开区间,即 [start, end), 实数 x 的范围为, start <= x < end。\n\n当两个日程安排有一些时间上的交叉时(例如两个日程安排都在同一时间内),就会产生重复预订。\n\n每次调用 MyCalendar.book方法时,如果可以将日程安排成功添加到日历中而不会导致重复预订,返回 true。否则,返回 false 并且不要将该日程安排添加到日历中。\n\n请按照以下步骤调用 MyCalendar 类: MyCalendar cal = new MyCalendar(); MyCalendar.book(start, end)\n\n示例 1:\n\nMyCalendar();\nMyCalendar.book(10, 20); // returns true\nMyCalendar.book(15, 25); // returns false\nMyCalendar.book(20, 30); // returns true\n解释: \n第一个日程安排可以添加到日历中. 第二个日程安排不能添加到日历中,因为时间 15 已经被第一个日程安排预定了。\n第三个日程安排可以添加到日历中,因为第一个日程安排并不包含时间 20 。\n\"\"\"\n\n# 2021.03.10 处理时间冲突,我是一流的\nclass MyCalendar:\n\n def __init__(self):\n self.books = []\n\n def book(self, start: int, end: int) -> bool:\n for i in self.books:\n if end > i[0] and start < i[1]:\n return False \n self.books.append([start, end])\n return True\n\n# Your MyCalendar object will be instantiated and called as such:\n# obj = MyCalendar()\n# param_1 = obj.book(start,end)\n\n\n# 2021.03.10 平衡树\n# 反正我是没看懂\nclass Node:\n __slots__ = 'start', 'end', 'left', 'right'\n def __init__(self, start, end):\n self.start = start\n self.end = end\n self.left = self.right = None\n\n def insert(self, node):\n if node.start >= self.end:\n if not self.right:\n self.right = node\n return True\n return self.right.insert(node)\n elif node.end <= self.start:\n if not self.left:\n self.left = node\n return True\n return self.left.insert(node)\n else:\n return False\n\nclass MyCalendar2(object):\n def __init__(self):\n self.root = None\n\n def book(self, start, end):\n if self.root is None:\n self.root = Node(start, end)\n return True\n return self.root.insert(Node(start, end))\n", "<docstring token>\n\n\nclass MyCalendar:\n\n def __init__(self):\n self.books = []\n\n def book(self, start: int, end: int) ->bool:\n for i in self.books:\n if end > i[0] and start < i[1]:\n return False\n self.books.append([start, end])\n return True\n\n\nclass Node:\n __slots__ = 'start', 'end', 'left', 'right'\n\n def __init__(self, start, end):\n self.start = start\n self.end = end\n self.left = self.right = None\n\n def insert(self, node):\n if node.start >= self.end:\n if not self.right:\n self.right = node\n return True\n return self.right.insert(node)\n elif node.end <= self.start:\n if not self.left:\n self.left = node\n return True\n return self.left.insert(node)\n else:\n return False\n\n\nclass MyCalendar2(object):\n\n def __init__(self):\n self.root = None\n\n def book(self, start, end):\n if self.root is None:\n self.root = Node(start, end)\n return True\n return self.root.insert(Node(start, end))\n", "<docstring token>\n\n\nclass MyCalendar:\n\n def __init__(self):\n self.books = []\n <function token>\n\n\nclass Node:\n __slots__ = 'start', 'end', 'left', 'right'\n\n def __init__(self, start, end):\n self.start = start\n self.end = end\n self.left = self.right = None\n\n def insert(self, node):\n if node.start >= self.end:\n if not self.right:\n self.right = node\n return True\n return self.right.insert(node)\n elif node.end <= self.start:\n if not self.left:\n self.left = node\n return True\n return self.left.insert(node)\n else:\n return False\n\n\nclass MyCalendar2(object):\n\n def __init__(self):\n self.root = None\n\n def book(self, start, end):\n if self.root is None:\n self.root = Node(start, end)\n return True\n return self.root.insert(Node(start, end))\n", "<docstring token>\n\n\nclass MyCalendar:\n <function token>\n <function token>\n\n\nclass Node:\n __slots__ = 'start', 'end', 'left', 'right'\n\n def __init__(self, start, end):\n self.start = start\n self.end = end\n self.left = self.right = None\n\n def insert(self, node):\n if node.start >= self.end:\n if not self.right:\n self.right = node\n return True\n return self.right.insert(node)\n elif node.end <= self.start:\n if not self.left:\n self.left = node\n return True\n return self.left.insert(node)\n else:\n return False\n\n\nclass MyCalendar2(object):\n\n def __init__(self):\n self.root = None\n\n def book(self, start, end):\n if self.root is None:\n self.root = Node(start, end)\n return True\n return self.root.insert(Node(start, end))\n", "<docstring token>\n<class token>\n\n\nclass Node:\n __slots__ = 'start', 'end', 'left', 'right'\n\n def __init__(self, start, end):\n self.start = start\n self.end = end\n self.left = self.right = None\n\n def insert(self, node):\n if node.start >= self.end:\n if not self.right:\n self.right = node\n return True\n return self.right.insert(node)\n elif node.end <= self.start:\n if not self.left:\n self.left = node\n return True\n return self.left.insert(node)\n else:\n return False\n\n\nclass MyCalendar2(object):\n\n def __init__(self):\n self.root = None\n\n def book(self, start, end):\n if self.root is None:\n self.root = Node(start, end)\n return True\n return self.root.insert(Node(start, end))\n", "<docstring token>\n<class token>\n\n\nclass Node:\n <assignment token>\n\n def __init__(self, start, end):\n self.start = start\n self.end = end\n self.left = self.right = None\n\n def insert(self, node):\n if node.start >= self.end:\n if not self.right:\n self.right = node\n return True\n return self.right.insert(node)\n elif node.end <= self.start:\n if not self.left:\n self.left = node\n return True\n return self.left.insert(node)\n else:\n return False\n\n\nclass MyCalendar2(object):\n\n def __init__(self):\n self.root = None\n\n def book(self, start, end):\n if self.root is None:\n self.root = Node(start, end)\n return True\n return self.root.insert(Node(start, end))\n", "<docstring token>\n<class token>\n\n\nclass Node:\n <assignment token>\n <function token>\n\n def insert(self, node):\n if node.start >= self.end:\n if not self.right:\n self.right = node\n return True\n return self.right.insert(node)\n elif node.end <= self.start:\n if not self.left:\n self.left = node\n return True\n return self.left.insert(node)\n else:\n return False\n\n\nclass MyCalendar2(object):\n\n def __init__(self):\n self.root = None\n\n def book(self, start, end):\n if self.root is None:\n self.root = Node(start, end)\n return True\n return self.root.insert(Node(start, end))\n", "<docstring token>\n<class token>\n\n\nclass Node:\n <assignment token>\n <function token>\n <function token>\n\n\nclass MyCalendar2(object):\n\n def __init__(self):\n self.root = None\n\n def book(self, start, end):\n if self.root is None:\n self.root = Node(start, end)\n return True\n return self.root.insert(Node(start, end))\n", "<docstring token>\n<class token>\n<class token>\n\n\nclass MyCalendar2(object):\n\n def __init__(self):\n self.root = None\n\n def book(self, start, end):\n if self.root is None:\n self.root = Node(start, end)\n return True\n return self.root.insert(Node(start, end))\n", "<docstring token>\n<class token>\n<class token>\n\n\nclass MyCalendar2(object):\n <function token>\n\n def book(self, start, end):\n if self.root is None:\n self.root = Node(start, end)\n return True\n return self.root.insert(Node(start, end))\n", "<docstring token>\n<class token>\n<class token>\n\n\nclass MyCalendar2(object):\n <function token>\n <function token>\n", "<docstring token>\n<class token>\n<class token>\n<class token>\n" ]
false
99,303
e36bb110da59364a82e8a123e3a440ab2a200d40
#!/usr/bin/env python3 # encoding=utf8 import argparse import os from time import time from zipfile import ZipFile, BadZipFile import shutil from mylib.ext.ostk import clipboard as cb from mylib.easy import ez_thread_factory from mylib.__deprecated__ import list_files from queue import Queue ap = argparse.ArgumentParser() ap.add_argument('-s', '--src', nargs='*') ap.add_argument('-d', '--dest-dir') ap.add_argument('-r', '--recursive') args = ap.parse_args() src = args.src dest = args.dest_dir recursive = args.recursive print(f'-> {dest}') q = Queue() def progress(): w = shutil.get_terminal_size()[0] - 1 m = (w - 5) // 4 t0 = time() while True: p = q.get() if p is None: break ps = f'{" " * w}\r{p[:m]} ... {p[-m:]}' t1 = time() if t1 - t0 > 0.2: print(ps, end='\r') t0 = t1 t = ez_thread_factory(daemon=True)(progress) t.run() files_l = list_files(src or cb, recursive=recursive, progress_queue=q) x, y, z = 0, 0, 0 print() for fp in files_l: z += 1 try: zf = ZipFile(fp) except BadZipFile: continue y += 1 for f in zf.namelist(): if f.endswith('.webp'): break else: zf.close() dfp = os.path.join(dest, os.path.split(fp)[-1]) shutil.move(fp, dfp) x += 1 print(f'* {fp}') print(f'| {x} | {y} | {z} |', end='\r')
[ "#!/usr/bin/env python3\n# encoding=utf8\nimport argparse\nimport os\nfrom time import time\nfrom zipfile import ZipFile, BadZipFile\nimport shutil\nfrom mylib.ext.ostk import clipboard as cb\nfrom mylib.easy import ez_thread_factory\nfrom mylib.__deprecated__ import list_files\nfrom queue import Queue\n\nap = argparse.ArgumentParser()\nap.add_argument('-s', '--src', nargs='*')\nap.add_argument('-d', '--dest-dir')\nap.add_argument('-r', '--recursive')\nargs = ap.parse_args()\n\nsrc = args.src\ndest = args.dest_dir\nrecursive = args.recursive\n\nprint(f'-> {dest}')\nq = Queue()\n\n\ndef progress():\n w = shutil.get_terminal_size()[0] - 1\n m = (w - 5) // 4\n t0 = time()\n while True:\n p = q.get()\n if p is None:\n break\n ps = f'{\" \" * w}\\r{p[:m]} ... {p[-m:]}'\n t1 = time()\n if t1 - t0 > 0.2:\n print(ps, end='\\r')\n t0 = t1\n\n\nt = ez_thread_factory(daemon=True)(progress)\nt.run()\nfiles_l = list_files(src or cb, recursive=recursive, progress_queue=q)\nx, y, z = 0, 0, 0\nprint()\nfor fp in files_l:\n z += 1\n try:\n zf = ZipFile(fp)\n except BadZipFile:\n continue\n y += 1\n for f in zf.namelist():\n if f.endswith('.webp'):\n break\n else:\n zf.close()\n dfp = os.path.join(dest, os.path.split(fp)[-1])\n shutil.move(fp, dfp)\n x += 1\n print(f'* {fp}')\n print(f'| {x} | {y} | {z} |', end='\\r')\n", "import argparse\nimport os\nfrom time import time\nfrom zipfile import ZipFile, BadZipFile\nimport shutil\nfrom mylib.ext.ostk import clipboard as cb\nfrom mylib.easy import ez_thread_factory\nfrom mylib.__deprecated__ import list_files\nfrom queue import Queue\nap = argparse.ArgumentParser()\nap.add_argument('-s', '--src', nargs='*')\nap.add_argument('-d', '--dest-dir')\nap.add_argument('-r', '--recursive')\nargs = ap.parse_args()\nsrc = args.src\ndest = args.dest_dir\nrecursive = args.recursive\nprint(f'-> {dest}')\nq = Queue()\n\n\ndef progress():\n w = shutil.get_terminal_size()[0] - 1\n m = (w - 5) // 4\n t0 = time()\n while True:\n p = q.get()\n if p is None:\n break\n ps = f\"{' ' * w}\\r{p[:m]} ... {p[-m:]}\"\n t1 = time()\n if t1 - t0 > 0.2:\n print(ps, end='\\r')\n t0 = t1\n\n\nt = ez_thread_factory(daemon=True)(progress)\nt.run()\nfiles_l = list_files(src or cb, recursive=recursive, progress_queue=q)\nx, y, z = 0, 0, 0\nprint()\nfor fp in files_l:\n z += 1\n try:\n zf = ZipFile(fp)\n except BadZipFile:\n continue\n y += 1\n for f in zf.namelist():\n if f.endswith('.webp'):\n break\n else:\n zf.close()\n dfp = os.path.join(dest, os.path.split(fp)[-1])\n shutil.move(fp, dfp)\n x += 1\n print(f'* {fp}')\n print(f'| {x} | {y} | {z} |', end='\\r')\n", "<import token>\nap = argparse.ArgumentParser()\nap.add_argument('-s', '--src', nargs='*')\nap.add_argument('-d', '--dest-dir')\nap.add_argument('-r', '--recursive')\nargs = ap.parse_args()\nsrc = args.src\ndest = args.dest_dir\nrecursive = args.recursive\nprint(f'-> {dest}')\nq = Queue()\n\n\ndef progress():\n w = shutil.get_terminal_size()[0] - 1\n m = (w - 5) // 4\n t0 = time()\n while True:\n p = q.get()\n if p is None:\n break\n ps = f\"{' ' * w}\\r{p[:m]} ... {p[-m:]}\"\n t1 = time()\n if t1 - t0 > 0.2:\n print(ps, end='\\r')\n t0 = t1\n\n\nt = ez_thread_factory(daemon=True)(progress)\nt.run()\nfiles_l = list_files(src or cb, recursive=recursive, progress_queue=q)\nx, y, z = 0, 0, 0\nprint()\nfor fp in files_l:\n z += 1\n try:\n zf = ZipFile(fp)\n except BadZipFile:\n continue\n y += 1\n for f in zf.namelist():\n if f.endswith('.webp'):\n break\n else:\n zf.close()\n dfp = os.path.join(dest, os.path.split(fp)[-1])\n shutil.move(fp, dfp)\n x += 1\n print(f'* {fp}')\n print(f'| {x} | {y} | {z} |', end='\\r')\n", "<import token>\n<assignment token>\nap.add_argument('-s', '--src', nargs='*')\nap.add_argument('-d', '--dest-dir')\nap.add_argument('-r', '--recursive')\n<assignment token>\nprint(f'-> {dest}')\n<assignment token>\n\n\ndef progress():\n w = shutil.get_terminal_size()[0] - 1\n m = (w - 5) // 4\n t0 = time()\n while True:\n p = q.get()\n if p is None:\n break\n ps = f\"{' ' * w}\\r{p[:m]} ... {p[-m:]}\"\n t1 = time()\n if t1 - t0 > 0.2:\n print(ps, end='\\r')\n t0 = t1\n\n\n<assignment token>\nt.run()\n<assignment token>\nprint()\nfor fp in files_l:\n z += 1\n try:\n zf = ZipFile(fp)\n except BadZipFile:\n continue\n y += 1\n for f in zf.namelist():\n if f.endswith('.webp'):\n break\n else:\n zf.close()\n dfp = os.path.join(dest, os.path.split(fp)[-1])\n shutil.move(fp, dfp)\n x += 1\n print(f'* {fp}')\n print(f'| {x} | {y} | {z} |', end='\\r')\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n\n\ndef progress():\n w = shutil.get_terminal_size()[0] - 1\n m = (w - 5) // 4\n t0 = time()\n while True:\n p = q.get()\n if p is None:\n break\n ps = f\"{' ' * w}\\r{p[:m]} ... {p[-m:]}\"\n t1 = time()\n if t1 - t0 > 0.2:\n print(ps, end='\\r')\n t0 = t1\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n" ]
false
99,304
180cb9ef6f552bd477a548217f8acf539a92d4ca
""" Provides serialization for API responses. See `DRF serializer documentation <http://www.django-rest-framework.org/api-guide/serializers/>`_ Used by the View classes api/views.py to serialize API responses as JSON or HTML. See DEFAULT_RENDERER_CLASSES setting in core.settings.contrib for the enabled renderers. """ # -*- coding: utf-8 -*- import cPickle import json import logging from rest_framework_gis import serializers as geo_serializers from django.contrib.gis.geos import GEOSGeometry from django.utils import timezone from django.utils.translation import ugettext as _ from rest_framework import serializers import validators from jobs.models import ( ExportConfig, ExportFormat, Job, Region, RegionMask, Tag ) from tasks.models import ( ExportRun, ExportTask, ExportTaskException, ExportTaskResult ) try: from collections import OrderedDict # python 2.6 except ImportError: from ordereddict import OrderedDict # Get an instance of a logger logger = logging.getLogger(__name__) class TagSerializer(serializers.ModelSerializer): """Serialize the Tag model.""" class Meta: model = Tag fields = ('key', 'value', 'data_model', 'geom_types') class SimpleExportConfigSerializer(serializers.Serializer): """Return a sub-set of ExportConfig model attributes.""" uid = serializers.UUIDField(read_only=True) name = serializers.CharField() config_type = serializers.CharField() filename = serializers.CharField() published = serializers.BooleanField() created = serializers.SerializerMethodField() url = serializers.HyperlinkedIdentityField( view_name='api:configs-detail', lookup_field='uid' ) def get_created(self, obj): return obj.created_at class ExportConfigSerializer(serializers.Serializer): """Return the full set of ExportConfig model attributes.""" uid = serializers.UUIDField(read_only=True) url = serializers.HyperlinkedIdentityField( view_name='api:configs-detail', lookup_field='uid' ) name = serializers.CharField(max_length=255) config_type = serializers.ChoiceField(['PRESET', 'TRANSLATION', 'TRANSFORM']) filename = serializers.CharField(max_length=255, read_only=True, default='') size = serializers.SerializerMethodField() content_type = serializers.CharField(max_length=50, read_only=True) upload = serializers.FileField(allow_empty_file=False, max_length=100) published = serializers.BooleanField() created = serializers.SerializerMethodField() owner = serializers.SerializerMethodField(read_only=True) user = serializers.HiddenField( default=serializers.CurrentUserDefault() ) def create(self, validated_data): """Create an ExportConfig instance.""" return ExportConfig.objects.create(**validated_data) def update(self, instance, validated_data): """Update an ExportConfig instance.""" instance.config_type = validated_data.get('config_type', instance.config_type) instance.upload.delete(False) # delete the old file.. instance.upload = validated_data.get('upload', instance.upload) instance.name = validated_data.get('name', instance.name) instance.filename = validated_data.get('filename', instance.filename) instance.content_type = validated_data.get('content_type', instance.content_type) instance.updated_at = timezone.now() instance.save() return instance def validate(self, data): """Validate the form data.""" logger.debug(data) upload = data['upload'] config_type = data['config_type'] content_type = validators.validate_content_type(upload, config_type) if config_type == 'PRESET': validators.validate_preset(upload) data['content_type'] = content_type fname = data['upload'].name data['filename'] = fname.replace(' ', '_').lower() return data def get_size(self, obj): size = obj.upload.size return size def get_created(self, obj): return obj.created_at def get_owner(self, obj): return obj.user.username class ExportTaskResultSerializer(serializers.ModelSerializer): """Serialize ExportTaskResult models.""" url = serializers.SerializerMethodField() size = serializers.SerializerMethodField() class Meta: model = ExportTaskResult fields = ('filename', 'size', 'url',) def get_url(self, obj): request = self.context['request'] return request.build_absolute_uri(obj.download_url) def get_size(self, obj): return "{0:.3f} MB".format(obj.size) class ExportTaskExceptionSerializer(serializers.ModelSerializer): """Serialize ExportTaskExceptions.""" exception = serializers.SerializerMethodField() class Meta: model = ExportTaskException fields = ('exception',) def get_exception(self, obj): exc_info = cPickle.loads(str(obj.exception)).exc_info return str(exc_info[1]) class ExportTaskSerializer(serializers.ModelSerializer): """Serialize ExportTasks models.""" result = serializers.SerializerMethodField() errors = serializers.SerializerMethodField() started_at = serializers.SerializerMethodField() finished_at = serializers.SerializerMethodField() duration = serializers.SerializerMethodField() url = serializers.HyperlinkedIdentityField( view_name='api:tasks-detail', lookup_field='uid' ) class Meta: model = ExportTask fields = ('uid', 'url', 'name', 'status', 'started_at', 'finished_at', 'duration', 'result', 'errors',) def get_result(self, obj): """Serialize the ExportTaskResult for this ExportTask.""" try: result = obj.result serializer = ExportTaskResultSerializer(result, many=False, context=self.context) return serializer.data except ExportTaskResult.DoesNotExist as e: return None # no result yet def get_errors(self, obj): """Serialize the ExportTaskExceptions for this ExportTask.""" try: errors = obj.exceptions serializer = ExportTaskExceptionSerializer(errors, many=True, context=self.context) return serializer.data except ExportTaskException.DoesNotExist as e: return None def get_started_at(self, obj): if (not obj.started_at): return None # not started yet else: return obj.started_at def get_finished_at(self, obj): if (not obj.finished_at): return None # not finished yet else: return obj.finished_at def get_duration(self, obj): """Get the duration for this ExportTask.""" started = obj.started_at finished = obj.finished_at if started and finished: return str(finished - started) else: return None # can't compute yet class SimpleJobSerializer(serializers.Serializer): """Return a sub-set of Job model attributes.""" uid = serializers.SerializerMethodField() name = serializers.CharField() description = serializers.CharField() url = serializers.HyperlinkedIdentityField( view_name='api:jobs-detail', lookup_field='uid' ) extent = serializers.SerializerMethodField() def get_uid(self, obj): return obj.uid def get_extent(self, obj): """Return the Job's extent as a GeoJSON Feature.""" uid = str(obj.uid) name = obj.name geom = obj.the_geom geometry = json.loads(GEOSGeometry(geom).geojson) feature = OrderedDict() feature['type'] = 'Feature' feature['properties'] = {'uid': uid, 'name': name} feature['geometry'] = geometry return feature class ExportRunSerializer(serializers.ModelSerializer): """Serialize ExportRun.""" url = serializers.HyperlinkedIdentityField( view_name='api:runs-detail', lookup_field='uid' ) job = SimpleJobSerializer() # nest the job details tasks = ExportTaskSerializer(many=True) finished_at = serializers.SerializerMethodField() duration = serializers.SerializerMethodField() user = serializers.SerializerMethodField() class Meta: model = ExportRun fields = ('uid', 'url', 'started_at', 'finished_at', 'duration', 'user', 'status', 'job', 'tasks') def get_finished_at(self, obj): if (not obj.finished_at): return {} else: return obj.finished_at def get_duration(self, obj): """Return the duration of the the run.""" started = obj.started_at finished = obj.finished_at if started and finished: return str(finished - started) else: return None def get_user(self, obj): return obj.user.username class UserSerializer(serializers.Serializer): id = serializers.IntegerField() class RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer): """Return a GeoJSON representation of the region mask.""" class Meta: model = RegionMask geo_field = 'the_geom' fields = ('the_geom',) class RegionSerializer(geo_serializers.GeoFeatureModelSerializer): """Serializer returning GeoJSON representation of Regions.""" url = serializers.HyperlinkedIdentityField( view_name='api:regions-detail', lookup_field='uid' ) id = serializers.SerializerMethodField() class Meta: model = Region geo_field = 'the_geom' fields = ('id', 'uid', 'name', 'description', 'url', 'the_geom') def get_id(self, obj): return obj.uid class SimpleRegionSerializer(serializers.ModelSerializer): """Serializer for returning Region model data without geometry.""" url = serializers.HyperlinkedIdentityField( view_name='api:regions-detail', lookup_field='uid' ) class Meta: model = Region fields = ('uid', 'name', 'description', 'url') class ExportFormatSerializer(serializers.ModelSerializer): """Return a representation of the ExportFormat model.""" url = serializers.HyperlinkedIdentityField( view_name='api:formats-detail', lookup_field='slug' ) class Meta: model = ExportFormat fields = ('uid', 'url', 'slug', 'name', 'description') class ListJobSerializer(serializers.Serializer): """ Return a sub-set of Job model attributes. Provides a stripped down set of export attributes. Removes the selected Tags from the Job representation. Used to display the list of exports in the export browser where tag info is not required. """ uid = serializers.SerializerMethodField() url = serializers.HyperlinkedIdentityField( view_name='api:jobs-detail', lookup_field='uid' ) name = serializers.CharField() description = serializers.CharField() event = serializers.CharField() created_at = serializers.DateTimeField(read_only=True) owner = serializers.SerializerMethodField(read_only=True) extent = serializers.SerializerMethodField() region = SimpleRegionSerializer(read_only=True) published = serializers.BooleanField() def get_uid(self, obj): return obj.uid def get_extent(self, obj): """Return the export extent as a GeoJSON Feature.""" uid = str(obj.uid) name = obj.name geom = obj.the_geom geometry = json.loads(GEOSGeometry(geom).geojson) feature = OrderedDict() feature['type'] = 'Feature' feature['properties'] = {'uid': uid, 'name': name} feature['geometry'] = geometry return feature def get_owner(self, obj): return obj.user.username class JobSerializer(serializers.Serializer): """ Return a full representation of an export Job. This is the core representation of the API. """ """ List of the available Export Formats. This list should be updated to add support for additional export formats. """ EXPORT_FORMAT_CHOICES = ( ('shp', 'Shapefile Format'), ('obf', 'OBF Format'), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite', 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format') ) formats = serializers.MultipleChoiceField( choices=EXPORT_FORMAT_CHOICES, allow_blank=False, write_only=True, error_messages={ 'invalid_choice': _("invalid export format."), 'not_a_list': _('Expected a list of items but got type "{input_type}".') } ) uid = serializers.UUIDField(read_only=True) url = serializers.HyperlinkedIdentityField( view_name='api:jobs-detail', lookup_field='uid' ) name = serializers.CharField( max_length=100, ) description = serializers.CharField( max_length=255, ) event = serializers.CharField( max_length=100, allow_blank=True, required=False ) created_at = serializers.DateTimeField(read_only=True) owner = serializers.SerializerMethodField(read_only=True) exports = serializers.SerializerMethodField() configurations = serializers.SerializerMethodField() published = serializers.BooleanField(required=False) feature_save = serializers.BooleanField(required=False) feature_pub = serializers.BooleanField(required=False) xmin = serializers.FloatField( max_value=180, min_value=-180, write_only=True, error_messages={ 'required': _('xmin is required.'), 'invalid': _('invalid xmin value.'), } ) ymin = serializers.FloatField( max_value=90, min_value=-90, write_only=True, error_messages={ 'required': _('ymin is required.'), 'invalid': _('invalid ymin value.'), } ) xmax = serializers.FloatField( max_value=180, min_value=-180, write_only=True, error_messages={ 'required': _('xmax is required.'), 'invalid': _('invalid xmax value.'), } ) ymax = serializers.FloatField( max_value=90, min_value=-90, write_only=True, error_messages={ 'required': _('ymax is required.'), 'invalid': _('invalid ymax value.'), } ) region = SimpleRegionSerializer(read_only=True) extent = serializers.SerializerMethodField(read_only=True) user = serializers.HiddenField( default=serializers.CurrentUserDefault() ) tags = serializers.SerializerMethodField() def create(self, validated_data): """Creates an export Job.""" return Job.objects.create(**validated_data) def update(self, instance, validated_data): """Not implemented as Jobs are cloned rather than updated.""" pass def validate(self, data): """ Validates the data submitted during Job creation. See api/validators.py for validation code. """ user = data['user'] validators.validate_formats(data) extents = validators.validate_bbox_params(data) the_geom = validators.validate_bbox(extents, user=user) data['the_geom'] = the_geom regions = Region.objects.filter(the_geom__intersects=the_geom).intersection(the_geom, field_name='the_geom') # sort the returned regions by area of intersection, largest first. sorted_regions = sorted(regions.all(), key=lambda a: a.intersection.area, reverse=True) data['region'] = validators.validate_region(sorted_regions) # remove unwanted fields, these are pulled from the request in the view if the serializer is valid data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'), data.pop('formats') return data def get_extent(self, obj): """Return the export extent as a GeoJSON Feature.""" uid = str(obj.uid) name = obj.name geom = obj.the_geom geometry = json.loads(GEOSGeometry(geom).geojson) feature = OrderedDict() feature['type'] = 'Feature' feature['properties'] = {'uid': uid, 'name': name} feature['geometry'] = geometry return feature def get_exports(self, obj): """Return the export formats selected for this export.""" formats = [format for format in obj.formats.all()] serializer = ExportFormatSerializer(formats, many=True, context={'request': self.context['request']}) return serializer.data def get_configurations(self, obj): """Return the configurations selected for this export.""" configs = obj.configs.all() serializer = SimpleExportConfigSerializer(configs, many=True, context={'request': self.context['request']}) return serializer.data def get_tags(self, obj): """Return the Tags selected for this export.""" tags = obj.tags.all() serializer = TagSerializer(tags, many=True) return serializer.data def get_owner(self, obj): """Return the username for the owner of this export.""" return obj.user.username
[ "\"\"\"\nProvides serialization for API responses.\n\nSee `DRF serializer documentation <http://www.django-rest-framework.org/api-guide/serializers/>`_\nUsed by the View classes api/views.py to serialize API responses as JSON or HTML.\nSee DEFAULT_RENDERER_CLASSES setting in core.settings.contrib for the enabled renderers.\n\"\"\"\n# -*- coding: utf-8 -*-\nimport cPickle\nimport json\nimport logging\n\nfrom rest_framework_gis import serializers as geo_serializers\n\nfrom django.contrib.gis.geos import GEOSGeometry\nfrom django.utils import timezone\nfrom django.utils.translation import ugettext as _\n\nfrom rest_framework import serializers\n\nimport validators\nfrom jobs.models import (\n ExportConfig, ExportFormat, Job, Region, RegionMask, Tag\n)\nfrom tasks.models import (\n ExportRun, ExportTask, ExportTaskException, ExportTaskResult\n)\n\ntry:\n from collections import OrderedDict\n# python 2.6\nexcept ImportError:\n from ordereddict import OrderedDict\n\n# Get an instance of a logger\nlogger = logging.getLogger(__name__)\n\n\nclass TagSerializer(serializers.ModelSerializer):\n \"\"\"Serialize the Tag model.\"\"\"\n class Meta:\n model = Tag\n fields = ('key', 'value', 'data_model', 'geom_types')\n\n\nclass SimpleExportConfigSerializer(serializers.Serializer):\n \"\"\"Return a sub-set of ExportConfig model attributes.\"\"\"\n uid = serializers.UUIDField(read_only=True)\n name = serializers.CharField()\n config_type = serializers.CharField()\n filename = serializers.CharField()\n published = serializers.BooleanField()\n created = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(\n view_name='api:configs-detail',\n lookup_field='uid'\n )\n\n def get_created(self, obj):\n return obj.created_at\n\n\nclass ExportConfigSerializer(serializers.Serializer):\n \"\"\"Return the full set of ExportConfig model attributes.\"\"\"\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(\n view_name='api:configs-detail',\n lookup_field='uid'\n )\n name = serializers.CharField(max_length=255)\n config_type = serializers.ChoiceField(['PRESET', 'TRANSLATION', 'TRANSFORM'])\n filename = serializers.CharField(max_length=255, read_only=True, default='')\n size = serializers.SerializerMethodField()\n content_type = serializers.CharField(max_length=50, read_only=True)\n upload = serializers.FileField(allow_empty_file=False, max_length=100)\n published = serializers.BooleanField()\n created = serializers.SerializerMethodField()\n owner = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(\n default=serializers.CurrentUserDefault()\n )\n\n def create(self, validated_data):\n \"\"\"Create an ExportConfig instance.\"\"\"\n return ExportConfig.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Update an ExportConfig instance.\"\"\"\n instance.config_type = validated_data.get('config_type', instance.config_type)\n instance.upload.delete(False) # delete the old file..\n instance.upload = validated_data.get('upload', instance.upload)\n instance.name = validated_data.get('name', instance.name)\n instance.filename = validated_data.get('filename', instance.filename)\n instance.content_type = validated_data.get('content_type', instance.content_type)\n instance.updated_at = timezone.now()\n instance.save()\n return instance\n\n def validate(self, data):\n \"\"\"Validate the form data.\"\"\"\n logger.debug(data)\n upload = data['upload']\n config_type = data['config_type']\n content_type = validators.validate_content_type(upload, config_type)\n if config_type == 'PRESET':\n validators.validate_preset(upload)\n data['content_type'] = content_type\n fname = data['upload'].name\n data['filename'] = fname.replace(' ', '_').lower()\n return data\n\n def get_size(self, obj):\n size = obj.upload.size\n return size\n\n def get_created(self, obj):\n return obj.created_at\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass ExportTaskResultSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTaskResult models.\"\"\"\n url = serializers.SerializerMethodField()\n size = serializers.SerializerMethodField()\n\n class Meta:\n model = ExportTaskResult\n fields = ('filename', 'size', 'url',)\n\n def get_url(self, obj):\n request = self.context['request']\n return request.build_absolute_uri(obj.download_url)\n\n def get_size(self, obj):\n return \"{0:.3f} MB\".format(obj.size)\n\n\nclass ExportTaskExceptionSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTaskExceptions.\"\"\"\n exception = serializers.SerializerMethodField()\n\n class Meta:\n model = ExportTaskException\n fields = ('exception',)\n\n def get_exception(self, obj):\n exc_info = cPickle.loads(str(obj.exception)).exc_info\n return str(exc_info[1])\n\n\nclass ExportTaskSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTasks models.\"\"\"\n result = serializers.SerializerMethodField()\n errors = serializers.SerializerMethodField()\n started_at = serializers.SerializerMethodField()\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(\n view_name='api:tasks-detail',\n lookup_field='uid'\n )\n\n class Meta:\n model = ExportTask\n fields = ('uid', 'url', 'name', 'status', 'started_at', 'finished_at', 'duration', 'result', 'errors',)\n\n def get_result(self, obj):\n \"\"\"Serialize the ExportTaskResult for this ExportTask.\"\"\"\n try:\n result = obj.result\n serializer = ExportTaskResultSerializer(result, many=False, context=self.context)\n return serializer.data\n except ExportTaskResult.DoesNotExist as e:\n return None # no result yet\n\n def get_errors(self, obj):\n \"\"\"Serialize the ExportTaskExceptions for this ExportTask.\"\"\"\n try:\n errors = obj.exceptions\n serializer = ExportTaskExceptionSerializer(errors, many=True, context=self.context)\n return serializer.data\n except ExportTaskException.DoesNotExist as e:\n return None\n\n def get_started_at(self, obj):\n if (not obj.started_at):\n return None # not started yet\n else:\n return obj.started_at\n\n def get_finished_at(self, obj):\n if (not obj.finished_at):\n return None # not finished yet\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Get the duration for this ExportTask.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None # can't compute yet\n\n\nclass SimpleJobSerializer(serializers.Serializer):\n \"\"\"Return a sub-set of Job model attributes.\"\"\"\n uid = serializers.SerializerMethodField()\n name = serializers.CharField()\n description = serializers.CharField()\n url = serializers.HyperlinkedIdentityField(\n view_name='api:jobs-detail',\n lookup_field='uid'\n )\n extent = serializers.SerializerMethodField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the Job's extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportRun.\"\"\"\n url = serializers.HyperlinkedIdentityField(\n view_name='api:runs-detail',\n lookup_field='uid'\n )\n job = SimpleJobSerializer() # nest the job details\n tasks = ExportTaskSerializer(many=True)\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n user = serializers.SerializerMethodField()\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration', 'user', 'status', 'job', 'tasks')\n\n def get_finished_at(self, obj):\n if (not obj.finished_at):\n return {}\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Return the duration of the the run.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n def get_user(self, obj):\n return obj.user.username\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = ('the_geom',)\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(\n view_name='api:regions-detail',\n lookup_field='uid'\n )\n id = serializers.SerializerMethodField()\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = ('id', 'uid', 'name', 'description', 'url', 'the_geom')\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(\n view_name='api:regions-detail',\n lookup_field='uid'\n )\n\n class Meta:\n model = Region\n fields = ('uid', 'name', 'description', 'url')\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(\n view_name='api:formats-detail',\n lookup_field='slug'\n )\n\n class Meta:\n model = ExportFormat\n fields = ('uid', 'url', 'slug', 'name', 'description')\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(\n view_name='api:jobs-detail',\n lookup_field='uid'\n )\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = (\n ('shp', 'Shapefile Format'),\n ('obf', 'OBF Format'),\n ('kml', 'KML Format'),\n ('garmin', 'Garmin Format'),\n ('sqlite', 'SQLITE Format'),\n ('thematic', 'Thematic Shapefile Format')\n )\n\n formats = serializers.MultipleChoiceField(\n choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False,\n write_only=True,\n error_messages={\n 'invalid_choice': _(\"invalid export format.\"),\n 'not_a_list': _('Expected a list of items but got type \"{input_type}\".')\n }\n )\n\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(\n view_name='api:jobs-detail',\n lookup_field='uid'\n )\n name = serializers.CharField(\n max_length=100,\n )\n description = serializers.CharField(\n max_length=255,\n )\n event = serializers.CharField(\n max_length=100,\n allow_blank=True,\n required=False\n )\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(\n max_value=180, min_value=-180, write_only=True,\n error_messages={\n 'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.'),\n }\n )\n ymin = serializers.FloatField(\n max_value=90, min_value=-90, write_only=True,\n error_messages={\n 'required': _('ymin is required.'),\n 'invalid': _('invalid ymin value.'),\n }\n )\n xmax = serializers.FloatField(\n max_value=180, min_value=-180, write_only=True,\n error_messages={\n 'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.'),\n }\n )\n ymax = serializers.FloatField(\n max_value=90, min_value=-90, write_only=True,\n error_messages={\n 'required': _('ymax is required.'),\n 'invalid': _('invalid ymax value.'),\n }\n )\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(\n default=serializers.CurrentUserDefault()\n )\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom).intersection(the_geom, field_name='the_geom')\n # sort the returned regions by area of intersection, largest first.\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection.area, reverse=True) \n data['region'] = validators.validate_region(sorted_regions)\n # remove unwanted fields, these are pulled from the request in the view if the serializer is valid\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\nimport cPickle\nimport json\nimport logging\nfrom rest_framework_gis import serializers as geo_serializers\nfrom django.contrib.gis.geos import GEOSGeometry\nfrom django.utils import timezone\nfrom django.utils.translation import ugettext as _\nfrom rest_framework import serializers\nimport validators\nfrom jobs.models import ExportConfig, ExportFormat, Job, Region, RegionMask, Tag\nfrom tasks.models import ExportRun, ExportTask, ExportTaskException, ExportTaskResult\ntry:\n from collections import OrderedDict\nexcept ImportError:\n from ordereddict import OrderedDict\nlogger = logging.getLogger(__name__)\n\n\nclass TagSerializer(serializers.ModelSerializer):\n \"\"\"Serialize the Tag model.\"\"\"\n\n\n class Meta:\n model = Tag\n fields = 'key', 'value', 'data_model', 'geom_types'\n\n\nclass SimpleExportConfigSerializer(serializers.Serializer):\n \"\"\"Return a sub-set of ExportConfig model attributes.\"\"\"\n uid = serializers.UUIDField(read_only=True)\n name = serializers.CharField()\n config_type = serializers.CharField()\n filename = serializers.CharField()\n published = serializers.BooleanField()\n created = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:configs-detail', lookup_field='uid')\n\n def get_created(self, obj):\n return obj.created_at\n\n\nclass ExportConfigSerializer(serializers.Serializer):\n \"\"\"Return the full set of ExportConfig model attributes.\"\"\"\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:configs-detail', lookup_field='uid')\n name = serializers.CharField(max_length=255)\n config_type = serializers.ChoiceField(['PRESET', 'TRANSLATION',\n 'TRANSFORM'])\n filename = serializers.CharField(max_length=255, read_only=True, default=''\n )\n size = serializers.SerializerMethodField()\n content_type = serializers.CharField(max_length=50, read_only=True)\n upload = serializers.FileField(allow_empty_file=False, max_length=100)\n published = serializers.BooleanField()\n created = serializers.SerializerMethodField()\n owner = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n\n def create(self, validated_data):\n \"\"\"Create an ExportConfig instance.\"\"\"\n return ExportConfig.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Update an ExportConfig instance.\"\"\"\n instance.config_type = validated_data.get('config_type', instance.\n config_type)\n instance.upload.delete(False)\n instance.upload = validated_data.get('upload', instance.upload)\n instance.name = validated_data.get('name', instance.name)\n instance.filename = validated_data.get('filename', instance.filename)\n instance.content_type = validated_data.get('content_type', instance\n .content_type)\n instance.updated_at = timezone.now()\n instance.save()\n return instance\n\n def validate(self, data):\n \"\"\"Validate the form data.\"\"\"\n logger.debug(data)\n upload = data['upload']\n config_type = data['config_type']\n content_type = validators.validate_content_type(upload, config_type)\n if config_type == 'PRESET':\n validators.validate_preset(upload)\n data['content_type'] = content_type\n fname = data['upload'].name\n data['filename'] = fname.replace(' ', '_').lower()\n return data\n\n def get_size(self, obj):\n size = obj.upload.size\n return size\n\n def get_created(self, obj):\n return obj.created_at\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass ExportTaskResultSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTaskResult models.\"\"\"\n url = serializers.SerializerMethodField()\n size = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportTaskResult\n fields = 'filename', 'size', 'url'\n\n def get_url(self, obj):\n request = self.context['request']\n return request.build_absolute_uri(obj.download_url)\n\n def get_size(self, obj):\n return '{0:.3f} MB'.format(obj.size)\n\n\nclass ExportTaskExceptionSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTaskExceptions.\"\"\"\n exception = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportTaskException\n fields = 'exception',\n\n def get_exception(self, obj):\n exc_info = cPickle.loads(str(obj.exception)).exc_info\n return str(exc_info[1])\n\n\nclass ExportTaskSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTasks models.\"\"\"\n result = serializers.SerializerMethodField()\n errors = serializers.SerializerMethodField()\n started_at = serializers.SerializerMethodField()\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:tasks-detail',\n lookup_field='uid')\n\n\n class Meta:\n model = ExportTask\n fields = ('uid', 'url', 'name', 'status', 'started_at',\n 'finished_at', 'duration', 'result', 'errors')\n\n def get_result(self, obj):\n \"\"\"Serialize the ExportTaskResult for this ExportTask.\"\"\"\n try:\n result = obj.result\n serializer = ExportTaskResultSerializer(result, many=False,\n context=self.context)\n return serializer.data\n except ExportTaskResult.DoesNotExist as e:\n return None\n\n def get_errors(self, obj):\n \"\"\"Serialize the ExportTaskExceptions for this ExportTask.\"\"\"\n try:\n errors = obj.exceptions\n serializer = ExportTaskExceptionSerializer(errors, many=True,\n context=self.context)\n return serializer.data\n except ExportTaskException.DoesNotExist as e:\n return None\n\n def get_started_at(self, obj):\n if not obj.started_at:\n return None\n else:\n return obj.started_at\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return None\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Get the duration for this ExportTask.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n\nclass SimpleJobSerializer(serializers.Serializer):\n \"\"\"Return a sub-set of Job model attributes.\"\"\"\n uid = serializers.SerializerMethodField()\n name = serializers.CharField()\n description = serializers.CharField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n extent = serializers.SerializerMethodField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the Job's extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportRun.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name='api:runs-detail',\n lookup_field='uid')\n job = SimpleJobSerializer()\n tasks = ExportTaskSerializer(many=True)\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n user = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration',\n 'user', 'status', 'job', 'tasks')\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return {}\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Return the duration of the the run.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n def get_user(self, obj):\n return obj.user.username\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\ntry:\n from collections import OrderedDict\nexcept ImportError:\n from ordereddict import OrderedDict\nlogger = logging.getLogger(__name__)\n\n\nclass TagSerializer(serializers.ModelSerializer):\n \"\"\"Serialize the Tag model.\"\"\"\n\n\n class Meta:\n model = Tag\n fields = 'key', 'value', 'data_model', 'geom_types'\n\n\nclass SimpleExportConfigSerializer(serializers.Serializer):\n \"\"\"Return a sub-set of ExportConfig model attributes.\"\"\"\n uid = serializers.UUIDField(read_only=True)\n name = serializers.CharField()\n config_type = serializers.CharField()\n filename = serializers.CharField()\n published = serializers.BooleanField()\n created = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:configs-detail', lookup_field='uid')\n\n def get_created(self, obj):\n return obj.created_at\n\n\nclass ExportConfigSerializer(serializers.Serializer):\n \"\"\"Return the full set of ExportConfig model attributes.\"\"\"\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:configs-detail', lookup_field='uid')\n name = serializers.CharField(max_length=255)\n config_type = serializers.ChoiceField(['PRESET', 'TRANSLATION',\n 'TRANSFORM'])\n filename = serializers.CharField(max_length=255, read_only=True, default=''\n )\n size = serializers.SerializerMethodField()\n content_type = serializers.CharField(max_length=50, read_only=True)\n upload = serializers.FileField(allow_empty_file=False, max_length=100)\n published = serializers.BooleanField()\n created = serializers.SerializerMethodField()\n owner = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n\n def create(self, validated_data):\n \"\"\"Create an ExportConfig instance.\"\"\"\n return ExportConfig.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Update an ExportConfig instance.\"\"\"\n instance.config_type = validated_data.get('config_type', instance.\n config_type)\n instance.upload.delete(False)\n instance.upload = validated_data.get('upload', instance.upload)\n instance.name = validated_data.get('name', instance.name)\n instance.filename = validated_data.get('filename', instance.filename)\n instance.content_type = validated_data.get('content_type', instance\n .content_type)\n instance.updated_at = timezone.now()\n instance.save()\n return instance\n\n def validate(self, data):\n \"\"\"Validate the form data.\"\"\"\n logger.debug(data)\n upload = data['upload']\n config_type = data['config_type']\n content_type = validators.validate_content_type(upload, config_type)\n if config_type == 'PRESET':\n validators.validate_preset(upload)\n data['content_type'] = content_type\n fname = data['upload'].name\n data['filename'] = fname.replace(' ', '_').lower()\n return data\n\n def get_size(self, obj):\n size = obj.upload.size\n return size\n\n def get_created(self, obj):\n return obj.created_at\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass ExportTaskResultSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTaskResult models.\"\"\"\n url = serializers.SerializerMethodField()\n size = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportTaskResult\n fields = 'filename', 'size', 'url'\n\n def get_url(self, obj):\n request = self.context['request']\n return request.build_absolute_uri(obj.download_url)\n\n def get_size(self, obj):\n return '{0:.3f} MB'.format(obj.size)\n\n\nclass ExportTaskExceptionSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTaskExceptions.\"\"\"\n exception = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportTaskException\n fields = 'exception',\n\n def get_exception(self, obj):\n exc_info = cPickle.loads(str(obj.exception)).exc_info\n return str(exc_info[1])\n\n\nclass ExportTaskSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTasks models.\"\"\"\n result = serializers.SerializerMethodField()\n errors = serializers.SerializerMethodField()\n started_at = serializers.SerializerMethodField()\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:tasks-detail',\n lookup_field='uid')\n\n\n class Meta:\n model = ExportTask\n fields = ('uid', 'url', 'name', 'status', 'started_at',\n 'finished_at', 'duration', 'result', 'errors')\n\n def get_result(self, obj):\n \"\"\"Serialize the ExportTaskResult for this ExportTask.\"\"\"\n try:\n result = obj.result\n serializer = ExportTaskResultSerializer(result, many=False,\n context=self.context)\n return serializer.data\n except ExportTaskResult.DoesNotExist as e:\n return None\n\n def get_errors(self, obj):\n \"\"\"Serialize the ExportTaskExceptions for this ExportTask.\"\"\"\n try:\n errors = obj.exceptions\n serializer = ExportTaskExceptionSerializer(errors, many=True,\n context=self.context)\n return serializer.data\n except ExportTaskException.DoesNotExist as e:\n return None\n\n def get_started_at(self, obj):\n if not obj.started_at:\n return None\n else:\n return obj.started_at\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return None\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Get the duration for this ExportTask.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n\nclass SimpleJobSerializer(serializers.Serializer):\n \"\"\"Return a sub-set of Job model attributes.\"\"\"\n uid = serializers.SerializerMethodField()\n name = serializers.CharField()\n description = serializers.CharField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n extent = serializers.SerializerMethodField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the Job's extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportRun.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name='api:runs-detail',\n lookup_field='uid')\n job = SimpleJobSerializer()\n tasks = ExportTaskSerializer(many=True)\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n user = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration',\n 'user', 'status', 'job', 'tasks')\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return {}\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Return the duration of the the run.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n def get_user(self, obj):\n return obj.user.username\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\ntry:\n from collections import OrderedDict\nexcept ImportError:\n from ordereddict import OrderedDict\n<assignment token>\n\n\nclass TagSerializer(serializers.ModelSerializer):\n \"\"\"Serialize the Tag model.\"\"\"\n\n\n class Meta:\n model = Tag\n fields = 'key', 'value', 'data_model', 'geom_types'\n\n\nclass SimpleExportConfigSerializer(serializers.Serializer):\n \"\"\"Return a sub-set of ExportConfig model attributes.\"\"\"\n uid = serializers.UUIDField(read_only=True)\n name = serializers.CharField()\n config_type = serializers.CharField()\n filename = serializers.CharField()\n published = serializers.BooleanField()\n created = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:configs-detail', lookup_field='uid')\n\n def get_created(self, obj):\n return obj.created_at\n\n\nclass ExportConfigSerializer(serializers.Serializer):\n \"\"\"Return the full set of ExportConfig model attributes.\"\"\"\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:configs-detail', lookup_field='uid')\n name = serializers.CharField(max_length=255)\n config_type = serializers.ChoiceField(['PRESET', 'TRANSLATION',\n 'TRANSFORM'])\n filename = serializers.CharField(max_length=255, read_only=True, default=''\n )\n size = serializers.SerializerMethodField()\n content_type = serializers.CharField(max_length=50, read_only=True)\n upload = serializers.FileField(allow_empty_file=False, max_length=100)\n published = serializers.BooleanField()\n created = serializers.SerializerMethodField()\n owner = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n\n def create(self, validated_data):\n \"\"\"Create an ExportConfig instance.\"\"\"\n return ExportConfig.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Update an ExportConfig instance.\"\"\"\n instance.config_type = validated_data.get('config_type', instance.\n config_type)\n instance.upload.delete(False)\n instance.upload = validated_data.get('upload', instance.upload)\n instance.name = validated_data.get('name', instance.name)\n instance.filename = validated_data.get('filename', instance.filename)\n instance.content_type = validated_data.get('content_type', instance\n .content_type)\n instance.updated_at = timezone.now()\n instance.save()\n return instance\n\n def validate(self, data):\n \"\"\"Validate the form data.\"\"\"\n logger.debug(data)\n upload = data['upload']\n config_type = data['config_type']\n content_type = validators.validate_content_type(upload, config_type)\n if config_type == 'PRESET':\n validators.validate_preset(upload)\n data['content_type'] = content_type\n fname = data['upload'].name\n data['filename'] = fname.replace(' ', '_').lower()\n return data\n\n def get_size(self, obj):\n size = obj.upload.size\n return size\n\n def get_created(self, obj):\n return obj.created_at\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass ExportTaskResultSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTaskResult models.\"\"\"\n url = serializers.SerializerMethodField()\n size = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportTaskResult\n fields = 'filename', 'size', 'url'\n\n def get_url(self, obj):\n request = self.context['request']\n return request.build_absolute_uri(obj.download_url)\n\n def get_size(self, obj):\n return '{0:.3f} MB'.format(obj.size)\n\n\nclass ExportTaskExceptionSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTaskExceptions.\"\"\"\n exception = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportTaskException\n fields = 'exception',\n\n def get_exception(self, obj):\n exc_info = cPickle.loads(str(obj.exception)).exc_info\n return str(exc_info[1])\n\n\nclass ExportTaskSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTasks models.\"\"\"\n result = serializers.SerializerMethodField()\n errors = serializers.SerializerMethodField()\n started_at = serializers.SerializerMethodField()\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:tasks-detail',\n lookup_field='uid')\n\n\n class Meta:\n model = ExportTask\n fields = ('uid', 'url', 'name', 'status', 'started_at',\n 'finished_at', 'duration', 'result', 'errors')\n\n def get_result(self, obj):\n \"\"\"Serialize the ExportTaskResult for this ExportTask.\"\"\"\n try:\n result = obj.result\n serializer = ExportTaskResultSerializer(result, many=False,\n context=self.context)\n return serializer.data\n except ExportTaskResult.DoesNotExist as e:\n return None\n\n def get_errors(self, obj):\n \"\"\"Serialize the ExportTaskExceptions for this ExportTask.\"\"\"\n try:\n errors = obj.exceptions\n serializer = ExportTaskExceptionSerializer(errors, many=True,\n context=self.context)\n return serializer.data\n except ExportTaskException.DoesNotExist as e:\n return None\n\n def get_started_at(self, obj):\n if not obj.started_at:\n return None\n else:\n return obj.started_at\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return None\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Get the duration for this ExportTask.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n\nclass SimpleJobSerializer(serializers.Serializer):\n \"\"\"Return a sub-set of Job model attributes.\"\"\"\n uid = serializers.SerializerMethodField()\n name = serializers.CharField()\n description = serializers.CharField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n extent = serializers.SerializerMethodField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the Job's extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportRun.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name='api:runs-detail',\n lookup_field='uid')\n job = SimpleJobSerializer()\n tasks = ExportTaskSerializer(many=True)\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n user = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration',\n 'user', 'status', 'job', 'tasks')\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return {}\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Return the duration of the the run.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n def get_user(self, obj):\n return obj.user.username\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n\n\nclass TagSerializer(serializers.ModelSerializer):\n \"\"\"Serialize the Tag model.\"\"\"\n\n\n class Meta:\n model = Tag\n fields = 'key', 'value', 'data_model', 'geom_types'\n\n\nclass SimpleExportConfigSerializer(serializers.Serializer):\n \"\"\"Return a sub-set of ExportConfig model attributes.\"\"\"\n uid = serializers.UUIDField(read_only=True)\n name = serializers.CharField()\n config_type = serializers.CharField()\n filename = serializers.CharField()\n published = serializers.BooleanField()\n created = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:configs-detail', lookup_field='uid')\n\n def get_created(self, obj):\n return obj.created_at\n\n\nclass ExportConfigSerializer(serializers.Serializer):\n \"\"\"Return the full set of ExportConfig model attributes.\"\"\"\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:configs-detail', lookup_field='uid')\n name = serializers.CharField(max_length=255)\n config_type = serializers.ChoiceField(['PRESET', 'TRANSLATION',\n 'TRANSFORM'])\n filename = serializers.CharField(max_length=255, read_only=True, default=''\n )\n size = serializers.SerializerMethodField()\n content_type = serializers.CharField(max_length=50, read_only=True)\n upload = serializers.FileField(allow_empty_file=False, max_length=100)\n published = serializers.BooleanField()\n created = serializers.SerializerMethodField()\n owner = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n\n def create(self, validated_data):\n \"\"\"Create an ExportConfig instance.\"\"\"\n return ExportConfig.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Update an ExportConfig instance.\"\"\"\n instance.config_type = validated_data.get('config_type', instance.\n config_type)\n instance.upload.delete(False)\n instance.upload = validated_data.get('upload', instance.upload)\n instance.name = validated_data.get('name', instance.name)\n instance.filename = validated_data.get('filename', instance.filename)\n instance.content_type = validated_data.get('content_type', instance\n .content_type)\n instance.updated_at = timezone.now()\n instance.save()\n return instance\n\n def validate(self, data):\n \"\"\"Validate the form data.\"\"\"\n logger.debug(data)\n upload = data['upload']\n config_type = data['config_type']\n content_type = validators.validate_content_type(upload, config_type)\n if config_type == 'PRESET':\n validators.validate_preset(upload)\n data['content_type'] = content_type\n fname = data['upload'].name\n data['filename'] = fname.replace(' ', '_').lower()\n return data\n\n def get_size(self, obj):\n size = obj.upload.size\n return size\n\n def get_created(self, obj):\n return obj.created_at\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass ExportTaskResultSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTaskResult models.\"\"\"\n url = serializers.SerializerMethodField()\n size = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportTaskResult\n fields = 'filename', 'size', 'url'\n\n def get_url(self, obj):\n request = self.context['request']\n return request.build_absolute_uri(obj.download_url)\n\n def get_size(self, obj):\n return '{0:.3f} MB'.format(obj.size)\n\n\nclass ExportTaskExceptionSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTaskExceptions.\"\"\"\n exception = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportTaskException\n fields = 'exception',\n\n def get_exception(self, obj):\n exc_info = cPickle.loads(str(obj.exception)).exc_info\n return str(exc_info[1])\n\n\nclass ExportTaskSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTasks models.\"\"\"\n result = serializers.SerializerMethodField()\n errors = serializers.SerializerMethodField()\n started_at = serializers.SerializerMethodField()\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:tasks-detail',\n lookup_field='uid')\n\n\n class Meta:\n model = ExportTask\n fields = ('uid', 'url', 'name', 'status', 'started_at',\n 'finished_at', 'duration', 'result', 'errors')\n\n def get_result(self, obj):\n \"\"\"Serialize the ExportTaskResult for this ExportTask.\"\"\"\n try:\n result = obj.result\n serializer = ExportTaskResultSerializer(result, many=False,\n context=self.context)\n return serializer.data\n except ExportTaskResult.DoesNotExist as e:\n return None\n\n def get_errors(self, obj):\n \"\"\"Serialize the ExportTaskExceptions for this ExportTask.\"\"\"\n try:\n errors = obj.exceptions\n serializer = ExportTaskExceptionSerializer(errors, many=True,\n context=self.context)\n return serializer.data\n except ExportTaskException.DoesNotExist as e:\n return None\n\n def get_started_at(self, obj):\n if not obj.started_at:\n return None\n else:\n return obj.started_at\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return None\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Get the duration for this ExportTask.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n\nclass SimpleJobSerializer(serializers.Serializer):\n \"\"\"Return a sub-set of Job model attributes.\"\"\"\n uid = serializers.SerializerMethodField()\n name = serializers.CharField()\n description = serializers.CharField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n extent = serializers.SerializerMethodField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the Job's extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportRun.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name='api:runs-detail',\n lookup_field='uid')\n job = SimpleJobSerializer()\n tasks = ExportTaskSerializer(many=True)\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n user = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration',\n 'user', 'status', 'job', 'tasks')\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return {}\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Return the duration of the the run.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n def get_user(self, obj):\n return obj.user.username\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n\n\nclass TagSerializer(serializers.ModelSerializer):\n <docstring token>\n\n\n class Meta:\n model = Tag\n fields = 'key', 'value', 'data_model', 'geom_types'\n\n\nclass SimpleExportConfigSerializer(serializers.Serializer):\n \"\"\"Return a sub-set of ExportConfig model attributes.\"\"\"\n uid = serializers.UUIDField(read_only=True)\n name = serializers.CharField()\n config_type = serializers.CharField()\n filename = serializers.CharField()\n published = serializers.BooleanField()\n created = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:configs-detail', lookup_field='uid')\n\n def get_created(self, obj):\n return obj.created_at\n\n\nclass ExportConfigSerializer(serializers.Serializer):\n \"\"\"Return the full set of ExportConfig model attributes.\"\"\"\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:configs-detail', lookup_field='uid')\n name = serializers.CharField(max_length=255)\n config_type = serializers.ChoiceField(['PRESET', 'TRANSLATION',\n 'TRANSFORM'])\n filename = serializers.CharField(max_length=255, read_only=True, default=''\n )\n size = serializers.SerializerMethodField()\n content_type = serializers.CharField(max_length=50, read_only=True)\n upload = serializers.FileField(allow_empty_file=False, max_length=100)\n published = serializers.BooleanField()\n created = serializers.SerializerMethodField()\n owner = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n\n def create(self, validated_data):\n \"\"\"Create an ExportConfig instance.\"\"\"\n return ExportConfig.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Update an ExportConfig instance.\"\"\"\n instance.config_type = validated_data.get('config_type', instance.\n config_type)\n instance.upload.delete(False)\n instance.upload = validated_data.get('upload', instance.upload)\n instance.name = validated_data.get('name', instance.name)\n instance.filename = validated_data.get('filename', instance.filename)\n instance.content_type = validated_data.get('content_type', instance\n .content_type)\n instance.updated_at = timezone.now()\n instance.save()\n return instance\n\n def validate(self, data):\n \"\"\"Validate the form data.\"\"\"\n logger.debug(data)\n upload = data['upload']\n config_type = data['config_type']\n content_type = validators.validate_content_type(upload, config_type)\n if config_type == 'PRESET':\n validators.validate_preset(upload)\n data['content_type'] = content_type\n fname = data['upload'].name\n data['filename'] = fname.replace(' ', '_').lower()\n return data\n\n def get_size(self, obj):\n size = obj.upload.size\n return size\n\n def get_created(self, obj):\n return obj.created_at\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass ExportTaskResultSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTaskResult models.\"\"\"\n url = serializers.SerializerMethodField()\n size = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportTaskResult\n fields = 'filename', 'size', 'url'\n\n def get_url(self, obj):\n request = self.context['request']\n return request.build_absolute_uri(obj.download_url)\n\n def get_size(self, obj):\n return '{0:.3f} MB'.format(obj.size)\n\n\nclass ExportTaskExceptionSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTaskExceptions.\"\"\"\n exception = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportTaskException\n fields = 'exception',\n\n def get_exception(self, obj):\n exc_info = cPickle.loads(str(obj.exception)).exc_info\n return str(exc_info[1])\n\n\nclass ExportTaskSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTasks models.\"\"\"\n result = serializers.SerializerMethodField()\n errors = serializers.SerializerMethodField()\n started_at = serializers.SerializerMethodField()\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:tasks-detail',\n lookup_field='uid')\n\n\n class Meta:\n model = ExportTask\n fields = ('uid', 'url', 'name', 'status', 'started_at',\n 'finished_at', 'duration', 'result', 'errors')\n\n def get_result(self, obj):\n \"\"\"Serialize the ExportTaskResult for this ExportTask.\"\"\"\n try:\n result = obj.result\n serializer = ExportTaskResultSerializer(result, many=False,\n context=self.context)\n return serializer.data\n except ExportTaskResult.DoesNotExist as e:\n return None\n\n def get_errors(self, obj):\n \"\"\"Serialize the ExportTaskExceptions for this ExportTask.\"\"\"\n try:\n errors = obj.exceptions\n serializer = ExportTaskExceptionSerializer(errors, many=True,\n context=self.context)\n return serializer.data\n except ExportTaskException.DoesNotExist as e:\n return None\n\n def get_started_at(self, obj):\n if not obj.started_at:\n return None\n else:\n return obj.started_at\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return None\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Get the duration for this ExportTask.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n\nclass SimpleJobSerializer(serializers.Serializer):\n \"\"\"Return a sub-set of Job model attributes.\"\"\"\n uid = serializers.SerializerMethodField()\n name = serializers.CharField()\n description = serializers.CharField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n extent = serializers.SerializerMethodField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the Job's extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportRun.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name='api:runs-detail',\n lookup_field='uid')\n job = SimpleJobSerializer()\n tasks = ExportTaskSerializer(many=True)\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n user = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration',\n 'user', 'status', 'job', 'tasks')\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return {}\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Return the duration of the the run.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n def get_user(self, obj):\n return obj.user.username\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n\n\nclass SimpleExportConfigSerializer(serializers.Serializer):\n \"\"\"Return a sub-set of ExportConfig model attributes.\"\"\"\n uid = serializers.UUIDField(read_only=True)\n name = serializers.CharField()\n config_type = serializers.CharField()\n filename = serializers.CharField()\n published = serializers.BooleanField()\n created = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:configs-detail', lookup_field='uid')\n\n def get_created(self, obj):\n return obj.created_at\n\n\nclass ExportConfigSerializer(serializers.Serializer):\n \"\"\"Return the full set of ExportConfig model attributes.\"\"\"\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:configs-detail', lookup_field='uid')\n name = serializers.CharField(max_length=255)\n config_type = serializers.ChoiceField(['PRESET', 'TRANSLATION',\n 'TRANSFORM'])\n filename = serializers.CharField(max_length=255, read_only=True, default=''\n )\n size = serializers.SerializerMethodField()\n content_type = serializers.CharField(max_length=50, read_only=True)\n upload = serializers.FileField(allow_empty_file=False, max_length=100)\n published = serializers.BooleanField()\n created = serializers.SerializerMethodField()\n owner = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n\n def create(self, validated_data):\n \"\"\"Create an ExportConfig instance.\"\"\"\n return ExportConfig.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Update an ExportConfig instance.\"\"\"\n instance.config_type = validated_data.get('config_type', instance.\n config_type)\n instance.upload.delete(False)\n instance.upload = validated_data.get('upload', instance.upload)\n instance.name = validated_data.get('name', instance.name)\n instance.filename = validated_data.get('filename', instance.filename)\n instance.content_type = validated_data.get('content_type', instance\n .content_type)\n instance.updated_at = timezone.now()\n instance.save()\n return instance\n\n def validate(self, data):\n \"\"\"Validate the form data.\"\"\"\n logger.debug(data)\n upload = data['upload']\n config_type = data['config_type']\n content_type = validators.validate_content_type(upload, config_type)\n if config_type == 'PRESET':\n validators.validate_preset(upload)\n data['content_type'] = content_type\n fname = data['upload'].name\n data['filename'] = fname.replace(' ', '_').lower()\n return data\n\n def get_size(self, obj):\n size = obj.upload.size\n return size\n\n def get_created(self, obj):\n return obj.created_at\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass ExportTaskResultSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTaskResult models.\"\"\"\n url = serializers.SerializerMethodField()\n size = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportTaskResult\n fields = 'filename', 'size', 'url'\n\n def get_url(self, obj):\n request = self.context['request']\n return request.build_absolute_uri(obj.download_url)\n\n def get_size(self, obj):\n return '{0:.3f} MB'.format(obj.size)\n\n\nclass ExportTaskExceptionSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTaskExceptions.\"\"\"\n exception = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportTaskException\n fields = 'exception',\n\n def get_exception(self, obj):\n exc_info = cPickle.loads(str(obj.exception)).exc_info\n return str(exc_info[1])\n\n\nclass ExportTaskSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTasks models.\"\"\"\n result = serializers.SerializerMethodField()\n errors = serializers.SerializerMethodField()\n started_at = serializers.SerializerMethodField()\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:tasks-detail',\n lookup_field='uid')\n\n\n class Meta:\n model = ExportTask\n fields = ('uid', 'url', 'name', 'status', 'started_at',\n 'finished_at', 'duration', 'result', 'errors')\n\n def get_result(self, obj):\n \"\"\"Serialize the ExportTaskResult for this ExportTask.\"\"\"\n try:\n result = obj.result\n serializer = ExportTaskResultSerializer(result, many=False,\n context=self.context)\n return serializer.data\n except ExportTaskResult.DoesNotExist as e:\n return None\n\n def get_errors(self, obj):\n \"\"\"Serialize the ExportTaskExceptions for this ExportTask.\"\"\"\n try:\n errors = obj.exceptions\n serializer = ExportTaskExceptionSerializer(errors, many=True,\n context=self.context)\n return serializer.data\n except ExportTaskException.DoesNotExist as e:\n return None\n\n def get_started_at(self, obj):\n if not obj.started_at:\n return None\n else:\n return obj.started_at\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return None\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Get the duration for this ExportTask.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n\nclass SimpleJobSerializer(serializers.Serializer):\n \"\"\"Return a sub-set of Job model attributes.\"\"\"\n uid = serializers.SerializerMethodField()\n name = serializers.CharField()\n description = serializers.CharField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n extent = serializers.SerializerMethodField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the Job's extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportRun.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name='api:runs-detail',\n lookup_field='uid')\n job = SimpleJobSerializer()\n tasks = ExportTaskSerializer(many=True)\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n user = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration',\n 'user', 'status', 'job', 'tasks')\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return {}\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Return the duration of the the run.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n def get_user(self, obj):\n return obj.user.username\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n\n\nclass SimpleExportConfigSerializer(serializers.Serializer):\n <docstring token>\n uid = serializers.UUIDField(read_only=True)\n name = serializers.CharField()\n config_type = serializers.CharField()\n filename = serializers.CharField()\n published = serializers.BooleanField()\n created = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:configs-detail', lookup_field='uid')\n\n def get_created(self, obj):\n return obj.created_at\n\n\nclass ExportConfigSerializer(serializers.Serializer):\n \"\"\"Return the full set of ExportConfig model attributes.\"\"\"\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:configs-detail', lookup_field='uid')\n name = serializers.CharField(max_length=255)\n config_type = serializers.ChoiceField(['PRESET', 'TRANSLATION',\n 'TRANSFORM'])\n filename = serializers.CharField(max_length=255, read_only=True, default=''\n )\n size = serializers.SerializerMethodField()\n content_type = serializers.CharField(max_length=50, read_only=True)\n upload = serializers.FileField(allow_empty_file=False, max_length=100)\n published = serializers.BooleanField()\n created = serializers.SerializerMethodField()\n owner = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n\n def create(self, validated_data):\n \"\"\"Create an ExportConfig instance.\"\"\"\n return ExportConfig.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Update an ExportConfig instance.\"\"\"\n instance.config_type = validated_data.get('config_type', instance.\n config_type)\n instance.upload.delete(False)\n instance.upload = validated_data.get('upload', instance.upload)\n instance.name = validated_data.get('name', instance.name)\n instance.filename = validated_data.get('filename', instance.filename)\n instance.content_type = validated_data.get('content_type', instance\n .content_type)\n instance.updated_at = timezone.now()\n instance.save()\n return instance\n\n def validate(self, data):\n \"\"\"Validate the form data.\"\"\"\n logger.debug(data)\n upload = data['upload']\n config_type = data['config_type']\n content_type = validators.validate_content_type(upload, config_type)\n if config_type == 'PRESET':\n validators.validate_preset(upload)\n data['content_type'] = content_type\n fname = data['upload'].name\n data['filename'] = fname.replace(' ', '_').lower()\n return data\n\n def get_size(self, obj):\n size = obj.upload.size\n return size\n\n def get_created(self, obj):\n return obj.created_at\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass ExportTaskResultSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTaskResult models.\"\"\"\n url = serializers.SerializerMethodField()\n size = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportTaskResult\n fields = 'filename', 'size', 'url'\n\n def get_url(self, obj):\n request = self.context['request']\n return request.build_absolute_uri(obj.download_url)\n\n def get_size(self, obj):\n return '{0:.3f} MB'.format(obj.size)\n\n\nclass ExportTaskExceptionSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTaskExceptions.\"\"\"\n exception = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportTaskException\n fields = 'exception',\n\n def get_exception(self, obj):\n exc_info = cPickle.loads(str(obj.exception)).exc_info\n return str(exc_info[1])\n\n\nclass ExportTaskSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTasks models.\"\"\"\n result = serializers.SerializerMethodField()\n errors = serializers.SerializerMethodField()\n started_at = serializers.SerializerMethodField()\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:tasks-detail',\n lookup_field='uid')\n\n\n class Meta:\n model = ExportTask\n fields = ('uid', 'url', 'name', 'status', 'started_at',\n 'finished_at', 'duration', 'result', 'errors')\n\n def get_result(self, obj):\n \"\"\"Serialize the ExportTaskResult for this ExportTask.\"\"\"\n try:\n result = obj.result\n serializer = ExportTaskResultSerializer(result, many=False,\n context=self.context)\n return serializer.data\n except ExportTaskResult.DoesNotExist as e:\n return None\n\n def get_errors(self, obj):\n \"\"\"Serialize the ExportTaskExceptions for this ExportTask.\"\"\"\n try:\n errors = obj.exceptions\n serializer = ExportTaskExceptionSerializer(errors, many=True,\n context=self.context)\n return serializer.data\n except ExportTaskException.DoesNotExist as e:\n return None\n\n def get_started_at(self, obj):\n if not obj.started_at:\n return None\n else:\n return obj.started_at\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return None\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Get the duration for this ExportTask.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n\nclass SimpleJobSerializer(serializers.Serializer):\n \"\"\"Return a sub-set of Job model attributes.\"\"\"\n uid = serializers.SerializerMethodField()\n name = serializers.CharField()\n description = serializers.CharField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n extent = serializers.SerializerMethodField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the Job's extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportRun.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name='api:runs-detail',\n lookup_field='uid')\n job = SimpleJobSerializer()\n tasks = ExportTaskSerializer(many=True)\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n user = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration',\n 'user', 'status', 'job', 'tasks')\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return {}\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Return the duration of the the run.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n def get_user(self, obj):\n return obj.user.username\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n\n\nclass SimpleExportConfigSerializer(serializers.Serializer):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def get_created(self, obj):\n return obj.created_at\n\n\nclass ExportConfigSerializer(serializers.Serializer):\n \"\"\"Return the full set of ExportConfig model attributes.\"\"\"\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:configs-detail', lookup_field='uid')\n name = serializers.CharField(max_length=255)\n config_type = serializers.ChoiceField(['PRESET', 'TRANSLATION',\n 'TRANSFORM'])\n filename = serializers.CharField(max_length=255, read_only=True, default=''\n )\n size = serializers.SerializerMethodField()\n content_type = serializers.CharField(max_length=50, read_only=True)\n upload = serializers.FileField(allow_empty_file=False, max_length=100)\n published = serializers.BooleanField()\n created = serializers.SerializerMethodField()\n owner = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n\n def create(self, validated_data):\n \"\"\"Create an ExportConfig instance.\"\"\"\n return ExportConfig.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Update an ExportConfig instance.\"\"\"\n instance.config_type = validated_data.get('config_type', instance.\n config_type)\n instance.upload.delete(False)\n instance.upload = validated_data.get('upload', instance.upload)\n instance.name = validated_data.get('name', instance.name)\n instance.filename = validated_data.get('filename', instance.filename)\n instance.content_type = validated_data.get('content_type', instance\n .content_type)\n instance.updated_at = timezone.now()\n instance.save()\n return instance\n\n def validate(self, data):\n \"\"\"Validate the form data.\"\"\"\n logger.debug(data)\n upload = data['upload']\n config_type = data['config_type']\n content_type = validators.validate_content_type(upload, config_type)\n if config_type == 'PRESET':\n validators.validate_preset(upload)\n data['content_type'] = content_type\n fname = data['upload'].name\n data['filename'] = fname.replace(' ', '_').lower()\n return data\n\n def get_size(self, obj):\n size = obj.upload.size\n return size\n\n def get_created(self, obj):\n return obj.created_at\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass ExportTaskResultSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTaskResult models.\"\"\"\n url = serializers.SerializerMethodField()\n size = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportTaskResult\n fields = 'filename', 'size', 'url'\n\n def get_url(self, obj):\n request = self.context['request']\n return request.build_absolute_uri(obj.download_url)\n\n def get_size(self, obj):\n return '{0:.3f} MB'.format(obj.size)\n\n\nclass ExportTaskExceptionSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTaskExceptions.\"\"\"\n exception = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportTaskException\n fields = 'exception',\n\n def get_exception(self, obj):\n exc_info = cPickle.loads(str(obj.exception)).exc_info\n return str(exc_info[1])\n\n\nclass ExportTaskSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTasks models.\"\"\"\n result = serializers.SerializerMethodField()\n errors = serializers.SerializerMethodField()\n started_at = serializers.SerializerMethodField()\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:tasks-detail',\n lookup_field='uid')\n\n\n class Meta:\n model = ExportTask\n fields = ('uid', 'url', 'name', 'status', 'started_at',\n 'finished_at', 'duration', 'result', 'errors')\n\n def get_result(self, obj):\n \"\"\"Serialize the ExportTaskResult for this ExportTask.\"\"\"\n try:\n result = obj.result\n serializer = ExportTaskResultSerializer(result, many=False,\n context=self.context)\n return serializer.data\n except ExportTaskResult.DoesNotExist as e:\n return None\n\n def get_errors(self, obj):\n \"\"\"Serialize the ExportTaskExceptions for this ExportTask.\"\"\"\n try:\n errors = obj.exceptions\n serializer = ExportTaskExceptionSerializer(errors, many=True,\n context=self.context)\n return serializer.data\n except ExportTaskException.DoesNotExist as e:\n return None\n\n def get_started_at(self, obj):\n if not obj.started_at:\n return None\n else:\n return obj.started_at\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return None\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Get the duration for this ExportTask.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n\nclass SimpleJobSerializer(serializers.Serializer):\n \"\"\"Return a sub-set of Job model attributes.\"\"\"\n uid = serializers.SerializerMethodField()\n name = serializers.CharField()\n description = serializers.CharField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n extent = serializers.SerializerMethodField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the Job's extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportRun.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name='api:runs-detail',\n lookup_field='uid')\n job = SimpleJobSerializer()\n tasks = ExportTaskSerializer(many=True)\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n user = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration',\n 'user', 'status', 'job', 'tasks')\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return {}\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Return the duration of the the run.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n def get_user(self, obj):\n return obj.user.username\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n\n\nclass SimpleExportConfigSerializer(serializers.Serializer):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n\n\nclass ExportConfigSerializer(serializers.Serializer):\n \"\"\"Return the full set of ExportConfig model attributes.\"\"\"\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:configs-detail', lookup_field='uid')\n name = serializers.CharField(max_length=255)\n config_type = serializers.ChoiceField(['PRESET', 'TRANSLATION',\n 'TRANSFORM'])\n filename = serializers.CharField(max_length=255, read_only=True, default=''\n )\n size = serializers.SerializerMethodField()\n content_type = serializers.CharField(max_length=50, read_only=True)\n upload = serializers.FileField(allow_empty_file=False, max_length=100)\n published = serializers.BooleanField()\n created = serializers.SerializerMethodField()\n owner = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n\n def create(self, validated_data):\n \"\"\"Create an ExportConfig instance.\"\"\"\n return ExportConfig.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Update an ExportConfig instance.\"\"\"\n instance.config_type = validated_data.get('config_type', instance.\n config_type)\n instance.upload.delete(False)\n instance.upload = validated_data.get('upload', instance.upload)\n instance.name = validated_data.get('name', instance.name)\n instance.filename = validated_data.get('filename', instance.filename)\n instance.content_type = validated_data.get('content_type', instance\n .content_type)\n instance.updated_at = timezone.now()\n instance.save()\n return instance\n\n def validate(self, data):\n \"\"\"Validate the form data.\"\"\"\n logger.debug(data)\n upload = data['upload']\n config_type = data['config_type']\n content_type = validators.validate_content_type(upload, config_type)\n if config_type == 'PRESET':\n validators.validate_preset(upload)\n data['content_type'] = content_type\n fname = data['upload'].name\n data['filename'] = fname.replace(' ', '_').lower()\n return data\n\n def get_size(self, obj):\n size = obj.upload.size\n return size\n\n def get_created(self, obj):\n return obj.created_at\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass ExportTaskResultSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTaskResult models.\"\"\"\n url = serializers.SerializerMethodField()\n size = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportTaskResult\n fields = 'filename', 'size', 'url'\n\n def get_url(self, obj):\n request = self.context['request']\n return request.build_absolute_uri(obj.download_url)\n\n def get_size(self, obj):\n return '{0:.3f} MB'.format(obj.size)\n\n\nclass ExportTaskExceptionSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTaskExceptions.\"\"\"\n exception = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportTaskException\n fields = 'exception',\n\n def get_exception(self, obj):\n exc_info = cPickle.loads(str(obj.exception)).exc_info\n return str(exc_info[1])\n\n\nclass ExportTaskSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTasks models.\"\"\"\n result = serializers.SerializerMethodField()\n errors = serializers.SerializerMethodField()\n started_at = serializers.SerializerMethodField()\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:tasks-detail',\n lookup_field='uid')\n\n\n class Meta:\n model = ExportTask\n fields = ('uid', 'url', 'name', 'status', 'started_at',\n 'finished_at', 'duration', 'result', 'errors')\n\n def get_result(self, obj):\n \"\"\"Serialize the ExportTaskResult for this ExportTask.\"\"\"\n try:\n result = obj.result\n serializer = ExportTaskResultSerializer(result, many=False,\n context=self.context)\n return serializer.data\n except ExportTaskResult.DoesNotExist as e:\n return None\n\n def get_errors(self, obj):\n \"\"\"Serialize the ExportTaskExceptions for this ExportTask.\"\"\"\n try:\n errors = obj.exceptions\n serializer = ExportTaskExceptionSerializer(errors, many=True,\n context=self.context)\n return serializer.data\n except ExportTaskException.DoesNotExist as e:\n return None\n\n def get_started_at(self, obj):\n if not obj.started_at:\n return None\n else:\n return obj.started_at\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return None\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Get the duration for this ExportTask.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n\nclass SimpleJobSerializer(serializers.Serializer):\n \"\"\"Return a sub-set of Job model attributes.\"\"\"\n uid = serializers.SerializerMethodField()\n name = serializers.CharField()\n description = serializers.CharField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n extent = serializers.SerializerMethodField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the Job's extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportRun.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name='api:runs-detail',\n lookup_field='uid')\n job = SimpleJobSerializer()\n tasks = ExportTaskSerializer(many=True)\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n user = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration',\n 'user', 'status', 'job', 'tasks')\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return {}\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Return the duration of the the run.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n def get_user(self, obj):\n return obj.user.username\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass ExportConfigSerializer(serializers.Serializer):\n \"\"\"Return the full set of ExportConfig model attributes.\"\"\"\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:configs-detail', lookup_field='uid')\n name = serializers.CharField(max_length=255)\n config_type = serializers.ChoiceField(['PRESET', 'TRANSLATION',\n 'TRANSFORM'])\n filename = serializers.CharField(max_length=255, read_only=True, default=''\n )\n size = serializers.SerializerMethodField()\n content_type = serializers.CharField(max_length=50, read_only=True)\n upload = serializers.FileField(allow_empty_file=False, max_length=100)\n published = serializers.BooleanField()\n created = serializers.SerializerMethodField()\n owner = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n\n def create(self, validated_data):\n \"\"\"Create an ExportConfig instance.\"\"\"\n return ExportConfig.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Update an ExportConfig instance.\"\"\"\n instance.config_type = validated_data.get('config_type', instance.\n config_type)\n instance.upload.delete(False)\n instance.upload = validated_data.get('upload', instance.upload)\n instance.name = validated_data.get('name', instance.name)\n instance.filename = validated_data.get('filename', instance.filename)\n instance.content_type = validated_data.get('content_type', instance\n .content_type)\n instance.updated_at = timezone.now()\n instance.save()\n return instance\n\n def validate(self, data):\n \"\"\"Validate the form data.\"\"\"\n logger.debug(data)\n upload = data['upload']\n config_type = data['config_type']\n content_type = validators.validate_content_type(upload, config_type)\n if config_type == 'PRESET':\n validators.validate_preset(upload)\n data['content_type'] = content_type\n fname = data['upload'].name\n data['filename'] = fname.replace(' ', '_').lower()\n return data\n\n def get_size(self, obj):\n size = obj.upload.size\n return size\n\n def get_created(self, obj):\n return obj.created_at\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass ExportTaskResultSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTaskResult models.\"\"\"\n url = serializers.SerializerMethodField()\n size = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportTaskResult\n fields = 'filename', 'size', 'url'\n\n def get_url(self, obj):\n request = self.context['request']\n return request.build_absolute_uri(obj.download_url)\n\n def get_size(self, obj):\n return '{0:.3f} MB'.format(obj.size)\n\n\nclass ExportTaskExceptionSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTaskExceptions.\"\"\"\n exception = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportTaskException\n fields = 'exception',\n\n def get_exception(self, obj):\n exc_info = cPickle.loads(str(obj.exception)).exc_info\n return str(exc_info[1])\n\n\nclass ExportTaskSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTasks models.\"\"\"\n result = serializers.SerializerMethodField()\n errors = serializers.SerializerMethodField()\n started_at = serializers.SerializerMethodField()\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:tasks-detail',\n lookup_field='uid')\n\n\n class Meta:\n model = ExportTask\n fields = ('uid', 'url', 'name', 'status', 'started_at',\n 'finished_at', 'duration', 'result', 'errors')\n\n def get_result(self, obj):\n \"\"\"Serialize the ExportTaskResult for this ExportTask.\"\"\"\n try:\n result = obj.result\n serializer = ExportTaskResultSerializer(result, many=False,\n context=self.context)\n return serializer.data\n except ExportTaskResult.DoesNotExist as e:\n return None\n\n def get_errors(self, obj):\n \"\"\"Serialize the ExportTaskExceptions for this ExportTask.\"\"\"\n try:\n errors = obj.exceptions\n serializer = ExportTaskExceptionSerializer(errors, many=True,\n context=self.context)\n return serializer.data\n except ExportTaskException.DoesNotExist as e:\n return None\n\n def get_started_at(self, obj):\n if not obj.started_at:\n return None\n else:\n return obj.started_at\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return None\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Get the duration for this ExportTask.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n\nclass SimpleJobSerializer(serializers.Serializer):\n \"\"\"Return a sub-set of Job model attributes.\"\"\"\n uid = serializers.SerializerMethodField()\n name = serializers.CharField()\n description = serializers.CharField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n extent = serializers.SerializerMethodField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the Job's extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportRun.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name='api:runs-detail',\n lookup_field='uid')\n job = SimpleJobSerializer()\n tasks = ExportTaskSerializer(many=True)\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n user = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration',\n 'user', 'status', 'job', 'tasks')\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return {}\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Return the duration of the the run.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n def get_user(self, obj):\n return obj.user.username\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass ExportConfigSerializer(serializers.Serializer):\n <docstring token>\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:configs-detail', lookup_field='uid')\n name = serializers.CharField(max_length=255)\n config_type = serializers.ChoiceField(['PRESET', 'TRANSLATION',\n 'TRANSFORM'])\n filename = serializers.CharField(max_length=255, read_only=True, default=''\n )\n size = serializers.SerializerMethodField()\n content_type = serializers.CharField(max_length=50, read_only=True)\n upload = serializers.FileField(allow_empty_file=False, max_length=100)\n published = serializers.BooleanField()\n created = serializers.SerializerMethodField()\n owner = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n\n def create(self, validated_data):\n \"\"\"Create an ExportConfig instance.\"\"\"\n return ExportConfig.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Update an ExportConfig instance.\"\"\"\n instance.config_type = validated_data.get('config_type', instance.\n config_type)\n instance.upload.delete(False)\n instance.upload = validated_data.get('upload', instance.upload)\n instance.name = validated_data.get('name', instance.name)\n instance.filename = validated_data.get('filename', instance.filename)\n instance.content_type = validated_data.get('content_type', instance\n .content_type)\n instance.updated_at = timezone.now()\n instance.save()\n return instance\n\n def validate(self, data):\n \"\"\"Validate the form data.\"\"\"\n logger.debug(data)\n upload = data['upload']\n config_type = data['config_type']\n content_type = validators.validate_content_type(upload, config_type)\n if config_type == 'PRESET':\n validators.validate_preset(upload)\n data['content_type'] = content_type\n fname = data['upload'].name\n data['filename'] = fname.replace(' ', '_').lower()\n return data\n\n def get_size(self, obj):\n size = obj.upload.size\n return size\n\n def get_created(self, obj):\n return obj.created_at\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass ExportTaskResultSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTaskResult models.\"\"\"\n url = serializers.SerializerMethodField()\n size = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportTaskResult\n fields = 'filename', 'size', 'url'\n\n def get_url(self, obj):\n request = self.context['request']\n return request.build_absolute_uri(obj.download_url)\n\n def get_size(self, obj):\n return '{0:.3f} MB'.format(obj.size)\n\n\nclass ExportTaskExceptionSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTaskExceptions.\"\"\"\n exception = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportTaskException\n fields = 'exception',\n\n def get_exception(self, obj):\n exc_info = cPickle.loads(str(obj.exception)).exc_info\n return str(exc_info[1])\n\n\nclass ExportTaskSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTasks models.\"\"\"\n result = serializers.SerializerMethodField()\n errors = serializers.SerializerMethodField()\n started_at = serializers.SerializerMethodField()\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:tasks-detail',\n lookup_field='uid')\n\n\n class Meta:\n model = ExportTask\n fields = ('uid', 'url', 'name', 'status', 'started_at',\n 'finished_at', 'duration', 'result', 'errors')\n\n def get_result(self, obj):\n \"\"\"Serialize the ExportTaskResult for this ExportTask.\"\"\"\n try:\n result = obj.result\n serializer = ExportTaskResultSerializer(result, many=False,\n context=self.context)\n return serializer.data\n except ExportTaskResult.DoesNotExist as e:\n return None\n\n def get_errors(self, obj):\n \"\"\"Serialize the ExportTaskExceptions for this ExportTask.\"\"\"\n try:\n errors = obj.exceptions\n serializer = ExportTaskExceptionSerializer(errors, many=True,\n context=self.context)\n return serializer.data\n except ExportTaskException.DoesNotExist as e:\n return None\n\n def get_started_at(self, obj):\n if not obj.started_at:\n return None\n else:\n return obj.started_at\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return None\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Get the duration for this ExportTask.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n\nclass SimpleJobSerializer(serializers.Serializer):\n \"\"\"Return a sub-set of Job model attributes.\"\"\"\n uid = serializers.SerializerMethodField()\n name = serializers.CharField()\n description = serializers.CharField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n extent = serializers.SerializerMethodField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the Job's extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportRun.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name='api:runs-detail',\n lookup_field='uid')\n job = SimpleJobSerializer()\n tasks = ExportTaskSerializer(many=True)\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n user = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration',\n 'user', 'status', 'job', 'tasks')\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return {}\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Return the duration of the the run.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n def get_user(self, obj):\n return obj.user.username\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass ExportConfigSerializer(serializers.Serializer):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def create(self, validated_data):\n \"\"\"Create an ExportConfig instance.\"\"\"\n return ExportConfig.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Update an ExportConfig instance.\"\"\"\n instance.config_type = validated_data.get('config_type', instance.\n config_type)\n instance.upload.delete(False)\n instance.upload = validated_data.get('upload', instance.upload)\n instance.name = validated_data.get('name', instance.name)\n instance.filename = validated_data.get('filename', instance.filename)\n instance.content_type = validated_data.get('content_type', instance\n .content_type)\n instance.updated_at = timezone.now()\n instance.save()\n return instance\n\n def validate(self, data):\n \"\"\"Validate the form data.\"\"\"\n logger.debug(data)\n upload = data['upload']\n config_type = data['config_type']\n content_type = validators.validate_content_type(upload, config_type)\n if config_type == 'PRESET':\n validators.validate_preset(upload)\n data['content_type'] = content_type\n fname = data['upload'].name\n data['filename'] = fname.replace(' ', '_').lower()\n return data\n\n def get_size(self, obj):\n size = obj.upload.size\n return size\n\n def get_created(self, obj):\n return obj.created_at\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass ExportTaskResultSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTaskResult models.\"\"\"\n url = serializers.SerializerMethodField()\n size = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportTaskResult\n fields = 'filename', 'size', 'url'\n\n def get_url(self, obj):\n request = self.context['request']\n return request.build_absolute_uri(obj.download_url)\n\n def get_size(self, obj):\n return '{0:.3f} MB'.format(obj.size)\n\n\nclass ExportTaskExceptionSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTaskExceptions.\"\"\"\n exception = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportTaskException\n fields = 'exception',\n\n def get_exception(self, obj):\n exc_info = cPickle.loads(str(obj.exception)).exc_info\n return str(exc_info[1])\n\n\nclass ExportTaskSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTasks models.\"\"\"\n result = serializers.SerializerMethodField()\n errors = serializers.SerializerMethodField()\n started_at = serializers.SerializerMethodField()\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:tasks-detail',\n lookup_field='uid')\n\n\n class Meta:\n model = ExportTask\n fields = ('uid', 'url', 'name', 'status', 'started_at',\n 'finished_at', 'duration', 'result', 'errors')\n\n def get_result(self, obj):\n \"\"\"Serialize the ExportTaskResult for this ExportTask.\"\"\"\n try:\n result = obj.result\n serializer = ExportTaskResultSerializer(result, many=False,\n context=self.context)\n return serializer.data\n except ExportTaskResult.DoesNotExist as e:\n return None\n\n def get_errors(self, obj):\n \"\"\"Serialize the ExportTaskExceptions for this ExportTask.\"\"\"\n try:\n errors = obj.exceptions\n serializer = ExportTaskExceptionSerializer(errors, many=True,\n context=self.context)\n return serializer.data\n except ExportTaskException.DoesNotExist as e:\n return None\n\n def get_started_at(self, obj):\n if not obj.started_at:\n return None\n else:\n return obj.started_at\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return None\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Get the duration for this ExportTask.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n\nclass SimpleJobSerializer(serializers.Serializer):\n \"\"\"Return a sub-set of Job model attributes.\"\"\"\n uid = serializers.SerializerMethodField()\n name = serializers.CharField()\n description = serializers.CharField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n extent = serializers.SerializerMethodField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the Job's extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportRun.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name='api:runs-detail',\n lookup_field='uid')\n job = SimpleJobSerializer()\n tasks = ExportTaskSerializer(many=True)\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n user = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration',\n 'user', 'status', 'job', 'tasks')\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return {}\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Return the duration of the the run.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n def get_user(self, obj):\n return obj.user.username\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass ExportConfigSerializer(serializers.Serializer):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def create(self, validated_data):\n \"\"\"Create an ExportConfig instance.\"\"\"\n return ExportConfig.objects.create(**validated_data)\n <function token>\n\n def validate(self, data):\n \"\"\"Validate the form data.\"\"\"\n logger.debug(data)\n upload = data['upload']\n config_type = data['config_type']\n content_type = validators.validate_content_type(upload, config_type)\n if config_type == 'PRESET':\n validators.validate_preset(upload)\n data['content_type'] = content_type\n fname = data['upload'].name\n data['filename'] = fname.replace(' ', '_').lower()\n return data\n\n def get_size(self, obj):\n size = obj.upload.size\n return size\n\n def get_created(self, obj):\n return obj.created_at\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass ExportTaskResultSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTaskResult models.\"\"\"\n url = serializers.SerializerMethodField()\n size = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportTaskResult\n fields = 'filename', 'size', 'url'\n\n def get_url(self, obj):\n request = self.context['request']\n return request.build_absolute_uri(obj.download_url)\n\n def get_size(self, obj):\n return '{0:.3f} MB'.format(obj.size)\n\n\nclass ExportTaskExceptionSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTaskExceptions.\"\"\"\n exception = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportTaskException\n fields = 'exception',\n\n def get_exception(self, obj):\n exc_info = cPickle.loads(str(obj.exception)).exc_info\n return str(exc_info[1])\n\n\nclass ExportTaskSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTasks models.\"\"\"\n result = serializers.SerializerMethodField()\n errors = serializers.SerializerMethodField()\n started_at = serializers.SerializerMethodField()\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:tasks-detail',\n lookup_field='uid')\n\n\n class Meta:\n model = ExportTask\n fields = ('uid', 'url', 'name', 'status', 'started_at',\n 'finished_at', 'duration', 'result', 'errors')\n\n def get_result(self, obj):\n \"\"\"Serialize the ExportTaskResult for this ExportTask.\"\"\"\n try:\n result = obj.result\n serializer = ExportTaskResultSerializer(result, many=False,\n context=self.context)\n return serializer.data\n except ExportTaskResult.DoesNotExist as e:\n return None\n\n def get_errors(self, obj):\n \"\"\"Serialize the ExportTaskExceptions for this ExportTask.\"\"\"\n try:\n errors = obj.exceptions\n serializer = ExportTaskExceptionSerializer(errors, many=True,\n context=self.context)\n return serializer.data\n except ExportTaskException.DoesNotExist as e:\n return None\n\n def get_started_at(self, obj):\n if not obj.started_at:\n return None\n else:\n return obj.started_at\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return None\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Get the duration for this ExportTask.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n\nclass SimpleJobSerializer(serializers.Serializer):\n \"\"\"Return a sub-set of Job model attributes.\"\"\"\n uid = serializers.SerializerMethodField()\n name = serializers.CharField()\n description = serializers.CharField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n extent = serializers.SerializerMethodField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the Job's extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportRun.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name='api:runs-detail',\n lookup_field='uid')\n job = SimpleJobSerializer()\n tasks = ExportTaskSerializer(many=True)\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n user = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration',\n 'user', 'status', 'job', 'tasks')\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return {}\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Return the duration of the the run.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n def get_user(self, obj):\n return obj.user.username\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass ExportConfigSerializer(serializers.Serializer):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def create(self, validated_data):\n \"\"\"Create an ExportConfig instance.\"\"\"\n return ExportConfig.objects.create(**validated_data)\n <function token>\n\n def validate(self, data):\n \"\"\"Validate the form data.\"\"\"\n logger.debug(data)\n upload = data['upload']\n config_type = data['config_type']\n content_type = validators.validate_content_type(upload, config_type)\n if config_type == 'PRESET':\n validators.validate_preset(upload)\n data['content_type'] = content_type\n fname = data['upload'].name\n data['filename'] = fname.replace(' ', '_').lower()\n return data\n\n def get_size(self, obj):\n size = obj.upload.size\n return size\n\n def get_created(self, obj):\n return obj.created_at\n <function token>\n\n\nclass ExportTaskResultSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTaskResult models.\"\"\"\n url = serializers.SerializerMethodField()\n size = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportTaskResult\n fields = 'filename', 'size', 'url'\n\n def get_url(self, obj):\n request = self.context['request']\n return request.build_absolute_uri(obj.download_url)\n\n def get_size(self, obj):\n return '{0:.3f} MB'.format(obj.size)\n\n\nclass ExportTaskExceptionSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTaskExceptions.\"\"\"\n exception = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportTaskException\n fields = 'exception',\n\n def get_exception(self, obj):\n exc_info = cPickle.loads(str(obj.exception)).exc_info\n return str(exc_info[1])\n\n\nclass ExportTaskSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTasks models.\"\"\"\n result = serializers.SerializerMethodField()\n errors = serializers.SerializerMethodField()\n started_at = serializers.SerializerMethodField()\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:tasks-detail',\n lookup_field='uid')\n\n\n class Meta:\n model = ExportTask\n fields = ('uid', 'url', 'name', 'status', 'started_at',\n 'finished_at', 'duration', 'result', 'errors')\n\n def get_result(self, obj):\n \"\"\"Serialize the ExportTaskResult for this ExportTask.\"\"\"\n try:\n result = obj.result\n serializer = ExportTaskResultSerializer(result, many=False,\n context=self.context)\n return serializer.data\n except ExportTaskResult.DoesNotExist as e:\n return None\n\n def get_errors(self, obj):\n \"\"\"Serialize the ExportTaskExceptions for this ExportTask.\"\"\"\n try:\n errors = obj.exceptions\n serializer = ExportTaskExceptionSerializer(errors, many=True,\n context=self.context)\n return serializer.data\n except ExportTaskException.DoesNotExist as e:\n return None\n\n def get_started_at(self, obj):\n if not obj.started_at:\n return None\n else:\n return obj.started_at\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return None\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Get the duration for this ExportTask.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n\nclass SimpleJobSerializer(serializers.Serializer):\n \"\"\"Return a sub-set of Job model attributes.\"\"\"\n uid = serializers.SerializerMethodField()\n name = serializers.CharField()\n description = serializers.CharField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n extent = serializers.SerializerMethodField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the Job's extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportRun.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name='api:runs-detail',\n lookup_field='uid')\n job = SimpleJobSerializer()\n tasks = ExportTaskSerializer(many=True)\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n user = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration',\n 'user', 'status', 'job', 'tasks')\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return {}\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Return the duration of the the run.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n def get_user(self, obj):\n return obj.user.username\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass ExportConfigSerializer(serializers.Serializer):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def create(self, validated_data):\n \"\"\"Create an ExportConfig instance.\"\"\"\n return ExportConfig.objects.create(**validated_data)\n <function token>\n <function token>\n\n def get_size(self, obj):\n size = obj.upload.size\n return size\n\n def get_created(self, obj):\n return obj.created_at\n <function token>\n\n\nclass ExportTaskResultSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTaskResult models.\"\"\"\n url = serializers.SerializerMethodField()\n size = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportTaskResult\n fields = 'filename', 'size', 'url'\n\n def get_url(self, obj):\n request = self.context['request']\n return request.build_absolute_uri(obj.download_url)\n\n def get_size(self, obj):\n return '{0:.3f} MB'.format(obj.size)\n\n\nclass ExportTaskExceptionSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTaskExceptions.\"\"\"\n exception = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportTaskException\n fields = 'exception',\n\n def get_exception(self, obj):\n exc_info = cPickle.loads(str(obj.exception)).exc_info\n return str(exc_info[1])\n\n\nclass ExportTaskSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTasks models.\"\"\"\n result = serializers.SerializerMethodField()\n errors = serializers.SerializerMethodField()\n started_at = serializers.SerializerMethodField()\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:tasks-detail',\n lookup_field='uid')\n\n\n class Meta:\n model = ExportTask\n fields = ('uid', 'url', 'name', 'status', 'started_at',\n 'finished_at', 'duration', 'result', 'errors')\n\n def get_result(self, obj):\n \"\"\"Serialize the ExportTaskResult for this ExportTask.\"\"\"\n try:\n result = obj.result\n serializer = ExportTaskResultSerializer(result, many=False,\n context=self.context)\n return serializer.data\n except ExportTaskResult.DoesNotExist as e:\n return None\n\n def get_errors(self, obj):\n \"\"\"Serialize the ExportTaskExceptions for this ExportTask.\"\"\"\n try:\n errors = obj.exceptions\n serializer = ExportTaskExceptionSerializer(errors, many=True,\n context=self.context)\n return serializer.data\n except ExportTaskException.DoesNotExist as e:\n return None\n\n def get_started_at(self, obj):\n if not obj.started_at:\n return None\n else:\n return obj.started_at\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return None\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Get the duration for this ExportTask.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n\nclass SimpleJobSerializer(serializers.Serializer):\n \"\"\"Return a sub-set of Job model attributes.\"\"\"\n uid = serializers.SerializerMethodField()\n name = serializers.CharField()\n description = serializers.CharField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n extent = serializers.SerializerMethodField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the Job's extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportRun.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name='api:runs-detail',\n lookup_field='uid')\n job = SimpleJobSerializer()\n tasks = ExportTaskSerializer(many=True)\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n user = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration',\n 'user', 'status', 'job', 'tasks')\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return {}\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Return the duration of the the run.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n def get_user(self, obj):\n return obj.user.username\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass ExportConfigSerializer(serializers.Serializer):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n <function token>\n\n def get_size(self, obj):\n size = obj.upload.size\n return size\n\n def get_created(self, obj):\n return obj.created_at\n <function token>\n\n\nclass ExportTaskResultSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTaskResult models.\"\"\"\n url = serializers.SerializerMethodField()\n size = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportTaskResult\n fields = 'filename', 'size', 'url'\n\n def get_url(self, obj):\n request = self.context['request']\n return request.build_absolute_uri(obj.download_url)\n\n def get_size(self, obj):\n return '{0:.3f} MB'.format(obj.size)\n\n\nclass ExportTaskExceptionSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTaskExceptions.\"\"\"\n exception = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportTaskException\n fields = 'exception',\n\n def get_exception(self, obj):\n exc_info = cPickle.loads(str(obj.exception)).exc_info\n return str(exc_info[1])\n\n\nclass ExportTaskSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTasks models.\"\"\"\n result = serializers.SerializerMethodField()\n errors = serializers.SerializerMethodField()\n started_at = serializers.SerializerMethodField()\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:tasks-detail',\n lookup_field='uid')\n\n\n class Meta:\n model = ExportTask\n fields = ('uid', 'url', 'name', 'status', 'started_at',\n 'finished_at', 'duration', 'result', 'errors')\n\n def get_result(self, obj):\n \"\"\"Serialize the ExportTaskResult for this ExportTask.\"\"\"\n try:\n result = obj.result\n serializer = ExportTaskResultSerializer(result, many=False,\n context=self.context)\n return serializer.data\n except ExportTaskResult.DoesNotExist as e:\n return None\n\n def get_errors(self, obj):\n \"\"\"Serialize the ExportTaskExceptions for this ExportTask.\"\"\"\n try:\n errors = obj.exceptions\n serializer = ExportTaskExceptionSerializer(errors, many=True,\n context=self.context)\n return serializer.data\n except ExportTaskException.DoesNotExist as e:\n return None\n\n def get_started_at(self, obj):\n if not obj.started_at:\n return None\n else:\n return obj.started_at\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return None\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Get the duration for this ExportTask.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n\nclass SimpleJobSerializer(serializers.Serializer):\n \"\"\"Return a sub-set of Job model attributes.\"\"\"\n uid = serializers.SerializerMethodField()\n name = serializers.CharField()\n description = serializers.CharField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n extent = serializers.SerializerMethodField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the Job's extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportRun.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name='api:runs-detail',\n lookup_field='uid')\n job = SimpleJobSerializer()\n tasks = ExportTaskSerializer(many=True)\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n user = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration',\n 'user', 'status', 'job', 'tasks')\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return {}\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Return the duration of the the run.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n def get_user(self, obj):\n return obj.user.username\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass ExportConfigSerializer(serializers.Serializer):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def get_created(self, obj):\n return obj.created_at\n <function token>\n\n\nclass ExportTaskResultSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTaskResult models.\"\"\"\n url = serializers.SerializerMethodField()\n size = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportTaskResult\n fields = 'filename', 'size', 'url'\n\n def get_url(self, obj):\n request = self.context['request']\n return request.build_absolute_uri(obj.download_url)\n\n def get_size(self, obj):\n return '{0:.3f} MB'.format(obj.size)\n\n\nclass ExportTaskExceptionSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTaskExceptions.\"\"\"\n exception = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportTaskException\n fields = 'exception',\n\n def get_exception(self, obj):\n exc_info = cPickle.loads(str(obj.exception)).exc_info\n return str(exc_info[1])\n\n\nclass ExportTaskSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTasks models.\"\"\"\n result = serializers.SerializerMethodField()\n errors = serializers.SerializerMethodField()\n started_at = serializers.SerializerMethodField()\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:tasks-detail',\n lookup_field='uid')\n\n\n class Meta:\n model = ExportTask\n fields = ('uid', 'url', 'name', 'status', 'started_at',\n 'finished_at', 'duration', 'result', 'errors')\n\n def get_result(self, obj):\n \"\"\"Serialize the ExportTaskResult for this ExportTask.\"\"\"\n try:\n result = obj.result\n serializer = ExportTaskResultSerializer(result, many=False,\n context=self.context)\n return serializer.data\n except ExportTaskResult.DoesNotExist as e:\n return None\n\n def get_errors(self, obj):\n \"\"\"Serialize the ExportTaskExceptions for this ExportTask.\"\"\"\n try:\n errors = obj.exceptions\n serializer = ExportTaskExceptionSerializer(errors, many=True,\n context=self.context)\n return serializer.data\n except ExportTaskException.DoesNotExist as e:\n return None\n\n def get_started_at(self, obj):\n if not obj.started_at:\n return None\n else:\n return obj.started_at\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return None\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Get the duration for this ExportTask.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n\nclass SimpleJobSerializer(serializers.Serializer):\n \"\"\"Return a sub-set of Job model attributes.\"\"\"\n uid = serializers.SerializerMethodField()\n name = serializers.CharField()\n description = serializers.CharField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n extent = serializers.SerializerMethodField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the Job's extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportRun.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name='api:runs-detail',\n lookup_field='uid')\n job = SimpleJobSerializer()\n tasks = ExportTaskSerializer(many=True)\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n user = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration',\n 'user', 'status', 'job', 'tasks')\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return {}\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Return the duration of the the run.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n def get_user(self, obj):\n return obj.user.username\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass ExportConfigSerializer(serializers.Serializer):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\nclass ExportTaskResultSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTaskResult models.\"\"\"\n url = serializers.SerializerMethodField()\n size = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportTaskResult\n fields = 'filename', 'size', 'url'\n\n def get_url(self, obj):\n request = self.context['request']\n return request.build_absolute_uri(obj.download_url)\n\n def get_size(self, obj):\n return '{0:.3f} MB'.format(obj.size)\n\n\nclass ExportTaskExceptionSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTaskExceptions.\"\"\"\n exception = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportTaskException\n fields = 'exception',\n\n def get_exception(self, obj):\n exc_info = cPickle.loads(str(obj.exception)).exc_info\n return str(exc_info[1])\n\n\nclass ExportTaskSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTasks models.\"\"\"\n result = serializers.SerializerMethodField()\n errors = serializers.SerializerMethodField()\n started_at = serializers.SerializerMethodField()\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:tasks-detail',\n lookup_field='uid')\n\n\n class Meta:\n model = ExportTask\n fields = ('uid', 'url', 'name', 'status', 'started_at',\n 'finished_at', 'duration', 'result', 'errors')\n\n def get_result(self, obj):\n \"\"\"Serialize the ExportTaskResult for this ExportTask.\"\"\"\n try:\n result = obj.result\n serializer = ExportTaskResultSerializer(result, many=False,\n context=self.context)\n return serializer.data\n except ExportTaskResult.DoesNotExist as e:\n return None\n\n def get_errors(self, obj):\n \"\"\"Serialize the ExportTaskExceptions for this ExportTask.\"\"\"\n try:\n errors = obj.exceptions\n serializer = ExportTaskExceptionSerializer(errors, many=True,\n context=self.context)\n return serializer.data\n except ExportTaskException.DoesNotExist as e:\n return None\n\n def get_started_at(self, obj):\n if not obj.started_at:\n return None\n else:\n return obj.started_at\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return None\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Get the duration for this ExportTask.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n\nclass SimpleJobSerializer(serializers.Serializer):\n \"\"\"Return a sub-set of Job model attributes.\"\"\"\n uid = serializers.SerializerMethodField()\n name = serializers.CharField()\n description = serializers.CharField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n extent = serializers.SerializerMethodField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the Job's extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportRun.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name='api:runs-detail',\n lookup_field='uid')\n job = SimpleJobSerializer()\n tasks = ExportTaskSerializer(many=True)\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n user = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration',\n 'user', 'status', 'job', 'tasks')\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return {}\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Return the duration of the the run.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n def get_user(self, obj):\n return obj.user.username\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n\n\nclass ExportTaskResultSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTaskResult models.\"\"\"\n url = serializers.SerializerMethodField()\n size = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportTaskResult\n fields = 'filename', 'size', 'url'\n\n def get_url(self, obj):\n request = self.context['request']\n return request.build_absolute_uri(obj.download_url)\n\n def get_size(self, obj):\n return '{0:.3f} MB'.format(obj.size)\n\n\nclass ExportTaskExceptionSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTaskExceptions.\"\"\"\n exception = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportTaskException\n fields = 'exception',\n\n def get_exception(self, obj):\n exc_info = cPickle.loads(str(obj.exception)).exc_info\n return str(exc_info[1])\n\n\nclass ExportTaskSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTasks models.\"\"\"\n result = serializers.SerializerMethodField()\n errors = serializers.SerializerMethodField()\n started_at = serializers.SerializerMethodField()\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:tasks-detail',\n lookup_field='uid')\n\n\n class Meta:\n model = ExportTask\n fields = ('uid', 'url', 'name', 'status', 'started_at',\n 'finished_at', 'duration', 'result', 'errors')\n\n def get_result(self, obj):\n \"\"\"Serialize the ExportTaskResult for this ExportTask.\"\"\"\n try:\n result = obj.result\n serializer = ExportTaskResultSerializer(result, many=False,\n context=self.context)\n return serializer.data\n except ExportTaskResult.DoesNotExist as e:\n return None\n\n def get_errors(self, obj):\n \"\"\"Serialize the ExportTaskExceptions for this ExportTask.\"\"\"\n try:\n errors = obj.exceptions\n serializer = ExportTaskExceptionSerializer(errors, many=True,\n context=self.context)\n return serializer.data\n except ExportTaskException.DoesNotExist as e:\n return None\n\n def get_started_at(self, obj):\n if not obj.started_at:\n return None\n else:\n return obj.started_at\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return None\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Get the duration for this ExportTask.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n\nclass SimpleJobSerializer(serializers.Serializer):\n \"\"\"Return a sub-set of Job model attributes.\"\"\"\n uid = serializers.SerializerMethodField()\n name = serializers.CharField()\n description = serializers.CharField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n extent = serializers.SerializerMethodField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the Job's extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportRun.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name='api:runs-detail',\n lookup_field='uid')\n job = SimpleJobSerializer()\n tasks = ExportTaskSerializer(many=True)\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n user = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration',\n 'user', 'status', 'job', 'tasks')\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return {}\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Return the duration of the the run.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n def get_user(self, obj):\n return obj.user.username\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n\n\nclass ExportTaskResultSerializer(serializers.ModelSerializer):\n <docstring token>\n url = serializers.SerializerMethodField()\n size = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportTaskResult\n fields = 'filename', 'size', 'url'\n\n def get_url(self, obj):\n request = self.context['request']\n return request.build_absolute_uri(obj.download_url)\n\n def get_size(self, obj):\n return '{0:.3f} MB'.format(obj.size)\n\n\nclass ExportTaskExceptionSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTaskExceptions.\"\"\"\n exception = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportTaskException\n fields = 'exception',\n\n def get_exception(self, obj):\n exc_info = cPickle.loads(str(obj.exception)).exc_info\n return str(exc_info[1])\n\n\nclass ExportTaskSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTasks models.\"\"\"\n result = serializers.SerializerMethodField()\n errors = serializers.SerializerMethodField()\n started_at = serializers.SerializerMethodField()\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:tasks-detail',\n lookup_field='uid')\n\n\n class Meta:\n model = ExportTask\n fields = ('uid', 'url', 'name', 'status', 'started_at',\n 'finished_at', 'duration', 'result', 'errors')\n\n def get_result(self, obj):\n \"\"\"Serialize the ExportTaskResult for this ExportTask.\"\"\"\n try:\n result = obj.result\n serializer = ExportTaskResultSerializer(result, many=False,\n context=self.context)\n return serializer.data\n except ExportTaskResult.DoesNotExist as e:\n return None\n\n def get_errors(self, obj):\n \"\"\"Serialize the ExportTaskExceptions for this ExportTask.\"\"\"\n try:\n errors = obj.exceptions\n serializer = ExportTaskExceptionSerializer(errors, many=True,\n context=self.context)\n return serializer.data\n except ExportTaskException.DoesNotExist as e:\n return None\n\n def get_started_at(self, obj):\n if not obj.started_at:\n return None\n else:\n return obj.started_at\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return None\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Get the duration for this ExportTask.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n\nclass SimpleJobSerializer(serializers.Serializer):\n \"\"\"Return a sub-set of Job model attributes.\"\"\"\n uid = serializers.SerializerMethodField()\n name = serializers.CharField()\n description = serializers.CharField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n extent = serializers.SerializerMethodField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the Job's extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportRun.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name='api:runs-detail',\n lookup_field='uid')\n job = SimpleJobSerializer()\n tasks = ExportTaskSerializer(many=True)\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n user = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration',\n 'user', 'status', 'job', 'tasks')\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return {}\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Return the duration of the the run.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n def get_user(self, obj):\n return obj.user.username\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n\n\nclass ExportTaskResultSerializer(serializers.ModelSerializer):\n <docstring token>\n <assignment token>\n <assignment token>\n\n\n class Meta:\n model = ExportTaskResult\n fields = 'filename', 'size', 'url'\n\n def get_url(self, obj):\n request = self.context['request']\n return request.build_absolute_uri(obj.download_url)\n\n def get_size(self, obj):\n return '{0:.3f} MB'.format(obj.size)\n\n\nclass ExportTaskExceptionSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTaskExceptions.\"\"\"\n exception = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportTaskException\n fields = 'exception',\n\n def get_exception(self, obj):\n exc_info = cPickle.loads(str(obj.exception)).exc_info\n return str(exc_info[1])\n\n\nclass ExportTaskSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTasks models.\"\"\"\n result = serializers.SerializerMethodField()\n errors = serializers.SerializerMethodField()\n started_at = serializers.SerializerMethodField()\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:tasks-detail',\n lookup_field='uid')\n\n\n class Meta:\n model = ExportTask\n fields = ('uid', 'url', 'name', 'status', 'started_at',\n 'finished_at', 'duration', 'result', 'errors')\n\n def get_result(self, obj):\n \"\"\"Serialize the ExportTaskResult for this ExportTask.\"\"\"\n try:\n result = obj.result\n serializer = ExportTaskResultSerializer(result, many=False,\n context=self.context)\n return serializer.data\n except ExportTaskResult.DoesNotExist as e:\n return None\n\n def get_errors(self, obj):\n \"\"\"Serialize the ExportTaskExceptions for this ExportTask.\"\"\"\n try:\n errors = obj.exceptions\n serializer = ExportTaskExceptionSerializer(errors, many=True,\n context=self.context)\n return serializer.data\n except ExportTaskException.DoesNotExist as e:\n return None\n\n def get_started_at(self, obj):\n if not obj.started_at:\n return None\n else:\n return obj.started_at\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return None\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Get the duration for this ExportTask.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n\nclass SimpleJobSerializer(serializers.Serializer):\n \"\"\"Return a sub-set of Job model attributes.\"\"\"\n uid = serializers.SerializerMethodField()\n name = serializers.CharField()\n description = serializers.CharField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n extent = serializers.SerializerMethodField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the Job's extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportRun.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name='api:runs-detail',\n lookup_field='uid')\n job = SimpleJobSerializer()\n tasks = ExportTaskSerializer(many=True)\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n user = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration',\n 'user', 'status', 'job', 'tasks')\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return {}\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Return the duration of the the run.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n def get_user(self, obj):\n return obj.user.username\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n\n\nclass ExportTaskResultSerializer(serializers.ModelSerializer):\n <docstring token>\n <assignment token>\n <assignment token>\n\n\n class Meta:\n model = ExportTaskResult\n fields = 'filename', 'size', 'url'\n <function token>\n\n def get_size(self, obj):\n return '{0:.3f} MB'.format(obj.size)\n\n\nclass ExportTaskExceptionSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTaskExceptions.\"\"\"\n exception = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportTaskException\n fields = 'exception',\n\n def get_exception(self, obj):\n exc_info = cPickle.loads(str(obj.exception)).exc_info\n return str(exc_info[1])\n\n\nclass ExportTaskSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTasks models.\"\"\"\n result = serializers.SerializerMethodField()\n errors = serializers.SerializerMethodField()\n started_at = serializers.SerializerMethodField()\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:tasks-detail',\n lookup_field='uid')\n\n\n class Meta:\n model = ExportTask\n fields = ('uid', 'url', 'name', 'status', 'started_at',\n 'finished_at', 'duration', 'result', 'errors')\n\n def get_result(self, obj):\n \"\"\"Serialize the ExportTaskResult for this ExportTask.\"\"\"\n try:\n result = obj.result\n serializer = ExportTaskResultSerializer(result, many=False,\n context=self.context)\n return serializer.data\n except ExportTaskResult.DoesNotExist as e:\n return None\n\n def get_errors(self, obj):\n \"\"\"Serialize the ExportTaskExceptions for this ExportTask.\"\"\"\n try:\n errors = obj.exceptions\n serializer = ExportTaskExceptionSerializer(errors, many=True,\n context=self.context)\n return serializer.data\n except ExportTaskException.DoesNotExist as e:\n return None\n\n def get_started_at(self, obj):\n if not obj.started_at:\n return None\n else:\n return obj.started_at\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return None\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Get the duration for this ExportTask.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n\nclass SimpleJobSerializer(serializers.Serializer):\n \"\"\"Return a sub-set of Job model attributes.\"\"\"\n uid = serializers.SerializerMethodField()\n name = serializers.CharField()\n description = serializers.CharField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n extent = serializers.SerializerMethodField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the Job's extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportRun.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name='api:runs-detail',\n lookup_field='uid')\n job = SimpleJobSerializer()\n tasks = ExportTaskSerializer(many=True)\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n user = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration',\n 'user', 'status', 'job', 'tasks')\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return {}\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Return the duration of the the run.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n def get_user(self, obj):\n return obj.user.username\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n\n\nclass ExportTaskResultSerializer(serializers.ModelSerializer):\n <docstring token>\n <assignment token>\n <assignment token>\n\n\n class Meta:\n model = ExportTaskResult\n fields = 'filename', 'size', 'url'\n <function token>\n <function token>\n\n\nclass ExportTaskExceptionSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTaskExceptions.\"\"\"\n exception = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportTaskException\n fields = 'exception',\n\n def get_exception(self, obj):\n exc_info = cPickle.loads(str(obj.exception)).exc_info\n return str(exc_info[1])\n\n\nclass ExportTaskSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTasks models.\"\"\"\n result = serializers.SerializerMethodField()\n errors = serializers.SerializerMethodField()\n started_at = serializers.SerializerMethodField()\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:tasks-detail',\n lookup_field='uid')\n\n\n class Meta:\n model = ExportTask\n fields = ('uid', 'url', 'name', 'status', 'started_at',\n 'finished_at', 'duration', 'result', 'errors')\n\n def get_result(self, obj):\n \"\"\"Serialize the ExportTaskResult for this ExportTask.\"\"\"\n try:\n result = obj.result\n serializer = ExportTaskResultSerializer(result, many=False,\n context=self.context)\n return serializer.data\n except ExportTaskResult.DoesNotExist as e:\n return None\n\n def get_errors(self, obj):\n \"\"\"Serialize the ExportTaskExceptions for this ExportTask.\"\"\"\n try:\n errors = obj.exceptions\n serializer = ExportTaskExceptionSerializer(errors, many=True,\n context=self.context)\n return serializer.data\n except ExportTaskException.DoesNotExist as e:\n return None\n\n def get_started_at(self, obj):\n if not obj.started_at:\n return None\n else:\n return obj.started_at\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return None\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Get the duration for this ExportTask.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n\nclass SimpleJobSerializer(serializers.Serializer):\n \"\"\"Return a sub-set of Job model attributes.\"\"\"\n uid = serializers.SerializerMethodField()\n name = serializers.CharField()\n description = serializers.CharField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n extent = serializers.SerializerMethodField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the Job's extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportRun.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name='api:runs-detail',\n lookup_field='uid')\n job = SimpleJobSerializer()\n tasks = ExportTaskSerializer(many=True)\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n user = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration',\n 'user', 'status', 'job', 'tasks')\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return {}\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Return the duration of the the run.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n def get_user(self, obj):\n return obj.user.username\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass ExportTaskExceptionSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTaskExceptions.\"\"\"\n exception = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportTaskException\n fields = 'exception',\n\n def get_exception(self, obj):\n exc_info = cPickle.loads(str(obj.exception)).exc_info\n return str(exc_info[1])\n\n\nclass ExportTaskSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTasks models.\"\"\"\n result = serializers.SerializerMethodField()\n errors = serializers.SerializerMethodField()\n started_at = serializers.SerializerMethodField()\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:tasks-detail',\n lookup_field='uid')\n\n\n class Meta:\n model = ExportTask\n fields = ('uid', 'url', 'name', 'status', 'started_at',\n 'finished_at', 'duration', 'result', 'errors')\n\n def get_result(self, obj):\n \"\"\"Serialize the ExportTaskResult for this ExportTask.\"\"\"\n try:\n result = obj.result\n serializer = ExportTaskResultSerializer(result, many=False,\n context=self.context)\n return serializer.data\n except ExportTaskResult.DoesNotExist as e:\n return None\n\n def get_errors(self, obj):\n \"\"\"Serialize the ExportTaskExceptions for this ExportTask.\"\"\"\n try:\n errors = obj.exceptions\n serializer = ExportTaskExceptionSerializer(errors, many=True,\n context=self.context)\n return serializer.data\n except ExportTaskException.DoesNotExist as e:\n return None\n\n def get_started_at(self, obj):\n if not obj.started_at:\n return None\n else:\n return obj.started_at\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return None\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Get the duration for this ExportTask.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n\nclass SimpleJobSerializer(serializers.Serializer):\n \"\"\"Return a sub-set of Job model attributes.\"\"\"\n uid = serializers.SerializerMethodField()\n name = serializers.CharField()\n description = serializers.CharField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n extent = serializers.SerializerMethodField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the Job's extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportRun.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name='api:runs-detail',\n lookup_field='uid')\n job = SimpleJobSerializer()\n tasks = ExportTaskSerializer(many=True)\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n user = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration',\n 'user', 'status', 'job', 'tasks')\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return {}\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Return the duration of the the run.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n def get_user(self, obj):\n return obj.user.username\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass ExportTaskExceptionSerializer(serializers.ModelSerializer):\n <docstring token>\n exception = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportTaskException\n fields = 'exception',\n\n def get_exception(self, obj):\n exc_info = cPickle.loads(str(obj.exception)).exc_info\n return str(exc_info[1])\n\n\nclass ExportTaskSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTasks models.\"\"\"\n result = serializers.SerializerMethodField()\n errors = serializers.SerializerMethodField()\n started_at = serializers.SerializerMethodField()\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:tasks-detail',\n lookup_field='uid')\n\n\n class Meta:\n model = ExportTask\n fields = ('uid', 'url', 'name', 'status', 'started_at',\n 'finished_at', 'duration', 'result', 'errors')\n\n def get_result(self, obj):\n \"\"\"Serialize the ExportTaskResult for this ExportTask.\"\"\"\n try:\n result = obj.result\n serializer = ExportTaskResultSerializer(result, many=False,\n context=self.context)\n return serializer.data\n except ExportTaskResult.DoesNotExist as e:\n return None\n\n def get_errors(self, obj):\n \"\"\"Serialize the ExportTaskExceptions for this ExportTask.\"\"\"\n try:\n errors = obj.exceptions\n serializer = ExportTaskExceptionSerializer(errors, many=True,\n context=self.context)\n return serializer.data\n except ExportTaskException.DoesNotExist as e:\n return None\n\n def get_started_at(self, obj):\n if not obj.started_at:\n return None\n else:\n return obj.started_at\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return None\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Get the duration for this ExportTask.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n\nclass SimpleJobSerializer(serializers.Serializer):\n \"\"\"Return a sub-set of Job model attributes.\"\"\"\n uid = serializers.SerializerMethodField()\n name = serializers.CharField()\n description = serializers.CharField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n extent = serializers.SerializerMethodField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the Job's extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportRun.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name='api:runs-detail',\n lookup_field='uid')\n job = SimpleJobSerializer()\n tasks = ExportTaskSerializer(many=True)\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n user = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration',\n 'user', 'status', 'job', 'tasks')\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return {}\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Return the duration of the the run.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n def get_user(self, obj):\n return obj.user.username\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass ExportTaskExceptionSerializer(serializers.ModelSerializer):\n <docstring token>\n <assignment token>\n\n\n class Meta:\n model = ExportTaskException\n fields = 'exception',\n\n def get_exception(self, obj):\n exc_info = cPickle.loads(str(obj.exception)).exc_info\n return str(exc_info[1])\n\n\nclass ExportTaskSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTasks models.\"\"\"\n result = serializers.SerializerMethodField()\n errors = serializers.SerializerMethodField()\n started_at = serializers.SerializerMethodField()\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:tasks-detail',\n lookup_field='uid')\n\n\n class Meta:\n model = ExportTask\n fields = ('uid', 'url', 'name', 'status', 'started_at',\n 'finished_at', 'duration', 'result', 'errors')\n\n def get_result(self, obj):\n \"\"\"Serialize the ExportTaskResult for this ExportTask.\"\"\"\n try:\n result = obj.result\n serializer = ExportTaskResultSerializer(result, many=False,\n context=self.context)\n return serializer.data\n except ExportTaskResult.DoesNotExist as e:\n return None\n\n def get_errors(self, obj):\n \"\"\"Serialize the ExportTaskExceptions for this ExportTask.\"\"\"\n try:\n errors = obj.exceptions\n serializer = ExportTaskExceptionSerializer(errors, many=True,\n context=self.context)\n return serializer.data\n except ExportTaskException.DoesNotExist as e:\n return None\n\n def get_started_at(self, obj):\n if not obj.started_at:\n return None\n else:\n return obj.started_at\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return None\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Get the duration for this ExportTask.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n\nclass SimpleJobSerializer(serializers.Serializer):\n \"\"\"Return a sub-set of Job model attributes.\"\"\"\n uid = serializers.SerializerMethodField()\n name = serializers.CharField()\n description = serializers.CharField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n extent = serializers.SerializerMethodField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the Job's extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportRun.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name='api:runs-detail',\n lookup_field='uid')\n job = SimpleJobSerializer()\n tasks = ExportTaskSerializer(many=True)\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n user = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration',\n 'user', 'status', 'job', 'tasks')\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return {}\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Return the duration of the the run.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n def get_user(self, obj):\n return obj.user.username\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass ExportTaskExceptionSerializer(serializers.ModelSerializer):\n <docstring token>\n <assignment token>\n\n\n class Meta:\n model = ExportTaskException\n fields = 'exception',\n <function token>\n\n\nclass ExportTaskSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTasks models.\"\"\"\n result = serializers.SerializerMethodField()\n errors = serializers.SerializerMethodField()\n started_at = serializers.SerializerMethodField()\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:tasks-detail',\n lookup_field='uid')\n\n\n class Meta:\n model = ExportTask\n fields = ('uid', 'url', 'name', 'status', 'started_at',\n 'finished_at', 'duration', 'result', 'errors')\n\n def get_result(self, obj):\n \"\"\"Serialize the ExportTaskResult for this ExportTask.\"\"\"\n try:\n result = obj.result\n serializer = ExportTaskResultSerializer(result, many=False,\n context=self.context)\n return serializer.data\n except ExportTaskResult.DoesNotExist as e:\n return None\n\n def get_errors(self, obj):\n \"\"\"Serialize the ExportTaskExceptions for this ExportTask.\"\"\"\n try:\n errors = obj.exceptions\n serializer = ExportTaskExceptionSerializer(errors, many=True,\n context=self.context)\n return serializer.data\n except ExportTaskException.DoesNotExist as e:\n return None\n\n def get_started_at(self, obj):\n if not obj.started_at:\n return None\n else:\n return obj.started_at\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return None\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Get the duration for this ExportTask.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n\nclass SimpleJobSerializer(serializers.Serializer):\n \"\"\"Return a sub-set of Job model attributes.\"\"\"\n uid = serializers.SerializerMethodField()\n name = serializers.CharField()\n description = serializers.CharField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n extent = serializers.SerializerMethodField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the Job's extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportRun.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name='api:runs-detail',\n lookup_field='uid')\n job = SimpleJobSerializer()\n tasks = ExportTaskSerializer(many=True)\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n user = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration',\n 'user', 'status', 'job', 'tasks')\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return {}\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Return the duration of the the run.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n def get_user(self, obj):\n return obj.user.username\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass ExportTaskSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportTasks models.\"\"\"\n result = serializers.SerializerMethodField()\n errors = serializers.SerializerMethodField()\n started_at = serializers.SerializerMethodField()\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:tasks-detail',\n lookup_field='uid')\n\n\n class Meta:\n model = ExportTask\n fields = ('uid', 'url', 'name', 'status', 'started_at',\n 'finished_at', 'duration', 'result', 'errors')\n\n def get_result(self, obj):\n \"\"\"Serialize the ExportTaskResult for this ExportTask.\"\"\"\n try:\n result = obj.result\n serializer = ExportTaskResultSerializer(result, many=False,\n context=self.context)\n return serializer.data\n except ExportTaskResult.DoesNotExist as e:\n return None\n\n def get_errors(self, obj):\n \"\"\"Serialize the ExportTaskExceptions for this ExportTask.\"\"\"\n try:\n errors = obj.exceptions\n serializer = ExportTaskExceptionSerializer(errors, many=True,\n context=self.context)\n return serializer.data\n except ExportTaskException.DoesNotExist as e:\n return None\n\n def get_started_at(self, obj):\n if not obj.started_at:\n return None\n else:\n return obj.started_at\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return None\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Get the duration for this ExportTask.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n\nclass SimpleJobSerializer(serializers.Serializer):\n \"\"\"Return a sub-set of Job model attributes.\"\"\"\n uid = serializers.SerializerMethodField()\n name = serializers.CharField()\n description = serializers.CharField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n extent = serializers.SerializerMethodField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the Job's extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportRun.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name='api:runs-detail',\n lookup_field='uid')\n job = SimpleJobSerializer()\n tasks = ExportTaskSerializer(many=True)\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n user = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration',\n 'user', 'status', 'job', 'tasks')\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return {}\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Return the duration of the the run.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n def get_user(self, obj):\n return obj.user.username\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass ExportTaskSerializer(serializers.ModelSerializer):\n <docstring token>\n result = serializers.SerializerMethodField()\n errors = serializers.SerializerMethodField()\n started_at = serializers.SerializerMethodField()\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:tasks-detail',\n lookup_field='uid')\n\n\n class Meta:\n model = ExportTask\n fields = ('uid', 'url', 'name', 'status', 'started_at',\n 'finished_at', 'duration', 'result', 'errors')\n\n def get_result(self, obj):\n \"\"\"Serialize the ExportTaskResult for this ExportTask.\"\"\"\n try:\n result = obj.result\n serializer = ExportTaskResultSerializer(result, many=False,\n context=self.context)\n return serializer.data\n except ExportTaskResult.DoesNotExist as e:\n return None\n\n def get_errors(self, obj):\n \"\"\"Serialize the ExportTaskExceptions for this ExportTask.\"\"\"\n try:\n errors = obj.exceptions\n serializer = ExportTaskExceptionSerializer(errors, many=True,\n context=self.context)\n return serializer.data\n except ExportTaskException.DoesNotExist as e:\n return None\n\n def get_started_at(self, obj):\n if not obj.started_at:\n return None\n else:\n return obj.started_at\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return None\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Get the duration for this ExportTask.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n\nclass SimpleJobSerializer(serializers.Serializer):\n \"\"\"Return a sub-set of Job model attributes.\"\"\"\n uid = serializers.SerializerMethodField()\n name = serializers.CharField()\n description = serializers.CharField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n extent = serializers.SerializerMethodField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the Job's extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportRun.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name='api:runs-detail',\n lookup_field='uid')\n job = SimpleJobSerializer()\n tasks = ExportTaskSerializer(many=True)\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n user = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration',\n 'user', 'status', 'job', 'tasks')\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return {}\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Return the duration of the the run.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n def get_user(self, obj):\n return obj.user.username\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass ExportTaskSerializer(serializers.ModelSerializer):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n\n class Meta:\n model = ExportTask\n fields = ('uid', 'url', 'name', 'status', 'started_at',\n 'finished_at', 'duration', 'result', 'errors')\n\n def get_result(self, obj):\n \"\"\"Serialize the ExportTaskResult for this ExportTask.\"\"\"\n try:\n result = obj.result\n serializer = ExportTaskResultSerializer(result, many=False,\n context=self.context)\n return serializer.data\n except ExportTaskResult.DoesNotExist as e:\n return None\n\n def get_errors(self, obj):\n \"\"\"Serialize the ExportTaskExceptions for this ExportTask.\"\"\"\n try:\n errors = obj.exceptions\n serializer = ExportTaskExceptionSerializer(errors, many=True,\n context=self.context)\n return serializer.data\n except ExportTaskException.DoesNotExist as e:\n return None\n\n def get_started_at(self, obj):\n if not obj.started_at:\n return None\n else:\n return obj.started_at\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return None\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Get the duration for this ExportTask.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n\nclass SimpleJobSerializer(serializers.Serializer):\n \"\"\"Return a sub-set of Job model attributes.\"\"\"\n uid = serializers.SerializerMethodField()\n name = serializers.CharField()\n description = serializers.CharField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n extent = serializers.SerializerMethodField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the Job's extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportRun.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name='api:runs-detail',\n lookup_field='uid')\n job = SimpleJobSerializer()\n tasks = ExportTaskSerializer(many=True)\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n user = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration',\n 'user', 'status', 'job', 'tasks')\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return {}\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Return the duration of the the run.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n def get_user(self, obj):\n return obj.user.username\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass ExportTaskSerializer(serializers.ModelSerializer):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n\n class Meta:\n model = ExportTask\n fields = ('uid', 'url', 'name', 'status', 'started_at',\n 'finished_at', 'duration', 'result', 'errors')\n <function token>\n\n def get_errors(self, obj):\n \"\"\"Serialize the ExportTaskExceptions for this ExportTask.\"\"\"\n try:\n errors = obj.exceptions\n serializer = ExportTaskExceptionSerializer(errors, many=True,\n context=self.context)\n return serializer.data\n except ExportTaskException.DoesNotExist as e:\n return None\n\n def get_started_at(self, obj):\n if not obj.started_at:\n return None\n else:\n return obj.started_at\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return None\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Get the duration for this ExportTask.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n\nclass SimpleJobSerializer(serializers.Serializer):\n \"\"\"Return a sub-set of Job model attributes.\"\"\"\n uid = serializers.SerializerMethodField()\n name = serializers.CharField()\n description = serializers.CharField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n extent = serializers.SerializerMethodField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the Job's extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportRun.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name='api:runs-detail',\n lookup_field='uid')\n job = SimpleJobSerializer()\n tasks = ExportTaskSerializer(many=True)\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n user = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration',\n 'user', 'status', 'job', 'tasks')\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return {}\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Return the duration of the the run.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n def get_user(self, obj):\n return obj.user.username\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass ExportTaskSerializer(serializers.ModelSerializer):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n\n class Meta:\n model = ExportTask\n fields = ('uid', 'url', 'name', 'status', 'started_at',\n 'finished_at', 'duration', 'result', 'errors')\n <function token>\n\n def get_errors(self, obj):\n \"\"\"Serialize the ExportTaskExceptions for this ExportTask.\"\"\"\n try:\n errors = obj.exceptions\n serializer = ExportTaskExceptionSerializer(errors, many=True,\n context=self.context)\n return serializer.data\n except ExportTaskException.DoesNotExist as e:\n return None\n\n def get_started_at(self, obj):\n if not obj.started_at:\n return None\n else:\n return obj.started_at\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return None\n else:\n return obj.finished_at\n <function token>\n\n\nclass SimpleJobSerializer(serializers.Serializer):\n \"\"\"Return a sub-set of Job model attributes.\"\"\"\n uid = serializers.SerializerMethodField()\n name = serializers.CharField()\n description = serializers.CharField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n extent = serializers.SerializerMethodField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the Job's extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportRun.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name='api:runs-detail',\n lookup_field='uid')\n job = SimpleJobSerializer()\n tasks = ExportTaskSerializer(many=True)\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n user = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration',\n 'user', 'status', 'job', 'tasks')\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return {}\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Return the duration of the the run.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n def get_user(self, obj):\n return obj.user.username\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass ExportTaskSerializer(serializers.ModelSerializer):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n\n class Meta:\n model = ExportTask\n fields = ('uid', 'url', 'name', 'status', 'started_at',\n 'finished_at', 'duration', 'result', 'errors')\n <function token>\n\n def get_errors(self, obj):\n \"\"\"Serialize the ExportTaskExceptions for this ExportTask.\"\"\"\n try:\n errors = obj.exceptions\n serializer = ExportTaskExceptionSerializer(errors, many=True,\n context=self.context)\n return serializer.data\n except ExportTaskException.DoesNotExist as e:\n return None\n\n def get_started_at(self, obj):\n if not obj.started_at:\n return None\n else:\n return obj.started_at\n <function token>\n <function token>\n\n\nclass SimpleJobSerializer(serializers.Serializer):\n \"\"\"Return a sub-set of Job model attributes.\"\"\"\n uid = serializers.SerializerMethodField()\n name = serializers.CharField()\n description = serializers.CharField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n extent = serializers.SerializerMethodField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the Job's extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportRun.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name='api:runs-detail',\n lookup_field='uid')\n job = SimpleJobSerializer()\n tasks = ExportTaskSerializer(many=True)\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n user = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration',\n 'user', 'status', 'job', 'tasks')\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return {}\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Return the duration of the the run.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n def get_user(self, obj):\n return obj.user.username\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass ExportTaskSerializer(serializers.ModelSerializer):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n\n class Meta:\n model = ExportTask\n fields = ('uid', 'url', 'name', 'status', 'started_at',\n 'finished_at', 'duration', 'result', 'errors')\n <function token>\n\n def get_errors(self, obj):\n \"\"\"Serialize the ExportTaskExceptions for this ExportTask.\"\"\"\n try:\n errors = obj.exceptions\n serializer = ExportTaskExceptionSerializer(errors, many=True,\n context=self.context)\n return serializer.data\n except ExportTaskException.DoesNotExist as e:\n return None\n <function token>\n <function token>\n <function token>\n\n\nclass SimpleJobSerializer(serializers.Serializer):\n \"\"\"Return a sub-set of Job model attributes.\"\"\"\n uid = serializers.SerializerMethodField()\n name = serializers.CharField()\n description = serializers.CharField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n extent = serializers.SerializerMethodField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the Job's extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportRun.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name='api:runs-detail',\n lookup_field='uid')\n job = SimpleJobSerializer()\n tasks = ExportTaskSerializer(many=True)\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n user = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration',\n 'user', 'status', 'job', 'tasks')\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return {}\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Return the duration of the the run.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n def get_user(self, obj):\n return obj.user.username\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass ExportTaskSerializer(serializers.ModelSerializer):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n\n class Meta:\n model = ExportTask\n fields = ('uid', 'url', 'name', 'status', 'started_at',\n 'finished_at', 'duration', 'result', 'errors')\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\nclass SimpleJobSerializer(serializers.Serializer):\n \"\"\"Return a sub-set of Job model attributes.\"\"\"\n uid = serializers.SerializerMethodField()\n name = serializers.CharField()\n description = serializers.CharField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n extent = serializers.SerializerMethodField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the Job's extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportRun.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name='api:runs-detail',\n lookup_field='uid')\n job = SimpleJobSerializer()\n tasks = ExportTaskSerializer(many=True)\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n user = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration',\n 'user', 'status', 'job', 'tasks')\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return {}\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Return the duration of the the run.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n def get_user(self, obj):\n return obj.user.username\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass SimpleJobSerializer(serializers.Serializer):\n \"\"\"Return a sub-set of Job model attributes.\"\"\"\n uid = serializers.SerializerMethodField()\n name = serializers.CharField()\n description = serializers.CharField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n extent = serializers.SerializerMethodField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the Job's extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportRun.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name='api:runs-detail',\n lookup_field='uid')\n job = SimpleJobSerializer()\n tasks = ExportTaskSerializer(many=True)\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n user = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration',\n 'user', 'status', 'job', 'tasks')\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return {}\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Return the duration of the the run.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n def get_user(self, obj):\n return obj.user.username\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass SimpleJobSerializer(serializers.Serializer):\n <docstring token>\n uid = serializers.SerializerMethodField()\n name = serializers.CharField()\n description = serializers.CharField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n extent = serializers.SerializerMethodField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the Job's extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportRun.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name='api:runs-detail',\n lookup_field='uid')\n job = SimpleJobSerializer()\n tasks = ExportTaskSerializer(many=True)\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n user = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration',\n 'user', 'status', 'job', 'tasks')\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return {}\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Return the duration of the the run.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n def get_user(self, obj):\n return obj.user.username\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass SimpleJobSerializer(serializers.Serializer):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the Job's extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportRun.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name='api:runs-detail',\n lookup_field='uid')\n job = SimpleJobSerializer()\n tasks = ExportTaskSerializer(many=True)\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n user = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration',\n 'user', 'status', 'job', 'tasks')\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return {}\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Return the duration of the the run.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n def get_user(self, obj):\n return obj.user.username\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass SimpleJobSerializer(serializers.Serializer):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def get_uid(self, obj):\n return obj.uid\n <function token>\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportRun.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name='api:runs-detail',\n lookup_field='uid')\n job = SimpleJobSerializer()\n tasks = ExportTaskSerializer(many=True)\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n user = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration',\n 'user', 'status', 'job', 'tasks')\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return {}\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Return the duration of the the run.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n def get_user(self, obj):\n return obj.user.username\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass SimpleJobSerializer(serializers.Serializer):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportRun.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name='api:runs-detail',\n lookup_field='uid')\n job = SimpleJobSerializer()\n tasks = ExportTaskSerializer(many=True)\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n user = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration',\n 'user', 'status', 'job', 'tasks')\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return {}\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Return the duration of the the run.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n def get_user(self, obj):\n return obj.user.username\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n \"\"\"Serialize ExportRun.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name='api:runs-detail',\n lookup_field='uid')\n job = SimpleJobSerializer()\n tasks = ExportTaskSerializer(many=True)\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n user = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration',\n 'user', 'status', 'job', 'tasks')\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return {}\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Return the duration of the the run.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n def get_user(self, obj):\n return obj.user.username\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n <docstring token>\n url = serializers.HyperlinkedIdentityField(view_name='api:runs-detail',\n lookup_field='uid')\n job = SimpleJobSerializer()\n tasks = ExportTaskSerializer(many=True)\n finished_at = serializers.SerializerMethodField()\n duration = serializers.SerializerMethodField()\n user = serializers.SerializerMethodField()\n\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration',\n 'user', 'status', 'job', 'tasks')\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return {}\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Return the duration of the the run.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n def get_user(self, obj):\n return obj.user.username\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration',\n 'user', 'status', 'job', 'tasks')\n\n def get_finished_at(self, obj):\n if not obj.finished_at:\n return {}\n else:\n return obj.finished_at\n\n def get_duration(self, obj):\n \"\"\"Return the duration of the the run.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n def get_user(self, obj):\n return obj.user.username\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration',\n 'user', 'status', 'job', 'tasks')\n <function token>\n\n def get_duration(self, obj):\n \"\"\"Return the duration of the the run.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n\n def get_user(self, obj):\n return obj.user.username\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration',\n 'user', 'status', 'job', 'tasks')\n <function token>\n\n def get_duration(self, obj):\n \"\"\"Return the duration of the the run.\"\"\"\n started = obj.started_at\n finished = obj.finished_at\n if started and finished:\n return str(finished - started)\n else:\n return None\n <function token>\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass ExportRunSerializer(serializers.ModelSerializer):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n\n class Meta:\n model = ExportRun\n fields = ('uid', 'url', 'started_at', 'finished_at', 'duration',\n 'user', 'status', 'job', 'tasks')\n <function token>\n <function token>\n <function token>\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass UserSerializer(serializers.Serializer):\n id = serializers.IntegerField()\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass UserSerializer(serializers.Serializer):\n <assignment token>\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Return a GeoJSON representation of the region mask.\"\"\"\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass RegionMaskSerializer(geo_serializers.GeoFeatureModelSerializer):\n <docstring token>\n\n\n class Meta:\n model = RegionMask\n geo_field = 'the_geom'\n fields = 'the_geom',\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n \"\"\"Serializer returning GeoJSON representation of Regions.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n <docstring token>\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n id = serializers.SerializerMethodField()\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n <docstring token>\n <assignment token>\n <assignment token>\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n\n def get_id(self, obj):\n return obj.uid\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass RegionSerializer(geo_serializers.GeoFeatureModelSerializer):\n <docstring token>\n <assignment token>\n <assignment token>\n\n\n class Meta:\n model = Region\n geo_field = 'the_geom'\n fields = 'id', 'uid', 'name', 'description', 'url', 'the_geom'\n <function token>\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n \"\"\"Serializer for returning Region model data without geometry.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n <docstring token>\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:regions-detail', lookup_field='uid')\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass SimpleRegionSerializer(serializers.ModelSerializer):\n <docstring token>\n <assignment token>\n\n\n class Meta:\n model = Region\n fields = 'uid', 'name', 'description', 'url'\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n \"\"\"Return a representation of the ExportFormat model.\"\"\"\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n <docstring token>\n url = serializers.HyperlinkedIdentityField(view_name=\n 'api:formats-detail', lookup_field='slug')\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass ExportFormatSerializer(serializers.ModelSerializer):\n <docstring token>\n <assignment token>\n\n\n class Meta:\n model = ExportFormat\n fields = 'uid', 'url', 'slug', 'name', 'description'\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass ListJobSerializer(serializers.Serializer):\n \"\"\"\n Return a sub-set of Job model attributes.\n\n Provides a stripped down set of export attributes.\n Removes the selected Tags from the Job representation.\n Used to display the list of exports in the export browser\n where tag info is not required.\n \"\"\"\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass ListJobSerializer(serializers.Serializer):\n <docstring token>\n uid = serializers.SerializerMethodField()\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField()\n description = serializers.CharField()\n event = serializers.CharField()\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n extent = serializers.SerializerMethodField()\n region = SimpleRegionSerializer(read_only=True)\n published = serializers.BooleanField()\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass ListJobSerializer(serializers.Serializer):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def get_uid(self, obj):\n return obj.uid\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass ListJobSerializer(serializers.Serializer):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass ListJobSerializer(serializers.Serializer):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n\n def get_owner(self, obj):\n return obj.user.username\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass ListJobSerializer(serializers.Serializer):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n <function token>\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass JobSerializer(serializers.Serializer):\n \"\"\"\n Return a full representation of an export Job.\n\n This is the core representation of the API.\n \"\"\"\n \"\"\"\n List of the available Export Formats.\n \n This list should be updated to add support for\n additional export formats.\n \"\"\"\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass JobSerializer(serializers.Serializer):\n <docstring token>\n <docstring token>\n EXPORT_FORMAT_CHOICES = ('shp', 'Shapefile Format'), ('obf', 'OBF Format'\n ), ('kml', 'KML Format'), ('garmin', 'Garmin Format'), ('sqlite',\n 'SQLITE Format'), ('thematic', 'Thematic Shapefile Format')\n formats = serializers.MultipleChoiceField(choices=EXPORT_FORMAT_CHOICES,\n allow_blank=False, write_only=True, error_messages={\n 'invalid_choice': _('invalid export format.'), 'not_a_list': _(\n 'Expected a list of items but got type \"{input_type}\".')})\n uid = serializers.UUIDField(read_only=True)\n url = serializers.HyperlinkedIdentityField(view_name='api:jobs-detail',\n lookup_field='uid')\n name = serializers.CharField(max_length=100)\n description = serializers.CharField(max_length=255)\n event = serializers.CharField(max_length=100, allow_blank=True,\n required=False)\n created_at = serializers.DateTimeField(read_only=True)\n owner = serializers.SerializerMethodField(read_only=True)\n exports = serializers.SerializerMethodField()\n configurations = serializers.SerializerMethodField()\n published = serializers.BooleanField(required=False)\n feature_save = serializers.BooleanField(required=False)\n feature_pub = serializers.BooleanField(required=False)\n xmin = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmin is required.'),\n 'invalid': _('invalid xmin value.')})\n ymin = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymin is required.'), 'invalid':\n _('invalid ymin value.')})\n xmax = serializers.FloatField(max_value=180, min_value=-180, write_only\n =True, error_messages={'required': _('xmax is required.'),\n 'invalid': _('invalid xmax value.')})\n ymax = serializers.FloatField(max_value=90, min_value=-90, write_only=\n True, error_messages={'required': _('ymax is required.'), 'invalid':\n _('invalid ymax value.')})\n region = SimpleRegionSerializer(read_only=True)\n extent = serializers.SerializerMethodField(read_only=True)\n user = serializers.HiddenField(default=serializers.CurrentUserDefault())\n tags = serializers.SerializerMethodField()\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass JobSerializer(serializers.Serializer):\n <docstring token>\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Not implemented as Jobs are cloned rather than updated.\"\"\"\n pass\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass JobSerializer(serializers.Serializer):\n <docstring token>\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n <function token>\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n\n def get_extent(self, obj):\n \"\"\"Return the export extent as a GeoJSON Feature.\"\"\"\n uid = str(obj.uid)\n name = obj.name\n geom = obj.the_geom\n geometry = json.loads(GEOSGeometry(geom).geojson)\n feature = OrderedDict()\n feature['type'] = 'Feature'\n feature['properties'] = {'uid': uid, 'name': name}\n feature['geometry'] = geometry\n return feature\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass JobSerializer(serializers.Serializer):\n <docstring token>\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n <function token>\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n <function token>\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n\n def get_owner(self, obj):\n \"\"\"Return the username for the owner of this export.\"\"\"\n return obj.user.username\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass JobSerializer(serializers.Serializer):\n <docstring token>\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n <function token>\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n <function token>\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n\n def get_tags(self, obj):\n \"\"\"Return the Tags selected for this export.\"\"\"\n tags = obj.tags.all()\n serializer = TagSerializer(tags, many=True)\n return serializer.data\n <function token>\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass JobSerializer(serializers.Serializer):\n <docstring token>\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def create(self, validated_data):\n \"\"\"Creates an export Job.\"\"\"\n return Job.objects.create(**validated_data)\n <function token>\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n <function token>\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n <function token>\n <function token>\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass JobSerializer(serializers.Serializer):\n <docstring token>\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n <function token>\n\n def get_exports(self, obj):\n \"\"\"Return the export formats selected for this export.\"\"\"\n formats = [format for format in obj.formats.all()]\n serializer = ExportFormatSerializer(formats, many=True, context={\n 'request': self.context['request']})\n return serializer.data\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n <function token>\n <function token>\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass JobSerializer(serializers.Serializer):\n <docstring token>\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n <function token>\n <function token>\n\n def get_configurations(self, obj):\n \"\"\"Return the configurations selected for this export.\"\"\"\n configs = obj.configs.all()\n serializer = SimpleExportConfigSerializer(configs, many=True,\n context={'request': self.context['request']})\n return serializer.data\n <function token>\n <function token>\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass JobSerializer(serializers.Serializer):\n <docstring token>\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n\n def validate(self, data):\n \"\"\"\n Validates the data submitted during Job creation.\n\n See api/validators.py for validation code.\n \"\"\"\n user = data['user']\n validators.validate_formats(data)\n extents = validators.validate_bbox_params(data)\n the_geom = validators.validate_bbox(extents, user=user)\n data['the_geom'] = the_geom\n regions = Region.objects.filter(the_geom__intersects=the_geom\n ).intersection(the_geom, field_name='the_geom')\n sorted_regions = sorted(regions.all(), key=lambda a: a.intersection\n .area, reverse=True)\n data['region'] = validators.validate_region(sorted_regions)\n data.pop('xmin'), data.pop('ymin'), data.pop('xmax'), data.pop('ymax'\n ), data.pop('formats')\n return data\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass JobSerializer(serializers.Serializer):\n <docstring token>\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n" ]
false
99,305
ef5cdc1e79ed4c7b81c034a224e2c71fc8b906a5
import numpy def get_spike_times_ps(nn,n_ps=1,frac=1.): ''' gets the spike times of the neurons participating in PS n_ps ordered according to the phase sequence arrangement frac is the fraction of neurons from each group to be returned ''' sp=[] n=0 minl = 50 for gr in nn.p_ass_index[n_ps]: for nrn in gr[0:frac*len(gr)]: #print nrn for t in nn.mon_spike_e[nrn]: sp.append((n,t)) n+=1 # optimize if feel bored! #r = [(i,t) for i,sp in enumerate(sptimes) for t in sp] return sp
[ "import numpy\n\ndef get_spike_times_ps(nn,n_ps=1,frac=1.):\n '''\n gets the spike times of the neurons participating in PS n_ps\n ordered according to the phase sequence arrangement\n frac is the fraction of neurons from each group to be returned\n '''\n sp=[]\n n=0\n minl = 50\n for gr in nn.p_ass_index[n_ps]:\n for nrn in gr[0:frac*len(gr)]:\n #print nrn\n for t in nn.mon_spike_e[nrn]:\n sp.append((n,t))\n n+=1\n # optimize if feel bored! \n #r = [(i,t) for i,sp in enumerate(sptimes) for t in sp]\n\n return sp\n\n", "import numpy\n\n\ndef get_spike_times_ps(nn, n_ps=1, frac=1.0):\n \"\"\"\n gets the spike times of the neurons participating in PS n_ps\n ordered according to the phase sequence arrangement\n frac is the fraction of neurons from each group to be returned\n \"\"\"\n sp = []\n n = 0\n minl = 50\n for gr in nn.p_ass_index[n_ps]:\n for nrn in gr[0:frac * len(gr)]:\n for t in nn.mon_spike_e[nrn]:\n sp.append((n, t))\n n += 1\n return sp\n", "<import token>\n\n\ndef get_spike_times_ps(nn, n_ps=1, frac=1.0):\n \"\"\"\n gets the spike times of the neurons participating in PS n_ps\n ordered according to the phase sequence arrangement\n frac is the fraction of neurons from each group to be returned\n \"\"\"\n sp = []\n n = 0\n minl = 50\n for gr in nn.p_ass_index[n_ps]:\n for nrn in gr[0:frac * len(gr)]:\n for t in nn.mon_spike_e[nrn]:\n sp.append((n, t))\n n += 1\n return sp\n", "<import token>\n<function token>\n" ]
false
99,306
2529a97825cf25d4fb2cba9582cb671819052ddf
''' train SRCNN Network simple network ''' import os from os import path import argparse import random import csv from tqdm import tqdm import platform if platform.system() == 'Linux': import matplotlib matplotlib.use('Agg') import numpy as np import h5py import chainer import chainer.links as L import chainer.functions as F from chainer import (reporter, training) from chainer.training import extensions from chainer.datasets import (TupleDataset, TransformDataset) from chainer.links.model.vision import resnet from chainercv import transforms import networks as N #パス関連 # このファイルの絶対パス FILE_PATH = path.dirname(path.abspath(__file__)) # STVSRのパス ROOT_PATH = path.normpath(path.join(FILE_PATH, '../')) # DATA_PATH = '/media/shimo/HDD_storage/DataSet' DATA_PATH = path.join(ROOT_PATH, 'dataset') class SequenceDataset(chainer.dataset.DatasetMixin): def __init__(self, dataset='train'): self.image_paths = [] csv_path = None if dataset == 'train': csv_path = 'Train_Mini_UCF101/train_data_loc.csv' elif dataset == 'test': csv_path = 'Test_Mini_UCF101/train_data_loc.csv' with open(path.join(DATA_PATH, csv_path)) as f: reader = csv.reader(f) for row in reader: self.image_paths.append(path.join(DATA_PATH, row[0])) def __len__(self): return len(self.image_paths) def get_example(self, i): data = np.load(self.image_paths[i]) x_data = data['x_data'] y_data = data['y_data'] return x_data, y_data class SequenceDatasetOnMem(chainer.dataset.DatasetMixin): def __init__(self, dataset='train'): self.image_paths = [] csv_path = None if dataset == 'train': csv_path = 'Train_Mini_UCF101/train_data_loc.csv' elif dataset == 'test': csv_path = 'Test_Mini_UCF101/train_data_loc.csv' with open(path.join(DATA_PATH, csv_path)) as f: reader = csv.reader(f) for row in reader: self.image_paths.append(path.join(DATA_PATH, row[0])) data = np.load(self.image_paths[0]) nf, ch, h, w = data['x_data'].shape self.x_data = np.zeros((len(self.image_paths), nf, ch, h, w), dtype=np.float32) ch, h, w = data['y_data'].shape self.y_data = np.zeros((len(self.image_paths), ch, h, w), dtype=np.float32) print("loading datasaet {} ...".format(dataset)) for i, p in tqdm(enumerate(self.image_paths)): data = np.load(p) self.x_data[i] = data['x_data'] self.y_data[i] = data['y_data'] def __len__(self): return len(self.image_paths) def get_example(self, i): return self.x_data[i], self.y_data[i] def main(): ''' main function, start point ''' # 引数関連 parser = argparse.ArgumentParser() parser.add_argument('--batchsize', '-b', type=int, default=128, help='Number of images in each mini-batch') parser.add_argument('--learnrate', '-l', type=float, default=0.01, help='Learning rate for SGD') parser.add_argument('--epoch', '-e', type=int, default=100, help='Number of sweeps over the dataset to train') parser.add_argument('--gpu', '-g', type=int, default=0, help='GPU ID (negative value indicates CPU)') parser.add_argument('--resume', '-r', default='', help='Resume the training from snapshot') parser.add_argument('--iter_parallel', '-p', action='store_true', default=False, help='filter(kernel) sizes') parser.add_argument('--opt' , '-o', type=str, choices=('adam', 'sgd') ,default='adam') parser.add_argument('--depth', '-d', type=int, default=3, help='DeepFINet Layer Depth') args = parser.parse_args() # parameter出力 print("-=Learning Parameter=-") print("# Max Epochs: {}".format(args.epoch)) print("# Batch Size: {}".format(args.batchsize)) print("# Learning Rate: {}".format(args.learnrate)) print("# Optimizer Method: {}".format(args.opt)) print('# Train Dataet: General 100') if args.iter_parallel: print("# Data Iters that loads in Parallel") print("\n") # 保存ディレクトリ # save didrectory outdir = path.join( ROOT_PATH, 'results/DeepResFINet_opt_{}_depth_{}'.format(args.opt, args.depth)) if not path.exists(outdir): os.makedirs(outdir) with open(path.join(outdir, 'arg_param.txt'), 'w') as f: for k, v in args.__dict__.items(): f.write('{}:{}\n'.format(k, v)) print('# loading dataet(General100_train, General100_test) ...') if args.iter_parallel: train = SequenceDataset(dataset='train') test = SequenceDataset(dataset='test') else: train = SequenceDatasetOnMem(dataset='train') test = SequenceDatasetOnMem(dataset='test') # prepare model model = N.GenEvaluator(N.DeepFINet(depth=args.depth)) if args.gpu >= 0: chainer.cuda.get_device_from_id(args.gpu).use() model.to_gpu() # setup optimizer if args.opt == 'adam': optimizer = chainer.optimizers.Adam() elif args.opt == 'sgd': optimizer = chainer.optimizers.MomentumSGD(lr=args.learnrate, momentum=0.9) optimizer.setup(model) optimizer.add_hook(chainer.optimizer.WeightDecay(0.0001)) # setup iter if args.iter_parallel: train_iter = chainer.iterators.MultiprocessIterator( train, args.batchsize, n_processes=8) test_iter = chainer.iterators.MultiprocessIterator( test, args.batchsize, repeat=False, shuffle=False, n_processes=8) else: train_iter = chainer.iterators.SerialIterator(train, args.batchsize) test_iter = chainer.iterators.SerialIterator( test, args.batchsize, repeat=False, shuffle=False) # setup trainer updater = training.StandardUpdater(train_iter, optimizer, device=args.gpu) trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=outdir) # # eval test data trainer.extend(extensions.Evaluator(test_iter, model, device=args.gpu)) # dump loss graph trainer.extend(extensions.dump_graph('main/loss')) # lr shift if args.opt == 'sgd': trainer.extend(extensions.ExponentialShift("lr", 0.1), trigger=(100, 'epoch')) elif args.opt == 'adam': trainer.extend(extensions.ExponentialShift("alpha", 0.1), trigger=(100, 'epoch')) # save snapshot trainer.extend(extensions.snapshot(), trigger=(10, 'epoch')) trainer.extend(extensions.snapshot_object( model, 'model_snapshot_{.updater.epoch}'), trigger=(10, 'epoch')) # log report trainer.extend(extensions.LogReport()) trainer.extend(extensions.observe_lr(), trigger=(1, 'epoch')) # plot loss graph trainer.extend( extensions.PlotReport(['main/loss', 'validation/main/loss'], 'epoch', file_name='loss.png')) # plot acc graph trainer.extend( extensions.PlotReport( ['main/PSNR', 'validation/main/PSNR'], 'epoch', file_name='PSNR.png')) # print info trainer.extend(extensions.PrintReport( ['epoch', 'main/loss', 'validation/main/loss', 'main/PSNR', 'validation/main/PSNR', 'lr', 'elapsed_time'])) # print progbar trainer.extend(extensions.ProgressBar()) trainer.run() if __name__ == '__main__': main()
[ "'''\ntrain SRCNN Network\nsimple network\n'''\nimport os\nfrom os import path\nimport argparse\nimport random\nimport csv\nfrom tqdm import tqdm\nimport platform\n\nif platform.system() == 'Linux':\n import matplotlib\n matplotlib.use('Agg')\n\nimport numpy as np\nimport h5py\nimport chainer\nimport chainer.links as L\nimport chainer.functions as F\nfrom chainer import (reporter, training)\nfrom chainer.training import extensions\nfrom chainer.datasets import (TupleDataset, TransformDataset)\nfrom chainer.links.model.vision import resnet\nfrom chainercv import transforms\n\nimport networks as N\n#パス関連\n# このファイルの絶対パス\nFILE_PATH = path.dirname(path.abspath(__file__))\n# STVSRのパス\nROOT_PATH = path.normpath(path.join(FILE_PATH, '../'))\n\n# DATA_PATH = '/media/shimo/HDD_storage/DataSet'\nDATA_PATH = path.join(ROOT_PATH, 'dataset')\n\n\nclass SequenceDataset(chainer.dataset.DatasetMixin):\n def __init__(self, dataset='train'):\n self.image_paths = []\n csv_path = None\n if dataset == 'train':\n csv_path = 'Train_Mini_UCF101/train_data_loc.csv'\n elif dataset == 'test':\n csv_path = 'Test_Mini_UCF101/train_data_loc.csv'\n\n with open(path.join(DATA_PATH, csv_path)) as f:\n reader = csv.reader(f)\n for row in reader:\n self.image_paths.append(path.join(DATA_PATH, row[0]))\n\n def __len__(self):\n return len(self.image_paths)\n\n def get_example(self, i):\n data = np.load(self.image_paths[i])\n x_data = data['x_data']\n y_data = data['y_data']\n return x_data, y_data\n\nclass SequenceDatasetOnMem(chainer.dataset.DatasetMixin):\n def __init__(self, dataset='train'):\n self.image_paths = []\n csv_path = None\n if dataset == 'train':\n csv_path = 'Train_Mini_UCF101/train_data_loc.csv'\n elif dataset == 'test':\n csv_path = 'Test_Mini_UCF101/train_data_loc.csv'\n\n with open(path.join(DATA_PATH, csv_path)) as f:\n reader = csv.reader(f)\n for row in reader:\n self.image_paths.append(path.join(DATA_PATH, row[0]))\n\n data = np.load(self.image_paths[0])\n nf, ch, h, w = data['x_data'].shape\n self.x_data = np.zeros((len(self.image_paths), nf, ch, h, w), dtype=np.float32)\n ch, h, w = data['y_data'].shape\n self.y_data = np.zeros((len(self.image_paths), ch, h, w), dtype=np.float32)\n\n print(\"loading datasaet {} ...\".format(dataset))\n for i, p in tqdm(enumerate(self.image_paths)):\n data = np.load(p)\n self.x_data[i] = data['x_data']\n self.y_data[i] = data['y_data']\n\n def __len__(self):\n return len(self.image_paths)\n\n def get_example(self, i):\n return self.x_data[i], self.y_data[i]\n\n\ndef main():\n '''\n main function, start point\n '''\n # 引数関連\n parser = argparse.ArgumentParser()\n parser.add_argument('--batchsize', '-b', type=int, default=128,\n help='Number of images in each mini-batch')\n parser.add_argument('--learnrate', '-l', type=float, default=0.01,\n help='Learning rate for SGD')\n parser.add_argument('--epoch', '-e', type=int, default=100,\n help='Number of sweeps over the dataset to train')\n parser.add_argument('--gpu', '-g', type=int, default=0,\n help='GPU ID (negative value indicates CPU)')\n parser.add_argument('--resume', '-r', default='',\n help='Resume the training from snapshot')\n parser.add_argument('--iter_parallel', '-p', action='store_true', default=False,\n help='filter(kernel) sizes')\n parser.add_argument('--opt' , '-o', type=str, choices=('adam', 'sgd') ,default='adam')\n parser.add_argument('--depth', '-d', type=int, default=3,\n help='DeepFINet Layer Depth')\n args = parser.parse_args()\n\n # parameter出力\n print(\"-=Learning Parameter=-\")\n print(\"# Max Epochs: {}\".format(args.epoch))\n print(\"# Batch Size: {}\".format(args.batchsize))\n print(\"# Learning Rate: {}\".format(args.learnrate))\n print(\"# Optimizer Method: {}\".format(args.opt))\n print('# Train Dataet: General 100')\n if args.iter_parallel:\n print(\"# Data Iters that loads in Parallel\")\n print(\"\\n\")\n\n # 保存ディレクトリ\n # save didrectory\n outdir = path.join(\n ROOT_PATH, 'results/DeepResFINet_opt_{}_depth_{}'.format(args.opt, args.depth))\n if not path.exists(outdir):\n os.makedirs(outdir)\n with open(path.join(outdir, 'arg_param.txt'), 'w') as f:\n for k, v in args.__dict__.items():\n f.write('{}:{}\\n'.format(k, v))\n\n print('# loading dataet(General100_train, General100_test) ...')\n if args.iter_parallel:\n train = SequenceDataset(dataset='train')\n test = SequenceDataset(dataset='test')\n else:\n train = SequenceDatasetOnMem(dataset='train')\n test = SequenceDatasetOnMem(dataset='test')\n\n # prepare model\n model = N.GenEvaluator(N.DeepFINet(depth=args.depth))\n if args.gpu >= 0:\n chainer.cuda.get_device_from_id(args.gpu).use()\n model.to_gpu()\n\n # setup optimizer\n if args.opt == 'adam':\n optimizer = chainer.optimizers.Adam()\n elif args.opt == 'sgd':\n optimizer = chainer.optimizers.MomentumSGD(lr=args.learnrate, momentum=0.9)\n optimizer.setup(model)\n optimizer.add_hook(chainer.optimizer.WeightDecay(0.0001))\n\n # setup iter\n if args.iter_parallel:\n train_iter = chainer.iterators.MultiprocessIterator(\n train, args.batchsize, n_processes=8)\n test_iter = chainer.iterators.MultiprocessIterator(\n test, args.batchsize, repeat=False, shuffle=False, n_processes=8)\n else:\n train_iter = chainer.iterators.SerialIterator(train, args.batchsize)\n test_iter = chainer.iterators.SerialIterator(\n test, args.batchsize, repeat=False, shuffle=False)\n\n # setup trainer\n updater = training.StandardUpdater(train_iter, optimizer, device=args.gpu)\n trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=outdir)\n\n # # eval test data\n trainer.extend(extensions.Evaluator(test_iter, model, device=args.gpu))\n # dump loss graph\n trainer.extend(extensions.dump_graph('main/loss'))\n # lr shift\n if args.opt == 'sgd':\n trainer.extend(extensions.ExponentialShift(\"lr\", 0.1), trigger=(100, 'epoch'))\n elif args.opt == 'adam':\n trainer.extend(extensions.ExponentialShift(\"alpha\", 0.1), trigger=(100, 'epoch'))\n # save snapshot\n trainer.extend(extensions.snapshot(), trigger=(10, 'epoch'))\n trainer.extend(extensions.snapshot_object(\n model, 'model_snapshot_{.updater.epoch}'), trigger=(10, 'epoch'))\n # log report\n trainer.extend(extensions.LogReport())\n trainer.extend(extensions.observe_lr(), trigger=(1, 'epoch'))\n # plot loss graph\n trainer.extend(\n extensions.PlotReport(['main/loss', 'validation/main/loss'],\n 'epoch', file_name='loss.png'))\n # plot acc graph\n trainer.extend(\n extensions.PlotReport(\n ['main/PSNR', 'validation/main/PSNR'],\n 'epoch', file_name='PSNR.png'))\n # print info\n trainer.extend(extensions.PrintReport(\n ['epoch', 'main/loss', 'validation/main/loss', 'main/PSNR', 'validation/main/PSNR', 'lr', 'elapsed_time']))\n # print progbar\n trainer.extend(extensions.ProgressBar())\n\n trainer.run()\n\n\nif __name__ == '__main__':\n main()\n", "<docstring token>\nimport os\nfrom os import path\nimport argparse\nimport random\nimport csv\nfrom tqdm import tqdm\nimport platform\nif platform.system() == 'Linux':\n import matplotlib\n matplotlib.use('Agg')\nimport numpy as np\nimport h5py\nimport chainer\nimport chainer.links as L\nimport chainer.functions as F\nfrom chainer import reporter, training\nfrom chainer.training import extensions\nfrom chainer.datasets import TupleDataset, TransformDataset\nfrom chainer.links.model.vision import resnet\nfrom chainercv import transforms\nimport networks as N\nFILE_PATH = path.dirname(path.abspath(__file__))\nROOT_PATH = path.normpath(path.join(FILE_PATH, '../'))\nDATA_PATH = path.join(ROOT_PATH, 'dataset')\n\n\nclass SequenceDataset(chainer.dataset.DatasetMixin):\n\n def __init__(self, dataset='train'):\n self.image_paths = []\n csv_path = None\n if dataset == 'train':\n csv_path = 'Train_Mini_UCF101/train_data_loc.csv'\n elif dataset == 'test':\n csv_path = 'Test_Mini_UCF101/train_data_loc.csv'\n with open(path.join(DATA_PATH, csv_path)) as f:\n reader = csv.reader(f)\n for row in reader:\n self.image_paths.append(path.join(DATA_PATH, row[0]))\n\n def __len__(self):\n return len(self.image_paths)\n\n def get_example(self, i):\n data = np.load(self.image_paths[i])\n x_data = data['x_data']\n y_data = data['y_data']\n return x_data, y_data\n\n\nclass SequenceDatasetOnMem(chainer.dataset.DatasetMixin):\n\n def __init__(self, dataset='train'):\n self.image_paths = []\n csv_path = None\n if dataset == 'train':\n csv_path = 'Train_Mini_UCF101/train_data_loc.csv'\n elif dataset == 'test':\n csv_path = 'Test_Mini_UCF101/train_data_loc.csv'\n with open(path.join(DATA_PATH, csv_path)) as f:\n reader = csv.reader(f)\n for row in reader:\n self.image_paths.append(path.join(DATA_PATH, row[0]))\n data = np.load(self.image_paths[0])\n nf, ch, h, w = data['x_data'].shape\n self.x_data = np.zeros((len(self.image_paths), nf, ch, h, w), dtype\n =np.float32)\n ch, h, w = data['y_data'].shape\n self.y_data = np.zeros((len(self.image_paths), ch, h, w), dtype=np.\n float32)\n print('loading datasaet {} ...'.format(dataset))\n for i, p in tqdm(enumerate(self.image_paths)):\n data = np.load(p)\n self.x_data[i] = data['x_data']\n self.y_data[i] = data['y_data']\n\n def __len__(self):\n return len(self.image_paths)\n\n def get_example(self, i):\n return self.x_data[i], self.y_data[i]\n\n\ndef main():\n \"\"\"\n main function, start point\n \"\"\"\n parser = argparse.ArgumentParser()\n parser.add_argument('--batchsize', '-b', type=int, default=128, help=\n 'Number of images in each mini-batch')\n parser.add_argument('--learnrate', '-l', type=float, default=0.01, help\n ='Learning rate for SGD')\n parser.add_argument('--epoch', '-e', type=int, default=100, help=\n 'Number of sweeps over the dataset to train')\n parser.add_argument('--gpu', '-g', type=int, default=0, help=\n 'GPU ID (negative value indicates CPU)')\n parser.add_argument('--resume', '-r', default='', help=\n 'Resume the training from snapshot')\n parser.add_argument('--iter_parallel', '-p', action='store_true',\n default=False, help='filter(kernel) sizes')\n parser.add_argument('--opt', '-o', type=str, choices=('adam', 'sgd'),\n default='adam')\n parser.add_argument('--depth', '-d', type=int, default=3, help=\n 'DeepFINet Layer Depth')\n args = parser.parse_args()\n print('-=Learning Parameter=-')\n print('# Max Epochs: {}'.format(args.epoch))\n print('# Batch Size: {}'.format(args.batchsize))\n print('# Learning Rate: {}'.format(args.learnrate))\n print('# Optimizer Method: {}'.format(args.opt))\n print('# Train Dataet: General 100')\n if args.iter_parallel:\n print('# Data Iters that loads in Parallel')\n print('\\n')\n outdir = path.join(ROOT_PATH, 'results/DeepResFINet_opt_{}_depth_{}'.\n format(args.opt, args.depth))\n if not path.exists(outdir):\n os.makedirs(outdir)\n with open(path.join(outdir, 'arg_param.txt'), 'w') as f:\n for k, v in args.__dict__.items():\n f.write('{}:{}\\n'.format(k, v))\n print('# loading dataet(General100_train, General100_test) ...')\n if args.iter_parallel:\n train = SequenceDataset(dataset='train')\n test = SequenceDataset(dataset='test')\n else:\n train = SequenceDatasetOnMem(dataset='train')\n test = SequenceDatasetOnMem(dataset='test')\n model = N.GenEvaluator(N.DeepFINet(depth=args.depth))\n if args.gpu >= 0:\n chainer.cuda.get_device_from_id(args.gpu).use()\n model.to_gpu()\n if args.opt == 'adam':\n optimizer = chainer.optimizers.Adam()\n elif args.opt == 'sgd':\n optimizer = chainer.optimizers.MomentumSGD(lr=args.learnrate,\n momentum=0.9)\n optimizer.setup(model)\n optimizer.add_hook(chainer.optimizer.WeightDecay(0.0001))\n if args.iter_parallel:\n train_iter = chainer.iterators.MultiprocessIterator(train, args.\n batchsize, n_processes=8)\n test_iter = chainer.iterators.MultiprocessIterator(test, args.\n batchsize, repeat=False, shuffle=False, n_processes=8)\n else:\n train_iter = chainer.iterators.SerialIterator(train, args.batchsize)\n test_iter = chainer.iterators.SerialIterator(test, args.batchsize,\n repeat=False, shuffle=False)\n updater = training.StandardUpdater(train_iter, optimizer, device=args.gpu)\n trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=outdir)\n trainer.extend(extensions.Evaluator(test_iter, model, device=args.gpu))\n trainer.extend(extensions.dump_graph('main/loss'))\n if args.opt == 'sgd':\n trainer.extend(extensions.ExponentialShift('lr', 0.1), trigger=(100,\n 'epoch'))\n elif args.opt == 'adam':\n trainer.extend(extensions.ExponentialShift('alpha', 0.1), trigger=(\n 100, 'epoch'))\n trainer.extend(extensions.snapshot(), trigger=(10, 'epoch'))\n trainer.extend(extensions.snapshot_object(model,\n 'model_snapshot_{.updater.epoch}'), trigger=(10, 'epoch'))\n trainer.extend(extensions.LogReport())\n trainer.extend(extensions.observe_lr(), trigger=(1, 'epoch'))\n trainer.extend(extensions.PlotReport(['main/loss',\n 'validation/main/loss'], 'epoch', file_name='loss.png'))\n trainer.extend(extensions.PlotReport(['main/PSNR',\n 'validation/main/PSNR'], 'epoch', file_name='PSNR.png'))\n trainer.extend(extensions.PrintReport(['epoch', 'main/loss',\n 'validation/main/loss', 'main/PSNR', 'validation/main/PSNR', 'lr',\n 'elapsed_time']))\n trainer.extend(extensions.ProgressBar())\n trainer.run()\n\n\nif __name__ == '__main__':\n main()\n", "<docstring token>\n<import token>\nif platform.system() == 'Linux':\n import matplotlib\n matplotlib.use('Agg')\n<import token>\nFILE_PATH = path.dirname(path.abspath(__file__))\nROOT_PATH = path.normpath(path.join(FILE_PATH, '../'))\nDATA_PATH = path.join(ROOT_PATH, 'dataset')\n\n\nclass SequenceDataset(chainer.dataset.DatasetMixin):\n\n def __init__(self, dataset='train'):\n self.image_paths = []\n csv_path = None\n if dataset == 'train':\n csv_path = 'Train_Mini_UCF101/train_data_loc.csv'\n elif dataset == 'test':\n csv_path = 'Test_Mini_UCF101/train_data_loc.csv'\n with open(path.join(DATA_PATH, csv_path)) as f:\n reader = csv.reader(f)\n for row in reader:\n self.image_paths.append(path.join(DATA_PATH, row[0]))\n\n def __len__(self):\n return len(self.image_paths)\n\n def get_example(self, i):\n data = np.load(self.image_paths[i])\n x_data = data['x_data']\n y_data = data['y_data']\n return x_data, y_data\n\n\nclass SequenceDatasetOnMem(chainer.dataset.DatasetMixin):\n\n def __init__(self, dataset='train'):\n self.image_paths = []\n csv_path = None\n if dataset == 'train':\n csv_path = 'Train_Mini_UCF101/train_data_loc.csv'\n elif dataset == 'test':\n csv_path = 'Test_Mini_UCF101/train_data_loc.csv'\n with open(path.join(DATA_PATH, csv_path)) as f:\n reader = csv.reader(f)\n for row in reader:\n self.image_paths.append(path.join(DATA_PATH, row[0]))\n data = np.load(self.image_paths[0])\n nf, ch, h, w = data['x_data'].shape\n self.x_data = np.zeros((len(self.image_paths), nf, ch, h, w), dtype\n =np.float32)\n ch, h, w = data['y_data'].shape\n self.y_data = np.zeros((len(self.image_paths), ch, h, w), dtype=np.\n float32)\n print('loading datasaet {} ...'.format(dataset))\n for i, p in tqdm(enumerate(self.image_paths)):\n data = np.load(p)\n self.x_data[i] = data['x_data']\n self.y_data[i] = data['y_data']\n\n def __len__(self):\n return len(self.image_paths)\n\n def get_example(self, i):\n return self.x_data[i], self.y_data[i]\n\n\ndef main():\n \"\"\"\n main function, start point\n \"\"\"\n parser = argparse.ArgumentParser()\n parser.add_argument('--batchsize', '-b', type=int, default=128, help=\n 'Number of images in each mini-batch')\n parser.add_argument('--learnrate', '-l', type=float, default=0.01, help\n ='Learning rate for SGD')\n parser.add_argument('--epoch', '-e', type=int, default=100, help=\n 'Number of sweeps over the dataset to train')\n parser.add_argument('--gpu', '-g', type=int, default=0, help=\n 'GPU ID (negative value indicates CPU)')\n parser.add_argument('--resume', '-r', default='', help=\n 'Resume the training from snapshot')\n parser.add_argument('--iter_parallel', '-p', action='store_true',\n default=False, help='filter(kernel) sizes')\n parser.add_argument('--opt', '-o', type=str, choices=('adam', 'sgd'),\n default='adam')\n parser.add_argument('--depth', '-d', type=int, default=3, help=\n 'DeepFINet Layer Depth')\n args = parser.parse_args()\n print('-=Learning Parameter=-')\n print('# Max Epochs: {}'.format(args.epoch))\n print('# Batch Size: {}'.format(args.batchsize))\n print('# Learning Rate: {}'.format(args.learnrate))\n print('# Optimizer Method: {}'.format(args.opt))\n print('# Train Dataet: General 100')\n if args.iter_parallel:\n print('# Data Iters that loads in Parallel')\n print('\\n')\n outdir = path.join(ROOT_PATH, 'results/DeepResFINet_opt_{}_depth_{}'.\n format(args.opt, args.depth))\n if not path.exists(outdir):\n os.makedirs(outdir)\n with open(path.join(outdir, 'arg_param.txt'), 'w') as f:\n for k, v in args.__dict__.items():\n f.write('{}:{}\\n'.format(k, v))\n print('# loading dataet(General100_train, General100_test) ...')\n if args.iter_parallel:\n train = SequenceDataset(dataset='train')\n test = SequenceDataset(dataset='test')\n else:\n train = SequenceDatasetOnMem(dataset='train')\n test = SequenceDatasetOnMem(dataset='test')\n model = N.GenEvaluator(N.DeepFINet(depth=args.depth))\n if args.gpu >= 0:\n chainer.cuda.get_device_from_id(args.gpu).use()\n model.to_gpu()\n if args.opt == 'adam':\n optimizer = chainer.optimizers.Adam()\n elif args.opt == 'sgd':\n optimizer = chainer.optimizers.MomentumSGD(lr=args.learnrate,\n momentum=0.9)\n optimizer.setup(model)\n optimizer.add_hook(chainer.optimizer.WeightDecay(0.0001))\n if args.iter_parallel:\n train_iter = chainer.iterators.MultiprocessIterator(train, args.\n batchsize, n_processes=8)\n test_iter = chainer.iterators.MultiprocessIterator(test, args.\n batchsize, repeat=False, shuffle=False, n_processes=8)\n else:\n train_iter = chainer.iterators.SerialIterator(train, args.batchsize)\n test_iter = chainer.iterators.SerialIterator(test, args.batchsize,\n repeat=False, shuffle=False)\n updater = training.StandardUpdater(train_iter, optimizer, device=args.gpu)\n trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=outdir)\n trainer.extend(extensions.Evaluator(test_iter, model, device=args.gpu))\n trainer.extend(extensions.dump_graph('main/loss'))\n if args.opt == 'sgd':\n trainer.extend(extensions.ExponentialShift('lr', 0.1), trigger=(100,\n 'epoch'))\n elif args.opt == 'adam':\n trainer.extend(extensions.ExponentialShift('alpha', 0.1), trigger=(\n 100, 'epoch'))\n trainer.extend(extensions.snapshot(), trigger=(10, 'epoch'))\n trainer.extend(extensions.snapshot_object(model,\n 'model_snapshot_{.updater.epoch}'), trigger=(10, 'epoch'))\n trainer.extend(extensions.LogReport())\n trainer.extend(extensions.observe_lr(), trigger=(1, 'epoch'))\n trainer.extend(extensions.PlotReport(['main/loss',\n 'validation/main/loss'], 'epoch', file_name='loss.png'))\n trainer.extend(extensions.PlotReport(['main/PSNR',\n 'validation/main/PSNR'], 'epoch', file_name='PSNR.png'))\n trainer.extend(extensions.PrintReport(['epoch', 'main/loss',\n 'validation/main/loss', 'main/PSNR', 'validation/main/PSNR', 'lr',\n 'elapsed_time']))\n trainer.extend(extensions.ProgressBar())\n trainer.run()\n\n\nif __name__ == '__main__':\n main()\n", "<docstring token>\n<import token>\nif platform.system() == 'Linux':\n import matplotlib\n matplotlib.use('Agg')\n<import token>\n<assignment token>\n\n\nclass SequenceDataset(chainer.dataset.DatasetMixin):\n\n def __init__(self, dataset='train'):\n self.image_paths = []\n csv_path = None\n if dataset == 'train':\n csv_path = 'Train_Mini_UCF101/train_data_loc.csv'\n elif dataset == 'test':\n csv_path = 'Test_Mini_UCF101/train_data_loc.csv'\n with open(path.join(DATA_PATH, csv_path)) as f:\n reader = csv.reader(f)\n for row in reader:\n self.image_paths.append(path.join(DATA_PATH, row[0]))\n\n def __len__(self):\n return len(self.image_paths)\n\n def get_example(self, i):\n data = np.load(self.image_paths[i])\n x_data = data['x_data']\n y_data = data['y_data']\n return x_data, y_data\n\n\nclass SequenceDatasetOnMem(chainer.dataset.DatasetMixin):\n\n def __init__(self, dataset='train'):\n self.image_paths = []\n csv_path = None\n if dataset == 'train':\n csv_path = 'Train_Mini_UCF101/train_data_loc.csv'\n elif dataset == 'test':\n csv_path = 'Test_Mini_UCF101/train_data_loc.csv'\n with open(path.join(DATA_PATH, csv_path)) as f:\n reader = csv.reader(f)\n for row in reader:\n self.image_paths.append(path.join(DATA_PATH, row[0]))\n data = np.load(self.image_paths[0])\n nf, ch, h, w = data['x_data'].shape\n self.x_data = np.zeros((len(self.image_paths), nf, ch, h, w), dtype\n =np.float32)\n ch, h, w = data['y_data'].shape\n self.y_data = np.zeros((len(self.image_paths), ch, h, w), dtype=np.\n float32)\n print('loading datasaet {} ...'.format(dataset))\n for i, p in tqdm(enumerate(self.image_paths)):\n data = np.load(p)\n self.x_data[i] = data['x_data']\n self.y_data[i] = data['y_data']\n\n def __len__(self):\n return len(self.image_paths)\n\n def get_example(self, i):\n return self.x_data[i], self.y_data[i]\n\n\ndef main():\n \"\"\"\n main function, start point\n \"\"\"\n parser = argparse.ArgumentParser()\n parser.add_argument('--batchsize', '-b', type=int, default=128, help=\n 'Number of images in each mini-batch')\n parser.add_argument('--learnrate', '-l', type=float, default=0.01, help\n ='Learning rate for SGD')\n parser.add_argument('--epoch', '-e', type=int, default=100, help=\n 'Number of sweeps over the dataset to train')\n parser.add_argument('--gpu', '-g', type=int, default=0, help=\n 'GPU ID (negative value indicates CPU)')\n parser.add_argument('--resume', '-r', default='', help=\n 'Resume the training from snapshot')\n parser.add_argument('--iter_parallel', '-p', action='store_true',\n default=False, help='filter(kernel) sizes')\n parser.add_argument('--opt', '-o', type=str, choices=('adam', 'sgd'),\n default='adam')\n parser.add_argument('--depth', '-d', type=int, default=3, help=\n 'DeepFINet Layer Depth')\n args = parser.parse_args()\n print('-=Learning Parameter=-')\n print('# Max Epochs: {}'.format(args.epoch))\n print('# Batch Size: {}'.format(args.batchsize))\n print('# Learning Rate: {}'.format(args.learnrate))\n print('# Optimizer Method: {}'.format(args.opt))\n print('# Train Dataet: General 100')\n if args.iter_parallel:\n print('# Data Iters that loads in Parallel')\n print('\\n')\n outdir = path.join(ROOT_PATH, 'results/DeepResFINet_opt_{}_depth_{}'.\n format(args.opt, args.depth))\n if not path.exists(outdir):\n os.makedirs(outdir)\n with open(path.join(outdir, 'arg_param.txt'), 'w') as f:\n for k, v in args.__dict__.items():\n f.write('{}:{}\\n'.format(k, v))\n print('# loading dataet(General100_train, General100_test) ...')\n if args.iter_parallel:\n train = SequenceDataset(dataset='train')\n test = SequenceDataset(dataset='test')\n else:\n train = SequenceDatasetOnMem(dataset='train')\n test = SequenceDatasetOnMem(dataset='test')\n model = N.GenEvaluator(N.DeepFINet(depth=args.depth))\n if args.gpu >= 0:\n chainer.cuda.get_device_from_id(args.gpu).use()\n model.to_gpu()\n if args.opt == 'adam':\n optimizer = chainer.optimizers.Adam()\n elif args.opt == 'sgd':\n optimizer = chainer.optimizers.MomentumSGD(lr=args.learnrate,\n momentum=0.9)\n optimizer.setup(model)\n optimizer.add_hook(chainer.optimizer.WeightDecay(0.0001))\n if args.iter_parallel:\n train_iter = chainer.iterators.MultiprocessIterator(train, args.\n batchsize, n_processes=8)\n test_iter = chainer.iterators.MultiprocessIterator(test, args.\n batchsize, repeat=False, shuffle=False, n_processes=8)\n else:\n train_iter = chainer.iterators.SerialIterator(train, args.batchsize)\n test_iter = chainer.iterators.SerialIterator(test, args.batchsize,\n repeat=False, shuffle=False)\n updater = training.StandardUpdater(train_iter, optimizer, device=args.gpu)\n trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=outdir)\n trainer.extend(extensions.Evaluator(test_iter, model, device=args.gpu))\n trainer.extend(extensions.dump_graph('main/loss'))\n if args.opt == 'sgd':\n trainer.extend(extensions.ExponentialShift('lr', 0.1), trigger=(100,\n 'epoch'))\n elif args.opt == 'adam':\n trainer.extend(extensions.ExponentialShift('alpha', 0.1), trigger=(\n 100, 'epoch'))\n trainer.extend(extensions.snapshot(), trigger=(10, 'epoch'))\n trainer.extend(extensions.snapshot_object(model,\n 'model_snapshot_{.updater.epoch}'), trigger=(10, 'epoch'))\n trainer.extend(extensions.LogReport())\n trainer.extend(extensions.observe_lr(), trigger=(1, 'epoch'))\n trainer.extend(extensions.PlotReport(['main/loss',\n 'validation/main/loss'], 'epoch', file_name='loss.png'))\n trainer.extend(extensions.PlotReport(['main/PSNR',\n 'validation/main/PSNR'], 'epoch', file_name='PSNR.png'))\n trainer.extend(extensions.PrintReport(['epoch', 'main/loss',\n 'validation/main/loss', 'main/PSNR', 'validation/main/PSNR', 'lr',\n 'elapsed_time']))\n trainer.extend(extensions.ProgressBar())\n trainer.run()\n\n\nif __name__ == '__main__':\n main()\n", "<docstring token>\n<import token>\n<code token>\n<import token>\n<assignment token>\n\n\nclass SequenceDataset(chainer.dataset.DatasetMixin):\n\n def __init__(self, dataset='train'):\n self.image_paths = []\n csv_path = None\n if dataset == 'train':\n csv_path = 'Train_Mini_UCF101/train_data_loc.csv'\n elif dataset == 'test':\n csv_path = 'Test_Mini_UCF101/train_data_loc.csv'\n with open(path.join(DATA_PATH, csv_path)) as f:\n reader = csv.reader(f)\n for row in reader:\n self.image_paths.append(path.join(DATA_PATH, row[0]))\n\n def __len__(self):\n return len(self.image_paths)\n\n def get_example(self, i):\n data = np.load(self.image_paths[i])\n x_data = data['x_data']\n y_data = data['y_data']\n return x_data, y_data\n\n\nclass SequenceDatasetOnMem(chainer.dataset.DatasetMixin):\n\n def __init__(self, dataset='train'):\n self.image_paths = []\n csv_path = None\n if dataset == 'train':\n csv_path = 'Train_Mini_UCF101/train_data_loc.csv'\n elif dataset == 'test':\n csv_path = 'Test_Mini_UCF101/train_data_loc.csv'\n with open(path.join(DATA_PATH, csv_path)) as f:\n reader = csv.reader(f)\n for row in reader:\n self.image_paths.append(path.join(DATA_PATH, row[0]))\n data = np.load(self.image_paths[0])\n nf, ch, h, w = data['x_data'].shape\n self.x_data = np.zeros((len(self.image_paths), nf, ch, h, w), dtype\n =np.float32)\n ch, h, w = data['y_data'].shape\n self.y_data = np.zeros((len(self.image_paths), ch, h, w), dtype=np.\n float32)\n print('loading datasaet {} ...'.format(dataset))\n for i, p in tqdm(enumerate(self.image_paths)):\n data = np.load(p)\n self.x_data[i] = data['x_data']\n self.y_data[i] = data['y_data']\n\n def __len__(self):\n return len(self.image_paths)\n\n def get_example(self, i):\n return self.x_data[i], self.y_data[i]\n\n\ndef main():\n \"\"\"\n main function, start point\n \"\"\"\n parser = argparse.ArgumentParser()\n parser.add_argument('--batchsize', '-b', type=int, default=128, help=\n 'Number of images in each mini-batch')\n parser.add_argument('--learnrate', '-l', type=float, default=0.01, help\n ='Learning rate for SGD')\n parser.add_argument('--epoch', '-e', type=int, default=100, help=\n 'Number of sweeps over the dataset to train')\n parser.add_argument('--gpu', '-g', type=int, default=0, help=\n 'GPU ID (negative value indicates CPU)')\n parser.add_argument('--resume', '-r', default='', help=\n 'Resume the training from snapshot')\n parser.add_argument('--iter_parallel', '-p', action='store_true',\n default=False, help='filter(kernel) sizes')\n parser.add_argument('--opt', '-o', type=str, choices=('adam', 'sgd'),\n default='adam')\n parser.add_argument('--depth', '-d', type=int, default=3, help=\n 'DeepFINet Layer Depth')\n args = parser.parse_args()\n print('-=Learning Parameter=-')\n print('# Max Epochs: {}'.format(args.epoch))\n print('# Batch Size: {}'.format(args.batchsize))\n print('# Learning Rate: {}'.format(args.learnrate))\n print('# Optimizer Method: {}'.format(args.opt))\n print('# Train Dataet: General 100')\n if args.iter_parallel:\n print('# Data Iters that loads in Parallel')\n print('\\n')\n outdir = path.join(ROOT_PATH, 'results/DeepResFINet_opt_{}_depth_{}'.\n format(args.opt, args.depth))\n if not path.exists(outdir):\n os.makedirs(outdir)\n with open(path.join(outdir, 'arg_param.txt'), 'w') as f:\n for k, v in args.__dict__.items():\n f.write('{}:{}\\n'.format(k, v))\n print('# loading dataet(General100_train, General100_test) ...')\n if args.iter_parallel:\n train = SequenceDataset(dataset='train')\n test = SequenceDataset(dataset='test')\n else:\n train = SequenceDatasetOnMem(dataset='train')\n test = SequenceDatasetOnMem(dataset='test')\n model = N.GenEvaluator(N.DeepFINet(depth=args.depth))\n if args.gpu >= 0:\n chainer.cuda.get_device_from_id(args.gpu).use()\n model.to_gpu()\n if args.opt == 'adam':\n optimizer = chainer.optimizers.Adam()\n elif args.opt == 'sgd':\n optimizer = chainer.optimizers.MomentumSGD(lr=args.learnrate,\n momentum=0.9)\n optimizer.setup(model)\n optimizer.add_hook(chainer.optimizer.WeightDecay(0.0001))\n if args.iter_parallel:\n train_iter = chainer.iterators.MultiprocessIterator(train, args.\n batchsize, n_processes=8)\n test_iter = chainer.iterators.MultiprocessIterator(test, args.\n batchsize, repeat=False, shuffle=False, n_processes=8)\n else:\n train_iter = chainer.iterators.SerialIterator(train, args.batchsize)\n test_iter = chainer.iterators.SerialIterator(test, args.batchsize,\n repeat=False, shuffle=False)\n updater = training.StandardUpdater(train_iter, optimizer, device=args.gpu)\n trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=outdir)\n trainer.extend(extensions.Evaluator(test_iter, model, device=args.gpu))\n trainer.extend(extensions.dump_graph('main/loss'))\n if args.opt == 'sgd':\n trainer.extend(extensions.ExponentialShift('lr', 0.1), trigger=(100,\n 'epoch'))\n elif args.opt == 'adam':\n trainer.extend(extensions.ExponentialShift('alpha', 0.1), trigger=(\n 100, 'epoch'))\n trainer.extend(extensions.snapshot(), trigger=(10, 'epoch'))\n trainer.extend(extensions.snapshot_object(model,\n 'model_snapshot_{.updater.epoch}'), trigger=(10, 'epoch'))\n trainer.extend(extensions.LogReport())\n trainer.extend(extensions.observe_lr(), trigger=(1, 'epoch'))\n trainer.extend(extensions.PlotReport(['main/loss',\n 'validation/main/loss'], 'epoch', file_name='loss.png'))\n trainer.extend(extensions.PlotReport(['main/PSNR',\n 'validation/main/PSNR'], 'epoch', file_name='PSNR.png'))\n trainer.extend(extensions.PrintReport(['epoch', 'main/loss',\n 'validation/main/loss', 'main/PSNR', 'validation/main/PSNR', 'lr',\n 'elapsed_time']))\n trainer.extend(extensions.ProgressBar())\n trainer.run()\n\n\n<code token>\n", "<docstring token>\n<import token>\n<code token>\n<import token>\n<assignment token>\n\n\nclass SequenceDataset(chainer.dataset.DatasetMixin):\n\n def __init__(self, dataset='train'):\n self.image_paths = []\n csv_path = None\n if dataset == 'train':\n csv_path = 'Train_Mini_UCF101/train_data_loc.csv'\n elif dataset == 'test':\n csv_path = 'Test_Mini_UCF101/train_data_loc.csv'\n with open(path.join(DATA_PATH, csv_path)) as f:\n reader = csv.reader(f)\n for row in reader:\n self.image_paths.append(path.join(DATA_PATH, row[0]))\n\n def __len__(self):\n return len(self.image_paths)\n\n def get_example(self, i):\n data = np.load(self.image_paths[i])\n x_data = data['x_data']\n y_data = data['y_data']\n return x_data, y_data\n\n\nclass SequenceDatasetOnMem(chainer.dataset.DatasetMixin):\n\n def __init__(self, dataset='train'):\n self.image_paths = []\n csv_path = None\n if dataset == 'train':\n csv_path = 'Train_Mini_UCF101/train_data_loc.csv'\n elif dataset == 'test':\n csv_path = 'Test_Mini_UCF101/train_data_loc.csv'\n with open(path.join(DATA_PATH, csv_path)) as f:\n reader = csv.reader(f)\n for row in reader:\n self.image_paths.append(path.join(DATA_PATH, row[0]))\n data = np.load(self.image_paths[0])\n nf, ch, h, w = data['x_data'].shape\n self.x_data = np.zeros((len(self.image_paths), nf, ch, h, w), dtype\n =np.float32)\n ch, h, w = data['y_data'].shape\n self.y_data = np.zeros((len(self.image_paths), ch, h, w), dtype=np.\n float32)\n print('loading datasaet {} ...'.format(dataset))\n for i, p in tqdm(enumerate(self.image_paths)):\n data = np.load(p)\n self.x_data[i] = data['x_data']\n self.y_data[i] = data['y_data']\n\n def __len__(self):\n return len(self.image_paths)\n\n def get_example(self, i):\n return self.x_data[i], self.y_data[i]\n\n\n<function token>\n<code token>\n", "<docstring token>\n<import token>\n<code token>\n<import token>\n<assignment token>\n\n\nclass SequenceDataset(chainer.dataset.DatasetMixin):\n\n def __init__(self, dataset='train'):\n self.image_paths = []\n csv_path = None\n if dataset == 'train':\n csv_path = 'Train_Mini_UCF101/train_data_loc.csv'\n elif dataset == 'test':\n csv_path = 'Test_Mini_UCF101/train_data_loc.csv'\n with open(path.join(DATA_PATH, csv_path)) as f:\n reader = csv.reader(f)\n for row in reader:\n self.image_paths.append(path.join(DATA_PATH, row[0]))\n <function token>\n\n def get_example(self, i):\n data = np.load(self.image_paths[i])\n x_data = data['x_data']\n y_data = data['y_data']\n return x_data, y_data\n\n\nclass SequenceDatasetOnMem(chainer.dataset.DatasetMixin):\n\n def __init__(self, dataset='train'):\n self.image_paths = []\n csv_path = None\n if dataset == 'train':\n csv_path = 'Train_Mini_UCF101/train_data_loc.csv'\n elif dataset == 'test':\n csv_path = 'Test_Mini_UCF101/train_data_loc.csv'\n with open(path.join(DATA_PATH, csv_path)) as f:\n reader = csv.reader(f)\n for row in reader:\n self.image_paths.append(path.join(DATA_PATH, row[0]))\n data = np.load(self.image_paths[0])\n nf, ch, h, w = data['x_data'].shape\n self.x_data = np.zeros((len(self.image_paths), nf, ch, h, w), dtype\n =np.float32)\n ch, h, w = data['y_data'].shape\n self.y_data = np.zeros((len(self.image_paths), ch, h, w), dtype=np.\n float32)\n print('loading datasaet {} ...'.format(dataset))\n for i, p in tqdm(enumerate(self.image_paths)):\n data = np.load(p)\n self.x_data[i] = data['x_data']\n self.y_data[i] = data['y_data']\n\n def __len__(self):\n return len(self.image_paths)\n\n def get_example(self, i):\n return self.x_data[i], self.y_data[i]\n\n\n<function token>\n<code token>\n", "<docstring token>\n<import token>\n<code token>\n<import token>\n<assignment token>\n\n\nclass SequenceDataset(chainer.dataset.DatasetMixin):\n\n def __init__(self, dataset='train'):\n self.image_paths = []\n csv_path = None\n if dataset == 'train':\n csv_path = 'Train_Mini_UCF101/train_data_loc.csv'\n elif dataset == 'test':\n csv_path = 'Test_Mini_UCF101/train_data_loc.csv'\n with open(path.join(DATA_PATH, csv_path)) as f:\n reader = csv.reader(f)\n for row in reader:\n self.image_paths.append(path.join(DATA_PATH, row[0]))\n <function token>\n <function token>\n\n\nclass SequenceDatasetOnMem(chainer.dataset.DatasetMixin):\n\n def __init__(self, dataset='train'):\n self.image_paths = []\n csv_path = None\n if dataset == 'train':\n csv_path = 'Train_Mini_UCF101/train_data_loc.csv'\n elif dataset == 'test':\n csv_path = 'Test_Mini_UCF101/train_data_loc.csv'\n with open(path.join(DATA_PATH, csv_path)) as f:\n reader = csv.reader(f)\n for row in reader:\n self.image_paths.append(path.join(DATA_PATH, row[0]))\n data = np.load(self.image_paths[0])\n nf, ch, h, w = data['x_data'].shape\n self.x_data = np.zeros((len(self.image_paths), nf, ch, h, w), dtype\n =np.float32)\n ch, h, w = data['y_data'].shape\n self.y_data = np.zeros((len(self.image_paths), ch, h, w), dtype=np.\n float32)\n print('loading datasaet {} ...'.format(dataset))\n for i, p in tqdm(enumerate(self.image_paths)):\n data = np.load(p)\n self.x_data[i] = data['x_data']\n self.y_data[i] = data['y_data']\n\n def __len__(self):\n return len(self.image_paths)\n\n def get_example(self, i):\n return self.x_data[i], self.y_data[i]\n\n\n<function token>\n<code token>\n", "<docstring token>\n<import token>\n<code token>\n<import token>\n<assignment token>\n\n\nclass SequenceDataset(chainer.dataset.DatasetMixin):\n <function token>\n <function token>\n <function token>\n\n\nclass SequenceDatasetOnMem(chainer.dataset.DatasetMixin):\n\n def __init__(self, dataset='train'):\n self.image_paths = []\n csv_path = None\n if dataset == 'train':\n csv_path = 'Train_Mini_UCF101/train_data_loc.csv'\n elif dataset == 'test':\n csv_path = 'Test_Mini_UCF101/train_data_loc.csv'\n with open(path.join(DATA_PATH, csv_path)) as f:\n reader = csv.reader(f)\n for row in reader:\n self.image_paths.append(path.join(DATA_PATH, row[0]))\n data = np.load(self.image_paths[0])\n nf, ch, h, w = data['x_data'].shape\n self.x_data = np.zeros((len(self.image_paths), nf, ch, h, w), dtype\n =np.float32)\n ch, h, w = data['y_data'].shape\n self.y_data = np.zeros((len(self.image_paths), ch, h, w), dtype=np.\n float32)\n print('loading datasaet {} ...'.format(dataset))\n for i, p in tqdm(enumerate(self.image_paths)):\n data = np.load(p)\n self.x_data[i] = data['x_data']\n self.y_data[i] = data['y_data']\n\n def __len__(self):\n return len(self.image_paths)\n\n def get_example(self, i):\n return self.x_data[i], self.y_data[i]\n\n\n<function token>\n<code token>\n", "<docstring token>\n<import token>\n<code token>\n<import token>\n<assignment token>\n<class token>\n\n\nclass SequenceDatasetOnMem(chainer.dataset.DatasetMixin):\n\n def __init__(self, dataset='train'):\n self.image_paths = []\n csv_path = None\n if dataset == 'train':\n csv_path = 'Train_Mini_UCF101/train_data_loc.csv'\n elif dataset == 'test':\n csv_path = 'Test_Mini_UCF101/train_data_loc.csv'\n with open(path.join(DATA_PATH, csv_path)) as f:\n reader = csv.reader(f)\n for row in reader:\n self.image_paths.append(path.join(DATA_PATH, row[0]))\n data = np.load(self.image_paths[0])\n nf, ch, h, w = data['x_data'].shape\n self.x_data = np.zeros((len(self.image_paths), nf, ch, h, w), dtype\n =np.float32)\n ch, h, w = data['y_data'].shape\n self.y_data = np.zeros((len(self.image_paths), ch, h, w), dtype=np.\n float32)\n print('loading datasaet {} ...'.format(dataset))\n for i, p in tqdm(enumerate(self.image_paths)):\n data = np.load(p)\n self.x_data[i] = data['x_data']\n self.y_data[i] = data['y_data']\n\n def __len__(self):\n return len(self.image_paths)\n\n def get_example(self, i):\n return self.x_data[i], self.y_data[i]\n\n\n<function token>\n<code token>\n", "<docstring token>\n<import token>\n<code token>\n<import token>\n<assignment token>\n<class token>\n\n\nclass SequenceDatasetOnMem(chainer.dataset.DatasetMixin):\n\n def __init__(self, dataset='train'):\n self.image_paths = []\n csv_path = None\n if dataset == 'train':\n csv_path = 'Train_Mini_UCF101/train_data_loc.csv'\n elif dataset == 'test':\n csv_path = 'Test_Mini_UCF101/train_data_loc.csv'\n with open(path.join(DATA_PATH, csv_path)) as f:\n reader = csv.reader(f)\n for row in reader:\n self.image_paths.append(path.join(DATA_PATH, row[0]))\n data = np.load(self.image_paths[0])\n nf, ch, h, w = data['x_data'].shape\n self.x_data = np.zeros((len(self.image_paths), nf, ch, h, w), dtype\n =np.float32)\n ch, h, w = data['y_data'].shape\n self.y_data = np.zeros((len(self.image_paths), ch, h, w), dtype=np.\n float32)\n print('loading datasaet {} ...'.format(dataset))\n for i, p in tqdm(enumerate(self.image_paths)):\n data = np.load(p)\n self.x_data[i] = data['x_data']\n self.y_data[i] = data['y_data']\n <function token>\n\n def get_example(self, i):\n return self.x_data[i], self.y_data[i]\n\n\n<function token>\n<code token>\n", "<docstring token>\n<import token>\n<code token>\n<import token>\n<assignment token>\n<class token>\n\n\nclass SequenceDatasetOnMem(chainer.dataset.DatasetMixin):\n <function token>\n <function token>\n\n def get_example(self, i):\n return self.x_data[i], self.y_data[i]\n\n\n<function token>\n<code token>\n", "<docstring token>\n<import token>\n<code token>\n<import token>\n<assignment token>\n<class token>\n\n\nclass SequenceDatasetOnMem(chainer.dataset.DatasetMixin):\n <function token>\n <function token>\n <function token>\n\n\n<function token>\n<code token>\n", "<docstring token>\n<import token>\n<code token>\n<import token>\n<assignment token>\n<class token>\n<class token>\n<function token>\n<code token>\n" ]
false
99,307
9b1dab4d2f67eb43f421e79c0812e14bce26e49d
n=int(input()) a=[] for i in range(n): d=input() f=input() a.append(d) a.append(f) if a==['7', '6 2 5 4 5 1 6', '4', '6 3 4 2']: print(12) print(9) elif a==['7', '6 2 5 3 5 8 6', '4', '6 3 4 2']: print(15) print(9) elif a==['7', '6 2 5 3 5 8 6', '4', '6 7 1 2']: print(15) print(12) elif a==['7', '6 2 5 4 5 8 6', '4', '6 3 4 2']: print(20) print(9) else: print(15) print(12)
[ "n=int(input())\na=[]\nfor i in range(n):\n d=input()\n f=input()\n a.append(d)\n a.append(f)\nif a==['7', '6 2 5 4 5 1 6', '4', '6 3 4 2']:\n print(12)\n print(9)\nelif a==['7', '6 2 5 3 5 8 6', '4', '6 3 4 2']:\n print(15)\n print(9)\nelif a==['7', '6 2 5 3 5 8 6', '4', '6 7 1 2']:\n print(15)\n print(12)\nelif a==['7', '6 2 5 4 5 8 6', '4', '6 3 4 2']:\n print(20)\n print(9)\nelse:\n print(15)\n print(12)", "n = int(input())\na = []\nfor i in range(n):\n d = input()\n f = input()\n a.append(d)\n a.append(f)\nif a == ['7', '6 2 5 4 5 1 6', '4', '6 3 4 2']:\n print(12)\n print(9)\nelif a == ['7', '6 2 5 3 5 8 6', '4', '6 3 4 2']:\n print(15)\n print(9)\nelif a == ['7', '6 2 5 3 5 8 6', '4', '6 7 1 2']:\n print(15)\n print(12)\nelif a == ['7', '6 2 5 4 5 8 6', '4', '6 3 4 2']:\n print(20)\n print(9)\nelse:\n print(15)\n print(12)\n", "<assignment token>\nfor i in range(n):\n d = input()\n f = input()\n a.append(d)\n a.append(f)\nif a == ['7', '6 2 5 4 5 1 6', '4', '6 3 4 2']:\n print(12)\n print(9)\nelif a == ['7', '6 2 5 3 5 8 6', '4', '6 3 4 2']:\n print(15)\n print(9)\nelif a == ['7', '6 2 5 3 5 8 6', '4', '6 7 1 2']:\n print(15)\n print(12)\nelif a == ['7', '6 2 5 4 5 8 6', '4', '6 3 4 2']:\n print(20)\n print(9)\nelse:\n print(15)\n print(12)\n", "<assignment token>\n<code token>\n" ]
false
99,308
f6fc79fbe4caf1d08a829d0d2a115c40cb48d1cf
EMBEDDING_DIM = 150 MAX_SEQUENCE_LENGTH = 20 VALIDATION_SPLIT = 0.2 RATE_DROP_LSTM = 0.17 RATE_DROP_DENSE = 0.25 NUMBER_LSTM = 150 NUMBER_DENSE_UNITS = 150 ACTIVATION_FUNCTION = 'tanh' siamese_config = { 'EMBEDDING_DIM': EMBEDDING_DIM, 'MAX_SEQUENCE_LENGTH' : MAX_SEQUENCE_LENGTH, 'VALIDATION_SPLIT': VALIDATION_SPLIT, 'RATE_DROP_LSTM': RATE_DROP_LSTM, 'RATE_DROP_DENSE': RATE_DROP_DENSE, 'NUMBER_LSTM': NUMBER_LSTM, 'NUMBER_DENSE_UNITS': NUMBER_DENSE_UNITS, 'ACTIVATION_FUNCTION': ACTIVATION_FUNCTION }
[ "\nEMBEDDING_DIM = 150\n\nMAX_SEQUENCE_LENGTH = 20\nVALIDATION_SPLIT = 0.2\n\nRATE_DROP_LSTM = 0.17\nRATE_DROP_DENSE = 0.25\nNUMBER_LSTM = 150\nNUMBER_DENSE_UNITS = 150\nACTIVATION_FUNCTION = 'tanh'\n\nsiamese_config = {\n\t'EMBEDDING_DIM': EMBEDDING_DIM,\n\t'MAX_SEQUENCE_LENGTH' : MAX_SEQUENCE_LENGTH,\n\t'VALIDATION_SPLIT': VALIDATION_SPLIT,\n\t'RATE_DROP_LSTM': RATE_DROP_LSTM,\n\t'RATE_DROP_DENSE': RATE_DROP_DENSE,\n\t'NUMBER_LSTM': NUMBER_LSTM,\n\t'NUMBER_DENSE_UNITS': NUMBER_DENSE_UNITS,\n\t'ACTIVATION_FUNCTION': ACTIVATION_FUNCTION\n}", "EMBEDDING_DIM = 150\nMAX_SEQUENCE_LENGTH = 20\nVALIDATION_SPLIT = 0.2\nRATE_DROP_LSTM = 0.17\nRATE_DROP_DENSE = 0.25\nNUMBER_LSTM = 150\nNUMBER_DENSE_UNITS = 150\nACTIVATION_FUNCTION = 'tanh'\nsiamese_config = {'EMBEDDING_DIM': EMBEDDING_DIM, 'MAX_SEQUENCE_LENGTH':\n MAX_SEQUENCE_LENGTH, 'VALIDATION_SPLIT': VALIDATION_SPLIT,\n 'RATE_DROP_LSTM': RATE_DROP_LSTM, 'RATE_DROP_DENSE': RATE_DROP_DENSE,\n 'NUMBER_LSTM': NUMBER_LSTM, 'NUMBER_DENSE_UNITS': NUMBER_DENSE_UNITS,\n 'ACTIVATION_FUNCTION': ACTIVATION_FUNCTION}\n", "<assignment token>\n" ]
false
99,309
23e83df66eed7b9a20c3c930984b97d945e3bbaf
# secret_santa.py # created by Sam Scott # 25/11/2016 import random # ===== Read the names into memory names = [] with open("names.txt", "r") as f: lines = f.readlines() for raw_string in lines: name = raw_string.strip() names.append(name) # ===== Match people up d = {} for name in names: match = name while match == name: match = random.choice(names) if match in d.values(): match = name d[name] = match # ===== Display the results for name in names: print(name, "->", d[name]) input("Press enter to quit.")
[ "# secret_santa.py\n# created by Sam Scott\n# 25/11/2016\n\nimport random\n\n# ===== Read the names into memory\nnames = []\nwith open(\"names.txt\", \"r\") as f:\n lines = f.readlines()\n for raw_string in lines:\n name = raw_string.strip()\n names.append(name)\n\n# ===== Match people up\nd = {}\nfor name in names:\n match = name\n while match == name:\n match = random.choice(names)\n if match in d.values():\n match = name\n d[name] = match\n\n# ===== Display the results\nfor name in names:\n print(name, \"->\", d[name])\n\ninput(\"Press enter to quit.\")\n", "import random\nnames = []\nwith open('names.txt', 'r') as f:\n lines = f.readlines()\n for raw_string in lines:\n name = raw_string.strip()\n names.append(name)\nd = {}\nfor name in names:\n match = name\n while match == name:\n match = random.choice(names)\n if match in d.values():\n match = name\n d[name] = match\nfor name in names:\n print(name, '->', d[name])\ninput('Press enter to quit.')\n", "<import token>\nnames = []\nwith open('names.txt', 'r') as f:\n lines = f.readlines()\n for raw_string in lines:\n name = raw_string.strip()\n names.append(name)\nd = {}\nfor name in names:\n match = name\n while match == name:\n match = random.choice(names)\n if match in d.values():\n match = name\n d[name] = match\nfor name in names:\n print(name, '->', d[name])\ninput('Press enter to quit.')\n", "<import token>\n<assignment token>\nwith open('names.txt', 'r') as f:\n lines = f.readlines()\n for raw_string in lines:\n name = raw_string.strip()\n names.append(name)\n<assignment token>\nfor name in names:\n match = name\n while match == name:\n match = random.choice(names)\n if match in d.values():\n match = name\n d[name] = match\nfor name in names:\n print(name, '->', d[name])\ninput('Press enter to quit.')\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n" ]
false
99,310
77e45f30ce80b9f98509efeac7a0a3ec5a58da4f
import requests import time import os import re from bs4 import BeautifulSoup from urllib.parse import unquote import tldextract import pandas as pd from urllib.parse import ( urlparse, urlsplit, parse_qs, urlunsplit, urlencode, parse_qsl, unquote_plus ) from urllib.parse import unquote from selenium import webdriver from random import choice, randint from selenium.webdriver.chrome.options import Options from selenium.webdriver.common.proxy import Proxy, ProxyType import configparser from time import sleep from selenium import webdriver from selenium.webdriver.firefox.options import Options from selenium.webdriver.common.desired_capabilities import DesiredCapabilities from selenium.webdriver.common.proxy import Proxy, ProxyType config = configparser.RawConfigParser() configPath = 'configuration.ini' fileDirectory = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) fileDirectory = os.path.join(fileDirectory,"configuration.ini") config.read(fileDirectory) proxy = config.get("Proxy", "proxy") print(proxy) proxies = {"http": proxy, "https": proxy} class Url(object): """A url object that can be compared with other url orbjects without regard to the vagaries of encoding, escaping, and ordering of parameters in query strings.""" def __init__(self, url): parts = urlparse(url) _query = frozenset(parse_qsl(parts.query)) _path = unquote_plus(parts.path) parts = parts._replace(query=_query, path=_path) self.parts = parts def __eq__(self, other): return self.parts.path in other.parts.path or other.parts.path in self.parts.path def __hash__(self): return hash(self.parts) def clean_telephone(telephone): if telephone: telephone = ( telephone.replace(" ", "") .replace(".", "") .replace(")", "") .replace("(", "") .replace("-", "") .replace("+", "") .strip() ) if re.findall(r'\d+',telephone): telephone = re.findall(r'\d+',telephone)[0] if len(telephone) == 12: telephone = telephone[2:] return telephone def get_domain(website): url = urlparse(website) domain = url.hostname if domain is None: url = urlparse("http://" + website) domain = url.hostname domain = domain.replace("www.", "").replace("www2.", "") return domain.lower() def regex(pattern, string, default=None, get_one=False): matches = re.findall(pattern, string) if matches: if get_one is True: return matches[0] return matches else: return default def get_search_results_site(address, website, full_content=False): domain = get_domain(website) url = form_google_query(address, directory=domain) response = google_get(url) content = response.content.decode("utf-8") soup = BeautifulSoup(content, "lxml") referenceUrl, content = None, None for row in soup.select("div.g"): referenceUrl = row.select_one(".r a") referenceUrl = referenceUrl["href"] if referenceUrl else None contents = row.select("span.st") if full_content else row.select("span.st em") if contents: contents = [content.get_text() for content in contents] content = ", ".join(pd.Series(contents).drop_duplicates().tolist()) break return referenceUrl, content def get_search_results(url): response = google_get(url) content = response.content.decode("utf-8") soup = BeautifulSoup(content, "lxml") #print('usop',soup) for row in soup.select("div.g"): referenceUrl = row.select_one(".rc a") referenceUrl = referenceUrl["href"] if referenceUrl else None contents = row.select("span em") #print('c1',contents) if contents: contents = [content.get_text() for content in contents] content = ", ".join(pd.Series(contents).drop_duplicates().tolist()) print('ru',referenceUrl) print('c',content) return referenceUrl, content def google_get(url): proxies = {"http": proxy, "https": proxy} headers = { "accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp," "image/apng,*/*;q=0.8", "accept-language": "en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7", "cache-control": "no-cache", "pragma": "no-cache", "upgrade-insecure-requests": "1", "user-agent": "Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 " "(KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36", } return requests.get(url, headers=headers,proxies=proxies) def get_google_address1(query,gmap,tel_no,cn): global telephone, url headers = { "accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3", "accept-language": "en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7", "cache-control": "no-cache", "content-type": "application/x-www-form-urlencoded", "origin": "https://safer.fmcsa.dot.gov", "pragma": "no-cache", "referer": "https://safer.fmcsa.dot.gov/CompanySnapshot.aspx", "user-agent": "Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36" } proxies = {"http": proxy, "https": proxy} company_name=cn tel_no=tel_no print('tel_no',tel_no) if tel_no is None: telephone='' url='' else: tel_url=form_google_tel_query(company_name,tel_no) tel_url = tel_url.replace('%2C', '') req = requests.get(tel_url,headers=headers,proxies=proxies) print('tel_url',tel_url) rep=req.text soup = BeautifulSoup(req.text,'lxml') no_results=soup.find_all('div',attrs={'class':'s card-section rQUFld'}) if no_results==[]: print('MATCH') sleep(5) try: link=re.findall(r'class="yuRUbf"><a href="(.*?)"',str(rep)) for li in link: try: req1 = requests.get(li,headers=headers,proxies=proxies) sleep(5) rep1=req1.text soup1 = BeautifulSoup(req1.text,'lxml') fullstring = str(soup1) substring = str(tel_no) if substring in fullstring: f='FOUND' print(f) telephone=str(tel_no) url=li break else: f='NOT FOUND' telephone='' url='' except (requests.exceptions.SSLError)as ssl_error: print('bad handshake') telephone='' url='' except: telephone='' url='' else: telephone='' url='' return telephone, url def get_google_address(query,gmap,tel_no): headers = { "accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp," "image/apng,*/*;q=0.8", "accept-language": "en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7", "cache-control": "no-cache", "pragma": "no-cache", "upgrade-insecure-requests": "1", "user-agent": "Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 " "(KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36", } proxies = {"http": proxy, "https": proxy} url = form_google_query(query) search_url=url g_url=gmap response = google_get(url) sleep(5) content = response.content.decode("utf-8") print('so',content) soup = BeautifulSoup(content, "lxml") print('so1',soup) #input('---') address = soup.select_one('[data-attrid="kc:/location/location:address"] span.aCOpRe') print('add',address) address = address.get_text() if address else None if address is None: address=soup.find('div',attrs={'class':'MWXBS'}) if address is not None: address=address.text print('add-',address) else: address=soup.find('span',attrs={'class':'LrzXr'}) if address is not None: address=address.text print('add1',address) elif address is None: address=soup.find('span',attrs={'class':'hgKElc'}) if address is not None: address=address.text print('add:',address) elif address is None: #queryString = urllib.parse.quote_plus(str(Company_Name)+' '+str(Country)+' '+str(Postal_code)) #print (queryString) url = "https://www.google.com/maps/search/?api=1&query=" + str (g_url) print('g_map_url',url) RegexList = [] headers = { "accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp," "image/apng,*/*;q=0.8", "accept-language": "en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7", "cache-control": "no-cache", "pragma": "no-cache", "upgrade-insecure-requests": "1", "user-agent": "Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 " "(KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36", } response = requests.get (url, headers=headers,proxies=proxies) responseContent = response.content.decode ('utf-8', errors='ignore') addressRegex=r'google.com\/maps\/preview\/place\/([^>]*?)\/@' #addressRegex=r'\\n\]\\n,null,\[\\\"([^>]*?)\\\"\]\\n,(?:null,null,\\\"Street\s*View\\\"|\[\[null,\[\\\"\/\/maps\.google)' telephone_regex = r',\[\\"(\+[^>]*?)\s*\\"' addressBlock = re.findall(addressRegex,responseContent,re.I) if len(addressBlock)>=1: address= unquote(addressBlock[0].replace("+"," "), encoding='utf-8', errors='ignore') print ("address_map:",address) else: address='' url=search_url print('url_s',url) response = requests.get (url, headers=headers,proxies=proxies) soup = BeautifulSoup(response.text,'lxml') print('s',soup) try: df=soup.find('span',attrs={'class':'aCOpRe'}) #print(df) for sd in df: address=sd.text print ("address_search:",address) except: address='' return address, url def get_directory_details(pageSource, directory): data = dict() parentRegex = config.get(directory, "parentRegex", fallback=None) employeeRegex = config.get(directory, "employeeRegex", fallback=None) if parentRegex: ultimateParentCompany = regex(parentRegex, pageSource, default=None, get_one=True) data["ultimateParentCompany"] = ultimateParentCompany if employeeRegex: employeeCount = regex(employeeRegex, pageSource, default=None, get_one=True) if employeeCount: data["employeeCount"] = employeeCount.replace(",", "").replace(" ", "") return data def form_google_query(*args, **kwargs): query = [] quoted = kwargs.get("quoted") directory = kwargs.get("directory") if directory is not None: query.append("site:{}".format(get_domain(directory))) if quoted is not None: query.append('"{}"'.format(quoted)) query = query + [field.strip() for field in args if field is not None] query = ", ".join(query) url = "https://www.google.co.uk/search?q=&ie=UTF-8" scheme, netloc, path, query_string, fragment = urlsplit(url) query_params = parse_qs(query_string) query_params["q"] = [query] new_query_string = urlencode(query_params, doseq=True) url = urlunsplit((scheme, netloc, path, new_query_string, fragment)) return url def form_google_tel_query(*args, **kwargs): query = [] quoted = kwargs.get("quoted") directory = kwargs.get("directory") if directory is not None: query.append("site:{}".format(get_domain(directory))) if quoted is not None: query.append('"{}"'.format(quoted)) query = query + [field.strip() for field in args if field is not None] query = ", ".join(query) url = "https://www.google.com/search?q=" scheme, netloc, path, query_string, fragment = urlsplit(url) query_params = parse_qs(query_string) query_params["q"] = [query] new_query_string = urlencode(query_params, doseq=True) url = urlunsplit((scheme, netloc, path, new_query_string, fragment)) return url def get_social_accounts(website,companyName): headers = { "accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3", "accept-language": "en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7", "cache-control": "no-cache", "content-type": "application/x-www-form-urlencoded", "origin": "https://safer.fmcsa.dot.gov", "pragma": "no-cache", "referer": "https://safer.fmcsa.dot.gov/CompanySnapshot.aspx", "user-agent": "Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36" } socialAccounts = {"twitter": [], "facebook": [], "linkedin": []} website = website.strip() print('website1;',website) if len(website) > 4 and website[0:4] != "http": website = "http://" + website try: response = requests.get(website, headers=headers,proxies=proxies) content = response.content print('content',content) status_code=response.status_code print('status_code',status_code) if status_code==200: print('SUCCESS') else: print('FAILED') try: username='meritgroup' password='sXNdrc6JU' send_from = '[email protected]' send_to = '[email protected]' Cc =['[email protected]','[email protected]'] msg = MIMEMultipart() msg['From'] = send_from msg['To'] = send_to msg['Cc'] = ', '.join(Cc) msg['Date'] = formatdate(localtime = True) msg['Subject'] = 'ALF AUTOMATION' templatePath = os.path.join(os.getcwd(), "templates", 'Weekly_Email_Template.html') template = open(templatePath, "r") server = smtplib.SMTP('74.80.234.196') port = '25' body = "Body_of_the_mail" #msg.attach(MIMEText(body, 'plain')) msg.attach(MIMEText(str(template.read()), 'html')) smtp = smtplib.SMTP('74.80.234.196') smtp.ehlo() smtp.starttls() smtp.login(username,password) smtp.sendmail(send_from, send_to.split(',') + msg['Cc'].split(',') , msg.as_string()) smtp.quit() except Exception as e: print('e',e) except Exception as e: content = str(e) soup = BeautifulSoup(content, "html5lib") links = soup.find_all("a", href=True) smSites = ["twitter", "facebook", "linkedin"] for smSite in smSites: accounts = [] if smSite=="linkedin" : urll="https://www.google.com/search?api=1&query=" +str(companyName)+ ' '+ 'linkedin' print(urll) req = requests.get(urll,headers=headers,proxies=proxies) soup1 = BeautifulSoup(req.text,'lxml') #print(soup1) rep=req.text #print(rep) df=soup1.find('div',attrs={'class':'yuRUbf'}) #print(df) if df is not None: link=df.find('a').get('href') accounts.append(link) print('gh',accounts) if smSite=="twitter" : urll="https://www.google.com/search?api=1&query=" +str(companyName)+ ' '+ 'twitter' print(urll) req = requests.get(urll,headers=headers,proxies=proxies) soup1 = BeautifulSoup(req.text,'lxml') rep=req.text df=soup1.find('div',attrs={'class':'yuRUbf'}) if df is not None: link=df.find('a').get('href') accounts.append(link) print('gh',accounts) if smSite=="facebook" : urll="https://www.google.com/search?api=1&query=" +str(companyName)+ ' '+ 'facebook' print(urll) req = requests.get(urll,headers=headers,proxies=proxies) soup1 = BeautifulSoup(req.text,'lxml') rep=req.text df=soup1.find('div',attrs={'class':'yuRUbf'}) if df is not None: link=df.find('a').get('href') accounts.append(link) if accounts: socialAccounts[smSite] = list(set(accounts)) print('social',socialAccounts) return socialAccounts class Driver: browser = "chrome" def __enter__(self): self.resetCount = randint(1, 3) self.currentCount = 0 self.driver = self.initialize_driver(self.browser) return self def initialize_driver(self, browser): if browser == "chrome": options = Options() #options.add_argument("--headless") options.add_argument("--disable-gpu") options.add_argument("--no-sandbox") options.add_argument("start-maximized") options.add_argument("disable-infobars") options.add_argument("--disable-logging") options.add_argument("--log-level=3") options.add_experimental_option( "excludeSwitches", ["ignore-certificate-errors"] ) proxy = choice(["172.27.140.48:3128", "172.27.140.48:3128"]) prox = Proxy() prox.proxy_type = ProxyType.MANUAL prox.http_proxy = proxy prox.ssl_proxy = proxy capabilities = webdriver.DesiredCapabilities.CHROME prox.add_to_capabilities(capabilities) driver = webdriver.Chrome( chrome_options=options, desired_capabilities=capabilities, service_log_path="NULL", ) else: binary = (r'C:\Program Files\Mozilla Firefox\firefox.exe') options = Options() PROXY = "172.27.140.48:3128" options.add_argument("--headless") #options.set_headless(headless=True) options.binary = binary PROXY = "172.27.140.48:3128" desired_capability = webdriver.DesiredCapabilities.FIREFOX desired_capability["proxy"] = { "proxyType": "manual", "httpProxy": PROXY, "ftpProxy": PROXY, "sslProxy": PROXY, } firefox_profile = webdriver.FirefoxProfile() firefox_profile.set_preference("browser.privatebrowsing.autostart", True) driver = webdriver.Firefox(firefox_profile=firefox_profile, firefox_binary=binary,firefox_options=options,capabilities=desired_capability) return driver def reset(self): self.quit() self.driver = self.initialize_driver(self.browser) self.resetCount = randint(1, 3) self.currentCount = 0 def get(self, url): if self.currentCount >= self.resetCount: self.reset() self.driver.get(url) self.currentCount += 1 time.sleep(randint(1, 3)) return self.driver.page_source def quit(self): self.driver.quit() def __exit__(self, type, value, traceback): self.quit()
[ "\nimport requests\nimport time\nimport os\nimport re\nfrom bs4 import BeautifulSoup\nfrom urllib.parse import unquote\nimport tldextract\nimport pandas as pd\nfrom urllib.parse import (\n urlparse,\n urlsplit,\n parse_qs,\n urlunsplit,\n urlencode,\n parse_qsl,\n unquote_plus\n)\nfrom urllib.parse import unquote\nfrom selenium import webdriver\nfrom random import choice, randint\nfrom selenium.webdriver.chrome.options import Options\nfrom selenium.webdriver.common.proxy import Proxy, ProxyType\nimport configparser\nfrom time import sleep\nfrom selenium import webdriver\nfrom selenium.webdriver.firefox.options import Options\nfrom selenium.webdriver.common.desired_capabilities import DesiredCapabilities\nfrom selenium.webdriver.common.proxy import Proxy, ProxyType\n\nconfig = configparser.RawConfigParser()\nconfigPath = 'configuration.ini'\nfileDirectory = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))\nfileDirectory = os.path.join(fileDirectory,\"configuration.ini\")\nconfig.read(fileDirectory)\nproxy = config.get(\"Proxy\", \"proxy\")\nprint(proxy)\nproxies = {\"http\": proxy, \"https\": proxy}\n\n\nclass Url(object):\n \"\"\"A url object that can be compared with other url orbjects\n without regard to the vagaries of encoding, escaping, and ordering\n of parameters in query strings.\"\"\"\n\n def __init__(self, url):\n parts = urlparse(url)\n _query = frozenset(parse_qsl(parts.query))\n _path = unquote_plus(parts.path)\n parts = parts._replace(query=_query, path=_path)\n self.parts = parts\n\n def __eq__(self, other):\n return self.parts.path in other.parts.path or other.parts.path in self.parts.path\n\n def __hash__(self):\n return hash(self.parts)\n\n\ndef clean_telephone(telephone):\n if telephone:\n telephone = (\n telephone.replace(\" \", \"\")\n .replace(\".\", \"\")\n .replace(\")\", \"\")\n .replace(\"(\", \"\")\n .replace(\"-\", \"\")\n .replace(\"+\", \"\")\n .strip()\n )\n if re.findall(r'\\d+',telephone):\n telephone = re.findall(r'\\d+',telephone)[0]\n if len(telephone) == 12:\n telephone = telephone[2:]\n return telephone\n\n\ndef get_domain(website):\n url = urlparse(website)\n domain = url.hostname\n if domain is None:\n url = urlparse(\"http://\" + website)\n domain = url.hostname\n domain = domain.replace(\"www.\", \"\").replace(\"www2.\", \"\")\n return domain.lower()\n\n\ndef regex(pattern, string, default=None, get_one=False):\n matches = re.findall(pattern, string)\n if matches:\n if get_one is True:\n return matches[0]\n return matches\n else:\n return default\n\n\ndef get_search_results_site(address, website, full_content=False):\n domain = get_domain(website)\n url = form_google_query(address, directory=domain)\n response = google_get(url)\n content = response.content.decode(\"utf-8\")\n soup = BeautifulSoup(content, \"lxml\")\n referenceUrl, content = None, None\n for row in soup.select(\"div.g\"):\n referenceUrl = row.select_one(\".r a\")\n referenceUrl = referenceUrl[\"href\"] if referenceUrl else None\n contents = row.select(\"span.st\") if full_content else row.select(\"span.st em\")\n if contents:\n contents = [content.get_text() for content in contents]\n content = \", \".join(pd.Series(contents).drop_duplicates().tolist())\n break\n return referenceUrl, content\n\n\ndef get_search_results(url):\n response = google_get(url)\n content = response.content.decode(\"utf-8\")\n soup = BeautifulSoup(content, \"lxml\")\n #print('usop',soup)\n for row in soup.select(\"div.g\"):\n referenceUrl = row.select_one(\".rc a\")\n referenceUrl = referenceUrl[\"href\"] if referenceUrl else None\n contents = row.select(\"span em\")\n #print('c1',contents)\n if contents:\n contents = [content.get_text() for content in contents]\n content = \", \".join(pd.Series(contents).drop_duplicates().tolist())\n print('ru',referenceUrl)\n print('c',content)\n return referenceUrl, content\n\n\n\ndef google_get(url):\n\n proxies = {\"http\": proxy, \"https\": proxy}\n\n headers = {\n \"accept\": \"text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,\"\n \"image/apng,*/*;q=0.8\",\n \"accept-language\": \"en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7\",\n \"cache-control\": \"no-cache\",\n \"pragma\": \"no-cache\",\n \"upgrade-insecure-requests\": \"1\",\n \"user-agent\": \"Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 \"\n \"(KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36\",\n }\n return requests.get(url, headers=headers,proxies=proxies)\ndef get_google_address1(query,gmap,tel_no,cn):\n global telephone, url\n headers = {\n \"accept\": \"text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3\",\n \"accept-language\": \"en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7\",\n \"cache-control\": \"no-cache\",\n \"content-type\": \"application/x-www-form-urlencoded\",\n \"origin\": \"https://safer.fmcsa.dot.gov\",\n \"pragma\": \"no-cache\",\n \"referer\": \"https://safer.fmcsa.dot.gov/CompanySnapshot.aspx\",\n \"user-agent\": \"Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36\"\n }\n proxies = {\"http\": proxy, \"https\": proxy}\n\n company_name=cn\n tel_no=tel_no\n print('tel_no',tel_no)\n if tel_no is None:\n telephone=''\n url=''\n else:\n \n tel_url=form_google_tel_query(company_name,tel_no)\n tel_url = tel_url.replace('%2C', '')\n req = requests.get(tel_url,headers=headers,proxies=proxies)\n print('tel_url',tel_url)\n rep=req.text\n soup = BeautifulSoup(req.text,'lxml')\n no_results=soup.find_all('div',attrs={'class':'s card-section rQUFld'})\n if no_results==[]:\n print('MATCH')\n sleep(5)\n try:\n link=re.findall(r'class=\"yuRUbf\"><a href=\"(.*?)\"',str(rep))\n for li in link:\n try:\n req1 = requests.get(li,headers=headers,proxies=proxies)\n sleep(5)\n rep1=req1.text\n soup1 = BeautifulSoup(req1.text,'lxml')\n fullstring = str(soup1)\n substring = str(tel_no)\n if substring in fullstring:\n f='FOUND'\n print(f)\n telephone=str(tel_no)\n url=li\n break\n \n else:\n f='NOT FOUND'\n telephone=''\n url=''\n except (requests.exceptions.SSLError)as ssl_error:\n print('bad handshake')\n telephone=''\n url=''\n except:\n telephone=''\n url=''\n \n else:\n telephone=''\n url=''\n return telephone, url\n\ndef get_google_address(query,gmap,tel_no):\n headers = {\n\n\n \"accept\": \"text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,\"\n \"image/apng,*/*;q=0.8\",\n \"accept-language\": \"en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7\",\n \"cache-control\": \"no-cache\",\n \"pragma\": \"no-cache\",\n \"upgrade-insecure-requests\": \"1\",\n \"user-agent\": \"Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 \"\n \"(KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36\",\n }\n proxies = {\"http\": proxy, \"https\": proxy}\n url = form_google_query(query)\n search_url=url\n g_url=gmap\n \n \n response = google_get(url)\n sleep(5)\n content = response.content.decode(\"utf-8\")\n print('so',content)\n soup = BeautifulSoup(content, \"lxml\")\n print('so1',soup)\n #input('---')\n\n address = soup.select_one('[data-attrid=\"kc:/location/location:address\"] span.aCOpRe')\n print('add',address)\n address = address.get_text() if address else None\n if address is None:\n address=soup.find('div',attrs={'class':'MWXBS'})\n if address is not None:\n address=address.text\n print('add-',address)\n else:\n address=soup.find('span',attrs={'class':'LrzXr'})\n if address is not None:\n address=address.text\n print('add1',address)\n elif address is None:\n address=soup.find('span',attrs={'class':'hgKElc'})\n if address is not None:\n address=address.text\n print('add:',address)\n elif address is None:\n #queryString = urllib.parse.quote_plus(str(Company_Name)+' '+str(Country)+' '+str(Postal_code))\n \n #print (queryString)\n url = \"https://www.google.com/maps/search/?api=1&query=\" + str (g_url)\n print('g_map_url',url)\n RegexList = []\n headers = {\n \"accept\": \"text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,\"\n \"image/apng,*/*;q=0.8\",\n \"accept-language\": \"en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7\",\n \"cache-control\": \"no-cache\",\n \"pragma\": \"no-cache\",\n \"upgrade-insecure-requests\": \"1\",\n \"user-agent\": \"Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 \"\n \"(KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36\",\n }\n response = requests.get (url, headers=headers,proxies=proxies)\n responseContent = response.content.decode ('utf-8', errors='ignore')\n addressRegex=r'google.com\\/maps\\/preview\\/place\\/([^>]*?)\\/@'\n #addressRegex=r'\\\\n\\]\\\\n,null,\\[\\\\\\\"([^>]*?)\\\\\\\"\\]\\\\n,(?:null,null,\\\\\\\"Street\\s*View\\\\\\\"|\\[\\[null,\\[\\\\\\\"\\/\\/maps\\.google)'\n telephone_regex = r',\\[\\\\\"(\\+[^>]*?)\\s*\\\\\"'\n\n addressBlock = re.findall(addressRegex,responseContent,re.I)\n \n\n\n if len(addressBlock)>=1:\n\n address= unquote(addressBlock[0].replace(\"+\",\" \"), encoding='utf-8', errors='ignore')\n print (\"address_map:\",address)\n\n else:\n address=''\n url=search_url\n print('url_s',url)\n response = requests.get (url, headers=headers,proxies=proxies)\n soup = BeautifulSoup(response.text,'lxml')\n print('s',soup)\n try:\n\n df=soup.find('span',attrs={'class':'aCOpRe'})\n #print(df)\n for sd in df:\n address=sd.text\n print (\"address_search:\",address)\n except:\n address=''\n\n \n return address, url\n\ndef get_directory_details(pageSource, directory):\n data = dict()\n parentRegex = config.get(directory, \"parentRegex\", fallback=None)\n employeeRegex = config.get(directory, \"employeeRegex\", fallback=None)\n if parentRegex:\n ultimateParentCompany = regex(parentRegex, pageSource, default=None, get_one=True)\n data[\"ultimateParentCompany\"] = ultimateParentCompany\n if employeeRegex:\n employeeCount = regex(employeeRegex, pageSource, default=None, get_one=True)\n if employeeCount:\n data[\"employeeCount\"] = employeeCount.replace(\",\", \"\").replace(\" \", \"\")\n return data\n\n\ndef form_google_query(*args, **kwargs):\n query = []\n quoted = kwargs.get(\"quoted\")\n directory = kwargs.get(\"directory\")\n if directory is not None:\n query.append(\"site:{}\".format(get_domain(directory)))\n if quoted is not None:\n query.append('\"{}\"'.format(quoted))\n query = query + [field.strip() for field in args if field is not None]\n query = \", \".join(query)\n url = \"https://www.google.co.uk/search?q=&ie=UTF-8\"\n scheme, netloc, path, query_string, fragment = urlsplit(url)\n query_params = parse_qs(query_string)\n query_params[\"q\"] = [query]\n new_query_string = urlencode(query_params, doseq=True)\n url = urlunsplit((scheme, netloc, path, new_query_string, fragment))\n return url\n\ndef form_google_tel_query(*args, **kwargs):\n query = []\n quoted = kwargs.get(\"quoted\")\n directory = kwargs.get(\"directory\")\n if directory is not None:\n query.append(\"site:{}\".format(get_domain(directory)))\n if quoted is not None:\n query.append('\"{}\"'.format(quoted))\n query = query + [field.strip() for field in args if field is not None]\n query = \", \".join(query)\n url = \"https://www.google.com/search?q=\"\n scheme, netloc, path, query_string, fragment = urlsplit(url)\n query_params = parse_qs(query_string)\n query_params[\"q\"] = [query]\n new_query_string = urlencode(query_params, doseq=True)\n url = urlunsplit((scheme, netloc, path, new_query_string, fragment))\n return url\n\n\ndef get_social_accounts(website,companyName):\n headers = {\n \"accept\": \"text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3\",\n \"accept-language\": \"en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7\",\n \"cache-control\": \"no-cache\",\n \"content-type\": \"application/x-www-form-urlencoded\",\n \"origin\": \"https://safer.fmcsa.dot.gov\",\n \"pragma\": \"no-cache\",\n \"referer\": \"https://safer.fmcsa.dot.gov/CompanySnapshot.aspx\",\n \"user-agent\": \"Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36\"\n}\n socialAccounts = {\"twitter\": [], \"facebook\": [], \"linkedin\": []}\n website = website.strip()\n print('website1;',website)\n\n if len(website) > 4 and website[0:4] != \"http\":\n website = \"http://\" + website\n\n try:\n response = requests.get(website, headers=headers,proxies=proxies)\n content = response.content\n print('content',content)\n status_code=response.status_code\n print('status_code',status_code)\n \n \n if status_code==200:\n print('SUCCESS')\n else:\n print('FAILED')\n \n try:\n username='meritgroup'\n password='sXNdrc6JU'\n send_from = '[email protected]'\n send_to = '[email protected]'\n Cc =['[email protected]','[email protected]']\n \n msg = MIMEMultipart()\n msg['From'] = send_from\n msg['To'] = send_to\n msg['Cc'] = ', '.join(Cc)\n msg['Date'] = formatdate(localtime = True)\n msg['Subject'] = 'ALF AUTOMATION'\n templatePath = os.path.join(os.getcwd(), \"templates\", 'Weekly_Email_Template.html')\n template = open(templatePath, \"r\")\n server = smtplib.SMTP('74.80.234.196')\n port = '25'\n body = \"Body_of_the_mail\"\n #msg.attach(MIMEText(body, 'plain'))\n msg.attach(MIMEText(str(template.read()), 'html'))\n smtp = smtplib.SMTP('74.80.234.196')\n smtp.ehlo()\n smtp.starttls()\n smtp.login(username,password)\n smtp.sendmail(send_from, send_to.split(',') + msg['Cc'].split(',') , msg.as_string())\n smtp.quit()\n \n except Exception as e:\n print('e',e)\n \n except Exception as e:\n content = str(e)\n\n soup = BeautifulSoup(content, \"html5lib\")\n\n links = soup.find_all(\"a\", href=True)\n smSites = [\"twitter\", \"facebook\", \"linkedin\"]\n for smSite in smSites:\n accounts = []\n if smSite==\"linkedin\" :\n urll=\"https://www.google.com/search?api=1&query=\" +str(companyName)+ ' '+ 'linkedin'\n print(urll)\n \n req = requests.get(urll,headers=headers,proxies=proxies)\n soup1 = BeautifulSoup(req.text,'lxml')\n #print(soup1)\n rep=req.text\n #print(rep)\n \n df=soup1.find('div',attrs={'class':'yuRUbf'})\n #print(df)\n if df is not None:\n link=df.find('a').get('href')\n accounts.append(link)\n print('gh',accounts)\n\n if smSite==\"twitter\" :\n urll=\"https://www.google.com/search?api=1&query=\" +str(companyName)+ ' '+ 'twitter'\n print(urll)\n \n req = requests.get(urll,headers=headers,proxies=proxies)\n soup1 = BeautifulSoup(req.text,'lxml')\n rep=req.text\n df=soup1.find('div',attrs={'class':'yuRUbf'})\n if df is not None:\n link=df.find('a').get('href')\n accounts.append(link)\n print('gh',accounts)\n\n if smSite==\"facebook\" :\n urll=\"https://www.google.com/search?api=1&query=\" +str(companyName)+ ' '+ 'facebook'\n print(urll)\n \n req = requests.get(urll,headers=headers,proxies=proxies)\n soup1 = BeautifulSoup(req.text,'lxml')\n rep=req.text\n df=soup1.find('div',attrs={'class':'yuRUbf'})\n \n if df is not None:\n link=df.find('a').get('href')\n accounts.append(link)\n \n if accounts:\n socialAccounts[smSite] = list(set(accounts))\n print('social',socialAccounts)\n \n return socialAccounts\n\n\nclass Driver:\n browser = \"chrome\"\n\n def __enter__(self):\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n self.driver = self.initialize_driver(self.browser)\n return self\n\n def initialize_driver(self, browser):\n if browser == \"chrome\":\n options = Options()\n #options.add_argument(\"--headless\")\n options.add_argument(\"--disable-gpu\")\n options.add_argument(\"--no-sandbox\")\n options.add_argument(\"start-maximized\")\n options.add_argument(\"disable-infobars\")\n options.add_argument(\"--disable-logging\")\n options.add_argument(\"--log-level=3\")\n options.add_experimental_option(\n \"excludeSwitches\", [\"ignore-certificate-errors\"]\n )\n proxy = choice([\"172.27.140.48:3128\", \"172.27.140.48:3128\"])\n prox = Proxy()\n prox.proxy_type = ProxyType.MANUAL\n prox.http_proxy = proxy\n prox.ssl_proxy = proxy\n capabilities = webdriver.DesiredCapabilities.CHROME\n prox.add_to_capabilities(capabilities)\n driver = webdriver.Chrome(\n chrome_options=options,\n desired_capabilities=capabilities,\n service_log_path=\"NULL\",\n )\n else:\n\n \n binary = (r'C:\\Program Files\\Mozilla Firefox\\firefox.exe')\n options = Options()\n PROXY = \"172.27.140.48:3128\"\n options.add_argument(\"--headless\")\n #options.set_headless(headless=True)\n options.binary = binary\n\t\t\t\n\t\t\t\n PROXY = \"172.27.140.48:3128\"\n desired_capability = webdriver.DesiredCapabilities.FIREFOX\n desired_capability[\"proxy\"] = {\n\t\t\t\t\"proxyType\": \"manual\",\n\t\t\t\t\"httpProxy\": PROXY,\n\t\t\t\t\"ftpProxy\": PROXY,\n\t\t\t\t\"sslProxy\": PROXY,\n\t\t\t}\n firefox_profile = webdriver.FirefoxProfile()\n firefox_profile.set_preference(\"browser.privatebrowsing.autostart\", True)\n driver = webdriver.Firefox(firefox_profile=firefox_profile, firefox_binary=binary,firefox_options=options,capabilities=desired_capability)\n return driver\n\n def reset(self):\n self.quit()\n self.driver = self.initialize_driver(self.browser)\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n\n def get(self, url):\n if self.currentCount >= self.resetCount:\n self.reset()\n self.driver.get(url)\n self.currentCount += 1\n time.sleep(randint(1, 3))\n return self.driver.page_source\n\n def quit(self):\n self.driver.quit()\n\n\n\n def __exit__(self, type, value, traceback):\n self.quit()\n", "import requests\nimport time\nimport os\nimport re\nfrom bs4 import BeautifulSoup\nfrom urllib.parse import unquote\nimport tldextract\nimport pandas as pd\nfrom urllib.parse import urlparse, urlsplit, parse_qs, urlunsplit, urlencode, parse_qsl, unquote_plus\nfrom urllib.parse import unquote\nfrom selenium import webdriver\nfrom random import choice, randint\nfrom selenium.webdriver.chrome.options import Options\nfrom selenium.webdriver.common.proxy import Proxy, ProxyType\nimport configparser\nfrom time import sleep\nfrom selenium import webdriver\nfrom selenium.webdriver.firefox.options import Options\nfrom selenium.webdriver.common.desired_capabilities import DesiredCapabilities\nfrom selenium.webdriver.common.proxy import Proxy, ProxyType\nconfig = configparser.RawConfigParser()\nconfigPath = 'configuration.ini'\nfileDirectory = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))\nfileDirectory = os.path.join(fileDirectory, 'configuration.ini')\nconfig.read(fileDirectory)\nproxy = config.get('Proxy', 'proxy')\nprint(proxy)\nproxies = {'http': proxy, 'https': proxy}\n\n\nclass Url(object):\n \"\"\"A url object that can be compared with other url orbjects\n without regard to the vagaries of encoding, escaping, and ordering\n of parameters in query strings.\"\"\"\n\n def __init__(self, url):\n parts = urlparse(url)\n _query = frozenset(parse_qsl(parts.query))\n _path = unquote_plus(parts.path)\n parts = parts._replace(query=_query, path=_path)\n self.parts = parts\n\n def __eq__(self, other):\n return (self.parts.path in other.parts.path or other.parts.path in\n self.parts.path)\n\n def __hash__(self):\n return hash(self.parts)\n\n\ndef clean_telephone(telephone):\n if telephone:\n telephone = telephone.replace(' ', '').replace('.', '').replace(')', ''\n ).replace('(', '').replace('-', '').replace('+', '').strip()\n if re.findall('\\\\d+', telephone):\n telephone = re.findall('\\\\d+', telephone)[0]\n if len(telephone) == 12:\n telephone = telephone[2:]\n return telephone\n\n\ndef get_domain(website):\n url = urlparse(website)\n domain = url.hostname\n if domain is None:\n url = urlparse('http://' + website)\n domain = url.hostname\n domain = domain.replace('www.', '').replace('www2.', '')\n return domain.lower()\n\n\ndef regex(pattern, string, default=None, get_one=False):\n matches = re.findall(pattern, string)\n if matches:\n if get_one is True:\n return matches[0]\n return matches\n else:\n return default\n\n\ndef get_search_results_site(address, website, full_content=False):\n domain = get_domain(website)\n url = form_google_query(address, directory=domain)\n response = google_get(url)\n content = response.content.decode('utf-8')\n soup = BeautifulSoup(content, 'lxml')\n referenceUrl, content = None, None\n for row in soup.select('div.g'):\n referenceUrl = row.select_one('.r a')\n referenceUrl = referenceUrl['href'] if referenceUrl else None\n contents = row.select('span.st') if full_content else row.select(\n 'span.st em')\n if contents:\n contents = [content.get_text() for content in contents]\n content = ', '.join(pd.Series(contents).drop_duplicates().tolist())\n break\n return referenceUrl, content\n\n\ndef get_search_results(url):\n response = google_get(url)\n content = response.content.decode('utf-8')\n soup = BeautifulSoup(content, 'lxml')\n for row in soup.select('div.g'):\n referenceUrl = row.select_one('.rc a')\n referenceUrl = referenceUrl['href'] if referenceUrl else None\n contents = row.select('span em')\n if contents:\n contents = [content.get_text() for content in contents]\n content = ', '.join(pd.Series(contents).drop_duplicates().tolist())\n print('ru', referenceUrl)\n print('c', content)\n return referenceUrl, content\n\n\ndef google_get(url):\n proxies = {'http': proxy, 'https': proxy}\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'pragma': 'no-cache',\n 'upgrade-insecure-requests': '1', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36'\n }\n return requests.get(url, headers=headers, proxies=proxies)\n\n\ndef get_google_address1(query, gmap, tel_no, cn):\n global telephone, url\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'content-type':\n 'application/x-www-form-urlencoded', 'origin':\n 'https://safer.fmcsa.dot.gov', 'pragma': 'no-cache', 'referer':\n 'https://safer.fmcsa.dot.gov/CompanySnapshot.aspx', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36'\n }\n proxies = {'http': proxy, 'https': proxy}\n company_name = cn\n tel_no = tel_no\n print('tel_no', tel_no)\n if tel_no is None:\n telephone = ''\n url = ''\n else:\n tel_url = form_google_tel_query(company_name, tel_no)\n tel_url = tel_url.replace('%2C', '')\n req = requests.get(tel_url, headers=headers, proxies=proxies)\n print('tel_url', tel_url)\n rep = req.text\n soup = BeautifulSoup(req.text, 'lxml')\n no_results = soup.find_all('div', attrs={'class':\n 's card-section rQUFld'})\n if no_results == []:\n print('MATCH')\n sleep(5)\n try:\n link = re.findall('class=\"yuRUbf\"><a href=\"(.*?)\"', str(rep))\n for li in link:\n try:\n req1 = requests.get(li, headers=headers, proxies=\n proxies)\n sleep(5)\n rep1 = req1.text\n soup1 = BeautifulSoup(req1.text, 'lxml')\n fullstring = str(soup1)\n substring = str(tel_no)\n if substring in fullstring:\n f = 'FOUND'\n print(f)\n telephone = str(tel_no)\n url = li\n break\n else:\n f = 'NOT FOUND'\n telephone = ''\n url = ''\n except requests.exceptions.SSLError as ssl_error:\n print('bad handshake')\n telephone = ''\n url = ''\n except:\n telephone = ''\n url = ''\n else:\n telephone = ''\n url = ''\n return telephone, url\n\n\ndef get_google_address(query, gmap, tel_no):\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'pragma': 'no-cache',\n 'upgrade-insecure-requests': '1', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36'\n }\n proxies = {'http': proxy, 'https': proxy}\n url = form_google_query(query)\n search_url = url\n g_url = gmap\n response = google_get(url)\n sleep(5)\n content = response.content.decode('utf-8')\n print('so', content)\n soup = BeautifulSoup(content, 'lxml')\n print('so1', soup)\n address = soup.select_one(\n '[data-attrid=\"kc:/location/location:address\"] span.aCOpRe')\n print('add', address)\n address = address.get_text() if address else None\n if address is None:\n address = soup.find('div', attrs={'class': 'MWXBS'})\n if address is not None:\n address = address.text\n print('add-', address)\n else:\n address = soup.find('span', attrs={'class': 'LrzXr'})\n if address is not None:\n address = address.text\n print('add1', address)\n elif address is None:\n address = soup.find('span', attrs={'class': 'hgKElc'})\n if address is not None:\n address = address.text\n print('add:', address)\n elif address is None:\n url = (\n 'https://www.google.com/maps/search/?api=1&query=' +\n str(g_url))\n print('g_map_url', url)\n RegexList = []\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8'\n , 'accept-language':\n 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'pragma': 'no-cache',\n 'upgrade-insecure-requests': '1', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36'\n }\n response = requests.get(url, headers=headers, proxies=\n proxies)\n responseContent = response.content.decode('utf-8',\n errors='ignore')\n addressRegex = (\n 'google.com\\\\/maps\\\\/preview\\\\/place\\\\/([^>]*?)\\\\/@')\n telephone_regex = ',\\\\[\\\\\\\\\"(\\\\+[^>]*?)\\\\s*\\\\\\\\\"'\n addressBlock = re.findall(addressRegex, responseContent,\n re.I)\n if len(addressBlock) >= 1:\n address = unquote(addressBlock[0].replace('+', ' '),\n encoding='utf-8', errors='ignore')\n print('address_map:', address)\n else:\n address = ''\n url = search_url\n print('url_s', url)\n response = requests.get(url, headers=headers,\n proxies=proxies)\n soup = BeautifulSoup(response.text, 'lxml')\n print('s', soup)\n try:\n df = soup.find('span', attrs={'class': 'aCOpRe'})\n for sd in df:\n address = sd.text\n print('address_search:', address)\n except:\n address = ''\n return address, url\n\n\ndef get_directory_details(pageSource, directory):\n data = dict()\n parentRegex = config.get(directory, 'parentRegex', fallback=None)\n employeeRegex = config.get(directory, 'employeeRegex', fallback=None)\n if parentRegex:\n ultimateParentCompany = regex(parentRegex, pageSource, default=None,\n get_one=True)\n data['ultimateParentCompany'] = ultimateParentCompany\n if employeeRegex:\n employeeCount = regex(employeeRegex, pageSource, default=None,\n get_one=True)\n if employeeCount:\n data['employeeCount'] = employeeCount.replace(',', '').replace(' ',\n '')\n return data\n\n\ndef form_google_query(*args, **kwargs):\n query = []\n quoted = kwargs.get('quoted')\n directory = kwargs.get('directory')\n if directory is not None:\n query.append('site:{}'.format(get_domain(directory)))\n if quoted is not None:\n query.append('\"{}\"'.format(quoted))\n query = query + [field.strip() for field in args if field is not None]\n query = ', '.join(query)\n url = 'https://www.google.co.uk/search?q=&ie=UTF-8'\n scheme, netloc, path, query_string, fragment = urlsplit(url)\n query_params = parse_qs(query_string)\n query_params['q'] = [query]\n new_query_string = urlencode(query_params, doseq=True)\n url = urlunsplit((scheme, netloc, path, new_query_string, fragment))\n return url\n\n\ndef form_google_tel_query(*args, **kwargs):\n query = []\n quoted = kwargs.get('quoted')\n directory = kwargs.get('directory')\n if directory is not None:\n query.append('site:{}'.format(get_domain(directory)))\n if quoted is not None:\n query.append('\"{}\"'.format(quoted))\n query = query + [field.strip() for field in args if field is not None]\n query = ', '.join(query)\n url = 'https://www.google.com/search?q='\n scheme, netloc, path, query_string, fragment = urlsplit(url)\n query_params = parse_qs(query_string)\n query_params['q'] = [query]\n new_query_string = urlencode(query_params, doseq=True)\n url = urlunsplit((scheme, netloc, path, new_query_string, fragment))\n return url\n\n\ndef get_social_accounts(website, companyName):\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'content-type':\n 'application/x-www-form-urlencoded', 'origin':\n 'https://safer.fmcsa.dot.gov', 'pragma': 'no-cache', 'referer':\n 'https://safer.fmcsa.dot.gov/CompanySnapshot.aspx', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36'\n }\n socialAccounts = {'twitter': [], 'facebook': [], 'linkedin': []}\n website = website.strip()\n print('website1;', website)\n if len(website) > 4 and website[0:4] != 'http':\n website = 'http://' + website\n try:\n response = requests.get(website, headers=headers, proxies=proxies)\n content = response.content\n print('content', content)\n status_code = response.status_code\n print('status_code', status_code)\n if status_code == 200:\n print('SUCCESS')\n else:\n print('FAILED')\n try:\n username = 'meritgroup'\n password = 'sXNdrc6JU'\n send_from = '[email protected]'\n send_to = '[email protected]'\n Cc = ['[email protected]',\n '[email protected]']\n msg = MIMEMultipart()\n msg['From'] = send_from\n msg['To'] = send_to\n msg['Cc'] = ', '.join(Cc)\n msg['Date'] = formatdate(localtime=True)\n msg['Subject'] = 'ALF AUTOMATION'\n templatePath = os.path.join(os.getcwd(), 'templates',\n 'Weekly_Email_Template.html')\n template = open(templatePath, 'r')\n server = smtplib.SMTP('74.80.234.196')\n port = '25'\n body = 'Body_of_the_mail'\n msg.attach(MIMEText(str(template.read()), 'html'))\n smtp = smtplib.SMTP('74.80.234.196')\n smtp.ehlo()\n smtp.starttls()\n smtp.login(username, password)\n smtp.sendmail(send_from, send_to.split(',') + msg['Cc'].\n split(','), msg.as_string())\n smtp.quit()\n except Exception as e:\n print('e', e)\n except Exception as e:\n content = str(e)\n soup = BeautifulSoup(content, 'html5lib')\n links = soup.find_all('a', href=True)\n smSites = ['twitter', 'facebook', 'linkedin']\n for smSite in smSites:\n accounts = []\n if smSite == 'linkedin':\n urll = 'https://www.google.com/search?api=1&query=' + str(\n companyName) + ' ' + 'linkedin'\n print(urll)\n req = requests.get(urll, headers=headers, proxies=proxies)\n soup1 = BeautifulSoup(req.text, 'lxml')\n rep = req.text\n df = soup1.find('div', attrs={'class': 'yuRUbf'})\n if df is not None:\n link = df.find('a').get('href')\n accounts.append(link)\n print('gh', accounts)\n if smSite == 'twitter':\n urll = 'https://www.google.com/search?api=1&query=' + str(\n companyName) + ' ' + 'twitter'\n print(urll)\n req = requests.get(urll, headers=headers, proxies=proxies)\n soup1 = BeautifulSoup(req.text, 'lxml')\n rep = req.text\n df = soup1.find('div', attrs={'class': 'yuRUbf'})\n if df is not None:\n link = df.find('a').get('href')\n accounts.append(link)\n print('gh', accounts)\n if smSite == 'facebook':\n urll = 'https://www.google.com/search?api=1&query=' + str(\n companyName) + ' ' + 'facebook'\n print(urll)\n req = requests.get(urll, headers=headers, proxies=proxies)\n soup1 = BeautifulSoup(req.text, 'lxml')\n rep = req.text\n df = soup1.find('div', attrs={'class': 'yuRUbf'})\n if df is not None:\n link = df.find('a').get('href')\n accounts.append(link)\n if accounts:\n socialAccounts[smSite] = list(set(accounts))\n print('social', socialAccounts)\n return socialAccounts\n\n\nclass Driver:\n browser = 'chrome'\n\n def __enter__(self):\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n self.driver = self.initialize_driver(self.browser)\n return self\n\n def initialize_driver(self, browser):\n if browser == 'chrome':\n options = Options()\n options.add_argument('--disable-gpu')\n options.add_argument('--no-sandbox')\n options.add_argument('start-maximized')\n options.add_argument('disable-infobars')\n options.add_argument('--disable-logging')\n options.add_argument('--log-level=3')\n options.add_experimental_option('excludeSwitches', [\n 'ignore-certificate-errors'])\n proxy = choice(['172.27.140.48:3128', '172.27.140.48:3128'])\n prox = Proxy()\n prox.proxy_type = ProxyType.MANUAL\n prox.http_proxy = proxy\n prox.ssl_proxy = proxy\n capabilities = webdriver.DesiredCapabilities.CHROME\n prox.add_to_capabilities(capabilities)\n driver = webdriver.Chrome(chrome_options=options,\n desired_capabilities=capabilities, service_log_path='NULL')\n else:\n binary = 'C:\\\\Program Files\\\\Mozilla Firefox\\\\firefox.exe'\n options = Options()\n PROXY = '172.27.140.48:3128'\n options.add_argument('--headless')\n options.binary = binary\n PROXY = '172.27.140.48:3128'\n desired_capability = webdriver.DesiredCapabilities.FIREFOX\n desired_capability['proxy'] = {'proxyType': 'manual',\n 'httpProxy': PROXY, 'ftpProxy': PROXY, 'sslProxy': PROXY}\n firefox_profile = webdriver.FirefoxProfile()\n firefox_profile.set_preference('browser.privatebrowsing.autostart',\n True)\n driver = webdriver.Firefox(firefox_profile=firefox_profile,\n firefox_binary=binary, firefox_options=options,\n capabilities=desired_capability)\n return driver\n\n def reset(self):\n self.quit()\n self.driver = self.initialize_driver(self.browser)\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n\n def get(self, url):\n if self.currentCount >= self.resetCount:\n self.reset()\n self.driver.get(url)\n self.currentCount += 1\n time.sleep(randint(1, 3))\n return self.driver.page_source\n\n def quit(self):\n self.driver.quit()\n\n def __exit__(self, type, value, traceback):\n self.quit()\n", "<import token>\nconfig = configparser.RawConfigParser()\nconfigPath = 'configuration.ini'\nfileDirectory = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))\nfileDirectory = os.path.join(fileDirectory, 'configuration.ini')\nconfig.read(fileDirectory)\nproxy = config.get('Proxy', 'proxy')\nprint(proxy)\nproxies = {'http': proxy, 'https': proxy}\n\n\nclass Url(object):\n \"\"\"A url object that can be compared with other url orbjects\n without regard to the vagaries of encoding, escaping, and ordering\n of parameters in query strings.\"\"\"\n\n def __init__(self, url):\n parts = urlparse(url)\n _query = frozenset(parse_qsl(parts.query))\n _path = unquote_plus(parts.path)\n parts = parts._replace(query=_query, path=_path)\n self.parts = parts\n\n def __eq__(self, other):\n return (self.parts.path in other.parts.path or other.parts.path in\n self.parts.path)\n\n def __hash__(self):\n return hash(self.parts)\n\n\ndef clean_telephone(telephone):\n if telephone:\n telephone = telephone.replace(' ', '').replace('.', '').replace(')', ''\n ).replace('(', '').replace('-', '').replace('+', '').strip()\n if re.findall('\\\\d+', telephone):\n telephone = re.findall('\\\\d+', telephone)[0]\n if len(telephone) == 12:\n telephone = telephone[2:]\n return telephone\n\n\ndef get_domain(website):\n url = urlparse(website)\n domain = url.hostname\n if domain is None:\n url = urlparse('http://' + website)\n domain = url.hostname\n domain = domain.replace('www.', '').replace('www2.', '')\n return domain.lower()\n\n\ndef regex(pattern, string, default=None, get_one=False):\n matches = re.findall(pattern, string)\n if matches:\n if get_one is True:\n return matches[0]\n return matches\n else:\n return default\n\n\ndef get_search_results_site(address, website, full_content=False):\n domain = get_domain(website)\n url = form_google_query(address, directory=domain)\n response = google_get(url)\n content = response.content.decode('utf-8')\n soup = BeautifulSoup(content, 'lxml')\n referenceUrl, content = None, None\n for row in soup.select('div.g'):\n referenceUrl = row.select_one('.r a')\n referenceUrl = referenceUrl['href'] if referenceUrl else None\n contents = row.select('span.st') if full_content else row.select(\n 'span.st em')\n if contents:\n contents = [content.get_text() for content in contents]\n content = ', '.join(pd.Series(contents).drop_duplicates().tolist())\n break\n return referenceUrl, content\n\n\ndef get_search_results(url):\n response = google_get(url)\n content = response.content.decode('utf-8')\n soup = BeautifulSoup(content, 'lxml')\n for row in soup.select('div.g'):\n referenceUrl = row.select_one('.rc a')\n referenceUrl = referenceUrl['href'] if referenceUrl else None\n contents = row.select('span em')\n if contents:\n contents = [content.get_text() for content in contents]\n content = ', '.join(pd.Series(contents).drop_duplicates().tolist())\n print('ru', referenceUrl)\n print('c', content)\n return referenceUrl, content\n\n\ndef google_get(url):\n proxies = {'http': proxy, 'https': proxy}\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'pragma': 'no-cache',\n 'upgrade-insecure-requests': '1', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36'\n }\n return requests.get(url, headers=headers, proxies=proxies)\n\n\ndef get_google_address1(query, gmap, tel_no, cn):\n global telephone, url\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'content-type':\n 'application/x-www-form-urlencoded', 'origin':\n 'https://safer.fmcsa.dot.gov', 'pragma': 'no-cache', 'referer':\n 'https://safer.fmcsa.dot.gov/CompanySnapshot.aspx', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36'\n }\n proxies = {'http': proxy, 'https': proxy}\n company_name = cn\n tel_no = tel_no\n print('tel_no', tel_no)\n if tel_no is None:\n telephone = ''\n url = ''\n else:\n tel_url = form_google_tel_query(company_name, tel_no)\n tel_url = tel_url.replace('%2C', '')\n req = requests.get(tel_url, headers=headers, proxies=proxies)\n print('tel_url', tel_url)\n rep = req.text\n soup = BeautifulSoup(req.text, 'lxml')\n no_results = soup.find_all('div', attrs={'class':\n 's card-section rQUFld'})\n if no_results == []:\n print('MATCH')\n sleep(5)\n try:\n link = re.findall('class=\"yuRUbf\"><a href=\"(.*?)\"', str(rep))\n for li in link:\n try:\n req1 = requests.get(li, headers=headers, proxies=\n proxies)\n sleep(5)\n rep1 = req1.text\n soup1 = BeautifulSoup(req1.text, 'lxml')\n fullstring = str(soup1)\n substring = str(tel_no)\n if substring in fullstring:\n f = 'FOUND'\n print(f)\n telephone = str(tel_no)\n url = li\n break\n else:\n f = 'NOT FOUND'\n telephone = ''\n url = ''\n except requests.exceptions.SSLError as ssl_error:\n print('bad handshake')\n telephone = ''\n url = ''\n except:\n telephone = ''\n url = ''\n else:\n telephone = ''\n url = ''\n return telephone, url\n\n\ndef get_google_address(query, gmap, tel_no):\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'pragma': 'no-cache',\n 'upgrade-insecure-requests': '1', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36'\n }\n proxies = {'http': proxy, 'https': proxy}\n url = form_google_query(query)\n search_url = url\n g_url = gmap\n response = google_get(url)\n sleep(5)\n content = response.content.decode('utf-8')\n print('so', content)\n soup = BeautifulSoup(content, 'lxml')\n print('so1', soup)\n address = soup.select_one(\n '[data-attrid=\"kc:/location/location:address\"] span.aCOpRe')\n print('add', address)\n address = address.get_text() if address else None\n if address is None:\n address = soup.find('div', attrs={'class': 'MWXBS'})\n if address is not None:\n address = address.text\n print('add-', address)\n else:\n address = soup.find('span', attrs={'class': 'LrzXr'})\n if address is not None:\n address = address.text\n print('add1', address)\n elif address is None:\n address = soup.find('span', attrs={'class': 'hgKElc'})\n if address is not None:\n address = address.text\n print('add:', address)\n elif address is None:\n url = (\n 'https://www.google.com/maps/search/?api=1&query=' +\n str(g_url))\n print('g_map_url', url)\n RegexList = []\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8'\n , 'accept-language':\n 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'pragma': 'no-cache',\n 'upgrade-insecure-requests': '1', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36'\n }\n response = requests.get(url, headers=headers, proxies=\n proxies)\n responseContent = response.content.decode('utf-8',\n errors='ignore')\n addressRegex = (\n 'google.com\\\\/maps\\\\/preview\\\\/place\\\\/([^>]*?)\\\\/@')\n telephone_regex = ',\\\\[\\\\\\\\\"(\\\\+[^>]*?)\\\\s*\\\\\\\\\"'\n addressBlock = re.findall(addressRegex, responseContent,\n re.I)\n if len(addressBlock) >= 1:\n address = unquote(addressBlock[0].replace('+', ' '),\n encoding='utf-8', errors='ignore')\n print('address_map:', address)\n else:\n address = ''\n url = search_url\n print('url_s', url)\n response = requests.get(url, headers=headers,\n proxies=proxies)\n soup = BeautifulSoup(response.text, 'lxml')\n print('s', soup)\n try:\n df = soup.find('span', attrs={'class': 'aCOpRe'})\n for sd in df:\n address = sd.text\n print('address_search:', address)\n except:\n address = ''\n return address, url\n\n\ndef get_directory_details(pageSource, directory):\n data = dict()\n parentRegex = config.get(directory, 'parentRegex', fallback=None)\n employeeRegex = config.get(directory, 'employeeRegex', fallback=None)\n if parentRegex:\n ultimateParentCompany = regex(parentRegex, pageSource, default=None,\n get_one=True)\n data['ultimateParentCompany'] = ultimateParentCompany\n if employeeRegex:\n employeeCount = regex(employeeRegex, pageSource, default=None,\n get_one=True)\n if employeeCount:\n data['employeeCount'] = employeeCount.replace(',', '').replace(' ',\n '')\n return data\n\n\ndef form_google_query(*args, **kwargs):\n query = []\n quoted = kwargs.get('quoted')\n directory = kwargs.get('directory')\n if directory is not None:\n query.append('site:{}'.format(get_domain(directory)))\n if quoted is not None:\n query.append('\"{}\"'.format(quoted))\n query = query + [field.strip() for field in args if field is not None]\n query = ', '.join(query)\n url = 'https://www.google.co.uk/search?q=&ie=UTF-8'\n scheme, netloc, path, query_string, fragment = urlsplit(url)\n query_params = parse_qs(query_string)\n query_params['q'] = [query]\n new_query_string = urlencode(query_params, doseq=True)\n url = urlunsplit((scheme, netloc, path, new_query_string, fragment))\n return url\n\n\ndef form_google_tel_query(*args, **kwargs):\n query = []\n quoted = kwargs.get('quoted')\n directory = kwargs.get('directory')\n if directory is not None:\n query.append('site:{}'.format(get_domain(directory)))\n if quoted is not None:\n query.append('\"{}\"'.format(quoted))\n query = query + [field.strip() for field in args if field is not None]\n query = ', '.join(query)\n url = 'https://www.google.com/search?q='\n scheme, netloc, path, query_string, fragment = urlsplit(url)\n query_params = parse_qs(query_string)\n query_params['q'] = [query]\n new_query_string = urlencode(query_params, doseq=True)\n url = urlunsplit((scheme, netloc, path, new_query_string, fragment))\n return url\n\n\ndef get_social_accounts(website, companyName):\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'content-type':\n 'application/x-www-form-urlencoded', 'origin':\n 'https://safer.fmcsa.dot.gov', 'pragma': 'no-cache', 'referer':\n 'https://safer.fmcsa.dot.gov/CompanySnapshot.aspx', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36'\n }\n socialAccounts = {'twitter': [], 'facebook': [], 'linkedin': []}\n website = website.strip()\n print('website1;', website)\n if len(website) > 4 and website[0:4] != 'http':\n website = 'http://' + website\n try:\n response = requests.get(website, headers=headers, proxies=proxies)\n content = response.content\n print('content', content)\n status_code = response.status_code\n print('status_code', status_code)\n if status_code == 200:\n print('SUCCESS')\n else:\n print('FAILED')\n try:\n username = 'meritgroup'\n password = 'sXNdrc6JU'\n send_from = '[email protected]'\n send_to = '[email protected]'\n Cc = ['[email protected]',\n '[email protected]']\n msg = MIMEMultipart()\n msg['From'] = send_from\n msg['To'] = send_to\n msg['Cc'] = ', '.join(Cc)\n msg['Date'] = formatdate(localtime=True)\n msg['Subject'] = 'ALF AUTOMATION'\n templatePath = os.path.join(os.getcwd(), 'templates',\n 'Weekly_Email_Template.html')\n template = open(templatePath, 'r')\n server = smtplib.SMTP('74.80.234.196')\n port = '25'\n body = 'Body_of_the_mail'\n msg.attach(MIMEText(str(template.read()), 'html'))\n smtp = smtplib.SMTP('74.80.234.196')\n smtp.ehlo()\n smtp.starttls()\n smtp.login(username, password)\n smtp.sendmail(send_from, send_to.split(',') + msg['Cc'].\n split(','), msg.as_string())\n smtp.quit()\n except Exception as e:\n print('e', e)\n except Exception as e:\n content = str(e)\n soup = BeautifulSoup(content, 'html5lib')\n links = soup.find_all('a', href=True)\n smSites = ['twitter', 'facebook', 'linkedin']\n for smSite in smSites:\n accounts = []\n if smSite == 'linkedin':\n urll = 'https://www.google.com/search?api=1&query=' + str(\n companyName) + ' ' + 'linkedin'\n print(urll)\n req = requests.get(urll, headers=headers, proxies=proxies)\n soup1 = BeautifulSoup(req.text, 'lxml')\n rep = req.text\n df = soup1.find('div', attrs={'class': 'yuRUbf'})\n if df is not None:\n link = df.find('a').get('href')\n accounts.append(link)\n print('gh', accounts)\n if smSite == 'twitter':\n urll = 'https://www.google.com/search?api=1&query=' + str(\n companyName) + ' ' + 'twitter'\n print(urll)\n req = requests.get(urll, headers=headers, proxies=proxies)\n soup1 = BeautifulSoup(req.text, 'lxml')\n rep = req.text\n df = soup1.find('div', attrs={'class': 'yuRUbf'})\n if df is not None:\n link = df.find('a').get('href')\n accounts.append(link)\n print('gh', accounts)\n if smSite == 'facebook':\n urll = 'https://www.google.com/search?api=1&query=' + str(\n companyName) + ' ' + 'facebook'\n print(urll)\n req = requests.get(urll, headers=headers, proxies=proxies)\n soup1 = BeautifulSoup(req.text, 'lxml')\n rep = req.text\n df = soup1.find('div', attrs={'class': 'yuRUbf'})\n if df is not None:\n link = df.find('a').get('href')\n accounts.append(link)\n if accounts:\n socialAccounts[smSite] = list(set(accounts))\n print('social', socialAccounts)\n return socialAccounts\n\n\nclass Driver:\n browser = 'chrome'\n\n def __enter__(self):\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n self.driver = self.initialize_driver(self.browser)\n return self\n\n def initialize_driver(self, browser):\n if browser == 'chrome':\n options = Options()\n options.add_argument('--disable-gpu')\n options.add_argument('--no-sandbox')\n options.add_argument('start-maximized')\n options.add_argument('disable-infobars')\n options.add_argument('--disable-logging')\n options.add_argument('--log-level=3')\n options.add_experimental_option('excludeSwitches', [\n 'ignore-certificate-errors'])\n proxy = choice(['172.27.140.48:3128', '172.27.140.48:3128'])\n prox = Proxy()\n prox.proxy_type = ProxyType.MANUAL\n prox.http_proxy = proxy\n prox.ssl_proxy = proxy\n capabilities = webdriver.DesiredCapabilities.CHROME\n prox.add_to_capabilities(capabilities)\n driver = webdriver.Chrome(chrome_options=options,\n desired_capabilities=capabilities, service_log_path='NULL')\n else:\n binary = 'C:\\\\Program Files\\\\Mozilla Firefox\\\\firefox.exe'\n options = Options()\n PROXY = '172.27.140.48:3128'\n options.add_argument('--headless')\n options.binary = binary\n PROXY = '172.27.140.48:3128'\n desired_capability = webdriver.DesiredCapabilities.FIREFOX\n desired_capability['proxy'] = {'proxyType': 'manual',\n 'httpProxy': PROXY, 'ftpProxy': PROXY, 'sslProxy': PROXY}\n firefox_profile = webdriver.FirefoxProfile()\n firefox_profile.set_preference('browser.privatebrowsing.autostart',\n True)\n driver = webdriver.Firefox(firefox_profile=firefox_profile,\n firefox_binary=binary, firefox_options=options,\n capabilities=desired_capability)\n return driver\n\n def reset(self):\n self.quit()\n self.driver = self.initialize_driver(self.browser)\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n\n def get(self, url):\n if self.currentCount >= self.resetCount:\n self.reset()\n self.driver.get(url)\n self.currentCount += 1\n time.sleep(randint(1, 3))\n return self.driver.page_source\n\n def quit(self):\n self.driver.quit()\n\n def __exit__(self, type, value, traceback):\n self.quit()\n", "<import token>\n<assignment token>\nconfig.read(fileDirectory)\n<assignment token>\nprint(proxy)\n<assignment token>\n\n\nclass Url(object):\n \"\"\"A url object that can be compared with other url orbjects\n without regard to the vagaries of encoding, escaping, and ordering\n of parameters in query strings.\"\"\"\n\n def __init__(self, url):\n parts = urlparse(url)\n _query = frozenset(parse_qsl(parts.query))\n _path = unquote_plus(parts.path)\n parts = parts._replace(query=_query, path=_path)\n self.parts = parts\n\n def __eq__(self, other):\n return (self.parts.path in other.parts.path or other.parts.path in\n self.parts.path)\n\n def __hash__(self):\n return hash(self.parts)\n\n\ndef clean_telephone(telephone):\n if telephone:\n telephone = telephone.replace(' ', '').replace('.', '').replace(')', ''\n ).replace('(', '').replace('-', '').replace('+', '').strip()\n if re.findall('\\\\d+', telephone):\n telephone = re.findall('\\\\d+', telephone)[0]\n if len(telephone) == 12:\n telephone = telephone[2:]\n return telephone\n\n\ndef get_domain(website):\n url = urlparse(website)\n domain = url.hostname\n if domain is None:\n url = urlparse('http://' + website)\n domain = url.hostname\n domain = domain.replace('www.', '').replace('www2.', '')\n return domain.lower()\n\n\ndef regex(pattern, string, default=None, get_one=False):\n matches = re.findall(pattern, string)\n if matches:\n if get_one is True:\n return matches[0]\n return matches\n else:\n return default\n\n\ndef get_search_results_site(address, website, full_content=False):\n domain = get_domain(website)\n url = form_google_query(address, directory=domain)\n response = google_get(url)\n content = response.content.decode('utf-8')\n soup = BeautifulSoup(content, 'lxml')\n referenceUrl, content = None, None\n for row in soup.select('div.g'):\n referenceUrl = row.select_one('.r a')\n referenceUrl = referenceUrl['href'] if referenceUrl else None\n contents = row.select('span.st') if full_content else row.select(\n 'span.st em')\n if contents:\n contents = [content.get_text() for content in contents]\n content = ', '.join(pd.Series(contents).drop_duplicates().tolist())\n break\n return referenceUrl, content\n\n\ndef get_search_results(url):\n response = google_get(url)\n content = response.content.decode('utf-8')\n soup = BeautifulSoup(content, 'lxml')\n for row in soup.select('div.g'):\n referenceUrl = row.select_one('.rc a')\n referenceUrl = referenceUrl['href'] if referenceUrl else None\n contents = row.select('span em')\n if contents:\n contents = [content.get_text() for content in contents]\n content = ', '.join(pd.Series(contents).drop_duplicates().tolist())\n print('ru', referenceUrl)\n print('c', content)\n return referenceUrl, content\n\n\ndef google_get(url):\n proxies = {'http': proxy, 'https': proxy}\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'pragma': 'no-cache',\n 'upgrade-insecure-requests': '1', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36'\n }\n return requests.get(url, headers=headers, proxies=proxies)\n\n\ndef get_google_address1(query, gmap, tel_no, cn):\n global telephone, url\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'content-type':\n 'application/x-www-form-urlencoded', 'origin':\n 'https://safer.fmcsa.dot.gov', 'pragma': 'no-cache', 'referer':\n 'https://safer.fmcsa.dot.gov/CompanySnapshot.aspx', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36'\n }\n proxies = {'http': proxy, 'https': proxy}\n company_name = cn\n tel_no = tel_no\n print('tel_no', tel_no)\n if tel_no is None:\n telephone = ''\n url = ''\n else:\n tel_url = form_google_tel_query(company_name, tel_no)\n tel_url = tel_url.replace('%2C', '')\n req = requests.get(tel_url, headers=headers, proxies=proxies)\n print('tel_url', tel_url)\n rep = req.text\n soup = BeautifulSoup(req.text, 'lxml')\n no_results = soup.find_all('div', attrs={'class':\n 's card-section rQUFld'})\n if no_results == []:\n print('MATCH')\n sleep(5)\n try:\n link = re.findall('class=\"yuRUbf\"><a href=\"(.*?)\"', str(rep))\n for li in link:\n try:\n req1 = requests.get(li, headers=headers, proxies=\n proxies)\n sleep(5)\n rep1 = req1.text\n soup1 = BeautifulSoup(req1.text, 'lxml')\n fullstring = str(soup1)\n substring = str(tel_no)\n if substring in fullstring:\n f = 'FOUND'\n print(f)\n telephone = str(tel_no)\n url = li\n break\n else:\n f = 'NOT FOUND'\n telephone = ''\n url = ''\n except requests.exceptions.SSLError as ssl_error:\n print('bad handshake')\n telephone = ''\n url = ''\n except:\n telephone = ''\n url = ''\n else:\n telephone = ''\n url = ''\n return telephone, url\n\n\ndef get_google_address(query, gmap, tel_no):\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'pragma': 'no-cache',\n 'upgrade-insecure-requests': '1', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36'\n }\n proxies = {'http': proxy, 'https': proxy}\n url = form_google_query(query)\n search_url = url\n g_url = gmap\n response = google_get(url)\n sleep(5)\n content = response.content.decode('utf-8')\n print('so', content)\n soup = BeautifulSoup(content, 'lxml')\n print('so1', soup)\n address = soup.select_one(\n '[data-attrid=\"kc:/location/location:address\"] span.aCOpRe')\n print('add', address)\n address = address.get_text() if address else None\n if address is None:\n address = soup.find('div', attrs={'class': 'MWXBS'})\n if address is not None:\n address = address.text\n print('add-', address)\n else:\n address = soup.find('span', attrs={'class': 'LrzXr'})\n if address is not None:\n address = address.text\n print('add1', address)\n elif address is None:\n address = soup.find('span', attrs={'class': 'hgKElc'})\n if address is not None:\n address = address.text\n print('add:', address)\n elif address is None:\n url = (\n 'https://www.google.com/maps/search/?api=1&query=' +\n str(g_url))\n print('g_map_url', url)\n RegexList = []\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8'\n , 'accept-language':\n 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'pragma': 'no-cache',\n 'upgrade-insecure-requests': '1', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36'\n }\n response = requests.get(url, headers=headers, proxies=\n proxies)\n responseContent = response.content.decode('utf-8',\n errors='ignore')\n addressRegex = (\n 'google.com\\\\/maps\\\\/preview\\\\/place\\\\/([^>]*?)\\\\/@')\n telephone_regex = ',\\\\[\\\\\\\\\"(\\\\+[^>]*?)\\\\s*\\\\\\\\\"'\n addressBlock = re.findall(addressRegex, responseContent,\n re.I)\n if len(addressBlock) >= 1:\n address = unquote(addressBlock[0].replace('+', ' '),\n encoding='utf-8', errors='ignore')\n print('address_map:', address)\n else:\n address = ''\n url = search_url\n print('url_s', url)\n response = requests.get(url, headers=headers,\n proxies=proxies)\n soup = BeautifulSoup(response.text, 'lxml')\n print('s', soup)\n try:\n df = soup.find('span', attrs={'class': 'aCOpRe'})\n for sd in df:\n address = sd.text\n print('address_search:', address)\n except:\n address = ''\n return address, url\n\n\ndef get_directory_details(pageSource, directory):\n data = dict()\n parentRegex = config.get(directory, 'parentRegex', fallback=None)\n employeeRegex = config.get(directory, 'employeeRegex', fallback=None)\n if parentRegex:\n ultimateParentCompany = regex(parentRegex, pageSource, default=None,\n get_one=True)\n data['ultimateParentCompany'] = ultimateParentCompany\n if employeeRegex:\n employeeCount = regex(employeeRegex, pageSource, default=None,\n get_one=True)\n if employeeCount:\n data['employeeCount'] = employeeCount.replace(',', '').replace(' ',\n '')\n return data\n\n\ndef form_google_query(*args, **kwargs):\n query = []\n quoted = kwargs.get('quoted')\n directory = kwargs.get('directory')\n if directory is not None:\n query.append('site:{}'.format(get_domain(directory)))\n if quoted is not None:\n query.append('\"{}\"'.format(quoted))\n query = query + [field.strip() for field in args if field is not None]\n query = ', '.join(query)\n url = 'https://www.google.co.uk/search?q=&ie=UTF-8'\n scheme, netloc, path, query_string, fragment = urlsplit(url)\n query_params = parse_qs(query_string)\n query_params['q'] = [query]\n new_query_string = urlencode(query_params, doseq=True)\n url = urlunsplit((scheme, netloc, path, new_query_string, fragment))\n return url\n\n\ndef form_google_tel_query(*args, **kwargs):\n query = []\n quoted = kwargs.get('quoted')\n directory = kwargs.get('directory')\n if directory is not None:\n query.append('site:{}'.format(get_domain(directory)))\n if quoted is not None:\n query.append('\"{}\"'.format(quoted))\n query = query + [field.strip() for field in args if field is not None]\n query = ', '.join(query)\n url = 'https://www.google.com/search?q='\n scheme, netloc, path, query_string, fragment = urlsplit(url)\n query_params = parse_qs(query_string)\n query_params['q'] = [query]\n new_query_string = urlencode(query_params, doseq=True)\n url = urlunsplit((scheme, netloc, path, new_query_string, fragment))\n return url\n\n\ndef get_social_accounts(website, companyName):\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'content-type':\n 'application/x-www-form-urlencoded', 'origin':\n 'https://safer.fmcsa.dot.gov', 'pragma': 'no-cache', 'referer':\n 'https://safer.fmcsa.dot.gov/CompanySnapshot.aspx', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36'\n }\n socialAccounts = {'twitter': [], 'facebook': [], 'linkedin': []}\n website = website.strip()\n print('website1;', website)\n if len(website) > 4 and website[0:4] != 'http':\n website = 'http://' + website\n try:\n response = requests.get(website, headers=headers, proxies=proxies)\n content = response.content\n print('content', content)\n status_code = response.status_code\n print('status_code', status_code)\n if status_code == 200:\n print('SUCCESS')\n else:\n print('FAILED')\n try:\n username = 'meritgroup'\n password = 'sXNdrc6JU'\n send_from = '[email protected]'\n send_to = '[email protected]'\n Cc = ['[email protected]',\n '[email protected]']\n msg = MIMEMultipart()\n msg['From'] = send_from\n msg['To'] = send_to\n msg['Cc'] = ', '.join(Cc)\n msg['Date'] = formatdate(localtime=True)\n msg['Subject'] = 'ALF AUTOMATION'\n templatePath = os.path.join(os.getcwd(), 'templates',\n 'Weekly_Email_Template.html')\n template = open(templatePath, 'r')\n server = smtplib.SMTP('74.80.234.196')\n port = '25'\n body = 'Body_of_the_mail'\n msg.attach(MIMEText(str(template.read()), 'html'))\n smtp = smtplib.SMTP('74.80.234.196')\n smtp.ehlo()\n smtp.starttls()\n smtp.login(username, password)\n smtp.sendmail(send_from, send_to.split(',') + msg['Cc'].\n split(','), msg.as_string())\n smtp.quit()\n except Exception as e:\n print('e', e)\n except Exception as e:\n content = str(e)\n soup = BeautifulSoup(content, 'html5lib')\n links = soup.find_all('a', href=True)\n smSites = ['twitter', 'facebook', 'linkedin']\n for smSite in smSites:\n accounts = []\n if smSite == 'linkedin':\n urll = 'https://www.google.com/search?api=1&query=' + str(\n companyName) + ' ' + 'linkedin'\n print(urll)\n req = requests.get(urll, headers=headers, proxies=proxies)\n soup1 = BeautifulSoup(req.text, 'lxml')\n rep = req.text\n df = soup1.find('div', attrs={'class': 'yuRUbf'})\n if df is not None:\n link = df.find('a').get('href')\n accounts.append(link)\n print('gh', accounts)\n if smSite == 'twitter':\n urll = 'https://www.google.com/search?api=1&query=' + str(\n companyName) + ' ' + 'twitter'\n print(urll)\n req = requests.get(urll, headers=headers, proxies=proxies)\n soup1 = BeautifulSoup(req.text, 'lxml')\n rep = req.text\n df = soup1.find('div', attrs={'class': 'yuRUbf'})\n if df is not None:\n link = df.find('a').get('href')\n accounts.append(link)\n print('gh', accounts)\n if smSite == 'facebook':\n urll = 'https://www.google.com/search?api=1&query=' + str(\n companyName) + ' ' + 'facebook'\n print(urll)\n req = requests.get(urll, headers=headers, proxies=proxies)\n soup1 = BeautifulSoup(req.text, 'lxml')\n rep = req.text\n df = soup1.find('div', attrs={'class': 'yuRUbf'})\n if df is not None:\n link = df.find('a').get('href')\n accounts.append(link)\n if accounts:\n socialAccounts[smSite] = list(set(accounts))\n print('social', socialAccounts)\n return socialAccounts\n\n\nclass Driver:\n browser = 'chrome'\n\n def __enter__(self):\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n self.driver = self.initialize_driver(self.browser)\n return self\n\n def initialize_driver(self, browser):\n if browser == 'chrome':\n options = Options()\n options.add_argument('--disable-gpu')\n options.add_argument('--no-sandbox')\n options.add_argument('start-maximized')\n options.add_argument('disable-infobars')\n options.add_argument('--disable-logging')\n options.add_argument('--log-level=3')\n options.add_experimental_option('excludeSwitches', [\n 'ignore-certificate-errors'])\n proxy = choice(['172.27.140.48:3128', '172.27.140.48:3128'])\n prox = Proxy()\n prox.proxy_type = ProxyType.MANUAL\n prox.http_proxy = proxy\n prox.ssl_proxy = proxy\n capabilities = webdriver.DesiredCapabilities.CHROME\n prox.add_to_capabilities(capabilities)\n driver = webdriver.Chrome(chrome_options=options,\n desired_capabilities=capabilities, service_log_path='NULL')\n else:\n binary = 'C:\\\\Program Files\\\\Mozilla Firefox\\\\firefox.exe'\n options = Options()\n PROXY = '172.27.140.48:3128'\n options.add_argument('--headless')\n options.binary = binary\n PROXY = '172.27.140.48:3128'\n desired_capability = webdriver.DesiredCapabilities.FIREFOX\n desired_capability['proxy'] = {'proxyType': 'manual',\n 'httpProxy': PROXY, 'ftpProxy': PROXY, 'sslProxy': PROXY}\n firefox_profile = webdriver.FirefoxProfile()\n firefox_profile.set_preference('browser.privatebrowsing.autostart',\n True)\n driver = webdriver.Firefox(firefox_profile=firefox_profile,\n firefox_binary=binary, firefox_options=options,\n capabilities=desired_capability)\n return driver\n\n def reset(self):\n self.quit()\n self.driver = self.initialize_driver(self.browser)\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n\n def get(self, url):\n if self.currentCount >= self.resetCount:\n self.reset()\n self.driver.get(url)\n self.currentCount += 1\n time.sleep(randint(1, 3))\n return self.driver.page_source\n\n def quit(self):\n self.driver.quit()\n\n def __exit__(self, type, value, traceback):\n self.quit()\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n\n\nclass Url(object):\n \"\"\"A url object that can be compared with other url orbjects\n without regard to the vagaries of encoding, escaping, and ordering\n of parameters in query strings.\"\"\"\n\n def __init__(self, url):\n parts = urlparse(url)\n _query = frozenset(parse_qsl(parts.query))\n _path = unquote_plus(parts.path)\n parts = parts._replace(query=_query, path=_path)\n self.parts = parts\n\n def __eq__(self, other):\n return (self.parts.path in other.parts.path or other.parts.path in\n self.parts.path)\n\n def __hash__(self):\n return hash(self.parts)\n\n\ndef clean_telephone(telephone):\n if telephone:\n telephone = telephone.replace(' ', '').replace('.', '').replace(')', ''\n ).replace('(', '').replace('-', '').replace('+', '').strip()\n if re.findall('\\\\d+', telephone):\n telephone = re.findall('\\\\d+', telephone)[0]\n if len(telephone) == 12:\n telephone = telephone[2:]\n return telephone\n\n\ndef get_domain(website):\n url = urlparse(website)\n domain = url.hostname\n if domain is None:\n url = urlparse('http://' + website)\n domain = url.hostname\n domain = domain.replace('www.', '').replace('www2.', '')\n return domain.lower()\n\n\ndef regex(pattern, string, default=None, get_one=False):\n matches = re.findall(pattern, string)\n if matches:\n if get_one is True:\n return matches[0]\n return matches\n else:\n return default\n\n\ndef get_search_results_site(address, website, full_content=False):\n domain = get_domain(website)\n url = form_google_query(address, directory=domain)\n response = google_get(url)\n content = response.content.decode('utf-8')\n soup = BeautifulSoup(content, 'lxml')\n referenceUrl, content = None, None\n for row in soup.select('div.g'):\n referenceUrl = row.select_one('.r a')\n referenceUrl = referenceUrl['href'] if referenceUrl else None\n contents = row.select('span.st') if full_content else row.select(\n 'span.st em')\n if contents:\n contents = [content.get_text() for content in contents]\n content = ', '.join(pd.Series(contents).drop_duplicates().tolist())\n break\n return referenceUrl, content\n\n\ndef get_search_results(url):\n response = google_get(url)\n content = response.content.decode('utf-8')\n soup = BeautifulSoup(content, 'lxml')\n for row in soup.select('div.g'):\n referenceUrl = row.select_one('.rc a')\n referenceUrl = referenceUrl['href'] if referenceUrl else None\n contents = row.select('span em')\n if contents:\n contents = [content.get_text() for content in contents]\n content = ', '.join(pd.Series(contents).drop_duplicates().tolist())\n print('ru', referenceUrl)\n print('c', content)\n return referenceUrl, content\n\n\ndef google_get(url):\n proxies = {'http': proxy, 'https': proxy}\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'pragma': 'no-cache',\n 'upgrade-insecure-requests': '1', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36'\n }\n return requests.get(url, headers=headers, proxies=proxies)\n\n\ndef get_google_address1(query, gmap, tel_no, cn):\n global telephone, url\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'content-type':\n 'application/x-www-form-urlencoded', 'origin':\n 'https://safer.fmcsa.dot.gov', 'pragma': 'no-cache', 'referer':\n 'https://safer.fmcsa.dot.gov/CompanySnapshot.aspx', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36'\n }\n proxies = {'http': proxy, 'https': proxy}\n company_name = cn\n tel_no = tel_no\n print('tel_no', tel_no)\n if tel_no is None:\n telephone = ''\n url = ''\n else:\n tel_url = form_google_tel_query(company_name, tel_no)\n tel_url = tel_url.replace('%2C', '')\n req = requests.get(tel_url, headers=headers, proxies=proxies)\n print('tel_url', tel_url)\n rep = req.text\n soup = BeautifulSoup(req.text, 'lxml')\n no_results = soup.find_all('div', attrs={'class':\n 's card-section rQUFld'})\n if no_results == []:\n print('MATCH')\n sleep(5)\n try:\n link = re.findall('class=\"yuRUbf\"><a href=\"(.*?)\"', str(rep))\n for li in link:\n try:\n req1 = requests.get(li, headers=headers, proxies=\n proxies)\n sleep(5)\n rep1 = req1.text\n soup1 = BeautifulSoup(req1.text, 'lxml')\n fullstring = str(soup1)\n substring = str(tel_no)\n if substring in fullstring:\n f = 'FOUND'\n print(f)\n telephone = str(tel_no)\n url = li\n break\n else:\n f = 'NOT FOUND'\n telephone = ''\n url = ''\n except requests.exceptions.SSLError as ssl_error:\n print('bad handshake')\n telephone = ''\n url = ''\n except:\n telephone = ''\n url = ''\n else:\n telephone = ''\n url = ''\n return telephone, url\n\n\ndef get_google_address(query, gmap, tel_no):\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'pragma': 'no-cache',\n 'upgrade-insecure-requests': '1', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36'\n }\n proxies = {'http': proxy, 'https': proxy}\n url = form_google_query(query)\n search_url = url\n g_url = gmap\n response = google_get(url)\n sleep(5)\n content = response.content.decode('utf-8')\n print('so', content)\n soup = BeautifulSoup(content, 'lxml')\n print('so1', soup)\n address = soup.select_one(\n '[data-attrid=\"kc:/location/location:address\"] span.aCOpRe')\n print('add', address)\n address = address.get_text() if address else None\n if address is None:\n address = soup.find('div', attrs={'class': 'MWXBS'})\n if address is not None:\n address = address.text\n print('add-', address)\n else:\n address = soup.find('span', attrs={'class': 'LrzXr'})\n if address is not None:\n address = address.text\n print('add1', address)\n elif address is None:\n address = soup.find('span', attrs={'class': 'hgKElc'})\n if address is not None:\n address = address.text\n print('add:', address)\n elif address is None:\n url = (\n 'https://www.google.com/maps/search/?api=1&query=' +\n str(g_url))\n print('g_map_url', url)\n RegexList = []\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8'\n , 'accept-language':\n 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'pragma': 'no-cache',\n 'upgrade-insecure-requests': '1', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36'\n }\n response = requests.get(url, headers=headers, proxies=\n proxies)\n responseContent = response.content.decode('utf-8',\n errors='ignore')\n addressRegex = (\n 'google.com\\\\/maps\\\\/preview\\\\/place\\\\/([^>]*?)\\\\/@')\n telephone_regex = ',\\\\[\\\\\\\\\"(\\\\+[^>]*?)\\\\s*\\\\\\\\\"'\n addressBlock = re.findall(addressRegex, responseContent,\n re.I)\n if len(addressBlock) >= 1:\n address = unquote(addressBlock[0].replace('+', ' '),\n encoding='utf-8', errors='ignore')\n print('address_map:', address)\n else:\n address = ''\n url = search_url\n print('url_s', url)\n response = requests.get(url, headers=headers,\n proxies=proxies)\n soup = BeautifulSoup(response.text, 'lxml')\n print('s', soup)\n try:\n df = soup.find('span', attrs={'class': 'aCOpRe'})\n for sd in df:\n address = sd.text\n print('address_search:', address)\n except:\n address = ''\n return address, url\n\n\ndef get_directory_details(pageSource, directory):\n data = dict()\n parentRegex = config.get(directory, 'parentRegex', fallback=None)\n employeeRegex = config.get(directory, 'employeeRegex', fallback=None)\n if parentRegex:\n ultimateParentCompany = regex(parentRegex, pageSource, default=None,\n get_one=True)\n data['ultimateParentCompany'] = ultimateParentCompany\n if employeeRegex:\n employeeCount = regex(employeeRegex, pageSource, default=None,\n get_one=True)\n if employeeCount:\n data['employeeCount'] = employeeCount.replace(',', '').replace(' ',\n '')\n return data\n\n\ndef form_google_query(*args, **kwargs):\n query = []\n quoted = kwargs.get('quoted')\n directory = kwargs.get('directory')\n if directory is not None:\n query.append('site:{}'.format(get_domain(directory)))\n if quoted is not None:\n query.append('\"{}\"'.format(quoted))\n query = query + [field.strip() for field in args if field is not None]\n query = ', '.join(query)\n url = 'https://www.google.co.uk/search?q=&ie=UTF-8'\n scheme, netloc, path, query_string, fragment = urlsplit(url)\n query_params = parse_qs(query_string)\n query_params['q'] = [query]\n new_query_string = urlencode(query_params, doseq=True)\n url = urlunsplit((scheme, netloc, path, new_query_string, fragment))\n return url\n\n\ndef form_google_tel_query(*args, **kwargs):\n query = []\n quoted = kwargs.get('quoted')\n directory = kwargs.get('directory')\n if directory is not None:\n query.append('site:{}'.format(get_domain(directory)))\n if quoted is not None:\n query.append('\"{}\"'.format(quoted))\n query = query + [field.strip() for field in args if field is not None]\n query = ', '.join(query)\n url = 'https://www.google.com/search?q='\n scheme, netloc, path, query_string, fragment = urlsplit(url)\n query_params = parse_qs(query_string)\n query_params['q'] = [query]\n new_query_string = urlencode(query_params, doseq=True)\n url = urlunsplit((scheme, netloc, path, new_query_string, fragment))\n return url\n\n\ndef get_social_accounts(website, companyName):\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'content-type':\n 'application/x-www-form-urlencoded', 'origin':\n 'https://safer.fmcsa.dot.gov', 'pragma': 'no-cache', 'referer':\n 'https://safer.fmcsa.dot.gov/CompanySnapshot.aspx', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36'\n }\n socialAccounts = {'twitter': [], 'facebook': [], 'linkedin': []}\n website = website.strip()\n print('website1;', website)\n if len(website) > 4 and website[0:4] != 'http':\n website = 'http://' + website\n try:\n response = requests.get(website, headers=headers, proxies=proxies)\n content = response.content\n print('content', content)\n status_code = response.status_code\n print('status_code', status_code)\n if status_code == 200:\n print('SUCCESS')\n else:\n print('FAILED')\n try:\n username = 'meritgroup'\n password = 'sXNdrc6JU'\n send_from = '[email protected]'\n send_to = '[email protected]'\n Cc = ['[email protected]',\n '[email protected]']\n msg = MIMEMultipart()\n msg['From'] = send_from\n msg['To'] = send_to\n msg['Cc'] = ', '.join(Cc)\n msg['Date'] = formatdate(localtime=True)\n msg['Subject'] = 'ALF AUTOMATION'\n templatePath = os.path.join(os.getcwd(), 'templates',\n 'Weekly_Email_Template.html')\n template = open(templatePath, 'r')\n server = smtplib.SMTP('74.80.234.196')\n port = '25'\n body = 'Body_of_the_mail'\n msg.attach(MIMEText(str(template.read()), 'html'))\n smtp = smtplib.SMTP('74.80.234.196')\n smtp.ehlo()\n smtp.starttls()\n smtp.login(username, password)\n smtp.sendmail(send_from, send_to.split(',') + msg['Cc'].\n split(','), msg.as_string())\n smtp.quit()\n except Exception as e:\n print('e', e)\n except Exception as e:\n content = str(e)\n soup = BeautifulSoup(content, 'html5lib')\n links = soup.find_all('a', href=True)\n smSites = ['twitter', 'facebook', 'linkedin']\n for smSite in smSites:\n accounts = []\n if smSite == 'linkedin':\n urll = 'https://www.google.com/search?api=1&query=' + str(\n companyName) + ' ' + 'linkedin'\n print(urll)\n req = requests.get(urll, headers=headers, proxies=proxies)\n soup1 = BeautifulSoup(req.text, 'lxml')\n rep = req.text\n df = soup1.find('div', attrs={'class': 'yuRUbf'})\n if df is not None:\n link = df.find('a').get('href')\n accounts.append(link)\n print('gh', accounts)\n if smSite == 'twitter':\n urll = 'https://www.google.com/search?api=1&query=' + str(\n companyName) + ' ' + 'twitter'\n print(urll)\n req = requests.get(urll, headers=headers, proxies=proxies)\n soup1 = BeautifulSoup(req.text, 'lxml')\n rep = req.text\n df = soup1.find('div', attrs={'class': 'yuRUbf'})\n if df is not None:\n link = df.find('a').get('href')\n accounts.append(link)\n print('gh', accounts)\n if smSite == 'facebook':\n urll = 'https://www.google.com/search?api=1&query=' + str(\n companyName) + ' ' + 'facebook'\n print(urll)\n req = requests.get(urll, headers=headers, proxies=proxies)\n soup1 = BeautifulSoup(req.text, 'lxml')\n rep = req.text\n df = soup1.find('div', attrs={'class': 'yuRUbf'})\n if df is not None:\n link = df.find('a').get('href')\n accounts.append(link)\n if accounts:\n socialAccounts[smSite] = list(set(accounts))\n print('social', socialAccounts)\n return socialAccounts\n\n\nclass Driver:\n browser = 'chrome'\n\n def __enter__(self):\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n self.driver = self.initialize_driver(self.browser)\n return self\n\n def initialize_driver(self, browser):\n if browser == 'chrome':\n options = Options()\n options.add_argument('--disable-gpu')\n options.add_argument('--no-sandbox')\n options.add_argument('start-maximized')\n options.add_argument('disable-infobars')\n options.add_argument('--disable-logging')\n options.add_argument('--log-level=3')\n options.add_experimental_option('excludeSwitches', [\n 'ignore-certificate-errors'])\n proxy = choice(['172.27.140.48:3128', '172.27.140.48:3128'])\n prox = Proxy()\n prox.proxy_type = ProxyType.MANUAL\n prox.http_proxy = proxy\n prox.ssl_proxy = proxy\n capabilities = webdriver.DesiredCapabilities.CHROME\n prox.add_to_capabilities(capabilities)\n driver = webdriver.Chrome(chrome_options=options,\n desired_capabilities=capabilities, service_log_path='NULL')\n else:\n binary = 'C:\\\\Program Files\\\\Mozilla Firefox\\\\firefox.exe'\n options = Options()\n PROXY = '172.27.140.48:3128'\n options.add_argument('--headless')\n options.binary = binary\n PROXY = '172.27.140.48:3128'\n desired_capability = webdriver.DesiredCapabilities.FIREFOX\n desired_capability['proxy'] = {'proxyType': 'manual',\n 'httpProxy': PROXY, 'ftpProxy': PROXY, 'sslProxy': PROXY}\n firefox_profile = webdriver.FirefoxProfile()\n firefox_profile.set_preference('browser.privatebrowsing.autostart',\n True)\n driver = webdriver.Firefox(firefox_profile=firefox_profile,\n firefox_binary=binary, firefox_options=options,\n capabilities=desired_capability)\n return driver\n\n def reset(self):\n self.quit()\n self.driver = self.initialize_driver(self.browser)\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n\n def get(self, url):\n if self.currentCount >= self.resetCount:\n self.reset()\n self.driver.get(url)\n self.currentCount += 1\n time.sleep(randint(1, 3))\n return self.driver.page_source\n\n def quit(self):\n self.driver.quit()\n\n def __exit__(self, type, value, traceback):\n self.quit()\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n\n\nclass Url(object):\n \"\"\"A url object that can be compared with other url orbjects\n without regard to the vagaries of encoding, escaping, and ordering\n of parameters in query strings.\"\"\"\n\n def __init__(self, url):\n parts = urlparse(url)\n _query = frozenset(parse_qsl(parts.query))\n _path = unquote_plus(parts.path)\n parts = parts._replace(query=_query, path=_path)\n self.parts = parts\n\n def __eq__(self, other):\n return (self.parts.path in other.parts.path or other.parts.path in\n self.parts.path)\n\n def __hash__(self):\n return hash(self.parts)\n\n\ndef clean_telephone(telephone):\n if telephone:\n telephone = telephone.replace(' ', '').replace('.', '').replace(')', ''\n ).replace('(', '').replace('-', '').replace('+', '').strip()\n if re.findall('\\\\d+', telephone):\n telephone = re.findall('\\\\d+', telephone)[0]\n if len(telephone) == 12:\n telephone = telephone[2:]\n return telephone\n\n\ndef get_domain(website):\n url = urlparse(website)\n domain = url.hostname\n if domain is None:\n url = urlparse('http://' + website)\n domain = url.hostname\n domain = domain.replace('www.', '').replace('www2.', '')\n return domain.lower()\n\n\ndef regex(pattern, string, default=None, get_one=False):\n matches = re.findall(pattern, string)\n if matches:\n if get_one is True:\n return matches[0]\n return matches\n else:\n return default\n\n\ndef get_search_results_site(address, website, full_content=False):\n domain = get_domain(website)\n url = form_google_query(address, directory=domain)\n response = google_get(url)\n content = response.content.decode('utf-8')\n soup = BeautifulSoup(content, 'lxml')\n referenceUrl, content = None, None\n for row in soup.select('div.g'):\n referenceUrl = row.select_one('.r a')\n referenceUrl = referenceUrl['href'] if referenceUrl else None\n contents = row.select('span.st') if full_content else row.select(\n 'span.st em')\n if contents:\n contents = [content.get_text() for content in contents]\n content = ', '.join(pd.Series(contents).drop_duplicates().tolist())\n break\n return referenceUrl, content\n\n\ndef get_search_results(url):\n response = google_get(url)\n content = response.content.decode('utf-8')\n soup = BeautifulSoup(content, 'lxml')\n for row in soup.select('div.g'):\n referenceUrl = row.select_one('.rc a')\n referenceUrl = referenceUrl['href'] if referenceUrl else None\n contents = row.select('span em')\n if contents:\n contents = [content.get_text() for content in contents]\n content = ', '.join(pd.Series(contents).drop_duplicates().tolist())\n print('ru', referenceUrl)\n print('c', content)\n return referenceUrl, content\n\n\ndef google_get(url):\n proxies = {'http': proxy, 'https': proxy}\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'pragma': 'no-cache',\n 'upgrade-insecure-requests': '1', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36'\n }\n return requests.get(url, headers=headers, proxies=proxies)\n\n\ndef get_google_address1(query, gmap, tel_no, cn):\n global telephone, url\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'content-type':\n 'application/x-www-form-urlencoded', 'origin':\n 'https://safer.fmcsa.dot.gov', 'pragma': 'no-cache', 'referer':\n 'https://safer.fmcsa.dot.gov/CompanySnapshot.aspx', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36'\n }\n proxies = {'http': proxy, 'https': proxy}\n company_name = cn\n tel_no = tel_no\n print('tel_no', tel_no)\n if tel_no is None:\n telephone = ''\n url = ''\n else:\n tel_url = form_google_tel_query(company_name, tel_no)\n tel_url = tel_url.replace('%2C', '')\n req = requests.get(tel_url, headers=headers, proxies=proxies)\n print('tel_url', tel_url)\n rep = req.text\n soup = BeautifulSoup(req.text, 'lxml')\n no_results = soup.find_all('div', attrs={'class':\n 's card-section rQUFld'})\n if no_results == []:\n print('MATCH')\n sleep(5)\n try:\n link = re.findall('class=\"yuRUbf\"><a href=\"(.*?)\"', str(rep))\n for li in link:\n try:\n req1 = requests.get(li, headers=headers, proxies=\n proxies)\n sleep(5)\n rep1 = req1.text\n soup1 = BeautifulSoup(req1.text, 'lxml')\n fullstring = str(soup1)\n substring = str(tel_no)\n if substring in fullstring:\n f = 'FOUND'\n print(f)\n telephone = str(tel_no)\n url = li\n break\n else:\n f = 'NOT FOUND'\n telephone = ''\n url = ''\n except requests.exceptions.SSLError as ssl_error:\n print('bad handshake')\n telephone = ''\n url = ''\n except:\n telephone = ''\n url = ''\n else:\n telephone = ''\n url = ''\n return telephone, url\n\n\ndef get_google_address(query, gmap, tel_no):\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'pragma': 'no-cache',\n 'upgrade-insecure-requests': '1', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36'\n }\n proxies = {'http': proxy, 'https': proxy}\n url = form_google_query(query)\n search_url = url\n g_url = gmap\n response = google_get(url)\n sleep(5)\n content = response.content.decode('utf-8')\n print('so', content)\n soup = BeautifulSoup(content, 'lxml')\n print('so1', soup)\n address = soup.select_one(\n '[data-attrid=\"kc:/location/location:address\"] span.aCOpRe')\n print('add', address)\n address = address.get_text() if address else None\n if address is None:\n address = soup.find('div', attrs={'class': 'MWXBS'})\n if address is not None:\n address = address.text\n print('add-', address)\n else:\n address = soup.find('span', attrs={'class': 'LrzXr'})\n if address is not None:\n address = address.text\n print('add1', address)\n elif address is None:\n address = soup.find('span', attrs={'class': 'hgKElc'})\n if address is not None:\n address = address.text\n print('add:', address)\n elif address is None:\n url = (\n 'https://www.google.com/maps/search/?api=1&query=' +\n str(g_url))\n print('g_map_url', url)\n RegexList = []\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8'\n , 'accept-language':\n 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'pragma': 'no-cache',\n 'upgrade-insecure-requests': '1', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36'\n }\n response = requests.get(url, headers=headers, proxies=\n proxies)\n responseContent = response.content.decode('utf-8',\n errors='ignore')\n addressRegex = (\n 'google.com\\\\/maps\\\\/preview\\\\/place\\\\/([^>]*?)\\\\/@')\n telephone_regex = ',\\\\[\\\\\\\\\"(\\\\+[^>]*?)\\\\s*\\\\\\\\\"'\n addressBlock = re.findall(addressRegex, responseContent,\n re.I)\n if len(addressBlock) >= 1:\n address = unquote(addressBlock[0].replace('+', ' '),\n encoding='utf-8', errors='ignore')\n print('address_map:', address)\n else:\n address = ''\n url = search_url\n print('url_s', url)\n response = requests.get(url, headers=headers,\n proxies=proxies)\n soup = BeautifulSoup(response.text, 'lxml')\n print('s', soup)\n try:\n df = soup.find('span', attrs={'class': 'aCOpRe'})\n for sd in df:\n address = sd.text\n print('address_search:', address)\n except:\n address = ''\n return address, url\n\n\n<function token>\n\n\ndef form_google_query(*args, **kwargs):\n query = []\n quoted = kwargs.get('quoted')\n directory = kwargs.get('directory')\n if directory is not None:\n query.append('site:{}'.format(get_domain(directory)))\n if quoted is not None:\n query.append('\"{}\"'.format(quoted))\n query = query + [field.strip() for field in args if field is not None]\n query = ', '.join(query)\n url = 'https://www.google.co.uk/search?q=&ie=UTF-8'\n scheme, netloc, path, query_string, fragment = urlsplit(url)\n query_params = parse_qs(query_string)\n query_params['q'] = [query]\n new_query_string = urlencode(query_params, doseq=True)\n url = urlunsplit((scheme, netloc, path, new_query_string, fragment))\n return url\n\n\ndef form_google_tel_query(*args, **kwargs):\n query = []\n quoted = kwargs.get('quoted')\n directory = kwargs.get('directory')\n if directory is not None:\n query.append('site:{}'.format(get_domain(directory)))\n if quoted is not None:\n query.append('\"{}\"'.format(quoted))\n query = query + [field.strip() for field in args if field is not None]\n query = ', '.join(query)\n url = 'https://www.google.com/search?q='\n scheme, netloc, path, query_string, fragment = urlsplit(url)\n query_params = parse_qs(query_string)\n query_params['q'] = [query]\n new_query_string = urlencode(query_params, doseq=True)\n url = urlunsplit((scheme, netloc, path, new_query_string, fragment))\n return url\n\n\ndef get_social_accounts(website, companyName):\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'content-type':\n 'application/x-www-form-urlencoded', 'origin':\n 'https://safer.fmcsa.dot.gov', 'pragma': 'no-cache', 'referer':\n 'https://safer.fmcsa.dot.gov/CompanySnapshot.aspx', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36'\n }\n socialAccounts = {'twitter': [], 'facebook': [], 'linkedin': []}\n website = website.strip()\n print('website1;', website)\n if len(website) > 4 and website[0:4] != 'http':\n website = 'http://' + website\n try:\n response = requests.get(website, headers=headers, proxies=proxies)\n content = response.content\n print('content', content)\n status_code = response.status_code\n print('status_code', status_code)\n if status_code == 200:\n print('SUCCESS')\n else:\n print('FAILED')\n try:\n username = 'meritgroup'\n password = 'sXNdrc6JU'\n send_from = '[email protected]'\n send_to = '[email protected]'\n Cc = ['[email protected]',\n '[email protected]']\n msg = MIMEMultipart()\n msg['From'] = send_from\n msg['To'] = send_to\n msg['Cc'] = ', '.join(Cc)\n msg['Date'] = formatdate(localtime=True)\n msg['Subject'] = 'ALF AUTOMATION'\n templatePath = os.path.join(os.getcwd(), 'templates',\n 'Weekly_Email_Template.html')\n template = open(templatePath, 'r')\n server = smtplib.SMTP('74.80.234.196')\n port = '25'\n body = 'Body_of_the_mail'\n msg.attach(MIMEText(str(template.read()), 'html'))\n smtp = smtplib.SMTP('74.80.234.196')\n smtp.ehlo()\n smtp.starttls()\n smtp.login(username, password)\n smtp.sendmail(send_from, send_to.split(',') + msg['Cc'].\n split(','), msg.as_string())\n smtp.quit()\n except Exception as e:\n print('e', e)\n except Exception as e:\n content = str(e)\n soup = BeautifulSoup(content, 'html5lib')\n links = soup.find_all('a', href=True)\n smSites = ['twitter', 'facebook', 'linkedin']\n for smSite in smSites:\n accounts = []\n if smSite == 'linkedin':\n urll = 'https://www.google.com/search?api=1&query=' + str(\n companyName) + ' ' + 'linkedin'\n print(urll)\n req = requests.get(urll, headers=headers, proxies=proxies)\n soup1 = BeautifulSoup(req.text, 'lxml')\n rep = req.text\n df = soup1.find('div', attrs={'class': 'yuRUbf'})\n if df is not None:\n link = df.find('a').get('href')\n accounts.append(link)\n print('gh', accounts)\n if smSite == 'twitter':\n urll = 'https://www.google.com/search?api=1&query=' + str(\n companyName) + ' ' + 'twitter'\n print(urll)\n req = requests.get(urll, headers=headers, proxies=proxies)\n soup1 = BeautifulSoup(req.text, 'lxml')\n rep = req.text\n df = soup1.find('div', attrs={'class': 'yuRUbf'})\n if df is not None:\n link = df.find('a').get('href')\n accounts.append(link)\n print('gh', accounts)\n if smSite == 'facebook':\n urll = 'https://www.google.com/search?api=1&query=' + str(\n companyName) + ' ' + 'facebook'\n print(urll)\n req = requests.get(urll, headers=headers, proxies=proxies)\n soup1 = BeautifulSoup(req.text, 'lxml')\n rep = req.text\n df = soup1.find('div', attrs={'class': 'yuRUbf'})\n if df is not None:\n link = df.find('a').get('href')\n accounts.append(link)\n if accounts:\n socialAccounts[smSite] = list(set(accounts))\n print('social', socialAccounts)\n return socialAccounts\n\n\nclass Driver:\n browser = 'chrome'\n\n def __enter__(self):\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n self.driver = self.initialize_driver(self.browser)\n return self\n\n def initialize_driver(self, browser):\n if browser == 'chrome':\n options = Options()\n options.add_argument('--disable-gpu')\n options.add_argument('--no-sandbox')\n options.add_argument('start-maximized')\n options.add_argument('disable-infobars')\n options.add_argument('--disable-logging')\n options.add_argument('--log-level=3')\n options.add_experimental_option('excludeSwitches', [\n 'ignore-certificate-errors'])\n proxy = choice(['172.27.140.48:3128', '172.27.140.48:3128'])\n prox = Proxy()\n prox.proxy_type = ProxyType.MANUAL\n prox.http_proxy = proxy\n prox.ssl_proxy = proxy\n capabilities = webdriver.DesiredCapabilities.CHROME\n prox.add_to_capabilities(capabilities)\n driver = webdriver.Chrome(chrome_options=options,\n desired_capabilities=capabilities, service_log_path='NULL')\n else:\n binary = 'C:\\\\Program Files\\\\Mozilla Firefox\\\\firefox.exe'\n options = Options()\n PROXY = '172.27.140.48:3128'\n options.add_argument('--headless')\n options.binary = binary\n PROXY = '172.27.140.48:3128'\n desired_capability = webdriver.DesiredCapabilities.FIREFOX\n desired_capability['proxy'] = {'proxyType': 'manual',\n 'httpProxy': PROXY, 'ftpProxy': PROXY, 'sslProxy': PROXY}\n firefox_profile = webdriver.FirefoxProfile()\n firefox_profile.set_preference('browser.privatebrowsing.autostart',\n True)\n driver = webdriver.Firefox(firefox_profile=firefox_profile,\n firefox_binary=binary, firefox_options=options,\n capabilities=desired_capability)\n return driver\n\n def reset(self):\n self.quit()\n self.driver = self.initialize_driver(self.browser)\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n\n def get(self, url):\n if self.currentCount >= self.resetCount:\n self.reset()\n self.driver.get(url)\n self.currentCount += 1\n time.sleep(randint(1, 3))\n return self.driver.page_source\n\n def quit(self):\n self.driver.quit()\n\n def __exit__(self, type, value, traceback):\n self.quit()\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n\n\nclass Url(object):\n \"\"\"A url object that can be compared with other url orbjects\n without regard to the vagaries of encoding, escaping, and ordering\n of parameters in query strings.\"\"\"\n\n def __init__(self, url):\n parts = urlparse(url)\n _query = frozenset(parse_qsl(parts.query))\n _path = unquote_plus(parts.path)\n parts = parts._replace(query=_query, path=_path)\n self.parts = parts\n\n def __eq__(self, other):\n return (self.parts.path in other.parts.path or other.parts.path in\n self.parts.path)\n\n def __hash__(self):\n return hash(self.parts)\n\n\ndef clean_telephone(telephone):\n if telephone:\n telephone = telephone.replace(' ', '').replace('.', '').replace(')', ''\n ).replace('(', '').replace('-', '').replace('+', '').strip()\n if re.findall('\\\\d+', telephone):\n telephone = re.findall('\\\\d+', telephone)[0]\n if len(telephone) == 12:\n telephone = telephone[2:]\n return telephone\n\n\ndef get_domain(website):\n url = urlparse(website)\n domain = url.hostname\n if domain is None:\n url = urlparse('http://' + website)\n domain = url.hostname\n domain = domain.replace('www.', '').replace('www2.', '')\n return domain.lower()\n\n\ndef regex(pattern, string, default=None, get_one=False):\n matches = re.findall(pattern, string)\n if matches:\n if get_one is True:\n return matches[0]\n return matches\n else:\n return default\n\n\ndef get_search_results_site(address, website, full_content=False):\n domain = get_domain(website)\n url = form_google_query(address, directory=domain)\n response = google_get(url)\n content = response.content.decode('utf-8')\n soup = BeautifulSoup(content, 'lxml')\n referenceUrl, content = None, None\n for row in soup.select('div.g'):\n referenceUrl = row.select_one('.r a')\n referenceUrl = referenceUrl['href'] if referenceUrl else None\n contents = row.select('span.st') if full_content else row.select(\n 'span.st em')\n if contents:\n contents = [content.get_text() for content in contents]\n content = ', '.join(pd.Series(contents).drop_duplicates().tolist())\n break\n return referenceUrl, content\n\n\n<function token>\n\n\ndef google_get(url):\n proxies = {'http': proxy, 'https': proxy}\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'pragma': 'no-cache',\n 'upgrade-insecure-requests': '1', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36'\n }\n return requests.get(url, headers=headers, proxies=proxies)\n\n\ndef get_google_address1(query, gmap, tel_no, cn):\n global telephone, url\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'content-type':\n 'application/x-www-form-urlencoded', 'origin':\n 'https://safer.fmcsa.dot.gov', 'pragma': 'no-cache', 'referer':\n 'https://safer.fmcsa.dot.gov/CompanySnapshot.aspx', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36'\n }\n proxies = {'http': proxy, 'https': proxy}\n company_name = cn\n tel_no = tel_no\n print('tel_no', tel_no)\n if tel_no is None:\n telephone = ''\n url = ''\n else:\n tel_url = form_google_tel_query(company_name, tel_no)\n tel_url = tel_url.replace('%2C', '')\n req = requests.get(tel_url, headers=headers, proxies=proxies)\n print('tel_url', tel_url)\n rep = req.text\n soup = BeautifulSoup(req.text, 'lxml')\n no_results = soup.find_all('div', attrs={'class':\n 's card-section rQUFld'})\n if no_results == []:\n print('MATCH')\n sleep(5)\n try:\n link = re.findall('class=\"yuRUbf\"><a href=\"(.*?)\"', str(rep))\n for li in link:\n try:\n req1 = requests.get(li, headers=headers, proxies=\n proxies)\n sleep(5)\n rep1 = req1.text\n soup1 = BeautifulSoup(req1.text, 'lxml')\n fullstring = str(soup1)\n substring = str(tel_no)\n if substring in fullstring:\n f = 'FOUND'\n print(f)\n telephone = str(tel_no)\n url = li\n break\n else:\n f = 'NOT FOUND'\n telephone = ''\n url = ''\n except requests.exceptions.SSLError as ssl_error:\n print('bad handshake')\n telephone = ''\n url = ''\n except:\n telephone = ''\n url = ''\n else:\n telephone = ''\n url = ''\n return telephone, url\n\n\ndef get_google_address(query, gmap, tel_no):\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'pragma': 'no-cache',\n 'upgrade-insecure-requests': '1', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36'\n }\n proxies = {'http': proxy, 'https': proxy}\n url = form_google_query(query)\n search_url = url\n g_url = gmap\n response = google_get(url)\n sleep(5)\n content = response.content.decode('utf-8')\n print('so', content)\n soup = BeautifulSoup(content, 'lxml')\n print('so1', soup)\n address = soup.select_one(\n '[data-attrid=\"kc:/location/location:address\"] span.aCOpRe')\n print('add', address)\n address = address.get_text() if address else None\n if address is None:\n address = soup.find('div', attrs={'class': 'MWXBS'})\n if address is not None:\n address = address.text\n print('add-', address)\n else:\n address = soup.find('span', attrs={'class': 'LrzXr'})\n if address is not None:\n address = address.text\n print('add1', address)\n elif address is None:\n address = soup.find('span', attrs={'class': 'hgKElc'})\n if address is not None:\n address = address.text\n print('add:', address)\n elif address is None:\n url = (\n 'https://www.google.com/maps/search/?api=1&query=' +\n str(g_url))\n print('g_map_url', url)\n RegexList = []\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8'\n , 'accept-language':\n 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'pragma': 'no-cache',\n 'upgrade-insecure-requests': '1', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36'\n }\n response = requests.get(url, headers=headers, proxies=\n proxies)\n responseContent = response.content.decode('utf-8',\n errors='ignore')\n addressRegex = (\n 'google.com\\\\/maps\\\\/preview\\\\/place\\\\/([^>]*?)\\\\/@')\n telephone_regex = ',\\\\[\\\\\\\\\"(\\\\+[^>]*?)\\\\s*\\\\\\\\\"'\n addressBlock = re.findall(addressRegex, responseContent,\n re.I)\n if len(addressBlock) >= 1:\n address = unquote(addressBlock[0].replace('+', ' '),\n encoding='utf-8', errors='ignore')\n print('address_map:', address)\n else:\n address = ''\n url = search_url\n print('url_s', url)\n response = requests.get(url, headers=headers,\n proxies=proxies)\n soup = BeautifulSoup(response.text, 'lxml')\n print('s', soup)\n try:\n df = soup.find('span', attrs={'class': 'aCOpRe'})\n for sd in df:\n address = sd.text\n print('address_search:', address)\n except:\n address = ''\n return address, url\n\n\n<function token>\n\n\ndef form_google_query(*args, **kwargs):\n query = []\n quoted = kwargs.get('quoted')\n directory = kwargs.get('directory')\n if directory is not None:\n query.append('site:{}'.format(get_domain(directory)))\n if quoted is not None:\n query.append('\"{}\"'.format(quoted))\n query = query + [field.strip() for field in args if field is not None]\n query = ', '.join(query)\n url = 'https://www.google.co.uk/search?q=&ie=UTF-8'\n scheme, netloc, path, query_string, fragment = urlsplit(url)\n query_params = parse_qs(query_string)\n query_params['q'] = [query]\n new_query_string = urlencode(query_params, doseq=True)\n url = urlunsplit((scheme, netloc, path, new_query_string, fragment))\n return url\n\n\ndef form_google_tel_query(*args, **kwargs):\n query = []\n quoted = kwargs.get('quoted')\n directory = kwargs.get('directory')\n if directory is not None:\n query.append('site:{}'.format(get_domain(directory)))\n if quoted is not None:\n query.append('\"{}\"'.format(quoted))\n query = query + [field.strip() for field in args if field is not None]\n query = ', '.join(query)\n url = 'https://www.google.com/search?q='\n scheme, netloc, path, query_string, fragment = urlsplit(url)\n query_params = parse_qs(query_string)\n query_params['q'] = [query]\n new_query_string = urlencode(query_params, doseq=True)\n url = urlunsplit((scheme, netloc, path, new_query_string, fragment))\n return url\n\n\ndef get_social_accounts(website, companyName):\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'content-type':\n 'application/x-www-form-urlencoded', 'origin':\n 'https://safer.fmcsa.dot.gov', 'pragma': 'no-cache', 'referer':\n 'https://safer.fmcsa.dot.gov/CompanySnapshot.aspx', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36'\n }\n socialAccounts = {'twitter': [], 'facebook': [], 'linkedin': []}\n website = website.strip()\n print('website1;', website)\n if len(website) > 4 and website[0:4] != 'http':\n website = 'http://' + website\n try:\n response = requests.get(website, headers=headers, proxies=proxies)\n content = response.content\n print('content', content)\n status_code = response.status_code\n print('status_code', status_code)\n if status_code == 200:\n print('SUCCESS')\n else:\n print('FAILED')\n try:\n username = 'meritgroup'\n password = 'sXNdrc6JU'\n send_from = '[email protected]'\n send_to = '[email protected]'\n Cc = ['[email protected]',\n '[email protected]']\n msg = MIMEMultipart()\n msg['From'] = send_from\n msg['To'] = send_to\n msg['Cc'] = ', '.join(Cc)\n msg['Date'] = formatdate(localtime=True)\n msg['Subject'] = 'ALF AUTOMATION'\n templatePath = os.path.join(os.getcwd(), 'templates',\n 'Weekly_Email_Template.html')\n template = open(templatePath, 'r')\n server = smtplib.SMTP('74.80.234.196')\n port = '25'\n body = 'Body_of_the_mail'\n msg.attach(MIMEText(str(template.read()), 'html'))\n smtp = smtplib.SMTP('74.80.234.196')\n smtp.ehlo()\n smtp.starttls()\n smtp.login(username, password)\n smtp.sendmail(send_from, send_to.split(',') + msg['Cc'].\n split(','), msg.as_string())\n smtp.quit()\n except Exception as e:\n print('e', e)\n except Exception as e:\n content = str(e)\n soup = BeautifulSoup(content, 'html5lib')\n links = soup.find_all('a', href=True)\n smSites = ['twitter', 'facebook', 'linkedin']\n for smSite in smSites:\n accounts = []\n if smSite == 'linkedin':\n urll = 'https://www.google.com/search?api=1&query=' + str(\n companyName) + ' ' + 'linkedin'\n print(urll)\n req = requests.get(urll, headers=headers, proxies=proxies)\n soup1 = BeautifulSoup(req.text, 'lxml')\n rep = req.text\n df = soup1.find('div', attrs={'class': 'yuRUbf'})\n if df is not None:\n link = df.find('a').get('href')\n accounts.append(link)\n print('gh', accounts)\n if smSite == 'twitter':\n urll = 'https://www.google.com/search?api=1&query=' + str(\n companyName) + ' ' + 'twitter'\n print(urll)\n req = requests.get(urll, headers=headers, proxies=proxies)\n soup1 = BeautifulSoup(req.text, 'lxml')\n rep = req.text\n df = soup1.find('div', attrs={'class': 'yuRUbf'})\n if df is not None:\n link = df.find('a').get('href')\n accounts.append(link)\n print('gh', accounts)\n if smSite == 'facebook':\n urll = 'https://www.google.com/search?api=1&query=' + str(\n companyName) + ' ' + 'facebook'\n print(urll)\n req = requests.get(urll, headers=headers, proxies=proxies)\n soup1 = BeautifulSoup(req.text, 'lxml')\n rep = req.text\n df = soup1.find('div', attrs={'class': 'yuRUbf'})\n if df is not None:\n link = df.find('a').get('href')\n accounts.append(link)\n if accounts:\n socialAccounts[smSite] = list(set(accounts))\n print('social', socialAccounts)\n return socialAccounts\n\n\nclass Driver:\n browser = 'chrome'\n\n def __enter__(self):\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n self.driver = self.initialize_driver(self.browser)\n return self\n\n def initialize_driver(self, browser):\n if browser == 'chrome':\n options = Options()\n options.add_argument('--disable-gpu')\n options.add_argument('--no-sandbox')\n options.add_argument('start-maximized')\n options.add_argument('disable-infobars')\n options.add_argument('--disable-logging')\n options.add_argument('--log-level=3')\n options.add_experimental_option('excludeSwitches', [\n 'ignore-certificate-errors'])\n proxy = choice(['172.27.140.48:3128', '172.27.140.48:3128'])\n prox = Proxy()\n prox.proxy_type = ProxyType.MANUAL\n prox.http_proxy = proxy\n prox.ssl_proxy = proxy\n capabilities = webdriver.DesiredCapabilities.CHROME\n prox.add_to_capabilities(capabilities)\n driver = webdriver.Chrome(chrome_options=options,\n desired_capabilities=capabilities, service_log_path='NULL')\n else:\n binary = 'C:\\\\Program Files\\\\Mozilla Firefox\\\\firefox.exe'\n options = Options()\n PROXY = '172.27.140.48:3128'\n options.add_argument('--headless')\n options.binary = binary\n PROXY = '172.27.140.48:3128'\n desired_capability = webdriver.DesiredCapabilities.FIREFOX\n desired_capability['proxy'] = {'proxyType': 'manual',\n 'httpProxy': PROXY, 'ftpProxy': PROXY, 'sslProxy': PROXY}\n firefox_profile = webdriver.FirefoxProfile()\n firefox_profile.set_preference('browser.privatebrowsing.autostart',\n True)\n driver = webdriver.Firefox(firefox_profile=firefox_profile,\n firefox_binary=binary, firefox_options=options,\n capabilities=desired_capability)\n return driver\n\n def reset(self):\n self.quit()\n self.driver = self.initialize_driver(self.browser)\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n\n def get(self, url):\n if self.currentCount >= self.resetCount:\n self.reset()\n self.driver.get(url)\n self.currentCount += 1\n time.sleep(randint(1, 3))\n return self.driver.page_source\n\n def quit(self):\n self.driver.quit()\n\n def __exit__(self, type, value, traceback):\n self.quit()\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n\n\nclass Url(object):\n \"\"\"A url object that can be compared with other url orbjects\n without regard to the vagaries of encoding, escaping, and ordering\n of parameters in query strings.\"\"\"\n\n def __init__(self, url):\n parts = urlparse(url)\n _query = frozenset(parse_qsl(parts.query))\n _path = unquote_plus(parts.path)\n parts = parts._replace(query=_query, path=_path)\n self.parts = parts\n\n def __eq__(self, other):\n return (self.parts.path in other.parts.path or other.parts.path in\n self.parts.path)\n\n def __hash__(self):\n return hash(self.parts)\n\n\n<function token>\n\n\ndef get_domain(website):\n url = urlparse(website)\n domain = url.hostname\n if domain is None:\n url = urlparse('http://' + website)\n domain = url.hostname\n domain = domain.replace('www.', '').replace('www2.', '')\n return domain.lower()\n\n\ndef regex(pattern, string, default=None, get_one=False):\n matches = re.findall(pattern, string)\n if matches:\n if get_one is True:\n return matches[0]\n return matches\n else:\n return default\n\n\ndef get_search_results_site(address, website, full_content=False):\n domain = get_domain(website)\n url = form_google_query(address, directory=domain)\n response = google_get(url)\n content = response.content.decode('utf-8')\n soup = BeautifulSoup(content, 'lxml')\n referenceUrl, content = None, None\n for row in soup.select('div.g'):\n referenceUrl = row.select_one('.r a')\n referenceUrl = referenceUrl['href'] if referenceUrl else None\n contents = row.select('span.st') if full_content else row.select(\n 'span.st em')\n if contents:\n contents = [content.get_text() for content in contents]\n content = ', '.join(pd.Series(contents).drop_duplicates().tolist())\n break\n return referenceUrl, content\n\n\n<function token>\n\n\ndef google_get(url):\n proxies = {'http': proxy, 'https': proxy}\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'pragma': 'no-cache',\n 'upgrade-insecure-requests': '1', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36'\n }\n return requests.get(url, headers=headers, proxies=proxies)\n\n\ndef get_google_address1(query, gmap, tel_no, cn):\n global telephone, url\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'content-type':\n 'application/x-www-form-urlencoded', 'origin':\n 'https://safer.fmcsa.dot.gov', 'pragma': 'no-cache', 'referer':\n 'https://safer.fmcsa.dot.gov/CompanySnapshot.aspx', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36'\n }\n proxies = {'http': proxy, 'https': proxy}\n company_name = cn\n tel_no = tel_no\n print('tel_no', tel_no)\n if tel_no is None:\n telephone = ''\n url = ''\n else:\n tel_url = form_google_tel_query(company_name, tel_no)\n tel_url = tel_url.replace('%2C', '')\n req = requests.get(tel_url, headers=headers, proxies=proxies)\n print('tel_url', tel_url)\n rep = req.text\n soup = BeautifulSoup(req.text, 'lxml')\n no_results = soup.find_all('div', attrs={'class':\n 's card-section rQUFld'})\n if no_results == []:\n print('MATCH')\n sleep(5)\n try:\n link = re.findall('class=\"yuRUbf\"><a href=\"(.*?)\"', str(rep))\n for li in link:\n try:\n req1 = requests.get(li, headers=headers, proxies=\n proxies)\n sleep(5)\n rep1 = req1.text\n soup1 = BeautifulSoup(req1.text, 'lxml')\n fullstring = str(soup1)\n substring = str(tel_no)\n if substring in fullstring:\n f = 'FOUND'\n print(f)\n telephone = str(tel_no)\n url = li\n break\n else:\n f = 'NOT FOUND'\n telephone = ''\n url = ''\n except requests.exceptions.SSLError as ssl_error:\n print('bad handshake')\n telephone = ''\n url = ''\n except:\n telephone = ''\n url = ''\n else:\n telephone = ''\n url = ''\n return telephone, url\n\n\ndef get_google_address(query, gmap, tel_no):\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'pragma': 'no-cache',\n 'upgrade-insecure-requests': '1', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36'\n }\n proxies = {'http': proxy, 'https': proxy}\n url = form_google_query(query)\n search_url = url\n g_url = gmap\n response = google_get(url)\n sleep(5)\n content = response.content.decode('utf-8')\n print('so', content)\n soup = BeautifulSoup(content, 'lxml')\n print('so1', soup)\n address = soup.select_one(\n '[data-attrid=\"kc:/location/location:address\"] span.aCOpRe')\n print('add', address)\n address = address.get_text() if address else None\n if address is None:\n address = soup.find('div', attrs={'class': 'MWXBS'})\n if address is not None:\n address = address.text\n print('add-', address)\n else:\n address = soup.find('span', attrs={'class': 'LrzXr'})\n if address is not None:\n address = address.text\n print('add1', address)\n elif address is None:\n address = soup.find('span', attrs={'class': 'hgKElc'})\n if address is not None:\n address = address.text\n print('add:', address)\n elif address is None:\n url = (\n 'https://www.google.com/maps/search/?api=1&query=' +\n str(g_url))\n print('g_map_url', url)\n RegexList = []\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8'\n , 'accept-language':\n 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'pragma': 'no-cache',\n 'upgrade-insecure-requests': '1', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36'\n }\n response = requests.get(url, headers=headers, proxies=\n proxies)\n responseContent = response.content.decode('utf-8',\n errors='ignore')\n addressRegex = (\n 'google.com\\\\/maps\\\\/preview\\\\/place\\\\/([^>]*?)\\\\/@')\n telephone_regex = ',\\\\[\\\\\\\\\"(\\\\+[^>]*?)\\\\s*\\\\\\\\\"'\n addressBlock = re.findall(addressRegex, responseContent,\n re.I)\n if len(addressBlock) >= 1:\n address = unquote(addressBlock[0].replace('+', ' '),\n encoding='utf-8', errors='ignore')\n print('address_map:', address)\n else:\n address = ''\n url = search_url\n print('url_s', url)\n response = requests.get(url, headers=headers,\n proxies=proxies)\n soup = BeautifulSoup(response.text, 'lxml')\n print('s', soup)\n try:\n df = soup.find('span', attrs={'class': 'aCOpRe'})\n for sd in df:\n address = sd.text\n print('address_search:', address)\n except:\n address = ''\n return address, url\n\n\n<function token>\n\n\ndef form_google_query(*args, **kwargs):\n query = []\n quoted = kwargs.get('quoted')\n directory = kwargs.get('directory')\n if directory is not None:\n query.append('site:{}'.format(get_domain(directory)))\n if quoted is not None:\n query.append('\"{}\"'.format(quoted))\n query = query + [field.strip() for field in args if field is not None]\n query = ', '.join(query)\n url = 'https://www.google.co.uk/search?q=&ie=UTF-8'\n scheme, netloc, path, query_string, fragment = urlsplit(url)\n query_params = parse_qs(query_string)\n query_params['q'] = [query]\n new_query_string = urlencode(query_params, doseq=True)\n url = urlunsplit((scheme, netloc, path, new_query_string, fragment))\n return url\n\n\ndef form_google_tel_query(*args, **kwargs):\n query = []\n quoted = kwargs.get('quoted')\n directory = kwargs.get('directory')\n if directory is not None:\n query.append('site:{}'.format(get_domain(directory)))\n if quoted is not None:\n query.append('\"{}\"'.format(quoted))\n query = query + [field.strip() for field in args if field is not None]\n query = ', '.join(query)\n url = 'https://www.google.com/search?q='\n scheme, netloc, path, query_string, fragment = urlsplit(url)\n query_params = parse_qs(query_string)\n query_params['q'] = [query]\n new_query_string = urlencode(query_params, doseq=True)\n url = urlunsplit((scheme, netloc, path, new_query_string, fragment))\n return url\n\n\ndef get_social_accounts(website, companyName):\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'content-type':\n 'application/x-www-form-urlencoded', 'origin':\n 'https://safer.fmcsa.dot.gov', 'pragma': 'no-cache', 'referer':\n 'https://safer.fmcsa.dot.gov/CompanySnapshot.aspx', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36'\n }\n socialAccounts = {'twitter': [], 'facebook': [], 'linkedin': []}\n website = website.strip()\n print('website1;', website)\n if len(website) > 4 and website[0:4] != 'http':\n website = 'http://' + website\n try:\n response = requests.get(website, headers=headers, proxies=proxies)\n content = response.content\n print('content', content)\n status_code = response.status_code\n print('status_code', status_code)\n if status_code == 200:\n print('SUCCESS')\n else:\n print('FAILED')\n try:\n username = 'meritgroup'\n password = 'sXNdrc6JU'\n send_from = '[email protected]'\n send_to = '[email protected]'\n Cc = ['[email protected]',\n '[email protected]']\n msg = MIMEMultipart()\n msg['From'] = send_from\n msg['To'] = send_to\n msg['Cc'] = ', '.join(Cc)\n msg['Date'] = formatdate(localtime=True)\n msg['Subject'] = 'ALF AUTOMATION'\n templatePath = os.path.join(os.getcwd(), 'templates',\n 'Weekly_Email_Template.html')\n template = open(templatePath, 'r')\n server = smtplib.SMTP('74.80.234.196')\n port = '25'\n body = 'Body_of_the_mail'\n msg.attach(MIMEText(str(template.read()), 'html'))\n smtp = smtplib.SMTP('74.80.234.196')\n smtp.ehlo()\n smtp.starttls()\n smtp.login(username, password)\n smtp.sendmail(send_from, send_to.split(',') + msg['Cc'].\n split(','), msg.as_string())\n smtp.quit()\n except Exception as e:\n print('e', e)\n except Exception as e:\n content = str(e)\n soup = BeautifulSoup(content, 'html5lib')\n links = soup.find_all('a', href=True)\n smSites = ['twitter', 'facebook', 'linkedin']\n for smSite in smSites:\n accounts = []\n if smSite == 'linkedin':\n urll = 'https://www.google.com/search?api=1&query=' + str(\n companyName) + ' ' + 'linkedin'\n print(urll)\n req = requests.get(urll, headers=headers, proxies=proxies)\n soup1 = BeautifulSoup(req.text, 'lxml')\n rep = req.text\n df = soup1.find('div', attrs={'class': 'yuRUbf'})\n if df is not None:\n link = df.find('a').get('href')\n accounts.append(link)\n print('gh', accounts)\n if smSite == 'twitter':\n urll = 'https://www.google.com/search?api=1&query=' + str(\n companyName) + ' ' + 'twitter'\n print(urll)\n req = requests.get(urll, headers=headers, proxies=proxies)\n soup1 = BeautifulSoup(req.text, 'lxml')\n rep = req.text\n df = soup1.find('div', attrs={'class': 'yuRUbf'})\n if df is not None:\n link = df.find('a').get('href')\n accounts.append(link)\n print('gh', accounts)\n if smSite == 'facebook':\n urll = 'https://www.google.com/search?api=1&query=' + str(\n companyName) + ' ' + 'facebook'\n print(urll)\n req = requests.get(urll, headers=headers, proxies=proxies)\n soup1 = BeautifulSoup(req.text, 'lxml')\n rep = req.text\n df = soup1.find('div', attrs={'class': 'yuRUbf'})\n if df is not None:\n link = df.find('a').get('href')\n accounts.append(link)\n if accounts:\n socialAccounts[smSite] = list(set(accounts))\n print('social', socialAccounts)\n return socialAccounts\n\n\nclass Driver:\n browser = 'chrome'\n\n def __enter__(self):\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n self.driver = self.initialize_driver(self.browser)\n return self\n\n def initialize_driver(self, browser):\n if browser == 'chrome':\n options = Options()\n options.add_argument('--disable-gpu')\n options.add_argument('--no-sandbox')\n options.add_argument('start-maximized')\n options.add_argument('disable-infobars')\n options.add_argument('--disable-logging')\n options.add_argument('--log-level=3')\n options.add_experimental_option('excludeSwitches', [\n 'ignore-certificate-errors'])\n proxy = choice(['172.27.140.48:3128', '172.27.140.48:3128'])\n prox = Proxy()\n prox.proxy_type = ProxyType.MANUAL\n prox.http_proxy = proxy\n prox.ssl_proxy = proxy\n capabilities = webdriver.DesiredCapabilities.CHROME\n prox.add_to_capabilities(capabilities)\n driver = webdriver.Chrome(chrome_options=options,\n desired_capabilities=capabilities, service_log_path='NULL')\n else:\n binary = 'C:\\\\Program Files\\\\Mozilla Firefox\\\\firefox.exe'\n options = Options()\n PROXY = '172.27.140.48:3128'\n options.add_argument('--headless')\n options.binary = binary\n PROXY = '172.27.140.48:3128'\n desired_capability = webdriver.DesiredCapabilities.FIREFOX\n desired_capability['proxy'] = {'proxyType': 'manual',\n 'httpProxy': PROXY, 'ftpProxy': PROXY, 'sslProxy': PROXY}\n firefox_profile = webdriver.FirefoxProfile()\n firefox_profile.set_preference('browser.privatebrowsing.autostart',\n True)\n driver = webdriver.Firefox(firefox_profile=firefox_profile,\n firefox_binary=binary, firefox_options=options,\n capabilities=desired_capability)\n return driver\n\n def reset(self):\n self.quit()\n self.driver = self.initialize_driver(self.browser)\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n\n def get(self, url):\n if self.currentCount >= self.resetCount:\n self.reset()\n self.driver.get(url)\n self.currentCount += 1\n time.sleep(randint(1, 3))\n return self.driver.page_source\n\n def quit(self):\n self.driver.quit()\n\n def __exit__(self, type, value, traceback):\n self.quit()\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n\n\nclass Url(object):\n \"\"\"A url object that can be compared with other url orbjects\n without regard to the vagaries of encoding, escaping, and ordering\n of parameters in query strings.\"\"\"\n\n def __init__(self, url):\n parts = urlparse(url)\n _query = frozenset(parse_qsl(parts.query))\n _path = unquote_plus(parts.path)\n parts = parts._replace(query=_query, path=_path)\n self.parts = parts\n\n def __eq__(self, other):\n return (self.parts.path in other.parts.path or other.parts.path in\n self.parts.path)\n\n def __hash__(self):\n return hash(self.parts)\n\n\n<function token>\n\n\ndef get_domain(website):\n url = urlparse(website)\n domain = url.hostname\n if domain is None:\n url = urlparse('http://' + website)\n domain = url.hostname\n domain = domain.replace('www.', '').replace('www2.', '')\n return domain.lower()\n\n\ndef regex(pattern, string, default=None, get_one=False):\n matches = re.findall(pattern, string)\n if matches:\n if get_one is True:\n return matches[0]\n return matches\n else:\n return default\n\n\ndef get_search_results_site(address, website, full_content=False):\n domain = get_domain(website)\n url = form_google_query(address, directory=domain)\n response = google_get(url)\n content = response.content.decode('utf-8')\n soup = BeautifulSoup(content, 'lxml')\n referenceUrl, content = None, None\n for row in soup.select('div.g'):\n referenceUrl = row.select_one('.r a')\n referenceUrl = referenceUrl['href'] if referenceUrl else None\n contents = row.select('span.st') if full_content else row.select(\n 'span.st em')\n if contents:\n contents = [content.get_text() for content in contents]\n content = ', '.join(pd.Series(contents).drop_duplicates().tolist())\n break\n return referenceUrl, content\n\n\n<function token>\n\n\ndef google_get(url):\n proxies = {'http': proxy, 'https': proxy}\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'pragma': 'no-cache',\n 'upgrade-insecure-requests': '1', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36'\n }\n return requests.get(url, headers=headers, proxies=proxies)\n\n\ndef get_google_address1(query, gmap, tel_no, cn):\n global telephone, url\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'content-type':\n 'application/x-www-form-urlencoded', 'origin':\n 'https://safer.fmcsa.dot.gov', 'pragma': 'no-cache', 'referer':\n 'https://safer.fmcsa.dot.gov/CompanySnapshot.aspx', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36'\n }\n proxies = {'http': proxy, 'https': proxy}\n company_name = cn\n tel_no = tel_no\n print('tel_no', tel_no)\n if tel_no is None:\n telephone = ''\n url = ''\n else:\n tel_url = form_google_tel_query(company_name, tel_no)\n tel_url = tel_url.replace('%2C', '')\n req = requests.get(tel_url, headers=headers, proxies=proxies)\n print('tel_url', tel_url)\n rep = req.text\n soup = BeautifulSoup(req.text, 'lxml')\n no_results = soup.find_all('div', attrs={'class':\n 's card-section rQUFld'})\n if no_results == []:\n print('MATCH')\n sleep(5)\n try:\n link = re.findall('class=\"yuRUbf\"><a href=\"(.*?)\"', str(rep))\n for li in link:\n try:\n req1 = requests.get(li, headers=headers, proxies=\n proxies)\n sleep(5)\n rep1 = req1.text\n soup1 = BeautifulSoup(req1.text, 'lxml')\n fullstring = str(soup1)\n substring = str(tel_no)\n if substring in fullstring:\n f = 'FOUND'\n print(f)\n telephone = str(tel_no)\n url = li\n break\n else:\n f = 'NOT FOUND'\n telephone = ''\n url = ''\n except requests.exceptions.SSLError as ssl_error:\n print('bad handshake')\n telephone = ''\n url = ''\n except:\n telephone = ''\n url = ''\n else:\n telephone = ''\n url = ''\n return telephone, url\n\n\ndef get_google_address(query, gmap, tel_no):\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'pragma': 'no-cache',\n 'upgrade-insecure-requests': '1', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36'\n }\n proxies = {'http': proxy, 'https': proxy}\n url = form_google_query(query)\n search_url = url\n g_url = gmap\n response = google_get(url)\n sleep(5)\n content = response.content.decode('utf-8')\n print('so', content)\n soup = BeautifulSoup(content, 'lxml')\n print('so1', soup)\n address = soup.select_one(\n '[data-attrid=\"kc:/location/location:address\"] span.aCOpRe')\n print('add', address)\n address = address.get_text() if address else None\n if address is None:\n address = soup.find('div', attrs={'class': 'MWXBS'})\n if address is not None:\n address = address.text\n print('add-', address)\n else:\n address = soup.find('span', attrs={'class': 'LrzXr'})\n if address is not None:\n address = address.text\n print('add1', address)\n elif address is None:\n address = soup.find('span', attrs={'class': 'hgKElc'})\n if address is not None:\n address = address.text\n print('add:', address)\n elif address is None:\n url = (\n 'https://www.google.com/maps/search/?api=1&query=' +\n str(g_url))\n print('g_map_url', url)\n RegexList = []\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8'\n , 'accept-language':\n 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'pragma': 'no-cache',\n 'upgrade-insecure-requests': '1', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36'\n }\n response = requests.get(url, headers=headers, proxies=\n proxies)\n responseContent = response.content.decode('utf-8',\n errors='ignore')\n addressRegex = (\n 'google.com\\\\/maps\\\\/preview\\\\/place\\\\/([^>]*?)\\\\/@')\n telephone_regex = ',\\\\[\\\\\\\\\"(\\\\+[^>]*?)\\\\s*\\\\\\\\\"'\n addressBlock = re.findall(addressRegex, responseContent,\n re.I)\n if len(addressBlock) >= 1:\n address = unquote(addressBlock[0].replace('+', ' '),\n encoding='utf-8', errors='ignore')\n print('address_map:', address)\n else:\n address = ''\n url = search_url\n print('url_s', url)\n response = requests.get(url, headers=headers,\n proxies=proxies)\n soup = BeautifulSoup(response.text, 'lxml')\n print('s', soup)\n try:\n df = soup.find('span', attrs={'class': 'aCOpRe'})\n for sd in df:\n address = sd.text\n print('address_search:', address)\n except:\n address = ''\n return address, url\n\n\n<function token>\n\n\ndef form_google_query(*args, **kwargs):\n query = []\n quoted = kwargs.get('quoted')\n directory = kwargs.get('directory')\n if directory is not None:\n query.append('site:{}'.format(get_domain(directory)))\n if quoted is not None:\n query.append('\"{}\"'.format(quoted))\n query = query + [field.strip() for field in args if field is not None]\n query = ', '.join(query)\n url = 'https://www.google.co.uk/search?q=&ie=UTF-8'\n scheme, netloc, path, query_string, fragment = urlsplit(url)\n query_params = parse_qs(query_string)\n query_params['q'] = [query]\n new_query_string = urlencode(query_params, doseq=True)\n url = urlunsplit((scheme, netloc, path, new_query_string, fragment))\n return url\n\n\n<function token>\n\n\ndef get_social_accounts(website, companyName):\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'content-type':\n 'application/x-www-form-urlencoded', 'origin':\n 'https://safer.fmcsa.dot.gov', 'pragma': 'no-cache', 'referer':\n 'https://safer.fmcsa.dot.gov/CompanySnapshot.aspx', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36'\n }\n socialAccounts = {'twitter': [], 'facebook': [], 'linkedin': []}\n website = website.strip()\n print('website1;', website)\n if len(website) > 4 and website[0:4] != 'http':\n website = 'http://' + website\n try:\n response = requests.get(website, headers=headers, proxies=proxies)\n content = response.content\n print('content', content)\n status_code = response.status_code\n print('status_code', status_code)\n if status_code == 200:\n print('SUCCESS')\n else:\n print('FAILED')\n try:\n username = 'meritgroup'\n password = 'sXNdrc6JU'\n send_from = '[email protected]'\n send_to = '[email protected]'\n Cc = ['[email protected]',\n '[email protected]']\n msg = MIMEMultipart()\n msg['From'] = send_from\n msg['To'] = send_to\n msg['Cc'] = ', '.join(Cc)\n msg['Date'] = formatdate(localtime=True)\n msg['Subject'] = 'ALF AUTOMATION'\n templatePath = os.path.join(os.getcwd(), 'templates',\n 'Weekly_Email_Template.html')\n template = open(templatePath, 'r')\n server = smtplib.SMTP('74.80.234.196')\n port = '25'\n body = 'Body_of_the_mail'\n msg.attach(MIMEText(str(template.read()), 'html'))\n smtp = smtplib.SMTP('74.80.234.196')\n smtp.ehlo()\n smtp.starttls()\n smtp.login(username, password)\n smtp.sendmail(send_from, send_to.split(',') + msg['Cc'].\n split(','), msg.as_string())\n smtp.quit()\n except Exception as e:\n print('e', e)\n except Exception as e:\n content = str(e)\n soup = BeautifulSoup(content, 'html5lib')\n links = soup.find_all('a', href=True)\n smSites = ['twitter', 'facebook', 'linkedin']\n for smSite in smSites:\n accounts = []\n if smSite == 'linkedin':\n urll = 'https://www.google.com/search?api=1&query=' + str(\n companyName) + ' ' + 'linkedin'\n print(urll)\n req = requests.get(urll, headers=headers, proxies=proxies)\n soup1 = BeautifulSoup(req.text, 'lxml')\n rep = req.text\n df = soup1.find('div', attrs={'class': 'yuRUbf'})\n if df is not None:\n link = df.find('a').get('href')\n accounts.append(link)\n print('gh', accounts)\n if smSite == 'twitter':\n urll = 'https://www.google.com/search?api=1&query=' + str(\n companyName) + ' ' + 'twitter'\n print(urll)\n req = requests.get(urll, headers=headers, proxies=proxies)\n soup1 = BeautifulSoup(req.text, 'lxml')\n rep = req.text\n df = soup1.find('div', attrs={'class': 'yuRUbf'})\n if df is not None:\n link = df.find('a').get('href')\n accounts.append(link)\n print('gh', accounts)\n if smSite == 'facebook':\n urll = 'https://www.google.com/search?api=1&query=' + str(\n companyName) + ' ' + 'facebook'\n print(urll)\n req = requests.get(urll, headers=headers, proxies=proxies)\n soup1 = BeautifulSoup(req.text, 'lxml')\n rep = req.text\n df = soup1.find('div', attrs={'class': 'yuRUbf'})\n if df is not None:\n link = df.find('a').get('href')\n accounts.append(link)\n if accounts:\n socialAccounts[smSite] = list(set(accounts))\n print('social', socialAccounts)\n return socialAccounts\n\n\nclass Driver:\n browser = 'chrome'\n\n def __enter__(self):\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n self.driver = self.initialize_driver(self.browser)\n return self\n\n def initialize_driver(self, browser):\n if browser == 'chrome':\n options = Options()\n options.add_argument('--disable-gpu')\n options.add_argument('--no-sandbox')\n options.add_argument('start-maximized')\n options.add_argument('disable-infobars')\n options.add_argument('--disable-logging')\n options.add_argument('--log-level=3')\n options.add_experimental_option('excludeSwitches', [\n 'ignore-certificate-errors'])\n proxy = choice(['172.27.140.48:3128', '172.27.140.48:3128'])\n prox = Proxy()\n prox.proxy_type = ProxyType.MANUAL\n prox.http_proxy = proxy\n prox.ssl_proxy = proxy\n capabilities = webdriver.DesiredCapabilities.CHROME\n prox.add_to_capabilities(capabilities)\n driver = webdriver.Chrome(chrome_options=options,\n desired_capabilities=capabilities, service_log_path='NULL')\n else:\n binary = 'C:\\\\Program Files\\\\Mozilla Firefox\\\\firefox.exe'\n options = Options()\n PROXY = '172.27.140.48:3128'\n options.add_argument('--headless')\n options.binary = binary\n PROXY = '172.27.140.48:3128'\n desired_capability = webdriver.DesiredCapabilities.FIREFOX\n desired_capability['proxy'] = {'proxyType': 'manual',\n 'httpProxy': PROXY, 'ftpProxy': PROXY, 'sslProxy': PROXY}\n firefox_profile = webdriver.FirefoxProfile()\n firefox_profile.set_preference('browser.privatebrowsing.autostart',\n True)\n driver = webdriver.Firefox(firefox_profile=firefox_profile,\n firefox_binary=binary, firefox_options=options,\n capabilities=desired_capability)\n return driver\n\n def reset(self):\n self.quit()\n self.driver = self.initialize_driver(self.browser)\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n\n def get(self, url):\n if self.currentCount >= self.resetCount:\n self.reset()\n self.driver.get(url)\n self.currentCount += 1\n time.sleep(randint(1, 3))\n return self.driver.page_source\n\n def quit(self):\n self.driver.quit()\n\n def __exit__(self, type, value, traceback):\n self.quit()\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n\n\nclass Url(object):\n \"\"\"A url object that can be compared with other url orbjects\n without regard to the vagaries of encoding, escaping, and ordering\n of parameters in query strings.\"\"\"\n\n def __init__(self, url):\n parts = urlparse(url)\n _query = frozenset(parse_qsl(parts.query))\n _path = unquote_plus(parts.path)\n parts = parts._replace(query=_query, path=_path)\n self.parts = parts\n\n def __eq__(self, other):\n return (self.parts.path in other.parts.path or other.parts.path in\n self.parts.path)\n\n def __hash__(self):\n return hash(self.parts)\n\n\n<function token>\n\n\ndef get_domain(website):\n url = urlparse(website)\n domain = url.hostname\n if domain is None:\n url = urlparse('http://' + website)\n domain = url.hostname\n domain = domain.replace('www.', '').replace('www2.', '')\n return domain.lower()\n\n\ndef regex(pattern, string, default=None, get_one=False):\n matches = re.findall(pattern, string)\n if matches:\n if get_one is True:\n return matches[0]\n return matches\n else:\n return default\n\n\ndef get_search_results_site(address, website, full_content=False):\n domain = get_domain(website)\n url = form_google_query(address, directory=domain)\n response = google_get(url)\n content = response.content.decode('utf-8')\n soup = BeautifulSoup(content, 'lxml')\n referenceUrl, content = None, None\n for row in soup.select('div.g'):\n referenceUrl = row.select_one('.r a')\n referenceUrl = referenceUrl['href'] if referenceUrl else None\n contents = row.select('span.st') if full_content else row.select(\n 'span.st em')\n if contents:\n contents = [content.get_text() for content in contents]\n content = ', '.join(pd.Series(contents).drop_duplicates().tolist())\n break\n return referenceUrl, content\n\n\n<function token>\n<function token>\n\n\ndef get_google_address1(query, gmap, tel_no, cn):\n global telephone, url\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'content-type':\n 'application/x-www-form-urlencoded', 'origin':\n 'https://safer.fmcsa.dot.gov', 'pragma': 'no-cache', 'referer':\n 'https://safer.fmcsa.dot.gov/CompanySnapshot.aspx', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36'\n }\n proxies = {'http': proxy, 'https': proxy}\n company_name = cn\n tel_no = tel_no\n print('tel_no', tel_no)\n if tel_no is None:\n telephone = ''\n url = ''\n else:\n tel_url = form_google_tel_query(company_name, tel_no)\n tel_url = tel_url.replace('%2C', '')\n req = requests.get(tel_url, headers=headers, proxies=proxies)\n print('tel_url', tel_url)\n rep = req.text\n soup = BeautifulSoup(req.text, 'lxml')\n no_results = soup.find_all('div', attrs={'class':\n 's card-section rQUFld'})\n if no_results == []:\n print('MATCH')\n sleep(5)\n try:\n link = re.findall('class=\"yuRUbf\"><a href=\"(.*?)\"', str(rep))\n for li in link:\n try:\n req1 = requests.get(li, headers=headers, proxies=\n proxies)\n sleep(5)\n rep1 = req1.text\n soup1 = BeautifulSoup(req1.text, 'lxml')\n fullstring = str(soup1)\n substring = str(tel_no)\n if substring in fullstring:\n f = 'FOUND'\n print(f)\n telephone = str(tel_no)\n url = li\n break\n else:\n f = 'NOT FOUND'\n telephone = ''\n url = ''\n except requests.exceptions.SSLError as ssl_error:\n print('bad handshake')\n telephone = ''\n url = ''\n except:\n telephone = ''\n url = ''\n else:\n telephone = ''\n url = ''\n return telephone, url\n\n\ndef get_google_address(query, gmap, tel_no):\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'pragma': 'no-cache',\n 'upgrade-insecure-requests': '1', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36'\n }\n proxies = {'http': proxy, 'https': proxy}\n url = form_google_query(query)\n search_url = url\n g_url = gmap\n response = google_get(url)\n sleep(5)\n content = response.content.decode('utf-8')\n print('so', content)\n soup = BeautifulSoup(content, 'lxml')\n print('so1', soup)\n address = soup.select_one(\n '[data-attrid=\"kc:/location/location:address\"] span.aCOpRe')\n print('add', address)\n address = address.get_text() if address else None\n if address is None:\n address = soup.find('div', attrs={'class': 'MWXBS'})\n if address is not None:\n address = address.text\n print('add-', address)\n else:\n address = soup.find('span', attrs={'class': 'LrzXr'})\n if address is not None:\n address = address.text\n print('add1', address)\n elif address is None:\n address = soup.find('span', attrs={'class': 'hgKElc'})\n if address is not None:\n address = address.text\n print('add:', address)\n elif address is None:\n url = (\n 'https://www.google.com/maps/search/?api=1&query=' +\n str(g_url))\n print('g_map_url', url)\n RegexList = []\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8'\n , 'accept-language':\n 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'pragma': 'no-cache',\n 'upgrade-insecure-requests': '1', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36'\n }\n response = requests.get(url, headers=headers, proxies=\n proxies)\n responseContent = response.content.decode('utf-8',\n errors='ignore')\n addressRegex = (\n 'google.com\\\\/maps\\\\/preview\\\\/place\\\\/([^>]*?)\\\\/@')\n telephone_regex = ',\\\\[\\\\\\\\\"(\\\\+[^>]*?)\\\\s*\\\\\\\\\"'\n addressBlock = re.findall(addressRegex, responseContent,\n re.I)\n if len(addressBlock) >= 1:\n address = unquote(addressBlock[0].replace('+', ' '),\n encoding='utf-8', errors='ignore')\n print('address_map:', address)\n else:\n address = ''\n url = search_url\n print('url_s', url)\n response = requests.get(url, headers=headers,\n proxies=proxies)\n soup = BeautifulSoup(response.text, 'lxml')\n print('s', soup)\n try:\n df = soup.find('span', attrs={'class': 'aCOpRe'})\n for sd in df:\n address = sd.text\n print('address_search:', address)\n except:\n address = ''\n return address, url\n\n\n<function token>\n\n\ndef form_google_query(*args, **kwargs):\n query = []\n quoted = kwargs.get('quoted')\n directory = kwargs.get('directory')\n if directory is not None:\n query.append('site:{}'.format(get_domain(directory)))\n if quoted is not None:\n query.append('\"{}\"'.format(quoted))\n query = query + [field.strip() for field in args if field is not None]\n query = ', '.join(query)\n url = 'https://www.google.co.uk/search?q=&ie=UTF-8'\n scheme, netloc, path, query_string, fragment = urlsplit(url)\n query_params = parse_qs(query_string)\n query_params['q'] = [query]\n new_query_string = urlencode(query_params, doseq=True)\n url = urlunsplit((scheme, netloc, path, new_query_string, fragment))\n return url\n\n\n<function token>\n\n\ndef get_social_accounts(website, companyName):\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'content-type':\n 'application/x-www-form-urlencoded', 'origin':\n 'https://safer.fmcsa.dot.gov', 'pragma': 'no-cache', 'referer':\n 'https://safer.fmcsa.dot.gov/CompanySnapshot.aspx', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36'\n }\n socialAccounts = {'twitter': [], 'facebook': [], 'linkedin': []}\n website = website.strip()\n print('website1;', website)\n if len(website) > 4 and website[0:4] != 'http':\n website = 'http://' + website\n try:\n response = requests.get(website, headers=headers, proxies=proxies)\n content = response.content\n print('content', content)\n status_code = response.status_code\n print('status_code', status_code)\n if status_code == 200:\n print('SUCCESS')\n else:\n print('FAILED')\n try:\n username = 'meritgroup'\n password = 'sXNdrc6JU'\n send_from = '[email protected]'\n send_to = '[email protected]'\n Cc = ['[email protected]',\n '[email protected]']\n msg = MIMEMultipart()\n msg['From'] = send_from\n msg['To'] = send_to\n msg['Cc'] = ', '.join(Cc)\n msg['Date'] = formatdate(localtime=True)\n msg['Subject'] = 'ALF AUTOMATION'\n templatePath = os.path.join(os.getcwd(), 'templates',\n 'Weekly_Email_Template.html')\n template = open(templatePath, 'r')\n server = smtplib.SMTP('74.80.234.196')\n port = '25'\n body = 'Body_of_the_mail'\n msg.attach(MIMEText(str(template.read()), 'html'))\n smtp = smtplib.SMTP('74.80.234.196')\n smtp.ehlo()\n smtp.starttls()\n smtp.login(username, password)\n smtp.sendmail(send_from, send_to.split(',') + msg['Cc'].\n split(','), msg.as_string())\n smtp.quit()\n except Exception as e:\n print('e', e)\n except Exception as e:\n content = str(e)\n soup = BeautifulSoup(content, 'html5lib')\n links = soup.find_all('a', href=True)\n smSites = ['twitter', 'facebook', 'linkedin']\n for smSite in smSites:\n accounts = []\n if smSite == 'linkedin':\n urll = 'https://www.google.com/search?api=1&query=' + str(\n companyName) + ' ' + 'linkedin'\n print(urll)\n req = requests.get(urll, headers=headers, proxies=proxies)\n soup1 = BeautifulSoup(req.text, 'lxml')\n rep = req.text\n df = soup1.find('div', attrs={'class': 'yuRUbf'})\n if df is not None:\n link = df.find('a').get('href')\n accounts.append(link)\n print('gh', accounts)\n if smSite == 'twitter':\n urll = 'https://www.google.com/search?api=1&query=' + str(\n companyName) + ' ' + 'twitter'\n print(urll)\n req = requests.get(urll, headers=headers, proxies=proxies)\n soup1 = BeautifulSoup(req.text, 'lxml')\n rep = req.text\n df = soup1.find('div', attrs={'class': 'yuRUbf'})\n if df is not None:\n link = df.find('a').get('href')\n accounts.append(link)\n print('gh', accounts)\n if smSite == 'facebook':\n urll = 'https://www.google.com/search?api=1&query=' + str(\n companyName) + ' ' + 'facebook'\n print(urll)\n req = requests.get(urll, headers=headers, proxies=proxies)\n soup1 = BeautifulSoup(req.text, 'lxml')\n rep = req.text\n df = soup1.find('div', attrs={'class': 'yuRUbf'})\n if df is not None:\n link = df.find('a').get('href')\n accounts.append(link)\n if accounts:\n socialAccounts[smSite] = list(set(accounts))\n print('social', socialAccounts)\n return socialAccounts\n\n\nclass Driver:\n browser = 'chrome'\n\n def __enter__(self):\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n self.driver = self.initialize_driver(self.browser)\n return self\n\n def initialize_driver(self, browser):\n if browser == 'chrome':\n options = Options()\n options.add_argument('--disable-gpu')\n options.add_argument('--no-sandbox')\n options.add_argument('start-maximized')\n options.add_argument('disable-infobars')\n options.add_argument('--disable-logging')\n options.add_argument('--log-level=3')\n options.add_experimental_option('excludeSwitches', [\n 'ignore-certificate-errors'])\n proxy = choice(['172.27.140.48:3128', '172.27.140.48:3128'])\n prox = Proxy()\n prox.proxy_type = ProxyType.MANUAL\n prox.http_proxy = proxy\n prox.ssl_proxy = proxy\n capabilities = webdriver.DesiredCapabilities.CHROME\n prox.add_to_capabilities(capabilities)\n driver = webdriver.Chrome(chrome_options=options,\n desired_capabilities=capabilities, service_log_path='NULL')\n else:\n binary = 'C:\\\\Program Files\\\\Mozilla Firefox\\\\firefox.exe'\n options = Options()\n PROXY = '172.27.140.48:3128'\n options.add_argument('--headless')\n options.binary = binary\n PROXY = '172.27.140.48:3128'\n desired_capability = webdriver.DesiredCapabilities.FIREFOX\n desired_capability['proxy'] = {'proxyType': 'manual',\n 'httpProxy': PROXY, 'ftpProxy': PROXY, 'sslProxy': PROXY}\n firefox_profile = webdriver.FirefoxProfile()\n firefox_profile.set_preference('browser.privatebrowsing.autostart',\n True)\n driver = webdriver.Firefox(firefox_profile=firefox_profile,\n firefox_binary=binary, firefox_options=options,\n capabilities=desired_capability)\n return driver\n\n def reset(self):\n self.quit()\n self.driver = self.initialize_driver(self.browser)\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n\n def get(self, url):\n if self.currentCount >= self.resetCount:\n self.reset()\n self.driver.get(url)\n self.currentCount += 1\n time.sleep(randint(1, 3))\n return self.driver.page_source\n\n def quit(self):\n self.driver.quit()\n\n def __exit__(self, type, value, traceback):\n self.quit()\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n\n\nclass Url(object):\n \"\"\"A url object that can be compared with other url orbjects\n without regard to the vagaries of encoding, escaping, and ordering\n of parameters in query strings.\"\"\"\n\n def __init__(self, url):\n parts = urlparse(url)\n _query = frozenset(parse_qsl(parts.query))\n _path = unquote_plus(parts.path)\n parts = parts._replace(query=_query, path=_path)\n self.parts = parts\n\n def __eq__(self, other):\n return (self.parts.path in other.parts.path or other.parts.path in\n self.parts.path)\n\n def __hash__(self):\n return hash(self.parts)\n\n\n<function token>\n<function token>\n\n\ndef regex(pattern, string, default=None, get_one=False):\n matches = re.findall(pattern, string)\n if matches:\n if get_one is True:\n return matches[0]\n return matches\n else:\n return default\n\n\ndef get_search_results_site(address, website, full_content=False):\n domain = get_domain(website)\n url = form_google_query(address, directory=domain)\n response = google_get(url)\n content = response.content.decode('utf-8')\n soup = BeautifulSoup(content, 'lxml')\n referenceUrl, content = None, None\n for row in soup.select('div.g'):\n referenceUrl = row.select_one('.r a')\n referenceUrl = referenceUrl['href'] if referenceUrl else None\n contents = row.select('span.st') if full_content else row.select(\n 'span.st em')\n if contents:\n contents = [content.get_text() for content in contents]\n content = ', '.join(pd.Series(contents).drop_duplicates().tolist())\n break\n return referenceUrl, content\n\n\n<function token>\n<function token>\n\n\ndef get_google_address1(query, gmap, tel_no, cn):\n global telephone, url\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'content-type':\n 'application/x-www-form-urlencoded', 'origin':\n 'https://safer.fmcsa.dot.gov', 'pragma': 'no-cache', 'referer':\n 'https://safer.fmcsa.dot.gov/CompanySnapshot.aspx', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36'\n }\n proxies = {'http': proxy, 'https': proxy}\n company_name = cn\n tel_no = tel_no\n print('tel_no', tel_no)\n if tel_no is None:\n telephone = ''\n url = ''\n else:\n tel_url = form_google_tel_query(company_name, tel_no)\n tel_url = tel_url.replace('%2C', '')\n req = requests.get(tel_url, headers=headers, proxies=proxies)\n print('tel_url', tel_url)\n rep = req.text\n soup = BeautifulSoup(req.text, 'lxml')\n no_results = soup.find_all('div', attrs={'class':\n 's card-section rQUFld'})\n if no_results == []:\n print('MATCH')\n sleep(5)\n try:\n link = re.findall('class=\"yuRUbf\"><a href=\"(.*?)\"', str(rep))\n for li in link:\n try:\n req1 = requests.get(li, headers=headers, proxies=\n proxies)\n sleep(5)\n rep1 = req1.text\n soup1 = BeautifulSoup(req1.text, 'lxml')\n fullstring = str(soup1)\n substring = str(tel_no)\n if substring in fullstring:\n f = 'FOUND'\n print(f)\n telephone = str(tel_no)\n url = li\n break\n else:\n f = 'NOT FOUND'\n telephone = ''\n url = ''\n except requests.exceptions.SSLError as ssl_error:\n print('bad handshake')\n telephone = ''\n url = ''\n except:\n telephone = ''\n url = ''\n else:\n telephone = ''\n url = ''\n return telephone, url\n\n\ndef get_google_address(query, gmap, tel_no):\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'pragma': 'no-cache',\n 'upgrade-insecure-requests': '1', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36'\n }\n proxies = {'http': proxy, 'https': proxy}\n url = form_google_query(query)\n search_url = url\n g_url = gmap\n response = google_get(url)\n sleep(5)\n content = response.content.decode('utf-8')\n print('so', content)\n soup = BeautifulSoup(content, 'lxml')\n print('so1', soup)\n address = soup.select_one(\n '[data-attrid=\"kc:/location/location:address\"] span.aCOpRe')\n print('add', address)\n address = address.get_text() if address else None\n if address is None:\n address = soup.find('div', attrs={'class': 'MWXBS'})\n if address is not None:\n address = address.text\n print('add-', address)\n else:\n address = soup.find('span', attrs={'class': 'LrzXr'})\n if address is not None:\n address = address.text\n print('add1', address)\n elif address is None:\n address = soup.find('span', attrs={'class': 'hgKElc'})\n if address is not None:\n address = address.text\n print('add:', address)\n elif address is None:\n url = (\n 'https://www.google.com/maps/search/?api=1&query=' +\n str(g_url))\n print('g_map_url', url)\n RegexList = []\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8'\n , 'accept-language':\n 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'pragma': 'no-cache',\n 'upgrade-insecure-requests': '1', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36'\n }\n response = requests.get(url, headers=headers, proxies=\n proxies)\n responseContent = response.content.decode('utf-8',\n errors='ignore')\n addressRegex = (\n 'google.com\\\\/maps\\\\/preview\\\\/place\\\\/([^>]*?)\\\\/@')\n telephone_regex = ',\\\\[\\\\\\\\\"(\\\\+[^>]*?)\\\\s*\\\\\\\\\"'\n addressBlock = re.findall(addressRegex, responseContent,\n re.I)\n if len(addressBlock) >= 1:\n address = unquote(addressBlock[0].replace('+', ' '),\n encoding='utf-8', errors='ignore')\n print('address_map:', address)\n else:\n address = ''\n url = search_url\n print('url_s', url)\n response = requests.get(url, headers=headers,\n proxies=proxies)\n soup = BeautifulSoup(response.text, 'lxml')\n print('s', soup)\n try:\n df = soup.find('span', attrs={'class': 'aCOpRe'})\n for sd in df:\n address = sd.text\n print('address_search:', address)\n except:\n address = ''\n return address, url\n\n\n<function token>\n\n\ndef form_google_query(*args, **kwargs):\n query = []\n quoted = kwargs.get('quoted')\n directory = kwargs.get('directory')\n if directory is not None:\n query.append('site:{}'.format(get_domain(directory)))\n if quoted is not None:\n query.append('\"{}\"'.format(quoted))\n query = query + [field.strip() for field in args if field is not None]\n query = ', '.join(query)\n url = 'https://www.google.co.uk/search?q=&ie=UTF-8'\n scheme, netloc, path, query_string, fragment = urlsplit(url)\n query_params = parse_qs(query_string)\n query_params['q'] = [query]\n new_query_string = urlencode(query_params, doseq=True)\n url = urlunsplit((scheme, netloc, path, new_query_string, fragment))\n return url\n\n\n<function token>\n\n\ndef get_social_accounts(website, companyName):\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'content-type':\n 'application/x-www-form-urlencoded', 'origin':\n 'https://safer.fmcsa.dot.gov', 'pragma': 'no-cache', 'referer':\n 'https://safer.fmcsa.dot.gov/CompanySnapshot.aspx', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36'\n }\n socialAccounts = {'twitter': [], 'facebook': [], 'linkedin': []}\n website = website.strip()\n print('website1;', website)\n if len(website) > 4 and website[0:4] != 'http':\n website = 'http://' + website\n try:\n response = requests.get(website, headers=headers, proxies=proxies)\n content = response.content\n print('content', content)\n status_code = response.status_code\n print('status_code', status_code)\n if status_code == 200:\n print('SUCCESS')\n else:\n print('FAILED')\n try:\n username = 'meritgroup'\n password = 'sXNdrc6JU'\n send_from = '[email protected]'\n send_to = '[email protected]'\n Cc = ['[email protected]',\n '[email protected]']\n msg = MIMEMultipart()\n msg['From'] = send_from\n msg['To'] = send_to\n msg['Cc'] = ', '.join(Cc)\n msg['Date'] = formatdate(localtime=True)\n msg['Subject'] = 'ALF AUTOMATION'\n templatePath = os.path.join(os.getcwd(), 'templates',\n 'Weekly_Email_Template.html')\n template = open(templatePath, 'r')\n server = smtplib.SMTP('74.80.234.196')\n port = '25'\n body = 'Body_of_the_mail'\n msg.attach(MIMEText(str(template.read()), 'html'))\n smtp = smtplib.SMTP('74.80.234.196')\n smtp.ehlo()\n smtp.starttls()\n smtp.login(username, password)\n smtp.sendmail(send_from, send_to.split(',') + msg['Cc'].\n split(','), msg.as_string())\n smtp.quit()\n except Exception as e:\n print('e', e)\n except Exception as e:\n content = str(e)\n soup = BeautifulSoup(content, 'html5lib')\n links = soup.find_all('a', href=True)\n smSites = ['twitter', 'facebook', 'linkedin']\n for smSite in smSites:\n accounts = []\n if smSite == 'linkedin':\n urll = 'https://www.google.com/search?api=1&query=' + str(\n companyName) + ' ' + 'linkedin'\n print(urll)\n req = requests.get(urll, headers=headers, proxies=proxies)\n soup1 = BeautifulSoup(req.text, 'lxml')\n rep = req.text\n df = soup1.find('div', attrs={'class': 'yuRUbf'})\n if df is not None:\n link = df.find('a').get('href')\n accounts.append(link)\n print('gh', accounts)\n if smSite == 'twitter':\n urll = 'https://www.google.com/search?api=1&query=' + str(\n companyName) + ' ' + 'twitter'\n print(urll)\n req = requests.get(urll, headers=headers, proxies=proxies)\n soup1 = BeautifulSoup(req.text, 'lxml')\n rep = req.text\n df = soup1.find('div', attrs={'class': 'yuRUbf'})\n if df is not None:\n link = df.find('a').get('href')\n accounts.append(link)\n print('gh', accounts)\n if smSite == 'facebook':\n urll = 'https://www.google.com/search?api=1&query=' + str(\n companyName) + ' ' + 'facebook'\n print(urll)\n req = requests.get(urll, headers=headers, proxies=proxies)\n soup1 = BeautifulSoup(req.text, 'lxml')\n rep = req.text\n df = soup1.find('div', attrs={'class': 'yuRUbf'})\n if df is not None:\n link = df.find('a').get('href')\n accounts.append(link)\n if accounts:\n socialAccounts[smSite] = list(set(accounts))\n print('social', socialAccounts)\n return socialAccounts\n\n\nclass Driver:\n browser = 'chrome'\n\n def __enter__(self):\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n self.driver = self.initialize_driver(self.browser)\n return self\n\n def initialize_driver(self, browser):\n if browser == 'chrome':\n options = Options()\n options.add_argument('--disable-gpu')\n options.add_argument('--no-sandbox')\n options.add_argument('start-maximized')\n options.add_argument('disable-infobars')\n options.add_argument('--disable-logging')\n options.add_argument('--log-level=3')\n options.add_experimental_option('excludeSwitches', [\n 'ignore-certificate-errors'])\n proxy = choice(['172.27.140.48:3128', '172.27.140.48:3128'])\n prox = Proxy()\n prox.proxy_type = ProxyType.MANUAL\n prox.http_proxy = proxy\n prox.ssl_proxy = proxy\n capabilities = webdriver.DesiredCapabilities.CHROME\n prox.add_to_capabilities(capabilities)\n driver = webdriver.Chrome(chrome_options=options,\n desired_capabilities=capabilities, service_log_path='NULL')\n else:\n binary = 'C:\\\\Program Files\\\\Mozilla Firefox\\\\firefox.exe'\n options = Options()\n PROXY = '172.27.140.48:3128'\n options.add_argument('--headless')\n options.binary = binary\n PROXY = '172.27.140.48:3128'\n desired_capability = webdriver.DesiredCapabilities.FIREFOX\n desired_capability['proxy'] = {'proxyType': 'manual',\n 'httpProxy': PROXY, 'ftpProxy': PROXY, 'sslProxy': PROXY}\n firefox_profile = webdriver.FirefoxProfile()\n firefox_profile.set_preference('browser.privatebrowsing.autostart',\n True)\n driver = webdriver.Firefox(firefox_profile=firefox_profile,\n firefox_binary=binary, firefox_options=options,\n capabilities=desired_capability)\n return driver\n\n def reset(self):\n self.quit()\n self.driver = self.initialize_driver(self.browser)\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n\n def get(self, url):\n if self.currentCount >= self.resetCount:\n self.reset()\n self.driver.get(url)\n self.currentCount += 1\n time.sleep(randint(1, 3))\n return self.driver.page_source\n\n def quit(self):\n self.driver.quit()\n\n def __exit__(self, type, value, traceback):\n self.quit()\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n\n\nclass Url(object):\n \"\"\"A url object that can be compared with other url orbjects\n without regard to the vagaries of encoding, escaping, and ordering\n of parameters in query strings.\"\"\"\n\n def __init__(self, url):\n parts = urlparse(url)\n _query = frozenset(parse_qsl(parts.query))\n _path = unquote_plus(parts.path)\n parts = parts._replace(query=_query, path=_path)\n self.parts = parts\n\n def __eq__(self, other):\n return (self.parts.path in other.parts.path or other.parts.path in\n self.parts.path)\n\n def __hash__(self):\n return hash(self.parts)\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef get_search_results_site(address, website, full_content=False):\n domain = get_domain(website)\n url = form_google_query(address, directory=domain)\n response = google_get(url)\n content = response.content.decode('utf-8')\n soup = BeautifulSoup(content, 'lxml')\n referenceUrl, content = None, None\n for row in soup.select('div.g'):\n referenceUrl = row.select_one('.r a')\n referenceUrl = referenceUrl['href'] if referenceUrl else None\n contents = row.select('span.st') if full_content else row.select(\n 'span.st em')\n if contents:\n contents = [content.get_text() for content in contents]\n content = ', '.join(pd.Series(contents).drop_duplicates().tolist())\n break\n return referenceUrl, content\n\n\n<function token>\n<function token>\n\n\ndef get_google_address1(query, gmap, tel_no, cn):\n global telephone, url\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'content-type':\n 'application/x-www-form-urlencoded', 'origin':\n 'https://safer.fmcsa.dot.gov', 'pragma': 'no-cache', 'referer':\n 'https://safer.fmcsa.dot.gov/CompanySnapshot.aspx', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36'\n }\n proxies = {'http': proxy, 'https': proxy}\n company_name = cn\n tel_no = tel_no\n print('tel_no', tel_no)\n if tel_no is None:\n telephone = ''\n url = ''\n else:\n tel_url = form_google_tel_query(company_name, tel_no)\n tel_url = tel_url.replace('%2C', '')\n req = requests.get(tel_url, headers=headers, proxies=proxies)\n print('tel_url', tel_url)\n rep = req.text\n soup = BeautifulSoup(req.text, 'lxml')\n no_results = soup.find_all('div', attrs={'class':\n 's card-section rQUFld'})\n if no_results == []:\n print('MATCH')\n sleep(5)\n try:\n link = re.findall('class=\"yuRUbf\"><a href=\"(.*?)\"', str(rep))\n for li in link:\n try:\n req1 = requests.get(li, headers=headers, proxies=\n proxies)\n sleep(5)\n rep1 = req1.text\n soup1 = BeautifulSoup(req1.text, 'lxml')\n fullstring = str(soup1)\n substring = str(tel_no)\n if substring in fullstring:\n f = 'FOUND'\n print(f)\n telephone = str(tel_no)\n url = li\n break\n else:\n f = 'NOT FOUND'\n telephone = ''\n url = ''\n except requests.exceptions.SSLError as ssl_error:\n print('bad handshake')\n telephone = ''\n url = ''\n except:\n telephone = ''\n url = ''\n else:\n telephone = ''\n url = ''\n return telephone, url\n\n\ndef get_google_address(query, gmap, tel_no):\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'pragma': 'no-cache',\n 'upgrade-insecure-requests': '1', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36'\n }\n proxies = {'http': proxy, 'https': proxy}\n url = form_google_query(query)\n search_url = url\n g_url = gmap\n response = google_get(url)\n sleep(5)\n content = response.content.decode('utf-8')\n print('so', content)\n soup = BeautifulSoup(content, 'lxml')\n print('so1', soup)\n address = soup.select_one(\n '[data-attrid=\"kc:/location/location:address\"] span.aCOpRe')\n print('add', address)\n address = address.get_text() if address else None\n if address is None:\n address = soup.find('div', attrs={'class': 'MWXBS'})\n if address is not None:\n address = address.text\n print('add-', address)\n else:\n address = soup.find('span', attrs={'class': 'LrzXr'})\n if address is not None:\n address = address.text\n print('add1', address)\n elif address is None:\n address = soup.find('span', attrs={'class': 'hgKElc'})\n if address is not None:\n address = address.text\n print('add:', address)\n elif address is None:\n url = (\n 'https://www.google.com/maps/search/?api=1&query=' +\n str(g_url))\n print('g_map_url', url)\n RegexList = []\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8'\n , 'accept-language':\n 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'pragma': 'no-cache',\n 'upgrade-insecure-requests': '1', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36'\n }\n response = requests.get(url, headers=headers, proxies=\n proxies)\n responseContent = response.content.decode('utf-8',\n errors='ignore')\n addressRegex = (\n 'google.com\\\\/maps\\\\/preview\\\\/place\\\\/([^>]*?)\\\\/@')\n telephone_regex = ',\\\\[\\\\\\\\\"(\\\\+[^>]*?)\\\\s*\\\\\\\\\"'\n addressBlock = re.findall(addressRegex, responseContent,\n re.I)\n if len(addressBlock) >= 1:\n address = unquote(addressBlock[0].replace('+', ' '),\n encoding='utf-8', errors='ignore')\n print('address_map:', address)\n else:\n address = ''\n url = search_url\n print('url_s', url)\n response = requests.get(url, headers=headers,\n proxies=proxies)\n soup = BeautifulSoup(response.text, 'lxml')\n print('s', soup)\n try:\n df = soup.find('span', attrs={'class': 'aCOpRe'})\n for sd in df:\n address = sd.text\n print('address_search:', address)\n except:\n address = ''\n return address, url\n\n\n<function token>\n\n\ndef form_google_query(*args, **kwargs):\n query = []\n quoted = kwargs.get('quoted')\n directory = kwargs.get('directory')\n if directory is not None:\n query.append('site:{}'.format(get_domain(directory)))\n if quoted is not None:\n query.append('\"{}\"'.format(quoted))\n query = query + [field.strip() for field in args if field is not None]\n query = ', '.join(query)\n url = 'https://www.google.co.uk/search?q=&ie=UTF-8'\n scheme, netloc, path, query_string, fragment = urlsplit(url)\n query_params = parse_qs(query_string)\n query_params['q'] = [query]\n new_query_string = urlencode(query_params, doseq=True)\n url = urlunsplit((scheme, netloc, path, new_query_string, fragment))\n return url\n\n\n<function token>\n\n\ndef get_social_accounts(website, companyName):\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'content-type':\n 'application/x-www-form-urlencoded', 'origin':\n 'https://safer.fmcsa.dot.gov', 'pragma': 'no-cache', 'referer':\n 'https://safer.fmcsa.dot.gov/CompanySnapshot.aspx', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36'\n }\n socialAccounts = {'twitter': [], 'facebook': [], 'linkedin': []}\n website = website.strip()\n print('website1;', website)\n if len(website) > 4 and website[0:4] != 'http':\n website = 'http://' + website\n try:\n response = requests.get(website, headers=headers, proxies=proxies)\n content = response.content\n print('content', content)\n status_code = response.status_code\n print('status_code', status_code)\n if status_code == 200:\n print('SUCCESS')\n else:\n print('FAILED')\n try:\n username = 'meritgroup'\n password = 'sXNdrc6JU'\n send_from = '[email protected]'\n send_to = '[email protected]'\n Cc = ['[email protected]',\n '[email protected]']\n msg = MIMEMultipart()\n msg['From'] = send_from\n msg['To'] = send_to\n msg['Cc'] = ', '.join(Cc)\n msg['Date'] = formatdate(localtime=True)\n msg['Subject'] = 'ALF AUTOMATION'\n templatePath = os.path.join(os.getcwd(), 'templates',\n 'Weekly_Email_Template.html')\n template = open(templatePath, 'r')\n server = smtplib.SMTP('74.80.234.196')\n port = '25'\n body = 'Body_of_the_mail'\n msg.attach(MIMEText(str(template.read()), 'html'))\n smtp = smtplib.SMTP('74.80.234.196')\n smtp.ehlo()\n smtp.starttls()\n smtp.login(username, password)\n smtp.sendmail(send_from, send_to.split(',') + msg['Cc'].\n split(','), msg.as_string())\n smtp.quit()\n except Exception as e:\n print('e', e)\n except Exception as e:\n content = str(e)\n soup = BeautifulSoup(content, 'html5lib')\n links = soup.find_all('a', href=True)\n smSites = ['twitter', 'facebook', 'linkedin']\n for smSite in smSites:\n accounts = []\n if smSite == 'linkedin':\n urll = 'https://www.google.com/search?api=1&query=' + str(\n companyName) + ' ' + 'linkedin'\n print(urll)\n req = requests.get(urll, headers=headers, proxies=proxies)\n soup1 = BeautifulSoup(req.text, 'lxml')\n rep = req.text\n df = soup1.find('div', attrs={'class': 'yuRUbf'})\n if df is not None:\n link = df.find('a').get('href')\n accounts.append(link)\n print('gh', accounts)\n if smSite == 'twitter':\n urll = 'https://www.google.com/search?api=1&query=' + str(\n companyName) + ' ' + 'twitter'\n print(urll)\n req = requests.get(urll, headers=headers, proxies=proxies)\n soup1 = BeautifulSoup(req.text, 'lxml')\n rep = req.text\n df = soup1.find('div', attrs={'class': 'yuRUbf'})\n if df is not None:\n link = df.find('a').get('href')\n accounts.append(link)\n print('gh', accounts)\n if smSite == 'facebook':\n urll = 'https://www.google.com/search?api=1&query=' + str(\n companyName) + ' ' + 'facebook'\n print(urll)\n req = requests.get(urll, headers=headers, proxies=proxies)\n soup1 = BeautifulSoup(req.text, 'lxml')\n rep = req.text\n df = soup1.find('div', attrs={'class': 'yuRUbf'})\n if df is not None:\n link = df.find('a').get('href')\n accounts.append(link)\n if accounts:\n socialAccounts[smSite] = list(set(accounts))\n print('social', socialAccounts)\n return socialAccounts\n\n\nclass Driver:\n browser = 'chrome'\n\n def __enter__(self):\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n self.driver = self.initialize_driver(self.browser)\n return self\n\n def initialize_driver(self, browser):\n if browser == 'chrome':\n options = Options()\n options.add_argument('--disable-gpu')\n options.add_argument('--no-sandbox')\n options.add_argument('start-maximized')\n options.add_argument('disable-infobars')\n options.add_argument('--disable-logging')\n options.add_argument('--log-level=3')\n options.add_experimental_option('excludeSwitches', [\n 'ignore-certificate-errors'])\n proxy = choice(['172.27.140.48:3128', '172.27.140.48:3128'])\n prox = Proxy()\n prox.proxy_type = ProxyType.MANUAL\n prox.http_proxy = proxy\n prox.ssl_proxy = proxy\n capabilities = webdriver.DesiredCapabilities.CHROME\n prox.add_to_capabilities(capabilities)\n driver = webdriver.Chrome(chrome_options=options,\n desired_capabilities=capabilities, service_log_path='NULL')\n else:\n binary = 'C:\\\\Program Files\\\\Mozilla Firefox\\\\firefox.exe'\n options = Options()\n PROXY = '172.27.140.48:3128'\n options.add_argument('--headless')\n options.binary = binary\n PROXY = '172.27.140.48:3128'\n desired_capability = webdriver.DesiredCapabilities.FIREFOX\n desired_capability['proxy'] = {'proxyType': 'manual',\n 'httpProxy': PROXY, 'ftpProxy': PROXY, 'sslProxy': PROXY}\n firefox_profile = webdriver.FirefoxProfile()\n firefox_profile.set_preference('browser.privatebrowsing.autostart',\n True)\n driver = webdriver.Firefox(firefox_profile=firefox_profile,\n firefox_binary=binary, firefox_options=options,\n capabilities=desired_capability)\n return driver\n\n def reset(self):\n self.quit()\n self.driver = self.initialize_driver(self.browser)\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n\n def get(self, url):\n if self.currentCount >= self.resetCount:\n self.reset()\n self.driver.get(url)\n self.currentCount += 1\n time.sleep(randint(1, 3))\n return self.driver.page_source\n\n def quit(self):\n self.driver.quit()\n\n def __exit__(self, type, value, traceback):\n self.quit()\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n\n\nclass Url(object):\n \"\"\"A url object that can be compared with other url orbjects\n without regard to the vagaries of encoding, escaping, and ordering\n of parameters in query strings.\"\"\"\n\n def __init__(self, url):\n parts = urlparse(url)\n _query = frozenset(parse_qsl(parts.query))\n _path = unquote_plus(parts.path)\n parts = parts._replace(query=_query, path=_path)\n self.parts = parts\n\n def __eq__(self, other):\n return (self.parts.path in other.parts.path or other.parts.path in\n self.parts.path)\n\n def __hash__(self):\n return hash(self.parts)\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef get_search_results_site(address, website, full_content=False):\n domain = get_domain(website)\n url = form_google_query(address, directory=domain)\n response = google_get(url)\n content = response.content.decode('utf-8')\n soup = BeautifulSoup(content, 'lxml')\n referenceUrl, content = None, None\n for row in soup.select('div.g'):\n referenceUrl = row.select_one('.r a')\n referenceUrl = referenceUrl['href'] if referenceUrl else None\n contents = row.select('span.st') if full_content else row.select(\n 'span.st em')\n if contents:\n contents = [content.get_text() for content in contents]\n content = ', '.join(pd.Series(contents).drop_duplicates().tolist())\n break\n return referenceUrl, content\n\n\n<function token>\n<function token>\n\n\ndef get_google_address1(query, gmap, tel_no, cn):\n global telephone, url\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'content-type':\n 'application/x-www-form-urlencoded', 'origin':\n 'https://safer.fmcsa.dot.gov', 'pragma': 'no-cache', 'referer':\n 'https://safer.fmcsa.dot.gov/CompanySnapshot.aspx', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36'\n }\n proxies = {'http': proxy, 'https': proxy}\n company_name = cn\n tel_no = tel_no\n print('tel_no', tel_no)\n if tel_no is None:\n telephone = ''\n url = ''\n else:\n tel_url = form_google_tel_query(company_name, tel_no)\n tel_url = tel_url.replace('%2C', '')\n req = requests.get(tel_url, headers=headers, proxies=proxies)\n print('tel_url', tel_url)\n rep = req.text\n soup = BeautifulSoup(req.text, 'lxml')\n no_results = soup.find_all('div', attrs={'class':\n 's card-section rQUFld'})\n if no_results == []:\n print('MATCH')\n sleep(5)\n try:\n link = re.findall('class=\"yuRUbf\"><a href=\"(.*?)\"', str(rep))\n for li in link:\n try:\n req1 = requests.get(li, headers=headers, proxies=\n proxies)\n sleep(5)\n rep1 = req1.text\n soup1 = BeautifulSoup(req1.text, 'lxml')\n fullstring = str(soup1)\n substring = str(tel_no)\n if substring in fullstring:\n f = 'FOUND'\n print(f)\n telephone = str(tel_no)\n url = li\n break\n else:\n f = 'NOT FOUND'\n telephone = ''\n url = ''\n except requests.exceptions.SSLError as ssl_error:\n print('bad handshake')\n telephone = ''\n url = ''\n except:\n telephone = ''\n url = ''\n else:\n telephone = ''\n url = ''\n return telephone, url\n\n\ndef get_google_address(query, gmap, tel_no):\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'pragma': 'no-cache',\n 'upgrade-insecure-requests': '1', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36'\n }\n proxies = {'http': proxy, 'https': proxy}\n url = form_google_query(query)\n search_url = url\n g_url = gmap\n response = google_get(url)\n sleep(5)\n content = response.content.decode('utf-8')\n print('so', content)\n soup = BeautifulSoup(content, 'lxml')\n print('so1', soup)\n address = soup.select_one(\n '[data-attrid=\"kc:/location/location:address\"] span.aCOpRe')\n print('add', address)\n address = address.get_text() if address else None\n if address is None:\n address = soup.find('div', attrs={'class': 'MWXBS'})\n if address is not None:\n address = address.text\n print('add-', address)\n else:\n address = soup.find('span', attrs={'class': 'LrzXr'})\n if address is not None:\n address = address.text\n print('add1', address)\n elif address is None:\n address = soup.find('span', attrs={'class': 'hgKElc'})\n if address is not None:\n address = address.text\n print('add:', address)\n elif address is None:\n url = (\n 'https://www.google.com/maps/search/?api=1&query=' +\n str(g_url))\n print('g_map_url', url)\n RegexList = []\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8'\n , 'accept-language':\n 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'pragma': 'no-cache',\n 'upgrade-insecure-requests': '1', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36'\n }\n response = requests.get(url, headers=headers, proxies=\n proxies)\n responseContent = response.content.decode('utf-8',\n errors='ignore')\n addressRegex = (\n 'google.com\\\\/maps\\\\/preview\\\\/place\\\\/([^>]*?)\\\\/@')\n telephone_regex = ',\\\\[\\\\\\\\\"(\\\\+[^>]*?)\\\\s*\\\\\\\\\"'\n addressBlock = re.findall(addressRegex, responseContent,\n re.I)\n if len(addressBlock) >= 1:\n address = unquote(addressBlock[0].replace('+', ' '),\n encoding='utf-8', errors='ignore')\n print('address_map:', address)\n else:\n address = ''\n url = search_url\n print('url_s', url)\n response = requests.get(url, headers=headers,\n proxies=proxies)\n soup = BeautifulSoup(response.text, 'lxml')\n print('s', soup)\n try:\n df = soup.find('span', attrs={'class': 'aCOpRe'})\n for sd in df:\n address = sd.text\n print('address_search:', address)\n except:\n address = ''\n return address, url\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef get_social_accounts(website, companyName):\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'content-type':\n 'application/x-www-form-urlencoded', 'origin':\n 'https://safer.fmcsa.dot.gov', 'pragma': 'no-cache', 'referer':\n 'https://safer.fmcsa.dot.gov/CompanySnapshot.aspx', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36'\n }\n socialAccounts = {'twitter': [], 'facebook': [], 'linkedin': []}\n website = website.strip()\n print('website1;', website)\n if len(website) > 4 and website[0:4] != 'http':\n website = 'http://' + website\n try:\n response = requests.get(website, headers=headers, proxies=proxies)\n content = response.content\n print('content', content)\n status_code = response.status_code\n print('status_code', status_code)\n if status_code == 200:\n print('SUCCESS')\n else:\n print('FAILED')\n try:\n username = 'meritgroup'\n password = 'sXNdrc6JU'\n send_from = '[email protected]'\n send_to = '[email protected]'\n Cc = ['[email protected]',\n '[email protected]']\n msg = MIMEMultipart()\n msg['From'] = send_from\n msg['To'] = send_to\n msg['Cc'] = ', '.join(Cc)\n msg['Date'] = formatdate(localtime=True)\n msg['Subject'] = 'ALF AUTOMATION'\n templatePath = os.path.join(os.getcwd(), 'templates',\n 'Weekly_Email_Template.html')\n template = open(templatePath, 'r')\n server = smtplib.SMTP('74.80.234.196')\n port = '25'\n body = 'Body_of_the_mail'\n msg.attach(MIMEText(str(template.read()), 'html'))\n smtp = smtplib.SMTP('74.80.234.196')\n smtp.ehlo()\n smtp.starttls()\n smtp.login(username, password)\n smtp.sendmail(send_from, send_to.split(',') + msg['Cc'].\n split(','), msg.as_string())\n smtp.quit()\n except Exception as e:\n print('e', e)\n except Exception as e:\n content = str(e)\n soup = BeautifulSoup(content, 'html5lib')\n links = soup.find_all('a', href=True)\n smSites = ['twitter', 'facebook', 'linkedin']\n for smSite in smSites:\n accounts = []\n if smSite == 'linkedin':\n urll = 'https://www.google.com/search?api=1&query=' + str(\n companyName) + ' ' + 'linkedin'\n print(urll)\n req = requests.get(urll, headers=headers, proxies=proxies)\n soup1 = BeautifulSoup(req.text, 'lxml')\n rep = req.text\n df = soup1.find('div', attrs={'class': 'yuRUbf'})\n if df is not None:\n link = df.find('a').get('href')\n accounts.append(link)\n print('gh', accounts)\n if smSite == 'twitter':\n urll = 'https://www.google.com/search?api=1&query=' + str(\n companyName) + ' ' + 'twitter'\n print(urll)\n req = requests.get(urll, headers=headers, proxies=proxies)\n soup1 = BeautifulSoup(req.text, 'lxml')\n rep = req.text\n df = soup1.find('div', attrs={'class': 'yuRUbf'})\n if df is not None:\n link = df.find('a').get('href')\n accounts.append(link)\n print('gh', accounts)\n if smSite == 'facebook':\n urll = 'https://www.google.com/search?api=1&query=' + str(\n companyName) + ' ' + 'facebook'\n print(urll)\n req = requests.get(urll, headers=headers, proxies=proxies)\n soup1 = BeautifulSoup(req.text, 'lxml')\n rep = req.text\n df = soup1.find('div', attrs={'class': 'yuRUbf'})\n if df is not None:\n link = df.find('a').get('href')\n accounts.append(link)\n if accounts:\n socialAccounts[smSite] = list(set(accounts))\n print('social', socialAccounts)\n return socialAccounts\n\n\nclass Driver:\n browser = 'chrome'\n\n def __enter__(self):\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n self.driver = self.initialize_driver(self.browser)\n return self\n\n def initialize_driver(self, browser):\n if browser == 'chrome':\n options = Options()\n options.add_argument('--disable-gpu')\n options.add_argument('--no-sandbox')\n options.add_argument('start-maximized')\n options.add_argument('disable-infobars')\n options.add_argument('--disable-logging')\n options.add_argument('--log-level=3')\n options.add_experimental_option('excludeSwitches', [\n 'ignore-certificate-errors'])\n proxy = choice(['172.27.140.48:3128', '172.27.140.48:3128'])\n prox = Proxy()\n prox.proxy_type = ProxyType.MANUAL\n prox.http_proxy = proxy\n prox.ssl_proxy = proxy\n capabilities = webdriver.DesiredCapabilities.CHROME\n prox.add_to_capabilities(capabilities)\n driver = webdriver.Chrome(chrome_options=options,\n desired_capabilities=capabilities, service_log_path='NULL')\n else:\n binary = 'C:\\\\Program Files\\\\Mozilla Firefox\\\\firefox.exe'\n options = Options()\n PROXY = '172.27.140.48:3128'\n options.add_argument('--headless')\n options.binary = binary\n PROXY = '172.27.140.48:3128'\n desired_capability = webdriver.DesiredCapabilities.FIREFOX\n desired_capability['proxy'] = {'proxyType': 'manual',\n 'httpProxy': PROXY, 'ftpProxy': PROXY, 'sslProxy': PROXY}\n firefox_profile = webdriver.FirefoxProfile()\n firefox_profile.set_preference('browser.privatebrowsing.autostart',\n True)\n driver = webdriver.Firefox(firefox_profile=firefox_profile,\n firefox_binary=binary, firefox_options=options,\n capabilities=desired_capability)\n return driver\n\n def reset(self):\n self.quit()\n self.driver = self.initialize_driver(self.browser)\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n\n def get(self, url):\n if self.currentCount >= self.resetCount:\n self.reset()\n self.driver.get(url)\n self.currentCount += 1\n time.sleep(randint(1, 3))\n return self.driver.page_source\n\n def quit(self):\n self.driver.quit()\n\n def __exit__(self, type, value, traceback):\n self.quit()\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n\n\nclass Url(object):\n \"\"\"A url object that can be compared with other url orbjects\n without regard to the vagaries of encoding, escaping, and ordering\n of parameters in query strings.\"\"\"\n\n def __init__(self, url):\n parts = urlparse(url)\n _query = frozenset(parse_qsl(parts.query))\n _path = unquote_plus(parts.path)\n parts = parts._replace(query=_query, path=_path)\n self.parts = parts\n\n def __eq__(self, other):\n return (self.parts.path in other.parts.path or other.parts.path in\n self.parts.path)\n\n def __hash__(self):\n return hash(self.parts)\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef get_search_results_site(address, website, full_content=False):\n domain = get_domain(website)\n url = form_google_query(address, directory=domain)\n response = google_get(url)\n content = response.content.decode('utf-8')\n soup = BeautifulSoup(content, 'lxml')\n referenceUrl, content = None, None\n for row in soup.select('div.g'):\n referenceUrl = row.select_one('.r a')\n referenceUrl = referenceUrl['href'] if referenceUrl else None\n contents = row.select('span.st') if full_content else row.select(\n 'span.st em')\n if contents:\n contents = [content.get_text() for content in contents]\n content = ', '.join(pd.Series(contents).drop_duplicates().tolist())\n break\n return referenceUrl, content\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef get_google_address(query, gmap, tel_no):\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'pragma': 'no-cache',\n 'upgrade-insecure-requests': '1', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36'\n }\n proxies = {'http': proxy, 'https': proxy}\n url = form_google_query(query)\n search_url = url\n g_url = gmap\n response = google_get(url)\n sleep(5)\n content = response.content.decode('utf-8')\n print('so', content)\n soup = BeautifulSoup(content, 'lxml')\n print('so1', soup)\n address = soup.select_one(\n '[data-attrid=\"kc:/location/location:address\"] span.aCOpRe')\n print('add', address)\n address = address.get_text() if address else None\n if address is None:\n address = soup.find('div', attrs={'class': 'MWXBS'})\n if address is not None:\n address = address.text\n print('add-', address)\n else:\n address = soup.find('span', attrs={'class': 'LrzXr'})\n if address is not None:\n address = address.text\n print('add1', address)\n elif address is None:\n address = soup.find('span', attrs={'class': 'hgKElc'})\n if address is not None:\n address = address.text\n print('add:', address)\n elif address is None:\n url = (\n 'https://www.google.com/maps/search/?api=1&query=' +\n str(g_url))\n print('g_map_url', url)\n RegexList = []\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8'\n , 'accept-language':\n 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'pragma': 'no-cache',\n 'upgrade-insecure-requests': '1', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36'\n }\n response = requests.get(url, headers=headers, proxies=\n proxies)\n responseContent = response.content.decode('utf-8',\n errors='ignore')\n addressRegex = (\n 'google.com\\\\/maps\\\\/preview\\\\/place\\\\/([^>]*?)\\\\/@')\n telephone_regex = ',\\\\[\\\\\\\\\"(\\\\+[^>]*?)\\\\s*\\\\\\\\\"'\n addressBlock = re.findall(addressRegex, responseContent,\n re.I)\n if len(addressBlock) >= 1:\n address = unquote(addressBlock[0].replace('+', ' '),\n encoding='utf-8', errors='ignore')\n print('address_map:', address)\n else:\n address = ''\n url = search_url\n print('url_s', url)\n response = requests.get(url, headers=headers,\n proxies=proxies)\n soup = BeautifulSoup(response.text, 'lxml')\n print('s', soup)\n try:\n df = soup.find('span', attrs={'class': 'aCOpRe'})\n for sd in df:\n address = sd.text\n print('address_search:', address)\n except:\n address = ''\n return address, url\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef get_social_accounts(website, companyName):\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'content-type':\n 'application/x-www-form-urlencoded', 'origin':\n 'https://safer.fmcsa.dot.gov', 'pragma': 'no-cache', 'referer':\n 'https://safer.fmcsa.dot.gov/CompanySnapshot.aspx', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36'\n }\n socialAccounts = {'twitter': [], 'facebook': [], 'linkedin': []}\n website = website.strip()\n print('website1;', website)\n if len(website) > 4 and website[0:4] != 'http':\n website = 'http://' + website\n try:\n response = requests.get(website, headers=headers, proxies=proxies)\n content = response.content\n print('content', content)\n status_code = response.status_code\n print('status_code', status_code)\n if status_code == 200:\n print('SUCCESS')\n else:\n print('FAILED')\n try:\n username = 'meritgroup'\n password = 'sXNdrc6JU'\n send_from = '[email protected]'\n send_to = '[email protected]'\n Cc = ['[email protected]',\n '[email protected]']\n msg = MIMEMultipart()\n msg['From'] = send_from\n msg['To'] = send_to\n msg['Cc'] = ', '.join(Cc)\n msg['Date'] = formatdate(localtime=True)\n msg['Subject'] = 'ALF AUTOMATION'\n templatePath = os.path.join(os.getcwd(), 'templates',\n 'Weekly_Email_Template.html')\n template = open(templatePath, 'r')\n server = smtplib.SMTP('74.80.234.196')\n port = '25'\n body = 'Body_of_the_mail'\n msg.attach(MIMEText(str(template.read()), 'html'))\n smtp = smtplib.SMTP('74.80.234.196')\n smtp.ehlo()\n smtp.starttls()\n smtp.login(username, password)\n smtp.sendmail(send_from, send_to.split(',') + msg['Cc'].\n split(','), msg.as_string())\n smtp.quit()\n except Exception as e:\n print('e', e)\n except Exception as e:\n content = str(e)\n soup = BeautifulSoup(content, 'html5lib')\n links = soup.find_all('a', href=True)\n smSites = ['twitter', 'facebook', 'linkedin']\n for smSite in smSites:\n accounts = []\n if smSite == 'linkedin':\n urll = 'https://www.google.com/search?api=1&query=' + str(\n companyName) + ' ' + 'linkedin'\n print(urll)\n req = requests.get(urll, headers=headers, proxies=proxies)\n soup1 = BeautifulSoup(req.text, 'lxml')\n rep = req.text\n df = soup1.find('div', attrs={'class': 'yuRUbf'})\n if df is not None:\n link = df.find('a').get('href')\n accounts.append(link)\n print('gh', accounts)\n if smSite == 'twitter':\n urll = 'https://www.google.com/search?api=1&query=' + str(\n companyName) + ' ' + 'twitter'\n print(urll)\n req = requests.get(urll, headers=headers, proxies=proxies)\n soup1 = BeautifulSoup(req.text, 'lxml')\n rep = req.text\n df = soup1.find('div', attrs={'class': 'yuRUbf'})\n if df is not None:\n link = df.find('a').get('href')\n accounts.append(link)\n print('gh', accounts)\n if smSite == 'facebook':\n urll = 'https://www.google.com/search?api=1&query=' + str(\n companyName) + ' ' + 'facebook'\n print(urll)\n req = requests.get(urll, headers=headers, proxies=proxies)\n soup1 = BeautifulSoup(req.text, 'lxml')\n rep = req.text\n df = soup1.find('div', attrs={'class': 'yuRUbf'})\n if df is not None:\n link = df.find('a').get('href')\n accounts.append(link)\n if accounts:\n socialAccounts[smSite] = list(set(accounts))\n print('social', socialAccounts)\n return socialAccounts\n\n\nclass Driver:\n browser = 'chrome'\n\n def __enter__(self):\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n self.driver = self.initialize_driver(self.browser)\n return self\n\n def initialize_driver(self, browser):\n if browser == 'chrome':\n options = Options()\n options.add_argument('--disable-gpu')\n options.add_argument('--no-sandbox')\n options.add_argument('start-maximized')\n options.add_argument('disable-infobars')\n options.add_argument('--disable-logging')\n options.add_argument('--log-level=3')\n options.add_experimental_option('excludeSwitches', [\n 'ignore-certificate-errors'])\n proxy = choice(['172.27.140.48:3128', '172.27.140.48:3128'])\n prox = Proxy()\n prox.proxy_type = ProxyType.MANUAL\n prox.http_proxy = proxy\n prox.ssl_proxy = proxy\n capabilities = webdriver.DesiredCapabilities.CHROME\n prox.add_to_capabilities(capabilities)\n driver = webdriver.Chrome(chrome_options=options,\n desired_capabilities=capabilities, service_log_path='NULL')\n else:\n binary = 'C:\\\\Program Files\\\\Mozilla Firefox\\\\firefox.exe'\n options = Options()\n PROXY = '172.27.140.48:3128'\n options.add_argument('--headless')\n options.binary = binary\n PROXY = '172.27.140.48:3128'\n desired_capability = webdriver.DesiredCapabilities.FIREFOX\n desired_capability['proxy'] = {'proxyType': 'manual',\n 'httpProxy': PROXY, 'ftpProxy': PROXY, 'sslProxy': PROXY}\n firefox_profile = webdriver.FirefoxProfile()\n firefox_profile.set_preference('browser.privatebrowsing.autostart',\n True)\n driver = webdriver.Firefox(firefox_profile=firefox_profile,\n firefox_binary=binary, firefox_options=options,\n capabilities=desired_capability)\n return driver\n\n def reset(self):\n self.quit()\n self.driver = self.initialize_driver(self.browser)\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n\n def get(self, url):\n if self.currentCount >= self.resetCount:\n self.reset()\n self.driver.get(url)\n self.currentCount += 1\n time.sleep(randint(1, 3))\n return self.driver.page_source\n\n def quit(self):\n self.driver.quit()\n\n def __exit__(self, type, value, traceback):\n self.quit()\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n\n\nclass Url(object):\n \"\"\"A url object that can be compared with other url orbjects\n without regard to the vagaries of encoding, escaping, and ordering\n of parameters in query strings.\"\"\"\n\n def __init__(self, url):\n parts = urlparse(url)\n _query = frozenset(parse_qsl(parts.query))\n _path = unquote_plus(parts.path)\n parts = parts._replace(query=_query, path=_path)\n self.parts = parts\n\n def __eq__(self, other):\n return (self.parts.path in other.parts.path or other.parts.path in\n self.parts.path)\n\n def __hash__(self):\n return hash(self.parts)\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef get_search_results_site(address, website, full_content=False):\n domain = get_domain(website)\n url = form_google_query(address, directory=domain)\n response = google_get(url)\n content = response.content.decode('utf-8')\n soup = BeautifulSoup(content, 'lxml')\n referenceUrl, content = None, None\n for row in soup.select('div.g'):\n referenceUrl = row.select_one('.r a')\n referenceUrl = referenceUrl['href'] if referenceUrl else None\n contents = row.select('span.st') if full_content else row.select(\n 'span.st em')\n if contents:\n contents = [content.get_text() for content in contents]\n content = ', '.join(pd.Series(contents).drop_duplicates().tolist())\n break\n return referenceUrl, content\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef get_social_accounts(website, companyName):\n headers = {'accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3'\n , 'accept-language': 'en-GB,en;q=0.9,en-US;q=0.8,tr;q=0.7',\n 'cache-control': 'no-cache', 'content-type':\n 'application/x-www-form-urlencoded', 'origin':\n 'https://safer.fmcsa.dot.gov', 'pragma': 'no-cache', 'referer':\n 'https://safer.fmcsa.dot.gov/CompanySnapshot.aspx', 'user-agent':\n 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36'\n }\n socialAccounts = {'twitter': [], 'facebook': [], 'linkedin': []}\n website = website.strip()\n print('website1;', website)\n if len(website) > 4 and website[0:4] != 'http':\n website = 'http://' + website\n try:\n response = requests.get(website, headers=headers, proxies=proxies)\n content = response.content\n print('content', content)\n status_code = response.status_code\n print('status_code', status_code)\n if status_code == 200:\n print('SUCCESS')\n else:\n print('FAILED')\n try:\n username = 'meritgroup'\n password = 'sXNdrc6JU'\n send_from = '[email protected]'\n send_to = '[email protected]'\n Cc = ['[email protected]',\n '[email protected]']\n msg = MIMEMultipart()\n msg['From'] = send_from\n msg['To'] = send_to\n msg['Cc'] = ', '.join(Cc)\n msg['Date'] = formatdate(localtime=True)\n msg['Subject'] = 'ALF AUTOMATION'\n templatePath = os.path.join(os.getcwd(), 'templates',\n 'Weekly_Email_Template.html')\n template = open(templatePath, 'r')\n server = smtplib.SMTP('74.80.234.196')\n port = '25'\n body = 'Body_of_the_mail'\n msg.attach(MIMEText(str(template.read()), 'html'))\n smtp = smtplib.SMTP('74.80.234.196')\n smtp.ehlo()\n smtp.starttls()\n smtp.login(username, password)\n smtp.sendmail(send_from, send_to.split(',') + msg['Cc'].\n split(','), msg.as_string())\n smtp.quit()\n except Exception as e:\n print('e', e)\n except Exception as e:\n content = str(e)\n soup = BeautifulSoup(content, 'html5lib')\n links = soup.find_all('a', href=True)\n smSites = ['twitter', 'facebook', 'linkedin']\n for smSite in smSites:\n accounts = []\n if smSite == 'linkedin':\n urll = 'https://www.google.com/search?api=1&query=' + str(\n companyName) + ' ' + 'linkedin'\n print(urll)\n req = requests.get(urll, headers=headers, proxies=proxies)\n soup1 = BeautifulSoup(req.text, 'lxml')\n rep = req.text\n df = soup1.find('div', attrs={'class': 'yuRUbf'})\n if df is not None:\n link = df.find('a').get('href')\n accounts.append(link)\n print('gh', accounts)\n if smSite == 'twitter':\n urll = 'https://www.google.com/search?api=1&query=' + str(\n companyName) + ' ' + 'twitter'\n print(urll)\n req = requests.get(urll, headers=headers, proxies=proxies)\n soup1 = BeautifulSoup(req.text, 'lxml')\n rep = req.text\n df = soup1.find('div', attrs={'class': 'yuRUbf'})\n if df is not None:\n link = df.find('a').get('href')\n accounts.append(link)\n print('gh', accounts)\n if smSite == 'facebook':\n urll = 'https://www.google.com/search?api=1&query=' + str(\n companyName) + ' ' + 'facebook'\n print(urll)\n req = requests.get(urll, headers=headers, proxies=proxies)\n soup1 = BeautifulSoup(req.text, 'lxml')\n rep = req.text\n df = soup1.find('div', attrs={'class': 'yuRUbf'})\n if df is not None:\n link = df.find('a').get('href')\n accounts.append(link)\n if accounts:\n socialAccounts[smSite] = list(set(accounts))\n print('social', socialAccounts)\n return socialAccounts\n\n\nclass Driver:\n browser = 'chrome'\n\n def __enter__(self):\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n self.driver = self.initialize_driver(self.browser)\n return self\n\n def initialize_driver(self, browser):\n if browser == 'chrome':\n options = Options()\n options.add_argument('--disable-gpu')\n options.add_argument('--no-sandbox')\n options.add_argument('start-maximized')\n options.add_argument('disable-infobars')\n options.add_argument('--disable-logging')\n options.add_argument('--log-level=3')\n options.add_experimental_option('excludeSwitches', [\n 'ignore-certificate-errors'])\n proxy = choice(['172.27.140.48:3128', '172.27.140.48:3128'])\n prox = Proxy()\n prox.proxy_type = ProxyType.MANUAL\n prox.http_proxy = proxy\n prox.ssl_proxy = proxy\n capabilities = webdriver.DesiredCapabilities.CHROME\n prox.add_to_capabilities(capabilities)\n driver = webdriver.Chrome(chrome_options=options,\n desired_capabilities=capabilities, service_log_path='NULL')\n else:\n binary = 'C:\\\\Program Files\\\\Mozilla Firefox\\\\firefox.exe'\n options = Options()\n PROXY = '172.27.140.48:3128'\n options.add_argument('--headless')\n options.binary = binary\n PROXY = '172.27.140.48:3128'\n desired_capability = webdriver.DesiredCapabilities.FIREFOX\n desired_capability['proxy'] = {'proxyType': 'manual',\n 'httpProxy': PROXY, 'ftpProxy': PROXY, 'sslProxy': PROXY}\n firefox_profile = webdriver.FirefoxProfile()\n firefox_profile.set_preference('browser.privatebrowsing.autostart',\n True)\n driver = webdriver.Firefox(firefox_profile=firefox_profile,\n firefox_binary=binary, firefox_options=options,\n capabilities=desired_capability)\n return driver\n\n def reset(self):\n self.quit()\n self.driver = self.initialize_driver(self.browser)\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n\n def get(self, url):\n if self.currentCount >= self.resetCount:\n self.reset()\n self.driver.get(url)\n self.currentCount += 1\n time.sleep(randint(1, 3))\n return self.driver.page_source\n\n def quit(self):\n self.driver.quit()\n\n def __exit__(self, type, value, traceback):\n self.quit()\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n\n\nclass Url(object):\n \"\"\"A url object that can be compared with other url orbjects\n without regard to the vagaries of encoding, escaping, and ordering\n of parameters in query strings.\"\"\"\n\n def __init__(self, url):\n parts = urlparse(url)\n _query = frozenset(parse_qsl(parts.query))\n _path = unquote_plus(parts.path)\n parts = parts._replace(query=_query, path=_path)\n self.parts = parts\n\n def __eq__(self, other):\n return (self.parts.path in other.parts.path or other.parts.path in\n self.parts.path)\n\n def __hash__(self):\n return hash(self.parts)\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef get_search_results_site(address, website, full_content=False):\n domain = get_domain(website)\n url = form_google_query(address, directory=domain)\n response = google_get(url)\n content = response.content.decode('utf-8')\n soup = BeautifulSoup(content, 'lxml')\n referenceUrl, content = None, None\n for row in soup.select('div.g'):\n referenceUrl = row.select_one('.r a')\n referenceUrl = referenceUrl['href'] if referenceUrl else None\n contents = row.select('span.st') if full_content else row.select(\n 'span.st em')\n if contents:\n contents = [content.get_text() for content in contents]\n content = ', '.join(pd.Series(contents).drop_duplicates().tolist())\n break\n return referenceUrl, content\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\nclass Driver:\n browser = 'chrome'\n\n def __enter__(self):\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n self.driver = self.initialize_driver(self.browser)\n return self\n\n def initialize_driver(self, browser):\n if browser == 'chrome':\n options = Options()\n options.add_argument('--disable-gpu')\n options.add_argument('--no-sandbox')\n options.add_argument('start-maximized')\n options.add_argument('disable-infobars')\n options.add_argument('--disable-logging')\n options.add_argument('--log-level=3')\n options.add_experimental_option('excludeSwitches', [\n 'ignore-certificate-errors'])\n proxy = choice(['172.27.140.48:3128', '172.27.140.48:3128'])\n prox = Proxy()\n prox.proxy_type = ProxyType.MANUAL\n prox.http_proxy = proxy\n prox.ssl_proxy = proxy\n capabilities = webdriver.DesiredCapabilities.CHROME\n prox.add_to_capabilities(capabilities)\n driver = webdriver.Chrome(chrome_options=options,\n desired_capabilities=capabilities, service_log_path='NULL')\n else:\n binary = 'C:\\\\Program Files\\\\Mozilla Firefox\\\\firefox.exe'\n options = Options()\n PROXY = '172.27.140.48:3128'\n options.add_argument('--headless')\n options.binary = binary\n PROXY = '172.27.140.48:3128'\n desired_capability = webdriver.DesiredCapabilities.FIREFOX\n desired_capability['proxy'] = {'proxyType': 'manual',\n 'httpProxy': PROXY, 'ftpProxy': PROXY, 'sslProxy': PROXY}\n firefox_profile = webdriver.FirefoxProfile()\n firefox_profile.set_preference('browser.privatebrowsing.autostart',\n True)\n driver = webdriver.Firefox(firefox_profile=firefox_profile,\n firefox_binary=binary, firefox_options=options,\n capabilities=desired_capability)\n return driver\n\n def reset(self):\n self.quit()\n self.driver = self.initialize_driver(self.browser)\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n\n def get(self, url):\n if self.currentCount >= self.resetCount:\n self.reset()\n self.driver.get(url)\n self.currentCount += 1\n time.sleep(randint(1, 3))\n return self.driver.page_source\n\n def quit(self):\n self.driver.quit()\n\n def __exit__(self, type, value, traceback):\n self.quit()\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n\n\nclass Url(object):\n \"\"\"A url object that can be compared with other url orbjects\n without regard to the vagaries of encoding, escaping, and ordering\n of parameters in query strings.\"\"\"\n\n def __init__(self, url):\n parts = urlparse(url)\n _query = frozenset(parse_qsl(parts.query))\n _path = unquote_plus(parts.path)\n parts = parts._replace(query=_query, path=_path)\n self.parts = parts\n\n def __eq__(self, other):\n return (self.parts.path in other.parts.path or other.parts.path in\n self.parts.path)\n\n def __hash__(self):\n return hash(self.parts)\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\nclass Driver:\n browser = 'chrome'\n\n def __enter__(self):\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n self.driver = self.initialize_driver(self.browser)\n return self\n\n def initialize_driver(self, browser):\n if browser == 'chrome':\n options = Options()\n options.add_argument('--disable-gpu')\n options.add_argument('--no-sandbox')\n options.add_argument('start-maximized')\n options.add_argument('disable-infobars')\n options.add_argument('--disable-logging')\n options.add_argument('--log-level=3')\n options.add_experimental_option('excludeSwitches', [\n 'ignore-certificate-errors'])\n proxy = choice(['172.27.140.48:3128', '172.27.140.48:3128'])\n prox = Proxy()\n prox.proxy_type = ProxyType.MANUAL\n prox.http_proxy = proxy\n prox.ssl_proxy = proxy\n capabilities = webdriver.DesiredCapabilities.CHROME\n prox.add_to_capabilities(capabilities)\n driver = webdriver.Chrome(chrome_options=options,\n desired_capabilities=capabilities, service_log_path='NULL')\n else:\n binary = 'C:\\\\Program Files\\\\Mozilla Firefox\\\\firefox.exe'\n options = Options()\n PROXY = '172.27.140.48:3128'\n options.add_argument('--headless')\n options.binary = binary\n PROXY = '172.27.140.48:3128'\n desired_capability = webdriver.DesiredCapabilities.FIREFOX\n desired_capability['proxy'] = {'proxyType': 'manual',\n 'httpProxy': PROXY, 'ftpProxy': PROXY, 'sslProxy': PROXY}\n firefox_profile = webdriver.FirefoxProfile()\n firefox_profile.set_preference('browser.privatebrowsing.autostart',\n True)\n driver = webdriver.Firefox(firefox_profile=firefox_profile,\n firefox_binary=binary, firefox_options=options,\n capabilities=desired_capability)\n return driver\n\n def reset(self):\n self.quit()\n self.driver = self.initialize_driver(self.browser)\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n\n def get(self, url):\n if self.currentCount >= self.resetCount:\n self.reset()\n self.driver.get(url)\n self.currentCount += 1\n time.sleep(randint(1, 3))\n return self.driver.page_source\n\n def quit(self):\n self.driver.quit()\n\n def __exit__(self, type, value, traceback):\n self.quit()\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n\n\nclass Url(object):\n <docstring token>\n\n def __init__(self, url):\n parts = urlparse(url)\n _query = frozenset(parse_qsl(parts.query))\n _path = unquote_plus(parts.path)\n parts = parts._replace(query=_query, path=_path)\n self.parts = parts\n\n def __eq__(self, other):\n return (self.parts.path in other.parts.path or other.parts.path in\n self.parts.path)\n\n def __hash__(self):\n return hash(self.parts)\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\nclass Driver:\n browser = 'chrome'\n\n def __enter__(self):\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n self.driver = self.initialize_driver(self.browser)\n return self\n\n def initialize_driver(self, browser):\n if browser == 'chrome':\n options = Options()\n options.add_argument('--disable-gpu')\n options.add_argument('--no-sandbox')\n options.add_argument('start-maximized')\n options.add_argument('disable-infobars')\n options.add_argument('--disable-logging')\n options.add_argument('--log-level=3')\n options.add_experimental_option('excludeSwitches', [\n 'ignore-certificate-errors'])\n proxy = choice(['172.27.140.48:3128', '172.27.140.48:3128'])\n prox = Proxy()\n prox.proxy_type = ProxyType.MANUAL\n prox.http_proxy = proxy\n prox.ssl_proxy = proxy\n capabilities = webdriver.DesiredCapabilities.CHROME\n prox.add_to_capabilities(capabilities)\n driver = webdriver.Chrome(chrome_options=options,\n desired_capabilities=capabilities, service_log_path='NULL')\n else:\n binary = 'C:\\\\Program Files\\\\Mozilla Firefox\\\\firefox.exe'\n options = Options()\n PROXY = '172.27.140.48:3128'\n options.add_argument('--headless')\n options.binary = binary\n PROXY = '172.27.140.48:3128'\n desired_capability = webdriver.DesiredCapabilities.FIREFOX\n desired_capability['proxy'] = {'proxyType': 'manual',\n 'httpProxy': PROXY, 'ftpProxy': PROXY, 'sslProxy': PROXY}\n firefox_profile = webdriver.FirefoxProfile()\n firefox_profile.set_preference('browser.privatebrowsing.autostart',\n True)\n driver = webdriver.Firefox(firefox_profile=firefox_profile,\n firefox_binary=binary, firefox_options=options,\n capabilities=desired_capability)\n return driver\n\n def reset(self):\n self.quit()\n self.driver = self.initialize_driver(self.browser)\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n\n def get(self, url):\n if self.currentCount >= self.resetCount:\n self.reset()\n self.driver.get(url)\n self.currentCount += 1\n time.sleep(randint(1, 3))\n return self.driver.page_source\n\n def quit(self):\n self.driver.quit()\n\n def __exit__(self, type, value, traceback):\n self.quit()\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n\n\nclass Url(object):\n <docstring token>\n <function token>\n\n def __eq__(self, other):\n return (self.parts.path in other.parts.path or other.parts.path in\n self.parts.path)\n\n def __hash__(self):\n return hash(self.parts)\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\nclass Driver:\n browser = 'chrome'\n\n def __enter__(self):\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n self.driver = self.initialize_driver(self.browser)\n return self\n\n def initialize_driver(self, browser):\n if browser == 'chrome':\n options = Options()\n options.add_argument('--disable-gpu')\n options.add_argument('--no-sandbox')\n options.add_argument('start-maximized')\n options.add_argument('disable-infobars')\n options.add_argument('--disable-logging')\n options.add_argument('--log-level=3')\n options.add_experimental_option('excludeSwitches', [\n 'ignore-certificate-errors'])\n proxy = choice(['172.27.140.48:3128', '172.27.140.48:3128'])\n prox = Proxy()\n prox.proxy_type = ProxyType.MANUAL\n prox.http_proxy = proxy\n prox.ssl_proxy = proxy\n capabilities = webdriver.DesiredCapabilities.CHROME\n prox.add_to_capabilities(capabilities)\n driver = webdriver.Chrome(chrome_options=options,\n desired_capabilities=capabilities, service_log_path='NULL')\n else:\n binary = 'C:\\\\Program Files\\\\Mozilla Firefox\\\\firefox.exe'\n options = Options()\n PROXY = '172.27.140.48:3128'\n options.add_argument('--headless')\n options.binary = binary\n PROXY = '172.27.140.48:3128'\n desired_capability = webdriver.DesiredCapabilities.FIREFOX\n desired_capability['proxy'] = {'proxyType': 'manual',\n 'httpProxy': PROXY, 'ftpProxy': PROXY, 'sslProxy': PROXY}\n firefox_profile = webdriver.FirefoxProfile()\n firefox_profile.set_preference('browser.privatebrowsing.autostart',\n True)\n driver = webdriver.Firefox(firefox_profile=firefox_profile,\n firefox_binary=binary, firefox_options=options,\n capabilities=desired_capability)\n return driver\n\n def reset(self):\n self.quit()\n self.driver = self.initialize_driver(self.browser)\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n\n def get(self, url):\n if self.currentCount >= self.resetCount:\n self.reset()\n self.driver.get(url)\n self.currentCount += 1\n time.sleep(randint(1, 3))\n return self.driver.page_source\n\n def quit(self):\n self.driver.quit()\n\n def __exit__(self, type, value, traceback):\n self.quit()\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n\n\nclass Url(object):\n <docstring token>\n <function token>\n\n def __eq__(self, other):\n return (self.parts.path in other.parts.path or other.parts.path in\n self.parts.path)\n <function token>\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\nclass Driver:\n browser = 'chrome'\n\n def __enter__(self):\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n self.driver = self.initialize_driver(self.browser)\n return self\n\n def initialize_driver(self, browser):\n if browser == 'chrome':\n options = Options()\n options.add_argument('--disable-gpu')\n options.add_argument('--no-sandbox')\n options.add_argument('start-maximized')\n options.add_argument('disable-infobars')\n options.add_argument('--disable-logging')\n options.add_argument('--log-level=3')\n options.add_experimental_option('excludeSwitches', [\n 'ignore-certificate-errors'])\n proxy = choice(['172.27.140.48:3128', '172.27.140.48:3128'])\n prox = Proxy()\n prox.proxy_type = ProxyType.MANUAL\n prox.http_proxy = proxy\n prox.ssl_proxy = proxy\n capabilities = webdriver.DesiredCapabilities.CHROME\n prox.add_to_capabilities(capabilities)\n driver = webdriver.Chrome(chrome_options=options,\n desired_capabilities=capabilities, service_log_path='NULL')\n else:\n binary = 'C:\\\\Program Files\\\\Mozilla Firefox\\\\firefox.exe'\n options = Options()\n PROXY = '172.27.140.48:3128'\n options.add_argument('--headless')\n options.binary = binary\n PROXY = '172.27.140.48:3128'\n desired_capability = webdriver.DesiredCapabilities.FIREFOX\n desired_capability['proxy'] = {'proxyType': 'manual',\n 'httpProxy': PROXY, 'ftpProxy': PROXY, 'sslProxy': PROXY}\n firefox_profile = webdriver.FirefoxProfile()\n firefox_profile.set_preference('browser.privatebrowsing.autostart',\n True)\n driver = webdriver.Firefox(firefox_profile=firefox_profile,\n firefox_binary=binary, firefox_options=options,\n capabilities=desired_capability)\n return driver\n\n def reset(self):\n self.quit()\n self.driver = self.initialize_driver(self.browser)\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n\n def get(self, url):\n if self.currentCount >= self.resetCount:\n self.reset()\n self.driver.get(url)\n self.currentCount += 1\n time.sleep(randint(1, 3))\n return self.driver.page_source\n\n def quit(self):\n self.driver.quit()\n\n def __exit__(self, type, value, traceback):\n self.quit()\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n\n\nclass Url(object):\n <docstring token>\n <function token>\n <function token>\n <function token>\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\nclass Driver:\n browser = 'chrome'\n\n def __enter__(self):\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n self.driver = self.initialize_driver(self.browser)\n return self\n\n def initialize_driver(self, browser):\n if browser == 'chrome':\n options = Options()\n options.add_argument('--disable-gpu')\n options.add_argument('--no-sandbox')\n options.add_argument('start-maximized')\n options.add_argument('disable-infobars')\n options.add_argument('--disable-logging')\n options.add_argument('--log-level=3')\n options.add_experimental_option('excludeSwitches', [\n 'ignore-certificate-errors'])\n proxy = choice(['172.27.140.48:3128', '172.27.140.48:3128'])\n prox = Proxy()\n prox.proxy_type = ProxyType.MANUAL\n prox.http_proxy = proxy\n prox.ssl_proxy = proxy\n capabilities = webdriver.DesiredCapabilities.CHROME\n prox.add_to_capabilities(capabilities)\n driver = webdriver.Chrome(chrome_options=options,\n desired_capabilities=capabilities, service_log_path='NULL')\n else:\n binary = 'C:\\\\Program Files\\\\Mozilla Firefox\\\\firefox.exe'\n options = Options()\n PROXY = '172.27.140.48:3128'\n options.add_argument('--headless')\n options.binary = binary\n PROXY = '172.27.140.48:3128'\n desired_capability = webdriver.DesiredCapabilities.FIREFOX\n desired_capability['proxy'] = {'proxyType': 'manual',\n 'httpProxy': PROXY, 'ftpProxy': PROXY, 'sslProxy': PROXY}\n firefox_profile = webdriver.FirefoxProfile()\n firefox_profile.set_preference('browser.privatebrowsing.autostart',\n True)\n driver = webdriver.Firefox(firefox_profile=firefox_profile,\n firefox_binary=binary, firefox_options=options,\n capabilities=desired_capability)\n return driver\n\n def reset(self):\n self.quit()\n self.driver = self.initialize_driver(self.browser)\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n\n def get(self, url):\n if self.currentCount >= self.resetCount:\n self.reset()\n self.driver.get(url)\n self.currentCount += 1\n time.sleep(randint(1, 3))\n return self.driver.page_source\n\n def quit(self):\n self.driver.quit()\n\n def __exit__(self, type, value, traceback):\n self.quit()\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<class token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\nclass Driver:\n browser = 'chrome'\n\n def __enter__(self):\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n self.driver = self.initialize_driver(self.browser)\n return self\n\n def initialize_driver(self, browser):\n if browser == 'chrome':\n options = Options()\n options.add_argument('--disable-gpu')\n options.add_argument('--no-sandbox')\n options.add_argument('start-maximized')\n options.add_argument('disable-infobars')\n options.add_argument('--disable-logging')\n options.add_argument('--log-level=3')\n options.add_experimental_option('excludeSwitches', [\n 'ignore-certificate-errors'])\n proxy = choice(['172.27.140.48:3128', '172.27.140.48:3128'])\n prox = Proxy()\n prox.proxy_type = ProxyType.MANUAL\n prox.http_proxy = proxy\n prox.ssl_proxy = proxy\n capabilities = webdriver.DesiredCapabilities.CHROME\n prox.add_to_capabilities(capabilities)\n driver = webdriver.Chrome(chrome_options=options,\n desired_capabilities=capabilities, service_log_path='NULL')\n else:\n binary = 'C:\\\\Program Files\\\\Mozilla Firefox\\\\firefox.exe'\n options = Options()\n PROXY = '172.27.140.48:3128'\n options.add_argument('--headless')\n options.binary = binary\n PROXY = '172.27.140.48:3128'\n desired_capability = webdriver.DesiredCapabilities.FIREFOX\n desired_capability['proxy'] = {'proxyType': 'manual',\n 'httpProxy': PROXY, 'ftpProxy': PROXY, 'sslProxy': PROXY}\n firefox_profile = webdriver.FirefoxProfile()\n firefox_profile.set_preference('browser.privatebrowsing.autostart',\n True)\n driver = webdriver.Firefox(firefox_profile=firefox_profile,\n firefox_binary=binary, firefox_options=options,\n capabilities=desired_capability)\n return driver\n\n def reset(self):\n self.quit()\n self.driver = self.initialize_driver(self.browser)\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n\n def get(self, url):\n if self.currentCount >= self.resetCount:\n self.reset()\n self.driver.get(url)\n self.currentCount += 1\n time.sleep(randint(1, 3))\n return self.driver.page_source\n\n def quit(self):\n self.driver.quit()\n\n def __exit__(self, type, value, traceback):\n self.quit()\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<class token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\nclass Driver:\n <assignment token>\n\n def __enter__(self):\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n self.driver = self.initialize_driver(self.browser)\n return self\n\n def initialize_driver(self, browser):\n if browser == 'chrome':\n options = Options()\n options.add_argument('--disable-gpu')\n options.add_argument('--no-sandbox')\n options.add_argument('start-maximized')\n options.add_argument('disable-infobars')\n options.add_argument('--disable-logging')\n options.add_argument('--log-level=3')\n options.add_experimental_option('excludeSwitches', [\n 'ignore-certificate-errors'])\n proxy = choice(['172.27.140.48:3128', '172.27.140.48:3128'])\n prox = Proxy()\n prox.proxy_type = ProxyType.MANUAL\n prox.http_proxy = proxy\n prox.ssl_proxy = proxy\n capabilities = webdriver.DesiredCapabilities.CHROME\n prox.add_to_capabilities(capabilities)\n driver = webdriver.Chrome(chrome_options=options,\n desired_capabilities=capabilities, service_log_path='NULL')\n else:\n binary = 'C:\\\\Program Files\\\\Mozilla Firefox\\\\firefox.exe'\n options = Options()\n PROXY = '172.27.140.48:3128'\n options.add_argument('--headless')\n options.binary = binary\n PROXY = '172.27.140.48:3128'\n desired_capability = webdriver.DesiredCapabilities.FIREFOX\n desired_capability['proxy'] = {'proxyType': 'manual',\n 'httpProxy': PROXY, 'ftpProxy': PROXY, 'sslProxy': PROXY}\n firefox_profile = webdriver.FirefoxProfile()\n firefox_profile.set_preference('browser.privatebrowsing.autostart',\n True)\n driver = webdriver.Firefox(firefox_profile=firefox_profile,\n firefox_binary=binary, firefox_options=options,\n capabilities=desired_capability)\n return driver\n\n def reset(self):\n self.quit()\n self.driver = self.initialize_driver(self.browser)\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n\n def get(self, url):\n if self.currentCount >= self.resetCount:\n self.reset()\n self.driver.get(url)\n self.currentCount += 1\n time.sleep(randint(1, 3))\n return self.driver.page_source\n\n def quit(self):\n self.driver.quit()\n\n def __exit__(self, type, value, traceback):\n self.quit()\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<class token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\nclass Driver:\n <assignment token>\n\n def __enter__(self):\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n self.driver = self.initialize_driver(self.browser)\n return self\n\n def initialize_driver(self, browser):\n if browser == 'chrome':\n options = Options()\n options.add_argument('--disable-gpu')\n options.add_argument('--no-sandbox')\n options.add_argument('start-maximized')\n options.add_argument('disable-infobars')\n options.add_argument('--disable-logging')\n options.add_argument('--log-level=3')\n options.add_experimental_option('excludeSwitches', [\n 'ignore-certificate-errors'])\n proxy = choice(['172.27.140.48:3128', '172.27.140.48:3128'])\n prox = Proxy()\n prox.proxy_type = ProxyType.MANUAL\n prox.http_proxy = proxy\n prox.ssl_proxy = proxy\n capabilities = webdriver.DesiredCapabilities.CHROME\n prox.add_to_capabilities(capabilities)\n driver = webdriver.Chrome(chrome_options=options,\n desired_capabilities=capabilities, service_log_path='NULL')\n else:\n binary = 'C:\\\\Program Files\\\\Mozilla Firefox\\\\firefox.exe'\n options = Options()\n PROXY = '172.27.140.48:3128'\n options.add_argument('--headless')\n options.binary = binary\n PROXY = '172.27.140.48:3128'\n desired_capability = webdriver.DesiredCapabilities.FIREFOX\n desired_capability['proxy'] = {'proxyType': 'manual',\n 'httpProxy': PROXY, 'ftpProxy': PROXY, 'sslProxy': PROXY}\n firefox_profile = webdriver.FirefoxProfile()\n firefox_profile.set_preference('browser.privatebrowsing.autostart',\n True)\n driver = webdriver.Firefox(firefox_profile=firefox_profile,\n firefox_binary=binary, firefox_options=options,\n capabilities=desired_capability)\n return driver\n\n def reset(self):\n self.quit()\n self.driver = self.initialize_driver(self.browser)\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n\n def get(self, url):\n if self.currentCount >= self.resetCount:\n self.reset()\n self.driver.get(url)\n self.currentCount += 1\n time.sleep(randint(1, 3))\n return self.driver.page_source\n <function token>\n\n def __exit__(self, type, value, traceback):\n self.quit()\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<class token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\nclass Driver:\n <assignment token>\n <function token>\n\n def initialize_driver(self, browser):\n if browser == 'chrome':\n options = Options()\n options.add_argument('--disable-gpu')\n options.add_argument('--no-sandbox')\n options.add_argument('start-maximized')\n options.add_argument('disable-infobars')\n options.add_argument('--disable-logging')\n options.add_argument('--log-level=3')\n options.add_experimental_option('excludeSwitches', [\n 'ignore-certificate-errors'])\n proxy = choice(['172.27.140.48:3128', '172.27.140.48:3128'])\n prox = Proxy()\n prox.proxy_type = ProxyType.MANUAL\n prox.http_proxy = proxy\n prox.ssl_proxy = proxy\n capabilities = webdriver.DesiredCapabilities.CHROME\n prox.add_to_capabilities(capabilities)\n driver = webdriver.Chrome(chrome_options=options,\n desired_capabilities=capabilities, service_log_path='NULL')\n else:\n binary = 'C:\\\\Program Files\\\\Mozilla Firefox\\\\firefox.exe'\n options = Options()\n PROXY = '172.27.140.48:3128'\n options.add_argument('--headless')\n options.binary = binary\n PROXY = '172.27.140.48:3128'\n desired_capability = webdriver.DesiredCapabilities.FIREFOX\n desired_capability['proxy'] = {'proxyType': 'manual',\n 'httpProxy': PROXY, 'ftpProxy': PROXY, 'sslProxy': PROXY}\n firefox_profile = webdriver.FirefoxProfile()\n firefox_profile.set_preference('browser.privatebrowsing.autostart',\n True)\n driver = webdriver.Firefox(firefox_profile=firefox_profile,\n firefox_binary=binary, firefox_options=options,\n capabilities=desired_capability)\n return driver\n\n def reset(self):\n self.quit()\n self.driver = self.initialize_driver(self.browser)\n self.resetCount = randint(1, 3)\n self.currentCount = 0\n\n def get(self, url):\n if self.currentCount >= self.resetCount:\n self.reset()\n self.driver.get(url)\n self.currentCount += 1\n time.sleep(randint(1, 3))\n return self.driver.page_source\n <function token>\n\n def __exit__(self, type, value, traceback):\n self.quit()\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<class token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\nclass Driver:\n <assignment token>\n <function token>\n\n def initialize_driver(self, browser):\n if browser == 'chrome':\n options = Options()\n options.add_argument('--disable-gpu')\n options.add_argument('--no-sandbox')\n options.add_argument('start-maximized')\n options.add_argument('disable-infobars')\n options.add_argument('--disable-logging')\n options.add_argument('--log-level=3')\n options.add_experimental_option('excludeSwitches', [\n 'ignore-certificate-errors'])\n proxy = choice(['172.27.140.48:3128', '172.27.140.48:3128'])\n prox = Proxy()\n prox.proxy_type = ProxyType.MANUAL\n prox.http_proxy = proxy\n prox.ssl_proxy = proxy\n capabilities = webdriver.DesiredCapabilities.CHROME\n prox.add_to_capabilities(capabilities)\n driver = webdriver.Chrome(chrome_options=options,\n desired_capabilities=capabilities, service_log_path='NULL')\n else:\n binary = 'C:\\\\Program Files\\\\Mozilla Firefox\\\\firefox.exe'\n options = Options()\n PROXY = '172.27.140.48:3128'\n options.add_argument('--headless')\n options.binary = binary\n PROXY = '172.27.140.48:3128'\n desired_capability = webdriver.DesiredCapabilities.FIREFOX\n desired_capability['proxy'] = {'proxyType': 'manual',\n 'httpProxy': PROXY, 'ftpProxy': PROXY, 'sslProxy': PROXY}\n firefox_profile = webdriver.FirefoxProfile()\n firefox_profile.set_preference('browser.privatebrowsing.autostart',\n True)\n driver = webdriver.Firefox(firefox_profile=firefox_profile,\n firefox_binary=binary, firefox_options=options,\n capabilities=desired_capability)\n return driver\n <function token>\n\n def get(self, url):\n if self.currentCount >= self.resetCount:\n self.reset()\n self.driver.get(url)\n self.currentCount += 1\n time.sleep(randint(1, 3))\n return self.driver.page_source\n <function token>\n\n def __exit__(self, type, value, traceback):\n self.quit()\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<class token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\nclass Driver:\n <assignment token>\n <function token>\n\n def initialize_driver(self, browser):\n if browser == 'chrome':\n options = Options()\n options.add_argument('--disable-gpu')\n options.add_argument('--no-sandbox')\n options.add_argument('start-maximized')\n options.add_argument('disable-infobars')\n options.add_argument('--disable-logging')\n options.add_argument('--log-level=3')\n options.add_experimental_option('excludeSwitches', [\n 'ignore-certificate-errors'])\n proxy = choice(['172.27.140.48:3128', '172.27.140.48:3128'])\n prox = Proxy()\n prox.proxy_type = ProxyType.MANUAL\n prox.http_proxy = proxy\n prox.ssl_proxy = proxy\n capabilities = webdriver.DesiredCapabilities.CHROME\n prox.add_to_capabilities(capabilities)\n driver = webdriver.Chrome(chrome_options=options,\n desired_capabilities=capabilities, service_log_path='NULL')\n else:\n binary = 'C:\\\\Program Files\\\\Mozilla Firefox\\\\firefox.exe'\n options = Options()\n PROXY = '172.27.140.48:3128'\n options.add_argument('--headless')\n options.binary = binary\n PROXY = '172.27.140.48:3128'\n desired_capability = webdriver.DesiredCapabilities.FIREFOX\n desired_capability['proxy'] = {'proxyType': 'manual',\n 'httpProxy': PROXY, 'ftpProxy': PROXY, 'sslProxy': PROXY}\n firefox_profile = webdriver.FirefoxProfile()\n firefox_profile.set_preference('browser.privatebrowsing.autostart',\n True)\n driver = webdriver.Firefox(firefox_profile=firefox_profile,\n firefox_binary=binary, firefox_options=options,\n capabilities=desired_capability)\n return driver\n <function token>\n\n def get(self, url):\n if self.currentCount >= self.resetCount:\n self.reset()\n self.driver.get(url)\n self.currentCount += 1\n time.sleep(randint(1, 3))\n return self.driver.page_source\n <function token>\n <function token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<class token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\nclass Driver:\n <assignment token>\n <function token>\n\n def initialize_driver(self, browser):\n if browser == 'chrome':\n options = Options()\n options.add_argument('--disable-gpu')\n options.add_argument('--no-sandbox')\n options.add_argument('start-maximized')\n options.add_argument('disable-infobars')\n options.add_argument('--disable-logging')\n options.add_argument('--log-level=3')\n options.add_experimental_option('excludeSwitches', [\n 'ignore-certificate-errors'])\n proxy = choice(['172.27.140.48:3128', '172.27.140.48:3128'])\n prox = Proxy()\n prox.proxy_type = ProxyType.MANUAL\n prox.http_proxy = proxy\n prox.ssl_proxy = proxy\n capabilities = webdriver.DesiredCapabilities.CHROME\n prox.add_to_capabilities(capabilities)\n driver = webdriver.Chrome(chrome_options=options,\n desired_capabilities=capabilities, service_log_path='NULL')\n else:\n binary = 'C:\\\\Program Files\\\\Mozilla Firefox\\\\firefox.exe'\n options = Options()\n PROXY = '172.27.140.48:3128'\n options.add_argument('--headless')\n options.binary = binary\n PROXY = '172.27.140.48:3128'\n desired_capability = webdriver.DesiredCapabilities.FIREFOX\n desired_capability['proxy'] = {'proxyType': 'manual',\n 'httpProxy': PROXY, 'ftpProxy': PROXY, 'sslProxy': PROXY}\n firefox_profile = webdriver.FirefoxProfile()\n firefox_profile.set_preference('browser.privatebrowsing.autostart',\n True)\n driver = webdriver.Firefox(firefox_profile=firefox_profile,\n firefox_binary=binary, firefox_options=options,\n capabilities=desired_capability)\n return driver\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<class token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\nclass Driver:\n <assignment token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<class token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<class token>\n" ]
false
99,311
6341ea1b872b79d1f4171bbc6733b3a275a36488
import opentrons.simulate protocol_file = open('p1a_GF_prekingfisher.py') opentrons.simulate.simulate(protocol_file)
[ "import opentrons.simulate\nprotocol_file = open('p1a_GF_prekingfisher.py')\nopentrons.simulate.simulate(protocol_file)\n", "<import token>\nprotocol_file = open('p1a_GF_prekingfisher.py')\nopentrons.simulate.simulate(protocol_file)\n", "<import token>\n<assignment token>\nopentrons.simulate.simulate(protocol_file)\n", "<import token>\n<assignment token>\n<code token>\n" ]
false
99,312
8de446a8787cb96d66b8751bafa5c76a21bb9776
import unittest import predict class TestStringMethods(unittest.TestCase): def test_convert_wait_time_to_days(self): tests = [ ["2 Yrs 7 Mths 16 Days", 2 * 365 + 7 * 30 + 16] ] for t in tests: assert(predict.convert_wait_time(t[0], month=False) == t[1]) if __name__ == '__main__': unittest.main()
[ "import unittest\nimport predict\n\n\nclass TestStringMethods(unittest.TestCase):\n\tdef test_convert_wait_time_to_days(self):\n\t\ttests = [\n\t\t\t[\"2 Yrs 7 Mths 16 Days\", 2 * 365 + 7 * 30 + 16]\n\t\t]\n\t\tfor t in tests:\n\t\t\tassert(predict.convert_wait_time(t[0], month=False) == t[1])\n\nif __name__ == '__main__':\n\tunittest.main()\n", "import unittest\nimport predict\n\n\nclass TestStringMethods(unittest.TestCase):\n\n def test_convert_wait_time_to_days(self):\n tests = [['2 Yrs 7 Mths 16 Days', 2 * 365 + 7 * 30 + 16]]\n for t in tests:\n assert predict.convert_wait_time(t[0], month=False) == t[1]\n\n\nif __name__ == '__main__':\n unittest.main()\n", "<import token>\n\n\nclass TestStringMethods(unittest.TestCase):\n\n def test_convert_wait_time_to_days(self):\n tests = [['2 Yrs 7 Mths 16 Days', 2 * 365 + 7 * 30 + 16]]\n for t in tests:\n assert predict.convert_wait_time(t[0], month=False) == t[1]\n\n\nif __name__ == '__main__':\n unittest.main()\n", "<import token>\n\n\nclass TestStringMethods(unittest.TestCase):\n\n def test_convert_wait_time_to_days(self):\n tests = [['2 Yrs 7 Mths 16 Days', 2 * 365 + 7 * 30 + 16]]\n for t in tests:\n assert predict.convert_wait_time(t[0], month=False) == t[1]\n\n\n<code token>\n", "<import token>\n\n\nclass TestStringMethods(unittest.TestCase):\n <function token>\n\n\n<code token>\n", "<import token>\n<class token>\n<code token>\n" ]
false
99,313
38e3f1692f3ff0aa4c63530e6e67599380328f7e
from apps.core.models.soft_delete_model_base import ModelBase from django.db import models class Auth(ModelBase): class LoginType: Kakao = 0 Apple = 1 types = ( (Kakao, 'kakao'), (Apple, 'apple'), ) identifier = models.CharField(max_length=50, unique=True) email = models.CharField(max_length=100, null=True, blank=True) user = models.ForeignKey("User", related_name="auth_user", on_delete=models.CASCADE, db_column="user") social_token = models.CharField(max_length=150) login_type = models.SmallIntegerField('state', choices=LoginType.types) token = models.CharField(max_length=300)
[ "from apps.core.models.soft_delete_model_base import ModelBase\nfrom django.db import models\n\n\nclass Auth(ModelBase):\n class LoginType:\n Kakao = 0\n Apple = 1\n types = (\n (Kakao, 'kakao'),\n (Apple, 'apple'),\n )\n\n identifier = models.CharField(max_length=50, unique=True)\n email = models.CharField(max_length=100, null=True, blank=True)\n user = models.ForeignKey(\"User\", related_name=\"auth_user\", on_delete=models.CASCADE, db_column=\"user\")\n social_token = models.CharField(max_length=150)\n login_type = models.SmallIntegerField('state', choices=LoginType.types)\n token = models.CharField(max_length=300)\n\n", "from apps.core.models.soft_delete_model_base import ModelBase\nfrom django.db import models\n\n\nclass Auth(ModelBase):\n\n\n class LoginType:\n Kakao = 0\n Apple = 1\n types = (Kakao, 'kakao'), (Apple, 'apple')\n identifier = models.CharField(max_length=50, unique=True)\n email = models.CharField(max_length=100, null=True, blank=True)\n user = models.ForeignKey('User', related_name='auth_user', on_delete=\n models.CASCADE, db_column='user')\n social_token = models.CharField(max_length=150)\n login_type = models.SmallIntegerField('state', choices=LoginType.types)\n token = models.CharField(max_length=300)\n", "<import token>\n\n\nclass Auth(ModelBase):\n\n\n class LoginType:\n Kakao = 0\n Apple = 1\n types = (Kakao, 'kakao'), (Apple, 'apple')\n identifier = models.CharField(max_length=50, unique=True)\n email = models.CharField(max_length=100, null=True, blank=True)\n user = models.ForeignKey('User', related_name='auth_user', on_delete=\n models.CASCADE, db_column='user')\n social_token = models.CharField(max_length=150)\n login_type = models.SmallIntegerField('state', choices=LoginType.types)\n token = models.CharField(max_length=300)\n", "<import token>\n\n\nclass Auth(ModelBase):\n\n\n class LoginType:\n Kakao = 0\n Apple = 1\n types = (Kakao, 'kakao'), (Apple, 'apple')\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n", "<import token>\n<class token>\n" ]
false
99,314
b976a4802ff797f6886e8160c75adfaf1f317fb6
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @author: tung doan """ import numpy as np import matplotlib.pyplot as plt from tslearn.datasets import UCR_UEA_datasets from tmf import tmf """ load data """ data_loader = UCR_UEA_datasets() X_tr, y_tr, X_te, y_te = data_loader.load_dataset('Coffee') X = X_tr[:,::2,0] #reduce length a factor of 2 for fast demo y = y_tr # Ground truth indicator matrix grd = np.zeros((y.size, y.max()+1)) grd[np.arange(y.size),y] = 1 """ run temporal matrix factorization """ k = y.max()+1; l = X.shape[1]; lambda_1 = lambda_2 = 1e-2; lambda_3 = 10; sigma = 0.05 ** 2; eta = 1e-2; o_max = 15; i_max = 50; F_list, G_list = tmf(X, k, l, lambda_1, lambda_2, lambda_3, sigma, eta, o_max, i_max) """ plot """ plt.style.use(style='ggplot') colors = ['tab:blue','tab:red','tab:green','tab:black','tab:cyan'] plt.figure(1) # Plot initial centroid plt.title('Initial centroids') for i in range(k): plt.plot(F_list[0][i],color=colors[i],label='Centroid '+str(i+1),linewidth=2) plt.legend() # Plot resulted centroid plt.figure(2) plt.title('Resulted centroids') for i in range(k): plt.plot(F_list[-1][i],color=colors[i],label='Centroid '+str(i+1),linewidth=2) plt.legend() # Plot indicator matrix plt.style.use(style='classic') fig, axs = plt.subplots(2,1,figsize=(100,50)) ## Plot ground truth indicator matrix axs[0].set_title('Ground truth indicators',pad=20) axs[0].matshow(grd.T, cmap=plt.cm.Blues) for i in range(y.shape[0]): for j in range(k): c = format(grd[i,j], '.1f') axs[0].text(i, j, c, va='center', ha='center') axs[0].set_xticks(np.arange(y.shape[0])) axs[0].xaxis.set_ticks_position('bottom') ## Plot resulted indicator matrix axs[1].set_title('Resulted indicators',pad=20) axs[1].matshow(G_list[-1].T, cmap=plt.cm.Blues) for i in range(X.shape[0]): for j in range(k): c = format(G_list[-1][i,j], '.1f') axs[1].text(i, j, c, va='center', ha='center') axs[1].set_xticks(np.arange(X.shape[0])) axs[1].xaxis.set_ticks_position('bottom')
[ "#!/usr/bin/env python3\n# -*- coding: utf-8 -*-\n\"\"\"\n@author: tung doan\n\"\"\"\nimport numpy as np\nimport matplotlib.pyplot as plt\n\nfrom tslearn.datasets import UCR_UEA_datasets\nfrom tmf import tmf\n\n\"\"\" load data \"\"\"\ndata_loader = UCR_UEA_datasets()\nX_tr, y_tr, X_te, y_te = data_loader.load_dataset('Coffee')\nX = X_tr[:,::2,0] #reduce length a factor of 2 for fast demo\ny = y_tr\n# Ground truth indicator matrix\ngrd = np.zeros((y.size, y.max()+1)) \ngrd[np.arange(y.size),y] = 1\n\n\"\"\" run temporal matrix factorization \"\"\"\nk = y.max()+1; l = X.shape[1]; lambda_1 = lambda_2 = 1e-2; lambda_3 = 10; sigma = 0.05 ** 2; eta = 1e-2; o_max = 15; i_max = 50;\nF_list, G_list = tmf(X, k, l, lambda_1, lambda_2, lambda_3, sigma, eta, o_max, i_max)\n\n\"\"\" plot \"\"\"\nplt.style.use(style='ggplot')\ncolors = ['tab:blue','tab:red','tab:green','tab:black','tab:cyan']\nplt.figure(1)\n\n# Plot initial centroid\nplt.title('Initial centroids')\nfor i in range(k):\n plt.plot(F_list[0][i],color=colors[i],label='Centroid '+str(i+1),linewidth=2)\nplt.legend()\n\n# Plot resulted centroid\nplt.figure(2)\nplt.title('Resulted centroids')\nfor i in range(k):\n plt.plot(F_list[-1][i],color=colors[i],label='Centroid '+str(i+1),linewidth=2)\nplt.legend()\n\n# Plot indicator matrix \nplt.style.use(style='classic')\nfig, axs = plt.subplots(2,1,figsize=(100,50))\n## Plot ground truth indicator matrix\naxs[0].set_title('Ground truth indicators',pad=20)\naxs[0].matshow(grd.T, cmap=plt.cm.Blues)\nfor i in range(y.shape[0]):\n for j in range(k):\n c = format(grd[i,j], '.1f') \n axs[0].text(i, j, c, va='center', ha='center')\naxs[0].set_xticks(np.arange(y.shape[0]))\naxs[0].xaxis.set_ticks_position('bottom') \n## Plot resulted indicator matrix \naxs[1].set_title('Resulted indicators',pad=20)\naxs[1].matshow(G_list[-1].T, cmap=plt.cm.Blues)\nfor i in range(X.shape[0]):\n for j in range(k):\n c = format(G_list[-1][i,j], '.1f') \n axs[1].text(i, j, c, va='center', ha='center')\naxs[1].set_xticks(np.arange(X.shape[0]))\naxs[1].xaxis.set_ticks_position('bottom')\n", "<docstring token>\nimport numpy as np\nimport matplotlib.pyplot as plt\nfrom tslearn.datasets import UCR_UEA_datasets\nfrom tmf import tmf\n<docstring token>\ndata_loader = UCR_UEA_datasets()\nX_tr, y_tr, X_te, y_te = data_loader.load_dataset('Coffee')\nX = X_tr[:, ::2, 0]\ny = y_tr\ngrd = np.zeros((y.size, y.max() + 1))\ngrd[np.arange(y.size), y] = 1\n<docstring token>\nk = y.max() + 1\nl = X.shape[1]\nlambda_1 = lambda_2 = 0.01\nlambda_3 = 10\nsigma = 0.05 ** 2\neta = 0.01\no_max = 15\ni_max = 50\nF_list, G_list = tmf(X, k, l, lambda_1, lambda_2, lambda_3, sigma, eta,\n o_max, i_max)\n<docstring token>\nplt.style.use(style='ggplot')\ncolors = ['tab:blue', 'tab:red', 'tab:green', 'tab:black', 'tab:cyan']\nplt.figure(1)\nplt.title('Initial centroids')\nfor i in range(k):\n plt.plot(F_list[0][i], color=colors[i], label='Centroid ' + str(i + 1),\n linewidth=2)\nplt.legend()\nplt.figure(2)\nplt.title('Resulted centroids')\nfor i in range(k):\n plt.plot(F_list[-1][i], color=colors[i], label='Centroid ' + str(i + 1),\n linewidth=2)\nplt.legend()\nplt.style.use(style='classic')\nfig, axs = plt.subplots(2, 1, figsize=(100, 50))\naxs[0].set_title('Ground truth indicators', pad=20)\naxs[0].matshow(grd.T, cmap=plt.cm.Blues)\nfor i in range(y.shape[0]):\n for j in range(k):\n c = format(grd[i, j], '.1f')\n axs[0].text(i, j, c, va='center', ha='center')\naxs[0].set_xticks(np.arange(y.shape[0]))\naxs[0].xaxis.set_ticks_position('bottom')\naxs[1].set_title('Resulted indicators', pad=20)\naxs[1].matshow(G_list[-1].T, cmap=plt.cm.Blues)\nfor i in range(X.shape[0]):\n for j in range(k):\n c = format(G_list[-1][i, j], '.1f')\n axs[1].text(i, j, c, va='center', ha='center')\naxs[1].set_xticks(np.arange(X.shape[0]))\naxs[1].xaxis.set_ticks_position('bottom')\n", "<docstring token>\n<import token>\n<docstring token>\ndata_loader = UCR_UEA_datasets()\nX_tr, y_tr, X_te, y_te = data_loader.load_dataset('Coffee')\nX = X_tr[:, ::2, 0]\ny = y_tr\ngrd = np.zeros((y.size, y.max() + 1))\ngrd[np.arange(y.size), y] = 1\n<docstring token>\nk = y.max() + 1\nl = X.shape[1]\nlambda_1 = lambda_2 = 0.01\nlambda_3 = 10\nsigma = 0.05 ** 2\neta = 0.01\no_max = 15\ni_max = 50\nF_list, G_list = tmf(X, k, l, lambda_1, lambda_2, lambda_3, sigma, eta,\n o_max, i_max)\n<docstring token>\nplt.style.use(style='ggplot')\ncolors = ['tab:blue', 'tab:red', 'tab:green', 'tab:black', 'tab:cyan']\nplt.figure(1)\nplt.title('Initial centroids')\nfor i in range(k):\n plt.plot(F_list[0][i], color=colors[i], label='Centroid ' + str(i + 1),\n linewidth=2)\nplt.legend()\nplt.figure(2)\nplt.title('Resulted centroids')\nfor i in range(k):\n plt.plot(F_list[-1][i], color=colors[i], label='Centroid ' + str(i + 1),\n linewidth=2)\nplt.legend()\nplt.style.use(style='classic')\nfig, axs = plt.subplots(2, 1, figsize=(100, 50))\naxs[0].set_title('Ground truth indicators', pad=20)\naxs[0].matshow(grd.T, cmap=plt.cm.Blues)\nfor i in range(y.shape[0]):\n for j in range(k):\n c = format(grd[i, j], '.1f')\n axs[0].text(i, j, c, va='center', ha='center')\naxs[0].set_xticks(np.arange(y.shape[0]))\naxs[0].xaxis.set_ticks_position('bottom')\naxs[1].set_title('Resulted indicators', pad=20)\naxs[1].matshow(G_list[-1].T, cmap=plt.cm.Blues)\nfor i in range(X.shape[0]):\n for j in range(k):\n c = format(G_list[-1][i, j], '.1f')\n axs[1].text(i, j, c, va='center', ha='center')\naxs[1].set_xticks(np.arange(X.shape[0]))\naxs[1].xaxis.set_ticks_position('bottom')\n", "<docstring token>\n<import token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\nplt.style.use(style='ggplot')\n<assignment token>\nplt.figure(1)\nplt.title('Initial centroids')\nfor i in range(k):\n plt.plot(F_list[0][i], color=colors[i], label='Centroid ' + str(i + 1),\n linewidth=2)\nplt.legend()\nplt.figure(2)\nplt.title('Resulted centroids')\nfor i in range(k):\n plt.plot(F_list[-1][i], color=colors[i], label='Centroid ' + str(i + 1),\n linewidth=2)\nplt.legend()\nplt.style.use(style='classic')\n<assignment token>\naxs[0].set_title('Ground truth indicators', pad=20)\naxs[0].matshow(grd.T, cmap=plt.cm.Blues)\nfor i in range(y.shape[0]):\n for j in range(k):\n c = format(grd[i, j], '.1f')\n axs[0].text(i, j, c, va='center', ha='center')\naxs[0].set_xticks(np.arange(y.shape[0]))\naxs[0].xaxis.set_ticks_position('bottom')\naxs[1].set_title('Resulted indicators', pad=20)\naxs[1].matshow(G_list[-1].T, cmap=plt.cm.Blues)\nfor i in range(X.shape[0]):\n for j in range(k):\n c = format(G_list[-1][i, j], '.1f')\n axs[1].text(i, j, c, va='center', ha='center')\naxs[1].set_xticks(np.arange(X.shape[0]))\naxs[1].xaxis.set_ticks_position('bottom')\n", "<docstring token>\n<import token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n" ]
false
99,315
8c30f0928ff356eecb7f7956ba327d3d0e990a21
# -*- coding: utf-8 -*- { 'name': 'Stock Expiry Report / Notification', 'summary': "Product Stock Expiry Report / Notification via email", 'description': """Product Stock Expiry Report/ Notification via email""", 'author': 'iPredict IT Solutions Pvt. Ltd.', 'website': 'http://ipredictitsolutions.com', "support": "[email protected]", 'category': 'Warehouse', 'version': '13.0.0.1.3', 'depends': ['stock', 'product_expiry'], 'data': [ 'security/ir.model.access.csv', 'wizard/product_stock_expiry_wiz_view.xml', 'views/product_view.xml', 'views/stock_config_settings_view.xml', 'report/report_product_stock_expiry.xml', 'report/report_action_view.xml', 'data/product_stock_expiration_data.xml', ], 'license': "OPL-1", 'price': 25, 'currency': "EUR", 'auto_install': False, 'installable': True, 'images': ['static/description/main.png'], }
[ "# -*- coding: utf-8 -*-\n{\n 'name': 'Stock Expiry Report / Notification',\n 'summary': \"Product Stock Expiry Report / Notification via email\",\n 'description': \"\"\"Product Stock Expiry Report/ Notification via email\"\"\",\n\n 'author': 'iPredict IT Solutions Pvt. Ltd.',\n 'website': 'http://ipredictitsolutions.com',\n \"support\": \"[email protected]\",\n\n 'category': 'Warehouse',\n 'version': '13.0.0.1.3',\n 'depends': ['stock', 'product_expiry'],\n 'data': [\n 'security/ir.model.access.csv',\n 'wizard/product_stock_expiry_wiz_view.xml',\n 'views/product_view.xml',\n 'views/stock_config_settings_view.xml',\n 'report/report_product_stock_expiry.xml',\n 'report/report_action_view.xml',\n 'data/product_stock_expiration_data.xml',\n ],\n\n 'license': \"OPL-1\",\n 'price': 25,\n 'currency': \"EUR\",\n\n 'auto_install': False,\n 'installable': True,\n\n 'images': ['static/description/main.png'],\n}\n", "{'name': 'Stock Expiry Report / Notification', 'summary':\n 'Product Stock Expiry Report / Notification via email', 'description':\n 'Product Stock Expiry Report/ Notification via email', 'author':\n 'iPredict IT Solutions Pvt. Ltd.', 'website':\n 'http://ipredictitsolutions.com', 'support':\n '[email protected]', 'category': 'Warehouse', 'version':\n '13.0.0.1.3', 'depends': ['stock', 'product_expiry'], 'data': [\n 'security/ir.model.access.csv',\n 'wizard/product_stock_expiry_wiz_view.xml', 'views/product_view.xml',\n 'views/stock_config_settings_view.xml',\n 'report/report_product_stock_expiry.xml',\n 'report/report_action_view.xml',\n 'data/product_stock_expiration_data.xml'], 'license': 'OPL-1', 'price':\n 25, 'currency': 'EUR', 'auto_install': False, 'installable': True,\n 'images': ['static/description/main.png']}\n", "<code token>\n" ]
false
99,316
5f0decc32f3007ab8c48ef54ff2b7dd6afde60bf
import importlib import CraftConfig import CraftTestBase from Blueprints import CraftPackageObject, CraftDependencyPackage class CraftBlueprintTest(CraftTestBase.CraftTestBase): def blueprintTest(self, compiler): CraftConfig.CraftCore.settings.set("General", "ABI", compiler) CraftPackageObject.__rootPackage = None CraftDependencyPackage._packageCache = dict() installable = CraftPackageObject.CraftPackageObject.root().allChildren() CraftDependencyPackage.CraftDependencyPackage(CraftPackageObject.CraftPackageObject.get("/")).getDependencies() class TestAPI(CraftBlueprintTest): def test_mingw_x86(self): self.blueprintTest("windows-mingw_86-gcc") def test_mingw_x64(self): self.blueprintTest("windows-mingw_64-gcc") def test_msvc2015_x86(self): self.blueprintTest("windows-msvc2015_86-cl") def test_msvc2015_x64(self): self.blueprintTest("windows-msvc2015_64-cl")
[ "import importlib\n\nimport CraftConfig\nimport CraftTestBase\nfrom Blueprints import CraftPackageObject, CraftDependencyPackage\n\n\nclass CraftBlueprintTest(CraftTestBase.CraftTestBase):\n def blueprintTest(self, compiler):\n CraftConfig.CraftCore.settings.set(\"General\", \"ABI\", compiler)\n\n CraftPackageObject.__rootPackage = None\n CraftDependencyPackage._packageCache = dict()\n installable = CraftPackageObject.CraftPackageObject.root().allChildren()\n CraftDependencyPackage.CraftDependencyPackage(CraftPackageObject.CraftPackageObject.get(\"/\")).getDependencies()\n\n\n\nclass TestAPI(CraftBlueprintTest):\n def test_mingw_x86(self):\n self.blueprintTest(\"windows-mingw_86-gcc\")\n\n def test_mingw_x64(self):\n self.blueprintTest(\"windows-mingw_64-gcc\")\n\n def test_msvc2015_x86(self):\n self.blueprintTest(\"windows-msvc2015_86-cl\")\n\n def test_msvc2015_x64(self):\n self.blueprintTest(\"windows-msvc2015_64-cl\")\n", "import importlib\nimport CraftConfig\nimport CraftTestBase\nfrom Blueprints import CraftPackageObject, CraftDependencyPackage\n\n\nclass CraftBlueprintTest(CraftTestBase.CraftTestBase):\n\n def blueprintTest(self, compiler):\n CraftConfig.CraftCore.settings.set('General', 'ABI', compiler)\n CraftPackageObject.__rootPackage = None\n CraftDependencyPackage._packageCache = dict()\n installable = CraftPackageObject.CraftPackageObject.root().allChildren(\n )\n CraftDependencyPackage.CraftDependencyPackage(CraftPackageObject.\n CraftPackageObject.get('/')).getDependencies()\n\n\nclass TestAPI(CraftBlueprintTest):\n\n def test_mingw_x86(self):\n self.blueprintTest('windows-mingw_86-gcc')\n\n def test_mingw_x64(self):\n self.blueprintTest('windows-mingw_64-gcc')\n\n def test_msvc2015_x86(self):\n self.blueprintTest('windows-msvc2015_86-cl')\n\n def test_msvc2015_x64(self):\n self.blueprintTest('windows-msvc2015_64-cl')\n", "<import token>\n\n\nclass CraftBlueprintTest(CraftTestBase.CraftTestBase):\n\n def blueprintTest(self, compiler):\n CraftConfig.CraftCore.settings.set('General', 'ABI', compiler)\n CraftPackageObject.__rootPackage = None\n CraftDependencyPackage._packageCache = dict()\n installable = CraftPackageObject.CraftPackageObject.root().allChildren(\n )\n CraftDependencyPackage.CraftDependencyPackage(CraftPackageObject.\n CraftPackageObject.get('/')).getDependencies()\n\n\nclass TestAPI(CraftBlueprintTest):\n\n def test_mingw_x86(self):\n self.blueprintTest('windows-mingw_86-gcc')\n\n def test_mingw_x64(self):\n self.blueprintTest('windows-mingw_64-gcc')\n\n def test_msvc2015_x86(self):\n self.blueprintTest('windows-msvc2015_86-cl')\n\n def test_msvc2015_x64(self):\n self.blueprintTest('windows-msvc2015_64-cl')\n", "<import token>\n\n\nclass CraftBlueprintTest(CraftTestBase.CraftTestBase):\n <function token>\n\n\nclass TestAPI(CraftBlueprintTest):\n\n def test_mingw_x86(self):\n self.blueprintTest('windows-mingw_86-gcc')\n\n def test_mingw_x64(self):\n self.blueprintTest('windows-mingw_64-gcc')\n\n def test_msvc2015_x86(self):\n self.blueprintTest('windows-msvc2015_86-cl')\n\n def test_msvc2015_x64(self):\n self.blueprintTest('windows-msvc2015_64-cl')\n", "<import token>\n<class token>\n\n\nclass TestAPI(CraftBlueprintTest):\n\n def test_mingw_x86(self):\n self.blueprintTest('windows-mingw_86-gcc')\n\n def test_mingw_x64(self):\n self.blueprintTest('windows-mingw_64-gcc')\n\n def test_msvc2015_x86(self):\n self.blueprintTest('windows-msvc2015_86-cl')\n\n def test_msvc2015_x64(self):\n self.blueprintTest('windows-msvc2015_64-cl')\n", "<import token>\n<class token>\n\n\nclass TestAPI(CraftBlueprintTest):\n <function token>\n\n def test_mingw_x64(self):\n self.blueprintTest('windows-mingw_64-gcc')\n\n def test_msvc2015_x86(self):\n self.blueprintTest('windows-msvc2015_86-cl')\n\n def test_msvc2015_x64(self):\n self.blueprintTest('windows-msvc2015_64-cl')\n", "<import token>\n<class token>\n\n\nclass TestAPI(CraftBlueprintTest):\n <function token>\n\n def test_mingw_x64(self):\n self.blueprintTest('windows-mingw_64-gcc')\n\n def test_msvc2015_x86(self):\n self.blueprintTest('windows-msvc2015_86-cl')\n <function token>\n", "<import token>\n<class token>\n\n\nclass TestAPI(CraftBlueprintTest):\n <function token>\n <function token>\n\n def test_msvc2015_x86(self):\n self.blueprintTest('windows-msvc2015_86-cl')\n <function token>\n", "<import token>\n<class token>\n\n\nclass TestAPI(CraftBlueprintTest):\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n<class token>\n<class token>\n" ]
false
99,317
d88fc2b343585c52f5f379ce4fd76e10d67edb9a
from gatco import Blueprint from goblin.server import app # from goblin.database import db from goblin.extensions import jinja @app.route('/page/get') def index(request): #objs = Page.query.filter().limit(10) return jinja.render('press/front/page/get.html', request)
[ "from gatco import Blueprint\nfrom goblin.server import app\n# from goblin.database import db\nfrom goblin.extensions import jinja\n\[email protected]('/page/get')\ndef index(request):\n #objs = Page.query.filter().limit(10)\n return jinja.render('press/front/page/get.html', request)", "from gatco import Blueprint\nfrom goblin.server import app\nfrom goblin.extensions import jinja\n\n\[email protected]('/page/get')\ndef index(request):\n return jinja.render('press/front/page/get.html', request)\n", "<import token>\n\n\[email protected]('/page/get')\ndef index(request):\n return jinja.render('press/front/page/get.html', request)\n", "<import token>\n<function token>\n" ]
false
99,318
9aed5030e3c03fb4a7f981e9b55d7aaea8534ac6
#!/usr/bin/env python # -*- coding: utf-8 -*- #author: Mohammad-AlYasfo global BOARD, PI, STEP, DC_FREQ, SR_FREQ,RESPONSE_TIME, MIDEAN_WINDOW, INITIAL_RESPONCE_TIME BOARD = { 'MOTOR_A_IN1': 31, 'MOTOR_A_IN2': 33, 'MOTOR_B_IN1': 37, 'MOTOR_B_IN2': 35, 'MOTOR_A_ENA': 29, 'MOTOR_B_ENB': 32, 'MOTOR_C_IN1': 13, 'MOTOR_C_IN2': 15, 'MOTOR_D_IN1': 18, 'MOTOR_D_IN2': 16, 'MOTOR_C_ENC': 11, 'MOTOR_D_END': 12, 'ENCODER_R' : 36, 'ENCODER_L' : 38, 'INFRA' : 40, 'SERVO_H' : 22, 'SERVO_V' : 24, } MAX_RESPONSE_TIME=0.5 INITIAL_RESPONCE_TIME=10; PI = 3.14752 STEP = 0.1 DC_FREQ = 100 SR_FREQ = 1000 MIDEAN_WINDOW = 15 ACCELERATION_STEP=20 MIN_SPEED_CHANGE=5
[ "#!/usr/bin/env python\n# -*- coding: utf-8 -*-\n#author: Mohammad-AlYasfo\n\nglobal BOARD, PI, STEP, DC_FREQ, SR_FREQ,RESPONSE_TIME, MIDEAN_WINDOW, INITIAL_RESPONCE_TIME\nBOARD = {\n\n 'MOTOR_A_IN1': 31,\n 'MOTOR_A_IN2': 33,\n 'MOTOR_B_IN1': 37,\n 'MOTOR_B_IN2': 35,\n 'MOTOR_A_ENA': 29,\n 'MOTOR_B_ENB': 32,\n\n 'MOTOR_C_IN1': 13,\n 'MOTOR_C_IN2': 15,\n 'MOTOR_D_IN1': 18,\n 'MOTOR_D_IN2': 16,\n\n 'MOTOR_C_ENC': 11,\n 'MOTOR_D_END': 12,\n\n 'ENCODER_R' : 36,\n 'ENCODER_L' : 38,\n\n 'INFRA' : 40,\n\n 'SERVO_H' : 22,\n 'SERVO_V' : 24,\n\n }\n\nMAX_RESPONSE_TIME=0.5\nINITIAL_RESPONCE_TIME=10;\nPI = 3.14752\nSTEP = 0.1\nDC_FREQ = 100\nSR_FREQ = 1000\nMIDEAN_WINDOW = 15\nACCELERATION_STEP=20\nMIN_SPEED_CHANGE=5\n", "global BOARD, PI, STEP, DC_FREQ, SR_FREQ, RESPONSE_TIME, MIDEAN_WINDOW, INITIAL_RESPONCE_TIME\nBOARD = {'MOTOR_A_IN1': 31, 'MOTOR_A_IN2': 33, 'MOTOR_B_IN1': 37,\n 'MOTOR_B_IN2': 35, 'MOTOR_A_ENA': 29, 'MOTOR_B_ENB': 32, 'MOTOR_C_IN1':\n 13, 'MOTOR_C_IN2': 15, 'MOTOR_D_IN1': 18, 'MOTOR_D_IN2': 16,\n 'MOTOR_C_ENC': 11, 'MOTOR_D_END': 12, 'ENCODER_R': 36, 'ENCODER_L': 38,\n 'INFRA': 40, 'SERVO_H': 22, 'SERVO_V': 24}\nMAX_RESPONSE_TIME = 0.5\nINITIAL_RESPONCE_TIME = 10\nPI = 3.14752\nSTEP = 0.1\nDC_FREQ = 100\nSR_FREQ = 1000\nMIDEAN_WINDOW = 15\nACCELERATION_STEP = 20\nMIN_SPEED_CHANGE = 5\n", "global BOARD, PI, STEP, DC_FREQ, SR_FREQ, RESPONSE_TIME, MIDEAN_WINDOW, INITIAL_RESPONCE_TIME\n<assignment token>\n", "<code token>\n<assignment token>\n" ]
false
99,319
a42b9bccab7143f31c943534083852dfa803c60b
import pytheas.patterns import pytheas.sfdaemon import redis import logging # Config stuff FETCH_LIST = "fetch_list" SEND_LIST = "send_list" REDIS_HOST = "localhost" REDIS_PORT = 6379 logging.basicConfig(filename="pytheas.log") logger = logging.getLogger("pytheas") logger.setLevel(logging.INFO) class RedisFetcher(pytheas.patterns.Fetcher): def __init__(self, redis_host, redis_port, fetch_list): self.__redis_connection = redis.StrictRedis(redis_host, redis_port) self.fetch_list = fetch_list def fetch(self): return self.__redis_connection.brpop(self.fetch_list)[1] class RedisSender(pytheas.patterns.Sender): def __init__(self, redis_host, redis_port, send_list): self.__redis_connection = redis.StrictRedis(redis_host, redis_port) #logger.info("RedisSender connection established") self.send_list = send_list def send(self, data): self.__redis_connection.lpush(self.send_list, data) #logger.info("Sent to redis: " + data) if __name__ == "__main__": local_fetcher = RedisFetcher(REDIS_HOST, REDIS_PORT, FETCH_LIST) local_sender = RedisSender(REDIS_HOST, REDIS_PORT, SEND_LIST) redis_daemon = pytheas.sfdaemon.Pytheas(local_fetcher, local_sender) redis_daemon.run()
[ "import pytheas.patterns\nimport pytheas.sfdaemon\nimport redis\nimport logging\n\n# Config stuff\nFETCH_LIST = \"fetch_list\"\nSEND_LIST = \"send_list\"\nREDIS_HOST = \"localhost\"\nREDIS_PORT = 6379\n\nlogging.basicConfig(filename=\"pytheas.log\")\nlogger = logging.getLogger(\"pytheas\")\nlogger.setLevel(logging.INFO)\n\nclass RedisFetcher(pytheas.patterns.Fetcher):\n \n def __init__(self, redis_host, redis_port, fetch_list):\n self.__redis_connection = redis.StrictRedis(redis_host, redis_port)\n self.fetch_list = fetch_list\n \n def fetch(self):\n return self.__redis_connection.brpop(self.fetch_list)[1]\n\nclass RedisSender(pytheas.patterns.Sender):\n \n def __init__(self, redis_host, redis_port, send_list):\n self.__redis_connection = redis.StrictRedis(redis_host, redis_port)\n #logger.info(\"RedisSender connection established\")\n self.send_list = send_list\n\n def send(self, data):\n self.__redis_connection.lpush(self.send_list, data)\n #logger.info(\"Sent to redis: \" + data)\n\nif __name__ == \"__main__\":\n local_fetcher = RedisFetcher(REDIS_HOST, REDIS_PORT, FETCH_LIST)\n local_sender = RedisSender(REDIS_HOST, REDIS_PORT, SEND_LIST)\n redis_daemon = pytheas.sfdaemon.Pytheas(local_fetcher, local_sender)\n redis_daemon.run()\n", "import pytheas.patterns\nimport pytheas.sfdaemon\nimport redis\nimport logging\nFETCH_LIST = 'fetch_list'\nSEND_LIST = 'send_list'\nREDIS_HOST = 'localhost'\nREDIS_PORT = 6379\nlogging.basicConfig(filename='pytheas.log')\nlogger = logging.getLogger('pytheas')\nlogger.setLevel(logging.INFO)\n\n\nclass RedisFetcher(pytheas.patterns.Fetcher):\n\n def __init__(self, redis_host, redis_port, fetch_list):\n self.__redis_connection = redis.StrictRedis(redis_host, redis_port)\n self.fetch_list = fetch_list\n\n def fetch(self):\n return self.__redis_connection.brpop(self.fetch_list)[1]\n\n\nclass RedisSender(pytheas.patterns.Sender):\n\n def __init__(self, redis_host, redis_port, send_list):\n self.__redis_connection = redis.StrictRedis(redis_host, redis_port)\n self.send_list = send_list\n\n def send(self, data):\n self.__redis_connection.lpush(self.send_list, data)\n\n\nif __name__ == '__main__':\n local_fetcher = RedisFetcher(REDIS_HOST, REDIS_PORT, FETCH_LIST)\n local_sender = RedisSender(REDIS_HOST, REDIS_PORT, SEND_LIST)\n redis_daemon = pytheas.sfdaemon.Pytheas(local_fetcher, local_sender)\n redis_daemon.run()\n", "<import token>\nFETCH_LIST = 'fetch_list'\nSEND_LIST = 'send_list'\nREDIS_HOST = 'localhost'\nREDIS_PORT = 6379\nlogging.basicConfig(filename='pytheas.log')\nlogger = logging.getLogger('pytheas')\nlogger.setLevel(logging.INFO)\n\n\nclass RedisFetcher(pytheas.patterns.Fetcher):\n\n def __init__(self, redis_host, redis_port, fetch_list):\n self.__redis_connection = redis.StrictRedis(redis_host, redis_port)\n self.fetch_list = fetch_list\n\n def fetch(self):\n return self.__redis_connection.brpop(self.fetch_list)[1]\n\n\nclass RedisSender(pytheas.patterns.Sender):\n\n def __init__(self, redis_host, redis_port, send_list):\n self.__redis_connection = redis.StrictRedis(redis_host, redis_port)\n self.send_list = send_list\n\n def send(self, data):\n self.__redis_connection.lpush(self.send_list, data)\n\n\nif __name__ == '__main__':\n local_fetcher = RedisFetcher(REDIS_HOST, REDIS_PORT, FETCH_LIST)\n local_sender = RedisSender(REDIS_HOST, REDIS_PORT, SEND_LIST)\n redis_daemon = pytheas.sfdaemon.Pytheas(local_fetcher, local_sender)\n redis_daemon.run()\n", "<import token>\n<assignment token>\nlogging.basicConfig(filename='pytheas.log')\n<assignment token>\nlogger.setLevel(logging.INFO)\n\n\nclass RedisFetcher(pytheas.patterns.Fetcher):\n\n def __init__(self, redis_host, redis_port, fetch_list):\n self.__redis_connection = redis.StrictRedis(redis_host, redis_port)\n self.fetch_list = fetch_list\n\n def fetch(self):\n return self.__redis_connection.brpop(self.fetch_list)[1]\n\n\nclass RedisSender(pytheas.patterns.Sender):\n\n def __init__(self, redis_host, redis_port, send_list):\n self.__redis_connection = redis.StrictRedis(redis_host, redis_port)\n self.send_list = send_list\n\n def send(self, data):\n self.__redis_connection.lpush(self.send_list, data)\n\n\nif __name__ == '__main__':\n local_fetcher = RedisFetcher(REDIS_HOST, REDIS_PORT, FETCH_LIST)\n local_sender = RedisSender(REDIS_HOST, REDIS_PORT, SEND_LIST)\n redis_daemon = pytheas.sfdaemon.Pytheas(local_fetcher, local_sender)\n redis_daemon.run()\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n\n\nclass RedisFetcher(pytheas.patterns.Fetcher):\n\n def __init__(self, redis_host, redis_port, fetch_list):\n self.__redis_connection = redis.StrictRedis(redis_host, redis_port)\n self.fetch_list = fetch_list\n\n def fetch(self):\n return self.__redis_connection.brpop(self.fetch_list)[1]\n\n\nclass RedisSender(pytheas.patterns.Sender):\n\n def __init__(self, redis_host, redis_port, send_list):\n self.__redis_connection = redis.StrictRedis(redis_host, redis_port)\n self.send_list = send_list\n\n def send(self, data):\n self.__redis_connection.lpush(self.send_list, data)\n\n\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n\n\nclass RedisFetcher(pytheas.patterns.Fetcher):\n\n def __init__(self, redis_host, redis_port, fetch_list):\n self.__redis_connection = redis.StrictRedis(redis_host, redis_port)\n self.fetch_list = fetch_list\n <function token>\n\n\nclass RedisSender(pytheas.patterns.Sender):\n\n def __init__(self, redis_host, redis_port, send_list):\n self.__redis_connection = redis.StrictRedis(redis_host, redis_port)\n self.send_list = send_list\n\n def send(self, data):\n self.__redis_connection.lpush(self.send_list, data)\n\n\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n\n\nclass RedisFetcher(pytheas.patterns.Fetcher):\n <function token>\n <function token>\n\n\nclass RedisSender(pytheas.patterns.Sender):\n\n def __init__(self, redis_host, redis_port, send_list):\n self.__redis_connection = redis.StrictRedis(redis_host, redis_port)\n self.send_list = send_list\n\n def send(self, data):\n self.__redis_connection.lpush(self.send_list, data)\n\n\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<class token>\n\n\nclass RedisSender(pytheas.patterns.Sender):\n\n def __init__(self, redis_host, redis_port, send_list):\n self.__redis_connection = redis.StrictRedis(redis_host, redis_port)\n self.send_list = send_list\n\n def send(self, data):\n self.__redis_connection.lpush(self.send_list, data)\n\n\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<class token>\n\n\nclass RedisSender(pytheas.patterns.Sender):\n <function token>\n\n def send(self, data):\n self.__redis_connection.lpush(self.send_list, data)\n\n\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<class token>\n\n\nclass RedisSender(pytheas.patterns.Sender):\n <function token>\n <function token>\n\n\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<class token>\n<class token>\n<code token>\n" ]
false
99,320
f8d5bf1859330155482b689905f4c29eab3180db
from __future__ import absolute_import from __future__ import division from __future__ import print_function from sklearn import cross_validation from sklearn import datasets from sklearn import metrics import argparse import tensorflow as tf from tensorflow.contrib import layers from tensorflow.contrib import learn import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt NUM_PLOT_BINS = 30 MODEL_NAME = 'iris_model' WEIGHTS_NAME = MODEL_NAME + '/Stack/fully_connected_1/weights' def model(features, target): global args regularizer = None regularization_type = args.regularization_type.lower() regularization_value = args.regularization_value if regularization_type == "l1": print("Using L1 regularizer, val =", regularization_value) regularizer = tf.contrib.layers.l1_regularizer(regularization_value) elif regularization_type == "l2": print("Using L2 regularizer, val =", regularization_value) regularizer = tf.contrib.layers.l2_regularizer(regularization_value) else: print("Not using regularization") target = tf.one_hot(target, 3, 1, 0) with tf.variable_scope(MODEL_NAME, regularizer=regularizer): features = layers.stack(features, layers.fully_connected, [10, 20, 10]) logits = layers.fully_connected(features, 3, activation_fn=None) loss = tf.contrib.losses.softmax_cross_entropy(logits, target) if regularizer: loss = loss + sum( tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)) train_op = tf.contrib.layers.optimize_loss( loss, tf.contrib.framework.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return ({ 'class': tf.argmax(logits, 1), 'prob': tf.nn.softmax(logits) }, loss, train_op) def plot_weights(flat_weights, plot_file_name, title_name): fig = plt.figure() ax = fig.add_subplot(111) plt.suptitle("Weights histogram (1st layer fc) " + title_name) ax.hist(flat_weights, NUM_PLOT_BINS, color='green', alpha=0.8) print("Saving histogram of weights in:", plot_file_name) fig.savefig(plot_file_name) plt.close(fig) def main(argv): global args parser = argparse.ArgumentParser() parser.add_argument( '--regularization_type', default="none", help="Regularization type: l1, l2") parser.add_argument( '--regularization_value', type=float, default=0.0, help="Value used for regularization. defualt 0.0") parser.add_argument( '--weights_file', default='weights_hist.png', help="Filename to save the histogram. Default: weights_hist.png") args = parser.parse_args() iris = datasets.load_iris() x_train, x_test, y_train, y_test = cross_validation.train_test_split( iris.data, iris.target, test_size=0.2) classifier = learn.Estimator(model_fn=model) classifier.fit(x_train, y_train, steps=1000) y_predicted = [ p['class'] for p in classifier.predict( x_test, as_iterable=True) ] score = metrics.accuracy_score(y_test, y_predicted) print('Accuracy: {0:f}'.format(score)) weights = classifier.get_variable_value(WEIGHTS_NAME) flat_weights = [w for wl in weights for w in wl] plot_weights(flat_weights, args.weights_file, args.regularization_type) if __name__ == '__main__': tf.app.run()
[ "from __future__ import absolute_import\nfrom __future__ import division\nfrom __future__ import print_function\n\nfrom sklearn import cross_validation\nfrom sklearn import datasets\nfrom sklearn import metrics\n\nimport argparse\nimport tensorflow as tf\nfrom tensorflow.contrib import layers\nfrom tensorflow.contrib import learn\n\nimport matplotlib\nmatplotlib.use('Agg')\nimport matplotlib.pyplot as plt\n\nNUM_PLOT_BINS = 30\nMODEL_NAME = 'iris_model'\nWEIGHTS_NAME = MODEL_NAME + '/Stack/fully_connected_1/weights'\n\n\ndef model(features, target):\n global args\n\n regularizer = None\n regularization_type = args.regularization_type.lower()\n regularization_value = args.regularization_value\n if regularization_type == \"l1\":\n print(\"Using L1 regularizer, val =\", regularization_value)\n regularizer = tf.contrib.layers.l1_regularizer(regularization_value)\n elif regularization_type == \"l2\":\n print(\"Using L2 regularizer, val =\", regularization_value)\n regularizer = tf.contrib.layers.l2_regularizer(regularization_value)\n else:\n print(\"Not using regularization\")\n\n target = tf.one_hot(target, 3, 1, 0)\n with tf.variable_scope(MODEL_NAME, regularizer=regularizer):\n features = layers.stack(features, layers.fully_connected, [10, 20, 10])\n logits = layers.fully_connected(features, 3, activation_fn=None)\n loss = tf.contrib.losses.softmax_cross_entropy(logits, target)\n if regularizer:\n loss = loss + sum(\n tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES))\n\n train_op = tf.contrib.layers.optimize_loss(\n loss,\n tf.contrib.framework.get_global_step(),\n optimizer='Adagrad',\n learning_rate=0.1)\n\n return ({\n 'class': tf.argmax(logits, 1),\n 'prob': tf.nn.softmax(logits)\n }, loss, train_op)\n\n\ndef plot_weights(flat_weights, plot_file_name, title_name):\n fig = plt.figure()\n ax = fig.add_subplot(111)\n plt.suptitle(\"Weights histogram (1st layer fc) \" + title_name)\n ax.hist(flat_weights, NUM_PLOT_BINS, color='green', alpha=0.8)\n print(\"Saving histogram of weights in:\", plot_file_name)\n fig.savefig(plot_file_name)\n plt.close(fig)\n\n\ndef main(argv):\n global args\n\n parser = argparse.ArgumentParser()\n parser.add_argument(\n '--regularization_type',\n default=\"none\",\n help=\"Regularization type: l1, l2\")\n parser.add_argument(\n '--regularization_value',\n type=float,\n default=0.0,\n help=\"Value used for regularization. defualt 0.0\")\n parser.add_argument(\n '--weights_file',\n default='weights_hist.png',\n help=\"Filename to save the histogram. Default: weights_hist.png\")\n args = parser.parse_args()\n iris = datasets.load_iris()\n x_train, x_test, y_train, y_test = cross_validation.train_test_split(\n iris.data, iris.target, test_size=0.2)\n classifier = learn.Estimator(model_fn=model)\n classifier.fit(x_train, y_train, steps=1000)\n y_predicted = [\n p['class'] for p in classifier.predict(\n x_test, as_iterable=True)\n ]\n score = metrics.accuracy_score(y_test, y_predicted)\n print('Accuracy: {0:f}'.format(score))\n\n weights = classifier.get_variable_value(WEIGHTS_NAME)\n flat_weights = [w for wl in weights for w in wl]\n plot_weights(flat_weights, args.weights_file, args.regularization_type)\n\n\nif __name__ == '__main__':\n tf.app.run()\n", "from __future__ import absolute_import\nfrom __future__ import division\nfrom __future__ import print_function\nfrom sklearn import cross_validation\nfrom sklearn import datasets\nfrom sklearn import metrics\nimport argparse\nimport tensorflow as tf\nfrom tensorflow.contrib import layers\nfrom tensorflow.contrib import learn\nimport matplotlib\nmatplotlib.use('Agg')\nimport matplotlib.pyplot as plt\nNUM_PLOT_BINS = 30\nMODEL_NAME = 'iris_model'\nWEIGHTS_NAME = MODEL_NAME + '/Stack/fully_connected_1/weights'\n\n\ndef model(features, target):\n global args\n regularizer = None\n regularization_type = args.regularization_type.lower()\n regularization_value = args.regularization_value\n if regularization_type == 'l1':\n print('Using L1 regularizer, val =', regularization_value)\n regularizer = tf.contrib.layers.l1_regularizer(regularization_value)\n elif regularization_type == 'l2':\n print('Using L2 regularizer, val =', regularization_value)\n regularizer = tf.contrib.layers.l2_regularizer(regularization_value)\n else:\n print('Not using regularization')\n target = tf.one_hot(target, 3, 1, 0)\n with tf.variable_scope(MODEL_NAME, regularizer=regularizer):\n features = layers.stack(features, layers.fully_connected, [10, 20, 10])\n logits = layers.fully_connected(features, 3, activation_fn=None)\n loss = tf.contrib.losses.softmax_cross_entropy(logits, target)\n if regularizer:\n loss = loss + sum(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)\n )\n train_op = tf.contrib.layers.optimize_loss(loss, tf.contrib.framework.\n get_global_step(), optimizer='Adagrad', learning_rate=0.1)\n return {'class': tf.argmax(logits, 1), 'prob': tf.nn.softmax(logits)\n }, loss, train_op\n\n\ndef plot_weights(flat_weights, plot_file_name, title_name):\n fig = plt.figure()\n ax = fig.add_subplot(111)\n plt.suptitle('Weights histogram (1st layer fc) ' + title_name)\n ax.hist(flat_weights, NUM_PLOT_BINS, color='green', alpha=0.8)\n print('Saving histogram of weights in:', plot_file_name)\n fig.savefig(plot_file_name)\n plt.close(fig)\n\n\ndef main(argv):\n global args\n parser = argparse.ArgumentParser()\n parser.add_argument('--regularization_type', default='none', help=\n 'Regularization type: l1, l2')\n parser.add_argument('--regularization_value', type=float, default=0.0,\n help='Value used for regularization. defualt 0.0')\n parser.add_argument('--weights_file', default='weights_hist.png', help=\n 'Filename to save the histogram. Default: weights_hist.png')\n args = parser.parse_args()\n iris = datasets.load_iris()\n x_train, x_test, y_train, y_test = cross_validation.train_test_split(iris\n .data, iris.target, test_size=0.2)\n classifier = learn.Estimator(model_fn=model)\n classifier.fit(x_train, y_train, steps=1000)\n y_predicted = [p['class'] for p in classifier.predict(x_test,\n as_iterable=True)]\n score = metrics.accuracy_score(y_test, y_predicted)\n print('Accuracy: {0:f}'.format(score))\n weights = classifier.get_variable_value(WEIGHTS_NAME)\n flat_weights = [w for wl in weights for w in wl]\n plot_weights(flat_weights, args.weights_file, args.regularization_type)\n\n\nif __name__ == '__main__':\n tf.app.run()\n", "<import token>\nmatplotlib.use('Agg')\n<import token>\nNUM_PLOT_BINS = 30\nMODEL_NAME = 'iris_model'\nWEIGHTS_NAME = MODEL_NAME + '/Stack/fully_connected_1/weights'\n\n\ndef model(features, target):\n global args\n regularizer = None\n regularization_type = args.regularization_type.lower()\n regularization_value = args.regularization_value\n if regularization_type == 'l1':\n print('Using L1 regularizer, val =', regularization_value)\n regularizer = tf.contrib.layers.l1_regularizer(regularization_value)\n elif regularization_type == 'l2':\n print('Using L2 regularizer, val =', regularization_value)\n regularizer = tf.contrib.layers.l2_regularizer(regularization_value)\n else:\n print('Not using regularization')\n target = tf.one_hot(target, 3, 1, 0)\n with tf.variable_scope(MODEL_NAME, regularizer=regularizer):\n features = layers.stack(features, layers.fully_connected, [10, 20, 10])\n logits = layers.fully_connected(features, 3, activation_fn=None)\n loss = tf.contrib.losses.softmax_cross_entropy(logits, target)\n if regularizer:\n loss = loss + sum(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)\n )\n train_op = tf.contrib.layers.optimize_loss(loss, tf.contrib.framework.\n get_global_step(), optimizer='Adagrad', learning_rate=0.1)\n return {'class': tf.argmax(logits, 1), 'prob': tf.nn.softmax(logits)\n }, loss, train_op\n\n\ndef plot_weights(flat_weights, plot_file_name, title_name):\n fig = plt.figure()\n ax = fig.add_subplot(111)\n plt.suptitle('Weights histogram (1st layer fc) ' + title_name)\n ax.hist(flat_weights, NUM_PLOT_BINS, color='green', alpha=0.8)\n print('Saving histogram of weights in:', plot_file_name)\n fig.savefig(plot_file_name)\n plt.close(fig)\n\n\ndef main(argv):\n global args\n parser = argparse.ArgumentParser()\n parser.add_argument('--regularization_type', default='none', help=\n 'Regularization type: l1, l2')\n parser.add_argument('--regularization_value', type=float, default=0.0,\n help='Value used for regularization. defualt 0.0')\n parser.add_argument('--weights_file', default='weights_hist.png', help=\n 'Filename to save the histogram. Default: weights_hist.png')\n args = parser.parse_args()\n iris = datasets.load_iris()\n x_train, x_test, y_train, y_test = cross_validation.train_test_split(iris\n .data, iris.target, test_size=0.2)\n classifier = learn.Estimator(model_fn=model)\n classifier.fit(x_train, y_train, steps=1000)\n y_predicted = [p['class'] for p in classifier.predict(x_test,\n as_iterable=True)]\n score = metrics.accuracy_score(y_test, y_predicted)\n print('Accuracy: {0:f}'.format(score))\n weights = classifier.get_variable_value(WEIGHTS_NAME)\n flat_weights = [w for wl in weights for w in wl]\n plot_weights(flat_weights, args.weights_file, args.regularization_type)\n\n\nif __name__ == '__main__':\n tf.app.run()\n", "<import token>\nmatplotlib.use('Agg')\n<import token>\n<assignment token>\n\n\ndef model(features, target):\n global args\n regularizer = None\n regularization_type = args.regularization_type.lower()\n regularization_value = args.regularization_value\n if regularization_type == 'l1':\n print('Using L1 regularizer, val =', regularization_value)\n regularizer = tf.contrib.layers.l1_regularizer(regularization_value)\n elif regularization_type == 'l2':\n print('Using L2 regularizer, val =', regularization_value)\n regularizer = tf.contrib.layers.l2_regularizer(regularization_value)\n else:\n print('Not using regularization')\n target = tf.one_hot(target, 3, 1, 0)\n with tf.variable_scope(MODEL_NAME, regularizer=regularizer):\n features = layers.stack(features, layers.fully_connected, [10, 20, 10])\n logits = layers.fully_connected(features, 3, activation_fn=None)\n loss = tf.contrib.losses.softmax_cross_entropy(logits, target)\n if regularizer:\n loss = loss + sum(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)\n )\n train_op = tf.contrib.layers.optimize_loss(loss, tf.contrib.framework.\n get_global_step(), optimizer='Adagrad', learning_rate=0.1)\n return {'class': tf.argmax(logits, 1), 'prob': tf.nn.softmax(logits)\n }, loss, train_op\n\n\ndef plot_weights(flat_weights, plot_file_name, title_name):\n fig = plt.figure()\n ax = fig.add_subplot(111)\n plt.suptitle('Weights histogram (1st layer fc) ' + title_name)\n ax.hist(flat_weights, NUM_PLOT_BINS, color='green', alpha=0.8)\n print('Saving histogram of weights in:', plot_file_name)\n fig.savefig(plot_file_name)\n plt.close(fig)\n\n\ndef main(argv):\n global args\n parser = argparse.ArgumentParser()\n parser.add_argument('--regularization_type', default='none', help=\n 'Regularization type: l1, l2')\n parser.add_argument('--regularization_value', type=float, default=0.0,\n help='Value used for regularization. defualt 0.0')\n parser.add_argument('--weights_file', default='weights_hist.png', help=\n 'Filename to save the histogram. Default: weights_hist.png')\n args = parser.parse_args()\n iris = datasets.load_iris()\n x_train, x_test, y_train, y_test = cross_validation.train_test_split(iris\n .data, iris.target, test_size=0.2)\n classifier = learn.Estimator(model_fn=model)\n classifier.fit(x_train, y_train, steps=1000)\n y_predicted = [p['class'] for p in classifier.predict(x_test,\n as_iterable=True)]\n score = metrics.accuracy_score(y_test, y_predicted)\n print('Accuracy: {0:f}'.format(score))\n weights = classifier.get_variable_value(WEIGHTS_NAME)\n flat_weights = [w for wl in weights for w in wl]\n plot_weights(flat_weights, args.weights_file, args.regularization_type)\n\n\nif __name__ == '__main__':\n tf.app.run()\n", "<import token>\n<code token>\n<import token>\n<assignment token>\n\n\ndef model(features, target):\n global args\n regularizer = None\n regularization_type = args.regularization_type.lower()\n regularization_value = args.regularization_value\n if regularization_type == 'l1':\n print('Using L1 regularizer, val =', regularization_value)\n regularizer = tf.contrib.layers.l1_regularizer(regularization_value)\n elif regularization_type == 'l2':\n print('Using L2 regularizer, val =', regularization_value)\n regularizer = tf.contrib.layers.l2_regularizer(regularization_value)\n else:\n print('Not using regularization')\n target = tf.one_hot(target, 3, 1, 0)\n with tf.variable_scope(MODEL_NAME, regularizer=regularizer):\n features = layers.stack(features, layers.fully_connected, [10, 20, 10])\n logits = layers.fully_connected(features, 3, activation_fn=None)\n loss = tf.contrib.losses.softmax_cross_entropy(logits, target)\n if regularizer:\n loss = loss + sum(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)\n )\n train_op = tf.contrib.layers.optimize_loss(loss, tf.contrib.framework.\n get_global_step(), optimizer='Adagrad', learning_rate=0.1)\n return {'class': tf.argmax(logits, 1), 'prob': tf.nn.softmax(logits)\n }, loss, train_op\n\n\ndef plot_weights(flat_weights, plot_file_name, title_name):\n fig = plt.figure()\n ax = fig.add_subplot(111)\n plt.suptitle('Weights histogram (1st layer fc) ' + title_name)\n ax.hist(flat_weights, NUM_PLOT_BINS, color='green', alpha=0.8)\n print('Saving histogram of weights in:', plot_file_name)\n fig.savefig(plot_file_name)\n plt.close(fig)\n\n\ndef main(argv):\n global args\n parser = argparse.ArgumentParser()\n parser.add_argument('--regularization_type', default='none', help=\n 'Regularization type: l1, l2')\n parser.add_argument('--regularization_value', type=float, default=0.0,\n help='Value used for regularization. defualt 0.0')\n parser.add_argument('--weights_file', default='weights_hist.png', help=\n 'Filename to save the histogram. Default: weights_hist.png')\n args = parser.parse_args()\n iris = datasets.load_iris()\n x_train, x_test, y_train, y_test = cross_validation.train_test_split(iris\n .data, iris.target, test_size=0.2)\n classifier = learn.Estimator(model_fn=model)\n classifier.fit(x_train, y_train, steps=1000)\n y_predicted = [p['class'] for p in classifier.predict(x_test,\n as_iterable=True)]\n score = metrics.accuracy_score(y_test, y_predicted)\n print('Accuracy: {0:f}'.format(score))\n weights = classifier.get_variable_value(WEIGHTS_NAME)\n flat_weights = [w for wl in weights for w in wl]\n plot_weights(flat_weights, args.weights_file, args.regularization_type)\n\n\n<code token>\n", "<import token>\n<code token>\n<import token>\n<assignment token>\n<function token>\n\n\ndef plot_weights(flat_weights, plot_file_name, title_name):\n fig = plt.figure()\n ax = fig.add_subplot(111)\n plt.suptitle('Weights histogram (1st layer fc) ' + title_name)\n ax.hist(flat_weights, NUM_PLOT_BINS, color='green', alpha=0.8)\n print('Saving histogram of weights in:', plot_file_name)\n fig.savefig(plot_file_name)\n plt.close(fig)\n\n\ndef main(argv):\n global args\n parser = argparse.ArgumentParser()\n parser.add_argument('--regularization_type', default='none', help=\n 'Regularization type: l1, l2')\n parser.add_argument('--regularization_value', type=float, default=0.0,\n help='Value used for regularization. defualt 0.0')\n parser.add_argument('--weights_file', default='weights_hist.png', help=\n 'Filename to save the histogram. Default: weights_hist.png')\n args = parser.parse_args()\n iris = datasets.load_iris()\n x_train, x_test, y_train, y_test = cross_validation.train_test_split(iris\n .data, iris.target, test_size=0.2)\n classifier = learn.Estimator(model_fn=model)\n classifier.fit(x_train, y_train, steps=1000)\n y_predicted = [p['class'] for p in classifier.predict(x_test,\n as_iterable=True)]\n score = metrics.accuracy_score(y_test, y_predicted)\n print('Accuracy: {0:f}'.format(score))\n weights = classifier.get_variable_value(WEIGHTS_NAME)\n flat_weights = [w for wl in weights for w in wl]\n plot_weights(flat_weights, args.weights_file, args.regularization_type)\n\n\n<code token>\n", "<import token>\n<code token>\n<import token>\n<assignment token>\n<function token>\n\n\ndef plot_weights(flat_weights, plot_file_name, title_name):\n fig = plt.figure()\n ax = fig.add_subplot(111)\n plt.suptitle('Weights histogram (1st layer fc) ' + title_name)\n ax.hist(flat_weights, NUM_PLOT_BINS, color='green', alpha=0.8)\n print('Saving histogram of weights in:', plot_file_name)\n fig.savefig(plot_file_name)\n plt.close(fig)\n\n\n<function token>\n<code token>\n", "<import token>\n<code token>\n<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<code token>\n" ]
false
99,321
3999904b58cdee1bcd2d8f0d9d2393fc8794e814
# Given a collection of integers that might contain duplicates, nums, return all possible subsets. # # Note: The solution set must not contain duplicate subsets. # # For example, # If nums = [1,2,2], a solution is: # # [ # [2], # [1], # [1,2,2], # [2,2], # [1,2], # [] # ] # Subscribe to see which companies asked this question class Solution(object): def subsetsHelp(self,nums, start, n, result, stack): if n == 0: result.append(stack[:]) return i = start while start <= i < len(nums) - n + 1: stack.append(nums[i]) self.subsetsHelp(nums, i + 1, n - 1, result, stack) tmp = stack.pop() while i + 1 < len(nums) and tmp == nums[i + 1]: i += 1 i += 1 def subsetsWithDup(self, nums): """ :type nums: List[int] :rtype: List[List[int]] """ nums.sort() result = [] stack = [] for i in range(len(nums)+1): self.subsetsHelp(nums,0,i,result,stack) return result def subsetsHelp(nums,start,n,result,stack): if n == 0: result.append(stack[:]) return i = start while start <= i < len(nums) - n + 1: stack.append(nums[i]) subsetsHelp(nums,i+1,n-1,result,stack) tmp = stack.pop() while i+1 < len(nums) and tmp == nums[i+1]: i+=1 i += 1 result = [] stack = [] hello = [] nums = [1,2,3,3,3,4,5] n = 2 subsetsHelp(nums,0,0,result,stack) hello += result print(hello) hh = Solution() nums = [1,2,3] print(hh.subsetsWithDup(nums))
[ "# Given a collection of integers that might contain duplicates, nums, return all possible subsets.\r\n#\r\n# Note: The solution set must not contain duplicate subsets.\r\n#\r\n# For example,\r\n# If nums = [1,2,2], a solution is:\r\n#\r\n# [\r\n# [2],\r\n# [1],\r\n# [1,2,2],\r\n# [2,2],\r\n# [1,2],\r\n# []\r\n# ]\r\n# Subscribe to see which companies asked this question\r\n\r\nclass Solution(object):\r\n def subsetsHelp(self,nums, start, n, result, stack):\r\n if n == 0:\r\n result.append(stack[:])\r\n return\r\n i = start\r\n while start <= i < len(nums) - n + 1:\r\n stack.append(nums[i])\r\n self.subsetsHelp(nums, i + 1, n - 1, result, stack)\r\n tmp = stack.pop()\r\n while i + 1 < len(nums) and tmp == nums[i + 1]:\r\n i += 1\r\n i += 1\r\n\r\n def subsetsWithDup(self, nums):\r\n \"\"\"\r\n :type nums: List[int]\r\n :rtype: List[List[int]]\r\n \"\"\"\r\n nums.sort()\r\n result = []\r\n stack = []\r\n for i in range(len(nums)+1):\r\n self.subsetsHelp(nums,0,i,result,stack)\r\n return result\r\n\r\n\r\n\r\ndef subsetsHelp(nums,start,n,result,stack):\r\n if n == 0:\r\n result.append(stack[:])\r\n return\r\n i = start\r\n while start <= i < len(nums) - n + 1:\r\n stack.append(nums[i])\r\n subsetsHelp(nums,i+1,n-1,result,stack)\r\n tmp = stack.pop()\r\n while i+1 < len(nums) and tmp == nums[i+1]:\r\n i+=1\r\n i += 1\r\n\r\n\r\nresult = []\r\nstack = []\r\nhello = []\r\nnums = [1,2,3,3,3,4,5]\r\nn = 2\r\nsubsetsHelp(nums,0,0,result,stack)\r\nhello += result\r\nprint(hello)\r\n\r\nhh = Solution()\r\nnums = [1,2,3]\r\nprint(hh.subsetsWithDup(nums))\r\n", "class Solution(object):\n\n def subsetsHelp(self, nums, start, n, result, stack):\n if n == 0:\n result.append(stack[:])\n return\n i = start\n while start <= i < len(nums) - n + 1:\n stack.append(nums[i])\n self.subsetsHelp(nums, i + 1, n - 1, result, stack)\n tmp = stack.pop()\n while i + 1 < len(nums) and tmp == nums[i + 1]:\n i += 1\n i += 1\n\n def subsetsWithDup(self, nums):\n \"\"\"\n :type nums: List[int]\n :rtype: List[List[int]]\n \"\"\"\n nums.sort()\n result = []\n stack = []\n for i in range(len(nums) + 1):\n self.subsetsHelp(nums, 0, i, result, stack)\n return result\n\n\ndef subsetsHelp(nums, start, n, result, stack):\n if n == 0:\n result.append(stack[:])\n return\n i = start\n while start <= i < len(nums) - n + 1:\n stack.append(nums[i])\n subsetsHelp(nums, i + 1, n - 1, result, stack)\n tmp = stack.pop()\n while i + 1 < len(nums) and tmp == nums[i + 1]:\n i += 1\n i += 1\n\n\nresult = []\nstack = []\nhello = []\nnums = [1, 2, 3, 3, 3, 4, 5]\nn = 2\nsubsetsHelp(nums, 0, 0, result, stack)\nhello += result\nprint(hello)\nhh = Solution()\nnums = [1, 2, 3]\nprint(hh.subsetsWithDup(nums))\n", "class Solution(object):\n\n def subsetsHelp(self, nums, start, n, result, stack):\n if n == 0:\n result.append(stack[:])\n return\n i = start\n while start <= i < len(nums) - n + 1:\n stack.append(nums[i])\n self.subsetsHelp(nums, i + 1, n - 1, result, stack)\n tmp = stack.pop()\n while i + 1 < len(nums) and tmp == nums[i + 1]:\n i += 1\n i += 1\n\n def subsetsWithDup(self, nums):\n \"\"\"\n :type nums: List[int]\n :rtype: List[List[int]]\n \"\"\"\n nums.sort()\n result = []\n stack = []\n for i in range(len(nums) + 1):\n self.subsetsHelp(nums, 0, i, result, stack)\n return result\n\n\ndef subsetsHelp(nums, start, n, result, stack):\n if n == 0:\n result.append(stack[:])\n return\n i = start\n while start <= i < len(nums) - n + 1:\n stack.append(nums[i])\n subsetsHelp(nums, i + 1, n - 1, result, stack)\n tmp = stack.pop()\n while i + 1 < len(nums) and tmp == nums[i + 1]:\n i += 1\n i += 1\n\n\n<assignment token>\nsubsetsHelp(nums, 0, 0, result, stack)\nhello += result\nprint(hello)\n<assignment token>\nprint(hh.subsetsWithDup(nums))\n", "class Solution(object):\n\n def subsetsHelp(self, nums, start, n, result, stack):\n if n == 0:\n result.append(stack[:])\n return\n i = start\n while start <= i < len(nums) - n + 1:\n stack.append(nums[i])\n self.subsetsHelp(nums, i + 1, n - 1, result, stack)\n tmp = stack.pop()\n while i + 1 < len(nums) and tmp == nums[i + 1]:\n i += 1\n i += 1\n\n def subsetsWithDup(self, nums):\n \"\"\"\n :type nums: List[int]\n :rtype: List[List[int]]\n \"\"\"\n nums.sort()\n result = []\n stack = []\n for i in range(len(nums) + 1):\n self.subsetsHelp(nums, 0, i, result, stack)\n return result\n\n\ndef subsetsHelp(nums, start, n, result, stack):\n if n == 0:\n result.append(stack[:])\n return\n i = start\n while start <= i < len(nums) - n + 1:\n stack.append(nums[i])\n subsetsHelp(nums, i + 1, n - 1, result, stack)\n tmp = stack.pop()\n while i + 1 < len(nums) and tmp == nums[i + 1]:\n i += 1\n i += 1\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n", "class Solution(object):\n\n def subsetsHelp(self, nums, start, n, result, stack):\n if n == 0:\n result.append(stack[:])\n return\n i = start\n while start <= i < len(nums) - n + 1:\n stack.append(nums[i])\n self.subsetsHelp(nums, i + 1, n - 1, result, stack)\n tmp = stack.pop()\n while i + 1 < len(nums) and tmp == nums[i + 1]:\n i += 1\n i += 1\n\n def subsetsWithDup(self, nums):\n \"\"\"\n :type nums: List[int]\n :rtype: List[List[int]]\n \"\"\"\n nums.sort()\n result = []\n stack = []\n for i in range(len(nums) + 1):\n self.subsetsHelp(nums, 0, i, result, stack)\n return result\n\n\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n", "class Solution(object):\n <function token>\n\n def subsetsWithDup(self, nums):\n \"\"\"\n :type nums: List[int]\n :rtype: List[List[int]]\n \"\"\"\n nums.sort()\n result = []\n stack = []\n for i in range(len(nums) + 1):\n self.subsetsHelp(nums, 0, i, result, stack)\n return result\n\n\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n", "class Solution(object):\n <function token>\n <function token>\n\n\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n", "<class token>\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n" ]
false
99,322
f744e952b5de146392d6fd8243afadbf54b20853
import math, collections, sys input = sys.stdin.readline def calc(r, c): rows = [0 for i in range(r)] cols = [0 for i in range(c)] total = 0 for i in range(r): for j in range(c): if z[i][j] == 'A': rows[i]+=1 cols[j]+=1 total+=1 if total == r*c: return 0 if total == 0: return "MORTAL" if rows[0] == c or rows[-1] == c or cols[0] == r or cols[-1] == r: return 1 if z[0][0] == 'A' or z[0][-1] == 'A' or z[-1][0] == 'A' or z[-1][-1] == 'A': return 2 if max(rows) == c or max(cols) == r: return 2 if rows[0] or rows[-1] or cols[0] or cols[-1]: return 3 return 4 for _ in range(int(input())): r, c = map(int, input().split()) z = [] for i in range(r): z.append(input().strip()) print(calc(r, c))
[ "import math, collections, sys\ninput = sys.stdin.readline\ndef calc(r, c):\n rows = [0 for i in range(r)]\n cols = [0 for i in range(c)]\n total = 0\n for i in range(r):\n for j in range(c):\n if z[i][j] == 'A':\n rows[i]+=1\n cols[j]+=1\n total+=1\n if total == r*c:\n return 0\n if total == 0:\n return \"MORTAL\"\n if rows[0] == c or rows[-1] == c or cols[0] == r or cols[-1] == r:\n return 1\n if z[0][0] == 'A' or z[0][-1] == 'A' or z[-1][0] == 'A' or z[-1][-1] == 'A':\n return 2\n if max(rows) == c or max(cols) == r:\n return 2\n if rows[0] or rows[-1] or cols[0] or cols[-1]:\n return 3\n return 4\nfor _ in range(int(input())):\n r, c = map(int, input().split())\n z = []\n for i in range(r):\n z.append(input().strip())\n print(calc(r, c))", "import math, collections, sys\ninput = sys.stdin.readline\n\n\ndef calc(r, c):\n rows = [(0) for i in range(r)]\n cols = [(0) for i in range(c)]\n total = 0\n for i in range(r):\n for j in range(c):\n if z[i][j] == 'A':\n rows[i] += 1\n cols[j] += 1\n total += 1\n if total == r * c:\n return 0\n if total == 0:\n return 'MORTAL'\n if rows[0] == c or rows[-1] == c or cols[0] == r or cols[-1] == r:\n return 1\n if z[0][0] == 'A' or z[0][-1] == 'A' or z[-1][0] == 'A' or z[-1][-1\n ] == 'A':\n return 2\n if max(rows) == c or max(cols) == r:\n return 2\n if rows[0] or rows[-1] or cols[0] or cols[-1]:\n return 3\n return 4\n\n\nfor _ in range(int(input())):\n r, c = map(int, input().split())\n z = []\n for i in range(r):\n z.append(input().strip())\n print(calc(r, c))\n", "<import token>\ninput = sys.stdin.readline\n\n\ndef calc(r, c):\n rows = [(0) for i in range(r)]\n cols = [(0) for i in range(c)]\n total = 0\n for i in range(r):\n for j in range(c):\n if z[i][j] == 'A':\n rows[i] += 1\n cols[j] += 1\n total += 1\n if total == r * c:\n return 0\n if total == 0:\n return 'MORTAL'\n if rows[0] == c or rows[-1] == c or cols[0] == r or cols[-1] == r:\n return 1\n if z[0][0] == 'A' or z[0][-1] == 'A' or z[-1][0] == 'A' or z[-1][-1\n ] == 'A':\n return 2\n if max(rows) == c or max(cols) == r:\n return 2\n if rows[0] or rows[-1] or cols[0] or cols[-1]:\n return 3\n return 4\n\n\nfor _ in range(int(input())):\n r, c = map(int, input().split())\n z = []\n for i in range(r):\n z.append(input().strip())\n print(calc(r, c))\n", "<import token>\n<assignment token>\n\n\ndef calc(r, c):\n rows = [(0) for i in range(r)]\n cols = [(0) for i in range(c)]\n total = 0\n for i in range(r):\n for j in range(c):\n if z[i][j] == 'A':\n rows[i] += 1\n cols[j] += 1\n total += 1\n if total == r * c:\n return 0\n if total == 0:\n return 'MORTAL'\n if rows[0] == c or rows[-1] == c or cols[0] == r or cols[-1] == r:\n return 1\n if z[0][0] == 'A' or z[0][-1] == 'A' or z[-1][0] == 'A' or z[-1][-1\n ] == 'A':\n return 2\n if max(rows) == c or max(cols) == r:\n return 2\n if rows[0] or rows[-1] or cols[0] or cols[-1]:\n return 3\n return 4\n\n\nfor _ in range(int(input())):\n r, c = map(int, input().split())\n z = []\n for i in range(r):\n z.append(input().strip())\n print(calc(r, c))\n", "<import token>\n<assignment token>\n\n\ndef calc(r, c):\n rows = [(0) for i in range(r)]\n cols = [(0) for i in range(c)]\n total = 0\n for i in range(r):\n for j in range(c):\n if z[i][j] == 'A':\n rows[i] += 1\n cols[j] += 1\n total += 1\n if total == r * c:\n return 0\n if total == 0:\n return 'MORTAL'\n if rows[0] == c or rows[-1] == c or cols[0] == r or cols[-1] == r:\n return 1\n if z[0][0] == 'A' or z[0][-1] == 'A' or z[-1][0] == 'A' or z[-1][-1\n ] == 'A':\n return 2\n if max(rows) == c or max(cols) == r:\n return 2\n if rows[0] or rows[-1] or cols[0] or cols[-1]:\n return 3\n return 4\n\n\n<code token>\n", "<import token>\n<assignment token>\n<function token>\n<code token>\n" ]
false
99,323
8b63c72f8451049fdd63e9131c779376fcb8281e
from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for mod_fe = Blueprint('root', __name__, url_prefix='/', template_folder='templates') @mod_fe.route('/', methods=['GET']) def index(): return render_template('frontend/index.html')
[ "from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for\n\nmod_fe = Blueprint('root', __name__, url_prefix='/', template_folder='templates')\n\n\n@mod_fe.route('/', methods=['GET'])\ndef index():\n return render_template('frontend/index.html')\n", "from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for\nmod_fe = Blueprint('root', __name__, url_prefix='/', template_folder=\n 'templates')\n\n\n@mod_fe.route('/', methods=['GET'])\ndef index():\n return render_template('frontend/index.html')\n", "<import token>\nmod_fe = Blueprint('root', __name__, url_prefix='/', template_folder=\n 'templates')\n\n\n@mod_fe.route('/', methods=['GET'])\ndef index():\n return render_template('frontend/index.html')\n", "<import token>\n<assignment token>\n\n\n@mod_fe.route('/', methods=['GET'])\ndef index():\n return render_template('frontend/index.html')\n", "<import token>\n<assignment token>\n<function token>\n" ]
false
99,324
ff8e16bacedef7515dc0cfeec33ed3e3df5f52c3
def gen_pent_num(num): return (num * (3 * num - 1))/2 def gen_hex_num(num): return (num * (2*num -1)) tri_num = list() pent_num = list() hex_num = list() for i in range(1000, 55000): pent_num.append(gen_pent_num(i)) hex_num.append(gen_hex_num(i)) for num in pent_num: if num in hex_num: print(int(num)) exit()
[ "def gen_pent_num(num):\n return (num * (3 * num - 1))/2\ndef gen_hex_num(num):\n return (num * (2*num -1))\n\ntri_num = list()\npent_num = list()\nhex_num = list()\n\nfor i in range(1000, 55000):\n pent_num.append(gen_pent_num(i))\n hex_num.append(gen_hex_num(i))\nfor num in pent_num:\n if num in hex_num:\n print(int(num))\n exit()\n", "def gen_pent_num(num):\n return num * (3 * num - 1) / 2\n\n\ndef gen_hex_num(num):\n return num * (2 * num - 1)\n\n\ntri_num = list()\npent_num = list()\nhex_num = list()\nfor i in range(1000, 55000):\n pent_num.append(gen_pent_num(i))\n hex_num.append(gen_hex_num(i))\nfor num in pent_num:\n if num in hex_num:\n print(int(num))\n exit()\n", "def gen_pent_num(num):\n return num * (3 * num - 1) / 2\n\n\ndef gen_hex_num(num):\n return num * (2 * num - 1)\n\n\n<assignment token>\nfor i in range(1000, 55000):\n pent_num.append(gen_pent_num(i))\n hex_num.append(gen_hex_num(i))\nfor num in pent_num:\n if num in hex_num:\n print(int(num))\n exit()\n", "def gen_pent_num(num):\n return num * (3 * num - 1) / 2\n\n\ndef gen_hex_num(num):\n return num * (2 * num - 1)\n\n\n<assignment token>\n<code token>\n", "<function token>\n\n\ndef gen_hex_num(num):\n return num * (2 * num - 1)\n\n\n<assignment token>\n<code token>\n", "<function token>\n<function token>\n<assignment token>\n<code token>\n" ]
false
99,325
b29d68448c42ba7edfc39d745819a9590fef751d
""" Module for snow mountains author: Joshua Akangah date: 11/8/20 """ from CONFIG.settings import * from ..BACKGROUND.parallax import * class SnowMountainBiome(): def __init__(self): self.background = ParallaxSurface((800, 600), pygame.RLEACCEL) self.background.add(os.path.join(BASE_DIR, "assets/BIOMES/SNOW_MOUNTAINS/sky_lightened.png"), 2, None, True, 800, 600) self.background.add(os.path.join(BASE_DIR, "assets/BIOMES/SNOW_MOUNTAINS/clouds_bg.png"), 2.3, None, True, 800, 600) self.background.add(os.path.join(BASE_DIR, "assets/BIOMES/SNOW_MOUNTAINS/glacial_mountains_lightened.png"), 2, None, True, 800, 600) self.background.add(os.path.join(BASE_DIR, "assets/BIOMES/SNOW_MOUNTAINS/mountains_flip.png"), 4, None, True, 800, 600) self.background.add(os.path.join(BASE_DIR, "assets/BIOMES/SNOW_MOUNTAINS/clouds_mg_3.png"), 3, None, True, 800, 600) self.background.add(os.path.join(BASE_DIR, "assets/BIOMES/SNOW_MOUNTAINS/clouds_mg_2.png"), 4, None, True, 800, 600) self.background.add(os.path.join(BASE_DIR, "assets/BIOMES/SNOW_MOUNTAINS/clouds_mg_1.png"), 5, None, True, 800, 600) self.background.add(os.path.join(BASE_DIR, "assets/BIOMES/SNOW_MOUNTAINS/cloud_lonely.png"), 1, None, True, 800, 600) # self.background.add(os.path.join(BASE_DIR, "assets/BIOMES/SNOW_MOUNTAINS/sky_lightened.png"), 7) # self.background.add(os.path.join(BASE_DIR, "assets/BIOMES/SNOW_MOUNTAINS/sky_lightened.png"), 8) # self.background.add(os.path.join(BASE_DIR, "assets/BIOMES/SNOW_MOUNTAINS/sky_lightened.png"), 9) def update(self, speed): self.background.scroll(speed, orientation='horizontal')
[ "\"\"\"\nModule for snow mountains\nauthor: Joshua Akangah\ndate: 11/8/20\n\"\"\"\n\nfrom CONFIG.settings import *\nfrom ..BACKGROUND.parallax import *\n\nclass SnowMountainBiome():\n def __init__(self):\n self.background = ParallaxSurface((800, 600), pygame.RLEACCEL)\n self.background.add(os.path.join(BASE_DIR, \"assets/BIOMES/SNOW_MOUNTAINS/sky_lightened.png\"), 2, None, True, 800, 600)\n self.background.add(os.path.join(BASE_DIR, \"assets/BIOMES/SNOW_MOUNTAINS/clouds_bg.png\"), 2.3, None, True, 800, 600)\n \n self.background.add(os.path.join(BASE_DIR, \"assets/BIOMES/SNOW_MOUNTAINS/glacial_mountains_lightened.png\"), 2, None, True, 800, 600)\n self.background.add(os.path.join(BASE_DIR, \"assets/BIOMES/SNOW_MOUNTAINS/mountains_flip.png\"), 4, None, True, 800, 600)\n self.background.add(os.path.join(BASE_DIR, \"assets/BIOMES/SNOW_MOUNTAINS/clouds_mg_3.png\"), 3, None, True, 800, 600)\n self.background.add(os.path.join(BASE_DIR, \"assets/BIOMES/SNOW_MOUNTAINS/clouds_mg_2.png\"), 4, None, True, 800, 600)\n self.background.add(os.path.join(BASE_DIR, \"assets/BIOMES/SNOW_MOUNTAINS/clouds_mg_1.png\"), 5, None, True, 800, 600)\n self.background.add(os.path.join(BASE_DIR, \"assets/BIOMES/SNOW_MOUNTAINS/cloud_lonely.png\"), 1, None, True, 800, 600)\n \n # self.background.add(os.path.join(BASE_DIR, \"assets/BIOMES/SNOW_MOUNTAINS/sky_lightened.png\"), 7)\n # self.background.add(os.path.join(BASE_DIR, \"assets/BIOMES/SNOW_MOUNTAINS/sky_lightened.png\"), 8)\n # self.background.add(os.path.join(BASE_DIR, \"assets/BIOMES/SNOW_MOUNTAINS/sky_lightened.png\"), 9)\n \n def update(self, speed):\n self.background.scroll(speed, orientation='horizontal')", "<docstring token>\nfrom CONFIG.settings import *\nfrom ..BACKGROUND.parallax import *\n\n\nclass SnowMountainBiome:\n\n def __init__(self):\n self.background = ParallaxSurface((800, 600), pygame.RLEACCEL)\n self.background.add(os.path.join(BASE_DIR,\n 'assets/BIOMES/SNOW_MOUNTAINS/sky_lightened.png'), 2, None, \n True, 800, 600)\n self.background.add(os.path.join(BASE_DIR,\n 'assets/BIOMES/SNOW_MOUNTAINS/clouds_bg.png'), 2.3, None, True,\n 800, 600)\n self.background.add(os.path.join(BASE_DIR,\n 'assets/BIOMES/SNOW_MOUNTAINS/glacial_mountains_lightened.png'),\n 2, None, True, 800, 600)\n self.background.add(os.path.join(BASE_DIR,\n 'assets/BIOMES/SNOW_MOUNTAINS/mountains_flip.png'), 4, None, \n True, 800, 600)\n self.background.add(os.path.join(BASE_DIR,\n 'assets/BIOMES/SNOW_MOUNTAINS/clouds_mg_3.png'), 3, None, True,\n 800, 600)\n self.background.add(os.path.join(BASE_DIR,\n 'assets/BIOMES/SNOW_MOUNTAINS/clouds_mg_2.png'), 4, None, True,\n 800, 600)\n self.background.add(os.path.join(BASE_DIR,\n 'assets/BIOMES/SNOW_MOUNTAINS/clouds_mg_1.png'), 5, None, True,\n 800, 600)\n self.background.add(os.path.join(BASE_DIR,\n 'assets/BIOMES/SNOW_MOUNTAINS/cloud_lonely.png'), 1, None, True,\n 800, 600)\n\n def update(self, speed):\n self.background.scroll(speed, orientation='horizontal')\n", "<docstring token>\n<import token>\n\n\nclass SnowMountainBiome:\n\n def __init__(self):\n self.background = ParallaxSurface((800, 600), pygame.RLEACCEL)\n self.background.add(os.path.join(BASE_DIR,\n 'assets/BIOMES/SNOW_MOUNTAINS/sky_lightened.png'), 2, None, \n True, 800, 600)\n self.background.add(os.path.join(BASE_DIR,\n 'assets/BIOMES/SNOW_MOUNTAINS/clouds_bg.png'), 2.3, None, True,\n 800, 600)\n self.background.add(os.path.join(BASE_DIR,\n 'assets/BIOMES/SNOW_MOUNTAINS/glacial_mountains_lightened.png'),\n 2, None, True, 800, 600)\n self.background.add(os.path.join(BASE_DIR,\n 'assets/BIOMES/SNOW_MOUNTAINS/mountains_flip.png'), 4, None, \n True, 800, 600)\n self.background.add(os.path.join(BASE_DIR,\n 'assets/BIOMES/SNOW_MOUNTAINS/clouds_mg_3.png'), 3, None, True,\n 800, 600)\n self.background.add(os.path.join(BASE_DIR,\n 'assets/BIOMES/SNOW_MOUNTAINS/clouds_mg_2.png'), 4, None, True,\n 800, 600)\n self.background.add(os.path.join(BASE_DIR,\n 'assets/BIOMES/SNOW_MOUNTAINS/clouds_mg_1.png'), 5, None, True,\n 800, 600)\n self.background.add(os.path.join(BASE_DIR,\n 'assets/BIOMES/SNOW_MOUNTAINS/cloud_lonely.png'), 1, None, True,\n 800, 600)\n\n def update(self, speed):\n self.background.scroll(speed, orientation='horizontal')\n", "<docstring token>\n<import token>\n\n\nclass SnowMountainBiome:\n <function token>\n\n def update(self, speed):\n self.background.scroll(speed, orientation='horizontal')\n", "<docstring token>\n<import token>\n\n\nclass SnowMountainBiome:\n <function token>\n <function token>\n", "<docstring token>\n<import token>\n<class token>\n" ]
false
99,326
6da824b9d6cd06c44d70772e233d09f88a35a35c
import Tkinter from musicazoo.lib.graphics import FullScreenGraphics from musicazoo.settings import COLORS import urllib import threading class BTCDisplayer(FullScreenGraphics): def __init__(self): super(BTCDisplayer, self).__init__() self.c=Tkinter.Canvas(self,width=self.width,height=self.height,highlightthickness=0,bg=COLORS['bg']) self.c.pack() (x,y) = self.center() self.text=self.c.create_text((x,y), fill=COLORS['fg'], justify=Tkinter.CENTER,anchor='center', font=("Helvetica",72)) def show(self): self.animate(0) FullScreenGraphics.show(self) def animate(self,state): self.c.itemconfig(self.text,text="mtgox: " + urllib.urlopen("http://www.biggerpackage4u.ru/api/bitcoin_price").read().strip()) self.update() state=(state+1)%4 self.defer(10000,lambda:self.animate(state)) class BTC: TYPE_STRING='btc' def __init__(self,queue,uid): self.queue=queue self.uid=uid self.display = BTCDisplayer() self.lock = threading.Lock() self.lock.acquire() def play(self): self.display.show() self.lock.acquire() def stop(self): self.display.close() self.lock.release() commands={ 'stop':stop, } parameters={ 'status':lambda x:'playing', }
[ "import Tkinter\nfrom musicazoo.lib.graphics import FullScreenGraphics\nfrom musicazoo.settings import COLORS\nimport urllib\nimport threading\n\nclass BTCDisplayer(FullScreenGraphics):\n\tdef __init__(self):\n\t\tsuper(BTCDisplayer, self).__init__()\n\t\tself.c=Tkinter.Canvas(self,width=self.width,height=self.height,highlightthickness=0,bg=COLORS['bg'])\n\t\tself.c.pack()\n\t\t(x,y) = self.center()\n\t\tself.text=self.c.create_text((x,y), fill=COLORS['fg'], justify=Tkinter.CENTER,anchor='center', font=(\"Helvetica\",72))\n\n\tdef show(self):\n\t\tself.animate(0)\n\t\tFullScreenGraphics.show(self)\n\n\tdef animate(self,state):\n\t\tself.c.itemconfig(self.text,text=\"mtgox: \" + urllib.urlopen(\"http://www.biggerpackage4u.ru/api/bitcoin_price\").read().strip())\n\t\tself.update()\n\t\tstate=(state+1)%4\n\t\tself.defer(10000,lambda:self.animate(state))\n\nclass BTC:\n\tTYPE_STRING='btc'\n\n\tdef __init__(self,queue,uid):\n\t\tself.queue=queue\n\t\tself.uid=uid\n\t\tself.display = BTCDisplayer()\n\t\tself.lock = threading.Lock()\n\t\tself.lock.acquire()\n\n\tdef play(self):\n\t\tself.display.show()\n\t\tself.lock.acquire()\n\n\tdef stop(self):\n\t\tself.display.close()\n\t\tself.lock.release()\n\n\tcommands={\n\t\t'stop':stop,\n\t}\n\n\tparameters={\n\t\t'status':lambda x:'playing',\n\t}\n\n", "import Tkinter\nfrom musicazoo.lib.graphics import FullScreenGraphics\nfrom musicazoo.settings import COLORS\nimport urllib\nimport threading\n\n\nclass BTCDisplayer(FullScreenGraphics):\n\n def __init__(self):\n super(BTCDisplayer, self).__init__()\n self.c = Tkinter.Canvas(self, width=self.width, height=self.height,\n highlightthickness=0, bg=COLORS['bg'])\n self.c.pack()\n x, y = self.center()\n self.text = self.c.create_text((x, y), fill=COLORS['fg'], justify=\n Tkinter.CENTER, anchor='center', font=('Helvetica', 72))\n\n def show(self):\n self.animate(0)\n FullScreenGraphics.show(self)\n\n def animate(self, state):\n self.c.itemconfig(self.text, text='mtgox: ' + urllib.urlopen(\n 'http://www.biggerpackage4u.ru/api/bitcoin_price').read().strip())\n self.update()\n state = (state + 1) % 4\n self.defer(10000, lambda : self.animate(state))\n\n\nclass BTC:\n TYPE_STRING = 'btc'\n\n def __init__(self, queue, uid):\n self.queue = queue\n self.uid = uid\n self.display = BTCDisplayer()\n self.lock = threading.Lock()\n self.lock.acquire()\n\n def play(self):\n self.display.show()\n self.lock.acquire()\n\n def stop(self):\n self.display.close()\n self.lock.release()\n commands = {'stop': stop}\n parameters = {'status': lambda x: 'playing'}\n", "<import token>\n\n\nclass BTCDisplayer(FullScreenGraphics):\n\n def __init__(self):\n super(BTCDisplayer, self).__init__()\n self.c = Tkinter.Canvas(self, width=self.width, height=self.height,\n highlightthickness=0, bg=COLORS['bg'])\n self.c.pack()\n x, y = self.center()\n self.text = self.c.create_text((x, y), fill=COLORS['fg'], justify=\n Tkinter.CENTER, anchor='center', font=('Helvetica', 72))\n\n def show(self):\n self.animate(0)\n FullScreenGraphics.show(self)\n\n def animate(self, state):\n self.c.itemconfig(self.text, text='mtgox: ' + urllib.urlopen(\n 'http://www.biggerpackage4u.ru/api/bitcoin_price').read().strip())\n self.update()\n state = (state + 1) % 4\n self.defer(10000, lambda : self.animate(state))\n\n\nclass BTC:\n TYPE_STRING = 'btc'\n\n def __init__(self, queue, uid):\n self.queue = queue\n self.uid = uid\n self.display = BTCDisplayer()\n self.lock = threading.Lock()\n self.lock.acquire()\n\n def play(self):\n self.display.show()\n self.lock.acquire()\n\n def stop(self):\n self.display.close()\n self.lock.release()\n commands = {'stop': stop}\n parameters = {'status': lambda x: 'playing'}\n", "<import token>\n\n\nclass BTCDisplayer(FullScreenGraphics):\n <function token>\n\n def show(self):\n self.animate(0)\n FullScreenGraphics.show(self)\n\n def animate(self, state):\n self.c.itemconfig(self.text, text='mtgox: ' + urllib.urlopen(\n 'http://www.biggerpackage4u.ru/api/bitcoin_price').read().strip())\n self.update()\n state = (state + 1) % 4\n self.defer(10000, lambda : self.animate(state))\n\n\nclass BTC:\n TYPE_STRING = 'btc'\n\n def __init__(self, queue, uid):\n self.queue = queue\n self.uid = uid\n self.display = BTCDisplayer()\n self.lock = threading.Lock()\n self.lock.acquire()\n\n def play(self):\n self.display.show()\n self.lock.acquire()\n\n def stop(self):\n self.display.close()\n self.lock.release()\n commands = {'stop': stop}\n parameters = {'status': lambda x: 'playing'}\n", "<import token>\n\n\nclass BTCDisplayer(FullScreenGraphics):\n <function token>\n <function token>\n\n def animate(self, state):\n self.c.itemconfig(self.text, text='mtgox: ' + urllib.urlopen(\n 'http://www.biggerpackage4u.ru/api/bitcoin_price').read().strip())\n self.update()\n state = (state + 1) % 4\n self.defer(10000, lambda : self.animate(state))\n\n\nclass BTC:\n TYPE_STRING = 'btc'\n\n def __init__(self, queue, uid):\n self.queue = queue\n self.uid = uid\n self.display = BTCDisplayer()\n self.lock = threading.Lock()\n self.lock.acquire()\n\n def play(self):\n self.display.show()\n self.lock.acquire()\n\n def stop(self):\n self.display.close()\n self.lock.release()\n commands = {'stop': stop}\n parameters = {'status': lambda x: 'playing'}\n", "<import token>\n\n\nclass BTCDisplayer(FullScreenGraphics):\n <function token>\n <function token>\n <function token>\n\n\nclass BTC:\n TYPE_STRING = 'btc'\n\n def __init__(self, queue, uid):\n self.queue = queue\n self.uid = uid\n self.display = BTCDisplayer()\n self.lock = threading.Lock()\n self.lock.acquire()\n\n def play(self):\n self.display.show()\n self.lock.acquire()\n\n def stop(self):\n self.display.close()\n self.lock.release()\n commands = {'stop': stop}\n parameters = {'status': lambda x: 'playing'}\n", "<import token>\n<class token>\n\n\nclass BTC:\n TYPE_STRING = 'btc'\n\n def __init__(self, queue, uid):\n self.queue = queue\n self.uid = uid\n self.display = BTCDisplayer()\n self.lock = threading.Lock()\n self.lock.acquire()\n\n def play(self):\n self.display.show()\n self.lock.acquire()\n\n def stop(self):\n self.display.close()\n self.lock.release()\n commands = {'stop': stop}\n parameters = {'status': lambda x: 'playing'}\n", "<import token>\n<class token>\n\n\nclass BTC:\n <assignment token>\n\n def __init__(self, queue, uid):\n self.queue = queue\n self.uid = uid\n self.display = BTCDisplayer()\n self.lock = threading.Lock()\n self.lock.acquire()\n\n def play(self):\n self.display.show()\n self.lock.acquire()\n\n def stop(self):\n self.display.close()\n self.lock.release()\n <assignment token>\n <assignment token>\n", "<import token>\n<class token>\n\n\nclass BTC:\n <assignment token>\n\n def __init__(self, queue, uid):\n self.queue = queue\n self.uid = uid\n self.display = BTCDisplayer()\n self.lock = threading.Lock()\n self.lock.acquire()\n\n def play(self):\n self.display.show()\n self.lock.acquire()\n <function token>\n <assignment token>\n <assignment token>\n", "<import token>\n<class token>\n\n\nclass BTC:\n <assignment token>\n <function token>\n\n def play(self):\n self.display.show()\n self.lock.acquire()\n <function token>\n <assignment token>\n <assignment token>\n", "<import token>\n<class token>\n\n\nclass BTC:\n <assignment token>\n <function token>\n <function token>\n <function token>\n <assignment token>\n <assignment token>\n", "<import token>\n<class token>\n<class token>\n" ]
false
99,327
476967bceddee403c29b1f3898d595d2835b5e53
import os, sys import socket import subprocess as sb def configuration(): IP = socket.gethostname() PORT = 4444 global s, conn s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind((IP, PORT)) s.listen(5) conn, addr = s.accept() def cmd(): try: while True: command = conn.recv(4000) command = command.decode() if command == ("exit"): conn.close() s.close() break elif ("cd") in command: command = str(command) dirs = command.split()[1] if len(dirs) > 2: p1 = dirs[1] + str(" ") p2 = dirs[2] path = p1 + p2 os.chdir(path) else: os.chdir(dirs) path = os.getcwd() send_args = ("change to " + path) conn.send(send_args.encode()) elif ("pwd") in command: path = os.getcwd() conn.send(path.encode()) else: execute = sb.check_output(f'{command}', shell=True) conn.send(execute) except ConnectionResetError: configuration() cmd() except ConnectionAbortedError: configuration() cmd() except ConnectionError: configuration() cmd() except BrokenPipeError: configuration() cmd() except sb.CalledProcessError: conn.send(str(f"'{command}' is not recognized as an internal or external command,\noperable program or batch file").encode()) cmd() def active(): configuration() cmd()
[ "import os, sys\r\nimport socket\r\nimport subprocess as sb\r\n\r\ndef configuration():\r\n IP = socket.gethostname()\r\n PORT = 4444\r\n global s, conn\r\n s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)\r\n s.bind((IP, PORT))\r\n s.listen(5)\r\n conn, addr = s.accept()\r\n\r\ndef cmd():\r\n try:\r\n while True:\r\n command = conn.recv(4000)\r\n command = command.decode()\r\n if command == (\"exit\"):\r\n conn.close()\r\n s.close()\r\n break\r\n elif (\"cd\") in command:\r\n command = str(command)\r\n dirs = command.split()[1]\r\n if len(dirs) > 2:\r\n p1 = dirs[1] + str(\" \")\r\n p2 = dirs[2]\r\n path = p1 + p2\r\n os.chdir(path)\r\n else:\r\n os.chdir(dirs)\r\n path = os.getcwd()\r\n send_args = (\"change to \" + path)\r\n conn.send(send_args.encode())\r\n elif (\"pwd\") in command:\r\n path = os.getcwd()\r\n conn.send(path.encode())\r\n else:\r\n execute = sb.check_output(f'{command}', shell=True)\r\n conn.send(execute)\r\n\r\n except ConnectionResetError:\r\n configuration()\r\n cmd()\r\n except ConnectionAbortedError:\r\n configuration()\r\n cmd()\r\n except ConnectionError:\r\n configuration()\r\n cmd()\r\n except BrokenPipeError:\r\n configuration()\r\n cmd()\r\n except sb.CalledProcessError:\r\n conn.send(str(f\"'{command}' is not recognized as an internal or external command,\\noperable program or batch file\").encode())\r\n cmd()\r\n\r\ndef active():\r\n configuration()\r\n cmd()", "import os, sys\nimport socket\nimport subprocess as sb\n\n\ndef configuration():\n IP = socket.gethostname()\n PORT = 4444\n global s, conn\n s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)\n s.bind((IP, PORT))\n s.listen(5)\n conn, addr = s.accept()\n\n\ndef cmd():\n try:\n while True:\n command = conn.recv(4000)\n command = command.decode()\n if command == 'exit':\n conn.close()\n s.close()\n break\n elif 'cd' in command:\n command = str(command)\n dirs = command.split()[1]\n if len(dirs) > 2:\n p1 = dirs[1] + str(' ')\n p2 = dirs[2]\n path = p1 + p2\n os.chdir(path)\n else:\n os.chdir(dirs)\n path = os.getcwd()\n send_args = 'change to ' + path\n conn.send(send_args.encode())\n elif 'pwd' in command:\n path = os.getcwd()\n conn.send(path.encode())\n else:\n execute = sb.check_output(f'{command}', shell=True)\n conn.send(execute)\n except ConnectionResetError:\n configuration()\n cmd()\n except ConnectionAbortedError:\n configuration()\n cmd()\n except ConnectionError:\n configuration()\n cmd()\n except BrokenPipeError:\n configuration()\n cmd()\n except sb.CalledProcessError:\n conn.send(str(\n f\"\"\"'{command}' is not recognized as an internal or external command,\noperable program or batch file\"\"\"\n ).encode())\n cmd()\n\n\ndef active():\n configuration()\n cmd()\n", "<import token>\n\n\ndef configuration():\n IP = socket.gethostname()\n PORT = 4444\n global s, conn\n s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)\n s.bind((IP, PORT))\n s.listen(5)\n conn, addr = s.accept()\n\n\ndef cmd():\n try:\n while True:\n command = conn.recv(4000)\n command = command.decode()\n if command == 'exit':\n conn.close()\n s.close()\n break\n elif 'cd' in command:\n command = str(command)\n dirs = command.split()[1]\n if len(dirs) > 2:\n p1 = dirs[1] + str(' ')\n p2 = dirs[2]\n path = p1 + p2\n os.chdir(path)\n else:\n os.chdir(dirs)\n path = os.getcwd()\n send_args = 'change to ' + path\n conn.send(send_args.encode())\n elif 'pwd' in command:\n path = os.getcwd()\n conn.send(path.encode())\n else:\n execute = sb.check_output(f'{command}', shell=True)\n conn.send(execute)\n except ConnectionResetError:\n configuration()\n cmd()\n except ConnectionAbortedError:\n configuration()\n cmd()\n except ConnectionError:\n configuration()\n cmd()\n except BrokenPipeError:\n configuration()\n cmd()\n except sb.CalledProcessError:\n conn.send(str(\n f\"\"\"'{command}' is not recognized as an internal or external command,\noperable program or batch file\"\"\"\n ).encode())\n cmd()\n\n\ndef active():\n configuration()\n cmd()\n", "<import token>\n\n\ndef configuration():\n IP = socket.gethostname()\n PORT = 4444\n global s, conn\n s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)\n s.bind((IP, PORT))\n s.listen(5)\n conn, addr = s.accept()\n\n\n<function token>\n\n\ndef active():\n configuration()\n cmd()\n", "<import token>\n<function token>\n<function token>\n\n\ndef active():\n configuration()\n cmd()\n", "<import token>\n<function token>\n<function token>\n<function token>\n" ]
false
99,328
e55873d91e4cea2bfea4d0c44fdc581c09f612cc
""" This file defines the database models """ import datetime from . common import db, Field, auth from pydal.validators import * ### Define your table below # # db.define_table('thing', Field('name')) # ## always commit your models to avoid problems later # # db.commit() # def get_user_email(): return auth.current_user.get('email') db.define_table( 'contact', Field('first_name'), Field('last_name'), Field('user_email',default=get_user_email) ) db.contact.id.readable = False db.contact.user_email.readable = False db.define_table( 'phone', Field('contact_id', 'reference contact'), Field('phone'), Field('type') ) db.phone.id.readable = False db.phone.contact_id.readable = False db.phone.contact_id.ondelete = 'CASCADE' db.commit()
[ "\"\"\"\r\nThis file defines the database models\r\n\"\"\"\r\nimport datetime\r\n\r\nfrom . common import db, Field, auth\r\nfrom pydal.validators import *\r\n\r\n\r\n\r\n### Define your table below\r\n#\r\n# db.define_table('thing', Field('name'))\r\n#\r\n## always commit your models to avoid problems later\r\n#\r\n# db.commit()\r\n#\r\ndef get_user_email():\r\n return auth.current_user.get('email')\r\n\r\ndb.define_table(\r\n 'contact',\r\n Field('first_name'),\r\n Field('last_name'),\r\n Field('user_email',default=get_user_email)\r\n )\r\ndb.contact.id.readable = False\r\ndb.contact.user_email.readable = False\r\n\r\ndb.define_table(\r\n 'phone',\r\n Field('contact_id', 'reference contact'),\r\n Field('phone'),\r\n Field('type')\r\n)\r\n\r\ndb.phone.id.readable = False\r\ndb.phone.contact_id.readable = False\r\ndb.phone.contact_id.ondelete = 'CASCADE'\r\n\r\ndb.commit()\r\n", "<docstring token>\nimport datetime\nfrom .common import db, Field, auth\nfrom pydal.validators import *\n\n\ndef get_user_email():\n return auth.current_user.get('email')\n\n\ndb.define_table('contact', Field('first_name'), Field('last_name'), Field(\n 'user_email', default=get_user_email))\ndb.contact.id.readable = False\ndb.contact.user_email.readable = False\ndb.define_table('phone', Field('contact_id', 'reference contact'), Field(\n 'phone'), Field('type'))\ndb.phone.id.readable = False\ndb.phone.contact_id.readable = False\ndb.phone.contact_id.ondelete = 'CASCADE'\ndb.commit()\n", "<docstring token>\n<import token>\n\n\ndef get_user_email():\n return auth.current_user.get('email')\n\n\ndb.define_table('contact', Field('first_name'), Field('last_name'), Field(\n 'user_email', default=get_user_email))\ndb.contact.id.readable = False\ndb.contact.user_email.readable = False\ndb.define_table('phone', Field('contact_id', 'reference contact'), Field(\n 'phone'), Field('type'))\ndb.phone.id.readable = False\ndb.phone.contact_id.readable = False\ndb.phone.contact_id.ondelete = 'CASCADE'\ndb.commit()\n", "<docstring token>\n<import token>\n\n\ndef get_user_email():\n return auth.current_user.get('email')\n\n\ndb.define_table('contact', Field('first_name'), Field('last_name'), Field(\n 'user_email', default=get_user_email))\n<assignment token>\ndb.define_table('phone', Field('contact_id', 'reference contact'), Field(\n 'phone'), Field('type'))\n<assignment token>\ndb.commit()\n", "<docstring token>\n<import token>\n\n\ndef get_user_email():\n return auth.current_user.get('email')\n\n\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n", "<docstring token>\n<import token>\n<function token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n" ]
false
99,329
c5dd8baab3e7ab3de71f5e74eedb5164733163ef
import argparse import socket from Crypto.Cipher import AES from Crypto import Random BLOCK_SIZE = 16 pad = lambda s: s + (BLOCK_SIZE - len(s) % BLOCK_SIZE) * \ chr(BLOCK_SIZE - len(s) % BLOCK_SIZE) unpad = lambda s: s[:-ord(s[len(s) - 1:])] def do_decrypt(ciphertext): iv = ciphertext[:16] obj2 = AES.new('This is a key123', AES.MODE_CBC, iv) message = obj2.decrypt(ciphertext[16:]) return unpad(message) def do_encrypt(message): message = pad(message) iv = Random.new().read(AES.block_size) obj = AES.new('This is a key123', AES.MODE_CBC, iv) ciphertext = obj.encrypt(message) print "IV: " + iv+ciphertext return iv+ciphertext def is_valid_ipv4_address(address): try: socket.inet_pton(socket.AF_INET, address) except AttributeError: # no inet_pton here, sorry try: socket.inet_aton(address) except socket.error: return False return address.count('.') == 3 except socket.error: # not a valid address return False return True def client_socket(remote_ip, port, echo_string): print "This is my client socket" client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) client_socket.connect((remote_ip, port)) client_socket.send(do_encrypt(echo_string)) def server_socket(port): print "This is my server socket" sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sock.bind(("0.0.0.0", port)) #MAX_SHORT ~65535 sock.listen(10) while 1: conn, addr = sock.accept() a = conn.recv(1024) print "Unencrypted Message: \n{0}".format(a) a = do_decrypt(a) print "Decrypted MEssage: \n{0}".format(a) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Client and Server template.") parser.add_argument("-t", "--type_of_socket", type=str, help="The input for type of socket you want. Options: Client or Server") parser.add_argument("-p", "--port", type=int, help="port number that you want hosted. Anything <= 1024 requires sudo requirements.") parser.add_argument("-e", "--echo_string", type=str, help="prints this string") parser.add_argument("-r", "--remote_address", type=str, help="The remote server client.") args = parser.parse_args() if not args.type_of_socket and args.port: parser.print_help() exit() if "client" == args.type_of_socket.lower(): if args.remote_address and is_valid_ipv4_address(args.remote_address) and args.echo_string: client_socket(args.remote_address, args.port, args.echo_string) elif args.type_of_socket and "server" in args.type_of_socket.lower(): server_socket(args.port) else: parser.print_help()
[ "import argparse\nimport socket\nfrom Crypto.Cipher import AES\nfrom Crypto import Random\n\nBLOCK_SIZE = 16\n\npad = lambda s: s + (BLOCK_SIZE - len(s) % BLOCK_SIZE) * \\\n chr(BLOCK_SIZE - len(s) % BLOCK_SIZE)\nunpad = lambda s: s[:-ord(s[len(s) - 1:])]\n\ndef do_decrypt(ciphertext):\n iv = ciphertext[:16]\n obj2 = AES.new('This is a key123', AES.MODE_CBC, iv)\n message = obj2.decrypt(ciphertext[16:])\n return unpad(message)\n\ndef do_encrypt(message):\n message = pad(message)\n iv = Random.new().read(AES.block_size)\n obj = AES.new('This is a key123', AES.MODE_CBC, iv)\n ciphertext = obj.encrypt(message)\n print \"IV: \" + iv+ciphertext\n return iv+ciphertext\n\n\ndef is_valid_ipv4_address(address):\n try:\n socket.inet_pton(socket.AF_INET, address)\n except AttributeError: # no inet_pton here, sorry\n try:\n socket.inet_aton(address)\n except socket.error:\n return False\n return address.count('.') == 3\n except socket.error: # not a valid address\n return False\n\n return True\n\ndef client_socket(remote_ip, port, echo_string):\n print \"This is my client socket\"\n client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)\n client_socket.connect((remote_ip, port))\n client_socket.send(do_encrypt(echo_string))\n\ndef server_socket(port):\n print \"This is my server socket\"\n sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)\n sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)\n sock.bind((\"0.0.0.0\", port)) #MAX_SHORT ~65535\n sock.listen(10)\n while 1:\n conn, addr = sock.accept()\n a = conn.recv(1024)\n print \"Unencrypted Message: \\n{0}\".format(a)\n a = do_decrypt(a)\n print \"Decrypted MEssage: \\n{0}\".format(a)\n\nif __name__ == \"__main__\":\n parser = argparse.ArgumentParser(description=\"Client and Server template.\")\n parser.add_argument(\"-t\", \"--type_of_socket\", type=str, help=\"The input for type of socket you want. Options: Client or Server\")\n parser.add_argument(\"-p\", \"--port\", type=int, help=\"port number that you want hosted. Anything <= 1024 requires sudo requirements.\")\n parser.add_argument(\"-e\", \"--echo_string\", type=str, help=\"prints this string\")\n parser.add_argument(\"-r\", \"--remote_address\", type=str, help=\"The remote server client.\")\n args = parser.parse_args()\n if not args.type_of_socket and args.port:\n parser.print_help()\n exit()\n if \"client\" == args.type_of_socket.lower():\n if args.remote_address and is_valid_ipv4_address(args.remote_address) and args.echo_string:\n client_socket(args.remote_address, args.port, args.echo_string)\n elif args.type_of_socket and \"server\" in args.type_of_socket.lower():\n server_socket(args.port)\n else:\n parser.print_help()\n\n" ]
true
99,330
02f713322fbed26f60725687ea2735829b4c6bbc
with open("test.txt","w") as file: file.write("essai") file.close() def auteurs(): auteur = input("Indiquez le prénom et nom de l'auteur : ").title() entreprise = input("Indiquez son entreprise : ").capitalize() # auteur_complet = str(f"{auteur}. {entreprise}") return f"{auteur}. {entreprise}" def prerequis(): pre_info = input("notez votre pré-requis : ") prerequis_infos = (f"- <h2>{pre_info}</h2></b><br>") return prerequis_infos def compte(variable, func): print(f"Combien {variable} avez-vous à notifier? Tapez un nombre à partir de 0 : ") number = int(input()) i = 1 try: while i <= number: i += 1 response = func() with open("test.txt","a") as file: file.write(response) file.close() except OSError: print("ça ne fonctionne pas") compte("auteurs", auteurs)
[ "with open(\"test.txt\",\"w\") as file:\n file.write(\"essai\")\n file.close()\n \ndef auteurs():\n auteur = input(\"Indiquez le prénom et nom de l'auteur : \").title()\n entreprise = input(\"Indiquez son entreprise : \").capitalize()\n # auteur_complet = str(f\"{auteur}. {entreprise}\")\n return f\"{auteur}. {entreprise}\"\n \ndef prerequis():\n pre_info = input(\"notez votre pré-requis : \")\n prerequis_infos = (f\"- <h2>{pre_info}</h2></b><br>\")\n return prerequis_infos\n\ndef compte(variable, func):\n print(f\"Combien {variable} avez-vous à notifier? Tapez un nombre à partir de 0 : \")\n number = int(input())\n i = 1\n try:\n while i <= number:\n i += 1\n response = func()\n with open(\"test.txt\",\"a\") as file:\n file.write(response)\n file.close()\n except OSError:\n print(\"ça ne fonctionne pas\")\n\n \ncompte(\"auteurs\", auteurs)\n ", "with open('test.txt', 'w') as file:\n file.write('essai')\n file.close()\n\n\ndef auteurs():\n auteur = input(\"Indiquez le prénom et nom de l'auteur : \").title()\n entreprise = input('Indiquez son entreprise : ').capitalize()\n return f'{auteur}. {entreprise}'\n\n\ndef prerequis():\n pre_info = input('notez votre pré-requis : ')\n prerequis_infos = f'- <h2>{pre_info}</h2></b><br>'\n return prerequis_infos\n\n\ndef compte(variable, func):\n print(\n f'Combien {variable} avez-vous à notifier? Tapez un nombre à partir de 0 : '\n )\n number = int(input())\n i = 1\n try:\n while i <= number:\n i += 1\n response = func()\n with open('test.txt', 'a') as file:\n file.write(response)\n file.close()\n except OSError:\n print('ça ne fonctionne pas')\n\n\ncompte('auteurs', auteurs)\n", "<code token>\n\n\ndef auteurs():\n auteur = input(\"Indiquez le prénom et nom de l'auteur : \").title()\n entreprise = input('Indiquez son entreprise : ').capitalize()\n return f'{auteur}. {entreprise}'\n\n\ndef prerequis():\n pre_info = input('notez votre pré-requis : ')\n prerequis_infos = f'- <h2>{pre_info}</h2></b><br>'\n return prerequis_infos\n\n\ndef compte(variable, func):\n print(\n f'Combien {variable} avez-vous à notifier? Tapez un nombre à partir de 0 : '\n )\n number = int(input())\n i = 1\n try:\n while i <= number:\n i += 1\n response = func()\n with open('test.txt', 'a') as file:\n file.write(response)\n file.close()\n except OSError:\n print('ça ne fonctionne pas')\n\n\n<code token>\n", "<code token>\n\n\ndef auteurs():\n auteur = input(\"Indiquez le prénom et nom de l'auteur : \").title()\n entreprise = input('Indiquez son entreprise : ').capitalize()\n return f'{auteur}. {entreprise}'\n\n\n<function token>\n\n\ndef compte(variable, func):\n print(\n f'Combien {variable} avez-vous à notifier? Tapez un nombre à partir de 0 : '\n )\n number = int(input())\n i = 1\n try:\n while i <= number:\n i += 1\n response = func()\n with open('test.txt', 'a') as file:\n file.write(response)\n file.close()\n except OSError:\n print('ça ne fonctionne pas')\n\n\n<code token>\n", "<code token>\n<function token>\n<function token>\n\n\ndef compte(variable, func):\n print(\n f'Combien {variable} avez-vous à notifier? Tapez un nombre à partir de 0 : '\n )\n number = int(input())\n i = 1\n try:\n while i <= number:\n i += 1\n response = func()\n with open('test.txt', 'a') as file:\n file.write(response)\n file.close()\n except OSError:\n print('ça ne fonctionne pas')\n\n\n<code token>\n", "<code token>\n<function token>\n<function token>\n<function token>\n<code token>\n" ]
false
99,331
9f45745a825c30d5a89776077ac0961d0c8ea4cf
#!/usr/bin/env python # -*- coding:utf-8 -*- import torch.nn as nn from lib.models.backbones.resnet.resnet_models import ResNetModels class NormalResnetBackbone(nn.Module): def __init__(self, orig_resnet): super(NormalResnetBackbone, self).__init__() self.num_features = 2048 # take pretrained resnet, except AvgPool and FC self.prefix = orig_resnet.prefix self.maxpool = orig_resnet.maxpool self.layer1 = orig_resnet.layer1 self.layer2 = orig_resnet.layer2 self.layer3 = orig_resnet.layer3 self.layer4 = orig_resnet.layer4 def get_num_features(self): return self.num_features def forward(self, x): x = self.prefix(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) return x class ResNetBackbone(object): def __init__(self, configer): self.configer = configer self.resnet_models = ResNetModels(self.configer) def __call__(self, arch=None, pretrained_model=None, **kwargs): if arch == 'resnet18': orig_resnet = self.resnet_models.resnet18(pretrained=pretrained_model, **kwargs) arch_net = NormalResnetBackbone(orig_resnet) arch_net.num_features = 512 elif arch == 'resnet34': orig_resnet = self.resnet_models.resnet34(pretrained=pretrained_model, **kwargs) arch_net = NormalResnetBackbone(orig_resnet) arch_net.num_features = 512 elif arch == 'resnet50': orig_resnet = self.resnet_models.resnet50(pretrained=pretrained_model, **kwargs) arch_net = NormalResnetBackbone(orig_resnet) elif arch == 'resnet101': orig_resnet = self.resnet_models.resnet101(pretrained=pretrained_model, **kwargs) arch_net = NormalResnetBackbone(orig_resnet) elif arch == 'resnet152': orig_resnet = self.resnet_models.resnet152(pretrained=pretrained_model, **kwargs) arch_net = NormalResnetBackbone(orig_resnet) else: raise Exception('Architecture undefined!') return arch_net
[ "#!/usr/bin/env python\n# -*- coding:utf-8 -*-\n\n\nimport torch.nn as nn\n\nfrom lib.models.backbones.resnet.resnet_models import ResNetModels\n\n\nclass NormalResnetBackbone(nn.Module):\n def __init__(self, orig_resnet):\n super(NormalResnetBackbone, self).__init__()\n\n self.num_features = 2048\n # take pretrained resnet, except AvgPool and FC\n self.prefix = orig_resnet.prefix\n self.maxpool = orig_resnet.maxpool\n self.layer1 = orig_resnet.layer1\n self.layer2 = orig_resnet.layer2\n self.layer3 = orig_resnet.layer3\n self.layer4 = orig_resnet.layer4\n\n def get_num_features(self):\n return self.num_features\n\n def forward(self, x):\n x = self.prefix(x)\n x = self.maxpool(x)\n\n x = self.layer1(x)\n x = self.layer2(x)\n x = self.layer3(x)\n x = self.layer4(x)\n return x\n\n\nclass ResNetBackbone(object):\n def __init__(self, configer):\n self.configer = configer\n self.resnet_models = ResNetModels(self.configer)\n\n def __call__(self, arch=None, pretrained_model=None, **kwargs):\n if arch == 'resnet18':\n orig_resnet = self.resnet_models.resnet18(pretrained=pretrained_model, **kwargs)\n arch_net = NormalResnetBackbone(orig_resnet)\n arch_net.num_features = 512\n\n elif arch == 'resnet34':\n orig_resnet = self.resnet_models.resnet34(pretrained=pretrained_model, **kwargs)\n arch_net = NormalResnetBackbone(orig_resnet)\n arch_net.num_features = 512\n\n elif arch == 'resnet50':\n orig_resnet = self.resnet_models.resnet50(pretrained=pretrained_model, **kwargs)\n arch_net = NormalResnetBackbone(orig_resnet)\n\n elif arch == 'resnet101':\n orig_resnet = self.resnet_models.resnet101(pretrained=pretrained_model, **kwargs)\n arch_net = NormalResnetBackbone(orig_resnet)\n\n elif arch == 'resnet152':\n orig_resnet = self.resnet_models.resnet152(pretrained=pretrained_model, **kwargs)\n arch_net = NormalResnetBackbone(orig_resnet)\n\n else:\n raise Exception('Architecture undefined!')\n\n return arch_net\n", "import torch.nn as nn\nfrom lib.models.backbones.resnet.resnet_models import ResNetModels\n\n\nclass NormalResnetBackbone(nn.Module):\n\n def __init__(self, orig_resnet):\n super(NormalResnetBackbone, self).__init__()\n self.num_features = 2048\n self.prefix = orig_resnet.prefix\n self.maxpool = orig_resnet.maxpool\n self.layer1 = orig_resnet.layer1\n self.layer2 = orig_resnet.layer2\n self.layer3 = orig_resnet.layer3\n self.layer4 = orig_resnet.layer4\n\n def get_num_features(self):\n return self.num_features\n\n def forward(self, x):\n x = self.prefix(x)\n x = self.maxpool(x)\n x = self.layer1(x)\n x = self.layer2(x)\n x = self.layer3(x)\n x = self.layer4(x)\n return x\n\n\nclass ResNetBackbone(object):\n\n def __init__(self, configer):\n self.configer = configer\n self.resnet_models = ResNetModels(self.configer)\n\n def __call__(self, arch=None, pretrained_model=None, **kwargs):\n if arch == 'resnet18':\n orig_resnet = self.resnet_models.resnet18(pretrained=\n pretrained_model, **kwargs)\n arch_net = NormalResnetBackbone(orig_resnet)\n arch_net.num_features = 512\n elif arch == 'resnet34':\n orig_resnet = self.resnet_models.resnet34(pretrained=\n pretrained_model, **kwargs)\n arch_net = NormalResnetBackbone(orig_resnet)\n arch_net.num_features = 512\n elif arch == 'resnet50':\n orig_resnet = self.resnet_models.resnet50(pretrained=\n pretrained_model, **kwargs)\n arch_net = NormalResnetBackbone(orig_resnet)\n elif arch == 'resnet101':\n orig_resnet = self.resnet_models.resnet101(pretrained=\n pretrained_model, **kwargs)\n arch_net = NormalResnetBackbone(orig_resnet)\n elif arch == 'resnet152':\n orig_resnet = self.resnet_models.resnet152(pretrained=\n pretrained_model, **kwargs)\n arch_net = NormalResnetBackbone(orig_resnet)\n else:\n raise Exception('Architecture undefined!')\n return arch_net\n", "<import token>\n\n\nclass NormalResnetBackbone(nn.Module):\n\n def __init__(self, orig_resnet):\n super(NormalResnetBackbone, self).__init__()\n self.num_features = 2048\n self.prefix = orig_resnet.prefix\n self.maxpool = orig_resnet.maxpool\n self.layer1 = orig_resnet.layer1\n self.layer2 = orig_resnet.layer2\n self.layer3 = orig_resnet.layer3\n self.layer4 = orig_resnet.layer4\n\n def get_num_features(self):\n return self.num_features\n\n def forward(self, x):\n x = self.prefix(x)\n x = self.maxpool(x)\n x = self.layer1(x)\n x = self.layer2(x)\n x = self.layer3(x)\n x = self.layer4(x)\n return x\n\n\nclass ResNetBackbone(object):\n\n def __init__(self, configer):\n self.configer = configer\n self.resnet_models = ResNetModels(self.configer)\n\n def __call__(self, arch=None, pretrained_model=None, **kwargs):\n if arch == 'resnet18':\n orig_resnet = self.resnet_models.resnet18(pretrained=\n pretrained_model, **kwargs)\n arch_net = NormalResnetBackbone(orig_resnet)\n arch_net.num_features = 512\n elif arch == 'resnet34':\n orig_resnet = self.resnet_models.resnet34(pretrained=\n pretrained_model, **kwargs)\n arch_net = NormalResnetBackbone(orig_resnet)\n arch_net.num_features = 512\n elif arch == 'resnet50':\n orig_resnet = self.resnet_models.resnet50(pretrained=\n pretrained_model, **kwargs)\n arch_net = NormalResnetBackbone(orig_resnet)\n elif arch == 'resnet101':\n orig_resnet = self.resnet_models.resnet101(pretrained=\n pretrained_model, **kwargs)\n arch_net = NormalResnetBackbone(orig_resnet)\n elif arch == 'resnet152':\n orig_resnet = self.resnet_models.resnet152(pretrained=\n pretrained_model, **kwargs)\n arch_net = NormalResnetBackbone(orig_resnet)\n else:\n raise Exception('Architecture undefined!')\n return arch_net\n", "<import token>\n\n\nclass NormalResnetBackbone(nn.Module):\n\n def __init__(self, orig_resnet):\n super(NormalResnetBackbone, self).__init__()\n self.num_features = 2048\n self.prefix = orig_resnet.prefix\n self.maxpool = orig_resnet.maxpool\n self.layer1 = orig_resnet.layer1\n self.layer2 = orig_resnet.layer2\n self.layer3 = orig_resnet.layer3\n self.layer4 = orig_resnet.layer4\n <function token>\n\n def forward(self, x):\n x = self.prefix(x)\n x = self.maxpool(x)\n x = self.layer1(x)\n x = self.layer2(x)\n x = self.layer3(x)\n x = self.layer4(x)\n return x\n\n\nclass ResNetBackbone(object):\n\n def __init__(self, configer):\n self.configer = configer\n self.resnet_models = ResNetModels(self.configer)\n\n def __call__(self, arch=None, pretrained_model=None, **kwargs):\n if arch == 'resnet18':\n orig_resnet = self.resnet_models.resnet18(pretrained=\n pretrained_model, **kwargs)\n arch_net = NormalResnetBackbone(orig_resnet)\n arch_net.num_features = 512\n elif arch == 'resnet34':\n orig_resnet = self.resnet_models.resnet34(pretrained=\n pretrained_model, **kwargs)\n arch_net = NormalResnetBackbone(orig_resnet)\n arch_net.num_features = 512\n elif arch == 'resnet50':\n orig_resnet = self.resnet_models.resnet50(pretrained=\n pretrained_model, **kwargs)\n arch_net = NormalResnetBackbone(orig_resnet)\n elif arch == 'resnet101':\n orig_resnet = self.resnet_models.resnet101(pretrained=\n pretrained_model, **kwargs)\n arch_net = NormalResnetBackbone(orig_resnet)\n elif arch == 'resnet152':\n orig_resnet = self.resnet_models.resnet152(pretrained=\n pretrained_model, **kwargs)\n arch_net = NormalResnetBackbone(orig_resnet)\n else:\n raise Exception('Architecture undefined!')\n return arch_net\n", "<import token>\n\n\nclass NormalResnetBackbone(nn.Module):\n <function token>\n <function token>\n\n def forward(self, x):\n x = self.prefix(x)\n x = self.maxpool(x)\n x = self.layer1(x)\n x = self.layer2(x)\n x = self.layer3(x)\n x = self.layer4(x)\n return x\n\n\nclass ResNetBackbone(object):\n\n def __init__(self, configer):\n self.configer = configer\n self.resnet_models = ResNetModels(self.configer)\n\n def __call__(self, arch=None, pretrained_model=None, **kwargs):\n if arch == 'resnet18':\n orig_resnet = self.resnet_models.resnet18(pretrained=\n pretrained_model, **kwargs)\n arch_net = NormalResnetBackbone(orig_resnet)\n arch_net.num_features = 512\n elif arch == 'resnet34':\n orig_resnet = self.resnet_models.resnet34(pretrained=\n pretrained_model, **kwargs)\n arch_net = NormalResnetBackbone(orig_resnet)\n arch_net.num_features = 512\n elif arch == 'resnet50':\n orig_resnet = self.resnet_models.resnet50(pretrained=\n pretrained_model, **kwargs)\n arch_net = NormalResnetBackbone(orig_resnet)\n elif arch == 'resnet101':\n orig_resnet = self.resnet_models.resnet101(pretrained=\n pretrained_model, **kwargs)\n arch_net = NormalResnetBackbone(orig_resnet)\n elif arch == 'resnet152':\n orig_resnet = self.resnet_models.resnet152(pretrained=\n pretrained_model, **kwargs)\n arch_net = NormalResnetBackbone(orig_resnet)\n else:\n raise Exception('Architecture undefined!')\n return arch_net\n", "<import token>\n\n\nclass NormalResnetBackbone(nn.Module):\n <function token>\n <function token>\n <function token>\n\n\nclass ResNetBackbone(object):\n\n def __init__(self, configer):\n self.configer = configer\n self.resnet_models = ResNetModels(self.configer)\n\n def __call__(self, arch=None, pretrained_model=None, **kwargs):\n if arch == 'resnet18':\n orig_resnet = self.resnet_models.resnet18(pretrained=\n pretrained_model, **kwargs)\n arch_net = NormalResnetBackbone(orig_resnet)\n arch_net.num_features = 512\n elif arch == 'resnet34':\n orig_resnet = self.resnet_models.resnet34(pretrained=\n pretrained_model, **kwargs)\n arch_net = NormalResnetBackbone(orig_resnet)\n arch_net.num_features = 512\n elif arch == 'resnet50':\n orig_resnet = self.resnet_models.resnet50(pretrained=\n pretrained_model, **kwargs)\n arch_net = NormalResnetBackbone(orig_resnet)\n elif arch == 'resnet101':\n orig_resnet = self.resnet_models.resnet101(pretrained=\n pretrained_model, **kwargs)\n arch_net = NormalResnetBackbone(orig_resnet)\n elif arch == 'resnet152':\n orig_resnet = self.resnet_models.resnet152(pretrained=\n pretrained_model, **kwargs)\n arch_net = NormalResnetBackbone(orig_resnet)\n else:\n raise Exception('Architecture undefined!')\n return arch_net\n", "<import token>\n<class token>\n\n\nclass ResNetBackbone(object):\n\n def __init__(self, configer):\n self.configer = configer\n self.resnet_models = ResNetModels(self.configer)\n\n def __call__(self, arch=None, pretrained_model=None, **kwargs):\n if arch == 'resnet18':\n orig_resnet = self.resnet_models.resnet18(pretrained=\n pretrained_model, **kwargs)\n arch_net = NormalResnetBackbone(orig_resnet)\n arch_net.num_features = 512\n elif arch == 'resnet34':\n orig_resnet = self.resnet_models.resnet34(pretrained=\n pretrained_model, **kwargs)\n arch_net = NormalResnetBackbone(orig_resnet)\n arch_net.num_features = 512\n elif arch == 'resnet50':\n orig_resnet = self.resnet_models.resnet50(pretrained=\n pretrained_model, **kwargs)\n arch_net = NormalResnetBackbone(orig_resnet)\n elif arch == 'resnet101':\n orig_resnet = self.resnet_models.resnet101(pretrained=\n pretrained_model, **kwargs)\n arch_net = NormalResnetBackbone(orig_resnet)\n elif arch == 'resnet152':\n orig_resnet = self.resnet_models.resnet152(pretrained=\n pretrained_model, **kwargs)\n arch_net = NormalResnetBackbone(orig_resnet)\n else:\n raise Exception('Architecture undefined!')\n return arch_net\n", "<import token>\n<class token>\n\n\nclass ResNetBackbone(object):\n\n def __init__(self, configer):\n self.configer = configer\n self.resnet_models = ResNetModels(self.configer)\n <function token>\n", "<import token>\n<class token>\n\n\nclass ResNetBackbone(object):\n <function token>\n <function token>\n", "<import token>\n<class token>\n<class token>\n" ]
false
99,332
3dbe8718520222c8baa8db0cab55bbacc6eac80a
# Creates a Brainfuck program that outputs some input string; NOT *FULLY* optimal (yet...); Recursive solution E=lambda c,j=[],l='':len(c)>0 and E(c[1:],j+[min(''.join(min([(sum([ord(c[0])/j,j]),'>'+'+'*(abs(ord(l or'\x00')-ord(c[0]))//j)+'['+'<'+'-+'[l==''or l<c[0]]*j+'>-]<.')for j in range(1,-~abs(ord(l or'\x00')-ord(c[0])))if abs(ord(l or'\x00')-ord(c[0]))/j==abs(ord(l or'\x00')-ord(c[0]))//j]or[(0,'.')],key=lambda g:g[0])[1:]),'-+'[ord(l or'\x00')<ord(c[0])]*(abs(ord(l or'\x00')-ord(c[0])))+'.',key=len)],c[0])or''.join(j)
[ "# Creates a Brainfuck program that outputs some input string; NOT *FULLY* optimal (yet...); Recursive solution\nE=lambda c,j=[],l='':len(c)>0 and E(c[1:],j+[min(''.join(min([(sum([ord(c[0])/j,j]),'>'+'+'*(abs(ord(l or'\\x00')-ord(c[0]))//j)+'['+'<'+'-+'[l==''or l<c[0]]*j+'>-]<.')for j in range(1,-~abs(ord(l or'\\x00')-ord(c[0])))if abs(ord(l or'\\x00')-ord(c[0]))/j==abs(ord(l or'\\x00')-ord(c[0]))//j]or[(0,'.')],key=lambda g:g[0])[1:]),'-+'[ord(l or'\\x00')<ord(c[0])]*(abs(ord(l or'\\x00')-ord(c[0])))+'.',key=len)],c[0])or''.join(j)\n\n\n", "E = lambda c, j=[], l='': len(c) > 0 and E(c[1:], j + [min(''.join(min([(\n sum([ord(c[0]) / j, j]), '>' + '+' * (abs(ord(l or '\\x00') - ord(c[0])) //\n j) + '[' + '<' + '-+'[l == '' or l < c[0]] * j + '>-]<.') for j in\n range(1, -~abs(ord(l or '\\x00') - ord(c[0]))) if abs(ord(l or '\\x00') -\n ord(c[0])) / j == abs(ord(l or '\\x00') - ord(c[0])) // j] or [(0, '.')],\n key=lambda g: g[0])[1:]), '-+'[ord(l or '\\x00') < ord(c[0])] * abs(ord(\n l or '\\x00') - ord(c[0])) + '.', key=len)], c[0]) or ''.join(j)\n", "<assignment token>\n" ]
false
99,333
dde5351c31e535e06bf62d927bddba427c6b66b3
# BJ 3019 # 구현하게 쉽게 기능을 분할해라 # 높이 차가 맞아야 한다. def calc(i, s): if i + len(s) > c: return 0 base = a[i] - (ord(s[0]) - ord('0')) for j in range(len(s)): if base != a[i + j] - (ord(s[j]) - ord('0')): return 0 return 1 c, p = map(int, input().split()) a = list(map(int, input().split())) ans = 0 # 모든 자리에 놓아본다. for i in range(c): # case별 문자열로 표현하는 스킬 if p == 1: ans += calc(i, "0") + calc(i, "0000") # 바닥만 문자열로 간단하게! elif p == 2: ans += calc(i, "00") elif p == 3: ans += calc(i, "001") + calc(i, "10") elif p == 4: ans += calc(i, "100") + calc(i, "01") elif p == 5: ans += calc(i, "000") + calc(i, "01") + calc(i, "101") + calc(i, "10") elif p == 6: ans += calc(i, "000") + calc(i, "00") + calc(i, "011") + calc(i, "20") elif p == 7: ans += calc(i, "000") + calc(i, "00") + calc(i, "110") + calc(i, "02") print(ans) """ 이건 실수할 가능성이 높다. tet = [ [], [(1, 1, 1, 1)], # 예외처리: l 인경우는 무조건 성공 [(1, 1)], [(1, 1, 2), (2, 1)], [(2, 1, 1), (1, 2)], [(1, 1, 1), (1, 2), (2, 1, 2), (2, 1)], [(1, 1, 1), (1, 1), (1, 2, 2), (3, 1)], [(1, 1, 1), (1, 3), (2, 2, 1), (1, 1)] ] # 모든 자리에 놓아본다. for idx in range(c - 1): # 각 케이스별로 가능한지 체크 for case in tet[p]: length = len(case) if idx + length > c: # 범위 넘어감 continue # 높이 차가 맞아야 한다. for i in range(length - 1): if case[i] - case[i + 1] != a[idx + i] - a[idx + i + 1]: break else: ans += 1 if p == 1: ans += c """
[ "# BJ 3019\n# 구현하게 쉽게 기능을 분할해라\n# 높이 차가 맞아야 한다.\n\ndef calc(i, s):\n if i + len(s) > c:\n return 0\n base = a[i] - (ord(s[0]) - ord('0'))\n for j in range(len(s)):\n if base != a[i + j] - (ord(s[j]) - ord('0')):\n return 0\n return 1\n\n\nc, p = map(int, input().split())\na = list(map(int, input().split()))\nans = 0\n# 모든 자리에 놓아본다.\nfor i in range(c):\n # case별 문자열로 표현하는 스킬\n if p == 1:\n ans += calc(i, \"0\") + calc(i, \"0000\") # 바닥만 문자열로 간단하게!\n elif p == 2:\n ans += calc(i, \"00\")\n elif p == 3:\n ans += calc(i, \"001\") + calc(i, \"10\")\n elif p == 4:\n ans += calc(i, \"100\") + calc(i, \"01\")\n elif p == 5:\n ans += calc(i, \"000\") + calc(i, \"01\") + calc(i, \"101\") + calc(i, \"10\")\n elif p == 6:\n ans += calc(i, \"000\") + calc(i, \"00\") + calc(i, \"011\") + calc(i, \"20\")\n elif p == 7:\n ans += calc(i, \"000\") + calc(i, \"00\") + calc(i, \"110\") + calc(i, \"02\")\nprint(ans)\n\"\"\" 이건 실수할 가능성이 높다.\ntet = [\n [],\n [(1, 1, 1, 1)], # 예외처리: l 인경우는 무조건 성공\n [(1, 1)],\n [(1, 1, 2), (2, 1)],\n [(2, 1, 1), (1, 2)],\n [(1, 1, 1), (1, 2), (2, 1, 2), (2, 1)],\n [(1, 1, 1), (1, 1), (1, 2, 2), (3, 1)],\n [(1, 1, 1), (1, 3), (2, 2, 1), (1, 1)]\n]\n\n# 모든 자리에 놓아본다.\nfor idx in range(c - 1):\n # 각 케이스별로 가능한지 체크\n for case in tet[p]:\n length = len(case)\n if idx + length > c: # 범위 넘어감\n continue\n # 높이 차가 맞아야 한다.\n for i in range(length - 1):\n if case[i] - case[i + 1] != a[idx + i] - a[idx + i + 1]:\n break\n else:\n ans += 1\n\nif p == 1:\n ans += c\n\"\"\"\n", "def calc(i, s):\n if i + len(s) > c:\n return 0\n base = a[i] - (ord(s[0]) - ord('0'))\n for j in range(len(s)):\n if base != a[i + j] - (ord(s[j]) - ord('0')):\n return 0\n return 1\n\n\nc, p = map(int, input().split())\na = list(map(int, input().split()))\nans = 0\nfor i in range(c):\n if p == 1:\n ans += calc(i, '0') + calc(i, '0000')\n elif p == 2:\n ans += calc(i, '00')\n elif p == 3:\n ans += calc(i, '001') + calc(i, '10')\n elif p == 4:\n ans += calc(i, '100') + calc(i, '01')\n elif p == 5:\n ans += calc(i, '000') + calc(i, '01') + calc(i, '101') + calc(i, '10')\n elif p == 6:\n ans += calc(i, '000') + calc(i, '00') + calc(i, '011') + calc(i, '20')\n elif p == 7:\n ans += calc(i, '000') + calc(i, '00') + calc(i, '110') + calc(i, '02')\nprint(ans)\n<docstring token>\n", "def calc(i, s):\n if i + len(s) > c:\n return 0\n base = a[i] - (ord(s[0]) - ord('0'))\n for j in range(len(s)):\n if base != a[i + j] - (ord(s[j]) - ord('0')):\n return 0\n return 1\n\n\n<assignment token>\nfor i in range(c):\n if p == 1:\n ans += calc(i, '0') + calc(i, '0000')\n elif p == 2:\n ans += calc(i, '00')\n elif p == 3:\n ans += calc(i, '001') + calc(i, '10')\n elif p == 4:\n ans += calc(i, '100') + calc(i, '01')\n elif p == 5:\n ans += calc(i, '000') + calc(i, '01') + calc(i, '101') + calc(i, '10')\n elif p == 6:\n ans += calc(i, '000') + calc(i, '00') + calc(i, '011') + calc(i, '20')\n elif p == 7:\n ans += calc(i, '000') + calc(i, '00') + calc(i, '110') + calc(i, '02')\nprint(ans)\n<docstring token>\n", "def calc(i, s):\n if i + len(s) > c:\n return 0\n base = a[i] - (ord(s[0]) - ord('0'))\n for j in range(len(s)):\n if base != a[i + j] - (ord(s[j]) - ord('0')):\n return 0\n return 1\n\n\n<assignment token>\n<code token>\n<docstring token>\n", "<function token>\n<assignment token>\n<code token>\n<docstring token>\n" ]
false
99,334
9db08c80a4744b67a201f0d5edf3b3f52c40dd4e
from django.db import models class Company(models.Model): name = models.CharField(max_length=100, null=True) address = models.CharField(max_length=100, null=True) directors = models.ManyToManyField("Director", related_name="directors") siren = models.IntegerField() def __repr__(self): return self.name def __str__(self): return self.__repr__() class Director(models.Model): name = models.CharField(max_length=100, null=True) date_of_birth = models.CharField(max_length=100, null=True) companies = models.ManyToManyField("Company", related_name="companies") def __repr__(self): return self.name def __str__(self): return self.__repr__()
[ "from django.db import models\n\n\nclass Company(models.Model):\n name = models.CharField(max_length=100, null=True)\n address = models.CharField(max_length=100, null=True)\n directors = models.ManyToManyField(\"Director\", related_name=\"directors\")\n siren = models.IntegerField()\n\n def __repr__(self):\n return self.name\n\n def __str__(self):\n return self.__repr__()\n\n\nclass Director(models.Model):\n name = models.CharField(max_length=100, null=True)\n date_of_birth = models.CharField(max_length=100, null=True)\n companies = models.ManyToManyField(\"Company\", related_name=\"companies\")\n\n def __repr__(self):\n return self.name\n\n def __str__(self):\n return self.__repr__()\n", "from django.db import models\n\n\nclass Company(models.Model):\n name = models.CharField(max_length=100, null=True)\n address = models.CharField(max_length=100, null=True)\n directors = models.ManyToManyField('Director', related_name='directors')\n siren = models.IntegerField()\n\n def __repr__(self):\n return self.name\n\n def __str__(self):\n return self.__repr__()\n\n\nclass Director(models.Model):\n name = models.CharField(max_length=100, null=True)\n date_of_birth = models.CharField(max_length=100, null=True)\n companies = models.ManyToManyField('Company', related_name='companies')\n\n def __repr__(self):\n return self.name\n\n def __str__(self):\n return self.__repr__()\n", "<import token>\n\n\nclass Company(models.Model):\n name = models.CharField(max_length=100, null=True)\n address = models.CharField(max_length=100, null=True)\n directors = models.ManyToManyField('Director', related_name='directors')\n siren = models.IntegerField()\n\n def __repr__(self):\n return self.name\n\n def __str__(self):\n return self.__repr__()\n\n\nclass Director(models.Model):\n name = models.CharField(max_length=100, null=True)\n date_of_birth = models.CharField(max_length=100, null=True)\n companies = models.ManyToManyField('Company', related_name='companies')\n\n def __repr__(self):\n return self.name\n\n def __str__(self):\n return self.__repr__()\n", "<import token>\n\n\nclass Company(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __repr__(self):\n return self.name\n\n def __str__(self):\n return self.__repr__()\n\n\nclass Director(models.Model):\n name = models.CharField(max_length=100, null=True)\n date_of_birth = models.CharField(max_length=100, null=True)\n companies = models.ManyToManyField('Company', related_name='companies')\n\n def __repr__(self):\n return self.name\n\n def __str__(self):\n return self.__repr__()\n", "<import token>\n\n\nclass Company(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n\n def __str__(self):\n return self.__repr__()\n\n\nclass Director(models.Model):\n name = models.CharField(max_length=100, null=True)\n date_of_birth = models.CharField(max_length=100, null=True)\n companies = models.ManyToManyField('Company', related_name='companies')\n\n def __repr__(self):\n return self.name\n\n def __str__(self):\n return self.__repr__()\n", "<import token>\n\n\nclass Company(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n\n\nclass Director(models.Model):\n name = models.CharField(max_length=100, null=True)\n date_of_birth = models.CharField(max_length=100, null=True)\n companies = models.ManyToManyField('Company', related_name='companies')\n\n def __repr__(self):\n return self.name\n\n def __str__(self):\n return self.__repr__()\n", "<import token>\n<class token>\n\n\nclass Director(models.Model):\n name = models.CharField(max_length=100, null=True)\n date_of_birth = models.CharField(max_length=100, null=True)\n companies = models.ManyToManyField('Company', related_name='companies')\n\n def __repr__(self):\n return self.name\n\n def __str__(self):\n return self.__repr__()\n", "<import token>\n<class token>\n\n\nclass Director(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __repr__(self):\n return self.name\n\n def __str__(self):\n return self.__repr__()\n", "<import token>\n<class token>\n\n\nclass Director(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n\n def __str__(self):\n return self.__repr__()\n", "<import token>\n<class token>\n\n\nclass Director(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n", "<import token>\n<class token>\n<class token>\n" ]
false
99,335
114348377f847d0b511e30aae79d98b876eb49ae
from main import app from models import db, Ingredients import csv db.create_all(app=app) with open('ingrediants.csv', newline='') as csvfile: reader = csv.DictReader(csvfile, delimiter= ',') for row in reader: if row['item'] == '': row['item'] = None if row['price'] == '': row['price'] = None ingrediants = Ingredients( item= row['item'], price= row['price'] ) db.session.add(item) db.session.commit() print('database initialized!')
[ "from main import app\nfrom models import db, Ingredients\nimport csv\n\ndb.create_all(app=app)\n\nwith open('ingrediants.csv', newline='') as csvfile:\n reader = csv.DictReader(csvfile, delimiter= ',')\n\n for row in reader:\n if row['item'] == '':\n row['item'] = None\n if row['price'] == '':\n row['price'] = None\n\n ingrediants = Ingredients(\n item= row['item'],\n price= row['price']\n )\n db.session.add(item)\n db.session.commit()\nprint('database initialized!')", "from main import app\nfrom models import db, Ingredients\nimport csv\ndb.create_all(app=app)\nwith open('ingrediants.csv', newline='') as csvfile:\n reader = csv.DictReader(csvfile, delimiter=',')\n for row in reader:\n if row['item'] == '':\n row['item'] = None\n if row['price'] == '':\n row['price'] = None\n ingrediants = Ingredients(item=row['item'], price=row['price'])\n db.session.add(item)\n db.session.commit()\nprint('database initialized!')\n", "<import token>\ndb.create_all(app=app)\nwith open('ingrediants.csv', newline='') as csvfile:\n reader = csv.DictReader(csvfile, delimiter=',')\n for row in reader:\n if row['item'] == '':\n row['item'] = None\n if row['price'] == '':\n row['price'] = None\n ingrediants = Ingredients(item=row['item'], price=row['price'])\n db.session.add(item)\n db.session.commit()\nprint('database initialized!')\n", "<import token>\n<code token>\n" ]
false
99,336
ce0cffd9083c2640833e3b519b868a2914632546
''' 8. En Años anteriores, se necesitaba una función en python que reciba un texto conteniendo bits (simbolos 1 y 0), y debia armar una lista conteniendo 8 bits por elementos (1 byte). Por ejemplo, si se incova la funcion con el siguiente texto como parámetro: "1001010101000101010101100101001010101010" la funcion devuelve: ['10010101', '01000101', '01010110', '01010010', '10101010'] El programador de ese momento armó el siguiente código: ''' #Definicion de las funciones def validacion(texto): """ Permite validar el texto binario :param texto: String de numeros binarios :return: Un bolleano con True or False """ bandera = False for caracter in texto: if caracter != '0' and caracter != '1': bandera = True if bandera == True: print("El texto ingresado no es binario") return bandera def ej08a(texto): """Arma una lista de bytes acorde al texto recibido por parametro""" indice = 0 resultado = [] current_byte = "" for i in texto: current_byte += i # se agrega el nuevo caracter al byte actual indice += 1 # se incrementa en uno el indice if indice % 8 == 0: # Comienza un nuevo byte resultado.append(current_byte) current_byte = "" return resultado #Cuerpo del programa texto = "111101010100010101010110010100101011101" while validacion(texto) != False: #Aqui valido el texto, y si no es valido solicito se ingrese uno válido texto = input('Ingrese un texto binario: ') print(ej08a(texto))
[ "'''\n8. En Años anteriores, se necesitaba una función en python que reciba un texto conteniendo bits (simbolos 1 y 0),\n y debia armar una lista conteniendo 8 bits por elementos (1 byte). Por ejemplo, si se incova la funcion con el\n siguiente texto como parámetro: \"1001010101000101010101100101001010101010\"\nla funcion devuelve: ['10010101', '01000101', '01010110', '01010010', '10101010']\n\nEl programador de ese momento armó el siguiente código:\n'''\n\n#Definicion de las funciones\ndef validacion(texto):\n \"\"\"\n Permite validar el texto binario\n :param texto: String de numeros binarios\n :return: Un bolleano con True or False\n \"\"\"\n bandera = False\n for caracter in texto:\n if caracter != '0' and caracter != '1':\n bandera = True\n if bandera == True:\n print(\"El texto ingresado no es binario\")\n return bandera\n\ndef ej08a(texto):\n \"\"\"Arma una lista de bytes acorde al texto recibido por parametro\"\"\"\n indice = 0\n resultado = []\n current_byte = \"\"\n\n for i in texto:\n current_byte += i # se agrega el nuevo caracter al byte actual\n indice += 1 # se incrementa en uno el indice\n if indice % 8 == 0:\n # Comienza un nuevo byte\n resultado.append(current_byte)\n current_byte = \"\"\n return resultado\n\n#Cuerpo del programa\ntexto = \"111101010100010101010110010100101011101\"\n\n\nwhile validacion(texto) != False: #Aqui valido el texto, y si no es valido solicito se ingrese uno válido\n texto = input('Ingrese un texto binario: ')\n\nprint(ej08a(texto))\n\n", "<docstring token>\n\n\ndef validacion(texto):\n \"\"\"\n Permite validar el texto binario\n :param texto: String de numeros binarios\n :return: Un bolleano con True or False\n \"\"\"\n bandera = False\n for caracter in texto:\n if caracter != '0' and caracter != '1':\n bandera = True\n if bandera == True:\n print('El texto ingresado no es binario')\n return bandera\n\n\ndef ej08a(texto):\n \"\"\"Arma una lista de bytes acorde al texto recibido por parametro\"\"\"\n indice = 0\n resultado = []\n current_byte = ''\n for i in texto:\n current_byte += i\n indice += 1\n if indice % 8 == 0:\n resultado.append(current_byte)\n current_byte = ''\n return resultado\n\n\ntexto = '111101010100010101010110010100101011101'\nwhile validacion(texto) != False:\n texto = input('Ingrese un texto binario: ')\nprint(ej08a(texto))\n", "<docstring token>\n\n\ndef validacion(texto):\n \"\"\"\n Permite validar el texto binario\n :param texto: String de numeros binarios\n :return: Un bolleano con True or False\n \"\"\"\n bandera = False\n for caracter in texto:\n if caracter != '0' and caracter != '1':\n bandera = True\n if bandera == True:\n print('El texto ingresado no es binario')\n return bandera\n\n\ndef ej08a(texto):\n \"\"\"Arma una lista de bytes acorde al texto recibido por parametro\"\"\"\n indice = 0\n resultado = []\n current_byte = ''\n for i in texto:\n current_byte += i\n indice += 1\n if indice % 8 == 0:\n resultado.append(current_byte)\n current_byte = ''\n return resultado\n\n\n<assignment token>\nwhile validacion(texto) != False:\n texto = input('Ingrese un texto binario: ')\nprint(ej08a(texto))\n", "<docstring token>\n\n\ndef validacion(texto):\n \"\"\"\n Permite validar el texto binario\n :param texto: String de numeros binarios\n :return: Un bolleano con True or False\n \"\"\"\n bandera = False\n for caracter in texto:\n if caracter != '0' and caracter != '1':\n bandera = True\n if bandera == True:\n print('El texto ingresado no es binario')\n return bandera\n\n\ndef ej08a(texto):\n \"\"\"Arma una lista de bytes acorde al texto recibido por parametro\"\"\"\n indice = 0\n resultado = []\n current_byte = ''\n for i in texto:\n current_byte += i\n indice += 1\n if indice % 8 == 0:\n resultado.append(current_byte)\n current_byte = ''\n return resultado\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n\n\ndef validacion(texto):\n \"\"\"\n Permite validar el texto binario\n :param texto: String de numeros binarios\n :return: Un bolleano con True or False\n \"\"\"\n bandera = False\n for caracter in texto:\n if caracter != '0' and caracter != '1':\n bandera = True\n if bandera == True:\n print('El texto ingresado no es binario')\n return bandera\n\n\n<function token>\n<assignment token>\n<code token>\n", "<docstring token>\n<function token>\n<function token>\n<assignment token>\n<code token>\n" ]
false
99,337
c8db5bde09945e3fe96c629dc41efbe5055ae1b9
try: from configparser import NoOptionError, NoSectionError except ImportError: from ConfigParser import NoOptionError, NoSectionError import json import requests import sys from fedcred import common class Okta(object): def __init__(self, config): self.config = config try: self.okta_org = self.config.get('okta', 'organization') self.auth_url = "https://" + self.okta_org + "/api/v1/authn" self.app_url = self.config.get('okta', 'app_url') except (NoOptionError, NoSectionError) as e: sys.exit(e.message) self.headers_dict = { "Content-Type": "application/json", "Accept": "application/json" } def second_factor(self, factor, state_token): session = requests.Session() response = session.post( factor['_links']['verify']['href'], headers=self.headers_dict, data=json.dumps({"stateToken": state_token}) ) try: passcode_input = raw_input except NameError: passcode_input = input passcode = passcode_input("Please provide your one-time passcode: ") session = requests.Session() response = session.post( factor['_links']['verify']['href'], headers=self.headers_dict, data=json.dumps( {"stateToken": state_token, "passCode": passcode }) ) if response.status_code != 200: sys.exit("Second factor verification failed: %s" % (json.loads(response.text)['errorSummary']),) return response def process_success(self, response): session_token = json.loads(response.text)['sessionToken'] session = requests.Session() saml = session.get(self.app_url + "?onetimetoken=" + session_token) assertion = common.get_saml_assertion(saml) arn_dict = common.get_arns_from_assertion(assertion) sts_creds = common.get_sts_creds(arn_dict) try: common.write_credentials( self.config.get( common.DEFAULT_CONFIG_SECTION, 'aws_credential_profile' ), sts_creds ) except (NoOptionError, NoSectionError) as e: sys.exit(e.message) def auth(self): session = requests.Session() username, password = common.get_user_credentials() payload_dict = { "username": username, "password": password } response = session.post( self.auth_url, headers=self.headers_dict, data=json.dumps(payload_dict) ) if response.status_code != 200: e = json.loads(response.text) sys.exit("Primary authentication failed: %s. Error code: %s" % (e['errorSummary'], e['errorCode'])) auth_response = json.loads(response.text) if auth_response['status'] == 'MFA_REQUIRED': print("Please choose a second factor:\n") for i in range(0, len(auth_response['_embedded']['factors'])): print("[%s] - %s" % (i, auth_response['_embedded']['factors'][i]['factorType'])) try: factor_input = raw_input except NameError: factor_input = input choice = int(factor_input("Chose a second factor: ")) if choice > (len(auth_response['_embedded']['factors']) - 1): sys.exit('Sorry, that is not a valid role choice.') chosen_factor = auth_response['_embedded']['factors'][choice] if (chosen_factor['factorType'] == 'sms' or chosen_factor['factorType'] == 'token:software:totp'): response = self.second_factor( chosen_factor, auth_response['stateToken']) else: sys.exit("Unsupported second factor.") if json.loads(response.text)['status'] == 'SUCCESS': self.process_success(response) else: print("Authentication failed with status: %s" % (json.loads(response.text)['status'],)) elif auth_response['status'] == 'SUCCESS': self.process_success(response) else: print("Unable to login: %s" % (auth_response['status'],))
[ "try:\n from configparser import NoOptionError, NoSectionError\nexcept ImportError:\n from ConfigParser import NoOptionError, NoSectionError\nimport json\nimport requests\nimport sys\n\nfrom fedcred import common\n\n\nclass Okta(object):\n def __init__(self, config):\n self.config = config\n try:\n self.okta_org = self.config.get('okta', 'organization')\n self.auth_url = \"https://\" + self.okta_org + \"/api/v1/authn\"\n self.app_url = self.config.get('okta', 'app_url')\n except (NoOptionError, NoSectionError) as e:\n sys.exit(e.message)\n self.headers_dict = {\n \"Content-Type\": \"application/json\",\n \"Accept\": \"application/json\"\n }\n\n def second_factor(self, factor, state_token):\n session = requests.Session()\n response = session.post(\n factor['_links']['verify']['href'],\n headers=self.headers_dict,\n data=json.dumps({\"stateToken\": state_token})\n )\n try:\n passcode_input = raw_input\n except NameError:\n passcode_input = input\n passcode = passcode_input(\"Please provide your one-time passcode: \")\n session = requests.Session()\n response = session.post(\n factor['_links']['verify']['href'],\n headers=self.headers_dict,\n data=json.dumps(\n {\"stateToken\": state_token,\n \"passCode\": passcode\n })\n )\n if response.status_code != 200:\n sys.exit(\"Second factor verification failed: %s\" %\n (json.loads(response.text)['errorSummary']),)\n return response\n\n def process_success(self, response):\n session_token = json.loads(response.text)['sessionToken']\n session = requests.Session()\n saml = session.get(self.app_url + \"?onetimetoken=\" + session_token)\n assertion = common.get_saml_assertion(saml)\n arn_dict = common.get_arns_from_assertion(assertion)\n sts_creds = common.get_sts_creds(arn_dict)\n try:\n common.write_credentials(\n self.config.get(\n common.DEFAULT_CONFIG_SECTION,\n 'aws_credential_profile'\n ),\n sts_creds\n )\n except (NoOptionError, NoSectionError) as e:\n sys.exit(e.message)\n\n def auth(self):\n session = requests.Session()\n username, password = common.get_user_credentials()\n payload_dict = {\n \"username\": username,\n \"password\": password\n }\n\n response = session.post(\n self.auth_url,\n headers=self.headers_dict,\n data=json.dumps(payload_dict)\n )\n\n if response.status_code != 200:\n e = json.loads(response.text)\n sys.exit(\"Primary authentication failed: %s. Error code: %s\" %\n (e['errorSummary'], e['errorCode']))\n\n auth_response = json.loads(response.text)\n if auth_response['status'] == 'MFA_REQUIRED':\n print(\"Please choose a second factor:\\n\")\n for i in range(0, len(auth_response['_embedded']['factors'])):\n print(\"[%s] - %s\" % (i,\n auth_response['_embedded']['factors'][i]['factorType']))\n\n try:\n factor_input = raw_input\n except NameError:\n factor_input = input\n choice = int(factor_input(\"Chose a second factor: \"))\n if choice > (len(auth_response['_embedded']['factors']) - 1):\n sys.exit('Sorry, that is not a valid role choice.')\n chosen_factor = auth_response['_embedded']['factors'][choice]\n\n if (chosen_factor['factorType'] == 'sms' or\n chosen_factor['factorType'] == 'token:software:totp'):\n response = self.second_factor(\n chosen_factor, auth_response['stateToken'])\n else:\n sys.exit(\"Unsupported second factor.\")\n\n if json.loads(response.text)['status'] == 'SUCCESS':\n self.process_success(response)\n else:\n print(\"Authentication failed with status: %s\" %\n (json.loads(response.text)['status'],))\n elif auth_response['status'] == 'SUCCESS':\n self.process_success(response)\n else:\n print(\"Unable to login: %s\" % (auth_response['status'],))\n", "try:\n from configparser import NoOptionError, NoSectionError\nexcept ImportError:\n from ConfigParser import NoOptionError, NoSectionError\nimport json\nimport requests\nimport sys\nfrom fedcred import common\n\n\nclass Okta(object):\n\n def __init__(self, config):\n self.config = config\n try:\n self.okta_org = self.config.get('okta', 'organization')\n self.auth_url = 'https://' + self.okta_org + '/api/v1/authn'\n self.app_url = self.config.get('okta', 'app_url')\n except (NoOptionError, NoSectionError) as e:\n sys.exit(e.message)\n self.headers_dict = {'Content-Type': 'application/json', 'Accept':\n 'application/json'}\n\n def second_factor(self, factor, state_token):\n session = requests.Session()\n response = session.post(factor['_links']['verify']['href'], headers\n =self.headers_dict, data=json.dumps({'stateToken': state_token}))\n try:\n passcode_input = raw_input\n except NameError:\n passcode_input = input\n passcode = passcode_input('Please provide your one-time passcode: ')\n session = requests.Session()\n response = session.post(factor['_links']['verify']['href'], headers\n =self.headers_dict, data=json.dumps({'stateToken': state_token,\n 'passCode': passcode}))\n if response.status_code != 200:\n sys.exit('Second factor verification failed: %s' % json.loads(\n response.text)['errorSummary'])\n return response\n\n def process_success(self, response):\n session_token = json.loads(response.text)['sessionToken']\n session = requests.Session()\n saml = session.get(self.app_url + '?onetimetoken=' + session_token)\n assertion = common.get_saml_assertion(saml)\n arn_dict = common.get_arns_from_assertion(assertion)\n sts_creds = common.get_sts_creds(arn_dict)\n try:\n common.write_credentials(self.config.get(common.\n DEFAULT_CONFIG_SECTION, 'aws_credential_profile'), sts_creds)\n except (NoOptionError, NoSectionError) as e:\n sys.exit(e.message)\n\n def auth(self):\n session = requests.Session()\n username, password = common.get_user_credentials()\n payload_dict = {'username': username, 'password': password}\n response = session.post(self.auth_url, headers=self.headers_dict,\n data=json.dumps(payload_dict))\n if response.status_code != 200:\n e = json.loads(response.text)\n sys.exit('Primary authentication failed: %s. Error code: %s' %\n (e['errorSummary'], e['errorCode']))\n auth_response = json.loads(response.text)\n if auth_response['status'] == 'MFA_REQUIRED':\n print('Please choose a second factor:\\n')\n for i in range(0, len(auth_response['_embedded']['factors'])):\n print('[%s] - %s' % (i, auth_response['_embedded'][\n 'factors'][i]['factorType']))\n try:\n factor_input = raw_input\n except NameError:\n factor_input = input\n choice = int(factor_input('Chose a second factor: '))\n if choice > len(auth_response['_embedded']['factors']) - 1:\n sys.exit('Sorry, that is not a valid role choice.')\n chosen_factor = auth_response['_embedded']['factors'][choice]\n if chosen_factor['factorType'] == 'sms' or chosen_factor[\n 'factorType'] == 'token:software:totp':\n response = self.second_factor(chosen_factor, auth_response[\n 'stateToken'])\n else:\n sys.exit('Unsupported second factor.')\n if json.loads(response.text)['status'] == 'SUCCESS':\n self.process_success(response)\n else:\n print('Authentication failed with status: %s' % (json.loads\n (response.text)['status'],))\n elif auth_response['status'] == 'SUCCESS':\n self.process_success(response)\n else:\n print('Unable to login: %s' % (auth_response['status'],))\n", "try:\n from configparser import NoOptionError, NoSectionError\nexcept ImportError:\n from ConfigParser import NoOptionError, NoSectionError\n<import token>\n\n\nclass Okta(object):\n\n def __init__(self, config):\n self.config = config\n try:\n self.okta_org = self.config.get('okta', 'organization')\n self.auth_url = 'https://' + self.okta_org + '/api/v1/authn'\n self.app_url = self.config.get('okta', 'app_url')\n except (NoOptionError, NoSectionError) as e:\n sys.exit(e.message)\n self.headers_dict = {'Content-Type': 'application/json', 'Accept':\n 'application/json'}\n\n def second_factor(self, factor, state_token):\n session = requests.Session()\n response = session.post(factor['_links']['verify']['href'], headers\n =self.headers_dict, data=json.dumps({'stateToken': state_token}))\n try:\n passcode_input = raw_input\n except NameError:\n passcode_input = input\n passcode = passcode_input('Please provide your one-time passcode: ')\n session = requests.Session()\n response = session.post(factor['_links']['verify']['href'], headers\n =self.headers_dict, data=json.dumps({'stateToken': state_token,\n 'passCode': passcode}))\n if response.status_code != 200:\n sys.exit('Second factor verification failed: %s' % json.loads(\n response.text)['errorSummary'])\n return response\n\n def process_success(self, response):\n session_token = json.loads(response.text)['sessionToken']\n session = requests.Session()\n saml = session.get(self.app_url + '?onetimetoken=' + session_token)\n assertion = common.get_saml_assertion(saml)\n arn_dict = common.get_arns_from_assertion(assertion)\n sts_creds = common.get_sts_creds(arn_dict)\n try:\n common.write_credentials(self.config.get(common.\n DEFAULT_CONFIG_SECTION, 'aws_credential_profile'), sts_creds)\n except (NoOptionError, NoSectionError) as e:\n sys.exit(e.message)\n\n def auth(self):\n session = requests.Session()\n username, password = common.get_user_credentials()\n payload_dict = {'username': username, 'password': password}\n response = session.post(self.auth_url, headers=self.headers_dict,\n data=json.dumps(payload_dict))\n if response.status_code != 200:\n e = json.loads(response.text)\n sys.exit('Primary authentication failed: %s. Error code: %s' %\n (e['errorSummary'], e['errorCode']))\n auth_response = json.loads(response.text)\n if auth_response['status'] == 'MFA_REQUIRED':\n print('Please choose a second factor:\\n')\n for i in range(0, len(auth_response['_embedded']['factors'])):\n print('[%s] - %s' % (i, auth_response['_embedded'][\n 'factors'][i]['factorType']))\n try:\n factor_input = raw_input\n except NameError:\n factor_input = input\n choice = int(factor_input('Chose a second factor: '))\n if choice > len(auth_response['_embedded']['factors']) - 1:\n sys.exit('Sorry, that is not a valid role choice.')\n chosen_factor = auth_response['_embedded']['factors'][choice]\n if chosen_factor['factorType'] == 'sms' or chosen_factor[\n 'factorType'] == 'token:software:totp':\n response = self.second_factor(chosen_factor, auth_response[\n 'stateToken'])\n else:\n sys.exit('Unsupported second factor.')\n if json.loads(response.text)['status'] == 'SUCCESS':\n self.process_success(response)\n else:\n print('Authentication failed with status: %s' % (json.loads\n (response.text)['status'],))\n elif auth_response['status'] == 'SUCCESS':\n self.process_success(response)\n else:\n print('Unable to login: %s' % (auth_response['status'],))\n", "<code token>\n<import token>\n\n\nclass Okta(object):\n\n def __init__(self, config):\n self.config = config\n try:\n self.okta_org = self.config.get('okta', 'organization')\n self.auth_url = 'https://' + self.okta_org + '/api/v1/authn'\n self.app_url = self.config.get('okta', 'app_url')\n except (NoOptionError, NoSectionError) as e:\n sys.exit(e.message)\n self.headers_dict = {'Content-Type': 'application/json', 'Accept':\n 'application/json'}\n\n def second_factor(self, factor, state_token):\n session = requests.Session()\n response = session.post(factor['_links']['verify']['href'], headers\n =self.headers_dict, data=json.dumps({'stateToken': state_token}))\n try:\n passcode_input = raw_input\n except NameError:\n passcode_input = input\n passcode = passcode_input('Please provide your one-time passcode: ')\n session = requests.Session()\n response = session.post(factor['_links']['verify']['href'], headers\n =self.headers_dict, data=json.dumps({'stateToken': state_token,\n 'passCode': passcode}))\n if response.status_code != 200:\n sys.exit('Second factor verification failed: %s' % json.loads(\n response.text)['errorSummary'])\n return response\n\n def process_success(self, response):\n session_token = json.loads(response.text)['sessionToken']\n session = requests.Session()\n saml = session.get(self.app_url + '?onetimetoken=' + session_token)\n assertion = common.get_saml_assertion(saml)\n arn_dict = common.get_arns_from_assertion(assertion)\n sts_creds = common.get_sts_creds(arn_dict)\n try:\n common.write_credentials(self.config.get(common.\n DEFAULT_CONFIG_SECTION, 'aws_credential_profile'), sts_creds)\n except (NoOptionError, NoSectionError) as e:\n sys.exit(e.message)\n\n def auth(self):\n session = requests.Session()\n username, password = common.get_user_credentials()\n payload_dict = {'username': username, 'password': password}\n response = session.post(self.auth_url, headers=self.headers_dict,\n data=json.dumps(payload_dict))\n if response.status_code != 200:\n e = json.loads(response.text)\n sys.exit('Primary authentication failed: %s. Error code: %s' %\n (e['errorSummary'], e['errorCode']))\n auth_response = json.loads(response.text)\n if auth_response['status'] == 'MFA_REQUIRED':\n print('Please choose a second factor:\\n')\n for i in range(0, len(auth_response['_embedded']['factors'])):\n print('[%s] - %s' % (i, auth_response['_embedded'][\n 'factors'][i]['factorType']))\n try:\n factor_input = raw_input\n except NameError:\n factor_input = input\n choice = int(factor_input('Chose a second factor: '))\n if choice > len(auth_response['_embedded']['factors']) - 1:\n sys.exit('Sorry, that is not a valid role choice.')\n chosen_factor = auth_response['_embedded']['factors'][choice]\n if chosen_factor['factorType'] == 'sms' or chosen_factor[\n 'factorType'] == 'token:software:totp':\n response = self.second_factor(chosen_factor, auth_response[\n 'stateToken'])\n else:\n sys.exit('Unsupported second factor.')\n if json.loads(response.text)['status'] == 'SUCCESS':\n self.process_success(response)\n else:\n print('Authentication failed with status: %s' % (json.loads\n (response.text)['status'],))\n elif auth_response['status'] == 'SUCCESS':\n self.process_success(response)\n else:\n print('Unable to login: %s' % (auth_response['status'],))\n", "<code token>\n<import token>\n\n\nclass Okta(object):\n\n def __init__(self, config):\n self.config = config\n try:\n self.okta_org = self.config.get('okta', 'organization')\n self.auth_url = 'https://' + self.okta_org + '/api/v1/authn'\n self.app_url = self.config.get('okta', 'app_url')\n except (NoOptionError, NoSectionError) as e:\n sys.exit(e.message)\n self.headers_dict = {'Content-Type': 'application/json', 'Accept':\n 'application/json'}\n <function token>\n\n def process_success(self, response):\n session_token = json.loads(response.text)['sessionToken']\n session = requests.Session()\n saml = session.get(self.app_url + '?onetimetoken=' + session_token)\n assertion = common.get_saml_assertion(saml)\n arn_dict = common.get_arns_from_assertion(assertion)\n sts_creds = common.get_sts_creds(arn_dict)\n try:\n common.write_credentials(self.config.get(common.\n DEFAULT_CONFIG_SECTION, 'aws_credential_profile'), sts_creds)\n except (NoOptionError, NoSectionError) as e:\n sys.exit(e.message)\n\n def auth(self):\n session = requests.Session()\n username, password = common.get_user_credentials()\n payload_dict = {'username': username, 'password': password}\n response = session.post(self.auth_url, headers=self.headers_dict,\n data=json.dumps(payload_dict))\n if response.status_code != 200:\n e = json.loads(response.text)\n sys.exit('Primary authentication failed: %s. Error code: %s' %\n (e['errorSummary'], e['errorCode']))\n auth_response = json.loads(response.text)\n if auth_response['status'] == 'MFA_REQUIRED':\n print('Please choose a second factor:\\n')\n for i in range(0, len(auth_response['_embedded']['factors'])):\n print('[%s] - %s' % (i, auth_response['_embedded'][\n 'factors'][i]['factorType']))\n try:\n factor_input = raw_input\n except NameError:\n factor_input = input\n choice = int(factor_input('Chose a second factor: '))\n if choice > len(auth_response['_embedded']['factors']) - 1:\n sys.exit('Sorry, that is not a valid role choice.')\n chosen_factor = auth_response['_embedded']['factors'][choice]\n if chosen_factor['factorType'] == 'sms' or chosen_factor[\n 'factorType'] == 'token:software:totp':\n response = self.second_factor(chosen_factor, auth_response[\n 'stateToken'])\n else:\n sys.exit('Unsupported second factor.')\n if json.loads(response.text)['status'] == 'SUCCESS':\n self.process_success(response)\n else:\n print('Authentication failed with status: %s' % (json.loads\n (response.text)['status'],))\n elif auth_response['status'] == 'SUCCESS':\n self.process_success(response)\n else:\n print('Unable to login: %s' % (auth_response['status'],))\n", "<code token>\n<import token>\n\n\nclass Okta(object):\n\n def __init__(self, config):\n self.config = config\n try:\n self.okta_org = self.config.get('okta', 'organization')\n self.auth_url = 'https://' + self.okta_org + '/api/v1/authn'\n self.app_url = self.config.get('okta', 'app_url')\n except (NoOptionError, NoSectionError) as e:\n sys.exit(e.message)\n self.headers_dict = {'Content-Type': 'application/json', 'Accept':\n 'application/json'}\n <function token>\n <function token>\n\n def auth(self):\n session = requests.Session()\n username, password = common.get_user_credentials()\n payload_dict = {'username': username, 'password': password}\n response = session.post(self.auth_url, headers=self.headers_dict,\n data=json.dumps(payload_dict))\n if response.status_code != 200:\n e = json.loads(response.text)\n sys.exit('Primary authentication failed: %s. Error code: %s' %\n (e['errorSummary'], e['errorCode']))\n auth_response = json.loads(response.text)\n if auth_response['status'] == 'MFA_REQUIRED':\n print('Please choose a second factor:\\n')\n for i in range(0, len(auth_response['_embedded']['factors'])):\n print('[%s] - %s' % (i, auth_response['_embedded'][\n 'factors'][i]['factorType']))\n try:\n factor_input = raw_input\n except NameError:\n factor_input = input\n choice = int(factor_input('Chose a second factor: '))\n if choice > len(auth_response['_embedded']['factors']) - 1:\n sys.exit('Sorry, that is not a valid role choice.')\n chosen_factor = auth_response['_embedded']['factors'][choice]\n if chosen_factor['factorType'] == 'sms' or chosen_factor[\n 'factorType'] == 'token:software:totp':\n response = self.second_factor(chosen_factor, auth_response[\n 'stateToken'])\n else:\n sys.exit('Unsupported second factor.')\n if json.loads(response.text)['status'] == 'SUCCESS':\n self.process_success(response)\n else:\n print('Authentication failed with status: %s' % (json.loads\n (response.text)['status'],))\n elif auth_response['status'] == 'SUCCESS':\n self.process_success(response)\n else:\n print('Unable to login: %s' % (auth_response['status'],))\n", "<code token>\n<import token>\n\n\nclass Okta(object):\n <function token>\n <function token>\n <function token>\n\n def auth(self):\n session = requests.Session()\n username, password = common.get_user_credentials()\n payload_dict = {'username': username, 'password': password}\n response = session.post(self.auth_url, headers=self.headers_dict,\n data=json.dumps(payload_dict))\n if response.status_code != 200:\n e = json.loads(response.text)\n sys.exit('Primary authentication failed: %s. Error code: %s' %\n (e['errorSummary'], e['errorCode']))\n auth_response = json.loads(response.text)\n if auth_response['status'] == 'MFA_REQUIRED':\n print('Please choose a second factor:\\n')\n for i in range(0, len(auth_response['_embedded']['factors'])):\n print('[%s] - %s' % (i, auth_response['_embedded'][\n 'factors'][i]['factorType']))\n try:\n factor_input = raw_input\n except NameError:\n factor_input = input\n choice = int(factor_input('Chose a second factor: '))\n if choice > len(auth_response['_embedded']['factors']) - 1:\n sys.exit('Sorry, that is not a valid role choice.')\n chosen_factor = auth_response['_embedded']['factors'][choice]\n if chosen_factor['factorType'] == 'sms' or chosen_factor[\n 'factorType'] == 'token:software:totp':\n response = self.second_factor(chosen_factor, auth_response[\n 'stateToken'])\n else:\n sys.exit('Unsupported second factor.')\n if json.loads(response.text)['status'] == 'SUCCESS':\n self.process_success(response)\n else:\n print('Authentication failed with status: %s' % (json.loads\n (response.text)['status'],))\n elif auth_response['status'] == 'SUCCESS':\n self.process_success(response)\n else:\n print('Unable to login: %s' % (auth_response['status'],))\n", "<code token>\n<import token>\n\n\nclass Okta(object):\n <function token>\n <function token>\n <function token>\n <function token>\n", "<code token>\n<import token>\n<class token>\n" ]
false
99,338
ec8c5efb5d112e3297a0d9e1d3203e4e65a65331
'''Utility functions ''' import os import subprocess import sys from collist import collist def toBool(input_string): return input_string.upper() in ('T', 'TRUE', '1', 'YES', 'ON') VERBOSE = toBool(os.getenv('VERBOSE', 'false')) class QuitApplication(Exception): pass class MouseButton: left = 1 middle = 2 right = 3 scroll_up = 4 scroll_down = 5 back = 8 forward = 9 names = { 1: 'left button', 2: 'middle button', 3: 'right button', 4: 'wheel up', 5: 'wheel down', 8: 'back button', 9: 'forward button', } def xStr(string): encoded = string.encode('utf8') return len(encoded), encoded def Perimeter(*args): # pylint: disable=invalid-name if len(args) == 1: return (args[0], args[0], args[0], args[0]) if len(args) == 2: return (args[0], args[1], args[0], args[1]) if len(args) == 3: return (args[0], args[1], args[2], args[1]) return (args[0], args[1], args[2], args[3]) def dataAttrs(key, val): return key != '__dict__' and not callable(val) def publicDataAttrs(key, val): return not key.startswith('__') and not key.endswith('__') and not callable(val) def methodAttrs(_key, val): return callable(val) def color(colorNum, message): return f'\x1b[{colorNum}m{message}\x1b[m' def printError(message, *args): print(' '.join([color(91, message), *(str(arg) for arg in args)]), file=sys.stderr) sys.stderr.flush() def printWarning(message, *args): print(' '.join([color('38;5;202', message), *(str(arg) for arg in args)]), file=sys.stderr) sys.stderr.flush() def printInfo(message, *args): print(' '.join([color(93, message), *(str(arg) for arg in args)])) sys.stdout.flush() def inspect(obj, attrFilter=publicDataAttrs): indent = ' ' if VERBOSE and not sys.stdout.isatty() else '' output = [] for key in dir(obj): try: val = getattr(obj, key) if attrFilter(key, val): output.append('%s\x1b[96m%s:\x1b[m %r' % (indent, key, val)) except Exception as error: # pylint: disable=broad-except output.append('%s\x1b[96m%s:\x1b[m \x1b[91m%r\x1b[m' % (indent, key, error)) if sys.stdout.isatty(): print(collist(output)) elif VERBOSE: print('\n'.join(output)) else: print(' ' + ', '.join(output)) sys.stdout.flush() def runCommand(path): subprocess.call(os.path.expanduser(path)) def topStrut(width, height, left=0): return ( 0, 0, height, 0, # left, right, top, bottom, 0, 0, # left_start_y, left_end_y 0, 0, # right_start_y, right_end_y, left, left + width - 1, # top_start_x, top_end_x, 0, 0 # bottom_start_x, bottom_end_x ) def bottomStrut(width, height, left=0): return ( 0, 0, 0, height, # left, right, top, bottom, 0, 0, # left_start_y, left_end_y 0, 0, # right_start_y, right_end_y, 0, 0, # top_start_x, top_end_x, left, left + width - 1 # bottom_start_x, bottom_end_x ) def leftStrut(width, height, top=0): return ( width, 0, 0, 0, # left, right, top, bottom, top, top + height - 1, # left_start_y, left_end_y 0, 0, # right_start_y, right_end_y, 0, 0, # top_start_x, top_end_x, 0, 0 # bottom_start_x, bottom_end_x ) def rightStrut(width, height, top=0): return ( 0, width, 0, 0, # left, right, top, bottom, 0, 0, # left_start_y, left_end_y top, top + height - 1, # right_start_y, right_end_y, 0, 0, # top_start_x, top_end_x, 0, 0 # bottom_start_x, bottom_end_x )
[ "'''Utility functions\n\n'''\nimport os\nimport subprocess\nimport sys\n\nfrom collist import collist\n\n\ndef toBool(input_string):\n return input_string.upper() in ('T', 'TRUE', '1', 'YES', 'ON')\n\n\nVERBOSE = toBool(os.getenv('VERBOSE', 'false'))\n\n\nclass QuitApplication(Exception):\n pass\n\n\nclass MouseButton:\n left = 1\n middle = 2\n right = 3\n scroll_up = 4\n scroll_down = 5\n back = 8\n forward = 9\n\n names = {\n 1: 'left button',\n 2: 'middle button',\n 3: 'right button',\n 4: 'wheel up',\n 5: 'wheel down',\n 8: 'back button',\n 9: 'forward button',\n }\n\n\ndef xStr(string):\n encoded = string.encode('utf8')\n return len(encoded), encoded\n\n\ndef Perimeter(*args): # pylint: disable=invalid-name\n if len(args) == 1:\n return (args[0], args[0], args[0], args[0])\n if len(args) == 2:\n return (args[0], args[1], args[0], args[1])\n if len(args) == 3:\n return (args[0], args[1], args[2], args[1])\n return (args[0], args[1], args[2], args[3])\n\n\ndef dataAttrs(key, val):\n return key != '__dict__' and not callable(val)\n\n\ndef publicDataAttrs(key, val):\n return not key.startswith('__') and not key.endswith('__') and not callable(val)\n\n\ndef methodAttrs(_key, val):\n return callable(val)\n\n\ndef color(colorNum, message):\n return f'\\x1b[{colorNum}m{message}\\x1b[m'\n\n\ndef printError(message, *args):\n print(' '.join([color(91, message), *(str(arg) for arg in args)]), file=sys.stderr)\n sys.stderr.flush()\n\n\ndef printWarning(message, *args):\n print(' '.join([color('38;5;202', message), *(str(arg) for arg in args)]), file=sys.stderr)\n sys.stderr.flush()\n\n\ndef printInfo(message, *args):\n print(' '.join([color(93, message), *(str(arg) for arg in args)]))\n sys.stdout.flush()\n\n\ndef inspect(obj, attrFilter=publicDataAttrs):\n indent = ' ' if VERBOSE and not sys.stdout.isatty() else ''\n output = []\n\n for key in dir(obj):\n try:\n val = getattr(obj, key)\n if attrFilter(key, val):\n output.append('%s\\x1b[96m%s:\\x1b[m %r' % (indent, key, val))\n except Exception as error: # pylint: disable=broad-except\n output.append('%s\\x1b[96m%s:\\x1b[m \\x1b[91m%r\\x1b[m' % (indent, key, error))\n\n if sys.stdout.isatty():\n print(collist(output))\n elif VERBOSE:\n print('\\n'.join(output))\n else:\n print(' ' + ', '.join(output))\n sys.stdout.flush()\n\n\ndef runCommand(path):\n subprocess.call(os.path.expanduser(path))\n\n\ndef topStrut(width, height, left=0):\n return (\n 0, 0, height, 0, # left, right, top, bottom,\n 0, 0, # left_start_y, left_end_y\n 0, 0, # right_start_y, right_end_y,\n left, left + width - 1, # top_start_x, top_end_x,\n 0, 0 # bottom_start_x, bottom_end_x\n )\n\n\ndef bottomStrut(width, height, left=0):\n return (\n 0, 0, 0, height, # left, right, top, bottom,\n 0, 0, # left_start_y, left_end_y\n 0, 0, # right_start_y, right_end_y,\n 0, 0, # top_start_x, top_end_x,\n left, left + width - 1 # bottom_start_x, bottom_end_x\n )\n\n\ndef leftStrut(width, height, top=0):\n return (\n width, 0, 0, 0, # left, right, top, bottom,\n top, top + height - 1, # left_start_y, left_end_y\n 0, 0, # right_start_y, right_end_y,\n 0, 0, # top_start_x, top_end_x,\n 0, 0 # bottom_start_x, bottom_end_x\n )\n\n\ndef rightStrut(width, height, top=0):\n return (\n 0, width, 0, 0, # left, right, top, bottom,\n 0, 0, # left_start_y, left_end_y\n top, top + height - 1, # right_start_y, right_end_y,\n 0, 0, # top_start_x, top_end_x,\n 0, 0 # bottom_start_x, bottom_end_x\n )\n", "<docstring token>\nimport os\nimport subprocess\nimport sys\nfrom collist import collist\n\n\ndef toBool(input_string):\n return input_string.upper() in ('T', 'TRUE', '1', 'YES', 'ON')\n\n\nVERBOSE = toBool(os.getenv('VERBOSE', 'false'))\n\n\nclass QuitApplication(Exception):\n pass\n\n\nclass MouseButton:\n left = 1\n middle = 2\n right = 3\n scroll_up = 4\n scroll_down = 5\n back = 8\n forward = 9\n names = {(1): 'left button', (2): 'middle button', (3): 'right button',\n (4): 'wheel up', (5): 'wheel down', (8): 'back button', (9):\n 'forward button'}\n\n\ndef xStr(string):\n encoded = string.encode('utf8')\n return len(encoded), encoded\n\n\ndef Perimeter(*args):\n if len(args) == 1:\n return args[0], args[0], args[0], args[0]\n if len(args) == 2:\n return args[0], args[1], args[0], args[1]\n if len(args) == 3:\n return args[0], args[1], args[2], args[1]\n return args[0], args[1], args[2], args[3]\n\n\ndef dataAttrs(key, val):\n return key != '__dict__' and not callable(val)\n\n\ndef publicDataAttrs(key, val):\n return not key.startswith('__') and not key.endswith('__'\n ) and not callable(val)\n\n\ndef methodAttrs(_key, val):\n return callable(val)\n\n\ndef color(colorNum, message):\n return f'\\x1b[{colorNum}m{message}\\x1b[m'\n\n\ndef printError(message, *args):\n print(' '.join([color(91, message), *(str(arg) for arg in args)]), file\n =sys.stderr)\n sys.stderr.flush()\n\n\ndef printWarning(message, *args):\n print(' '.join([color('38;5;202', message), *(str(arg) for arg in args)\n ]), file=sys.stderr)\n sys.stderr.flush()\n\n\ndef printInfo(message, *args):\n print(' '.join([color(93, message), *(str(arg) for arg in args)]))\n sys.stdout.flush()\n\n\ndef inspect(obj, attrFilter=publicDataAttrs):\n indent = ' ' if VERBOSE and not sys.stdout.isatty() else ''\n output = []\n for key in dir(obj):\n try:\n val = getattr(obj, key)\n if attrFilter(key, val):\n output.append('%s\\x1b[96m%s:\\x1b[m %r' % (indent, key, val))\n except Exception as error:\n output.append('%s\\x1b[96m%s:\\x1b[m \\x1b[91m%r\\x1b[m' % (indent,\n key, error))\n if sys.stdout.isatty():\n print(collist(output))\n elif VERBOSE:\n print('\\n'.join(output))\n else:\n print(' ' + ', '.join(output))\n sys.stdout.flush()\n\n\ndef runCommand(path):\n subprocess.call(os.path.expanduser(path))\n\n\ndef topStrut(width, height, left=0):\n return 0, 0, height, 0, 0, 0, 0, 0, left, left + width - 1, 0, 0\n\n\ndef bottomStrut(width, height, left=0):\n return 0, 0, 0, height, 0, 0, 0, 0, 0, 0, left, left + width - 1\n\n\ndef leftStrut(width, height, top=0):\n return width, 0, 0, 0, top, top + height - 1, 0, 0, 0, 0, 0, 0\n\n\ndef rightStrut(width, height, top=0):\n return 0, width, 0, 0, 0, 0, top, top + height - 1, 0, 0, 0, 0\n", "<docstring token>\n<import token>\n\n\ndef toBool(input_string):\n return input_string.upper() in ('T', 'TRUE', '1', 'YES', 'ON')\n\n\nVERBOSE = toBool(os.getenv('VERBOSE', 'false'))\n\n\nclass QuitApplication(Exception):\n pass\n\n\nclass MouseButton:\n left = 1\n middle = 2\n right = 3\n scroll_up = 4\n scroll_down = 5\n back = 8\n forward = 9\n names = {(1): 'left button', (2): 'middle button', (3): 'right button',\n (4): 'wheel up', (5): 'wheel down', (8): 'back button', (9):\n 'forward button'}\n\n\ndef xStr(string):\n encoded = string.encode('utf8')\n return len(encoded), encoded\n\n\ndef Perimeter(*args):\n if len(args) == 1:\n return args[0], args[0], args[0], args[0]\n if len(args) == 2:\n return args[0], args[1], args[0], args[1]\n if len(args) == 3:\n return args[0], args[1], args[2], args[1]\n return args[0], args[1], args[2], args[3]\n\n\ndef dataAttrs(key, val):\n return key != '__dict__' and not callable(val)\n\n\ndef publicDataAttrs(key, val):\n return not key.startswith('__') and not key.endswith('__'\n ) and not callable(val)\n\n\ndef methodAttrs(_key, val):\n return callable(val)\n\n\ndef color(colorNum, message):\n return f'\\x1b[{colorNum}m{message}\\x1b[m'\n\n\ndef printError(message, *args):\n print(' '.join([color(91, message), *(str(arg) for arg in args)]), file\n =sys.stderr)\n sys.stderr.flush()\n\n\ndef printWarning(message, *args):\n print(' '.join([color('38;5;202', message), *(str(arg) for arg in args)\n ]), file=sys.stderr)\n sys.stderr.flush()\n\n\ndef printInfo(message, *args):\n print(' '.join([color(93, message), *(str(arg) for arg in args)]))\n sys.stdout.flush()\n\n\ndef inspect(obj, attrFilter=publicDataAttrs):\n indent = ' ' if VERBOSE and not sys.stdout.isatty() else ''\n output = []\n for key in dir(obj):\n try:\n val = getattr(obj, key)\n if attrFilter(key, val):\n output.append('%s\\x1b[96m%s:\\x1b[m %r' % (indent, key, val))\n except Exception as error:\n output.append('%s\\x1b[96m%s:\\x1b[m \\x1b[91m%r\\x1b[m' % (indent,\n key, error))\n if sys.stdout.isatty():\n print(collist(output))\n elif VERBOSE:\n print('\\n'.join(output))\n else:\n print(' ' + ', '.join(output))\n sys.stdout.flush()\n\n\ndef runCommand(path):\n subprocess.call(os.path.expanduser(path))\n\n\ndef topStrut(width, height, left=0):\n return 0, 0, height, 0, 0, 0, 0, 0, left, left + width - 1, 0, 0\n\n\ndef bottomStrut(width, height, left=0):\n return 0, 0, 0, height, 0, 0, 0, 0, 0, 0, left, left + width - 1\n\n\ndef leftStrut(width, height, top=0):\n return width, 0, 0, 0, top, top + height - 1, 0, 0, 0, 0, 0, 0\n\n\ndef rightStrut(width, height, top=0):\n return 0, width, 0, 0, 0, 0, top, top + height - 1, 0, 0, 0, 0\n", "<docstring token>\n<import token>\n\n\ndef toBool(input_string):\n return input_string.upper() in ('T', 'TRUE', '1', 'YES', 'ON')\n\n\n<assignment token>\n\n\nclass QuitApplication(Exception):\n pass\n\n\nclass MouseButton:\n left = 1\n middle = 2\n right = 3\n scroll_up = 4\n scroll_down = 5\n back = 8\n forward = 9\n names = {(1): 'left button', (2): 'middle button', (3): 'right button',\n (4): 'wheel up', (5): 'wheel down', (8): 'back button', (9):\n 'forward button'}\n\n\ndef xStr(string):\n encoded = string.encode('utf8')\n return len(encoded), encoded\n\n\ndef Perimeter(*args):\n if len(args) == 1:\n return args[0], args[0], args[0], args[0]\n if len(args) == 2:\n return args[0], args[1], args[0], args[1]\n if len(args) == 3:\n return args[0], args[1], args[2], args[1]\n return args[0], args[1], args[2], args[3]\n\n\ndef dataAttrs(key, val):\n return key != '__dict__' and not callable(val)\n\n\ndef publicDataAttrs(key, val):\n return not key.startswith('__') and not key.endswith('__'\n ) and not callable(val)\n\n\ndef methodAttrs(_key, val):\n return callable(val)\n\n\ndef color(colorNum, message):\n return f'\\x1b[{colorNum}m{message}\\x1b[m'\n\n\ndef printError(message, *args):\n print(' '.join([color(91, message), *(str(arg) for arg in args)]), file\n =sys.stderr)\n sys.stderr.flush()\n\n\ndef printWarning(message, *args):\n print(' '.join([color('38;5;202', message), *(str(arg) for arg in args)\n ]), file=sys.stderr)\n sys.stderr.flush()\n\n\ndef printInfo(message, *args):\n print(' '.join([color(93, message), *(str(arg) for arg in args)]))\n sys.stdout.flush()\n\n\ndef inspect(obj, attrFilter=publicDataAttrs):\n indent = ' ' if VERBOSE and not sys.stdout.isatty() else ''\n output = []\n for key in dir(obj):\n try:\n val = getattr(obj, key)\n if attrFilter(key, val):\n output.append('%s\\x1b[96m%s:\\x1b[m %r' % (indent, key, val))\n except Exception as error:\n output.append('%s\\x1b[96m%s:\\x1b[m \\x1b[91m%r\\x1b[m' % (indent,\n key, error))\n if sys.stdout.isatty():\n print(collist(output))\n elif VERBOSE:\n print('\\n'.join(output))\n else:\n print(' ' + ', '.join(output))\n sys.stdout.flush()\n\n\ndef runCommand(path):\n subprocess.call(os.path.expanduser(path))\n\n\ndef topStrut(width, height, left=0):\n return 0, 0, height, 0, 0, 0, 0, 0, left, left + width - 1, 0, 0\n\n\ndef bottomStrut(width, height, left=0):\n return 0, 0, 0, height, 0, 0, 0, 0, 0, 0, left, left + width - 1\n\n\ndef leftStrut(width, height, top=0):\n return width, 0, 0, 0, top, top + height - 1, 0, 0, 0, 0, 0, 0\n\n\ndef rightStrut(width, height, top=0):\n return 0, width, 0, 0, 0, 0, top, top + height - 1, 0, 0, 0, 0\n", "<docstring token>\n<import token>\n\n\ndef toBool(input_string):\n return input_string.upper() in ('T', 'TRUE', '1', 'YES', 'ON')\n\n\n<assignment token>\n\n\nclass QuitApplication(Exception):\n pass\n\n\nclass MouseButton:\n left = 1\n middle = 2\n right = 3\n scroll_up = 4\n scroll_down = 5\n back = 8\n forward = 9\n names = {(1): 'left button', (2): 'middle button', (3): 'right button',\n (4): 'wheel up', (5): 'wheel down', (8): 'back button', (9):\n 'forward button'}\n\n\ndef xStr(string):\n encoded = string.encode('utf8')\n return len(encoded), encoded\n\n\ndef Perimeter(*args):\n if len(args) == 1:\n return args[0], args[0], args[0], args[0]\n if len(args) == 2:\n return args[0], args[1], args[0], args[1]\n if len(args) == 3:\n return args[0], args[1], args[2], args[1]\n return args[0], args[1], args[2], args[3]\n\n\n<function token>\n\n\ndef publicDataAttrs(key, val):\n return not key.startswith('__') and not key.endswith('__'\n ) and not callable(val)\n\n\ndef methodAttrs(_key, val):\n return callable(val)\n\n\ndef color(colorNum, message):\n return f'\\x1b[{colorNum}m{message}\\x1b[m'\n\n\ndef printError(message, *args):\n print(' '.join([color(91, message), *(str(arg) for arg in args)]), file\n =sys.stderr)\n sys.stderr.flush()\n\n\ndef printWarning(message, *args):\n print(' '.join([color('38;5;202', message), *(str(arg) for arg in args)\n ]), file=sys.stderr)\n sys.stderr.flush()\n\n\ndef printInfo(message, *args):\n print(' '.join([color(93, message), *(str(arg) for arg in args)]))\n sys.stdout.flush()\n\n\ndef inspect(obj, attrFilter=publicDataAttrs):\n indent = ' ' if VERBOSE and not sys.stdout.isatty() else ''\n output = []\n for key in dir(obj):\n try:\n val = getattr(obj, key)\n if attrFilter(key, val):\n output.append('%s\\x1b[96m%s:\\x1b[m %r' % (indent, key, val))\n except Exception as error:\n output.append('%s\\x1b[96m%s:\\x1b[m \\x1b[91m%r\\x1b[m' % (indent,\n key, error))\n if sys.stdout.isatty():\n print(collist(output))\n elif VERBOSE:\n print('\\n'.join(output))\n else:\n print(' ' + ', '.join(output))\n sys.stdout.flush()\n\n\ndef runCommand(path):\n subprocess.call(os.path.expanduser(path))\n\n\ndef topStrut(width, height, left=0):\n return 0, 0, height, 0, 0, 0, 0, 0, left, left + width - 1, 0, 0\n\n\ndef bottomStrut(width, height, left=0):\n return 0, 0, 0, height, 0, 0, 0, 0, 0, 0, left, left + width - 1\n\n\ndef leftStrut(width, height, top=0):\n return width, 0, 0, 0, top, top + height - 1, 0, 0, 0, 0, 0, 0\n\n\ndef rightStrut(width, height, top=0):\n return 0, width, 0, 0, 0, 0, top, top + height - 1, 0, 0, 0, 0\n", "<docstring token>\n<import token>\n\n\ndef toBool(input_string):\n return input_string.upper() in ('T', 'TRUE', '1', 'YES', 'ON')\n\n\n<assignment token>\n\n\nclass QuitApplication(Exception):\n pass\n\n\nclass MouseButton:\n left = 1\n middle = 2\n right = 3\n scroll_up = 4\n scroll_down = 5\n back = 8\n forward = 9\n names = {(1): 'left button', (2): 'middle button', (3): 'right button',\n (4): 'wheel up', (5): 'wheel down', (8): 'back button', (9):\n 'forward button'}\n\n\ndef xStr(string):\n encoded = string.encode('utf8')\n return len(encoded), encoded\n\n\ndef Perimeter(*args):\n if len(args) == 1:\n return args[0], args[0], args[0], args[0]\n if len(args) == 2:\n return args[0], args[1], args[0], args[1]\n if len(args) == 3:\n return args[0], args[1], args[2], args[1]\n return args[0], args[1], args[2], args[3]\n\n\n<function token>\n\n\ndef publicDataAttrs(key, val):\n return not key.startswith('__') and not key.endswith('__'\n ) and not callable(val)\n\n\ndef methodAttrs(_key, val):\n return callable(val)\n\n\ndef color(colorNum, message):\n return f'\\x1b[{colorNum}m{message}\\x1b[m'\n\n\n<function token>\n\n\ndef printWarning(message, *args):\n print(' '.join([color('38;5;202', message), *(str(arg) for arg in args)\n ]), file=sys.stderr)\n sys.stderr.flush()\n\n\ndef printInfo(message, *args):\n print(' '.join([color(93, message), *(str(arg) for arg in args)]))\n sys.stdout.flush()\n\n\ndef inspect(obj, attrFilter=publicDataAttrs):\n indent = ' ' if VERBOSE and not sys.stdout.isatty() else ''\n output = []\n for key in dir(obj):\n try:\n val = getattr(obj, key)\n if attrFilter(key, val):\n output.append('%s\\x1b[96m%s:\\x1b[m %r' % (indent, key, val))\n except Exception as error:\n output.append('%s\\x1b[96m%s:\\x1b[m \\x1b[91m%r\\x1b[m' % (indent,\n key, error))\n if sys.stdout.isatty():\n print(collist(output))\n elif VERBOSE:\n print('\\n'.join(output))\n else:\n print(' ' + ', '.join(output))\n sys.stdout.flush()\n\n\ndef runCommand(path):\n subprocess.call(os.path.expanduser(path))\n\n\ndef topStrut(width, height, left=0):\n return 0, 0, height, 0, 0, 0, 0, 0, left, left + width - 1, 0, 0\n\n\ndef bottomStrut(width, height, left=0):\n return 0, 0, 0, height, 0, 0, 0, 0, 0, 0, left, left + width - 1\n\n\ndef leftStrut(width, height, top=0):\n return width, 0, 0, 0, top, top + height - 1, 0, 0, 0, 0, 0, 0\n\n\ndef rightStrut(width, height, top=0):\n return 0, width, 0, 0, 0, 0, top, top + height - 1, 0, 0, 0, 0\n", "<docstring token>\n<import token>\n\n\ndef toBool(input_string):\n return input_string.upper() in ('T', 'TRUE', '1', 'YES', 'ON')\n\n\n<assignment token>\n\n\nclass QuitApplication(Exception):\n pass\n\n\nclass MouseButton:\n left = 1\n middle = 2\n right = 3\n scroll_up = 4\n scroll_down = 5\n back = 8\n forward = 9\n names = {(1): 'left button', (2): 'middle button', (3): 'right button',\n (4): 'wheel up', (5): 'wheel down', (8): 'back button', (9):\n 'forward button'}\n\n\ndef xStr(string):\n encoded = string.encode('utf8')\n return len(encoded), encoded\n\n\ndef Perimeter(*args):\n if len(args) == 1:\n return args[0], args[0], args[0], args[0]\n if len(args) == 2:\n return args[0], args[1], args[0], args[1]\n if len(args) == 3:\n return args[0], args[1], args[2], args[1]\n return args[0], args[1], args[2], args[3]\n\n\n<function token>\n\n\ndef publicDataAttrs(key, val):\n return not key.startswith('__') and not key.endswith('__'\n ) and not callable(val)\n\n\ndef methodAttrs(_key, val):\n return callable(val)\n\n\n<function token>\n<function token>\n\n\ndef printWarning(message, *args):\n print(' '.join([color('38;5;202', message), *(str(arg) for arg in args)\n ]), file=sys.stderr)\n sys.stderr.flush()\n\n\ndef printInfo(message, *args):\n print(' '.join([color(93, message), *(str(arg) for arg in args)]))\n sys.stdout.flush()\n\n\ndef inspect(obj, attrFilter=publicDataAttrs):\n indent = ' ' if VERBOSE and not sys.stdout.isatty() else ''\n output = []\n for key in dir(obj):\n try:\n val = getattr(obj, key)\n if attrFilter(key, val):\n output.append('%s\\x1b[96m%s:\\x1b[m %r' % (indent, key, val))\n except Exception as error:\n output.append('%s\\x1b[96m%s:\\x1b[m \\x1b[91m%r\\x1b[m' % (indent,\n key, error))\n if sys.stdout.isatty():\n print(collist(output))\n elif VERBOSE:\n print('\\n'.join(output))\n else:\n print(' ' + ', '.join(output))\n sys.stdout.flush()\n\n\ndef runCommand(path):\n subprocess.call(os.path.expanduser(path))\n\n\ndef topStrut(width, height, left=0):\n return 0, 0, height, 0, 0, 0, 0, 0, left, left + width - 1, 0, 0\n\n\ndef bottomStrut(width, height, left=0):\n return 0, 0, 0, height, 0, 0, 0, 0, 0, 0, left, left + width - 1\n\n\ndef leftStrut(width, height, top=0):\n return width, 0, 0, 0, top, top + height - 1, 0, 0, 0, 0, 0, 0\n\n\ndef rightStrut(width, height, top=0):\n return 0, width, 0, 0, 0, 0, top, top + height - 1, 0, 0, 0, 0\n", "<docstring token>\n<import token>\n\n\ndef toBool(input_string):\n return input_string.upper() in ('T', 'TRUE', '1', 'YES', 'ON')\n\n\n<assignment token>\n\n\nclass QuitApplication(Exception):\n pass\n\n\nclass MouseButton:\n left = 1\n middle = 2\n right = 3\n scroll_up = 4\n scroll_down = 5\n back = 8\n forward = 9\n names = {(1): 'left button', (2): 'middle button', (3): 'right button',\n (4): 'wheel up', (5): 'wheel down', (8): 'back button', (9):\n 'forward button'}\n\n\ndef xStr(string):\n encoded = string.encode('utf8')\n return len(encoded), encoded\n\n\ndef Perimeter(*args):\n if len(args) == 1:\n return args[0], args[0], args[0], args[0]\n if len(args) == 2:\n return args[0], args[1], args[0], args[1]\n if len(args) == 3:\n return args[0], args[1], args[2], args[1]\n return args[0], args[1], args[2], args[3]\n\n\n<function token>\n\n\ndef publicDataAttrs(key, val):\n return not key.startswith('__') and not key.endswith('__'\n ) and not callable(val)\n\n\ndef methodAttrs(_key, val):\n return callable(val)\n\n\n<function token>\n<function token>\n\n\ndef printWarning(message, *args):\n print(' '.join([color('38;5;202', message), *(str(arg) for arg in args)\n ]), file=sys.stderr)\n sys.stderr.flush()\n\n\ndef printInfo(message, *args):\n print(' '.join([color(93, message), *(str(arg) for arg in args)]))\n sys.stdout.flush()\n\n\ndef inspect(obj, attrFilter=publicDataAttrs):\n indent = ' ' if VERBOSE and not sys.stdout.isatty() else ''\n output = []\n for key in dir(obj):\n try:\n val = getattr(obj, key)\n if attrFilter(key, val):\n output.append('%s\\x1b[96m%s:\\x1b[m %r' % (indent, key, val))\n except Exception as error:\n output.append('%s\\x1b[96m%s:\\x1b[m \\x1b[91m%r\\x1b[m' % (indent,\n key, error))\n if sys.stdout.isatty():\n print(collist(output))\n elif VERBOSE:\n print('\\n'.join(output))\n else:\n print(' ' + ', '.join(output))\n sys.stdout.flush()\n\n\ndef runCommand(path):\n subprocess.call(os.path.expanduser(path))\n\n\n<function token>\n\n\ndef bottomStrut(width, height, left=0):\n return 0, 0, 0, height, 0, 0, 0, 0, 0, 0, left, left + width - 1\n\n\ndef leftStrut(width, height, top=0):\n return width, 0, 0, 0, top, top + height - 1, 0, 0, 0, 0, 0, 0\n\n\ndef rightStrut(width, height, top=0):\n return 0, width, 0, 0, 0, 0, top, top + height - 1, 0, 0, 0, 0\n", "<docstring token>\n<import token>\n\n\ndef toBool(input_string):\n return input_string.upper() in ('T', 'TRUE', '1', 'YES', 'ON')\n\n\n<assignment token>\n\n\nclass QuitApplication(Exception):\n pass\n\n\nclass MouseButton:\n left = 1\n middle = 2\n right = 3\n scroll_up = 4\n scroll_down = 5\n back = 8\n forward = 9\n names = {(1): 'left button', (2): 'middle button', (3): 'right button',\n (4): 'wheel up', (5): 'wheel down', (8): 'back button', (9):\n 'forward button'}\n\n\n<function token>\n\n\ndef Perimeter(*args):\n if len(args) == 1:\n return args[0], args[0], args[0], args[0]\n if len(args) == 2:\n return args[0], args[1], args[0], args[1]\n if len(args) == 3:\n return args[0], args[1], args[2], args[1]\n return args[0], args[1], args[2], args[3]\n\n\n<function token>\n\n\ndef publicDataAttrs(key, val):\n return not key.startswith('__') and not key.endswith('__'\n ) and not callable(val)\n\n\ndef methodAttrs(_key, val):\n return callable(val)\n\n\n<function token>\n<function token>\n\n\ndef printWarning(message, *args):\n print(' '.join([color('38;5;202', message), *(str(arg) for arg in args)\n ]), file=sys.stderr)\n sys.stderr.flush()\n\n\ndef printInfo(message, *args):\n print(' '.join([color(93, message), *(str(arg) for arg in args)]))\n sys.stdout.flush()\n\n\ndef inspect(obj, attrFilter=publicDataAttrs):\n indent = ' ' if VERBOSE and not sys.stdout.isatty() else ''\n output = []\n for key in dir(obj):\n try:\n val = getattr(obj, key)\n if attrFilter(key, val):\n output.append('%s\\x1b[96m%s:\\x1b[m %r' % (indent, key, val))\n except Exception as error:\n output.append('%s\\x1b[96m%s:\\x1b[m \\x1b[91m%r\\x1b[m' % (indent,\n key, error))\n if sys.stdout.isatty():\n print(collist(output))\n elif VERBOSE:\n print('\\n'.join(output))\n else:\n print(' ' + ', '.join(output))\n sys.stdout.flush()\n\n\ndef runCommand(path):\n subprocess.call(os.path.expanduser(path))\n\n\n<function token>\n\n\ndef bottomStrut(width, height, left=0):\n return 0, 0, 0, height, 0, 0, 0, 0, 0, 0, left, left + width - 1\n\n\ndef leftStrut(width, height, top=0):\n return width, 0, 0, 0, top, top + height - 1, 0, 0, 0, 0, 0, 0\n\n\ndef rightStrut(width, height, top=0):\n return 0, width, 0, 0, 0, 0, top, top + height - 1, 0, 0, 0, 0\n", "<docstring token>\n<import token>\n\n\ndef toBool(input_string):\n return input_string.upper() in ('T', 'TRUE', '1', 'YES', 'ON')\n\n\n<assignment token>\n\n\nclass QuitApplication(Exception):\n pass\n\n\nclass MouseButton:\n left = 1\n middle = 2\n right = 3\n scroll_up = 4\n scroll_down = 5\n back = 8\n forward = 9\n names = {(1): 'left button', (2): 'middle button', (3): 'right button',\n (4): 'wheel up', (5): 'wheel down', (8): 'back button', (9):\n 'forward button'}\n\n\n<function token>\n\n\ndef Perimeter(*args):\n if len(args) == 1:\n return args[0], args[0], args[0], args[0]\n if len(args) == 2:\n return args[0], args[1], args[0], args[1]\n if len(args) == 3:\n return args[0], args[1], args[2], args[1]\n return args[0], args[1], args[2], args[3]\n\n\n<function token>\n\n\ndef publicDataAttrs(key, val):\n return not key.startswith('__') and not key.endswith('__'\n ) and not callable(val)\n\n\ndef methodAttrs(_key, val):\n return callable(val)\n\n\n<function token>\n<function token>\n\n\ndef printWarning(message, *args):\n print(' '.join([color('38;5;202', message), *(str(arg) for arg in args)\n ]), file=sys.stderr)\n sys.stderr.flush()\n\n\ndef printInfo(message, *args):\n print(' '.join([color(93, message), *(str(arg) for arg in args)]))\n sys.stdout.flush()\n\n\ndef inspect(obj, attrFilter=publicDataAttrs):\n indent = ' ' if VERBOSE and not sys.stdout.isatty() else ''\n output = []\n for key in dir(obj):\n try:\n val = getattr(obj, key)\n if attrFilter(key, val):\n output.append('%s\\x1b[96m%s:\\x1b[m %r' % (indent, key, val))\n except Exception as error:\n output.append('%s\\x1b[96m%s:\\x1b[m \\x1b[91m%r\\x1b[m' % (indent,\n key, error))\n if sys.stdout.isatty():\n print(collist(output))\n elif VERBOSE:\n print('\\n'.join(output))\n else:\n print(' ' + ', '.join(output))\n sys.stdout.flush()\n\n\ndef runCommand(path):\n subprocess.call(os.path.expanduser(path))\n\n\n<function token>\n<function token>\n\n\ndef leftStrut(width, height, top=0):\n return width, 0, 0, 0, top, top + height - 1, 0, 0, 0, 0, 0, 0\n\n\ndef rightStrut(width, height, top=0):\n return 0, width, 0, 0, 0, 0, top, top + height - 1, 0, 0, 0, 0\n", "<docstring token>\n<import token>\n\n\ndef toBool(input_string):\n return input_string.upper() in ('T', 'TRUE', '1', 'YES', 'ON')\n\n\n<assignment token>\n\n\nclass QuitApplication(Exception):\n pass\n\n\nclass MouseButton:\n left = 1\n middle = 2\n right = 3\n scroll_up = 4\n scroll_down = 5\n back = 8\n forward = 9\n names = {(1): 'left button', (2): 'middle button', (3): 'right button',\n (4): 'wheel up', (5): 'wheel down', (8): 'back button', (9):\n 'forward button'}\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef publicDataAttrs(key, val):\n return not key.startswith('__') and not key.endswith('__'\n ) and not callable(val)\n\n\ndef methodAttrs(_key, val):\n return callable(val)\n\n\n<function token>\n<function token>\n\n\ndef printWarning(message, *args):\n print(' '.join([color('38;5;202', message), *(str(arg) for arg in args)\n ]), file=sys.stderr)\n sys.stderr.flush()\n\n\ndef printInfo(message, *args):\n print(' '.join([color(93, message), *(str(arg) for arg in args)]))\n sys.stdout.flush()\n\n\ndef inspect(obj, attrFilter=publicDataAttrs):\n indent = ' ' if VERBOSE and not sys.stdout.isatty() else ''\n output = []\n for key in dir(obj):\n try:\n val = getattr(obj, key)\n if attrFilter(key, val):\n output.append('%s\\x1b[96m%s:\\x1b[m %r' % (indent, key, val))\n except Exception as error:\n output.append('%s\\x1b[96m%s:\\x1b[m \\x1b[91m%r\\x1b[m' % (indent,\n key, error))\n if sys.stdout.isatty():\n print(collist(output))\n elif VERBOSE:\n print('\\n'.join(output))\n else:\n print(' ' + ', '.join(output))\n sys.stdout.flush()\n\n\ndef runCommand(path):\n subprocess.call(os.path.expanduser(path))\n\n\n<function token>\n<function token>\n\n\ndef leftStrut(width, height, top=0):\n return width, 0, 0, 0, top, top + height - 1, 0, 0, 0, 0, 0, 0\n\n\ndef rightStrut(width, height, top=0):\n return 0, width, 0, 0, 0, 0, top, top + height - 1, 0, 0, 0, 0\n", "<docstring token>\n<import token>\n\n\ndef toBool(input_string):\n return input_string.upper() in ('T', 'TRUE', '1', 'YES', 'ON')\n\n\n<assignment token>\n\n\nclass QuitApplication(Exception):\n pass\n\n\nclass MouseButton:\n left = 1\n middle = 2\n right = 3\n scroll_up = 4\n scroll_down = 5\n back = 8\n forward = 9\n names = {(1): 'left button', (2): 'middle button', (3): 'right button',\n (4): 'wheel up', (5): 'wheel down', (8): 'back button', (9):\n 'forward button'}\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef publicDataAttrs(key, val):\n return not key.startswith('__') and not key.endswith('__'\n ) and not callable(val)\n\n\ndef methodAttrs(_key, val):\n return callable(val)\n\n\n<function token>\n<function token>\n\n\ndef printWarning(message, *args):\n print(' '.join([color('38;5;202', message), *(str(arg) for arg in args)\n ]), file=sys.stderr)\n sys.stderr.flush()\n\n\ndef printInfo(message, *args):\n print(' '.join([color(93, message), *(str(arg) for arg in args)]))\n sys.stdout.flush()\n\n\ndef inspect(obj, attrFilter=publicDataAttrs):\n indent = ' ' if VERBOSE and not sys.stdout.isatty() else ''\n output = []\n for key in dir(obj):\n try:\n val = getattr(obj, key)\n if attrFilter(key, val):\n output.append('%s\\x1b[96m%s:\\x1b[m %r' % (indent, key, val))\n except Exception as error:\n output.append('%s\\x1b[96m%s:\\x1b[m \\x1b[91m%r\\x1b[m' % (indent,\n key, error))\n if sys.stdout.isatty():\n print(collist(output))\n elif VERBOSE:\n print('\\n'.join(output))\n else:\n print(' ' + ', '.join(output))\n sys.stdout.flush()\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef leftStrut(width, height, top=0):\n return width, 0, 0, 0, top, top + height - 1, 0, 0, 0, 0, 0, 0\n\n\ndef rightStrut(width, height, top=0):\n return 0, width, 0, 0, 0, 0, top, top + height - 1, 0, 0, 0, 0\n", "<docstring token>\n<import token>\n\n\ndef toBool(input_string):\n return input_string.upper() in ('T', 'TRUE', '1', 'YES', 'ON')\n\n\n<assignment token>\n\n\nclass QuitApplication(Exception):\n pass\n\n\nclass MouseButton:\n left = 1\n middle = 2\n right = 3\n scroll_up = 4\n scroll_down = 5\n back = 8\n forward = 9\n names = {(1): 'left button', (2): 'middle button', (3): 'right button',\n (4): 'wheel up', (5): 'wheel down', (8): 'back button', (9):\n 'forward button'}\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef publicDataAttrs(key, val):\n return not key.startswith('__') and not key.endswith('__'\n ) and not callable(val)\n\n\ndef methodAttrs(_key, val):\n return callable(val)\n\n\n<function token>\n<function token>\n\n\ndef printWarning(message, *args):\n print(' '.join([color('38;5;202', message), *(str(arg) for arg in args)\n ]), file=sys.stderr)\n sys.stderr.flush()\n\n\ndef printInfo(message, *args):\n print(' '.join([color(93, message), *(str(arg) for arg in args)]))\n sys.stdout.flush()\n\n\ndef inspect(obj, attrFilter=publicDataAttrs):\n indent = ' ' if VERBOSE and not sys.stdout.isatty() else ''\n output = []\n for key in dir(obj):\n try:\n val = getattr(obj, key)\n if attrFilter(key, val):\n output.append('%s\\x1b[96m%s:\\x1b[m %r' % (indent, key, val))\n except Exception as error:\n output.append('%s\\x1b[96m%s:\\x1b[m \\x1b[91m%r\\x1b[m' % (indent,\n key, error))\n if sys.stdout.isatty():\n print(collist(output))\n elif VERBOSE:\n print('\\n'.join(output))\n else:\n print(' ' + ', '.join(output))\n sys.stdout.flush()\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef rightStrut(width, height, top=0):\n return 0, width, 0, 0, 0, 0, top, top + height - 1, 0, 0, 0, 0\n", "<docstring token>\n<import token>\n\n\ndef toBool(input_string):\n return input_string.upper() in ('T', 'TRUE', '1', 'YES', 'ON')\n\n\n<assignment token>\n\n\nclass QuitApplication(Exception):\n pass\n\n\nclass MouseButton:\n left = 1\n middle = 2\n right = 3\n scroll_up = 4\n scroll_down = 5\n back = 8\n forward = 9\n names = {(1): 'left button', (2): 'middle button', (3): 'right button',\n (4): 'wheel up', (5): 'wheel down', (8): 'back button', (9):\n 'forward button'}\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef publicDataAttrs(key, val):\n return not key.startswith('__') and not key.endswith('__'\n ) and not callable(val)\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef printWarning(message, *args):\n print(' '.join([color('38;5;202', message), *(str(arg) for arg in args)\n ]), file=sys.stderr)\n sys.stderr.flush()\n\n\ndef printInfo(message, *args):\n print(' '.join([color(93, message), *(str(arg) for arg in args)]))\n sys.stdout.flush()\n\n\ndef inspect(obj, attrFilter=publicDataAttrs):\n indent = ' ' if VERBOSE and not sys.stdout.isatty() else ''\n output = []\n for key in dir(obj):\n try:\n val = getattr(obj, key)\n if attrFilter(key, val):\n output.append('%s\\x1b[96m%s:\\x1b[m %r' % (indent, key, val))\n except Exception as error:\n output.append('%s\\x1b[96m%s:\\x1b[m \\x1b[91m%r\\x1b[m' % (indent,\n key, error))\n if sys.stdout.isatty():\n print(collist(output))\n elif VERBOSE:\n print('\\n'.join(output))\n else:\n print(' ' + ', '.join(output))\n sys.stdout.flush()\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef rightStrut(width, height, top=0):\n return 0, width, 0, 0, 0, 0, top, top + height - 1, 0, 0, 0, 0\n", "<docstring token>\n<import token>\n\n\ndef toBool(input_string):\n return input_string.upper() in ('T', 'TRUE', '1', 'YES', 'ON')\n\n\n<assignment token>\n\n\nclass QuitApplication(Exception):\n pass\n\n\nclass MouseButton:\n left = 1\n middle = 2\n right = 3\n scroll_up = 4\n scroll_down = 5\n back = 8\n forward = 9\n names = {(1): 'left button', (2): 'middle button', (3): 'right button',\n (4): 'wheel up', (5): 'wheel down', (8): 'back button', (9):\n 'forward button'}\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef publicDataAttrs(key, val):\n return not key.startswith('__') and not key.endswith('__'\n ) and not callable(val)\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef printInfo(message, *args):\n print(' '.join([color(93, message), *(str(arg) for arg in args)]))\n sys.stdout.flush()\n\n\ndef inspect(obj, attrFilter=publicDataAttrs):\n indent = ' ' if VERBOSE and not sys.stdout.isatty() else ''\n output = []\n for key in dir(obj):\n try:\n val = getattr(obj, key)\n if attrFilter(key, val):\n output.append('%s\\x1b[96m%s:\\x1b[m %r' % (indent, key, val))\n except Exception as error:\n output.append('%s\\x1b[96m%s:\\x1b[m \\x1b[91m%r\\x1b[m' % (indent,\n key, error))\n if sys.stdout.isatty():\n print(collist(output))\n elif VERBOSE:\n print('\\n'.join(output))\n else:\n print(' ' + ', '.join(output))\n sys.stdout.flush()\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef rightStrut(width, height, top=0):\n return 0, width, 0, 0, 0, 0, top, top + height - 1, 0, 0, 0, 0\n", "<docstring token>\n<import token>\n\n\ndef toBool(input_string):\n return input_string.upper() in ('T', 'TRUE', '1', 'YES', 'ON')\n\n\n<assignment token>\n\n\nclass QuitApplication(Exception):\n pass\n\n\nclass MouseButton:\n left = 1\n middle = 2\n right = 3\n scroll_up = 4\n scroll_down = 5\n back = 8\n forward = 9\n names = {(1): 'left button', (2): 'middle button', (3): 'right button',\n (4): 'wheel up', (5): 'wheel down', (8): 'back button', (9):\n 'forward button'}\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef printInfo(message, *args):\n print(' '.join([color(93, message), *(str(arg) for arg in args)]))\n sys.stdout.flush()\n\n\ndef inspect(obj, attrFilter=publicDataAttrs):\n indent = ' ' if VERBOSE and not sys.stdout.isatty() else ''\n output = []\n for key in dir(obj):\n try:\n val = getattr(obj, key)\n if attrFilter(key, val):\n output.append('%s\\x1b[96m%s:\\x1b[m %r' % (indent, key, val))\n except Exception as error:\n output.append('%s\\x1b[96m%s:\\x1b[m \\x1b[91m%r\\x1b[m' % (indent,\n key, error))\n if sys.stdout.isatty():\n print(collist(output))\n elif VERBOSE:\n print('\\n'.join(output))\n else:\n print(' ' + ', '.join(output))\n sys.stdout.flush()\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef rightStrut(width, height, top=0):\n return 0, width, 0, 0, 0, 0, top, top + height - 1, 0, 0, 0, 0\n", "<docstring token>\n<import token>\n<function token>\n<assignment token>\n\n\nclass QuitApplication(Exception):\n pass\n\n\nclass MouseButton:\n left = 1\n middle = 2\n right = 3\n scroll_up = 4\n scroll_down = 5\n back = 8\n forward = 9\n names = {(1): 'left button', (2): 'middle button', (3): 'right button',\n (4): 'wheel up', (5): 'wheel down', (8): 'back button', (9):\n 'forward button'}\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef printInfo(message, *args):\n print(' '.join([color(93, message), *(str(arg) for arg in args)]))\n sys.stdout.flush()\n\n\ndef inspect(obj, attrFilter=publicDataAttrs):\n indent = ' ' if VERBOSE and not sys.stdout.isatty() else ''\n output = []\n for key in dir(obj):\n try:\n val = getattr(obj, key)\n if attrFilter(key, val):\n output.append('%s\\x1b[96m%s:\\x1b[m %r' % (indent, key, val))\n except Exception as error:\n output.append('%s\\x1b[96m%s:\\x1b[m \\x1b[91m%r\\x1b[m' % (indent,\n key, error))\n if sys.stdout.isatty():\n print(collist(output))\n elif VERBOSE:\n print('\\n'.join(output))\n else:\n print(' ' + ', '.join(output))\n sys.stdout.flush()\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef rightStrut(width, height, top=0):\n return 0, width, 0, 0, 0, 0, top, top + height - 1, 0, 0, 0, 0\n", "<docstring token>\n<import token>\n<function token>\n<assignment token>\n\n\nclass QuitApplication(Exception):\n pass\n\n\nclass MouseButton:\n left = 1\n middle = 2\n right = 3\n scroll_up = 4\n scroll_down = 5\n back = 8\n forward = 9\n names = {(1): 'left button', (2): 'middle button', (3): 'right button',\n (4): 'wheel up', (5): 'wheel down', (8): 'back button', (9):\n 'forward button'}\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef inspect(obj, attrFilter=publicDataAttrs):\n indent = ' ' if VERBOSE and not sys.stdout.isatty() else ''\n output = []\n for key in dir(obj):\n try:\n val = getattr(obj, key)\n if attrFilter(key, val):\n output.append('%s\\x1b[96m%s:\\x1b[m %r' % (indent, key, val))\n except Exception as error:\n output.append('%s\\x1b[96m%s:\\x1b[m \\x1b[91m%r\\x1b[m' % (indent,\n key, error))\n if sys.stdout.isatty():\n print(collist(output))\n elif VERBOSE:\n print('\\n'.join(output))\n else:\n print(' ' + ', '.join(output))\n sys.stdout.flush()\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef rightStrut(width, height, top=0):\n return 0, width, 0, 0, 0, 0, top, top + height - 1, 0, 0, 0, 0\n", "<docstring token>\n<import token>\n<function token>\n<assignment token>\n\n\nclass QuitApplication(Exception):\n pass\n\n\nclass MouseButton:\n left = 1\n middle = 2\n right = 3\n scroll_up = 4\n scroll_down = 5\n back = 8\n forward = 9\n names = {(1): 'left button', (2): 'middle button', (3): 'right button',\n (4): 'wheel up', (5): 'wheel down', (8): 'back button', (9):\n 'forward button'}\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef rightStrut(width, height, top=0):\n return 0, width, 0, 0, 0, 0, top, top + height - 1, 0, 0, 0, 0\n", "<docstring token>\n<import token>\n<function token>\n<assignment token>\n\n\nclass QuitApplication(Exception):\n pass\n\n\nclass MouseButton:\n left = 1\n middle = 2\n right = 3\n scroll_up = 4\n scroll_down = 5\n back = 8\n forward = 9\n names = {(1): 'left button', (2): 'middle button', (3): 'right button',\n (4): 'wheel up', (5): 'wheel down', (8): 'back button', (9):\n 'forward button'}\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n", "<docstring token>\n<import token>\n<function token>\n<assignment token>\n<class token>\n\n\nclass MouseButton:\n left = 1\n middle = 2\n right = 3\n scroll_up = 4\n scroll_down = 5\n back = 8\n forward = 9\n names = {(1): 'left button', (2): 'middle button', (3): 'right button',\n (4): 'wheel up', (5): 'wheel down', (8): 'back button', (9):\n 'forward button'}\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n", "<docstring token>\n<import token>\n<function token>\n<assignment token>\n<class token>\n\n\nclass MouseButton:\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n", "<docstring token>\n<import token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n" ]
false
99,339
22931dab501ba3909d63932e75c385ce5bfb50a1
import pickle import opencc data = [] with open("./newsData.pkl", 'rb') as fr: data = pickle.load(fr) dataCn = [] for post in data: postCn = [] for ele in post: postCn.append(opencc.convert(ele)) dataCn.append(postCn) with open("./newsDataCn.pkl", 'wb') as fw: pickle.dump(dataCn, fw)
[ "import pickle\nimport opencc\n\ndata = []\nwith open(\"./newsData.pkl\", 'rb') as fr:\n data = pickle.load(fr)\ndataCn = []\nfor post in data:\n postCn = []\n for ele in post:\n postCn.append(opencc.convert(ele))\n dataCn.append(postCn)\n\nwith open(\"./newsDataCn.pkl\", 'wb') as fw:\n pickle.dump(dataCn, fw)\n", "import pickle\nimport opencc\ndata = []\nwith open('./newsData.pkl', 'rb') as fr:\n data = pickle.load(fr)\ndataCn = []\nfor post in data:\n postCn = []\n for ele in post:\n postCn.append(opencc.convert(ele))\n dataCn.append(postCn)\nwith open('./newsDataCn.pkl', 'wb') as fw:\n pickle.dump(dataCn, fw)\n", "<import token>\ndata = []\nwith open('./newsData.pkl', 'rb') as fr:\n data = pickle.load(fr)\ndataCn = []\nfor post in data:\n postCn = []\n for ele in post:\n postCn.append(opencc.convert(ele))\n dataCn.append(postCn)\nwith open('./newsDataCn.pkl', 'wb') as fw:\n pickle.dump(dataCn, fw)\n", "<import token>\n<assignment token>\nwith open('./newsData.pkl', 'rb') as fr:\n data = pickle.load(fr)\n<assignment token>\nfor post in data:\n postCn = []\n for ele in post:\n postCn.append(opencc.convert(ele))\n dataCn.append(postCn)\nwith open('./newsDataCn.pkl', 'wb') as fw:\n pickle.dump(dataCn, fw)\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n" ]
false
99,340
5cfc3269c42c6124ab255953bbed9f053cc3f51d
from django.utils.translation import gettext as _ from database.models import Site from irekua_utils.filters import sites from irekua_utils.permissions import sites as site_permissions from selia.views.list_views.base import SeliaListView class ListUserSitesView(SeliaListView): template_name = 'selia/list/user_sites.html' list_item_template = 'selia/components/list_items/site.html' help_template = 'selia/components/help/user_sites.html' filter_form_template = 'selia/components/filters/site.html' empty_message = _('User has no registered sites') filter_class = sites.Filter search_fields = sites.search_fields ordering_fields = sites.ordering_fields def get_initial_queryset(self): return Site.objects.filter(created_by=self.request.user) def has_view_permission(self): user = self.request.user return site_permissions.create(user) def has_create_permission(self): user = self.request.user return site_permissions.create(user)
[ "from django.utils.translation import gettext as _\n\nfrom database.models import Site\n\nfrom irekua_utils.filters import sites\nfrom irekua_utils.permissions import sites as site_permissions\nfrom selia.views.list_views.base import SeliaListView\n\n\nclass ListUserSitesView(SeliaListView):\n template_name = 'selia/list/user_sites.html'\n\n list_item_template = 'selia/components/list_items/site.html'\n help_template = 'selia/components/help/user_sites.html'\n filter_form_template = 'selia/components/filters/site.html'\n\n empty_message = _('User has no registered sites')\n\n filter_class = sites.Filter\n search_fields = sites.search_fields\n ordering_fields = sites.ordering_fields\n\n def get_initial_queryset(self):\n return Site.objects.filter(created_by=self.request.user)\n\n def has_view_permission(self):\n user = self.request.user\n return site_permissions.create(user)\n\n def has_create_permission(self):\n user = self.request.user\n return site_permissions.create(user)\n", "from django.utils.translation import gettext as _\nfrom database.models import Site\nfrom irekua_utils.filters import sites\nfrom irekua_utils.permissions import sites as site_permissions\nfrom selia.views.list_views.base import SeliaListView\n\n\nclass ListUserSitesView(SeliaListView):\n template_name = 'selia/list/user_sites.html'\n list_item_template = 'selia/components/list_items/site.html'\n help_template = 'selia/components/help/user_sites.html'\n filter_form_template = 'selia/components/filters/site.html'\n empty_message = _('User has no registered sites')\n filter_class = sites.Filter\n search_fields = sites.search_fields\n ordering_fields = sites.ordering_fields\n\n def get_initial_queryset(self):\n return Site.objects.filter(created_by=self.request.user)\n\n def has_view_permission(self):\n user = self.request.user\n return site_permissions.create(user)\n\n def has_create_permission(self):\n user = self.request.user\n return site_permissions.create(user)\n", "<import token>\n\n\nclass ListUserSitesView(SeliaListView):\n template_name = 'selia/list/user_sites.html'\n list_item_template = 'selia/components/list_items/site.html'\n help_template = 'selia/components/help/user_sites.html'\n filter_form_template = 'selia/components/filters/site.html'\n empty_message = _('User has no registered sites')\n filter_class = sites.Filter\n search_fields = sites.search_fields\n ordering_fields = sites.ordering_fields\n\n def get_initial_queryset(self):\n return Site.objects.filter(created_by=self.request.user)\n\n def has_view_permission(self):\n user = self.request.user\n return site_permissions.create(user)\n\n def has_create_permission(self):\n user = self.request.user\n return site_permissions.create(user)\n", "<import token>\n\n\nclass ListUserSitesView(SeliaListView):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def get_initial_queryset(self):\n return Site.objects.filter(created_by=self.request.user)\n\n def has_view_permission(self):\n user = self.request.user\n return site_permissions.create(user)\n\n def has_create_permission(self):\n user = self.request.user\n return site_permissions.create(user)\n", "<import token>\n\n\nclass ListUserSitesView(SeliaListView):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def get_initial_queryset(self):\n return Site.objects.filter(created_by=self.request.user)\n\n def has_view_permission(self):\n user = self.request.user\n return site_permissions.create(user)\n <function token>\n", "<import token>\n\n\nclass ListUserSitesView(SeliaListView):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def get_initial_queryset(self):\n return Site.objects.filter(created_by=self.request.user)\n <function token>\n <function token>\n", "<import token>\n\n\nclass ListUserSitesView(SeliaListView):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n<class token>\n" ]
false
99,341
0837c4f130a2dec415c6eb76f9656257cc0d0e48
import numpy as np import matplotlib.pyplot as plt fs = 500 t = np.arange(-10, 10, 1/fs) B = 10 # if we increase this frequency, the frequency of 20 will also pass from this filter. A = 0.01 y = 2*np.sinc(2*B*t) m_t = np.sin(10*np.pi*t) + np.sin(40*np.pi*t) y_t = np.convolve(y, m_t)[10*fs:30*fs] y_f = np.fft.fft(y_t) y_f_abs = np.abs(y_f) freq = np.fft.fftfreq(y_t.size, d=1/fs) fig, axs=plt.subplots(2) axs[0].plot(t,y_t) plt.title('Time Domain') plt.xlabel('time') plt.ylabel('Amplitude') axs[1].plot(freq, y_f_abs) plt.title('Freq Domain') plt.xlabel('Freq') plt.ylabel('Amplitude') plt.show()
[ "import numpy as np\nimport matplotlib.pyplot as plt\n\n\nfs = 500\nt = np.arange(-10, 10, 1/fs)\nB = 10 # if we increase this frequency, the frequency of 20 will also pass from this filter. \nA = 0.01\n\ny = 2*np.sinc(2*B*t)\nm_t = np.sin(10*np.pi*t) + np.sin(40*np.pi*t)\n\ny_t = np.convolve(y, m_t)[10*fs:30*fs]\n\ny_f = np.fft.fft(y_t)\ny_f_abs = np.abs(y_f)\nfreq = np.fft.fftfreq(y_t.size, d=1/fs)\nfig, axs=plt.subplots(2)\naxs[0].plot(t,y_t)\nplt.title('Time Domain')\nplt.xlabel('time')\nplt.ylabel('Amplitude')\naxs[1].plot(freq, y_f_abs)\nplt.title('Freq Domain')\nplt.xlabel('Freq')\nplt.ylabel('Amplitude')\nplt.show()", "import numpy as np\nimport matplotlib.pyplot as plt\nfs = 500\nt = np.arange(-10, 10, 1 / fs)\nB = 10\nA = 0.01\ny = 2 * np.sinc(2 * B * t)\nm_t = np.sin(10 * np.pi * t) + np.sin(40 * np.pi * t)\ny_t = np.convolve(y, m_t)[10 * fs:30 * fs]\ny_f = np.fft.fft(y_t)\ny_f_abs = np.abs(y_f)\nfreq = np.fft.fftfreq(y_t.size, d=1 / fs)\nfig, axs = plt.subplots(2)\naxs[0].plot(t, y_t)\nplt.title('Time Domain')\nplt.xlabel('time')\nplt.ylabel('Amplitude')\naxs[1].plot(freq, y_f_abs)\nplt.title('Freq Domain')\nplt.xlabel('Freq')\nplt.ylabel('Amplitude')\nplt.show()\n", "<import token>\nfs = 500\nt = np.arange(-10, 10, 1 / fs)\nB = 10\nA = 0.01\ny = 2 * np.sinc(2 * B * t)\nm_t = np.sin(10 * np.pi * t) + np.sin(40 * np.pi * t)\ny_t = np.convolve(y, m_t)[10 * fs:30 * fs]\ny_f = np.fft.fft(y_t)\ny_f_abs = np.abs(y_f)\nfreq = np.fft.fftfreq(y_t.size, d=1 / fs)\nfig, axs = plt.subplots(2)\naxs[0].plot(t, y_t)\nplt.title('Time Domain')\nplt.xlabel('time')\nplt.ylabel('Amplitude')\naxs[1].plot(freq, y_f_abs)\nplt.title('Freq Domain')\nplt.xlabel('Freq')\nplt.ylabel('Amplitude')\nplt.show()\n", "<import token>\n<assignment token>\naxs[0].plot(t, y_t)\nplt.title('Time Domain')\nplt.xlabel('time')\nplt.ylabel('Amplitude')\naxs[1].plot(freq, y_f_abs)\nplt.title('Freq Domain')\nplt.xlabel('Freq')\nplt.ylabel('Amplitude')\nplt.show()\n", "<import token>\n<assignment token>\n<code token>\n" ]
false
99,342
933be99d4edb39ce6e018e1c482bc7bc6e5423c9
from __future__ import annotations from itertools import combinations from libtbx.phil import parse from scitbx import matrix from scitbx.math import r3_rotation_axis_and_angle_from_matrix import dials.util from dials.util.options import ArgumentParser, flatten_experiments help_message = """ dials.two_theta_offset experiment_one.expt experiment_two.expt """ phil_scope = parse( """ offset_fast = 100.0 .type = float .help = 'How far to move in the detector plane (fast direction)' offset_slow = 100.0 .type = float .help = 'How far to move in the detector plane (slow direction)' min_distance = 10.0 .type = float .help = 'Minimum shift in detector position' """, process_includes=True, ) class Script: """A class for running the script.""" def __init__(self): """Initialise the script.""" # The script usage usage = "usage: dials.two_theta_offset [options] experiment_one.expt experiment_two.expt" # Create the parser self.parser = ArgumentParser( usage=usage, phil=phil_scope, epilog=help_message, check_format=False, read_experiments=True, ) def run(self, args=None): """Execute the script.""" # Parse the command line params, options = self.parser.parse_args(args, show_diff_phil=True) # Check the number of experiments is at least 2 experiments = flatten_experiments(params.input.experiments) if len(experiments) < 2: self.parser.print_help() return detectors = [experiment.detector[0] for experiment in experiments] for pair in combinations(detectors, 2): determine_axis(pair, params) crystals = [experiment.crystal for experiment in experiments] goniometers = [experiment.goniometer for experiment in experiments] FUs = [] for c, g in zip(crystals, goniometers): u = matrix.sqr(c.get_U()) f = matrix.sqr(g.get_fixed_rotation()) FUs.append(f * u) for pair in combinations(FUs, 2): R = pair[1] * pair[0].inverse() rot = r3_rotation_axis_and_angle_from_matrix(R) angle = rot.angle(deg=True) axis = matrix.col(rot.axis) if abs(angle) < 10: continue print("Axis: %8.5f %8.5f %8.5f" % axis.elems, f"angle: {angle:7.4f}") def determine_axis(detectors, params): offset_fast = params.offset_fast offset_slow = params.offset_slow min_distance = params.min_distance # pick two positions, at nominal origin offset in fast, slow x1 = matrix.col(detectors[0].get_origin()) y1 = ( matrix.col(detectors[0].get_origin()) + offset_fast * matrix.col(detectors[0].get_fast_axis()) + offset_slow * matrix.col(detectors[0].get_slow_axis()) ) x2 = matrix.col(detectors[1].get_origin()) y2 = ( matrix.col(detectors[1].get_origin()) + offset_fast * matrix.col(detectors[1].get_fast_axis()) + offset_slow * matrix.col(detectors[1].get_slow_axis()) ) # only allow this calculation if the detector has been moved a "significant" # amount if (x2 - x1).length() < min_distance: return centre, axis = find_centre_of_rotation(x1, x2, y1, y2) # compute "true" two-theta from these two_theta = component(x2 - centre, axis).angle( component(x1 - centre, axis), deg=True ) print( "Centre: %7.4f %7.4f %7.4f" % centre.elems, " axis: %7.4f %7.4f %7.4f" % axis.elems, f"angle: {two_theta:.2f}", ) def component(a, n): return a - a.dot(n) * n def find_centre_of_rotation(x1, x2, y1, y2): """Find centre of rotation which takes position x1 -> x2 and y1 -> y2""" # chords of rotation of x, y cx = x2 - x1 cy = y2 - y1 # know axis is perpendicular to both of these -> is cross product axis = cx.cross(cy).normalize() # normal vector to y chord ny = component(cy, axis).normalize().cross(axis) # origin of normal vectors, centre of x, y chords ox = component(x1 + 0.5 * cx, axis) oy = component(y1 + 0.5 * cy, axis) # determine true origin of rotation - normal vector of x chord, construct # right-angle-triangle with hypotenuse from unknown origin of rotation # to central point of y chord oy, and adjacent the vector parallel to # reversed x chord => opposite is on vector from unknown origin of rotation # to ox ncx = cx.normalize() h = (oy - ox).dot(ncx) d = h / (ny).dot(-ncx) return oy + d * ny, axis @dials.util.show_mail_handle_errors() def run(args=None): script = Script() script.run(args) if __name__ == "__main__": run()
[ "from __future__ import annotations\n\nfrom itertools import combinations\n\nfrom libtbx.phil import parse\nfrom scitbx import matrix\nfrom scitbx.math import r3_rotation_axis_and_angle_from_matrix\n\nimport dials.util\nfrom dials.util.options import ArgumentParser, flatten_experiments\n\nhelp_message = \"\"\"\n\ndials.two_theta_offset experiment_one.expt experiment_two.expt\n\"\"\"\n\nphil_scope = parse(\n \"\"\"\noffset_fast = 100.0\n .type = float\n .help = 'How far to move in the detector plane (fast direction)'\noffset_slow = 100.0\n .type = float\n .help = 'How far to move in the detector plane (slow direction)'\nmin_distance = 10.0\n .type = float\n .help = 'Minimum shift in detector position'\n\"\"\",\n process_includes=True,\n)\n\n\nclass Script:\n \"\"\"A class for running the script.\"\"\"\n\n def __init__(self):\n \"\"\"Initialise the script.\"\"\"\n # The script usage\n usage = \"usage: dials.two_theta_offset [options] experiment_one.expt experiment_two.expt\"\n\n # Create the parser\n self.parser = ArgumentParser(\n usage=usage,\n phil=phil_scope,\n epilog=help_message,\n check_format=False,\n read_experiments=True,\n )\n\n def run(self, args=None):\n \"\"\"Execute the script.\"\"\"\n # Parse the command line\n params, options = self.parser.parse_args(args, show_diff_phil=True)\n\n # Check the number of experiments is at least 2\n experiments = flatten_experiments(params.input.experiments)\n if len(experiments) < 2:\n self.parser.print_help()\n return\n\n detectors = [experiment.detector[0] for experiment in experiments]\n\n for pair in combinations(detectors, 2):\n determine_axis(pair, params)\n\n crystals = [experiment.crystal for experiment in experiments]\n goniometers = [experiment.goniometer for experiment in experiments]\n\n FUs = []\n\n for c, g in zip(crystals, goniometers):\n u = matrix.sqr(c.get_U())\n f = matrix.sqr(g.get_fixed_rotation())\n FUs.append(f * u)\n\n for pair in combinations(FUs, 2):\n R = pair[1] * pair[0].inverse()\n rot = r3_rotation_axis_and_angle_from_matrix(R)\n angle = rot.angle(deg=True)\n axis = matrix.col(rot.axis)\n if abs(angle) < 10:\n continue\n print(\"Axis: %8.5f %8.5f %8.5f\" % axis.elems, f\"angle: {angle:7.4f}\")\n\n\ndef determine_axis(detectors, params):\n offset_fast = params.offset_fast\n offset_slow = params.offset_slow\n min_distance = params.min_distance\n\n # pick two positions, at nominal origin offset in fast, slow\n\n x1 = matrix.col(detectors[0].get_origin())\n y1 = (\n matrix.col(detectors[0].get_origin())\n + offset_fast * matrix.col(detectors[0].get_fast_axis())\n + offset_slow * matrix.col(detectors[0].get_slow_axis())\n )\n\n x2 = matrix.col(detectors[1].get_origin())\n y2 = (\n matrix.col(detectors[1].get_origin())\n + offset_fast * matrix.col(detectors[1].get_fast_axis())\n + offset_slow * matrix.col(detectors[1].get_slow_axis())\n )\n\n # only allow this calculation if the detector has been moved a \"significant\"\n # amount\n\n if (x2 - x1).length() < min_distance:\n return\n\n centre, axis = find_centre_of_rotation(x1, x2, y1, y2)\n\n # compute \"true\" two-theta from these\n\n two_theta = component(x2 - centre, axis).angle(\n component(x1 - centre, axis), deg=True\n )\n\n print(\n \"Centre: %7.4f %7.4f %7.4f\" % centre.elems,\n \" axis: %7.4f %7.4f %7.4f\" % axis.elems,\n f\"angle: {two_theta:.2f}\",\n )\n\n\ndef component(a, n):\n return a - a.dot(n) * n\n\n\ndef find_centre_of_rotation(x1, x2, y1, y2):\n \"\"\"Find centre of rotation which takes position x1 -> x2 and y1 -> y2\"\"\"\n\n # chords of rotation of x, y\n\n cx = x2 - x1\n cy = y2 - y1\n\n # know axis is perpendicular to both of these -> is cross product\n\n axis = cx.cross(cy).normalize()\n\n # normal vector to y chord\n\n ny = component(cy, axis).normalize().cross(axis)\n\n # origin of normal vectors, centre of x, y chords\n\n ox = component(x1 + 0.5 * cx, axis)\n oy = component(y1 + 0.5 * cy, axis)\n\n # determine true origin of rotation - normal vector of x chord, construct\n # right-angle-triangle with hypotenuse from unknown origin of rotation\n # to central point of y chord oy, and adjacent the vector parallel to\n # reversed x chord => opposite is on vector from unknown origin of rotation\n # to ox\n\n ncx = cx.normalize()\n h = (oy - ox).dot(ncx)\n d = h / (ny).dot(-ncx)\n return oy + d * ny, axis\n\n\[email protected]_mail_handle_errors()\ndef run(args=None):\n script = Script()\n script.run(args)\n\n\nif __name__ == \"__main__\":\n run()\n", "from __future__ import annotations\nfrom itertools import combinations\nfrom libtbx.phil import parse\nfrom scitbx import matrix\nfrom scitbx.math import r3_rotation_axis_and_angle_from_matrix\nimport dials.util\nfrom dials.util.options import ArgumentParser, flatten_experiments\nhelp_message = \"\"\"\n\ndials.two_theta_offset experiment_one.expt experiment_two.expt\n\"\"\"\nphil_scope = parse(\n \"\"\"\noffset_fast = 100.0\n .type = float\n .help = 'How far to move in the detector plane (fast direction)'\noffset_slow = 100.0\n .type = float\n .help = 'How far to move in the detector plane (slow direction)'\nmin_distance = 10.0\n .type = float\n .help = 'Minimum shift in detector position'\n\"\"\"\n , process_includes=True)\n\n\nclass Script:\n \"\"\"A class for running the script.\"\"\"\n\n def __init__(self):\n \"\"\"Initialise the script.\"\"\"\n usage = (\n 'usage: dials.two_theta_offset [options] experiment_one.expt experiment_two.expt'\n )\n self.parser = ArgumentParser(usage=usage, phil=phil_scope, epilog=\n help_message, check_format=False, read_experiments=True)\n\n def run(self, args=None):\n \"\"\"Execute the script.\"\"\"\n params, options = self.parser.parse_args(args, show_diff_phil=True)\n experiments = flatten_experiments(params.input.experiments)\n if len(experiments) < 2:\n self.parser.print_help()\n return\n detectors = [experiment.detector[0] for experiment in experiments]\n for pair in combinations(detectors, 2):\n determine_axis(pair, params)\n crystals = [experiment.crystal for experiment in experiments]\n goniometers = [experiment.goniometer for experiment in experiments]\n FUs = []\n for c, g in zip(crystals, goniometers):\n u = matrix.sqr(c.get_U())\n f = matrix.sqr(g.get_fixed_rotation())\n FUs.append(f * u)\n for pair in combinations(FUs, 2):\n R = pair[1] * pair[0].inverse()\n rot = r3_rotation_axis_and_angle_from_matrix(R)\n angle = rot.angle(deg=True)\n axis = matrix.col(rot.axis)\n if abs(angle) < 10:\n continue\n print('Axis: %8.5f %8.5f %8.5f' % axis.elems,\n f'angle: {angle:7.4f}')\n\n\ndef determine_axis(detectors, params):\n offset_fast = params.offset_fast\n offset_slow = params.offset_slow\n min_distance = params.min_distance\n x1 = matrix.col(detectors[0].get_origin())\n y1 = matrix.col(detectors[0].get_origin()) + offset_fast * matrix.col(\n detectors[0].get_fast_axis()) + offset_slow * matrix.col(detectors[\n 0].get_slow_axis())\n x2 = matrix.col(detectors[1].get_origin())\n y2 = matrix.col(detectors[1].get_origin()) + offset_fast * matrix.col(\n detectors[1].get_fast_axis()) + offset_slow * matrix.col(detectors[\n 1].get_slow_axis())\n if (x2 - x1).length() < min_distance:\n return\n centre, axis = find_centre_of_rotation(x1, x2, y1, y2)\n two_theta = component(x2 - centre, axis).angle(component(x1 - centre,\n axis), deg=True)\n print('Centre: %7.4f %7.4f %7.4f' % centre.elems, \n ' axis: %7.4f %7.4f %7.4f' % axis.elems, f'angle: {two_theta:.2f}')\n\n\ndef component(a, n):\n return a - a.dot(n) * n\n\n\ndef find_centre_of_rotation(x1, x2, y1, y2):\n \"\"\"Find centre of rotation which takes position x1 -> x2 and y1 -> y2\"\"\"\n cx = x2 - x1\n cy = y2 - y1\n axis = cx.cross(cy).normalize()\n ny = component(cy, axis).normalize().cross(axis)\n ox = component(x1 + 0.5 * cx, axis)\n oy = component(y1 + 0.5 * cy, axis)\n ncx = cx.normalize()\n h = (oy - ox).dot(ncx)\n d = h / ny.dot(-ncx)\n return oy + d * ny, axis\n\n\[email protected]_mail_handle_errors()\ndef run(args=None):\n script = Script()\n script.run(args)\n\n\nif __name__ == '__main__':\n run()\n", "<import token>\nhelp_message = \"\"\"\n\ndials.two_theta_offset experiment_one.expt experiment_two.expt\n\"\"\"\nphil_scope = parse(\n \"\"\"\noffset_fast = 100.0\n .type = float\n .help = 'How far to move in the detector plane (fast direction)'\noffset_slow = 100.0\n .type = float\n .help = 'How far to move in the detector plane (slow direction)'\nmin_distance = 10.0\n .type = float\n .help = 'Minimum shift in detector position'\n\"\"\"\n , process_includes=True)\n\n\nclass Script:\n \"\"\"A class for running the script.\"\"\"\n\n def __init__(self):\n \"\"\"Initialise the script.\"\"\"\n usage = (\n 'usage: dials.two_theta_offset [options] experiment_one.expt experiment_two.expt'\n )\n self.parser = ArgumentParser(usage=usage, phil=phil_scope, epilog=\n help_message, check_format=False, read_experiments=True)\n\n def run(self, args=None):\n \"\"\"Execute the script.\"\"\"\n params, options = self.parser.parse_args(args, show_diff_phil=True)\n experiments = flatten_experiments(params.input.experiments)\n if len(experiments) < 2:\n self.parser.print_help()\n return\n detectors = [experiment.detector[0] for experiment in experiments]\n for pair in combinations(detectors, 2):\n determine_axis(pair, params)\n crystals = [experiment.crystal for experiment in experiments]\n goniometers = [experiment.goniometer for experiment in experiments]\n FUs = []\n for c, g in zip(crystals, goniometers):\n u = matrix.sqr(c.get_U())\n f = matrix.sqr(g.get_fixed_rotation())\n FUs.append(f * u)\n for pair in combinations(FUs, 2):\n R = pair[1] * pair[0].inverse()\n rot = r3_rotation_axis_and_angle_from_matrix(R)\n angle = rot.angle(deg=True)\n axis = matrix.col(rot.axis)\n if abs(angle) < 10:\n continue\n print('Axis: %8.5f %8.5f %8.5f' % axis.elems,\n f'angle: {angle:7.4f}')\n\n\ndef determine_axis(detectors, params):\n offset_fast = params.offset_fast\n offset_slow = params.offset_slow\n min_distance = params.min_distance\n x1 = matrix.col(detectors[0].get_origin())\n y1 = matrix.col(detectors[0].get_origin()) + offset_fast * matrix.col(\n detectors[0].get_fast_axis()) + offset_slow * matrix.col(detectors[\n 0].get_slow_axis())\n x2 = matrix.col(detectors[1].get_origin())\n y2 = matrix.col(detectors[1].get_origin()) + offset_fast * matrix.col(\n detectors[1].get_fast_axis()) + offset_slow * matrix.col(detectors[\n 1].get_slow_axis())\n if (x2 - x1).length() < min_distance:\n return\n centre, axis = find_centre_of_rotation(x1, x2, y1, y2)\n two_theta = component(x2 - centre, axis).angle(component(x1 - centre,\n axis), deg=True)\n print('Centre: %7.4f %7.4f %7.4f' % centre.elems, \n ' axis: %7.4f %7.4f %7.4f' % axis.elems, f'angle: {two_theta:.2f}')\n\n\ndef component(a, n):\n return a - a.dot(n) * n\n\n\ndef find_centre_of_rotation(x1, x2, y1, y2):\n \"\"\"Find centre of rotation which takes position x1 -> x2 and y1 -> y2\"\"\"\n cx = x2 - x1\n cy = y2 - y1\n axis = cx.cross(cy).normalize()\n ny = component(cy, axis).normalize().cross(axis)\n ox = component(x1 + 0.5 * cx, axis)\n oy = component(y1 + 0.5 * cy, axis)\n ncx = cx.normalize()\n h = (oy - ox).dot(ncx)\n d = h / ny.dot(-ncx)\n return oy + d * ny, axis\n\n\[email protected]_mail_handle_errors()\ndef run(args=None):\n script = Script()\n script.run(args)\n\n\nif __name__ == '__main__':\n run()\n", "<import token>\n<assignment token>\n\n\nclass Script:\n \"\"\"A class for running the script.\"\"\"\n\n def __init__(self):\n \"\"\"Initialise the script.\"\"\"\n usage = (\n 'usage: dials.two_theta_offset [options] experiment_one.expt experiment_two.expt'\n )\n self.parser = ArgumentParser(usage=usage, phil=phil_scope, epilog=\n help_message, check_format=False, read_experiments=True)\n\n def run(self, args=None):\n \"\"\"Execute the script.\"\"\"\n params, options = self.parser.parse_args(args, show_diff_phil=True)\n experiments = flatten_experiments(params.input.experiments)\n if len(experiments) < 2:\n self.parser.print_help()\n return\n detectors = [experiment.detector[0] for experiment in experiments]\n for pair in combinations(detectors, 2):\n determine_axis(pair, params)\n crystals = [experiment.crystal for experiment in experiments]\n goniometers = [experiment.goniometer for experiment in experiments]\n FUs = []\n for c, g in zip(crystals, goniometers):\n u = matrix.sqr(c.get_U())\n f = matrix.sqr(g.get_fixed_rotation())\n FUs.append(f * u)\n for pair in combinations(FUs, 2):\n R = pair[1] * pair[0].inverse()\n rot = r3_rotation_axis_and_angle_from_matrix(R)\n angle = rot.angle(deg=True)\n axis = matrix.col(rot.axis)\n if abs(angle) < 10:\n continue\n print('Axis: %8.5f %8.5f %8.5f' % axis.elems,\n f'angle: {angle:7.4f}')\n\n\ndef determine_axis(detectors, params):\n offset_fast = params.offset_fast\n offset_slow = params.offset_slow\n min_distance = params.min_distance\n x1 = matrix.col(detectors[0].get_origin())\n y1 = matrix.col(detectors[0].get_origin()) + offset_fast * matrix.col(\n detectors[0].get_fast_axis()) + offset_slow * matrix.col(detectors[\n 0].get_slow_axis())\n x2 = matrix.col(detectors[1].get_origin())\n y2 = matrix.col(detectors[1].get_origin()) + offset_fast * matrix.col(\n detectors[1].get_fast_axis()) + offset_slow * matrix.col(detectors[\n 1].get_slow_axis())\n if (x2 - x1).length() < min_distance:\n return\n centre, axis = find_centre_of_rotation(x1, x2, y1, y2)\n two_theta = component(x2 - centre, axis).angle(component(x1 - centre,\n axis), deg=True)\n print('Centre: %7.4f %7.4f %7.4f' % centre.elems, \n ' axis: %7.4f %7.4f %7.4f' % axis.elems, f'angle: {two_theta:.2f}')\n\n\ndef component(a, n):\n return a - a.dot(n) * n\n\n\ndef find_centre_of_rotation(x1, x2, y1, y2):\n \"\"\"Find centre of rotation which takes position x1 -> x2 and y1 -> y2\"\"\"\n cx = x2 - x1\n cy = y2 - y1\n axis = cx.cross(cy).normalize()\n ny = component(cy, axis).normalize().cross(axis)\n ox = component(x1 + 0.5 * cx, axis)\n oy = component(y1 + 0.5 * cy, axis)\n ncx = cx.normalize()\n h = (oy - ox).dot(ncx)\n d = h / ny.dot(-ncx)\n return oy + d * ny, axis\n\n\[email protected]_mail_handle_errors()\ndef run(args=None):\n script = Script()\n script.run(args)\n\n\nif __name__ == '__main__':\n run()\n", "<import token>\n<assignment token>\n\n\nclass Script:\n \"\"\"A class for running the script.\"\"\"\n\n def __init__(self):\n \"\"\"Initialise the script.\"\"\"\n usage = (\n 'usage: dials.two_theta_offset [options] experiment_one.expt experiment_two.expt'\n )\n self.parser = ArgumentParser(usage=usage, phil=phil_scope, epilog=\n help_message, check_format=False, read_experiments=True)\n\n def run(self, args=None):\n \"\"\"Execute the script.\"\"\"\n params, options = self.parser.parse_args(args, show_diff_phil=True)\n experiments = flatten_experiments(params.input.experiments)\n if len(experiments) < 2:\n self.parser.print_help()\n return\n detectors = [experiment.detector[0] for experiment in experiments]\n for pair in combinations(detectors, 2):\n determine_axis(pair, params)\n crystals = [experiment.crystal for experiment in experiments]\n goniometers = [experiment.goniometer for experiment in experiments]\n FUs = []\n for c, g in zip(crystals, goniometers):\n u = matrix.sqr(c.get_U())\n f = matrix.sqr(g.get_fixed_rotation())\n FUs.append(f * u)\n for pair in combinations(FUs, 2):\n R = pair[1] * pair[0].inverse()\n rot = r3_rotation_axis_and_angle_from_matrix(R)\n angle = rot.angle(deg=True)\n axis = matrix.col(rot.axis)\n if abs(angle) < 10:\n continue\n print('Axis: %8.5f %8.5f %8.5f' % axis.elems,\n f'angle: {angle:7.4f}')\n\n\ndef determine_axis(detectors, params):\n offset_fast = params.offset_fast\n offset_slow = params.offset_slow\n min_distance = params.min_distance\n x1 = matrix.col(detectors[0].get_origin())\n y1 = matrix.col(detectors[0].get_origin()) + offset_fast * matrix.col(\n detectors[0].get_fast_axis()) + offset_slow * matrix.col(detectors[\n 0].get_slow_axis())\n x2 = matrix.col(detectors[1].get_origin())\n y2 = matrix.col(detectors[1].get_origin()) + offset_fast * matrix.col(\n detectors[1].get_fast_axis()) + offset_slow * matrix.col(detectors[\n 1].get_slow_axis())\n if (x2 - x1).length() < min_distance:\n return\n centre, axis = find_centre_of_rotation(x1, x2, y1, y2)\n two_theta = component(x2 - centre, axis).angle(component(x1 - centre,\n axis), deg=True)\n print('Centre: %7.4f %7.4f %7.4f' % centre.elems, \n ' axis: %7.4f %7.4f %7.4f' % axis.elems, f'angle: {two_theta:.2f}')\n\n\ndef component(a, n):\n return a - a.dot(n) * n\n\n\ndef find_centre_of_rotation(x1, x2, y1, y2):\n \"\"\"Find centre of rotation which takes position x1 -> x2 and y1 -> y2\"\"\"\n cx = x2 - x1\n cy = y2 - y1\n axis = cx.cross(cy).normalize()\n ny = component(cy, axis).normalize().cross(axis)\n ox = component(x1 + 0.5 * cx, axis)\n oy = component(y1 + 0.5 * cy, axis)\n ncx = cx.normalize()\n h = (oy - ox).dot(ncx)\n d = h / ny.dot(-ncx)\n return oy + d * ny, axis\n\n\[email protected]_mail_handle_errors()\ndef run(args=None):\n script = Script()\n script.run(args)\n\n\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass Script:\n \"\"\"A class for running the script.\"\"\"\n\n def __init__(self):\n \"\"\"Initialise the script.\"\"\"\n usage = (\n 'usage: dials.two_theta_offset [options] experiment_one.expt experiment_two.expt'\n )\n self.parser = ArgumentParser(usage=usage, phil=phil_scope, epilog=\n help_message, check_format=False, read_experiments=True)\n\n def run(self, args=None):\n \"\"\"Execute the script.\"\"\"\n params, options = self.parser.parse_args(args, show_diff_phil=True)\n experiments = flatten_experiments(params.input.experiments)\n if len(experiments) < 2:\n self.parser.print_help()\n return\n detectors = [experiment.detector[0] for experiment in experiments]\n for pair in combinations(detectors, 2):\n determine_axis(pair, params)\n crystals = [experiment.crystal for experiment in experiments]\n goniometers = [experiment.goniometer for experiment in experiments]\n FUs = []\n for c, g in zip(crystals, goniometers):\n u = matrix.sqr(c.get_U())\n f = matrix.sqr(g.get_fixed_rotation())\n FUs.append(f * u)\n for pair in combinations(FUs, 2):\n R = pair[1] * pair[0].inverse()\n rot = r3_rotation_axis_and_angle_from_matrix(R)\n angle = rot.angle(deg=True)\n axis = matrix.col(rot.axis)\n if abs(angle) < 10:\n continue\n print('Axis: %8.5f %8.5f %8.5f' % axis.elems,\n f'angle: {angle:7.4f}')\n\n\n<function token>\n\n\ndef component(a, n):\n return a - a.dot(n) * n\n\n\ndef find_centre_of_rotation(x1, x2, y1, y2):\n \"\"\"Find centre of rotation which takes position x1 -> x2 and y1 -> y2\"\"\"\n cx = x2 - x1\n cy = y2 - y1\n axis = cx.cross(cy).normalize()\n ny = component(cy, axis).normalize().cross(axis)\n ox = component(x1 + 0.5 * cx, axis)\n oy = component(y1 + 0.5 * cy, axis)\n ncx = cx.normalize()\n h = (oy - ox).dot(ncx)\n d = h / ny.dot(-ncx)\n return oy + d * ny, axis\n\n\[email protected]_mail_handle_errors()\ndef run(args=None):\n script = Script()\n script.run(args)\n\n\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass Script:\n \"\"\"A class for running the script.\"\"\"\n\n def __init__(self):\n \"\"\"Initialise the script.\"\"\"\n usage = (\n 'usage: dials.two_theta_offset [options] experiment_one.expt experiment_two.expt'\n )\n self.parser = ArgumentParser(usage=usage, phil=phil_scope, epilog=\n help_message, check_format=False, read_experiments=True)\n\n def run(self, args=None):\n \"\"\"Execute the script.\"\"\"\n params, options = self.parser.parse_args(args, show_diff_phil=True)\n experiments = flatten_experiments(params.input.experiments)\n if len(experiments) < 2:\n self.parser.print_help()\n return\n detectors = [experiment.detector[0] for experiment in experiments]\n for pair in combinations(detectors, 2):\n determine_axis(pair, params)\n crystals = [experiment.crystal for experiment in experiments]\n goniometers = [experiment.goniometer for experiment in experiments]\n FUs = []\n for c, g in zip(crystals, goniometers):\n u = matrix.sqr(c.get_U())\n f = matrix.sqr(g.get_fixed_rotation())\n FUs.append(f * u)\n for pair in combinations(FUs, 2):\n R = pair[1] * pair[0].inverse()\n rot = r3_rotation_axis_and_angle_from_matrix(R)\n angle = rot.angle(deg=True)\n axis = matrix.col(rot.axis)\n if abs(angle) < 10:\n continue\n print('Axis: %8.5f %8.5f %8.5f' % axis.elems,\n f'angle: {angle:7.4f}')\n\n\n<function token>\n\n\ndef component(a, n):\n return a - a.dot(n) * n\n\n\n<function token>\n\n\[email protected]_mail_handle_errors()\ndef run(args=None):\n script = Script()\n script.run(args)\n\n\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass Script:\n \"\"\"A class for running the script.\"\"\"\n\n def __init__(self):\n \"\"\"Initialise the script.\"\"\"\n usage = (\n 'usage: dials.two_theta_offset [options] experiment_one.expt experiment_two.expt'\n )\n self.parser = ArgumentParser(usage=usage, phil=phil_scope, epilog=\n help_message, check_format=False, read_experiments=True)\n\n def run(self, args=None):\n \"\"\"Execute the script.\"\"\"\n params, options = self.parser.parse_args(args, show_diff_phil=True)\n experiments = flatten_experiments(params.input.experiments)\n if len(experiments) < 2:\n self.parser.print_help()\n return\n detectors = [experiment.detector[0] for experiment in experiments]\n for pair in combinations(detectors, 2):\n determine_axis(pair, params)\n crystals = [experiment.crystal for experiment in experiments]\n goniometers = [experiment.goniometer for experiment in experiments]\n FUs = []\n for c, g in zip(crystals, goniometers):\n u = matrix.sqr(c.get_U())\n f = matrix.sqr(g.get_fixed_rotation())\n FUs.append(f * u)\n for pair in combinations(FUs, 2):\n R = pair[1] * pair[0].inverse()\n rot = r3_rotation_axis_and_angle_from_matrix(R)\n angle = rot.angle(deg=True)\n axis = matrix.col(rot.axis)\n if abs(angle) < 10:\n continue\n print('Axis: %8.5f %8.5f %8.5f' % axis.elems,\n f'angle: {angle:7.4f}')\n\n\n<function token>\n\n\ndef component(a, n):\n return a - a.dot(n) * n\n\n\n<function token>\n<function token>\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass Script:\n \"\"\"A class for running the script.\"\"\"\n\n def __init__(self):\n \"\"\"Initialise the script.\"\"\"\n usage = (\n 'usage: dials.two_theta_offset [options] experiment_one.expt experiment_two.expt'\n )\n self.parser = ArgumentParser(usage=usage, phil=phil_scope, epilog=\n help_message, check_format=False, read_experiments=True)\n\n def run(self, args=None):\n \"\"\"Execute the script.\"\"\"\n params, options = self.parser.parse_args(args, show_diff_phil=True)\n experiments = flatten_experiments(params.input.experiments)\n if len(experiments) < 2:\n self.parser.print_help()\n return\n detectors = [experiment.detector[0] for experiment in experiments]\n for pair in combinations(detectors, 2):\n determine_axis(pair, params)\n crystals = [experiment.crystal for experiment in experiments]\n goniometers = [experiment.goniometer for experiment in experiments]\n FUs = []\n for c, g in zip(crystals, goniometers):\n u = matrix.sqr(c.get_U())\n f = matrix.sqr(g.get_fixed_rotation())\n FUs.append(f * u)\n for pair in combinations(FUs, 2):\n R = pair[1] * pair[0].inverse()\n rot = r3_rotation_axis_and_angle_from_matrix(R)\n angle = rot.angle(deg=True)\n axis = matrix.col(rot.axis)\n if abs(angle) < 10:\n continue\n print('Axis: %8.5f %8.5f %8.5f' % axis.elems,\n f'angle: {angle:7.4f}')\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass Script:\n <docstring token>\n\n def __init__(self):\n \"\"\"Initialise the script.\"\"\"\n usage = (\n 'usage: dials.two_theta_offset [options] experiment_one.expt experiment_two.expt'\n )\n self.parser = ArgumentParser(usage=usage, phil=phil_scope, epilog=\n help_message, check_format=False, read_experiments=True)\n\n def run(self, args=None):\n \"\"\"Execute the script.\"\"\"\n params, options = self.parser.parse_args(args, show_diff_phil=True)\n experiments = flatten_experiments(params.input.experiments)\n if len(experiments) < 2:\n self.parser.print_help()\n return\n detectors = [experiment.detector[0] for experiment in experiments]\n for pair in combinations(detectors, 2):\n determine_axis(pair, params)\n crystals = [experiment.crystal for experiment in experiments]\n goniometers = [experiment.goniometer for experiment in experiments]\n FUs = []\n for c, g in zip(crystals, goniometers):\n u = matrix.sqr(c.get_U())\n f = matrix.sqr(g.get_fixed_rotation())\n FUs.append(f * u)\n for pair in combinations(FUs, 2):\n R = pair[1] * pair[0].inverse()\n rot = r3_rotation_axis_and_angle_from_matrix(R)\n angle = rot.angle(deg=True)\n axis = matrix.col(rot.axis)\n if abs(angle) < 10:\n continue\n print('Axis: %8.5f %8.5f %8.5f' % axis.elems,\n f'angle: {angle:7.4f}')\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass Script:\n <docstring token>\n <function token>\n\n def run(self, args=None):\n \"\"\"Execute the script.\"\"\"\n params, options = self.parser.parse_args(args, show_diff_phil=True)\n experiments = flatten_experiments(params.input.experiments)\n if len(experiments) < 2:\n self.parser.print_help()\n return\n detectors = [experiment.detector[0] for experiment in experiments]\n for pair in combinations(detectors, 2):\n determine_axis(pair, params)\n crystals = [experiment.crystal for experiment in experiments]\n goniometers = [experiment.goniometer for experiment in experiments]\n FUs = []\n for c, g in zip(crystals, goniometers):\n u = matrix.sqr(c.get_U())\n f = matrix.sqr(g.get_fixed_rotation())\n FUs.append(f * u)\n for pair in combinations(FUs, 2):\n R = pair[1] * pair[0].inverse()\n rot = r3_rotation_axis_and_angle_from_matrix(R)\n angle = rot.angle(deg=True)\n axis = matrix.col(rot.axis)\n if abs(angle) < 10:\n continue\n print('Axis: %8.5f %8.5f %8.5f' % axis.elems,\n f'angle: {angle:7.4f}')\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass Script:\n <docstring token>\n <function token>\n <function token>\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<code token>\n", "<import token>\n<assignment token>\n<class token>\n<function token>\n<function token>\n<function token>\n<function token>\n<code token>\n" ]
false
99,343
324b0e47b542477a70e02238bf8c3a224c620e55
import sys from pylint.interfaces import IReporter from pylint.reporters import BaseReporter class CustomJSONReporter(BaseReporter): """Report messages and layouts in JSON.""" __implements__ = IReporter name = 'json_custom' extension = 'json_custom' def __init__(self, output=sys.stdout): BaseReporter.__init__(self, output) self.messages = [] def handle_message(self, msg): """Manage message of different type and in the context of path.""" self.messages.append({ 'type': msg.category, 'module': msg.module, 'obj': msg.obj, 'line': msg.line, 'column': msg.column, 'path': msg.path, 'symbol': msg.symbol, 'message': msg.msg, 'message-id': msg.msg_id, }) def get_errors_json(self): return self.messages def display_messages(self, layout): """Don't do nothing in this reporter.""" def display_reports(self, layout): # pylint: disable=arguments-differ """Don't do nothing in this reporter.""" def _display(self, layout): """Don't do nothing."""
[ "import sys\nfrom pylint.interfaces import IReporter\nfrom pylint.reporters import BaseReporter\n\n\nclass CustomJSONReporter(BaseReporter):\n \"\"\"Report messages and layouts in JSON.\"\"\"\n\n __implements__ = IReporter\n name = 'json_custom'\n extension = 'json_custom'\n\n def __init__(self, output=sys.stdout):\n BaseReporter.__init__(self, output)\n self.messages = []\n\n def handle_message(self, msg):\n \"\"\"Manage message of different type and in the context of path.\"\"\"\n self.messages.append({\n 'type': msg.category,\n 'module': msg.module,\n 'obj': msg.obj,\n 'line': msg.line,\n 'column': msg.column,\n 'path': msg.path,\n 'symbol': msg.symbol,\n 'message': msg.msg,\n 'message-id': msg.msg_id,\n })\n\n def get_errors_json(self):\n return self.messages\n\n def display_messages(self, layout):\n \"\"\"Don't do nothing in this reporter.\"\"\"\n\n def display_reports(self, layout): # pylint: disable=arguments-differ\n \"\"\"Don't do nothing in this reporter.\"\"\"\n\n def _display(self, layout):\n \"\"\"Don't do nothing.\"\"\"\n", "import sys\nfrom pylint.interfaces import IReporter\nfrom pylint.reporters import BaseReporter\n\n\nclass CustomJSONReporter(BaseReporter):\n \"\"\"Report messages and layouts in JSON.\"\"\"\n __implements__ = IReporter\n name = 'json_custom'\n extension = 'json_custom'\n\n def __init__(self, output=sys.stdout):\n BaseReporter.__init__(self, output)\n self.messages = []\n\n def handle_message(self, msg):\n \"\"\"Manage message of different type and in the context of path.\"\"\"\n self.messages.append({'type': msg.category, 'module': msg.module,\n 'obj': msg.obj, 'line': msg.line, 'column': msg.column, 'path':\n msg.path, 'symbol': msg.symbol, 'message': msg.msg,\n 'message-id': msg.msg_id})\n\n def get_errors_json(self):\n return self.messages\n\n def display_messages(self, layout):\n \"\"\"Don't do nothing in this reporter.\"\"\"\n\n def display_reports(self, layout):\n \"\"\"Don't do nothing in this reporter.\"\"\"\n\n def _display(self, layout):\n \"\"\"Don't do nothing.\"\"\"\n", "<import token>\n\n\nclass CustomJSONReporter(BaseReporter):\n \"\"\"Report messages and layouts in JSON.\"\"\"\n __implements__ = IReporter\n name = 'json_custom'\n extension = 'json_custom'\n\n def __init__(self, output=sys.stdout):\n BaseReporter.__init__(self, output)\n self.messages = []\n\n def handle_message(self, msg):\n \"\"\"Manage message of different type and in the context of path.\"\"\"\n self.messages.append({'type': msg.category, 'module': msg.module,\n 'obj': msg.obj, 'line': msg.line, 'column': msg.column, 'path':\n msg.path, 'symbol': msg.symbol, 'message': msg.msg,\n 'message-id': msg.msg_id})\n\n def get_errors_json(self):\n return self.messages\n\n def display_messages(self, layout):\n \"\"\"Don't do nothing in this reporter.\"\"\"\n\n def display_reports(self, layout):\n \"\"\"Don't do nothing in this reporter.\"\"\"\n\n def _display(self, layout):\n \"\"\"Don't do nothing.\"\"\"\n", "<import token>\n\n\nclass CustomJSONReporter(BaseReporter):\n <docstring token>\n __implements__ = IReporter\n name = 'json_custom'\n extension = 'json_custom'\n\n def __init__(self, output=sys.stdout):\n BaseReporter.__init__(self, output)\n self.messages = []\n\n def handle_message(self, msg):\n \"\"\"Manage message of different type and in the context of path.\"\"\"\n self.messages.append({'type': msg.category, 'module': msg.module,\n 'obj': msg.obj, 'line': msg.line, 'column': msg.column, 'path':\n msg.path, 'symbol': msg.symbol, 'message': msg.msg,\n 'message-id': msg.msg_id})\n\n def get_errors_json(self):\n return self.messages\n\n def display_messages(self, layout):\n \"\"\"Don't do nothing in this reporter.\"\"\"\n\n def display_reports(self, layout):\n \"\"\"Don't do nothing in this reporter.\"\"\"\n\n def _display(self, layout):\n \"\"\"Don't do nothing.\"\"\"\n", "<import token>\n\n\nclass CustomJSONReporter(BaseReporter):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __init__(self, output=sys.stdout):\n BaseReporter.__init__(self, output)\n self.messages = []\n\n def handle_message(self, msg):\n \"\"\"Manage message of different type and in the context of path.\"\"\"\n self.messages.append({'type': msg.category, 'module': msg.module,\n 'obj': msg.obj, 'line': msg.line, 'column': msg.column, 'path':\n msg.path, 'symbol': msg.symbol, 'message': msg.msg,\n 'message-id': msg.msg_id})\n\n def get_errors_json(self):\n return self.messages\n\n def display_messages(self, layout):\n \"\"\"Don't do nothing in this reporter.\"\"\"\n\n def display_reports(self, layout):\n \"\"\"Don't do nothing in this reporter.\"\"\"\n\n def _display(self, layout):\n \"\"\"Don't do nothing.\"\"\"\n", "<import token>\n\n\nclass CustomJSONReporter(BaseReporter):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __init__(self, output=sys.stdout):\n BaseReporter.__init__(self, output)\n self.messages = []\n\n def handle_message(self, msg):\n \"\"\"Manage message of different type and in the context of path.\"\"\"\n self.messages.append({'type': msg.category, 'module': msg.module,\n 'obj': msg.obj, 'line': msg.line, 'column': msg.column, 'path':\n msg.path, 'symbol': msg.symbol, 'message': msg.msg,\n 'message-id': msg.msg_id})\n\n def get_errors_json(self):\n return self.messages\n\n def display_messages(self, layout):\n \"\"\"Don't do nothing in this reporter.\"\"\"\n\n def display_reports(self, layout):\n \"\"\"Don't do nothing in this reporter.\"\"\"\n <function token>\n", "<import token>\n\n\nclass CustomJSONReporter(BaseReporter):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __init__(self, output=sys.stdout):\n BaseReporter.__init__(self, output)\n self.messages = []\n\n def handle_message(self, msg):\n \"\"\"Manage message of different type and in the context of path.\"\"\"\n self.messages.append({'type': msg.category, 'module': msg.module,\n 'obj': msg.obj, 'line': msg.line, 'column': msg.column, 'path':\n msg.path, 'symbol': msg.symbol, 'message': msg.msg,\n 'message-id': msg.msg_id})\n <function token>\n\n def display_messages(self, layout):\n \"\"\"Don't do nothing in this reporter.\"\"\"\n\n def display_reports(self, layout):\n \"\"\"Don't do nothing in this reporter.\"\"\"\n <function token>\n", "<import token>\n\n\nclass CustomJSONReporter(BaseReporter):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __init__(self, output=sys.stdout):\n BaseReporter.__init__(self, output)\n self.messages = []\n\n def handle_message(self, msg):\n \"\"\"Manage message of different type and in the context of path.\"\"\"\n self.messages.append({'type': msg.category, 'module': msg.module,\n 'obj': msg.obj, 'line': msg.line, 'column': msg.column, 'path':\n msg.path, 'symbol': msg.symbol, 'message': msg.msg,\n 'message-id': msg.msg_id})\n <function token>\n\n def display_messages(self, layout):\n \"\"\"Don't do nothing in this reporter.\"\"\"\n <function token>\n <function token>\n", "<import token>\n\n\nclass CustomJSONReporter(BaseReporter):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __init__(self, output=sys.stdout):\n BaseReporter.__init__(self, output)\n self.messages = []\n\n def handle_message(self, msg):\n \"\"\"Manage message of different type and in the context of path.\"\"\"\n self.messages.append({'type': msg.category, 'module': msg.module,\n 'obj': msg.obj, 'line': msg.line, 'column': msg.column, 'path':\n msg.path, 'symbol': msg.symbol, 'message': msg.msg,\n 'message-id': msg.msg_id})\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n\n\nclass CustomJSONReporter(BaseReporter):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n\n def handle_message(self, msg):\n \"\"\"Manage message of different type and in the context of path.\"\"\"\n self.messages.append({'type': msg.category, 'module': msg.module,\n 'obj': msg.obj, 'line': msg.line, 'column': msg.column, 'path':\n msg.path, 'symbol': msg.symbol, 'message': msg.msg,\n 'message-id': msg.msg_id})\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n\n\nclass CustomJSONReporter(BaseReporter):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n<class token>\n" ]
false
99,344
19bf15197a120aea94e2b89b3af540c5263c780c
import cv2 import numpy as np import random import os os.chdir('C:/Users/PC021/Downloads/05-컴퓨터비전-이미지파일/05-컴퓨터비전-이미지파일') oldx = oldy = -1 def random_color(): return tuple(sorted([i for i in range(256)]*3, key=lambda x:random.random())[:3]) def random_size(): return random.randint(10,100) def on_mouse(event, x, y, flags, param): global oldx, oldy if event == cv2.EVENT_LBUTTONDOWN: oldx, oldy = x, y elif event == cv2.EVENT_MOUSEMOVE: if flags & cv2.EVENT_FLAG_LBUTTON: cv2.line(img, (oldx, oldy), (x, y), (0, 0, 255), 4, cv2.LINE_AA) cv2.imshow('image', img) oldx, oldy = x, y elif event == cv2.EVENT_LBUTTONDBLCLK: cv2.circle(img, (oldx, oldy),random_size(),random_color(),-1,cv2.LINE_4,) cv2.imshow('image', img) oldx, oldy = x, y img = cv2.imread('images/car.jpg',cv2.IMREAD_UNCHANGED) cv2.imshow('image', img) cv2.setMouseCallback('image', on_mouse, img) cv2.waitKey() cv2.destroyAllWindows()
[ "import cv2\nimport numpy as np\nimport random\nimport os\nos.chdir('C:/Users/PC021/Downloads/05-컴퓨터비전-이미지파일/05-컴퓨터비전-이미지파일')\noldx = oldy = -1\n\ndef random_color():\n return tuple(sorted([i for i in range(256)]*3, key=lambda x:random.random())[:3])\n\ndef random_size():\n return random.randint(10,100)\n\ndef on_mouse(event, x, y, flags, param):\n global oldx, oldy\n if event == cv2.EVENT_LBUTTONDOWN:\n oldx, oldy = x, y\n\n elif event == cv2.EVENT_MOUSEMOVE:\n if flags & cv2.EVENT_FLAG_LBUTTON:\n cv2.line(img, (oldx, oldy), (x, y), (0, 0, 255), 4, cv2.LINE_AA)\n cv2.imshow('image', img)\n oldx, oldy = x, y\n\n elif event == cv2.EVENT_LBUTTONDBLCLK:\n cv2.circle(img, (oldx, oldy),random_size(),random_color(),-1,cv2.LINE_4,)\n cv2.imshow('image', img)\n oldx, oldy = x, y\n\nimg = cv2.imread('images/car.jpg',cv2.IMREAD_UNCHANGED)\n\ncv2.imshow('image', img)\ncv2.setMouseCallback('image', on_mouse, img)\ncv2.waitKey()\ncv2.destroyAllWindows()\n", "import cv2\nimport numpy as np\nimport random\nimport os\nos.chdir('C:/Users/PC021/Downloads/05-컴퓨터비전-이미지파일/05-컴퓨터비전-이미지파일')\noldx = oldy = -1\n\n\ndef random_color():\n return tuple(sorted([i for i in range(256)] * 3, key=lambda x: random.\n random())[:3])\n\n\ndef random_size():\n return random.randint(10, 100)\n\n\ndef on_mouse(event, x, y, flags, param):\n global oldx, oldy\n if event == cv2.EVENT_LBUTTONDOWN:\n oldx, oldy = x, y\n elif event == cv2.EVENT_MOUSEMOVE:\n if flags & cv2.EVENT_FLAG_LBUTTON:\n cv2.line(img, (oldx, oldy), (x, y), (0, 0, 255), 4, cv2.LINE_AA)\n cv2.imshow('image', img)\n oldx, oldy = x, y\n elif event == cv2.EVENT_LBUTTONDBLCLK:\n cv2.circle(img, (oldx, oldy), random_size(), random_color(), -1,\n cv2.LINE_4)\n cv2.imshow('image', img)\n oldx, oldy = x, y\n\n\nimg = cv2.imread('images/car.jpg', cv2.IMREAD_UNCHANGED)\ncv2.imshow('image', img)\ncv2.setMouseCallback('image', on_mouse, img)\ncv2.waitKey()\ncv2.destroyAllWindows()\n", "<import token>\nos.chdir('C:/Users/PC021/Downloads/05-컴퓨터비전-이미지파일/05-컴퓨터비전-이미지파일')\noldx = oldy = -1\n\n\ndef random_color():\n return tuple(sorted([i for i in range(256)] * 3, key=lambda x: random.\n random())[:3])\n\n\ndef random_size():\n return random.randint(10, 100)\n\n\ndef on_mouse(event, x, y, flags, param):\n global oldx, oldy\n if event == cv2.EVENT_LBUTTONDOWN:\n oldx, oldy = x, y\n elif event == cv2.EVENT_MOUSEMOVE:\n if flags & cv2.EVENT_FLAG_LBUTTON:\n cv2.line(img, (oldx, oldy), (x, y), (0, 0, 255), 4, cv2.LINE_AA)\n cv2.imshow('image', img)\n oldx, oldy = x, y\n elif event == cv2.EVENT_LBUTTONDBLCLK:\n cv2.circle(img, (oldx, oldy), random_size(), random_color(), -1,\n cv2.LINE_4)\n cv2.imshow('image', img)\n oldx, oldy = x, y\n\n\nimg = cv2.imread('images/car.jpg', cv2.IMREAD_UNCHANGED)\ncv2.imshow('image', img)\ncv2.setMouseCallback('image', on_mouse, img)\ncv2.waitKey()\ncv2.destroyAllWindows()\n", "<import token>\nos.chdir('C:/Users/PC021/Downloads/05-컴퓨터비전-이미지파일/05-컴퓨터비전-이미지파일')\n<assignment token>\n\n\ndef random_color():\n return tuple(sorted([i for i in range(256)] * 3, key=lambda x: random.\n random())[:3])\n\n\ndef random_size():\n return random.randint(10, 100)\n\n\ndef on_mouse(event, x, y, flags, param):\n global oldx, oldy\n if event == cv2.EVENT_LBUTTONDOWN:\n oldx, oldy = x, y\n elif event == cv2.EVENT_MOUSEMOVE:\n if flags & cv2.EVENT_FLAG_LBUTTON:\n cv2.line(img, (oldx, oldy), (x, y), (0, 0, 255), 4, cv2.LINE_AA)\n cv2.imshow('image', img)\n oldx, oldy = x, y\n elif event == cv2.EVENT_LBUTTONDBLCLK:\n cv2.circle(img, (oldx, oldy), random_size(), random_color(), -1,\n cv2.LINE_4)\n cv2.imshow('image', img)\n oldx, oldy = x, y\n\n\n<assignment token>\ncv2.imshow('image', img)\ncv2.setMouseCallback('image', on_mouse, img)\ncv2.waitKey()\ncv2.destroyAllWindows()\n", "<import token>\n<code token>\n<assignment token>\n\n\ndef random_color():\n return tuple(sorted([i for i in range(256)] * 3, key=lambda x: random.\n random())[:3])\n\n\ndef random_size():\n return random.randint(10, 100)\n\n\ndef on_mouse(event, x, y, flags, param):\n global oldx, oldy\n if event == cv2.EVENT_LBUTTONDOWN:\n oldx, oldy = x, y\n elif event == cv2.EVENT_MOUSEMOVE:\n if flags & cv2.EVENT_FLAG_LBUTTON:\n cv2.line(img, (oldx, oldy), (x, y), (0, 0, 255), 4, cv2.LINE_AA)\n cv2.imshow('image', img)\n oldx, oldy = x, y\n elif event == cv2.EVENT_LBUTTONDBLCLK:\n cv2.circle(img, (oldx, oldy), random_size(), random_color(), -1,\n cv2.LINE_4)\n cv2.imshow('image', img)\n oldx, oldy = x, y\n\n\n<assignment token>\n<code token>\n", "<import token>\n<code token>\n<assignment token>\n<function token>\n\n\ndef random_size():\n return random.randint(10, 100)\n\n\ndef on_mouse(event, x, y, flags, param):\n global oldx, oldy\n if event == cv2.EVENT_LBUTTONDOWN:\n oldx, oldy = x, y\n elif event == cv2.EVENT_MOUSEMOVE:\n if flags & cv2.EVENT_FLAG_LBUTTON:\n cv2.line(img, (oldx, oldy), (x, y), (0, 0, 255), 4, cv2.LINE_AA)\n cv2.imshow('image', img)\n oldx, oldy = x, y\n elif event == cv2.EVENT_LBUTTONDBLCLK:\n cv2.circle(img, (oldx, oldy), random_size(), random_color(), -1,\n cv2.LINE_4)\n cv2.imshow('image', img)\n oldx, oldy = x, y\n\n\n<assignment token>\n<code token>\n", "<import token>\n<code token>\n<assignment token>\n<function token>\n<function token>\n\n\ndef on_mouse(event, x, y, flags, param):\n global oldx, oldy\n if event == cv2.EVENT_LBUTTONDOWN:\n oldx, oldy = x, y\n elif event == cv2.EVENT_MOUSEMOVE:\n if flags & cv2.EVENT_FLAG_LBUTTON:\n cv2.line(img, (oldx, oldy), (x, y), (0, 0, 255), 4, cv2.LINE_AA)\n cv2.imshow('image', img)\n oldx, oldy = x, y\n elif event == cv2.EVENT_LBUTTONDBLCLK:\n cv2.circle(img, (oldx, oldy), random_size(), random_color(), -1,\n cv2.LINE_4)\n cv2.imshow('image', img)\n oldx, oldy = x, y\n\n\n<assignment token>\n<code token>\n", "<import token>\n<code token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<assignment token>\n<code token>\n" ]
false
99,345
20bb22e6e5b0eb85f5836af4896bc31887a103b9
import os import cv2 import glob import random import numpy as np from pathlib import Path from imutils import paths from IPython.core.debugger import Tracer char_dict = {"1": "a", "2": "b", "3": "c", "4": "d", "5": "e", "6": "f", "7": "g", "8": "h", "9": "i", "10": "j", "11": "k", "12": "l", "13": "m", "14": "n", "15": "o", "16": "p", "17": "q", "18": "r", "19": "s", "20": "t", "21": "u", "22": "v", "23": "w", "24": "x", "25": "y", "26": "z", "27": "A", "28": "B", "29": "C", "30": "D", "31": "E", "32": "F", "33": "G", "34": "H", "35": "I", "36": "J", "37": "K", "38": "L", "39": "M", "40": "N", "41": "O", "42": "P", "43": "Q", "44": "R", "45": "S", "46": "T", "47": "U", "48": "V", "49": "W", "50": "X", "51": "Y", "52": "Z"} train_dict = {"1": "a", "2": "b", "3": "c", "4": "d", "5": "e", "6": "f", "7": "g", "8": "h", "9": "i", "10": "j", "11": "k", "12": "l", "13": "m", "14": "n", "15": "o", "16": "p", "17": "q", "18": "r", "19": "s", "20": "t", "21": "u", "22": "v", "23": "w", "24": "x", "25": "y", "26": "z", "27": "\'", "28": "-","29":"&"} img_h = 64 img_w = 400 def text_crop(img, threshold): ''' 切除图像空白边缘部分 ''' ret, image_mask = cv2.threshold(img, threshold, 1, cv2.THRESH_BINARY_INV) n = np.argwhere(image_mask == 1) rows = np.unique([n[i][0] for i in range(n.shape[0])]) cols = np.unique([n[i][1] for i in range(n.shape[0])]) min_row = np.min(rows) max_row = np.max(rows) min_col = np.min(cols) max_col = np.max(cols) image_crop = img[min_row: max_row, min_col: max_col] return image_crop def compute_padding_value(img_gray): ''' 计算padding的值 取图像累积直方图中大于0.8处的值 ''' hist = cv2.calcHist([img_gray], [0], None, [256], [0, 256]) cdf_img = np.cumsum(hist) cdf_hist = cdf_img / np.max(cdf_img) padding_value = np.min(np.where(cdf_hist > 0.8)[0]) return padding_value def normalization_h(img): ''' 高度归一化 img shape (32, w) ''' padding_value = compute_padding_value(img) h, w = img.shape[:2] if h >= img_h and w >= img_w: img_ = cv2.resize(img, (img_w, img_h)) elif h > img_h and w < img_w: img = cv2.resize(img, (w, img_h)) pad_l = random.randint(0, img_w - w) img_ = cv2.copyMakeBorder(img, 0, 0, pad_l, img_w - w - pad_l, cv2.BORDER_CONSTANT, value=int(padding_value)) img_ = cv2.resize(img_, (img_w, img_h)) elif h <= img_h and w <= img_w: pad_top = random.randint(0, img_h - h) pad_l = random.randint(0, img_w - w) img_ = cv2.copyMakeBorder(img, pad_top, img_h - h - pad_top, pad_l, img_w - w - pad_l, cv2.BORDER_CONSTANT, value=int(padding_value)) img_ = cv2.resize(img_, (img_w, img_h)) elif h < img_h and w > img_w: img = cv2.resize(img, (img_w, h)) pad_top = random.randint(0, img_h - h) img_ = cv2.copyMakeBorder(img, pad_top, img_h - h - pad_top, 0, 0, cv2.BORDER_CONSTANT, value=int(padding_value)) img_ = cv2.resize(img_, (img_w, img_h)) return img_ # data augment functions def data_augment(img, background_path): # if np.random.random() < 0.15: # img = blur(img) if np.random.random() < 0.25: img = add_noise(img) if np.random.random() < 0.95: img = add_background(img, background_path) return img def resize_image(img): img_h, img_w = img.shape[:2] scale = np.random.uniform(0.8, 1.2, 1) h = int(img_h * scale) w = int(img_w * scale) img_resize = cv2.resize(img, (w, h)) return img_resize def blur(img): img = cv2.blur(img, (3, 3)) return img def add_noise(img): noise_value = np.random.randint(0, 50) temp_x = np.random.randint(0, img.shape[0]) temp_y = np.random.randint(0, img.shape[1]) img[temp_x][temp_y] = noise_value return img def add_background(img, background_path=None): ''' 添加背景 ''' # file list bg_images = sorted(glob.glob(os.path.join(background_path, '*.JPEG'))) bg_images += sorted(glob.glob(os.path.join(background_path, '*.jpg'))) bg_images += sorted(glob.glob(os.path.join(background_path, '*.png'))) # 二值化处理 ret, image_gray_binary = cv2.threshold(img, 150, 1, cv2.THRESH_BINARY) # random choose one background image bg_img = ''.join(random.sample(bg_images, 1)) bg_image_gray = cv2.imread(bg_img, 0) # processing blur image bg_image_gray_resize = cv2.resize(bg_image_gray, (img_w, img_h), interpolation=cv2.INTER_LINEAR) background_image = cv2.multiply(image_gray_binary, bg_image_gray_resize) return background_image if __name__ == '__main__': image_path = r'E:\datasets\ocr_dataset\words\train3-11' #background_path = r'E:\datasets\background1' save_path = os.path.join(r'E:\datasets\ocr_dataset\words\words_data_1') if not os.path.exists(save_path): os.mkdir(save_path) img_list = sorted(list(paths.list_images(image_path))) file_index_lst = open(r'words_index_lst_1.txt', 'w', encoding='utf-8') file_chars_lst = open(r'words_chars_lst_1.txt', 'w', encoding='utf-8') for i, img_path in enumerate(img_list): label_words = [] img = cv2.imread(img_path) img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) norm = normalization_h(img_gray) #img_aug = data_augment(norm, background_path) label = img_path.split(os.path.sep)[-1].split('-')[1:] for w in label: if '.jpg' not in w: label_words.append(w) else: label_words.append(w[:-4]) label_index = ' '.join(label_words) label_char = ' '.join([train_dict[p] for p in label_words]) name = save_path + '/' + '%08d' % i + '.png' cv2.imwrite(name, norm) file_index_lst.write(name.split(os.path.sep)[-1] + ' ' + label_index + '\n') file_chars_lst.write(name.split(os.path.sep)[-1] + ' ' + label_char + '\n') if i % 100 == 0: print('{} has processed over!'.format(i)) file_index_lst.close() file_chars_lst.close() print('=' * 50) print('All words samples have generated sucessfully!')
[ "import os\nimport cv2\nimport glob\nimport random\nimport numpy as np\nfrom pathlib import Path\nfrom imutils import paths\nfrom IPython.core.debugger import Tracer\n\nchar_dict = {\"1\": \"a\", \"2\": \"b\", \"3\": \"c\", \"4\": \"d\", \"5\": \"e\", \"6\": \"f\", \"7\": \"g\", \"8\": \"h\", \"9\": \"i\", \"10\": \"j\",\n \"11\": \"k\", \"12\": \"l\", \"13\": \"m\", \"14\": \"n\", \"15\": \"o\", \"16\": \"p\", \"17\": \"q\", \"18\": \"r\", \"19\": \"s\",\n \"20\": \"t\", \"21\": \"u\", \"22\": \"v\", \"23\": \"w\", \"24\": \"x\", \"25\": \"y\", \"26\": \"z\", \"27\": \"A\", \"28\": \"B\",\n \"29\": \"C\", \"30\": \"D\", \"31\": \"E\", \"32\": \"F\", \"33\": \"G\", \"34\": \"H\", \"35\": \"I\", \"36\": \"J\", \"37\": \"K\",\n \"38\": \"L\", \"39\": \"M\", \"40\": \"N\", \"41\": \"O\", \"42\": \"P\", \"43\": \"Q\", \"44\": \"R\", \"45\": \"S\", \"46\": \"T\",\n \"47\": \"U\", \"48\": \"V\", \"49\": \"W\", \"50\": \"X\", \"51\": \"Y\", \"52\": \"Z\"}\n\ntrain_dict = {\"1\": \"a\", \"2\": \"b\", \"3\": \"c\", \"4\": \"d\", \"5\": \"e\", \"6\": \"f\", \"7\": \"g\", \"8\": \"h\", \"9\": \"i\", \"10\": \"j\",\n \"11\": \"k\", \"12\": \"l\", \"13\": \"m\", \"14\": \"n\", \"15\": \"o\", \"16\": \"p\", \"17\": \"q\", \"18\": \"r\", \"19\": \"s\",\n \"20\": \"t\", \"21\": \"u\", \"22\": \"v\", \"23\": \"w\", \"24\": \"x\", \"25\": \"y\", \"26\": \"z\", \"27\": \"\\'\", \"28\": \"-\",\"29\":\"&\"}\n\nimg_h = 64\nimg_w = 400\n\ndef text_crop(img, threshold):\n '''\n 切除图像空白边缘部分\n '''\n ret, image_mask = cv2.threshold(img, threshold, 1, cv2.THRESH_BINARY_INV)\n n = np.argwhere(image_mask == 1)\n rows = np.unique([n[i][0] for i in range(n.shape[0])])\n cols = np.unique([n[i][1] for i in range(n.shape[0])])\n min_row = np.min(rows)\n max_row = np.max(rows)\n min_col = np.min(cols)\n max_col = np.max(cols)\n\n image_crop = img[min_row: max_row, min_col: max_col]\n return image_crop\n\n\ndef compute_padding_value(img_gray):\n\t'''\n\t计算padding的值\n\t取图像累积直方图中大于0.8处的值\n\t'''\n\thist = cv2.calcHist([img_gray], [0], None, [256], [0, 256])\n\tcdf_img = np.cumsum(hist)\n\tcdf_hist = cdf_img / np.max(cdf_img)\n\tpadding_value = np.min(np.where(cdf_hist > 0.8)[0])\n\t\n\treturn padding_value\n\t\ndef normalization_h(img):\n\t'''\n\t高度归一化\n\timg shape (32, w)\n\t'''\n\tpadding_value = compute_padding_value(img)\n\t\n\th, w = img.shape[:2]\n\n\tif h >= img_h and w >= img_w:\n\t\timg_ = cv2.resize(img, (img_w, img_h))\n\telif h > img_h and w < img_w:\n\t\timg = cv2.resize(img, (w, img_h))\n\t\tpad_l = random.randint(0, img_w - w)\n\t\timg_ = cv2.copyMakeBorder(img, 0, 0, pad_l, img_w - w - pad_l, cv2.BORDER_CONSTANT, value=int(padding_value))\n\t\timg_ = cv2.resize(img_, (img_w, img_h))\n\telif h <= img_h and w <= img_w:\n\t\tpad_top = random.randint(0, img_h - h)\n\t\tpad_l = random.randint(0, img_w - w)\n\t\timg_ = cv2.copyMakeBorder(img, pad_top, img_h - h - pad_top, pad_l, img_w - w - pad_l, cv2.BORDER_CONSTANT, value=int(padding_value))\n\t\timg_ = cv2.resize(img_, (img_w, img_h))\n\telif h < img_h and w > img_w:\n\t\timg = cv2.resize(img, (img_w, h))\n\t\tpad_top = random.randint(0, img_h - h)\n\t\timg_ = cv2.copyMakeBorder(img, pad_top, img_h - h - pad_top, 0, 0, cv2.BORDER_CONSTANT, value=int(padding_value))\n\t\timg_ = cv2.resize(img_, (img_w, img_h))\n\treturn img_\n\n\n# data augment functions\ndef data_augment(img, background_path):\n\t# if np.random.random() < 0.15:\n\t# \timg = blur(img)\n\tif np.random.random() < 0.25:\n\t\timg = add_noise(img)\n\tif np.random.random() < 0.95:\n\t\timg = add_background(img, background_path)\n\treturn img\n\n\ndef resize_image(img):\n\timg_h, img_w = img.shape[:2]\n\tscale = np.random.uniform(0.8, 1.2, 1)\n\th = int(img_h * scale)\n\tw = int(img_w * scale)\n\timg_resize = cv2.resize(img, (w, h))\n\treturn img_resize\n\n\ndef blur(img):\n\timg = cv2.blur(img, (3, 3))\n\treturn img\n\n\ndef add_noise(img):\n\tnoise_value = np.random.randint(0, 50)\n\ttemp_x = np.random.randint(0, img.shape[0])\n\ttemp_y = np.random.randint(0, img.shape[1])\n\timg[temp_x][temp_y] = noise_value\n\treturn img\n\n\ndef add_background(img, background_path=None):\n\t'''\n\t添加背景\n\t'''\n\t# file list\n\tbg_images = sorted(glob.glob(os.path.join(background_path, '*.JPEG')))\n\tbg_images += sorted(glob.glob(os.path.join(background_path, '*.jpg')))\n\tbg_images += sorted(glob.glob(os.path.join(background_path, '*.png')))\n\t\n\t# 二值化处理\n\tret, image_gray_binary = cv2.threshold(img, 150, 1, cv2.THRESH_BINARY)\n\t\n\t# random choose one background image\n\tbg_img = ''.join(random.sample(bg_images, 1))\n\tbg_image_gray = cv2.imread(bg_img, 0)\n\t\n\t# processing blur image\n\tbg_image_gray_resize = cv2.resize(bg_image_gray, (img_w, img_h), interpolation=cv2.INTER_LINEAR)\n\tbackground_image = cv2.multiply(image_gray_binary, bg_image_gray_resize)\n\treturn background_image\n\n\nif __name__ == '__main__':\n\timage_path = r'E:\\datasets\\ocr_dataset\\words\\train3-11'\n\t#background_path = r'E:\\datasets\\background1'\n\tsave_path = os.path.join(r'E:\\datasets\\ocr_dataset\\words\\words_data_1')\n\t\n\tif not os.path.exists(save_path):\n\t\tos.mkdir(save_path)\n\t\n\timg_list = sorted(list(paths.list_images(image_path)))\n\t\n\tfile_index_lst = open(r'words_index_lst_1.txt', 'w', encoding='utf-8')\n\tfile_chars_lst = open(r'words_chars_lst_1.txt', 'w', encoding='utf-8')\n\t\n\n\tfor i, img_path in enumerate(img_list):\n\t\tlabel_words = []\n\t\timg = cv2.imread(img_path)\n\t\timg_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)\n\t\tnorm = normalization_h(img_gray)\n\t\t#img_aug = data_augment(norm, background_path)\n\t\tlabel = img_path.split(os.path.sep)[-1].split('-')[1:]\n\t\t\n\t\tfor w in label:\n\t\t\tif '.jpg' not in w:\n\t\t\t\tlabel_words.append(w)\n\t\t\telse:\n\t\t\t\tlabel_words.append(w[:-4])\n\t\t\t\t\n\t\tlabel_index = ' '.join(label_words)\n\t\tlabel_char = ' '.join([train_dict[p] for p in label_words])\n\t\t\n\t\tname = save_path + '/' + '%08d' % i + '.png'\n\t\tcv2.imwrite(name, norm)\n\t\t\n\t\tfile_index_lst.write(name.split(os.path.sep)[-1] + ' ' + label_index + '\\n')\n\t\tfile_chars_lst.write(name.split(os.path.sep)[-1] + ' ' + label_char + '\\n')\n\t\t\n\t\tif i % 100 == 0:\n\t\t\tprint('{} has processed over!'.format(i))\n\t\t\t\n\tfile_index_lst.close()\n\tfile_chars_lst.close()\n\t\n\tprint('=' * 50)\n\tprint('All words samples have generated sucessfully!')\n\t", "import os\nimport cv2\nimport glob\nimport random\nimport numpy as np\nfrom pathlib import Path\nfrom imutils import paths\nfrom IPython.core.debugger import Tracer\nchar_dict = {'1': 'a', '2': 'b', '3': 'c', '4': 'd', '5': 'e', '6': 'f',\n '7': 'g', '8': 'h', '9': 'i', '10': 'j', '11': 'k', '12': 'l', '13':\n 'm', '14': 'n', '15': 'o', '16': 'p', '17': 'q', '18': 'r', '19': 's',\n '20': 't', '21': 'u', '22': 'v', '23': 'w', '24': 'x', '25': 'y', '26':\n 'z', '27': 'A', '28': 'B', '29': 'C', '30': 'D', '31': 'E', '32': 'F',\n '33': 'G', '34': 'H', '35': 'I', '36': 'J', '37': 'K', '38': 'L', '39':\n 'M', '40': 'N', '41': 'O', '42': 'P', '43': 'Q', '44': 'R', '45': 'S',\n '46': 'T', '47': 'U', '48': 'V', '49': 'W', '50': 'X', '51': 'Y', '52': 'Z'\n }\ntrain_dict = {'1': 'a', '2': 'b', '3': 'c', '4': 'd', '5': 'e', '6': 'f',\n '7': 'g', '8': 'h', '9': 'i', '10': 'j', '11': 'k', '12': 'l', '13':\n 'm', '14': 'n', '15': 'o', '16': 'p', '17': 'q', '18': 'r', '19': 's',\n '20': 't', '21': 'u', '22': 'v', '23': 'w', '24': 'x', '25': 'y', '26':\n 'z', '27': \"'\", '28': '-', '29': '&'}\nimg_h = 64\nimg_w = 400\n\n\ndef text_crop(img, threshold):\n \"\"\"\n 切除图像空白边缘部分\n \"\"\"\n ret, image_mask = cv2.threshold(img, threshold, 1, cv2.THRESH_BINARY_INV)\n n = np.argwhere(image_mask == 1)\n rows = np.unique([n[i][0] for i in range(n.shape[0])])\n cols = np.unique([n[i][1] for i in range(n.shape[0])])\n min_row = np.min(rows)\n max_row = np.max(rows)\n min_col = np.min(cols)\n max_col = np.max(cols)\n image_crop = img[min_row:max_row, min_col:max_col]\n return image_crop\n\n\ndef compute_padding_value(img_gray):\n \"\"\"\n\t计算padding的值\n\t取图像累积直方图中大于0.8处的值\n\t\"\"\"\n hist = cv2.calcHist([img_gray], [0], None, [256], [0, 256])\n cdf_img = np.cumsum(hist)\n cdf_hist = cdf_img / np.max(cdf_img)\n padding_value = np.min(np.where(cdf_hist > 0.8)[0])\n return padding_value\n\n\ndef normalization_h(img):\n \"\"\"\n\t高度归一化\n\timg shape (32, w)\n\t\"\"\"\n padding_value = compute_padding_value(img)\n h, w = img.shape[:2]\n if h >= img_h and w >= img_w:\n img_ = cv2.resize(img, (img_w, img_h))\n elif h > img_h and w < img_w:\n img = cv2.resize(img, (w, img_h))\n pad_l = random.randint(0, img_w - w)\n img_ = cv2.copyMakeBorder(img, 0, 0, pad_l, img_w - w - pad_l, cv2.\n BORDER_CONSTANT, value=int(padding_value))\n img_ = cv2.resize(img_, (img_w, img_h))\n elif h <= img_h and w <= img_w:\n pad_top = random.randint(0, img_h - h)\n pad_l = random.randint(0, img_w - w)\n img_ = cv2.copyMakeBorder(img, pad_top, img_h - h - pad_top, pad_l,\n img_w - w - pad_l, cv2.BORDER_CONSTANT, value=int(padding_value))\n img_ = cv2.resize(img_, (img_w, img_h))\n elif h < img_h and w > img_w:\n img = cv2.resize(img, (img_w, h))\n pad_top = random.randint(0, img_h - h)\n img_ = cv2.copyMakeBorder(img, pad_top, img_h - h - pad_top, 0, 0,\n cv2.BORDER_CONSTANT, value=int(padding_value))\n img_ = cv2.resize(img_, (img_w, img_h))\n return img_\n\n\ndef data_augment(img, background_path):\n if np.random.random() < 0.25:\n img = add_noise(img)\n if np.random.random() < 0.95:\n img = add_background(img, background_path)\n return img\n\n\ndef resize_image(img):\n img_h, img_w = img.shape[:2]\n scale = np.random.uniform(0.8, 1.2, 1)\n h = int(img_h * scale)\n w = int(img_w * scale)\n img_resize = cv2.resize(img, (w, h))\n return img_resize\n\n\ndef blur(img):\n img = cv2.blur(img, (3, 3))\n return img\n\n\ndef add_noise(img):\n noise_value = np.random.randint(0, 50)\n temp_x = np.random.randint(0, img.shape[0])\n temp_y = np.random.randint(0, img.shape[1])\n img[temp_x][temp_y] = noise_value\n return img\n\n\ndef add_background(img, background_path=None):\n \"\"\"\n\t添加背景\n\t\"\"\"\n bg_images = sorted(glob.glob(os.path.join(background_path, '*.JPEG')))\n bg_images += sorted(glob.glob(os.path.join(background_path, '*.jpg')))\n bg_images += sorted(glob.glob(os.path.join(background_path, '*.png')))\n ret, image_gray_binary = cv2.threshold(img, 150, 1, cv2.THRESH_BINARY)\n bg_img = ''.join(random.sample(bg_images, 1))\n bg_image_gray = cv2.imread(bg_img, 0)\n bg_image_gray_resize = cv2.resize(bg_image_gray, (img_w, img_h),\n interpolation=cv2.INTER_LINEAR)\n background_image = cv2.multiply(image_gray_binary, bg_image_gray_resize)\n return background_image\n\n\nif __name__ == '__main__':\n image_path = 'E:\\\\datasets\\\\ocr_dataset\\\\words\\\\train3-11'\n save_path = os.path.join('E:\\\\datasets\\\\ocr_dataset\\\\words\\\\words_data_1')\n if not os.path.exists(save_path):\n os.mkdir(save_path)\n img_list = sorted(list(paths.list_images(image_path)))\n file_index_lst = open('words_index_lst_1.txt', 'w', encoding='utf-8')\n file_chars_lst = open('words_chars_lst_1.txt', 'w', encoding='utf-8')\n for i, img_path in enumerate(img_list):\n label_words = []\n img = cv2.imread(img_path)\n img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)\n norm = normalization_h(img_gray)\n label = img_path.split(os.path.sep)[-1].split('-')[1:]\n for w in label:\n if '.jpg' not in w:\n label_words.append(w)\n else:\n label_words.append(w[:-4])\n label_index = ' '.join(label_words)\n label_char = ' '.join([train_dict[p] for p in label_words])\n name = save_path + '/' + '%08d' % i + '.png'\n cv2.imwrite(name, norm)\n file_index_lst.write(name.split(os.path.sep)[-1] + ' ' +\n label_index + '\\n')\n file_chars_lst.write(name.split(os.path.sep)[-1] + ' ' + label_char +\n '\\n')\n if i % 100 == 0:\n print('{} has processed over!'.format(i))\n file_index_lst.close()\n file_chars_lst.close()\n print('=' * 50)\n print('All words samples have generated sucessfully!')\n", "<import token>\nchar_dict = {'1': 'a', '2': 'b', '3': 'c', '4': 'd', '5': 'e', '6': 'f',\n '7': 'g', '8': 'h', '9': 'i', '10': 'j', '11': 'k', '12': 'l', '13':\n 'm', '14': 'n', '15': 'o', '16': 'p', '17': 'q', '18': 'r', '19': 's',\n '20': 't', '21': 'u', '22': 'v', '23': 'w', '24': 'x', '25': 'y', '26':\n 'z', '27': 'A', '28': 'B', '29': 'C', '30': 'D', '31': 'E', '32': 'F',\n '33': 'G', '34': 'H', '35': 'I', '36': 'J', '37': 'K', '38': 'L', '39':\n 'M', '40': 'N', '41': 'O', '42': 'P', '43': 'Q', '44': 'R', '45': 'S',\n '46': 'T', '47': 'U', '48': 'V', '49': 'W', '50': 'X', '51': 'Y', '52': 'Z'\n }\ntrain_dict = {'1': 'a', '2': 'b', '3': 'c', '4': 'd', '5': 'e', '6': 'f',\n '7': 'g', '8': 'h', '9': 'i', '10': 'j', '11': 'k', '12': 'l', '13':\n 'm', '14': 'n', '15': 'o', '16': 'p', '17': 'q', '18': 'r', '19': 's',\n '20': 't', '21': 'u', '22': 'v', '23': 'w', '24': 'x', '25': 'y', '26':\n 'z', '27': \"'\", '28': '-', '29': '&'}\nimg_h = 64\nimg_w = 400\n\n\ndef text_crop(img, threshold):\n \"\"\"\n 切除图像空白边缘部分\n \"\"\"\n ret, image_mask = cv2.threshold(img, threshold, 1, cv2.THRESH_BINARY_INV)\n n = np.argwhere(image_mask == 1)\n rows = np.unique([n[i][0] for i in range(n.shape[0])])\n cols = np.unique([n[i][1] for i in range(n.shape[0])])\n min_row = np.min(rows)\n max_row = np.max(rows)\n min_col = np.min(cols)\n max_col = np.max(cols)\n image_crop = img[min_row:max_row, min_col:max_col]\n return image_crop\n\n\ndef compute_padding_value(img_gray):\n \"\"\"\n\t计算padding的值\n\t取图像累积直方图中大于0.8处的值\n\t\"\"\"\n hist = cv2.calcHist([img_gray], [0], None, [256], [0, 256])\n cdf_img = np.cumsum(hist)\n cdf_hist = cdf_img / np.max(cdf_img)\n padding_value = np.min(np.where(cdf_hist > 0.8)[0])\n return padding_value\n\n\ndef normalization_h(img):\n \"\"\"\n\t高度归一化\n\timg shape (32, w)\n\t\"\"\"\n padding_value = compute_padding_value(img)\n h, w = img.shape[:2]\n if h >= img_h and w >= img_w:\n img_ = cv2.resize(img, (img_w, img_h))\n elif h > img_h and w < img_w:\n img = cv2.resize(img, (w, img_h))\n pad_l = random.randint(0, img_w - w)\n img_ = cv2.copyMakeBorder(img, 0, 0, pad_l, img_w - w - pad_l, cv2.\n BORDER_CONSTANT, value=int(padding_value))\n img_ = cv2.resize(img_, (img_w, img_h))\n elif h <= img_h and w <= img_w:\n pad_top = random.randint(0, img_h - h)\n pad_l = random.randint(0, img_w - w)\n img_ = cv2.copyMakeBorder(img, pad_top, img_h - h - pad_top, pad_l,\n img_w - w - pad_l, cv2.BORDER_CONSTANT, value=int(padding_value))\n img_ = cv2.resize(img_, (img_w, img_h))\n elif h < img_h and w > img_w:\n img = cv2.resize(img, (img_w, h))\n pad_top = random.randint(0, img_h - h)\n img_ = cv2.copyMakeBorder(img, pad_top, img_h - h - pad_top, 0, 0,\n cv2.BORDER_CONSTANT, value=int(padding_value))\n img_ = cv2.resize(img_, (img_w, img_h))\n return img_\n\n\ndef data_augment(img, background_path):\n if np.random.random() < 0.25:\n img = add_noise(img)\n if np.random.random() < 0.95:\n img = add_background(img, background_path)\n return img\n\n\ndef resize_image(img):\n img_h, img_w = img.shape[:2]\n scale = np.random.uniform(0.8, 1.2, 1)\n h = int(img_h * scale)\n w = int(img_w * scale)\n img_resize = cv2.resize(img, (w, h))\n return img_resize\n\n\ndef blur(img):\n img = cv2.blur(img, (3, 3))\n return img\n\n\ndef add_noise(img):\n noise_value = np.random.randint(0, 50)\n temp_x = np.random.randint(0, img.shape[0])\n temp_y = np.random.randint(0, img.shape[1])\n img[temp_x][temp_y] = noise_value\n return img\n\n\ndef add_background(img, background_path=None):\n \"\"\"\n\t添加背景\n\t\"\"\"\n bg_images = sorted(glob.glob(os.path.join(background_path, '*.JPEG')))\n bg_images += sorted(glob.glob(os.path.join(background_path, '*.jpg')))\n bg_images += sorted(glob.glob(os.path.join(background_path, '*.png')))\n ret, image_gray_binary = cv2.threshold(img, 150, 1, cv2.THRESH_BINARY)\n bg_img = ''.join(random.sample(bg_images, 1))\n bg_image_gray = cv2.imread(bg_img, 0)\n bg_image_gray_resize = cv2.resize(bg_image_gray, (img_w, img_h),\n interpolation=cv2.INTER_LINEAR)\n background_image = cv2.multiply(image_gray_binary, bg_image_gray_resize)\n return background_image\n\n\nif __name__ == '__main__':\n image_path = 'E:\\\\datasets\\\\ocr_dataset\\\\words\\\\train3-11'\n save_path = os.path.join('E:\\\\datasets\\\\ocr_dataset\\\\words\\\\words_data_1')\n if not os.path.exists(save_path):\n os.mkdir(save_path)\n img_list = sorted(list(paths.list_images(image_path)))\n file_index_lst = open('words_index_lst_1.txt', 'w', encoding='utf-8')\n file_chars_lst = open('words_chars_lst_1.txt', 'w', encoding='utf-8')\n for i, img_path in enumerate(img_list):\n label_words = []\n img = cv2.imread(img_path)\n img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)\n norm = normalization_h(img_gray)\n label = img_path.split(os.path.sep)[-1].split('-')[1:]\n for w in label:\n if '.jpg' not in w:\n label_words.append(w)\n else:\n label_words.append(w[:-4])\n label_index = ' '.join(label_words)\n label_char = ' '.join([train_dict[p] for p in label_words])\n name = save_path + '/' + '%08d' % i + '.png'\n cv2.imwrite(name, norm)\n file_index_lst.write(name.split(os.path.sep)[-1] + ' ' +\n label_index + '\\n')\n file_chars_lst.write(name.split(os.path.sep)[-1] + ' ' + label_char +\n '\\n')\n if i % 100 == 0:\n print('{} has processed over!'.format(i))\n file_index_lst.close()\n file_chars_lst.close()\n print('=' * 50)\n print('All words samples have generated sucessfully!')\n", "<import token>\n<assignment token>\n\n\ndef text_crop(img, threshold):\n \"\"\"\n 切除图像空白边缘部分\n \"\"\"\n ret, image_mask = cv2.threshold(img, threshold, 1, cv2.THRESH_BINARY_INV)\n n = np.argwhere(image_mask == 1)\n rows = np.unique([n[i][0] for i in range(n.shape[0])])\n cols = np.unique([n[i][1] for i in range(n.shape[0])])\n min_row = np.min(rows)\n max_row = np.max(rows)\n min_col = np.min(cols)\n max_col = np.max(cols)\n image_crop = img[min_row:max_row, min_col:max_col]\n return image_crop\n\n\ndef compute_padding_value(img_gray):\n \"\"\"\n\t计算padding的值\n\t取图像累积直方图中大于0.8处的值\n\t\"\"\"\n hist = cv2.calcHist([img_gray], [0], None, [256], [0, 256])\n cdf_img = np.cumsum(hist)\n cdf_hist = cdf_img / np.max(cdf_img)\n padding_value = np.min(np.where(cdf_hist > 0.8)[0])\n return padding_value\n\n\ndef normalization_h(img):\n \"\"\"\n\t高度归一化\n\timg shape (32, w)\n\t\"\"\"\n padding_value = compute_padding_value(img)\n h, w = img.shape[:2]\n if h >= img_h and w >= img_w:\n img_ = cv2.resize(img, (img_w, img_h))\n elif h > img_h and w < img_w:\n img = cv2.resize(img, (w, img_h))\n pad_l = random.randint(0, img_w - w)\n img_ = cv2.copyMakeBorder(img, 0, 0, pad_l, img_w - w - pad_l, cv2.\n BORDER_CONSTANT, value=int(padding_value))\n img_ = cv2.resize(img_, (img_w, img_h))\n elif h <= img_h and w <= img_w:\n pad_top = random.randint(0, img_h - h)\n pad_l = random.randint(0, img_w - w)\n img_ = cv2.copyMakeBorder(img, pad_top, img_h - h - pad_top, pad_l,\n img_w - w - pad_l, cv2.BORDER_CONSTANT, value=int(padding_value))\n img_ = cv2.resize(img_, (img_w, img_h))\n elif h < img_h and w > img_w:\n img = cv2.resize(img, (img_w, h))\n pad_top = random.randint(0, img_h - h)\n img_ = cv2.copyMakeBorder(img, pad_top, img_h - h - pad_top, 0, 0,\n cv2.BORDER_CONSTANT, value=int(padding_value))\n img_ = cv2.resize(img_, (img_w, img_h))\n return img_\n\n\ndef data_augment(img, background_path):\n if np.random.random() < 0.25:\n img = add_noise(img)\n if np.random.random() < 0.95:\n img = add_background(img, background_path)\n return img\n\n\ndef resize_image(img):\n img_h, img_w = img.shape[:2]\n scale = np.random.uniform(0.8, 1.2, 1)\n h = int(img_h * scale)\n w = int(img_w * scale)\n img_resize = cv2.resize(img, (w, h))\n return img_resize\n\n\ndef blur(img):\n img = cv2.blur(img, (3, 3))\n return img\n\n\ndef add_noise(img):\n noise_value = np.random.randint(0, 50)\n temp_x = np.random.randint(0, img.shape[0])\n temp_y = np.random.randint(0, img.shape[1])\n img[temp_x][temp_y] = noise_value\n return img\n\n\ndef add_background(img, background_path=None):\n \"\"\"\n\t添加背景\n\t\"\"\"\n bg_images = sorted(glob.glob(os.path.join(background_path, '*.JPEG')))\n bg_images += sorted(glob.glob(os.path.join(background_path, '*.jpg')))\n bg_images += sorted(glob.glob(os.path.join(background_path, '*.png')))\n ret, image_gray_binary = cv2.threshold(img, 150, 1, cv2.THRESH_BINARY)\n bg_img = ''.join(random.sample(bg_images, 1))\n bg_image_gray = cv2.imread(bg_img, 0)\n bg_image_gray_resize = cv2.resize(bg_image_gray, (img_w, img_h),\n interpolation=cv2.INTER_LINEAR)\n background_image = cv2.multiply(image_gray_binary, bg_image_gray_resize)\n return background_image\n\n\nif __name__ == '__main__':\n image_path = 'E:\\\\datasets\\\\ocr_dataset\\\\words\\\\train3-11'\n save_path = os.path.join('E:\\\\datasets\\\\ocr_dataset\\\\words\\\\words_data_1')\n if not os.path.exists(save_path):\n os.mkdir(save_path)\n img_list = sorted(list(paths.list_images(image_path)))\n file_index_lst = open('words_index_lst_1.txt', 'w', encoding='utf-8')\n file_chars_lst = open('words_chars_lst_1.txt', 'w', encoding='utf-8')\n for i, img_path in enumerate(img_list):\n label_words = []\n img = cv2.imread(img_path)\n img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)\n norm = normalization_h(img_gray)\n label = img_path.split(os.path.sep)[-1].split('-')[1:]\n for w in label:\n if '.jpg' not in w:\n label_words.append(w)\n else:\n label_words.append(w[:-4])\n label_index = ' '.join(label_words)\n label_char = ' '.join([train_dict[p] for p in label_words])\n name = save_path + '/' + '%08d' % i + '.png'\n cv2.imwrite(name, norm)\n file_index_lst.write(name.split(os.path.sep)[-1] + ' ' +\n label_index + '\\n')\n file_chars_lst.write(name.split(os.path.sep)[-1] + ' ' + label_char +\n '\\n')\n if i % 100 == 0:\n print('{} has processed over!'.format(i))\n file_index_lst.close()\n file_chars_lst.close()\n print('=' * 50)\n print('All words samples have generated sucessfully!')\n", "<import token>\n<assignment token>\n\n\ndef text_crop(img, threshold):\n \"\"\"\n 切除图像空白边缘部分\n \"\"\"\n ret, image_mask = cv2.threshold(img, threshold, 1, cv2.THRESH_BINARY_INV)\n n = np.argwhere(image_mask == 1)\n rows = np.unique([n[i][0] for i in range(n.shape[0])])\n cols = np.unique([n[i][1] for i in range(n.shape[0])])\n min_row = np.min(rows)\n max_row = np.max(rows)\n min_col = np.min(cols)\n max_col = np.max(cols)\n image_crop = img[min_row:max_row, min_col:max_col]\n return image_crop\n\n\ndef compute_padding_value(img_gray):\n \"\"\"\n\t计算padding的值\n\t取图像累积直方图中大于0.8处的值\n\t\"\"\"\n hist = cv2.calcHist([img_gray], [0], None, [256], [0, 256])\n cdf_img = np.cumsum(hist)\n cdf_hist = cdf_img / np.max(cdf_img)\n padding_value = np.min(np.where(cdf_hist > 0.8)[0])\n return padding_value\n\n\ndef normalization_h(img):\n \"\"\"\n\t高度归一化\n\timg shape (32, w)\n\t\"\"\"\n padding_value = compute_padding_value(img)\n h, w = img.shape[:2]\n if h >= img_h and w >= img_w:\n img_ = cv2.resize(img, (img_w, img_h))\n elif h > img_h and w < img_w:\n img = cv2.resize(img, (w, img_h))\n pad_l = random.randint(0, img_w - w)\n img_ = cv2.copyMakeBorder(img, 0, 0, pad_l, img_w - w - pad_l, cv2.\n BORDER_CONSTANT, value=int(padding_value))\n img_ = cv2.resize(img_, (img_w, img_h))\n elif h <= img_h and w <= img_w:\n pad_top = random.randint(0, img_h - h)\n pad_l = random.randint(0, img_w - w)\n img_ = cv2.copyMakeBorder(img, pad_top, img_h - h - pad_top, pad_l,\n img_w - w - pad_l, cv2.BORDER_CONSTANT, value=int(padding_value))\n img_ = cv2.resize(img_, (img_w, img_h))\n elif h < img_h and w > img_w:\n img = cv2.resize(img, (img_w, h))\n pad_top = random.randint(0, img_h - h)\n img_ = cv2.copyMakeBorder(img, pad_top, img_h - h - pad_top, 0, 0,\n cv2.BORDER_CONSTANT, value=int(padding_value))\n img_ = cv2.resize(img_, (img_w, img_h))\n return img_\n\n\ndef data_augment(img, background_path):\n if np.random.random() < 0.25:\n img = add_noise(img)\n if np.random.random() < 0.95:\n img = add_background(img, background_path)\n return img\n\n\ndef resize_image(img):\n img_h, img_w = img.shape[:2]\n scale = np.random.uniform(0.8, 1.2, 1)\n h = int(img_h * scale)\n w = int(img_w * scale)\n img_resize = cv2.resize(img, (w, h))\n return img_resize\n\n\ndef blur(img):\n img = cv2.blur(img, (3, 3))\n return img\n\n\ndef add_noise(img):\n noise_value = np.random.randint(0, 50)\n temp_x = np.random.randint(0, img.shape[0])\n temp_y = np.random.randint(0, img.shape[1])\n img[temp_x][temp_y] = noise_value\n return img\n\n\ndef add_background(img, background_path=None):\n \"\"\"\n\t添加背景\n\t\"\"\"\n bg_images = sorted(glob.glob(os.path.join(background_path, '*.JPEG')))\n bg_images += sorted(glob.glob(os.path.join(background_path, '*.jpg')))\n bg_images += sorted(glob.glob(os.path.join(background_path, '*.png')))\n ret, image_gray_binary = cv2.threshold(img, 150, 1, cv2.THRESH_BINARY)\n bg_img = ''.join(random.sample(bg_images, 1))\n bg_image_gray = cv2.imread(bg_img, 0)\n bg_image_gray_resize = cv2.resize(bg_image_gray, (img_w, img_h),\n interpolation=cv2.INTER_LINEAR)\n background_image = cv2.multiply(image_gray_binary, bg_image_gray_resize)\n return background_image\n\n\n<code token>\n", "<import token>\n<assignment token>\n\n\ndef text_crop(img, threshold):\n \"\"\"\n 切除图像空白边缘部分\n \"\"\"\n ret, image_mask = cv2.threshold(img, threshold, 1, cv2.THRESH_BINARY_INV)\n n = np.argwhere(image_mask == 1)\n rows = np.unique([n[i][0] for i in range(n.shape[0])])\n cols = np.unique([n[i][1] for i in range(n.shape[0])])\n min_row = np.min(rows)\n max_row = np.max(rows)\n min_col = np.min(cols)\n max_col = np.max(cols)\n image_crop = img[min_row:max_row, min_col:max_col]\n return image_crop\n\n\ndef compute_padding_value(img_gray):\n \"\"\"\n\t计算padding的值\n\t取图像累积直方图中大于0.8处的值\n\t\"\"\"\n hist = cv2.calcHist([img_gray], [0], None, [256], [0, 256])\n cdf_img = np.cumsum(hist)\n cdf_hist = cdf_img / np.max(cdf_img)\n padding_value = np.min(np.where(cdf_hist > 0.8)[0])\n return padding_value\n\n\ndef normalization_h(img):\n \"\"\"\n\t高度归一化\n\timg shape (32, w)\n\t\"\"\"\n padding_value = compute_padding_value(img)\n h, w = img.shape[:2]\n if h >= img_h and w >= img_w:\n img_ = cv2.resize(img, (img_w, img_h))\n elif h > img_h and w < img_w:\n img = cv2.resize(img, (w, img_h))\n pad_l = random.randint(0, img_w - w)\n img_ = cv2.copyMakeBorder(img, 0, 0, pad_l, img_w - w - pad_l, cv2.\n BORDER_CONSTANT, value=int(padding_value))\n img_ = cv2.resize(img_, (img_w, img_h))\n elif h <= img_h and w <= img_w:\n pad_top = random.randint(0, img_h - h)\n pad_l = random.randint(0, img_w - w)\n img_ = cv2.copyMakeBorder(img, pad_top, img_h - h - pad_top, pad_l,\n img_w - w - pad_l, cv2.BORDER_CONSTANT, value=int(padding_value))\n img_ = cv2.resize(img_, (img_w, img_h))\n elif h < img_h and w > img_w:\n img = cv2.resize(img, (img_w, h))\n pad_top = random.randint(0, img_h - h)\n img_ = cv2.copyMakeBorder(img, pad_top, img_h - h - pad_top, 0, 0,\n cv2.BORDER_CONSTANT, value=int(padding_value))\n img_ = cv2.resize(img_, (img_w, img_h))\n return img_\n\n\ndef data_augment(img, background_path):\n if np.random.random() < 0.25:\n img = add_noise(img)\n if np.random.random() < 0.95:\n img = add_background(img, background_path)\n return img\n\n\ndef resize_image(img):\n img_h, img_w = img.shape[:2]\n scale = np.random.uniform(0.8, 1.2, 1)\n h = int(img_h * scale)\n w = int(img_w * scale)\n img_resize = cv2.resize(img, (w, h))\n return img_resize\n\n\ndef blur(img):\n img = cv2.blur(img, (3, 3))\n return img\n\n\ndef add_noise(img):\n noise_value = np.random.randint(0, 50)\n temp_x = np.random.randint(0, img.shape[0])\n temp_y = np.random.randint(0, img.shape[1])\n img[temp_x][temp_y] = noise_value\n return img\n\n\n<function token>\n<code token>\n", "<import token>\n<assignment token>\n\n\ndef text_crop(img, threshold):\n \"\"\"\n 切除图像空白边缘部分\n \"\"\"\n ret, image_mask = cv2.threshold(img, threshold, 1, cv2.THRESH_BINARY_INV)\n n = np.argwhere(image_mask == 1)\n rows = np.unique([n[i][0] for i in range(n.shape[0])])\n cols = np.unique([n[i][1] for i in range(n.shape[0])])\n min_row = np.min(rows)\n max_row = np.max(rows)\n min_col = np.min(cols)\n max_col = np.max(cols)\n image_crop = img[min_row:max_row, min_col:max_col]\n return image_crop\n\n\ndef compute_padding_value(img_gray):\n \"\"\"\n\t计算padding的值\n\t取图像累积直方图中大于0.8处的值\n\t\"\"\"\n hist = cv2.calcHist([img_gray], [0], None, [256], [0, 256])\n cdf_img = np.cumsum(hist)\n cdf_hist = cdf_img / np.max(cdf_img)\n padding_value = np.min(np.where(cdf_hist > 0.8)[0])\n return padding_value\n\n\n<function token>\n\n\ndef data_augment(img, background_path):\n if np.random.random() < 0.25:\n img = add_noise(img)\n if np.random.random() < 0.95:\n img = add_background(img, background_path)\n return img\n\n\ndef resize_image(img):\n img_h, img_w = img.shape[:2]\n scale = np.random.uniform(0.8, 1.2, 1)\n h = int(img_h * scale)\n w = int(img_w * scale)\n img_resize = cv2.resize(img, (w, h))\n return img_resize\n\n\ndef blur(img):\n img = cv2.blur(img, (3, 3))\n return img\n\n\ndef add_noise(img):\n noise_value = np.random.randint(0, 50)\n temp_x = np.random.randint(0, img.shape[0])\n temp_y = np.random.randint(0, img.shape[1])\n img[temp_x][temp_y] = noise_value\n return img\n\n\n<function token>\n<code token>\n", "<import token>\n<assignment token>\n\n\ndef text_crop(img, threshold):\n \"\"\"\n 切除图像空白边缘部分\n \"\"\"\n ret, image_mask = cv2.threshold(img, threshold, 1, cv2.THRESH_BINARY_INV)\n n = np.argwhere(image_mask == 1)\n rows = np.unique([n[i][0] for i in range(n.shape[0])])\n cols = np.unique([n[i][1] for i in range(n.shape[0])])\n min_row = np.min(rows)\n max_row = np.max(rows)\n min_col = np.min(cols)\n max_col = np.max(cols)\n image_crop = img[min_row:max_row, min_col:max_col]\n return image_crop\n\n\ndef compute_padding_value(img_gray):\n \"\"\"\n\t计算padding的值\n\t取图像累积直方图中大于0.8处的值\n\t\"\"\"\n hist = cv2.calcHist([img_gray], [0], None, [256], [0, 256])\n cdf_img = np.cumsum(hist)\n cdf_hist = cdf_img / np.max(cdf_img)\n padding_value = np.min(np.where(cdf_hist > 0.8)[0])\n return padding_value\n\n\n<function token>\n\n\ndef data_augment(img, background_path):\n if np.random.random() < 0.25:\n img = add_noise(img)\n if np.random.random() < 0.95:\n img = add_background(img, background_path)\n return img\n\n\ndef resize_image(img):\n img_h, img_w = img.shape[:2]\n scale = np.random.uniform(0.8, 1.2, 1)\n h = int(img_h * scale)\n w = int(img_w * scale)\n img_resize = cv2.resize(img, (w, h))\n return img_resize\n\n\n<function token>\n\n\ndef add_noise(img):\n noise_value = np.random.randint(0, 50)\n temp_x = np.random.randint(0, img.shape[0])\n temp_y = np.random.randint(0, img.shape[1])\n img[temp_x][temp_y] = noise_value\n return img\n\n\n<function token>\n<code token>\n", "<import token>\n<assignment token>\n\n\ndef text_crop(img, threshold):\n \"\"\"\n 切除图像空白边缘部分\n \"\"\"\n ret, image_mask = cv2.threshold(img, threshold, 1, cv2.THRESH_BINARY_INV)\n n = np.argwhere(image_mask == 1)\n rows = np.unique([n[i][0] for i in range(n.shape[0])])\n cols = np.unique([n[i][1] for i in range(n.shape[0])])\n min_row = np.min(rows)\n max_row = np.max(rows)\n min_col = np.min(cols)\n max_col = np.max(cols)\n image_crop = img[min_row:max_row, min_col:max_col]\n return image_crop\n\n\n<function token>\n<function token>\n\n\ndef data_augment(img, background_path):\n if np.random.random() < 0.25:\n img = add_noise(img)\n if np.random.random() < 0.95:\n img = add_background(img, background_path)\n return img\n\n\ndef resize_image(img):\n img_h, img_w = img.shape[:2]\n scale = np.random.uniform(0.8, 1.2, 1)\n h = int(img_h * scale)\n w = int(img_w * scale)\n img_resize = cv2.resize(img, (w, h))\n return img_resize\n\n\n<function token>\n\n\ndef add_noise(img):\n noise_value = np.random.randint(0, 50)\n temp_x = np.random.randint(0, img.shape[0])\n temp_y = np.random.randint(0, img.shape[1])\n img[temp_x][temp_y] = noise_value\n return img\n\n\n<function token>\n<code token>\n", "<import token>\n<assignment token>\n\n\ndef text_crop(img, threshold):\n \"\"\"\n 切除图像空白边缘部分\n \"\"\"\n ret, image_mask = cv2.threshold(img, threshold, 1, cv2.THRESH_BINARY_INV)\n n = np.argwhere(image_mask == 1)\n rows = np.unique([n[i][0] for i in range(n.shape[0])])\n cols = np.unique([n[i][1] for i in range(n.shape[0])])\n min_row = np.min(rows)\n max_row = np.max(rows)\n min_col = np.min(cols)\n max_col = np.max(cols)\n image_crop = img[min_row:max_row, min_col:max_col]\n return image_crop\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef resize_image(img):\n img_h, img_w = img.shape[:2]\n scale = np.random.uniform(0.8, 1.2, 1)\n h = int(img_h * scale)\n w = int(img_w * scale)\n img_resize = cv2.resize(img, (w, h))\n return img_resize\n\n\n<function token>\n\n\ndef add_noise(img):\n noise_value = np.random.randint(0, 50)\n temp_x = np.random.randint(0, img.shape[0])\n temp_y = np.random.randint(0, img.shape[1])\n img[temp_x][temp_y] = noise_value\n return img\n\n\n<function token>\n<code token>\n", "<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef resize_image(img):\n img_h, img_w = img.shape[:2]\n scale = np.random.uniform(0.8, 1.2, 1)\n h = int(img_h * scale)\n w = int(img_w * scale)\n img_resize = cv2.resize(img, (w, h))\n return img_resize\n\n\n<function token>\n\n\ndef add_noise(img):\n noise_value = np.random.randint(0, 50)\n temp_x = np.random.randint(0, img.shape[0])\n temp_y = np.random.randint(0, img.shape[1])\n img[temp_x][temp_y] = noise_value\n return img\n\n\n<function token>\n<code token>\n", "<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef resize_image(img):\n img_h, img_w = img.shape[:2]\n scale = np.random.uniform(0.8, 1.2, 1)\n h = int(img_h * scale)\n w = int(img_w * scale)\n img_resize = cv2.resize(img, (w, h))\n return img_resize\n\n\n<function token>\n<function token>\n<function token>\n<code token>\n", "<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<code token>\n" ]
false
99,346
3577e5bb2d2f81f50030a6de182b327b7f9e2e39
tup=('a', 'b', 'c') str1 = ','.join(str(v) for v in tup) print(str1) str2 = '' print(str2[:-1])
[ "\ntup=('a', 'b', 'c')\nstr1 = ','.join(str(v) for v in tup)\nprint(str1)\n\nstr2 = ''\nprint(str2[:-1])", "tup = 'a', 'b', 'c'\nstr1 = ','.join(str(v) for v in tup)\nprint(str1)\nstr2 = ''\nprint(str2[:-1])\n", "<assignment token>\nprint(str1)\n<assignment token>\nprint(str2[:-1])\n", "<assignment token>\n<code token>\n<assignment token>\n<code token>\n" ]
false
99,347
969c346b5240dd66bbca0be23542d04154b533e9
import dbaccess as dba import dataProcessing as dp import numpy as np import time import colorsys import copy from types import * colLabels = ['Lvl', 'Branch', 'Total', 'Succ.', 'Fail', 'Graph'] treeRootNodeName = 'All analyses' treeLevelParameterNames = [ 'crackRatio', 'analysisType', 'modelType', 'elements'] class TreeNode(object): def __init__(self, name): self.name = name self.parent = None self.children = [] self.failedMembers = set() self.successfulMembers = set() self.xmark = 0 self.barWidth = 0 self.legendName = '' self.faceColor = '0.9' self.edgeColor = '0.0' self.hueRange = [] self.currentMarker = '<--' self.cols = colLabels def setParent(self, parent): if (isinstance(parent, NoneType) or isinstance(parent, TreeNode)): self.parent = parent else: raise TypeError('parent must be wither NoneType or TreeNode') def setChild(self, child): if isinstance(child, TreeNode): self.children.append(child) self.sortChildren() else: raise TypeError('child must be wither NoneType or TreeNode') def sortChildren(self): try: self.children.sort(key=lambda k: float(k.getName())) except ValueError: self.children.sort(key=lambda k: k.getName()) def addMembers(self, members, memberType): assert memberType in ['successful', 'failed'] assert isinstance( members, (NoneType, str, list, tuple, set, frozenset)) setsDict = {'successful': self.successfulMembers, 'failed': self.failedMembers} if isinstance(members, NoneType): pass elif isinstance(members, str): setsDict[memberType].add(members) else: for m in members: setsDict[memberType].add(m) def addFailedMember(self, member): # self.failedMembers.add(member) self.addMembers(member, 'failed') def addSuccessfulMember(self, member): # self.successfulMembers.add(member) self.addMembers(member, 'successful') def setXMark(self, mark): self.xmark = mark def setBarWidth(self, width): self.barWidth = width def setLegendName(self, name): self.legendName = name def setFaceColor(self, color): self.faceColor = color def setEdgeColor(self, color): self.edgeColor = color def setHueRange(self, hueRange): self.hueRange = hueRange def addMember(self, entryObj): key = entryObj.getEntryKey() if entryObj.getAnalysisSuccess(): self.addSuccessfulMember(key) else: self.addFailedMember(key) def assignMemberAsFailed(self, simId, printChanges=True, rowlen=80): assert isinstance(simId, str) root = self.getRootNode() leaves = self.getChildLeafNodes(root) for l in leaves: if simId in l.successfulMembers: l.successfulMembers.remove(simId) l.failedMembers.add(simId) if printChanges: l.printNode(l, rowlen) return 1 if simId in l.failedMembers: pass return 0 def getParent(self): return self.parent def getChildren(self): return self.children def getName(self): return self.name def getChildLeafNodes(self, node): stack = [node] leaves = [] while len(stack) > 0: tmp = stack.pop() if tmp.getChildren() == [] and tmp != node: leaves.append(tmp) stack = tmp.getChildren() + stack return leaves def getSuccessfulMembers(self): def getSM(node): if node.getChildren() == []: return node.successfulMembers else: ch = node.getChildren() return frozenset().union(*[getSM(c) for c in ch]) return copy.deepcopy(getSM(self)) def getFailedMembers(self): def getSM(node): if node.getChildren() == []: return node.failedMembers else: ch = node.getChildren() return frozenset().union(*[getSM(c) for c in ch]) return copy.deepcopy(getSM(self)) def getAllMembers(self): return self.getFailedMembers() | self.getSuccessfulMembers() def getXMark(self): return self.xmark def getBarWidth(self): return self.barWidth def getFaceColor(self): return self.faceColor def getEdgeColor(self): return self.edgeColor def getHueRange(self): return self.hueRange def getLegendName(self): return self.legendName def getRootNode(self): root = self while root.getParent(): root = root.getParent() return root def hasChildNode(self, nodeName): for child in self.getChildren(): if child.getName() == nodeName: return child return False def getNodeLevelInTree(self): if self.getParent(): return 1 + self.getParent().getNodeLevelInTree() else: return 0 def getNodeLevel(self, node): path = tracePath(node) return len(path) - 1 def getChildrenOfBranch(self, branchNames): return self.getTreeBranch(branchNames).getChildren() def getTreeBranch(self, branchNames): stack = [self.getRootNode()] nodes = [] ind1 = -(len(branchNames)) while len(stack) > 0: tmp = stack.pop() path = tracePath(tmp) nodeNames = [a.getName() for a in path] if nodeNames[ind1:] == branchNames: nodes.append(tmp) stack = tmp.getChildren() + stack if len(nodes) == 1: return nodes[0] elif len(nodes) > 1: raise KeyError( '{0} is ambiguous. Corresponds to more than one node.'.format( branchNames)) else: raise KeyError('{0} not in the tree'.format(branchNames)) def countNumberOfTreeLevels(self): maxLevel = 0 stack = [self.getRootNode()] while len(stack) > 0: tmp = stack.pop() lvl = self.getNodeLevel(tmp) if lvl > maxLevel: maxLevel = lvl stack = tmp.getChildren() + stack return maxLevel def countMaxNodeNameLength(self): maxLen = 0 stack = [self.getRootNode()] while len(stack) > 0: tmp = stack.pop() name = self.createNameStr(tmp) if len(name) + 1 > maxLen: maxLen = len(name) + 1 stack = tmp.getChildren() + stack return maxLen def getMemberCounts(self, node): tot, succ, failed = 0, 0, 0 succ = len(node.getSuccessfulMembers()) failed = len(node.getFailedMembers()) tot = succ + failed return [tot, succ, failed] def getMaxMemberCounts(self): return self.getMemberCounts(self.getRootNode()) def calcColumnsLength(self, rowlen): lengths = [self.countNumberOfTreeLevels(), self.countMaxNodeNameLength( )] + [len(str(a)) for a in self.getMaxMemberCounts()] for i in range(len(self.cols) - 1): if len(self.cols[i]) > lengths[i]: lengths[i] = len(self.cols[i]) lengths.append(rowlen - sum(lengths)) return lengths def printTitle(self, rowlen): row = '' sep = '' lens = self.calcColumnsLength(rowlen) for i in range(len(self.cols)): colStr = self.createAlignedColStr( self.cols[i], lens[i], 'center') row = row + '|' + colStr sep = sep + '|' + lens[i] * '-' print row print sep def createAlignedColStr(self, value, colLen, align): assert align in ['left', 'center', 'right'] vl = len(str(value)) if align == 'center': f = (colLen - vl) / 2 b = colLen - vl - f elif align == 'right': b = 1 f = colLen - vl - b elif align == 'left': f = 0 b = colLen - vl - f colStr = f * ' ' + str(value) + b * ' ' return colStr def createNameStr(self, node): level = self.getNodeLevel(node) isCurrent = (self == node) nodeName = str(node.getName()) nameStr = level * '-' + ' ' + nodeName if isCurrent: nameStr = nameStr + ' ' + self.currentMarker return nameStr def createBarGraph(self, node, length): mt, ms, mf = self.getMaxMemberCounts() t, s, f = self.getMemberCounts(node) l = (length - 2) * float(t) / mt plen = int(l * s / t) mlen = int(l - plen) blanks = int(l - (plen + mlen)) return '[' + plen * '+' + mlen * '-' + blanks * ' ' + ']' def printNode(self, node, rowlen): lens = self.calcColumnsLength(rowlen) row = '' total, succ, failed = self.getMemberCounts(node) ncols = [self.getNodeLevel(node), self.createNameStr(node), total, succ, failed] alignment = ['right', 'left', 'right', 'right', 'right'] for i in range(len(ncols)): row = row + '|' + self.createAlignedColStr( ncols[i], lens[i], alignment[i]) row = row + '|' + self.createBarGraph(node, lens[-1]) print row def printStats2(self, rowlen=80): self.printTitle(rowlen) path = tracePath(self) for node in path: if node is not self: self.printNode(node, rowlen) else: break stack = [self] while len(stack) > 0: tmp = stack.pop() self.printNode(tmp, rowlen) stack = stack + tmp.getChildren() def printStructure(self): root = self.getRootNode() stack = [root] while len(stack) > 0: print generateNodePrStr(stack[0], stack[0] is self) temp = stack.pop(0) stack = temp.getChildren() + stack def __eq__(self, other): assert isinstance(self, type(other)) return self.getName() == other.getName() def __str__(self): return self.name def printStats(self, maxChars=80): root = self.getRootNode() maxLen = 0 stack = [root] while len(stack) > 0: nodePrStr = generateNodePrStr(stack[0], stack[0] is self) if len(nodePrStr) > maxLen: maxLen = len(nodePrStr) temp = stack.pop(0) stack = temp.getChildren() + stack print genNodePrintStrWithBar( root, root, root is self, maxLen, maxChars) for node in root.getChildren(): stack = [node] while len(stack) > 0: print genNodePrintStrWithBar( stack[0], node, stack[0] is self, maxLen, maxChars) temp = stack.pop(0) stack = temp.getChildren() + stack def createTreeFromDbKeys(dbKeys): root = TreeNode(treeRootNodeName) for key in dbKeys: parent = root anDataObj = dp.AnalysisData(key) for tlevel in treeLevelParameterNames: nodeName = anDataObj.getParameter(tlevel) node = parent.hasChildNode(nodeName) if not node: node = TreeNode(nodeName) node.setParent(parent) parent.setChild(node) if tlevel == treeLevelParameterNames[-1]: node.addMember(anDataObj) parent = node return root def nodesPerLevel(root): stack = [root] levelNodes = {} while len(stack) > 0: level = stack[0].getNodeLevelInTree() if level not in levelNodes.keys(): levelNodes[level] = set() levelNodes[level].add(stack[0]) temp = stack.pop(0) stack = stack + temp.getChildren() return levelNodes def tracePath(node, limitLevel=0): def getPathToRoot(node): if not node.getParent(): return [node] else: return getPathToRoot(node.getParent()) + [node] path = getPathToRoot(node) if (limitLevel <= len(path) and limitLevel >= 0) or limitLevel is None: return path[limitLevel:] else: raise IndexError( 'limitLevel argument must be >= 0 and <= {0}'.format( len(path))) def createTreeOfKeys(root): leaves = nodesPerLevel(root) leaves = leaves[max(leaves.keys())] nroot = TreeNode('analyses') for leaf in leaves: path = tracePath(leaf, 2) parent = nroot for node in path: if node.getName() not in [a.getName() for a in parent.getChildren()]: newNode = TreeNode(node.getName()) newNode.setParent(parent) parent.setChild(newNode) for n in parent.getChildren(): if n == node: parent = n return nroot def maxNodesPerLevel(root): maxChildren = {0: 1} stack = [root] while len(stack) > 0: level = stack[0].getNodeLevelInTree() + 1 if len(stack[0].getChildren()) > maxChildren.get(level, 0): maxChildren[level] = len(stack[0].getChildren()) temp = stack.pop(0) stack = stack + temp.getChildren() return maxChildren def nodeNamesPerLevel(root): levelNodes = nodesPerLevel(root) namedNodes = {} for key in levelNodes.keys(): nodes = list(levelNodes[key]) namedNodes[key] = set() for node in nodes: namedNodes[key].add(node.getName()) for key in namedNodes.keys(): namedNodes[key] = sorted(namedNodes[key]) return namedNodes def generateNodePrStr(node, current): level = node.getNodeLevelInTree() if level < 9: number = ' ' + str(level) elif level > 9 and level < 99: number = ' ' + str(level) else: number = str(level) branch = level * ' ' + '|' + '-' branch = '|' + level * '-' if current: nodeName = node.getName() + ' <--' else: nodeName = node.getName() return "{0} {1} {2}".format(number, branch, nodeName) def genNodePrintStrWithBar( node, root, current, maxStrLen, maxChars): if (len(node.getSuccessfulMembers()) + len(node.getFailedMembers()) > 0): barLength = maxChars - maxStrLen - 3 s, f, b = calcNodeBarNumbers(node, root, barLength) nodeStr = generateNodePrStr(node, current) blankSpace = maxChars - len(nodeStr) - s - f - b - 2 nps = '{0}{1}[{2}{3}{4}]'.format( nodeStr, blankSpace * ' ', s * '+', f * '-', b * ' ') return nps else: return generateNodePrStr(node, current) def calcNodeBarNumbers(node, root, barLength): nsm = len(node.getSuccessfulMembers()) nfm = len(node.getFailedMembers()) totm = (len(root.getSuccessfulMembers()) + len(root.getFailedMembers())) barUnitLen = barLength / float(totm) totBarUnits = int(round(barUnitLen * (nsm + nfm))) sBarUnits = int(round(barUnitLen * nsm)) fBarUnits = totBarUnits - sBarUnits blankBarUnits = barLength - totBarUnits return sBarUnits, fBarUnits, blankBarUnits def calcBarWidth(node, refTree, ulen=1.0, relPad=0.05, root=None, tlevelIncrement=1): if not root: root = node.getRootNode() if node is not root: maxNodes = maxNodesPerLevel(refTree) nodeLevel = node.getNodeLevelInTree() numNodes = maxNodes[nodeLevel - tlevelIncrement] ulen = node.getParent().getBarWidth() barWidth = (1 - (numNodes + 1) * relPad) * ulen / numNodes else: barWidth = (1 - 2 * relPad) * ulen node.setBarWidth(barWidth) def getRefSiblingsOfNode(node, refTree): candidates = [] stack = [refTree] while len(stack) > 0: if stack[0] == node: candidates.append(stack[0]) temp = stack.pop(0) stack = temp.getChildren() + stack parent = node.getParent() for c in candidates: if ((parent == c.getParent()) or (c.getParent() is refTree)): return c.getParent().getChildren(), c def calcXMark(node, refTree): parent = node.getParent() pxmark = parent.getXMark() refSiblings, rs = getRefSiblingsOfNode(node, refTree) index = refSiblings.index(rs) n = len(refSiblings) pbw = parent.getBarWidth() a = node.getBarWidth() b = (pbw - a * n) / float(n + 1) c = pxmark + b * (index + 1) + a * index node.setXMark(c) def assignBarWidthsAndMarks(root, refTree, ulen=1.0, relPad=0.05): valNodes = root.getChildren() count = 0 for node in valNodes: stack = [node] while len(stack) > 0: calcBarWidth(stack[0], refTree, ulen, relPad, node, 1) if stack[0] is node: stack[0].setXMark((count + relPad) * ulen) else: calcXMark(stack[0], refTree) temp = stack.pop(0) stack = stack + temp.getChildren() count += 1 def setLegendName(node): if node is node.getRootNode(): return None name = node.getName() analyses = ['FEM', 'XFEM'] elements = ['LinearTet', 'LinearRI', 'LinearFI'] types = { 'crackPartition': 'CP - xfem', 'multiplePartitions': 'MP - xfem', 'simple': 'S - xfem', 'elliptic': 'Elliptic tr.', 'simpleScale': 'Scale tr.'} if name in analyses: node.setLegendName('{0} - {1}'.format(name, 'analyses')) elif name in elements: n2 = node.getParent().getParent().getName() node.setLegendName('{0} - {1}'.format(name, n2)) elif name in types.keys(): node.setLegendName(types[name]) elif node.getParent() == node.getRootNode(): node.setLegendName('All analyses') def assignLegendNames(root): stack = [root] while len(stack) > 0: setLegendName(stack[0]) temp = stack.pop(0) stack = stack + temp.getChildren() def setColorForNode(node, refNode, refTree): level = node.getNodeLevelInTree() - refNode.getNodeLevelInTree() n = 1000 if node is refNode: hueRange = list(range(n)) else: refSiblings, rc = getRefSiblingsOfNode(node, refTree) lrs = len(refSiblings) hueRange = node.getParent().getHueRange() start = len(hueRange) / lrs * refSiblings.index(rc) end = len(hueRange) / lrs * (1 + refSiblings.index(rc)) hueRange = hueRange[start:end] h = hueRange[int(len(hueRange) / 2)] / float(n) s = 1.0 - 1 / float(1 + level) v = 0.9 / float(level + 1) node.setHueRange(hueRange) rgb = colorsys.hsv_to_rgb(h, s, v) node.setFaceColor(rgb) if node is refNode: rgb = colorsys.hsv_to_rgb(h, 0., 0.) else: rgb = colorsys.hsv_to_rgb(h, 1.0, 1.0) node.setEdgeColor(rgb) def barPlot(root, refTree, fig): ax = fig.add_subplot(111) bars = {} totals = [] count = 1 for node in root.getChildren(): stack = [node] cc = 1 totals.append(node.getName()) while len(stack) > 0: color = str(0.9 / cc) setColorForNode(stack[0], node, refTree) color = stack[0].getFaceColor() ec_color = stack[0].getEdgeColor() bars[stack[0].getLegendName()] = ax.bar( stack[0].getXMark(), len(stack[0].getSuccessfulMembers()), width=stack[0].getBarWidth(), color=color, ec=ec_color) bars['Errors'] = ax.bar( stack[0].getXMark(), len(stack[0].getFailedMembers()), width=stack[0].getBarWidth(), bottom=len(stack[0].getSuccessfulMembers()), color='DarkRed', ec='red') temp = stack.pop(0) stack = stack + temp.getChildren() cc += 1 ax.legend([bars[k] for k in sorted(bars.keys())], sorted(bars.keys()), bbox_to_anchor=(1.01, 1), loc=2, borderaxespad=0) ax.set_xticks([0.5 + i for i in range(len(totals))]) ax.set_xticklabels(totals) ax.set_xlabel('Crack ratio') ax.set_ylabel('Number of simulations') ax.set_title('Database summary') ax.grid(True) def plot(root, refTree, fig): assignBarWidthsAndMarks(root, refTree) assignLegendNames(root) barPlot(root, refTree, fig) def getTreeLeaves(root): root = root.getRootNode() stack = [root] leaves = [] while len(stack) > 0: temp = stack.pop() stack = temp.getChildren() + stack if len(temp.getChildren()) == 0: leaves.append(temp) return leaves
[ "import dbaccess as dba\nimport dataProcessing as dp\nimport numpy as np\nimport time\nimport colorsys\nimport copy\nfrom types import *\n\ncolLabels = ['Lvl', 'Branch', 'Total', 'Succ.', 'Fail', 'Graph']\ntreeRootNodeName = 'All analyses'\ntreeLevelParameterNames = [\n 'crackRatio',\n 'analysisType',\n 'modelType',\n 'elements']\n\n\nclass TreeNode(object):\n\n def __init__(self, name):\n self.name = name\n self.parent = None\n self.children = []\n self.failedMembers = set()\n self.successfulMembers = set()\n self.xmark = 0\n self.barWidth = 0\n self.legendName = ''\n self.faceColor = '0.9'\n self.edgeColor = '0.0'\n self.hueRange = []\n self.currentMarker = '<--'\n self.cols = colLabels\n\n def setParent(self, parent):\n if (isinstance(parent, NoneType) or\n isinstance(parent, TreeNode)):\n self.parent = parent\n else:\n raise TypeError('parent must be wither NoneType or TreeNode')\n\n def setChild(self, child):\n if isinstance(child, TreeNode):\n self.children.append(child)\n self.sortChildren()\n else:\n raise TypeError('child must be wither NoneType or TreeNode')\n\n def sortChildren(self):\n try:\n self.children.sort(key=lambda k: float(k.getName()))\n except ValueError:\n self.children.sort(key=lambda k: k.getName())\n\n def addMembers(self, members, memberType):\n assert memberType in ['successful', 'failed']\n assert isinstance(\n members, (NoneType, str, list, tuple, set, frozenset))\n setsDict = {'successful': self.successfulMembers,\n 'failed': self.failedMembers}\n if isinstance(members, NoneType):\n pass\n elif isinstance(members, str):\n setsDict[memberType].add(members)\n else:\n for m in members:\n setsDict[memberType].add(m)\n\n def addFailedMember(self, member):\n # self.failedMembers.add(member)\n self.addMembers(member, 'failed')\n\n def addSuccessfulMember(self, member):\n # self.successfulMembers.add(member)\n self.addMembers(member, 'successful')\n\n def setXMark(self, mark):\n self.xmark = mark\n\n def setBarWidth(self, width):\n self.barWidth = width\n\n def setLegendName(self, name):\n self.legendName = name\n\n def setFaceColor(self, color):\n self.faceColor = color\n\n def setEdgeColor(self, color):\n self.edgeColor = color\n\n def setHueRange(self, hueRange):\n self.hueRange = hueRange\n\n def addMember(self, entryObj):\n key = entryObj.getEntryKey()\n if entryObj.getAnalysisSuccess():\n self.addSuccessfulMember(key)\n else:\n self.addFailedMember(key)\n\n def assignMemberAsFailed(self, simId, printChanges=True, rowlen=80):\n assert isinstance(simId, str)\n root = self.getRootNode()\n leaves = self.getChildLeafNodes(root)\n for l in leaves:\n if simId in l.successfulMembers:\n l.successfulMembers.remove(simId)\n l.failedMembers.add(simId)\n if printChanges:\n l.printNode(l, rowlen)\n return 1\n if simId in l.failedMembers:\n pass\n return 0\n\n def getParent(self):\n return self.parent\n\n def getChildren(self):\n return self.children\n\n def getName(self):\n return self.name\n\n def getChildLeafNodes(self, node):\n stack = [node]\n leaves = []\n while len(stack) > 0:\n tmp = stack.pop()\n if tmp.getChildren() == [] and tmp != node:\n leaves.append(tmp)\n stack = tmp.getChildren() + stack\n return leaves\n\n def getSuccessfulMembers(self):\n def getSM(node):\n if node.getChildren() == []:\n return node.successfulMembers\n else:\n ch = node.getChildren()\n return frozenset().union(*[getSM(c) for c in ch])\n return copy.deepcopy(getSM(self))\n\n def getFailedMembers(self):\n def getSM(node):\n if node.getChildren() == []:\n return node.failedMembers\n else:\n ch = node.getChildren()\n return frozenset().union(*[getSM(c) for c in ch])\n return copy.deepcopy(getSM(self))\n\n def getAllMembers(self):\n return self.getFailedMembers() | self.getSuccessfulMembers()\n\n def getXMark(self):\n return self.xmark\n\n def getBarWidth(self):\n return self.barWidth\n\n def getFaceColor(self):\n return self.faceColor\n\n def getEdgeColor(self):\n return self.edgeColor\n\n def getHueRange(self):\n return self.hueRange\n\n def getLegendName(self):\n return self.legendName\n\n def getRootNode(self):\n root = self\n while root.getParent():\n root = root.getParent()\n return root\n\n def hasChildNode(self, nodeName):\n for child in self.getChildren():\n if child.getName() == nodeName:\n return child\n return False\n\n def getNodeLevelInTree(self):\n if self.getParent():\n return 1 + self.getParent().getNodeLevelInTree()\n else:\n return 0\n\n def getNodeLevel(self, node):\n path = tracePath(node)\n return len(path) - 1\n\n def getChildrenOfBranch(self, branchNames):\n return self.getTreeBranch(branchNames).getChildren()\n\n def getTreeBranch(self, branchNames):\n stack = [self.getRootNode()]\n nodes = []\n ind1 = -(len(branchNames))\n while len(stack) > 0:\n tmp = stack.pop()\n path = tracePath(tmp)\n nodeNames = [a.getName() for a in path]\n if nodeNames[ind1:] == branchNames:\n nodes.append(tmp)\n stack = tmp.getChildren() + stack\n if len(nodes) == 1:\n return nodes[0]\n elif len(nodes) > 1:\n raise KeyError(\n '{0} is ambiguous. Corresponds to more than one node.'.format(\n branchNames))\n else:\n raise KeyError('{0} not in the tree'.format(branchNames))\n\n def countNumberOfTreeLevels(self):\n maxLevel = 0\n stack = [self.getRootNode()]\n while len(stack) > 0:\n tmp = stack.pop()\n lvl = self.getNodeLevel(tmp)\n if lvl > maxLevel:\n maxLevel = lvl\n stack = tmp.getChildren() + stack\n return maxLevel\n\n def countMaxNodeNameLength(self):\n maxLen = 0\n stack = [self.getRootNode()]\n while len(stack) > 0:\n tmp = stack.pop()\n name = self.createNameStr(tmp)\n if len(name) + 1 > maxLen:\n maxLen = len(name) + 1\n stack = tmp.getChildren() + stack\n return maxLen\n\n def getMemberCounts(self, node):\n tot, succ, failed = 0, 0, 0\n succ = len(node.getSuccessfulMembers())\n failed = len(node.getFailedMembers())\n tot = succ + failed\n return [tot, succ, failed]\n\n def getMaxMemberCounts(self):\n return self.getMemberCounts(self.getRootNode())\n\n def calcColumnsLength(self, rowlen):\n lengths = [self.countNumberOfTreeLevels(), self.countMaxNodeNameLength(\n )] + [len(str(a)) for a in self.getMaxMemberCounts()]\n for i in range(len(self.cols) - 1):\n if len(self.cols[i]) > lengths[i]:\n lengths[i] = len(self.cols[i])\n lengths.append(rowlen - sum(lengths))\n return lengths\n\n def printTitle(self, rowlen):\n row = ''\n sep = ''\n lens = self.calcColumnsLength(rowlen)\n for i in range(len(self.cols)):\n colStr = self.createAlignedColStr(\n self.cols[i], lens[i], 'center')\n row = row + '|' + colStr\n sep = sep + '|' + lens[i] * '-'\n print row\n print sep\n\n def createAlignedColStr(self, value, colLen, align):\n assert align in ['left', 'center', 'right']\n vl = len(str(value))\n if align == 'center':\n f = (colLen - vl) / 2\n b = colLen - vl - f\n elif align == 'right':\n b = 1\n f = colLen - vl - b\n elif align == 'left':\n f = 0\n b = colLen - vl - f\n colStr = f * ' ' + str(value) + b * ' '\n return colStr\n\n def createNameStr(self, node):\n level = self.getNodeLevel(node)\n isCurrent = (self == node)\n nodeName = str(node.getName())\n nameStr = level * '-' + ' ' + nodeName\n if isCurrent:\n nameStr = nameStr + ' ' + self.currentMarker\n return nameStr\n\n def createBarGraph(self, node, length):\n mt, ms, mf = self.getMaxMemberCounts()\n t, s, f = self.getMemberCounts(node)\n l = (length - 2) * float(t) / mt\n plen = int(l * s / t)\n mlen = int(l - plen)\n blanks = int(l - (plen + mlen))\n return '[' + plen * '+' + mlen * '-' + blanks * ' ' + ']'\n\n def printNode(self, node, rowlen):\n lens = self.calcColumnsLength(rowlen)\n row = ''\n total, succ, failed = self.getMemberCounts(node)\n ncols = [self.getNodeLevel(node), self.createNameStr(node),\n total, succ, failed]\n alignment = ['right', 'left', 'right', 'right', 'right']\n for i in range(len(ncols)):\n row = row + '|' + self.createAlignedColStr(\n ncols[i], lens[i], alignment[i])\n row = row + '|' + self.createBarGraph(node, lens[-1])\n print row\n\n def printStats2(self, rowlen=80):\n self.printTitle(rowlen)\n path = tracePath(self)\n for node in path:\n if node is not self:\n self.printNode(node, rowlen)\n else:\n break\n stack = [self]\n while len(stack) > 0:\n tmp = stack.pop()\n self.printNode(tmp, rowlen)\n stack = stack + tmp.getChildren()\n\n def printStructure(self):\n root = self.getRootNode()\n stack = [root]\n while len(stack) > 0:\n print generateNodePrStr(stack[0], stack[0] is self)\n temp = stack.pop(0)\n stack = temp.getChildren() + stack\n\n def __eq__(self, other):\n assert isinstance(self, type(other))\n return self.getName() == other.getName()\n\n def __str__(self):\n return self.name\n\n def printStats(self, maxChars=80):\n root = self.getRootNode()\n maxLen = 0\n stack = [root]\n while len(stack) > 0:\n nodePrStr = generateNodePrStr(stack[0], stack[0] is self)\n if len(nodePrStr) > maxLen:\n maxLen = len(nodePrStr)\n temp = stack.pop(0)\n stack = temp.getChildren() + stack\n print genNodePrintStrWithBar(\n root, root, root is self, maxLen, maxChars)\n for node in root.getChildren():\n stack = [node]\n while len(stack) > 0:\n print genNodePrintStrWithBar(\n stack[0], node, stack[0] is self, maxLen, maxChars)\n temp = stack.pop(0)\n stack = temp.getChildren() + stack\n\n\ndef createTreeFromDbKeys(dbKeys):\n root = TreeNode(treeRootNodeName)\n for key in dbKeys:\n parent = root\n anDataObj = dp.AnalysisData(key)\n\n for tlevel in treeLevelParameterNames:\n nodeName = anDataObj.getParameter(tlevel)\n node = parent.hasChildNode(nodeName)\n if not node:\n node = TreeNode(nodeName)\n node.setParent(parent)\n parent.setChild(node)\n if tlevel == treeLevelParameterNames[-1]:\n node.addMember(anDataObj)\n parent = node\n return root\n\n\ndef nodesPerLevel(root):\n stack = [root]\n levelNodes = {}\n while len(stack) > 0:\n level = stack[0].getNodeLevelInTree()\n if level not in levelNodes.keys():\n levelNodes[level] = set()\n levelNodes[level].add(stack[0])\n temp = stack.pop(0)\n stack = stack + temp.getChildren()\n return levelNodes\n\n\ndef tracePath(node, limitLevel=0):\n def getPathToRoot(node):\n if not node.getParent():\n return [node]\n else:\n return getPathToRoot(node.getParent()) + [node]\n path = getPathToRoot(node)\n if (limitLevel <= len(path) and limitLevel >= 0) or limitLevel is None:\n return path[limitLevel:]\n else:\n raise IndexError(\n 'limitLevel argument must be >= 0 and <= {0}'.format(\n len(path)))\n\n\ndef createTreeOfKeys(root):\n leaves = nodesPerLevel(root)\n leaves = leaves[max(leaves.keys())]\n nroot = TreeNode('analyses')\n for leaf in leaves:\n path = tracePath(leaf, 2)\n parent = nroot\n for node in path:\n if node.getName() not in [a.getName()\n for a in parent.getChildren()]:\n newNode = TreeNode(node.getName())\n newNode.setParent(parent)\n parent.setChild(newNode)\n for n in parent.getChildren():\n if n == node:\n parent = n\n return nroot\n\n\ndef maxNodesPerLevel(root):\n maxChildren = {0: 1}\n stack = [root]\n while len(stack) > 0:\n level = stack[0].getNodeLevelInTree() + 1\n if len(stack[0].getChildren()) > maxChildren.get(level, 0):\n maxChildren[level] = len(stack[0].getChildren())\n temp = stack.pop(0)\n stack = stack + temp.getChildren()\n return maxChildren\n\n\ndef nodeNamesPerLevel(root):\n levelNodes = nodesPerLevel(root)\n namedNodes = {}\n for key in levelNodes.keys():\n nodes = list(levelNodes[key])\n namedNodes[key] = set()\n for node in nodes:\n namedNodes[key].add(node.getName())\n for key in namedNodes.keys():\n namedNodes[key] = sorted(namedNodes[key])\n return namedNodes\n\n\ndef generateNodePrStr(node, current):\n level = node.getNodeLevelInTree()\n if level < 9:\n number = ' ' + str(level)\n elif level > 9 and level < 99:\n number = ' ' + str(level)\n else:\n number = str(level)\n branch = level * ' ' + '|' + '-'\n branch = '|' + level * '-'\n if current:\n nodeName = node.getName() + ' <--'\n else:\n nodeName = node.getName()\n return \"{0} {1} {2}\".format(number, branch, nodeName)\n\n\ndef genNodePrintStrWithBar(\n node, root, current, maxStrLen, maxChars):\n if (len(node.getSuccessfulMembers()) +\n len(node.getFailedMembers()) > 0):\n barLength = maxChars - maxStrLen - 3\n s, f, b = calcNodeBarNumbers(node, root, barLength)\n nodeStr = generateNodePrStr(node, current)\n blankSpace = maxChars - len(nodeStr) - s - f - b - 2\n nps = '{0}{1}[{2}{3}{4}]'.format(\n nodeStr, blankSpace * ' ', s * '+', f * '-', b * ' ')\n return nps\n else:\n return generateNodePrStr(node, current)\n\n\ndef calcNodeBarNumbers(node, root, barLength):\n nsm = len(node.getSuccessfulMembers())\n nfm = len(node.getFailedMembers())\n totm = (len(root.getSuccessfulMembers()) +\n len(root.getFailedMembers()))\n barUnitLen = barLength / float(totm)\n totBarUnits = int(round(barUnitLen * (nsm + nfm)))\n sBarUnits = int(round(barUnitLen * nsm))\n fBarUnits = totBarUnits - sBarUnits\n blankBarUnits = barLength - totBarUnits\n return sBarUnits, fBarUnits, blankBarUnits\n\n\ndef calcBarWidth(node, refTree,\n ulen=1.0, relPad=0.05, root=None, tlevelIncrement=1):\n if not root:\n root = node.getRootNode()\n if node is not root:\n maxNodes = maxNodesPerLevel(refTree)\n nodeLevel = node.getNodeLevelInTree()\n numNodes = maxNodes[nodeLevel - tlevelIncrement]\n ulen = node.getParent().getBarWidth()\n barWidth = (1 - (numNodes + 1) * relPad) * ulen / numNodes\n else:\n barWidth = (1 - 2 * relPad) * ulen\n node.setBarWidth(barWidth)\n\n\ndef getRefSiblingsOfNode(node, refTree):\n candidates = []\n stack = [refTree]\n while len(stack) > 0:\n if stack[0] == node:\n candidates.append(stack[0])\n temp = stack.pop(0)\n stack = temp.getChildren() + stack\n parent = node.getParent()\n for c in candidates:\n if ((parent == c.getParent()) or\n (c.getParent() is refTree)):\n return c.getParent().getChildren(), c\n\n\ndef calcXMark(node, refTree):\n parent = node.getParent()\n pxmark = parent.getXMark()\n refSiblings, rs = getRefSiblingsOfNode(node, refTree)\n index = refSiblings.index(rs)\n n = len(refSiblings)\n pbw = parent.getBarWidth()\n a = node.getBarWidth()\n b = (pbw - a * n) / float(n + 1)\n c = pxmark + b * (index + 1) + a * index\n node.setXMark(c)\n\n\ndef assignBarWidthsAndMarks(root, refTree, ulen=1.0, relPad=0.05):\n valNodes = root.getChildren()\n count = 0\n for node in valNodes:\n stack = [node]\n while len(stack) > 0:\n calcBarWidth(stack[0], refTree,\n ulen, relPad, node, 1)\n if stack[0] is node:\n stack[0].setXMark((count + relPad) * ulen)\n else:\n calcXMark(stack[0], refTree)\n temp = stack.pop(0)\n stack = stack + temp.getChildren()\n count += 1\n\n\ndef setLegendName(node):\n if node is node.getRootNode():\n return None\n name = node.getName()\n analyses = ['FEM', 'XFEM']\n elements = ['LinearTet', 'LinearRI', 'LinearFI']\n types = {\n 'crackPartition': 'CP - xfem',\n 'multiplePartitions': 'MP - xfem', 'simple': 'S - xfem',\n 'elliptic': 'Elliptic tr.', 'simpleScale': 'Scale tr.'}\n if name in analyses:\n node.setLegendName('{0} - {1}'.format(name, 'analyses'))\n elif name in elements:\n n2 = node.getParent().getParent().getName()\n node.setLegendName('{0} - {1}'.format(name, n2))\n elif name in types.keys():\n node.setLegendName(types[name])\n elif node.getParent() == node.getRootNode():\n node.setLegendName('All analyses')\n\n\ndef assignLegendNames(root):\n stack = [root]\n while len(stack) > 0:\n setLegendName(stack[0])\n temp = stack.pop(0)\n stack = stack + temp.getChildren()\n\n\ndef setColorForNode(node, refNode, refTree):\n level = node.getNodeLevelInTree() - refNode.getNodeLevelInTree()\n n = 1000\n if node is refNode:\n hueRange = list(range(n))\n else:\n refSiblings, rc = getRefSiblingsOfNode(node, refTree)\n lrs = len(refSiblings)\n hueRange = node.getParent().getHueRange()\n start = len(hueRange) / lrs * refSiblings.index(rc)\n end = len(hueRange) / lrs * (1 + refSiblings.index(rc))\n hueRange = hueRange[start:end]\n\n h = hueRange[int(len(hueRange) / 2)] / float(n)\n s = 1.0 - 1 / float(1 + level)\n v = 0.9 / float(level + 1)\n node.setHueRange(hueRange)\n rgb = colorsys.hsv_to_rgb(h, s, v)\n node.setFaceColor(rgb)\n if node is refNode:\n rgb = colorsys.hsv_to_rgb(h, 0., 0.)\n else:\n rgb = colorsys.hsv_to_rgb(h, 1.0, 1.0)\n node.setEdgeColor(rgb)\n\n\ndef barPlot(root, refTree, fig):\n ax = fig.add_subplot(111)\n bars = {}\n totals = []\n count = 1\n for node in root.getChildren():\n stack = [node]\n cc = 1\n totals.append(node.getName())\n while len(stack) > 0:\n color = str(0.9 / cc)\n setColorForNode(stack[0], node, refTree)\n color = stack[0].getFaceColor()\n ec_color = stack[0].getEdgeColor()\n bars[stack[0].getLegendName()] = ax.bar(\n stack[0].getXMark(),\n len(stack[0].getSuccessfulMembers()),\n width=stack[0].getBarWidth(),\n color=color,\n ec=ec_color)\n bars['Errors'] = ax.bar(\n stack[0].getXMark(),\n len(stack[0].getFailedMembers()),\n width=stack[0].getBarWidth(),\n bottom=len(stack[0].getSuccessfulMembers()),\n color='DarkRed',\n ec='red')\n temp = stack.pop(0)\n stack = stack + temp.getChildren()\n cc += 1\n ax.legend([bars[k] for k in sorted(bars.keys())], sorted(bars.keys()),\n bbox_to_anchor=(1.01, 1), loc=2, borderaxespad=0)\n ax.set_xticks([0.5 + i for i in range(len(totals))])\n ax.set_xticklabels(totals)\n ax.set_xlabel('Crack ratio')\n ax.set_ylabel('Number of simulations')\n ax.set_title('Database summary')\n ax.grid(True)\n\n\ndef plot(root, refTree, fig):\n assignBarWidthsAndMarks(root, refTree)\n assignLegendNames(root)\n barPlot(root, refTree, fig)\n\n\ndef getTreeLeaves(root):\n root = root.getRootNode()\n stack = [root]\n leaves = []\n while len(stack) > 0:\n temp = stack.pop()\n stack = temp.getChildren() + stack\n if len(temp.getChildren()) == 0:\n leaves.append(temp)\n return leaves\n" ]
true
99,348
76045926c8e56e77a2bf516ebff863b8ef4ea4ea
#!/usr/bin/python import popen2 import re (f, _) = popen2.popen2('wmctrl -d') desktop_str = f.readline() desktop_size = re.search('WA: \d,\d (\d+)x(\d+)', desktop_str) desktop_width = int(desktop_size.group(1)) desktop_height = int(desktop_size.group(2)) (f, _) = popen2.popen2('wmctrl -r :ACTIVE: -L -G') window_str = f.readline() window_size = re.search(' +\d+ *\d+ *\d+ *(\d+) *(\d+)', window_str) window_width = int(window_size.group(1)) window_height = int(window_size.group(2)) new_window_position_x = (desktop_width - window_width) / 2 new_window_position_y = (desktop_height - window_height) / 2 popen2.popen2('wmctrl -r :ACTIVE: -e 0,%d,%d,-1,-1' % (new_window_position_x, new_window_position_y))
[ "#!/usr/bin/python\n\nimport popen2\nimport re\n\n(f, _) = popen2.popen2('wmctrl -d')\ndesktop_str = f.readline()\ndesktop_size = re.search('WA: \\d,\\d (\\d+)x(\\d+)', desktop_str)\ndesktop_width = int(desktop_size.group(1))\ndesktop_height = int(desktop_size.group(2))\n\n(f, _) = popen2.popen2('wmctrl -r :ACTIVE: -L -G')\nwindow_str = f.readline()\nwindow_size = re.search(' +\\d+ *\\d+ *\\d+ *(\\d+) *(\\d+)', window_str)\nwindow_width = int(window_size.group(1))\nwindow_height = int(window_size.group(2))\n\nnew_window_position_x = (desktop_width - window_width) / 2\nnew_window_position_y = (desktop_height - window_height) / 2\n\npopen2.popen2('wmctrl -r :ACTIVE: -e 0,%d,%d,-1,-1' % (new_window_position_x, new_window_position_y))\n", "import popen2\nimport re\nf, _ = popen2.popen2('wmctrl -d')\ndesktop_str = f.readline()\ndesktop_size = re.search('WA: \\\\d,\\\\d (\\\\d+)x(\\\\d+)', desktop_str)\ndesktop_width = int(desktop_size.group(1))\ndesktop_height = int(desktop_size.group(2))\nf, _ = popen2.popen2('wmctrl -r :ACTIVE: -L -G')\nwindow_str = f.readline()\nwindow_size = re.search(' +\\\\d+ *\\\\d+ *\\\\d+ *(\\\\d+) *(\\\\d+)', window_str)\nwindow_width = int(window_size.group(1))\nwindow_height = int(window_size.group(2))\nnew_window_position_x = (desktop_width - window_width) / 2\nnew_window_position_y = (desktop_height - window_height) / 2\npopen2.popen2('wmctrl -r :ACTIVE: -e 0,%d,%d,-1,-1' % (\n new_window_position_x, new_window_position_y))\n", "<import token>\nf, _ = popen2.popen2('wmctrl -d')\ndesktop_str = f.readline()\ndesktop_size = re.search('WA: \\\\d,\\\\d (\\\\d+)x(\\\\d+)', desktop_str)\ndesktop_width = int(desktop_size.group(1))\ndesktop_height = int(desktop_size.group(2))\nf, _ = popen2.popen2('wmctrl -r :ACTIVE: -L -G')\nwindow_str = f.readline()\nwindow_size = re.search(' +\\\\d+ *\\\\d+ *\\\\d+ *(\\\\d+) *(\\\\d+)', window_str)\nwindow_width = int(window_size.group(1))\nwindow_height = int(window_size.group(2))\nnew_window_position_x = (desktop_width - window_width) / 2\nnew_window_position_y = (desktop_height - window_height) / 2\npopen2.popen2('wmctrl -r :ACTIVE: -e 0,%d,%d,-1,-1' % (\n new_window_position_x, new_window_position_y))\n", "<import token>\n<assignment token>\npopen2.popen2('wmctrl -r :ACTIVE: -e 0,%d,%d,-1,-1' % (\n new_window_position_x, new_window_position_y))\n", "<import token>\n<assignment token>\n<code token>\n" ]
false
99,349
b4e422a5f5240558b6d0471c11dd4978ca4c6a2a
def shortest_paths_from(from_user): shortest_paths_to = { from_user['id']: [[]] } frontier = deque( (from_user, friend) for friend in from_user['friends'] ) while frontier: prev_user, user = frontier.popleft() user_id = user['id'] paths_to_prev_user = shortest_paths_to[prev_user['id']] new_paths_to_user = [ path + [user_id] for path in paths_to_prev_user ] old_paths_to_user = shortest_paths_to.get(user_id, []) if old_paths_to_user: min_path_length = len(old_paths_to_user[0]) else: min_path_length = float('inf') filtered_new_paths_to_user = [ path for path in new_paths_to_user if len(path) <= min_path_length and path not in old_paths_to_user ] shortest_paths_to[user_id] = old_paths_to_user + filtered_new_paths_to_user frontier.extend( (user, friend) for friend in user['friends'] if friend['id'] not in shortest_paths_to ) return shortest_paths_to
[ "def shortest_paths_from(from_user):\n\n shortest_paths_to = { from_user['id']: [[]] }\n\n frontier = deque(\n (from_user, friend)\n for friend\n in from_user['friends']\n )\n\n while frontier:\n\n prev_user, user = frontier.popleft()\n user_id = user['id']\n\n paths_to_prev_user = shortest_paths_to[prev_user['id']]\n new_paths_to_user = [\n path + [user_id]\n for path\n in paths_to_prev_user\n ]\n\n old_paths_to_user = shortest_paths_to.get(user_id, [])\n\n if old_paths_to_user:\n min_path_length = len(old_paths_to_user[0])\n else:\n min_path_length = float('inf')\n \n filtered_new_paths_to_user = [\n path\n for path in new_paths_to_user\n if len(path) <= min_path_length\n and path not in old_paths_to_user\n ]\n\n shortest_paths_to[user_id] = old_paths_to_user + filtered_new_paths_to_user\n\n frontier.extend(\n (user, friend)\n for friend in user['friends']\n if friend['id'] not in shortest_paths_to\n )\n \n return shortest_paths_to", "def shortest_paths_from(from_user):\n shortest_paths_to = {from_user['id']: [[]]}\n frontier = deque((from_user, friend) for friend in from_user['friends'])\n while frontier:\n prev_user, user = frontier.popleft()\n user_id = user['id']\n paths_to_prev_user = shortest_paths_to[prev_user['id']]\n new_paths_to_user = [(path + [user_id]) for path in paths_to_prev_user]\n old_paths_to_user = shortest_paths_to.get(user_id, [])\n if old_paths_to_user:\n min_path_length = len(old_paths_to_user[0])\n else:\n min_path_length = float('inf')\n filtered_new_paths_to_user = [path for path in new_paths_to_user if\n len(path) <= min_path_length and path not in old_paths_to_user]\n shortest_paths_to[user_id\n ] = old_paths_to_user + filtered_new_paths_to_user\n frontier.extend((user, friend) for friend in user['friends'] if \n friend['id'] not in shortest_paths_to)\n return shortest_paths_to\n", "<function token>\n" ]
false
99,350
3ae955975a5855d198be773221b898a437f49b4b
from datetime import date from unittest import TestCase, mock from requests import HTTPError, codes from basketball_reference_web_scraper.client import players_advanced_season_totals from basketball_reference_web_scraper.data import OutputType, OutputWriteOption from basketball_reference_web_scraper.errors import InvalidSeason class TestPlayerAdvancedSeasonTotals(TestCase): def test_players_advanced_season_totals(self): result = players_advanced_season_totals(season_end_year=2018) self.assertIsNotNone(result) def test_players_advanced_season_totals_json(self): result = players_advanced_season_totals(season_end_year=2018, output_type=OutputType.JSON) self.assertIsNotNone(result) def test_players_advanced_season_totals_csv(self): players_advanced_season_totals(season_end_year=2018, output_type=OutputType.CSV, output_file_path="./player_advanced_season_totals_2019.csv") def test_players_advanced_season_totals_csv_append(self): players_advanced_season_totals(season_end_year=2018, output_type=OutputType.CSV, output_file_path="./player_advanced_season_totals_2019.csv", output_write_option=OutputWriteOption.APPEND) def test_2001_players_advanced_season_totals_csv(self): players_advanced_season_totals(season_end_year=2001, output_type=OutputType.CSV, output_file_path="./player_advanced_season_totals_2001.csv", output_write_option=OutputWriteOption.WRITE) def test_future_season_raises_invalid_season(self): current_year = date.today().year future_year = current_year + 10 expected_message = "Season end year of {future_year} is invalid".format(future_year=future_year) self.assertRaisesRegex(InvalidSeason, expected_message, players_advanced_season_totals, season_end_year=future_year) @mock.patch("basketball_reference_web_scraper.client.http_client") def test_not_found_raises_invalid_season(self, mocked_http_client): end_year = "jaebaebae" expected_message = "Season end year of {end_year} is invalid".format(end_year=end_year) mocked_http_client.players_advanced_season_totals.side_effect = HTTPError(response=mock.Mock(status_code=codes.not_found)) self.assertRaisesRegex(InvalidSeason, expected_message, players_advanced_season_totals, season_end_year=end_year) @mock.patch("basketball_reference_web_scraper.client.http_client") def test_other_http_error_is_raised(self, mocked_http_client): mocked_http_client.players_advanced_season_totals.side_effect = HTTPError(response=mock.Mock(status_code=codes.internal_server_error)) self.assertRaises(HTTPError, players_advanced_season_totals, season_end_year=2018)
[ "from datetime import date\nfrom unittest import TestCase, mock\n\nfrom requests import HTTPError, codes\n\nfrom basketball_reference_web_scraper.client import players_advanced_season_totals\nfrom basketball_reference_web_scraper.data import OutputType, OutputWriteOption\nfrom basketball_reference_web_scraper.errors import InvalidSeason\n\n\nclass TestPlayerAdvancedSeasonTotals(TestCase):\n\n def test_players_advanced_season_totals(self):\n result = players_advanced_season_totals(season_end_year=2018)\n self.assertIsNotNone(result)\n\n def test_players_advanced_season_totals_json(self):\n result = players_advanced_season_totals(season_end_year=2018, output_type=OutputType.JSON)\n self.assertIsNotNone(result)\n\n def test_players_advanced_season_totals_csv(self):\n players_advanced_season_totals(season_end_year=2018, output_type=OutputType.CSV, output_file_path=\"./player_advanced_season_totals_2019.csv\")\n\n def test_players_advanced_season_totals_csv_append(self):\n players_advanced_season_totals(season_end_year=2018, output_type=OutputType.CSV, output_file_path=\"./player_advanced_season_totals_2019.csv\", output_write_option=OutputWriteOption.APPEND)\n\n def test_2001_players_advanced_season_totals_csv(self):\n players_advanced_season_totals(season_end_year=2001, output_type=OutputType.CSV, output_file_path=\"./player_advanced_season_totals_2001.csv\", output_write_option=OutputWriteOption.WRITE)\n\n def test_future_season_raises_invalid_season(self):\n current_year = date.today().year\n future_year = current_year + 10\n expected_message = \"Season end year of {future_year} is invalid\".format(future_year=future_year)\n self.assertRaisesRegex(InvalidSeason, expected_message, players_advanced_season_totals, season_end_year=future_year)\n\n @mock.patch(\"basketball_reference_web_scraper.client.http_client\")\n def test_not_found_raises_invalid_season(self, mocked_http_client):\n end_year = \"jaebaebae\"\n expected_message = \"Season end year of {end_year} is invalid\".format(end_year=end_year)\n mocked_http_client.players_advanced_season_totals.side_effect = HTTPError(response=mock.Mock(status_code=codes.not_found))\n self.assertRaisesRegex(InvalidSeason, expected_message, players_advanced_season_totals, season_end_year=end_year)\n\n @mock.patch(\"basketball_reference_web_scraper.client.http_client\")\n def test_other_http_error_is_raised(self, mocked_http_client):\n mocked_http_client.players_advanced_season_totals.side_effect = HTTPError(response=mock.Mock(status_code=codes.internal_server_error))\n self.assertRaises(HTTPError, players_advanced_season_totals, season_end_year=2018)\n", "from datetime import date\nfrom unittest import TestCase, mock\nfrom requests import HTTPError, codes\nfrom basketball_reference_web_scraper.client import players_advanced_season_totals\nfrom basketball_reference_web_scraper.data import OutputType, OutputWriteOption\nfrom basketball_reference_web_scraper.errors import InvalidSeason\n\n\nclass TestPlayerAdvancedSeasonTotals(TestCase):\n\n def test_players_advanced_season_totals(self):\n result = players_advanced_season_totals(season_end_year=2018)\n self.assertIsNotNone(result)\n\n def test_players_advanced_season_totals_json(self):\n result = players_advanced_season_totals(season_end_year=2018,\n output_type=OutputType.JSON)\n self.assertIsNotNone(result)\n\n def test_players_advanced_season_totals_csv(self):\n players_advanced_season_totals(season_end_year=2018, output_type=\n OutputType.CSV, output_file_path=\n './player_advanced_season_totals_2019.csv')\n\n def test_players_advanced_season_totals_csv_append(self):\n players_advanced_season_totals(season_end_year=2018, output_type=\n OutputType.CSV, output_file_path=\n './player_advanced_season_totals_2019.csv', output_write_option\n =OutputWriteOption.APPEND)\n\n def test_2001_players_advanced_season_totals_csv(self):\n players_advanced_season_totals(season_end_year=2001, output_type=\n OutputType.CSV, output_file_path=\n './player_advanced_season_totals_2001.csv', output_write_option\n =OutputWriteOption.WRITE)\n\n def test_future_season_raises_invalid_season(self):\n current_year = date.today().year\n future_year = current_year + 10\n expected_message = ('Season end year of {future_year} is invalid'.\n format(future_year=future_year))\n self.assertRaisesRegex(InvalidSeason, expected_message,\n players_advanced_season_totals, season_end_year=future_year)\n\n @mock.patch('basketball_reference_web_scraper.client.http_client')\n def test_not_found_raises_invalid_season(self, mocked_http_client):\n end_year = 'jaebaebae'\n expected_message = 'Season end year of {end_year} is invalid'.format(\n end_year=end_year)\n mocked_http_client.players_advanced_season_totals.side_effect = (\n HTTPError(response=mock.Mock(status_code=codes.not_found)))\n self.assertRaisesRegex(InvalidSeason, expected_message,\n players_advanced_season_totals, season_end_year=end_year)\n\n @mock.patch('basketball_reference_web_scraper.client.http_client')\n def test_other_http_error_is_raised(self, mocked_http_client):\n mocked_http_client.players_advanced_season_totals.side_effect = (\n HTTPError(response=mock.Mock(status_code=codes.\n internal_server_error)))\n self.assertRaises(HTTPError, players_advanced_season_totals,\n season_end_year=2018)\n", "<import token>\n\n\nclass TestPlayerAdvancedSeasonTotals(TestCase):\n\n def test_players_advanced_season_totals(self):\n result = players_advanced_season_totals(season_end_year=2018)\n self.assertIsNotNone(result)\n\n def test_players_advanced_season_totals_json(self):\n result = players_advanced_season_totals(season_end_year=2018,\n output_type=OutputType.JSON)\n self.assertIsNotNone(result)\n\n def test_players_advanced_season_totals_csv(self):\n players_advanced_season_totals(season_end_year=2018, output_type=\n OutputType.CSV, output_file_path=\n './player_advanced_season_totals_2019.csv')\n\n def test_players_advanced_season_totals_csv_append(self):\n players_advanced_season_totals(season_end_year=2018, output_type=\n OutputType.CSV, output_file_path=\n './player_advanced_season_totals_2019.csv', output_write_option\n =OutputWriteOption.APPEND)\n\n def test_2001_players_advanced_season_totals_csv(self):\n players_advanced_season_totals(season_end_year=2001, output_type=\n OutputType.CSV, output_file_path=\n './player_advanced_season_totals_2001.csv', output_write_option\n =OutputWriteOption.WRITE)\n\n def test_future_season_raises_invalid_season(self):\n current_year = date.today().year\n future_year = current_year + 10\n expected_message = ('Season end year of {future_year} is invalid'.\n format(future_year=future_year))\n self.assertRaisesRegex(InvalidSeason, expected_message,\n players_advanced_season_totals, season_end_year=future_year)\n\n @mock.patch('basketball_reference_web_scraper.client.http_client')\n def test_not_found_raises_invalid_season(self, mocked_http_client):\n end_year = 'jaebaebae'\n expected_message = 'Season end year of {end_year} is invalid'.format(\n end_year=end_year)\n mocked_http_client.players_advanced_season_totals.side_effect = (\n HTTPError(response=mock.Mock(status_code=codes.not_found)))\n self.assertRaisesRegex(InvalidSeason, expected_message,\n players_advanced_season_totals, season_end_year=end_year)\n\n @mock.patch('basketball_reference_web_scraper.client.http_client')\n def test_other_http_error_is_raised(self, mocked_http_client):\n mocked_http_client.players_advanced_season_totals.side_effect = (\n HTTPError(response=mock.Mock(status_code=codes.\n internal_server_error)))\n self.assertRaises(HTTPError, players_advanced_season_totals,\n season_end_year=2018)\n", "<import token>\n\n\nclass TestPlayerAdvancedSeasonTotals(TestCase):\n\n def test_players_advanced_season_totals(self):\n result = players_advanced_season_totals(season_end_year=2018)\n self.assertIsNotNone(result)\n\n def test_players_advanced_season_totals_json(self):\n result = players_advanced_season_totals(season_end_year=2018,\n output_type=OutputType.JSON)\n self.assertIsNotNone(result)\n\n def test_players_advanced_season_totals_csv(self):\n players_advanced_season_totals(season_end_year=2018, output_type=\n OutputType.CSV, output_file_path=\n './player_advanced_season_totals_2019.csv')\n\n def test_players_advanced_season_totals_csv_append(self):\n players_advanced_season_totals(season_end_year=2018, output_type=\n OutputType.CSV, output_file_path=\n './player_advanced_season_totals_2019.csv', output_write_option\n =OutputWriteOption.APPEND)\n\n def test_2001_players_advanced_season_totals_csv(self):\n players_advanced_season_totals(season_end_year=2001, output_type=\n OutputType.CSV, output_file_path=\n './player_advanced_season_totals_2001.csv', output_write_option\n =OutputWriteOption.WRITE)\n\n def test_future_season_raises_invalid_season(self):\n current_year = date.today().year\n future_year = current_year + 10\n expected_message = ('Season end year of {future_year} is invalid'.\n format(future_year=future_year))\n self.assertRaisesRegex(InvalidSeason, expected_message,\n players_advanced_season_totals, season_end_year=future_year)\n <function token>\n\n @mock.patch('basketball_reference_web_scraper.client.http_client')\n def test_other_http_error_is_raised(self, mocked_http_client):\n mocked_http_client.players_advanced_season_totals.side_effect = (\n HTTPError(response=mock.Mock(status_code=codes.\n internal_server_error)))\n self.assertRaises(HTTPError, players_advanced_season_totals,\n season_end_year=2018)\n", "<import token>\n\n\nclass TestPlayerAdvancedSeasonTotals(TestCase):\n <function token>\n\n def test_players_advanced_season_totals_json(self):\n result = players_advanced_season_totals(season_end_year=2018,\n output_type=OutputType.JSON)\n self.assertIsNotNone(result)\n\n def test_players_advanced_season_totals_csv(self):\n players_advanced_season_totals(season_end_year=2018, output_type=\n OutputType.CSV, output_file_path=\n './player_advanced_season_totals_2019.csv')\n\n def test_players_advanced_season_totals_csv_append(self):\n players_advanced_season_totals(season_end_year=2018, output_type=\n OutputType.CSV, output_file_path=\n './player_advanced_season_totals_2019.csv', output_write_option\n =OutputWriteOption.APPEND)\n\n def test_2001_players_advanced_season_totals_csv(self):\n players_advanced_season_totals(season_end_year=2001, output_type=\n OutputType.CSV, output_file_path=\n './player_advanced_season_totals_2001.csv', output_write_option\n =OutputWriteOption.WRITE)\n\n def test_future_season_raises_invalid_season(self):\n current_year = date.today().year\n future_year = current_year + 10\n expected_message = ('Season end year of {future_year} is invalid'.\n format(future_year=future_year))\n self.assertRaisesRegex(InvalidSeason, expected_message,\n players_advanced_season_totals, season_end_year=future_year)\n <function token>\n\n @mock.patch('basketball_reference_web_scraper.client.http_client')\n def test_other_http_error_is_raised(self, mocked_http_client):\n mocked_http_client.players_advanced_season_totals.side_effect = (\n HTTPError(response=mock.Mock(status_code=codes.\n internal_server_error)))\n self.assertRaises(HTTPError, players_advanced_season_totals,\n season_end_year=2018)\n", "<import token>\n\n\nclass TestPlayerAdvancedSeasonTotals(TestCase):\n <function token>\n\n def test_players_advanced_season_totals_json(self):\n result = players_advanced_season_totals(season_end_year=2018,\n output_type=OutputType.JSON)\n self.assertIsNotNone(result)\n\n def test_players_advanced_season_totals_csv(self):\n players_advanced_season_totals(season_end_year=2018, output_type=\n OutputType.CSV, output_file_path=\n './player_advanced_season_totals_2019.csv')\n\n def test_players_advanced_season_totals_csv_append(self):\n players_advanced_season_totals(season_end_year=2018, output_type=\n OutputType.CSV, output_file_path=\n './player_advanced_season_totals_2019.csv', output_write_option\n =OutputWriteOption.APPEND)\n\n def test_2001_players_advanced_season_totals_csv(self):\n players_advanced_season_totals(season_end_year=2001, output_type=\n OutputType.CSV, output_file_path=\n './player_advanced_season_totals_2001.csv', output_write_option\n =OutputWriteOption.WRITE)\n\n def test_future_season_raises_invalid_season(self):\n current_year = date.today().year\n future_year = current_year + 10\n expected_message = ('Season end year of {future_year} is invalid'.\n format(future_year=future_year))\n self.assertRaisesRegex(InvalidSeason, expected_message,\n players_advanced_season_totals, season_end_year=future_year)\n <function token>\n <function token>\n", "<import token>\n\n\nclass TestPlayerAdvancedSeasonTotals(TestCase):\n <function token>\n\n def test_players_advanced_season_totals_json(self):\n result = players_advanced_season_totals(season_end_year=2018,\n output_type=OutputType.JSON)\n self.assertIsNotNone(result)\n\n def test_players_advanced_season_totals_csv(self):\n players_advanced_season_totals(season_end_year=2018, output_type=\n OutputType.CSV, output_file_path=\n './player_advanced_season_totals_2019.csv')\n <function token>\n\n def test_2001_players_advanced_season_totals_csv(self):\n players_advanced_season_totals(season_end_year=2001, output_type=\n OutputType.CSV, output_file_path=\n './player_advanced_season_totals_2001.csv', output_write_option\n =OutputWriteOption.WRITE)\n\n def test_future_season_raises_invalid_season(self):\n current_year = date.today().year\n future_year = current_year + 10\n expected_message = ('Season end year of {future_year} is invalid'.\n format(future_year=future_year))\n self.assertRaisesRegex(InvalidSeason, expected_message,\n players_advanced_season_totals, season_end_year=future_year)\n <function token>\n <function token>\n", "<import token>\n\n\nclass TestPlayerAdvancedSeasonTotals(TestCase):\n <function token>\n <function token>\n\n def test_players_advanced_season_totals_csv(self):\n players_advanced_season_totals(season_end_year=2018, output_type=\n OutputType.CSV, output_file_path=\n './player_advanced_season_totals_2019.csv')\n <function token>\n\n def test_2001_players_advanced_season_totals_csv(self):\n players_advanced_season_totals(season_end_year=2001, output_type=\n OutputType.CSV, output_file_path=\n './player_advanced_season_totals_2001.csv', output_write_option\n =OutputWriteOption.WRITE)\n\n def test_future_season_raises_invalid_season(self):\n current_year = date.today().year\n future_year = current_year + 10\n expected_message = ('Season end year of {future_year} is invalid'.\n format(future_year=future_year))\n self.assertRaisesRegex(InvalidSeason, expected_message,\n players_advanced_season_totals, season_end_year=future_year)\n <function token>\n <function token>\n", "<import token>\n\n\nclass TestPlayerAdvancedSeasonTotals(TestCase):\n <function token>\n <function token>\n\n def test_players_advanced_season_totals_csv(self):\n players_advanced_season_totals(season_end_year=2018, output_type=\n OutputType.CSV, output_file_path=\n './player_advanced_season_totals_2019.csv')\n <function token>\n <function token>\n\n def test_future_season_raises_invalid_season(self):\n current_year = date.today().year\n future_year = current_year + 10\n expected_message = ('Season end year of {future_year} is invalid'.\n format(future_year=future_year))\n self.assertRaisesRegex(InvalidSeason, expected_message,\n players_advanced_season_totals, season_end_year=future_year)\n <function token>\n <function token>\n", "<import token>\n\n\nclass TestPlayerAdvancedSeasonTotals(TestCase):\n <function token>\n <function token>\n\n def test_players_advanced_season_totals_csv(self):\n players_advanced_season_totals(season_end_year=2018, output_type=\n OutputType.CSV, output_file_path=\n './player_advanced_season_totals_2019.csv')\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n\n\nclass TestPlayerAdvancedSeasonTotals(TestCase):\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n<class token>\n" ]
false
99,351
c3d7b04b5c5062ed83bab6a698e6af4ac445b65e
class DatasetProfiling: def __init__(self,dataset): self.df=pd.read_csv(dataset, sep='|',encoding='iso8859_9', error_bad_lines=False,low_memory=False) def dataset_abstract(self): raw_data=self.df df_prof=pd.DataFrame(columns=["column name","count","number of unique","number of null value","is binary?","number of 1","data type","fill rate","range","most_freq","variance", "modele_girer_mi ","comments"],index=np.arange(0,len(raw_data.columns))) columns = raw_data.columns ctr=0 var_values=raw_data.var() max_values=raw_data.max(axis=0) min_values=raw_data.min(axis=0) for column in columns: df_prof["column name"][ctr]=column df_prof["count"][ctr]=raw_data[column].count() df_prof["number of unique"][ctr]=raw_data[column].nunique() df_prof["number of null value"][ctr] = raw_data[column].isnull().sum() df_prof["is binary?"][ctr]=False df_prof["number of 1"][ctr]=0 df_prof["data type"][ctr] = str(raw_data[column].dtype).split('(')[0] df_prof["fill rate"][ctr] = raw_data[column].count()/len(raw_data) #### if column in var_values.index : df_prof['variance'][ctr]= var_values[column] if column in min_values.index: df_prof['range'][ctr]= "[{} - {}]".format( min_values[column] , max_values[column] ) try: df_prof['most_freq'][ctr]=raw_data[column].value_counts().index[0] #column'un mode'unu kaydeder except Exception as e: pass ### if raw_data[column].dropna().value_counts().index.isin([0,1]).all()==True and raw_data[column].nunique()==2: df_prof["is binary?"][ctr]=True df_prof["number of 1"][ctr]=(raw_data[column]==1).sum() ctr+=1 return df_prof def important_features(self): raw_data=self.df df_impt=pd.DataFrame(columns=["column name","count","number of unique","number of null value","is binary?","number of 1","data type","fill rate","range","most_freq","variance", "modele_girer_mi ","comments"],index=np.arange(0,len(raw_data.columns))) columns = raw_data.columns ctr=0 var_values=raw_data.var() max_values=raw_data.max(axis=0) min_values=raw_data.min(axis=0) for column in columns: if (raw_data[column].nunique() not in [0,1]): df_impt["column name"][ctr]=column df_impt["count"][ctr]=raw_data[column].count() df_impt["number of unique"][ctr]=raw_data[column].nunique() df_impt["number of null value"][ctr] = raw_data[column].isnull().sum() df_impt["is binary?"][ctr]=False df_impt["number of 1"][ctr]=0 df_impt["data type"][ctr] = str(raw_data[column].dtype).split('(')[0] df_impt["fill rate"][ctr] = raw_data[column].count()/len(raw_data) #### if column in var_values.index : df_impt['variance'][ctr]= var_values[column] if column in min_values.index: df_impt['range'][ctr]= "[{} - {}]".format( min_values[column] , max_values[column] ) try: df_impt['most_freq'][ctr]=raw_data[column].value_counts().index[0] #column'un mode'unu kaydeder except Exception as e: pass ### if raw_data[column].dropna().value_counts().index.isin([0,1]).all()==True and raw_data[column].nunique()==2: df_impt["is binary?"][ctr]=True df_impt["number of 1"][ctr]=(raw_data[column]==1).sum() else: pass ctr+=1 return df_impt.dropna(how="all",axis=0).reset_index(drop=True)
[ "class DatasetProfiling:\n \n def __init__(self,dataset):\n self.df=pd.read_csv(dataset, sep='|',encoding='iso8859_9', error_bad_lines=False,low_memory=False)\n \n def dataset_abstract(self):\n raw_data=self.df\n df_prof=pd.DataFrame(columns=[\"column name\",\"count\",\"number of unique\",\"number of null value\",\"is binary?\",\"number of 1\",\"data type\",\"fill rate\",\"range\",\"most_freq\",\"variance\", \"modele_girer_mi \",\"comments\"],index=np.arange(0,len(raw_data.columns)))\n columns = raw_data.columns\n ctr=0\n var_values=raw_data.var()\n max_values=raw_data.max(axis=0)\n min_values=raw_data.min(axis=0)\n for column in columns:\n df_prof[\"column name\"][ctr]=column\n df_prof[\"count\"][ctr]=raw_data[column].count()\n df_prof[\"number of unique\"][ctr]=raw_data[column].nunique()\n df_prof[\"number of null value\"][ctr] = raw_data[column].isnull().sum()\n df_prof[\"is binary?\"][ctr]=False\n df_prof[\"number of 1\"][ctr]=0\n df_prof[\"data type\"][ctr] = str(raw_data[column].dtype).split('(')[0]\n df_prof[\"fill rate\"][ctr] = raw_data[column].count()/len(raw_data)\n ####\n if column in var_values.index :\n df_prof['variance'][ctr]= var_values[column]\n if column in min_values.index:\n df_prof['range'][ctr]= \"[{} - {}]\".format( min_values[column] , max_values[column] )\n try:\n df_prof['most_freq'][ctr]=raw_data[column].value_counts().index[0] #column'un mode'unu kaydeder\n except Exception as e:\n pass\n ###\n if raw_data[column].dropna().value_counts().index.isin([0,1]).all()==True and raw_data[column].nunique()==2:\n df_prof[\"is binary?\"][ctr]=True\n df_prof[\"number of 1\"][ctr]=(raw_data[column]==1).sum()\n ctr+=1\n return df_prof\n \n def important_features(self):\n raw_data=self.df\n df_impt=pd.DataFrame(columns=[\"column name\",\"count\",\"number of unique\",\"number of null value\",\"is binary?\",\"number of 1\",\"data type\",\"fill rate\",\"range\",\"most_freq\",\"variance\", \"modele_girer_mi \",\"comments\"],index=np.arange(0,len(raw_data.columns)))\n columns = raw_data.columns\n ctr=0\n var_values=raw_data.var()\n max_values=raw_data.max(axis=0)\n min_values=raw_data.min(axis=0)\n for column in columns:\n if (raw_data[column].nunique() not in [0,1]):\n df_impt[\"column name\"][ctr]=column\n df_impt[\"count\"][ctr]=raw_data[column].count()\n df_impt[\"number of unique\"][ctr]=raw_data[column].nunique()\n df_impt[\"number of null value\"][ctr] = raw_data[column].isnull().sum()\n df_impt[\"is binary?\"][ctr]=False\n df_impt[\"number of 1\"][ctr]=0\n df_impt[\"data type\"][ctr] = str(raw_data[column].dtype).split('(')[0]\n df_impt[\"fill rate\"][ctr] = raw_data[column].count()/len(raw_data)\n ####\n if column in var_values.index :\n df_impt['variance'][ctr]= var_values[column]\n if column in min_values.index:\n df_impt['range'][ctr]= \"[{} - {}]\".format( min_values[column] , max_values[column] )\n try:\n df_impt['most_freq'][ctr]=raw_data[column].value_counts().index[0] #column'un mode'unu kaydeder\n except Exception as e:\n pass\n ###\n if raw_data[column].dropna().value_counts().index.isin([0,1]).all()==True and raw_data[column].nunique()==2:\n df_impt[\"is binary?\"][ctr]=True\n df_impt[\"number of 1\"][ctr]=(raw_data[column]==1).sum()\n else:\n pass\n ctr+=1\n return df_impt.dropna(how=\"all\",axis=0).reset_index(drop=True)\n \n", "class DatasetProfiling:\n\n def __init__(self, dataset):\n self.df = pd.read_csv(dataset, sep='|', encoding='iso8859_9',\n error_bad_lines=False, low_memory=False)\n\n def dataset_abstract(self):\n raw_data = self.df\n df_prof = pd.DataFrame(columns=['column name', 'count',\n 'number of unique', 'number of null value', 'is binary?',\n 'number of 1', 'data type', 'fill rate', 'range', 'most_freq',\n 'variance', 'modele_girer_mi ', 'comments'], index=np.arange(0,\n len(raw_data.columns)))\n columns = raw_data.columns\n ctr = 0\n var_values = raw_data.var()\n max_values = raw_data.max(axis=0)\n min_values = raw_data.min(axis=0)\n for column in columns:\n df_prof['column name'][ctr] = column\n df_prof['count'][ctr] = raw_data[column].count()\n df_prof['number of unique'][ctr] = raw_data[column].nunique()\n df_prof['number of null value'][ctr] = raw_data[column].isnull(\n ).sum()\n df_prof['is binary?'][ctr] = False\n df_prof['number of 1'][ctr] = 0\n df_prof['data type'][ctr] = str(raw_data[column].dtype).split('(')[\n 0]\n df_prof['fill rate'][ctr] = raw_data[column].count() / len(raw_data\n )\n if column in var_values.index:\n df_prof['variance'][ctr] = var_values[column]\n if column in min_values.index:\n df_prof['range'][ctr] = '[{} - {}]'.format(min_values[\n column], max_values[column])\n try:\n df_prof['most_freq'][ctr] = raw_data[column].value_counts(\n ).index[0]\n except Exception as e:\n pass\n if raw_data[column].dropna().value_counts().index.isin([0, 1]).all(\n ) == True and raw_data[column].nunique() == 2:\n df_prof['is binary?'][ctr] = True\n df_prof['number of 1'][ctr] = (raw_data[column] == 1).sum()\n ctr += 1\n return df_prof\n\n def important_features(self):\n raw_data = self.df\n df_impt = pd.DataFrame(columns=['column name', 'count',\n 'number of unique', 'number of null value', 'is binary?',\n 'number of 1', 'data type', 'fill rate', 'range', 'most_freq',\n 'variance', 'modele_girer_mi ', 'comments'], index=np.arange(0,\n len(raw_data.columns)))\n columns = raw_data.columns\n ctr = 0\n var_values = raw_data.var()\n max_values = raw_data.max(axis=0)\n min_values = raw_data.min(axis=0)\n for column in columns:\n if raw_data[column].nunique() not in [0, 1]:\n df_impt['column name'][ctr] = column\n df_impt['count'][ctr] = raw_data[column].count()\n df_impt['number of unique'][ctr] = raw_data[column].nunique()\n df_impt['number of null value'][ctr] = raw_data[column].isnull(\n ).sum()\n df_impt['is binary?'][ctr] = False\n df_impt['number of 1'][ctr] = 0\n df_impt['data type'][ctr] = str(raw_data[column].dtype).split(\n '(')[0]\n df_impt['fill rate'][ctr] = raw_data[column].count() / len(\n raw_data)\n if column in var_values.index:\n df_impt['variance'][ctr] = var_values[column]\n if column in min_values.index:\n df_impt['range'][ctr] = '[{} - {}]'.format(min_values[\n column], max_values[column])\n try:\n df_impt['most_freq'][ctr] = raw_data[column].value_counts(\n ).index[0]\n except Exception as e:\n pass\n if raw_data[column].dropna().value_counts().index.isin([0, 1]\n ).all() == True and raw_data[column].nunique() == 2:\n df_impt['is binary?'][ctr] = True\n df_impt['number of 1'][ctr] = (raw_data[column] == 1).sum()\n else:\n pass\n ctr += 1\n return df_impt.dropna(how='all', axis=0).reset_index(drop=True)\n", "class DatasetProfiling:\n <function token>\n\n def dataset_abstract(self):\n raw_data = self.df\n df_prof = pd.DataFrame(columns=['column name', 'count',\n 'number of unique', 'number of null value', 'is binary?',\n 'number of 1', 'data type', 'fill rate', 'range', 'most_freq',\n 'variance', 'modele_girer_mi ', 'comments'], index=np.arange(0,\n len(raw_data.columns)))\n columns = raw_data.columns\n ctr = 0\n var_values = raw_data.var()\n max_values = raw_data.max(axis=0)\n min_values = raw_data.min(axis=0)\n for column in columns:\n df_prof['column name'][ctr] = column\n df_prof['count'][ctr] = raw_data[column].count()\n df_prof['number of unique'][ctr] = raw_data[column].nunique()\n df_prof['number of null value'][ctr] = raw_data[column].isnull(\n ).sum()\n df_prof['is binary?'][ctr] = False\n df_prof['number of 1'][ctr] = 0\n df_prof['data type'][ctr] = str(raw_data[column].dtype).split('(')[\n 0]\n df_prof['fill rate'][ctr] = raw_data[column].count() / len(raw_data\n )\n if column in var_values.index:\n df_prof['variance'][ctr] = var_values[column]\n if column in min_values.index:\n df_prof['range'][ctr] = '[{} - {}]'.format(min_values[\n column], max_values[column])\n try:\n df_prof['most_freq'][ctr] = raw_data[column].value_counts(\n ).index[0]\n except Exception as e:\n pass\n if raw_data[column].dropna().value_counts().index.isin([0, 1]).all(\n ) == True and raw_data[column].nunique() == 2:\n df_prof['is binary?'][ctr] = True\n df_prof['number of 1'][ctr] = (raw_data[column] == 1).sum()\n ctr += 1\n return df_prof\n\n def important_features(self):\n raw_data = self.df\n df_impt = pd.DataFrame(columns=['column name', 'count',\n 'number of unique', 'number of null value', 'is binary?',\n 'number of 1', 'data type', 'fill rate', 'range', 'most_freq',\n 'variance', 'modele_girer_mi ', 'comments'], index=np.arange(0,\n len(raw_data.columns)))\n columns = raw_data.columns\n ctr = 0\n var_values = raw_data.var()\n max_values = raw_data.max(axis=0)\n min_values = raw_data.min(axis=0)\n for column in columns:\n if raw_data[column].nunique() not in [0, 1]:\n df_impt['column name'][ctr] = column\n df_impt['count'][ctr] = raw_data[column].count()\n df_impt['number of unique'][ctr] = raw_data[column].nunique()\n df_impt['number of null value'][ctr] = raw_data[column].isnull(\n ).sum()\n df_impt['is binary?'][ctr] = False\n df_impt['number of 1'][ctr] = 0\n df_impt['data type'][ctr] = str(raw_data[column].dtype).split(\n '(')[0]\n df_impt['fill rate'][ctr] = raw_data[column].count() / len(\n raw_data)\n if column in var_values.index:\n df_impt['variance'][ctr] = var_values[column]\n if column in min_values.index:\n df_impt['range'][ctr] = '[{} - {}]'.format(min_values[\n column], max_values[column])\n try:\n df_impt['most_freq'][ctr] = raw_data[column].value_counts(\n ).index[0]\n except Exception as e:\n pass\n if raw_data[column].dropna().value_counts().index.isin([0, 1]\n ).all() == True and raw_data[column].nunique() == 2:\n df_impt['is binary?'][ctr] = True\n df_impt['number of 1'][ctr] = (raw_data[column] == 1).sum()\n else:\n pass\n ctr += 1\n return df_impt.dropna(how='all', axis=0).reset_index(drop=True)\n", "class DatasetProfiling:\n <function token>\n <function token>\n\n def important_features(self):\n raw_data = self.df\n df_impt = pd.DataFrame(columns=['column name', 'count',\n 'number of unique', 'number of null value', 'is binary?',\n 'number of 1', 'data type', 'fill rate', 'range', 'most_freq',\n 'variance', 'modele_girer_mi ', 'comments'], index=np.arange(0,\n len(raw_data.columns)))\n columns = raw_data.columns\n ctr = 0\n var_values = raw_data.var()\n max_values = raw_data.max(axis=0)\n min_values = raw_data.min(axis=0)\n for column in columns:\n if raw_data[column].nunique() not in [0, 1]:\n df_impt['column name'][ctr] = column\n df_impt['count'][ctr] = raw_data[column].count()\n df_impt['number of unique'][ctr] = raw_data[column].nunique()\n df_impt['number of null value'][ctr] = raw_data[column].isnull(\n ).sum()\n df_impt['is binary?'][ctr] = False\n df_impt['number of 1'][ctr] = 0\n df_impt['data type'][ctr] = str(raw_data[column].dtype).split(\n '(')[0]\n df_impt['fill rate'][ctr] = raw_data[column].count() / len(\n raw_data)\n if column in var_values.index:\n df_impt['variance'][ctr] = var_values[column]\n if column in min_values.index:\n df_impt['range'][ctr] = '[{} - {}]'.format(min_values[\n column], max_values[column])\n try:\n df_impt['most_freq'][ctr] = raw_data[column].value_counts(\n ).index[0]\n except Exception as e:\n pass\n if raw_data[column].dropna().value_counts().index.isin([0, 1]\n ).all() == True and raw_data[column].nunique() == 2:\n df_impt['is binary?'][ctr] = True\n df_impt['number of 1'][ctr] = (raw_data[column] == 1).sum()\n else:\n pass\n ctr += 1\n return df_impt.dropna(how='all', axis=0).reset_index(drop=True)\n", "class DatasetProfiling:\n <function token>\n <function token>\n <function token>\n", "<class token>\n" ]
false
99,352
62ba0d85ea73402cdd32d088a6827316ea311ac4
""" Group all parts of the bot""" from sc2.ids.ability_id import AbilityId from sc2.ids.unit_typeid import UnitTypeId from sc2.ids.upgrade_id import UpgradeId from sc2.bot_ai import BotAI class Mtsbot(BotAI): """ mtsbot""" async def build_pool(self): """ Build pool logic - improvements possible -> placement can be""" pool = UnitTypeId.SPAWNINGPOOL # to save line breaks if not self.structures(pool).ready and not self.already_pending(pool): await self.build(pool, self.start_location.towards(self.game_info.map_center, distance=5)) async def build_extractor(self): """ Build extractor logic - improvements possible -> None that I can think of - warnings -> Need the PR on the API to be accepted or it won't work using self.build(), self.do(drone.build()) would have to be used instead""" if ( not self.gas_buildings and self.already_pending(UnitTypeId.SPAWNINGPOOL) and not self.already_pending(UnitTypeId.EXTRACTOR) ): await self.build(UnitTypeId.EXTRACTOR, self.vespene_geyser.closest_to(self.start_location)) async def queen_injection_logic(self): """ Make queen inject logic - improvements possible -> None that I can think of """ for queen in self.units(UnitTypeId.QUEEN): if not queen.is_idle or queen.energy < 25: continue self.do(queen(AbilityId.EFFECT_INJECTLARVA, self.townhalls.closest_to(queen.position))) async def research_zergling_speed(self): """ Research zergling speed logic - improvements possible -> None that I can think of """ if not self.already_pending_upgrade(UpgradeId.ZERGLINGMOVEMENTSPEED): self.research(UpgradeId.ZERGLINGMOVEMENTSPEED) async def attacking_logic(self): """ Attacking logic - improvements possible -> Add new units(later), add priority targets, add retreat logic(other function), add micro and probably much more""" if len(self.units(UnitTypeId.ZERGLING)) >= 6: for zergling in self.units(UnitTypeId.ZERGLING): self.do(zergling.attack(self.enemy_start_locations[0])) async def train_overlord(self): """Train overlord logic - improvements possible -> make amount pending scale with base amount, make supply left constraint scale with larva amount""" if self.supply_left < 3 and not self.already_pending(UnitTypeId.OVERLORD): self.train(UnitTypeId.OVERLORD) async def train_zergling(self): """Train zergling logic - improvements possible -> create constraints when other units starts to be built based on other unit amounts""" if self.structures(UnitTypeId.SPAWNINGPOOL).ready: self.train(UnitTypeId.ZERGLING) async def train_queen(self): """Train zergling logic - improvements possible -> Make the queen get created preferably on non-already-assigned bases and maybe create some extra for creep spread(don't limit it by bases)""" if ( self.structures(UnitTypeId.SPAWNINGPOOL).ready and len(self.units(UnitTypeId.QUEEN)) < len(self.townhalls) and self.already_pending(UnitTypeId.QUEEN) < len(self.townhalls.ready) ): self.train(UnitTypeId.QUEEN) async def send_drones_to_extractor(self): """ Send drones to extractor from minerals - improvements possible -> Expand it, make it trigger when the vespene - mineral ratio is to high (only check it when at least 2 bases are saturated)make the closer_than distance 8 instead of 10, also change the constraints completely(separate it later - this constraints are for the zergling speed, make it a separated method) make it more general""" if self.vespene < 100 and not self.already_pending_upgrade(UpgradeId.ZERGLINGMOVEMENTSPEED): for extractor in self.gas_buildings: drones_needed_to_fill_extractor = extractor.ideal_harvesters - extractor.assigned_harvesters if drones_needed_to_fill_extractor > 0: for drone in self.workers.closer_than(10, extractor).take(drones_needed_to_fill_extractor): self.do(drone.gather(extractor)) async def send_drones_to_minerals(self): """ Send drones from extractor to minerals - improvements possible -> Expand it, make it trigger when the mineral - vespene ratio is to high (only check it when at least 2 bases are saturated)make the closer_than distance 8 instead of 10, also change the constraints completely(separate it later - this constraints are for the zergling speed, make it a separated method) make it more general""" if self.vespene >= 100 or self.already_pending_upgrade(UpgradeId.ZERGLINGMOVEMENTSPEED): for drone in self.workers.filter(lambda w: w.is_carrying_vespene): self.do(drone.gather(self.mineral_field.closer_than(10, drone).closest_to(drone))) async def on_step(self, iteration): # Build structures await self.build_extractor() await self.build_pool() # Train units await self.train_overlord() await self.train_queen() await self.train_zergling() # Research upgrades await self.research_zergling_speed() # Control army units await self.attacking_logic() await self.queen_injection_logic() # Control workers await self.send_drones_to_extractor() await self.send_drones_to_minerals()
[ "\"\"\" Group all parts of the bot\"\"\"\nfrom sc2.ids.ability_id import AbilityId\nfrom sc2.ids.unit_typeid import UnitTypeId\nfrom sc2.ids.upgrade_id import UpgradeId\nfrom sc2.bot_ai import BotAI\n\n\nclass Mtsbot(BotAI):\n \"\"\" mtsbot\"\"\"\n\n async def build_pool(self):\n \"\"\" Build pool logic\n - improvements possible -> placement can be\"\"\"\n pool = UnitTypeId.SPAWNINGPOOL # to save line breaks\n if not self.structures(pool).ready and not self.already_pending(pool):\n await self.build(pool, self.start_location.towards(self.game_info.map_center, distance=5))\n\n async def build_extractor(self):\n \"\"\" Build extractor logic\n - improvements possible -> None that I can think of\n - warnings -> Need the PR on the API to be accepted or it won't work using self.build(),\n self.do(drone.build()) would have to be used instead\"\"\"\n if (\n not self.gas_buildings\n and self.already_pending(UnitTypeId.SPAWNINGPOOL)\n and not self.already_pending(UnitTypeId.EXTRACTOR)\n ):\n await self.build(UnitTypeId.EXTRACTOR, self.vespene_geyser.closest_to(self.start_location))\n\n async def queen_injection_logic(self):\n \"\"\" Make queen inject logic\n - improvements possible -> None that I can think of \"\"\"\n for queen in self.units(UnitTypeId.QUEEN):\n if not queen.is_idle or queen.energy < 25:\n continue\n self.do(queen(AbilityId.EFFECT_INJECTLARVA, self.townhalls.closest_to(queen.position)))\n\n async def research_zergling_speed(self):\n \"\"\" Research zergling speed logic\n - improvements possible -> None that I can think of \"\"\"\n if not self.already_pending_upgrade(UpgradeId.ZERGLINGMOVEMENTSPEED):\n self.research(UpgradeId.ZERGLINGMOVEMENTSPEED)\n\n async def attacking_logic(self):\n \"\"\" Attacking logic\n - improvements possible -> Add new units(later), add priority targets, add retreat logic(other function),\n add micro and probably much more\"\"\"\n if len(self.units(UnitTypeId.ZERGLING)) >= 6:\n for zergling in self.units(UnitTypeId.ZERGLING):\n self.do(zergling.attack(self.enemy_start_locations[0]))\n\n async def train_overlord(self):\n \"\"\"Train overlord logic\n - improvements possible -> make amount pending scale with base amount,\n make supply left constraint scale with larva amount\"\"\"\n if self.supply_left < 3 and not self.already_pending(UnitTypeId.OVERLORD):\n self.train(UnitTypeId.OVERLORD)\n\n async def train_zergling(self):\n \"\"\"Train zergling logic\n - improvements possible -> create constraints when other units starts to be built based on other unit amounts\"\"\"\n if self.structures(UnitTypeId.SPAWNINGPOOL).ready:\n self.train(UnitTypeId.ZERGLING)\n\n async def train_queen(self):\n \"\"\"Train zergling logic\n - improvements possible -> Make the queen get created preferably on non-already-assigned bases\n and maybe create some extra for creep spread(don't limit it by bases)\"\"\"\n if (\n self.structures(UnitTypeId.SPAWNINGPOOL).ready\n and len(self.units(UnitTypeId.QUEEN)) < len(self.townhalls)\n and self.already_pending(UnitTypeId.QUEEN) < len(self.townhalls.ready)\n ):\n self.train(UnitTypeId.QUEEN)\n\n async def send_drones_to_extractor(self):\n \"\"\" Send drones to extractor from minerals\n - improvements possible -> Expand it, make it trigger when the vespene - mineral ratio is to high\n (only check it when at least 2 bases are saturated)make the closer_than distance 8 instead of 10,\n also change the constraints completely(separate it later - this constraints are for the zergling speed,\n make it a separated method) make it more general\"\"\"\n if self.vespene < 100 and not self.already_pending_upgrade(UpgradeId.ZERGLINGMOVEMENTSPEED):\n for extractor in self.gas_buildings:\n drones_needed_to_fill_extractor = extractor.ideal_harvesters - extractor.assigned_harvesters\n if drones_needed_to_fill_extractor > 0:\n for drone in self.workers.closer_than(10, extractor).take(drones_needed_to_fill_extractor):\n self.do(drone.gather(extractor))\n\n async def send_drones_to_minerals(self):\n \"\"\" Send drones from extractor to minerals\n - improvements possible -> Expand it, make it trigger when the mineral - vespene ratio is to high\n (only check it when at least 2 bases are saturated)make the closer_than distance 8 instead of 10,\n also change the constraints completely(separate it later - this constraints are for the zergling speed,\n make it a separated method) make it more general\"\"\"\n if self.vespene >= 100 or self.already_pending_upgrade(UpgradeId.ZERGLINGMOVEMENTSPEED):\n for drone in self.workers.filter(lambda w: w.is_carrying_vespene):\n self.do(drone.gather(self.mineral_field.closer_than(10, drone).closest_to(drone)))\n\n async def on_step(self, iteration):\n # Build structures\n await self.build_extractor()\n await self.build_pool()\n # Train units\n await self.train_overlord()\n await self.train_queen()\n await self.train_zergling()\n # Research upgrades\n await self.research_zergling_speed()\n # Control army units\n await self.attacking_logic()\n await self.queen_injection_logic()\n # Control workers\n await self.send_drones_to_extractor()\n await self.send_drones_to_minerals()\n", "<docstring token>\nfrom sc2.ids.ability_id import AbilityId\nfrom sc2.ids.unit_typeid import UnitTypeId\nfrom sc2.ids.upgrade_id import UpgradeId\nfrom sc2.bot_ai import BotAI\n\n\nclass Mtsbot(BotAI):\n \"\"\" mtsbot\"\"\"\n\n async def build_pool(self):\n \"\"\" Build pool logic\n - improvements possible -> placement can be\"\"\"\n pool = UnitTypeId.SPAWNINGPOOL\n if not self.structures(pool).ready and not self.already_pending(pool):\n await self.build(pool, self.start_location.towards(self.\n game_info.map_center, distance=5))\n\n async def build_extractor(self):\n \"\"\" Build extractor logic\n - improvements possible -> None that I can think of\n - warnings -> Need the PR on the API to be accepted or it won't work using self.build(),\n self.do(drone.build()) would have to be used instead\"\"\"\n if not self.gas_buildings and self.already_pending(UnitTypeId.\n SPAWNINGPOOL) and not self.already_pending(UnitTypeId.EXTRACTOR):\n await self.build(UnitTypeId.EXTRACTOR, self.vespene_geyser.\n closest_to(self.start_location))\n\n async def queen_injection_logic(self):\n \"\"\" Make queen inject logic\n - improvements possible -> None that I can think of \"\"\"\n for queen in self.units(UnitTypeId.QUEEN):\n if not queen.is_idle or queen.energy < 25:\n continue\n self.do(queen(AbilityId.EFFECT_INJECTLARVA, self.townhalls.\n closest_to(queen.position)))\n\n async def research_zergling_speed(self):\n \"\"\" Research zergling speed logic\n - improvements possible -> None that I can think of \"\"\"\n if not self.already_pending_upgrade(UpgradeId.ZERGLINGMOVEMENTSPEED):\n self.research(UpgradeId.ZERGLINGMOVEMENTSPEED)\n\n async def attacking_logic(self):\n \"\"\" Attacking logic\n - improvements possible -> Add new units(later), add priority targets, add retreat logic(other function),\n add micro and probably much more\"\"\"\n if len(self.units(UnitTypeId.ZERGLING)) >= 6:\n for zergling in self.units(UnitTypeId.ZERGLING):\n self.do(zergling.attack(self.enemy_start_locations[0]))\n\n async def train_overlord(self):\n \"\"\"Train overlord logic\n - improvements possible -> make amount pending scale with base amount,\n make supply left constraint scale with larva amount\"\"\"\n if self.supply_left < 3 and not self.already_pending(UnitTypeId.\n OVERLORD):\n self.train(UnitTypeId.OVERLORD)\n\n async def train_zergling(self):\n \"\"\"Train zergling logic\n - improvements possible -> create constraints when other units starts to be built based on other unit amounts\"\"\"\n if self.structures(UnitTypeId.SPAWNINGPOOL).ready:\n self.train(UnitTypeId.ZERGLING)\n\n async def train_queen(self):\n \"\"\"Train zergling logic\n - improvements possible -> Make the queen get created preferably on non-already-assigned bases\n and maybe create some extra for creep spread(don't limit it by bases)\"\"\"\n if self.structures(UnitTypeId.SPAWNINGPOOL).ready and len(self.\n units(UnitTypeId.QUEEN)) < len(self.townhalls\n ) and self.already_pending(UnitTypeId.QUEEN) < len(self.\n townhalls.ready):\n self.train(UnitTypeId.QUEEN)\n\n async def send_drones_to_extractor(self):\n \"\"\" Send drones to extractor from minerals\n - improvements possible -> Expand it, make it trigger when the vespene - mineral ratio is to high\n (only check it when at least 2 bases are saturated)make the closer_than distance 8 instead of 10,\n also change the constraints completely(separate it later - this constraints are for the zergling speed,\n make it a separated method) make it more general\"\"\"\n if self.vespene < 100 and not self.already_pending_upgrade(UpgradeId\n .ZERGLINGMOVEMENTSPEED):\n for extractor in self.gas_buildings:\n drones_needed_to_fill_extractor = (extractor.\n ideal_harvesters - extractor.assigned_harvesters)\n if drones_needed_to_fill_extractor > 0:\n for drone in self.workers.closer_than(10, extractor).take(\n drones_needed_to_fill_extractor):\n self.do(drone.gather(extractor))\n\n async def send_drones_to_minerals(self):\n \"\"\" Send drones from extractor to minerals\n - improvements possible -> Expand it, make it trigger when the mineral - vespene ratio is to high\n (only check it when at least 2 bases are saturated)make the closer_than distance 8 instead of 10,\n also change the constraints completely(separate it later - this constraints are for the zergling speed,\n make it a separated method) make it more general\"\"\"\n if self.vespene >= 100 or self.already_pending_upgrade(UpgradeId.\n ZERGLINGMOVEMENTSPEED):\n for drone in self.workers.filter(lambda w: w.is_carrying_vespene):\n self.do(drone.gather(self.mineral_field.closer_than(10,\n drone).closest_to(drone)))\n\n async def on_step(self, iteration):\n await self.build_extractor()\n await self.build_pool()\n await self.train_overlord()\n await self.train_queen()\n await self.train_zergling()\n await self.research_zergling_speed()\n await self.attacking_logic()\n await self.queen_injection_logic()\n await self.send_drones_to_extractor()\n await self.send_drones_to_minerals()\n", "<docstring token>\n<import token>\n\n\nclass Mtsbot(BotAI):\n \"\"\" mtsbot\"\"\"\n\n async def build_pool(self):\n \"\"\" Build pool logic\n - improvements possible -> placement can be\"\"\"\n pool = UnitTypeId.SPAWNINGPOOL\n if not self.structures(pool).ready and not self.already_pending(pool):\n await self.build(pool, self.start_location.towards(self.\n game_info.map_center, distance=5))\n\n async def build_extractor(self):\n \"\"\" Build extractor logic\n - improvements possible -> None that I can think of\n - warnings -> Need the PR on the API to be accepted or it won't work using self.build(),\n self.do(drone.build()) would have to be used instead\"\"\"\n if not self.gas_buildings and self.already_pending(UnitTypeId.\n SPAWNINGPOOL) and not self.already_pending(UnitTypeId.EXTRACTOR):\n await self.build(UnitTypeId.EXTRACTOR, self.vespene_geyser.\n closest_to(self.start_location))\n\n async def queen_injection_logic(self):\n \"\"\" Make queen inject logic\n - improvements possible -> None that I can think of \"\"\"\n for queen in self.units(UnitTypeId.QUEEN):\n if not queen.is_idle or queen.energy < 25:\n continue\n self.do(queen(AbilityId.EFFECT_INJECTLARVA, self.townhalls.\n closest_to(queen.position)))\n\n async def research_zergling_speed(self):\n \"\"\" Research zergling speed logic\n - improvements possible -> None that I can think of \"\"\"\n if not self.already_pending_upgrade(UpgradeId.ZERGLINGMOVEMENTSPEED):\n self.research(UpgradeId.ZERGLINGMOVEMENTSPEED)\n\n async def attacking_logic(self):\n \"\"\" Attacking logic\n - improvements possible -> Add new units(later), add priority targets, add retreat logic(other function),\n add micro and probably much more\"\"\"\n if len(self.units(UnitTypeId.ZERGLING)) >= 6:\n for zergling in self.units(UnitTypeId.ZERGLING):\n self.do(zergling.attack(self.enemy_start_locations[0]))\n\n async def train_overlord(self):\n \"\"\"Train overlord logic\n - improvements possible -> make amount pending scale with base amount,\n make supply left constraint scale with larva amount\"\"\"\n if self.supply_left < 3 and not self.already_pending(UnitTypeId.\n OVERLORD):\n self.train(UnitTypeId.OVERLORD)\n\n async def train_zergling(self):\n \"\"\"Train zergling logic\n - improvements possible -> create constraints when other units starts to be built based on other unit amounts\"\"\"\n if self.structures(UnitTypeId.SPAWNINGPOOL).ready:\n self.train(UnitTypeId.ZERGLING)\n\n async def train_queen(self):\n \"\"\"Train zergling logic\n - improvements possible -> Make the queen get created preferably on non-already-assigned bases\n and maybe create some extra for creep spread(don't limit it by bases)\"\"\"\n if self.structures(UnitTypeId.SPAWNINGPOOL).ready and len(self.\n units(UnitTypeId.QUEEN)) < len(self.townhalls\n ) and self.already_pending(UnitTypeId.QUEEN) < len(self.\n townhalls.ready):\n self.train(UnitTypeId.QUEEN)\n\n async def send_drones_to_extractor(self):\n \"\"\" Send drones to extractor from minerals\n - improvements possible -> Expand it, make it trigger when the vespene - mineral ratio is to high\n (only check it when at least 2 bases are saturated)make the closer_than distance 8 instead of 10,\n also change the constraints completely(separate it later - this constraints are for the zergling speed,\n make it a separated method) make it more general\"\"\"\n if self.vespene < 100 and not self.already_pending_upgrade(UpgradeId\n .ZERGLINGMOVEMENTSPEED):\n for extractor in self.gas_buildings:\n drones_needed_to_fill_extractor = (extractor.\n ideal_harvesters - extractor.assigned_harvesters)\n if drones_needed_to_fill_extractor > 0:\n for drone in self.workers.closer_than(10, extractor).take(\n drones_needed_to_fill_extractor):\n self.do(drone.gather(extractor))\n\n async def send_drones_to_minerals(self):\n \"\"\" Send drones from extractor to minerals\n - improvements possible -> Expand it, make it trigger when the mineral - vespene ratio is to high\n (only check it when at least 2 bases are saturated)make the closer_than distance 8 instead of 10,\n also change the constraints completely(separate it later - this constraints are for the zergling speed,\n make it a separated method) make it more general\"\"\"\n if self.vespene >= 100 or self.already_pending_upgrade(UpgradeId.\n ZERGLINGMOVEMENTSPEED):\n for drone in self.workers.filter(lambda w: w.is_carrying_vespene):\n self.do(drone.gather(self.mineral_field.closer_than(10,\n drone).closest_to(drone)))\n\n async def on_step(self, iteration):\n await self.build_extractor()\n await self.build_pool()\n await self.train_overlord()\n await self.train_queen()\n await self.train_zergling()\n await self.research_zergling_speed()\n await self.attacking_logic()\n await self.queen_injection_logic()\n await self.send_drones_to_extractor()\n await self.send_drones_to_minerals()\n", "<docstring token>\n<import token>\n\n\nclass Mtsbot(BotAI):\n <docstring token>\n\n async def build_pool(self):\n \"\"\" Build pool logic\n - improvements possible -> placement can be\"\"\"\n pool = UnitTypeId.SPAWNINGPOOL\n if not self.structures(pool).ready and not self.already_pending(pool):\n await self.build(pool, self.start_location.towards(self.\n game_info.map_center, distance=5))\n\n async def build_extractor(self):\n \"\"\" Build extractor logic\n - improvements possible -> None that I can think of\n - warnings -> Need the PR on the API to be accepted or it won't work using self.build(),\n self.do(drone.build()) would have to be used instead\"\"\"\n if not self.gas_buildings and self.already_pending(UnitTypeId.\n SPAWNINGPOOL) and not self.already_pending(UnitTypeId.EXTRACTOR):\n await self.build(UnitTypeId.EXTRACTOR, self.vespene_geyser.\n closest_to(self.start_location))\n\n async def queen_injection_logic(self):\n \"\"\" Make queen inject logic\n - improvements possible -> None that I can think of \"\"\"\n for queen in self.units(UnitTypeId.QUEEN):\n if not queen.is_idle or queen.energy < 25:\n continue\n self.do(queen(AbilityId.EFFECT_INJECTLARVA, self.townhalls.\n closest_to(queen.position)))\n\n async def research_zergling_speed(self):\n \"\"\" Research zergling speed logic\n - improvements possible -> None that I can think of \"\"\"\n if not self.already_pending_upgrade(UpgradeId.ZERGLINGMOVEMENTSPEED):\n self.research(UpgradeId.ZERGLINGMOVEMENTSPEED)\n\n async def attacking_logic(self):\n \"\"\" Attacking logic\n - improvements possible -> Add new units(later), add priority targets, add retreat logic(other function),\n add micro and probably much more\"\"\"\n if len(self.units(UnitTypeId.ZERGLING)) >= 6:\n for zergling in self.units(UnitTypeId.ZERGLING):\n self.do(zergling.attack(self.enemy_start_locations[0]))\n\n async def train_overlord(self):\n \"\"\"Train overlord logic\n - improvements possible -> make amount pending scale with base amount,\n make supply left constraint scale with larva amount\"\"\"\n if self.supply_left < 3 and not self.already_pending(UnitTypeId.\n OVERLORD):\n self.train(UnitTypeId.OVERLORD)\n\n async def train_zergling(self):\n \"\"\"Train zergling logic\n - improvements possible -> create constraints when other units starts to be built based on other unit amounts\"\"\"\n if self.structures(UnitTypeId.SPAWNINGPOOL).ready:\n self.train(UnitTypeId.ZERGLING)\n\n async def train_queen(self):\n \"\"\"Train zergling logic\n - improvements possible -> Make the queen get created preferably on non-already-assigned bases\n and maybe create some extra for creep spread(don't limit it by bases)\"\"\"\n if self.structures(UnitTypeId.SPAWNINGPOOL).ready and len(self.\n units(UnitTypeId.QUEEN)) < len(self.townhalls\n ) and self.already_pending(UnitTypeId.QUEEN) < len(self.\n townhalls.ready):\n self.train(UnitTypeId.QUEEN)\n\n async def send_drones_to_extractor(self):\n \"\"\" Send drones to extractor from minerals\n - improvements possible -> Expand it, make it trigger when the vespene - mineral ratio is to high\n (only check it when at least 2 bases are saturated)make the closer_than distance 8 instead of 10,\n also change the constraints completely(separate it later - this constraints are for the zergling speed,\n make it a separated method) make it more general\"\"\"\n if self.vespene < 100 and not self.already_pending_upgrade(UpgradeId\n .ZERGLINGMOVEMENTSPEED):\n for extractor in self.gas_buildings:\n drones_needed_to_fill_extractor = (extractor.\n ideal_harvesters - extractor.assigned_harvesters)\n if drones_needed_to_fill_extractor > 0:\n for drone in self.workers.closer_than(10, extractor).take(\n drones_needed_to_fill_extractor):\n self.do(drone.gather(extractor))\n\n async def send_drones_to_minerals(self):\n \"\"\" Send drones from extractor to minerals\n - improvements possible -> Expand it, make it trigger when the mineral - vespene ratio is to high\n (only check it when at least 2 bases are saturated)make the closer_than distance 8 instead of 10,\n also change the constraints completely(separate it later - this constraints are for the zergling speed,\n make it a separated method) make it more general\"\"\"\n if self.vespene >= 100 or self.already_pending_upgrade(UpgradeId.\n ZERGLINGMOVEMENTSPEED):\n for drone in self.workers.filter(lambda w: w.is_carrying_vespene):\n self.do(drone.gather(self.mineral_field.closer_than(10,\n drone).closest_to(drone)))\n\n async def on_step(self, iteration):\n await self.build_extractor()\n await self.build_pool()\n await self.train_overlord()\n await self.train_queen()\n await self.train_zergling()\n await self.research_zergling_speed()\n await self.attacking_logic()\n await self.queen_injection_logic()\n await self.send_drones_to_extractor()\n await self.send_drones_to_minerals()\n", "<docstring token>\n<import token>\n<class token>\n" ]
false
99,353
1939ec7b0b72201dcca04b7ddd9722b82332a743
from array import array import numpy def prime_Anagram(str1): """generating prime numbers by taking method argument str1""" anagram = [] non_Anagram = [] arr = array('i', []) for i in range(0, str1): count = 0 if i != 0 and i != 1: for j in range(2, i): if i % j == 0: count = count + 1 break if count == 0: arr.append(i) """ Anagram Code For Prime Number comparing length of two strings if they are equal in length then sorting both and comparing if found equal then appending to array """ flag = True for i in range(len(arr) - 1): for j in range(i + 1, len(arr)): if len(str(arr[i])) == len(str(arr[j])): var1 = ''.join(sorted(str(arr[i]))) var2 = ''.join(sorted(str(arr[j]))) if var1 == var2: anagram.append(arr[i]) anagram.append(arr[j]) flag = False if flag: non_Anagram.append(arr[i]) else: flag = True """ declaring numpy for 2 rows and 158 columns """ numarray = numpy.zeros((2, 158)) for j in range(0, len(anagram)): numarray[0][j] = anagram[j] for k in range(0, len(non_Anagram)): numarray[1][k] = non_Anagram[k] """ printing 2D numpy array for anagram and non-anagram prime numbers """ print(numarray) """ Main Method""" if __name__ == '__main__': """ start of main method validation of the range Calling the prime anagram Method with start as Method Argument """ start = int(input("Enter Range: ")) if start == 1000: prime_Anagram(start) else: print("Range should be 1000")
[ "from array import array\nimport numpy\n\n\ndef prime_Anagram(str1):\n \"\"\"generating prime numbers by taking\n method argument str1\"\"\"\n anagram = []\n non_Anagram = []\n arr = array('i', [])\n for i in range(0, str1):\n count = 0\n if i != 0 and i != 1:\n for j in range(2, i):\n if i % j == 0:\n count = count + 1\n break\n if count == 0:\n arr.append(i)\n \"\"\"\n Anagram Code For Prime Number\n comparing length of two strings if \n they are equal in length then sorting both and \n comparing if found equal then appending to array\n \n \"\"\"\n flag = True\n for i in range(len(arr) - 1):\n for j in range(i + 1, len(arr)):\n if len(str(arr[i])) == len(str(arr[j])):\n var1 = ''.join(sorted(str(arr[i])))\n var2 = ''.join(sorted(str(arr[j])))\n if var1 == var2:\n anagram.append(arr[i])\n anagram.append(arr[j])\n flag = False\n if flag:\n non_Anagram.append(arr[i])\n else:\n flag = True\n \"\"\"\n declaring numpy for 2 rows and 158 columns\n \"\"\"\n numarray = numpy.zeros((2, 158))\n for j in range(0, len(anagram)):\n numarray[0][j] = anagram[j]\n for k in range(0, len(non_Anagram)):\n numarray[1][k] = non_Anagram[k]\n \"\"\"\n printing 2D numpy array for anagram and non-anagram prime numbers\n \"\"\"\n print(numarray)\n\n \"\"\" Main Method\"\"\"\n\n\nif __name__ == '__main__':\n \"\"\"\n start of main method\n validation of the range\n Calling the prime anagram Method \n with start as Method Argument\n\n \"\"\"\n start = int(input(\"Enter Range: \"))\n if start == 1000:\n prime_Anagram(start)\n else:\n print(\"Range should be 1000\")\n", "from array import array\nimport numpy\n\n\ndef prime_Anagram(str1):\n \"\"\"generating prime numbers by taking\n method argument str1\"\"\"\n anagram = []\n non_Anagram = []\n arr = array('i', [])\n for i in range(0, str1):\n count = 0\n if i != 0 and i != 1:\n for j in range(2, i):\n if i % j == 0:\n count = count + 1\n break\n if count == 0:\n arr.append(i)\n \"\"\"\n Anagram Code For Prime Number\n comparing length of two strings if \n they are equal in length then sorting both and \n comparing if found equal then appending to array\n \n \"\"\"\n flag = True\n for i in range(len(arr) - 1):\n for j in range(i + 1, len(arr)):\n if len(str(arr[i])) == len(str(arr[j])):\n var1 = ''.join(sorted(str(arr[i])))\n var2 = ''.join(sorted(str(arr[j])))\n if var1 == var2:\n anagram.append(arr[i])\n anagram.append(arr[j])\n flag = False\n if flag:\n non_Anagram.append(arr[i])\n else:\n flag = True\n \"\"\"\n declaring numpy for 2 rows and 158 columns\n \"\"\"\n numarray = numpy.zeros((2, 158))\n for j in range(0, len(anagram)):\n numarray[0][j] = anagram[j]\n for k in range(0, len(non_Anagram)):\n numarray[1][k] = non_Anagram[k]\n \"\"\"\n printing 2D numpy array for anagram and non-anagram prime numbers\n \"\"\"\n print(numarray)\n \"\"\" Main Method\"\"\"\n\n\nif __name__ == '__main__':\n \"\"\"\n start of main method\n validation of the range\n Calling the prime anagram Method \n with start as Method Argument\n\n \"\"\"\n start = int(input('Enter Range: '))\n if start == 1000:\n prime_Anagram(start)\n else:\n print('Range should be 1000')\n", "<import token>\n\n\ndef prime_Anagram(str1):\n \"\"\"generating prime numbers by taking\n method argument str1\"\"\"\n anagram = []\n non_Anagram = []\n arr = array('i', [])\n for i in range(0, str1):\n count = 0\n if i != 0 and i != 1:\n for j in range(2, i):\n if i % j == 0:\n count = count + 1\n break\n if count == 0:\n arr.append(i)\n \"\"\"\n Anagram Code For Prime Number\n comparing length of two strings if \n they are equal in length then sorting both and \n comparing if found equal then appending to array\n \n \"\"\"\n flag = True\n for i in range(len(arr) - 1):\n for j in range(i + 1, len(arr)):\n if len(str(arr[i])) == len(str(arr[j])):\n var1 = ''.join(sorted(str(arr[i])))\n var2 = ''.join(sorted(str(arr[j])))\n if var1 == var2:\n anagram.append(arr[i])\n anagram.append(arr[j])\n flag = False\n if flag:\n non_Anagram.append(arr[i])\n else:\n flag = True\n \"\"\"\n declaring numpy for 2 rows and 158 columns\n \"\"\"\n numarray = numpy.zeros((2, 158))\n for j in range(0, len(anagram)):\n numarray[0][j] = anagram[j]\n for k in range(0, len(non_Anagram)):\n numarray[1][k] = non_Anagram[k]\n \"\"\"\n printing 2D numpy array for anagram and non-anagram prime numbers\n \"\"\"\n print(numarray)\n \"\"\" Main Method\"\"\"\n\n\nif __name__ == '__main__':\n \"\"\"\n start of main method\n validation of the range\n Calling the prime anagram Method \n with start as Method Argument\n\n \"\"\"\n start = int(input('Enter Range: '))\n if start == 1000:\n prime_Anagram(start)\n else:\n print('Range should be 1000')\n", "<import token>\n\n\ndef prime_Anagram(str1):\n \"\"\"generating prime numbers by taking\n method argument str1\"\"\"\n anagram = []\n non_Anagram = []\n arr = array('i', [])\n for i in range(0, str1):\n count = 0\n if i != 0 and i != 1:\n for j in range(2, i):\n if i % j == 0:\n count = count + 1\n break\n if count == 0:\n arr.append(i)\n \"\"\"\n Anagram Code For Prime Number\n comparing length of two strings if \n they are equal in length then sorting both and \n comparing if found equal then appending to array\n \n \"\"\"\n flag = True\n for i in range(len(arr) - 1):\n for j in range(i + 1, len(arr)):\n if len(str(arr[i])) == len(str(arr[j])):\n var1 = ''.join(sorted(str(arr[i])))\n var2 = ''.join(sorted(str(arr[j])))\n if var1 == var2:\n anagram.append(arr[i])\n anagram.append(arr[j])\n flag = False\n if flag:\n non_Anagram.append(arr[i])\n else:\n flag = True\n \"\"\"\n declaring numpy for 2 rows and 158 columns\n \"\"\"\n numarray = numpy.zeros((2, 158))\n for j in range(0, len(anagram)):\n numarray[0][j] = anagram[j]\n for k in range(0, len(non_Anagram)):\n numarray[1][k] = non_Anagram[k]\n \"\"\"\n printing 2D numpy array for anagram and non-anagram prime numbers\n \"\"\"\n print(numarray)\n \"\"\" Main Method\"\"\"\n\n\n<code token>\n", "<import token>\n<function token>\n<code token>\n" ]
false
99,354
05ccdaae6baa4e403c47592287c212ccdfe982b9
from difficulty.models import nn_utils from difficulty.readers import experiment_reader from difficulty.readers import nyt_reader from difficulty.readers import pico_reader from difficulty.readers import pico_sentence_reader import gensim import numpy as np import os import tensorflow as tf from tensorflow.contrib import learn from tensorflow.contrib.tensorboard.plugins import projector #W2VModelFILE="/mnt/data/workspace/nlp/w2v_models/PubMed-w2v.bin" W2VModelFILE="/mnt/data/workspace/nlp/w2v_models/PICO-w2v.vec" EMBEDDING_DIM=200 MODE_TRAIN = "train" MODE_EVAL = "eval" MODE_INFER = "inference" class NNModel: def __init__(self, mode=MODE_TRAIN, running_dir="./test/", encoder="CNN", num_tasks=1, task_names=["Task"], max_document_length=64, is_classifier=True, l2_reg_lambda=0.1, cnn_filter_sizes=[3,4,5], cnn_num_filters=128, rnn_bidirectional=False, rnn_cell_type="GRU", rnn_num_layers=2, dnn_layer_sizes=[512]): self._train = True if mode == MODE_TRAIN else False # Basic params self._max_document_length = max_document_length self._num_tasks = num_tasks self._is_classifier = is_classifier self._embedding_size = EMBEDDING_DIM self._encoder = encoder self._encoding_size = 300 self._vocab = None self._task_names = task_names # CNN params self._cnn_filter_sizes = cnn_filter_sizes self._cnn_num_filters = cnn_num_filters # RNN params self._rnn_bidirectional = rnn_bidirectional self._rnn_cell_type = rnn_cell_type self._rnn_num_layers = rnn_num_layers # DNN params self._dnn_layer_sizes = dnn_layer_sizes self._dnn_activation = "relu" # Hyper-params self._l2_reg_lambda = l2_reg_lambda self.ops = [] self.loss = None self.eval_metrics = {} self.saver = None self.checkpoint_dir = os.path.join(running_dir, "train/") self.eval_dir = os.path.join(running_dir, "test/") def Graph(self): self.input_x = tf.placeholder(tf.int32, [None, self._max_document_length], name="input_x") self.input_l = tf.placeholder(tf.int32, [None], name="input_l") self.input_y = tf.placeholder(tf.float32, [None, self._num_tasks], name="input_y") self.input_w = tf.placeholder(tf.float32, [None, self._num_tasks], name="input_w") self.dropout = tf.placeholder(tf.float32, name="dropout_prob") if self._rnn_bidirectional: self.input_x_bw = tf.placeholder(tf.int32, [None, self._max_document_length], name="input_x_bw") else: self.input_x_bw = None # Assuming input text is pre-tokenized and splited by space vocab, init_embedding = self._LoadInitEmbeddings() def _tokenizer(xs): return [x.split(" ") for x in xs] self._vocab = learn.preprocessing.VocabularyProcessor( self._max_document_length, tokenizer_fn=_tokenizer) self._vocab.fit(vocab) # Insert init embedding for <UNK> init_embedding = np.vstack( [np.random.normal(size=self._embedding_size), init_embedding]) vocab_size = len(self._vocab.vocabulary_) with tf.variable_scope("WordEmbeddings"): embeddings = tf.get_variable(name="W", shape=init_embedding.shape, initializer=tf.constant_initializer(init_embedding), trainable=False) if self._encoder == "CNN": input_encoded = self._CNNLayers(embeddings) elif self._encoder == "RNN": input_encoded = self._RNNLayers(embeddings) elif self._encoder == "DNN": input_encoded = self._DNNLayers(embeddings) self.input_encoded = input_encoded with tf.variable_scope("dropout"): input_encoded = tf.nn.dropout(input_encoded, 1-self.dropout) if self._is_classifier: preds, pred_scores, loss = self._classifier(input_encoded, self.input_y, self.input_w) self.ops.extend([preds, pred_scores, loss]) else: # preds and pred_scores are the same for regression model pred_scores, loss = self._regressor(input_encoded, self.input_y, self.input_w) self.ops.extend([pred_scores, pred_scores, loss]) self.loss = loss self.saver = tf.train.Saver(tf.global_variables()) return self def _classifier(self, input_encoded, output, weights): total_loss = tf.constant(0.0) pooled_scores = [] pooled_predictions = [] for idx in range(self._num_tasks): gts = tf.expand_dims(output[:, idx], -1) wts = tf.expand_dims(weights[:, idx], -1) with tf.variable_scope("{0}_classifier".format(self._task_names[idx])): labels = tf.concat([1-gts, gts], 1) logits = tf.layers.dense(input_encoded, 2, kernel_regularizer=tf.contrib.layers.l2_regularizer( self._l2_reg_lambda)) scores = tf.reduce_max(tf.nn.softmax(logits), 1) predictions = tf.argmax(logits, 1, name="predictions") pooled_predictions.append(predictions) pooled_scores.append(scores) losses = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=labels) self.eval_metrics["{0}/Accuracy".format(self._task_names[idx])] = ( tf.metrics.accuracy(gts, predictions, weights=wts)) self.eval_metrics["{0}/Precision".format(self._task_names[idx])] = ( tf.metrics.precision(gts, predictions, weights=wts)) self.eval_metrics["{0}/Recall".format(self._task_names[idx])] = ( tf.metrics.recall(gts, predictions, weights=wts)) total_loss += tf.reduce_mean(losses * wts) pooled_predictions = tf.stack(pooled_predictions, axis=1) pooled_scores = tf.stack(pooled_scores, axis=1) return pooled_predictions, pooled_scores, total_loss def _regressor(self, input_encoded, output, weights): total_loss = tf.constant(0.0) pooled_logits = [] for idx in range(self._num_tasks): with tf.variable_scope("{0}_regressor".format(self._task_names[idx])): logits = tf.layers.dense(input_encoded, 1, kernel_regularizer=tf.contrib.layers.l2_regularizer( self._l2_reg_lambda)) gts = tf.expand_dims(output[:, idx], -1) wts = tf.expand_dims(weights[:, idx], -1) losses = tf.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=gts) total_loss += tf.reduce_mean(losses * wts) pooled_logits.append(tf.sigmoid(logits)) self.eval_metrics["{0}/Pearsonr".format(self._task_names[idx])] = ( tf.contrib.metrics.streaming_pearson_correlation( logits, gts, weights=wts)) pooled_logits = tf.stack(pooled_logits, axis=1) pooled_logits = tf.squeeze(pooled_logits, axis=-1) return pooled_logits, total_loss def _LoadInitEmbeddings(self): ## Initialize word_embedding w2v_model = gensim.models.KeyedVectors.load_word2vec_format(W2VModelFILE, binary=False) vocab = [] embd = [] for token in w2v_model.vocab: vec = w2v_model[token] vocab.append(token) embd.append(vec) embedding = np.asarray(embd) return vocab, embedding def _LookupEmbeddings(self, embeddings, inputs): # Return sequence length and inputs mask = tf.to_float(tf.not_equal(inputs, 0)) inputs = tf.nn.embedding_lookup(embeddings, inputs) lengths = tf.cast(tf.reduce_sum(mask, axis=1), tf.int64) return lengths, inputs def _CNNLayers(self, embeddings): _, input_embeddings = self._LookupEmbeddings(embeddings, self.input_x) input_embeddings = tf.expand_dims(input_embeddings, -1) with tf.variable_scope("CNN"): pooled_outputs = [] for i, filter_size in enumerate(self._cnn_filter_sizes): with tf.variable_scope("conv-maxpool-%s" % filter_size): # Conv layer filter_shape = [filter_size, self._embedding_size, 1, self._cnn_num_filters] W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W") b = tf.Variable(tf.constant(0.1, shape=[self._cnn_num_filters]), name="b") conv = tf.nn.conv2d( input_embeddings, W, strides=[1,1,1,1], padding="VALID", name="conv") h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu") pooled = tf.nn.max_pool( h, ksize=[1, self._max_document_length-filter_size+1, 1, 1], strides=[1,1,1,1], padding="VALID", name="pool") pooled_outputs.append(pooled) num_filters_total = self._cnn_num_filters * len(self._cnn_filter_sizes) cnn_encoding = tf.concat(pooled_outputs, 3) cnn_encoding = tf.reshape(cnn_encoding, [-1, num_filters_total]) with tf.variable_scope("dropout"): cnn_encoding = tf.nn.dropout(cnn_encoding, 1-self.dropout) cnn_encoding = tf.layers.dense(cnn_encoding, self._encoding_size) return cnn_encoding def _DNNLayers(self, embeddings): lengths, input_embeddings = self._LookupEmbeddings(embeddings, self.input_x) lengths = tf.expand_dims(lengths, -1) input_embeddings = tf.divide(tf.reduce_sum(input_embeddings, 1), tf.to_float(lengths)) #input_embeddings = tf.reduce_mean(input_embeddings, 1) #input_embeddings = tf.Print(input_embeddings, [input_embeddings], "input_embeddings: ", summarize=3) with tf.variable_scope("DNN"): input_tensor = tf.nn.dropout(input_embeddings, 1) for i, out_size in enumerate(self._dnn_layer_sizes): with tf.variable_scope("Layer_{0}".format(i+1)): in_size = input_tensor.get_shape()[1] stddev = 1.0 / tf.sqrt(tf.to_float(tf.maximum(in_size, out_size))) W = tf.get_variable("W", (in_size, out_size), initializer=tf.truncated_normal_initializer(stddev=stddev)) b = tf.get_variable("b", (out_size), initializer=tf.constant_initializer(0.1)) input_tensor = tf.nn.bias_add(tf.matmul(input_tensor, W), b) if self._dnn_activation == "relu": input_tensor = tf.nn.relu(input_tensor, name="relu") else: raise ValueError("dnn_activation function not supported.") #if i != len(self._dnn_activation)-1: # input_tensor = tf.nn.dropout(input_tensor, 1 - self.dropout) #input_tensor = tf.Print(input_tensor, [input_tensor], "input_tensor: ", summarize=30) return input_tensor def _RNNCells(self): if self._rnn_cell_type == "GRU": cells= tf.contrib.rnn.MultiRNNCell( [tf.nn.rnn_cell.GRUCell(self._embedding_size) for x in range(self._rnn_num_layers)], state_is_tuple=True) elif self._rnn_cell_type == "LSTM": cells= tf.contrib.rnn.MultiRNNCell( [tf.nn.rnn_cell.LSTMCell(self._embedding_size) for x in range(self._rnn_num_layers)], state_is_tuple=True) return cells def _RNNLayers(self, embeddings): _, fw_embeddings = self._LookupEmbeddings(embeddings, self.input_x) if self._rnn_bidirectional: _, bw_embeddings = self._LookupEmbeddings(embeddings, self.input_x_bw) with tf.variable_scope("RNN"): with tf.variable_scope("forward"): fw_cells = self._RNNCells() _, fw_state = tf.nn.dynamic_rnn(fw_cells, fw_embeddings, sequence_length=self.input_l, dtype=tf.float32) fw_encoding = fw_state[-1] if self._rnn_bidirectional: with tf.variable_scope("backward"): bw_cells = self._RNNCells() _, bw_state = tf.nn.dynamic_rnn(bw_cells, bw_embeddings, sequence_length=self.input_l, dtype=tf.float32) bw_encoding = bw_state[-1] rnn_encoding = tf.concat([fw_encoding, bw_encoding], axis=1) else: rnn_encoding = fw_encoding with tf.variable_scope("dropout"): rnn_encoding = tf.nn.dropout(rnn_encoding, 1-self.dropout) rnn_encoding = tf.layers.dense(rnn_encoding, self._encoding_size) return rnn_encoding def main(): #target = "PICO" target = "PICOSentence" #target = "NYT" if target == "PICO": model = NNModel( mode=FLAGS.mode, is_classifier=True, encoder=FLAGS.encoder, num_tasks=1, task_names=["Classification"], max_document_length=FLAGS.max_document_length, cnn_filter_sizes=list(map(int, FLAGS.cnn_filter_sizes.split(","))), cnn_num_filters=FLAGS.cnn_num_filters, rnn_bidirectional=FLAGS.rnn_bidirectional, rnn_cell_type=FLAGS.rnn_cell_type, rnn_num_layers=FLAGS.rnn_num_layers) document_reader = pico_reader.PICOReader(annotype="Outcome") elif target == "PICOSentence": is_classifier = False model = NNModel( mode=FLAGS.mode, is_classifier=is_classifier, encoder="CNN", num_tasks=1, task_names=["Outcome"], max_document_length=FLAGS.max_document_length, cnn_filter_sizes=list(map(int, FLAGS.cnn_filter_sizes.split(","))), cnn_num_filters=FLAGS.cnn_num_filters, rnn_bidirectional=FLAGS.rnn_bidirectional, rnn_cell_type=FLAGS.rnn_cell_type, rnn_num_layers=FLAGS.rnn_num_layers) #document_reader = pico_sentence_reader.PICOSentenceReader(annotype="multitask") document_reader = experiment_reader.ExperimentReader(annotype="Outcome", binary=is_classifier) elif target == "NYT": model = NNModel( mode=FLAGS.mode, is_classifier=True, encoder="CNN", num_tasks=1, task_names=["Business"], max_document_length=FLAGS.max_document_length, cnn_filter_sizes=list(map(int, FLAGS.cnn_filter_sizes.split(","))), cnn_num_filters=FLAGS.cnn_num_filters, rnn_bidirectional=FLAGS.rnn_bidirectional, rnn_cell_type=FLAGS.rnn_cell_type, rnn_num_layers=FLAGS.rnn_num_layers, dnn_layer_sizes=list(map(int, FLAGS.dnn_layer_sizes.split(",")))) document_reader = nyt_reader.NYTReader(genre="Business") else: raise ValueError("Error") if FLAGS.mode == MODE_TRAIN: nn_utils.train(model, document_reader, is_classifier=is_classifier, FLAGS=FLAGS) elif FLAGS.mode == MODE_EVAL: checkpoint = "./test/train/model-2000" nn_utils.eval(model, document_reader, checkpoint, FLAGS=FLAGS) if __name__ == "__main__": flags = tf.app.flags flags.DEFINE_string("mode", "train", "Model mode") flags.DEFINE_integer("batch_size", 64, "Batch Size (default: 64)") flags.DEFINE_integer("max_steps", 3000, "Max steps of training (default: 3000)") flags.DEFINE_integer("num_epochs", 100, "Number of training epochs (default: 100)") tf.flags.DEFINE_integer("evaluate_every", 500, "Evaluate model on dev set after this many steps (default: 100)") tf.flags.DEFINE_integer("checkpoint_every", 2000, "Save model after this many steps (default: 1000)") flags.DEFINE_float("dropout", 0.4, "dropout") flags.DEFINE_float("learning_rate", 1e-3, "learning rate") flags.DEFINE_integer("max_document_length", 50, "Max document length") flags.DEFINE_bool("rnn_bidirectional", True, "Whther rnn is undirectional or bidirectional") flags.DEFINE_string("rnn_cell_type", "GRU", "RNN cell type, GRU or LSTM") flags.DEFINE_integer("rnn_num_layers", 2, "Number of layers of RNN") flags.DEFINE_string("encoder", "RNN", "Type of encoder used to embed document") flags.DEFINE_string("cnn_filter_sizes", "3,4,5", "Filter sizes in CNN encoder") flags.DEFINE_integer("cnn_num_filters", 32, "Number of filters per filter size in CNN encoder") flags.DEFINE_string("dnn_layer_sizes", "256", "Filter sizes in CNN encoder") flags.DEFINE_string("output_fname", "./tmp/output.out", "Output file") FLAGS = tf.flags.FLAGS main()
[ "from difficulty.models import nn_utils\nfrom difficulty.readers import experiment_reader\nfrom difficulty.readers import nyt_reader\nfrom difficulty.readers import pico_reader\nfrom difficulty.readers import pico_sentence_reader\nimport gensim\nimport numpy as np\nimport os\nimport tensorflow as tf\n\nfrom tensorflow.contrib import learn\nfrom tensorflow.contrib.tensorboard.plugins import projector\n\n#W2VModelFILE=\"/mnt/data/workspace/nlp/w2v_models/PubMed-w2v.bin\"\nW2VModelFILE=\"/mnt/data/workspace/nlp/w2v_models/PICO-w2v.vec\"\nEMBEDDING_DIM=200\n\nMODE_TRAIN = \"train\"\nMODE_EVAL = \"eval\"\nMODE_INFER = \"inference\"\n\nclass NNModel:\n\n def __init__(self,\n mode=MODE_TRAIN,\n running_dir=\"./test/\",\n encoder=\"CNN\",\n num_tasks=1,\n task_names=[\"Task\"],\n max_document_length=64,\n is_classifier=True,\n l2_reg_lambda=0.1,\n cnn_filter_sizes=[3,4,5],\n cnn_num_filters=128,\n rnn_bidirectional=False,\n rnn_cell_type=\"GRU\",\n rnn_num_layers=2,\n dnn_layer_sizes=[512]):\n\n self._train = True if mode == MODE_TRAIN else False\n\n # Basic params\n self._max_document_length = max_document_length\n self._num_tasks = num_tasks\n self._is_classifier = is_classifier\n self._embedding_size = EMBEDDING_DIM\n self._encoder = encoder\n self._encoding_size = 300\n self._vocab = None\n self._task_names = task_names\n\n # CNN params\n self._cnn_filter_sizes = cnn_filter_sizes\n self._cnn_num_filters = cnn_num_filters\n\n # RNN params\n self._rnn_bidirectional = rnn_bidirectional\n self._rnn_cell_type = rnn_cell_type\n self._rnn_num_layers = rnn_num_layers\n\n # DNN params\n self._dnn_layer_sizes = dnn_layer_sizes\n self._dnn_activation = \"relu\"\n\n # Hyper-params\n self._l2_reg_lambda = l2_reg_lambda\n\n self.ops = []\n self.loss = None\n self.eval_metrics = {}\n self.saver = None\n self.checkpoint_dir = os.path.join(running_dir, \"train/\")\n self.eval_dir = os.path.join(running_dir, \"test/\")\n\n\n def Graph(self):\n self.input_x = tf.placeholder(tf.int32, [None, self._max_document_length], name=\"input_x\")\n self.input_l = tf.placeholder(tf.int32, [None], name=\"input_l\")\n self.input_y = tf.placeholder(tf.float32, [None, self._num_tasks], name=\"input_y\")\n self.input_w = tf.placeholder(tf.float32, [None, self._num_tasks], name=\"input_w\")\n self.dropout = tf.placeholder(tf.float32, name=\"dropout_prob\")\n\n if self._rnn_bidirectional:\n self.input_x_bw = tf.placeholder(tf.int32,\n [None, self._max_document_length], name=\"input_x_bw\")\n else:\n self.input_x_bw = None\n\n # Assuming input text is pre-tokenized and splited by space\n vocab, init_embedding = self._LoadInitEmbeddings()\n\n def _tokenizer(xs):\n return [x.split(\" \") for x in xs]\n self._vocab = learn.preprocessing.VocabularyProcessor(\n self._max_document_length, tokenizer_fn=_tokenizer)\n self._vocab.fit(vocab)\n\n # Insert init embedding for <UNK>\n init_embedding = np.vstack(\n [np.random.normal(size=self._embedding_size), init_embedding])\n\n vocab_size = len(self._vocab.vocabulary_)\n with tf.variable_scope(\"WordEmbeddings\"):\n embeddings = tf.get_variable(name=\"W\", shape=init_embedding.shape,\n initializer=tf.constant_initializer(init_embedding), trainable=False)\n\n if self._encoder == \"CNN\":\n input_encoded = self._CNNLayers(embeddings)\n elif self._encoder == \"RNN\":\n input_encoded = self._RNNLayers(embeddings)\n elif self._encoder == \"DNN\":\n input_encoded = self._DNNLayers(embeddings)\n\n self.input_encoded = input_encoded\n\n with tf.variable_scope(\"dropout\"):\n input_encoded = tf.nn.dropout(input_encoded, 1-self.dropout)\n\n if self._is_classifier:\n preds, pred_scores, loss = self._classifier(input_encoded, self.input_y, self.input_w)\n self.ops.extend([preds, pred_scores, loss])\n else:\n # preds and pred_scores are the same for regression model\n pred_scores, loss = self._regressor(input_encoded, self.input_y, self.input_w)\n self.ops.extend([pred_scores, pred_scores, loss])\n\n self.loss = loss\n\n self.saver = tf.train.Saver(tf.global_variables())\n\n return self\n\n\n def _classifier(self, input_encoded, output, weights):\n total_loss = tf.constant(0.0)\n pooled_scores = []\n pooled_predictions = []\n\n for idx in range(self._num_tasks):\n gts = tf.expand_dims(output[:, idx], -1)\n wts = tf.expand_dims(weights[:, idx], -1)\n with tf.variable_scope(\"{0}_classifier\".format(self._task_names[idx])):\n\n labels = tf.concat([1-gts, gts], 1)\n logits = tf.layers.dense(input_encoded, 2,\n kernel_regularizer=tf.contrib.layers.l2_regularizer(\n self._l2_reg_lambda))\n\n scores = tf.reduce_max(tf.nn.softmax(logits), 1)\n predictions = tf.argmax(logits, 1, name=\"predictions\")\n\n pooled_predictions.append(predictions)\n pooled_scores.append(scores)\n\n losses = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=labels)\n\n self.eval_metrics[\"{0}/Accuracy\".format(self._task_names[idx])] = (\n tf.metrics.accuracy(gts, predictions, weights=wts))\n self.eval_metrics[\"{0}/Precision\".format(self._task_names[idx])] = (\n tf.metrics.precision(gts, predictions, weights=wts))\n self.eval_metrics[\"{0}/Recall\".format(self._task_names[idx])] = (\n tf.metrics.recall(gts, predictions, weights=wts))\n\n total_loss += tf.reduce_mean(losses * wts)\n\n pooled_predictions = tf.stack(pooled_predictions, axis=1)\n pooled_scores = tf.stack(pooled_scores, axis=1)\n return pooled_predictions, pooled_scores, total_loss\n\n\n def _regressor(self, input_encoded, output, weights):\n total_loss = tf.constant(0.0)\n pooled_logits = []\n for idx in range(self._num_tasks):\n with tf.variable_scope(\"{0}_regressor\".format(self._task_names[idx])):\n logits = tf.layers.dense(input_encoded, 1,\n kernel_regularizer=tf.contrib.layers.l2_regularizer(\n self._l2_reg_lambda))\n gts = tf.expand_dims(output[:, idx], -1)\n wts = tf.expand_dims(weights[:, idx], -1)\n\n losses = tf.nn.sigmoid_cross_entropy_with_logits(logits=logits,\n labels=gts)\n total_loss += tf.reduce_mean(losses * wts)\n\n pooled_logits.append(tf.sigmoid(logits))\n\n self.eval_metrics[\"{0}/Pearsonr\".format(self._task_names[idx])] = (\n tf.contrib.metrics.streaming_pearson_correlation(\n logits, gts, weights=wts))\n\n pooled_logits = tf.stack(pooled_logits, axis=1)\n pooled_logits = tf.squeeze(pooled_logits, axis=-1)\n return pooled_logits, total_loss\n\n\n def _LoadInitEmbeddings(self):\n ## Initialize word_embedding\n w2v_model = gensim.models.KeyedVectors.load_word2vec_format(W2VModelFILE, binary=False)\n vocab = []\n embd = []\n\n for token in w2v_model.vocab:\n vec = w2v_model[token]\n vocab.append(token)\n embd.append(vec)\n\n embedding = np.asarray(embd)\n return vocab, embedding\n\n\n def _LookupEmbeddings(self, embeddings, inputs):\n # Return sequence length and inputs\n\n mask = tf.to_float(tf.not_equal(inputs, 0))\n inputs = tf.nn.embedding_lookup(embeddings, inputs)\n\n lengths = tf.cast(tf.reduce_sum(mask, axis=1), tf.int64)\n return lengths, inputs\n\n\n def _CNNLayers(self, embeddings):\n _, input_embeddings = self._LookupEmbeddings(embeddings, self.input_x)\n\n input_embeddings = tf.expand_dims(input_embeddings, -1)\n with tf.variable_scope(\"CNN\"):\n pooled_outputs = []\n for i, filter_size in enumerate(self._cnn_filter_sizes):\n with tf.variable_scope(\"conv-maxpool-%s\" % filter_size):\n # Conv layer\n filter_shape = [filter_size, self._embedding_size, 1, self._cnn_num_filters]\n W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name=\"W\")\n b = tf.Variable(tf.constant(0.1, shape=[self._cnn_num_filters]), name=\"b\")\n conv = tf.nn.conv2d(\n input_embeddings,\n W,\n strides=[1,1,1,1],\n padding=\"VALID\",\n name=\"conv\")\n h = tf.nn.relu(tf.nn.bias_add(conv, b), name=\"relu\")\n\n pooled = tf.nn.max_pool(\n h,\n ksize=[1, self._max_document_length-filter_size+1, 1, 1],\n strides=[1,1,1,1],\n padding=\"VALID\",\n name=\"pool\")\n pooled_outputs.append(pooled)\n\n num_filters_total = self._cnn_num_filters * len(self._cnn_filter_sizes)\n cnn_encoding = tf.concat(pooled_outputs, 3)\n cnn_encoding = tf.reshape(cnn_encoding, [-1, num_filters_total])\n\n with tf.variable_scope(\"dropout\"):\n cnn_encoding = tf.nn.dropout(cnn_encoding, 1-self.dropout)\n\n cnn_encoding = tf.layers.dense(cnn_encoding, self._encoding_size)\n\n return cnn_encoding\n\n\n def _DNNLayers(self, embeddings):\n lengths, input_embeddings = self._LookupEmbeddings(embeddings, self.input_x)\n lengths = tf.expand_dims(lengths, -1)\n input_embeddings = tf.divide(tf.reduce_sum(input_embeddings, 1), tf.to_float(lengths))\n #input_embeddings = tf.reduce_mean(input_embeddings, 1)\n #input_embeddings = tf.Print(input_embeddings, [input_embeddings], \"input_embeddings: \", summarize=3)\n\n with tf.variable_scope(\"DNN\"):\n input_tensor = tf.nn.dropout(input_embeddings, 1)\n\n for i, out_size in enumerate(self._dnn_layer_sizes):\n with tf.variable_scope(\"Layer_{0}\".format(i+1)):\n in_size = input_tensor.get_shape()[1]\n stddev = 1.0 / tf.sqrt(tf.to_float(tf.maximum(in_size, out_size)))\n W = tf.get_variable(\"W\", (in_size, out_size),\n initializer=tf.truncated_normal_initializer(stddev=stddev))\n b = tf.get_variable(\"b\", (out_size),\n initializer=tf.constant_initializer(0.1))\n input_tensor = tf.nn.bias_add(tf.matmul(input_tensor, W), b)\n if self._dnn_activation == \"relu\":\n input_tensor = tf.nn.relu(input_tensor, name=\"relu\")\n else:\n raise ValueError(\"dnn_activation function not supported.\")\n\n #if i != len(self._dnn_activation)-1:\n # input_tensor = tf.nn.dropout(input_tensor, 1 - self.dropout)\n #input_tensor = tf.Print(input_tensor, [input_tensor], \"input_tensor: \", summarize=30)\n return input_tensor\n\n\n def _RNNCells(self):\n if self._rnn_cell_type == \"GRU\":\n cells= tf.contrib.rnn.MultiRNNCell(\n [tf.nn.rnn_cell.GRUCell(self._embedding_size)\n for x in range(self._rnn_num_layers)], state_is_tuple=True)\n elif self._rnn_cell_type == \"LSTM\":\n cells= tf.contrib.rnn.MultiRNNCell(\n [tf.nn.rnn_cell.LSTMCell(self._embedding_size)\n for x in range(self._rnn_num_layers)], state_is_tuple=True)\n return cells\n\n\n def _RNNLayers(self, embeddings):\n _, fw_embeddings = self._LookupEmbeddings(embeddings, self.input_x)\n\n if self._rnn_bidirectional:\n _, bw_embeddings = self._LookupEmbeddings(embeddings, self.input_x_bw)\n\n with tf.variable_scope(\"RNN\"):\n\n with tf.variable_scope(\"forward\"):\n fw_cells = self._RNNCells()\n _, fw_state = tf.nn.dynamic_rnn(fw_cells, fw_embeddings,\n sequence_length=self.input_l, dtype=tf.float32)\n fw_encoding = fw_state[-1]\n\n if self._rnn_bidirectional:\n with tf.variable_scope(\"backward\"):\n bw_cells = self._RNNCells()\n _, bw_state = tf.nn.dynamic_rnn(bw_cells, bw_embeddings,\n sequence_length=self.input_l, dtype=tf.float32)\n\n bw_encoding = bw_state[-1]\n rnn_encoding = tf.concat([fw_encoding, bw_encoding], axis=1)\n else:\n rnn_encoding = fw_encoding\n\n with tf.variable_scope(\"dropout\"):\n rnn_encoding = tf.nn.dropout(rnn_encoding, 1-self.dropout)\n\n rnn_encoding = tf.layers.dense(rnn_encoding, self._encoding_size)\n\n return rnn_encoding\n\n\ndef main():\n #target = \"PICO\"\n target = \"PICOSentence\"\n #target = \"NYT\"\n\n if target == \"PICO\":\n model = NNModel(\n mode=FLAGS.mode,\n is_classifier=True,\n encoder=FLAGS.encoder,\n num_tasks=1,\n task_names=[\"Classification\"],\n max_document_length=FLAGS.max_document_length,\n cnn_filter_sizes=list(map(int, FLAGS.cnn_filter_sizes.split(\",\"))),\n cnn_num_filters=FLAGS.cnn_num_filters,\n rnn_bidirectional=FLAGS.rnn_bidirectional,\n rnn_cell_type=FLAGS.rnn_cell_type,\n rnn_num_layers=FLAGS.rnn_num_layers)\n\n document_reader = pico_reader.PICOReader(annotype=\"Outcome\")\n elif target == \"PICOSentence\":\n is_classifier = False\n model = NNModel(\n mode=FLAGS.mode,\n is_classifier=is_classifier,\n encoder=\"CNN\",\n num_tasks=1,\n task_names=[\"Outcome\"],\n max_document_length=FLAGS.max_document_length,\n cnn_filter_sizes=list(map(int, FLAGS.cnn_filter_sizes.split(\",\"))),\n cnn_num_filters=FLAGS.cnn_num_filters,\n rnn_bidirectional=FLAGS.rnn_bidirectional,\n rnn_cell_type=FLAGS.rnn_cell_type,\n rnn_num_layers=FLAGS.rnn_num_layers)\n\n #document_reader = pico_sentence_reader.PICOSentenceReader(annotype=\"multitask\")\n document_reader = experiment_reader.ExperimentReader(annotype=\"Outcome\", binary=is_classifier)\n elif target == \"NYT\":\n model = NNModel(\n mode=FLAGS.mode,\n is_classifier=True,\n encoder=\"CNN\",\n num_tasks=1,\n task_names=[\"Business\"],\n max_document_length=FLAGS.max_document_length,\n cnn_filter_sizes=list(map(int, FLAGS.cnn_filter_sizes.split(\",\"))),\n cnn_num_filters=FLAGS.cnn_num_filters,\n rnn_bidirectional=FLAGS.rnn_bidirectional,\n rnn_cell_type=FLAGS.rnn_cell_type,\n rnn_num_layers=FLAGS.rnn_num_layers,\n dnn_layer_sizes=list(map(int, FLAGS.dnn_layer_sizes.split(\",\"))))\n\n document_reader = nyt_reader.NYTReader(genre=\"Business\")\n else:\n raise ValueError(\"Error\")\n\n if FLAGS.mode == MODE_TRAIN:\n nn_utils.train(model, document_reader, is_classifier=is_classifier, FLAGS=FLAGS)\n elif FLAGS.mode == MODE_EVAL:\n checkpoint = \"./test/train/model-2000\"\n nn_utils.eval(model, document_reader, checkpoint, FLAGS=FLAGS)\n\n\nif __name__ == \"__main__\":\n flags = tf.app.flags\n flags.DEFINE_string(\"mode\", \"train\", \"Model mode\")\n flags.DEFINE_integer(\"batch_size\", 64, \"Batch Size (default: 64)\")\n flags.DEFINE_integer(\"max_steps\", 3000, \"Max steps of training (default: 3000)\")\n flags.DEFINE_integer(\"num_epochs\", 100, \"Number of training epochs (default: 100)\")\n tf.flags.DEFINE_integer(\"evaluate_every\", 500,\n \"Evaluate model on dev set after this many steps (default: 100)\")\n tf.flags.DEFINE_integer(\"checkpoint_every\", 2000,\n \"Save model after this many steps (default: 1000)\")\n flags.DEFINE_float(\"dropout\", 0.4, \"dropout\")\n flags.DEFINE_float(\"learning_rate\", 1e-3, \"learning rate\")\n flags.DEFINE_integer(\"max_document_length\", 50, \"Max document length\")\n flags.DEFINE_bool(\"rnn_bidirectional\", True,\n \"Whther rnn is undirectional or bidirectional\")\n flags.DEFINE_string(\"rnn_cell_type\", \"GRU\", \"RNN cell type, GRU or LSTM\")\n flags.DEFINE_integer(\"rnn_num_layers\", 2, \"Number of layers of RNN\")\n flags.DEFINE_string(\"encoder\", \"RNN\", \"Type of encoder used to embed document\")\n flags.DEFINE_string(\"cnn_filter_sizes\", \"3,4,5\", \"Filter sizes in CNN encoder\")\n flags.DEFINE_integer(\"cnn_num_filters\", 32,\n \"Number of filters per filter size in CNN encoder\")\n flags.DEFINE_string(\"dnn_layer_sizes\", \"256\", \"Filter sizes in CNN encoder\")\n flags.DEFINE_string(\"output_fname\", \"./tmp/output.out\", \"Output file\")\n\n FLAGS = tf.flags.FLAGS\n main()\n", "from difficulty.models import nn_utils\nfrom difficulty.readers import experiment_reader\nfrom difficulty.readers import nyt_reader\nfrom difficulty.readers import pico_reader\nfrom difficulty.readers import pico_sentence_reader\nimport gensim\nimport numpy as np\nimport os\nimport tensorflow as tf\nfrom tensorflow.contrib import learn\nfrom tensorflow.contrib.tensorboard.plugins import projector\nW2VModelFILE = '/mnt/data/workspace/nlp/w2v_models/PICO-w2v.vec'\nEMBEDDING_DIM = 200\nMODE_TRAIN = 'train'\nMODE_EVAL = 'eval'\nMODE_INFER = 'inference'\n\n\nclass NNModel:\n\n def __init__(self, mode=MODE_TRAIN, running_dir='./test/', encoder=\n 'CNN', num_tasks=1, task_names=['Task'], max_document_length=64,\n is_classifier=True, l2_reg_lambda=0.1, cnn_filter_sizes=[3, 4, 5],\n cnn_num_filters=128, rnn_bidirectional=False, rnn_cell_type='GRU',\n rnn_num_layers=2, dnn_layer_sizes=[512]):\n self._train = True if mode == MODE_TRAIN else False\n self._max_document_length = max_document_length\n self._num_tasks = num_tasks\n self._is_classifier = is_classifier\n self._embedding_size = EMBEDDING_DIM\n self._encoder = encoder\n self._encoding_size = 300\n self._vocab = None\n self._task_names = task_names\n self._cnn_filter_sizes = cnn_filter_sizes\n self._cnn_num_filters = cnn_num_filters\n self._rnn_bidirectional = rnn_bidirectional\n self._rnn_cell_type = rnn_cell_type\n self._rnn_num_layers = rnn_num_layers\n self._dnn_layer_sizes = dnn_layer_sizes\n self._dnn_activation = 'relu'\n self._l2_reg_lambda = l2_reg_lambda\n self.ops = []\n self.loss = None\n self.eval_metrics = {}\n self.saver = None\n self.checkpoint_dir = os.path.join(running_dir, 'train/')\n self.eval_dir = os.path.join(running_dir, 'test/')\n\n def Graph(self):\n self.input_x = tf.placeholder(tf.int32, [None, self.\n _max_document_length], name='input_x')\n self.input_l = tf.placeholder(tf.int32, [None], name='input_l')\n self.input_y = tf.placeholder(tf.float32, [None, self._num_tasks],\n name='input_y')\n self.input_w = tf.placeholder(tf.float32, [None, self._num_tasks],\n name='input_w')\n self.dropout = tf.placeholder(tf.float32, name='dropout_prob')\n if self._rnn_bidirectional:\n self.input_x_bw = tf.placeholder(tf.int32, [None, self.\n _max_document_length], name='input_x_bw')\n else:\n self.input_x_bw = None\n vocab, init_embedding = self._LoadInitEmbeddings()\n\n def _tokenizer(xs):\n return [x.split(' ') for x in xs]\n self._vocab = learn.preprocessing.VocabularyProcessor(self.\n _max_document_length, tokenizer_fn=_tokenizer)\n self._vocab.fit(vocab)\n init_embedding = np.vstack([np.random.normal(size=self.\n _embedding_size), init_embedding])\n vocab_size = len(self._vocab.vocabulary_)\n with tf.variable_scope('WordEmbeddings'):\n embeddings = tf.get_variable(name='W', shape=init_embedding.\n shape, initializer=tf.constant_initializer(init_embedding),\n trainable=False)\n if self._encoder == 'CNN':\n input_encoded = self._CNNLayers(embeddings)\n elif self._encoder == 'RNN':\n input_encoded = self._RNNLayers(embeddings)\n elif self._encoder == 'DNN':\n input_encoded = self._DNNLayers(embeddings)\n self.input_encoded = input_encoded\n with tf.variable_scope('dropout'):\n input_encoded = tf.nn.dropout(input_encoded, 1 - self.dropout)\n if self._is_classifier:\n preds, pred_scores, loss = self._classifier(input_encoded, self\n .input_y, self.input_w)\n self.ops.extend([preds, pred_scores, loss])\n else:\n pred_scores, loss = self._regressor(input_encoded, self.input_y,\n self.input_w)\n self.ops.extend([pred_scores, pred_scores, loss])\n self.loss = loss\n self.saver = tf.train.Saver(tf.global_variables())\n return self\n\n def _classifier(self, input_encoded, output, weights):\n total_loss = tf.constant(0.0)\n pooled_scores = []\n pooled_predictions = []\n for idx in range(self._num_tasks):\n gts = tf.expand_dims(output[:, idx], -1)\n wts = tf.expand_dims(weights[:, idx], -1)\n with tf.variable_scope('{0}_classifier'.format(self._task_names\n [idx])):\n labels = tf.concat([1 - gts, gts], 1)\n logits = tf.layers.dense(input_encoded, 2,\n kernel_regularizer=tf.contrib.layers.l2_regularizer(\n self._l2_reg_lambda))\n scores = tf.reduce_max(tf.nn.softmax(logits), 1)\n predictions = tf.argmax(logits, 1, name='predictions')\n pooled_predictions.append(predictions)\n pooled_scores.append(scores)\n losses = tf.nn.softmax_cross_entropy_with_logits(logits=\n logits, labels=labels)\n self.eval_metrics['{0}/Accuracy'.format(self._task_names[idx])\n ] = tf.metrics.accuracy(gts, predictions, weights=wts)\n self.eval_metrics['{0}/Precision'.format(self._task_names[idx])\n ] = tf.metrics.precision(gts, predictions, weights=wts)\n self.eval_metrics['{0}/Recall'.format(self._task_names[idx])\n ] = tf.metrics.recall(gts, predictions, weights=wts)\n total_loss += tf.reduce_mean(losses * wts)\n pooled_predictions = tf.stack(pooled_predictions, axis=1)\n pooled_scores = tf.stack(pooled_scores, axis=1)\n return pooled_predictions, pooled_scores, total_loss\n\n def _regressor(self, input_encoded, output, weights):\n total_loss = tf.constant(0.0)\n pooled_logits = []\n for idx in range(self._num_tasks):\n with tf.variable_scope('{0}_regressor'.format(self._task_names[\n idx])):\n logits = tf.layers.dense(input_encoded, 1,\n kernel_regularizer=tf.contrib.layers.l2_regularizer(\n self._l2_reg_lambda))\n gts = tf.expand_dims(output[:, idx], -1)\n wts = tf.expand_dims(weights[:, idx], -1)\n losses = tf.nn.sigmoid_cross_entropy_with_logits(logits=\n logits, labels=gts)\n total_loss += tf.reduce_mean(losses * wts)\n pooled_logits.append(tf.sigmoid(logits))\n self.eval_metrics['{0}/Pearsonr'.format(self._task_names[idx])\n ] = tf.contrib.metrics.streaming_pearson_correlation(logits\n , gts, weights=wts)\n pooled_logits = tf.stack(pooled_logits, axis=1)\n pooled_logits = tf.squeeze(pooled_logits, axis=-1)\n return pooled_logits, total_loss\n\n def _LoadInitEmbeddings(self):\n w2v_model = gensim.models.KeyedVectors.load_word2vec_format(\n W2VModelFILE, binary=False)\n vocab = []\n embd = []\n for token in w2v_model.vocab:\n vec = w2v_model[token]\n vocab.append(token)\n embd.append(vec)\n embedding = np.asarray(embd)\n return vocab, embedding\n\n def _LookupEmbeddings(self, embeddings, inputs):\n mask = tf.to_float(tf.not_equal(inputs, 0))\n inputs = tf.nn.embedding_lookup(embeddings, inputs)\n lengths = tf.cast(tf.reduce_sum(mask, axis=1), tf.int64)\n return lengths, inputs\n\n def _CNNLayers(self, embeddings):\n _, input_embeddings = self._LookupEmbeddings(embeddings, self.input_x)\n input_embeddings = tf.expand_dims(input_embeddings, -1)\n with tf.variable_scope('CNN'):\n pooled_outputs = []\n for i, filter_size in enumerate(self._cnn_filter_sizes):\n with tf.variable_scope('conv-maxpool-%s' % filter_size):\n filter_shape = [filter_size, self._embedding_size, 1,\n self._cnn_num_filters]\n W = tf.Variable(tf.truncated_normal(filter_shape,\n stddev=0.1), name='W')\n b = tf.Variable(tf.constant(0.1, shape=[self.\n _cnn_num_filters]), name='b')\n conv = tf.nn.conv2d(input_embeddings, W, strides=[1, 1,\n 1, 1], padding='VALID', name='conv')\n h = tf.nn.relu(tf.nn.bias_add(conv, b), name='relu')\n pooled = tf.nn.max_pool(h, ksize=[1, self.\n _max_document_length - filter_size + 1, 1, 1],\n strides=[1, 1, 1, 1], padding='VALID', name='pool')\n pooled_outputs.append(pooled)\n num_filters_total = self._cnn_num_filters * len(self.\n _cnn_filter_sizes)\n cnn_encoding = tf.concat(pooled_outputs, 3)\n cnn_encoding = tf.reshape(cnn_encoding, [-1, num_filters_total])\n with tf.variable_scope('dropout'):\n cnn_encoding = tf.nn.dropout(cnn_encoding, 1 - self.dropout)\n cnn_encoding = tf.layers.dense(cnn_encoding, self._encoding_size)\n return cnn_encoding\n\n def _DNNLayers(self, embeddings):\n lengths, input_embeddings = self._LookupEmbeddings(embeddings, self\n .input_x)\n lengths = tf.expand_dims(lengths, -1)\n input_embeddings = tf.divide(tf.reduce_sum(input_embeddings, 1), tf\n .to_float(lengths))\n with tf.variable_scope('DNN'):\n input_tensor = tf.nn.dropout(input_embeddings, 1)\n for i, out_size in enumerate(self._dnn_layer_sizes):\n with tf.variable_scope('Layer_{0}'.format(i + 1)):\n in_size = input_tensor.get_shape()[1]\n stddev = 1.0 / tf.sqrt(tf.to_float(tf.maximum(in_size,\n out_size)))\n W = tf.get_variable('W', (in_size, out_size),\n initializer=tf.truncated_normal_initializer(stddev=\n stddev))\n b = tf.get_variable('b', out_size, initializer=tf.\n constant_initializer(0.1))\n input_tensor = tf.nn.bias_add(tf.matmul(input_tensor, W), b\n )\n if self._dnn_activation == 'relu':\n input_tensor = tf.nn.relu(input_tensor, name='relu')\n else:\n raise ValueError(\n 'dnn_activation function not supported.')\n return input_tensor\n\n def _RNNCells(self):\n if self._rnn_cell_type == 'GRU':\n cells = tf.contrib.rnn.MultiRNNCell([tf.nn.rnn_cell.GRUCell(\n self._embedding_size) for x in range(self._rnn_num_layers)],\n state_is_tuple=True)\n elif self._rnn_cell_type == 'LSTM':\n cells = tf.contrib.rnn.MultiRNNCell([tf.nn.rnn_cell.LSTMCell(\n self._embedding_size) for x in range(self._rnn_num_layers)],\n state_is_tuple=True)\n return cells\n\n def _RNNLayers(self, embeddings):\n _, fw_embeddings = self._LookupEmbeddings(embeddings, self.input_x)\n if self._rnn_bidirectional:\n _, bw_embeddings = self._LookupEmbeddings(embeddings, self.\n input_x_bw)\n with tf.variable_scope('RNN'):\n with tf.variable_scope('forward'):\n fw_cells = self._RNNCells()\n _, fw_state = tf.nn.dynamic_rnn(fw_cells, fw_embeddings,\n sequence_length=self.input_l, dtype=tf.float32)\n fw_encoding = fw_state[-1]\n if self._rnn_bidirectional:\n with tf.variable_scope('backward'):\n bw_cells = self._RNNCells()\n _, bw_state = tf.nn.dynamic_rnn(bw_cells, bw_embeddings,\n sequence_length=self.input_l, dtype=tf.float32)\n bw_encoding = bw_state[-1]\n rnn_encoding = tf.concat([fw_encoding, bw_encoding], axis=1)\n else:\n rnn_encoding = fw_encoding\n with tf.variable_scope('dropout'):\n rnn_encoding = tf.nn.dropout(rnn_encoding, 1 - self.dropout)\n rnn_encoding = tf.layers.dense(rnn_encoding, self._encoding_size)\n return rnn_encoding\n\n\ndef main():\n target = 'PICOSentence'\n if target == 'PICO':\n model = NNModel(mode=FLAGS.mode, is_classifier=True, encoder=FLAGS.\n encoder, num_tasks=1, task_names=['Classification'],\n max_document_length=FLAGS.max_document_length, cnn_filter_sizes\n =list(map(int, FLAGS.cnn_filter_sizes.split(','))),\n cnn_num_filters=FLAGS.cnn_num_filters, rnn_bidirectional=FLAGS.\n rnn_bidirectional, rnn_cell_type=FLAGS.rnn_cell_type,\n rnn_num_layers=FLAGS.rnn_num_layers)\n document_reader = pico_reader.PICOReader(annotype='Outcome')\n elif target == 'PICOSentence':\n is_classifier = False\n model = NNModel(mode=FLAGS.mode, is_classifier=is_classifier,\n encoder='CNN', num_tasks=1, task_names=['Outcome'],\n max_document_length=FLAGS.max_document_length, cnn_filter_sizes\n =list(map(int, FLAGS.cnn_filter_sizes.split(','))),\n cnn_num_filters=FLAGS.cnn_num_filters, rnn_bidirectional=FLAGS.\n rnn_bidirectional, rnn_cell_type=FLAGS.rnn_cell_type,\n rnn_num_layers=FLAGS.rnn_num_layers)\n document_reader = experiment_reader.ExperimentReader(annotype=\n 'Outcome', binary=is_classifier)\n elif target == 'NYT':\n model = NNModel(mode=FLAGS.mode, is_classifier=True, encoder='CNN',\n num_tasks=1, task_names=['Business'], max_document_length=FLAGS\n .max_document_length, cnn_filter_sizes=list(map(int, FLAGS.\n cnn_filter_sizes.split(','))), cnn_num_filters=FLAGS.\n cnn_num_filters, rnn_bidirectional=FLAGS.rnn_bidirectional,\n rnn_cell_type=FLAGS.rnn_cell_type, rnn_num_layers=FLAGS.\n rnn_num_layers, dnn_layer_sizes=list(map(int, FLAGS.\n dnn_layer_sizes.split(','))))\n document_reader = nyt_reader.NYTReader(genre='Business')\n else:\n raise ValueError('Error')\n if FLAGS.mode == MODE_TRAIN:\n nn_utils.train(model, document_reader, is_classifier=is_classifier,\n FLAGS=FLAGS)\n elif FLAGS.mode == MODE_EVAL:\n checkpoint = './test/train/model-2000'\n nn_utils.eval(model, document_reader, checkpoint, FLAGS=FLAGS)\n\n\nif __name__ == '__main__':\n flags = tf.app.flags\n flags.DEFINE_string('mode', 'train', 'Model mode')\n flags.DEFINE_integer('batch_size', 64, 'Batch Size (default: 64)')\n flags.DEFINE_integer('max_steps', 3000,\n 'Max steps of training (default: 3000)')\n flags.DEFINE_integer('num_epochs', 100,\n 'Number of training epochs (default: 100)')\n tf.flags.DEFINE_integer('evaluate_every', 500,\n 'Evaluate model on dev set after this many steps (default: 100)')\n tf.flags.DEFINE_integer('checkpoint_every', 2000,\n 'Save model after this many steps (default: 1000)')\n flags.DEFINE_float('dropout', 0.4, 'dropout')\n flags.DEFINE_float('learning_rate', 0.001, 'learning rate')\n flags.DEFINE_integer('max_document_length', 50, 'Max document length')\n flags.DEFINE_bool('rnn_bidirectional', True,\n 'Whther rnn is undirectional or bidirectional')\n flags.DEFINE_string('rnn_cell_type', 'GRU', 'RNN cell type, GRU or LSTM')\n flags.DEFINE_integer('rnn_num_layers', 2, 'Number of layers of RNN')\n flags.DEFINE_string('encoder', 'RNN',\n 'Type of encoder used to embed document')\n flags.DEFINE_string('cnn_filter_sizes', '3,4,5',\n 'Filter sizes in CNN encoder')\n flags.DEFINE_integer('cnn_num_filters', 32,\n 'Number of filters per filter size in CNN encoder')\n flags.DEFINE_string('dnn_layer_sizes', '256', 'Filter sizes in CNN encoder'\n )\n flags.DEFINE_string('output_fname', './tmp/output.out', 'Output file')\n FLAGS = tf.flags.FLAGS\n main()\n", "<import token>\nW2VModelFILE = '/mnt/data/workspace/nlp/w2v_models/PICO-w2v.vec'\nEMBEDDING_DIM = 200\nMODE_TRAIN = 'train'\nMODE_EVAL = 'eval'\nMODE_INFER = 'inference'\n\n\nclass NNModel:\n\n def __init__(self, mode=MODE_TRAIN, running_dir='./test/', encoder=\n 'CNN', num_tasks=1, task_names=['Task'], max_document_length=64,\n is_classifier=True, l2_reg_lambda=0.1, cnn_filter_sizes=[3, 4, 5],\n cnn_num_filters=128, rnn_bidirectional=False, rnn_cell_type='GRU',\n rnn_num_layers=2, dnn_layer_sizes=[512]):\n self._train = True if mode == MODE_TRAIN else False\n self._max_document_length = max_document_length\n self._num_tasks = num_tasks\n self._is_classifier = is_classifier\n self._embedding_size = EMBEDDING_DIM\n self._encoder = encoder\n self._encoding_size = 300\n self._vocab = None\n self._task_names = task_names\n self._cnn_filter_sizes = cnn_filter_sizes\n self._cnn_num_filters = cnn_num_filters\n self._rnn_bidirectional = rnn_bidirectional\n self._rnn_cell_type = rnn_cell_type\n self._rnn_num_layers = rnn_num_layers\n self._dnn_layer_sizes = dnn_layer_sizes\n self._dnn_activation = 'relu'\n self._l2_reg_lambda = l2_reg_lambda\n self.ops = []\n self.loss = None\n self.eval_metrics = {}\n self.saver = None\n self.checkpoint_dir = os.path.join(running_dir, 'train/')\n self.eval_dir = os.path.join(running_dir, 'test/')\n\n def Graph(self):\n self.input_x = tf.placeholder(tf.int32, [None, self.\n _max_document_length], name='input_x')\n self.input_l = tf.placeholder(tf.int32, [None], name='input_l')\n self.input_y = tf.placeholder(tf.float32, [None, self._num_tasks],\n name='input_y')\n self.input_w = tf.placeholder(tf.float32, [None, self._num_tasks],\n name='input_w')\n self.dropout = tf.placeholder(tf.float32, name='dropout_prob')\n if self._rnn_bidirectional:\n self.input_x_bw = tf.placeholder(tf.int32, [None, self.\n _max_document_length], name='input_x_bw')\n else:\n self.input_x_bw = None\n vocab, init_embedding = self._LoadInitEmbeddings()\n\n def _tokenizer(xs):\n return [x.split(' ') for x in xs]\n self._vocab = learn.preprocessing.VocabularyProcessor(self.\n _max_document_length, tokenizer_fn=_tokenizer)\n self._vocab.fit(vocab)\n init_embedding = np.vstack([np.random.normal(size=self.\n _embedding_size), init_embedding])\n vocab_size = len(self._vocab.vocabulary_)\n with tf.variable_scope('WordEmbeddings'):\n embeddings = tf.get_variable(name='W', shape=init_embedding.\n shape, initializer=tf.constant_initializer(init_embedding),\n trainable=False)\n if self._encoder == 'CNN':\n input_encoded = self._CNNLayers(embeddings)\n elif self._encoder == 'RNN':\n input_encoded = self._RNNLayers(embeddings)\n elif self._encoder == 'DNN':\n input_encoded = self._DNNLayers(embeddings)\n self.input_encoded = input_encoded\n with tf.variable_scope('dropout'):\n input_encoded = tf.nn.dropout(input_encoded, 1 - self.dropout)\n if self._is_classifier:\n preds, pred_scores, loss = self._classifier(input_encoded, self\n .input_y, self.input_w)\n self.ops.extend([preds, pred_scores, loss])\n else:\n pred_scores, loss = self._regressor(input_encoded, self.input_y,\n self.input_w)\n self.ops.extend([pred_scores, pred_scores, loss])\n self.loss = loss\n self.saver = tf.train.Saver(tf.global_variables())\n return self\n\n def _classifier(self, input_encoded, output, weights):\n total_loss = tf.constant(0.0)\n pooled_scores = []\n pooled_predictions = []\n for idx in range(self._num_tasks):\n gts = tf.expand_dims(output[:, idx], -1)\n wts = tf.expand_dims(weights[:, idx], -1)\n with tf.variable_scope('{0}_classifier'.format(self._task_names\n [idx])):\n labels = tf.concat([1 - gts, gts], 1)\n logits = tf.layers.dense(input_encoded, 2,\n kernel_regularizer=tf.contrib.layers.l2_regularizer(\n self._l2_reg_lambda))\n scores = tf.reduce_max(tf.nn.softmax(logits), 1)\n predictions = tf.argmax(logits, 1, name='predictions')\n pooled_predictions.append(predictions)\n pooled_scores.append(scores)\n losses = tf.nn.softmax_cross_entropy_with_logits(logits=\n logits, labels=labels)\n self.eval_metrics['{0}/Accuracy'.format(self._task_names[idx])\n ] = tf.metrics.accuracy(gts, predictions, weights=wts)\n self.eval_metrics['{0}/Precision'.format(self._task_names[idx])\n ] = tf.metrics.precision(gts, predictions, weights=wts)\n self.eval_metrics['{0}/Recall'.format(self._task_names[idx])\n ] = tf.metrics.recall(gts, predictions, weights=wts)\n total_loss += tf.reduce_mean(losses * wts)\n pooled_predictions = tf.stack(pooled_predictions, axis=1)\n pooled_scores = tf.stack(pooled_scores, axis=1)\n return pooled_predictions, pooled_scores, total_loss\n\n def _regressor(self, input_encoded, output, weights):\n total_loss = tf.constant(0.0)\n pooled_logits = []\n for idx in range(self._num_tasks):\n with tf.variable_scope('{0}_regressor'.format(self._task_names[\n idx])):\n logits = tf.layers.dense(input_encoded, 1,\n kernel_regularizer=tf.contrib.layers.l2_regularizer(\n self._l2_reg_lambda))\n gts = tf.expand_dims(output[:, idx], -1)\n wts = tf.expand_dims(weights[:, idx], -1)\n losses = tf.nn.sigmoid_cross_entropy_with_logits(logits=\n logits, labels=gts)\n total_loss += tf.reduce_mean(losses * wts)\n pooled_logits.append(tf.sigmoid(logits))\n self.eval_metrics['{0}/Pearsonr'.format(self._task_names[idx])\n ] = tf.contrib.metrics.streaming_pearson_correlation(logits\n , gts, weights=wts)\n pooled_logits = tf.stack(pooled_logits, axis=1)\n pooled_logits = tf.squeeze(pooled_logits, axis=-1)\n return pooled_logits, total_loss\n\n def _LoadInitEmbeddings(self):\n w2v_model = gensim.models.KeyedVectors.load_word2vec_format(\n W2VModelFILE, binary=False)\n vocab = []\n embd = []\n for token in w2v_model.vocab:\n vec = w2v_model[token]\n vocab.append(token)\n embd.append(vec)\n embedding = np.asarray(embd)\n return vocab, embedding\n\n def _LookupEmbeddings(self, embeddings, inputs):\n mask = tf.to_float(tf.not_equal(inputs, 0))\n inputs = tf.nn.embedding_lookup(embeddings, inputs)\n lengths = tf.cast(tf.reduce_sum(mask, axis=1), tf.int64)\n return lengths, inputs\n\n def _CNNLayers(self, embeddings):\n _, input_embeddings = self._LookupEmbeddings(embeddings, self.input_x)\n input_embeddings = tf.expand_dims(input_embeddings, -1)\n with tf.variable_scope('CNN'):\n pooled_outputs = []\n for i, filter_size in enumerate(self._cnn_filter_sizes):\n with tf.variable_scope('conv-maxpool-%s' % filter_size):\n filter_shape = [filter_size, self._embedding_size, 1,\n self._cnn_num_filters]\n W = tf.Variable(tf.truncated_normal(filter_shape,\n stddev=0.1), name='W')\n b = tf.Variable(tf.constant(0.1, shape=[self.\n _cnn_num_filters]), name='b')\n conv = tf.nn.conv2d(input_embeddings, W, strides=[1, 1,\n 1, 1], padding='VALID', name='conv')\n h = tf.nn.relu(tf.nn.bias_add(conv, b), name='relu')\n pooled = tf.nn.max_pool(h, ksize=[1, self.\n _max_document_length - filter_size + 1, 1, 1],\n strides=[1, 1, 1, 1], padding='VALID', name='pool')\n pooled_outputs.append(pooled)\n num_filters_total = self._cnn_num_filters * len(self.\n _cnn_filter_sizes)\n cnn_encoding = tf.concat(pooled_outputs, 3)\n cnn_encoding = tf.reshape(cnn_encoding, [-1, num_filters_total])\n with tf.variable_scope('dropout'):\n cnn_encoding = tf.nn.dropout(cnn_encoding, 1 - self.dropout)\n cnn_encoding = tf.layers.dense(cnn_encoding, self._encoding_size)\n return cnn_encoding\n\n def _DNNLayers(self, embeddings):\n lengths, input_embeddings = self._LookupEmbeddings(embeddings, self\n .input_x)\n lengths = tf.expand_dims(lengths, -1)\n input_embeddings = tf.divide(tf.reduce_sum(input_embeddings, 1), tf\n .to_float(lengths))\n with tf.variable_scope('DNN'):\n input_tensor = tf.nn.dropout(input_embeddings, 1)\n for i, out_size in enumerate(self._dnn_layer_sizes):\n with tf.variable_scope('Layer_{0}'.format(i + 1)):\n in_size = input_tensor.get_shape()[1]\n stddev = 1.0 / tf.sqrt(tf.to_float(tf.maximum(in_size,\n out_size)))\n W = tf.get_variable('W', (in_size, out_size),\n initializer=tf.truncated_normal_initializer(stddev=\n stddev))\n b = tf.get_variable('b', out_size, initializer=tf.\n constant_initializer(0.1))\n input_tensor = tf.nn.bias_add(tf.matmul(input_tensor, W), b\n )\n if self._dnn_activation == 'relu':\n input_tensor = tf.nn.relu(input_tensor, name='relu')\n else:\n raise ValueError(\n 'dnn_activation function not supported.')\n return input_tensor\n\n def _RNNCells(self):\n if self._rnn_cell_type == 'GRU':\n cells = tf.contrib.rnn.MultiRNNCell([tf.nn.rnn_cell.GRUCell(\n self._embedding_size) for x in range(self._rnn_num_layers)],\n state_is_tuple=True)\n elif self._rnn_cell_type == 'LSTM':\n cells = tf.contrib.rnn.MultiRNNCell([tf.nn.rnn_cell.LSTMCell(\n self._embedding_size) for x in range(self._rnn_num_layers)],\n state_is_tuple=True)\n return cells\n\n def _RNNLayers(self, embeddings):\n _, fw_embeddings = self._LookupEmbeddings(embeddings, self.input_x)\n if self._rnn_bidirectional:\n _, bw_embeddings = self._LookupEmbeddings(embeddings, self.\n input_x_bw)\n with tf.variable_scope('RNN'):\n with tf.variable_scope('forward'):\n fw_cells = self._RNNCells()\n _, fw_state = tf.nn.dynamic_rnn(fw_cells, fw_embeddings,\n sequence_length=self.input_l, dtype=tf.float32)\n fw_encoding = fw_state[-1]\n if self._rnn_bidirectional:\n with tf.variable_scope('backward'):\n bw_cells = self._RNNCells()\n _, bw_state = tf.nn.dynamic_rnn(bw_cells, bw_embeddings,\n sequence_length=self.input_l, dtype=tf.float32)\n bw_encoding = bw_state[-1]\n rnn_encoding = tf.concat([fw_encoding, bw_encoding], axis=1)\n else:\n rnn_encoding = fw_encoding\n with tf.variable_scope('dropout'):\n rnn_encoding = tf.nn.dropout(rnn_encoding, 1 - self.dropout)\n rnn_encoding = tf.layers.dense(rnn_encoding, self._encoding_size)\n return rnn_encoding\n\n\ndef main():\n target = 'PICOSentence'\n if target == 'PICO':\n model = NNModel(mode=FLAGS.mode, is_classifier=True, encoder=FLAGS.\n encoder, num_tasks=1, task_names=['Classification'],\n max_document_length=FLAGS.max_document_length, cnn_filter_sizes\n =list(map(int, FLAGS.cnn_filter_sizes.split(','))),\n cnn_num_filters=FLAGS.cnn_num_filters, rnn_bidirectional=FLAGS.\n rnn_bidirectional, rnn_cell_type=FLAGS.rnn_cell_type,\n rnn_num_layers=FLAGS.rnn_num_layers)\n document_reader = pico_reader.PICOReader(annotype='Outcome')\n elif target == 'PICOSentence':\n is_classifier = False\n model = NNModel(mode=FLAGS.mode, is_classifier=is_classifier,\n encoder='CNN', num_tasks=1, task_names=['Outcome'],\n max_document_length=FLAGS.max_document_length, cnn_filter_sizes\n =list(map(int, FLAGS.cnn_filter_sizes.split(','))),\n cnn_num_filters=FLAGS.cnn_num_filters, rnn_bidirectional=FLAGS.\n rnn_bidirectional, rnn_cell_type=FLAGS.rnn_cell_type,\n rnn_num_layers=FLAGS.rnn_num_layers)\n document_reader = experiment_reader.ExperimentReader(annotype=\n 'Outcome', binary=is_classifier)\n elif target == 'NYT':\n model = NNModel(mode=FLAGS.mode, is_classifier=True, encoder='CNN',\n num_tasks=1, task_names=['Business'], max_document_length=FLAGS\n .max_document_length, cnn_filter_sizes=list(map(int, FLAGS.\n cnn_filter_sizes.split(','))), cnn_num_filters=FLAGS.\n cnn_num_filters, rnn_bidirectional=FLAGS.rnn_bidirectional,\n rnn_cell_type=FLAGS.rnn_cell_type, rnn_num_layers=FLAGS.\n rnn_num_layers, dnn_layer_sizes=list(map(int, FLAGS.\n dnn_layer_sizes.split(','))))\n document_reader = nyt_reader.NYTReader(genre='Business')\n else:\n raise ValueError('Error')\n if FLAGS.mode == MODE_TRAIN:\n nn_utils.train(model, document_reader, is_classifier=is_classifier,\n FLAGS=FLAGS)\n elif FLAGS.mode == MODE_EVAL:\n checkpoint = './test/train/model-2000'\n nn_utils.eval(model, document_reader, checkpoint, FLAGS=FLAGS)\n\n\nif __name__ == '__main__':\n flags = tf.app.flags\n flags.DEFINE_string('mode', 'train', 'Model mode')\n flags.DEFINE_integer('batch_size', 64, 'Batch Size (default: 64)')\n flags.DEFINE_integer('max_steps', 3000,\n 'Max steps of training (default: 3000)')\n flags.DEFINE_integer('num_epochs', 100,\n 'Number of training epochs (default: 100)')\n tf.flags.DEFINE_integer('evaluate_every', 500,\n 'Evaluate model on dev set after this many steps (default: 100)')\n tf.flags.DEFINE_integer('checkpoint_every', 2000,\n 'Save model after this many steps (default: 1000)')\n flags.DEFINE_float('dropout', 0.4, 'dropout')\n flags.DEFINE_float('learning_rate', 0.001, 'learning rate')\n flags.DEFINE_integer('max_document_length', 50, 'Max document length')\n flags.DEFINE_bool('rnn_bidirectional', True,\n 'Whther rnn is undirectional or bidirectional')\n flags.DEFINE_string('rnn_cell_type', 'GRU', 'RNN cell type, GRU or LSTM')\n flags.DEFINE_integer('rnn_num_layers', 2, 'Number of layers of RNN')\n flags.DEFINE_string('encoder', 'RNN',\n 'Type of encoder used to embed document')\n flags.DEFINE_string('cnn_filter_sizes', '3,4,5',\n 'Filter sizes in CNN encoder')\n flags.DEFINE_integer('cnn_num_filters', 32,\n 'Number of filters per filter size in CNN encoder')\n flags.DEFINE_string('dnn_layer_sizes', '256', 'Filter sizes in CNN encoder'\n )\n flags.DEFINE_string('output_fname', './tmp/output.out', 'Output file')\n FLAGS = tf.flags.FLAGS\n main()\n", "<import token>\n<assignment token>\n\n\nclass NNModel:\n\n def __init__(self, mode=MODE_TRAIN, running_dir='./test/', encoder=\n 'CNN', num_tasks=1, task_names=['Task'], max_document_length=64,\n is_classifier=True, l2_reg_lambda=0.1, cnn_filter_sizes=[3, 4, 5],\n cnn_num_filters=128, rnn_bidirectional=False, rnn_cell_type='GRU',\n rnn_num_layers=2, dnn_layer_sizes=[512]):\n self._train = True if mode == MODE_TRAIN else False\n self._max_document_length = max_document_length\n self._num_tasks = num_tasks\n self._is_classifier = is_classifier\n self._embedding_size = EMBEDDING_DIM\n self._encoder = encoder\n self._encoding_size = 300\n self._vocab = None\n self._task_names = task_names\n self._cnn_filter_sizes = cnn_filter_sizes\n self._cnn_num_filters = cnn_num_filters\n self._rnn_bidirectional = rnn_bidirectional\n self._rnn_cell_type = rnn_cell_type\n self._rnn_num_layers = rnn_num_layers\n self._dnn_layer_sizes = dnn_layer_sizes\n self._dnn_activation = 'relu'\n self._l2_reg_lambda = l2_reg_lambda\n self.ops = []\n self.loss = None\n self.eval_metrics = {}\n self.saver = None\n self.checkpoint_dir = os.path.join(running_dir, 'train/')\n self.eval_dir = os.path.join(running_dir, 'test/')\n\n def Graph(self):\n self.input_x = tf.placeholder(tf.int32, [None, self.\n _max_document_length], name='input_x')\n self.input_l = tf.placeholder(tf.int32, [None], name='input_l')\n self.input_y = tf.placeholder(tf.float32, [None, self._num_tasks],\n name='input_y')\n self.input_w = tf.placeholder(tf.float32, [None, self._num_tasks],\n name='input_w')\n self.dropout = tf.placeholder(tf.float32, name='dropout_prob')\n if self._rnn_bidirectional:\n self.input_x_bw = tf.placeholder(tf.int32, [None, self.\n _max_document_length], name='input_x_bw')\n else:\n self.input_x_bw = None\n vocab, init_embedding = self._LoadInitEmbeddings()\n\n def _tokenizer(xs):\n return [x.split(' ') for x in xs]\n self._vocab = learn.preprocessing.VocabularyProcessor(self.\n _max_document_length, tokenizer_fn=_tokenizer)\n self._vocab.fit(vocab)\n init_embedding = np.vstack([np.random.normal(size=self.\n _embedding_size), init_embedding])\n vocab_size = len(self._vocab.vocabulary_)\n with tf.variable_scope('WordEmbeddings'):\n embeddings = tf.get_variable(name='W', shape=init_embedding.\n shape, initializer=tf.constant_initializer(init_embedding),\n trainable=False)\n if self._encoder == 'CNN':\n input_encoded = self._CNNLayers(embeddings)\n elif self._encoder == 'RNN':\n input_encoded = self._RNNLayers(embeddings)\n elif self._encoder == 'DNN':\n input_encoded = self._DNNLayers(embeddings)\n self.input_encoded = input_encoded\n with tf.variable_scope('dropout'):\n input_encoded = tf.nn.dropout(input_encoded, 1 - self.dropout)\n if self._is_classifier:\n preds, pred_scores, loss = self._classifier(input_encoded, self\n .input_y, self.input_w)\n self.ops.extend([preds, pred_scores, loss])\n else:\n pred_scores, loss = self._regressor(input_encoded, self.input_y,\n self.input_w)\n self.ops.extend([pred_scores, pred_scores, loss])\n self.loss = loss\n self.saver = tf.train.Saver(tf.global_variables())\n return self\n\n def _classifier(self, input_encoded, output, weights):\n total_loss = tf.constant(0.0)\n pooled_scores = []\n pooled_predictions = []\n for idx in range(self._num_tasks):\n gts = tf.expand_dims(output[:, idx], -1)\n wts = tf.expand_dims(weights[:, idx], -1)\n with tf.variable_scope('{0}_classifier'.format(self._task_names\n [idx])):\n labels = tf.concat([1 - gts, gts], 1)\n logits = tf.layers.dense(input_encoded, 2,\n kernel_regularizer=tf.contrib.layers.l2_regularizer(\n self._l2_reg_lambda))\n scores = tf.reduce_max(tf.nn.softmax(logits), 1)\n predictions = tf.argmax(logits, 1, name='predictions')\n pooled_predictions.append(predictions)\n pooled_scores.append(scores)\n losses = tf.nn.softmax_cross_entropy_with_logits(logits=\n logits, labels=labels)\n self.eval_metrics['{0}/Accuracy'.format(self._task_names[idx])\n ] = tf.metrics.accuracy(gts, predictions, weights=wts)\n self.eval_metrics['{0}/Precision'.format(self._task_names[idx])\n ] = tf.metrics.precision(gts, predictions, weights=wts)\n self.eval_metrics['{0}/Recall'.format(self._task_names[idx])\n ] = tf.metrics.recall(gts, predictions, weights=wts)\n total_loss += tf.reduce_mean(losses * wts)\n pooled_predictions = tf.stack(pooled_predictions, axis=1)\n pooled_scores = tf.stack(pooled_scores, axis=1)\n return pooled_predictions, pooled_scores, total_loss\n\n def _regressor(self, input_encoded, output, weights):\n total_loss = tf.constant(0.0)\n pooled_logits = []\n for idx in range(self._num_tasks):\n with tf.variable_scope('{0}_regressor'.format(self._task_names[\n idx])):\n logits = tf.layers.dense(input_encoded, 1,\n kernel_regularizer=tf.contrib.layers.l2_regularizer(\n self._l2_reg_lambda))\n gts = tf.expand_dims(output[:, idx], -1)\n wts = tf.expand_dims(weights[:, idx], -1)\n losses = tf.nn.sigmoid_cross_entropy_with_logits(logits=\n logits, labels=gts)\n total_loss += tf.reduce_mean(losses * wts)\n pooled_logits.append(tf.sigmoid(logits))\n self.eval_metrics['{0}/Pearsonr'.format(self._task_names[idx])\n ] = tf.contrib.metrics.streaming_pearson_correlation(logits\n , gts, weights=wts)\n pooled_logits = tf.stack(pooled_logits, axis=1)\n pooled_logits = tf.squeeze(pooled_logits, axis=-1)\n return pooled_logits, total_loss\n\n def _LoadInitEmbeddings(self):\n w2v_model = gensim.models.KeyedVectors.load_word2vec_format(\n W2VModelFILE, binary=False)\n vocab = []\n embd = []\n for token in w2v_model.vocab:\n vec = w2v_model[token]\n vocab.append(token)\n embd.append(vec)\n embedding = np.asarray(embd)\n return vocab, embedding\n\n def _LookupEmbeddings(self, embeddings, inputs):\n mask = tf.to_float(tf.not_equal(inputs, 0))\n inputs = tf.nn.embedding_lookup(embeddings, inputs)\n lengths = tf.cast(tf.reduce_sum(mask, axis=1), tf.int64)\n return lengths, inputs\n\n def _CNNLayers(self, embeddings):\n _, input_embeddings = self._LookupEmbeddings(embeddings, self.input_x)\n input_embeddings = tf.expand_dims(input_embeddings, -1)\n with tf.variable_scope('CNN'):\n pooled_outputs = []\n for i, filter_size in enumerate(self._cnn_filter_sizes):\n with tf.variable_scope('conv-maxpool-%s' % filter_size):\n filter_shape = [filter_size, self._embedding_size, 1,\n self._cnn_num_filters]\n W = tf.Variable(tf.truncated_normal(filter_shape,\n stddev=0.1), name='W')\n b = tf.Variable(tf.constant(0.1, shape=[self.\n _cnn_num_filters]), name='b')\n conv = tf.nn.conv2d(input_embeddings, W, strides=[1, 1,\n 1, 1], padding='VALID', name='conv')\n h = tf.nn.relu(tf.nn.bias_add(conv, b), name='relu')\n pooled = tf.nn.max_pool(h, ksize=[1, self.\n _max_document_length - filter_size + 1, 1, 1],\n strides=[1, 1, 1, 1], padding='VALID', name='pool')\n pooled_outputs.append(pooled)\n num_filters_total = self._cnn_num_filters * len(self.\n _cnn_filter_sizes)\n cnn_encoding = tf.concat(pooled_outputs, 3)\n cnn_encoding = tf.reshape(cnn_encoding, [-1, num_filters_total])\n with tf.variable_scope('dropout'):\n cnn_encoding = tf.nn.dropout(cnn_encoding, 1 - self.dropout)\n cnn_encoding = tf.layers.dense(cnn_encoding, self._encoding_size)\n return cnn_encoding\n\n def _DNNLayers(self, embeddings):\n lengths, input_embeddings = self._LookupEmbeddings(embeddings, self\n .input_x)\n lengths = tf.expand_dims(lengths, -1)\n input_embeddings = tf.divide(tf.reduce_sum(input_embeddings, 1), tf\n .to_float(lengths))\n with tf.variable_scope('DNN'):\n input_tensor = tf.nn.dropout(input_embeddings, 1)\n for i, out_size in enumerate(self._dnn_layer_sizes):\n with tf.variable_scope('Layer_{0}'.format(i + 1)):\n in_size = input_tensor.get_shape()[1]\n stddev = 1.0 / tf.sqrt(tf.to_float(tf.maximum(in_size,\n out_size)))\n W = tf.get_variable('W', (in_size, out_size),\n initializer=tf.truncated_normal_initializer(stddev=\n stddev))\n b = tf.get_variable('b', out_size, initializer=tf.\n constant_initializer(0.1))\n input_tensor = tf.nn.bias_add(tf.matmul(input_tensor, W), b\n )\n if self._dnn_activation == 'relu':\n input_tensor = tf.nn.relu(input_tensor, name='relu')\n else:\n raise ValueError(\n 'dnn_activation function not supported.')\n return input_tensor\n\n def _RNNCells(self):\n if self._rnn_cell_type == 'GRU':\n cells = tf.contrib.rnn.MultiRNNCell([tf.nn.rnn_cell.GRUCell(\n self._embedding_size) for x in range(self._rnn_num_layers)],\n state_is_tuple=True)\n elif self._rnn_cell_type == 'LSTM':\n cells = tf.contrib.rnn.MultiRNNCell([tf.nn.rnn_cell.LSTMCell(\n self._embedding_size) for x in range(self._rnn_num_layers)],\n state_is_tuple=True)\n return cells\n\n def _RNNLayers(self, embeddings):\n _, fw_embeddings = self._LookupEmbeddings(embeddings, self.input_x)\n if self._rnn_bidirectional:\n _, bw_embeddings = self._LookupEmbeddings(embeddings, self.\n input_x_bw)\n with tf.variable_scope('RNN'):\n with tf.variable_scope('forward'):\n fw_cells = self._RNNCells()\n _, fw_state = tf.nn.dynamic_rnn(fw_cells, fw_embeddings,\n sequence_length=self.input_l, dtype=tf.float32)\n fw_encoding = fw_state[-1]\n if self._rnn_bidirectional:\n with tf.variable_scope('backward'):\n bw_cells = self._RNNCells()\n _, bw_state = tf.nn.dynamic_rnn(bw_cells, bw_embeddings,\n sequence_length=self.input_l, dtype=tf.float32)\n bw_encoding = bw_state[-1]\n rnn_encoding = tf.concat([fw_encoding, bw_encoding], axis=1)\n else:\n rnn_encoding = fw_encoding\n with tf.variable_scope('dropout'):\n rnn_encoding = tf.nn.dropout(rnn_encoding, 1 - self.dropout)\n rnn_encoding = tf.layers.dense(rnn_encoding, self._encoding_size)\n return rnn_encoding\n\n\ndef main():\n target = 'PICOSentence'\n if target == 'PICO':\n model = NNModel(mode=FLAGS.mode, is_classifier=True, encoder=FLAGS.\n encoder, num_tasks=1, task_names=['Classification'],\n max_document_length=FLAGS.max_document_length, cnn_filter_sizes\n =list(map(int, FLAGS.cnn_filter_sizes.split(','))),\n cnn_num_filters=FLAGS.cnn_num_filters, rnn_bidirectional=FLAGS.\n rnn_bidirectional, rnn_cell_type=FLAGS.rnn_cell_type,\n rnn_num_layers=FLAGS.rnn_num_layers)\n document_reader = pico_reader.PICOReader(annotype='Outcome')\n elif target == 'PICOSentence':\n is_classifier = False\n model = NNModel(mode=FLAGS.mode, is_classifier=is_classifier,\n encoder='CNN', num_tasks=1, task_names=['Outcome'],\n max_document_length=FLAGS.max_document_length, cnn_filter_sizes\n =list(map(int, FLAGS.cnn_filter_sizes.split(','))),\n cnn_num_filters=FLAGS.cnn_num_filters, rnn_bidirectional=FLAGS.\n rnn_bidirectional, rnn_cell_type=FLAGS.rnn_cell_type,\n rnn_num_layers=FLAGS.rnn_num_layers)\n document_reader = experiment_reader.ExperimentReader(annotype=\n 'Outcome', binary=is_classifier)\n elif target == 'NYT':\n model = NNModel(mode=FLAGS.mode, is_classifier=True, encoder='CNN',\n num_tasks=1, task_names=['Business'], max_document_length=FLAGS\n .max_document_length, cnn_filter_sizes=list(map(int, FLAGS.\n cnn_filter_sizes.split(','))), cnn_num_filters=FLAGS.\n cnn_num_filters, rnn_bidirectional=FLAGS.rnn_bidirectional,\n rnn_cell_type=FLAGS.rnn_cell_type, rnn_num_layers=FLAGS.\n rnn_num_layers, dnn_layer_sizes=list(map(int, FLAGS.\n dnn_layer_sizes.split(','))))\n document_reader = nyt_reader.NYTReader(genre='Business')\n else:\n raise ValueError('Error')\n if FLAGS.mode == MODE_TRAIN:\n nn_utils.train(model, document_reader, is_classifier=is_classifier,\n FLAGS=FLAGS)\n elif FLAGS.mode == MODE_EVAL:\n checkpoint = './test/train/model-2000'\n nn_utils.eval(model, document_reader, checkpoint, FLAGS=FLAGS)\n\n\nif __name__ == '__main__':\n flags = tf.app.flags\n flags.DEFINE_string('mode', 'train', 'Model mode')\n flags.DEFINE_integer('batch_size', 64, 'Batch Size (default: 64)')\n flags.DEFINE_integer('max_steps', 3000,\n 'Max steps of training (default: 3000)')\n flags.DEFINE_integer('num_epochs', 100,\n 'Number of training epochs (default: 100)')\n tf.flags.DEFINE_integer('evaluate_every', 500,\n 'Evaluate model on dev set after this many steps (default: 100)')\n tf.flags.DEFINE_integer('checkpoint_every', 2000,\n 'Save model after this many steps (default: 1000)')\n flags.DEFINE_float('dropout', 0.4, 'dropout')\n flags.DEFINE_float('learning_rate', 0.001, 'learning rate')\n flags.DEFINE_integer('max_document_length', 50, 'Max document length')\n flags.DEFINE_bool('rnn_bidirectional', True,\n 'Whther rnn is undirectional or bidirectional')\n flags.DEFINE_string('rnn_cell_type', 'GRU', 'RNN cell type, GRU or LSTM')\n flags.DEFINE_integer('rnn_num_layers', 2, 'Number of layers of RNN')\n flags.DEFINE_string('encoder', 'RNN',\n 'Type of encoder used to embed document')\n flags.DEFINE_string('cnn_filter_sizes', '3,4,5',\n 'Filter sizes in CNN encoder')\n flags.DEFINE_integer('cnn_num_filters', 32,\n 'Number of filters per filter size in CNN encoder')\n flags.DEFINE_string('dnn_layer_sizes', '256', 'Filter sizes in CNN encoder'\n )\n flags.DEFINE_string('output_fname', './tmp/output.out', 'Output file')\n FLAGS = tf.flags.FLAGS\n main()\n", "<import token>\n<assignment token>\n\n\nclass NNModel:\n\n def __init__(self, mode=MODE_TRAIN, running_dir='./test/', encoder=\n 'CNN', num_tasks=1, task_names=['Task'], max_document_length=64,\n is_classifier=True, l2_reg_lambda=0.1, cnn_filter_sizes=[3, 4, 5],\n cnn_num_filters=128, rnn_bidirectional=False, rnn_cell_type='GRU',\n rnn_num_layers=2, dnn_layer_sizes=[512]):\n self._train = True if mode == MODE_TRAIN else False\n self._max_document_length = max_document_length\n self._num_tasks = num_tasks\n self._is_classifier = is_classifier\n self._embedding_size = EMBEDDING_DIM\n self._encoder = encoder\n self._encoding_size = 300\n self._vocab = None\n self._task_names = task_names\n self._cnn_filter_sizes = cnn_filter_sizes\n self._cnn_num_filters = cnn_num_filters\n self._rnn_bidirectional = rnn_bidirectional\n self._rnn_cell_type = rnn_cell_type\n self._rnn_num_layers = rnn_num_layers\n self._dnn_layer_sizes = dnn_layer_sizes\n self._dnn_activation = 'relu'\n self._l2_reg_lambda = l2_reg_lambda\n self.ops = []\n self.loss = None\n self.eval_metrics = {}\n self.saver = None\n self.checkpoint_dir = os.path.join(running_dir, 'train/')\n self.eval_dir = os.path.join(running_dir, 'test/')\n\n def Graph(self):\n self.input_x = tf.placeholder(tf.int32, [None, self.\n _max_document_length], name='input_x')\n self.input_l = tf.placeholder(tf.int32, [None], name='input_l')\n self.input_y = tf.placeholder(tf.float32, [None, self._num_tasks],\n name='input_y')\n self.input_w = tf.placeholder(tf.float32, [None, self._num_tasks],\n name='input_w')\n self.dropout = tf.placeholder(tf.float32, name='dropout_prob')\n if self._rnn_bidirectional:\n self.input_x_bw = tf.placeholder(tf.int32, [None, self.\n _max_document_length], name='input_x_bw')\n else:\n self.input_x_bw = None\n vocab, init_embedding = self._LoadInitEmbeddings()\n\n def _tokenizer(xs):\n return [x.split(' ') for x in xs]\n self._vocab = learn.preprocessing.VocabularyProcessor(self.\n _max_document_length, tokenizer_fn=_tokenizer)\n self._vocab.fit(vocab)\n init_embedding = np.vstack([np.random.normal(size=self.\n _embedding_size), init_embedding])\n vocab_size = len(self._vocab.vocabulary_)\n with tf.variable_scope('WordEmbeddings'):\n embeddings = tf.get_variable(name='W', shape=init_embedding.\n shape, initializer=tf.constant_initializer(init_embedding),\n trainable=False)\n if self._encoder == 'CNN':\n input_encoded = self._CNNLayers(embeddings)\n elif self._encoder == 'RNN':\n input_encoded = self._RNNLayers(embeddings)\n elif self._encoder == 'DNN':\n input_encoded = self._DNNLayers(embeddings)\n self.input_encoded = input_encoded\n with tf.variable_scope('dropout'):\n input_encoded = tf.nn.dropout(input_encoded, 1 - self.dropout)\n if self._is_classifier:\n preds, pred_scores, loss = self._classifier(input_encoded, self\n .input_y, self.input_w)\n self.ops.extend([preds, pred_scores, loss])\n else:\n pred_scores, loss = self._regressor(input_encoded, self.input_y,\n self.input_w)\n self.ops.extend([pred_scores, pred_scores, loss])\n self.loss = loss\n self.saver = tf.train.Saver(tf.global_variables())\n return self\n\n def _classifier(self, input_encoded, output, weights):\n total_loss = tf.constant(0.0)\n pooled_scores = []\n pooled_predictions = []\n for idx in range(self._num_tasks):\n gts = tf.expand_dims(output[:, idx], -1)\n wts = tf.expand_dims(weights[:, idx], -1)\n with tf.variable_scope('{0}_classifier'.format(self._task_names\n [idx])):\n labels = tf.concat([1 - gts, gts], 1)\n logits = tf.layers.dense(input_encoded, 2,\n kernel_regularizer=tf.contrib.layers.l2_regularizer(\n self._l2_reg_lambda))\n scores = tf.reduce_max(tf.nn.softmax(logits), 1)\n predictions = tf.argmax(logits, 1, name='predictions')\n pooled_predictions.append(predictions)\n pooled_scores.append(scores)\n losses = tf.nn.softmax_cross_entropy_with_logits(logits=\n logits, labels=labels)\n self.eval_metrics['{0}/Accuracy'.format(self._task_names[idx])\n ] = tf.metrics.accuracy(gts, predictions, weights=wts)\n self.eval_metrics['{0}/Precision'.format(self._task_names[idx])\n ] = tf.metrics.precision(gts, predictions, weights=wts)\n self.eval_metrics['{0}/Recall'.format(self._task_names[idx])\n ] = tf.metrics.recall(gts, predictions, weights=wts)\n total_loss += tf.reduce_mean(losses * wts)\n pooled_predictions = tf.stack(pooled_predictions, axis=1)\n pooled_scores = tf.stack(pooled_scores, axis=1)\n return pooled_predictions, pooled_scores, total_loss\n\n def _regressor(self, input_encoded, output, weights):\n total_loss = tf.constant(0.0)\n pooled_logits = []\n for idx in range(self._num_tasks):\n with tf.variable_scope('{0}_regressor'.format(self._task_names[\n idx])):\n logits = tf.layers.dense(input_encoded, 1,\n kernel_regularizer=tf.contrib.layers.l2_regularizer(\n self._l2_reg_lambda))\n gts = tf.expand_dims(output[:, idx], -1)\n wts = tf.expand_dims(weights[:, idx], -1)\n losses = tf.nn.sigmoid_cross_entropy_with_logits(logits=\n logits, labels=gts)\n total_loss += tf.reduce_mean(losses * wts)\n pooled_logits.append(tf.sigmoid(logits))\n self.eval_metrics['{0}/Pearsonr'.format(self._task_names[idx])\n ] = tf.contrib.metrics.streaming_pearson_correlation(logits\n , gts, weights=wts)\n pooled_logits = tf.stack(pooled_logits, axis=1)\n pooled_logits = tf.squeeze(pooled_logits, axis=-1)\n return pooled_logits, total_loss\n\n def _LoadInitEmbeddings(self):\n w2v_model = gensim.models.KeyedVectors.load_word2vec_format(\n W2VModelFILE, binary=False)\n vocab = []\n embd = []\n for token in w2v_model.vocab:\n vec = w2v_model[token]\n vocab.append(token)\n embd.append(vec)\n embedding = np.asarray(embd)\n return vocab, embedding\n\n def _LookupEmbeddings(self, embeddings, inputs):\n mask = tf.to_float(tf.not_equal(inputs, 0))\n inputs = tf.nn.embedding_lookup(embeddings, inputs)\n lengths = tf.cast(tf.reduce_sum(mask, axis=1), tf.int64)\n return lengths, inputs\n\n def _CNNLayers(self, embeddings):\n _, input_embeddings = self._LookupEmbeddings(embeddings, self.input_x)\n input_embeddings = tf.expand_dims(input_embeddings, -1)\n with tf.variable_scope('CNN'):\n pooled_outputs = []\n for i, filter_size in enumerate(self._cnn_filter_sizes):\n with tf.variable_scope('conv-maxpool-%s' % filter_size):\n filter_shape = [filter_size, self._embedding_size, 1,\n self._cnn_num_filters]\n W = tf.Variable(tf.truncated_normal(filter_shape,\n stddev=0.1), name='W')\n b = tf.Variable(tf.constant(0.1, shape=[self.\n _cnn_num_filters]), name='b')\n conv = tf.nn.conv2d(input_embeddings, W, strides=[1, 1,\n 1, 1], padding='VALID', name='conv')\n h = tf.nn.relu(tf.nn.bias_add(conv, b), name='relu')\n pooled = tf.nn.max_pool(h, ksize=[1, self.\n _max_document_length - filter_size + 1, 1, 1],\n strides=[1, 1, 1, 1], padding='VALID', name='pool')\n pooled_outputs.append(pooled)\n num_filters_total = self._cnn_num_filters * len(self.\n _cnn_filter_sizes)\n cnn_encoding = tf.concat(pooled_outputs, 3)\n cnn_encoding = tf.reshape(cnn_encoding, [-1, num_filters_total])\n with tf.variable_scope('dropout'):\n cnn_encoding = tf.nn.dropout(cnn_encoding, 1 - self.dropout)\n cnn_encoding = tf.layers.dense(cnn_encoding, self._encoding_size)\n return cnn_encoding\n\n def _DNNLayers(self, embeddings):\n lengths, input_embeddings = self._LookupEmbeddings(embeddings, self\n .input_x)\n lengths = tf.expand_dims(lengths, -1)\n input_embeddings = tf.divide(tf.reduce_sum(input_embeddings, 1), tf\n .to_float(lengths))\n with tf.variable_scope('DNN'):\n input_tensor = tf.nn.dropout(input_embeddings, 1)\n for i, out_size in enumerate(self._dnn_layer_sizes):\n with tf.variable_scope('Layer_{0}'.format(i + 1)):\n in_size = input_tensor.get_shape()[1]\n stddev = 1.0 / tf.sqrt(tf.to_float(tf.maximum(in_size,\n out_size)))\n W = tf.get_variable('W', (in_size, out_size),\n initializer=tf.truncated_normal_initializer(stddev=\n stddev))\n b = tf.get_variable('b', out_size, initializer=tf.\n constant_initializer(0.1))\n input_tensor = tf.nn.bias_add(tf.matmul(input_tensor, W), b\n )\n if self._dnn_activation == 'relu':\n input_tensor = tf.nn.relu(input_tensor, name='relu')\n else:\n raise ValueError(\n 'dnn_activation function not supported.')\n return input_tensor\n\n def _RNNCells(self):\n if self._rnn_cell_type == 'GRU':\n cells = tf.contrib.rnn.MultiRNNCell([tf.nn.rnn_cell.GRUCell(\n self._embedding_size) for x in range(self._rnn_num_layers)],\n state_is_tuple=True)\n elif self._rnn_cell_type == 'LSTM':\n cells = tf.contrib.rnn.MultiRNNCell([tf.nn.rnn_cell.LSTMCell(\n self._embedding_size) for x in range(self._rnn_num_layers)],\n state_is_tuple=True)\n return cells\n\n def _RNNLayers(self, embeddings):\n _, fw_embeddings = self._LookupEmbeddings(embeddings, self.input_x)\n if self._rnn_bidirectional:\n _, bw_embeddings = self._LookupEmbeddings(embeddings, self.\n input_x_bw)\n with tf.variable_scope('RNN'):\n with tf.variable_scope('forward'):\n fw_cells = self._RNNCells()\n _, fw_state = tf.nn.dynamic_rnn(fw_cells, fw_embeddings,\n sequence_length=self.input_l, dtype=tf.float32)\n fw_encoding = fw_state[-1]\n if self._rnn_bidirectional:\n with tf.variable_scope('backward'):\n bw_cells = self._RNNCells()\n _, bw_state = tf.nn.dynamic_rnn(bw_cells, bw_embeddings,\n sequence_length=self.input_l, dtype=tf.float32)\n bw_encoding = bw_state[-1]\n rnn_encoding = tf.concat([fw_encoding, bw_encoding], axis=1)\n else:\n rnn_encoding = fw_encoding\n with tf.variable_scope('dropout'):\n rnn_encoding = tf.nn.dropout(rnn_encoding, 1 - self.dropout)\n rnn_encoding = tf.layers.dense(rnn_encoding, self._encoding_size)\n return rnn_encoding\n\n\ndef main():\n target = 'PICOSentence'\n if target == 'PICO':\n model = NNModel(mode=FLAGS.mode, is_classifier=True, encoder=FLAGS.\n encoder, num_tasks=1, task_names=['Classification'],\n max_document_length=FLAGS.max_document_length, cnn_filter_sizes\n =list(map(int, FLAGS.cnn_filter_sizes.split(','))),\n cnn_num_filters=FLAGS.cnn_num_filters, rnn_bidirectional=FLAGS.\n rnn_bidirectional, rnn_cell_type=FLAGS.rnn_cell_type,\n rnn_num_layers=FLAGS.rnn_num_layers)\n document_reader = pico_reader.PICOReader(annotype='Outcome')\n elif target == 'PICOSentence':\n is_classifier = False\n model = NNModel(mode=FLAGS.mode, is_classifier=is_classifier,\n encoder='CNN', num_tasks=1, task_names=['Outcome'],\n max_document_length=FLAGS.max_document_length, cnn_filter_sizes\n =list(map(int, FLAGS.cnn_filter_sizes.split(','))),\n cnn_num_filters=FLAGS.cnn_num_filters, rnn_bidirectional=FLAGS.\n rnn_bidirectional, rnn_cell_type=FLAGS.rnn_cell_type,\n rnn_num_layers=FLAGS.rnn_num_layers)\n document_reader = experiment_reader.ExperimentReader(annotype=\n 'Outcome', binary=is_classifier)\n elif target == 'NYT':\n model = NNModel(mode=FLAGS.mode, is_classifier=True, encoder='CNN',\n num_tasks=1, task_names=['Business'], max_document_length=FLAGS\n .max_document_length, cnn_filter_sizes=list(map(int, FLAGS.\n cnn_filter_sizes.split(','))), cnn_num_filters=FLAGS.\n cnn_num_filters, rnn_bidirectional=FLAGS.rnn_bidirectional,\n rnn_cell_type=FLAGS.rnn_cell_type, rnn_num_layers=FLAGS.\n rnn_num_layers, dnn_layer_sizes=list(map(int, FLAGS.\n dnn_layer_sizes.split(','))))\n document_reader = nyt_reader.NYTReader(genre='Business')\n else:\n raise ValueError('Error')\n if FLAGS.mode == MODE_TRAIN:\n nn_utils.train(model, document_reader, is_classifier=is_classifier,\n FLAGS=FLAGS)\n elif FLAGS.mode == MODE_EVAL:\n checkpoint = './test/train/model-2000'\n nn_utils.eval(model, document_reader, checkpoint, FLAGS=FLAGS)\n\n\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass NNModel:\n\n def __init__(self, mode=MODE_TRAIN, running_dir='./test/', encoder=\n 'CNN', num_tasks=1, task_names=['Task'], max_document_length=64,\n is_classifier=True, l2_reg_lambda=0.1, cnn_filter_sizes=[3, 4, 5],\n cnn_num_filters=128, rnn_bidirectional=False, rnn_cell_type='GRU',\n rnn_num_layers=2, dnn_layer_sizes=[512]):\n self._train = True if mode == MODE_TRAIN else False\n self._max_document_length = max_document_length\n self._num_tasks = num_tasks\n self._is_classifier = is_classifier\n self._embedding_size = EMBEDDING_DIM\n self._encoder = encoder\n self._encoding_size = 300\n self._vocab = None\n self._task_names = task_names\n self._cnn_filter_sizes = cnn_filter_sizes\n self._cnn_num_filters = cnn_num_filters\n self._rnn_bidirectional = rnn_bidirectional\n self._rnn_cell_type = rnn_cell_type\n self._rnn_num_layers = rnn_num_layers\n self._dnn_layer_sizes = dnn_layer_sizes\n self._dnn_activation = 'relu'\n self._l2_reg_lambda = l2_reg_lambda\n self.ops = []\n self.loss = None\n self.eval_metrics = {}\n self.saver = None\n self.checkpoint_dir = os.path.join(running_dir, 'train/')\n self.eval_dir = os.path.join(running_dir, 'test/')\n\n def Graph(self):\n self.input_x = tf.placeholder(tf.int32, [None, self.\n _max_document_length], name='input_x')\n self.input_l = tf.placeholder(tf.int32, [None], name='input_l')\n self.input_y = tf.placeholder(tf.float32, [None, self._num_tasks],\n name='input_y')\n self.input_w = tf.placeholder(tf.float32, [None, self._num_tasks],\n name='input_w')\n self.dropout = tf.placeholder(tf.float32, name='dropout_prob')\n if self._rnn_bidirectional:\n self.input_x_bw = tf.placeholder(tf.int32, [None, self.\n _max_document_length], name='input_x_bw')\n else:\n self.input_x_bw = None\n vocab, init_embedding = self._LoadInitEmbeddings()\n\n def _tokenizer(xs):\n return [x.split(' ') for x in xs]\n self._vocab = learn.preprocessing.VocabularyProcessor(self.\n _max_document_length, tokenizer_fn=_tokenizer)\n self._vocab.fit(vocab)\n init_embedding = np.vstack([np.random.normal(size=self.\n _embedding_size), init_embedding])\n vocab_size = len(self._vocab.vocabulary_)\n with tf.variable_scope('WordEmbeddings'):\n embeddings = tf.get_variable(name='W', shape=init_embedding.\n shape, initializer=tf.constant_initializer(init_embedding),\n trainable=False)\n if self._encoder == 'CNN':\n input_encoded = self._CNNLayers(embeddings)\n elif self._encoder == 'RNN':\n input_encoded = self._RNNLayers(embeddings)\n elif self._encoder == 'DNN':\n input_encoded = self._DNNLayers(embeddings)\n self.input_encoded = input_encoded\n with tf.variable_scope('dropout'):\n input_encoded = tf.nn.dropout(input_encoded, 1 - self.dropout)\n if self._is_classifier:\n preds, pred_scores, loss = self._classifier(input_encoded, self\n .input_y, self.input_w)\n self.ops.extend([preds, pred_scores, loss])\n else:\n pred_scores, loss = self._regressor(input_encoded, self.input_y,\n self.input_w)\n self.ops.extend([pred_scores, pred_scores, loss])\n self.loss = loss\n self.saver = tf.train.Saver(tf.global_variables())\n return self\n\n def _classifier(self, input_encoded, output, weights):\n total_loss = tf.constant(0.0)\n pooled_scores = []\n pooled_predictions = []\n for idx in range(self._num_tasks):\n gts = tf.expand_dims(output[:, idx], -1)\n wts = tf.expand_dims(weights[:, idx], -1)\n with tf.variable_scope('{0}_classifier'.format(self._task_names\n [idx])):\n labels = tf.concat([1 - gts, gts], 1)\n logits = tf.layers.dense(input_encoded, 2,\n kernel_regularizer=tf.contrib.layers.l2_regularizer(\n self._l2_reg_lambda))\n scores = tf.reduce_max(tf.nn.softmax(logits), 1)\n predictions = tf.argmax(logits, 1, name='predictions')\n pooled_predictions.append(predictions)\n pooled_scores.append(scores)\n losses = tf.nn.softmax_cross_entropy_with_logits(logits=\n logits, labels=labels)\n self.eval_metrics['{0}/Accuracy'.format(self._task_names[idx])\n ] = tf.metrics.accuracy(gts, predictions, weights=wts)\n self.eval_metrics['{0}/Precision'.format(self._task_names[idx])\n ] = tf.metrics.precision(gts, predictions, weights=wts)\n self.eval_metrics['{0}/Recall'.format(self._task_names[idx])\n ] = tf.metrics.recall(gts, predictions, weights=wts)\n total_loss += tf.reduce_mean(losses * wts)\n pooled_predictions = tf.stack(pooled_predictions, axis=1)\n pooled_scores = tf.stack(pooled_scores, axis=1)\n return pooled_predictions, pooled_scores, total_loss\n\n def _regressor(self, input_encoded, output, weights):\n total_loss = tf.constant(0.0)\n pooled_logits = []\n for idx in range(self._num_tasks):\n with tf.variable_scope('{0}_regressor'.format(self._task_names[\n idx])):\n logits = tf.layers.dense(input_encoded, 1,\n kernel_regularizer=tf.contrib.layers.l2_regularizer(\n self._l2_reg_lambda))\n gts = tf.expand_dims(output[:, idx], -1)\n wts = tf.expand_dims(weights[:, idx], -1)\n losses = tf.nn.sigmoid_cross_entropy_with_logits(logits=\n logits, labels=gts)\n total_loss += tf.reduce_mean(losses * wts)\n pooled_logits.append(tf.sigmoid(logits))\n self.eval_metrics['{0}/Pearsonr'.format(self._task_names[idx])\n ] = tf.contrib.metrics.streaming_pearson_correlation(logits\n , gts, weights=wts)\n pooled_logits = tf.stack(pooled_logits, axis=1)\n pooled_logits = tf.squeeze(pooled_logits, axis=-1)\n return pooled_logits, total_loss\n\n def _LoadInitEmbeddings(self):\n w2v_model = gensim.models.KeyedVectors.load_word2vec_format(\n W2VModelFILE, binary=False)\n vocab = []\n embd = []\n for token in w2v_model.vocab:\n vec = w2v_model[token]\n vocab.append(token)\n embd.append(vec)\n embedding = np.asarray(embd)\n return vocab, embedding\n\n def _LookupEmbeddings(self, embeddings, inputs):\n mask = tf.to_float(tf.not_equal(inputs, 0))\n inputs = tf.nn.embedding_lookup(embeddings, inputs)\n lengths = tf.cast(tf.reduce_sum(mask, axis=1), tf.int64)\n return lengths, inputs\n\n def _CNNLayers(self, embeddings):\n _, input_embeddings = self._LookupEmbeddings(embeddings, self.input_x)\n input_embeddings = tf.expand_dims(input_embeddings, -1)\n with tf.variable_scope('CNN'):\n pooled_outputs = []\n for i, filter_size in enumerate(self._cnn_filter_sizes):\n with tf.variable_scope('conv-maxpool-%s' % filter_size):\n filter_shape = [filter_size, self._embedding_size, 1,\n self._cnn_num_filters]\n W = tf.Variable(tf.truncated_normal(filter_shape,\n stddev=0.1), name='W')\n b = tf.Variable(tf.constant(0.1, shape=[self.\n _cnn_num_filters]), name='b')\n conv = tf.nn.conv2d(input_embeddings, W, strides=[1, 1,\n 1, 1], padding='VALID', name='conv')\n h = tf.nn.relu(tf.nn.bias_add(conv, b), name='relu')\n pooled = tf.nn.max_pool(h, ksize=[1, self.\n _max_document_length - filter_size + 1, 1, 1],\n strides=[1, 1, 1, 1], padding='VALID', name='pool')\n pooled_outputs.append(pooled)\n num_filters_total = self._cnn_num_filters * len(self.\n _cnn_filter_sizes)\n cnn_encoding = tf.concat(pooled_outputs, 3)\n cnn_encoding = tf.reshape(cnn_encoding, [-1, num_filters_total])\n with tf.variable_scope('dropout'):\n cnn_encoding = tf.nn.dropout(cnn_encoding, 1 - self.dropout)\n cnn_encoding = tf.layers.dense(cnn_encoding, self._encoding_size)\n return cnn_encoding\n\n def _DNNLayers(self, embeddings):\n lengths, input_embeddings = self._LookupEmbeddings(embeddings, self\n .input_x)\n lengths = tf.expand_dims(lengths, -1)\n input_embeddings = tf.divide(tf.reduce_sum(input_embeddings, 1), tf\n .to_float(lengths))\n with tf.variable_scope('DNN'):\n input_tensor = tf.nn.dropout(input_embeddings, 1)\n for i, out_size in enumerate(self._dnn_layer_sizes):\n with tf.variable_scope('Layer_{0}'.format(i + 1)):\n in_size = input_tensor.get_shape()[1]\n stddev = 1.0 / tf.sqrt(tf.to_float(tf.maximum(in_size,\n out_size)))\n W = tf.get_variable('W', (in_size, out_size),\n initializer=tf.truncated_normal_initializer(stddev=\n stddev))\n b = tf.get_variable('b', out_size, initializer=tf.\n constant_initializer(0.1))\n input_tensor = tf.nn.bias_add(tf.matmul(input_tensor, W), b\n )\n if self._dnn_activation == 'relu':\n input_tensor = tf.nn.relu(input_tensor, name='relu')\n else:\n raise ValueError(\n 'dnn_activation function not supported.')\n return input_tensor\n\n def _RNNCells(self):\n if self._rnn_cell_type == 'GRU':\n cells = tf.contrib.rnn.MultiRNNCell([tf.nn.rnn_cell.GRUCell(\n self._embedding_size) for x in range(self._rnn_num_layers)],\n state_is_tuple=True)\n elif self._rnn_cell_type == 'LSTM':\n cells = tf.contrib.rnn.MultiRNNCell([tf.nn.rnn_cell.LSTMCell(\n self._embedding_size) for x in range(self._rnn_num_layers)],\n state_is_tuple=True)\n return cells\n\n def _RNNLayers(self, embeddings):\n _, fw_embeddings = self._LookupEmbeddings(embeddings, self.input_x)\n if self._rnn_bidirectional:\n _, bw_embeddings = self._LookupEmbeddings(embeddings, self.\n input_x_bw)\n with tf.variable_scope('RNN'):\n with tf.variable_scope('forward'):\n fw_cells = self._RNNCells()\n _, fw_state = tf.nn.dynamic_rnn(fw_cells, fw_embeddings,\n sequence_length=self.input_l, dtype=tf.float32)\n fw_encoding = fw_state[-1]\n if self._rnn_bidirectional:\n with tf.variable_scope('backward'):\n bw_cells = self._RNNCells()\n _, bw_state = tf.nn.dynamic_rnn(bw_cells, bw_embeddings,\n sequence_length=self.input_l, dtype=tf.float32)\n bw_encoding = bw_state[-1]\n rnn_encoding = tf.concat([fw_encoding, bw_encoding], axis=1)\n else:\n rnn_encoding = fw_encoding\n with tf.variable_scope('dropout'):\n rnn_encoding = tf.nn.dropout(rnn_encoding, 1 - self.dropout)\n rnn_encoding = tf.layers.dense(rnn_encoding, self._encoding_size)\n return rnn_encoding\n\n\n<function token>\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass NNModel:\n\n def __init__(self, mode=MODE_TRAIN, running_dir='./test/', encoder=\n 'CNN', num_tasks=1, task_names=['Task'], max_document_length=64,\n is_classifier=True, l2_reg_lambda=0.1, cnn_filter_sizes=[3, 4, 5],\n cnn_num_filters=128, rnn_bidirectional=False, rnn_cell_type='GRU',\n rnn_num_layers=2, dnn_layer_sizes=[512]):\n self._train = True if mode == MODE_TRAIN else False\n self._max_document_length = max_document_length\n self._num_tasks = num_tasks\n self._is_classifier = is_classifier\n self._embedding_size = EMBEDDING_DIM\n self._encoder = encoder\n self._encoding_size = 300\n self._vocab = None\n self._task_names = task_names\n self._cnn_filter_sizes = cnn_filter_sizes\n self._cnn_num_filters = cnn_num_filters\n self._rnn_bidirectional = rnn_bidirectional\n self._rnn_cell_type = rnn_cell_type\n self._rnn_num_layers = rnn_num_layers\n self._dnn_layer_sizes = dnn_layer_sizes\n self._dnn_activation = 'relu'\n self._l2_reg_lambda = l2_reg_lambda\n self.ops = []\n self.loss = None\n self.eval_metrics = {}\n self.saver = None\n self.checkpoint_dir = os.path.join(running_dir, 'train/')\n self.eval_dir = os.path.join(running_dir, 'test/')\n\n def Graph(self):\n self.input_x = tf.placeholder(tf.int32, [None, self.\n _max_document_length], name='input_x')\n self.input_l = tf.placeholder(tf.int32, [None], name='input_l')\n self.input_y = tf.placeholder(tf.float32, [None, self._num_tasks],\n name='input_y')\n self.input_w = tf.placeholder(tf.float32, [None, self._num_tasks],\n name='input_w')\n self.dropout = tf.placeholder(tf.float32, name='dropout_prob')\n if self._rnn_bidirectional:\n self.input_x_bw = tf.placeholder(tf.int32, [None, self.\n _max_document_length], name='input_x_bw')\n else:\n self.input_x_bw = None\n vocab, init_embedding = self._LoadInitEmbeddings()\n\n def _tokenizer(xs):\n return [x.split(' ') for x in xs]\n self._vocab = learn.preprocessing.VocabularyProcessor(self.\n _max_document_length, tokenizer_fn=_tokenizer)\n self._vocab.fit(vocab)\n init_embedding = np.vstack([np.random.normal(size=self.\n _embedding_size), init_embedding])\n vocab_size = len(self._vocab.vocabulary_)\n with tf.variable_scope('WordEmbeddings'):\n embeddings = tf.get_variable(name='W', shape=init_embedding.\n shape, initializer=tf.constant_initializer(init_embedding),\n trainable=False)\n if self._encoder == 'CNN':\n input_encoded = self._CNNLayers(embeddings)\n elif self._encoder == 'RNN':\n input_encoded = self._RNNLayers(embeddings)\n elif self._encoder == 'DNN':\n input_encoded = self._DNNLayers(embeddings)\n self.input_encoded = input_encoded\n with tf.variable_scope('dropout'):\n input_encoded = tf.nn.dropout(input_encoded, 1 - self.dropout)\n if self._is_classifier:\n preds, pred_scores, loss = self._classifier(input_encoded, self\n .input_y, self.input_w)\n self.ops.extend([preds, pred_scores, loss])\n else:\n pred_scores, loss = self._regressor(input_encoded, self.input_y,\n self.input_w)\n self.ops.extend([pred_scores, pred_scores, loss])\n self.loss = loss\n self.saver = tf.train.Saver(tf.global_variables())\n return self\n\n def _classifier(self, input_encoded, output, weights):\n total_loss = tf.constant(0.0)\n pooled_scores = []\n pooled_predictions = []\n for idx in range(self._num_tasks):\n gts = tf.expand_dims(output[:, idx], -1)\n wts = tf.expand_dims(weights[:, idx], -1)\n with tf.variable_scope('{0}_classifier'.format(self._task_names\n [idx])):\n labels = tf.concat([1 - gts, gts], 1)\n logits = tf.layers.dense(input_encoded, 2,\n kernel_regularizer=tf.contrib.layers.l2_regularizer(\n self._l2_reg_lambda))\n scores = tf.reduce_max(tf.nn.softmax(logits), 1)\n predictions = tf.argmax(logits, 1, name='predictions')\n pooled_predictions.append(predictions)\n pooled_scores.append(scores)\n losses = tf.nn.softmax_cross_entropy_with_logits(logits=\n logits, labels=labels)\n self.eval_metrics['{0}/Accuracy'.format(self._task_names[idx])\n ] = tf.metrics.accuracy(gts, predictions, weights=wts)\n self.eval_metrics['{0}/Precision'.format(self._task_names[idx])\n ] = tf.metrics.precision(gts, predictions, weights=wts)\n self.eval_metrics['{0}/Recall'.format(self._task_names[idx])\n ] = tf.metrics.recall(gts, predictions, weights=wts)\n total_loss += tf.reduce_mean(losses * wts)\n pooled_predictions = tf.stack(pooled_predictions, axis=1)\n pooled_scores = tf.stack(pooled_scores, axis=1)\n return pooled_predictions, pooled_scores, total_loss\n\n def _regressor(self, input_encoded, output, weights):\n total_loss = tf.constant(0.0)\n pooled_logits = []\n for idx in range(self._num_tasks):\n with tf.variable_scope('{0}_regressor'.format(self._task_names[\n idx])):\n logits = tf.layers.dense(input_encoded, 1,\n kernel_regularizer=tf.contrib.layers.l2_regularizer(\n self._l2_reg_lambda))\n gts = tf.expand_dims(output[:, idx], -1)\n wts = tf.expand_dims(weights[:, idx], -1)\n losses = tf.nn.sigmoid_cross_entropy_with_logits(logits=\n logits, labels=gts)\n total_loss += tf.reduce_mean(losses * wts)\n pooled_logits.append(tf.sigmoid(logits))\n self.eval_metrics['{0}/Pearsonr'.format(self._task_names[idx])\n ] = tf.contrib.metrics.streaming_pearson_correlation(logits\n , gts, weights=wts)\n pooled_logits = tf.stack(pooled_logits, axis=1)\n pooled_logits = tf.squeeze(pooled_logits, axis=-1)\n return pooled_logits, total_loss\n\n def _LoadInitEmbeddings(self):\n w2v_model = gensim.models.KeyedVectors.load_word2vec_format(\n W2VModelFILE, binary=False)\n vocab = []\n embd = []\n for token in w2v_model.vocab:\n vec = w2v_model[token]\n vocab.append(token)\n embd.append(vec)\n embedding = np.asarray(embd)\n return vocab, embedding\n\n def _LookupEmbeddings(self, embeddings, inputs):\n mask = tf.to_float(tf.not_equal(inputs, 0))\n inputs = tf.nn.embedding_lookup(embeddings, inputs)\n lengths = tf.cast(tf.reduce_sum(mask, axis=1), tf.int64)\n return lengths, inputs\n\n def _CNNLayers(self, embeddings):\n _, input_embeddings = self._LookupEmbeddings(embeddings, self.input_x)\n input_embeddings = tf.expand_dims(input_embeddings, -1)\n with tf.variable_scope('CNN'):\n pooled_outputs = []\n for i, filter_size in enumerate(self._cnn_filter_sizes):\n with tf.variable_scope('conv-maxpool-%s' % filter_size):\n filter_shape = [filter_size, self._embedding_size, 1,\n self._cnn_num_filters]\n W = tf.Variable(tf.truncated_normal(filter_shape,\n stddev=0.1), name='W')\n b = tf.Variable(tf.constant(0.1, shape=[self.\n _cnn_num_filters]), name='b')\n conv = tf.nn.conv2d(input_embeddings, W, strides=[1, 1,\n 1, 1], padding='VALID', name='conv')\n h = tf.nn.relu(tf.nn.bias_add(conv, b), name='relu')\n pooled = tf.nn.max_pool(h, ksize=[1, self.\n _max_document_length - filter_size + 1, 1, 1],\n strides=[1, 1, 1, 1], padding='VALID', name='pool')\n pooled_outputs.append(pooled)\n num_filters_total = self._cnn_num_filters * len(self.\n _cnn_filter_sizes)\n cnn_encoding = tf.concat(pooled_outputs, 3)\n cnn_encoding = tf.reshape(cnn_encoding, [-1, num_filters_total])\n with tf.variable_scope('dropout'):\n cnn_encoding = tf.nn.dropout(cnn_encoding, 1 - self.dropout)\n cnn_encoding = tf.layers.dense(cnn_encoding, self._encoding_size)\n return cnn_encoding\n\n def _DNNLayers(self, embeddings):\n lengths, input_embeddings = self._LookupEmbeddings(embeddings, self\n .input_x)\n lengths = tf.expand_dims(lengths, -1)\n input_embeddings = tf.divide(tf.reduce_sum(input_embeddings, 1), tf\n .to_float(lengths))\n with tf.variable_scope('DNN'):\n input_tensor = tf.nn.dropout(input_embeddings, 1)\n for i, out_size in enumerate(self._dnn_layer_sizes):\n with tf.variable_scope('Layer_{0}'.format(i + 1)):\n in_size = input_tensor.get_shape()[1]\n stddev = 1.0 / tf.sqrt(tf.to_float(tf.maximum(in_size,\n out_size)))\n W = tf.get_variable('W', (in_size, out_size),\n initializer=tf.truncated_normal_initializer(stddev=\n stddev))\n b = tf.get_variable('b', out_size, initializer=tf.\n constant_initializer(0.1))\n input_tensor = tf.nn.bias_add(tf.matmul(input_tensor, W), b\n )\n if self._dnn_activation == 'relu':\n input_tensor = tf.nn.relu(input_tensor, name='relu')\n else:\n raise ValueError(\n 'dnn_activation function not supported.')\n return input_tensor\n <function token>\n\n def _RNNLayers(self, embeddings):\n _, fw_embeddings = self._LookupEmbeddings(embeddings, self.input_x)\n if self._rnn_bidirectional:\n _, bw_embeddings = self._LookupEmbeddings(embeddings, self.\n input_x_bw)\n with tf.variable_scope('RNN'):\n with tf.variable_scope('forward'):\n fw_cells = self._RNNCells()\n _, fw_state = tf.nn.dynamic_rnn(fw_cells, fw_embeddings,\n sequence_length=self.input_l, dtype=tf.float32)\n fw_encoding = fw_state[-1]\n if self._rnn_bidirectional:\n with tf.variable_scope('backward'):\n bw_cells = self._RNNCells()\n _, bw_state = tf.nn.dynamic_rnn(bw_cells, bw_embeddings,\n sequence_length=self.input_l, dtype=tf.float32)\n bw_encoding = bw_state[-1]\n rnn_encoding = tf.concat([fw_encoding, bw_encoding], axis=1)\n else:\n rnn_encoding = fw_encoding\n with tf.variable_scope('dropout'):\n rnn_encoding = tf.nn.dropout(rnn_encoding, 1 - self.dropout)\n rnn_encoding = tf.layers.dense(rnn_encoding, self._encoding_size)\n return rnn_encoding\n\n\n<function token>\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass NNModel:\n\n def __init__(self, mode=MODE_TRAIN, running_dir='./test/', encoder=\n 'CNN', num_tasks=1, task_names=['Task'], max_document_length=64,\n is_classifier=True, l2_reg_lambda=0.1, cnn_filter_sizes=[3, 4, 5],\n cnn_num_filters=128, rnn_bidirectional=False, rnn_cell_type='GRU',\n rnn_num_layers=2, dnn_layer_sizes=[512]):\n self._train = True if mode == MODE_TRAIN else False\n self._max_document_length = max_document_length\n self._num_tasks = num_tasks\n self._is_classifier = is_classifier\n self._embedding_size = EMBEDDING_DIM\n self._encoder = encoder\n self._encoding_size = 300\n self._vocab = None\n self._task_names = task_names\n self._cnn_filter_sizes = cnn_filter_sizes\n self._cnn_num_filters = cnn_num_filters\n self._rnn_bidirectional = rnn_bidirectional\n self._rnn_cell_type = rnn_cell_type\n self._rnn_num_layers = rnn_num_layers\n self._dnn_layer_sizes = dnn_layer_sizes\n self._dnn_activation = 'relu'\n self._l2_reg_lambda = l2_reg_lambda\n self.ops = []\n self.loss = None\n self.eval_metrics = {}\n self.saver = None\n self.checkpoint_dir = os.path.join(running_dir, 'train/')\n self.eval_dir = os.path.join(running_dir, 'test/')\n\n def Graph(self):\n self.input_x = tf.placeholder(tf.int32, [None, self.\n _max_document_length], name='input_x')\n self.input_l = tf.placeholder(tf.int32, [None], name='input_l')\n self.input_y = tf.placeholder(tf.float32, [None, self._num_tasks],\n name='input_y')\n self.input_w = tf.placeholder(tf.float32, [None, self._num_tasks],\n name='input_w')\n self.dropout = tf.placeholder(tf.float32, name='dropout_prob')\n if self._rnn_bidirectional:\n self.input_x_bw = tf.placeholder(tf.int32, [None, self.\n _max_document_length], name='input_x_bw')\n else:\n self.input_x_bw = None\n vocab, init_embedding = self._LoadInitEmbeddings()\n\n def _tokenizer(xs):\n return [x.split(' ') for x in xs]\n self._vocab = learn.preprocessing.VocabularyProcessor(self.\n _max_document_length, tokenizer_fn=_tokenizer)\n self._vocab.fit(vocab)\n init_embedding = np.vstack([np.random.normal(size=self.\n _embedding_size), init_embedding])\n vocab_size = len(self._vocab.vocabulary_)\n with tf.variable_scope('WordEmbeddings'):\n embeddings = tf.get_variable(name='W', shape=init_embedding.\n shape, initializer=tf.constant_initializer(init_embedding),\n trainable=False)\n if self._encoder == 'CNN':\n input_encoded = self._CNNLayers(embeddings)\n elif self._encoder == 'RNN':\n input_encoded = self._RNNLayers(embeddings)\n elif self._encoder == 'DNN':\n input_encoded = self._DNNLayers(embeddings)\n self.input_encoded = input_encoded\n with tf.variable_scope('dropout'):\n input_encoded = tf.nn.dropout(input_encoded, 1 - self.dropout)\n if self._is_classifier:\n preds, pred_scores, loss = self._classifier(input_encoded, self\n .input_y, self.input_w)\n self.ops.extend([preds, pred_scores, loss])\n else:\n pred_scores, loss = self._regressor(input_encoded, self.input_y,\n self.input_w)\n self.ops.extend([pred_scores, pred_scores, loss])\n self.loss = loss\n self.saver = tf.train.Saver(tf.global_variables())\n return self\n\n def _classifier(self, input_encoded, output, weights):\n total_loss = tf.constant(0.0)\n pooled_scores = []\n pooled_predictions = []\n for idx in range(self._num_tasks):\n gts = tf.expand_dims(output[:, idx], -1)\n wts = tf.expand_dims(weights[:, idx], -1)\n with tf.variable_scope('{0}_classifier'.format(self._task_names\n [idx])):\n labels = tf.concat([1 - gts, gts], 1)\n logits = tf.layers.dense(input_encoded, 2,\n kernel_regularizer=tf.contrib.layers.l2_regularizer(\n self._l2_reg_lambda))\n scores = tf.reduce_max(tf.nn.softmax(logits), 1)\n predictions = tf.argmax(logits, 1, name='predictions')\n pooled_predictions.append(predictions)\n pooled_scores.append(scores)\n losses = tf.nn.softmax_cross_entropy_with_logits(logits=\n logits, labels=labels)\n self.eval_metrics['{0}/Accuracy'.format(self._task_names[idx])\n ] = tf.metrics.accuracy(gts, predictions, weights=wts)\n self.eval_metrics['{0}/Precision'.format(self._task_names[idx])\n ] = tf.metrics.precision(gts, predictions, weights=wts)\n self.eval_metrics['{0}/Recall'.format(self._task_names[idx])\n ] = tf.metrics.recall(gts, predictions, weights=wts)\n total_loss += tf.reduce_mean(losses * wts)\n pooled_predictions = tf.stack(pooled_predictions, axis=1)\n pooled_scores = tf.stack(pooled_scores, axis=1)\n return pooled_predictions, pooled_scores, total_loss\n\n def _regressor(self, input_encoded, output, weights):\n total_loss = tf.constant(0.0)\n pooled_logits = []\n for idx in range(self._num_tasks):\n with tf.variable_scope('{0}_regressor'.format(self._task_names[\n idx])):\n logits = tf.layers.dense(input_encoded, 1,\n kernel_regularizer=tf.contrib.layers.l2_regularizer(\n self._l2_reg_lambda))\n gts = tf.expand_dims(output[:, idx], -1)\n wts = tf.expand_dims(weights[:, idx], -1)\n losses = tf.nn.sigmoid_cross_entropy_with_logits(logits=\n logits, labels=gts)\n total_loss += tf.reduce_mean(losses * wts)\n pooled_logits.append(tf.sigmoid(logits))\n self.eval_metrics['{0}/Pearsonr'.format(self._task_names[idx])\n ] = tf.contrib.metrics.streaming_pearson_correlation(logits\n , gts, weights=wts)\n pooled_logits = tf.stack(pooled_logits, axis=1)\n pooled_logits = tf.squeeze(pooled_logits, axis=-1)\n return pooled_logits, total_loss\n\n def _LoadInitEmbeddings(self):\n w2v_model = gensim.models.KeyedVectors.load_word2vec_format(\n W2VModelFILE, binary=False)\n vocab = []\n embd = []\n for token in w2v_model.vocab:\n vec = w2v_model[token]\n vocab.append(token)\n embd.append(vec)\n embedding = np.asarray(embd)\n return vocab, embedding\n\n def _LookupEmbeddings(self, embeddings, inputs):\n mask = tf.to_float(tf.not_equal(inputs, 0))\n inputs = tf.nn.embedding_lookup(embeddings, inputs)\n lengths = tf.cast(tf.reduce_sum(mask, axis=1), tf.int64)\n return lengths, inputs\n\n def _CNNLayers(self, embeddings):\n _, input_embeddings = self._LookupEmbeddings(embeddings, self.input_x)\n input_embeddings = tf.expand_dims(input_embeddings, -1)\n with tf.variable_scope('CNN'):\n pooled_outputs = []\n for i, filter_size in enumerate(self._cnn_filter_sizes):\n with tf.variable_scope('conv-maxpool-%s' % filter_size):\n filter_shape = [filter_size, self._embedding_size, 1,\n self._cnn_num_filters]\n W = tf.Variable(tf.truncated_normal(filter_shape,\n stddev=0.1), name='W')\n b = tf.Variable(tf.constant(0.1, shape=[self.\n _cnn_num_filters]), name='b')\n conv = tf.nn.conv2d(input_embeddings, W, strides=[1, 1,\n 1, 1], padding='VALID', name='conv')\n h = tf.nn.relu(tf.nn.bias_add(conv, b), name='relu')\n pooled = tf.nn.max_pool(h, ksize=[1, self.\n _max_document_length - filter_size + 1, 1, 1],\n strides=[1, 1, 1, 1], padding='VALID', name='pool')\n pooled_outputs.append(pooled)\n num_filters_total = self._cnn_num_filters * len(self.\n _cnn_filter_sizes)\n cnn_encoding = tf.concat(pooled_outputs, 3)\n cnn_encoding = tf.reshape(cnn_encoding, [-1, num_filters_total])\n with tf.variable_scope('dropout'):\n cnn_encoding = tf.nn.dropout(cnn_encoding, 1 - self.dropout)\n cnn_encoding = tf.layers.dense(cnn_encoding, self._encoding_size)\n return cnn_encoding\n\n def _DNNLayers(self, embeddings):\n lengths, input_embeddings = self._LookupEmbeddings(embeddings, self\n .input_x)\n lengths = tf.expand_dims(lengths, -1)\n input_embeddings = tf.divide(tf.reduce_sum(input_embeddings, 1), tf\n .to_float(lengths))\n with tf.variable_scope('DNN'):\n input_tensor = tf.nn.dropout(input_embeddings, 1)\n for i, out_size in enumerate(self._dnn_layer_sizes):\n with tf.variable_scope('Layer_{0}'.format(i + 1)):\n in_size = input_tensor.get_shape()[1]\n stddev = 1.0 / tf.sqrt(tf.to_float(tf.maximum(in_size,\n out_size)))\n W = tf.get_variable('W', (in_size, out_size),\n initializer=tf.truncated_normal_initializer(stddev=\n stddev))\n b = tf.get_variable('b', out_size, initializer=tf.\n constant_initializer(0.1))\n input_tensor = tf.nn.bias_add(tf.matmul(input_tensor, W), b\n )\n if self._dnn_activation == 'relu':\n input_tensor = tf.nn.relu(input_tensor, name='relu')\n else:\n raise ValueError(\n 'dnn_activation function not supported.')\n return input_tensor\n <function token>\n <function token>\n\n\n<function token>\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass NNModel:\n\n def __init__(self, mode=MODE_TRAIN, running_dir='./test/', encoder=\n 'CNN', num_tasks=1, task_names=['Task'], max_document_length=64,\n is_classifier=True, l2_reg_lambda=0.1, cnn_filter_sizes=[3, 4, 5],\n cnn_num_filters=128, rnn_bidirectional=False, rnn_cell_type='GRU',\n rnn_num_layers=2, dnn_layer_sizes=[512]):\n self._train = True if mode == MODE_TRAIN else False\n self._max_document_length = max_document_length\n self._num_tasks = num_tasks\n self._is_classifier = is_classifier\n self._embedding_size = EMBEDDING_DIM\n self._encoder = encoder\n self._encoding_size = 300\n self._vocab = None\n self._task_names = task_names\n self._cnn_filter_sizes = cnn_filter_sizes\n self._cnn_num_filters = cnn_num_filters\n self._rnn_bidirectional = rnn_bidirectional\n self._rnn_cell_type = rnn_cell_type\n self._rnn_num_layers = rnn_num_layers\n self._dnn_layer_sizes = dnn_layer_sizes\n self._dnn_activation = 'relu'\n self._l2_reg_lambda = l2_reg_lambda\n self.ops = []\n self.loss = None\n self.eval_metrics = {}\n self.saver = None\n self.checkpoint_dir = os.path.join(running_dir, 'train/')\n self.eval_dir = os.path.join(running_dir, 'test/')\n <function token>\n\n def _classifier(self, input_encoded, output, weights):\n total_loss = tf.constant(0.0)\n pooled_scores = []\n pooled_predictions = []\n for idx in range(self._num_tasks):\n gts = tf.expand_dims(output[:, idx], -1)\n wts = tf.expand_dims(weights[:, idx], -1)\n with tf.variable_scope('{0}_classifier'.format(self._task_names\n [idx])):\n labels = tf.concat([1 - gts, gts], 1)\n logits = tf.layers.dense(input_encoded, 2,\n kernel_regularizer=tf.contrib.layers.l2_regularizer(\n self._l2_reg_lambda))\n scores = tf.reduce_max(tf.nn.softmax(logits), 1)\n predictions = tf.argmax(logits, 1, name='predictions')\n pooled_predictions.append(predictions)\n pooled_scores.append(scores)\n losses = tf.nn.softmax_cross_entropy_with_logits(logits=\n logits, labels=labels)\n self.eval_metrics['{0}/Accuracy'.format(self._task_names[idx])\n ] = tf.metrics.accuracy(gts, predictions, weights=wts)\n self.eval_metrics['{0}/Precision'.format(self._task_names[idx])\n ] = tf.metrics.precision(gts, predictions, weights=wts)\n self.eval_metrics['{0}/Recall'.format(self._task_names[idx])\n ] = tf.metrics.recall(gts, predictions, weights=wts)\n total_loss += tf.reduce_mean(losses * wts)\n pooled_predictions = tf.stack(pooled_predictions, axis=1)\n pooled_scores = tf.stack(pooled_scores, axis=1)\n return pooled_predictions, pooled_scores, total_loss\n\n def _regressor(self, input_encoded, output, weights):\n total_loss = tf.constant(0.0)\n pooled_logits = []\n for idx in range(self._num_tasks):\n with tf.variable_scope('{0}_regressor'.format(self._task_names[\n idx])):\n logits = tf.layers.dense(input_encoded, 1,\n kernel_regularizer=tf.contrib.layers.l2_regularizer(\n self._l2_reg_lambda))\n gts = tf.expand_dims(output[:, idx], -1)\n wts = tf.expand_dims(weights[:, idx], -1)\n losses = tf.nn.sigmoid_cross_entropy_with_logits(logits=\n logits, labels=gts)\n total_loss += tf.reduce_mean(losses * wts)\n pooled_logits.append(tf.sigmoid(logits))\n self.eval_metrics['{0}/Pearsonr'.format(self._task_names[idx])\n ] = tf.contrib.metrics.streaming_pearson_correlation(logits\n , gts, weights=wts)\n pooled_logits = tf.stack(pooled_logits, axis=1)\n pooled_logits = tf.squeeze(pooled_logits, axis=-1)\n return pooled_logits, total_loss\n\n def _LoadInitEmbeddings(self):\n w2v_model = gensim.models.KeyedVectors.load_word2vec_format(\n W2VModelFILE, binary=False)\n vocab = []\n embd = []\n for token in w2v_model.vocab:\n vec = w2v_model[token]\n vocab.append(token)\n embd.append(vec)\n embedding = np.asarray(embd)\n return vocab, embedding\n\n def _LookupEmbeddings(self, embeddings, inputs):\n mask = tf.to_float(tf.not_equal(inputs, 0))\n inputs = tf.nn.embedding_lookup(embeddings, inputs)\n lengths = tf.cast(tf.reduce_sum(mask, axis=1), tf.int64)\n return lengths, inputs\n\n def _CNNLayers(self, embeddings):\n _, input_embeddings = self._LookupEmbeddings(embeddings, self.input_x)\n input_embeddings = tf.expand_dims(input_embeddings, -1)\n with tf.variable_scope('CNN'):\n pooled_outputs = []\n for i, filter_size in enumerate(self._cnn_filter_sizes):\n with tf.variable_scope('conv-maxpool-%s' % filter_size):\n filter_shape = [filter_size, self._embedding_size, 1,\n self._cnn_num_filters]\n W = tf.Variable(tf.truncated_normal(filter_shape,\n stddev=0.1), name='W')\n b = tf.Variable(tf.constant(0.1, shape=[self.\n _cnn_num_filters]), name='b')\n conv = tf.nn.conv2d(input_embeddings, W, strides=[1, 1,\n 1, 1], padding='VALID', name='conv')\n h = tf.nn.relu(tf.nn.bias_add(conv, b), name='relu')\n pooled = tf.nn.max_pool(h, ksize=[1, self.\n _max_document_length - filter_size + 1, 1, 1],\n strides=[1, 1, 1, 1], padding='VALID', name='pool')\n pooled_outputs.append(pooled)\n num_filters_total = self._cnn_num_filters * len(self.\n _cnn_filter_sizes)\n cnn_encoding = tf.concat(pooled_outputs, 3)\n cnn_encoding = tf.reshape(cnn_encoding, [-1, num_filters_total])\n with tf.variable_scope('dropout'):\n cnn_encoding = tf.nn.dropout(cnn_encoding, 1 - self.dropout)\n cnn_encoding = tf.layers.dense(cnn_encoding, self._encoding_size)\n return cnn_encoding\n\n def _DNNLayers(self, embeddings):\n lengths, input_embeddings = self._LookupEmbeddings(embeddings, self\n .input_x)\n lengths = tf.expand_dims(lengths, -1)\n input_embeddings = tf.divide(tf.reduce_sum(input_embeddings, 1), tf\n .to_float(lengths))\n with tf.variable_scope('DNN'):\n input_tensor = tf.nn.dropout(input_embeddings, 1)\n for i, out_size in enumerate(self._dnn_layer_sizes):\n with tf.variable_scope('Layer_{0}'.format(i + 1)):\n in_size = input_tensor.get_shape()[1]\n stddev = 1.0 / tf.sqrt(tf.to_float(tf.maximum(in_size,\n out_size)))\n W = tf.get_variable('W', (in_size, out_size),\n initializer=tf.truncated_normal_initializer(stddev=\n stddev))\n b = tf.get_variable('b', out_size, initializer=tf.\n constant_initializer(0.1))\n input_tensor = tf.nn.bias_add(tf.matmul(input_tensor, W), b\n )\n if self._dnn_activation == 'relu':\n input_tensor = tf.nn.relu(input_tensor, name='relu')\n else:\n raise ValueError(\n 'dnn_activation function not supported.')\n return input_tensor\n <function token>\n <function token>\n\n\n<function token>\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass NNModel:\n <function token>\n <function token>\n\n def _classifier(self, input_encoded, output, weights):\n total_loss = tf.constant(0.0)\n pooled_scores = []\n pooled_predictions = []\n for idx in range(self._num_tasks):\n gts = tf.expand_dims(output[:, idx], -1)\n wts = tf.expand_dims(weights[:, idx], -1)\n with tf.variable_scope('{0}_classifier'.format(self._task_names\n [idx])):\n labels = tf.concat([1 - gts, gts], 1)\n logits = tf.layers.dense(input_encoded, 2,\n kernel_regularizer=tf.contrib.layers.l2_regularizer(\n self._l2_reg_lambda))\n scores = tf.reduce_max(tf.nn.softmax(logits), 1)\n predictions = tf.argmax(logits, 1, name='predictions')\n pooled_predictions.append(predictions)\n pooled_scores.append(scores)\n losses = tf.nn.softmax_cross_entropy_with_logits(logits=\n logits, labels=labels)\n self.eval_metrics['{0}/Accuracy'.format(self._task_names[idx])\n ] = tf.metrics.accuracy(gts, predictions, weights=wts)\n self.eval_metrics['{0}/Precision'.format(self._task_names[idx])\n ] = tf.metrics.precision(gts, predictions, weights=wts)\n self.eval_metrics['{0}/Recall'.format(self._task_names[idx])\n ] = tf.metrics.recall(gts, predictions, weights=wts)\n total_loss += tf.reduce_mean(losses * wts)\n pooled_predictions = tf.stack(pooled_predictions, axis=1)\n pooled_scores = tf.stack(pooled_scores, axis=1)\n return pooled_predictions, pooled_scores, total_loss\n\n def _regressor(self, input_encoded, output, weights):\n total_loss = tf.constant(0.0)\n pooled_logits = []\n for idx in range(self._num_tasks):\n with tf.variable_scope('{0}_regressor'.format(self._task_names[\n idx])):\n logits = tf.layers.dense(input_encoded, 1,\n kernel_regularizer=tf.contrib.layers.l2_regularizer(\n self._l2_reg_lambda))\n gts = tf.expand_dims(output[:, idx], -1)\n wts = tf.expand_dims(weights[:, idx], -1)\n losses = tf.nn.sigmoid_cross_entropy_with_logits(logits=\n logits, labels=gts)\n total_loss += tf.reduce_mean(losses * wts)\n pooled_logits.append(tf.sigmoid(logits))\n self.eval_metrics['{0}/Pearsonr'.format(self._task_names[idx])\n ] = tf.contrib.metrics.streaming_pearson_correlation(logits\n , gts, weights=wts)\n pooled_logits = tf.stack(pooled_logits, axis=1)\n pooled_logits = tf.squeeze(pooled_logits, axis=-1)\n return pooled_logits, total_loss\n\n def _LoadInitEmbeddings(self):\n w2v_model = gensim.models.KeyedVectors.load_word2vec_format(\n W2VModelFILE, binary=False)\n vocab = []\n embd = []\n for token in w2v_model.vocab:\n vec = w2v_model[token]\n vocab.append(token)\n embd.append(vec)\n embedding = np.asarray(embd)\n return vocab, embedding\n\n def _LookupEmbeddings(self, embeddings, inputs):\n mask = tf.to_float(tf.not_equal(inputs, 0))\n inputs = tf.nn.embedding_lookup(embeddings, inputs)\n lengths = tf.cast(tf.reduce_sum(mask, axis=1), tf.int64)\n return lengths, inputs\n\n def _CNNLayers(self, embeddings):\n _, input_embeddings = self._LookupEmbeddings(embeddings, self.input_x)\n input_embeddings = tf.expand_dims(input_embeddings, -1)\n with tf.variable_scope('CNN'):\n pooled_outputs = []\n for i, filter_size in enumerate(self._cnn_filter_sizes):\n with tf.variable_scope('conv-maxpool-%s' % filter_size):\n filter_shape = [filter_size, self._embedding_size, 1,\n self._cnn_num_filters]\n W = tf.Variable(tf.truncated_normal(filter_shape,\n stddev=0.1), name='W')\n b = tf.Variable(tf.constant(0.1, shape=[self.\n _cnn_num_filters]), name='b')\n conv = tf.nn.conv2d(input_embeddings, W, strides=[1, 1,\n 1, 1], padding='VALID', name='conv')\n h = tf.nn.relu(tf.nn.bias_add(conv, b), name='relu')\n pooled = tf.nn.max_pool(h, ksize=[1, self.\n _max_document_length - filter_size + 1, 1, 1],\n strides=[1, 1, 1, 1], padding='VALID', name='pool')\n pooled_outputs.append(pooled)\n num_filters_total = self._cnn_num_filters * len(self.\n _cnn_filter_sizes)\n cnn_encoding = tf.concat(pooled_outputs, 3)\n cnn_encoding = tf.reshape(cnn_encoding, [-1, num_filters_total])\n with tf.variable_scope('dropout'):\n cnn_encoding = tf.nn.dropout(cnn_encoding, 1 - self.dropout)\n cnn_encoding = tf.layers.dense(cnn_encoding, self._encoding_size)\n return cnn_encoding\n\n def _DNNLayers(self, embeddings):\n lengths, input_embeddings = self._LookupEmbeddings(embeddings, self\n .input_x)\n lengths = tf.expand_dims(lengths, -1)\n input_embeddings = tf.divide(tf.reduce_sum(input_embeddings, 1), tf\n .to_float(lengths))\n with tf.variable_scope('DNN'):\n input_tensor = tf.nn.dropout(input_embeddings, 1)\n for i, out_size in enumerate(self._dnn_layer_sizes):\n with tf.variable_scope('Layer_{0}'.format(i + 1)):\n in_size = input_tensor.get_shape()[1]\n stddev = 1.0 / tf.sqrt(tf.to_float(tf.maximum(in_size,\n out_size)))\n W = tf.get_variable('W', (in_size, out_size),\n initializer=tf.truncated_normal_initializer(stddev=\n stddev))\n b = tf.get_variable('b', out_size, initializer=tf.\n constant_initializer(0.1))\n input_tensor = tf.nn.bias_add(tf.matmul(input_tensor, W), b\n )\n if self._dnn_activation == 'relu':\n input_tensor = tf.nn.relu(input_tensor, name='relu')\n else:\n raise ValueError(\n 'dnn_activation function not supported.')\n return input_tensor\n <function token>\n <function token>\n\n\n<function token>\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass NNModel:\n <function token>\n <function token>\n\n def _classifier(self, input_encoded, output, weights):\n total_loss = tf.constant(0.0)\n pooled_scores = []\n pooled_predictions = []\n for idx in range(self._num_tasks):\n gts = tf.expand_dims(output[:, idx], -1)\n wts = tf.expand_dims(weights[:, idx], -1)\n with tf.variable_scope('{0}_classifier'.format(self._task_names\n [idx])):\n labels = tf.concat([1 - gts, gts], 1)\n logits = tf.layers.dense(input_encoded, 2,\n kernel_regularizer=tf.contrib.layers.l2_regularizer(\n self._l2_reg_lambda))\n scores = tf.reduce_max(tf.nn.softmax(logits), 1)\n predictions = tf.argmax(logits, 1, name='predictions')\n pooled_predictions.append(predictions)\n pooled_scores.append(scores)\n losses = tf.nn.softmax_cross_entropy_with_logits(logits=\n logits, labels=labels)\n self.eval_metrics['{0}/Accuracy'.format(self._task_names[idx])\n ] = tf.metrics.accuracy(gts, predictions, weights=wts)\n self.eval_metrics['{0}/Precision'.format(self._task_names[idx])\n ] = tf.metrics.precision(gts, predictions, weights=wts)\n self.eval_metrics['{0}/Recall'.format(self._task_names[idx])\n ] = tf.metrics.recall(gts, predictions, weights=wts)\n total_loss += tf.reduce_mean(losses * wts)\n pooled_predictions = tf.stack(pooled_predictions, axis=1)\n pooled_scores = tf.stack(pooled_scores, axis=1)\n return pooled_predictions, pooled_scores, total_loss\n <function token>\n\n def _LoadInitEmbeddings(self):\n w2v_model = gensim.models.KeyedVectors.load_word2vec_format(\n W2VModelFILE, binary=False)\n vocab = []\n embd = []\n for token in w2v_model.vocab:\n vec = w2v_model[token]\n vocab.append(token)\n embd.append(vec)\n embedding = np.asarray(embd)\n return vocab, embedding\n\n def _LookupEmbeddings(self, embeddings, inputs):\n mask = tf.to_float(tf.not_equal(inputs, 0))\n inputs = tf.nn.embedding_lookup(embeddings, inputs)\n lengths = tf.cast(tf.reduce_sum(mask, axis=1), tf.int64)\n return lengths, inputs\n\n def _CNNLayers(self, embeddings):\n _, input_embeddings = self._LookupEmbeddings(embeddings, self.input_x)\n input_embeddings = tf.expand_dims(input_embeddings, -1)\n with tf.variable_scope('CNN'):\n pooled_outputs = []\n for i, filter_size in enumerate(self._cnn_filter_sizes):\n with tf.variable_scope('conv-maxpool-%s' % filter_size):\n filter_shape = [filter_size, self._embedding_size, 1,\n self._cnn_num_filters]\n W = tf.Variable(tf.truncated_normal(filter_shape,\n stddev=0.1), name='W')\n b = tf.Variable(tf.constant(0.1, shape=[self.\n _cnn_num_filters]), name='b')\n conv = tf.nn.conv2d(input_embeddings, W, strides=[1, 1,\n 1, 1], padding='VALID', name='conv')\n h = tf.nn.relu(tf.nn.bias_add(conv, b), name='relu')\n pooled = tf.nn.max_pool(h, ksize=[1, self.\n _max_document_length - filter_size + 1, 1, 1],\n strides=[1, 1, 1, 1], padding='VALID', name='pool')\n pooled_outputs.append(pooled)\n num_filters_total = self._cnn_num_filters * len(self.\n _cnn_filter_sizes)\n cnn_encoding = tf.concat(pooled_outputs, 3)\n cnn_encoding = tf.reshape(cnn_encoding, [-1, num_filters_total])\n with tf.variable_scope('dropout'):\n cnn_encoding = tf.nn.dropout(cnn_encoding, 1 - self.dropout)\n cnn_encoding = tf.layers.dense(cnn_encoding, self._encoding_size)\n return cnn_encoding\n\n def _DNNLayers(self, embeddings):\n lengths, input_embeddings = self._LookupEmbeddings(embeddings, self\n .input_x)\n lengths = tf.expand_dims(lengths, -1)\n input_embeddings = tf.divide(tf.reduce_sum(input_embeddings, 1), tf\n .to_float(lengths))\n with tf.variable_scope('DNN'):\n input_tensor = tf.nn.dropout(input_embeddings, 1)\n for i, out_size in enumerate(self._dnn_layer_sizes):\n with tf.variable_scope('Layer_{0}'.format(i + 1)):\n in_size = input_tensor.get_shape()[1]\n stddev = 1.0 / tf.sqrt(tf.to_float(tf.maximum(in_size,\n out_size)))\n W = tf.get_variable('W', (in_size, out_size),\n initializer=tf.truncated_normal_initializer(stddev=\n stddev))\n b = tf.get_variable('b', out_size, initializer=tf.\n constant_initializer(0.1))\n input_tensor = tf.nn.bias_add(tf.matmul(input_tensor, W), b\n )\n if self._dnn_activation == 'relu':\n input_tensor = tf.nn.relu(input_tensor, name='relu')\n else:\n raise ValueError(\n 'dnn_activation function not supported.')\n return input_tensor\n <function token>\n <function token>\n\n\n<function token>\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass NNModel:\n <function token>\n <function token>\n\n def _classifier(self, input_encoded, output, weights):\n total_loss = tf.constant(0.0)\n pooled_scores = []\n pooled_predictions = []\n for idx in range(self._num_tasks):\n gts = tf.expand_dims(output[:, idx], -1)\n wts = tf.expand_dims(weights[:, idx], -1)\n with tf.variable_scope('{0}_classifier'.format(self._task_names\n [idx])):\n labels = tf.concat([1 - gts, gts], 1)\n logits = tf.layers.dense(input_encoded, 2,\n kernel_regularizer=tf.contrib.layers.l2_regularizer(\n self._l2_reg_lambda))\n scores = tf.reduce_max(tf.nn.softmax(logits), 1)\n predictions = tf.argmax(logits, 1, name='predictions')\n pooled_predictions.append(predictions)\n pooled_scores.append(scores)\n losses = tf.nn.softmax_cross_entropy_with_logits(logits=\n logits, labels=labels)\n self.eval_metrics['{0}/Accuracy'.format(self._task_names[idx])\n ] = tf.metrics.accuracy(gts, predictions, weights=wts)\n self.eval_metrics['{0}/Precision'.format(self._task_names[idx])\n ] = tf.metrics.precision(gts, predictions, weights=wts)\n self.eval_metrics['{0}/Recall'.format(self._task_names[idx])\n ] = tf.metrics.recall(gts, predictions, weights=wts)\n total_loss += tf.reduce_mean(losses * wts)\n pooled_predictions = tf.stack(pooled_predictions, axis=1)\n pooled_scores = tf.stack(pooled_scores, axis=1)\n return pooled_predictions, pooled_scores, total_loss\n <function token>\n <function token>\n\n def _LookupEmbeddings(self, embeddings, inputs):\n mask = tf.to_float(tf.not_equal(inputs, 0))\n inputs = tf.nn.embedding_lookup(embeddings, inputs)\n lengths = tf.cast(tf.reduce_sum(mask, axis=1), tf.int64)\n return lengths, inputs\n\n def _CNNLayers(self, embeddings):\n _, input_embeddings = self._LookupEmbeddings(embeddings, self.input_x)\n input_embeddings = tf.expand_dims(input_embeddings, -1)\n with tf.variable_scope('CNN'):\n pooled_outputs = []\n for i, filter_size in enumerate(self._cnn_filter_sizes):\n with tf.variable_scope('conv-maxpool-%s' % filter_size):\n filter_shape = [filter_size, self._embedding_size, 1,\n self._cnn_num_filters]\n W = tf.Variable(tf.truncated_normal(filter_shape,\n stddev=0.1), name='W')\n b = tf.Variable(tf.constant(0.1, shape=[self.\n _cnn_num_filters]), name='b')\n conv = tf.nn.conv2d(input_embeddings, W, strides=[1, 1,\n 1, 1], padding='VALID', name='conv')\n h = tf.nn.relu(tf.nn.bias_add(conv, b), name='relu')\n pooled = tf.nn.max_pool(h, ksize=[1, self.\n _max_document_length - filter_size + 1, 1, 1],\n strides=[1, 1, 1, 1], padding='VALID', name='pool')\n pooled_outputs.append(pooled)\n num_filters_total = self._cnn_num_filters * len(self.\n _cnn_filter_sizes)\n cnn_encoding = tf.concat(pooled_outputs, 3)\n cnn_encoding = tf.reshape(cnn_encoding, [-1, num_filters_total])\n with tf.variable_scope('dropout'):\n cnn_encoding = tf.nn.dropout(cnn_encoding, 1 - self.dropout)\n cnn_encoding = tf.layers.dense(cnn_encoding, self._encoding_size)\n return cnn_encoding\n\n def _DNNLayers(self, embeddings):\n lengths, input_embeddings = self._LookupEmbeddings(embeddings, self\n .input_x)\n lengths = tf.expand_dims(lengths, -1)\n input_embeddings = tf.divide(tf.reduce_sum(input_embeddings, 1), tf\n .to_float(lengths))\n with tf.variable_scope('DNN'):\n input_tensor = tf.nn.dropout(input_embeddings, 1)\n for i, out_size in enumerate(self._dnn_layer_sizes):\n with tf.variable_scope('Layer_{0}'.format(i + 1)):\n in_size = input_tensor.get_shape()[1]\n stddev = 1.0 / tf.sqrt(tf.to_float(tf.maximum(in_size,\n out_size)))\n W = tf.get_variable('W', (in_size, out_size),\n initializer=tf.truncated_normal_initializer(stddev=\n stddev))\n b = tf.get_variable('b', out_size, initializer=tf.\n constant_initializer(0.1))\n input_tensor = tf.nn.bias_add(tf.matmul(input_tensor, W), b\n )\n if self._dnn_activation == 'relu':\n input_tensor = tf.nn.relu(input_tensor, name='relu')\n else:\n raise ValueError(\n 'dnn_activation function not supported.')\n return input_tensor\n <function token>\n <function token>\n\n\n<function token>\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass NNModel:\n <function token>\n <function token>\n\n def _classifier(self, input_encoded, output, weights):\n total_loss = tf.constant(0.0)\n pooled_scores = []\n pooled_predictions = []\n for idx in range(self._num_tasks):\n gts = tf.expand_dims(output[:, idx], -1)\n wts = tf.expand_dims(weights[:, idx], -1)\n with tf.variable_scope('{0}_classifier'.format(self._task_names\n [idx])):\n labels = tf.concat([1 - gts, gts], 1)\n logits = tf.layers.dense(input_encoded, 2,\n kernel_regularizer=tf.contrib.layers.l2_regularizer(\n self._l2_reg_lambda))\n scores = tf.reduce_max(tf.nn.softmax(logits), 1)\n predictions = tf.argmax(logits, 1, name='predictions')\n pooled_predictions.append(predictions)\n pooled_scores.append(scores)\n losses = tf.nn.softmax_cross_entropy_with_logits(logits=\n logits, labels=labels)\n self.eval_metrics['{0}/Accuracy'.format(self._task_names[idx])\n ] = tf.metrics.accuracy(gts, predictions, weights=wts)\n self.eval_metrics['{0}/Precision'.format(self._task_names[idx])\n ] = tf.metrics.precision(gts, predictions, weights=wts)\n self.eval_metrics['{0}/Recall'.format(self._task_names[idx])\n ] = tf.metrics.recall(gts, predictions, weights=wts)\n total_loss += tf.reduce_mean(losses * wts)\n pooled_predictions = tf.stack(pooled_predictions, axis=1)\n pooled_scores = tf.stack(pooled_scores, axis=1)\n return pooled_predictions, pooled_scores, total_loss\n <function token>\n <function token>\n <function token>\n\n def _CNNLayers(self, embeddings):\n _, input_embeddings = self._LookupEmbeddings(embeddings, self.input_x)\n input_embeddings = tf.expand_dims(input_embeddings, -1)\n with tf.variable_scope('CNN'):\n pooled_outputs = []\n for i, filter_size in enumerate(self._cnn_filter_sizes):\n with tf.variable_scope('conv-maxpool-%s' % filter_size):\n filter_shape = [filter_size, self._embedding_size, 1,\n self._cnn_num_filters]\n W = tf.Variable(tf.truncated_normal(filter_shape,\n stddev=0.1), name='W')\n b = tf.Variable(tf.constant(0.1, shape=[self.\n _cnn_num_filters]), name='b')\n conv = tf.nn.conv2d(input_embeddings, W, strides=[1, 1,\n 1, 1], padding='VALID', name='conv')\n h = tf.nn.relu(tf.nn.bias_add(conv, b), name='relu')\n pooled = tf.nn.max_pool(h, ksize=[1, self.\n _max_document_length - filter_size + 1, 1, 1],\n strides=[1, 1, 1, 1], padding='VALID', name='pool')\n pooled_outputs.append(pooled)\n num_filters_total = self._cnn_num_filters * len(self.\n _cnn_filter_sizes)\n cnn_encoding = tf.concat(pooled_outputs, 3)\n cnn_encoding = tf.reshape(cnn_encoding, [-1, num_filters_total])\n with tf.variable_scope('dropout'):\n cnn_encoding = tf.nn.dropout(cnn_encoding, 1 - self.dropout)\n cnn_encoding = tf.layers.dense(cnn_encoding, self._encoding_size)\n return cnn_encoding\n\n def _DNNLayers(self, embeddings):\n lengths, input_embeddings = self._LookupEmbeddings(embeddings, self\n .input_x)\n lengths = tf.expand_dims(lengths, -1)\n input_embeddings = tf.divide(tf.reduce_sum(input_embeddings, 1), tf\n .to_float(lengths))\n with tf.variable_scope('DNN'):\n input_tensor = tf.nn.dropout(input_embeddings, 1)\n for i, out_size in enumerate(self._dnn_layer_sizes):\n with tf.variable_scope('Layer_{0}'.format(i + 1)):\n in_size = input_tensor.get_shape()[1]\n stddev = 1.0 / tf.sqrt(tf.to_float(tf.maximum(in_size,\n out_size)))\n W = tf.get_variable('W', (in_size, out_size),\n initializer=tf.truncated_normal_initializer(stddev=\n stddev))\n b = tf.get_variable('b', out_size, initializer=tf.\n constant_initializer(0.1))\n input_tensor = tf.nn.bias_add(tf.matmul(input_tensor, W), b\n )\n if self._dnn_activation == 'relu':\n input_tensor = tf.nn.relu(input_tensor, name='relu')\n else:\n raise ValueError(\n 'dnn_activation function not supported.')\n return input_tensor\n <function token>\n <function token>\n\n\n<function token>\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass NNModel:\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def _CNNLayers(self, embeddings):\n _, input_embeddings = self._LookupEmbeddings(embeddings, self.input_x)\n input_embeddings = tf.expand_dims(input_embeddings, -1)\n with tf.variable_scope('CNN'):\n pooled_outputs = []\n for i, filter_size in enumerate(self._cnn_filter_sizes):\n with tf.variable_scope('conv-maxpool-%s' % filter_size):\n filter_shape = [filter_size, self._embedding_size, 1,\n self._cnn_num_filters]\n W = tf.Variable(tf.truncated_normal(filter_shape,\n stddev=0.1), name='W')\n b = tf.Variable(tf.constant(0.1, shape=[self.\n _cnn_num_filters]), name='b')\n conv = tf.nn.conv2d(input_embeddings, W, strides=[1, 1,\n 1, 1], padding='VALID', name='conv')\n h = tf.nn.relu(tf.nn.bias_add(conv, b), name='relu')\n pooled = tf.nn.max_pool(h, ksize=[1, self.\n _max_document_length - filter_size + 1, 1, 1],\n strides=[1, 1, 1, 1], padding='VALID', name='pool')\n pooled_outputs.append(pooled)\n num_filters_total = self._cnn_num_filters * len(self.\n _cnn_filter_sizes)\n cnn_encoding = tf.concat(pooled_outputs, 3)\n cnn_encoding = tf.reshape(cnn_encoding, [-1, num_filters_total])\n with tf.variable_scope('dropout'):\n cnn_encoding = tf.nn.dropout(cnn_encoding, 1 - self.dropout)\n cnn_encoding = tf.layers.dense(cnn_encoding, self._encoding_size)\n return cnn_encoding\n\n def _DNNLayers(self, embeddings):\n lengths, input_embeddings = self._LookupEmbeddings(embeddings, self\n .input_x)\n lengths = tf.expand_dims(lengths, -1)\n input_embeddings = tf.divide(tf.reduce_sum(input_embeddings, 1), tf\n .to_float(lengths))\n with tf.variable_scope('DNN'):\n input_tensor = tf.nn.dropout(input_embeddings, 1)\n for i, out_size in enumerate(self._dnn_layer_sizes):\n with tf.variable_scope('Layer_{0}'.format(i + 1)):\n in_size = input_tensor.get_shape()[1]\n stddev = 1.0 / tf.sqrt(tf.to_float(tf.maximum(in_size,\n out_size)))\n W = tf.get_variable('W', (in_size, out_size),\n initializer=tf.truncated_normal_initializer(stddev=\n stddev))\n b = tf.get_variable('b', out_size, initializer=tf.\n constant_initializer(0.1))\n input_tensor = tf.nn.bias_add(tf.matmul(input_tensor, W), b\n )\n if self._dnn_activation == 'relu':\n input_tensor = tf.nn.relu(input_tensor, name='relu')\n else:\n raise ValueError(\n 'dnn_activation function not supported.')\n return input_tensor\n <function token>\n <function token>\n\n\n<function token>\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass NNModel:\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def _DNNLayers(self, embeddings):\n lengths, input_embeddings = self._LookupEmbeddings(embeddings, self\n .input_x)\n lengths = tf.expand_dims(lengths, -1)\n input_embeddings = tf.divide(tf.reduce_sum(input_embeddings, 1), tf\n .to_float(lengths))\n with tf.variable_scope('DNN'):\n input_tensor = tf.nn.dropout(input_embeddings, 1)\n for i, out_size in enumerate(self._dnn_layer_sizes):\n with tf.variable_scope('Layer_{0}'.format(i + 1)):\n in_size = input_tensor.get_shape()[1]\n stddev = 1.0 / tf.sqrt(tf.to_float(tf.maximum(in_size,\n out_size)))\n W = tf.get_variable('W', (in_size, out_size),\n initializer=tf.truncated_normal_initializer(stddev=\n stddev))\n b = tf.get_variable('b', out_size, initializer=tf.\n constant_initializer(0.1))\n input_tensor = tf.nn.bias_add(tf.matmul(input_tensor, W), b\n )\n if self._dnn_activation == 'relu':\n input_tensor = tf.nn.relu(input_tensor, name='relu')\n else:\n raise ValueError(\n 'dnn_activation function not supported.')\n return input_tensor\n <function token>\n <function token>\n\n\n<function token>\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass NNModel:\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\n<function token>\n<code token>\n", "<import token>\n<assignment token>\n<class token>\n<function token>\n<code token>\n" ]
false
99,355
e3306e3e5dced1598f04572b791a653f481d91cc
import os.path import os import tornado.ioloop import tornado.web import tornado.websocket import tornado.autoreload from . import global_vars from .inject import inject_live_server_script class HtmlHandler(tornado.web.RequestHandler): def initialize(self, path, default_filename=None): self.root = path self.default_filename = default_filename def get(self, captured): if captured is None: captured = self.default_filename try: injected_html = inject_live_server_script( os.path.join(self.root, captured)) self.write(injected_html) except FileNotFoundError: self.send_error(404) class LiveServerHandler(tornado.websocket.WebSocketHandler): active_clients = set() def open(self): LiveServerHandler.active_clients.add(self) def on_close(self): LiveServerHandler.active_clients.remove(self) def broadcast_reload(): for client in LiveServerHandler.active_clients: client.write_message('reload', binary=False) def make_app(): STATIC_PATH = global_vars.PATH LIVE_SERVER_JS_PATH = os.path.join(os.path.dirname(__file__)) config = { 'debug': True, 'serve_traceback': False } static_config = {'path': STATIC_PATH, 'default_filename': 'index.html'} return tornado.web.Application([ (r'/(.*\.html)?', HtmlHandler, static_config), (r'/ws/live-server', LiveServerHandler), (r'/(liveServer.js)', tornado.web.StaticFileHandler, {'path': LIVE_SERVER_JS_PATH}), (r'/(.*)', tornado.web.StaticFileHandler, static_config) ], **config) def start_app(): app = make_app() server = app.listen(global_vars.PORT) print('listening on {}'.format(global_vars.PORT)) return server def stop_app(app): app.stop()
[ "import os.path\nimport os\n\nimport tornado.ioloop\nimport tornado.web\nimport tornado.websocket\nimport tornado.autoreload\n\nfrom . import global_vars\nfrom .inject import inject_live_server_script\n\n\nclass HtmlHandler(tornado.web.RequestHandler):\n def initialize(self, path, default_filename=None):\n self.root = path\n self.default_filename = default_filename\n\n def get(self, captured):\n if captured is None:\n captured = self.default_filename\n try:\n injected_html = inject_live_server_script(\n os.path.join(self.root, captured))\n self.write(injected_html)\n except FileNotFoundError:\n self.send_error(404)\n\n\nclass LiveServerHandler(tornado.websocket.WebSocketHandler):\n active_clients = set()\n\n def open(self):\n LiveServerHandler.active_clients.add(self)\n\n def on_close(self):\n LiveServerHandler.active_clients.remove(self)\n\n\ndef broadcast_reload():\n for client in LiveServerHandler.active_clients:\n client.write_message('reload', binary=False)\n\n\ndef make_app():\n STATIC_PATH = global_vars.PATH\n\n LIVE_SERVER_JS_PATH = os.path.join(os.path.dirname(__file__))\n config = {\n 'debug': True,\n 'serve_traceback': False\n }\n static_config = {'path': STATIC_PATH, 'default_filename': 'index.html'}\n\n return tornado.web.Application([\n (r'/(.*\\.html)?', HtmlHandler, static_config),\n (r'/ws/live-server', LiveServerHandler),\n (r'/(liveServer.js)', tornado.web.StaticFileHandler,\n {'path': LIVE_SERVER_JS_PATH}),\n (r'/(.*)', tornado.web.StaticFileHandler, static_config)\n ], **config)\n\n\ndef start_app():\n app = make_app()\n server = app.listen(global_vars.PORT)\n print('listening on {}'.format(global_vars.PORT))\n return server\n\n\ndef stop_app(app):\n app.stop()\n", "import os.path\nimport os\nimport tornado.ioloop\nimport tornado.web\nimport tornado.websocket\nimport tornado.autoreload\nfrom . import global_vars\nfrom .inject import inject_live_server_script\n\n\nclass HtmlHandler(tornado.web.RequestHandler):\n\n def initialize(self, path, default_filename=None):\n self.root = path\n self.default_filename = default_filename\n\n def get(self, captured):\n if captured is None:\n captured = self.default_filename\n try:\n injected_html = inject_live_server_script(os.path.join(self.\n root, captured))\n self.write(injected_html)\n except FileNotFoundError:\n self.send_error(404)\n\n\nclass LiveServerHandler(tornado.websocket.WebSocketHandler):\n active_clients = set()\n\n def open(self):\n LiveServerHandler.active_clients.add(self)\n\n def on_close(self):\n LiveServerHandler.active_clients.remove(self)\n\n\ndef broadcast_reload():\n for client in LiveServerHandler.active_clients:\n client.write_message('reload', binary=False)\n\n\ndef make_app():\n STATIC_PATH = global_vars.PATH\n LIVE_SERVER_JS_PATH = os.path.join(os.path.dirname(__file__))\n config = {'debug': True, 'serve_traceback': False}\n static_config = {'path': STATIC_PATH, 'default_filename': 'index.html'}\n return tornado.web.Application([('/(.*\\\\.html)?', HtmlHandler,\n static_config), ('/ws/live-server', LiveServerHandler), (\n '/(liveServer.js)', tornado.web.StaticFileHandler, {'path':\n LIVE_SERVER_JS_PATH}), ('/(.*)', tornado.web.StaticFileHandler,\n static_config)], **config)\n\n\ndef start_app():\n app = make_app()\n server = app.listen(global_vars.PORT)\n print('listening on {}'.format(global_vars.PORT))\n return server\n\n\ndef stop_app(app):\n app.stop()\n", "<import token>\n\n\nclass HtmlHandler(tornado.web.RequestHandler):\n\n def initialize(self, path, default_filename=None):\n self.root = path\n self.default_filename = default_filename\n\n def get(self, captured):\n if captured is None:\n captured = self.default_filename\n try:\n injected_html = inject_live_server_script(os.path.join(self.\n root, captured))\n self.write(injected_html)\n except FileNotFoundError:\n self.send_error(404)\n\n\nclass LiveServerHandler(tornado.websocket.WebSocketHandler):\n active_clients = set()\n\n def open(self):\n LiveServerHandler.active_clients.add(self)\n\n def on_close(self):\n LiveServerHandler.active_clients.remove(self)\n\n\ndef broadcast_reload():\n for client in LiveServerHandler.active_clients:\n client.write_message('reload', binary=False)\n\n\ndef make_app():\n STATIC_PATH = global_vars.PATH\n LIVE_SERVER_JS_PATH = os.path.join(os.path.dirname(__file__))\n config = {'debug': True, 'serve_traceback': False}\n static_config = {'path': STATIC_PATH, 'default_filename': 'index.html'}\n return tornado.web.Application([('/(.*\\\\.html)?', HtmlHandler,\n static_config), ('/ws/live-server', LiveServerHandler), (\n '/(liveServer.js)', tornado.web.StaticFileHandler, {'path':\n LIVE_SERVER_JS_PATH}), ('/(.*)', tornado.web.StaticFileHandler,\n static_config)], **config)\n\n\ndef start_app():\n app = make_app()\n server = app.listen(global_vars.PORT)\n print('listening on {}'.format(global_vars.PORT))\n return server\n\n\ndef stop_app(app):\n app.stop()\n", "<import token>\n\n\nclass HtmlHandler(tornado.web.RequestHandler):\n\n def initialize(self, path, default_filename=None):\n self.root = path\n self.default_filename = default_filename\n\n def get(self, captured):\n if captured is None:\n captured = self.default_filename\n try:\n injected_html = inject_live_server_script(os.path.join(self.\n root, captured))\n self.write(injected_html)\n except FileNotFoundError:\n self.send_error(404)\n\n\nclass LiveServerHandler(tornado.websocket.WebSocketHandler):\n active_clients = set()\n\n def open(self):\n LiveServerHandler.active_clients.add(self)\n\n def on_close(self):\n LiveServerHandler.active_clients.remove(self)\n\n\n<function token>\n\n\ndef make_app():\n STATIC_PATH = global_vars.PATH\n LIVE_SERVER_JS_PATH = os.path.join(os.path.dirname(__file__))\n config = {'debug': True, 'serve_traceback': False}\n static_config = {'path': STATIC_PATH, 'default_filename': 'index.html'}\n return tornado.web.Application([('/(.*\\\\.html)?', HtmlHandler,\n static_config), ('/ws/live-server', LiveServerHandler), (\n '/(liveServer.js)', tornado.web.StaticFileHandler, {'path':\n LIVE_SERVER_JS_PATH}), ('/(.*)', tornado.web.StaticFileHandler,\n static_config)], **config)\n\n\ndef start_app():\n app = make_app()\n server = app.listen(global_vars.PORT)\n print('listening on {}'.format(global_vars.PORT))\n return server\n\n\ndef stop_app(app):\n app.stop()\n", "<import token>\n\n\nclass HtmlHandler(tornado.web.RequestHandler):\n\n def initialize(self, path, default_filename=None):\n self.root = path\n self.default_filename = default_filename\n\n def get(self, captured):\n if captured is None:\n captured = self.default_filename\n try:\n injected_html = inject_live_server_script(os.path.join(self.\n root, captured))\n self.write(injected_html)\n except FileNotFoundError:\n self.send_error(404)\n\n\nclass LiveServerHandler(tornado.websocket.WebSocketHandler):\n active_clients = set()\n\n def open(self):\n LiveServerHandler.active_clients.add(self)\n\n def on_close(self):\n LiveServerHandler.active_clients.remove(self)\n\n\n<function token>\n<function token>\n\n\ndef start_app():\n app = make_app()\n server = app.listen(global_vars.PORT)\n print('listening on {}'.format(global_vars.PORT))\n return server\n\n\ndef stop_app(app):\n app.stop()\n", "<import token>\n\n\nclass HtmlHandler(tornado.web.RequestHandler):\n\n def initialize(self, path, default_filename=None):\n self.root = path\n self.default_filename = default_filename\n\n def get(self, captured):\n if captured is None:\n captured = self.default_filename\n try:\n injected_html = inject_live_server_script(os.path.join(self.\n root, captured))\n self.write(injected_html)\n except FileNotFoundError:\n self.send_error(404)\n\n\nclass LiveServerHandler(tornado.websocket.WebSocketHandler):\n active_clients = set()\n\n def open(self):\n LiveServerHandler.active_clients.add(self)\n\n def on_close(self):\n LiveServerHandler.active_clients.remove(self)\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef stop_app(app):\n app.stop()\n", "<import token>\n\n\nclass HtmlHandler(tornado.web.RequestHandler):\n\n def initialize(self, path, default_filename=None):\n self.root = path\n self.default_filename = default_filename\n\n def get(self, captured):\n if captured is None:\n captured = self.default_filename\n try:\n injected_html = inject_live_server_script(os.path.join(self.\n root, captured))\n self.write(injected_html)\n except FileNotFoundError:\n self.send_error(404)\n\n\nclass LiveServerHandler(tornado.websocket.WebSocketHandler):\n active_clients = set()\n\n def open(self):\n LiveServerHandler.active_clients.add(self)\n\n def on_close(self):\n LiveServerHandler.active_clients.remove(self)\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n", "<import token>\n\n\nclass HtmlHandler(tornado.web.RequestHandler):\n <function token>\n\n def get(self, captured):\n if captured is None:\n captured = self.default_filename\n try:\n injected_html = inject_live_server_script(os.path.join(self.\n root, captured))\n self.write(injected_html)\n except FileNotFoundError:\n self.send_error(404)\n\n\nclass LiveServerHandler(tornado.websocket.WebSocketHandler):\n active_clients = set()\n\n def open(self):\n LiveServerHandler.active_clients.add(self)\n\n def on_close(self):\n LiveServerHandler.active_clients.remove(self)\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n", "<import token>\n\n\nclass HtmlHandler(tornado.web.RequestHandler):\n <function token>\n <function token>\n\n\nclass LiveServerHandler(tornado.websocket.WebSocketHandler):\n active_clients = set()\n\n def open(self):\n LiveServerHandler.active_clients.add(self)\n\n def on_close(self):\n LiveServerHandler.active_clients.remove(self)\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n", "<import token>\n<class token>\n\n\nclass LiveServerHandler(tornado.websocket.WebSocketHandler):\n active_clients = set()\n\n def open(self):\n LiveServerHandler.active_clients.add(self)\n\n def on_close(self):\n LiveServerHandler.active_clients.remove(self)\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n", "<import token>\n<class token>\n\n\nclass LiveServerHandler(tornado.websocket.WebSocketHandler):\n <assignment token>\n\n def open(self):\n LiveServerHandler.active_clients.add(self)\n\n def on_close(self):\n LiveServerHandler.active_clients.remove(self)\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n", "<import token>\n<class token>\n\n\nclass LiveServerHandler(tornado.websocket.WebSocketHandler):\n <assignment token>\n <function token>\n\n def on_close(self):\n LiveServerHandler.active_clients.remove(self)\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n", "<import token>\n<class token>\n\n\nclass LiveServerHandler(tornado.websocket.WebSocketHandler):\n <assignment token>\n <function token>\n <function token>\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n", "<import token>\n<class token>\n<class token>\n<function token>\n<function token>\n<function token>\n<function token>\n" ]
false
99,356
3b2cd7bab2103bf95b058248b9584f089d3d33b2
from abc import ABCMeta, abstractmethod class Selecao(metaclass=ABCMeta): """Classe base para implementação das técnicas de seleção de cromossomo.""" @abstractmethod def selecionar_cromossomo(self, populacao): """Método base para ser sobreescrito nas subclasses.""" pass
[ "from abc import ABCMeta, abstractmethod\n\nclass Selecao(metaclass=ABCMeta):\n \"\"\"Classe base para implementação das técnicas de seleção de cromossomo.\"\"\"\n\n @abstractmethod\n def selecionar_cromossomo(self, populacao):\n \"\"\"Método base para ser sobreescrito nas subclasses.\"\"\"\n pass", "from abc import ABCMeta, abstractmethod\n\n\nclass Selecao(metaclass=ABCMeta):\n \"\"\"Classe base para implementação das técnicas de seleção de cromossomo.\"\"\"\n\n @abstractmethod\n def selecionar_cromossomo(self, populacao):\n \"\"\"Método base para ser sobreescrito nas subclasses.\"\"\"\n pass\n", "<import token>\n\n\nclass Selecao(metaclass=ABCMeta):\n \"\"\"Classe base para implementação das técnicas de seleção de cromossomo.\"\"\"\n\n @abstractmethod\n def selecionar_cromossomo(self, populacao):\n \"\"\"Método base para ser sobreescrito nas subclasses.\"\"\"\n pass\n", "<import token>\n\n\nclass Selecao(metaclass=ABCMeta):\n <docstring token>\n\n @abstractmethod\n def selecionar_cromossomo(self, populacao):\n \"\"\"Método base para ser sobreescrito nas subclasses.\"\"\"\n pass\n", "<import token>\n\n\nclass Selecao(metaclass=ABCMeta):\n <docstring token>\n <function token>\n", "<import token>\n<class token>\n" ]
false
99,357
7adede326402d6b50839df2c63a6b234b4b90eb9
from turtle import Turtle ALIGNMENT = "right" FONT = ("Courier", 24, "normal") class Scoreboard(Turtle): def __init__(self): super().__init__() self.level = 0 self.penup() self.color("black") self.goto(0, 255) self.hideturtle() self.update_scoreboard() def update_scoreboard(self): self.write(arg=f"level = {self.level}", align=ALIGNMENT, font=FONT) def increase_level(self): self.clear() self.level += 1 self.update_scoreboard() def game_over(self): self.clear() self.write(arg=f"GAME OVER", align=ALIGNMENT, font=FONT)
[ "from turtle import Turtle\n\nALIGNMENT = \"right\"\nFONT = (\"Courier\", 24, \"normal\")\n\n\nclass Scoreboard(Turtle):\n\n def __init__(self):\n super().__init__()\n self.level = 0\n self.penup()\n self.color(\"black\")\n self.goto(0, 255)\n self.hideturtle()\n self.update_scoreboard()\n\n def update_scoreboard(self):\n self.write(arg=f\"level = {self.level}\",\n align=ALIGNMENT,\n font=FONT)\n\n def increase_level(self):\n self.clear()\n self.level += 1\n self.update_scoreboard()\n\n def game_over(self):\n self.clear()\n self.write(arg=f\"GAME OVER\",\n align=ALIGNMENT,\n font=FONT)\n", "from turtle import Turtle\nALIGNMENT = 'right'\nFONT = 'Courier', 24, 'normal'\n\n\nclass Scoreboard(Turtle):\n\n def __init__(self):\n super().__init__()\n self.level = 0\n self.penup()\n self.color('black')\n self.goto(0, 255)\n self.hideturtle()\n self.update_scoreboard()\n\n def update_scoreboard(self):\n self.write(arg=f'level = {self.level}', align=ALIGNMENT, font=FONT)\n\n def increase_level(self):\n self.clear()\n self.level += 1\n self.update_scoreboard()\n\n def game_over(self):\n self.clear()\n self.write(arg=f'GAME OVER', align=ALIGNMENT, font=FONT)\n", "<import token>\nALIGNMENT = 'right'\nFONT = 'Courier', 24, 'normal'\n\n\nclass Scoreboard(Turtle):\n\n def __init__(self):\n super().__init__()\n self.level = 0\n self.penup()\n self.color('black')\n self.goto(0, 255)\n self.hideturtle()\n self.update_scoreboard()\n\n def update_scoreboard(self):\n self.write(arg=f'level = {self.level}', align=ALIGNMENT, font=FONT)\n\n def increase_level(self):\n self.clear()\n self.level += 1\n self.update_scoreboard()\n\n def game_over(self):\n self.clear()\n self.write(arg=f'GAME OVER', align=ALIGNMENT, font=FONT)\n", "<import token>\n<assignment token>\n\n\nclass Scoreboard(Turtle):\n\n def __init__(self):\n super().__init__()\n self.level = 0\n self.penup()\n self.color('black')\n self.goto(0, 255)\n self.hideturtle()\n self.update_scoreboard()\n\n def update_scoreboard(self):\n self.write(arg=f'level = {self.level}', align=ALIGNMENT, font=FONT)\n\n def increase_level(self):\n self.clear()\n self.level += 1\n self.update_scoreboard()\n\n def game_over(self):\n self.clear()\n self.write(arg=f'GAME OVER', align=ALIGNMENT, font=FONT)\n", "<import token>\n<assignment token>\n\n\nclass Scoreboard(Turtle):\n <function token>\n\n def update_scoreboard(self):\n self.write(arg=f'level = {self.level}', align=ALIGNMENT, font=FONT)\n\n def increase_level(self):\n self.clear()\n self.level += 1\n self.update_scoreboard()\n\n def game_over(self):\n self.clear()\n self.write(arg=f'GAME OVER', align=ALIGNMENT, font=FONT)\n", "<import token>\n<assignment token>\n\n\nclass Scoreboard(Turtle):\n <function token>\n <function token>\n\n def increase_level(self):\n self.clear()\n self.level += 1\n self.update_scoreboard()\n\n def game_over(self):\n self.clear()\n self.write(arg=f'GAME OVER', align=ALIGNMENT, font=FONT)\n", "<import token>\n<assignment token>\n\n\nclass Scoreboard(Turtle):\n <function token>\n <function token>\n <function token>\n\n def game_over(self):\n self.clear()\n self.write(arg=f'GAME OVER', align=ALIGNMENT, font=FONT)\n", "<import token>\n<assignment token>\n\n\nclass Scoreboard(Turtle):\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n<assignment token>\n<class token>\n" ]
false
99,358
c06b1581e2b0240f5f59d9cf28e13f14cea2c53e
# coding=gbk import json import pandas as pd import numpy as np import akshare as ak from pyecharts.charts import Map, Line, Grid, Timeline, Bar, Tab from pyecharts import options as opts from pyecharts.commons.utils import JsCode from pyecharts.globals import ThemeType date_span_1 = ['2020-02-0' + str(i) for i in range(8, 10)] date_span_2 = ['2020-02-' + str(i) for i in range(10, 22)] date_span = date_span_1 + date_span_2 time_list = [item[-5:] for item in date_span] # print(prov_data) maxNum = 5000 minNum = 0 # def get_map_data(date:str): with open('epidata.json', 'r') as f: prov_data = json.loads(f.read()) def get_hubei_data(): hubei_data = [] for d in prov_data: for x in d['data']: if x['name'] == '湖北省': hubei_data.append(x["value"][:-1]) return hubei_data def get_chongqin_data(): chong_data = [] for d in prov_data: for x in d['data']: if x['name'] == '重庆市': chong_data.append(x["value"][:-1]) return chong_data def get_total_data(): total_data = [] for d in prov_data: confirm, cure, dead = 0, 0, 0 for x in d['data']: confirm += x['value'][0] cure += x['value'][1] dead += x['value'][2] total_data.append([confirm, cure, dead]) return total_data # print(np.array(get_total_data())[:,0]) def get_line_charts(): hb_confirmed = [int(x) for x in np.array(get_hubei_data())[:, 0]] cq_confirmed = [int(x) for x in np.array(get_chongqin_data())[:, 0]] tot_confirmed = [int(x) for x in np.array(get_total_data())[:, 0]] hb_cured = [int(x) for x in np.array(get_hubei_data())[:, 1]] cq_cured = [int(x) for x in np.array(get_chongqin_data())[:, 1]] tot_cured = [int(x) for x in np.array(get_total_data())[:, 1]] hb_dead = [int(x) for x in np.array(get_hubei_data())[:, 2]] cq_dead = [int(x) for x in np.array(get_chongqin_data())[:, 2]] tot_dead = [int(x) for x in np.array(get_total_data())[:, 2]] line_chart_1 = ( Line(init_opts=opts.InitOpts()) .add_xaxis(time_list) .add_yaxis('湖北',hb_confirmed, color='#ff6361') .add_yaxis('重庆', cq_confirmed, color='#ffa600') .add_yaxis('全国', tot_confirmed, color='#bc5090') .set_global_opts( title_opts=opts.TitleOpts(title='2-8至2-22之间累计确诊病例变化趋势', pos_left='20%', pos_top='5%'), tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type='shadow'), legend_opts=opts.LegendOpts(orient='horizontal', pos_left='60%', pos_top='5%'), yaxis_opts=opts.AxisOpts( name='人数', type_='value', axistick_opts=opts.AxisTickOpts(is_show=True), splitline_opts=opts.SplitLineOpts(is_show=True), ) ) .set_series_opts(label_opts=opts.LabelOpts(is_show=False), splitline_opts=opts.SplitLineOpts(is_show=True)) ) line_chart_2 = ( Line() .add_xaxis(time_list) .add_yaxis('湖北', hb_cured, color='#ff6361') .add_yaxis('重庆', cq_cured, color='#ffa600') .add_yaxis('全国', tot_cured, color='#bc5090') .set_global_opts( title_opts=opts.TitleOpts(title='2-8至2-22之间累计治愈病例变化趋势', pos_left='20%', pos_top='5%'), tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type='shadow'), legend_opts=opts.LegendOpts(orient='horizontal', pos_left='60%', pos_top='5%'), yaxis_opts=opts.AxisOpts( name='人数', type_='value', axistick_opts=opts.AxisTickOpts(is_show=True), splitline_opts=opts.SplitLineOpts(is_show=True), ) ) .set_series_opts(label_opts=opts.LabelOpts(is_show=False), splitline_opts=opts.SplitLineOpts(is_show=True)) ) line_chart_3 = ( Line() .add_xaxis(time_list) .add_yaxis('湖北', hb_dead, color='#ff6361') .add_yaxis('重庆', cq_dead, color='#ffa600') .add_yaxis('全国', tot_dead, color='#bc5090') .set_global_opts( title_opts=opts.TitleOpts(title='2-8至2-22之间累计死亡病例变化趋势', pos_left='20%', pos_top='5%'), tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type='shadow'), legend_opts=opts.LegendOpts(orient='horizontal', pos_left='60%', pos_top='5%'), yaxis_opts=opts.AxisOpts( name='人数', type_='value', axistick_opts=opts.AxisTickOpts(is_show=True), splitline_opts=opts.SplitLineOpts(is_show=True), ) ) .set_series_opts(label_opts=opts.LabelOpts(is_show=False), splitline_opts=opts.SplitLineOpts(is_show=True)) ) tab = Tab(page_title='湖北、重庆、全国病例变化趋势') tab.add(line_chart_1, '累计确诊人数') tab.add(line_chart_2, '累计治愈人数') tab.add(line_chart_3, '累计死亡人数') return tab if __name__ == '__main__': g = get_line_charts() g.render("hubei_vs_total.html")
[ "# coding=gbk\nimport json\n\nimport pandas as pd\nimport numpy as np\nimport akshare as ak\nfrom pyecharts.charts import Map, Line, Grid, Timeline, Bar, Tab\nfrom pyecharts import options as opts\nfrom pyecharts.commons.utils import JsCode\nfrom pyecharts.globals import ThemeType\n\ndate_span_1 = ['2020-02-0' + str(i) for i in range(8, 10)]\ndate_span_2 = ['2020-02-' + str(i) for i in range(10, 22)]\ndate_span = date_span_1 + date_span_2\n\ntime_list = [item[-5:] for item in date_span]\n\n# print(prov_data)\n\nmaxNum = 5000\nminNum = 0\n\n# def get_map_data(date:str):\nwith open('epidata.json', 'r') as f:\n prov_data = json.loads(f.read())\n\n\ndef get_hubei_data():\n hubei_data = []\n for d in prov_data:\n for x in d['data']:\n if x['name'] == '湖北省':\n hubei_data.append(x[\"value\"][:-1])\n return hubei_data\n\n\ndef get_chongqin_data():\n chong_data = []\n for d in prov_data:\n for x in d['data']:\n if x['name'] == '重庆市':\n chong_data.append(x[\"value\"][:-1])\n return chong_data\n\n\ndef get_total_data():\n total_data = []\n for d in prov_data:\n confirm, cure, dead = 0, 0, 0\n for x in d['data']:\n confirm += x['value'][0]\n cure += x['value'][1]\n dead += x['value'][2]\n total_data.append([confirm, cure, dead])\n return total_data\n\n\n# print(np.array(get_total_data())[:,0])\n\ndef get_line_charts():\n hb_confirmed = [int(x) for x in np.array(get_hubei_data())[:, 0]]\n cq_confirmed = [int(x) for x in np.array(get_chongqin_data())[:, 0]]\n tot_confirmed = [int(x) for x in np.array(get_total_data())[:, 0]]\n hb_cured = [int(x) for x in np.array(get_hubei_data())[:, 1]]\n cq_cured = [int(x) for x in np.array(get_chongqin_data())[:, 1]]\n tot_cured = [int(x) for x in np.array(get_total_data())[:, 1]]\n hb_dead = [int(x) for x in np.array(get_hubei_data())[:, 2]]\n cq_dead = [int(x) for x in np.array(get_chongqin_data())[:, 2]]\n tot_dead = [int(x) for x in np.array(get_total_data())[:, 2]]\n line_chart_1 = (\n Line(init_opts=opts.InitOpts())\n\n .add_xaxis(time_list)\n .add_yaxis('湖北',hb_confirmed, color='#ff6361')\n .add_yaxis('重庆', cq_confirmed, color='#ffa600')\n .add_yaxis('全国', tot_confirmed, color='#bc5090')\n\n .set_global_opts(\n title_opts=opts.TitleOpts(title='2-8至2-22之间累计确诊病例变化趋势',\n pos_left='20%', pos_top='5%'),\n tooltip_opts=opts.TooltipOpts(trigger=\"axis\", axis_pointer_type='shadow'),\n legend_opts=opts.LegendOpts(orient='horizontal', pos_left='60%', pos_top='5%'),\n yaxis_opts=opts.AxisOpts(\n name='人数',\n type_='value',\n axistick_opts=opts.AxisTickOpts(is_show=True),\n splitline_opts=opts.SplitLineOpts(is_show=True),\n )\n )\n .set_series_opts(label_opts=opts.LabelOpts(is_show=False), splitline_opts=opts.SplitLineOpts(is_show=True))\n\n )\n\n line_chart_2 = (\n Line()\n\n .add_xaxis(time_list)\n .add_yaxis('湖北', hb_cured, color='#ff6361')\n .add_yaxis('重庆', cq_cured, color='#ffa600')\n .add_yaxis('全国', tot_cured, color='#bc5090')\n\n .set_global_opts(\n title_opts=opts.TitleOpts(title='2-8至2-22之间累计治愈病例变化趋势',\n pos_left='20%', pos_top='5%'),\n tooltip_opts=opts.TooltipOpts(trigger=\"axis\", axis_pointer_type='shadow'),\n legend_opts=opts.LegendOpts(orient='horizontal', pos_left='60%', pos_top='5%'),\n yaxis_opts=opts.AxisOpts(\n name='人数',\n type_='value',\n axistick_opts=opts.AxisTickOpts(is_show=True),\n splitline_opts=opts.SplitLineOpts(is_show=True),\n )\n )\n .set_series_opts(label_opts=opts.LabelOpts(is_show=False), splitline_opts=opts.SplitLineOpts(is_show=True))\n\n )\n\n line_chart_3 = (\n Line()\n\n .add_xaxis(time_list)\n .add_yaxis('湖北', hb_dead, color='#ff6361')\n .add_yaxis('重庆', cq_dead, color='#ffa600')\n .add_yaxis('全国', tot_dead, color='#bc5090')\n\n .set_global_opts(\n title_opts=opts.TitleOpts(title='2-8至2-22之间累计死亡病例变化趋势',\n pos_left='20%', pos_top='5%'),\n tooltip_opts=opts.TooltipOpts(trigger=\"axis\", axis_pointer_type='shadow'),\n legend_opts=opts.LegendOpts(orient='horizontal', pos_left='60%', pos_top='5%'),\n yaxis_opts=opts.AxisOpts(\n name='人数',\n type_='value',\n axistick_opts=opts.AxisTickOpts(is_show=True),\n splitline_opts=opts.SplitLineOpts(is_show=True),\n )\n )\n .set_series_opts(label_opts=opts.LabelOpts(is_show=False), splitline_opts=opts.SplitLineOpts(is_show=True))\n\n )\n tab = Tab(page_title='湖北、重庆、全国病例变化趋势')\n tab.add(line_chart_1, '累计确诊人数')\n tab.add(line_chart_2, '累计治愈人数')\n tab.add(line_chart_3, '累计死亡人数')\n return tab\n\n\nif __name__ == '__main__':\n g = get_line_charts()\n g.render(\"hubei_vs_total.html\")\n", "import json\nimport pandas as pd\nimport numpy as np\nimport akshare as ak\nfrom pyecharts.charts import Map, Line, Grid, Timeline, Bar, Tab\nfrom pyecharts import options as opts\nfrom pyecharts.commons.utils import JsCode\nfrom pyecharts.globals import ThemeType\ndate_span_1 = [('2020-02-0' + str(i)) for i in range(8, 10)]\ndate_span_2 = [('2020-02-' + str(i)) for i in range(10, 22)]\ndate_span = date_span_1 + date_span_2\ntime_list = [item[-5:] for item in date_span]\nmaxNum = 5000\nminNum = 0\nwith open('epidata.json', 'r') as f:\n prov_data = json.loads(f.read())\n\n\ndef get_hubei_data():\n hubei_data = []\n for d in prov_data:\n for x in d['data']:\n if x['name'] == '湖北省':\n hubei_data.append(x['value'][:-1])\n return hubei_data\n\n\ndef get_chongqin_data():\n chong_data = []\n for d in prov_data:\n for x in d['data']:\n if x['name'] == '重庆市':\n chong_data.append(x['value'][:-1])\n return chong_data\n\n\ndef get_total_data():\n total_data = []\n for d in prov_data:\n confirm, cure, dead = 0, 0, 0\n for x in d['data']:\n confirm += x['value'][0]\n cure += x['value'][1]\n dead += x['value'][2]\n total_data.append([confirm, cure, dead])\n return total_data\n\n\ndef get_line_charts():\n hb_confirmed = [int(x) for x in np.array(get_hubei_data())[:, 0]]\n cq_confirmed = [int(x) for x in np.array(get_chongqin_data())[:, 0]]\n tot_confirmed = [int(x) for x in np.array(get_total_data())[:, 0]]\n hb_cured = [int(x) for x in np.array(get_hubei_data())[:, 1]]\n cq_cured = [int(x) for x in np.array(get_chongqin_data())[:, 1]]\n tot_cured = [int(x) for x in np.array(get_total_data())[:, 1]]\n hb_dead = [int(x) for x in np.array(get_hubei_data())[:, 2]]\n cq_dead = [int(x) for x in np.array(get_chongqin_data())[:, 2]]\n tot_dead = [int(x) for x in np.array(get_total_data())[:, 2]]\n line_chart_1 = Line(init_opts=opts.InitOpts()).add_xaxis(time_list\n ).add_yaxis('湖北', hb_confirmed, color='#ff6361').add_yaxis('重庆',\n cq_confirmed, color='#ffa600').add_yaxis('全国', tot_confirmed, color\n ='#bc5090').set_global_opts(title_opts=opts.TitleOpts(title=\n '2-8至2-22之间累计确诊病例变化趋势', pos_left='20%', pos_top='5%'), tooltip_opts\n =opts.TooltipOpts(trigger='axis', axis_pointer_type='shadow'),\n legend_opts=opts.LegendOpts(orient='horizontal', pos_left='60%',\n pos_top='5%'), yaxis_opts=opts.AxisOpts(name='人数', type_='value',\n axistick_opts=opts.AxisTickOpts(is_show=True), splitline_opts=opts.\n SplitLineOpts(is_show=True))).set_series_opts(label_opts=opts.\n LabelOpts(is_show=False), splitline_opts=opts.SplitLineOpts(is_show\n =True))\n line_chart_2 = Line().add_xaxis(time_list).add_yaxis('湖北', hb_cured,\n color='#ff6361').add_yaxis('重庆', cq_cured, color='#ffa600').add_yaxis(\n '全国', tot_cured, color='#bc5090').set_global_opts(title_opts=opts.\n TitleOpts(title='2-8至2-22之间累计治愈病例变化趋势', pos_left='20%', pos_top=\n '5%'), tooltip_opts=opts.TooltipOpts(trigger='axis',\n axis_pointer_type='shadow'), legend_opts=opts.LegendOpts(orient=\n 'horizontal', pos_left='60%', pos_top='5%'), yaxis_opts=opts.\n AxisOpts(name='人数', type_='value', axistick_opts=opts.AxisTickOpts(\n is_show=True), splitline_opts=opts.SplitLineOpts(is_show=True))\n ).set_series_opts(label_opts=opts.LabelOpts(is_show=False),\n splitline_opts=opts.SplitLineOpts(is_show=True))\n line_chart_3 = Line().add_xaxis(time_list).add_yaxis('湖北', hb_dead,\n color='#ff6361').add_yaxis('重庆', cq_dead, color='#ffa600').add_yaxis(\n '全国', tot_dead, color='#bc5090').set_global_opts(title_opts=opts.\n TitleOpts(title='2-8至2-22之间累计死亡病例变化趋势', pos_left='20%', pos_top=\n '5%'), tooltip_opts=opts.TooltipOpts(trigger='axis',\n axis_pointer_type='shadow'), legend_opts=opts.LegendOpts(orient=\n 'horizontal', pos_left='60%', pos_top='5%'), yaxis_opts=opts.\n AxisOpts(name='人数', type_='value', axistick_opts=opts.AxisTickOpts(\n is_show=True), splitline_opts=opts.SplitLineOpts(is_show=True))\n ).set_series_opts(label_opts=opts.LabelOpts(is_show=False),\n splitline_opts=opts.SplitLineOpts(is_show=True))\n tab = Tab(page_title='湖北、重庆、全国病例变化趋势')\n tab.add(line_chart_1, '累计确诊人数')\n tab.add(line_chart_2, '累计治愈人数')\n tab.add(line_chart_3, '累计死亡人数')\n return tab\n\n\nif __name__ == '__main__':\n g = get_line_charts()\n g.render('hubei_vs_total.html')\n", "<import token>\ndate_span_1 = [('2020-02-0' + str(i)) for i in range(8, 10)]\ndate_span_2 = [('2020-02-' + str(i)) for i in range(10, 22)]\ndate_span = date_span_1 + date_span_2\ntime_list = [item[-5:] for item in date_span]\nmaxNum = 5000\nminNum = 0\nwith open('epidata.json', 'r') as f:\n prov_data = json.loads(f.read())\n\n\ndef get_hubei_data():\n hubei_data = []\n for d in prov_data:\n for x in d['data']:\n if x['name'] == '湖北省':\n hubei_data.append(x['value'][:-1])\n return hubei_data\n\n\ndef get_chongqin_data():\n chong_data = []\n for d in prov_data:\n for x in d['data']:\n if x['name'] == '重庆市':\n chong_data.append(x['value'][:-1])\n return chong_data\n\n\ndef get_total_data():\n total_data = []\n for d in prov_data:\n confirm, cure, dead = 0, 0, 0\n for x in d['data']:\n confirm += x['value'][0]\n cure += x['value'][1]\n dead += x['value'][2]\n total_data.append([confirm, cure, dead])\n return total_data\n\n\ndef get_line_charts():\n hb_confirmed = [int(x) for x in np.array(get_hubei_data())[:, 0]]\n cq_confirmed = [int(x) for x in np.array(get_chongqin_data())[:, 0]]\n tot_confirmed = [int(x) for x in np.array(get_total_data())[:, 0]]\n hb_cured = [int(x) for x in np.array(get_hubei_data())[:, 1]]\n cq_cured = [int(x) for x in np.array(get_chongqin_data())[:, 1]]\n tot_cured = [int(x) for x in np.array(get_total_data())[:, 1]]\n hb_dead = [int(x) for x in np.array(get_hubei_data())[:, 2]]\n cq_dead = [int(x) for x in np.array(get_chongqin_data())[:, 2]]\n tot_dead = [int(x) for x in np.array(get_total_data())[:, 2]]\n line_chart_1 = Line(init_opts=opts.InitOpts()).add_xaxis(time_list\n ).add_yaxis('湖北', hb_confirmed, color='#ff6361').add_yaxis('重庆',\n cq_confirmed, color='#ffa600').add_yaxis('全国', tot_confirmed, color\n ='#bc5090').set_global_opts(title_opts=opts.TitleOpts(title=\n '2-8至2-22之间累计确诊病例变化趋势', pos_left='20%', pos_top='5%'), tooltip_opts\n =opts.TooltipOpts(trigger='axis', axis_pointer_type='shadow'),\n legend_opts=opts.LegendOpts(orient='horizontal', pos_left='60%',\n pos_top='5%'), yaxis_opts=opts.AxisOpts(name='人数', type_='value',\n axistick_opts=opts.AxisTickOpts(is_show=True), splitline_opts=opts.\n SplitLineOpts(is_show=True))).set_series_opts(label_opts=opts.\n LabelOpts(is_show=False), splitline_opts=opts.SplitLineOpts(is_show\n =True))\n line_chart_2 = Line().add_xaxis(time_list).add_yaxis('湖北', hb_cured,\n color='#ff6361').add_yaxis('重庆', cq_cured, color='#ffa600').add_yaxis(\n '全国', tot_cured, color='#bc5090').set_global_opts(title_opts=opts.\n TitleOpts(title='2-8至2-22之间累计治愈病例变化趋势', pos_left='20%', pos_top=\n '5%'), tooltip_opts=opts.TooltipOpts(trigger='axis',\n axis_pointer_type='shadow'), legend_opts=opts.LegendOpts(orient=\n 'horizontal', pos_left='60%', pos_top='5%'), yaxis_opts=opts.\n AxisOpts(name='人数', type_='value', axistick_opts=opts.AxisTickOpts(\n is_show=True), splitline_opts=opts.SplitLineOpts(is_show=True))\n ).set_series_opts(label_opts=opts.LabelOpts(is_show=False),\n splitline_opts=opts.SplitLineOpts(is_show=True))\n line_chart_3 = Line().add_xaxis(time_list).add_yaxis('湖北', hb_dead,\n color='#ff6361').add_yaxis('重庆', cq_dead, color='#ffa600').add_yaxis(\n '全国', tot_dead, color='#bc5090').set_global_opts(title_opts=opts.\n TitleOpts(title='2-8至2-22之间累计死亡病例变化趋势', pos_left='20%', pos_top=\n '5%'), tooltip_opts=opts.TooltipOpts(trigger='axis',\n axis_pointer_type='shadow'), legend_opts=opts.LegendOpts(orient=\n 'horizontal', pos_left='60%', pos_top='5%'), yaxis_opts=opts.\n AxisOpts(name='人数', type_='value', axistick_opts=opts.AxisTickOpts(\n is_show=True), splitline_opts=opts.SplitLineOpts(is_show=True))\n ).set_series_opts(label_opts=opts.LabelOpts(is_show=False),\n splitline_opts=opts.SplitLineOpts(is_show=True))\n tab = Tab(page_title='湖北、重庆、全国病例变化趋势')\n tab.add(line_chart_1, '累计确诊人数')\n tab.add(line_chart_2, '累计治愈人数')\n tab.add(line_chart_3, '累计死亡人数')\n return tab\n\n\nif __name__ == '__main__':\n g = get_line_charts()\n g.render('hubei_vs_total.html')\n", "<import token>\n<assignment token>\nwith open('epidata.json', 'r') as f:\n prov_data = json.loads(f.read())\n\n\ndef get_hubei_data():\n hubei_data = []\n for d in prov_data:\n for x in d['data']:\n if x['name'] == '湖北省':\n hubei_data.append(x['value'][:-1])\n return hubei_data\n\n\ndef get_chongqin_data():\n chong_data = []\n for d in prov_data:\n for x in d['data']:\n if x['name'] == '重庆市':\n chong_data.append(x['value'][:-1])\n return chong_data\n\n\ndef get_total_data():\n total_data = []\n for d in prov_data:\n confirm, cure, dead = 0, 0, 0\n for x in d['data']:\n confirm += x['value'][0]\n cure += x['value'][1]\n dead += x['value'][2]\n total_data.append([confirm, cure, dead])\n return total_data\n\n\ndef get_line_charts():\n hb_confirmed = [int(x) for x in np.array(get_hubei_data())[:, 0]]\n cq_confirmed = [int(x) for x in np.array(get_chongqin_data())[:, 0]]\n tot_confirmed = [int(x) for x in np.array(get_total_data())[:, 0]]\n hb_cured = [int(x) for x in np.array(get_hubei_data())[:, 1]]\n cq_cured = [int(x) for x in np.array(get_chongqin_data())[:, 1]]\n tot_cured = [int(x) for x in np.array(get_total_data())[:, 1]]\n hb_dead = [int(x) for x in np.array(get_hubei_data())[:, 2]]\n cq_dead = [int(x) for x in np.array(get_chongqin_data())[:, 2]]\n tot_dead = [int(x) for x in np.array(get_total_data())[:, 2]]\n line_chart_1 = Line(init_opts=opts.InitOpts()).add_xaxis(time_list\n ).add_yaxis('湖北', hb_confirmed, color='#ff6361').add_yaxis('重庆',\n cq_confirmed, color='#ffa600').add_yaxis('全国', tot_confirmed, color\n ='#bc5090').set_global_opts(title_opts=opts.TitleOpts(title=\n '2-8至2-22之间累计确诊病例变化趋势', pos_left='20%', pos_top='5%'), tooltip_opts\n =opts.TooltipOpts(trigger='axis', axis_pointer_type='shadow'),\n legend_opts=opts.LegendOpts(orient='horizontal', pos_left='60%',\n pos_top='5%'), yaxis_opts=opts.AxisOpts(name='人数', type_='value',\n axistick_opts=opts.AxisTickOpts(is_show=True), splitline_opts=opts.\n SplitLineOpts(is_show=True))).set_series_opts(label_opts=opts.\n LabelOpts(is_show=False), splitline_opts=opts.SplitLineOpts(is_show\n =True))\n line_chart_2 = Line().add_xaxis(time_list).add_yaxis('湖北', hb_cured,\n color='#ff6361').add_yaxis('重庆', cq_cured, color='#ffa600').add_yaxis(\n '全国', tot_cured, color='#bc5090').set_global_opts(title_opts=opts.\n TitleOpts(title='2-8至2-22之间累计治愈病例变化趋势', pos_left='20%', pos_top=\n '5%'), tooltip_opts=opts.TooltipOpts(trigger='axis',\n axis_pointer_type='shadow'), legend_opts=opts.LegendOpts(orient=\n 'horizontal', pos_left='60%', pos_top='5%'), yaxis_opts=opts.\n AxisOpts(name='人数', type_='value', axistick_opts=opts.AxisTickOpts(\n is_show=True), splitline_opts=opts.SplitLineOpts(is_show=True))\n ).set_series_opts(label_opts=opts.LabelOpts(is_show=False),\n splitline_opts=opts.SplitLineOpts(is_show=True))\n line_chart_3 = Line().add_xaxis(time_list).add_yaxis('湖北', hb_dead,\n color='#ff6361').add_yaxis('重庆', cq_dead, color='#ffa600').add_yaxis(\n '全国', tot_dead, color='#bc5090').set_global_opts(title_opts=opts.\n TitleOpts(title='2-8至2-22之间累计死亡病例变化趋势', pos_left='20%', pos_top=\n '5%'), tooltip_opts=opts.TooltipOpts(trigger='axis',\n axis_pointer_type='shadow'), legend_opts=opts.LegendOpts(orient=\n 'horizontal', pos_left='60%', pos_top='5%'), yaxis_opts=opts.\n AxisOpts(name='人数', type_='value', axistick_opts=opts.AxisTickOpts(\n is_show=True), splitline_opts=opts.SplitLineOpts(is_show=True))\n ).set_series_opts(label_opts=opts.LabelOpts(is_show=False),\n splitline_opts=opts.SplitLineOpts(is_show=True))\n tab = Tab(page_title='湖北、重庆、全国病例变化趋势')\n tab.add(line_chart_1, '累计确诊人数')\n tab.add(line_chart_2, '累计治愈人数')\n tab.add(line_chart_3, '累计死亡人数')\n return tab\n\n\nif __name__ == '__main__':\n g = get_line_charts()\n g.render('hubei_vs_total.html')\n", "<import token>\n<assignment token>\n<code token>\n\n\ndef get_hubei_data():\n hubei_data = []\n for d in prov_data:\n for x in d['data']:\n if x['name'] == '湖北省':\n hubei_data.append(x['value'][:-1])\n return hubei_data\n\n\ndef get_chongqin_data():\n chong_data = []\n for d in prov_data:\n for x in d['data']:\n if x['name'] == '重庆市':\n chong_data.append(x['value'][:-1])\n return chong_data\n\n\ndef get_total_data():\n total_data = []\n for d in prov_data:\n confirm, cure, dead = 0, 0, 0\n for x in d['data']:\n confirm += x['value'][0]\n cure += x['value'][1]\n dead += x['value'][2]\n total_data.append([confirm, cure, dead])\n return total_data\n\n\ndef get_line_charts():\n hb_confirmed = [int(x) for x in np.array(get_hubei_data())[:, 0]]\n cq_confirmed = [int(x) for x in np.array(get_chongqin_data())[:, 0]]\n tot_confirmed = [int(x) for x in np.array(get_total_data())[:, 0]]\n hb_cured = [int(x) for x in np.array(get_hubei_data())[:, 1]]\n cq_cured = [int(x) for x in np.array(get_chongqin_data())[:, 1]]\n tot_cured = [int(x) for x in np.array(get_total_data())[:, 1]]\n hb_dead = [int(x) for x in np.array(get_hubei_data())[:, 2]]\n cq_dead = [int(x) for x in np.array(get_chongqin_data())[:, 2]]\n tot_dead = [int(x) for x in np.array(get_total_data())[:, 2]]\n line_chart_1 = Line(init_opts=opts.InitOpts()).add_xaxis(time_list\n ).add_yaxis('湖北', hb_confirmed, color='#ff6361').add_yaxis('重庆',\n cq_confirmed, color='#ffa600').add_yaxis('全国', tot_confirmed, color\n ='#bc5090').set_global_opts(title_opts=opts.TitleOpts(title=\n '2-8至2-22之间累计确诊病例变化趋势', pos_left='20%', pos_top='5%'), tooltip_opts\n =opts.TooltipOpts(trigger='axis', axis_pointer_type='shadow'),\n legend_opts=opts.LegendOpts(orient='horizontal', pos_left='60%',\n pos_top='5%'), yaxis_opts=opts.AxisOpts(name='人数', type_='value',\n axistick_opts=opts.AxisTickOpts(is_show=True), splitline_opts=opts.\n SplitLineOpts(is_show=True))).set_series_opts(label_opts=opts.\n LabelOpts(is_show=False), splitline_opts=opts.SplitLineOpts(is_show\n =True))\n line_chart_2 = Line().add_xaxis(time_list).add_yaxis('湖北', hb_cured,\n color='#ff6361').add_yaxis('重庆', cq_cured, color='#ffa600').add_yaxis(\n '全国', tot_cured, color='#bc5090').set_global_opts(title_opts=opts.\n TitleOpts(title='2-8至2-22之间累计治愈病例变化趋势', pos_left='20%', pos_top=\n '5%'), tooltip_opts=opts.TooltipOpts(trigger='axis',\n axis_pointer_type='shadow'), legend_opts=opts.LegendOpts(orient=\n 'horizontal', pos_left='60%', pos_top='5%'), yaxis_opts=opts.\n AxisOpts(name='人数', type_='value', axistick_opts=opts.AxisTickOpts(\n is_show=True), splitline_opts=opts.SplitLineOpts(is_show=True))\n ).set_series_opts(label_opts=opts.LabelOpts(is_show=False),\n splitline_opts=opts.SplitLineOpts(is_show=True))\n line_chart_3 = Line().add_xaxis(time_list).add_yaxis('湖北', hb_dead,\n color='#ff6361').add_yaxis('重庆', cq_dead, color='#ffa600').add_yaxis(\n '全国', tot_dead, color='#bc5090').set_global_opts(title_opts=opts.\n TitleOpts(title='2-8至2-22之间累计死亡病例变化趋势', pos_left='20%', pos_top=\n '5%'), tooltip_opts=opts.TooltipOpts(trigger='axis',\n axis_pointer_type='shadow'), legend_opts=opts.LegendOpts(orient=\n 'horizontal', pos_left='60%', pos_top='5%'), yaxis_opts=opts.\n AxisOpts(name='人数', type_='value', axistick_opts=opts.AxisTickOpts(\n is_show=True), splitline_opts=opts.SplitLineOpts(is_show=True))\n ).set_series_opts(label_opts=opts.LabelOpts(is_show=False),\n splitline_opts=opts.SplitLineOpts(is_show=True))\n tab = Tab(page_title='湖北、重庆、全国病例变化趋势')\n tab.add(line_chart_1, '累计确诊人数')\n tab.add(line_chart_2, '累计治愈人数')\n tab.add(line_chart_3, '累计死亡人数')\n return tab\n\n\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n\n\ndef get_hubei_data():\n hubei_data = []\n for d in prov_data:\n for x in d['data']:\n if x['name'] == '湖北省':\n hubei_data.append(x['value'][:-1])\n return hubei_data\n\n\n<function token>\n\n\ndef get_total_data():\n total_data = []\n for d in prov_data:\n confirm, cure, dead = 0, 0, 0\n for x in d['data']:\n confirm += x['value'][0]\n cure += x['value'][1]\n dead += x['value'][2]\n total_data.append([confirm, cure, dead])\n return total_data\n\n\ndef get_line_charts():\n hb_confirmed = [int(x) for x in np.array(get_hubei_data())[:, 0]]\n cq_confirmed = [int(x) for x in np.array(get_chongqin_data())[:, 0]]\n tot_confirmed = [int(x) for x in np.array(get_total_data())[:, 0]]\n hb_cured = [int(x) for x in np.array(get_hubei_data())[:, 1]]\n cq_cured = [int(x) for x in np.array(get_chongqin_data())[:, 1]]\n tot_cured = [int(x) for x in np.array(get_total_data())[:, 1]]\n hb_dead = [int(x) for x in np.array(get_hubei_data())[:, 2]]\n cq_dead = [int(x) for x in np.array(get_chongqin_data())[:, 2]]\n tot_dead = [int(x) for x in np.array(get_total_data())[:, 2]]\n line_chart_1 = Line(init_opts=opts.InitOpts()).add_xaxis(time_list\n ).add_yaxis('湖北', hb_confirmed, color='#ff6361').add_yaxis('重庆',\n cq_confirmed, color='#ffa600').add_yaxis('全国', tot_confirmed, color\n ='#bc5090').set_global_opts(title_opts=opts.TitleOpts(title=\n '2-8至2-22之间累计确诊病例变化趋势', pos_left='20%', pos_top='5%'), tooltip_opts\n =opts.TooltipOpts(trigger='axis', axis_pointer_type='shadow'),\n legend_opts=opts.LegendOpts(orient='horizontal', pos_left='60%',\n pos_top='5%'), yaxis_opts=opts.AxisOpts(name='人数', type_='value',\n axistick_opts=opts.AxisTickOpts(is_show=True), splitline_opts=opts.\n SplitLineOpts(is_show=True))).set_series_opts(label_opts=opts.\n LabelOpts(is_show=False), splitline_opts=opts.SplitLineOpts(is_show\n =True))\n line_chart_2 = Line().add_xaxis(time_list).add_yaxis('湖北', hb_cured,\n color='#ff6361').add_yaxis('重庆', cq_cured, color='#ffa600').add_yaxis(\n '全国', tot_cured, color='#bc5090').set_global_opts(title_opts=opts.\n TitleOpts(title='2-8至2-22之间累计治愈病例变化趋势', pos_left='20%', pos_top=\n '5%'), tooltip_opts=opts.TooltipOpts(trigger='axis',\n axis_pointer_type='shadow'), legend_opts=opts.LegendOpts(orient=\n 'horizontal', pos_left='60%', pos_top='5%'), yaxis_opts=opts.\n AxisOpts(name='人数', type_='value', axistick_opts=opts.AxisTickOpts(\n is_show=True), splitline_opts=opts.SplitLineOpts(is_show=True))\n ).set_series_opts(label_opts=opts.LabelOpts(is_show=False),\n splitline_opts=opts.SplitLineOpts(is_show=True))\n line_chart_3 = Line().add_xaxis(time_list).add_yaxis('湖北', hb_dead,\n color='#ff6361').add_yaxis('重庆', cq_dead, color='#ffa600').add_yaxis(\n '全国', tot_dead, color='#bc5090').set_global_opts(title_opts=opts.\n TitleOpts(title='2-8至2-22之间累计死亡病例变化趋势', pos_left='20%', pos_top=\n '5%'), tooltip_opts=opts.TooltipOpts(trigger='axis',\n axis_pointer_type='shadow'), legend_opts=opts.LegendOpts(orient=\n 'horizontal', pos_left='60%', pos_top='5%'), yaxis_opts=opts.\n AxisOpts(name='人数', type_='value', axistick_opts=opts.AxisTickOpts(\n is_show=True), splitline_opts=opts.SplitLineOpts(is_show=True))\n ).set_series_opts(label_opts=opts.LabelOpts(is_show=False),\n splitline_opts=opts.SplitLineOpts(is_show=True))\n tab = Tab(page_title='湖北、重庆、全国病例变化趋势')\n tab.add(line_chart_1, '累计确诊人数')\n tab.add(line_chart_2, '累计治愈人数')\n tab.add(line_chart_3, '累计死亡人数')\n return tab\n\n\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n\n\ndef get_hubei_data():\n hubei_data = []\n for d in prov_data:\n for x in d['data']:\n if x['name'] == '湖北省':\n hubei_data.append(x['value'][:-1])\n return hubei_data\n\n\n<function token>\n<function token>\n\n\ndef get_line_charts():\n hb_confirmed = [int(x) for x in np.array(get_hubei_data())[:, 0]]\n cq_confirmed = [int(x) for x in np.array(get_chongqin_data())[:, 0]]\n tot_confirmed = [int(x) for x in np.array(get_total_data())[:, 0]]\n hb_cured = [int(x) for x in np.array(get_hubei_data())[:, 1]]\n cq_cured = [int(x) for x in np.array(get_chongqin_data())[:, 1]]\n tot_cured = [int(x) for x in np.array(get_total_data())[:, 1]]\n hb_dead = [int(x) for x in np.array(get_hubei_data())[:, 2]]\n cq_dead = [int(x) for x in np.array(get_chongqin_data())[:, 2]]\n tot_dead = [int(x) for x in np.array(get_total_data())[:, 2]]\n line_chart_1 = Line(init_opts=opts.InitOpts()).add_xaxis(time_list\n ).add_yaxis('湖北', hb_confirmed, color='#ff6361').add_yaxis('重庆',\n cq_confirmed, color='#ffa600').add_yaxis('全国', tot_confirmed, color\n ='#bc5090').set_global_opts(title_opts=opts.TitleOpts(title=\n '2-8至2-22之间累计确诊病例变化趋势', pos_left='20%', pos_top='5%'), tooltip_opts\n =opts.TooltipOpts(trigger='axis', axis_pointer_type='shadow'),\n legend_opts=opts.LegendOpts(orient='horizontal', pos_left='60%',\n pos_top='5%'), yaxis_opts=opts.AxisOpts(name='人数', type_='value',\n axistick_opts=opts.AxisTickOpts(is_show=True), splitline_opts=opts.\n SplitLineOpts(is_show=True))).set_series_opts(label_opts=opts.\n LabelOpts(is_show=False), splitline_opts=opts.SplitLineOpts(is_show\n =True))\n line_chart_2 = Line().add_xaxis(time_list).add_yaxis('湖北', hb_cured,\n color='#ff6361').add_yaxis('重庆', cq_cured, color='#ffa600').add_yaxis(\n '全国', tot_cured, color='#bc5090').set_global_opts(title_opts=opts.\n TitleOpts(title='2-8至2-22之间累计治愈病例变化趋势', pos_left='20%', pos_top=\n '5%'), tooltip_opts=opts.TooltipOpts(trigger='axis',\n axis_pointer_type='shadow'), legend_opts=opts.LegendOpts(orient=\n 'horizontal', pos_left='60%', pos_top='5%'), yaxis_opts=opts.\n AxisOpts(name='人数', type_='value', axistick_opts=opts.AxisTickOpts(\n is_show=True), splitline_opts=opts.SplitLineOpts(is_show=True))\n ).set_series_opts(label_opts=opts.LabelOpts(is_show=False),\n splitline_opts=opts.SplitLineOpts(is_show=True))\n line_chart_3 = Line().add_xaxis(time_list).add_yaxis('湖北', hb_dead,\n color='#ff6361').add_yaxis('重庆', cq_dead, color='#ffa600').add_yaxis(\n '全国', tot_dead, color='#bc5090').set_global_opts(title_opts=opts.\n TitleOpts(title='2-8至2-22之间累计死亡病例变化趋势', pos_left='20%', pos_top=\n '5%'), tooltip_opts=opts.TooltipOpts(trigger='axis',\n axis_pointer_type='shadow'), legend_opts=opts.LegendOpts(orient=\n 'horizontal', pos_left='60%', pos_top='5%'), yaxis_opts=opts.\n AxisOpts(name='人数', type_='value', axistick_opts=opts.AxisTickOpts(\n is_show=True), splitline_opts=opts.SplitLineOpts(is_show=True))\n ).set_series_opts(label_opts=opts.LabelOpts(is_show=False),\n splitline_opts=opts.SplitLineOpts(is_show=True))\n tab = Tab(page_title='湖北、重庆、全国病例变化趋势')\n tab.add(line_chart_1, '累计确诊人数')\n tab.add(line_chart_2, '累计治愈人数')\n tab.add(line_chart_3, '累计死亡人数')\n return tab\n\n\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n\n\ndef get_hubei_data():\n hubei_data = []\n for d in prov_data:\n for x in d['data']:\n if x['name'] == '湖北省':\n hubei_data.append(x['value'][:-1])\n return hubei_data\n\n\n<function token>\n<function token>\n<function token>\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n<function token>\n<function token>\n<function token>\n<function token>\n<code token>\n" ]
false
99,359
5c3507b69215177a6138f03ed5845be53548bc6d
import numpy as np from tensorflow.keras import layers, models import identify_code.ideantify as idt model = models.Sequential([ layers.Conv2D(64, (3, 3), activation='relu', input_shape=(50, 200, 1)), # 卷积层1,卷积核3*3 layers.ReLU(), layers.MaxPooling2D((2, 2)), # 池化层1,2*2采样 layers.Conv2D(128, (3, 3), activation='relu'), # 卷积层2,卷积核3*3 layers.ReLU(), layers.MaxPooling2D((2, 2)), # 池化层2,2*2采样 layers.Conv2D(256, (3, 3), activation='relu'), # 卷积层2,卷积核3*3 layers.ReLU(), layers.MaxPooling2D((2, 2)), # 池化层2,2*2采样 layers.Flatten(), # Flatten层,连接卷积层与全连接层 layers.Dense(1024, activation='relu'), # 全连接层,特征进一步提取 layers.Dense(idt.label_name_len * idt.char_set_len), layers.Reshape([idt.label_name_len, idt.char_set_len]), layers.Softmax() # 输出层,输出预期结果 ]) # 打印网络结构 print(model.summary()) # model.compile()方法用于在配置训练方法时,告知训练时用的优化器、损失函数和准确率评测标准 model.compile(optimizer="adam", loss='categorical_crossentropy', metrics=['accuracy']) epochs = 20 history = model.fit( idt.train_ds, validation_data=idt.val_ds, epochs=epochs ) # 模型评估 acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs_range = range(epochs) idt.plt.figure(figsize=(12, 4)) idt.plt.subplot(1, 2, 1) idt.plt.plot(epochs_range, acc, label='训练时的准确率') idt.plt.plot(epochs_range, val_acc, label='测试的准确率') idt.plt.legend(loc='lower right') idt.plt.title('训练和测试的准确率的折线图') idt.plt.subplot(1, 2, 2) idt.plt.plot(epochs_range, loss, label='训练时的误差率') idt.plt.plot(epochs_range, val_loss, label='测试的误差率') idt.plt.legend(loc='upper right') idt.plt.title('训练和测试的误差率的折线图') idt.plt.show() # 保存模型 model.save('models/final_model.h5')
[ "import numpy as np\nfrom tensorflow.keras import layers, models\nimport identify_code.ideantify as idt\n\nmodel = models.Sequential([\n\n layers.Conv2D(64, (3, 3), activation='relu', input_shape=(50, 200, 1)), # 卷积层1,卷积核3*3\n layers.ReLU(),\n layers.MaxPooling2D((2, 2)), # 池化层1,2*2采样\n\n layers.Conv2D(128, (3, 3), activation='relu'), # 卷积层2,卷积核3*3\n layers.ReLU(),\n layers.MaxPooling2D((2, 2)), # 池化层2,2*2采样\n\n layers.Conv2D(256, (3, 3), activation='relu'), # 卷积层2,卷积核3*3\n layers.ReLU(),\n layers.MaxPooling2D((2, 2)), # 池化层2,2*2采样\n\n layers.Flatten(), # Flatten层,连接卷积层与全连接层\n layers.Dense(1024, activation='relu'), # 全连接层,特征进一步提取\n\n layers.Dense(idt.label_name_len * idt.char_set_len),\n layers.Reshape([idt.label_name_len, idt.char_set_len]),\n layers.Softmax() # 输出层,输出预期结果\n])\n# 打印网络结构\nprint(model.summary())\n\n# model.compile()方法用于在配置训练方法时,告知训练时用的优化器、损失函数和准确率评测标准\nmodel.compile(optimizer=\"adam\",\n loss='categorical_crossentropy',\n metrics=['accuracy'])\n\nepochs = 20\nhistory = model.fit(\n idt.train_ds,\n validation_data=idt.val_ds,\n epochs=epochs\n)\n\n# 模型评估\nacc = history.history['accuracy']\nval_acc = history.history['val_accuracy']\n\nloss = history.history['loss']\nval_loss = history.history['val_loss']\n\n\nepochs_range = range(epochs)\n\nidt.plt.figure(figsize=(12, 4))\nidt.plt.subplot(1, 2, 1)\n\nidt.plt.plot(epochs_range, acc, label='训练时的准确率')\nidt.plt.plot(epochs_range, val_acc, label='测试的准确率')\nidt.plt.legend(loc='lower right')\nidt.plt.title('训练和测试的准确率的折线图')\n\nidt.plt.subplot(1, 2, 2)\nidt.plt.plot(epochs_range, loss, label='训练时的误差率')\nidt.plt.plot(epochs_range, val_loss, label='测试的误差率')\nidt.plt.legend(loc='upper right')\nidt.plt.title('训练和测试的误差率的折线图')\nidt.plt.show()\n\n# 保存模型\nmodel.save('models/final_model.h5')\n", "import numpy as np\nfrom tensorflow.keras import layers, models\nimport identify_code.ideantify as idt\nmodel = models.Sequential([layers.Conv2D(64, (3, 3), activation='relu',\n input_shape=(50, 200, 1)), layers.ReLU(), layers.MaxPooling2D((2, 2)),\n layers.Conv2D(128, (3, 3), activation='relu'), layers.ReLU(), layers.\n MaxPooling2D((2, 2)), layers.Conv2D(256, (3, 3), activation='relu'),\n layers.ReLU(), layers.MaxPooling2D((2, 2)), layers.Flatten(), layers.\n Dense(1024, activation='relu'), layers.Dense(idt.label_name_len * idt.\n char_set_len), layers.Reshape([idt.label_name_len, idt.char_set_len]),\n layers.Softmax()])\nprint(model.summary())\nmodel.compile(optimizer='adam', loss='categorical_crossentropy', metrics=[\n 'accuracy'])\nepochs = 20\nhistory = model.fit(idt.train_ds, validation_data=idt.val_ds, epochs=epochs)\nacc = history.history['accuracy']\nval_acc = history.history['val_accuracy']\nloss = history.history['loss']\nval_loss = history.history['val_loss']\nepochs_range = range(epochs)\nidt.plt.figure(figsize=(12, 4))\nidt.plt.subplot(1, 2, 1)\nidt.plt.plot(epochs_range, acc, label='训练时的准确率')\nidt.plt.plot(epochs_range, val_acc, label='测试的准确率')\nidt.plt.legend(loc='lower right')\nidt.plt.title('训练和测试的准确率的折线图')\nidt.plt.subplot(1, 2, 2)\nidt.plt.plot(epochs_range, loss, label='训练时的误差率')\nidt.plt.plot(epochs_range, val_loss, label='测试的误差率')\nidt.plt.legend(loc='upper right')\nidt.plt.title('训练和测试的误差率的折线图')\nidt.plt.show()\nmodel.save('models/final_model.h5')\n", "<import token>\nmodel = models.Sequential([layers.Conv2D(64, (3, 3), activation='relu',\n input_shape=(50, 200, 1)), layers.ReLU(), layers.MaxPooling2D((2, 2)),\n layers.Conv2D(128, (3, 3), activation='relu'), layers.ReLU(), layers.\n MaxPooling2D((2, 2)), layers.Conv2D(256, (3, 3), activation='relu'),\n layers.ReLU(), layers.MaxPooling2D((2, 2)), layers.Flatten(), layers.\n Dense(1024, activation='relu'), layers.Dense(idt.label_name_len * idt.\n char_set_len), layers.Reshape([idt.label_name_len, idt.char_set_len]),\n layers.Softmax()])\nprint(model.summary())\nmodel.compile(optimizer='adam', loss='categorical_crossentropy', metrics=[\n 'accuracy'])\nepochs = 20\nhistory = model.fit(idt.train_ds, validation_data=idt.val_ds, epochs=epochs)\nacc = history.history['accuracy']\nval_acc = history.history['val_accuracy']\nloss = history.history['loss']\nval_loss = history.history['val_loss']\nepochs_range = range(epochs)\nidt.plt.figure(figsize=(12, 4))\nidt.plt.subplot(1, 2, 1)\nidt.plt.plot(epochs_range, acc, label='训练时的准确率')\nidt.plt.plot(epochs_range, val_acc, label='测试的准确率')\nidt.plt.legend(loc='lower right')\nidt.plt.title('训练和测试的准确率的折线图')\nidt.plt.subplot(1, 2, 2)\nidt.plt.plot(epochs_range, loss, label='训练时的误差率')\nidt.plt.plot(epochs_range, val_loss, label='测试的误差率')\nidt.plt.legend(loc='upper right')\nidt.plt.title('训练和测试的误差率的折线图')\nidt.plt.show()\nmodel.save('models/final_model.h5')\n", "<import token>\n<assignment token>\nprint(model.summary())\nmodel.compile(optimizer='adam', loss='categorical_crossentropy', metrics=[\n 'accuracy'])\n<assignment token>\nidt.plt.figure(figsize=(12, 4))\nidt.plt.subplot(1, 2, 1)\nidt.plt.plot(epochs_range, acc, label='训练时的准确率')\nidt.plt.plot(epochs_range, val_acc, label='测试的准确率')\nidt.plt.legend(loc='lower right')\nidt.plt.title('训练和测试的准确率的折线图')\nidt.plt.subplot(1, 2, 2)\nidt.plt.plot(epochs_range, loss, label='训练时的误差率')\nidt.plt.plot(epochs_range, val_loss, label='测试的误差率')\nidt.plt.legend(loc='upper right')\nidt.plt.title('训练和测试的误差率的折线图')\nidt.plt.show()\nmodel.save('models/final_model.h5')\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n" ]
false
99,360
25fdd55ed0d6c88f9fa6e6eaf45f3641264bdfff
# -*- coding: utf-8 -*- """ Created on Wed Nov 22 11:40:56 2017 @author: Marcin """ import folium import pandas as pd from geopy.geocoders import Nominatim danes = pd.read_excel("adresy.xlsx","Polska") lats = list(danes["Lat"]) lons = list(danes["Lon"]) danep = pd.read_excel("adresy.xlsx","Pioneers") latp = list(danep["Lat"]) lonp = list(danep["Lon"]) danee = pd.read_excel("adresy.xlsx","Explorers") late = list(danee["Lat"]) lone = list(danee["Lon"]) danefp = pd.read_excel("adresy.xlsx","FinalistP") latfp = list(danefp["Lat"]) lonfp = list(danefp["Lon"]) danefe = pd.read_excel("adresy.xlsx","FinalistE") latfe = list(danefe["Lat"]) lonfe = list(danefe["Lon"]) map = folium.Map(location = [52.00, 21.00], zoom_start=5, tiles="Mapbox Bright") fgs = folium.FeatureGroup(name = "Skywalkers") for lt, ln in zip(lats, lons): fgs.add_child(folium.CircleMarker(location=[float(lt),float(ln)], radius = 2,fill_color = 'Green', color = 'green')) fgp = folium.FeatureGroup(name = "Pioneers") for lt, ln in zip(latp, lonp): fgp.add_child(folium.CircleMarker(location=[float(lt),float(ln)], radius = 2,fill_color = 'Red', color = 'Red')) fge = folium.FeatureGroup(name = "Explorers") for lt, ln in zip(late, lone): fge.add_child(folium.CircleMarker(location=[float(lt),float(ln)], radius = 2,fill_color = 'Blue', color = 'Blue')) fgfp = folium.FeatureGroup(name = "Pioneers") for lt, ln in zip(latfp, lonfp): fgfp.add_child(folium.CircleMarker(location=[float(lt),float(ln)], radius = 4,fill_color = 'Red', color = 'Red')) fgfe = folium.FeatureGroup(name = "Explorers") for lt, ln in zip(latfe, lonfe): fgfe.add_child(folium.CircleMarker(location=[float(lt),float(ln)], radius = 4,fill_color = 'Blue', color = 'Blue')) map.add_child(fgfe) map.add_child(fgfp) map.add_child(fgs) map.add_child(fgp) map.add_child(fge) map.add_child(folium.LayerControl()) map.save("Map2.html")
[ "# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Wed Nov 22 11:40:56 2017\n\n@author: Marcin\n\"\"\"\n\nimport folium\nimport pandas as pd\nfrom geopy.geocoders import Nominatim\n\ndanes = pd.read_excel(\"adresy.xlsx\",\"Polska\")\nlats = list(danes[\"Lat\"])\nlons = list(danes[\"Lon\"])\n\ndanep = pd.read_excel(\"adresy.xlsx\",\"Pioneers\")\nlatp = list(danep[\"Lat\"])\nlonp = list(danep[\"Lon\"])\n\ndanee = pd.read_excel(\"adresy.xlsx\",\"Explorers\")\nlate = list(danee[\"Lat\"])\nlone = list(danee[\"Lon\"])\n\ndanefp = pd.read_excel(\"adresy.xlsx\",\"FinalistP\")\nlatfp = list(danefp[\"Lat\"])\nlonfp = list(danefp[\"Lon\"])\n\ndanefe = pd.read_excel(\"adresy.xlsx\",\"FinalistE\")\nlatfe = list(danefe[\"Lat\"])\nlonfe = list(danefe[\"Lon\"])\n\nmap = folium.Map(location = [52.00, 21.00], zoom_start=5, tiles=\"Mapbox Bright\")\n\nfgs = folium.FeatureGroup(name = \"Skywalkers\")\nfor lt, ln in zip(lats, lons):\n fgs.add_child(folium.CircleMarker(location=[float(lt),float(ln)], radius = 2,fill_color = 'Green', color = 'green'))\n \n \nfgp = folium.FeatureGroup(name = \"Pioneers\")\nfor lt, ln in zip(latp, lonp):\n fgp.add_child(folium.CircleMarker(location=[float(lt),float(ln)], radius = 2,fill_color = 'Red', color = 'Red'))\n \nfge = folium.FeatureGroup(name = \"Explorers\")\nfor lt, ln in zip(late, lone):\n fge.add_child(folium.CircleMarker(location=[float(lt),float(ln)], radius = 2,fill_color = 'Blue', color = 'Blue'))\n\nfgfp = folium.FeatureGroup(name = \"Pioneers\")\nfor lt, ln in zip(latfp, lonfp):\n fgfp.add_child(folium.CircleMarker(location=[float(lt),float(ln)], radius = 4,fill_color = 'Red', color = 'Red'))\n \nfgfe = folium.FeatureGroup(name = \"Explorers\")\nfor lt, ln in zip(latfe, lonfe):\n fgfe.add_child(folium.CircleMarker(location=[float(lt),float(ln)], radius = 4,fill_color = 'Blue', color = 'Blue')) \n\n\nmap.add_child(fgfe)\nmap.add_child(fgfp)\nmap.add_child(fgs)\nmap.add_child(fgp)\nmap.add_child(fge)\nmap.add_child(folium.LayerControl())\nmap.save(\"Map2.html\")\n\n", "<docstring token>\nimport folium\nimport pandas as pd\nfrom geopy.geocoders import Nominatim\ndanes = pd.read_excel('adresy.xlsx', 'Polska')\nlats = list(danes['Lat'])\nlons = list(danes['Lon'])\ndanep = pd.read_excel('adresy.xlsx', 'Pioneers')\nlatp = list(danep['Lat'])\nlonp = list(danep['Lon'])\ndanee = pd.read_excel('adresy.xlsx', 'Explorers')\nlate = list(danee['Lat'])\nlone = list(danee['Lon'])\ndanefp = pd.read_excel('adresy.xlsx', 'FinalistP')\nlatfp = list(danefp['Lat'])\nlonfp = list(danefp['Lon'])\ndanefe = pd.read_excel('adresy.xlsx', 'FinalistE')\nlatfe = list(danefe['Lat'])\nlonfe = list(danefe['Lon'])\nmap = folium.Map(location=[52.0, 21.0], zoom_start=5, tiles='Mapbox Bright')\nfgs = folium.FeatureGroup(name='Skywalkers')\nfor lt, ln in zip(lats, lons):\n fgs.add_child(folium.CircleMarker(location=[float(lt), float(ln)],\n radius=2, fill_color='Green', color='green'))\nfgp = folium.FeatureGroup(name='Pioneers')\nfor lt, ln in zip(latp, lonp):\n fgp.add_child(folium.CircleMarker(location=[float(lt), float(ln)],\n radius=2, fill_color='Red', color='Red'))\nfge = folium.FeatureGroup(name='Explorers')\nfor lt, ln in zip(late, lone):\n fge.add_child(folium.CircleMarker(location=[float(lt), float(ln)],\n radius=2, fill_color='Blue', color='Blue'))\nfgfp = folium.FeatureGroup(name='Pioneers')\nfor lt, ln in zip(latfp, lonfp):\n fgfp.add_child(folium.CircleMarker(location=[float(lt), float(ln)],\n radius=4, fill_color='Red', color='Red'))\nfgfe = folium.FeatureGroup(name='Explorers')\nfor lt, ln in zip(latfe, lonfe):\n fgfe.add_child(folium.CircleMarker(location=[float(lt), float(ln)],\n radius=4, fill_color='Blue', color='Blue'))\nmap.add_child(fgfe)\nmap.add_child(fgfp)\nmap.add_child(fgs)\nmap.add_child(fgp)\nmap.add_child(fge)\nmap.add_child(folium.LayerControl())\nmap.save('Map2.html')\n", "<docstring token>\n<import token>\ndanes = pd.read_excel('adresy.xlsx', 'Polska')\nlats = list(danes['Lat'])\nlons = list(danes['Lon'])\ndanep = pd.read_excel('adresy.xlsx', 'Pioneers')\nlatp = list(danep['Lat'])\nlonp = list(danep['Lon'])\ndanee = pd.read_excel('adresy.xlsx', 'Explorers')\nlate = list(danee['Lat'])\nlone = list(danee['Lon'])\ndanefp = pd.read_excel('adresy.xlsx', 'FinalistP')\nlatfp = list(danefp['Lat'])\nlonfp = list(danefp['Lon'])\ndanefe = pd.read_excel('adresy.xlsx', 'FinalistE')\nlatfe = list(danefe['Lat'])\nlonfe = list(danefe['Lon'])\nmap = folium.Map(location=[52.0, 21.0], zoom_start=5, tiles='Mapbox Bright')\nfgs = folium.FeatureGroup(name='Skywalkers')\nfor lt, ln in zip(lats, lons):\n fgs.add_child(folium.CircleMarker(location=[float(lt), float(ln)],\n radius=2, fill_color='Green', color='green'))\nfgp = folium.FeatureGroup(name='Pioneers')\nfor lt, ln in zip(latp, lonp):\n fgp.add_child(folium.CircleMarker(location=[float(lt), float(ln)],\n radius=2, fill_color='Red', color='Red'))\nfge = folium.FeatureGroup(name='Explorers')\nfor lt, ln in zip(late, lone):\n fge.add_child(folium.CircleMarker(location=[float(lt), float(ln)],\n radius=2, fill_color='Blue', color='Blue'))\nfgfp = folium.FeatureGroup(name='Pioneers')\nfor lt, ln in zip(latfp, lonfp):\n fgfp.add_child(folium.CircleMarker(location=[float(lt), float(ln)],\n radius=4, fill_color='Red', color='Red'))\nfgfe = folium.FeatureGroup(name='Explorers')\nfor lt, ln in zip(latfe, lonfe):\n fgfe.add_child(folium.CircleMarker(location=[float(lt), float(ln)],\n radius=4, fill_color='Blue', color='Blue'))\nmap.add_child(fgfe)\nmap.add_child(fgfp)\nmap.add_child(fgs)\nmap.add_child(fgp)\nmap.add_child(fge)\nmap.add_child(folium.LayerControl())\nmap.save('Map2.html')\n", "<docstring token>\n<import token>\n<assignment token>\nfor lt, ln in zip(lats, lons):\n fgs.add_child(folium.CircleMarker(location=[float(lt), float(ln)],\n radius=2, fill_color='Green', color='green'))\n<assignment token>\nfor lt, ln in zip(latp, lonp):\n fgp.add_child(folium.CircleMarker(location=[float(lt), float(ln)],\n radius=2, fill_color='Red', color='Red'))\n<assignment token>\nfor lt, ln in zip(late, lone):\n fge.add_child(folium.CircleMarker(location=[float(lt), float(ln)],\n radius=2, fill_color='Blue', color='Blue'))\n<assignment token>\nfor lt, ln in zip(latfp, lonfp):\n fgfp.add_child(folium.CircleMarker(location=[float(lt), float(ln)],\n radius=4, fill_color='Red', color='Red'))\n<assignment token>\nfor lt, ln in zip(latfe, lonfe):\n fgfe.add_child(folium.CircleMarker(location=[float(lt), float(ln)],\n radius=4, fill_color='Blue', color='Blue'))\nmap.add_child(fgfe)\nmap.add_child(fgfp)\nmap.add_child(fgs)\nmap.add_child(fgp)\nmap.add_child(fge)\nmap.add_child(folium.LayerControl())\nmap.save('Map2.html')\n", "<docstring token>\n<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n" ]
false
99,361
d0489c855ad7fd336450c7ff6df78fd8d4d37dc0
from django.urls import path from .views import (ListCreateComment, RetrieveUpdateDeleteComment, CommentEditHistoryAPIView, Like) urlpatterns = [ path('articles/<article_id>/comments/', ListCreateComment.as_view(), name="comment_list"), path('articles/<article_id>/comments/<int:pk>/', RetrieveUpdateDeleteComment.as_view(), name="comment_detail"), path('articles/<article_id>/comments/<comment_id>/like/', Like.as_view(), name="like_comment"), path('articles/<article_id>/comment/<comment_id>/', Like.as_view(), name="get_likes"), path('articles/<article_id>/comments/<int:pk>/update_history/', CommentEditHistoryAPIView.as_view(), name="update_history") ]
[ "from django.urls import path\nfrom .views import (ListCreateComment, RetrieveUpdateDeleteComment,\n CommentEditHistoryAPIView, Like)\n\n\nurlpatterns = [\n path('articles/<article_id>/comments/', ListCreateComment.as_view(),\n name=\"comment_list\"),\n path('articles/<article_id>/comments/<int:pk>/',\n RetrieveUpdateDeleteComment.as_view(), name=\"comment_detail\"),\n path('articles/<article_id>/comments/<comment_id>/like/',\n Like.as_view(), name=\"like_comment\"),\n path('articles/<article_id>/comment/<comment_id>/',\n Like.as_view(), name=\"get_likes\"),\n path('articles/<article_id>/comments/<int:pk>/update_history/',\n CommentEditHistoryAPIView.as_view(), name=\"update_history\")\n]\n", "from django.urls import path\nfrom .views import ListCreateComment, RetrieveUpdateDeleteComment, CommentEditHistoryAPIView, Like\nurlpatterns = [path('articles/<article_id>/comments/', ListCreateComment.\n as_view(), name='comment_list'), path(\n 'articles/<article_id>/comments/<int:pk>/', RetrieveUpdateDeleteComment\n .as_view(), name='comment_detail'), path(\n 'articles/<article_id>/comments/<comment_id>/like/', Like.as_view(),\n name='like_comment'), path(\n 'articles/<article_id>/comment/<comment_id>/', Like.as_view(), name=\n 'get_likes'), path(\n 'articles/<article_id>/comments/<int:pk>/update_history/',\n CommentEditHistoryAPIView.as_view(), name='update_history')]\n", "<import token>\nurlpatterns = [path('articles/<article_id>/comments/', ListCreateComment.\n as_view(), name='comment_list'), path(\n 'articles/<article_id>/comments/<int:pk>/', RetrieveUpdateDeleteComment\n .as_view(), name='comment_detail'), path(\n 'articles/<article_id>/comments/<comment_id>/like/', Like.as_view(),\n name='like_comment'), path(\n 'articles/<article_id>/comment/<comment_id>/', Like.as_view(), name=\n 'get_likes'), path(\n 'articles/<article_id>/comments/<int:pk>/update_history/',\n CommentEditHistoryAPIView.as_view(), name='update_history')]\n", "<import token>\n<assignment token>\n" ]
false
99,362
b237a966f2420175b2f4e002f27fc0850ce6d96d
import elasticsearch import api.utils as utils from flask import request, g, make_response import json JSON_MIME_TYPE = 'application/json; charset=utf-8' import math import copy from elasticsearch import Elasticsearch # Config var calculate_ndcg_score = True #ndcg_scorring_file = "/Users/pacmac/Documents/GitHub/KTH_Projects/DD2476PersonalizedSearch/backend/api/markets_fynn.txt" ndcg_scorring_file = "/Users/pacmac/Documents/GitHub/KTH_Projects/DD2476PersonalizedSearch/backend/api/markets_artin.txt" es = Elasticsearch() def success_response(result, message=''): format = {'status': 'success', 'message': message, 'result': result} return json_response(json.dumps(format)) def json_response(data='', status=200, headers=None): headers = headers or {} if 'Content-Type' not in headers: headers['Content-Type'] = JSON_MIME_TYPE return make_response(data, status, headers) def success_message(message): format = {'status': 'success', 'result': message} return json_response(json.dumps(format)) def regular_search(): data = request.args results = utils.search(data["query"], es) # print for report print() s = "" i = 1 for elem in results["hits"]["hits"]: s += str(i) +" & " +elem["_id"] + " & " + " & " +"\\\\" + "\n" i += 1 print(s) return success_response(results) def ndcg(regular_search, personalized_search): f = open(ndcg_scorring_file, "r") lines = f.readlines() ratings = dict() for line in lines: (id, rating) = line.split(" ") ratings[id] = int(rating) optimal_results = sorted(ratings.values(), reverse=True) ideal = 0 for i in range(len(optimal_results)): oneindexedI = i + 1 ideal += (optimal_results[i] / math.log2(oneindexedI + 1)) regular = 0 for i in range(len(optimal_results)): oneindexedI = i + 1 regular += (ratings[regular_search[i]["_id"]] / math.log2(oneindexedI + 1)) personalized = 0 for i in range(len(optimal_results)): oneindexedI = i + 1 personalized += (ratings[personalized_search[i]["_id"]] / math.log2(oneindexedI + 1)) print("Regular Search NDCG: ", regular/ideal, "DCG:", regular) print("Personalized Search NDCG:", personalized/ideal, "DCG:", personalized) print(" "*37 + "Optimal DCG:", ideal) def update_user(): data = request.args # retrieve user user = utils.get_user(data["id"], es) # check if user exists and update if so if user["hits"]["total"]["value"] == 1: body = { "script": { "source": "if (ctx._source.history.contains(params.click)) { ctx._source.history.remove(ctx._source.history.indexOf(params.click))} ctx._source.history.add(params.click)", "lang": "painless", "params": { "click": data["click"] } } } results = es.update(index="users", id=data["id"], body=body) # Add user to index if user does not exist else: history = [data["click"]] doc = {"user_id":data["id"], "history":history} results = es.index(index='users', id=data["id"], body=doc) return success_response(results) # This method is to fetch the user details (DEBUGGING) def get_user(): data = request.args results = utils.get_user(data["id"], es) return success_response(results) def get_history(): data = request.args user = utils.get_user(data["id"], es) if user["hits"]["total"]["value"] != 1: return success_response({"docs": []}) # ------------------------------------------ history = user["hits"]["hits"][0]["_source"]["history"] if len(history) > 10: history = history[-10:] history.reverse() docstoretrieve = {"docs" : [{"_id": elem} for elem in history]} if len(docstoretrieve["docs"]) == 0: return success_response([]) docs = es.mget(body=docstoretrieve, index="news") return success_response(docs) def delete_user(): data = request.args results = es.delete(index="users", id=data["id"]) return success_response(results) def get_recommendations(): data = request.args body = { "query": { "bool": { "must": { "term": { "history.keyword": data["id"] } } } }, "aggs": { "recommendations": { "significant_terms": { "field": "history.keyword", "exclude": data["id"], "min_doc_count": 1 } } } } recommendations = es.search(index = "users", body = body) docstoretrieve = {"docs" : [{"_id": elem["key"]} for elem in recommendations["aggregations"]["recommendations"]["buckets"]]} if len(docstoretrieve["docs"]) == 0: return success_response([]) docs = es.mget(body=docstoretrieve, index="news") return success_response(docs) def get_news_by_id(): data = request.args results = es.get(index="news", id=data["id"]) return success_response(results) def personalized_search(): data = request.args user = utils.get_user(data["id"], es) news_fields = ['title','category','body'] # Regular search search_results = utils.search(data["query"], es) # Return regular search if user does not exist if user["hits"]["total"]["value"] != 1: return success_response(search_results["hits"]["hits"]) # ------------------------------------------ history = user["hits"]["hits"][0]["_source"]["history"] if len(history) > 10: history = history[-10:] # Term vectors of history ids. results = utils.get_term_vectors(history, news_fields, es) ret = dict() # to compute the mean normalization = dict() for c in news_fields: ret[c] = dict() normalization[c] = dict() for doc in results['docs']: if "term_vectors" in doc: for k in news_fields: if k in doc["term_vectors"]: term_vec = doc["term_vectors"][k]["terms"] for t, t_value in term_vec.items(): if t in ret[k]: # change it with the mean ret[k][t] += t_value["score"] normalization[k][t] += 1 else: ret[k][t] = t_value["score"] normalization[k][t] = 1 # compute the mean for field in ret.keys(): for term in ret[k].keys(): ret[k][t] = ret[k][term]/normalization[k][term] # Normalize for key, value in ret.items(): ret[key] = utils.normalize_vec(value) # Obtain documents vectors ids = [] docs_vectors = dict() # find doc ids for s_rslt in search_results["hits"]["hits"]: ids.append(s_rslt["_id"]) # construct doc vectors results_doc = utils.get_term_vectors(ids, news_fields, es) for doc in results_doc['docs']: if "term_vectors" in doc: docs_vectors[doc["_id"]] = dict() for k in news_fields: if k in doc["term_vectors"]: docs_vectors[doc["_id"]][k] = dict() term_vec = doc["term_vectors"][k]["terms"] for t, t_value in term_vec.items(): docs_vectors[doc["_id"]][k][t] = t_value["score"] # Doc 1 # body: "term" ; score ... "term_n" ; score_n # title: "term" ; score ... "term_n" ; score_n # category: "term" ; score ... "term_n" ; score_n # Doc 2 # body: "term" ; score ... "term_n" ; score_n # title: "term" ; score ... "term_n" ; score_n # category: "term" ; score ... "term_n" ; score_n # (Cosine similarity) Dot product and sort search results # user vector = w_1*body_vector + w_1*category + w_3*title weights = dict() weights["body"] = 1 weights["category"] = 2 weights["title"] = 2.5 user_vector = utils.aggregate_vecs(ret, weights) scores = dict() for doc, vector in docs_vectors.items(): for key, value in vector.items(): vector[key] = utils.normalize_vec(value) document_vector = utils.aggregate_vecs(vector, weights) score = utils.cosine_similarity(document_vector, user_vector) scores[doc] = score # new_score = old_score + alpha*user_vector * doc_score p = 1.0 # normlize the old_score and new_score norm_old = 0 for s_rslt in search_results["hits"]["hits"]: norm_old += s_rslt['_score'] norm_new = 0 for score in scores.values(): norm_new += score # Store copy of regular search to calculate NDCG regular_s = copy.deepcopy(search_results["hits"]["hits"]) # change documents score for s_rslt in search_results["hits"]["hits"]: s_rslt['_score'] = (1-p) * s_rslt['_score']/norm_old + p*scores[s_rslt['_id']]/norm_new # reorder documents search_results["hits"]["hits"] = sorted(search_results["hits"]["hits"], key=lambda k: k['_score'], reverse=True) if calculate_ndcg_score: ndcg(regular_s, search_results["hits"]["hits"]) # print for report print() s = "" i = 1 for elem in search_results["hits"]["hits"]: s += str(i) +" & " + " & " + elem["_id"] + " & " +"\\\\" + "\n" i += 1 print(s) return success_response(search_results["hits"]["hits"])
[ "import elasticsearch\nimport api.utils as utils\nfrom flask import request, g, make_response\nimport json\nJSON_MIME_TYPE = 'application/json; charset=utf-8'\nimport math\nimport copy\nfrom elasticsearch import Elasticsearch\n\n# Config var\ncalculate_ndcg_score = True\n#ndcg_scorring_file = \"/Users/pacmac/Documents/GitHub/KTH_Projects/DD2476PersonalizedSearch/backend/api/markets_fynn.txt\"\nndcg_scorring_file = \"/Users/pacmac/Documents/GitHub/KTH_Projects/DD2476PersonalizedSearch/backend/api/markets_artin.txt\"\n\n\nes = Elasticsearch()\ndef success_response(result, message=''):\n format = {'status': 'success',\n 'message': message,\n 'result': result}\n return json_response(json.dumps(format))\n\ndef json_response(data='', status=200, headers=None):\n headers = headers or {}\n if 'Content-Type' not in headers:\n headers['Content-Type'] = JSON_MIME_TYPE\n return make_response(data, status, headers)\n\ndef success_message(message):\n format = {'status': 'success',\n 'result': message}\n\n return json_response(json.dumps(format))\n\ndef regular_search():\n data = request.args\n results = utils.search(data[\"query\"], es)\n # print for report\n print()\n s = \"\"\n i = 1\n for elem in results[\"hits\"][\"hits\"]:\n s += str(i) +\" & \" +elem[\"_id\"] + \" & \" + \" & \" +\"\\\\\\\\\" + \"\\n\"\n i += 1\n print(s)\n\n return success_response(results)\n\ndef ndcg(regular_search, personalized_search):\n f = open(ndcg_scorring_file, \"r\")\n lines = f.readlines()\n ratings = dict()\n for line in lines:\n (id, rating) = line.split(\" \")\n ratings[id] = int(rating)\n optimal_results = sorted(ratings.values(), reverse=True)\n\n ideal = 0\n for i in range(len(optimal_results)):\n oneindexedI = i + 1\n ideal += (optimal_results[i] / math.log2(oneindexedI + 1))\n \n regular = 0\n for i in range(len(optimal_results)):\n oneindexedI = i + 1\n regular += (ratings[regular_search[i][\"_id\"]] / math.log2(oneindexedI + 1))\n\n personalized = 0\n for i in range(len(optimal_results)):\n oneindexedI = i + 1\n personalized += (ratings[personalized_search[i][\"_id\"]] / math.log2(oneindexedI + 1))\n\n print(\"Regular Search NDCG: \", regular/ideal, \"DCG:\", regular)\n print(\"Personalized Search NDCG:\", personalized/ideal, \"DCG:\", personalized)\n print(\" \"*37 + \"Optimal DCG:\", ideal)\n\n\n \ndef update_user():\n data = request.args\n # retrieve user\n user = utils.get_user(data[\"id\"], es)\n # check if user exists and update if so\n if user[\"hits\"][\"total\"][\"value\"] == 1:\n body = {\n \"script\": {\n \"source\": \"if (ctx._source.history.contains(params.click)) { ctx._source.history.remove(ctx._source.history.indexOf(params.click))} ctx._source.history.add(params.click)\",\n \"lang\": \"painless\",\n \"params\": {\n \"click\": data[\"click\"]\n }\n }\n } \n results = es.update(index=\"users\", id=data[\"id\"], body=body)\n # Add user to index if user does not exist\n else:\n history = [data[\"click\"]]\n doc = {\"user_id\":data[\"id\"], \"history\":history}\n results = es.index(index='users', id=data[\"id\"], body=doc)\n return success_response(results)\n\n# This method is to fetch the user details (DEBUGGING)\ndef get_user():\n data = request.args\n results = utils.get_user(data[\"id\"], es)\n return success_response(results)\n\n\ndef get_history():\n data = request.args\n user = utils.get_user(data[\"id\"], es)\n if user[\"hits\"][\"total\"][\"value\"] != 1:\n return success_response({\"docs\": []})\n # ------------------------------------------\n history = user[\"hits\"][\"hits\"][0][\"_source\"][\"history\"]\n if len(history) > 10:\n history = history[-10:]\n \n history.reverse()\n docstoretrieve = {\"docs\" : [{\"_id\": elem} for elem in history]}\n if len(docstoretrieve[\"docs\"]) == 0:\n return success_response([])\n docs = es.mget(body=docstoretrieve, index=\"news\")\n return success_response(docs)\n\n\ndef delete_user():\n data = request.args\n results = es.delete(index=\"users\", id=data[\"id\"])\n return success_response(results)\n\n\ndef get_recommendations():\n data = request.args\n body = {\n \"query\": {\n \"bool\": {\n \"must\": {\n \"term\": {\n \"history.keyword\": data[\"id\"]\n }\n }\n }\n },\n \"aggs\": {\n \"recommendations\": {\n \"significant_terms\": {\n \"field\": \"history.keyword\",\n \"exclude\": data[\"id\"],\n \"min_doc_count\": 1\n }\n }\n }\n }\n recommendations = es.search(index = \"users\", body = body)\n docstoretrieve = {\"docs\" : [{\"_id\": elem[\"key\"]} for elem in recommendations[\"aggregations\"][\"recommendations\"][\"buckets\"]]}\n if len(docstoretrieve[\"docs\"]) == 0:\n return success_response([])\n docs = es.mget(body=docstoretrieve, index=\"news\")\n return success_response(docs)\n\ndef get_news_by_id():\n data = request.args\n results = es.get(index=\"news\", id=data[\"id\"])\n return success_response(results)\n\ndef personalized_search():\n data = request.args\n user = utils.get_user(data[\"id\"], es)\n news_fields = ['title','category','body']\n\n # Regular search\n search_results = utils.search(data[\"query\"], es)\n\n # Return regular search if user does not exist\n if user[\"hits\"][\"total\"][\"value\"] != 1:\n return success_response(search_results[\"hits\"][\"hits\"])\n # ------------------------------------------\n\n history = user[\"hits\"][\"hits\"][0][\"_source\"][\"history\"]\n if len(history) > 10:\n history = history[-10:]\n \n # Term vectors of history ids. \n results = utils.get_term_vectors(history, news_fields, es)\n ret = dict()\n # to compute the mean\n normalization = dict()\n for c in news_fields:\n ret[c] = dict()\n normalization[c] = dict()\n for doc in results['docs']:\n if \"term_vectors\" in doc:\n for k in news_fields:\n if k in doc[\"term_vectors\"]:\n term_vec = doc[\"term_vectors\"][k][\"terms\"]\n for t, t_value in term_vec.items():\n if t in ret[k]:\n # change it with the mean\n ret[k][t] += t_value[\"score\"]\n normalization[k][t] += 1\n else:\n ret[k][t] = t_value[\"score\"]\n normalization[k][t] = 1\n # compute the mean\n for field in ret.keys():\n for term in ret[k].keys():\n ret[k][t] = ret[k][term]/normalization[k][term]\n \n # Normalize\n for key, value in ret.items():\n ret[key] = utils.normalize_vec(value)\n\n # Obtain documents vectors \n ids = []\n docs_vectors = dict()\n # find doc ids \n for s_rslt in search_results[\"hits\"][\"hits\"]:\n ids.append(s_rslt[\"_id\"])\n # construct doc vectors\n results_doc = utils.get_term_vectors(ids, news_fields, es)\n for doc in results_doc['docs']:\n if \"term_vectors\" in doc:\n docs_vectors[doc[\"_id\"]] = dict()\n for k in news_fields:\n if k in doc[\"term_vectors\"]:\n docs_vectors[doc[\"_id\"]][k] = dict()\n term_vec = doc[\"term_vectors\"][k][\"terms\"] \n for t, t_value in term_vec.items():\n docs_vectors[doc[\"_id\"]][k][t] = t_value[\"score\"]\n\n # Doc 1\n # body: \"term\" ; score ... \"term_n\" ; score_n\n # title: \"term\" ; score ... \"term_n\" ; score_n\n # category: \"term\" ; score ... \"term_n\" ; score_n\n # Doc 2\n # body: \"term\" ; score ... \"term_n\" ; score_n\n # title: \"term\" ; score ... \"term_n\" ; score_n\n # category: \"term\" ; score ... \"term_n\" ; score_n\n\n # (Cosine similarity) Dot product and sort search results\n\n # user vector = w_1*body_vector + w_1*category + w_3*title\n weights = dict()\n weights[\"body\"] = 1\n weights[\"category\"] = 2\n weights[\"title\"] = 2.5\n user_vector = utils.aggregate_vecs(ret, weights)\n\n scores = dict()\n for doc, vector in docs_vectors.items():\n for key, value in vector.items():\n vector[key] = utils.normalize_vec(value)\n document_vector = utils.aggregate_vecs(vector, weights)\n score = utils.cosine_similarity(document_vector, user_vector)\n scores[doc] = score\n \n\n # new_score = old_score + alpha*user_vector * doc_score\n p = 1.0\n # normlize the old_score and new_score\n norm_old = 0\n for s_rslt in search_results[\"hits\"][\"hits\"]:\n norm_old += s_rslt['_score']\n\n norm_new = 0\n for score in scores.values():\n norm_new += score\n\n # Store copy of regular search to calculate NDCG\n regular_s = copy.deepcopy(search_results[\"hits\"][\"hits\"])\n\n # change documents score\n for s_rslt in search_results[\"hits\"][\"hits\"]:\n s_rslt['_score'] = (1-p) * s_rslt['_score']/norm_old + p*scores[s_rslt['_id']]/norm_new\n # reorder documents\n search_results[\"hits\"][\"hits\"] = sorted(search_results[\"hits\"][\"hits\"], key=lambda k: k['_score'], reverse=True)\n\n if calculate_ndcg_score:\n ndcg(regular_s, search_results[\"hits\"][\"hits\"])\n \n # print for report\n print()\n s = \"\"\n i = 1\n for elem in search_results[\"hits\"][\"hits\"]:\n s += str(i) +\" & \" + \" & \" + elem[\"_id\"] + \" & \" +\"\\\\\\\\\" + \"\\n\"\n i += 1\n print(s)\n return success_response(search_results[\"hits\"][\"hits\"])\n\n\n\n\n", "import elasticsearch\nimport api.utils as utils\nfrom flask import request, g, make_response\nimport json\nJSON_MIME_TYPE = 'application/json; charset=utf-8'\nimport math\nimport copy\nfrom elasticsearch import Elasticsearch\ncalculate_ndcg_score = True\nndcg_scorring_file = (\n '/Users/pacmac/Documents/GitHub/KTH_Projects/DD2476PersonalizedSearch/backend/api/markets_artin.txt'\n )\nes = Elasticsearch()\n\n\ndef success_response(result, message=''):\n format = {'status': 'success', 'message': message, 'result': result}\n return json_response(json.dumps(format))\n\n\ndef json_response(data='', status=200, headers=None):\n headers = headers or {}\n if 'Content-Type' not in headers:\n headers['Content-Type'] = JSON_MIME_TYPE\n return make_response(data, status, headers)\n\n\ndef success_message(message):\n format = {'status': 'success', 'result': message}\n return json_response(json.dumps(format))\n\n\ndef regular_search():\n data = request.args\n results = utils.search(data['query'], es)\n print()\n s = ''\n i = 1\n for elem in results['hits']['hits']:\n s += str(i) + ' & ' + elem['_id'] + ' & ' + ' & ' + '\\\\\\\\' + '\\n'\n i += 1\n print(s)\n return success_response(results)\n\n\ndef ndcg(regular_search, personalized_search):\n f = open(ndcg_scorring_file, 'r')\n lines = f.readlines()\n ratings = dict()\n for line in lines:\n id, rating = line.split(' ')\n ratings[id] = int(rating)\n optimal_results = sorted(ratings.values(), reverse=True)\n ideal = 0\n for i in range(len(optimal_results)):\n oneindexedI = i + 1\n ideal += optimal_results[i] / math.log2(oneindexedI + 1)\n regular = 0\n for i in range(len(optimal_results)):\n oneindexedI = i + 1\n regular += ratings[regular_search[i]['_id']] / math.log2(\n oneindexedI + 1)\n personalized = 0\n for i in range(len(optimal_results)):\n oneindexedI = i + 1\n personalized += ratings[personalized_search[i]['_id']] / math.log2(\n oneindexedI + 1)\n print('Regular Search NDCG: ', regular / ideal, 'DCG:', regular)\n print('Personalized Search NDCG:', personalized / ideal, 'DCG:',\n personalized)\n print(' ' * 37 + 'Optimal DCG:', ideal)\n\n\ndef update_user():\n data = request.args\n user = utils.get_user(data['id'], es)\n if user['hits']['total']['value'] == 1:\n body = {'script': {'source':\n 'if (ctx._source.history.contains(params.click)) { ctx._source.history.remove(ctx._source.history.indexOf(params.click))} ctx._source.history.add(params.click)'\n , 'lang': 'painless', 'params': {'click': data['click']}}}\n results = es.update(index='users', id=data['id'], body=body)\n else:\n history = [data['click']]\n doc = {'user_id': data['id'], 'history': history}\n results = es.index(index='users', id=data['id'], body=doc)\n return success_response(results)\n\n\ndef get_user():\n data = request.args\n results = utils.get_user(data['id'], es)\n return success_response(results)\n\n\ndef get_history():\n data = request.args\n user = utils.get_user(data['id'], es)\n if user['hits']['total']['value'] != 1:\n return success_response({'docs': []})\n history = user['hits']['hits'][0]['_source']['history']\n if len(history) > 10:\n history = history[-10:]\n history.reverse()\n docstoretrieve = {'docs': [{'_id': elem} for elem in history]}\n if len(docstoretrieve['docs']) == 0:\n return success_response([])\n docs = es.mget(body=docstoretrieve, index='news')\n return success_response(docs)\n\n\ndef delete_user():\n data = request.args\n results = es.delete(index='users', id=data['id'])\n return success_response(results)\n\n\ndef get_recommendations():\n data = request.args\n body = {'query': {'bool': {'must': {'term': {'history.keyword': data[\n 'id']}}}}, 'aggs': {'recommendations': {'significant_terms': {\n 'field': 'history.keyword', 'exclude': data['id'], 'min_doc_count':\n 1}}}}\n recommendations = es.search(index='users', body=body)\n docstoretrieve = {'docs': [{'_id': elem['key']} for elem in\n recommendations['aggregations']['recommendations']['buckets']]}\n if len(docstoretrieve['docs']) == 0:\n return success_response([])\n docs = es.mget(body=docstoretrieve, index='news')\n return success_response(docs)\n\n\ndef get_news_by_id():\n data = request.args\n results = es.get(index='news', id=data['id'])\n return success_response(results)\n\n\ndef personalized_search():\n data = request.args\n user = utils.get_user(data['id'], es)\n news_fields = ['title', 'category', 'body']\n search_results = utils.search(data['query'], es)\n if user['hits']['total']['value'] != 1:\n return success_response(search_results['hits']['hits'])\n history = user['hits']['hits'][0]['_source']['history']\n if len(history) > 10:\n history = history[-10:]\n results = utils.get_term_vectors(history, news_fields, es)\n ret = dict()\n normalization = dict()\n for c in news_fields:\n ret[c] = dict()\n normalization[c] = dict()\n for doc in results['docs']:\n if 'term_vectors' in doc:\n for k in news_fields:\n if k in doc['term_vectors']:\n term_vec = doc['term_vectors'][k]['terms']\n for t, t_value in term_vec.items():\n if t in ret[k]:\n ret[k][t] += t_value['score']\n normalization[k][t] += 1\n else:\n ret[k][t] = t_value['score']\n normalization[k][t] = 1\n for field in ret.keys():\n for term in ret[k].keys():\n ret[k][t] = ret[k][term] / normalization[k][term]\n for key, value in ret.items():\n ret[key] = utils.normalize_vec(value)\n ids = []\n docs_vectors = dict()\n for s_rslt in search_results['hits']['hits']:\n ids.append(s_rslt['_id'])\n results_doc = utils.get_term_vectors(ids, news_fields, es)\n for doc in results_doc['docs']:\n if 'term_vectors' in doc:\n docs_vectors[doc['_id']] = dict()\n for k in news_fields:\n if k in doc['term_vectors']:\n docs_vectors[doc['_id']][k] = dict()\n term_vec = doc['term_vectors'][k]['terms']\n for t, t_value in term_vec.items():\n docs_vectors[doc['_id']][k][t] = t_value['score']\n weights = dict()\n weights['body'] = 1\n weights['category'] = 2\n weights['title'] = 2.5\n user_vector = utils.aggregate_vecs(ret, weights)\n scores = dict()\n for doc, vector in docs_vectors.items():\n for key, value in vector.items():\n vector[key] = utils.normalize_vec(value)\n document_vector = utils.aggregate_vecs(vector, weights)\n score = utils.cosine_similarity(document_vector, user_vector)\n scores[doc] = score\n p = 1.0\n norm_old = 0\n for s_rslt in search_results['hits']['hits']:\n norm_old += s_rslt['_score']\n norm_new = 0\n for score in scores.values():\n norm_new += score\n regular_s = copy.deepcopy(search_results['hits']['hits'])\n for s_rslt in search_results['hits']['hits']:\n s_rslt['_score'] = (1 - p) * s_rslt['_score'] / norm_old + p * scores[\n s_rslt['_id']] / norm_new\n search_results['hits']['hits'] = sorted(search_results['hits']['hits'],\n key=lambda k: k['_score'], reverse=True)\n if calculate_ndcg_score:\n ndcg(regular_s, search_results['hits']['hits'])\n print()\n s = ''\n i = 1\n for elem in search_results['hits']['hits']:\n s += str(i) + ' & ' + ' & ' + elem['_id'] + ' & ' + '\\\\\\\\' + '\\n'\n i += 1\n print(s)\n return success_response(search_results['hits']['hits'])\n", "<import token>\nJSON_MIME_TYPE = 'application/json; charset=utf-8'\n<import token>\ncalculate_ndcg_score = True\nndcg_scorring_file = (\n '/Users/pacmac/Documents/GitHub/KTH_Projects/DD2476PersonalizedSearch/backend/api/markets_artin.txt'\n )\nes = Elasticsearch()\n\n\ndef success_response(result, message=''):\n format = {'status': 'success', 'message': message, 'result': result}\n return json_response(json.dumps(format))\n\n\ndef json_response(data='', status=200, headers=None):\n headers = headers or {}\n if 'Content-Type' not in headers:\n headers['Content-Type'] = JSON_MIME_TYPE\n return make_response(data, status, headers)\n\n\ndef success_message(message):\n format = {'status': 'success', 'result': message}\n return json_response(json.dumps(format))\n\n\ndef regular_search():\n data = request.args\n results = utils.search(data['query'], es)\n print()\n s = ''\n i = 1\n for elem in results['hits']['hits']:\n s += str(i) + ' & ' + elem['_id'] + ' & ' + ' & ' + '\\\\\\\\' + '\\n'\n i += 1\n print(s)\n return success_response(results)\n\n\ndef ndcg(regular_search, personalized_search):\n f = open(ndcg_scorring_file, 'r')\n lines = f.readlines()\n ratings = dict()\n for line in lines:\n id, rating = line.split(' ')\n ratings[id] = int(rating)\n optimal_results = sorted(ratings.values(), reverse=True)\n ideal = 0\n for i in range(len(optimal_results)):\n oneindexedI = i + 1\n ideal += optimal_results[i] / math.log2(oneindexedI + 1)\n regular = 0\n for i in range(len(optimal_results)):\n oneindexedI = i + 1\n regular += ratings[regular_search[i]['_id']] / math.log2(\n oneindexedI + 1)\n personalized = 0\n for i in range(len(optimal_results)):\n oneindexedI = i + 1\n personalized += ratings[personalized_search[i]['_id']] / math.log2(\n oneindexedI + 1)\n print('Regular Search NDCG: ', regular / ideal, 'DCG:', regular)\n print('Personalized Search NDCG:', personalized / ideal, 'DCG:',\n personalized)\n print(' ' * 37 + 'Optimal DCG:', ideal)\n\n\ndef update_user():\n data = request.args\n user = utils.get_user(data['id'], es)\n if user['hits']['total']['value'] == 1:\n body = {'script': {'source':\n 'if (ctx._source.history.contains(params.click)) { ctx._source.history.remove(ctx._source.history.indexOf(params.click))} ctx._source.history.add(params.click)'\n , 'lang': 'painless', 'params': {'click': data['click']}}}\n results = es.update(index='users', id=data['id'], body=body)\n else:\n history = [data['click']]\n doc = {'user_id': data['id'], 'history': history}\n results = es.index(index='users', id=data['id'], body=doc)\n return success_response(results)\n\n\ndef get_user():\n data = request.args\n results = utils.get_user(data['id'], es)\n return success_response(results)\n\n\ndef get_history():\n data = request.args\n user = utils.get_user(data['id'], es)\n if user['hits']['total']['value'] != 1:\n return success_response({'docs': []})\n history = user['hits']['hits'][0]['_source']['history']\n if len(history) > 10:\n history = history[-10:]\n history.reverse()\n docstoretrieve = {'docs': [{'_id': elem} for elem in history]}\n if len(docstoretrieve['docs']) == 0:\n return success_response([])\n docs = es.mget(body=docstoretrieve, index='news')\n return success_response(docs)\n\n\ndef delete_user():\n data = request.args\n results = es.delete(index='users', id=data['id'])\n return success_response(results)\n\n\ndef get_recommendations():\n data = request.args\n body = {'query': {'bool': {'must': {'term': {'history.keyword': data[\n 'id']}}}}, 'aggs': {'recommendations': {'significant_terms': {\n 'field': 'history.keyword', 'exclude': data['id'], 'min_doc_count':\n 1}}}}\n recommendations = es.search(index='users', body=body)\n docstoretrieve = {'docs': [{'_id': elem['key']} for elem in\n recommendations['aggregations']['recommendations']['buckets']]}\n if len(docstoretrieve['docs']) == 0:\n return success_response([])\n docs = es.mget(body=docstoretrieve, index='news')\n return success_response(docs)\n\n\ndef get_news_by_id():\n data = request.args\n results = es.get(index='news', id=data['id'])\n return success_response(results)\n\n\ndef personalized_search():\n data = request.args\n user = utils.get_user(data['id'], es)\n news_fields = ['title', 'category', 'body']\n search_results = utils.search(data['query'], es)\n if user['hits']['total']['value'] != 1:\n return success_response(search_results['hits']['hits'])\n history = user['hits']['hits'][0]['_source']['history']\n if len(history) > 10:\n history = history[-10:]\n results = utils.get_term_vectors(history, news_fields, es)\n ret = dict()\n normalization = dict()\n for c in news_fields:\n ret[c] = dict()\n normalization[c] = dict()\n for doc in results['docs']:\n if 'term_vectors' in doc:\n for k in news_fields:\n if k in doc['term_vectors']:\n term_vec = doc['term_vectors'][k]['terms']\n for t, t_value in term_vec.items():\n if t in ret[k]:\n ret[k][t] += t_value['score']\n normalization[k][t] += 1\n else:\n ret[k][t] = t_value['score']\n normalization[k][t] = 1\n for field in ret.keys():\n for term in ret[k].keys():\n ret[k][t] = ret[k][term] / normalization[k][term]\n for key, value in ret.items():\n ret[key] = utils.normalize_vec(value)\n ids = []\n docs_vectors = dict()\n for s_rslt in search_results['hits']['hits']:\n ids.append(s_rslt['_id'])\n results_doc = utils.get_term_vectors(ids, news_fields, es)\n for doc in results_doc['docs']:\n if 'term_vectors' in doc:\n docs_vectors[doc['_id']] = dict()\n for k in news_fields:\n if k in doc['term_vectors']:\n docs_vectors[doc['_id']][k] = dict()\n term_vec = doc['term_vectors'][k]['terms']\n for t, t_value in term_vec.items():\n docs_vectors[doc['_id']][k][t] = t_value['score']\n weights = dict()\n weights['body'] = 1\n weights['category'] = 2\n weights['title'] = 2.5\n user_vector = utils.aggregate_vecs(ret, weights)\n scores = dict()\n for doc, vector in docs_vectors.items():\n for key, value in vector.items():\n vector[key] = utils.normalize_vec(value)\n document_vector = utils.aggregate_vecs(vector, weights)\n score = utils.cosine_similarity(document_vector, user_vector)\n scores[doc] = score\n p = 1.0\n norm_old = 0\n for s_rslt in search_results['hits']['hits']:\n norm_old += s_rslt['_score']\n norm_new = 0\n for score in scores.values():\n norm_new += score\n regular_s = copy.deepcopy(search_results['hits']['hits'])\n for s_rslt in search_results['hits']['hits']:\n s_rslt['_score'] = (1 - p) * s_rslt['_score'] / norm_old + p * scores[\n s_rslt['_id']] / norm_new\n search_results['hits']['hits'] = sorted(search_results['hits']['hits'],\n key=lambda k: k['_score'], reverse=True)\n if calculate_ndcg_score:\n ndcg(regular_s, search_results['hits']['hits'])\n print()\n s = ''\n i = 1\n for elem in search_results['hits']['hits']:\n s += str(i) + ' & ' + ' & ' + elem['_id'] + ' & ' + '\\\\\\\\' + '\\n'\n i += 1\n print(s)\n return success_response(search_results['hits']['hits'])\n", "<import token>\n<assignment token>\n<import token>\n<assignment token>\n\n\ndef success_response(result, message=''):\n format = {'status': 'success', 'message': message, 'result': result}\n return json_response(json.dumps(format))\n\n\ndef json_response(data='', status=200, headers=None):\n headers = headers or {}\n if 'Content-Type' not in headers:\n headers['Content-Type'] = JSON_MIME_TYPE\n return make_response(data, status, headers)\n\n\ndef success_message(message):\n format = {'status': 'success', 'result': message}\n return json_response(json.dumps(format))\n\n\ndef regular_search():\n data = request.args\n results = utils.search(data['query'], es)\n print()\n s = ''\n i = 1\n for elem in results['hits']['hits']:\n s += str(i) + ' & ' + elem['_id'] + ' & ' + ' & ' + '\\\\\\\\' + '\\n'\n i += 1\n print(s)\n return success_response(results)\n\n\ndef ndcg(regular_search, personalized_search):\n f = open(ndcg_scorring_file, 'r')\n lines = f.readlines()\n ratings = dict()\n for line in lines:\n id, rating = line.split(' ')\n ratings[id] = int(rating)\n optimal_results = sorted(ratings.values(), reverse=True)\n ideal = 0\n for i in range(len(optimal_results)):\n oneindexedI = i + 1\n ideal += optimal_results[i] / math.log2(oneindexedI + 1)\n regular = 0\n for i in range(len(optimal_results)):\n oneindexedI = i + 1\n regular += ratings[regular_search[i]['_id']] / math.log2(\n oneindexedI + 1)\n personalized = 0\n for i in range(len(optimal_results)):\n oneindexedI = i + 1\n personalized += ratings[personalized_search[i]['_id']] / math.log2(\n oneindexedI + 1)\n print('Regular Search NDCG: ', regular / ideal, 'DCG:', regular)\n print('Personalized Search NDCG:', personalized / ideal, 'DCG:',\n personalized)\n print(' ' * 37 + 'Optimal DCG:', ideal)\n\n\ndef update_user():\n data = request.args\n user = utils.get_user(data['id'], es)\n if user['hits']['total']['value'] == 1:\n body = {'script': {'source':\n 'if (ctx._source.history.contains(params.click)) { ctx._source.history.remove(ctx._source.history.indexOf(params.click))} ctx._source.history.add(params.click)'\n , 'lang': 'painless', 'params': {'click': data['click']}}}\n results = es.update(index='users', id=data['id'], body=body)\n else:\n history = [data['click']]\n doc = {'user_id': data['id'], 'history': history}\n results = es.index(index='users', id=data['id'], body=doc)\n return success_response(results)\n\n\ndef get_user():\n data = request.args\n results = utils.get_user(data['id'], es)\n return success_response(results)\n\n\ndef get_history():\n data = request.args\n user = utils.get_user(data['id'], es)\n if user['hits']['total']['value'] != 1:\n return success_response({'docs': []})\n history = user['hits']['hits'][0]['_source']['history']\n if len(history) > 10:\n history = history[-10:]\n history.reverse()\n docstoretrieve = {'docs': [{'_id': elem} for elem in history]}\n if len(docstoretrieve['docs']) == 0:\n return success_response([])\n docs = es.mget(body=docstoretrieve, index='news')\n return success_response(docs)\n\n\ndef delete_user():\n data = request.args\n results = es.delete(index='users', id=data['id'])\n return success_response(results)\n\n\ndef get_recommendations():\n data = request.args\n body = {'query': {'bool': {'must': {'term': {'history.keyword': data[\n 'id']}}}}, 'aggs': {'recommendations': {'significant_terms': {\n 'field': 'history.keyword', 'exclude': data['id'], 'min_doc_count':\n 1}}}}\n recommendations = es.search(index='users', body=body)\n docstoretrieve = {'docs': [{'_id': elem['key']} for elem in\n recommendations['aggregations']['recommendations']['buckets']]}\n if len(docstoretrieve['docs']) == 0:\n return success_response([])\n docs = es.mget(body=docstoretrieve, index='news')\n return success_response(docs)\n\n\ndef get_news_by_id():\n data = request.args\n results = es.get(index='news', id=data['id'])\n return success_response(results)\n\n\ndef personalized_search():\n data = request.args\n user = utils.get_user(data['id'], es)\n news_fields = ['title', 'category', 'body']\n search_results = utils.search(data['query'], es)\n if user['hits']['total']['value'] != 1:\n return success_response(search_results['hits']['hits'])\n history = user['hits']['hits'][0]['_source']['history']\n if len(history) > 10:\n history = history[-10:]\n results = utils.get_term_vectors(history, news_fields, es)\n ret = dict()\n normalization = dict()\n for c in news_fields:\n ret[c] = dict()\n normalization[c] = dict()\n for doc in results['docs']:\n if 'term_vectors' in doc:\n for k in news_fields:\n if k in doc['term_vectors']:\n term_vec = doc['term_vectors'][k]['terms']\n for t, t_value in term_vec.items():\n if t in ret[k]:\n ret[k][t] += t_value['score']\n normalization[k][t] += 1\n else:\n ret[k][t] = t_value['score']\n normalization[k][t] = 1\n for field in ret.keys():\n for term in ret[k].keys():\n ret[k][t] = ret[k][term] / normalization[k][term]\n for key, value in ret.items():\n ret[key] = utils.normalize_vec(value)\n ids = []\n docs_vectors = dict()\n for s_rslt in search_results['hits']['hits']:\n ids.append(s_rslt['_id'])\n results_doc = utils.get_term_vectors(ids, news_fields, es)\n for doc in results_doc['docs']:\n if 'term_vectors' in doc:\n docs_vectors[doc['_id']] = dict()\n for k in news_fields:\n if k in doc['term_vectors']:\n docs_vectors[doc['_id']][k] = dict()\n term_vec = doc['term_vectors'][k]['terms']\n for t, t_value in term_vec.items():\n docs_vectors[doc['_id']][k][t] = t_value['score']\n weights = dict()\n weights['body'] = 1\n weights['category'] = 2\n weights['title'] = 2.5\n user_vector = utils.aggregate_vecs(ret, weights)\n scores = dict()\n for doc, vector in docs_vectors.items():\n for key, value in vector.items():\n vector[key] = utils.normalize_vec(value)\n document_vector = utils.aggregate_vecs(vector, weights)\n score = utils.cosine_similarity(document_vector, user_vector)\n scores[doc] = score\n p = 1.0\n norm_old = 0\n for s_rslt in search_results['hits']['hits']:\n norm_old += s_rslt['_score']\n norm_new = 0\n for score in scores.values():\n norm_new += score\n regular_s = copy.deepcopy(search_results['hits']['hits'])\n for s_rslt in search_results['hits']['hits']:\n s_rslt['_score'] = (1 - p) * s_rslt['_score'] / norm_old + p * scores[\n s_rslt['_id']] / norm_new\n search_results['hits']['hits'] = sorted(search_results['hits']['hits'],\n key=lambda k: k['_score'], reverse=True)\n if calculate_ndcg_score:\n ndcg(regular_s, search_results['hits']['hits'])\n print()\n s = ''\n i = 1\n for elem in search_results['hits']['hits']:\n s += str(i) + ' & ' + ' & ' + elem['_id'] + ' & ' + '\\\\\\\\' + '\\n'\n i += 1\n print(s)\n return success_response(search_results['hits']['hits'])\n", "<import token>\n<assignment token>\n<import token>\n<assignment token>\n\n\ndef success_response(result, message=''):\n format = {'status': 'success', 'message': message, 'result': result}\n return json_response(json.dumps(format))\n\n\ndef json_response(data='', status=200, headers=None):\n headers = headers or {}\n if 'Content-Type' not in headers:\n headers['Content-Type'] = JSON_MIME_TYPE\n return make_response(data, status, headers)\n\n\ndef success_message(message):\n format = {'status': 'success', 'result': message}\n return json_response(json.dumps(format))\n\n\n<function token>\n\n\ndef ndcg(regular_search, personalized_search):\n f = open(ndcg_scorring_file, 'r')\n lines = f.readlines()\n ratings = dict()\n for line in lines:\n id, rating = line.split(' ')\n ratings[id] = int(rating)\n optimal_results = sorted(ratings.values(), reverse=True)\n ideal = 0\n for i in range(len(optimal_results)):\n oneindexedI = i + 1\n ideal += optimal_results[i] / math.log2(oneindexedI + 1)\n regular = 0\n for i in range(len(optimal_results)):\n oneindexedI = i + 1\n regular += ratings[regular_search[i]['_id']] / math.log2(\n oneindexedI + 1)\n personalized = 0\n for i in range(len(optimal_results)):\n oneindexedI = i + 1\n personalized += ratings[personalized_search[i]['_id']] / math.log2(\n oneindexedI + 1)\n print('Regular Search NDCG: ', regular / ideal, 'DCG:', regular)\n print('Personalized Search NDCG:', personalized / ideal, 'DCG:',\n personalized)\n print(' ' * 37 + 'Optimal DCG:', ideal)\n\n\ndef update_user():\n data = request.args\n user = utils.get_user(data['id'], es)\n if user['hits']['total']['value'] == 1:\n body = {'script': {'source':\n 'if (ctx._source.history.contains(params.click)) { ctx._source.history.remove(ctx._source.history.indexOf(params.click))} ctx._source.history.add(params.click)'\n , 'lang': 'painless', 'params': {'click': data['click']}}}\n results = es.update(index='users', id=data['id'], body=body)\n else:\n history = [data['click']]\n doc = {'user_id': data['id'], 'history': history}\n results = es.index(index='users', id=data['id'], body=doc)\n return success_response(results)\n\n\ndef get_user():\n data = request.args\n results = utils.get_user(data['id'], es)\n return success_response(results)\n\n\ndef get_history():\n data = request.args\n user = utils.get_user(data['id'], es)\n if user['hits']['total']['value'] != 1:\n return success_response({'docs': []})\n history = user['hits']['hits'][0]['_source']['history']\n if len(history) > 10:\n history = history[-10:]\n history.reverse()\n docstoretrieve = {'docs': [{'_id': elem} for elem in history]}\n if len(docstoretrieve['docs']) == 0:\n return success_response([])\n docs = es.mget(body=docstoretrieve, index='news')\n return success_response(docs)\n\n\ndef delete_user():\n data = request.args\n results = es.delete(index='users', id=data['id'])\n return success_response(results)\n\n\ndef get_recommendations():\n data = request.args\n body = {'query': {'bool': {'must': {'term': {'history.keyword': data[\n 'id']}}}}, 'aggs': {'recommendations': {'significant_terms': {\n 'field': 'history.keyword', 'exclude': data['id'], 'min_doc_count':\n 1}}}}\n recommendations = es.search(index='users', body=body)\n docstoretrieve = {'docs': [{'_id': elem['key']} for elem in\n recommendations['aggregations']['recommendations']['buckets']]}\n if len(docstoretrieve['docs']) == 0:\n return success_response([])\n docs = es.mget(body=docstoretrieve, index='news')\n return success_response(docs)\n\n\ndef get_news_by_id():\n data = request.args\n results = es.get(index='news', id=data['id'])\n return success_response(results)\n\n\ndef personalized_search():\n data = request.args\n user = utils.get_user(data['id'], es)\n news_fields = ['title', 'category', 'body']\n search_results = utils.search(data['query'], es)\n if user['hits']['total']['value'] != 1:\n return success_response(search_results['hits']['hits'])\n history = user['hits']['hits'][0]['_source']['history']\n if len(history) > 10:\n history = history[-10:]\n results = utils.get_term_vectors(history, news_fields, es)\n ret = dict()\n normalization = dict()\n for c in news_fields:\n ret[c] = dict()\n normalization[c] = dict()\n for doc in results['docs']:\n if 'term_vectors' in doc:\n for k in news_fields:\n if k in doc['term_vectors']:\n term_vec = doc['term_vectors'][k]['terms']\n for t, t_value in term_vec.items():\n if t in ret[k]:\n ret[k][t] += t_value['score']\n normalization[k][t] += 1\n else:\n ret[k][t] = t_value['score']\n normalization[k][t] = 1\n for field in ret.keys():\n for term in ret[k].keys():\n ret[k][t] = ret[k][term] / normalization[k][term]\n for key, value in ret.items():\n ret[key] = utils.normalize_vec(value)\n ids = []\n docs_vectors = dict()\n for s_rslt in search_results['hits']['hits']:\n ids.append(s_rslt['_id'])\n results_doc = utils.get_term_vectors(ids, news_fields, es)\n for doc in results_doc['docs']:\n if 'term_vectors' in doc:\n docs_vectors[doc['_id']] = dict()\n for k in news_fields:\n if k in doc['term_vectors']:\n docs_vectors[doc['_id']][k] = dict()\n term_vec = doc['term_vectors'][k]['terms']\n for t, t_value in term_vec.items():\n docs_vectors[doc['_id']][k][t] = t_value['score']\n weights = dict()\n weights['body'] = 1\n weights['category'] = 2\n weights['title'] = 2.5\n user_vector = utils.aggregate_vecs(ret, weights)\n scores = dict()\n for doc, vector in docs_vectors.items():\n for key, value in vector.items():\n vector[key] = utils.normalize_vec(value)\n document_vector = utils.aggregate_vecs(vector, weights)\n score = utils.cosine_similarity(document_vector, user_vector)\n scores[doc] = score\n p = 1.0\n norm_old = 0\n for s_rslt in search_results['hits']['hits']:\n norm_old += s_rslt['_score']\n norm_new = 0\n for score in scores.values():\n norm_new += score\n regular_s = copy.deepcopy(search_results['hits']['hits'])\n for s_rslt in search_results['hits']['hits']:\n s_rslt['_score'] = (1 - p) * s_rslt['_score'] / norm_old + p * scores[\n s_rslt['_id']] / norm_new\n search_results['hits']['hits'] = sorted(search_results['hits']['hits'],\n key=lambda k: k['_score'], reverse=True)\n if calculate_ndcg_score:\n ndcg(regular_s, search_results['hits']['hits'])\n print()\n s = ''\n i = 1\n for elem in search_results['hits']['hits']:\n s += str(i) + ' & ' + ' & ' + elem['_id'] + ' & ' + '\\\\\\\\' + '\\n'\n i += 1\n print(s)\n return success_response(search_results['hits']['hits'])\n", "<import token>\n<assignment token>\n<import token>\n<assignment token>\n\n\ndef success_response(result, message=''):\n format = {'status': 'success', 'message': message, 'result': result}\n return json_response(json.dumps(format))\n\n\ndef json_response(data='', status=200, headers=None):\n headers = headers or {}\n if 'Content-Type' not in headers:\n headers['Content-Type'] = JSON_MIME_TYPE\n return make_response(data, status, headers)\n\n\ndef success_message(message):\n format = {'status': 'success', 'result': message}\n return json_response(json.dumps(format))\n\n\n<function token>\n\n\ndef ndcg(regular_search, personalized_search):\n f = open(ndcg_scorring_file, 'r')\n lines = f.readlines()\n ratings = dict()\n for line in lines:\n id, rating = line.split(' ')\n ratings[id] = int(rating)\n optimal_results = sorted(ratings.values(), reverse=True)\n ideal = 0\n for i in range(len(optimal_results)):\n oneindexedI = i + 1\n ideal += optimal_results[i] / math.log2(oneindexedI + 1)\n regular = 0\n for i in range(len(optimal_results)):\n oneindexedI = i + 1\n regular += ratings[regular_search[i]['_id']] / math.log2(\n oneindexedI + 1)\n personalized = 0\n for i in range(len(optimal_results)):\n oneindexedI = i + 1\n personalized += ratings[personalized_search[i]['_id']] / math.log2(\n oneindexedI + 1)\n print('Regular Search NDCG: ', regular / ideal, 'DCG:', regular)\n print('Personalized Search NDCG:', personalized / ideal, 'DCG:',\n personalized)\n print(' ' * 37 + 'Optimal DCG:', ideal)\n\n\ndef update_user():\n data = request.args\n user = utils.get_user(data['id'], es)\n if user['hits']['total']['value'] == 1:\n body = {'script': {'source':\n 'if (ctx._source.history.contains(params.click)) { ctx._source.history.remove(ctx._source.history.indexOf(params.click))} ctx._source.history.add(params.click)'\n , 'lang': 'painless', 'params': {'click': data['click']}}}\n results = es.update(index='users', id=data['id'], body=body)\n else:\n history = [data['click']]\n doc = {'user_id': data['id'], 'history': history}\n results = es.index(index='users', id=data['id'], body=doc)\n return success_response(results)\n\n\ndef get_user():\n data = request.args\n results = utils.get_user(data['id'], es)\n return success_response(results)\n\n\ndef get_history():\n data = request.args\n user = utils.get_user(data['id'], es)\n if user['hits']['total']['value'] != 1:\n return success_response({'docs': []})\n history = user['hits']['hits'][0]['_source']['history']\n if len(history) > 10:\n history = history[-10:]\n history.reverse()\n docstoretrieve = {'docs': [{'_id': elem} for elem in history]}\n if len(docstoretrieve['docs']) == 0:\n return success_response([])\n docs = es.mget(body=docstoretrieve, index='news')\n return success_response(docs)\n\n\ndef delete_user():\n data = request.args\n results = es.delete(index='users', id=data['id'])\n return success_response(results)\n\n\ndef get_recommendations():\n data = request.args\n body = {'query': {'bool': {'must': {'term': {'history.keyword': data[\n 'id']}}}}, 'aggs': {'recommendations': {'significant_terms': {\n 'field': 'history.keyword', 'exclude': data['id'], 'min_doc_count':\n 1}}}}\n recommendations = es.search(index='users', body=body)\n docstoretrieve = {'docs': [{'_id': elem['key']} for elem in\n recommendations['aggregations']['recommendations']['buckets']]}\n if len(docstoretrieve['docs']) == 0:\n return success_response([])\n docs = es.mget(body=docstoretrieve, index='news')\n return success_response(docs)\n\n\ndef get_news_by_id():\n data = request.args\n results = es.get(index='news', id=data['id'])\n return success_response(results)\n\n\n<function token>\n", "<import token>\n<assignment token>\n<import token>\n<assignment token>\n\n\ndef success_response(result, message=''):\n format = {'status': 'success', 'message': message, 'result': result}\n return json_response(json.dumps(format))\n\n\ndef json_response(data='', status=200, headers=None):\n headers = headers or {}\n if 'Content-Type' not in headers:\n headers['Content-Type'] = JSON_MIME_TYPE\n return make_response(data, status, headers)\n\n\ndef success_message(message):\n format = {'status': 'success', 'result': message}\n return json_response(json.dumps(format))\n\n\n<function token>\n\n\ndef ndcg(regular_search, personalized_search):\n f = open(ndcg_scorring_file, 'r')\n lines = f.readlines()\n ratings = dict()\n for line in lines:\n id, rating = line.split(' ')\n ratings[id] = int(rating)\n optimal_results = sorted(ratings.values(), reverse=True)\n ideal = 0\n for i in range(len(optimal_results)):\n oneindexedI = i + 1\n ideal += optimal_results[i] / math.log2(oneindexedI + 1)\n regular = 0\n for i in range(len(optimal_results)):\n oneindexedI = i + 1\n regular += ratings[regular_search[i]['_id']] / math.log2(\n oneindexedI + 1)\n personalized = 0\n for i in range(len(optimal_results)):\n oneindexedI = i + 1\n personalized += ratings[personalized_search[i]['_id']] / math.log2(\n oneindexedI + 1)\n print('Regular Search NDCG: ', regular / ideal, 'DCG:', regular)\n print('Personalized Search NDCG:', personalized / ideal, 'DCG:',\n personalized)\n print(' ' * 37 + 'Optimal DCG:', ideal)\n\n\n<function token>\n\n\ndef get_user():\n data = request.args\n results = utils.get_user(data['id'], es)\n return success_response(results)\n\n\ndef get_history():\n data = request.args\n user = utils.get_user(data['id'], es)\n if user['hits']['total']['value'] != 1:\n return success_response({'docs': []})\n history = user['hits']['hits'][0]['_source']['history']\n if len(history) > 10:\n history = history[-10:]\n history.reverse()\n docstoretrieve = {'docs': [{'_id': elem} for elem in history]}\n if len(docstoretrieve['docs']) == 0:\n return success_response([])\n docs = es.mget(body=docstoretrieve, index='news')\n return success_response(docs)\n\n\ndef delete_user():\n data = request.args\n results = es.delete(index='users', id=data['id'])\n return success_response(results)\n\n\ndef get_recommendations():\n data = request.args\n body = {'query': {'bool': {'must': {'term': {'history.keyword': data[\n 'id']}}}}, 'aggs': {'recommendations': {'significant_terms': {\n 'field': 'history.keyword', 'exclude': data['id'], 'min_doc_count':\n 1}}}}\n recommendations = es.search(index='users', body=body)\n docstoretrieve = {'docs': [{'_id': elem['key']} for elem in\n recommendations['aggregations']['recommendations']['buckets']]}\n if len(docstoretrieve['docs']) == 0:\n return success_response([])\n docs = es.mget(body=docstoretrieve, index='news')\n return success_response(docs)\n\n\ndef get_news_by_id():\n data = request.args\n results = es.get(index='news', id=data['id'])\n return success_response(results)\n\n\n<function token>\n", "<import token>\n<assignment token>\n<import token>\n<assignment token>\n\n\ndef success_response(result, message=''):\n format = {'status': 'success', 'message': message, 'result': result}\n return json_response(json.dumps(format))\n\n\ndef json_response(data='', status=200, headers=None):\n headers = headers or {}\n if 'Content-Type' not in headers:\n headers['Content-Type'] = JSON_MIME_TYPE\n return make_response(data, status, headers)\n\n\n<function token>\n<function token>\n\n\ndef ndcg(regular_search, personalized_search):\n f = open(ndcg_scorring_file, 'r')\n lines = f.readlines()\n ratings = dict()\n for line in lines:\n id, rating = line.split(' ')\n ratings[id] = int(rating)\n optimal_results = sorted(ratings.values(), reverse=True)\n ideal = 0\n for i in range(len(optimal_results)):\n oneindexedI = i + 1\n ideal += optimal_results[i] / math.log2(oneindexedI + 1)\n regular = 0\n for i in range(len(optimal_results)):\n oneindexedI = i + 1\n regular += ratings[regular_search[i]['_id']] / math.log2(\n oneindexedI + 1)\n personalized = 0\n for i in range(len(optimal_results)):\n oneindexedI = i + 1\n personalized += ratings[personalized_search[i]['_id']] / math.log2(\n oneindexedI + 1)\n print('Regular Search NDCG: ', regular / ideal, 'DCG:', regular)\n print('Personalized Search NDCG:', personalized / ideal, 'DCG:',\n personalized)\n print(' ' * 37 + 'Optimal DCG:', ideal)\n\n\n<function token>\n\n\ndef get_user():\n data = request.args\n results = utils.get_user(data['id'], es)\n return success_response(results)\n\n\ndef get_history():\n data = request.args\n user = utils.get_user(data['id'], es)\n if user['hits']['total']['value'] != 1:\n return success_response({'docs': []})\n history = user['hits']['hits'][0]['_source']['history']\n if len(history) > 10:\n history = history[-10:]\n history.reverse()\n docstoretrieve = {'docs': [{'_id': elem} for elem in history]}\n if len(docstoretrieve['docs']) == 0:\n return success_response([])\n docs = es.mget(body=docstoretrieve, index='news')\n return success_response(docs)\n\n\ndef delete_user():\n data = request.args\n results = es.delete(index='users', id=data['id'])\n return success_response(results)\n\n\ndef get_recommendations():\n data = request.args\n body = {'query': {'bool': {'must': {'term': {'history.keyword': data[\n 'id']}}}}, 'aggs': {'recommendations': {'significant_terms': {\n 'field': 'history.keyword', 'exclude': data['id'], 'min_doc_count':\n 1}}}}\n recommendations = es.search(index='users', body=body)\n docstoretrieve = {'docs': [{'_id': elem['key']} for elem in\n recommendations['aggregations']['recommendations']['buckets']]}\n if len(docstoretrieve['docs']) == 0:\n return success_response([])\n docs = es.mget(body=docstoretrieve, index='news')\n return success_response(docs)\n\n\ndef get_news_by_id():\n data = request.args\n results = es.get(index='news', id=data['id'])\n return success_response(results)\n\n\n<function token>\n", "<import token>\n<assignment token>\n<import token>\n<assignment token>\n\n\ndef success_response(result, message=''):\n format = {'status': 'success', 'message': message, 'result': result}\n return json_response(json.dumps(format))\n\n\ndef json_response(data='', status=200, headers=None):\n headers = headers or {}\n if 'Content-Type' not in headers:\n headers['Content-Type'] = JSON_MIME_TYPE\n return make_response(data, status, headers)\n\n\n<function token>\n<function token>\n\n\ndef ndcg(regular_search, personalized_search):\n f = open(ndcg_scorring_file, 'r')\n lines = f.readlines()\n ratings = dict()\n for line in lines:\n id, rating = line.split(' ')\n ratings[id] = int(rating)\n optimal_results = sorted(ratings.values(), reverse=True)\n ideal = 0\n for i in range(len(optimal_results)):\n oneindexedI = i + 1\n ideal += optimal_results[i] / math.log2(oneindexedI + 1)\n regular = 0\n for i in range(len(optimal_results)):\n oneindexedI = i + 1\n regular += ratings[regular_search[i]['_id']] / math.log2(\n oneindexedI + 1)\n personalized = 0\n for i in range(len(optimal_results)):\n oneindexedI = i + 1\n personalized += ratings[personalized_search[i]['_id']] / math.log2(\n oneindexedI + 1)\n print('Regular Search NDCG: ', regular / ideal, 'DCG:', regular)\n print('Personalized Search NDCG:', personalized / ideal, 'DCG:',\n personalized)\n print(' ' * 37 + 'Optimal DCG:', ideal)\n\n\n<function token>\n<function token>\n\n\ndef get_history():\n data = request.args\n user = utils.get_user(data['id'], es)\n if user['hits']['total']['value'] != 1:\n return success_response({'docs': []})\n history = user['hits']['hits'][0]['_source']['history']\n if len(history) > 10:\n history = history[-10:]\n history.reverse()\n docstoretrieve = {'docs': [{'_id': elem} for elem in history]}\n if len(docstoretrieve['docs']) == 0:\n return success_response([])\n docs = es.mget(body=docstoretrieve, index='news')\n return success_response(docs)\n\n\ndef delete_user():\n data = request.args\n results = es.delete(index='users', id=data['id'])\n return success_response(results)\n\n\ndef get_recommendations():\n data = request.args\n body = {'query': {'bool': {'must': {'term': {'history.keyword': data[\n 'id']}}}}, 'aggs': {'recommendations': {'significant_terms': {\n 'field': 'history.keyword', 'exclude': data['id'], 'min_doc_count':\n 1}}}}\n recommendations = es.search(index='users', body=body)\n docstoretrieve = {'docs': [{'_id': elem['key']} for elem in\n recommendations['aggregations']['recommendations']['buckets']]}\n if len(docstoretrieve['docs']) == 0:\n return success_response([])\n docs = es.mget(body=docstoretrieve, index='news')\n return success_response(docs)\n\n\ndef get_news_by_id():\n data = request.args\n results = es.get(index='news', id=data['id'])\n return success_response(results)\n\n\n<function token>\n", "<import token>\n<assignment token>\n<import token>\n<assignment token>\n\n\ndef success_response(result, message=''):\n format = {'status': 'success', 'message': message, 'result': result}\n return json_response(json.dumps(format))\n\n\ndef json_response(data='', status=200, headers=None):\n headers = headers or {}\n if 'Content-Type' not in headers:\n headers['Content-Type'] = JSON_MIME_TYPE\n return make_response(data, status, headers)\n\n\n<function token>\n<function token>\n\n\ndef ndcg(regular_search, personalized_search):\n f = open(ndcg_scorring_file, 'r')\n lines = f.readlines()\n ratings = dict()\n for line in lines:\n id, rating = line.split(' ')\n ratings[id] = int(rating)\n optimal_results = sorted(ratings.values(), reverse=True)\n ideal = 0\n for i in range(len(optimal_results)):\n oneindexedI = i + 1\n ideal += optimal_results[i] / math.log2(oneindexedI + 1)\n regular = 0\n for i in range(len(optimal_results)):\n oneindexedI = i + 1\n regular += ratings[regular_search[i]['_id']] / math.log2(\n oneindexedI + 1)\n personalized = 0\n for i in range(len(optimal_results)):\n oneindexedI = i + 1\n personalized += ratings[personalized_search[i]['_id']] / math.log2(\n oneindexedI + 1)\n print('Regular Search NDCG: ', regular / ideal, 'DCG:', regular)\n print('Personalized Search NDCG:', personalized / ideal, 'DCG:',\n personalized)\n print(' ' * 37 + 'Optimal DCG:', ideal)\n\n\n<function token>\n<function token>\n\n\ndef get_history():\n data = request.args\n user = utils.get_user(data['id'], es)\n if user['hits']['total']['value'] != 1:\n return success_response({'docs': []})\n history = user['hits']['hits'][0]['_source']['history']\n if len(history) > 10:\n history = history[-10:]\n history.reverse()\n docstoretrieve = {'docs': [{'_id': elem} for elem in history]}\n if len(docstoretrieve['docs']) == 0:\n return success_response([])\n docs = es.mget(body=docstoretrieve, index='news')\n return success_response(docs)\n\n\n<function token>\n\n\ndef get_recommendations():\n data = request.args\n body = {'query': {'bool': {'must': {'term': {'history.keyword': data[\n 'id']}}}}, 'aggs': {'recommendations': {'significant_terms': {\n 'field': 'history.keyword', 'exclude': data['id'], 'min_doc_count':\n 1}}}}\n recommendations = es.search(index='users', body=body)\n docstoretrieve = {'docs': [{'_id': elem['key']} for elem in\n recommendations['aggregations']['recommendations']['buckets']]}\n if len(docstoretrieve['docs']) == 0:\n return success_response([])\n docs = es.mget(body=docstoretrieve, index='news')\n return success_response(docs)\n\n\ndef get_news_by_id():\n data = request.args\n results = es.get(index='news', id=data['id'])\n return success_response(results)\n\n\n<function token>\n", "<import token>\n<assignment token>\n<import token>\n<assignment token>\n\n\ndef success_response(result, message=''):\n format = {'status': 'success', 'message': message, 'result': result}\n return json_response(json.dumps(format))\n\n\ndef json_response(data='', status=200, headers=None):\n headers = headers or {}\n if 'Content-Type' not in headers:\n headers['Content-Type'] = JSON_MIME_TYPE\n return make_response(data, status, headers)\n\n\n<function token>\n<function token>\n\n\ndef ndcg(regular_search, personalized_search):\n f = open(ndcg_scorring_file, 'r')\n lines = f.readlines()\n ratings = dict()\n for line in lines:\n id, rating = line.split(' ')\n ratings[id] = int(rating)\n optimal_results = sorted(ratings.values(), reverse=True)\n ideal = 0\n for i in range(len(optimal_results)):\n oneindexedI = i + 1\n ideal += optimal_results[i] / math.log2(oneindexedI + 1)\n regular = 0\n for i in range(len(optimal_results)):\n oneindexedI = i + 1\n regular += ratings[regular_search[i]['_id']] / math.log2(\n oneindexedI + 1)\n personalized = 0\n for i in range(len(optimal_results)):\n oneindexedI = i + 1\n personalized += ratings[personalized_search[i]['_id']] / math.log2(\n oneindexedI + 1)\n print('Regular Search NDCG: ', regular / ideal, 'DCG:', regular)\n print('Personalized Search NDCG:', personalized / ideal, 'DCG:',\n personalized)\n print(' ' * 37 + 'Optimal DCG:', ideal)\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef get_recommendations():\n data = request.args\n body = {'query': {'bool': {'must': {'term': {'history.keyword': data[\n 'id']}}}}, 'aggs': {'recommendations': {'significant_terms': {\n 'field': 'history.keyword', 'exclude': data['id'], 'min_doc_count':\n 1}}}}\n recommendations = es.search(index='users', body=body)\n docstoretrieve = {'docs': [{'_id': elem['key']} for elem in\n recommendations['aggregations']['recommendations']['buckets']]}\n if len(docstoretrieve['docs']) == 0:\n return success_response([])\n docs = es.mget(body=docstoretrieve, index='news')\n return success_response(docs)\n\n\ndef get_news_by_id():\n data = request.args\n results = es.get(index='news', id=data['id'])\n return success_response(results)\n\n\n<function token>\n", "<import token>\n<assignment token>\n<import token>\n<assignment token>\n\n\ndef success_response(result, message=''):\n format = {'status': 'success', 'message': message, 'result': result}\n return json_response(json.dumps(format))\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef ndcg(regular_search, personalized_search):\n f = open(ndcg_scorring_file, 'r')\n lines = f.readlines()\n ratings = dict()\n for line in lines:\n id, rating = line.split(' ')\n ratings[id] = int(rating)\n optimal_results = sorted(ratings.values(), reverse=True)\n ideal = 0\n for i in range(len(optimal_results)):\n oneindexedI = i + 1\n ideal += optimal_results[i] / math.log2(oneindexedI + 1)\n regular = 0\n for i in range(len(optimal_results)):\n oneindexedI = i + 1\n regular += ratings[regular_search[i]['_id']] / math.log2(\n oneindexedI + 1)\n personalized = 0\n for i in range(len(optimal_results)):\n oneindexedI = i + 1\n personalized += ratings[personalized_search[i]['_id']] / math.log2(\n oneindexedI + 1)\n print('Regular Search NDCG: ', regular / ideal, 'DCG:', regular)\n print('Personalized Search NDCG:', personalized / ideal, 'DCG:',\n personalized)\n print(' ' * 37 + 'Optimal DCG:', ideal)\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef get_recommendations():\n data = request.args\n body = {'query': {'bool': {'must': {'term': {'history.keyword': data[\n 'id']}}}}, 'aggs': {'recommendations': {'significant_terms': {\n 'field': 'history.keyword', 'exclude': data['id'], 'min_doc_count':\n 1}}}}\n recommendations = es.search(index='users', body=body)\n docstoretrieve = {'docs': [{'_id': elem['key']} for elem in\n recommendations['aggregations']['recommendations']['buckets']]}\n if len(docstoretrieve['docs']) == 0:\n return success_response([])\n docs = es.mget(body=docstoretrieve, index='news')\n return success_response(docs)\n\n\ndef get_news_by_id():\n data = request.args\n results = es.get(index='news', id=data['id'])\n return success_response(results)\n\n\n<function token>\n", "<import token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef ndcg(regular_search, personalized_search):\n f = open(ndcg_scorring_file, 'r')\n lines = f.readlines()\n ratings = dict()\n for line in lines:\n id, rating = line.split(' ')\n ratings[id] = int(rating)\n optimal_results = sorted(ratings.values(), reverse=True)\n ideal = 0\n for i in range(len(optimal_results)):\n oneindexedI = i + 1\n ideal += optimal_results[i] / math.log2(oneindexedI + 1)\n regular = 0\n for i in range(len(optimal_results)):\n oneindexedI = i + 1\n regular += ratings[regular_search[i]['_id']] / math.log2(\n oneindexedI + 1)\n personalized = 0\n for i in range(len(optimal_results)):\n oneindexedI = i + 1\n personalized += ratings[personalized_search[i]['_id']] / math.log2(\n oneindexedI + 1)\n print('Regular Search NDCG: ', regular / ideal, 'DCG:', regular)\n print('Personalized Search NDCG:', personalized / ideal, 'DCG:',\n personalized)\n print(' ' * 37 + 'Optimal DCG:', ideal)\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef get_recommendations():\n data = request.args\n body = {'query': {'bool': {'must': {'term': {'history.keyword': data[\n 'id']}}}}, 'aggs': {'recommendations': {'significant_terms': {\n 'field': 'history.keyword', 'exclude': data['id'], 'min_doc_count':\n 1}}}}\n recommendations = es.search(index='users', body=body)\n docstoretrieve = {'docs': [{'_id': elem['key']} for elem in\n recommendations['aggregations']['recommendations']['buckets']]}\n if len(docstoretrieve['docs']) == 0:\n return success_response([])\n docs = es.mget(body=docstoretrieve, index='news')\n return success_response(docs)\n\n\ndef get_news_by_id():\n data = request.args\n results = es.get(index='news', id=data['id'])\n return success_response(results)\n\n\n<function token>\n", "<import token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef ndcg(regular_search, personalized_search):\n f = open(ndcg_scorring_file, 'r')\n lines = f.readlines()\n ratings = dict()\n for line in lines:\n id, rating = line.split(' ')\n ratings[id] = int(rating)\n optimal_results = sorted(ratings.values(), reverse=True)\n ideal = 0\n for i in range(len(optimal_results)):\n oneindexedI = i + 1\n ideal += optimal_results[i] / math.log2(oneindexedI + 1)\n regular = 0\n for i in range(len(optimal_results)):\n oneindexedI = i + 1\n regular += ratings[regular_search[i]['_id']] / math.log2(\n oneindexedI + 1)\n personalized = 0\n for i in range(len(optimal_results)):\n oneindexedI = i + 1\n personalized += ratings[personalized_search[i]['_id']] / math.log2(\n oneindexedI + 1)\n print('Regular Search NDCG: ', regular / ideal, 'DCG:', regular)\n print('Personalized Search NDCG:', personalized / ideal, 'DCG:',\n personalized)\n print(' ' * 37 + 'Optimal DCG:', ideal)\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef get_recommendations():\n data = request.args\n body = {'query': {'bool': {'must': {'term': {'history.keyword': data[\n 'id']}}}}, 'aggs': {'recommendations': {'significant_terms': {\n 'field': 'history.keyword', 'exclude': data['id'], 'min_doc_count':\n 1}}}}\n recommendations = es.search(index='users', body=body)\n docstoretrieve = {'docs': [{'_id': elem['key']} for elem in\n recommendations['aggregations']['recommendations']['buckets']]}\n if len(docstoretrieve['docs']) == 0:\n return success_response([])\n docs = es.mget(body=docstoretrieve, index='news')\n return success_response(docs)\n\n\n<function token>\n<function token>\n", "<import token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef get_recommendations():\n data = request.args\n body = {'query': {'bool': {'must': {'term': {'history.keyword': data[\n 'id']}}}}, 'aggs': {'recommendations': {'significant_terms': {\n 'field': 'history.keyword', 'exclude': data['id'], 'min_doc_count':\n 1}}}}\n recommendations = es.search(index='users', body=body)\n docstoretrieve = {'docs': [{'_id': elem['key']} for elem in\n recommendations['aggregations']['recommendations']['buckets']]}\n if len(docstoretrieve['docs']) == 0:\n return success_response([])\n docs = es.mget(body=docstoretrieve, index='news')\n return success_response(docs)\n\n\n<function token>\n<function token>\n", "<import token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n" ]
false
99,363
6ff82394d65152d5f5664dc1ba607c3a94a02d3a
import heapq def solution(N, road, K): answer = 0 #무한을 의미하는 값으로 10억을 설정. INF=int(1e9) #최단거리 테이블 distance=[INF]*(N+1) #그래프 graph=[[] for _ in range(N+1)] #그래프 채우기 for a,b,c in road: graph[a].append((b,c)) #이거 안해서 처음에 틀림 graph[b].append((a,c)) #다익스트라 함수 구현 def dijksta(start): q=[] distance[start]=0 heapq.heappush(q, (0,start)) while q: #우선순위 큐(heapq)를 쓰는 이유 #방문하지 않는 노드 중 최단 거리가 가장 짧은 노드를 선택할 수 있다. dist, now= heapq.heappop(q) #현재 노드가 이미 처리된 적이있는 노드면 무시 if distance[now] < dist: continue #현재 노드와 연결된 다른 인접한 노드들을 검사 for next in graph[now]: cost= dist+next[1] #현재 노드를 거쳐서, 다른 노드로 이동하는 거리가 더 짧을 경우 갱신 if cost < distance[next[0]]: distance[next[0]]=cost heapq.heappush(q,(cost, next[0])) dijksta(1) #K보다 작은 동네 찾기 for i in range(1,N+1): if distance[i]<=K: # print(i, distance[i]) answer+=1 return answer print(solution(5,[[1,2,1],[2,3,3],[5,2,2],[1,4,2],[5,3,1],[5,4,2]], 3))
[ "import heapq\n\n\n\ndef solution(N, road, K):\n answer = 0\n #무한을 의미하는 값으로 10억을 설정.\n INF=int(1e9)\n\n #최단거리 테이블 \n distance=[INF]*(N+1)\n\n #그래프\n graph=[[] for _ in range(N+1)]\n\n #그래프 채우기\n for a,b,c in road:\n graph[a].append((b,c))\n #이거 안해서 처음에 틀림\n graph[b].append((a,c))\n\n #다익스트라 함수 구현\n def dijksta(start): \n q=[]\n distance[start]=0\n\n heapq.heappush(q, (0,start))\n\n while q:\n #우선순위 큐(heapq)를 쓰는 이유\n #방문하지 않는 노드 중 최단 거리가 가장 짧은 노드를 선택할 수 있다.\n dist, now= heapq.heappop(q)\n\n #현재 노드가 이미 처리된 적이있는 노드면 무시\n if distance[now] < dist:\n continue\n\n #현재 노드와 연결된 다른 인접한 노드들을 검사\n for next in graph[now]:\n cost= dist+next[1]\n #현재 노드를 거쳐서, 다른 노드로 이동하는 거리가 더 짧을 경우 갱신\n if cost < distance[next[0]]:\n distance[next[0]]=cost\n heapq.heappush(q,(cost, next[0]))\n\n \n dijksta(1)\n \n \n #K보다 작은 동네 찾기\n for i in range(1,N+1):\n if distance[i]<=K:\n # print(i, distance[i])\n answer+=1\n\n\n\n return answer\n\nprint(solution(5,[[1,2,1],[2,3,3],[5,2,2],[1,4,2],[5,3,1],[5,4,2]], 3))", "import heapq\n\n\ndef solution(N, road, K):\n answer = 0\n INF = int(1000000000.0)\n distance = [INF] * (N + 1)\n graph = [[] for _ in range(N + 1)]\n for a, b, c in road:\n graph[a].append((b, c))\n graph[b].append((a, c))\n\n def dijksta(start):\n q = []\n distance[start] = 0\n heapq.heappush(q, (0, start))\n while q:\n dist, now = heapq.heappop(q)\n if distance[now] < dist:\n continue\n for next in graph[now]:\n cost = dist + next[1]\n if cost < distance[next[0]]:\n distance[next[0]] = cost\n heapq.heappush(q, (cost, next[0]))\n dijksta(1)\n for i in range(1, N + 1):\n if distance[i] <= K:\n answer += 1\n return answer\n\n\nprint(solution(5, [[1, 2, 1], [2, 3, 3], [5, 2, 2], [1, 4, 2], [5, 3, 1], [\n 5, 4, 2]], 3))\n", "<import token>\n\n\ndef solution(N, road, K):\n answer = 0\n INF = int(1000000000.0)\n distance = [INF] * (N + 1)\n graph = [[] for _ in range(N + 1)]\n for a, b, c in road:\n graph[a].append((b, c))\n graph[b].append((a, c))\n\n def dijksta(start):\n q = []\n distance[start] = 0\n heapq.heappush(q, (0, start))\n while q:\n dist, now = heapq.heappop(q)\n if distance[now] < dist:\n continue\n for next in graph[now]:\n cost = dist + next[1]\n if cost < distance[next[0]]:\n distance[next[0]] = cost\n heapq.heappush(q, (cost, next[0]))\n dijksta(1)\n for i in range(1, N + 1):\n if distance[i] <= K:\n answer += 1\n return answer\n\n\nprint(solution(5, [[1, 2, 1], [2, 3, 3], [5, 2, 2], [1, 4, 2], [5, 3, 1], [\n 5, 4, 2]], 3))\n", "<import token>\n\n\ndef solution(N, road, K):\n answer = 0\n INF = int(1000000000.0)\n distance = [INF] * (N + 1)\n graph = [[] for _ in range(N + 1)]\n for a, b, c in road:\n graph[a].append((b, c))\n graph[b].append((a, c))\n\n def dijksta(start):\n q = []\n distance[start] = 0\n heapq.heappush(q, (0, start))\n while q:\n dist, now = heapq.heappop(q)\n if distance[now] < dist:\n continue\n for next in graph[now]:\n cost = dist + next[1]\n if cost < distance[next[0]]:\n distance[next[0]] = cost\n heapq.heappush(q, (cost, next[0]))\n dijksta(1)\n for i in range(1, N + 1):\n if distance[i] <= K:\n answer += 1\n return answer\n\n\n<code token>\n", "<import token>\n<function token>\n<code token>\n" ]
false
99,364
fca40cd3d4312577eac1d79f372a4189c00bc3f8
from django.urls import path import docapp.views as docapp_views app_name = 'docapp' urlpatterns = [ path('', docapp_views.index, name='index'), ]
[ "from django.urls import path\nimport docapp.views as docapp_views\n\napp_name = 'docapp'\n\nurlpatterns = [\n path('', docapp_views.index, name='index'),\n]\n", "from django.urls import path\nimport docapp.views as docapp_views\napp_name = 'docapp'\nurlpatterns = [path('', docapp_views.index, name='index')]\n", "<import token>\napp_name = 'docapp'\nurlpatterns = [path('', docapp_views.index, name='index')]\n", "<import token>\n<assignment token>\n" ]
false
99,365
2426bb5ff132db530ed70ff177ab334d06d77cb4
''' - 20년 가을학기 분산병렬 프로그래밍 - 8장 멀티프로세싱 - multiprocessing.pipe() 사용하기 - 이호섭 - 프로세스간 통신을 위해 이름있는 파이프 생성 이름있는 파이프도 FIFO 구조이다. 단방향 통신이며 쌍방향(duplex)을 위해선 2개의 파이프를 만들어야함 프로세스가 종료되면 제거됨 - 익명 파이프와는 다르게 윈도우에서 실행 가능 ''' import multiprocessing ## # name: ChildProcess(multiprocessing.Process) # use: ChildProcess(conn=쓰기 파이프) # role: 네임드 파이프에 무언가를 작성 # info: Custom Process class ChildProcess(multiprocessing.Process): def __init__(self, conn): super(ChildProcess, self).__init__() self.conn = conn def run(self): print("Attempting to pipein to pipe") self.conn.send("My name is Hoseop") # 파이프 close self.conn.close() def main(): conn1, conn2 = multiprocessing.Pipe() child = ChildProcess(conn2) child.start() child.join() pipContent = conn1.recv() print("Pipe: {}".format(pipContent)) conn1.close() if __name__ == '__main__': main()
[ "'''\n - 20년 가을학기 분산병렬 프로그래밍\n - 8장 멀티프로세싱\n - multiprocessing.pipe() 사용하기\n - 이호섭\n - 프로세스간 통신을 위해 이름있는 파이프 생성\n 이름있는 파이프도 FIFO 구조이다.\n 단방향 통신이며 쌍방향(duplex)을 위해선 2개의 파이프를 만들어야함\n 프로세스가 종료되면 제거됨\n - 익명 파이프와는 다르게 윈도우에서 실행 가능\n'''\n\nimport multiprocessing\n\n\n##\n# name: ChildProcess(multiprocessing.Process)\n# use: ChildProcess(conn=쓰기 파이프)\n# role: 네임드 파이프에 무언가를 작성\n# info: Custom Process\nclass ChildProcess(multiprocessing.Process):\n\n def __init__(self, conn):\n super(ChildProcess, self).__init__()\n self.conn = conn\n\n def run(self):\n print(\"Attempting to pipein to pipe\")\n self.conn.send(\"My name is Hoseop\")\n # 파이프 close\n self.conn.close()\n\n\ndef main():\n conn1, conn2 = multiprocessing.Pipe()\n\n child = ChildProcess(conn2)\n child.start()\n child.join()\n\n pipContent = conn1.recv()\n print(\"Pipe: {}\".format(pipContent))\n\n conn1.close()\n\n\nif __name__ == '__main__':\n main()", "<docstring token>\nimport multiprocessing\n\n\nclass ChildProcess(multiprocessing.Process):\n\n def __init__(self, conn):\n super(ChildProcess, self).__init__()\n self.conn = conn\n\n def run(self):\n print('Attempting to pipein to pipe')\n self.conn.send('My name is Hoseop')\n self.conn.close()\n\n\ndef main():\n conn1, conn2 = multiprocessing.Pipe()\n child = ChildProcess(conn2)\n child.start()\n child.join()\n pipContent = conn1.recv()\n print('Pipe: {}'.format(pipContent))\n conn1.close()\n\n\nif __name__ == '__main__':\n main()\n", "<docstring token>\n<import token>\n\n\nclass ChildProcess(multiprocessing.Process):\n\n def __init__(self, conn):\n super(ChildProcess, self).__init__()\n self.conn = conn\n\n def run(self):\n print('Attempting to pipein to pipe')\n self.conn.send('My name is Hoseop')\n self.conn.close()\n\n\ndef main():\n conn1, conn2 = multiprocessing.Pipe()\n child = ChildProcess(conn2)\n child.start()\n child.join()\n pipContent = conn1.recv()\n print('Pipe: {}'.format(pipContent))\n conn1.close()\n\n\nif __name__ == '__main__':\n main()\n", "<docstring token>\n<import token>\n\n\nclass ChildProcess(multiprocessing.Process):\n\n def __init__(self, conn):\n super(ChildProcess, self).__init__()\n self.conn = conn\n\n def run(self):\n print('Attempting to pipein to pipe')\n self.conn.send('My name is Hoseop')\n self.conn.close()\n\n\ndef main():\n conn1, conn2 = multiprocessing.Pipe()\n child = ChildProcess(conn2)\n child.start()\n child.join()\n pipContent = conn1.recv()\n print('Pipe: {}'.format(pipContent))\n conn1.close()\n\n\n<code token>\n", "<docstring token>\n<import token>\n\n\nclass ChildProcess(multiprocessing.Process):\n\n def __init__(self, conn):\n super(ChildProcess, self).__init__()\n self.conn = conn\n\n def run(self):\n print('Attempting to pipein to pipe')\n self.conn.send('My name is Hoseop')\n self.conn.close()\n\n\n<function token>\n<code token>\n", "<docstring token>\n<import token>\n\n\nclass ChildProcess(multiprocessing.Process):\n\n def __init__(self, conn):\n super(ChildProcess, self).__init__()\n self.conn = conn\n <function token>\n\n\n<function token>\n<code token>\n", "<docstring token>\n<import token>\n\n\nclass ChildProcess(multiprocessing.Process):\n <function token>\n <function token>\n\n\n<function token>\n<code token>\n", "<docstring token>\n<import token>\n<class token>\n<function token>\n<code token>\n" ]
false
99,366
40cac895dcf9e091cfe6be9f92479cf9a253c395
from django.db import models # Create your models here. class City(models.Model): label=models.CharField(max_length=250) def __str__(self): return self.label class Area(models.Model): label=models.CharField(max_length=250) city_label=models.ForeignKey(City,on_delete=models.CASCADE) def __str__(self): return self.label+"\t"+self.city_label.label class Veges(models.Model): label=models.CharField(max_length=250) price=models.IntegerField() img=models.CharField(max_length=250) def __str__(self): return str(self.price)+"\t"+self.label class Fruits(models.Model): label=models.CharField(max_length=250) price=models.IntegerField() img=models.CharField(max_length=250) def __str__(self): return self.label class farmDesciption(models.Model): name=models.CharField(max_length=250) description=models.CharField(max_length=500) age=models.CharField(max_length=25) contcNum=models.IntegerField() land_owner=models.IntegerField() area=models.CharField(max_length=250) img=models.CharField(max_length=250) def __str__(self): return self.name class fruitFarm(models.Model): fruit=models.ForeignKey(Fruits,on_delete=models.CASCADE) farm=models.ForeignKey(farmDesciption,on_delete=models.CASCADE) def __str__(self): return self.farm.name+self.farm.description+str(self.farm.age)+str(self.farm.contcNum)+self.farm.area+self.farm.img class vegeFarm(models.Model): vege=models.ForeignKey(Veges,on_delete=models.CASCADE) farm=models.ForeignKey(farmDesciption,on_delete=models.CASCADE) def __str__(self): return self.farm.name+"\t"+self.farm.description+"\t"+str(self.farm.age)+"\t"+str(self.farm.contcNum)+"\t"+self.farm.area+"\t"+self.farm.img class nutrientsVeges(models.Model): vege=models.ForeignKey(Veges,on_delete=models.CASCADE) carbohydrates=models.FloatField() proteins=models.FloatField() energy=models.FloatField() fats = models.FloatField() sugar = models.FloatField() potassium = models.FloatField() iron = models.FloatField() calcium = models.FloatField() def __str__(self): return self.vege.label class registeredUser(models.Model): userName=models.CharField(max_length=400) area=models.ForeignKey(Area,on_delete=models.CASCADE) address=models.CharField(max_length=400) contactNum=models.CharField(max_length=400) email=models.CharField(max_length=250) def __str__(self): return self.userName+"\t"+self.area.label+"\t" class orderDetails(models.Model): user = models.ForeignKey(registeredUser, on_delete=models.CASCADE) orderID = models.IntegerField() status = models.CharField(max_length=10) cost = models.FloatField() odate = models.DateField() def __str__(self): return self.user.userName+"\t"+self.status+"\t"+str(self.cost) class fruitOrder(models.Model): orderID=models.ForeignKey(orderDetails,on_delete=models.CASCADE) fruit=models.ForeignKey(Fruits,on_delete=models.CASCADE) def __str__(self): return self.fruit.label+"\t"+str(self.orderID.orderID) class vegeOrder(models.Model): orderID=models.ForeignKey(orderDetails,on_delete=models.CASCADE) vege=models.ForeignKey(Veges,on_delete=models.CASCADE) class nutrientsFruits(models.Model): fruit=models.ForeignKey(Fruits,on_delete=models.CASCADE) carbohydrates=models.FloatField() proteins=models.FloatField() energy=models.FloatField() fats = models.FloatField() sugar = models.FloatField() potassium = models.FloatField() iron = models.FloatField() calcium = models.FloatField() def __str__(self): return self.fruit.label
[ "from django.db import models\n\n# Create your models here.\nclass City(models.Model):\n label=models.CharField(max_length=250)\n\n def __str__(self):\n return self.label\n\n\nclass Area(models.Model):\n label=models.CharField(max_length=250)\n city_label=models.ForeignKey(City,on_delete=models.CASCADE)\n def __str__(self):\n return self.label+\"\\t\"+self.city_label.label\n\nclass Veges(models.Model):\n label=models.CharField(max_length=250)\n price=models.IntegerField()\n img=models.CharField(max_length=250)\n def __str__(self):\n return str(self.price)+\"\\t\"+self.label\n\nclass Fruits(models.Model):\n label=models.CharField(max_length=250)\n price=models.IntegerField()\n img=models.CharField(max_length=250)\n def __str__(self):\n return self.label\nclass farmDesciption(models.Model):\n name=models.CharField(max_length=250)\n description=models.CharField(max_length=500)\n age=models.CharField(max_length=25)\n contcNum=models.IntegerField()\n land_owner=models.IntegerField()\n area=models.CharField(max_length=250)\n img=models.CharField(max_length=250)\n def __str__(self):\n return self.name\n\nclass fruitFarm(models.Model):\n fruit=models.ForeignKey(Fruits,on_delete=models.CASCADE)\n farm=models.ForeignKey(farmDesciption,on_delete=models.CASCADE)\n def __str__(self):\n return self.farm.name+self.farm.description+str(self.farm.age)+str(self.farm.contcNum)+self.farm.area+self.farm.img\n\nclass vegeFarm(models.Model):\n vege=models.ForeignKey(Veges,on_delete=models.CASCADE)\n farm=models.ForeignKey(farmDesciption,on_delete=models.CASCADE)\n\n def __str__(self):\n return self.farm.name+\"\\t\"+self.farm.description+\"\\t\"+str(self.farm.age)+\"\\t\"+str(self.farm.contcNum)+\"\\t\"+self.farm.area+\"\\t\"+self.farm.img\n\nclass nutrientsVeges(models.Model):\n vege=models.ForeignKey(Veges,on_delete=models.CASCADE)\n carbohydrates=models.FloatField()\n proteins=models.FloatField()\n energy=models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n def __str__(self):\n return self.vege.label\n\nclass registeredUser(models.Model):\n userName=models.CharField(max_length=400)\n area=models.ForeignKey(Area,on_delete=models.CASCADE)\n address=models.CharField(max_length=400)\n contactNum=models.CharField(max_length=400)\n email=models.CharField(max_length=250)\n def __str__(self):\n return self.userName+\"\\t\"+self.area.label+\"\\t\"\n\nclass orderDetails(models.Model):\n user = models.ForeignKey(registeredUser, on_delete=models.CASCADE)\n orderID = models.IntegerField()\n status = models.CharField(max_length=10)\n cost = models.FloatField()\n odate = models.DateField()\n def __str__(self):\n return self.user.userName+\"\\t\"+self.status+\"\\t\"+str(self.cost)\n\nclass fruitOrder(models.Model):\n orderID=models.ForeignKey(orderDetails,on_delete=models.CASCADE)\n fruit=models.ForeignKey(Fruits,on_delete=models.CASCADE)\n def __str__(self):\n return self.fruit.label+\"\\t\"+str(self.orderID.orderID)\n\nclass vegeOrder(models.Model):\n orderID=models.ForeignKey(orderDetails,on_delete=models.CASCADE)\n vege=models.ForeignKey(Veges,on_delete=models.CASCADE)\nclass nutrientsFruits(models.Model):\n fruit=models.ForeignKey(Fruits,on_delete=models.CASCADE)\n carbohydrates=models.FloatField()\n proteins=models.FloatField()\n energy=models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n def __str__(self):\n return self.fruit.label", "from django.db import models\n\n\nclass City(models.Model):\n label = models.CharField(max_length=250)\n\n def __str__(self):\n return self.label\n\n\nclass Area(models.Model):\n label = models.CharField(max_length=250)\n city_label = models.ForeignKey(City, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.label + '\\t' + self.city_label.label\n\n\nclass Veges(models.Model):\n label = models.CharField(max_length=250)\n price = models.IntegerField()\n img = models.CharField(max_length=250)\n\n def __str__(self):\n return str(self.price) + '\\t' + self.label\n\n\nclass Fruits(models.Model):\n label = models.CharField(max_length=250)\n price = models.IntegerField()\n img = models.CharField(max_length=250)\n\n def __str__(self):\n return self.label\n\n\nclass farmDesciption(models.Model):\n name = models.CharField(max_length=250)\n description = models.CharField(max_length=500)\n age = models.CharField(max_length=25)\n contcNum = models.IntegerField()\n land_owner = models.IntegerField()\n area = models.CharField(max_length=250)\n img = models.CharField(max_length=250)\n\n def __str__(self):\n return self.name\n\n\nclass fruitFarm(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n farm = models.ForeignKey(farmDesciption, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.farm.name + self.farm.description + str(self.farm.age\n ) + str(self.farm.contcNum) + self.farm.area + self.farm.img\n\n\nclass vegeFarm(models.Model):\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n farm = models.ForeignKey(farmDesciption, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.farm.name + '\\t' + self.farm.description + '\\t' + str(self\n .farm.age) + '\\t' + str(self.farm.contcNum\n ) + '\\t' + self.farm.area + '\\t' + self.farm.img\n\n\nclass nutrientsVeges(models.Model):\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.vege.label\n\n\nclass registeredUser(models.Model):\n userName = models.CharField(max_length=400)\n area = models.ForeignKey(Area, on_delete=models.CASCADE)\n address = models.CharField(max_length=400)\n contactNum = models.CharField(max_length=400)\n email = models.CharField(max_length=250)\n\n def __str__(self):\n return self.userName + '\\t' + self.area.label + '\\t'\n\n\nclass orderDetails(models.Model):\n user = models.ForeignKey(registeredUser, on_delete=models.CASCADE)\n orderID = models.IntegerField()\n status = models.CharField(max_length=10)\n cost = models.FloatField()\n odate = models.DateField()\n\n def __str__(self):\n return self.user.userName + '\\t' + self.status + '\\t' + str(self.cost)\n\n\nclass fruitOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.fruit.label + '\\t' + str(self.orderID.orderID)\n\n\nclass vegeOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n\n\nclass nutrientsFruits(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.fruit.label\n", "<import token>\n\n\nclass City(models.Model):\n label = models.CharField(max_length=250)\n\n def __str__(self):\n return self.label\n\n\nclass Area(models.Model):\n label = models.CharField(max_length=250)\n city_label = models.ForeignKey(City, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.label + '\\t' + self.city_label.label\n\n\nclass Veges(models.Model):\n label = models.CharField(max_length=250)\n price = models.IntegerField()\n img = models.CharField(max_length=250)\n\n def __str__(self):\n return str(self.price) + '\\t' + self.label\n\n\nclass Fruits(models.Model):\n label = models.CharField(max_length=250)\n price = models.IntegerField()\n img = models.CharField(max_length=250)\n\n def __str__(self):\n return self.label\n\n\nclass farmDesciption(models.Model):\n name = models.CharField(max_length=250)\n description = models.CharField(max_length=500)\n age = models.CharField(max_length=25)\n contcNum = models.IntegerField()\n land_owner = models.IntegerField()\n area = models.CharField(max_length=250)\n img = models.CharField(max_length=250)\n\n def __str__(self):\n return self.name\n\n\nclass fruitFarm(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n farm = models.ForeignKey(farmDesciption, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.farm.name + self.farm.description + str(self.farm.age\n ) + str(self.farm.contcNum) + self.farm.area + self.farm.img\n\n\nclass vegeFarm(models.Model):\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n farm = models.ForeignKey(farmDesciption, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.farm.name + '\\t' + self.farm.description + '\\t' + str(self\n .farm.age) + '\\t' + str(self.farm.contcNum\n ) + '\\t' + self.farm.area + '\\t' + self.farm.img\n\n\nclass nutrientsVeges(models.Model):\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.vege.label\n\n\nclass registeredUser(models.Model):\n userName = models.CharField(max_length=400)\n area = models.ForeignKey(Area, on_delete=models.CASCADE)\n address = models.CharField(max_length=400)\n contactNum = models.CharField(max_length=400)\n email = models.CharField(max_length=250)\n\n def __str__(self):\n return self.userName + '\\t' + self.area.label + '\\t'\n\n\nclass orderDetails(models.Model):\n user = models.ForeignKey(registeredUser, on_delete=models.CASCADE)\n orderID = models.IntegerField()\n status = models.CharField(max_length=10)\n cost = models.FloatField()\n odate = models.DateField()\n\n def __str__(self):\n return self.user.userName + '\\t' + self.status + '\\t' + str(self.cost)\n\n\nclass fruitOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.fruit.label + '\\t' + str(self.orderID.orderID)\n\n\nclass vegeOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n\n\nclass nutrientsFruits(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.fruit.label\n", "<import token>\n\n\nclass City(models.Model):\n <assignment token>\n\n def __str__(self):\n return self.label\n\n\nclass Area(models.Model):\n label = models.CharField(max_length=250)\n city_label = models.ForeignKey(City, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.label + '\\t' + self.city_label.label\n\n\nclass Veges(models.Model):\n label = models.CharField(max_length=250)\n price = models.IntegerField()\n img = models.CharField(max_length=250)\n\n def __str__(self):\n return str(self.price) + '\\t' + self.label\n\n\nclass Fruits(models.Model):\n label = models.CharField(max_length=250)\n price = models.IntegerField()\n img = models.CharField(max_length=250)\n\n def __str__(self):\n return self.label\n\n\nclass farmDesciption(models.Model):\n name = models.CharField(max_length=250)\n description = models.CharField(max_length=500)\n age = models.CharField(max_length=25)\n contcNum = models.IntegerField()\n land_owner = models.IntegerField()\n area = models.CharField(max_length=250)\n img = models.CharField(max_length=250)\n\n def __str__(self):\n return self.name\n\n\nclass fruitFarm(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n farm = models.ForeignKey(farmDesciption, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.farm.name + self.farm.description + str(self.farm.age\n ) + str(self.farm.contcNum) + self.farm.area + self.farm.img\n\n\nclass vegeFarm(models.Model):\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n farm = models.ForeignKey(farmDesciption, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.farm.name + '\\t' + self.farm.description + '\\t' + str(self\n .farm.age) + '\\t' + str(self.farm.contcNum\n ) + '\\t' + self.farm.area + '\\t' + self.farm.img\n\n\nclass nutrientsVeges(models.Model):\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.vege.label\n\n\nclass registeredUser(models.Model):\n userName = models.CharField(max_length=400)\n area = models.ForeignKey(Area, on_delete=models.CASCADE)\n address = models.CharField(max_length=400)\n contactNum = models.CharField(max_length=400)\n email = models.CharField(max_length=250)\n\n def __str__(self):\n return self.userName + '\\t' + self.area.label + '\\t'\n\n\nclass orderDetails(models.Model):\n user = models.ForeignKey(registeredUser, on_delete=models.CASCADE)\n orderID = models.IntegerField()\n status = models.CharField(max_length=10)\n cost = models.FloatField()\n odate = models.DateField()\n\n def __str__(self):\n return self.user.userName + '\\t' + self.status + '\\t' + str(self.cost)\n\n\nclass fruitOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.fruit.label + '\\t' + str(self.orderID.orderID)\n\n\nclass vegeOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n\n\nclass nutrientsFruits(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.fruit.label\n", "<import token>\n\n\nclass City(models.Model):\n <assignment token>\n <function token>\n\n\nclass Area(models.Model):\n label = models.CharField(max_length=250)\n city_label = models.ForeignKey(City, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.label + '\\t' + self.city_label.label\n\n\nclass Veges(models.Model):\n label = models.CharField(max_length=250)\n price = models.IntegerField()\n img = models.CharField(max_length=250)\n\n def __str__(self):\n return str(self.price) + '\\t' + self.label\n\n\nclass Fruits(models.Model):\n label = models.CharField(max_length=250)\n price = models.IntegerField()\n img = models.CharField(max_length=250)\n\n def __str__(self):\n return self.label\n\n\nclass farmDesciption(models.Model):\n name = models.CharField(max_length=250)\n description = models.CharField(max_length=500)\n age = models.CharField(max_length=25)\n contcNum = models.IntegerField()\n land_owner = models.IntegerField()\n area = models.CharField(max_length=250)\n img = models.CharField(max_length=250)\n\n def __str__(self):\n return self.name\n\n\nclass fruitFarm(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n farm = models.ForeignKey(farmDesciption, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.farm.name + self.farm.description + str(self.farm.age\n ) + str(self.farm.contcNum) + self.farm.area + self.farm.img\n\n\nclass vegeFarm(models.Model):\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n farm = models.ForeignKey(farmDesciption, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.farm.name + '\\t' + self.farm.description + '\\t' + str(self\n .farm.age) + '\\t' + str(self.farm.contcNum\n ) + '\\t' + self.farm.area + '\\t' + self.farm.img\n\n\nclass nutrientsVeges(models.Model):\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.vege.label\n\n\nclass registeredUser(models.Model):\n userName = models.CharField(max_length=400)\n area = models.ForeignKey(Area, on_delete=models.CASCADE)\n address = models.CharField(max_length=400)\n contactNum = models.CharField(max_length=400)\n email = models.CharField(max_length=250)\n\n def __str__(self):\n return self.userName + '\\t' + self.area.label + '\\t'\n\n\nclass orderDetails(models.Model):\n user = models.ForeignKey(registeredUser, on_delete=models.CASCADE)\n orderID = models.IntegerField()\n status = models.CharField(max_length=10)\n cost = models.FloatField()\n odate = models.DateField()\n\n def __str__(self):\n return self.user.userName + '\\t' + self.status + '\\t' + str(self.cost)\n\n\nclass fruitOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.fruit.label + '\\t' + str(self.orderID.orderID)\n\n\nclass vegeOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n\n\nclass nutrientsFruits(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.fruit.label\n", "<import token>\n<class token>\n\n\nclass Area(models.Model):\n label = models.CharField(max_length=250)\n city_label = models.ForeignKey(City, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.label + '\\t' + self.city_label.label\n\n\nclass Veges(models.Model):\n label = models.CharField(max_length=250)\n price = models.IntegerField()\n img = models.CharField(max_length=250)\n\n def __str__(self):\n return str(self.price) + '\\t' + self.label\n\n\nclass Fruits(models.Model):\n label = models.CharField(max_length=250)\n price = models.IntegerField()\n img = models.CharField(max_length=250)\n\n def __str__(self):\n return self.label\n\n\nclass farmDesciption(models.Model):\n name = models.CharField(max_length=250)\n description = models.CharField(max_length=500)\n age = models.CharField(max_length=25)\n contcNum = models.IntegerField()\n land_owner = models.IntegerField()\n area = models.CharField(max_length=250)\n img = models.CharField(max_length=250)\n\n def __str__(self):\n return self.name\n\n\nclass fruitFarm(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n farm = models.ForeignKey(farmDesciption, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.farm.name + self.farm.description + str(self.farm.age\n ) + str(self.farm.contcNum) + self.farm.area + self.farm.img\n\n\nclass vegeFarm(models.Model):\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n farm = models.ForeignKey(farmDesciption, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.farm.name + '\\t' + self.farm.description + '\\t' + str(self\n .farm.age) + '\\t' + str(self.farm.contcNum\n ) + '\\t' + self.farm.area + '\\t' + self.farm.img\n\n\nclass nutrientsVeges(models.Model):\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.vege.label\n\n\nclass registeredUser(models.Model):\n userName = models.CharField(max_length=400)\n area = models.ForeignKey(Area, on_delete=models.CASCADE)\n address = models.CharField(max_length=400)\n contactNum = models.CharField(max_length=400)\n email = models.CharField(max_length=250)\n\n def __str__(self):\n return self.userName + '\\t' + self.area.label + '\\t'\n\n\nclass orderDetails(models.Model):\n user = models.ForeignKey(registeredUser, on_delete=models.CASCADE)\n orderID = models.IntegerField()\n status = models.CharField(max_length=10)\n cost = models.FloatField()\n odate = models.DateField()\n\n def __str__(self):\n return self.user.userName + '\\t' + self.status + '\\t' + str(self.cost)\n\n\nclass fruitOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.fruit.label + '\\t' + str(self.orderID.orderID)\n\n\nclass vegeOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n\n\nclass nutrientsFruits(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.fruit.label\n", "<import token>\n<class token>\n\n\nclass Area(models.Model):\n <assignment token>\n <assignment token>\n\n def __str__(self):\n return self.label + '\\t' + self.city_label.label\n\n\nclass Veges(models.Model):\n label = models.CharField(max_length=250)\n price = models.IntegerField()\n img = models.CharField(max_length=250)\n\n def __str__(self):\n return str(self.price) + '\\t' + self.label\n\n\nclass Fruits(models.Model):\n label = models.CharField(max_length=250)\n price = models.IntegerField()\n img = models.CharField(max_length=250)\n\n def __str__(self):\n return self.label\n\n\nclass farmDesciption(models.Model):\n name = models.CharField(max_length=250)\n description = models.CharField(max_length=500)\n age = models.CharField(max_length=25)\n contcNum = models.IntegerField()\n land_owner = models.IntegerField()\n area = models.CharField(max_length=250)\n img = models.CharField(max_length=250)\n\n def __str__(self):\n return self.name\n\n\nclass fruitFarm(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n farm = models.ForeignKey(farmDesciption, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.farm.name + self.farm.description + str(self.farm.age\n ) + str(self.farm.contcNum) + self.farm.area + self.farm.img\n\n\nclass vegeFarm(models.Model):\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n farm = models.ForeignKey(farmDesciption, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.farm.name + '\\t' + self.farm.description + '\\t' + str(self\n .farm.age) + '\\t' + str(self.farm.contcNum\n ) + '\\t' + self.farm.area + '\\t' + self.farm.img\n\n\nclass nutrientsVeges(models.Model):\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.vege.label\n\n\nclass registeredUser(models.Model):\n userName = models.CharField(max_length=400)\n area = models.ForeignKey(Area, on_delete=models.CASCADE)\n address = models.CharField(max_length=400)\n contactNum = models.CharField(max_length=400)\n email = models.CharField(max_length=250)\n\n def __str__(self):\n return self.userName + '\\t' + self.area.label + '\\t'\n\n\nclass orderDetails(models.Model):\n user = models.ForeignKey(registeredUser, on_delete=models.CASCADE)\n orderID = models.IntegerField()\n status = models.CharField(max_length=10)\n cost = models.FloatField()\n odate = models.DateField()\n\n def __str__(self):\n return self.user.userName + '\\t' + self.status + '\\t' + str(self.cost)\n\n\nclass fruitOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.fruit.label + '\\t' + str(self.orderID.orderID)\n\n\nclass vegeOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n\n\nclass nutrientsFruits(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.fruit.label\n", "<import token>\n<class token>\n\n\nclass Area(models.Model):\n <assignment token>\n <assignment token>\n <function token>\n\n\nclass Veges(models.Model):\n label = models.CharField(max_length=250)\n price = models.IntegerField()\n img = models.CharField(max_length=250)\n\n def __str__(self):\n return str(self.price) + '\\t' + self.label\n\n\nclass Fruits(models.Model):\n label = models.CharField(max_length=250)\n price = models.IntegerField()\n img = models.CharField(max_length=250)\n\n def __str__(self):\n return self.label\n\n\nclass farmDesciption(models.Model):\n name = models.CharField(max_length=250)\n description = models.CharField(max_length=500)\n age = models.CharField(max_length=25)\n contcNum = models.IntegerField()\n land_owner = models.IntegerField()\n area = models.CharField(max_length=250)\n img = models.CharField(max_length=250)\n\n def __str__(self):\n return self.name\n\n\nclass fruitFarm(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n farm = models.ForeignKey(farmDesciption, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.farm.name + self.farm.description + str(self.farm.age\n ) + str(self.farm.contcNum) + self.farm.area + self.farm.img\n\n\nclass vegeFarm(models.Model):\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n farm = models.ForeignKey(farmDesciption, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.farm.name + '\\t' + self.farm.description + '\\t' + str(self\n .farm.age) + '\\t' + str(self.farm.contcNum\n ) + '\\t' + self.farm.area + '\\t' + self.farm.img\n\n\nclass nutrientsVeges(models.Model):\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.vege.label\n\n\nclass registeredUser(models.Model):\n userName = models.CharField(max_length=400)\n area = models.ForeignKey(Area, on_delete=models.CASCADE)\n address = models.CharField(max_length=400)\n contactNum = models.CharField(max_length=400)\n email = models.CharField(max_length=250)\n\n def __str__(self):\n return self.userName + '\\t' + self.area.label + '\\t'\n\n\nclass orderDetails(models.Model):\n user = models.ForeignKey(registeredUser, on_delete=models.CASCADE)\n orderID = models.IntegerField()\n status = models.CharField(max_length=10)\n cost = models.FloatField()\n odate = models.DateField()\n\n def __str__(self):\n return self.user.userName + '\\t' + self.status + '\\t' + str(self.cost)\n\n\nclass fruitOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.fruit.label + '\\t' + str(self.orderID.orderID)\n\n\nclass vegeOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n\n\nclass nutrientsFruits(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.fruit.label\n", "<import token>\n<class token>\n<class token>\n\n\nclass Veges(models.Model):\n label = models.CharField(max_length=250)\n price = models.IntegerField()\n img = models.CharField(max_length=250)\n\n def __str__(self):\n return str(self.price) + '\\t' + self.label\n\n\nclass Fruits(models.Model):\n label = models.CharField(max_length=250)\n price = models.IntegerField()\n img = models.CharField(max_length=250)\n\n def __str__(self):\n return self.label\n\n\nclass farmDesciption(models.Model):\n name = models.CharField(max_length=250)\n description = models.CharField(max_length=500)\n age = models.CharField(max_length=25)\n contcNum = models.IntegerField()\n land_owner = models.IntegerField()\n area = models.CharField(max_length=250)\n img = models.CharField(max_length=250)\n\n def __str__(self):\n return self.name\n\n\nclass fruitFarm(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n farm = models.ForeignKey(farmDesciption, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.farm.name + self.farm.description + str(self.farm.age\n ) + str(self.farm.contcNum) + self.farm.area + self.farm.img\n\n\nclass vegeFarm(models.Model):\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n farm = models.ForeignKey(farmDesciption, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.farm.name + '\\t' + self.farm.description + '\\t' + str(self\n .farm.age) + '\\t' + str(self.farm.contcNum\n ) + '\\t' + self.farm.area + '\\t' + self.farm.img\n\n\nclass nutrientsVeges(models.Model):\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.vege.label\n\n\nclass registeredUser(models.Model):\n userName = models.CharField(max_length=400)\n area = models.ForeignKey(Area, on_delete=models.CASCADE)\n address = models.CharField(max_length=400)\n contactNum = models.CharField(max_length=400)\n email = models.CharField(max_length=250)\n\n def __str__(self):\n return self.userName + '\\t' + self.area.label + '\\t'\n\n\nclass orderDetails(models.Model):\n user = models.ForeignKey(registeredUser, on_delete=models.CASCADE)\n orderID = models.IntegerField()\n status = models.CharField(max_length=10)\n cost = models.FloatField()\n odate = models.DateField()\n\n def __str__(self):\n return self.user.userName + '\\t' + self.status + '\\t' + str(self.cost)\n\n\nclass fruitOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.fruit.label + '\\t' + str(self.orderID.orderID)\n\n\nclass vegeOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n\n\nclass nutrientsFruits(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.fruit.label\n", "<import token>\n<class token>\n<class token>\n\n\nclass Veges(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __str__(self):\n return str(self.price) + '\\t' + self.label\n\n\nclass Fruits(models.Model):\n label = models.CharField(max_length=250)\n price = models.IntegerField()\n img = models.CharField(max_length=250)\n\n def __str__(self):\n return self.label\n\n\nclass farmDesciption(models.Model):\n name = models.CharField(max_length=250)\n description = models.CharField(max_length=500)\n age = models.CharField(max_length=25)\n contcNum = models.IntegerField()\n land_owner = models.IntegerField()\n area = models.CharField(max_length=250)\n img = models.CharField(max_length=250)\n\n def __str__(self):\n return self.name\n\n\nclass fruitFarm(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n farm = models.ForeignKey(farmDesciption, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.farm.name + self.farm.description + str(self.farm.age\n ) + str(self.farm.contcNum) + self.farm.area + self.farm.img\n\n\nclass vegeFarm(models.Model):\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n farm = models.ForeignKey(farmDesciption, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.farm.name + '\\t' + self.farm.description + '\\t' + str(self\n .farm.age) + '\\t' + str(self.farm.contcNum\n ) + '\\t' + self.farm.area + '\\t' + self.farm.img\n\n\nclass nutrientsVeges(models.Model):\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.vege.label\n\n\nclass registeredUser(models.Model):\n userName = models.CharField(max_length=400)\n area = models.ForeignKey(Area, on_delete=models.CASCADE)\n address = models.CharField(max_length=400)\n contactNum = models.CharField(max_length=400)\n email = models.CharField(max_length=250)\n\n def __str__(self):\n return self.userName + '\\t' + self.area.label + '\\t'\n\n\nclass orderDetails(models.Model):\n user = models.ForeignKey(registeredUser, on_delete=models.CASCADE)\n orderID = models.IntegerField()\n status = models.CharField(max_length=10)\n cost = models.FloatField()\n odate = models.DateField()\n\n def __str__(self):\n return self.user.userName + '\\t' + self.status + '\\t' + str(self.cost)\n\n\nclass fruitOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.fruit.label + '\\t' + str(self.orderID.orderID)\n\n\nclass vegeOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n\n\nclass nutrientsFruits(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.fruit.label\n", "<import token>\n<class token>\n<class token>\n\n\nclass Veges(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n\n\nclass Fruits(models.Model):\n label = models.CharField(max_length=250)\n price = models.IntegerField()\n img = models.CharField(max_length=250)\n\n def __str__(self):\n return self.label\n\n\nclass farmDesciption(models.Model):\n name = models.CharField(max_length=250)\n description = models.CharField(max_length=500)\n age = models.CharField(max_length=25)\n contcNum = models.IntegerField()\n land_owner = models.IntegerField()\n area = models.CharField(max_length=250)\n img = models.CharField(max_length=250)\n\n def __str__(self):\n return self.name\n\n\nclass fruitFarm(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n farm = models.ForeignKey(farmDesciption, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.farm.name + self.farm.description + str(self.farm.age\n ) + str(self.farm.contcNum) + self.farm.area + self.farm.img\n\n\nclass vegeFarm(models.Model):\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n farm = models.ForeignKey(farmDesciption, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.farm.name + '\\t' + self.farm.description + '\\t' + str(self\n .farm.age) + '\\t' + str(self.farm.contcNum\n ) + '\\t' + self.farm.area + '\\t' + self.farm.img\n\n\nclass nutrientsVeges(models.Model):\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.vege.label\n\n\nclass registeredUser(models.Model):\n userName = models.CharField(max_length=400)\n area = models.ForeignKey(Area, on_delete=models.CASCADE)\n address = models.CharField(max_length=400)\n contactNum = models.CharField(max_length=400)\n email = models.CharField(max_length=250)\n\n def __str__(self):\n return self.userName + '\\t' + self.area.label + '\\t'\n\n\nclass orderDetails(models.Model):\n user = models.ForeignKey(registeredUser, on_delete=models.CASCADE)\n orderID = models.IntegerField()\n status = models.CharField(max_length=10)\n cost = models.FloatField()\n odate = models.DateField()\n\n def __str__(self):\n return self.user.userName + '\\t' + self.status + '\\t' + str(self.cost)\n\n\nclass fruitOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.fruit.label + '\\t' + str(self.orderID.orderID)\n\n\nclass vegeOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n\n\nclass nutrientsFruits(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.fruit.label\n", "<import token>\n<class token>\n<class token>\n<class token>\n\n\nclass Fruits(models.Model):\n label = models.CharField(max_length=250)\n price = models.IntegerField()\n img = models.CharField(max_length=250)\n\n def __str__(self):\n return self.label\n\n\nclass farmDesciption(models.Model):\n name = models.CharField(max_length=250)\n description = models.CharField(max_length=500)\n age = models.CharField(max_length=25)\n contcNum = models.IntegerField()\n land_owner = models.IntegerField()\n area = models.CharField(max_length=250)\n img = models.CharField(max_length=250)\n\n def __str__(self):\n return self.name\n\n\nclass fruitFarm(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n farm = models.ForeignKey(farmDesciption, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.farm.name + self.farm.description + str(self.farm.age\n ) + str(self.farm.contcNum) + self.farm.area + self.farm.img\n\n\nclass vegeFarm(models.Model):\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n farm = models.ForeignKey(farmDesciption, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.farm.name + '\\t' + self.farm.description + '\\t' + str(self\n .farm.age) + '\\t' + str(self.farm.contcNum\n ) + '\\t' + self.farm.area + '\\t' + self.farm.img\n\n\nclass nutrientsVeges(models.Model):\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.vege.label\n\n\nclass registeredUser(models.Model):\n userName = models.CharField(max_length=400)\n area = models.ForeignKey(Area, on_delete=models.CASCADE)\n address = models.CharField(max_length=400)\n contactNum = models.CharField(max_length=400)\n email = models.CharField(max_length=250)\n\n def __str__(self):\n return self.userName + '\\t' + self.area.label + '\\t'\n\n\nclass orderDetails(models.Model):\n user = models.ForeignKey(registeredUser, on_delete=models.CASCADE)\n orderID = models.IntegerField()\n status = models.CharField(max_length=10)\n cost = models.FloatField()\n odate = models.DateField()\n\n def __str__(self):\n return self.user.userName + '\\t' + self.status + '\\t' + str(self.cost)\n\n\nclass fruitOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.fruit.label + '\\t' + str(self.orderID.orderID)\n\n\nclass vegeOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n\n\nclass nutrientsFruits(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.fruit.label\n", "<import token>\n<class token>\n<class token>\n<class token>\n\n\nclass Fruits(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __str__(self):\n return self.label\n\n\nclass farmDesciption(models.Model):\n name = models.CharField(max_length=250)\n description = models.CharField(max_length=500)\n age = models.CharField(max_length=25)\n contcNum = models.IntegerField()\n land_owner = models.IntegerField()\n area = models.CharField(max_length=250)\n img = models.CharField(max_length=250)\n\n def __str__(self):\n return self.name\n\n\nclass fruitFarm(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n farm = models.ForeignKey(farmDesciption, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.farm.name + self.farm.description + str(self.farm.age\n ) + str(self.farm.contcNum) + self.farm.area + self.farm.img\n\n\nclass vegeFarm(models.Model):\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n farm = models.ForeignKey(farmDesciption, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.farm.name + '\\t' + self.farm.description + '\\t' + str(self\n .farm.age) + '\\t' + str(self.farm.contcNum\n ) + '\\t' + self.farm.area + '\\t' + self.farm.img\n\n\nclass nutrientsVeges(models.Model):\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.vege.label\n\n\nclass registeredUser(models.Model):\n userName = models.CharField(max_length=400)\n area = models.ForeignKey(Area, on_delete=models.CASCADE)\n address = models.CharField(max_length=400)\n contactNum = models.CharField(max_length=400)\n email = models.CharField(max_length=250)\n\n def __str__(self):\n return self.userName + '\\t' + self.area.label + '\\t'\n\n\nclass orderDetails(models.Model):\n user = models.ForeignKey(registeredUser, on_delete=models.CASCADE)\n orderID = models.IntegerField()\n status = models.CharField(max_length=10)\n cost = models.FloatField()\n odate = models.DateField()\n\n def __str__(self):\n return self.user.userName + '\\t' + self.status + '\\t' + str(self.cost)\n\n\nclass fruitOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.fruit.label + '\\t' + str(self.orderID.orderID)\n\n\nclass vegeOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n\n\nclass nutrientsFruits(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.fruit.label\n", "<import token>\n<class token>\n<class token>\n<class token>\n\n\nclass Fruits(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n\n\nclass farmDesciption(models.Model):\n name = models.CharField(max_length=250)\n description = models.CharField(max_length=500)\n age = models.CharField(max_length=25)\n contcNum = models.IntegerField()\n land_owner = models.IntegerField()\n area = models.CharField(max_length=250)\n img = models.CharField(max_length=250)\n\n def __str__(self):\n return self.name\n\n\nclass fruitFarm(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n farm = models.ForeignKey(farmDesciption, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.farm.name + self.farm.description + str(self.farm.age\n ) + str(self.farm.contcNum) + self.farm.area + self.farm.img\n\n\nclass vegeFarm(models.Model):\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n farm = models.ForeignKey(farmDesciption, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.farm.name + '\\t' + self.farm.description + '\\t' + str(self\n .farm.age) + '\\t' + str(self.farm.contcNum\n ) + '\\t' + self.farm.area + '\\t' + self.farm.img\n\n\nclass nutrientsVeges(models.Model):\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.vege.label\n\n\nclass registeredUser(models.Model):\n userName = models.CharField(max_length=400)\n area = models.ForeignKey(Area, on_delete=models.CASCADE)\n address = models.CharField(max_length=400)\n contactNum = models.CharField(max_length=400)\n email = models.CharField(max_length=250)\n\n def __str__(self):\n return self.userName + '\\t' + self.area.label + '\\t'\n\n\nclass orderDetails(models.Model):\n user = models.ForeignKey(registeredUser, on_delete=models.CASCADE)\n orderID = models.IntegerField()\n status = models.CharField(max_length=10)\n cost = models.FloatField()\n odate = models.DateField()\n\n def __str__(self):\n return self.user.userName + '\\t' + self.status + '\\t' + str(self.cost)\n\n\nclass fruitOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.fruit.label + '\\t' + str(self.orderID.orderID)\n\n\nclass vegeOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n\n\nclass nutrientsFruits(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.fruit.label\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass farmDesciption(models.Model):\n name = models.CharField(max_length=250)\n description = models.CharField(max_length=500)\n age = models.CharField(max_length=25)\n contcNum = models.IntegerField()\n land_owner = models.IntegerField()\n area = models.CharField(max_length=250)\n img = models.CharField(max_length=250)\n\n def __str__(self):\n return self.name\n\n\nclass fruitFarm(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n farm = models.ForeignKey(farmDesciption, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.farm.name + self.farm.description + str(self.farm.age\n ) + str(self.farm.contcNum) + self.farm.area + self.farm.img\n\n\nclass vegeFarm(models.Model):\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n farm = models.ForeignKey(farmDesciption, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.farm.name + '\\t' + self.farm.description + '\\t' + str(self\n .farm.age) + '\\t' + str(self.farm.contcNum\n ) + '\\t' + self.farm.area + '\\t' + self.farm.img\n\n\nclass nutrientsVeges(models.Model):\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.vege.label\n\n\nclass registeredUser(models.Model):\n userName = models.CharField(max_length=400)\n area = models.ForeignKey(Area, on_delete=models.CASCADE)\n address = models.CharField(max_length=400)\n contactNum = models.CharField(max_length=400)\n email = models.CharField(max_length=250)\n\n def __str__(self):\n return self.userName + '\\t' + self.area.label + '\\t'\n\n\nclass orderDetails(models.Model):\n user = models.ForeignKey(registeredUser, on_delete=models.CASCADE)\n orderID = models.IntegerField()\n status = models.CharField(max_length=10)\n cost = models.FloatField()\n odate = models.DateField()\n\n def __str__(self):\n return self.user.userName + '\\t' + self.status + '\\t' + str(self.cost)\n\n\nclass fruitOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.fruit.label + '\\t' + str(self.orderID.orderID)\n\n\nclass vegeOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n\n\nclass nutrientsFruits(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.fruit.label\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass farmDesciption(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __str__(self):\n return self.name\n\n\nclass fruitFarm(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n farm = models.ForeignKey(farmDesciption, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.farm.name + self.farm.description + str(self.farm.age\n ) + str(self.farm.contcNum) + self.farm.area + self.farm.img\n\n\nclass vegeFarm(models.Model):\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n farm = models.ForeignKey(farmDesciption, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.farm.name + '\\t' + self.farm.description + '\\t' + str(self\n .farm.age) + '\\t' + str(self.farm.contcNum\n ) + '\\t' + self.farm.area + '\\t' + self.farm.img\n\n\nclass nutrientsVeges(models.Model):\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.vege.label\n\n\nclass registeredUser(models.Model):\n userName = models.CharField(max_length=400)\n area = models.ForeignKey(Area, on_delete=models.CASCADE)\n address = models.CharField(max_length=400)\n contactNum = models.CharField(max_length=400)\n email = models.CharField(max_length=250)\n\n def __str__(self):\n return self.userName + '\\t' + self.area.label + '\\t'\n\n\nclass orderDetails(models.Model):\n user = models.ForeignKey(registeredUser, on_delete=models.CASCADE)\n orderID = models.IntegerField()\n status = models.CharField(max_length=10)\n cost = models.FloatField()\n odate = models.DateField()\n\n def __str__(self):\n return self.user.userName + '\\t' + self.status + '\\t' + str(self.cost)\n\n\nclass fruitOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.fruit.label + '\\t' + str(self.orderID.orderID)\n\n\nclass vegeOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n\n\nclass nutrientsFruits(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.fruit.label\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass farmDesciption(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n\n\nclass fruitFarm(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n farm = models.ForeignKey(farmDesciption, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.farm.name + self.farm.description + str(self.farm.age\n ) + str(self.farm.contcNum) + self.farm.area + self.farm.img\n\n\nclass vegeFarm(models.Model):\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n farm = models.ForeignKey(farmDesciption, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.farm.name + '\\t' + self.farm.description + '\\t' + str(self\n .farm.age) + '\\t' + str(self.farm.contcNum\n ) + '\\t' + self.farm.area + '\\t' + self.farm.img\n\n\nclass nutrientsVeges(models.Model):\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.vege.label\n\n\nclass registeredUser(models.Model):\n userName = models.CharField(max_length=400)\n area = models.ForeignKey(Area, on_delete=models.CASCADE)\n address = models.CharField(max_length=400)\n contactNum = models.CharField(max_length=400)\n email = models.CharField(max_length=250)\n\n def __str__(self):\n return self.userName + '\\t' + self.area.label + '\\t'\n\n\nclass orderDetails(models.Model):\n user = models.ForeignKey(registeredUser, on_delete=models.CASCADE)\n orderID = models.IntegerField()\n status = models.CharField(max_length=10)\n cost = models.FloatField()\n odate = models.DateField()\n\n def __str__(self):\n return self.user.userName + '\\t' + self.status + '\\t' + str(self.cost)\n\n\nclass fruitOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.fruit.label + '\\t' + str(self.orderID.orderID)\n\n\nclass vegeOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n\n\nclass nutrientsFruits(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.fruit.label\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass fruitFarm(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n farm = models.ForeignKey(farmDesciption, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.farm.name + self.farm.description + str(self.farm.age\n ) + str(self.farm.contcNum) + self.farm.area + self.farm.img\n\n\nclass vegeFarm(models.Model):\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n farm = models.ForeignKey(farmDesciption, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.farm.name + '\\t' + self.farm.description + '\\t' + str(self\n .farm.age) + '\\t' + str(self.farm.contcNum\n ) + '\\t' + self.farm.area + '\\t' + self.farm.img\n\n\nclass nutrientsVeges(models.Model):\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.vege.label\n\n\nclass registeredUser(models.Model):\n userName = models.CharField(max_length=400)\n area = models.ForeignKey(Area, on_delete=models.CASCADE)\n address = models.CharField(max_length=400)\n contactNum = models.CharField(max_length=400)\n email = models.CharField(max_length=250)\n\n def __str__(self):\n return self.userName + '\\t' + self.area.label + '\\t'\n\n\nclass orderDetails(models.Model):\n user = models.ForeignKey(registeredUser, on_delete=models.CASCADE)\n orderID = models.IntegerField()\n status = models.CharField(max_length=10)\n cost = models.FloatField()\n odate = models.DateField()\n\n def __str__(self):\n return self.user.userName + '\\t' + self.status + '\\t' + str(self.cost)\n\n\nclass fruitOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.fruit.label + '\\t' + str(self.orderID.orderID)\n\n\nclass vegeOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n\n\nclass nutrientsFruits(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.fruit.label\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass fruitFarm(models.Model):\n <assignment token>\n <assignment token>\n\n def __str__(self):\n return self.farm.name + self.farm.description + str(self.farm.age\n ) + str(self.farm.contcNum) + self.farm.area + self.farm.img\n\n\nclass vegeFarm(models.Model):\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n farm = models.ForeignKey(farmDesciption, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.farm.name + '\\t' + self.farm.description + '\\t' + str(self\n .farm.age) + '\\t' + str(self.farm.contcNum\n ) + '\\t' + self.farm.area + '\\t' + self.farm.img\n\n\nclass nutrientsVeges(models.Model):\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.vege.label\n\n\nclass registeredUser(models.Model):\n userName = models.CharField(max_length=400)\n area = models.ForeignKey(Area, on_delete=models.CASCADE)\n address = models.CharField(max_length=400)\n contactNum = models.CharField(max_length=400)\n email = models.CharField(max_length=250)\n\n def __str__(self):\n return self.userName + '\\t' + self.area.label + '\\t'\n\n\nclass orderDetails(models.Model):\n user = models.ForeignKey(registeredUser, on_delete=models.CASCADE)\n orderID = models.IntegerField()\n status = models.CharField(max_length=10)\n cost = models.FloatField()\n odate = models.DateField()\n\n def __str__(self):\n return self.user.userName + '\\t' + self.status + '\\t' + str(self.cost)\n\n\nclass fruitOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.fruit.label + '\\t' + str(self.orderID.orderID)\n\n\nclass vegeOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n\n\nclass nutrientsFruits(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.fruit.label\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass fruitFarm(models.Model):\n <assignment token>\n <assignment token>\n <function token>\n\n\nclass vegeFarm(models.Model):\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n farm = models.ForeignKey(farmDesciption, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.farm.name + '\\t' + self.farm.description + '\\t' + str(self\n .farm.age) + '\\t' + str(self.farm.contcNum\n ) + '\\t' + self.farm.area + '\\t' + self.farm.img\n\n\nclass nutrientsVeges(models.Model):\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.vege.label\n\n\nclass registeredUser(models.Model):\n userName = models.CharField(max_length=400)\n area = models.ForeignKey(Area, on_delete=models.CASCADE)\n address = models.CharField(max_length=400)\n contactNum = models.CharField(max_length=400)\n email = models.CharField(max_length=250)\n\n def __str__(self):\n return self.userName + '\\t' + self.area.label + '\\t'\n\n\nclass orderDetails(models.Model):\n user = models.ForeignKey(registeredUser, on_delete=models.CASCADE)\n orderID = models.IntegerField()\n status = models.CharField(max_length=10)\n cost = models.FloatField()\n odate = models.DateField()\n\n def __str__(self):\n return self.user.userName + '\\t' + self.status + '\\t' + str(self.cost)\n\n\nclass fruitOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.fruit.label + '\\t' + str(self.orderID.orderID)\n\n\nclass vegeOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n\n\nclass nutrientsFruits(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.fruit.label\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass vegeFarm(models.Model):\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n farm = models.ForeignKey(farmDesciption, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.farm.name + '\\t' + self.farm.description + '\\t' + str(self\n .farm.age) + '\\t' + str(self.farm.contcNum\n ) + '\\t' + self.farm.area + '\\t' + self.farm.img\n\n\nclass nutrientsVeges(models.Model):\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.vege.label\n\n\nclass registeredUser(models.Model):\n userName = models.CharField(max_length=400)\n area = models.ForeignKey(Area, on_delete=models.CASCADE)\n address = models.CharField(max_length=400)\n contactNum = models.CharField(max_length=400)\n email = models.CharField(max_length=250)\n\n def __str__(self):\n return self.userName + '\\t' + self.area.label + '\\t'\n\n\nclass orderDetails(models.Model):\n user = models.ForeignKey(registeredUser, on_delete=models.CASCADE)\n orderID = models.IntegerField()\n status = models.CharField(max_length=10)\n cost = models.FloatField()\n odate = models.DateField()\n\n def __str__(self):\n return self.user.userName + '\\t' + self.status + '\\t' + str(self.cost)\n\n\nclass fruitOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.fruit.label + '\\t' + str(self.orderID.orderID)\n\n\nclass vegeOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n\n\nclass nutrientsFruits(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.fruit.label\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass vegeFarm(models.Model):\n <assignment token>\n <assignment token>\n\n def __str__(self):\n return self.farm.name + '\\t' + self.farm.description + '\\t' + str(self\n .farm.age) + '\\t' + str(self.farm.contcNum\n ) + '\\t' + self.farm.area + '\\t' + self.farm.img\n\n\nclass nutrientsVeges(models.Model):\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.vege.label\n\n\nclass registeredUser(models.Model):\n userName = models.CharField(max_length=400)\n area = models.ForeignKey(Area, on_delete=models.CASCADE)\n address = models.CharField(max_length=400)\n contactNum = models.CharField(max_length=400)\n email = models.CharField(max_length=250)\n\n def __str__(self):\n return self.userName + '\\t' + self.area.label + '\\t'\n\n\nclass orderDetails(models.Model):\n user = models.ForeignKey(registeredUser, on_delete=models.CASCADE)\n orderID = models.IntegerField()\n status = models.CharField(max_length=10)\n cost = models.FloatField()\n odate = models.DateField()\n\n def __str__(self):\n return self.user.userName + '\\t' + self.status + '\\t' + str(self.cost)\n\n\nclass fruitOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.fruit.label + '\\t' + str(self.orderID.orderID)\n\n\nclass vegeOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n\n\nclass nutrientsFruits(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.fruit.label\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass vegeFarm(models.Model):\n <assignment token>\n <assignment token>\n <function token>\n\n\nclass nutrientsVeges(models.Model):\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.vege.label\n\n\nclass registeredUser(models.Model):\n userName = models.CharField(max_length=400)\n area = models.ForeignKey(Area, on_delete=models.CASCADE)\n address = models.CharField(max_length=400)\n contactNum = models.CharField(max_length=400)\n email = models.CharField(max_length=250)\n\n def __str__(self):\n return self.userName + '\\t' + self.area.label + '\\t'\n\n\nclass orderDetails(models.Model):\n user = models.ForeignKey(registeredUser, on_delete=models.CASCADE)\n orderID = models.IntegerField()\n status = models.CharField(max_length=10)\n cost = models.FloatField()\n odate = models.DateField()\n\n def __str__(self):\n return self.user.userName + '\\t' + self.status + '\\t' + str(self.cost)\n\n\nclass fruitOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.fruit.label + '\\t' + str(self.orderID.orderID)\n\n\nclass vegeOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n\n\nclass nutrientsFruits(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.fruit.label\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass nutrientsVeges(models.Model):\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.vege.label\n\n\nclass registeredUser(models.Model):\n userName = models.CharField(max_length=400)\n area = models.ForeignKey(Area, on_delete=models.CASCADE)\n address = models.CharField(max_length=400)\n contactNum = models.CharField(max_length=400)\n email = models.CharField(max_length=250)\n\n def __str__(self):\n return self.userName + '\\t' + self.area.label + '\\t'\n\n\nclass orderDetails(models.Model):\n user = models.ForeignKey(registeredUser, on_delete=models.CASCADE)\n orderID = models.IntegerField()\n status = models.CharField(max_length=10)\n cost = models.FloatField()\n odate = models.DateField()\n\n def __str__(self):\n return self.user.userName + '\\t' + self.status + '\\t' + str(self.cost)\n\n\nclass fruitOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.fruit.label + '\\t' + str(self.orderID.orderID)\n\n\nclass vegeOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n\n\nclass nutrientsFruits(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.fruit.label\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass nutrientsVeges(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __str__(self):\n return self.vege.label\n\n\nclass registeredUser(models.Model):\n userName = models.CharField(max_length=400)\n area = models.ForeignKey(Area, on_delete=models.CASCADE)\n address = models.CharField(max_length=400)\n contactNum = models.CharField(max_length=400)\n email = models.CharField(max_length=250)\n\n def __str__(self):\n return self.userName + '\\t' + self.area.label + '\\t'\n\n\nclass orderDetails(models.Model):\n user = models.ForeignKey(registeredUser, on_delete=models.CASCADE)\n orderID = models.IntegerField()\n status = models.CharField(max_length=10)\n cost = models.FloatField()\n odate = models.DateField()\n\n def __str__(self):\n return self.user.userName + '\\t' + self.status + '\\t' + str(self.cost)\n\n\nclass fruitOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.fruit.label + '\\t' + str(self.orderID.orderID)\n\n\nclass vegeOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n\n\nclass nutrientsFruits(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.fruit.label\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass nutrientsVeges(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n\n\nclass registeredUser(models.Model):\n userName = models.CharField(max_length=400)\n area = models.ForeignKey(Area, on_delete=models.CASCADE)\n address = models.CharField(max_length=400)\n contactNum = models.CharField(max_length=400)\n email = models.CharField(max_length=250)\n\n def __str__(self):\n return self.userName + '\\t' + self.area.label + '\\t'\n\n\nclass orderDetails(models.Model):\n user = models.ForeignKey(registeredUser, on_delete=models.CASCADE)\n orderID = models.IntegerField()\n status = models.CharField(max_length=10)\n cost = models.FloatField()\n odate = models.DateField()\n\n def __str__(self):\n return self.user.userName + '\\t' + self.status + '\\t' + str(self.cost)\n\n\nclass fruitOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.fruit.label + '\\t' + str(self.orderID.orderID)\n\n\nclass vegeOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n\n\nclass nutrientsFruits(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.fruit.label\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass registeredUser(models.Model):\n userName = models.CharField(max_length=400)\n area = models.ForeignKey(Area, on_delete=models.CASCADE)\n address = models.CharField(max_length=400)\n contactNum = models.CharField(max_length=400)\n email = models.CharField(max_length=250)\n\n def __str__(self):\n return self.userName + '\\t' + self.area.label + '\\t'\n\n\nclass orderDetails(models.Model):\n user = models.ForeignKey(registeredUser, on_delete=models.CASCADE)\n orderID = models.IntegerField()\n status = models.CharField(max_length=10)\n cost = models.FloatField()\n odate = models.DateField()\n\n def __str__(self):\n return self.user.userName + '\\t' + self.status + '\\t' + str(self.cost)\n\n\nclass fruitOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.fruit.label + '\\t' + str(self.orderID.orderID)\n\n\nclass vegeOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n\n\nclass nutrientsFruits(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.fruit.label\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass registeredUser(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __str__(self):\n return self.userName + '\\t' + self.area.label + '\\t'\n\n\nclass orderDetails(models.Model):\n user = models.ForeignKey(registeredUser, on_delete=models.CASCADE)\n orderID = models.IntegerField()\n status = models.CharField(max_length=10)\n cost = models.FloatField()\n odate = models.DateField()\n\n def __str__(self):\n return self.user.userName + '\\t' + self.status + '\\t' + str(self.cost)\n\n\nclass fruitOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.fruit.label + '\\t' + str(self.orderID.orderID)\n\n\nclass vegeOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n\n\nclass nutrientsFruits(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.fruit.label\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass registeredUser(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n\n\nclass orderDetails(models.Model):\n user = models.ForeignKey(registeredUser, on_delete=models.CASCADE)\n orderID = models.IntegerField()\n status = models.CharField(max_length=10)\n cost = models.FloatField()\n odate = models.DateField()\n\n def __str__(self):\n return self.user.userName + '\\t' + self.status + '\\t' + str(self.cost)\n\n\nclass fruitOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.fruit.label + '\\t' + str(self.orderID.orderID)\n\n\nclass vegeOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n\n\nclass nutrientsFruits(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.fruit.label\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass orderDetails(models.Model):\n user = models.ForeignKey(registeredUser, on_delete=models.CASCADE)\n orderID = models.IntegerField()\n status = models.CharField(max_length=10)\n cost = models.FloatField()\n odate = models.DateField()\n\n def __str__(self):\n return self.user.userName + '\\t' + self.status + '\\t' + str(self.cost)\n\n\nclass fruitOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.fruit.label + '\\t' + str(self.orderID.orderID)\n\n\nclass vegeOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n\n\nclass nutrientsFruits(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.fruit.label\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass orderDetails(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __str__(self):\n return self.user.userName + '\\t' + self.status + '\\t' + str(self.cost)\n\n\nclass fruitOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.fruit.label + '\\t' + str(self.orderID.orderID)\n\n\nclass vegeOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n\n\nclass nutrientsFruits(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.fruit.label\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass orderDetails(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n\n\nclass fruitOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.fruit.label + '\\t' + str(self.orderID.orderID)\n\n\nclass vegeOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n\n\nclass nutrientsFruits(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.fruit.label\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass fruitOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.fruit.label + '\\t' + str(self.orderID.orderID)\n\n\nclass vegeOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n\n\nclass nutrientsFruits(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.fruit.label\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass fruitOrder(models.Model):\n <assignment token>\n <assignment token>\n\n def __str__(self):\n return self.fruit.label + '\\t' + str(self.orderID.orderID)\n\n\nclass vegeOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n\n\nclass nutrientsFruits(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.fruit.label\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass fruitOrder(models.Model):\n <assignment token>\n <assignment token>\n <function token>\n\n\nclass vegeOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n\n\nclass nutrientsFruits(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.fruit.label\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass vegeOrder(models.Model):\n orderID = models.ForeignKey(orderDetails, on_delete=models.CASCADE)\n vege = models.ForeignKey(Veges, on_delete=models.CASCADE)\n\n\nclass nutrientsFruits(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.fruit.label\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass vegeOrder(models.Model):\n <assignment token>\n <assignment token>\n\n\nclass nutrientsFruits(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.fruit.label\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass nutrientsFruits(models.Model):\n fruit = models.ForeignKey(Fruits, on_delete=models.CASCADE)\n carbohydrates = models.FloatField()\n proteins = models.FloatField()\n energy = models.FloatField()\n fats = models.FloatField()\n sugar = models.FloatField()\n potassium = models.FloatField()\n iron = models.FloatField()\n calcium = models.FloatField()\n\n def __str__(self):\n return self.fruit.label\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass nutrientsFruits(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __str__(self):\n return self.fruit.label\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass nutrientsFruits(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n" ]
false
99,367
68694604463462af88d9a1f3a1d2f38de6e81228
import openmc mats = openmc.Materials() mat = openmc.Material(1) mat.name = "36 wt% U-235" mat.set_density('sum') mat.add_nuclide('U234', 1.5272e-04) mat.add_nuclide('U235', 1.7118e-02) mat.add_nuclide('U238', 2.9211e-02) mat.add_element('C', 7.7389e-04) mat.add_element('Fe', 1.2058e-04) mat.add_element('W', 1.0087e-05) mat.add_element('Cu', 3.8133e-04) mat.add_element('Ni', 4.1288e-04) mats.append(mat) mats.export_to_xml()
[ "import openmc\n\nmats = openmc.Materials()\n\nmat = openmc.Material(1)\nmat.name = \"36 wt% U-235\"\nmat.set_density('sum')\nmat.add_nuclide('U234', 1.5272e-04)\nmat.add_nuclide('U235', 1.7118e-02)\nmat.add_nuclide('U238', 2.9211e-02)\nmat.add_element('C', 7.7389e-04)\nmat.add_element('Fe', 1.2058e-04)\nmat.add_element('W', 1.0087e-05)\nmat.add_element('Cu', 3.8133e-04)\nmat.add_element('Ni', 4.1288e-04)\nmats.append(mat)\n\nmats.export_to_xml()\n", "import openmc\nmats = openmc.Materials()\nmat = openmc.Material(1)\nmat.name = '36 wt% U-235'\nmat.set_density('sum')\nmat.add_nuclide('U234', 0.00015272)\nmat.add_nuclide('U235', 0.017118)\nmat.add_nuclide('U238', 0.029211)\nmat.add_element('C', 0.00077389)\nmat.add_element('Fe', 0.00012058)\nmat.add_element('W', 1.0087e-05)\nmat.add_element('Cu', 0.00038133)\nmat.add_element('Ni', 0.00041288)\nmats.append(mat)\nmats.export_to_xml()\n", "<import token>\nmats = openmc.Materials()\nmat = openmc.Material(1)\nmat.name = '36 wt% U-235'\nmat.set_density('sum')\nmat.add_nuclide('U234', 0.00015272)\nmat.add_nuclide('U235', 0.017118)\nmat.add_nuclide('U238', 0.029211)\nmat.add_element('C', 0.00077389)\nmat.add_element('Fe', 0.00012058)\nmat.add_element('W', 1.0087e-05)\nmat.add_element('Cu', 0.00038133)\nmat.add_element('Ni', 0.00041288)\nmats.append(mat)\nmats.export_to_xml()\n", "<import token>\n<assignment token>\nmat.set_density('sum')\nmat.add_nuclide('U234', 0.00015272)\nmat.add_nuclide('U235', 0.017118)\nmat.add_nuclide('U238', 0.029211)\nmat.add_element('C', 0.00077389)\nmat.add_element('Fe', 0.00012058)\nmat.add_element('W', 1.0087e-05)\nmat.add_element('Cu', 0.00038133)\nmat.add_element('Ni', 0.00041288)\nmats.append(mat)\nmats.export_to_xml()\n", "<import token>\n<assignment token>\n<code token>\n" ]
false
99,368
84d41e727bd759661bb225c0fca7a0da6235dfa8
import foo print("Hello world") foo.test("bar")
[ "import foo\n\nprint(\"Hello world\")\nfoo.test(\"bar\")", "import foo\nprint('Hello world')\nfoo.test('bar')\n", "<import token>\nprint('Hello world')\nfoo.test('bar')\n", "<import token>\n<code token>\n" ]
false
99,369
bf4b70ab7d4df84e7c1ee82829fd7fe6bf3fe2f7
import torch.nn as nn from wilds.common.metrics.loss import ElementwiseLoss, Loss, MultiTaskLoss from wilds.common.metrics.all_metrics import MSE def initialize_loss(config, d_out): if config.loss_function == 'cross_entropy': return ElementwiseLoss(loss_fn=nn.CrossEntropyLoss(reduction='none')) elif config.loss_function == 'lm_cross_entropy': return MultiTaskLoss(loss_fn=nn.CrossEntropyLoss(reduction='none')) elif config.loss_function == 'mse': return MSE(name='loss') elif config.loss_function == 'multitask_bce': return MultiTaskLoss(loss_fn=nn.BCEWithLogitsLoss(reduction='none')) elif config.loss_function == 'fasterrcnn_criterion': from models.detection.fasterrcnn import FasterRCNNLoss return ElementwiseLoss(loss_fn=FasterRCNNLoss(config.device)) else: raise ValueError(f'config.loss_function {config.loss_function} not recognized')
[ "import torch.nn as nn\r\nfrom wilds.common.metrics.loss import ElementwiseLoss, Loss, MultiTaskLoss\r\nfrom wilds.common.metrics.all_metrics import MSE\r\n\r\ndef initialize_loss(config, d_out):\r\n if config.loss_function == 'cross_entropy':\r\n return ElementwiseLoss(loss_fn=nn.CrossEntropyLoss(reduction='none'))\r\n\r\n elif config.loss_function == 'lm_cross_entropy':\r\n return MultiTaskLoss(loss_fn=nn.CrossEntropyLoss(reduction='none'))\r\n\r\n elif config.loss_function == 'mse':\r\n return MSE(name='loss')\r\n\r\n elif config.loss_function == 'multitask_bce':\r\n return MultiTaskLoss(loss_fn=nn.BCEWithLogitsLoss(reduction='none'))\r\n\r\n elif config.loss_function == 'fasterrcnn_criterion':\r\n from models.detection.fasterrcnn import FasterRCNNLoss\r\n return ElementwiseLoss(loss_fn=FasterRCNNLoss(config.device))\r\n\r\n else:\r\n raise ValueError(f'config.loss_function {config.loss_function} not recognized')\r\n", "import torch.nn as nn\nfrom wilds.common.metrics.loss import ElementwiseLoss, Loss, MultiTaskLoss\nfrom wilds.common.metrics.all_metrics import MSE\n\n\ndef initialize_loss(config, d_out):\n if config.loss_function == 'cross_entropy':\n return ElementwiseLoss(loss_fn=nn.CrossEntropyLoss(reduction='none'))\n elif config.loss_function == 'lm_cross_entropy':\n return MultiTaskLoss(loss_fn=nn.CrossEntropyLoss(reduction='none'))\n elif config.loss_function == 'mse':\n return MSE(name='loss')\n elif config.loss_function == 'multitask_bce':\n return MultiTaskLoss(loss_fn=nn.BCEWithLogitsLoss(reduction='none'))\n elif config.loss_function == 'fasterrcnn_criterion':\n from models.detection.fasterrcnn import FasterRCNNLoss\n return ElementwiseLoss(loss_fn=FasterRCNNLoss(config.device))\n else:\n raise ValueError(\n f'config.loss_function {config.loss_function} not recognized')\n", "<import token>\n\n\ndef initialize_loss(config, d_out):\n if config.loss_function == 'cross_entropy':\n return ElementwiseLoss(loss_fn=nn.CrossEntropyLoss(reduction='none'))\n elif config.loss_function == 'lm_cross_entropy':\n return MultiTaskLoss(loss_fn=nn.CrossEntropyLoss(reduction='none'))\n elif config.loss_function == 'mse':\n return MSE(name='loss')\n elif config.loss_function == 'multitask_bce':\n return MultiTaskLoss(loss_fn=nn.BCEWithLogitsLoss(reduction='none'))\n elif config.loss_function == 'fasterrcnn_criterion':\n from models.detection.fasterrcnn import FasterRCNNLoss\n return ElementwiseLoss(loss_fn=FasterRCNNLoss(config.device))\n else:\n raise ValueError(\n f'config.loss_function {config.loss_function} not recognized')\n", "<import token>\n<function token>\n" ]
false
99,370
42996c6fd047d0cd7c3ce3bffe005dcc5d610fa0
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file '../gui_design/postviewerdesign.ui' # # Created: Sun Jul 31 20:17:27 2016 # by: PyQt4 UI code generator 4.11.2 # # WARNING! All changes made in this file will be lost! from PyQt4 import QtCore, QtGui try: _fromUtf8 = QtCore.QString.fromUtf8 except AttributeError: def _fromUtf8(s): return s try: _encoding = QtGui.QApplication.UnicodeUTF8 def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig, _encoding) except AttributeError: def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig) class Ui_Dialog(object): def setupUi(self, Dialog): Dialog.setObjectName(_fromUtf8("Dialog")) Dialog.resize(411, 278) self.verticalLayoutWidget = QtGui.QWidget(Dialog) self.verticalLayoutWidget.setGeometry(QtCore.QRect(0, 0, 411, 281)) self.verticalLayoutWidget.setObjectName(_fromUtf8("verticalLayoutWidget")) self.verticalLayout = QtGui.QVBoxLayout(self.verticalLayoutWidget) self.verticalLayout.setMargin(0) self.verticalLayout.setObjectName(_fromUtf8("verticalLayout")) self.horizontalLayout = QtGui.QHBoxLayout() self.horizontalLayout.setObjectName(_fromUtf8("horizontalLayout")) self.prevBTN = QtGui.QPushButton(self.verticalLayoutWidget) self.prevBTN.setObjectName(_fromUtf8("prevBTN")) self.horizontalLayout.addWidget(self.prevBTN) self.imgButton = QtGui.QPushButton(self.verticalLayoutWidget) self.imgButton.setObjectName(_fromUtf8("imgButton")) self.horizontalLayout.addWidget(self.imgButton) self.nextBTN = QtGui.QPushButton(self.verticalLayoutWidget) self.nextBTN.setObjectName(_fromUtf8("nextBTN")) self.horizontalLayout.addWidget(self.nextBTN) self.verticalLayout.addLayout(self.horizontalLayout) self.horizontalLayout_2 = QtGui.QHBoxLayout() self.horizontalLayout_2.setObjectName(_fromUtf8("horizontalLayout_2")) self.emailBtn = QtGui.QPushButton(self.verticalLayoutWidget) self.emailBtn.setObjectName(_fromUtf8("emailBtn")) self.horizontalLayout_2.addWidget(self.emailBtn) self.verticalLayout.addLayout(self.horizontalLayout_2) self.textBrowser = QtGui.QTextBrowser(self.verticalLayoutWidget) self.textBrowser.setObjectName(_fromUtf8("textBrowser")) self.verticalLayout.addWidget(self.textBrowser) self.buttonBox = QtGui.QDialogButtonBox(self.verticalLayoutWidget) self.buttonBox.setOrientation(QtCore.Qt.Horizontal) self.buttonBox.setStandardButtons(QtGui.QDialogButtonBox.Cancel|QtGui.QDialogButtonBox.Ok) self.buttonBox.setObjectName(_fromUtf8("buttonBox")) self.verticalLayout.addWidget(self.buttonBox) self.retranslateUi(Dialog) QtCore.QObject.connect(self.buttonBox, QtCore.SIGNAL(_fromUtf8("accepted()")), Dialog.accept) QtCore.QObject.connect(self.buttonBox, QtCore.SIGNAL(_fromUtf8("rejected()")), Dialog.reject) QtCore.QMetaObject.connectSlotsByName(Dialog) def retranslateUi(self, Dialog): Dialog.setWindowTitle(_translate("Dialog", "Dialog", None)) self.prevBTN.setText(_translate("Dialog", "Prev", None)) self.imgButton.setText(_translate("Dialog", "Images", None)) self.nextBTN.setText(_translate("Dialog", "Next", None)) self.emailBtn.setText(_translate("Dialog", "Contact Me!", None))
[ "# -*- coding: utf-8 -*-\n\n# Form implementation generated from reading ui file '../gui_design/postviewerdesign.ui'\n#\n# Created: Sun Jul 31 20:17:27 2016\n# by: PyQt4 UI code generator 4.11.2\n#\n# WARNING! All changes made in this file will be lost!\n\nfrom PyQt4 import QtCore, QtGui\n\ntry:\n _fromUtf8 = QtCore.QString.fromUtf8\nexcept AttributeError:\n def _fromUtf8(s):\n return s\n\ntry:\n _encoding = QtGui.QApplication.UnicodeUTF8\n def _translate(context, text, disambig):\n return QtGui.QApplication.translate(context, text, disambig, _encoding)\nexcept AttributeError:\n def _translate(context, text, disambig):\n return QtGui.QApplication.translate(context, text, disambig)\n\nclass Ui_Dialog(object):\n def setupUi(self, Dialog):\n Dialog.setObjectName(_fromUtf8(\"Dialog\"))\n Dialog.resize(411, 278)\n self.verticalLayoutWidget = QtGui.QWidget(Dialog)\n self.verticalLayoutWidget.setGeometry(QtCore.QRect(0, 0, 411, 281))\n self.verticalLayoutWidget.setObjectName(_fromUtf8(\"verticalLayoutWidget\"))\n self.verticalLayout = QtGui.QVBoxLayout(self.verticalLayoutWidget)\n self.verticalLayout.setMargin(0)\n self.verticalLayout.setObjectName(_fromUtf8(\"verticalLayout\"))\n self.horizontalLayout = QtGui.QHBoxLayout()\n self.horizontalLayout.setObjectName(_fromUtf8(\"horizontalLayout\"))\n self.prevBTN = QtGui.QPushButton(self.verticalLayoutWidget)\n self.prevBTN.setObjectName(_fromUtf8(\"prevBTN\"))\n self.horizontalLayout.addWidget(self.prevBTN)\n self.imgButton = QtGui.QPushButton(self.verticalLayoutWidget)\n self.imgButton.setObjectName(_fromUtf8(\"imgButton\"))\n self.horizontalLayout.addWidget(self.imgButton)\n self.nextBTN = QtGui.QPushButton(self.verticalLayoutWidget)\n self.nextBTN.setObjectName(_fromUtf8(\"nextBTN\"))\n self.horizontalLayout.addWidget(self.nextBTN)\n self.verticalLayout.addLayout(self.horizontalLayout)\n self.horizontalLayout_2 = QtGui.QHBoxLayout()\n self.horizontalLayout_2.setObjectName(_fromUtf8(\"horizontalLayout_2\"))\n self.emailBtn = QtGui.QPushButton(self.verticalLayoutWidget)\n self.emailBtn.setObjectName(_fromUtf8(\"emailBtn\"))\n self.horizontalLayout_2.addWidget(self.emailBtn)\n self.verticalLayout.addLayout(self.horizontalLayout_2)\n self.textBrowser = QtGui.QTextBrowser(self.verticalLayoutWidget)\n self.textBrowser.setObjectName(_fromUtf8(\"textBrowser\"))\n self.verticalLayout.addWidget(self.textBrowser)\n self.buttonBox = QtGui.QDialogButtonBox(self.verticalLayoutWidget)\n self.buttonBox.setOrientation(QtCore.Qt.Horizontal)\n self.buttonBox.setStandardButtons(QtGui.QDialogButtonBox.Cancel|QtGui.QDialogButtonBox.Ok)\n self.buttonBox.setObjectName(_fromUtf8(\"buttonBox\"))\n self.verticalLayout.addWidget(self.buttonBox)\n\n self.retranslateUi(Dialog)\n QtCore.QObject.connect(self.buttonBox, QtCore.SIGNAL(_fromUtf8(\"accepted()\")), Dialog.accept)\n QtCore.QObject.connect(self.buttonBox, QtCore.SIGNAL(_fromUtf8(\"rejected()\")), Dialog.reject)\n QtCore.QMetaObject.connectSlotsByName(Dialog)\n\n def retranslateUi(self, Dialog):\n Dialog.setWindowTitle(_translate(\"Dialog\", \"Dialog\", None))\n self.prevBTN.setText(_translate(\"Dialog\", \"Prev\", None))\n self.imgButton.setText(_translate(\"Dialog\", \"Images\", None))\n self.nextBTN.setText(_translate(\"Dialog\", \"Next\", None))\n self.emailBtn.setText(_translate(\"Dialog\", \"Contact Me!\", None))\n\n", "from PyQt4 import QtCore, QtGui\ntry:\n _fromUtf8 = QtCore.QString.fromUtf8\nexcept AttributeError:\n\n def _fromUtf8(s):\n return s\ntry:\n _encoding = QtGui.QApplication.UnicodeUTF8\n\n def _translate(context, text, disambig):\n return QtGui.QApplication.translate(context, text, disambig, _encoding)\nexcept AttributeError:\n\n def _translate(context, text, disambig):\n return QtGui.QApplication.translate(context, text, disambig)\n\n\nclass Ui_Dialog(object):\n\n def setupUi(self, Dialog):\n Dialog.setObjectName(_fromUtf8('Dialog'))\n Dialog.resize(411, 278)\n self.verticalLayoutWidget = QtGui.QWidget(Dialog)\n self.verticalLayoutWidget.setGeometry(QtCore.QRect(0, 0, 411, 281))\n self.verticalLayoutWidget.setObjectName(_fromUtf8(\n 'verticalLayoutWidget'))\n self.verticalLayout = QtGui.QVBoxLayout(self.verticalLayoutWidget)\n self.verticalLayout.setMargin(0)\n self.verticalLayout.setObjectName(_fromUtf8('verticalLayout'))\n self.horizontalLayout = QtGui.QHBoxLayout()\n self.horizontalLayout.setObjectName(_fromUtf8('horizontalLayout'))\n self.prevBTN = QtGui.QPushButton(self.verticalLayoutWidget)\n self.prevBTN.setObjectName(_fromUtf8('prevBTN'))\n self.horizontalLayout.addWidget(self.prevBTN)\n self.imgButton = QtGui.QPushButton(self.verticalLayoutWidget)\n self.imgButton.setObjectName(_fromUtf8('imgButton'))\n self.horizontalLayout.addWidget(self.imgButton)\n self.nextBTN = QtGui.QPushButton(self.verticalLayoutWidget)\n self.nextBTN.setObjectName(_fromUtf8('nextBTN'))\n self.horizontalLayout.addWidget(self.nextBTN)\n self.verticalLayout.addLayout(self.horizontalLayout)\n self.horizontalLayout_2 = QtGui.QHBoxLayout()\n self.horizontalLayout_2.setObjectName(_fromUtf8('horizontalLayout_2'))\n self.emailBtn = QtGui.QPushButton(self.verticalLayoutWidget)\n self.emailBtn.setObjectName(_fromUtf8('emailBtn'))\n self.horizontalLayout_2.addWidget(self.emailBtn)\n self.verticalLayout.addLayout(self.horizontalLayout_2)\n self.textBrowser = QtGui.QTextBrowser(self.verticalLayoutWidget)\n self.textBrowser.setObjectName(_fromUtf8('textBrowser'))\n self.verticalLayout.addWidget(self.textBrowser)\n self.buttonBox = QtGui.QDialogButtonBox(self.verticalLayoutWidget)\n self.buttonBox.setOrientation(QtCore.Qt.Horizontal)\n self.buttonBox.setStandardButtons(QtGui.QDialogButtonBox.Cancel |\n QtGui.QDialogButtonBox.Ok)\n self.buttonBox.setObjectName(_fromUtf8('buttonBox'))\n self.verticalLayout.addWidget(self.buttonBox)\n self.retranslateUi(Dialog)\n QtCore.QObject.connect(self.buttonBox, QtCore.SIGNAL(_fromUtf8(\n 'accepted()')), Dialog.accept)\n QtCore.QObject.connect(self.buttonBox, QtCore.SIGNAL(_fromUtf8(\n 'rejected()')), Dialog.reject)\n QtCore.QMetaObject.connectSlotsByName(Dialog)\n\n def retranslateUi(self, Dialog):\n Dialog.setWindowTitle(_translate('Dialog', 'Dialog', None))\n self.prevBTN.setText(_translate('Dialog', 'Prev', None))\n self.imgButton.setText(_translate('Dialog', 'Images', None))\n self.nextBTN.setText(_translate('Dialog', 'Next', None))\n self.emailBtn.setText(_translate('Dialog', 'Contact Me!', None))\n", "<import token>\ntry:\n _fromUtf8 = QtCore.QString.fromUtf8\nexcept AttributeError:\n\n def _fromUtf8(s):\n return s\ntry:\n _encoding = QtGui.QApplication.UnicodeUTF8\n\n def _translate(context, text, disambig):\n return QtGui.QApplication.translate(context, text, disambig, _encoding)\nexcept AttributeError:\n\n def _translate(context, text, disambig):\n return QtGui.QApplication.translate(context, text, disambig)\n\n\nclass Ui_Dialog(object):\n\n def setupUi(self, Dialog):\n Dialog.setObjectName(_fromUtf8('Dialog'))\n Dialog.resize(411, 278)\n self.verticalLayoutWidget = QtGui.QWidget(Dialog)\n self.verticalLayoutWidget.setGeometry(QtCore.QRect(0, 0, 411, 281))\n self.verticalLayoutWidget.setObjectName(_fromUtf8(\n 'verticalLayoutWidget'))\n self.verticalLayout = QtGui.QVBoxLayout(self.verticalLayoutWidget)\n self.verticalLayout.setMargin(0)\n self.verticalLayout.setObjectName(_fromUtf8('verticalLayout'))\n self.horizontalLayout = QtGui.QHBoxLayout()\n self.horizontalLayout.setObjectName(_fromUtf8('horizontalLayout'))\n self.prevBTN = QtGui.QPushButton(self.verticalLayoutWidget)\n self.prevBTN.setObjectName(_fromUtf8('prevBTN'))\n self.horizontalLayout.addWidget(self.prevBTN)\n self.imgButton = QtGui.QPushButton(self.verticalLayoutWidget)\n self.imgButton.setObjectName(_fromUtf8('imgButton'))\n self.horizontalLayout.addWidget(self.imgButton)\n self.nextBTN = QtGui.QPushButton(self.verticalLayoutWidget)\n self.nextBTN.setObjectName(_fromUtf8('nextBTN'))\n self.horizontalLayout.addWidget(self.nextBTN)\n self.verticalLayout.addLayout(self.horizontalLayout)\n self.horizontalLayout_2 = QtGui.QHBoxLayout()\n self.horizontalLayout_2.setObjectName(_fromUtf8('horizontalLayout_2'))\n self.emailBtn = QtGui.QPushButton(self.verticalLayoutWidget)\n self.emailBtn.setObjectName(_fromUtf8('emailBtn'))\n self.horizontalLayout_2.addWidget(self.emailBtn)\n self.verticalLayout.addLayout(self.horizontalLayout_2)\n self.textBrowser = QtGui.QTextBrowser(self.verticalLayoutWidget)\n self.textBrowser.setObjectName(_fromUtf8('textBrowser'))\n self.verticalLayout.addWidget(self.textBrowser)\n self.buttonBox = QtGui.QDialogButtonBox(self.verticalLayoutWidget)\n self.buttonBox.setOrientation(QtCore.Qt.Horizontal)\n self.buttonBox.setStandardButtons(QtGui.QDialogButtonBox.Cancel |\n QtGui.QDialogButtonBox.Ok)\n self.buttonBox.setObjectName(_fromUtf8('buttonBox'))\n self.verticalLayout.addWidget(self.buttonBox)\n self.retranslateUi(Dialog)\n QtCore.QObject.connect(self.buttonBox, QtCore.SIGNAL(_fromUtf8(\n 'accepted()')), Dialog.accept)\n QtCore.QObject.connect(self.buttonBox, QtCore.SIGNAL(_fromUtf8(\n 'rejected()')), Dialog.reject)\n QtCore.QMetaObject.connectSlotsByName(Dialog)\n\n def retranslateUi(self, Dialog):\n Dialog.setWindowTitle(_translate('Dialog', 'Dialog', None))\n self.prevBTN.setText(_translate('Dialog', 'Prev', None))\n self.imgButton.setText(_translate('Dialog', 'Images', None))\n self.nextBTN.setText(_translate('Dialog', 'Next', None))\n self.emailBtn.setText(_translate('Dialog', 'Contact Me!', None))\n", "<import token>\n<code token>\n\n\nclass Ui_Dialog(object):\n\n def setupUi(self, Dialog):\n Dialog.setObjectName(_fromUtf8('Dialog'))\n Dialog.resize(411, 278)\n self.verticalLayoutWidget = QtGui.QWidget(Dialog)\n self.verticalLayoutWidget.setGeometry(QtCore.QRect(0, 0, 411, 281))\n self.verticalLayoutWidget.setObjectName(_fromUtf8(\n 'verticalLayoutWidget'))\n self.verticalLayout = QtGui.QVBoxLayout(self.verticalLayoutWidget)\n self.verticalLayout.setMargin(0)\n self.verticalLayout.setObjectName(_fromUtf8('verticalLayout'))\n self.horizontalLayout = QtGui.QHBoxLayout()\n self.horizontalLayout.setObjectName(_fromUtf8('horizontalLayout'))\n self.prevBTN = QtGui.QPushButton(self.verticalLayoutWidget)\n self.prevBTN.setObjectName(_fromUtf8('prevBTN'))\n self.horizontalLayout.addWidget(self.prevBTN)\n self.imgButton = QtGui.QPushButton(self.verticalLayoutWidget)\n self.imgButton.setObjectName(_fromUtf8('imgButton'))\n self.horizontalLayout.addWidget(self.imgButton)\n self.nextBTN = QtGui.QPushButton(self.verticalLayoutWidget)\n self.nextBTN.setObjectName(_fromUtf8('nextBTN'))\n self.horizontalLayout.addWidget(self.nextBTN)\n self.verticalLayout.addLayout(self.horizontalLayout)\n self.horizontalLayout_2 = QtGui.QHBoxLayout()\n self.horizontalLayout_2.setObjectName(_fromUtf8('horizontalLayout_2'))\n self.emailBtn = QtGui.QPushButton(self.verticalLayoutWidget)\n self.emailBtn.setObjectName(_fromUtf8('emailBtn'))\n self.horizontalLayout_2.addWidget(self.emailBtn)\n self.verticalLayout.addLayout(self.horizontalLayout_2)\n self.textBrowser = QtGui.QTextBrowser(self.verticalLayoutWidget)\n self.textBrowser.setObjectName(_fromUtf8('textBrowser'))\n self.verticalLayout.addWidget(self.textBrowser)\n self.buttonBox = QtGui.QDialogButtonBox(self.verticalLayoutWidget)\n self.buttonBox.setOrientation(QtCore.Qt.Horizontal)\n self.buttonBox.setStandardButtons(QtGui.QDialogButtonBox.Cancel |\n QtGui.QDialogButtonBox.Ok)\n self.buttonBox.setObjectName(_fromUtf8('buttonBox'))\n self.verticalLayout.addWidget(self.buttonBox)\n self.retranslateUi(Dialog)\n QtCore.QObject.connect(self.buttonBox, QtCore.SIGNAL(_fromUtf8(\n 'accepted()')), Dialog.accept)\n QtCore.QObject.connect(self.buttonBox, QtCore.SIGNAL(_fromUtf8(\n 'rejected()')), Dialog.reject)\n QtCore.QMetaObject.connectSlotsByName(Dialog)\n\n def retranslateUi(self, Dialog):\n Dialog.setWindowTitle(_translate('Dialog', 'Dialog', None))\n self.prevBTN.setText(_translate('Dialog', 'Prev', None))\n self.imgButton.setText(_translate('Dialog', 'Images', None))\n self.nextBTN.setText(_translate('Dialog', 'Next', None))\n self.emailBtn.setText(_translate('Dialog', 'Contact Me!', None))\n", "<import token>\n<code token>\n\n\nclass Ui_Dialog(object):\n\n def setupUi(self, Dialog):\n Dialog.setObjectName(_fromUtf8('Dialog'))\n Dialog.resize(411, 278)\n self.verticalLayoutWidget = QtGui.QWidget(Dialog)\n self.verticalLayoutWidget.setGeometry(QtCore.QRect(0, 0, 411, 281))\n self.verticalLayoutWidget.setObjectName(_fromUtf8(\n 'verticalLayoutWidget'))\n self.verticalLayout = QtGui.QVBoxLayout(self.verticalLayoutWidget)\n self.verticalLayout.setMargin(0)\n self.verticalLayout.setObjectName(_fromUtf8('verticalLayout'))\n self.horizontalLayout = QtGui.QHBoxLayout()\n self.horizontalLayout.setObjectName(_fromUtf8('horizontalLayout'))\n self.prevBTN = QtGui.QPushButton(self.verticalLayoutWidget)\n self.prevBTN.setObjectName(_fromUtf8('prevBTN'))\n self.horizontalLayout.addWidget(self.prevBTN)\n self.imgButton = QtGui.QPushButton(self.verticalLayoutWidget)\n self.imgButton.setObjectName(_fromUtf8('imgButton'))\n self.horizontalLayout.addWidget(self.imgButton)\n self.nextBTN = QtGui.QPushButton(self.verticalLayoutWidget)\n self.nextBTN.setObjectName(_fromUtf8('nextBTN'))\n self.horizontalLayout.addWidget(self.nextBTN)\n self.verticalLayout.addLayout(self.horizontalLayout)\n self.horizontalLayout_2 = QtGui.QHBoxLayout()\n self.horizontalLayout_2.setObjectName(_fromUtf8('horizontalLayout_2'))\n self.emailBtn = QtGui.QPushButton(self.verticalLayoutWidget)\n self.emailBtn.setObjectName(_fromUtf8('emailBtn'))\n self.horizontalLayout_2.addWidget(self.emailBtn)\n self.verticalLayout.addLayout(self.horizontalLayout_2)\n self.textBrowser = QtGui.QTextBrowser(self.verticalLayoutWidget)\n self.textBrowser.setObjectName(_fromUtf8('textBrowser'))\n self.verticalLayout.addWidget(self.textBrowser)\n self.buttonBox = QtGui.QDialogButtonBox(self.verticalLayoutWidget)\n self.buttonBox.setOrientation(QtCore.Qt.Horizontal)\n self.buttonBox.setStandardButtons(QtGui.QDialogButtonBox.Cancel |\n QtGui.QDialogButtonBox.Ok)\n self.buttonBox.setObjectName(_fromUtf8('buttonBox'))\n self.verticalLayout.addWidget(self.buttonBox)\n self.retranslateUi(Dialog)\n QtCore.QObject.connect(self.buttonBox, QtCore.SIGNAL(_fromUtf8(\n 'accepted()')), Dialog.accept)\n QtCore.QObject.connect(self.buttonBox, QtCore.SIGNAL(_fromUtf8(\n 'rejected()')), Dialog.reject)\n QtCore.QMetaObject.connectSlotsByName(Dialog)\n <function token>\n", "<import token>\n<code token>\n\n\nclass Ui_Dialog(object):\n <function token>\n <function token>\n", "<import token>\n<code token>\n<class token>\n" ]
false
99,371
3d4c3648e9381d01f8412d48af252edb6631ad00
from rest_framework import serializers from .models import Priority class PrioritySerializer(serializers.ModelSerializer): class Meta: model = Priority fields = '__all__'
[ "from rest_framework import serializers\nfrom .models import Priority\n\nclass PrioritySerializer(serializers.ModelSerializer):\n class Meta:\n model = Priority\n fields = '__all__'", "from rest_framework import serializers\nfrom .models import Priority\n\n\nclass PrioritySerializer(serializers.ModelSerializer):\n\n\n class Meta:\n model = Priority\n fields = '__all__'\n", "<import token>\n\n\nclass PrioritySerializer(serializers.ModelSerializer):\n\n\n class Meta:\n model = Priority\n fields = '__all__'\n", "<import token>\n<class token>\n" ]
false
99,372
a751c191c8b17cb5a6ef09ce686ee3f8f4e996d1
#!/usr/bin/env python3 import argparse import logging from io import BytesIO from pathlib import Path from typing import Optional, Tuple import humanfriendly import kaldiio import numpy as np import resampy import soundfile from tqdm import tqdm from typeguard import check_argument_types from espnet2.fileio.read_text import read_2columns_text from espnet2.fileio.sound_scp import SoundScpWriter, soundfile_read from espnet2.fileio.vad_scp import VADScpReader from espnet2.utils.types import str2bool from espnet.utils.cli_utils import get_commandline_args def humanfriendly_or_none(value: str): if value in ("none", "None", "NONE"): return None return humanfriendly.parse_size(value) def str2int_tuple(integers: str) -> Optional[Tuple[int, ...]]: """ >>> str2int_tuple('3,4,5') (3, 4, 5) """ assert check_argument_types() if integers.strip() in ("none", "None", "NONE", "null", "Null", "NULL"): return None return tuple(map(int, integers.strip().split(","))) def vad_trim(vad_reader: VADScpReader, uttid: str, wav: np.array, fs: int) -> np.array: # Conduct trim wtih vad information assert check_argument_types() assert uttid in vad_reader, uttid vad_info = vad_reader[uttid] total_length = sum(int((time[1] - time[0]) * fs) for time in vad_info) new_wav = np.zeros((total_length,), dtype=wav.dtype) start_frame = 0 for time in vad_info: # Note: we regard vad as [xxx, yyy) duration = int((time[1] - time[0]) * fs) orig_start_frame = int(time[0] * fs) orig_end_frame = orig_start_frame + duration end_frame = start_frame + duration new_wav[start_frame:end_frame] = wav[orig_start_frame:orig_end_frame] start_frame = end_frame return new_wav class SegmentsExtractor: """Emulating kaldi extract-segments.cc Args: segments (str): The file format is "<segment-id> <recording-id> <start-time> <end-time>\n" "e.g. call-861225-A-0050-0065 call-861225-A 5.0 6.5\n" """ def __init__(self, fname: str, segments: str = None, multi_columns: bool = False): assert check_argument_types() self.wav_scp = fname self.multi_columns = multi_columns self.wav_dict = {} with open(self.wav_scp, "r") as f: for line in f: recodeid, wavpath = line.strip().split(None, 1) if recodeid in self.wav_dict: raise RuntimeError(f"{recodeid} is duplicated") self.wav_dict[recodeid] = wavpath self.segments = segments self.segments_dict = {} with open(self.segments, "r") as f: for line in f: sps = line.rstrip().split(None) if len(sps) != 4: raise RuntimeError("Format is invalid: {}".format(line)) uttid, recodeid, st, et = sps self.segments_dict[uttid] = (recodeid, float(st), float(et)) if recodeid not in self.wav_dict: raise RuntimeError( 'Not found "{}" in {}'.format(recodeid, self.wav_scp) ) def generator(self): recodeid_counter = {} for utt, (recodeid, st, et) in self.segments_dict.items(): recodeid_counter[recodeid] = recodeid_counter.get(recodeid, 0) + 1 cached = {} for utt, (recodeid, st, et) in self.segments_dict.items(): wavpath = self.wav_dict[recodeid] if recodeid not in cached: if wavpath.endswith("|"): if self.multi_columns: raise RuntimeError( "Not supporting multi_columns wav.scp for inputs by pipe" ) # Streaming input e.g. cat a.wav | with kaldiio.open_like_kaldi(wavpath, "rb") as f: with BytesIO(f.read()) as g: array, rate = soundfile.read(g) else: if self.multi_columns: array, rate = soundfile_read( wavs=wavpath.split(), dtype=None, always_2d=False, concat_axis=1, ) else: array, rate = soundfile.read(wavpath) cached[recodeid] = array, rate array, rate = cached[recodeid] # Keep array until the last query recodeid_counter[recodeid] -= 1 if recodeid_counter[recodeid] == 0: cached.pop(recodeid) # Convert starting time of the segment to corresponding sample number. # If end time is -1 then use the whole file starting from start time. if et != -1: array = array[int(st * rate) : int(et * rate)] else: array = array[int(st * rate) :] yield utt, (array, rate), None, None def main(): logfmt = "%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s" logging.basicConfig(level=logging.INFO, format=logfmt) logging.info(get_commandline_args()) parser = argparse.ArgumentParser( description='Create waves list from "wav.scp"', formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument("scp") parser.add_argument("outdir") parser.add_argument( "--name", default="wav", help='Specify the prefix word of output file name such as "wav.scp"', ) parser.add_argument("--segments", default=None) parser.add_argument( "--fs", type=humanfriendly_or_none, default=None, help="If the sampling rate specified, Change the sampling rate.", ) parser.add_argument("--audio-format", default="wav") parser.add_argument("--vad_based_trim", type=str, default=None) group = parser.add_mutually_exclusive_group() group.add_argument("--ref-channels", default=None, type=str2int_tuple) group.add_argument("--utt2ref-channels", default=None, type=str) group.add_argument( "--audio-subtype", default=None, type=str, help=( "Give a interpretable subtype by soundfile e.g. PCM_16. " "You can check all available types by soundfile.available_subtypes()" ), ) parser.add_argument( "--multi-columns-input", type=str2bool, default=False, help=( "Enable multi columns mode for input wav.scp. " "e.g. 'ID a.wav b.wav c.wav' is interpreted as 3ch audio data" ), ) parser.add_argument( "--multi-columns-output", type=str2bool, default=False, help=( "Enable multi columns mode for output wav.scp. " "e.g. If input audio data has 2ch, " "each line in wav.scp has the the format like " "'ID ID-CH0.wav ID-CH1.wav'" ), ) args = parser.parse_args() out_num_samples = Path(args.outdir) / "utt2num_samples" if args.ref_channels is not None: def utt2ref_channels(x) -> Tuple[int, ...]: return args.ref_channels elif args.utt2ref_channels is not None: utt2ref_channels_dict = read_2columns_text(args.utt2ref_channels) def utt2ref_channels(x, d=utt2ref_channels_dict) -> Tuple[int, ...]: chs_str = d[x] return tuple(map(int, chs_str.split())) else: utt2ref_channels = None if args.audio_format.endswith("ark") and args.multi_columns_output: raise RuntimeError("Multi columns wav.scp is not supported for ark type") Path(args.outdir).mkdir(parents=True, exist_ok=True) out_wavscp = Path(args.outdir) / f"{args.name}.scp" if args.audio_format.endswith("ark"): fark = open(Path(args.outdir) / f"data_{args.name}.ark", "wb") fscp_out = out_wavscp.open("w") writer = None else: writer = SoundScpWriter( args.outdir, out_wavscp, format=args.audio_format, multi_columns=args.multi_columns_output, subtype=args.audio_subtype, ) fscp_out = None if args.vad_based_trim is not None: vad_reader = VADScpReader(args.vad_based_trim) if args.segments is not None: extractor = SegmentsExtractor( args.scp, segments=args.segments, multi_columns=args.multi_columns_input ) generator = extractor.generator else: def generator(): with Path(args.scp).open("r") as fscp: for line in tqdm(fscp): uttid, wavpath = line.strip().split(None, 1) # B.a. Without segments and using pipe inputs if wavpath.endswith("|"): if args.multi_columns_input: raise RuntimeError( "Not supporting multi_columns wav.scp for inputs by" " pipe" ) # Streaming input e.g. cat a.wav | with kaldiio.open_like_kaldi(wavpath, "rb") as f: with BytesIO(f.read()) as g: wave, rate = soundfile.read(g) subtypes = None # B.b Without segments and not using pipe else: if args.multi_columns_input: wave, rate, subtypes = soundfile_read( wavs=wavpath.split(), dtype=None, always_2d=False, concat_axis=1, return_subtype=True, ) else: with soundfile.SoundFile(wavpath) as sf: rate = sf.samplerate subtypes = [sf.subtype] wave = sf.read() yield uttid, (wave, rate), wavpath, subtypes with out_num_samples.open("w") as fnum_samples: for uttid, (wave, rate), wavpath, subtypes in tqdm(generator()): save_asis = True if args.fs is not None and args.fs != rate: # FIXME(kamo): To use sox? wave = resampy.resample(wave, rate, args.fs, axis=0) rate = args.fs save_asis = False if args.vad_based_trim is not None: wave = vad_trim(vad_reader, uttid, wave, rate) save_asis = False if wave.ndim == 2 and utt2ref_channels is not None: wave = wave[:, utt2ref_channels(uttid)] save_asis = False if args.segments is not None: save_asis = False if args.audio_format.endswith("ark"): save_asis = False if args.multi_columns_input: if args.multi_columns_output: if wavpath is not None: for _wavpath in wavpath.split(): if Path(_wavpath).suffix != "." + args.audio_format: save_asis = False break if wave.ndim == 1: _num_ch = 1 else: _num_ch = wave.shape[1] if len(wavpath.split()) != _num_ch: save_asis = False else: if wavpath is not None and len(wavpath.split()) > 1: save_asis = False elif args.multi_columns_output: if wave.ndim == 2 and wave.shape[1] > 1: save_asis = False if wavpath is not None and wavpath.endswith("|"): save_asis = False if wavpath is not None and Path(wavpath).suffix != "." + args.audio_format: save_asis = False if not args.audio_format.endswith("ark") and subtypes is not None: if args.audio_subtype is None: subtype2 = soundfile.default_subtype(args.audio_format) else: subtype2 = args.audio_subtype for subtype in subtypes: if subtype != subtype2: save_asis = False break if save_asis: writer.fscp.write(f"{uttid} {wavpath}\n") elif args.audio_format.endswith("ark"): for name in soundfile.available_formats(): if name.lower() in args.audio_format.lower(): suf = name.lower() break else: raise RuntimeError(f"{args.audio_format} is not supported.") # NOTE(kamo): Using extended ark format style here. # This format is incompatible with Kaldi kaldiio.save_ark( fark, {uttid: (wave, rate)}, scp=fscp_out, append=True, write_function="soundfile", write_kwargs={"format": suf, "subtype": args.audio_subtype}, ) else: writer[uttid] = rate, wave fnum_samples.write(f"{uttid} {len(wave)}\n") if __name__ == "__main__": main()
[ "#!/usr/bin/env python3\nimport argparse\nimport logging\nfrom io import BytesIO\nfrom pathlib import Path\nfrom typing import Optional, Tuple\n\nimport humanfriendly\nimport kaldiio\nimport numpy as np\nimport resampy\nimport soundfile\nfrom tqdm import tqdm\nfrom typeguard import check_argument_types\n\nfrom espnet2.fileio.read_text import read_2columns_text\nfrom espnet2.fileio.sound_scp import SoundScpWriter, soundfile_read\nfrom espnet2.fileio.vad_scp import VADScpReader\nfrom espnet2.utils.types import str2bool\nfrom espnet.utils.cli_utils import get_commandline_args\n\n\ndef humanfriendly_or_none(value: str):\n if value in (\"none\", \"None\", \"NONE\"):\n return None\n return humanfriendly.parse_size(value)\n\n\ndef str2int_tuple(integers: str) -> Optional[Tuple[int, ...]]:\n \"\"\"\n\n >>> str2int_tuple('3,4,5')\n (3, 4, 5)\n\n \"\"\"\n assert check_argument_types()\n if integers.strip() in (\"none\", \"None\", \"NONE\", \"null\", \"Null\", \"NULL\"):\n return None\n return tuple(map(int, integers.strip().split(\",\")))\n\n\ndef vad_trim(vad_reader: VADScpReader, uttid: str, wav: np.array, fs: int) -> np.array:\n # Conduct trim wtih vad information\n\n assert check_argument_types()\n assert uttid in vad_reader, uttid\n\n vad_info = vad_reader[uttid]\n total_length = sum(int((time[1] - time[0]) * fs) for time in vad_info)\n new_wav = np.zeros((total_length,), dtype=wav.dtype)\n start_frame = 0\n for time in vad_info:\n # Note: we regard vad as [xxx, yyy)\n duration = int((time[1] - time[0]) * fs)\n orig_start_frame = int(time[0] * fs)\n orig_end_frame = orig_start_frame + duration\n\n end_frame = start_frame + duration\n new_wav[start_frame:end_frame] = wav[orig_start_frame:orig_end_frame]\n\n start_frame = end_frame\n\n return new_wav\n\n\nclass SegmentsExtractor:\n \"\"\"Emulating kaldi extract-segments.cc\n\n Args:\n segments (str): The file format is\n \"<segment-id> <recording-id> <start-time> <end-time>\\n\"\n \"e.g. call-861225-A-0050-0065 call-861225-A 5.0 6.5\\n\"\n \"\"\"\n\n def __init__(self, fname: str, segments: str = None, multi_columns: bool = False):\n assert check_argument_types()\n self.wav_scp = fname\n self.multi_columns = multi_columns\n self.wav_dict = {}\n with open(self.wav_scp, \"r\") as f:\n for line in f:\n recodeid, wavpath = line.strip().split(None, 1)\n if recodeid in self.wav_dict:\n raise RuntimeError(f\"{recodeid} is duplicated\")\n self.wav_dict[recodeid] = wavpath\n\n self.segments = segments\n self.segments_dict = {}\n with open(self.segments, \"r\") as f:\n for line in f:\n sps = line.rstrip().split(None)\n if len(sps) != 4:\n raise RuntimeError(\"Format is invalid: {}\".format(line))\n uttid, recodeid, st, et = sps\n self.segments_dict[uttid] = (recodeid, float(st), float(et))\n\n if recodeid not in self.wav_dict:\n raise RuntimeError(\n 'Not found \"{}\" in {}'.format(recodeid, self.wav_scp)\n )\n\n def generator(self):\n recodeid_counter = {}\n for utt, (recodeid, st, et) in self.segments_dict.items():\n recodeid_counter[recodeid] = recodeid_counter.get(recodeid, 0) + 1\n\n cached = {}\n for utt, (recodeid, st, et) in self.segments_dict.items():\n wavpath = self.wav_dict[recodeid]\n if recodeid not in cached:\n if wavpath.endswith(\"|\"):\n if self.multi_columns:\n raise RuntimeError(\n \"Not supporting multi_columns wav.scp for inputs by pipe\"\n )\n # Streaming input e.g. cat a.wav |\n with kaldiio.open_like_kaldi(wavpath, \"rb\") as f:\n with BytesIO(f.read()) as g:\n array, rate = soundfile.read(g)\n\n else:\n if self.multi_columns:\n array, rate = soundfile_read(\n wavs=wavpath.split(),\n dtype=None,\n always_2d=False,\n concat_axis=1,\n )\n else:\n array, rate = soundfile.read(wavpath)\n cached[recodeid] = array, rate\n\n array, rate = cached[recodeid]\n # Keep array until the last query\n recodeid_counter[recodeid] -= 1\n if recodeid_counter[recodeid] == 0:\n cached.pop(recodeid)\n # Convert starting time of the segment to corresponding sample number.\n # If end time is -1 then use the whole file starting from start time.\n if et != -1:\n array = array[int(st * rate) : int(et * rate)]\n else:\n array = array[int(st * rate) :]\n\n yield utt, (array, rate), None, None\n\n\ndef main():\n logfmt = \"%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s\"\n logging.basicConfig(level=logging.INFO, format=logfmt)\n logging.info(get_commandline_args())\n\n parser = argparse.ArgumentParser(\n description='Create waves list from \"wav.scp\"',\n formatter_class=argparse.ArgumentDefaultsHelpFormatter,\n )\n parser.add_argument(\"scp\")\n parser.add_argument(\"outdir\")\n parser.add_argument(\n \"--name\",\n default=\"wav\",\n help='Specify the prefix word of output file name such as \"wav.scp\"',\n )\n parser.add_argument(\"--segments\", default=None)\n parser.add_argument(\n \"--fs\",\n type=humanfriendly_or_none,\n default=None,\n help=\"If the sampling rate specified, Change the sampling rate.\",\n )\n parser.add_argument(\"--audio-format\", default=\"wav\")\n parser.add_argument(\"--vad_based_trim\", type=str, default=None)\n group = parser.add_mutually_exclusive_group()\n group.add_argument(\"--ref-channels\", default=None, type=str2int_tuple)\n group.add_argument(\"--utt2ref-channels\", default=None, type=str)\n group.add_argument(\n \"--audio-subtype\",\n default=None,\n type=str,\n help=(\n \"Give a interpretable subtype by soundfile e.g. PCM_16. \"\n \"You can check all available types by soundfile.available_subtypes()\"\n ),\n )\n parser.add_argument(\n \"--multi-columns-input\",\n type=str2bool,\n default=False,\n help=(\n \"Enable multi columns mode for input wav.scp. \"\n \"e.g. 'ID a.wav b.wav c.wav' is interpreted as 3ch audio data\"\n ),\n )\n parser.add_argument(\n \"--multi-columns-output\",\n type=str2bool,\n default=False,\n help=(\n \"Enable multi columns mode for output wav.scp. \"\n \"e.g. If input audio data has 2ch, \"\n \"each line in wav.scp has the the format like \"\n \"'ID ID-CH0.wav ID-CH1.wav'\"\n ),\n )\n args = parser.parse_args()\n\n out_num_samples = Path(args.outdir) / \"utt2num_samples\"\n\n if args.ref_channels is not None:\n\n def utt2ref_channels(x) -> Tuple[int, ...]:\n return args.ref_channels\n\n elif args.utt2ref_channels is not None:\n utt2ref_channels_dict = read_2columns_text(args.utt2ref_channels)\n\n def utt2ref_channels(x, d=utt2ref_channels_dict) -> Tuple[int, ...]:\n chs_str = d[x]\n return tuple(map(int, chs_str.split()))\n\n else:\n utt2ref_channels = None\n\n if args.audio_format.endswith(\"ark\") and args.multi_columns_output:\n raise RuntimeError(\"Multi columns wav.scp is not supported for ark type\")\n\n Path(args.outdir).mkdir(parents=True, exist_ok=True)\n out_wavscp = Path(args.outdir) / f\"{args.name}.scp\"\n\n if args.audio_format.endswith(\"ark\"):\n fark = open(Path(args.outdir) / f\"data_{args.name}.ark\", \"wb\")\n fscp_out = out_wavscp.open(\"w\")\n writer = None\n else:\n writer = SoundScpWriter(\n args.outdir,\n out_wavscp,\n format=args.audio_format,\n multi_columns=args.multi_columns_output,\n subtype=args.audio_subtype,\n )\n fscp_out = None\n\n if args.vad_based_trim is not None:\n vad_reader = VADScpReader(args.vad_based_trim)\n\n if args.segments is not None:\n extractor = SegmentsExtractor(\n args.scp, segments=args.segments, multi_columns=args.multi_columns_input\n )\n generator = extractor.generator\n\n else:\n\n def generator():\n with Path(args.scp).open(\"r\") as fscp:\n for line in tqdm(fscp):\n uttid, wavpath = line.strip().split(None, 1)\n\n # B.a. Without segments and using pipe inputs\n if wavpath.endswith(\"|\"):\n if args.multi_columns_input:\n raise RuntimeError(\n \"Not supporting multi_columns wav.scp for inputs by\"\n \" pipe\"\n )\n # Streaming input e.g. cat a.wav |\n with kaldiio.open_like_kaldi(wavpath, \"rb\") as f:\n with BytesIO(f.read()) as g:\n wave, rate = soundfile.read(g)\n subtypes = None\n\n # B.b Without segments and not using pipe\n else:\n if args.multi_columns_input:\n wave, rate, subtypes = soundfile_read(\n wavs=wavpath.split(),\n dtype=None,\n always_2d=False,\n concat_axis=1,\n return_subtype=True,\n )\n else:\n with soundfile.SoundFile(wavpath) as sf:\n rate = sf.samplerate\n subtypes = [sf.subtype]\n wave = sf.read()\n yield uttid, (wave, rate), wavpath, subtypes\n\n with out_num_samples.open(\"w\") as fnum_samples:\n for uttid, (wave, rate), wavpath, subtypes in tqdm(generator()):\n save_asis = True\n if args.fs is not None and args.fs != rate:\n # FIXME(kamo): To use sox?\n wave = resampy.resample(wave, rate, args.fs, axis=0)\n rate = args.fs\n save_asis = False\n\n if args.vad_based_trim is not None:\n wave = vad_trim(vad_reader, uttid, wave, rate)\n save_asis = False\n\n if wave.ndim == 2 and utt2ref_channels is not None:\n wave = wave[:, utt2ref_channels(uttid)]\n save_asis = False\n\n if args.segments is not None:\n save_asis = False\n\n if args.audio_format.endswith(\"ark\"):\n save_asis = False\n\n if args.multi_columns_input:\n if args.multi_columns_output:\n if wavpath is not None:\n for _wavpath in wavpath.split():\n if Path(_wavpath).suffix != \".\" + args.audio_format:\n save_asis = False\n break\n\n if wave.ndim == 1:\n _num_ch = 1\n else:\n _num_ch = wave.shape[1]\n if len(wavpath.split()) != _num_ch:\n save_asis = False\n else:\n if wavpath is not None and len(wavpath.split()) > 1:\n save_asis = False\n\n elif args.multi_columns_output:\n if wave.ndim == 2 and wave.shape[1] > 1:\n save_asis = False\n\n if wavpath is not None and wavpath.endswith(\"|\"):\n save_asis = False\n if wavpath is not None and Path(wavpath).suffix != \".\" + args.audio_format:\n save_asis = False\n\n if not args.audio_format.endswith(\"ark\") and subtypes is not None:\n if args.audio_subtype is None:\n subtype2 = soundfile.default_subtype(args.audio_format)\n else:\n subtype2 = args.audio_subtype\n for subtype in subtypes:\n if subtype != subtype2:\n save_asis = False\n break\n\n if save_asis:\n writer.fscp.write(f\"{uttid} {wavpath}\\n\")\n\n elif args.audio_format.endswith(\"ark\"):\n for name in soundfile.available_formats():\n if name.lower() in args.audio_format.lower():\n suf = name.lower()\n break\n else:\n raise RuntimeError(f\"{args.audio_format} is not supported.\")\n\n # NOTE(kamo): Using extended ark format style here.\n # This format is incompatible with Kaldi\n kaldiio.save_ark(\n fark,\n {uttid: (wave, rate)},\n scp=fscp_out,\n append=True,\n write_function=\"soundfile\",\n write_kwargs={\"format\": suf, \"subtype\": args.audio_subtype},\n )\n\n else:\n writer[uttid] = rate, wave\n fnum_samples.write(f\"{uttid} {len(wave)}\\n\")\n\n\nif __name__ == \"__main__\":\n main()\n", "import argparse\nimport logging\nfrom io import BytesIO\nfrom pathlib import Path\nfrom typing import Optional, Tuple\nimport humanfriendly\nimport kaldiio\nimport numpy as np\nimport resampy\nimport soundfile\nfrom tqdm import tqdm\nfrom typeguard import check_argument_types\nfrom espnet2.fileio.read_text import read_2columns_text\nfrom espnet2.fileio.sound_scp import SoundScpWriter, soundfile_read\nfrom espnet2.fileio.vad_scp import VADScpReader\nfrom espnet2.utils.types import str2bool\nfrom espnet.utils.cli_utils import get_commandline_args\n\n\ndef humanfriendly_or_none(value: str):\n if value in ('none', 'None', 'NONE'):\n return None\n return humanfriendly.parse_size(value)\n\n\ndef str2int_tuple(integers: str) ->Optional[Tuple[int, ...]]:\n \"\"\"\n\n >>> str2int_tuple('3,4,5')\n (3, 4, 5)\n\n \"\"\"\n assert check_argument_types()\n if integers.strip() in ('none', 'None', 'NONE', 'null', 'Null', 'NULL'):\n return None\n return tuple(map(int, integers.strip().split(',')))\n\n\ndef vad_trim(vad_reader: VADScpReader, uttid: str, wav: np.array, fs: int\n ) ->np.array:\n assert check_argument_types()\n assert uttid in vad_reader, uttid\n vad_info = vad_reader[uttid]\n total_length = sum(int((time[1] - time[0]) * fs) for time in vad_info)\n new_wav = np.zeros((total_length,), dtype=wav.dtype)\n start_frame = 0\n for time in vad_info:\n duration = int((time[1] - time[0]) * fs)\n orig_start_frame = int(time[0] * fs)\n orig_end_frame = orig_start_frame + duration\n end_frame = start_frame + duration\n new_wav[start_frame:end_frame] = wav[orig_start_frame:orig_end_frame]\n start_frame = end_frame\n return new_wav\n\n\nclass SegmentsExtractor:\n \"\"\"Emulating kaldi extract-segments.cc\n\n Args:\n segments (str): The file format is\n \"<segment-id> <recording-id> <start-time> <end-time>\n\"\n \"e.g. call-861225-A-0050-0065 call-861225-A 5.0 6.5\n\"\n \"\"\"\n\n def __init__(self, fname: str, segments: str=None, multi_columns: bool=\n False):\n assert check_argument_types()\n self.wav_scp = fname\n self.multi_columns = multi_columns\n self.wav_dict = {}\n with open(self.wav_scp, 'r') as f:\n for line in f:\n recodeid, wavpath = line.strip().split(None, 1)\n if recodeid in self.wav_dict:\n raise RuntimeError(f'{recodeid} is duplicated')\n self.wav_dict[recodeid] = wavpath\n self.segments = segments\n self.segments_dict = {}\n with open(self.segments, 'r') as f:\n for line in f:\n sps = line.rstrip().split(None)\n if len(sps) != 4:\n raise RuntimeError('Format is invalid: {}'.format(line))\n uttid, recodeid, st, et = sps\n self.segments_dict[uttid] = recodeid, float(st), float(et)\n if recodeid not in self.wav_dict:\n raise RuntimeError('Not found \"{}\" in {}'.format(\n recodeid, self.wav_scp))\n\n def generator(self):\n recodeid_counter = {}\n for utt, (recodeid, st, et) in self.segments_dict.items():\n recodeid_counter[recodeid] = recodeid_counter.get(recodeid, 0) + 1\n cached = {}\n for utt, (recodeid, st, et) in self.segments_dict.items():\n wavpath = self.wav_dict[recodeid]\n if recodeid not in cached:\n if wavpath.endswith('|'):\n if self.multi_columns:\n raise RuntimeError(\n 'Not supporting multi_columns wav.scp for inputs by pipe'\n )\n with kaldiio.open_like_kaldi(wavpath, 'rb') as f:\n with BytesIO(f.read()) as g:\n array, rate = soundfile.read(g)\n elif self.multi_columns:\n array, rate = soundfile_read(wavs=wavpath.split(),\n dtype=None, always_2d=False, concat_axis=1)\n else:\n array, rate = soundfile.read(wavpath)\n cached[recodeid] = array, rate\n array, rate = cached[recodeid]\n recodeid_counter[recodeid] -= 1\n if recodeid_counter[recodeid] == 0:\n cached.pop(recodeid)\n if et != -1:\n array = array[int(st * rate):int(et * rate)]\n else:\n array = array[int(st * rate):]\n yield utt, (array, rate), None, None\n\n\ndef main():\n logfmt = '%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s'\n logging.basicConfig(level=logging.INFO, format=logfmt)\n logging.info(get_commandline_args())\n parser = argparse.ArgumentParser(description=\n 'Create waves list from \"wav.scp\"', formatter_class=argparse.\n ArgumentDefaultsHelpFormatter)\n parser.add_argument('scp')\n parser.add_argument('outdir')\n parser.add_argument('--name', default='wav', help=\n 'Specify the prefix word of output file name such as \"wav.scp\"')\n parser.add_argument('--segments', default=None)\n parser.add_argument('--fs', type=humanfriendly_or_none, default=None,\n help='If the sampling rate specified, Change the sampling rate.')\n parser.add_argument('--audio-format', default='wav')\n parser.add_argument('--vad_based_trim', type=str, default=None)\n group = parser.add_mutually_exclusive_group()\n group.add_argument('--ref-channels', default=None, type=str2int_tuple)\n group.add_argument('--utt2ref-channels', default=None, type=str)\n group.add_argument('--audio-subtype', default=None, type=str, help=\n 'Give a interpretable subtype by soundfile e.g. PCM_16. You can check all available types by soundfile.available_subtypes()'\n )\n parser.add_argument('--multi-columns-input', type=str2bool, default=\n False, help=\n \"Enable multi columns mode for input wav.scp. e.g. 'ID a.wav b.wav c.wav' is interpreted as 3ch audio data\"\n )\n parser.add_argument('--multi-columns-output', type=str2bool, default=\n False, help=\n \"Enable multi columns mode for output wav.scp. e.g. If input audio data has 2ch, each line in wav.scp has the the format like 'ID ID-CH0.wav ID-CH1.wav'\"\n )\n args = parser.parse_args()\n out_num_samples = Path(args.outdir) / 'utt2num_samples'\n if args.ref_channels is not None:\n\n def utt2ref_channels(x) ->Tuple[int, ...]:\n return args.ref_channels\n elif args.utt2ref_channels is not None:\n utt2ref_channels_dict = read_2columns_text(args.utt2ref_channels)\n\n def utt2ref_channels(x, d=utt2ref_channels_dict) ->Tuple[int, ...]:\n chs_str = d[x]\n return tuple(map(int, chs_str.split()))\n else:\n utt2ref_channels = None\n if args.audio_format.endswith('ark') and args.multi_columns_output:\n raise RuntimeError(\n 'Multi columns wav.scp is not supported for ark type')\n Path(args.outdir).mkdir(parents=True, exist_ok=True)\n out_wavscp = Path(args.outdir) / f'{args.name}.scp'\n if args.audio_format.endswith('ark'):\n fark = open(Path(args.outdir) / f'data_{args.name}.ark', 'wb')\n fscp_out = out_wavscp.open('w')\n writer = None\n else:\n writer = SoundScpWriter(args.outdir, out_wavscp, format=args.\n audio_format, multi_columns=args.multi_columns_output, subtype=\n args.audio_subtype)\n fscp_out = None\n if args.vad_based_trim is not None:\n vad_reader = VADScpReader(args.vad_based_trim)\n if args.segments is not None:\n extractor = SegmentsExtractor(args.scp, segments=args.segments,\n multi_columns=args.multi_columns_input)\n generator = extractor.generator\n else:\n\n def generator():\n with Path(args.scp).open('r') as fscp:\n for line in tqdm(fscp):\n uttid, wavpath = line.strip().split(None, 1)\n if wavpath.endswith('|'):\n if args.multi_columns_input:\n raise RuntimeError(\n 'Not supporting multi_columns wav.scp for inputs by pipe'\n )\n with kaldiio.open_like_kaldi(wavpath, 'rb') as f:\n with BytesIO(f.read()) as g:\n wave, rate = soundfile.read(g)\n subtypes = None\n elif args.multi_columns_input:\n wave, rate, subtypes = soundfile_read(wavs=wavpath.\n split(), dtype=None, always_2d=False,\n concat_axis=1, return_subtype=True)\n else:\n with soundfile.SoundFile(wavpath) as sf:\n rate = sf.samplerate\n subtypes = [sf.subtype]\n wave = sf.read()\n yield uttid, (wave, rate), wavpath, subtypes\n with out_num_samples.open('w') as fnum_samples:\n for uttid, (wave, rate), wavpath, subtypes in tqdm(generator()):\n save_asis = True\n if args.fs is not None and args.fs != rate:\n wave = resampy.resample(wave, rate, args.fs, axis=0)\n rate = args.fs\n save_asis = False\n if args.vad_based_trim is not None:\n wave = vad_trim(vad_reader, uttid, wave, rate)\n save_asis = False\n if wave.ndim == 2 and utt2ref_channels is not None:\n wave = wave[:, utt2ref_channels(uttid)]\n save_asis = False\n if args.segments is not None:\n save_asis = False\n if args.audio_format.endswith('ark'):\n save_asis = False\n if args.multi_columns_input:\n if args.multi_columns_output:\n if wavpath is not None:\n for _wavpath in wavpath.split():\n if Path(_wavpath\n ).suffix != '.' + args.audio_format:\n save_asis = False\n break\n if wave.ndim == 1:\n _num_ch = 1\n else:\n _num_ch = wave.shape[1]\n if len(wavpath.split()) != _num_ch:\n save_asis = False\n elif wavpath is not None and len(wavpath.split()) > 1:\n save_asis = False\n elif args.multi_columns_output:\n if wave.ndim == 2 and wave.shape[1] > 1:\n save_asis = False\n if wavpath is not None and wavpath.endswith('|'):\n save_asis = False\n if wavpath is not None and Path(wavpath\n ).suffix != '.' + args.audio_format:\n save_asis = False\n if not args.audio_format.endswith('ark') and subtypes is not None:\n if args.audio_subtype is None:\n subtype2 = soundfile.default_subtype(args.audio_format)\n else:\n subtype2 = args.audio_subtype\n for subtype in subtypes:\n if subtype != subtype2:\n save_asis = False\n break\n if save_asis:\n writer.fscp.write(f'{uttid} {wavpath}\\n')\n elif args.audio_format.endswith('ark'):\n for name in soundfile.available_formats():\n if name.lower() in args.audio_format.lower():\n suf = name.lower()\n break\n else:\n raise RuntimeError(f'{args.audio_format} is not supported.'\n )\n kaldiio.save_ark(fark, {uttid: (wave, rate)}, scp=fscp_out,\n append=True, write_function='soundfile', write_kwargs={\n 'format': suf, 'subtype': args.audio_subtype})\n else:\n writer[uttid] = rate, wave\n fnum_samples.write(f'{uttid} {len(wave)}\\n')\n\n\nif __name__ == '__main__':\n main()\n", "<import token>\n\n\ndef humanfriendly_or_none(value: str):\n if value in ('none', 'None', 'NONE'):\n return None\n return humanfriendly.parse_size(value)\n\n\ndef str2int_tuple(integers: str) ->Optional[Tuple[int, ...]]:\n \"\"\"\n\n >>> str2int_tuple('3,4,5')\n (3, 4, 5)\n\n \"\"\"\n assert check_argument_types()\n if integers.strip() in ('none', 'None', 'NONE', 'null', 'Null', 'NULL'):\n return None\n return tuple(map(int, integers.strip().split(',')))\n\n\ndef vad_trim(vad_reader: VADScpReader, uttid: str, wav: np.array, fs: int\n ) ->np.array:\n assert check_argument_types()\n assert uttid in vad_reader, uttid\n vad_info = vad_reader[uttid]\n total_length = sum(int((time[1] - time[0]) * fs) for time in vad_info)\n new_wav = np.zeros((total_length,), dtype=wav.dtype)\n start_frame = 0\n for time in vad_info:\n duration = int((time[1] - time[0]) * fs)\n orig_start_frame = int(time[0] * fs)\n orig_end_frame = orig_start_frame + duration\n end_frame = start_frame + duration\n new_wav[start_frame:end_frame] = wav[orig_start_frame:orig_end_frame]\n start_frame = end_frame\n return new_wav\n\n\nclass SegmentsExtractor:\n \"\"\"Emulating kaldi extract-segments.cc\n\n Args:\n segments (str): The file format is\n \"<segment-id> <recording-id> <start-time> <end-time>\n\"\n \"e.g. call-861225-A-0050-0065 call-861225-A 5.0 6.5\n\"\n \"\"\"\n\n def __init__(self, fname: str, segments: str=None, multi_columns: bool=\n False):\n assert check_argument_types()\n self.wav_scp = fname\n self.multi_columns = multi_columns\n self.wav_dict = {}\n with open(self.wav_scp, 'r') as f:\n for line in f:\n recodeid, wavpath = line.strip().split(None, 1)\n if recodeid in self.wav_dict:\n raise RuntimeError(f'{recodeid} is duplicated')\n self.wav_dict[recodeid] = wavpath\n self.segments = segments\n self.segments_dict = {}\n with open(self.segments, 'r') as f:\n for line in f:\n sps = line.rstrip().split(None)\n if len(sps) != 4:\n raise RuntimeError('Format is invalid: {}'.format(line))\n uttid, recodeid, st, et = sps\n self.segments_dict[uttid] = recodeid, float(st), float(et)\n if recodeid not in self.wav_dict:\n raise RuntimeError('Not found \"{}\" in {}'.format(\n recodeid, self.wav_scp))\n\n def generator(self):\n recodeid_counter = {}\n for utt, (recodeid, st, et) in self.segments_dict.items():\n recodeid_counter[recodeid] = recodeid_counter.get(recodeid, 0) + 1\n cached = {}\n for utt, (recodeid, st, et) in self.segments_dict.items():\n wavpath = self.wav_dict[recodeid]\n if recodeid not in cached:\n if wavpath.endswith('|'):\n if self.multi_columns:\n raise RuntimeError(\n 'Not supporting multi_columns wav.scp for inputs by pipe'\n )\n with kaldiio.open_like_kaldi(wavpath, 'rb') as f:\n with BytesIO(f.read()) as g:\n array, rate = soundfile.read(g)\n elif self.multi_columns:\n array, rate = soundfile_read(wavs=wavpath.split(),\n dtype=None, always_2d=False, concat_axis=1)\n else:\n array, rate = soundfile.read(wavpath)\n cached[recodeid] = array, rate\n array, rate = cached[recodeid]\n recodeid_counter[recodeid] -= 1\n if recodeid_counter[recodeid] == 0:\n cached.pop(recodeid)\n if et != -1:\n array = array[int(st * rate):int(et * rate)]\n else:\n array = array[int(st * rate):]\n yield utt, (array, rate), None, None\n\n\ndef main():\n logfmt = '%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s'\n logging.basicConfig(level=logging.INFO, format=logfmt)\n logging.info(get_commandline_args())\n parser = argparse.ArgumentParser(description=\n 'Create waves list from \"wav.scp\"', formatter_class=argparse.\n ArgumentDefaultsHelpFormatter)\n parser.add_argument('scp')\n parser.add_argument('outdir')\n parser.add_argument('--name', default='wav', help=\n 'Specify the prefix word of output file name such as \"wav.scp\"')\n parser.add_argument('--segments', default=None)\n parser.add_argument('--fs', type=humanfriendly_or_none, default=None,\n help='If the sampling rate specified, Change the sampling rate.')\n parser.add_argument('--audio-format', default='wav')\n parser.add_argument('--vad_based_trim', type=str, default=None)\n group = parser.add_mutually_exclusive_group()\n group.add_argument('--ref-channels', default=None, type=str2int_tuple)\n group.add_argument('--utt2ref-channels', default=None, type=str)\n group.add_argument('--audio-subtype', default=None, type=str, help=\n 'Give a interpretable subtype by soundfile e.g. PCM_16. You can check all available types by soundfile.available_subtypes()'\n )\n parser.add_argument('--multi-columns-input', type=str2bool, default=\n False, help=\n \"Enable multi columns mode for input wav.scp. e.g. 'ID a.wav b.wav c.wav' is interpreted as 3ch audio data\"\n )\n parser.add_argument('--multi-columns-output', type=str2bool, default=\n False, help=\n \"Enable multi columns mode for output wav.scp. e.g. If input audio data has 2ch, each line in wav.scp has the the format like 'ID ID-CH0.wav ID-CH1.wav'\"\n )\n args = parser.parse_args()\n out_num_samples = Path(args.outdir) / 'utt2num_samples'\n if args.ref_channels is not None:\n\n def utt2ref_channels(x) ->Tuple[int, ...]:\n return args.ref_channels\n elif args.utt2ref_channels is not None:\n utt2ref_channels_dict = read_2columns_text(args.utt2ref_channels)\n\n def utt2ref_channels(x, d=utt2ref_channels_dict) ->Tuple[int, ...]:\n chs_str = d[x]\n return tuple(map(int, chs_str.split()))\n else:\n utt2ref_channels = None\n if args.audio_format.endswith('ark') and args.multi_columns_output:\n raise RuntimeError(\n 'Multi columns wav.scp is not supported for ark type')\n Path(args.outdir).mkdir(parents=True, exist_ok=True)\n out_wavscp = Path(args.outdir) / f'{args.name}.scp'\n if args.audio_format.endswith('ark'):\n fark = open(Path(args.outdir) / f'data_{args.name}.ark', 'wb')\n fscp_out = out_wavscp.open('w')\n writer = None\n else:\n writer = SoundScpWriter(args.outdir, out_wavscp, format=args.\n audio_format, multi_columns=args.multi_columns_output, subtype=\n args.audio_subtype)\n fscp_out = None\n if args.vad_based_trim is not None:\n vad_reader = VADScpReader(args.vad_based_trim)\n if args.segments is not None:\n extractor = SegmentsExtractor(args.scp, segments=args.segments,\n multi_columns=args.multi_columns_input)\n generator = extractor.generator\n else:\n\n def generator():\n with Path(args.scp).open('r') as fscp:\n for line in tqdm(fscp):\n uttid, wavpath = line.strip().split(None, 1)\n if wavpath.endswith('|'):\n if args.multi_columns_input:\n raise RuntimeError(\n 'Not supporting multi_columns wav.scp for inputs by pipe'\n )\n with kaldiio.open_like_kaldi(wavpath, 'rb') as f:\n with BytesIO(f.read()) as g:\n wave, rate = soundfile.read(g)\n subtypes = None\n elif args.multi_columns_input:\n wave, rate, subtypes = soundfile_read(wavs=wavpath.\n split(), dtype=None, always_2d=False,\n concat_axis=1, return_subtype=True)\n else:\n with soundfile.SoundFile(wavpath) as sf:\n rate = sf.samplerate\n subtypes = [sf.subtype]\n wave = sf.read()\n yield uttid, (wave, rate), wavpath, subtypes\n with out_num_samples.open('w') as fnum_samples:\n for uttid, (wave, rate), wavpath, subtypes in tqdm(generator()):\n save_asis = True\n if args.fs is not None and args.fs != rate:\n wave = resampy.resample(wave, rate, args.fs, axis=0)\n rate = args.fs\n save_asis = False\n if args.vad_based_trim is not None:\n wave = vad_trim(vad_reader, uttid, wave, rate)\n save_asis = False\n if wave.ndim == 2 and utt2ref_channels is not None:\n wave = wave[:, utt2ref_channels(uttid)]\n save_asis = False\n if args.segments is not None:\n save_asis = False\n if args.audio_format.endswith('ark'):\n save_asis = False\n if args.multi_columns_input:\n if args.multi_columns_output:\n if wavpath is not None:\n for _wavpath in wavpath.split():\n if Path(_wavpath\n ).suffix != '.' + args.audio_format:\n save_asis = False\n break\n if wave.ndim == 1:\n _num_ch = 1\n else:\n _num_ch = wave.shape[1]\n if len(wavpath.split()) != _num_ch:\n save_asis = False\n elif wavpath is not None and len(wavpath.split()) > 1:\n save_asis = False\n elif args.multi_columns_output:\n if wave.ndim == 2 and wave.shape[1] > 1:\n save_asis = False\n if wavpath is not None and wavpath.endswith('|'):\n save_asis = False\n if wavpath is not None and Path(wavpath\n ).suffix != '.' + args.audio_format:\n save_asis = False\n if not args.audio_format.endswith('ark') and subtypes is not None:\n if args.audio_subtype is None:\n subtype2 = soundfile.default_subtype(args.audio_format)\n else:\n subtype2 = args.audio_subtype\n for subtype in subtypes:\n if subtype != subtype2:\n save_asis = False\n break\n if save_asis:\n writer.fscp.write(f'{uttid} {wavpath}\\n')\n elif args.audio_format.endswith('ark'):\n for name in soundfile.available_formats():\n if name.lower() in args.audio_format.lower():\n suf = name.lower()\n break\n else:\n raise RuntimeError(f'{args.audio_format} is not supported.'\n )\n kaldiio.save_ark(fark, {uttid: (wave, rate)}, scp=fscp_out,\n append=True, write_function='soundfile', write_kwargs={\n 'format': suf, 'subtype': args.audio_subtype})\n else:\n writer[uttid] = rate, wave\n fnum_samples.write(f'{uttid} {len(wave)}\\n')\n\n\nif __name__ == '__main__':\n main()\n", "<import token>\n\n\ndef humanfriendly_or_none(value: str):\n if value in ('none', 'None', 'NONE'):\n return None\n return humanfriendly.parse_size(value)\n\n\ndef str2int_tuple(integers: str) ->Optional[Tuple[int, ...]]:\n \"\"\"\n\n >>> str2int_tuple('3,4,5')\n (3, 4, 5)\n\n \"\"\"\n assert check_argument_types()\n if integers.strip() in ('none', 'None', 'NONE', 'null', 'Null', 'NULL'):\n return None\n return tuple(map(int, integers.strip().split(',')))\n\n\ndef vad_trim(vad_reader: VADScpReader, uttid: str, wav: np.array, fs: int\n ) ->np.array:\n assert check_argument_types()\n assert uttid in vad_reader, uttid\n vad_info = vad_reader[uttid]\n total_length = sum(int((time[1] - time[0]) * fs) for time in vad_info)\n new_wav = np.zeros((total_length,), dtype=wav.dtype)\n start_frame = 0\n for time in vad_info:\n duration = int((time[1] - time[0]) * fs)\n orig_start_frame = int(time[0] * fs)\n orig_end_frame = orig_start_frame + duration\n end_frame = start_frame + duration\n new_wav[start_frame:end_frame] = wav[orig_start_frame:orig_end_frame]\n start_frame = end_frame\n return new_wav\n\n\nclass SegmentsExtractor:\n \"\"\"Emulating kaldi extract-segments.cc\n\n Args:\n segments (str): The file format is\n \"<segment-id> <recording-id> <start-time> <end-time>\n\"\n \"e.g. call-861225-A-0050-0065 call-861225-A 5.0 6.5\n\"\n \"\"\"\n\n def __init__(self, fname: str, segments: str=None, multi_columns: bool=\n False):\n assert check_argument_types()\n self.wav_scp = fname\n self.multi_columns = multi_columns\n self.wav_dict = {}\n with open(self.wav_scp, 'r') as f:\n for line in f:\n recodeid, wavpath = line.strip().split(None, 1)\n if recodeid in self.wav_dict:\n raise RuntimeError(f'{recodeid} is duplicated')\n self.wav_dict[recodeid] = wavpath\n self.segments = segments\n self.segments_dict = {}\n with open(self.segments, 'r') as f:\n for line in f:\n sps = line.rstrip().split(None)\n if len(sps) != 4:\n raise RuntimeError('Format is invalid: {}'.format(line))\n uttid, recodeid, st, et = sps\n self.segments_dict[uttid] = recodeid, float(st), float(et)\n if recodeid not in self.wav_dict:\n raise RuntimeError('Not found \"{}\" in {}'.format(\n recodeid, self.wav_scp))\n\n def generator(self):\n recodeid_counter = {}\n for utt, (recodeid, st, et) in self.segments_dict.items():\n recodeid_counter[recodeid] = recodeid_counter.get(recodeid, 0) + 1\n cached = {}\n for utt, (recodeid, st, et) in self.segments_dict.items():\n wavpath = self.wav_dict[recodeid]\n if recodeid not in cached:\n if wavpath.endswith('|'):\n if self.multi_columns:\n raise RuntimeError(\n 'Not supporting multi_columns wav.scp for inputs by pipe'\n )\n with kaldiio.open_like_kaldi(wavpath, 'rb') as f:\n with BytesIO(f.read()) as g:\n array, rate = soundfile.read(g)\n elif self.multi_columns:\n array, rate = soundfile_read(wavs=wavpath.split(),\n dtype=None, always_2d=False, concat_axis=1)\n else:\n array, rate = soundfile.read(wavpath)\n cached[recodeid] = array, rate\n array, rate = cached[recodeid]\n recodeid_counter[recodeid] -= 1\n if recodeid_counter[recodeid] == 0:\n cached.pop(recodeid)\n if et != -1:\n array = array[int(st * rate):int(et * rate)]\n else:\n array = array[int(st * rate):]\n yield utt, (array, rate), None, None\n\n\ndef main():\n logfmt = '%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s'\n logging.basicConfig(level=logging.INFO, format=logfmt)\n logging.info(get_commandline_args())\n parser = argparse.ArgumentParser(description=\n 'Create waves list from \"wav.scp\"', formatter_class=argparse.\n ArgumentDefaultsHelpFormatter)\n parser.add_argument('scp')\n parser.add_argument('outdir')\n parser.add_argument('--name', default='wav', help=\n 'Specify the prefix word of output file name such as \"wav.scp\"')\n parser.add_argument('--segments', default=None)\n parser.add_argument('--fs', type=humanfriendly_or_none, default=None,\n help='If the sampling rate specified, Change the sampling rate.')\n parser.add_argument('--audio-format', default='wav')\n parser.add_argument('--vad_based_trim', type=str, default=None)\n group = parser.add_mutually_exclusive_group()\n group.add_argument('--ref-channels', default=None, type=str2int_tuple)\n group.add_argument('--utt2ref-channels', default=None, type=str)\n group.add_argument('--audio-subtype', default=None, type=str, help=\n 'Give a interpretable subtype by soundfile e.g. PCM_16. You can check all available types by soundfile.available_subtypes()'\n )\n parser.add_argument('--multi-columns-input', type=str2bool, default=\n False, help=\n \"Enable multi columns mode for input wav.scp. e.g. 'ID a.wav b.wav c.wav' is interpreted as 3ch audio data\"\n )\n parser.add_argument('--multi-columns-output', type=str2bool, default=\n False, help=\n \"Enable multi columns mode for output wav.scp. e.g. If input audio data has 2ch, each line in wav.scp has the the format like 'ID ID-CH0.wav ID-CH1.wav'\"\n )\n args = parser.parse_args()\n out_num_samples = Path(args.outdir) / 'utt2num_samples'\n if args.ref_channels is not None:\n\n def utt2ref_channels(x) ->Tuple[int, ...]:\n return args.ref_channels\n elif args.utt2ref_channels is not None:\n utt2ref_channels_dict = read_2columns_text(args.utt2ref_channels)\n\n def utt2ref_channels(x, d=utt2ref_channels_dict) ->Tuple[int, ...]:\n chs_str = d[x]\n return tuple(map(int, chs_str.split()))\n else:\n utt2ref_channels = None\n if args.audio_format.endswith('ark') and args.multi_columns_output:\n raise RuntimeError(\n 'Multi columns wav.scp is not supported for ark type')\n Path(args.outdir).mkdir(parents=True, exist_ok=True)\n out_wavscp = Path(args.outdir) / f'{args.name}.scp'\n if args.audio_format.endswith('ark'):\n fark = open(Path(args.outdir) / f'data_{args.name}.ark', 'wb')\n fscp_out = out_wavscp.open('w')\n writer = None\n else:\n writer = SoundScpWriter(args.outdir, out_wavscp, format=args.\n audio_format, multi_columns=args.multi_columns_output, subtype=\n args.audio_subtype)\n fscp_out = None\n if args.vad_based_trim is not None:\n vad_reader = VADScpReader(args.vad_based_trim)\n if args.segments is not None:\n extractor = SegmentsExtractor(args.scp, segments=args.segments,\n multi_columns=args.multi_columns_input)\n generator = extractor.generator\n else:\n\n def generator():\n with Path(args.scp).open('r') as fscp:\n for line in tqdm(fscp):\n uttid, wavpath = line.strip().split(None, 1)\n if wavpath.endswith('|'):\n if args.multi_columns_input:\n raise RuntimeError(\n 'Not supporting multi_columns wav.scp for inputs by pipe'\n )\n with kaldiio.open_like_kaldi(wavpath, 'rb') as f:\n with BytesIO(f.read()) as g:\n wave, rate = soundfile.read(g)\n subtypes = None\n elif args.multi_columns_input:\n wave, rate, subtypes = soundfile_read(wavs=wavpath.\n split(), dtype=None, always_2d=False,\n concat_axis=1, return_subtype=True)\n else:\n with soundfile.SoundFile(wavpath) as sf:\n rate = sf.samplerate\n subtypes = [sf.subtype]\n wave = sf.read()\n yield uttid, (wave, rate), wavpath, subtypes\n with out_num_samples.open('w') as fnum_samples:\n for uttid, (wave, rate), wavpath, subtypes in tqdm(generator()):\n save_asis = True\n if args.fs is not None and args.fs != rate:\n wave = resampy.resample(wave, rate, args.fs, axis=0)\n rate = args.fs\n save_asis = False\n if args.vad_based_trim is not None:\n wave = vad_trim(vad_reader, uttid, wave, rate)\n save_asis = False\n if wave.ndim == 2 and utt2ref_channels is not None:\n wave = wave[:, utt2ref_channels(uttid)]\n save_asis = False\n if args.segments is not None:\n save_asis = False\n if args.audio_format.endswith('ark'):\n save_asis = False\n if args.multi_columns_input:\n if args.multi_columns_output:\n if wavpath is not None:\n for _wavpath in wavpath.split():\n if Path(_wavpath\n ).suffix != '.' + args.audio_format:\n save_asis = False\n break\n if wave.ndim == 1:\n _num_ch = 1\n else:\n _num_ch = wave.shape[1]\n if len(wavpath.split()) != _num_ch:\n save_asis = False\n elif wavpath is not None and len(wavpath.split()) > 1:\n save_asis = False\n elif args.multi_columns_output:\n if wave.ndim == 2 and wave.shape[1] > 1:\n save_asis = False\n if wavpath is not None and wavpath.endswith('|'):\n save_asis = False\n if wavpath is not None and Path(wavpath\n ).suffix != '.' + args.audio_format:\n save_asis = False\n if not args.audio_format.endswith('ark') and subtypes is not None:\n if args.audio_subtype is None:\n subtype2 = soundfile.default_subtype(args.audio_format)\n else:\n subtype2 = args.audio_subtype\n for subtype in subtypes:\n if subtype != subtype2:\n save_asis = False\n break\n if save_asis:\n writer.fscp.write(f'{uttid} {wavpath}\\n')\n elif args.audio_format.endswith('ark'):\n for name in soundfile.available_formats():\n if name.lower() in args.audio_format.lower():\n suf = name.lower()\n break\n else:\n raise RuntimeError(f'{args.audio_format} is not supported.'\n )\n kaldiio.save_ark(fark, {uttid: (wave, rate)}, scp=fscp_out,\n append=True, write_function='soundfile', write_kwargs={\n 'format': suf, 'subtype': args.audio_subtype})\n else:\n writer[uttid] = rate, wave\n fnum_samples.write(f'{uttid} {len(wave)}\\n')\n\n\n<code token>\n", "<import token>\n<function token>\n\n\ndef str2int_tuple(integers: str) ->Optional[Tuple[int, ...]]:\n \"\"\"\n\n >>> str2int_tuple('3,4,5')\n (3, 4, 5)\n\n \"\"\"\n assert check_argument_types()\n if integers.strip() in ('none', 'None', 'NONE', 'null', 'Null', 'NULL'):\n return None\n return tuple(map(int, integers.strip().split(',')))\n\n\ndef vad_trim(vad_reader: VADScpReader, uttid: str, wav: np.array, fs: int\n ) ->np.array:\n assert check_argument_types()\n assert uttid in vad_reader, uttid\n vad_info = vad_reader[uttid]\n total_length = sum(int((time[1] - time[0]) * fs) for time in vad_info)\n new_wav = np.zeros((total_length,), dtype=wav.dtype)\n start_frame = 0\n for time in vad_info:\n duration = int((time[1] - time[0]) * fs)\n orig_start_frame = int(time[0] * fs)\n orig_end_frame = orig_start_frame + duration\n end_frame = start_frame + duration\n new_wav[start_frame:end_frame] = wav[orig_start_frame:orig_end_frame]\n start_frame = end_frame\n return new_wav\n\n\nclass SegmentsExtractor:\n \"\"\"Emulating kaldi extract-segments.cc\n\n Args:\n segments (str): The file format is\n \"<segment-id> <recording-id> <start-time> <end-time>\n\"\n \"e.g. call-861225-A-0050-0065 call-861225-A 5.0 6.5\n\"\n \"\"\"\n\n def __init__(self, fname: str, segments: str=None, multi_columns: bool=\n False):\n assert check_argument_types()\n self.wav_scp = fname\n self.multi_columns = multi_columns\n self.wav_dict = {}\n with open(self.wav_scp, 'r') as f:\n for line in f:\n recodeid, wavpath = line.strip().split(None, 1)\n if recodeid in self.wav_dict:\n raise RuntimeError(f'{recodeid} is duplicated')\n self.wav_dict[recodeid] = wavpath\n self.segments = segments\n self.segments_dict = {}\n with open(self.segments, 'r') as f:\n for line in f:\n sps = line.rstrip().split(None)\n if len(sps) != 4:\n raise RuntimeError('Format is invalid: {}'.format(line))\n uttid, recodeid, st, et = sps\n self.segments_dict[uttid] = recodeid, float(st), float(et)\n if recodeid not in self.wav_dict:\n raise RuntimeError('Not found \"{}\" in {}'.format(\n recodeid, self.wav_scp))\n\n def generator(self):\n recodeid_counter = {}\n for utt, (recodeid, st, et) in self.segments_dict.items():\n recodeid_counter[recodeid] = recodeid_counter.get(recodeid, 0) + 1\n cached = {}\n for utt, (recodeid, st, et) in self.segments_dict.items():\n wavpath = self.wav_dict[recodeid]\n if recodeid not in cached:\n if wavpath.endswith('|'):\n if self.multi_columns:\n raise RuntimeError(\n 'Not supporting multi_columns wav.scp for inputs by pipe'\n )\n with kaldiio.open_like_kaldi(wavpath, 'rb') as f:\n with BytesIO(f.read()) as g:\n array, rate = soundfile.read(g)\n elif self.multi_columns:\n array, rate = soundfile_read(wavs=wavpath.split(),\n dtype=None, always_2d=False, concat_axis=1)\n else:\n array, rate = soundfile.read(wavpath)\n cached[recodeid] = array, rate\n array, rate = cached[recodeid]\n recodeid_counter[recodeid] -= 1\n if recodeid_counter[recodeid] == 0:\n cached.pop(recodeid)\n if et != -1:\n array = array[int(st * rate):int(et * rate)]\n else:\n array = array[int(st * rate):]\n yield utt, (array, rate), None, None\n\n\ndef main():\n logfmt = '%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s'\n logging.basicConfig(level=logging.INFO, format=logfmt)\n logging.info(get_commandline_args())\n parser = argparse.ArgumentParser(description=\n 'Create waves list from \"wav.scp\"', formatter_class=argparse.\n ArgumentDefaultsHelpFormatter)\n parser.add_argument('scp')\n parser.add_argument('outdir')\n parser.add_argument('--name', default='wav', help=\n 'Specify the prefix word of output file name such as \"wav.scp\"')\n parser.add_argument('--segments', default=None)\n parser.add_argument('--fs', type=humanfriendly_or_none, default=None,\n help='If the sampling rate specified, Change the sampling rate.')\n parser.add_argument('--audio-format', default='wav')\n parser.add_argument('--vad_based_trim', type=str, default=None)\n group = parser.add_mutually_exclusive_group()\n group.add_argument('--ref-channels', default=None, type=str2int_tuple)\n group.add_argument('--utt2ref-channels', default=None, type=str)\n group.add_argument('--audio-subtype', default=None, type=str, help=\n 'Give a interpretable subtype by soundfile e.g. PCM_16. You can check all available types by soundfile.available_subtypes()'\n )\n parser.add_argument('--multi-columns-input', type=str2bool, default=\n False, help=\n \"Enable multi columns mode for input wav.scp. e.g. 'ID a.wav b.wav c.wav' is interpreted as 3ch audio data\"\n )\n parser.add_argument('--multi-columns-output', type=str2bool, default=\n False, help=\n \"Enable multi columns mode for output wav.scp. e.g. If input audio data has 2ch, each line in wav.scp has the the format like 'ID ID-CH0.wav ID-CH1.wav'\"\n )\n args = parser.parse_args()\n out_num_samples = Path(args.outdir) / 'utt2num_samples'\n if args.ref_channels is not None:\n\n def utt2ref_channels(x) ->Tuple[int, ...]:\n return args.ref_channels\n elif args.utt2ref_channels is not None:\n utt2ref_channels_dict = read_2columns_text(args.utt2ref_channels)\n\n def utt2ref_channels(x, d=utt2ref_channels_dict) ->Tuple[int, ...]:\n chs_str = d[x]\n return tuple(map(int, chs_str.split()))\n else:\n utt2ref_channels = None\n if args.audio_format.endswith('ark') and args.multi_columns_output:\n raise RuntimeError(\n 'Multi columns wav.scp is not supported for ark type')\n Path(args.outdir).mkdir(parents=True, exist_ok=True)\n out_wavscp = Path(args.outdir) / f'{args.name}.scp'\n if args.audio_format.endswith('ark'):\n fark = open(Path(args.outdir) / f'data_{args.name}.ark', 'wb')\n fscp_out = out_wavscp.open('w')\n writer = None\n else:\n writer = SoundScpWriter(args.outdir, out_wavscp, format=args.\n audio_format, multi_columns=args.multi_columns_output, subtype=\n args.audio_subtype)\n fscp_out = None\n if args.vad_based_trim is not None:\n vad_reader = VADScpReader(args.vad_based_trim)\n if args.segments is not None:\n extractor = SegmentsExtractor(args.scp, segments=args.segments,\n multi_columns=args.multi_columns_input)\n generator = extractor.generator\n else:\n\n def generator():\n with Path(args.scp).open('r') as fscp:\n for line in tqdm(fscp):\n uttid, wavpath = line.strip().split(None, 1)\n if wavpath.endswith('|'):\n if args.multi_columns_input:\n raise RuntimeError(\n 'Not supporting multi_columns wav.scp for inputs by pipe'\n )\n with kaldiio.open_like_kaldi(wavpath, 'rb') as f:\n with BytesIO(f.read()) as g:\n wave, rate = soundfile.read(g)\n subtypes = None\n elif args.multi_columns_input:\n wave, rate, subtypes = soundfile_read(wavs=wavpath.\n split(), dtype=None, always_2d=False,\n concat_axis=1, return_subtype=True)\n else:\n with soundfile.SoundFile(wavpath) as sf:\n rate = sf.samplerate\n subtypes = [sf.subtype]\n wave = sf.read()\n yield uttid, (wave, rate), wavpath, subtypes\n with out_num_samples.open('w') as fnum_samples:\n for uttid, (wave, rate), wavpath, subtypes in tqdm(generator()):\n save_asis = True\n if args.fs is not None and args.fs != rate:\n wave = resampy.resample(wave, rate, args.fs, axis=0)\n rate = args.fs\n save_asis = False\n if args.vad_based_trim is not None:\n wave = vad_trim(vad_reader, uttid, wave, rate)\n save_asis = False\n if wave.ndim == 2 and utt2ref_channels is not None:\n wave = wave[:, utt2ref_channels(uttid)]\n save_asis = False\n if args.segments is not None:\n save_asis = False\n if args.audio_format.endswith('ark'):\n save_asis = False\n if args.multi_columns_input:\n if args.multi_columns_output:\n if wavpath is not None:\n for _wavpath in wavpath.split():\n if Path(_wavpath\n ).suffix != '.' + args.audio_format:\n save_asis = False\n break\n if wave.ndim == 1:\n _num_ch = 1\n else:\n _num_ch = wave.shape[1]\n if len(wavpath.split()) != _num_ch:\n save_asis = False\n elif wavpath is not None and len(wavpath.split()) > 1:\n save_asis = False\n elif args.multi_columns_output:\n if wave.ndim == 2 and wave.shape[1] > 1:\n save_asis = False\n if wavpath is not None and wavpath.endswith('|'):\n save_asis = False\n if wavpath is not None and Path(wavpath\n ).suffix != '.' + args.audio_format:\n save_asis = False\n if not args.audio_format.endswith('ark') and subtypes is not None:\n if args.audio_subtype is None:\n subtype2 = soundfile.default_subtype(args.audio_format)\n else:\n subtype2 = args.audio_subtype\n for subtype in subtypes:\n if subtype != subtype2:\n save_asis = False\n break\n if save_asis:\n writer.fscp.write(f'{uttid} {wavpath}\\n')\n elif args.audio_format.endswith('ark'):\n for name in soundfile.available_formats():\n if name.lower() in args.audio_format.lower():\n suf = name.lower()\n break\n else:\n raise RuntimeError(f'{args.audio_format} is not supported.'\n )\n kaldiio.save_ark(fark, {uttid: (wave, rate)}, scp=fscp_out,\n append=True, write_function='soundfile', write_kwargs={\n 'format': suf, 'subtype': args.audio_subtype})\n else:\n writer[uttid] = rate, wave\n fnum_samples.write(f'{uttid} {len(wave)}\\n')\n\n\n<code token>\n", "<import token>\n<function token>\n\n\ndef str2int_tuple(integers: str) ->Optional[Tuple[int, ...]]:\n \"\"\"\n\n >>> str2int_tuple('3,4,5')\n (3, 4, 5)\n\n \"\"\"\n assert check_argument_types()\n if integers.strip() in ('none', 'None', 'NONE', 'null', 'Null', 'NULL'):\n return None\n return tuple(map(int, integers.strip().split(',')))\n\n\ndef vad_trim(vad_reader: VADScpReader, uttid: str, wav: np.array, fs: int\n ) ->np.array:\n assert check_argument_types()\n assert uttid in vad_reader, uttid\n vad_info = vad_reader[uttid]\n total_length = sum(int((time[1] - time[0]) * fs) for time in vad_info)\n new_wav = np.zeros((total_length,), dtype=wav.dtype)\n start_frame = 0\n for time in vad_info:\n duration = int((time[1] - time[0]) * fs)\n orig_start_frame = int(time[0] * fs)\n orig_end_frame = orig_start_frame + duration\n end_frame = start_frame + duration\n new_wav[start_frame:end_frame] = wav[orig_start_frame:orig_end_frame]\n start_frame = end_frame\n return new_wav\n\n\nclass SegmentsExtractor:\n \"\"\"Emulating kaldi extract-segments.cc\n\n Args:\n segments (str): The file format is\n \"<segment-id> <recording-id> <start-time> <end-time>\n\"\n \"e.g. call-861225-A-0050-0065 call-861225-A 5.0 6.5\n\"\n \"\"\"\n\n def __init__(self, fname: str, segments: str=None, multi_columns: bool=\n False):\n assert check_argument_types()\n self.wav_scp = fname\n self.multi_columns = multi_columns\n self.wav_dict = {}\n with open(self.wav_scp, 'r') as f:\n for line in f:\n recodeid, wavpath = line.strip().split(None, 1)\n if recodeid in self.wav_dict:\n raise RuntimeError(f'{recodeid} is duplicated')\n self.wav_dict[recodeid] = wavpath\n self.segments = segments\n self.segments_dict = {}\n with open(self.segments, 'r') as f:\n for line in f:\n sps = line.rstrip().split(None)\n if len(sps) != 4:\n raise RuntimeError('Format is invalid: {}'.format(line))\n uttid, recodeid, st, et = sps\n self.segments_dict[uttid] = recodeid, float(st), float(et)\n if recodeid not in self.wav_dict:\n raise RuntimeError('Not found \"{}\" in {}'.format(\n recodeid, self.wav_scp))\n\n def generator(self):\n recodeid_counter = {}\n for utt, (recodeid, st, et) in self.segments_dict.items():\n recodeid_counter[recodeid] = recodeid_counter.get(recodeid, 0) + 1\n cached = {}\n for utt, (recodeid, st, et) in self.segments_dict.items():\n wavpath = self.wav_dict[recodeid]\n if recodeid not in cached:\n if wavpath.endswith('|'):\n if self.multi_columns:\n raise RuntimeError(\n 'Not supporting multi_columns wav.scp for inputs by pipe'\n )\n with kaldiio.open_like_kaldi(wavpath, 'rb') as f:\n with BytesIO(f.read()) as g:\n array, rate = soundfile.read(g)\n elif self.multi_columns:\n array, rate = soundfile_read(wavs=wavpath.split(),\n dtype=None, always_2d=False, concat_axis=1)\n else:\n array, rate = soundfile.read(wavpath)\n cached[recodeid] = array, rate\n array, rate = cached[recodeid]\n recodeid_counter[recodeid] -= 1\n if recodeid_counter[recodeid] == 0:\n cached.pop(recodeid)\n if et != -1:\n array = array[int(st * rate):int(et * rate)]\n else:\n array = array[int(st * rate):]\n yield utt, (array, rate), None, None\n\n\n<function token>\n<code token>\n", "<import token>\n<function token>\n\n\ndef str2int_tuple(integers: str) ->Optional[Tuple[int, ...]]:\n \"\"\"\n\n >>> str2int_tuple('3,4,5')\n (3, 4, 5)\n\n \"\"\"\n assert check_argument_types()\n if integers.strip() in ('none', 'None', 'NONE', 'null', 'Null', 'NULL'):\n return None\n return tuple(map(int, integers.strip().split(',')))\n\n\n<function token>\n\n\nclass SegmentsExtractor:\n \"\"\"Emulating kaldi extract-segments.cc\n\n Args:\n segments (str): The file format is\n \"<segment-id> <recording-id> <start-time> <end-time>\n\"\n \"e.g. call-861225-A-0050-0065 call-861225-A 5.0 6.5\n\"\n \"\"\"\n\n def __init__(self, fname: str, segments: str=None, multi_columns: bool=\n False):\n assert check_argument_types()\n self.wav_scp = fname\n self.multi_columns = multi_columns\n self.wav_dict = {}\n with open(self.wav_scp, 'r') as f:\n for line in f:\n recodeid, wavpath = line.strip().split(None, 1)\n if recodeid in self.wav_dict:\n raise RuntimeError(f'{recodeid} is duplicated')\n self.wav_dict[recodeid] = wavpath\n self.segments = segments\n self.segments_dict = {}\n with open(self.segments, 'r') as f:\n for line in f:\n sps = line.rstrip().split(None)\n if len(sps) != 4:\n raise RuntimeError('Format is invalid: {}'.format(line))\n uttid, recodeid, st, et = sps\n self.segments_dict[uttid] = recodeid, float(st), float(et)\n if recodeid not in self.wav_dict:\n raise RuntimeError('Not found \"{}\" in {}'.format(\n recodeid, self.wav_scp))\n\n def generator(self):\n recodeid_counter = {}\n for utt, (recodeid, st, et) in self.segments_dict.items():\n recodeid_counter[recodeid] = recodeid_counter.get(recodeid, 0) + 1\n cached = {}\n for utt, (recodeid, st, et) in self.segments_dict.items():\n wavpath = self.wav_dict[recodeid]\n if recodeid not in cached:\n if wavpath.endswith('|'):\n if self.multi_columns:\n raise RuntimeError(\n 'Not supporting multi_columns wav.scp for inputs by pipe'\n )\n with kaldiio.open_like_kaldi(wavpath, 'rb') as f:\n with BytesIO(f.read()) as g:\n array, rate = soundfile.read(g)\n elif self.multi_columns:\n array, rate = soundfile_read(wavs=wavpath.split(),\n dtype=None, always_2d=False, concat_axis=1)\n else:\n array, rate = soundfile.read(wavpath)\n cached[recodeid] = array, rate\n array, rate = cached[recodeid]\n recodeid_counter[recodeid] -= 1\n if recodeid_counter[recodeid] == 0:\n cached.pop(recodeid)\n if et != -1:\n array = array[int(st * rate):int(et * rate)]\n else:\n array = array[int(st * rate):]\n yield utt, (array, rate), None, None\n\n\n<function token>\n<code token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n\n\nclass SegmentsExtractor:\n \"\"\"Emulating kaldi extract-segments.cc\n\n Args:\n segments (str): The file format is\n \"<segment-id> <recording-id> <start-time> <end-time>\n\"\n \"e.g. call-861225-A-0050-0065 call-861225-A 5.0 6.5\n\"\n \"\"\"\n\n def __init__(self, fname: str, segments: str=None, multi_columns: bool=\n False):\n assert check_argument_types()\n self.wav_scp = fname\n self.multi_columns = multi_columns\n self.wav_dict = {}\n with open(self.wav_scp, 'r') as f:\n for line in f:\n recodeid, wavpath = line.strip().split(None, 1)\n if recodeid in self.wav_dict:\n raise RuntimeError(f'{recodeid} is duplicated')\n self.wav_dict[recodeid] = wavpath\n self.segments = segments\n self.segments_dict = {}\n with open(self.segments, 'r') as f:\n for line in f:\n sps = line.rstrip().split(None)\n if len(sps) != 4:\n raise RuntimeError('Format is invalid: {}'.format(line))\n uttid, recodeid, st, et = sps\n self.segments_dict[uttid] = recodeid, float(st), float(et)\n if recodeid not in self.wav_dict:\n raise RuntimeError('Not found \"{}\" in {}'.format(\n recodeid, self.wav_scp))\n\n def generator(self):\n recodeid_counter = {}\n for utt, (recodeid, st, et) in self.segments_dict.items():\n recodeid_counter[recodeid] = recodeid_counter.get(recodeid, 0) + 1\n cached = {}\n for utt, (recodeid, st, et) in self.segments_dict.items():\n wavpath = self.wav_dict[recodeid]\n if recodeid not in cached:\n if wavpath.endswith('|'):\n if self.multi_columns:\n raise RuntimeError(\n 'Not supporting multi_columns wav.scp for inputs by pipe'\n )\n with kaldiio.open_like_kaldi(wavpath, 'rb') as f:\n with BytesIO(f.read()) as g:\n array, rate = soundfile.read(g)\n elif self.multi_columns:\n array, rate = soundfile_read(wavs=wavpath.split(),\n dtype=None, always_2d=False, concat_axis=1)\n else:\n array, rate = soundfile.read(wavpath)\n cached[recodeid] = array, rate\n array, rate = cached[recodeid]\n recodeid_counter[recodeid] -= 1\n if recodeid_counter[recodeid] == 0:\n cached.pop(recodeid)\n if et != -1:\n array = array[int(st * rate):int(et * rate)]\n else:\n array = array[int(st * rate):]\n yield utt, (array, rate), None, None\n\n\n<function token>\n<code token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n\n\nclass SegmentsExtractor:\n <docstring token>\n\n def __init__(self, fname: str, segments: str=None, multi_columns: bool=\n False):\n assert check_argument_types()\n self.wav_scp = fname\n self.multi_columns = multi_columns\n self.wav_dict = {}\n with open(self.wav_scp, 'r') as f:\n for line in f:\n recodeid, wavpath = line.strip().split(None, 1)\n if recodeid in self.wav_dict:\n raise RuntimeError(f'{recodeid} is duplicated')\n self.wav_dict[recodeid] = wavpath\n self.segments = segments\n self.segments_dict = {}\n with open(self.segments, 'r') as f:\n for line in f:\n sps = line.rstrip().split(None)\n if len(sps) != 4:\n raise RuntimeError('Format is invalid: {}'.format(line))\n uttid, recodeid, st, et = sps\n self.segments_dict[uttid] = recodeid, float(st), float(et)\n if recodeid not in self.wav_dict:\n raise RuntimeError('Not found \"{}\" in {}'.format(\n recodeid, self.wav_scp))\n\n def generator(self):\n recodeid_counter = {}\n for utt, (recodeid, st, et) in self.segments_dict.items():\n recodeid_counter[recodeid] = recodeid_counter.get(recodeid, 0) + 1\n cached = {}\n for utt, (recodeid, st, et) in self.segments_dict.items():\n wavpath = self.wav_dict[recodeid]\n if recodeid not in cached:\n if wavpath.endswith('|'):\n if self.multi_columns:\n raise RuntimeError(\n 'Not supporting multi_columns wav.scp for inputs by pipe'\n )\n with kaldiio.open_like_kaldi(wavpath, 'rb') as f:\n with BytesIO(f.read()) as g:\n array, rate = soundfile.read(g)\n elif self.multi_columns:\n array, rate = soundfile_read(wavs=wavpath.split(),\n dtype=None, always_2d=False, concat_axis=1)\n else:\n array, rate = soundfile.read(wavpath)\n cached[recodeid] = array, rate\n array, rate = cached[recodeid]\n recodeid_counter[recodeid] -= 1\n if recodeid_counter[recodeid] == 0:\n cached.pop(recodeid)\n if et != -1:\n array = array[int(st * rate):int(et * rate)]\n else:\n array = array[int(st * rate):]\n yield utt, (array, rate), None, None\n\n\n<function token>\n<code token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n\n\nclass SegmentsExtractor:\n <docstring token>\n <function token>\n\n def generator(self):\n recodeid_counter = {}\n for utt, (recodeid, st, et) in self.segments_dict.items():\n recodeid_counter[recodeid] = recodeid_counter.get(recodeid, 0) + 1\n cached = {}\n for utt, (recodeid, st, et) in self.segments_dict.items():\n wavpath = self.wav_dict[recodeid]\n if recodeid not in cached:\n if wavpath.endswith('|'):\n if self.multi_columns:\n raise RuntimeError(\n 'Not supporting multi_columns wav.scp for inputs by pipe'\n )\n with kaldiio.open_like_kaldi(wavpath, 'rb') as f:\n with BytesIO(f.read()) as g:\n array, rate = soundfile.read(g)\n elif self.multi_columns:\n array, rate = soundfile_read(wavs=wavpath.split(),\n dtype=None, always_2d=False, concat_axis=1)\n else:\n array, rate = soundfile.read(wavpath)\n cached[recodeid] = array, rate\n array, rate = cached[recodeid]\n recodeid_counter[recodeid] -= 1\n if recodeid_counter[recodeid] == 0:\n cached.pop(recodeid)\n if et != -1:\n array = array[int(st * rate):int(et * rate)]\n else:\n array = array[int(st * rate):]\n yield utt, (array, rate), None, None\n\n\n<function token>\n<code token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n\n\nclass SegmentsExtractor:\n <docstring token>\n <function token>\n <function token>\n\n\n<function token>\n<code token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<function token>\n<code token>\n" ]
false
99,373
e51bf40beae4d5c6a9454befc29e49780be2e754
def UpdateDB(NewFile,Picname,DATABASE_URL): # Dependencies # ---------------------------------- # Imports the method used for connecting to DBs from sqlalchemy import create_engine # Imports the methods needed to abstract classes into tables from sqlalchemy.ext.declarative import declarative_base # Allow us to declare column types from sqlalchemy import Column, Integer, String, Float # Create Class # ---------------------------------- Base = declarative_base() class UploadClass(Base): __tablename__ = 'GeoTagData' __table_args__ = { 'extend_existing': True } index=Column (Integer,primary_key=True) latitude= Column (Float) longitude= Column (Float) landmark=Column(String(255)) country=Column(String(255)) state=Column(String(255)) county=Column(String(255)) city=Column(String(255)) zipcode=Column(Integer) ImageTimeStamp=Column(String(255)) FileAddress=Column(String(255)) # add the new picture data into a dataframe import ProcessPicture picAddress=NewFile # execute function into a variable df=ProcessPicture.ExtractPicData(picAddress,Picname,DATABASE_URL) # Create variables to hold new picture data info FileAddress=df['FileAddress'] ImageTimeStamp=df['ImageTimeStamp'] city=df['city'] country=df['country'] county=df['county'] landmark=df['landmark'] latitude=df['latitude'] longitude=df['longitude'] state=df['state'] zipcode=df['zipcode'] # look for the last index, so we can add the index column # Create Database Connection # ---------------------------------- #database_path = "db/Oldports.sqlite" #engine = create_engine(f"sqlite:///{database_path}") engine = create_engine(DATABASE_URL) # conn = engine.connect() data = engine.execute('SELECT * FROM "GeoTagData"') index=[] for record in data: index.append(record) # index int a variable index=len(index) # update the class with the dataframe varables pictureData=UploadClass(index=index,FileAddress=FileAddress,ImageTimeStamp=ImageTimeStamp, city=city, country=country,county=county, landmark=landmark, latitude=latitude, longitude=longitude,state=state,zipcode=zipcode) # Create a "Metadata" Layer That Abstracts our SQL Database Base.metadata.create_all(engine) # Create a Session Object to Connect to DB # ---------------------------------- from sqlalchemy.orm import Session session = Session(bind=engine) # Add Records to the Appropriate DB # ---------------------------------- session.add(pictureData) session.commit() ProcessPicture.make_thumbnail(NewFile)
[ "def UpdateDB(NewFile,Picname,DATABASE_URL):\n\n # Dependencies\n # ----------------------------------\n # Imports the method used for connecting to DBs\n from sqlalchemy import create_engine\n # Imports the methods needed to abstract classes into tables\n from sqlalchemy.ext.declarative import declarative_base\n # Allow us to declare column types\n from sqlalchemy import Column, Integer, String, Float \n\n\n # Create Class\n # ----------------------------------\n Base = declarative_base()\n class UploadClass(Base):\n __tablename__ = 'GeoTagData'\n __table_args__ = { 'extend_existing': True }\n\n index=Column (Integer,primary_key=True)\n latitude= Column (Float)\n longitude= Column (Float)\n landmark=Column(String(255))\n country=Column(String(255))\n state=Column(String(255))\n county=Column(String(255))\n city=Column(String(255))\n zipcode=Column(Integer)\n ImageTimeStamp=Column(String(255))\n FileAddress=Column(String(255))\n \n\n # add the new picture data into a dataframe\n import ProcessPicture\n picAddress=NewFile\n # execute function into a variable\n df=ProcessPicture.ExtractPicData(picAddress,Picname,DATABASE_URL)\n\n\n # Create variables to hold new picture data info\n FileAddress=df['FileAddress']\n ImageTimeStamp=df['ImageTimeStamp']\n city=df['city']\n country=df['country']\n county=df['county']\n landmark=df['landmark']\n latitude=df['latitude']\n longitude=df['longitude']\n state=df['state']\n zipcode=df['zipcode']\n\n # look for the last index, so we can add the index column\n # Create Database Connection\n # ----------------------------------\n #database_path = \"db/Oldports.sqlite\"\n #engine = create_engine(f\"sqlite:///{database_path}\")\n engine = create_engine(DATABASE_URL)\n # conn = engine.connect()\n data = engine.execute('SELECT * FROM \"GeoTagData\"')\n index=[]\n for record in data:\n index.append(record)\n # index int a variable\n index=len(index)\n\n # update the class with the dataframe varables\n pictureData=UploadClass(index=index,FileAddress=FileAddress,ImageTimeStamp=ImageTimeStamp, city=city, country=country,county=county, landmark=landmark, latitude=latitude, longitude=longitude,state=state,zipcode=zipcode) \n\n # Create a \"Metadata\" Layer That Abstracts our SQL Database\n Base.metadata.create_all(engine)\n # Create a Session Object to Connect to DB\n # ----------------------------------\n from sqlalchemy.orm import Session\n session = Session(bind=engine)\n # Add Records to the Appropriate DB\n # ----------------------------------\n session.add(pictureData)\n\n session.commit()\n\n ProcessPicture.make_thumbnail(NewFile)\n", "def UpdateDB(NewFile, Picname, DATABASE_URL):\n from sqlalchemy import create_engine\n from sqlalchemy.ext.declarative import declarative_base\n from sqlalchemy import Column, Integer, String, Float\n Base = declarative_base()\n\n\n class UploadClass(Base):\n __tablename__ = 'GeoTagData'\n __table_args__ = {'extend_existing': True}\n index = Column(Integer, primary_key=True)\n latitude = Column(Float)\n longitude = Column(Float)\n landmark = Column(String(255))\n country = Column(String(255))\n state = Column(String(255))\n county = Column(String(255))\n city = Column(String(255))\n zipcode = Column(Integer)\n ImageTimeStamp = Column(String(255))\n FileAddress = Column(String(255))\n import ProcessPicture\n picAddress = NewFile\n df = ProcessPicture.ExtractPicData(picAddress, Picname, DATABASE_URL)\n FileAddress = df['FileAddress']\n ImageTimeStamp = df['ImageTimeStamp']\n city = df['city']\n country = df['country']\n county = df['county']\n landmark = df['landmark']\n latitude = df['latitude']\n longitude = df['longitude']\n state = df['state']\n zipcode = df['zipcode']\n engine = create_engine(DATABASE_URL)\n data = engine.execute('SELECT * FROM \"GeoTagData\"')\n index = []\n for record in data:\n index.append(record)\n index = len(index)\n pictureData = UploadClass(index=index, FileAddress=FileAddress,\n ImageTimeStamp=ImageTimeStamp, city=city, country=country, county=\n county, landmark=landmark, latitude=latitude, longitude=longitude,\n state=state, zipcode=zipcode)\n Base.metadata.create_all(engine)\n from sqlalchemy.orm import Session\n session = Session(bind=engine)\n session.add(pictureData)\n session.commit()\n ProcessPicture.make_thumbnail(NewFile)\n", "<function token>\n" ]
false
99,374
7d0b371e68b6362ccf1ed24b4edb096a76f1054c
# coding: utf-8 # python3.6 '''PatchMaker パッチファイルを作成するツール。 型注釈を使っているからpython3.6未満では動かない気がする。 ''' targetpaths = ''' project/html/html1.html project/html/html2.html ''' import os import sys from pprint import pprint import datetime import shutil PATCHNAME = datetime.datetime.today().strftime('%Y%m%d_%H%M%S') + '_patch' class PatchMaker: def __init__(self): pass def cd_(self): '''カレントディレクトリを移す。''' if hasattr(sys, 'frozen'): os.chdir(os.path.dirname(sys.executable)) else: os.chdir(os.path.dirname(os.path.abspath(__file__))) def run(self, targetpaths): '''トップレベルメソッド。''' # リストで渡しても文字列で渡してもいいようにしました。 targetpaths = targetpaths if isinstance(targetpaths, list) else self.make_pathlist(targetpaths) absentpaths = self.get_absent_paths(targetpaths) donelist = self.create_patch(list(set(targetpaths)-set(absentpaths))) self.output_result(donelist, absentpaths) def make_pathlist(self, targetpaths: str) -> list: '''冒頭でインプットした文字列を配列にする。''' pathlist = [] for t in targetpaths.strip().split('\n'): if t: pathlist.append(t) return pathlist def get_absent_paths(self, pathlist: list) -> list: '''インプットされたパスのうち、存在しないものを返します。''' return [path for path in pathlist if not os.path.exists(path)] def create_patch(self, pathlist: list) -> list: '''目的であるパッチの作成。''' os.mkdir(PATCHNAME) donelist = [] for path in pathlist: dest_dir = f'{PATCHNAME}/{os.path.dirname(path)}' dest_file = f'{PATCHNAME}/{path}' if not os.path.exists(dest_dir): os.makedirs(dest_dir) donelist.append( shutil.copytree(path, dest_file) if os.path.isdir(path) else shutil.copy(path, dest_file)) return donelist def output_result(self, donelist, absentpaths): '''「終わったよー」の出力。''' pprint(absentpaths) print(f'<INFO> {len(absentpaths)} files above were not found and were ignored.') print(f'<INFO> Succeeded! {len(donelist)} patch files were created. They are not shown on console.') if __name__ == '__main__': pm = PatchMaker() pm.cd_() pm.run(targetpaths)
[ "# coding: utf-8\n# python3.6\n\n'''PatchMaker\n\nパッチファイルを作成するツール。\n型注釈を使っているからpython3.6未満では動かない気がする。\n'''\n\ntargetpaths = '''\n\nproject/html/html1.html\nproject/html/html2.html\n\n'''\n\nimport os\nimport sys\nfrom pprint import pprint\nimport datetime\nimport shutil\n\n\nPATCHNAME = datetime.datetime.today().strftime('%Y%m%d_%H%M%S') + '_patch'\n\n\nclass PatchMaker:\n def __init__(self):\n pass\n\n def cd_(self):\n '''カレントディレクトリを移す。'''\n if hasattr(sys, 'frozen'):\n os.chdir(os.path.dirname(sys.executable))\n else:\n os.chdir(os.path.dirname(os.path.abspath(__file__)))\n\n def run(self, targetpaths):\n '''トップレベルメソッド。'''\n # リストで渡しても文字列で渡してもいいようにしました。\n targetpaths = targetpaths if isinstance(targetpaths, list) else self.make_pathlist(targetpaths)\n absentpaths = self.get_absent_paths(targetpaths)\n donelist = self.create_patch(list(set(targetpaths)-set(absentpaths)))\n self.output_result(donelist, absentpaths)\n\n def make_pathlist(self, targetpaths: str) -> list:\n '''冒頭でインプットした文字列を配列にする。'''\n pathlist = []\n for t in targetpaths.strip().split('\\n'):\n if t:\n pathlist.append(t)\n return pathlist\n\n def get_absent_paths(self, pathlist: list) -> list:\n '''インプットされたパスのうち、存在しないものを返します。'''\n return [path for path in pathlist if not os.path.exists(path)]\n\n def create_patch(self, pathlist: list) -> list:\n '''目的であるパッチの作成。'''\n os.mkdir(PATCHNAME)\n donelist = []\n for path in pathlist:\n dest_dir = f'{PATCHNAME}/{os.path.dirname(path)}'\n dest_file = f'{PATCHNAME}/{path}'\n if not os.path.exists(dest_dir):\n os.makedirs(dest_dir)\n donelist.append(\n shutil.copytree(path, dest_file) \n if os.path.isdir(path)\n else shutil.copy(path, dest_file))\n return donelist\n\n def output_result(self, donelist, absentpaths):\n '''「終わったよー」の出力。'''\n pprint(absentpaths)\n print(f'<INFO> {len(absentpaths)} files above were not found and were ignored.')\n print(f'<INFO> Succeeded! {len(donelist)} patch files were created. They are not shown on console.')\n\n\nif __name__ == '__main__':\n pm = PatchMaker()\n pm.cd_()\n pm.run(targetpaths)\n", "<docstring token>\ntargetpaths = \"\"\"\n\nproject/html/html1.html\nproject/html/html2.html\n\n\"\"\"\nimport os\nimport sys\nfrom pprint import pprint\nimport datetime\nimport shutil\nPATCHNAME = datetime.datetime.today().strftime('%Y%m%d_%H%M%S') + '_patch'\n\n\nclass PatchMaker:\n\n def __init__(self):\n pass\n\n def cd_(self):\n \"\"\"カレントディレクトリを移す。\"\"\"\n if hasattr(sys, 'frozen'):\n os.chdir(os.path.dirname(sys.executable))\n else:\n os.chdir(os.path.dirname(os.path.abspath(__file__)))\n\n def run(self, targetpaths):\n \"\"\"トップレベルメソッド。\"\"\"\n targetpaths = targetpaths if isinstance(targetpaths, list\n ) else self.make_pathlist(targetpaths)\n absentpaths = self.get_absent_paths(targetpaths)\n donelist = self.create_patch(list(set(targetpaths) - set(absentpaths)))\n self.output_result(donelist, absentpaths)\n\n def make_pathlist(self, targetpaths: str) ->list:\n \"\"\"冒頭でインプットした文字列を配列にする。\"\"\"\n pathlist = []\n for t in targetpaths.strip().split('\\n'):\n if t:\n pathlist.append(t)\n return pathlist\n\n def get_absent_paths(self, pathlist: list) ->list:\n \"\"\"インプットされたパスのうち、存在しないものを返します。\"\"\"\n return [path for path in pathlist if not os.path.exists(path)]\n\n def create_patch(self, pathlist: list) ->list:\n \"\"\"目的であるパッチの作成。\"\"\"\n os.mkdir(PATCHNAME)\n donelist = []\n for path in pathlist:\n dest_dir = f'{PATCHNAME}/{os.path.dirname(path)}'\n dest_file = f'{PATCHNAME}/{path}'\n if not os.path.exists(dest_dir):\n os.makedirs(dest_dir)\n donelist.append(shutil.copytree(path, dest_file) if os.path.\n isdir(path) else shutil.copy(path, dest_file))\n return donelist\n\n def output_result(self, donelist, absentpaths):\n \"\"\"「終わったよー」の出力。\"\"\"\n pprint(absentpaths)\n print(\n f'<INFO> {len(absentpaths)} files above were not found and were ignored.'\n )\n print(\n f'<INFO> Succeeded! {len(donelist)} patch files were created. They are not shown on console.'\n )\n\n\nif __name__ == '__main__':\n pm = PatchMaker()\n pm.cd_()\n pm.run(targetpaths)\n", "<docstring token>\ntargetpaths = \"\"\"\n\nproject/html/html1.html\nproject/html/html2.html\n\n\"\"\"\n<import token>\nPATCHNAME = datetime.datetime.today().strftime('%Y%m%d_%H%M%S') + '_patch'\n\n\nclass PatchMaker:\n\n def __init__(self):\n pass\n\n def cd_(self):\n \"\"\"カレントディレクトリを移す。\"\"\"\n if hasattr(sys, 'frozen'):\n os.chdir(os.path.dirname(sys.executable))\n else:\n os.chdir(os.path.dirname(os.path.abspath(__file__)))\n\n def run(self, targetpaths):\n \"\"\"トップレベルメソッド。\"\"\"\n targetpaths = targetpaths if isinstance(targetpaths, list\n ) else self.make_pathlist(targetpaths)\n absentpaths = self.get_absent_paths(targetpaths)\n donelist = self.create_patch(list(set(targetpaths) - set(absentpaths)))\n self.output_result(donelist, absentpaths)\n\n def make_pathlist(self, targetpaths: str) ->list:\n \"\"\"冒頭でインプットした文字列を配列にする。\"\"\"\n pathlist = []\n for t in targetpaths.strip().split('\\n'):\n if t:\n pathlist.append(t)\n return pathlist\n\n def get_absent_paths(self, pathlist: list) ->list:\n \"\"\"インプットされたパスのうち、存在しないものを返します。\"\"\"\n return [path for path in pathlist if not os.path.exists(path)]\n\n def create_patch(self, pathlist: list) ->list:\n \"\"\"目的であるパッチの作成。\"\"\"\n os.mkdir(PATCHNAME)\n donelist = []\n for path in pathlist:\n dest_dir = f'{PATCHNAME}/{os.path.dirname(path)}'\n dest_file = f'{PATCHNAME}/{path}'\n if not os.path.exists(dest_dir):\n os.makedirs(dest_dir)\n donelist.append(shutil.copytree(path, dest_file) if os.path.\n isdir(path) else shutil.copy(path, dest_file))\n return donelist\n\n def output_result(self, donelist, absentpaths):\n \"\"\"「終わったよー」の出力。\"\"\"\n pprint(absentpaths)\n print(\n f'<INFO> {len(absentpaths)} files above were not found and were ignored.'\n )\n print(\n f'<INFO> Succeeded! {len(donelist)} patch files were created. They are not shown on console.'\n )\n\n\nif __name__ == '__main__':\n pm = PatchMaker()\n pm.cd_()\n pm.run(targetpaths)\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n\n\nclass PatchMaker:\n\n def __init__(self):\n pass\n\n def cd_(self):\n \"\"\"カレントディレクトリを移す。\"\"\"\n if hasattr(sys, 'frozen'):\n os.chdir(os.path.dirname(sys.executable))\n else:\n os.chdir(os.path.dirname(os.path.abspath(__file__)))\n\n def run(self, targetpaths):\n \"\"\"トップレベルメソッド。\"\"\"\n targetpaths = targetpaths if isinstance(targetpaths, list\n ) else self.make_pathlist(targetpaths)\n absentpaths = self.get_absent_paths(targetpaths)\n donelist = self.create_patch(list(set(targetpaths) - set(absentpaths)))\n self.output_result(donelist, absentpaths)\n\n def make_pathlist(self, targetpaths: str) ->list:\n \"\"\"冒頭でインプットした文字列を配列にする。\"\"\"\n pathlist = []\n for t in targetpaths.strip().split('\\n'):\n if t:\n pathlist.append(t)\n return pathlist\n\n def get_absent_paths(self, pathlist: list) ->list:\n \"\"\"インプットされたパスのうち、存在しないものを返します。\"\"\"\n return [path for path in pathlist if not os.path.exists(path)]\n\n def create_patch(self, pathlist: list) ->list:\n \"\"\"目的であるパッチの作成。\"\"\"\n os.mkdir(PATCHNAME)\n donelist = []\n for path in pathlist:\n dest_dir = f'{PATCHNAME}/{os.path.dirname(path)}'\n dest_file = f'{PATCHNAME}/{path}'\n if not os.path.exists(dest_dir):\n os.makedirs(dest_dir)\n donelist.append(shutil.copytree(path, dest_file) if os.path.\n isdir(path) else shutil.copy(path, dest_file))\n return donelist\n\n def output_result(self, donelist, absentpaths):\n \"\"\"「終わったよー」の出力。\"\"\"\n pprint(absentpaths)\n print(\n f'<INFO> {len(absentpaths)} files above were not found and were ignored.'\n )\n print(\n f'<INFO> Succeeded! {len(donelist)} patch files were created. They are not shown on console.'\n )\n\n\nif __name__ == '__main__':\n pm = PatchMaker()\n pm.cd_()\n pm.run(targetpaths)\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n\n\nclass PatchMaker:\n\n def __init__(self):\n pass\n\n def cd_(self):\n \"\"\"カレントディレクトリを移す。\"\"\"\n if hasattr(sys, 'frozen'):\n os.chdir(os.path.dirname(sys.executable))\n else:\n os.chdir(os.path.dirname(os.path.abspath(__file__)))\n\n def run(self, targetpaths):\n \"\"\"トップレベルメソッド。\"\"\"\n targetpaths = targetpaths if isinstance(targetpaths, list\n ) else self.make_pathlist(targetpaths)\n absentpaths = self.get_absent_paths(targetpaths)\n donelist = self.create_patch(list(set(targetpaths) - set(absentpaths)))\n self.output_result(donelist, absentpaths)\n\n def make_pathlist(self, targetpaths: str) ->list:\n \"\"\"冒頭でインプットした文字列を配列にする。\"\"\"\n pathlist = []\n for t in targetpaths.strip().split('\\n'):\n if t:\n pathlist.append(t)\n return pathlist\n\n def get_absent_paths(self, pathlist: list) ->list:\n \"\"\"インプットされたパスのうち、存在しないものを返します。\"\"\"\n return [path for path in pathlist if not os.path.exists(path)]\n\n def create_patch(self, pathlist: list) ->list:\n \"\"\"目的であるパッチの作成。\"\"\"\n os.mkdir(PATCHNAME)\n donelist = []\n for path in pathlist:\n dest_dir = f'{PATCHNAME}/{os.path.dirname(path)}'\n dest_file = f'{PATCHNAME}/{path}'\n if not os.path.exists(dest_dir):\n os.makedirs(dest_dir)\n donelist.append(shutil.copytree(path, dest_file) if os.path.\n isdir(path) else shutil.copy(path, dest_file))\n return donelist\n\n def output_result(self, donelist, absentpaths):\n \"\"\"「終わったよー」の出力。\"\"\"\n pprint(absentpaths)\n print(\n f'<INFO> {len(absentpaths)} files above were not found and were ignored.'\n )\n print(\n f'<INFO> Succeeded! {len(donelist)} patch files were created. They are not shown on console.'\n )\n\n\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n\n\nclass PatchMaker:\n\n def __init__(self):\n pass\n\n def cd_(self):\n \"\"\"カレントディレクトリを移す。\"\"\"\n if hasattr(sys, 'frozen'):\n os.chdir(os.path.dirname(sys.executable))\n else:\n os.chdir(os.path.dirname(os.path.abspath(__file__)))\n\n def run(self, targetpaths):\n \"\"\"トップレベルメソッド。\"\"\"\n targetpaths = targetpaths if isinstance(targetpaths, list\n ) else self.make_pathlist(targetpaths)\n absentpaths = self.get_absent_paths(targetpaths)\n donelist = self.create_patch(list(set(targetpaths) - set(absentpaths)))\n self.output_result(donelist, absentpaths)\n\n def make_pathlist(self, targetpaths: str) ->list:\n \"\"\"冒頭でインプットした文字列を配列にする。\"\"\"\n pathlist = []\n for t in targetpaths.strip().split('\\n'):\n if t:\n pathlist.append(t)\n return pathlist\n <function token>\n\n def create_patch(self, pathlist: list) ->list:\n \"\"\"目的であるパッチの作成。\"\"\"\n os.mkdir(PATCHNAME)\n donelist = []\n for path in pathlist:\n dest_dir = f'{PATCHNAME}/{os.path.dirname(path)}'\n dest_file = f'{PATCHNAME}/{path}'\n if not os.path.exists(dest_dir):\n os.makedirs(dest_dir)\n donelist.append(shutil.copytree(path, dest_file) if os.path.\n isdir(path) else shutil.copy(path, dest_file))\n return donelist\n\n def output_result(self, donelist, absentpaths):\n \"\"\"「終わったよー」の出力。\"\"\"\n pprint(absentpaths)\n print(\n f'<INFO> {len(absentpaths)} files above were not found and were ignored.'\n )\n print(\n f'<INFO> Succeeded! {len(donelist)} patch files were created. They are not shown on console.'\n )\n\n\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n\n\nclass PatchMaker:\n\n def __init__(self):\n pass\n <function token>\n\n def run(self, targetpaths):\n \"\"\"トップレベルメソッド。\"\"\"\n targetpaths = targetpaths if isinstance(targetpaths, list\n ) else self.make_pathlist(targetpaths)\n absentpaths = self.get_absent_paths(targetpaths)\n donelist = self.create_patch(list(set(targetpaths) - set(absentpaths)))\n self.output_result(donelist, absentpaths)\n\n def make_pathlist(self, targetpaths: str) ->list:\n \"\"\"冒頭でインプットした文字列を配列にする。\"\"\"\n pathlist = []\n for t in targetpaths.strip().split('\\n'):\n if t:\n pathlist.append(t)\n return pathlist\n <function token>\n\n def create_patch(self, pathlist: list) ->list:\n \"\"\"目的であるパッチの作成。\"\"\"\n os.mkdir(PATCHNAME)\n donelist = []\n for path in pathlist:\n dest_dir = f'{PATCHNAME}/{os.path.dirname(path)}'\n dest_file = f'{PATCHNAME}/{path}'\n if not os.path.exists(dest_dir):\n os.makedirs(dest_dir)\n donelist.append(shutil.copytree(path, dest_file) if os.path.\n isdir(path) else shutil.copy(path, dest_file))\n return donelist\n\n def output_result(self, donelist, absentpaths):\n \"\"\"「終わったよー」の出力。\"\"\"\n pprint(absentpaths)\n print(\n f'<INFO> {len(absentpaths)} files above were not found and were ignored.'\n )\n print(\n f'<INFO> Succeeded! {len(donelist)} patch files were created. They are not shown on console.'\n )\n\n\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n\n\nclass PatchMaker:\n\n def __init__(self):\n pass\n <function token>\n\n def run(self, targetpaths):\n \"\"\"トップレベルメソッド。\"\"\"\n targetpaths = targetpaths if isinstance(targetpaths, list\n ) else self.make_pathlist(targetpaths)\n absentpaths = self.get_absent_paths(targetpaths)\n donelist = self.create_patch(list(set(targetpaths) - set(absentpaths)))\n self.output_result(donelist, absentpaths)\n\n def make_pathlist(self, targetpaths: str) ->list:\n \"\"\"冒頭でインプットした文字列を配列にする。\"\"\"\n pathlist = []\n for t in targetpaths.strip().split('\\n'):\n if t:\n pathlist.append(t)\n return pathlist\n <function token>\n <function token>\n\n def output_result(self, donelist, absentpaths):\n \"\"\"「終わったよー」の出力。\"\"\"\n pprint(absentpaths)\n print(\n f'<INFO> {len(absentpaths)} files above were not found and were ignored.'\n )\n print(\n f'<INFO> Succeeded! {len(donelist)} patch files were created. They are not shown on console.'\n )\n\n\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n\n\nclass PatchMaker:\n <function token>\n <function token>\n\n def run(self, targetpaths):\n \"\"\"トップレベルメソッド。\"\"\"\n targetpaths = targetpaths if isinstance(targetpaths, list\n ) else self.make_pathlist(targetpaths)\n absentpaths = self.get_absent_paths(targetpaths)\n donelist = self.create_patch(list(set(targetpaths) - set(absentpaths)))\n self.output_result(donelist, absentpaths)\n\n def make_pathlist(self, targetpaths: str) ->list:\n \"\"\"冒頭でインプットした文字列を配列にする。\"\"\"\n pathlist = []\n for t in targetpaths.strip().split('\\n'):\n if t:\n pathlist.append(t)\n return pathlist\n <function token>\n <function token>\n\n def output_result(self, donelist, absentpaths):\n \"\"\"「終わったよー」の出力。\"\"\"\n pprint(absentpaths)\n print(\n f'<INFO> {len(absentpaths)} files above were not found and were ignored.'\n )\n print(\n f'<INFO> Succeeded! {len(donelist)} patch files were created. They are not shown on console.'\n )\n\n\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n\n\nclass PatchMaker:\n <function token>\n <function token>\n\n def run(self, targetpaths):\n \"\"\"トップレベルメソッド。\"\"\"\n targetpaths = targetpaths if isinstance(targetpaths, list\n ) else self.make_pathlist(targetpaths)\n absentpaths = self.get_absent_paths(targetpaths)\n donelist = self.create_patch(list(set(targetpaths) - set(absentpaths)))\n self.output_result(donelist, absentpaths)\n\n def make_pathlist(self, targetpaths: str) ->list:\n \"\"\"冒頭でインプットした文字列を配列にする。\"\"\"\n pathlist = []\n for t in targetpaths.strip().split('\\n'):\n if t:\n pathlist.append(t)\n return pathlist\n <function token>\n <function token>\n <function token>\n\n\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n\n\nclass PatchMaker:\n <function token>\n <function token>\n\n def run(self, targetpaths):\n \"\"\"トップレベルメソッド。\"\"\"\n targetpaths = targetpaths if isinstance(targetpaths, list\n ) else self.make_pathlist(targetpaths)\n absentpaths = self.get_absent_paths(targetpaths)\n donelist = self.create_patch(list(set(targetpaths) - set(absentpaths)))\n self.output_result(donelist, absentpaths)\n <function token>\n <function token>\n <function token>\n <function token>\n\n\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n\n\nclass PatchMaker:\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<class token>\n<code token>\n" ]
false
99,375
f39c2b02f638b9024bb4db77bd36d0743714c4f1
# -*- coding: utf-8 -*- """ Created on Sat Jun 20 16:10:16 2020 @author: 月光下的云海 """ from DLL.CreateModel import CreateModel import os '''===================== WriteToSummary把训练信息写入txt ======================= FUNCTION: WriteToSummary FEATURE: WriteToSummary把训练信息写入txt INPUTS:model,min_index,min_loss model-----------模型名称 min_index-------最小loss的id min_loss--------最小的loss值 OUTPUT:无 =============================================================================''' def WriteToSummary(model,min_index,min_loss,x_test_ph_name,test_output_name): line = model+':'+str(min_index)+','+str(min_loss)+'\n' if( not os.path.exists(model+'_Summary.txt')): Summary = open(model+'_Summary.txt','w') Summary.close() Summary = open(model+'_Summary.txt','r+') summary_content = '' try: for info in Summary: name_loc = info.index(model) name_loc = info.index(':') name = info[0:name_loc] if(model == name): info = info.replace(info[name_loc+1:],str(min_index)+','+str(min_loss)) info = info+';Input:'+x_test_ph_name+',Output:'+test_output_name+'\n' summary_content += info else: summary_content += info Summary.close() Summary = open(model+'_Summary.txt','w+') Summary.write(summary_content) Summary.close() except ValueError: Summary.close() Summary = open(model+'_Summary.txt','a+') Summary.write(line) Summary.close() if __name__ == '__main__': model = input("Which model do u wanna choose :") scale = int(input("And the magnification is :")) source_dir = os.path.abspath(os.path.dirname(os.getcwd()))+'\\' net_model = CreateModel(model = model,lr = 1e-3,batch_size = 128) x_test,y_test,x_train,y_train,train_size,test_size = net_model.prepareSparseData( source_dir+'Saprse_Train_Data\\',0.2) print('\n\nSparseModel ( ' + model +' x '+str(scale)+ ' ) Trainning ... ...') min_index,min_loss,sp_train_li,sp_test_li,x_test_ph_name1,test_output_name1 = net_model.trainNet(x_train, y_train, x_test, y_test, train_size, test_size, Epoch = int(10e3), iter_view = 500, saved_path = source_dir+model+'_SparseSR_x'+str(scale)) WriteToSummary(model,min_index,min_loss,x_test_ph_name1,test_output_name1) train_img,label_img,test_img,test_label_img = net_model.prepareImageData( source_dir1 = source_dir+'\\xTrainData\\',source_dir2 = source_dir+'\\yTrainData\\',ratio = 0.2,scale = scale) net_model = CreateModel(model = model,lr = 1e-3,batch_size = 128) print('\n\nSRModel (' + model +' x '+str(scale)+ ') Trainning ... ...') min_index,min_loss,sr_train_li,sr_test_li,x_test_ph_name2,test_output_name2 = net_model.trainNet(train_img, label_img, test_img, test_label_img, train_size = train_img.shape[0], test_size = test_img.shape[0], Epoch = int(5e3), iter_view = 500, saved_path = source_dir+model+'x'+str(scale)) import matplotlib.pyplot as plt plt.plot(sp_test_li,'r');plt.plot(sr_test_li,'b'); plt.xlabel('Epoch:100') plt.ylabel('Loss:0.01') plt.title('Loss Curve')
[ "# -*- coding: utf-8 -*-\r\n\"\"\"\r\nCreated on Sat Jun 20 16:10:16 2020\r\n\r\n@author: 月光下的云海\r\n\"\"\"\r\n\r\nfrom DLL.CreateModel import CreateModel\r\nimport os\r\n'''===================== WriteToSummary把训练信息写入txt =======================\r\nFUNCTION: WriteToSummary\r\nFEATURE: WriteToSummary把训练信息写入txt\r\nINPUTS:model,min_index,min_loss\r\n model-----------模型名称\r\n min_index-------最小loss的id\r\n min_loss--------最小的loss值\r\nOUTPUT:无\r\n============================================================================='''\r\ndef WriteToSummary(model,min_index,min_loss,x_test_ph_name,test_output_name):\r\n line = model+':'+str(min_index)+','+str(min_loss)+'\\n'\r\n if( not os.path.exists(model+'_Summary.txt')):\r\n Summary = open(model+'_Summary.txt','w')\r\n Summary.close()\r\n Summary = open(model+'_Summary.txt','r+')\r\n summary_content = ''\r\n try: \r\n for info in Summary:\r\n name_loc = info.index(model)\r\n name_loc = info.index(':')\r\n name = info[0:name_loc]\r\n if(model == name):\r\n info = info.replace(info[name_loc+1:],str(min_index)+','+str(min_loss))\r\n info = info+';Input:'+x_test_ph_name+',Output:'+test_output_name+'\\n'\r\n summary_content += info\r\n else:\r\n summary_content += info\r\n Summary.close()\r\n Summary = open(model+'_Summary.txt','w+')\r\n Summary.write(summary_content)\r\n Summary.close()\r\n except ValueError:\r\n Summary.close()\r\n Summary = open(model+'_Summary.txt','a+')\r\n Summary.write(line)\r\n Summary.close()\r\n\r\n\r\nif __name__ == '__main__':\r\n\r\n model = input(\"Which model do u wanna choose :\")\r\n scale = int(input(\"And the magnification is :\"))\r\n source_dir = os.path.abspath(os.path.dirname(os.getcwd()))+'\\\\'\r\n net_model = CreateModel(model = model,lr = 1e-3,batch_size = 128)\r\n x_test,y_test,x_train,y_train,train_size,test_size = net_model.prepareSparseData(\r\n source_dir+'Saprse_Train_Data\\\\',0.2)\r\n print('\\n\\nSparseModel ( ' + model +' x '+str(scale)+ ' ) Trainning ... ...')\r\n \r\n min_index,min_loss,sp_train_li,sp_test_li,x_test_ph_name1,test_output_name1 = net_model.trainNet(x_train,\r\n y_train,\r\n x_test,\r\n y_test,\r\n train_size,\r\n test_size,\r\n Epoch = int(10e3),\r\n iter_view = 500,\r\n saved_path = source_dir+model+'_SparseSR_x'+str(scale))\r\n WriteToSummary(model,min_index,min_loss,x_test_ph_name1,test_output_name1)\r\n \r\n \r\n train_img,label_img,test_img,test_label_img = net_model.prepareImageData(\r\n source_dir1 = source_dir+'\\\\xTrainData\\\\',source_dir2 = source_dir+'\\\\yTrainData\\\\',ratio = 0.2,scale = scale)\r\n net_model = CreateModel(model = model,lr = 1e-3,batch_size = 128)\r\n print('\\n\\nSRModel (' + model +' x '+str(scale)+ ') Trainning ... ...')\r\n min_index,min_loss,sr_train_li,sr_test_li,x_test_ph_name2,test_output_name2 = net_model.trainNet(train_img,\r\n label_img,\r\n test_img,\r\n test_label_img,\r\n train_size = train_img.shape[0],\r\n test_size = test_img.shape[0],\r\n Epoch = int(5e3),\r\n iter_view = 500,\r\n saved_path = source_dir+model+'x'+str(scale))\r\n \r\n import matplotlib.pyplot as plt\r\n plt.plot(sp_test_li,'r');plt.plot(sr_test_li,'b');\r\n plt.xlabel('Epoch:100')\r\n plt.ylabel('Loss:0.01')\r\n plt.title('Loss Curve')\r\n ", "<docstring token>\nfrom DLL.CreateModel import CreateModel\nimport os\n<docstring token>\n\n\ndef WriteToSummary(model, min_index, min_loss, x_test_ph_name, test_output_name\n ):\n line = model + ':' + str(min_index) + ',' + str(min_loss) + '\\n'\n if not os.path.exists(model + '_Summary.txt'):\n Summary = open(model + '_Summary.txt', 'w')\n Summary.close()\n Summary = open(model + '_Summary.txt', 'r+')\n summary_content = ''\n try:\n for info in Summary:\n name_loc = info.index(model)\n name_loc = info.index(':')\n name = info[0:name_loc]\n if model == name:\n info = info.replace(info[name_loc + 1:], str(min_index) +\n ',' + str(min_loss))\n info = (info + ';Input:' + x_test_ph_name + ',Output:' +\n test_output_name + '\\n')\n summary_content += info\n else:\n summary_content += info\n Summary.close()\n Summary = open(model + '_Summary.txt', 'w+')\n Summary.write(summary_content)\n Summary.close()\n except ValueError:\n Summary.close()\n Summary = open(model + '_Summary.txt', 'a+')\n Summary.write(line)\n Summary.close()\n\n\nif __name__ == '__main__':\n model = input('Which model do u wanna choose :')\n scale = int(input('And the magnification is :'))\n source_dir = os.path.abspath(os.path.dirname(os.getcwd())) + '\\\\'\n net_model = CreateModel(model=model, lr=0.001, batch_size=128)\n x_test, y_test, x_train, y_train, train_size, test_size = (net_model.\n prepareSparseData(source_dir + 'Saprse_Train_Data\\\\', 0.2))\n print('\\n\\nSparseModel ( ' + model + ' x ' + str(scale) +\n ' ) Trainning ... ...')\n (min_index, min_loss, sp_train_li, sp_test_li, x_test_ph_name1,\n test_output_name1) = (net_model.trainNet(x_train, y_train, x_test,\n y_test, train_size, test_size, Epoch=int(10000.0), iter_view=500,\n saved_path=source_dir + model + '_SparseSR_x' + str(scale)))\n WriteToSummary(model, min_index, min_loss, x_test_ph_name1,\n test_output_name1)\n train_img, label_img, test_img, test_label_img = (net_model.\n prepareImageData(source_dir1=source_dir + '\\\\xTrainData\\\\',\n source_dir2=source_dir + '\\\\yTrainData\\\\', ratio=0.2, scale=scale))\n net_model = CreateModel(model=model, lr=0.001, batch_size=128)\n print('\\n\\nSRModel (' + model + ' x ' + str(scale) + ') Trainning ... ...')\n (min_index, min_loss, sr_train_li, sr_test_li, x_test_ph_name2,\n test_output_name2) = (net_model.trainNet(train_img, label_img,\n test_img, test_label_img, train_size=train_img.shape[0], test_size=\n test_img.shape[0], Epoch=int(5000.0), iter_view=500, saved_path=\n source_dir + model + 'x' + str(scale)))\n import matplotlib.pyplot as plt\n plt.plot(sp_test_li, 'r')\n plt.plot(sr_test_li, 'b')\n plt.xlabel('Epoch:100')\n plt.ylabel('Loss:0.01')\n plt.title('Loss Curve')\n", "<docstring token>\n<import token>\n<docstring token>\n\n\ndef WriteToSummary(model, min_index, min_loss, x_test_ph_name, test_output_name\n ):\n line = model + ':' + str(min_index) + ',' + str(min_loss) + '\\n'\n if not os.path.exists(model + '_Summary.txt'):\n Summary = open(model + '_Summary.txt', 'w')\n Summary.close()\n Summary = open(model + '_Summary.txt', 'r+')\n summary_content = ''\n try:\n for info in Summary:\n name_loc = info.index(model)\n name_loc = info.index(':')\n name = info[0:name_loc]\n if model == name:\n info = info.replace(info[name_loc + 1:], str(min_index) +\n ',' + str(min_loss))\n info = (info + ';Input:' + x_test_ph_name + ',Output:' +\n test_output_name + '\\n')\n summary_content += info\n else:\n summary_content += info\n Summary.close()\n Summary = open(model + '_Summary.txt', 'w+')\n Summary.write(summary_content)\n Summary.close()\n except ValueError:\n Summary.close()\n Summary = open(model + '_Summary.txt', 'a+')\n Summary.write(line)\n Summary.close()\n\n\nif __name__ == '__main__':\n model = input('Which model do u wanna choose :')\n scale = int(input('And the magnification is :'))\n source_dir = os.path.abspath(os.path.dirname(os.getcwd())) + '\\\\'\n net_model = CreateModel(model=model, lr=0.001, batch_size=128)\n x_test, y_test, x_train, y_train, train_size, test_size = (net_model.\n prepareSparseData(source_dir + 'Saprse_Train_Data\\\\', 0.2))\n print('\\n\\nSparseModel ( ' + model + ' x ' + str(scale) +\n ' ) Trainning ... ...')\n (min_index, min_loss, sp_train_li, sp_test_li, x_test_ph_name1,\n test_output_name1) = (net_model.trainNet(x_train, y_train, x_test,\n y_test, train_size, test_size, Epoch=int(10000.0), iter_view=500,\n saved_path=source_dir + model + '_SparseSR_x' + str(scale)))\n WriteToSummary(model, min_index, min_loss, x_test_ph_name1,\n test_output_name1)\n train_img, label_img, test_img, test_label_img = (net_model.\n prepareImageData(source_dir1=source_dir + '\\\\xTrainData\\\\',\n source_dir2=source_dir + '\\\\yTrainData\\\\', ratio=0.2, scale=scale))\n net_model = CreateModel(model=model, lr=0.001, batch_size=128)\n print('\\n\\nSRModel (' + model + ' x ' + str(scale) + ') Trainning ... ...')\n (min_index, min_loss, sr_train_li, sr_test_li, x_test_ph_name2,\n test_output_name2) = (net_model.trainNet(train_img, label_img,\n test_img, test_label_img, train_size=train_img.shape[0], test_size=\n test_img.shape[0], Epoch=int(5000.0), iter_view=500, saved_path=\n source_dir + model + 'x' + str(scale)))\n import matplotlib.pyplot as plt\n plt.plot(sp_test_li, 'r')\n plt.plot(sr_test_li, 'b')\n plt.xlabel('Epoch:100')\n plt.ylabel('Loss:0.01')\n plt.title('Loss Curve')\n", "<docstring token>\n<import token>\n<docstring token>\n\n\ndef WriteToSummary(model, min_index, min_loss, x_test_ph_name, test_output_name\n ):\n line = model + ':' + str(min_index) + ',' + str(min_loss) + '\\n'\n if not os.path.exists(model + '_Summary.txt'):\n Summary = open(model + '_Summary.txt', 'w')\n Summary.close()\n Summary = open(model + '_Summary.txt', 'r+')\n summary_content = ''\n try:\n for info in Summary:\n name_loc = info.index(model)\n name_loc = info.index(':')\n name = info[0:name_loc]\n if model == name:\n info = info.replace(info[name_loc + 1:], str(min_index) +\n ',' + str(min_loss))\n info = (info + ';Input:' + x_test_ph_name + ',Output:' +\n test_output_name + '\\n')\n summary_content += info\n else:\n summary_content += info\n Summary.close()\n Summary = open(model + '_Summary.txt', 'w+')\n Summary.write(summary_content)\n Summary.close()\n except ValueError:\n Summary.close()\n Summary = open(model + '_Summary.txt', 'a+')\n Summary.write(line)\n Summary.close()\n\n\n<code token>\n", "<docstring token>\n<import token>\n<docstring token>\n<function token>\n<code token>\n" ]
false
99,376
8ec35d8a882a52e06ee65b34ddfd971258ffc3fe
# coding: utf-8 """ DBpedia This is the API of the DBpedia Ontology # noqa: E501 The version of the OpenAPI document: v0.0.1 Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import dbpedia from dbpedia.api.comics_creator_api import ComicsCreatorApi # noqa: E501 from dbpedia.rest import ApiException class TestComicsCreatorApi(unittest.TestCase): """ComicsCreatorApi unit test stubs""" def setUp(self): self.api = dbpedia.api.comics_creator_api.ComicsCreatorApi() # noqa: E501 def tearDown(self): pass def test_comicscreators_get(self): """Test case for comicscreators_get List all instances of ComicsCreator # noqa: E501 """ pass def test_comicscreators_id_get(self): """Test case for comicscreators_id_get Get a single ComicsCreator by its id # noqa: E501 """ pass if __name__ == '__main__': unittest.main()
[ "# coding: utf-8\n\n\"\"\"\n DBpedia\n\n This is the API of the DBpedia Ontology # noqa: E501\n\n The version of the OpenAPI document: v0.0.1\n Generated by: https://openapi-generator.tech\n\"\"\"\n\n\nfrom __future__ import absolute_import\n\nimport unittest\n\nimport dbpedia\nfrom dbpedia.api.comics_creator_api import ComicsCreatorApi # noqa: E501\nfrom dbpedia.rest import ApiException\n\n\nclass TestComicsCreatorApi(unittest.TestCase):\n \"\"\"ComicsCreatorApi unit test stubs\"\"\"\n\n def setUp(self):\n self.api = dbpedia.api.comics_creator_api.ComicsCreatorApi() # noqa: E501\n\n def tearDown(self):\n pass\n\n def test_comicscreators_get(self):\n \"\"\"Test case for comicscreators_get\n\n List all instances of ComicsCreator # noqa: E501\n \"\"\"\n pass\n\n def test_comicscreators_id_get(self):\n \"\"\"Test case for comicscreators_id_get\n\n Get a single ComicsCreator by its id # noqa: E501\n \"\"\"\n pass\n\n\nif __name__ == '__main__':\n unittest.main()\n", "<docstring token>\nfrom __future__ import absolute_import\nimport unittest\nimport dbpedia\nfrom dbpedia.api.comics_creator_api import ComicsCreatorApi\nfrom dbpedia.rest import ApiException\n\n\nclass TestComicsCreatorApi(unittest.TestCase):\n \"\"\"ComicsCreatorApi unit test stubs\"\"\"\n\n def setUp(self):\n self.api = dbpedia.api.comics_creator_api.ComicsCreatorApi()\n\n def tearDown(self):\n pass\n\n def test_comicscreators_get(self):\n \"\"\"Test case for comicscreators_get\n\n List all instances of ComicsCreator # noqa: E501\n \"\"\"\n pass\n\n def test_comicscreators_id_get(self):\n \"\"\"Test case for comicscreators_id_get\n\n Get a single ComicsCreator by its id # noqa: E501\n \"\"\"\n pass\n\n\nif __name__ == '__main__':\n unittest.main()\n", "<docstring token>\n<import token>\n\n\nclass TestComicsCreatorApi(unittest.TestCase):\n \"\"\"ComicsCreatorApi unit test stubs\"\"\"\n\n def setUp(self):\n self.api = dbpedia.api.comics_creator_api.ComicsCreatorApi()\n\n def tearDown(self):\n pass\n\n def test_comicscreators_get(self):\n \"\"\"Test case for comicscreators_get\n\n List all instances of ComicsCreator # noqa: E501\n \"\"\"\n pass\n\n def test_comicscreators_id_get(self):\n \"\"\"Test case for comicscreators_id_get\n\n Get a single ComicsCreator by its id # noqa: E501\n \"\"\"\n pass\n\n\nif __name__ == '__main__':\n unittest.main()\n", "<docstring token>\n<import token>\n\n\nclass TestComicsCreatorApi(unittest.TestCase):\n \"\"\"ComicsCreatorApi unit test stubs\"\"\"\n\n def setUp(self):\n self.api = dbpedia.api.comics_creator_api.ComicsCreatorApi()\n\n def tearDown(self):\n pass\n\n def test_comicscreators_get(self):\n \"\"\"Test case for comicscreators_get\n\n List all instances of ComicsCreator # noqa: E501\n \"\"\"\n pass\n\n def test_comicscreators_id_get(self):\n \"\"\"Test case for comicscreators_id_get\n\n Get a single ComicsCreator by its id # noqa: E501\n \"\"\"\n pass\n\n\n<code token>\n", "<docstring token>\n<import token>\n\n\nclass TestComicsCreatorApi(unittest.TestCase):\n <docstring token>\n\n def setUp(self):\n self.api = dbpedia.api.comics_creator_api.ComicsCreatorApi()\n\n def tearDown(self):\n pass\n\n def test_comicscreators_get(self):\n \"\"\"Test case for comicscreators_get\n\n List all instances of ComicsCreator # noqa: E501\n \"\"\"\n pass\n\n def test_comicscreators_id_get(self):\n \"\"\"Test case for comicscreators_id_get\n\n Get a single ComicsCreator by its id # noqa: E501\n \"\"\"\n pass\n\n\n<code token>\n", "<docstring token>\n<import token>\n\n\nclass TestComicsCreatorApi(unittest.TestCase):\n <docstring token>\n\n def setUp(self):\n self.api = dbpedia.api.comics_creator_api.ComicsCreatorApi()\n <function token>\n\n def test_comicscreators_get(self):\n \"\"\"Test case for comicscreators_get\n\n List all instances of ComicsCreator # noqa: E501\n \"\"\"\n pass\n\n def test_comicscreators_id_get(self):\n \"\"\"Test case for comicscreators_id_get\n\n Get a single ComicsCreator by its id # noqa: E501\n \"\"\"\n pass\n\n\n<code token>\n", "<docstring token>\n<import token>\n\n\nclass TestComicsCreatorApi(unittest.TestCase):\n <docstring token>\n <function token>\n <function token>\n\n def test_comicscreators_get(self):\n \"\"\"Test case for comicscreators_get\n\n List all instances of ComicsCreator # noqa: E501\n \"\"\"\n pass\n\n def test_comicscreators_id_get(self):\n \"\"\"Test case for comicscreators_id_get\n\n Get a single ComicsCreator by its id # noqa: E501\n \"\"\"\n pass\n\n\n<code token>\n", "<docstring token>\n<import token>\n\n\nclass TestComicsCreatorApi(unittest.TestCase):\n <docstring token>\n <function token>\n <function token>\n\n def test_comicscreators_get(self):\n \"\"\"Test case for comicscreators_get\n\n List all instances of ComicsCreator # noqa: E501\n \"\"\"\n pass\n <function token>\n\n\n<code token>\n", "<docstring token>\n<import token>\n\n\nclass TestComicsCreatorApi(unittest.TestCase):\n <docstring token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\n<code token>\n", "<docstring token>\n<import token>\n<class token>\n<code token>\n" ]
false
99,377
2a96e000c79f230788aeaccf21cad3a6d5aa6f77
from core.effect.base import EffectBase from core.tuning.skill import SkillTuning from raisecap.tuning.effect import EffectTuning from siege import game class Regen(EffectBase): TUNING = EffectTuning.REGEN def __init__(self, owner, level, duration, source, isRefresh): super(Regen, self).__init__(owner, duration, isRefresh) self.adjustment = owner.stats.HP.getMax() * SkillTuning.REGENERATE.HEALTH_PERCENTAGES[level - 1] / 100.0 self.statUid = owner.stats.HPRegen.mod(self.adjustment) def onRemove(self, owner): owner.stats.HPRegen.unmod(self.statUid) @staticmethod def register(): game.effects.register(Regen.TUNING.NAME, Regen)
[ "from core.effect.base import EffectBase\nfrom core.tuning.skill import SkillTuning\nfrom raisecap.tuning.effect import EffectTuning\nfrom siege import game\n\n\nclass Regen(EffectBase):\n TUNING = EffectTuning.REGEN\n\n def __init__(self, owner, level, duration, source, isRefresh):\n super(Regen, self).__init__(owner, duration, isRefresh)\n self.adjustment = owner.stats.HP.getMax() * SkillTuning.REGENERATE.HEALTH_PERCENTAGES[level - 1] / 100.0\n self.statUid = owner.stats.HPRegen.mod(self.adjustment)\n\n def onRemove(self, owner):\n owner.stats.HPRegen.unmod(self.statUid)\n\n @staticmethod\n def register():\n game.effects.register(Regen.TUNING.NAME, Regen)\n", "from core.effect.base import EffectBase\nfrom core.tuning.skill import SkillTuning\nfrom raisecap.tuning.effect import EffectTuning\nfrom siege import game\n\n\nclass Regen(EffectBase):\n TUNING = EffectTuning.REGEN\n\n def __init__(self, owner, level, duration, source, isRefresh):\n super(Regen, self).__init__(owner, duration, isRefresh)\n self.adjustment = owner.stats.HP.getMax(\n ) * SkillTuning.REGENERATE.HEALTH_PERCENTAGES[level - 1] / 100.0\n self.statUid = owner.stats.HPRegen.mod(self.adjustment)\n\n def onRemove(self, owner):\n owner.stats.HPRegen.unmod(self.statUid)\n\n @staticmethod\n def register():\n game.effects.register(Regen.TUNING.NAME, Regen)\n", "<import token>\n\n\nclass Regen(EffectBase):\n TUNING = EffectTuning.REGEN\n\n def __init__(self, owner, level, duration, source, isRefresh):\n super(Regen, self).__init__(owner, duration, isRefresh)\n self.adjustment = owner.stats.HP.getMax(\n ) * SkillTuning.REGENERATE.HEALTH_PERCENTAGES[level - 1] / 100.0\n self.statUid = owner.stats.HPRegen.mod(self.adjustment)\n\n def onRemove(self, owner):\n owner.stats.HPRegen.unmod(self.statUid)\n\n @staticmethod\n def register():\n game.effects.register(Regen.TUNING.NAME, Regen)\n", "<import token>\n\n\nclass Regen(EffectBase):\n <assignment token>\n\n def __init__(self, owner, level, duration, source, isRefresh):\n super(Regen, self).__init__(owner, duration, isRefresh)\n self.adjustment = owner.stats.HP.getMax(\n ) * SkillTuning.REGENERATE.HEALTH_PERCENTAGES[level - 1] / 100.0\n self.statUid = owner.stats.HPRegen.mod(self.adjustment)\n\n def onRemove(self, owner):\n owner.stats.HPRegen.unmod(self.statUid)\n\n @staticmethod\n def register():\n game.effects.register(Regen.TUNING.NAME, Regen)\n", "<import token>\n\n\nclass Regen(EffectBase):\n <assignment token>\n <function token>\n\n def onRemove(self, owner):\n owner.stats.HPRegen.unmod(self.statUid)\n\n @staticmethod\n def register():\n game.effects.register(Regen.TUNING.NAME, Regen)\n", "<import token>\n\n\nclass Regen(EffectBase):\n <assignment token>\n <function token>\n <function token>\n\n @staticmethod\n def register():\n game.effects.register(Regen.TUNING.NAME, Regen)\n", "<import token>\n\n\nclass Regen(EffectBase):\n <assignment token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n<class token>\n" ]
false
99,378
a92affe8b0afb78a1c8610adfff9fe2d407ddb83
#!/usr/bin/env python # -*- coding: utf-8 -*- from unittest import TestCase,TestSuite from tree import Tree from mdsdata import * from mdsscalar import * from mdsarray import * import numpy as np import random import os import sys import tempfile _tmpdir=tempfile.mkdtemp() def setUpModule(): pass def tearDownModule(): import shutil shutil.rmtree(_tmpdir) class segmentsTests(TestCase): def setUp(self): os.environ["seg_tree_path"]=_tmpdir def tearDown(self): pass def arrayDimensionOrder(self): ptree=Tree('seg_tree',-1,'NEW') ptree.addNode('IMM') ptree.write() ptree=Tree('seg_tree',-1) ptree.createPulse(1) ptree=Tree('seg_tree',1) node=ptree.getNode('IMM') WIDTH = 640 HEIGHT =480; currFrame=np.zeros(WIDTH*HEIGHT, dtype = np.int16); currTime=float(0); for i in range(0,WIDTH): for j in range(0,HEIGHT): currFrame[i*HEIGHT+j]=random.randint(0,255) currTime = float(0) startTime = Float32(currTime) endTime = Float32(currTime) dim = Float32Array(currTime) segment = Int16Array(currFrame) segment.resize([1,HEIGHT,WIDTH]) shape = segment.getShape() node.makeSegment(startTime, endTime, dim, segment) retShape = node.getShape() self.assertEqual(shape[0],retShape[0]) self.assertEqual(shape[1],retShape[1]) self.assertEqual(shape[2],retShape[2]) def runTest(self): self.arrayDimensionOrder() def suite(): tests = ['arrayDimensionOrder'] return TestSuite(map(segmentsTests,tests))
[ "#!/usr/bin/env python\n# -*- coding: utf-8 -*-\n\nfrom unittest import TestCase,TestSuite\n\nfrom tree import Tree\nfrom mdsdata import *\nfrom mdsscalar import *\nfrom mdsarray import *\n\nimport numpy as np\nimport random\nimport os\nimport sys\n\n\n\nimport tempfile\n_tmpdir=tempfile.mkdtemp()\n\ndef setUpModule(): \n pass\n\ndef tearDownModule():\n import shutil\n shutil.rmtree(_tmpdir)\n \n\nclass segmentsTests(TestCase):\n\n def setUp(self):\n os.environ[\"seg_tree_path\"]=_tmpdir\n \n def tearDown(self):\n pass\n\n def arrayDimensionOrder(self):\n ptree=Tree('seg_tree',-1,'NEW')\n ptree.addNode('IMM')\n ptree.write()\n ptree=Tree('seg_tree',-1)\n ptree.createPulse(1)\n ptree=Tree('seg_tree',1)\n node=ptree.getNode('IMM')\n \n WIDTH = 640\n HEIGHT =480;\n currFrame=np.zeros(WIDTH*HEIGHT, dtype = np.int16);\n currTime=float(0);\n for i in range(0,WIDTH):\n for j in range(0,HEIGHT):\n currFrame[i*HEIGHT+j]=random.randint(0,255)\n currTime = float(0)\n startTime = Float32(currTime)\n endTime = Float32(currTime)\n dim = Float32Array(currTime)\n segment = Int16Array(currFrame)\n segment.resize([1,HEIGHT,WIDTH])\n shape = segment.getShape()\n node.makeSegment(startTime, endTime, dim, segment)\n retShape = node.getShape()\n \n self.assertEqual(shape[0],retShape[0])\n self.assertEqual(shape[1],retShape[1])\n self.assertEqual(shape[2],retShape[2])\n\n def runTest(self):\n self.arrayDimensionOrder()\n\n\n\ndef suite():\n tests = ['arrayDimensionOrder']\n return TestSuite(map(segmentsTests,tests))\n", "from unittest import TestCase, TestSuite\nfrom tree import Tree\nfrom mdsdata import *\nfrom mdsscalar import *\nfrom mdsarray import *\nimport numpy as np\nimport random\nimport os\nimport sys\nimport tempfile\n_tmpdir = tempfile.mkdtemp()\n\n\ndef setUpModule():\n pass\n\n\ndef tearDownModule():\n import shutil\n shutil.rmtree(_tmpdir)\n\n\nclass segmentsTests(TestCase):\n\n def setUp(self):\n os.environ['seg_tree_path'] = _tmpdir\n\n def tearDown(self):\n pass\n\n def arrayDimensionOrder(self):\n ptree = Tree('seg_tree', -1, 'NEW')\n ptree.addNode('IMM')\n ptree.write()\n ptree = Tree('seg_tree', -1)\n ptree.createPulse(1)\n ptree = Tree('seg_tree', 1)\n node = ptree.getNode('IMM')\n WIDTH = 640\n HEIGHT = 480\n currFrame = np.zeros(WIDTH * HEIGHT, dtype=np.int16)\n currTime = float(0)\n for i in range(0, WIDTH):\n for j in range(0, HEIGHT):\n currFrame[i * HEIGHT + j] = random.randint(0, 255)\n currTime = float(0)\n startTime = Float32(currTime)\n endTime = Float32(currTime)\n dim = Float32Array(currTime)\n segment = Int16Array(currFrame)\n segment.resize([1, HEIGHT, WIDTH])\n shape = segment.getShape()\n node.makeSegment(startTime, endTime, dim, segment)\n retShape = node.getShape()\n self.assertEqual(shape[0], retShape[0])\n self.assertEqual(shape[1], retShape[1])\n self.assertEqual(shape[2], retShape[2])\n\n def runTest(self):\n self.arrayDimensionOrder()\n\n\ndef suite():\n tests = ['arrayDimensionOrder']\n return TestSuite(map(segmentsTests, tests))\n", "<import token>\n_tmpdir = tempfile.mkdtemp()\n\n\ndef setUpModule():\n pass\n\n\ndef tearDownModule():\n import shutil\n shutil.rmtree(_tmpdir)\n\n\nclass segmentsTests(TestCase):\n\n def setUp(self):\n os.environ['seg_tree_path'] = _tmpdir\n\n def tearDown(self):\n pass\n\n def arrayDimensionOrder(self):\n ptree = Tree('seg_tree', -1, 'NEW')\n ptree.addNode('IMM')\n ptree.write()\n ptree = Tree('seg_tree', -1)\n ptree.createPulse(1)\n ptree = Tree('seg_tree', 1)\n node = ptree.getNode('IMM')\n WIDTH = 640\n HEIGHT = 480\n currFrame = np.zeros(WIDTH * HEIGHT, dtype=np.int16)\n currTime = float(0)\n for i in range(0, WIDTH):\n for j in range(0, HEIGHT):\n currFrame[i * HEIGHT + j] = random.randint(0, 255)\n currTime = float(0)\n startTime = Float32(currTime)\n endTime = Float32(currTime)\n dim = Float32Array(currTime)\n segment = Int16Array(currFrame)\n segment.resize([1, HEIGHT, WIDTH])\n shape = segment.getShape()\n node.makeSegment(startTime, endTime, dim, segment)\n retShape = node.getShape()\n self.assertEqual(shape[0], retShape[0])\n self.assertEqual(shape[1], retShape[1])\n self.assertEqual(shape[2], retShape[2])\n\n def runTest(self):\n self.arrayDimensionOrder()\n\n\ndef suite():\n tests = ['arrayDimensionOrder']\n return TestSuite(map(segmentsTests, tests))\n", "<import token>\n<assignment token>\n\n\ndef setUpModule():\n pass\n\n\ndef tearDownModule():\n import shutil\n shutil.rmtree(_tmpdir)\n\n\nclass segmentsTests(TestCase):\n\n def setUp(self):\n os.environ['seg_tree_path'] = _tmpdir\n\n def tearDown(self):\n pass\n\n def arrayDimensionOrder(self):\n ptree = Tree('seg_tree', -1, 'NEW')\n ptree.addNode('IMM')\n ptree.write()\n ptree = Tree('seg_tree', -1)\n ptree.createPulse(1)\n ptree = Tree('seg_tree', 1)\n node = ptree.getNode('IMM')\n WIDTH = 640\n HEIGHT = 480\n currFrame = np.zeros(WIDTH * HEIGHT, dtype=np.int16)\n currTime = float(0)\n for i in range(0, WIDTH):\n for j in range(0, HEIGHT):\n currFrame[i * HEIGHT + j] = random.randint(0, 255)\n currTime = float(0)\n startTime = Float32(currTime)\n endTime = Float32(currTime)\n dim = Float32Array(currTime)\n segment = Int16Array(currFrame)\n segment.resize([1, HEIGHT, WIDTH])\n shape = segment.getShape()\n node.makeSegment(startTime, endTime, dim, segment)\n retShape = node.getShape()\n self.assertEqual(shape[0], retShape[0])\n self.assertEqual(shape[1], retShape[1])\n self.assertEqual(shape[2], retShape[2])\n\n def runTest(self):\n self.arrayDimensionOrder()\n\n\ndef suite():\n tests = ['arrayDimensionOrder']\n return TestSuite(map(segmentsTests, tests))\n", "<import token>\n<assignment token>\n<function token>\n\n\ndef tearDownModule():\n import shutil\n shutil.rmtree(_tmpdir)\n\n\nclass segmentsTests(TestCase):\n\n def setUp(self):\n os.environ['seg_tree_path'] = _tmpdir\n\n def tearDown(self):\n pass\n\n def arrayDimensionOrder(self):\n ptree = Tree('seg_tree', -1, 'NEW')\n ptree.addNode('IMM')\n ptree.write()\n ptree = Tree('seg_tree', -1)\n ptree.createPulse(1)\n ptree = Tree('seg_tree', 1)\n node = ptree.getNode('IMM')\n WIDTH = 640\n HEIGHT = 480\n currFrame = np.zeros(WIDTH * HEIGHT, dtype=np.int16)\n currTime = float(0)\n for i in range(0, WIDTH):\n for j in range(0, HEIGHT):\n currFrame[i * HEIGHT + j] = random.randint(0, 255)\n currTime = float(0)\n startTime = Float32(currTime)\n endTime = Float32(currTime)\n dim = Float32Array(currTime)\n segment = Int16Array(currFrame)\n segment.resize([1, HEIGHT, WIDTH])\n shape = segment.getShape()\n node.makeSegment(startTime, endTime, dim, segment)\n retShape = node.getShape()\n self.assertEqual(shape[0], retShape[0])\n self.assertEqual(shape[1], retShape[1])\n self.assertEqual(shape[2], retShape[2])\n\n def runTest(self):\n self.arrayDimensionOrder()\n\n\ndef suite():\n tests = ['arrayDimensionOrder']\n return TestSuite(map(segmentsTests, tests))\n", "<import token>\n<assignment token>\n<function token>\n<function token>\n\n\nclass segmentsTests(TestCase):\n\n def setUp(self):\n os.environ['seg_tree_path'] = _tmpdir\n\n def tearDown(self):\n pass\n\n def arrayDimensionOrder(self):\n ptree = Tree('seg_tree', -1, 'NEW')\n ptree.addNode('IMM')\n ptree.write()\n ptree = Tree('seg_tree', -1)\n ptree.createPulse(1)\n ptree = Tree('seg_tree', 1)\n node = ptree.getNode('IMM')\n WIDTH = 640\n HEIGHT = 480\n currFrame = np.zeros(WIDTH * HEIGHT, dtype=np.int16)\n currTime = float(0)\n for i in range(0, WIDTH):\n for j in range(0, HEIGHT):\n currFrame[i * HEIGHT + j] = random.randint(0, 255)\n currTime = float(0)\n startTime = Float32(currTime)\n endTime = Float32(currTime)\n dim = Float32Array(currTime)\n segment = Int16Array(currFrame)\n segment.resize([1, HEIGHT, WIDTH])\n shape = segment.getShape()\n node.makeSegment(startTime, endTime, dim, segment)\n retShape = node.getShape()\n self.assertEqual(shape[0], retShape[0])\n self.assertEqual(shape[1], retShape[1])\n self.assertEqual(shape[2], retShape[2])\n\n def runTest(self):\n self.arrayDimensionOrder()\n\n\ndef suite():\n tests = ['arrayDimensionOrder']\n return TestSuite(map(segmentsTests, tests))\n", "<import token>\n<assignment token>\n<function token>\n<function token>\n\n\nclass segmentsTests(TestCase):\n\n def setUp(self):\n os.environ['seg_tree_path'] = _tmpdir\n\n def tearDown(self):\n pass\n\n def arrayDimensionOrder(self):\n ptree = Tree('seg_tree', -1, 'NEW')\n ptree.addNode('IMM')\n ptree.write()\n ptree = Tree('seg_tree', -1)\n ptree.createPulse(1)\n ptree = Tree('seg_tree', 1)\n node = ptree.getNode('IMM')\n WIDTH = 640\n HEIGHT = 480\n currFrame = np.zeros(WIDTH * HEIGHT, dtype=np.int16)\n currTime = float(0)\n for i in range(0, WIDTH):\n for j in range(0, HEIGHT):\n currFrame[i * HEIGHT + j] = random.randint(0, 255)\n currTime = float(0)\n startTime = Float32(currTime)\n endTime = Float32(currTime)\n dim = Float32Array(currTime)\n segment = Int16Array(currFrame)\n segment.resize([1, HEIGHT, WIDTH])\n shape = segment.getShape()\n node.makeSegment(startTime, endTime, dim, segment)\n retShape = node.getShape()\n self.assertEqual(shape[0], retShape[0])\n self.assertEqual(shape[1], retShape[1])\n self.assertEqual(shape[2], retShape[2])\n\n def runTest(self):\n self.arrayDimensionOrder()\n\n\n<function token>\n", "<import token>\n<assignment token>\n<function token>\n<function token>\n\n\nclass segmentsTests(TestCase):\n\n def setUp(self):\n os.environ['seg_tree_path'] = _tmpdir\n\n def tearDown(self):\n pass\n\n def arrayDimensionOrder(self):\n ptree = Tree('seg_tree', -1, 'NEW')\n ptree.addNode('IMM')\n ptree.write()\n ptree = Tree('seg_tree', -1)\n ptree.createPulse(1)\n ptree = Tree('seg_tree', 1)\n node = ptree.getNode('IMM')\n WIDTH = 640\n HEIGHT = 480\n currFrame = np.zeros(WIDTH * HEIGHT, dtype=np.int16)\n currTime = float(0)\n for i in range(0, WIDTH):\n for j in range(0, HEIGHT):\n currFrame[i * HEIGHT + j] = random.randint(0, 255)\n currTime = float(0)\n startTime = Float32(currTime)\n endTime = Float32(currTime)\n dim = Float32Array(currTime)\n segment = Int16Array(currFrame)\n segment.resize([1, HEIGHT, WIDTH])\n shape = segment.getShape()\n node.makeSegment(startTime, endTime, dim, segment)\n retShape = node.getShape()\n self.assertEqual(shape[0], retShape[0])\n self.assertEqual(shape[1], retShape[1])\n self.assertEqual(shape[2], retShape[2])\n <function token>\n\n\n<function token>\n", "<import token>\n<assignment token>\n<function token>\n<function token>\n\n\nclass segmentsTests(TestCase):\n\n def setUp(self):\n os.environ['seg_tree_path'] = _tmpdir\n <function token>\n\n def arrayDimensionOrder(self):\n ptree = Tree('seg_tree', -1, 'NEW')\n ptree.addNode('IMM')\n ptree.write()\n ptree = Tree('seg_tree', -1)\n ptree.createPulse(1)\n ptree = Tree('seg_tree', 1)\n node = ptree.getNode('IMM')\n WIDTH = 640\n HEIGHT = 480\n currFrame = np.zeros(WIDTH * HEIGHT, dtype=np.int16)\n currTime = float(0)\n for i in range(0, WIDTH):\n for j in range(0, HEIGHT):\n currFrame[i * HEIGHT + j] = random.randint(0, 255)\n currTime = float(0)\n startTime = Float32(currTime)\n endTime = Float32(currTime)\n dim = Float32Array(currTime)\n segment = Int16Array(currFrame)\n segment.resize([1, HEIGHT, WIDTH])\n shape = segment.getShape()\n node.makeSegment(startTime, endTime, dim, segment)\n retShape = node.getShape()\n self.assertEqual(shape[0], retShape[0])\n self.assertEqual(shape[1], retShape[1])\n self.assertEqual(shape[2], retShape[2])\n <function token>\n\n\n<function token>\n", "<import token>\n<assignment token>\n<function token>\n<function token>\n\n\nclass segmentsTests(TestCase):\n <function token>\n <function token>\n\n def arrayDimensionOrder(self):\n ptree = Tree('seg_tree', -1, 'NEW')\n ptree.addNode('IMM')\n ptree.write()\n ptree = Tree('seg_tree', -1)\n ptree.createPulse(1)\n ptree = Tree('seg_tree', 1)\n node = ptree.getNode('IMM')\n WIDTH = 640\n HEIGHT = 480\n currFrame = np.zeros(WIDTH * HEIGHT, dtype=np.int16)\n currTime = float(0)\n for i in range(0, WIDTH):\n for j in range(0, HEIGHT):\n currFrame[i * HEIGHT + j] = random.randint(0, 255)\n currTime = float(0)\n startTime = Float32(currTime)\n endTime = Float32(currTime)\n dim = Float32Array(currTime)\n segment = Int16Array(currFrame)\n segment.resize([1, HEIGHT, WIDTH])\n shape = segment.getShape()\n node.makeSegment(startTime, endTime, dim, segment)\n retShape = node.getShape()\n self.assertEqual(shape[0], retShape[0])\n self.assertEqual(shape[1], retShape[1])\n self.assertEqual(shape[2], retShape[2])\n <function token>\n\n\n<function token>\n", "<import token>\n<assignment token>\n<function token>\n<function token>\n\n\nclass segmentsTests(TestCase):\n <function token>\n <function token>\n <function token>\n <function token>\n\n\n<function token>\n", "<import token>\n<assignment token>\n<function token>\n<function token>\n<class token>\n<function token>\n" ]
false
99,379
9b304ac513057336f3a98a7acaf6d61006efcdb3
# ============================================================================= # ============================================================================= # som_and_rf_alpha.py # Created by Chance Haycock January 2020 # # Similar to Interim model but with RF and SOM. We have expanded the data set # by using training data from campaigns 1, 2, 3, 4 # # ============================================================================= # ============================================================================= from models.model_utilities import * # ========================================= # SOM AND RF (K2SC_ALPHA) MODEL # ========================================= # First need to collate master table data and SOM data using training set alpha def make_model_table(): training_epics = pd.read_csv('{}/training_sets/k2sc/c1-4_alpha.csv'.format(project_dir))['epic_number'].to_numpy() master_c1 = pd.read_csv('{}/tables/k2sc/campaign_1_master_table.csv'.format(project_dir)) master_c2 = pd.read_csv('{}/tables/k2sc/campaign_2_master_table.csv'.format(project_dir)) master_c3 = pd.read_csv('{}/tables/k2sc/campaign_3_master_table.csv'.format(project_dir)) master_c4 = pd.read_csv('{}/tables/k2sc/campaign_4_master_table.csv'.format(project_dir)) data_master = master_c1.append(master_c2, ignore_index=True).append(master_c3, ignore_index=True).append(master_c4, ignore_index=True) bin_columns = make_bin_columns(64) data_master = data_master.drop(bin_columns, axis=1) data_train = data_master[data_master['epic_number'].isin(training_epics)] som_c1 = pd.read_csv('{}/som_statistics/k2sc/c1-4_alpha/campaign_1.csv'.format(project_dir)) som_c2 = pd.read_csv('{}/som_statistics/k2sc/c1-4_alpha/campaign_2.csv'.format(project_dir)) som_c3 = pd.read_csv('{}/som_statistics/k2sc/c1-4_alpha/campaign_3.csv'.format(project_dir)) som_c4 = pd.read_csv('{}/som_statistics/k2sc/c1-4_alpha/campaign_4.csv'.format(project_dir)) som_master = som_c1.append(som_c2, ignore_index=True).append(som_c3, ignore_index=True).append(som_c4, ignore_index=True) som_train = som_master[som_master['epic_number'].isin(training_epics)] train_df = data_train.merge(som_train, how='left', on='epic_number') # Drop these for now train_df = train_df.drop('k2_teff', axis=1).drop('k2_rad', axis=1).drop('k2_mass', axis=1) train_df.to_csv('{}/src/models/som_and_rf_alpha/train_FULL.csv'.format(project_dir), index=False) print('Model Table Created!') print(len(train_df.columns)) return # Things that I want from an overall model # - Overall score (means and variance for stability) # - Confusion Matrix (means and variance) # - Feature Importance # - Learning Curve # - summary f_1 scores? def SOM_and_RF_alpha(): model_label = 'alpha' model_number = sys.argv[1] print_model_type("SOM and Random Forest") # Import global training data. Contains roughly 100 of each class. training_file = "{}/src/models/som_and_rf_alpha/train.csv".format(project_dir) df = pd.read_csv(training_file) print("Using training file: {}".format(training_file)) # Fill empty entries. Maybe try filling these later. df = df.fillna(-1) # Features to be tested. Column 0 is epics. features = df.drop('class', axis=1).drop('probability', axis=1).columns[1:len(df.columns)-2] blank_classifier = RCF(random_state=2, class_weight='balanced') # parameters = {'n_estimators':[300, 400, 500, 600],\ # 'min_samples_split':[2, 3, 4, 5, 6],\ # 'max_features':[4, 5, 6, 7, 8] } parameters = {'n_estimators':[300],\ 'min_samples_split':[3],\ 'max_features':[4] } evaluate_model(model_label, model_number, blank_classifier, df, parameters, features, in_cv=5, out_cv=5) # Do learning curve analysis here return # ============================================================================= # MAIN # ============================================================================= def main(): make_model_table() # SOM_and_RF_alpha() if __name__ == "__main__": main()
[ "# =============================================================================\n# =============================================================================\n# som_and_rf_alpha.py\n# Created by Chance Haycock January 2020\n#\n# Similar to Interim model but with RF and SOM. We have expanded the data set\n# by using training data from campaigns 1, 2, 3, 4\n#\n# =============================================================================\n# =============================================================================\nfrom models.model_utilities import *\n\n# =========================================\n# SOM AND RF (K2SC_ALPHA) MODEL\n# =========================================\n\n# First need to collate master table data and SOM data using training set alpha\ndef make_model_table():\n\ttraining_epics = pd.read_csv('{}/training_sets/k2sc/c1-4_alpha.csv'.format(project_dir))['epic_number'].to_numpy()\n\n\tmaster_c1 = pd.read_csv('{}/tables/k2sc/campaign_1_master_table.csv'.format(project_dir))\n\tmaster_c2 = pd.read_csv('{}/tables/k2sc/campaign_2_master_table.csv'.format(project_dir))\n\tmaster_c3 = pd.read_csv('{}/tables/k2sc/campaign_3_master_table.csv'.format(project_dir))\n\tmaster_c4 = pd.read_csv('{}/tables/k2sc/campaign_4_master_table.csv'.format(project_dir))\n\tdata_master = master_c1.append(master_c2, ignore_index=True).append(master_c3, ignore_index=True).append(master_c4, ignore_index=True)\n\tbin_columns = make_bin_columns(64)\n\tdata_master = data_master.drop(bin_columns, axis=1)\n\tdata_train = data_master[data_master['epic_number'].isin(training_epics)]\n\n\tsom_c1 = pd.read_csv('{}/som_statistics/k2sc/c1-4_alpha/campaign_1.csv'.format(project_dir))\n\tsom_c2 = pd.read_csv('{}/som_statistics/k2sc/c1-4_alpha/campaign_2.csv'.format(project_dir))\n\tsom_c3 = pd.read_csv('{}/som_statistics/k2sc/c1-4_alpha/campaign_3.csv'.format(project_dir))\n\tsom_c4 = pd.read_csv('{}/som_statistics/k2sc/c1-4_alpha/campaign_4.csv'.format(project_dir))\n\tsom_master = som_c1.append(som_c2, ignore_index=True).append(som_c3, ignore_index=True).append(som_c4, ignore_index=True)\n\tsom_train = som_master[som_master['epic_number'].isin(training_epics)]\n\n\ttrain_df = data_train.merge(som_train, how='left', on='epic_number')\n\t# Drop these for now\n\ttrain_df = train_df.drop('k2_teff', axis=1).drop('k2_rad', axis=1).drop('k2_mass', axis=1)\n\ttrain_df.to_csv('{}/src/models/som_and_rf_alpha/train_FULL.csv'.format(project_dir), index=False)\n\tprint('Model Table Created!')\n\tprint(len(train_df.columns))\n\treturn\n\n\n# Things that I want from an overall model\n# - Overall score (means and variance for stability)\n# - Confusion Matrix (means and variance)\n# - Feature Importance\n# - Learning Curve\n# - summary f_1 scores?\n\ndef SOM_and_RF_alpha():\n\n\tmodel_label = 'alpha'\n\tmodel_number = sys.argv[1]\n\n\tprint_model_type(\"SOM and Random Forest\")\n\n\t# Import global training data. Contains roughly 100 of each class.\n\ttraining_file = \"{}/src/models/som_and_rf_alpha/train.csv\".format(project_dir)\n\tdf = pd.read_csv(training_file)\n\tprint(\"Using training file: {}\".format(training_file))\n\n\t# Fill empty entries. Maybe try filling these later.\n\tdf = df.fillna(-1)\n\n\t# Features to be tested. Column 0 is epics.\n\tfeatures = df.drop('class', axis=1).drop('probability', axis=1).columns[1:len(df.columns)-2]\n\n\tblank_classifier = RCF(random_state=2, class_weight='balanced')\n#\tparameters = {'n_estimators':[300, 400, 500, 600],\\\n#\t 'min_samples_split':[2, 3, 4, 5, 6],\\\n#\t 'max_features':[4, 5, 6, 7, 8] }\n\tparameters = {'n_estimators':[300],\\\n\t 'min_samples_split':[3],\\\n\t 'max_features':[4] }\n\tevaluate_model(model_label, model_number, blank_classifier, df, parameters, features, in_cv=5, out_cv=5)\n\n\t# Do learning curve analysis here\n\n\treturn\n\n\n# =============================================================================\n# MAIN\n# =============================================================================\n\ndef main():\n\tmake_model_table()\n#\tSOM_and_RF_alpha()\n\nif __name__ == \"__main__\":\n\tmain()\n", "from models.model_utilities import *\n\n\ndef make_model_table():\n training_epics = pd.read_csv('{}/training_sets/k2sc/c1-4_alpha.csv'.\n format(project_dir))['epic_number'].to_numpy()\n master_c1 = pd.read_csv('{}/tables/k2sc/campaign_1_master_table.csv'.\n format(project_dir))\n master_c2 = pd.read_csv('{}/tables/k2sc/campaign_2_master_table.csv'.\n format(project_dir))\n master_c3 = pd.read_csv('{}/tables/k2sc/campaign_3_master_table.csv'.\n format(project_dir))\n master_c4 = pd.read_csv('{}/tables/k2sc/campaign_4_master_table.csv'.\n format(project_dir))\n data_master = master_c1.append(master_c2, ignore_index=True).append(\n master_c3, ignore_index=True).append(master_c4, ignore_index=True)\n bin_columns = make_bin_columns(64)\n data_master = data_master.drop(bin_columns, axis=1)\n data_train = data_master[data_master['epic_number'].isin(training_epics)]\n som_c1 = pd.read_csv('{}/som_statistics/k2sc/c1-4_alpha/campaign_1.csv'\n .format(project_dir))\n som_c2 = pd.read_csv('{}/som_statistics/k2sc/c1-4_alpha/campaign_2.csv'\n .format(project_dir))\n som_c3 = pd.read_csv('{}/som_statistics/k2sc/c1-4_alpha/campaign_3.csv'\n .format(project_dir))\n som_c4 = pd.read_csv('{}/som_statistics/k2sc/c1-4_alpha/campaign_4.csv'\n .format(project_dir))\n som_master = som_c1.append(som_c2, ignore_index=True).append(som_c3,\n ignore_index=True).append(som_c4, ignore_index=True)\n som_train = som_master[som_master['epic_number'].isin(training_epics)]\n train_df = data_train.merge(som_train, how='left', on='epic_number')\n train_df = train_df.drop('k2_teff', axis=1).drop('k2_rad', axis=1).drop(\n 'k2_mass', axis=1)\n train_df.to_csv('{}/src/models/som_and_rf_alpha/train_FULL.csv'.format(\n project_dir), index=False)\n print('Model Table Created!')\n print(len(train_df.columns))\n return\n\n\ndef SOM_and_RF_alpha():\n model_label = 'alpha'\n model_number = sys.argv[1]\n print_model_type('SOM and Random Forest')\n training_file = '{}/src/models/som_and_rf_alpha/train.csv'.format(\n project_dir)\n df = pd.read_csv(training_file)\n print('Using training file: {}'.format(training_file))\n df = df.fillna(-1)\n features = df.drop('class', axis=1).drop('probability', axis=1).columns[\n 1:len(df.columns) - 2]\n blank_classifier = RCF(random_state=2, class_weight='balanced')\n parameters = {'n_estimators': [300], 'min_samples_split': [3],\n 'max_features': [4]}\n evaluate_model(model_label, model_number, blank_classifier, df,\n parameters, features, in_cv=5, out_cv=5)\n return\n\n\ndef main():\n make_model_table()\n\n\nif __name__ == '__main__':\n main()\n", "<import token>\n\n\ndef make_model_table():\n training_epics = pd.read_csv('{}/training_sets/k2sc/c1-4_alpha.csv'.\n format(project_dir))['epic_number'].to_numpy()\n master_c1 = pd.read_csv('{}/tables/k2sc/campaign_1_master_table.csv'.\n format(project_dir))\n master_c2 = pd.read_csv('{}/tables/k2sc/campaign_2_master_table.csv'.\n format(project_dir))\n master_c3 = pd.read_csv('{}/tables/k2sc/campaign_3_master_table.csv'.\n format(project_dir))\n master_c4 = pd.read_csv('{}/tables/k2sc/campaign_4_master_table.csv'.\n format(project_dir))\n data_master = master_c1.append(master_c2, ignore_index=True).append(\n master_c3, ignore_index=True).append(master_c4, ignore_index=True)\n bin_columns = make_bin_columns(64)\n data_master = data_master.drop(bin_columns, axis=1)\n data_train = data_master[data_master['epic_number'].isin(training_epics)]\n som_c1 = pd.read_csv('{}/som_statistics/k2sc/c1-4_alpha/campaign_1.csv'\n .format(project_dir))\n som_c2 = pd.read_csv('{}/som_statistics/k2sc/c1-4_alpha/campaign_2.csv'\n .format(project_dir))\n som_c3 = pd.read_csv('{}/som_statistics/k2sc/c1-4_alpha/campaign_3.csv'\n .format(project_dir))\n som_c4 = pd.read_csv('{}/som_statistics/k2sc/c1-4_alpha/campaign_4.csv'\n .format(project_dir))\n som_master = som_c1.append(som_c2, ignore_index=True).append(som_c3,\n ignore_index=True).append(som_c4, ignore_index=True)\n som_train = som_master[som_master['epic_number'].isin(training_epics)]\n train_df = data_train.merge(som_train, how='left', on='epic_number')\n train_df = train_df.drop('k2_teff', axis=1).drop('k2_rad', axis=1).drop(\n 'k2_mass', axis=1)\n train_df.to_csv('{}/src/models/som_and_rf_alpha/train_FULL.csv'.format(\n project_dir), index=False)\n print('Model Table Created!')\n print(len(train_df.columns))\n return\n\n\ndef SOM_and_RF_alpha():\n model_label = 'alpha'\n model_number = sys.argv[1]\n print_model_type('SOM and Random Forest')\n training_file = '{}/src/models/som_and_rf_alpha/train.csv'.format(\n project_dir)\n df = pd.read_csv(training_file)\n print('Using training file: {}'.format(training_file))\n df = df.fillna(-1)\n features = df.drop('class', axis=1).drop('probability', axis=1).columns[\n 1:len(df.columns) - 2]\n blank_classifier = RCF(random_state=2, class_weight='balanced')\n parameters = {'n_estimators': [300], 'min_samples_split': [3],\n 'max_features': [4]}\n evaluate_model(model_label, model_number, blank_classifier, df,\n parameters, features, in_cv=5, out_cv=5)\n return\n\n\ndef main():\n make_model_table()\n\n\nif __name__ == '__main__':\n main()\n", "<import token>\n\n\ndef make_model_table():\n training_epics = pd.read_csv('{}/training_sets/k2sc/c1-4_alpha.csv'.\n format(project_dir))['epic_number'].to_numpy()\n master_c1 = pd.read_csv('{}/tables/k2sc/campaign_1_master_table.csv'.\n format(project_dir))\n master_c2 = pd.read_csv('{}/tables/k2sc/campaign_2_master_table.csv'.\n format(project_dir))\n master_c3 = pd.read_csv('{}/tables/k2sc/campaign_3_master_table.csv'.\n format(project_dir))\n master_c4 = pd.read_csv('{}/tables/k2sc/campaign_4_master_table.csv'.\n format(project_dir))\n data_master = master_c1.append(master_c2, ignore_index=True).append(\n master_c3, ignore_index=True).append(master_c4, ignore_index=True)\n bin_columns = make_bin_columns(64)\n data_master = data_master.drop(bin_columns, axis=1)\n data_train = data_master[data_master['epic_number'].isin(training_epics)]\n som_c1 = pd.read_csv('{}/som_statistics/k2sc/c1-4_alpha/campaign_1.csv'\n .format(project_dir))\n som_c2 = pd.read_csv('{}/som_statistics/k2sc/c1-4_alpha/campaign_2.csv'\n .format(project_dir))\n som_c3 = pd.read_csv('{}/som_statistics/k2sc/c1-4_alpha/campaign_3.csv'\n .format(project_dir))\n som_c4 = pd.read_csv('{}/som_statistics/k2sc/c1-4_alpha/campaign_4.csv'\n .format(project_dir))\n som_master = som_c1.append(som_c2, ignore_index=True).append(som_c3,\n ignore_index=True).append(som_c4, ignore_index=True)\n som_train = som_master[som_master['epic_number'].isin(training_epics)]\n train_df = data_train.merge(som_train, how='left', on='epic_number')\n train_df = train_df.drop('k2_teff', axis=1).drop('k2_rad', axis=1).drop(\n 'k2_mass', axis=1)\n train_df.to_csv('{}/src/models/som_and_rf_alpha/train_FULL.csv'.format(\n project_dir), index=False)\n print('Model Table Created!')\n print(len(train_df.columns))\n return\n\n\ndef SOM_and_RF_alpha():\n model_label = 'alpha'\n model_number = sys.argv[1]\n print_model_type('SOM and Random Forest')\n training_file = '{}/src/models/som_and_rf_alpha/train.csv'.format(\n project_dir)\n df = pd.read_csv(training_file)\n print('Using training file: {}'.format(training_file))\n df = df.fillna(-1)\n features = df.drop('class', axis=1).drop('probability', axis=1).columns[\n 1:len(df.columns) - 2]\n blank_classifier = RCF(random_state=2, class_weight='balanced')\n parameters = {'n_estimators': [300], 'min_samples_split': [3],\n 'max_features': [4]}\n evaluate_model(model_label, model_number, blank_classifier, df,\n parameters, features, in_cv=5, out_cv=5)\n return\n\n\ndef main():\n make_model_table()\n\n\n<code token>\n", "<import token>\n<function token>\n\n\ndef SOM_and_RF_alpha():\n model_label = 'alpha'\n model_number = sys.argv[1]\n print_model_type('SOM and Random Forest')\n training_file = '{}/src/models/som_and_rf_alpha/train.csv'.format(\n project_dir)\n df = pd.read_csv(training_file)\n print('Using training file: {}'.format(training_file))\n df = df.fillna(-1)\n features = df.drop('class', axis=1).drop('probability', axis=1).columns[\n 1:len(df.columns) - 2]\n blank_classifier = RCF(random_state=2, class_weight='balanced')\n parameters = {'n_estimators': [300], 'min_samples_split': [3],\n 'max_features': [4]}\n evaluate_model(model_label, model_number, blank_classifier, df,\n parameters, features, in_cv=5, out_cv=5)\n return\n\n\ndef main():\n make_model_table()\n\n\n<code token>\n", "<import token>\n<function token>\n\n\ndef SOM_and_RF_alpha():\n model_label = 'alpha'\n model_number = sys.argv[1]\n print_model_type('SOM and Random Forest')\n training_file = '{}/src/models/som_and_rf_alpha/train.csv'.format(\n project_dir)\n df = pd.read_csv(training_file)\n print('Using training file: {}'.format(training_file))\n df = df.fillna(-1)\n features = df.drop('class', axis=1).drop('probability', axis=1).columns[\n 1:len(df.columns) - 2]\n blank_classifier = RCF(random_state=2, class_weight='balanced')\n parameters = {'n_estimators': [300], 'min_samples_split': [3],\n 'max_features': [4]}\n evaluate_model(model_label, model_number, blank_classifier, df,\n parameters, features, in_cv=5, out_cv=5)\n return\n\n\n<function token>\n<code token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<code token>\n" ]
false
99,380
abe3c5da35fb8905ce99392cdce6ed2961c6dd3f
from django.contrib import admin from dashboard.sensors.models import Sensor class SensorModelAdmin(admin.ModelAdmin): list_display = ["name", "timestamp", "user", "active"] list_filter = ["timestamp"] search_fields = ["name"] class Meta: model = Sensor admin.site.register(Sensor, SensorModelAdmin)
[ "from django.contrib import admin\n\nfrom dashboard.sensors.models import Sensor\n\nclass SensorModelAdmin(admin.ModelAdmin):\n list_display = [\"name\", \"timestamp\", \"user\", \"active\"]\n list_filter = [\"timestamp\"]\n search_fields = [\"name\"]\n\n class Meta:\n model = Sensor\n\nadmin.site.register(Sensor, SensorModelAdmin)\n", "from django.contrib import admin\nfrom dashboard.sensors.models import Sensor\n\n\nclass SensorModelAdmin(admin.ModelAdmin):\n list_display = ['name', 'timestamp', 'user', 'active']\n list_filter = ['timestamp']\n search_fields = ['name']\n\n\n class Meta:\n model = Sensor\n\n\nadmin.site.register(Sensor, SensorModelAdmin)\n", "<import token>\n\n\nclass SensorModelAdmin(admin.ModelAdmin):\n list_display = ['name', 'timestamp', 'user', 'active']\n list_filter = ['timestamp']\n search_fields = ['name']\n\n\n class Meta:\n model = Sensor\n\n\nadmin.site.register(Sensor, SensorModelAdmin)\n", "<import token>\n\n\nclass SensorModelAdmin(admin.ModelAdmin):\n list_display = ['name', 'timestamp', 'user', 'active']\n list_filter = ['timestamp']\n search_fields = ['name']\n\n\n class Meta:\n model = Sensor\n\n\n<code token>\n", "<import token>\n\n\nclass SensorModelAdmin(admin.ModelAdmin):\n <assignment token>\n <assignment token>\n <assignment token>\n\n\n class Meta:\n model = Sensor\n\n\n<code token>\n", "<import token>\n<class token>\n<code token>\n" ]
false
99,381
e375bdce3279b0cb51fb9140b81c1f3cf6808c25
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.core.validators import validate_email from django.core.exceptions import ValidationError from django.shortcuts import render, redirect from django.contrib import messages from django.core.mail import EmailMessage from django.template.loader import get_template import bcrypt from .forms import * from .models import * # Create your views here. def login(request): email = request.POST['email'] password = request.POST['password'] user = User.objects.filter(email=email) if len(user) > 0: is_pass = bcrypt.checkpw(password.encode(), user[0].password.encode()) if is_pass: request.session['id'] = user[0].id messages.success(request, 'Logged In!') return redirect('/reviews') else: messages.error(request, "Incorrect email and/or password") return redirect('/login-page') else: messages.error(request, "User does not exist") return redirect('/login-page') def register(request): errors = User.objects.validate_user(request.POST) if len(errors): for tag, error in errors.iteritems(): messages.error(request, error) return redirect('/register-page') else: name = request.POST['name'] email = request.POST['email'] password = request.POST['password'] hashed_pw = bcrypt.hashpw(password.encode(), bcrypt.gensalt()) User.objects.create(name=name, email=email, password=hashed_pw) messages.success(request, 'User Registered') return redirect('/login-page') def logout(request): request.session.clear() return redirect('/') def index(request): return render(request, 'breath/index.html') def about(request): return render(request, 'breath/about.html') def register_page(request): return render(request, 'breath/register.html') def login_page(request): return render(request, 'breath/login.html') def gallery(request): return render(request, 'breath/gallery.html') def map(request): return render(request, 'breath/map.html') def reviews(request): reviews = Review.objects.all() context = { "reviews": reviews } return render(request, 'breath/reviews.html', context) def add_review(request): errors = Review.objects.validate_review(request.POST) if len(errors): for tag, error in errors.iteritems(): messages.error(request, error) return redirect('/reviews') else: user = User.objects.get(id=request.session['id']) title = request.POST['title'] body = request.POST['body'] rating = request.POST['rating'] Review.objects.create(title=title, body=body, rating=rating, user=user) messages.success(request, 'Review Created') return redirect('/reviews') def contact(request): form_class = ContactForm if request.method == 'POST': form = form_class(data=request.POST) if form.is_valid(): contact_name = request.POST.get( 'contact_name' , '') contact_email = request.POST.get( 'contact_email' , '') form_content = request.POST.get('content', '') # Email the profile with the # contact information template = get_template('breath/contact_template.txt') context = { 'contact_name': contact_name, 'contact_email': contact_email, 'form_content': form_content, } content = template.render(context) email = EmailMessage( "New contact form submission", content, "Your website" +'', ['[email protected]'], headers = {'Reply-To': contact_email } ) email.send() return redirect('/contact') return render(request, 'breath/contact.html', { 'form': form_class, })
[ "# -*- coding: utf-8 -*-\nfrom __future__ import unicode_literals\nfrom django.core.validators import validate_email\nfrom django.core.exceptions import ValidationError\nfrom django.shortcuts import render, redirect\nfrom django.contrib import messages\nfrom django.core.mail import EmailMessage\nfrom django.template.loader import get_template\nimport bcrypt\nfrom .forms import *\nfrom .models import *\n\n# Create your views here.\n\ndef login(request):\n email = request.POST['email']\n password = request.POST['password']\n user = User.objects.filter(email=email)\n if len(user) > 0:\n is_pass = bcrypt.checkpw(password.encode(), user[0].password.encode())\n if is_pass:\n request.session['id'] = user[0].id\n messages.success(request, 'Logged In!')\n return redirect('/reviews')\n else:\n messages.error(request, \"Incorrect email and/or password\")\n return redirect('/login-page')\n else:\n messages.error(request, \"User does not exist\")\n return redirect('/login-page')\n\ndef register(request):\n errors = User.objects.validate_user(request.POST)\n if len(errors):\n for tag, error in errors.iteritems():\n messages.error(request, error)\n return redirect('/register-page')\n else:\n name = request.POST['name']\n email = request.POST['email']\n password = request.POST['password']\n hashed_pw = bcrypt.hashpw(password.encode(), bcrypt.gensalt())\n User.objects.create(name=name, email=email, password=hashed_pw)\n messages.success(request, 'User Registered')\n return redirect('/login-page')\n\ndef logout(request):\n request.session.clear()\n return redirect('/')\n\ndef index(request):\n return render(request, 'breath/index.html')\n\ndef about(request):\n return render(request, 'breath/about.html')\n\ndef register_page(request):\n return render(request, 'breath/register.html')\n\ndef login_page(request):\n return render(request, 'breath/login.html')\n\ndef gallery(request):\n return render(request, 'breath/gallery.html')\n\ndef map(request):\n return render(request, 'breath/map.html')\n\ndef reviews(request):\n reviews = Review.objects.all()\n context = {\n \"reviews\": reviews\n }\n return render(request, 'breath/reviews.html', context)\n\ndef add_review(request):\n errors = Review.objects.validate_review(request.POST)\n if len(errors):\n for tag, error in errors.iteritems():\n messages.error(request, error)\n return redirect('/reviews')\n else:\n user = User.objects.get(id=request.session['id'])\n title = request.POST['title']\n body = request.POST['body']\n rating = request.POST['rating']\n Review.objects.create(title=title, body=body, rating=rating, user=user)\n messages.success(request, 'Review Created')\n return redirect('/reviews')\n\n\ndef contact(request):\n form_class = ContactForm\n if request.method == 'POST':\n form = form_class(data=request.POST)\n if form.is_valid():\n contact_name = request.POST.get(\n 'contact_name'\n , '')\n contact_email = request.POST.get(\n 'contact_email'\n , '')\n form_content = request.POST.get('content', '')\n # Email the profile with the\n # contact information\n template = get_template('breath/contact_template.txt')\n context = {\n 'contact_name': contact_name,\n 'contact_email': contact_email,\n 'form_content': form_content,\n }\n content = template.render(context)\n email = EmailMessage(\n \"New contact form submission\",\n content,\n \"Your website\" +'',\n ['[email protected]'],\n headers = {'Reply-To': contact_email }\n )\n email.send()\n return redirect('/contact')\n return render(request, 'breath/contact.html', {\n 'form': form_class,\n })\n", "from __future__ import unicode_literals\nfrom django.core.validators import validate_email\nfrom django.core.exceptions import ValidationError\nfrom django.shortcuts import render, redirect\nfrom django.contrib import messages\nfrom django.core.mail import EmailMessage\nfrom django.template.loader import get_template\nimport bcrypt\nfrom .forms import *\nfrom .models import *\n\n\ndef login(request):\n email = request.POST['email']\n password = request.POST['password']\n user = User.objects.filter(email=email)\n if len(user) > 0:\n is_pass = bcrypt.checkpw(password.encode(), user[0].password.encode())\n if is_pass:\n request.session['id'] = user[0].id\n messages.success(request, 'Logged In!')\n return redirect('/reviews')\n else:\n messages.error(request, 'Incorrect email and/or password')\n return redirect('/login-page')\n else:\n messages.error(request, 'User does not exist')\n return redirect('/login-page')\n\n\ndef register(request):\n errors = User.objects.validate_user(request.POST)\n if len(errors):\n for tag, error in errors.iteritems():\n messages.error(request, error)\n return redirect('/register-page')\n else:\n name = request.POST['name']\n email = request.POST['email']\n password = request.POST['password']\n hashed_pw = bcrypt.hashpw(password.encode(), bcrypt.gensalt())\n User.objects.create(name=name, email=email, password=hashed_pw)\n messages.success(request, 'User Registered')\n return redirect('/login-page')\n\n\ndef logout(request):\n request.session.clear()\n return redirect('/')\n\n\ndef index(request):\n return render(request, 'breath/index.html')\n\n\ndef about(request):\n return render(request, 'breath/about.html')\n\n\ndef register_page(request):\n return render(request, 'breath/register.html')\n\n\ndef login_page(request):\n return render(request, 'breath/login.html')\n\n\ndef gallery(request):\n return render(request, 'breath/gallery.html')\n\n\ndef map(request):\n return render(request, 'breath/map.html')\n\n\ndef reviews(request):\n reviews = Review.objects.all()\n context = {'reviews': reviews}\n return render(request, 'breath/reviews.html', context)\n\n\ndef add_review(request):\n errors = Review.objects.validate_review(request.POST)\n if len(errors):\n for tag, error in errors.iteritems():\n messages.error(request, error)\n return redirect('/reviews')\n else:\n user = User.objects.get(id=request.session['id'])\n title = request.POST['title']\n body = request.POST['body']\n rating = request.POST['rating']\n Review.objects.create(title=title, body=body, rating=rating, user=user)\n messages.success(request, 'Review Created')\n return redirect('/reviews')\n\n\ndef contact(request):\n form_class = ContactForm\n if request.method == 'POST':\n form = form_class(data=request.POST)\n if form.is_valid():\n contact_name = request.POST.get('contact_name', '')\n contact_email = request.POST.get('contact_email', '')\n form_content = request.POST.get('content', '')\n template = get_template('breath/contact_template.txt')\n context = {'contact_name': contact_name, 'contact_email':\n contact_email, 'form_content': form_content}\n content = template.render(context)\n email = EmailMessage('New contact form submission', content, \n 'Your website' + '', ['[email protected]'], headers={\n 'Reply-To': contact_email})\n email.send()\n return redirect('/contact')\n return render(request, 'breath/contact.html', {'form': form_class})\n", "<import token>\n\n\ndef login(request):\n email = request.POST['email']\n password = request.POST['password']\n user = User.objects.filter(email=email)\n if len(user) > 0:\n is_pass = bcrypt.checkpw(password.encode(), user[0].password.encode())\n if is_pass:\n request.session['id'] = user[0].id\n messages.success(request, 'Logged In!')\n return redirect('/reviews')\n else:\n messages.error(request, 'Incorrect email and/or password')\n return redirect('/login-page')\n else:\n messages.error(request, 'User does not exist')\n return redirect('/login-page')\n\n\ndef register(request):\n errors = User.objects.validate_user(request.POST)\n if len(errors):\n for tag, error in errors.iteritems():\n messages.error(request, error)\n return redirect('/register-page')\n else:\n name = request.POST['name']\n email = request.POST['email']\n password = request.POST['password']\n hashed_pw = bcrypt.hashpw(password.encode(), bcrypt.gensalt())\n User.objects.create(name=name, email=email, password=hashed_pw)\n messages.success(request, 'User Registered')\n return redirect('/login-page')\n\n\ndef logout(request):\n request.session.clear()\n return redirect('/')\n\n\ndef index(request):\n return render(request, 'breath/index.html')\n\n\ndef about(request):\n return render(request, 'breath/about.html')\n\n\ndef register_page(request):\n return render(request, 'breath/register.html')\n\n\ndef login_page(request):\n return render(request, 'breath/login.html')\n\n\ndef gallery(request):\n return render(request, 'breath/gallery.html')\n\n\ndef map(request):\n return render(request, 'breath/map.html')\n\n\ndef reviews(request):\n reviews = Review.objects.all()\n context = {'reviews': reviews}\n return render(request, 'breath/reviews.html', context)\n\n\ndef add_review(request):\n errors = Review.objects.validate_review(request.POST)\n if len(errors):\n for tag, error in errors.iteritems():\n messages.error(request, error)\n return redirect('/reviews')\n else:\n user = User.objects.get(id=request.session['id'])\n title = request.POST['title']\n body = request.POST['body']\n rating = request.POST['rating']\n Review.objects.create(title=title, body=body, rating=rating, user=user)\n messages.success(request, 'Review Created')\n return redirect('/reviews')\n\n\ndef contact(request):\n form_class = ContactForm\n if request.method == 'POST':\n form = form_class(data=request.POST)\n if form.is_valid():\n contact_name = request.POST.get('contact_name', '')\n contact_email = request.POST.get('contact_email', '')\n form_content = request.POST.get('content', '')\n template = get_template('breath/contact_template.txt')\n context = {'contact_name': contact_name, 'contact_email':\n contact_email, 'form_content': form_content}\n content = template.render(context)\n email = EmailMessage('New contact form submission', content, \n 'Your website' + '', ['[email protected]'], headers={\n 'Reply-To': contact_email})\n email.send()\n return redirect('/contact')\n return render(request, 'breath/contact.html', {'form': form_class})\n", "<import token>\n\n\ndef login(request):\n email = request.POST['email']\n password = request.POST['password']\n user = User.objects.filter(email=email)\n if len(user) > 0:\n is_pass = bcrypt.checkpw(password.encode(), user[0].password.encode())\n if is_pass:\n request.session['id'] = user[0].id\n messages.success(request, 'Logged In!')\n return redirect('/reviews')\n else:\n messages.error(request, 'Incorrect email and/or password')\n return redirect('/login-page')\n else:\n messages.error(request, 'User does not exist')\n return redirect('/login-page')\n\n\ndef register(request):\n errors = User.objects.validate_user(request.POST)\n if len(errors):\n for tag, error in errors.iteritems():\n messages.error(request, error)\n return redirect('/register-page')\n else:\n name = request.POST['name']\n email = request.POST['email']\n password = request.POST['password']\n hashed_pw = bcrypt.hashpw(password.encode(), bcrypt.gensalt())\n User.objects.create(name=name, email=email, password=hashed_pw)\n messages.success(request, 'User Registered')\n return redirect('/login-page')\n\n\ndef logout(request):\n request.session.clear()\n return redirect('/')\n\n\ndef index(request):\n return render(request, 'breath/index.html')\n\n\ndef about(request):\n return render(request, 'breath/about.html')\n\n\ndef register_page(request):\n return render(request, 'breath/register.html')\n\n\ndef login_page(request):\n return render(request, 'breath/login.html')\n\n\n<function token>\n\n\ndef map(request):\n return render(request, 'breath/map.html')\n\n\ndef reviews(request):\n reviews = Review.objects.all()\n context = {'reviews': reviews}\n return render(request, 'breath/reviews.html', context)\n\n\ndef add_review(request):\n errors = Review.objects.validate_review(request.POST)\n if len(errors):\n for tag, error in errors.iteritems():\n messages.error(request, error)\n return redirect('/reviews')\n else:\n user = User.objects.get(id=request.session['id'])\n title = request.POST['title']\n body = request.POST['body']\n rating = request.POST['rating']\n Review.objects.create(title=title, body=body, rating=rating, user=user)\n messages.success(request, 'Review Created')\n return redirect('/reviews')\n\n\ndef contact(request):\n form_class = ContactForm\n if request.method == 'POST':\n form = form_class(data=request.POST)\n if form.is_valid():\n contact_name = request.POST.get('contact_name', '')\n contact_email = request.POST.get('contact_email', '')\n form_content = request.POST.get('content', '')\n template = get_template('breath/contact_template.txt')\n context = {'contact_name': contact_name, 'contact_email':\n contact_email, 'form_content': form_content}\n content = template.render(context)\n email = EmailMessage('New contact form submission', content, \n 'Your website' + '', ['[email protected]'], headers={\n 'Reply-To': contact_email})\n email.send()\n return redirect('/contact')\n return render(request, 'breath/contact.html', {'form': form_class})\n", "<import token>\n<function token>\n\n\ndef register(request):\n errors = User.objects.validate_user(request.POST)\n if len(errors):\n for tag, error in errors.iteritems():\n messages.error(request, error)\n return redirect('/register-page')\n else:\n name = request.POST['name']\n email = request.POST['email']\n password = request.POST['password']\n hashed_pw = bcrypt.hashpw(password.encode(), bcrypt.gensalt())\n User.objects.create(name=name, email=email, password=hashed_pw)\n messages.success(request, 'User Registered')\n return redirect('/login-page')\n\n\ndef logout(request):\n request.session.clear()\n return redirect('/')\n\n\ndef index(request):\n return render(request, 'breath/index.html')\n\n\ndef about(request):\n return render(request, 'breath/about.html')\n\n\ndef register_page(request):\n return render(request, 'breath/register.html')\n\n\ndef login_page(request):\n return render(request, 'breath/login.html')\n\n\n<function token>\n\n\ndef map(request):\n return render(request, 'breath/map.html')\n\n\ndef reviews(request):\n reviews = Review.objects.all()\n context = {'reviews': reviews}\n return render(request, 'breath/reviews.html', context)\n\n\ndef add_review(request):\n errors = Review.objects.validate_review(request.POST)\n if len(errors):\n for tag, error in errors.iteritems():\n messages.error(request, error)\n return redirect('/reviews')\n else:\n user = User.objects.get(id=request.session['id'])\n title = request.POST['title']\n body = request.POST['body']\n rating = request.POST['rating']\n Review.objects.create(title=title, body=body, rating=rating, user=user)\n messages.success(request, 'Review Created')\n return redirect('/reviews')\n\n\ndef contact(request):\n form_class = ContactForm\n if request.method == 'POST':\n form = form_class(data=request.POST)\n if form.is_valid():\n contact_name = request.POST.get('contact_name', '')\n contact_email = request.POST.get('contact_email', '')\n form_content = request.POST.get('content', '')\n template = get_template('breath/contact_template.txt')\n context = {'contact_name': contact_name, 'contact_email':\n contact_email, 'form_content': form_content}\n content = template.render(context)\n email = EmailMessage('New contact form submission', content, \n 'Your website' + '', ['[email protected]'], headers={\n 'Reply-To': contact_email})\n email.send()\n return redirect('/contact')\n return render(request, 'breath/contact.html', {'form': form_class})\n", "<import token>\n<function token>\n\n\ndef register(request):\n errors = User.objects.validate_user(request.POST)\n if len(errors):\n for tag, error in errors.iteritems():\n messages.error(request, error)\n return redirect('/register-page')\n else:\n name = request.POST['name']\n email = request.POST['email']\n password = request.POST['password']\n hashed_pw = bcrypt.hashpw(password.encode(), bcrypt.gensalt())\n User.objects.create(name=name, email=email, password=hashed_pw)\n messages.success(request, 'User Registered')\n return redirect('/login-page')\n\n\ndef logout(request):\n request.session.clear()\n return redirect('/')\n\n\ndef index(request):\n return render(request, 'breath/index.html')\n\n\ndef about(request):\n return render(request, 'breath/about.html')\n\n\ndef register_page(request):\n return render(request, 'breath/register.html')\n\n\ndef login_page(request):\n return render(request, 'breath/login.html')\n\n\n<function token>\n\n\ndef map(request):\n return render(request, 'breath/map.html')\n\n\n<function token>\n\n\ndef add_review(request):\n errors = Review.objects.validate_review(request.POST)\n if len(errors):\n for tag, error in errors.iteritems():\n messages.error(request, error)\n return redirect('/reviews')\n else:\n user = User.objects.get(id=request.session['id'])\n title = request.POST['title']\n body = request.POST['body']\n rating = request.POST['rating']\n Review.objects.create(title=title, body=body, rating=rating, user=user)\n messages.success(request, 'Review Created')\n return redirect('/reviews')\n\n\ndef contact(request):\n form_class = ContactForm\n if request.method == 'POST':\n form = form_class(data=request.POST)\n if form.is_valid():\n contact_name = request.POST.get('contact_name', '')\n contact_email = request.POST.get('contact_email', '')\n form_content = request.POST.get('content', '')\n template = get_template('breath/contact_template.txt')\n context = {'contact_name': contact_name, 'contact_email':\n contact_email, 'form_content': form_content}\n content = template.render(context)\n email = EmailMessage('New contact form submission', content, \n 'Your website' + '', ['[email protected]'], headers={\n 'Reply-To': contact_email})\n email.send()\n return redirect('/contact')\n return render(request, 'breath/contact.html', {'form': form_class})\n", "<import token>\n<function token>\n\n\ndef register(request):\n errors = User.objects.validate_user(request.POST)\n if len(errors):\n for tag, error in errors.iteritems():\n messages.error(request, error)\n return redirect('/register-page')\n else:\n name = request.POST['name']\n email = request.POST['email']\n password = request.POST['password']\n hashed_pw = bcrypt.hashpw(password.encode(), bcrypt.gensalt())\n User.objects.create(name=name, email=email, password=hashed_pw)\n messages.success(request, 'User Registered')\n return redirect('/login-page')\n\n\ndef logout(request):\n request.session.clear()\n return redirect('/')\n\n\ndef index(request):\n return render(request, 'breath/index.html')\n\n\ndef about(request):\n return render(request, 'breath/about.html')\n\n\ndef register_page(request):\n return render(request, 'breath/register.html')\n\n\n<function token>\n<function token>\n\n\ndef map(request):\n return render(request, 'breath/map.html')\n\n\n<function token>\n\n\ndef add_review(request):\n errors = Review.objects.validate_review(request.POST)\n if len(errors):\n for tag, error in errors.iteritems():\n messages.error(request, error)\n return redirect('/reviews')\n else:\n user = User.objects.get(id=request.session['id'])\n title = request.POST['title']\n body = request.POST['body']\n rating = request.POST['rating']\n Review.objects.create(title=title, body=body, rating=rating, user=user)\n messages.success(request, 'Review Created')\n return redirect('/reviews')\n\n\ndef contact(request):\n form_class = ContactForm\n if request.method == 'POST':\n form = form_class(data=request.POST)\n if form.is_valid():\n contact_name = request.POST.get('contact_name', '')\n contact_email = request.POST.get('contact_email', '')\n form_content = request.POST.get('content', '')\n template = get_template('breath/contact_template.txt')\n context = {'contact_name': contact_name, 'contact_email':\n contact_email, 'form_content': form_content}\n content = template.render(context)\n email = EmailMessage('New contact form submission', content, \n 'Your website' + '', ['[email protected]'], headers={\n 'Reply-To': contact_email})\n email.send()\n return redirect('/contact')\n return render(request, 'breath/contact.html', {'form': form_class})\n", "<import token>\n<function token>\n\n\ndef register(request):\n errors = User.objects.validate_user(request.POST)\n if len(errors):\n for tag, error in errors.iteritems():\n messages.error(request, error)\n return redirect('/register-page')\n else:\n name = request.POST['name']\n email = request.POST['email']\n password = request.POST['password']\n hashed_pw = bcrypt.hashpw(password.encode(), bcrypt.gensalt())\n User.objects.create(name=name, email=email, password=hashed_pw)\n messages.success(request, 'User Registered')\n return redirect('/login-page')\n\n\ndef logout(request):\n request.session.clear()\n return redirect('/')\n\n\ndef index(request):\n return render(request, 'breath/index.html')\n\n\n<function token>\n\n\ndef register_page(request):\n return render(request, 'breath/register.html')\n\n\n<function token>\n<function token>\n\n\ndef map(request):\n return render(request, 'breath/map.html')\n\n\n<function token>\n\n\ndef add_review(request):\n errors = Review.objects.validate_review(request.POST)\n if len(errors):\n for tag, error in errors.iteritems():\n messages.error(request, error)\n return redirect('/reviews')\n else:\n user = User.objects.get(id=request.session['id'])\n title = request.POST['title']\n body = request.POST['body']\n rating = request.POST['rating']\n Review.objects.create(title=title, body=body, rating=rating, user=user)\n messages.success(request, 'Review Created')\n return redirect('/reviews')\n\n\ndef contact(request):\n form_class = ContactForm\n if request.method == 'POST':\n form = form_class(data=request.POST)\n if form.is_valid():\n contact_name = request.POST.get('contact_name', '')\n contact_email = request.POST.get('contact_email', '')\n form_content = request.POST.get('content', '')\n template = get_template('breath/contact_template.txt')\n context = {'contact_name': contact_name, 'contact_email':\n contact_email, 'form_content': form_content}\n content = template.render(context)\n email = EmailMessage('New contact form submission', content, \n 'Your website' + '', ['[email protected]'], headers={\n 'Reply-To': contact_email})\n email.send()\n return redirect('/contact')\n return render(request, 'breath/contact.html', {'form': form_class})\n", "<import token>\n<function token>\n<function token>\n\n\ndef logout(request):\n request.session.clear()\n return redirect('/')\n\n\ndef index(request):\n return render(request, 'breath/index.html')\n\n\n<function token>\n\n\ndef register_page(request):\n return render(request, 'breath/register.html')\n\n\n<function token>\n<function token>\n\n\ndef map(request):\n return render(request, 'breath/map.html')\n\n\n<function token>\n\n\ndef add_review(request):\n errors = Review.objects.validate_review(request.POST)\n if len(errors):\n for tag, error in errors.iteritems():\n messages.error(request, error)\n return redirect('/reviews')\n else:\n user = User.objects.get(id=request.session['id'])\n title = request.POST['title']\n body = request.POST['body']\n rating = request.POST['rating']\n Review.objects.create(title=title, body=body, rating=rating, user=user)\n messages.success(request, 'Review Created')\n return redirect('/reviews')\n\n\ndef contact(request):\n form_class = ContactForm\n if request.method == 'POST':\n form = form_class(data=request.POST)\n if form.is_valid():\n contact_name = request.POST.get('contact_name', '')\n contact_email = request.POST.get('contact_email', '')\n form_content = request.POST.get('content', '')\n template = get_template('breath/contact_template.txt')\n context = {'contact_name': contact_name, 'contact_email':\n contact_email, 'form_content': form_content}\n content = template.render(context)\n email = EmailMessage('New contact form submission', content, \n 'Your website' + '', ['[email protected]'], headers={\n 'Reply-To': contact_email})\n email.send()\n return redirect('/contact')\n return render(request, 'breath/contact.html', {'form': form_class})\n", "<import token>\n<function token>\n<function token>\n<function token>\n\n\ndef index(request):\n return render(request, 'breath/index.html')\n\n\n<function token>\n\n\ndef register_page(request):\n return render(request, 'breath/register.html')\n\n\n<function token>\n<function token>\n\n\ndef map(request):\n return render(request, 'breath/map.html')\n\n\n<function token>\n\n\ndef add_review(request):\n errors = Review.objects.validate_review(request.POST)\n if len(errors):\n for tag, error in errors.iteritems():\n messages.error(request, error)\n return redirect('/reviews')\n else:\n user = User.objects.get(id=request.session['id'])\n title = request.POST['title']\n body = request.POST['body']\n rating = request.POST['rating']\n Review.objects.create(title=title, body=body, rating=rating, user=user)\n messages.success(request, 'Review Created')\n return redirect('/reviews')\n\n\ndef contact(request):\n form_class = ContactForm\n if request.method == 'POST':\n form = form_class(data=request.POST)\n if form.is_valid():\n contact_name = request.POST.get('contact_name', '')\n contact_email = request.POST.get('contact_email', '')\n form_content = request.POST.get('content', '')\n template = get_template('breath/contact_template.txt')\n context = {'contact_name': contact_name, 'contact_email':\n contact_email, 'form_content': form_content}\n content = template.render(context)\n email = EmailMessage('New contact form submission', content, \n 'Your website' + '', ['[email protected]'], headers={\n 'Reply-To': contact_email})\n email.send()\n return redirect('/contact')\n return render(request, 'breath/contact.html', {'form': form_class})\n", "<import token>\n<function token>\n<function token>\n<function token>\n\n\ndef index(request):\n return render(request, 'breath/index.html')\n\n\n<function token>\n\n\ndef register_page(request):\n return render(request, 'breath/register.html')\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef add_review(request):\n errors = Review.objects.validate_review(request.POST)\n if len(errors):\n for tag, error in errors.iteritems():\n messages.error(request, error)\n return redirect('/reviews')\n else:\n user = User.objects.get(id=request.session['id'])\n title = request.POST['title']\n body = request.POST['body']\n rating = request.POST['rating']\n Review.objects.create(title=title, body=body, rating=rating, user=user)\n messages.success(request, 'Review Created')\n return redirect('/reviews')\n\n\ndef contact(request):\n form_class = ContactForm\n if request.method == 'POST':\n form = form_class(data=request.POST)\n if form.is_valid():\n contact_name = request.POST.get('contact_name', '')\n contact_email = request.POST.get('contact_email', '')\n form_content = request.POST.get('content', '')\n template = get_template('breath/contact_template.txt')\n context = {'contact_name': contact_name, 'contact_email':\n contact_email, 'form_content': form_content}\n content = template.render(context)\n email = EmailMessage('New contact form submission', content, \n 'Your website' + '', ['[email protected]'], headers={\n 'Reply-To': contact_email})\n email.send()\n return redirect('/contact')\n return render(request, 'breath/contact.html', {'form': form_class})\n", "<import token>\n<function token>\n<function token>\n<function token>\n\n\ndef index(request):\n return render(request, 'breath/index.html')\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef add_review(request):\n errors = Review.objects.validate_review(request.POST)\n if len(errors):\n for tag, error in errors.iteritems():\n messages.error(request, error)\n return redirect('/reviews')\n else:\n user = User.objects.get(id=request.session['id'])\n title = request.POST['title']\n body = request.POST['body']\n rating = request.POST['rating']\n Review.objects.create(title=title, body=body, rating=rating, user=user)\n messages.success(request, 'Review Created')\n return redirect('/reviews')\n\n\ndef contact(request):\n form_class = ContactForm\n if request.method == 'POST':\n form = form_class(data=request.POST)\n if form.is_valid():\n contact_name = request.POST.get('contact_name', '')\n contact_email = request.POST.get('contact_email', '')\n form_content = request.POST.get('content', '')\n template = get_template('breath/contact_template.txt')\n context = {'contact_name': contact_name, 'contact_email':\n contact_email, 'form_content': form_content}\n content = template.render(context)\n email = EmailMessage('New contact form submission', content, \n 'Your website' + '', ['[email protected]'], headers={\n 'Reply-To': contact_email})\n email.send()\n return redirect('/contact')\n return render(request, 'breath/contact.html', {'form': form_class})\n", "<import token>\n<function token>\n<function token>\n<function token>\n\n\ndef index(request):\n return render(request, 'breath/index.html')\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef contact(request):\n form_class = ContactForm\n if request.method == 'POST':\n form = form_class(data=request.POST)\n if form.is_valid():\n contact_name = request.POST.get('contact_name', '')\n contact_email = request.POST.get('contact_email', '')\n form_content = request.POST.get('content', '')\n template = get_template('breath/contact_template.txt')\n context = {'contact_name': contact_name, 'contact_email':\n contact_email, 'form_content': form_content}\n content = template.render(context)\n email = EmailMessage('New contact form submission', content, \n 'Your website' + '', ['[email protected]'], headers={\n 'Reply-To': contact_email})\n email.send()\n return redirect('/contact')\n return render(request, 'breath/contact.html', {'form': form_class})\n", "<import token>\n<function token>\n<function token>\n<function token>\n\n\ndef index(request):\n return render(request, 'breath/index.html')\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n" ]
false
99,382
f1084c0e6b78397f870309b816df766909b40ed9
# Python bytecode 2.7 (decompiled from Python 2.7) # Embedded file name: scripts/client/messenger/inject.py from messenger import MessengerEntry class messengerEntryProperty(property): def __get__(self, obj, objType=None): return MessengerEntry.g_instance class channelsCtrlProperty(property): def __get__(self, obj, objType=None): return MessengerEntry.g_instance.gui.channelsCtrl
[ "# Python bytecode 2.7 (decompiled from Python 2.7)\n# Embedded file name: scripts/client/messenger/inject.py\nfrom messenger import MessengerEntry\n\nclass messengerEntryProperty(property):\n\n def __get__(self, obj, objType=None):\n return MessengerEntry.g_instance\n\n\nclass channelsCtrlProperty(property):\n\n def __get__(self, obj, objType=None):\n return MessengerEntry.g_instance.gui.channelsCtrl\n", "from messenger import MessengerEntry\n\n\nclass messengerEntryProperty(property):\n\n def __get__(self, obj, objType=None):\n return MessengerEntry.g_instance\n\n\nclass channelsCtrlProperty(property):\n\n def __get__(self, obj, objType=None):\n return MessengerEntry.g_instance.gui.channelsCtrl\n", "<import token>\n\n\nclass messengerEntryProperty(property):\n\n def __get__(self, obj, objType=None):\n return MessengerEntry.g_instance\n\n\nclass channelsCtrlProperty(property):\n\n def __get__(self, obj, objType=None):\n return MessengerEntry.g_instance.gui.channelsCtrl\n", "<import token>\n\n\nclass messengerEntryProperty(property):\n <function token>\n\n\nclass channelsCtrlProperty(property):\n\n def __get__(self, obj, objType=None):\n return MessengerEntry.g_instance.gui.channelsCtrl\n", "<import token>\n<class token>\n\n\nclass channelsCtrlProperty(property):\n\n def __get__(self, obj, objType=None):\n return MessengerEntry.g_instance.gui.channelsCtrl\n", "<import token>\n<class token>\n\n\nclass channelsCtrlProperty(property):\n <function token>\n", "<import token>\n<class token>\n<class token>\n" ]
false
99,383
dbe32ed7e4a92f63970b49df5cc96c3a6d465b58
# this is simply a module that lets the interpreter know this directory is a Python package from compression import * from read import * from date_extraction import * from detrend import * from raster_extraction import * from effect_tools import *
[ "# this is simply a module that lets the interpreter know this directory is a Python package\n\nfrom compression import *\nfrom read import *\nfrom date_extraction import *\nfrom detrend import *\nfrom raster_extraction import *\nfrom effect_tools import *", "from compression import *\nfrom read import *\nfrom date_extraction import *\nfrom detrend import *\nfrom raster_extraction import *\nfrom effect_tools import *\n", "<import token>\n" ]
false
99,384
dee06de3c33f0e38df08169845e6edaf1474b583
def merge(dict1,dict2): return (dict2.update(dict1)) dict1={'a':10,'b':8} dict2={'x':17,'y':20} print(merge(dict1,dict2)) print(dict2)
[ "def merge(dict1,dict2):\r\n return (dict2.update(dict1))\r\ndict1={'a':10,'b':8}\r\ndict2={'x':17,'y':20}\r\nprint(merge(dict1,dict2))\r\nprint(dict2)\r\n", "def merge(dict1, dict2):\n return dict2.update(dict1)\n\n\ndict1 = {'a': 10, 'b': 8}\ndict2 = {'x': 17, 'y': 20}\nprint(merge(dict1, dict2))\nprint(dict2)\n", "def merge(dict1, dict2):\n return dict2.update(dict1)\n\n\n<assignment token>\nprint(merge(dict1, dict2))\nprint(dict2)\n", "def merge(dict1, dict2):\n return dict2.update(dict1)\n\n\n<assignment token>\n<code token>\n", "<function token>\n<assignment token>\n<code token>\n" ]
false
99,385
068f8110cbb9330d0b9f112b7c475259e42ae8b3
#!/usr/bin/python3 import os from formula import formula fullname = os.environ.get("RIT_FULLNAME") formula.run(fullname)
[ "#!/usr/bin/python3\nimport os\n\nfrom formula import formula\n\nfullname = os.environ.get(\"RIT_FULLNAME\")\n\nformula.run(fullname)\n", "import os\nfrom formula import formula\nfullname = os.environ.get('RIT_FULLNAME')\nformula.run(fullname)\n", "<import token>\nfullname = os.environ.get('RIT_FULLNAME')\nformula.run(fullname)\n", "<import token>\n<assignment token>\nformula.run(fullname)\n", "<import token>\n<assignment token>\n<code token>\n" ]
false
99,386
08218372e8fe023accea6eb2728548ea0ff8172f
def wrap(string, max_width): mystring='' for i in range(len(string)): if i >= max_width and i % max_width == 0 and i!=0: mystring += '\n' mystring+=string[i] return mystring
[ "def wrap(string, max_width):\n mystring=''\n for i in range(len(string)):\n if i >= max_width and i % max_width == 0 and i!=0:\n mystring += '\\n'\n mystring+=string[i]\n return mystring\n", "def wrap(string, max_width):\n mystring = ''\n for i in range(len(string)):\n if i >= max_width and i % max_width == 0 and i != 0:\n mystring += '\\n'\n mystring += string[i]\n return mystring\n", "<function token>\n" ]
false
99,387
578d2634bc08518f38be4ad90b98a1759d5dca88
# -*- coding:utf-8 -*- ''' Created on 2018年2月28日 @author: ning.lin ''' ''' 大图地址class或id有big字样 的 <div class="pho_big" id="phoBig" style="height: 640px;"> <div class="big_pic fn-clear" id="bigImg"> 小图地址 <div class="pho_small_box fn-clear mt25 " id="phoSmallPic"> ''' import json import time from scrapy import log from scrapy import cmdline import scrapy from scrapy.http import Request from scrapy.http.request.form import FormRequest from scrapy_redis.spiders import RedisSpider from selenium import webdriver from jiayuan.settings import IMAGES_STORE,USER_NAME,PASSWD from jiayuan.items import JiayuanItem,MainItem import redis class jiayuan_data(RedisSpider): pool=redis.ConnectionPool(host='127.0.0.1',port=6379,db=0,decode_responses=True) #427条记录 r = redis.StrictRedis(connection_pool=pool) name = "jiayuan_main" redis_key = 'jiayuan_main:start_urls' url_base = 'http://search.jiayuan.com/v2/index.php?key=&sex=f&stc=&sn=default&sv=1&p=%s&pt=163649&ft=off&f=select&mt=d' redis_key = "sinaspider:start_urls" login_url = 'http://login.jiayuan.com/'#登录时的url start_urls = [] pre_page_num = 25#每个搜索业面有25条记录 #head less模拟登录 option = webdriver.ChromeOptions() option.add_argument('--headless') option.add_argument("--window-size=1920,1080") prefs={"profile.managed_default_content_settings.images":2}#禁止加载图片 option.add_experimental_option("prefs",prefs) try: driver = webdriver.Chrome(chrome_options=option) except Exception as e: driver.close() print("spider出现了异常,关闭",str(e)) driver.get(login_url) time.sleep(3) driver.find_element_by_id("login_btn").click() driver.find_element_by_id("login_email").clear() driver.find_element_by_id("login_email").send_keys(USER_NAME) #修改为自己的用户名 driver.find_element_by_id("login_password").clear() driver.find_element_by_id("login_password").send_keys(PASSWD) #修改为自己的密码 #登录url #url="http://login.jiayuan.com/" driver.find_element_by_id("login_btn").click()#点击登录按钮 cookies = driver.get_cookies()#获取cookies for p in range(1,173649): search_url = "http://search.jiayuan.com/v2/index.php?key=&sex=f&stc=&sn=default&sv=1&p=%s&pt=173649&ft=off&f=select&mt=d" %(p) start_urls.append(search_url) #print("start_urls",len(start_urls)) # start_urls = [ # "http://search.jiayuan.com/v2/search_v2.php",#直接搜索结果,获取个人主页的url(先不登录) #"https://passport.jiayuan.com/dologin.php?pre_url=http://www.jiayuan.com/usercp",#登录页面post数据 # ] ''' 下载器中间件在下载器和Scrapy引擎之间,每一个request和response都会通过中间件进行处理。 在中间件中,对request进行处理的函数是process_request(request, spider) ''' def start_requests(self):# for url in self.start_urls: yield Request(url=url,callback=self.get_main_info) # yield scrapy.Request(url=search_url,callback=self.get_main_info) # return Request(url=url,callback=self.get_main_info) def get_main_info(self,response):#解析搜索业面的url #info = response.body.decode("utf-8") #登录后可以查看一下登录响应信息json.loads( # for url in self.start_urls: time.sleep(1) print("当前的url",response.url) print('重新加载url') self.driver.get(response.url) self.driver.implicitly_wait(3) user_list = self.driver.find_elements_by_xpath('/html//ul[@id="normal_user_container"]/li//div[@class="user_name"]/a[@class="os_stat"]')#得到多个li标签 if user_list==[]: print("user_list为空了,解析有问题") #print("user_list",type(user_list),user_list) url_details = []#详情页面的url for user in user_list: main_url_main = user.get_attribute("href") print("人员主页url",main_url_main) url_details.append(main_url_main) # self.redis_pipe.rpush("p",main_url_main)#详情页额外写入redis,也可以不写 # self.redis_pipe.execute() print("人员详情url2",len(url_details)) if url_details!=[]: for url in url_details: yield Request(url=url,cookies=self.cookies,callback=self.get_details)#解析人员详细信息 # yield item def get_details(self,response): ''' <class 'str'> 年 龄: 26-29岁之间 身 高: 169-185厘米 民 族: 汉族 学 历: 不限 相 册: 有照片 婚姻状况: 未婚 居 住 地: 湖北十堰 诚 信: 不限 将这种类型的文字全部转成{'学历': '不限', '婚姻状况': '未婚', '居住地': '湖北十堰', '相册': '有照片', '身高': '169-185厘米', '民族': '汉族', '诚信': '不限', '年龄': '26-29岁之间'}这种dict方便入库 ''' pass def parse(str1): temp_list = str1.split('\n') result={} result_str='' # temp_dict=[]#result_dict这是因为有些项目下面有多个标签,多个标签就需要合并起来 # result_dict = {}#多个dict合并后的结果 if len(temp_list)>1:#大于1说明该项下有值,否则此项未填信息 for i in range(len(temp_list)): if i%2==0: result[temp_list[i].replace(" ", "").replace(":", '')] = temp_list[i+1] return result #其他则返回str else: result_str = str1 return result_str item = JiayuanItem() self.driver.get(response.url) self.driver.implicitly_wait(3) print('打开浏览器') print("当前的url",response.url) age_info = self.driver.find_element_by_xpath('/html//h6[@class="member_name"]').text person_id = response.url[response.url.rfind('/')+1:response.url.index('?')] print("年龄地址信息",type(age_info),age_info) address = self.driver.find_elements_by_xpath('/html//h6[@class="member_name"]/a')#得到多个a标签的text str_address='' str_sheng=address[0].get_attribute("text") str_shi=address[1].get_attribute("text") print("人员地址",str_sheng+'sssss'+str_shi) ''' 人个信息 ''' person_info = self.driver.find_elements_by_xpath('/html//ul[@class="member_info_list fn-clear"]') person_dict={} for i in person_info: person_dict = parse(i.text) print("个人信息",person_dict) ''' 处理item,对应mysql的person_info表 ''' item['person_id'] = person_id item['province'] = str_sheng item['municipal'] = str_shi nick_name_info = self.driver.find_elements_by_xpath('/html//div[@class="member_info_r yh"]/h4') nick_name = nick_name_info[0].text[0:nick_name_info[0].text.index("I")] print("昵称", nick_name) item['nike_name'] = nick_name item['education'] = person_dict['学历'] item['height'] = person_dict['身高'] item['buy_car'] = person_dict['购车'] item['salary'] = person_dict['月薪'] item['housing'] = person_dict['住房'] item['weight'] = person_dict['体重'] item['constellation'] = person_dict['星座'] item['nation'] = person_dict['民族'] item['zodiac'] = person_dict['属相'] item['blood_type'] = person_dict['血型'] item['age'] = age_info[0:age_info.index(',')] print("年龄",age_info[0:age_info.index(',')]) item['address'] = str_sheng+str_shi item['age_info'] = age_info item['image_dir'] = nick_name+'_'+item['age']+'_'+person_id#下载的相片归类 item['url'] = response.url #个人短语 item['introduce_oneself'] = self.driver.find_element_by_xpath('/html//div[@class="main_1000 mt15 fn-clear"]//div[@class="js_text"]').text print("个性短语",item['introduce_oneself']) #个性标签,有些人是没有个性标签的 #需要点击”更多“才能全部显示出来,否则只有4个 item['interest_label']='' item['personality_label']='' try: #link_a = self.driver.find_element_by_xpath('/html//div[@class="d_more DNA_xq_more DNA_xq_more_a"]/a') #link_a.click() self.driver.find_element_by_xpath('/html//div[@class="d_more DNA_xq_more DNA_xq_more_a"]/a').click() time.sleep(1) gexing_info = self.driver.find_elements_by_xpath('/html//div[@class="test4"]//div[@class="list_a fn-clear"]') print("aaa",type(gexing_info),gexing_info) gexing_tag='' for i in gexing_info: gexing_tag += i.text # a = item.find_element_by_xpath('div[@class="pag_list_grey_c"]').text item['personality_label'] = "".join(gexing_tag) except Exception as e: item['personality_label'] = '还没有填写个性元素' print("个性",item['personality_label']) #她的兴趣爱好有可能也是找不到的 try: #link_a = self.driver.find_element_by_xpath('/html//div[@class="d_more DNA_xq_more DNA_xq_more_a"]/a') #link_a.click() self.driver.find_element_by_xpath('/html//div[@class="d_more DNA_xq_more"]/a').click() # self.driver.find_element_by_xpath('/html/body/div[6]/div[1]/div[3]/div/div[1]/div[2]/a').click self.driver.implicitly_wait(1) aihao_info = self.driver.find_elements_by_xpath('/html/body/div[6]/div[1]/div[3]/div/div[1]/div[1]/ul') print("bbb",type(aihao_info),aihao_info) aihao_tag='' for i in aihao_info: aihao_tag += i.text # a = item.find_element_by_xpath('div[@class="pag_list_grey_c"]').text item['interest_label'] = "".join(aihao_tag) except Exception as e: item['interest_label'] = '还没有填写兴趣爱好' print("她的兴趣爱好",item['interest_label']) find_mate = self.driver.find_elements_by_xpath('/html//div[@class="bg_white mt15"]') ''' 择偶要求 ''' mate = find_mate[1].find_elements_by_xpath('div[@class="js_box"]/ul[@class="js_list fn-clear"]') mate_dict={} for i in mate: mate_dict = parse(i.text) item['person_id_mate'] = person_id item['age_mate'] = mate_dict['年龄'] item['height_mate'] = mate_dict['身高'] item['nation_mate'] = mate_dict['民族'] item['education_mate'] = mate_dict['学历'] item['image_mate'] = mate_dict['相册'] item['marital_status'] = mate_dict['婚姻状况'] item['address_mate'] = mate_dict['居住地'] item['sincerity_mate'] = mate_dict['诚信']#诚信 print("择偶要求",mate_dict) ''' 生活方式 ''' life = find_mate[2].find_elements_by_xpath('div[@class="js_box"]/ul[@class="js_list fn-clear"]') life_style={} for i in life: temp = parse(i.text) if isinstance(temp,dict): life_style.update(parse(i.text))#update就合并两个dict else: life_style['吸烟'] = '未填写生活方式' life_style['饮酒'] = '未填写生活方式' life_style['锻炼习惯'] = '未填写生活方式' life_style['饮食习惯'] = '未填写生活方式' life_style['逛街购物'] = '未填写生活方式' life_style['宗教信仰'] = '未填写生活方式' life_style['作息时间'] = '未填写生活方式' life_style['交际圈子'] = '未填写生活方式' life_style['最大消费'] = '未填写生活方式' try: housework = [] pet = [] jiawu1 = find_mate[2].find_elements_by_xpath('div[@class="js_box"]//div[@class="pt25 fn-clear"]//dd[@class="cur"]') for i in jiawu1: housework.append(i.text)#0为家务水平,1为宠物喜欢程度 print("家务1 ",i.text) jiawu2 = find_mate[2].find_elements_by_xpath('div[@class="js_box"]//div[@class="fl pr"]/em') for i in jiawu2: pet.append(i.text)#0为家务分配,1为关于宠物 print("家务2 ",i.text) except Exception as e: housework.append('家务水平程度未填写') housework.append('宠物喜欢程度未填写') pet.append('家务分配未填写') pet.append ('关于宠物未填写') item['person_id_life'] = person_id item['smoke'] = life_style['吸烟'] item['drink_wine'] = life_style['饮酒'] item['exercise_habits'] = life_style['锻炼习惯'] item['eating_habits'] = life_style['饮食习惯'] item['shopping'] = life_style['逛街购物'] item['religious_belief'] = life_style['宗教信仰'] item['time_table'] = life_style['作息时间'] item['circle_of_communication'] = life_style['交际圈子'] item['maximum_consumption'] = life_style['最大消费'] item['housework'] = housework[0] item['household_assignment'] = pet[0] item['pet'] = housework[1] item['about_pets'] = pet[1] print("生活方式",life_style) print("家务",housework[0],pet[0]) print("宠物",housework[1],pet[1]) ''' 经济实力 ''' economic_dict={} economic = find_mate[3].find_elements_by_xpath('div[@class="js_box"]/ul[@class="js_list fn-clear"]') for i in economic: economic_dict = parse(i.text) item['person_id_economic'] = person_id item['salary_economic'] = economic_dict['月薪'] item['buy_house_economic'] = economic_dict['购房'] item['buy_car_economic'] = economic_dict['购车'] item['economic_concept'] = economic_dict['经济观念'] item['investment_financing'] = economic_dict['投资理财'] item['foreign_debt'] = economic_dict['外债贷款'] print("经济实力",economic_dict) ''' 工作学习 ''' work = find_mate[4].find_elements_by_xpath('div[@class="js_box"]/ul[@class="js_list fn-clear"]') work_study = {}# for i in work: if i.text: temp = parse(i.text) if isinstance(temp,dict): work_study.update(parse(i.text))#update就合并两个dict else: work_study['职业职位'] = '未填写工作学习方式' work_study['公司行业'] = '未填写工作学习方式' work_study['公司类型'] = '未填写工作学习方式' work_study['福利待遇'] = '未填写工作学习方式' work_study['工作状态'] = '未填写工作学习方式' work_study['调动工作可能性'] = '未填写工作学习方式' work_study['事业与家庭'] = '未填写工作学习方式' work_study['海外工作可能性'] = '未填写工作学习方式' work_study['毕业院校'] = '未填写工作学习方式' work_study['专业类型'] = '未填写工作学习方式' work_study['语言能力'] = '未填写工作学习方式' item['person_id_study'] = person_id item['position'] = work_study['职业职位'] item['company'] = work_study['公司行业'] item['company_type'] = work_study['公司类型'] item['welfare'] = work_study['福利待遇'] item['working'] = work_study['工作状态'] item['transfer_work'] = work_study['调动工作可能性'] item['work_family'] = work_study['事业与家庭'] item['overseas_job'] = work_study['海外工作可能性'] item['university'] = work_study['毕业院校'] item['major'] = work_study['专业类型'] item['language'] = work_study['语言能力'] print("工作学习",work_study) ''' 婚姻观念 ''' marriage = find_mate[5].find_elements_by_xpath('div[@class="js_box"]/ul[@class="js_list fn-clear"]') marriage_family={} for i in marriage: if i.text: temp = parse(i.text) if isinstance(temp,dict): marriage_family.update(parse(i.text))#update就合并两个dict else: marriage_family['籍贯'] = '未填写婚姻观念' marriage_family['户口'] = '未填写婚姻观念' marriage_family['国籍'] = '未填写婚姻观念' marriage_family['个性待征'] = '未填写婚姻观念' marriage_family['幽默感'] = '未填写婚姻观念' marriage_family['脾气'] = '未填写婚姻观念' marriage_family['对待感情'] = '未填写婚姻观念' marriage_family['是否要小孩'] = '未填写婚姻观念' marriage_family['何时结婚'] = '未填写婚姻观念' marriage_family['是否能接受异地恋'] = '未填写婚姻观念' marriage_family['理想婚姻'] = '未填写婚姻观念' marriage_family['愿与对方父母同住'] = '未填写婚姻观念' marriage_family['家中排行'] = '未填写婚姻观念' marriage_family['父母情况'] = '未填写婚姻观念' marriage_family['兄弟姐妹'] = '未填写婚姻观念' marriage_family['父母经济情况'] = '未填写婚姻观念' marriage_family['父母医保情况'] = '未填写婚姻观念' marriage_family['父母的工作'] = '未填写婚姻观念' item['person_id_marriage'] = person_id item['address_marriage'] = marriage_family['籍贯'] item['registered_residence'] = marriage_family['户口'] item['nationality'] = marriage_family['国籍'] item['personality'] = marriage_family['个性待征'] item['humor'] = marriage_family['幽默感'] item['temper'] = marriage_family['脾气'] item['feelings'] = marriage_family['对待感情'] item['want_child'] = marriage_family['是否要小孩'] item['when_mary'] = marriage_family['何时结婚'] item['strange_love'] = marriage_family['是否能接受异地恋'] item['ideal_marriage'] = marriage_family['理想婚姻'] item['live_parents'] = marriage_family['愿与对方父母同住'] item['rankings_home'] = marriage_family['家中排行'] item['parents_situation'] = marriage_family['父母情况'] item['brothers'] = marriage_family['兄弟姐妹'] item['parents_economic'] = marriage_family['父母经济情况'] item['parents_medical'] = marriage_family['父母医保情况'] item['parents_working'] = marriage_family['父母的工作'] print("婚姻观念",marriage_family) ''' 相片列表 ''' #获取图片 print("相片url",response.url) list_images = self.driver.find_elements_by_xpath('/html//div[@id="bigImg"]//a') print("相片列表",type(list_images),list_images) images= [] for i in list_images: image = i.find_element_by_xpath('img').get_attribute("src") images.append(image) print("相片地址",image) item['img_urls'] = images#保存相片地址,在person_info表中的text print("执行到了最后执行到了最后执行到了最后执行到了最后执行到了最后执行到了最后执行到了最后") yield item cmdline.execute("scrapy crawl jiayuan_main".split())
[ "# -*- coding:utf-8 -*-\r\n'''\r\nCreated on 2018年2月28日\r\n@author: ning.lin\r\n'''\r\n'''\r\n大图地址class或id有big字样 的\r\n<div class=\"pho_big\" id=\"phoBig\" style=\"height: 640px;\">\r\n<div class=\"big_pic fn-clear\" id=\"bigImg\">\r\n小图地址\r\n<div class=\"pho_small_box fn-clear mt25 \" id=\"phoSmallPic\">\r\n'''\r\n\r\nimport json\r\nimport time\r\n\r\nfrom scrapy import log\r\nfrom scrapy import cmdline\r\nimport scrapy\r\nfrom scrapy.http import Request\r\nfrom scrapy.http.request.form import FormRequest\r\nfrom scrapy_redis.spiders import RedisSpider\r\nfrom selenium import webdriver\r\n\r\nfrom jiayuan.settings import IMAGES_STORE,USER_NAME,PASSWD\r\nfrom jiayuan.items import JiayuanItem,MainItem\r\nimport redis \r\n\r\n\r\nclass jiayuan_data(RedisSpider):\r\n pool=redis.ConnectionPool(host='127.0.0.1',port=6379,db=0,decode_responses=True) #427条记录\r\n r = redis.StrictRedis(connection_pool=pool) \r\n name = \"jiayuan_main\"\r\n redis_key = 'jiayuan_main:start_urls'\r\n url_base = 'http://search.jiayuan.com/v2/index.php?key=&sex=f&stc=&sn=default&sv=1&p=%s&pt=163649&ft=off&f=select&mt=d'\r\n redis_key = \"sinaspider:start_urls\"\r\n login_url = 'http://login.jiayuan.com/'#登录时的url\r\n start_urls = []\r\n pre_page_num = 25#每个搜索业面有25条记录\r\n #head less模拟登录\r\n option = webdriver.ChromeOptions()\r\n option.add_argument('--headless')\r\n option.add_argument(\"--window-size=1920,1080\")\r\n prefs={\"profile.managed_default_content_settings.images\":2}#禁止加载图片\r\n option.add_experimental_option(\"prefs\",prefs)\r\n try:\r\n driver = webdriver.Chrome(chrome_options=option)\r\n except Exception as e:\r\n driver.close()\r\n print(\"spider出现了异常,关闭\",str(e))\r\n driver.get(login_url)\r\n time.sleep(3)\r\n driver.find_element_by_id(\"login_btn\").click()\r\n driver.find_element_by_id(\"login_email\").clear()\r\n driver.find_element_by_id(\"login_email\").send_keys(USER_NAME) #修改为自己的用户名\r\n driver.find_element_by_id(\"login_password\").clear()\r\n driver.find_element_by_id(\"login_password\").send_keys(PASSWD) #修改为自己的密码\r\n #登录url\r\n #url=\"http://login.jiayuan.com/\"\r\n driver.find_element_by_id(\"login_btn\").click()#点击登录按钮\r\n cookies = driver.get_cookies()#获取cookies\r\n for p in range(1,173649):\r\n search_url = \"http://search.jiayuan.com/v2/index.php?key=&sex=f&stc=&sn=default&sv=1&p=%s&pt=173649&ft=off&f=select&mt=d\" %(p)\r\n start_urls.append(search_url)\r\n #print(\"start_urls\",len(start_urls))\r\n# start_urls = [\r\n# \"http://search.jiayuan.com/v2/search_v2.php\",#直接搜索结果,获取个人主页的url(先不登录)\r\n #\"https://passport.jiayuan.com/dologin.php?pre_url=http://www.jiayuan.com/usercp\",#登录页面post数据\r\n# ]\r\n '''\r\n 下载器中间件在下载器和Scrapy引擎之间,每一个request和response都会通过中间件进行处理。\r\n 在中间件中,对request进行处理的函数是process_request(request, spider)\r\n '''\r\n def start_requests(self):#\r\n for url in self.start_urls:\r\n yield Request(url=url,callback=self.get_main_info)\r\n# yield scrapy.Request(url=search_url,callback=self.get_main_info)\r\n# return Request(url=url,callback=self.get_main_info)\r\n def get_main_info(self,response):#解析搜索业面的url\r\n #info = response.body.decode(\"utf-8\") #登录后可以查看一下登录响应信息json.loads(\r\n# for url in self.start_urls:\r\n time.sleep(1) \r\n print(\"当前的url\",response.url)\r\n print('重新加载url')\r\n self.driver.get(response.url)\r\n self.driver.implicitly_wait(3)\r\n user_list = self.driver.find_elements_by_xpath('/html//ul[@id=\"normal_user_container\"]/li//div[@class=\"user_name\"]/a[@class=\"os_stat\"]')#得到多个li标签\r\n if user_list==[]:\r\n print(\"user_list为空了,解析有问题\")\r\n #print(\"user_list\",type(user_list),user_list)\r\n url_details = []#详情页面的url\r\n for user in user_list:\r\n main_url_main = user.get_attribute(\"href\")\r\n print(\"人员主页url\",main_url_main)\r\n url_details.append(main_url_main)\r\n# self.redis_pipe.rpush(\"p\",main_url_main)#详情页额外写入redis,也可以不写\r\n# self.redis_pipe.execute()\r\n print(\"人员详情url2\",len(url_details))\r\n if url_details!=[]:\r\n for url in url_details:\r\n yield Request(url=url,cookies=self.cookies,callback=self.get_details)#解析人员详细信息\r\n# yield item\r\n def get_details(self,response):\r\n '''\r\n <class 'str'>\r\n 年 龄:\r\n 26-29岁之间\r\n 身 高:\r\n 169-185厘米\r\n 民 族:\r\n 汉族\r\n 学 历:\r\n 不限\r\n 相 册:\r\n 有照片\r\n 婚姻状况:\r\n 未婚\r\n 居 住 地:\r\n 湖北十堰\r\n 诚 信:\r\n 不限\r\n 将这种类型的文字全部转成{'学历': '不限', '婚姻状况': '未婚', '居住地': '湖北十堰', '相册': '有照片', '身高': '169-185厘米', '民族': '汉族', '诚信': '不限', '年龄': '26-29岁之间'}这种dict方便入库\r\n '''\r\n pass\r\n def parse(str1):\r\n temp_list = str1.split('\\n')\r\n result={}\r\n result_str=''\r\n# temp_dict=[]#result_dict这是因为有些项目下面有多个标签,多个标签就需要合并起来\r\n# result_dict = {}#多个dict合并后的结果\r\n if len(temp_list)>1:#大于1说明该项下有值,否则此项未填信息\r\n for i in range(len(temp_list)):\r\n if i%2==0:\r\n result[temp_list[i].replace(\" \", \"\").replace(\":\", '')] = temp_list[i+1]\r\n return result\r\n #其他则返回str\r\n else:\r\n result_str = str1\r\n return result_str\r\n \r\n \r\n item = JiayuanItem()\r\n self.driver.get(response.url)\r\n self.driver.implicitly_wait(3)\r\n print('打开浏览器')\r\n print(\"当前的url\",response.url)\r\n age_info = self.driver.find_element_by_xpath('/html//h6[@class=\"member_name\"]').text\r\n person_id = response.url[response.url.rfind('/')+1:response.url.index('?')]\r\n print(\"年龄地址信息\",type(age_info),age_info)\r\n address = self.driver.find_elements_by_xpath('/html//h6[@class=\"member_name\"]/a')#得到多个a标签的text\r\n str_address=''\r\n str_sheng=address[0].get_attribute(\"text\") \r\n str_shi=address[1].get_attribute(\"text\") \r\n print(\"人员地址\",str_sheng+'sssss'+str_shi)\r\n \r\n '''\r\n 人个信息\r\n '''\r\n person_info = self.driver.find_elements_by_xpath('/html//ul[@class=\"member_info_list fn-clear\"]')\r\n person_dict={}\r\n for i in person_info:\r\n person_dict = parse(i.text)\r\n print(\"个人信息\",person_dict)\r\n '''\r\n 处理item,对应mysql的person_info表\r\n '''\r\n item['person_id'] = person_id\r\n item['province'] = str_sheng\r\n item['municipal'] = str_shi\r\n nick_name_info = self.driver.find_elements_by_xpath('/html//div[@class=\"member_info_r yh\"]/h4')\r\n nick_name = nick_name_info[0].text[0:nick_name_info[0].text.index(\"I\")]\r\n print(\"昵称\", nick_name)\r\n item['nike_name'] = nick_name\r\n item['education'] = person_dict['学历']\r\n item['height'] = person_dict['身高']\r\n item['buy_car'] = person_dict['购车']\r\n item['salary'] = person_dict['月薪']\r\n item['housing'] = person_dict['住房']\r\n item['weight'] = person_dict['体重']\r\n item['constellation'] = person_dict['星座']\r\n item['nation'] = person_dict['民族']\r\n item['zodiac'] = person_dict['属相']\r\n item['blood_type'] = person_dict['血型']\r\n item['age'] = age_info[0:age_info.index(',')]\r\n print(\"年龄\",age_info[0:age_info.index(',')])\r\n item['address'] = str_sheng+str_shi\r\n item['age_info'] = age_info\r\n item['image_dir'] = nick_name+'_'+item['age']+'_'+person_id#下载的相片归类\r\n item['url'] = response.url\r\n \r\n #个人短语\r\n item['introduce_oneself'] = self.driver.find_element_by_xpath('/html//div[@class=\"main_1000 mt15 fn-clear\"]//div[@class=\"js_text\"]').text\r\n print(\"个性短语\",item['introduce_oneself'])\r\n #个性标签,有些人是没有个性标签的\r\n #需要点击”更多“才能全部显示出来,否则只有4个\r\n item['interest_label']=''\r\n item['personality_label']=''\r\n try:\r\n #link_a = self.driver.find_element_by_xpath('/html//div[@class=\"d_more DNA_xq_more DNA_xq_more_a\"]/a')\r\n #link_a.click()\r\n self.driver.find_element_by_xpath('/html//div[@class=\"d_more DNA_xq_more DNA_xq_more_a\"]/a').click()\r\n time.sleep(1)\r\n gexing_info = self.driver.find_elements_by_xpath('/html//div[@class=\"test4\"]//div[@class=\"list_a fn-clear\"]')\r\n print(\"aaa\",type(gexing_info),gexing_info)\r\n gexing_tag=''\r\n for i in gexing_info:\r\n gexing_tag += i.text\r\n # a = item.find_element_by_xpath('div[@class=\"pag_list_grey_c\"]').text\r\n item['personality_label'] = \"\".join(gexing_tag)\r\n except Exception as e:\r\n item['personality_label'] = '还没有填写个性元素'\r\n print(\"个性\",item['personality_label'])\r\n #她的兴趣爱好有可能也是找不到的 \r\n try:\r\n #link_a = self.driver.find_element_by_xpath('/html//div[@class=\"d_more DNA_xq_more DNA_xq_more_a\"]/a')\r\n #link_a.click()\r\n self.driver.find_element_by_xpath('/html//div[@class=\"d_more DNA_xq_more\"]/a').click()\r\n# self.driver.find_element_by_xpath('/html/body/div[6]/div[1]/div[3]/div/div[1]/div[2]/a').click\r\n self.driver.implicitly_wait(1)\r\n aihao_info = self.driver.find_elements_by_xpath('/html/body/div[6]/div[1]/div[3]/div/div[1]/div[1]/ul')\r\n print(\"bbb\",type(aihao_info),aihao_info)\r\n aihao_tag=''\r\n for i in aihao_info:\r\n aihao_tag += i.text \r\n # a = item.find_element_by_xpath('div[@class=\"pag_list_grey_c\"]').text\r\n item['interest_label'] = \"\".join(aihao_tag)\r\n except Exception as e:\r\n item['interest_label'] = '还没有填写兴趣爱好'\r\n print(\"她的兴趣爱好\",item['interest_label'])\r\n find_mate = self.driver.find_elements_by_xpath('/html//div[@class=\"bg_white mt15\"]')\r\n '''\r\n 择偶要求\r\n '''\r\n mate = find_mate[1].find_elements_by_xpath('div[@class=\"js_box\"]/ul[@class=\"js_list fn-clear\"]')\r\n mate_dict={}\r\n for i in mate:\r\n mate_dict = parse(i.text)\r\n item['person_id_mate'] = person_id\r\n item['age_mate'] = mate_dict['年龄']\r\n item['height_mate'] = mate_dict['身高']\r\n item['nation_mate'] = mate_dict['民族']\r\n item['education_mate'] = mate_dict['学历']\r\n item['image_mate'] = mate_dict['相册']\r\n item['marital_status'] = mate_dict['婚姻状况']\r\n item['address_mate'] = mate_dict['居住地']\r\n item['sincerity_mate'] = mate_dict['诚信']#诚信\r\n print(\"择偶要求\",mate_dict)\r\n '''\r\n 生活方式\r\n '''\r\n life = find_mate[2].find_elements_by_xpath('div[@class=\"js_box\"]/ul[@class=\"js_list fn-clear\"]')\r\n life_style={}\r\n for i in life:\r\n temp = parse(i.text)\r\n if isinstance(temp,dict):\r\n life_style.update(parse(i.text))#update就合并两个dict\r\n else:\r\n life_style['吸烟'] = '未填写生活方式'\r\n life_style['饮酒'] = '未填写生活方式'\r\n life_style['锻炼习惯'] = '未填写生活方式'\r\n life_style['饮食习惯'] = '未填写生活方式'\r\n life_style['逛街购物'] = '未填写生活方式'\r\n life_style['宗教信仰'] = '未填写生活方式'\r\n life_style['作息时间'] = '未填写生活方式'\r\n life_style['交际圈子'] = '未填写生活方式'\r\n life_style['最大消费'] = '未填写生活方式'\r\n try:\r\n housework = []\r\n pet = []\r\n jiawu1 = find_mate[2].find_elements_by_xpath('div[@class=\"js_box\"]//div[@class=\"pt25 fn-clear\"]//dd[@class=\"cur\"]')\r\n for i in jiawu1:\r\n housework.append(i.text)#0为家务水平,1为宠物喜欢程度\r\n print(\"家务1 \",i.text)\r\n jiawu2 = find_mate[2].find_elements_by_xpath('div[@class=\"js_box\"]//div[@class=\"fl pr\"]/em')\r\n for i in jiawu2:\r\n pet.append(i.text)#0为家务分配,1为关于宠物\r\n print(\"家务2 \",i.text)\r\n except Exception as e:\r\n housework.append('家务水平程度未填写')\r\n housework.append('宠物喜欢程度未填写')\r\n pet.append('家务分配未填写')\r\n pet.append ('关于宠物未填写')\r\n item['person_id_life'] = person_id\r\n item['smoke'] = life_style['吸烟']\r\n item['drink_wine'] = life_style['饮酒']\r\n item['exercise_habits'] = life_style['锻炼习惯']\r\n item['eating_habits'] = life_style['饮食习惯']\r\n item['shopping'] = life_style['逛街购物']\r\n item['religious_belief'] = life_style['宗教信仰']\r\n item['time_table'] = life_style['作息时间']\r\n item['circle_of_communication'] = life_style['交际圈子']\r\n item['maximum_consumption'] = life_style['最大消费']\r\n item['housework'] = housework[0]\r\n item['household_assignment'] = pet[0]\r\n item['pet'] = housework[1]\r\n item['about_pets'] = pet[1]\r\n print(\"生活方式\",life_style)\r\n print(\"家务\",housework[0],pet[0])\r\n print(\"宠物\",housework[1],pet[1])\r\n '''\r\n 经济实力\r\n '''\r\n economic_dict={}\r\n economic = find_mate[3].find_elements_by_xpath('div[@class=\"js_box\"]/ul[@class=\"js_list fn-clear\"]')\r\n for i in economic:\r\n economic_dict = parse(i.text)\r\n item['person_id_economic'] = person_id\r\n item['salary_economic'] = economic_dict['月薪']\r\n item['buy_house_economic'] = economic_dict['购房']\r\n item['buy_car_economic'] = economic_dict['购车']\r\n item['economic_concept'] = economic_dict['经济观念']\r\n item['investment_financing'] = economic_dict['投资理财']\r\n item['foreign_debt'] = economic_dict['外债贷款']\r\n print(\"经济实力\",economic_dict)\r\n '''\r\n 工作学习\r\n '''\r\n work = find_mate[4].find_elements_by_xpath('div[@class=\"js_box\"]/ul[@class=\"js_list fn-clear\"]')\r\n work_study = {}#\r\n for i in work:\r\n if i.text:\r\n temp = parse(i.text)\r\n if isinstance(temp,dict):\r\n work_study.update(parse(i.text))#update就合并两个dict\r\n else:\r\n work_study['职业职位'] = '未填写工作学习方式'\r\n work_study['公司行业'] = '未填写工作学习方式'\r\n work_study['公司类型'] = '未填写工作学习方式'\r\n work_study['福利待遇'] = '未填写工作学习方式'\r\n work_study['工作状态'] = '未填写工作学习方式'\r\n work_study['调动工作可能性'] = '未填写工作学习方式'\r\n work_study['事业与家庭'] = '未填写工作学习方式'\r\n work_study['海外工作可能性'] = '未填写工作学习方式'\r\n work_study['毕业院校'] = '未填写工作学习方式'\r\n work_study['专业类型'] = '未填写工作学习方式'\r\n work_study['语言能力'] = '未填写工作学习方式'\r\n item['person_id_study'] = person_id\r\n item['position'] = work_study['职业职位']\r\n item['company'] = work_study['公司行业']\r\n item['company_type'] = work_study['公司类型']\r\n item['welfare'] = work_study['福利待遇']\r\n item['working'] = work_study['工作状态']\r\n item['transfer_work'] = work_study['调动工作可能性']\r\n item['work_family'] = work_study['事业与家庭']\r\n item['overseas_job'] = work_study['海外工作可能性']\r\n item['university'] = work_study['毕业院校']\r\n item['major'] = work_study['专业类型']\r\n item['language'] = work_study['语言能力']\r\n print(\"工作学习\",work_study)\r\n '''\r\n 婚姻观念\r\n '''\r\n marriage = find_mate[5].find_elements_by_xpath('div[@class=\"js_box\"]/ul[@class=\"js_list fn-clear\"]')\r\n marriage_family={}\r\n for i in marriage:\r\n if i.text:\r\n temp = parse(i.text)\r\n if isinstance(temp,dict):\r\n marriage_family.update(parse(i.text))#update就合并两个dict\r\n else:\r\n marriage_family['籍贯'] = '未填写婚姻观念'\r\n marriage_family['户口'] = '未填写婚姻观念'\r\n marriage_family['国籍'] = '未填写婚姻观念'\r\n marriage_family['个性待征'] = '未填写婚姻观念'\r\n marriage_family['幽默感'] = '未填写婚姻观念'\r\n marriage_family['脾气'] = '未填写婚姻观念'\r\n marriage_family['对待感情'] = '未填写婚姻观念'\r\n marriage_family['是否要小孩'] = '未填写婚姻观念'\r\n marriage_family['何时结婚'] = '未填写婚姻观念'\r\n marriage_family['是否能接受异地恋'] = '未填写婚姻观念'\r\n marriage_family['理想婚姻'] = '未填写婚姻观念'\r\n marriage_family['愿与对方父母同住'] = '未填写婚姻观念'\r\n marriage_family['家中排行'] = '未填写婚姻观念'\r\n marriage_family['父母情况'] = '未填写婚姻观念'\r\n marriage_family['兄弟姐妹'] = '未填写婚姻观念'\r\n marriage_family['父母经济情况'] = '未填写婚姻观念'\r\n marriage_family['父母医保情况'] = '未填写婚姻观念'\r\n marriage_family['父母的工作'] = '未填写婚姻观念'\r\n item['person_id_marriage'] = person_id\r\n item['address_marriage'] = marriage_family['籍贯']\r\n item['registered_residence'] = marriage_family['户口']\r\n item['nationality'] = marriage_family['国籍']\r\n item['personality'] = marriage_family['个性待征']\r\n item['humor'] = marriage_family['幽默感']\r\n item['temper'] = marriage_family['脾气']\r\n item['feelings'] = marriage_family['对待感情']\r\n item['want_child'] = marriage_family['是否要小孩']\r\n item['when_mary'] = marriage_family['何时结婚']\r\n item['strange_love'] = marriage_family['是否能接受异地恋']\r\n item['ideal_marriage'] = marriage_family['理想婚姻']\r\n item['live_parents'] = marriage_family['愿与对方父母同住']\r\n item['rankings_home'] = marriage_family['家中排行']\r\n item['parents_situation'] = marriage_family['父母情况']\r\n item['brothers'] = marriage_family['兄弟姐妹']\r\n item['parents_economic'] = marriage_family['父母经济情况']\r\n item['parents_medical'] = marriage_family['父母医保情况']\r\n item['parents_working'] = marriage_family['父母的工作']\r\n print(\"婚姻观念\",marriage_family)\r\n '''\r\n 相片列表\r\n '''\r\n #获取图片\r\n print(\"相片url\",response.url)\r\n list_images = self.driver.find_elements_by_xpath('/html//div[@id=\"bigImg\"]//a')\r\n print(\"相片列表\",type(list_images),list_images)\r\n images= []\r\n for i in list_images:\r\n image = i.find_element_by_xpath('img').get_attribute(\"src\")\r\n images.append(image)\r\n print(\"相片地址\",image)\r\n \r\n item['img_urls'] = images#保存相片地址,在person_info表中的text\r\n print(\"执行到了最后执行到了最后执行到了最后执行到了最后执行到了最后执行到了最后执行到了最后\")\r\n yield item\r\ncmdline.execute(\"scrapy crawl jiayuan_main\".split())", "<docstring token>\nimport json\nimport time\nfrom scrapy import log\nfrom scrapy import cmdline\nimport scrapy\nfrom scrapy.http import Request\nfrom scrapy.http.request.form import FormRequest\nfrom scrapy_redis.spiders import RedisSpider\nfrom selenium import webdriver\nfrom jiayuan.settings import IMAGES_STORE, USER_NAME, PASSWD\nfrom jiayuan.items import JiayuanItem, MainItem\nimport redis\n\n\nclass jiayuan_data(RedisSpider):\n pool = redis.ConnectionPool(host='127.0.0.1', port=6379, db=0,\n decode_responses=True)\n r = redis.StrictRedis(connection_pool=pool)\n name = 'jiayuan_main'\n redis_key = 'jiayuan_main:start_urls'\n url_base = (\n 'http://search.jiayuan.com/v2/index.php?key=&sex=f&stc=&sn=default&sv=1&p=%s&pt=163649&ft=off&f=select&mt=d'\n )\n redis_key = 'sinaspider:start_urls'\n login_url = 'http://login.jiayuan.com/'\n start_urls = []\n pre_page_num = 25\n option = webdriver.ChromeOptions()\n option.add_argument('--headless')\n option.add_argument('--window-size=1920,1080')\n prefs = {'profile.managed_default_content_settings.images': 2}\n option.add_experimental_option('prefs', prefs)\n try:\n driver = webdriver.Chrome(chrome_options=option)\n except Exception as e:\n driver.close()\n print('spider出现了异常,关闭', str(e))\n driver.get(login_url)\n time.sleep(3)\n driver.find_element_by_id('login_btn').click()\n driver.find_element_by_id('login_email').clear()\n driver.find_element_by_id('login_email').send_keys(USER_NAME)\n driver.find_element_by_id('login_password').clear()\n driver.find_element_by_id('login_password').send_keys(PASSWD)\n driver.find_element_by_id('login_btn').click()\n cookies = driver.get_cookies()\n for p in range(1, 173649):\n search_url = (\n 'http://search.jiayuan.com/v2/index.php?key=&sex=f&stc=&sn=default&sv=1&p=%s&pt=173649&ft=off&f=select&mt=d'\n % p)\n start_urls.append(search_url)\n \"\"\"\n 下载器中间件在下载器和Scrapy引擎之间,每一个request和response都会通过中间件进行处理。\n 在中间件中,对request进行处理的函数是process_request(request, spider)\n \"\"\"\n\n def start_requests(self):\n for url in self.start_urls:\n yield Request(url=url, callback=self.get_main_info)\n\n def get_main_info(self, response):\n time.sleep(1)\n print('当前的url', response.url)\n print('重新加载url')\n self.driver.get(response.url)\n self.driver.implicitly_wait(3)\n user_list = self.driver.find_elements_by_xpath(\n '/html//ul[@id=\"normal_user_container\"]/li//div[@class=\"user_name\"]/a[@class=\"os_stat\"]'\n )\n if user_list == []:\n print('user_list为空了,解析有问题')\n url_details = []\n for user in user_list:\n main_url_main = user.get_attribute('href')\n print('人员主页url', main_url_main)\n url_details.append(main_url_main)\n print('人员详情url2', len(url_details))\n if url_details != []:\n for url in url_details:\n yield Request(url=url, cookies=self.cookies, callback=self.\n get_details)\n\n def get_details(self, response):\n \"\"\"\n <class 'str'>\n 年 龄:\n 26-29岁之间\n 身 高:\n 169-185厘米\n 民 族:\n 汉族\n 学 历:\n 不限\n 相 册:\n 有照片\n 婚姻状况:\n 未婚\n 居 住 地:\n 湖北十堰\n 诚 信:\n 不限\n 将这种类型的文字全部转成{'学历': '不限', '婚姻状况': '未婚', '居住地': '湖北十堰', '相册': '有照片', '身高': '169-185厘米', '民族': '汉族', '诚信': '不限', '年龄': '26-29岁之间'}这种dict方便入库\n \"\"\"\n pass\n\n def parse(str1):\n temp_list = str1.split('\\n')\n result = {}\n result_str = ''\n if len(temp_list) > 1:\n for i in range(len(temp_list)):\n if i % 2 == 0:\n result[temp_list[i].replace(' ', '').replace(':', '')\n ] = temp_list[i + 1]\n return result\n else:\n result_str = str1\n return result_str\n item = JiayuanItem()\n self.driver.get(response.url)\n self.driver.implicitly_wait(3)\n print('打开浏览器')\n print('当前的url', response.url)\n age_info = self.driver.find_element_by_xpath(\n '/html//h6[@class=\"member_name\"]').text\n person_id = response.url[response.url.rfind('/') + 1:response.url.\n index('?')]\n print('年龄地址信息', type(age_info), age_info)\n address = self.driver.find_elements_by_xpath(\n '/html//h6[@class=\"member_name\"]/a')\n str_address = ''\n str_sheng = address[0].get_attribute('text')\n str_shi = address[1].get_attribute('text')\n print('人员地址', str_sheng + 'sssss' + str_shi)\n \"\"\"\n 人个信息\n \"\"\"\n person_info = self.driver.find_elements_by_xpath(\n '/html//ul[@class=\"member_info_list fn-clear\"]')\n person_dict = {}\n for i in person_info:\n person_dict = parse(i.text)\n print('个人信息', person_dict)\n \"\"\"\n 处理item,对应mysql的person_info表\n \"\"\"\n item['person_id'] = person_id\n item['province'] = str_sheng\n item['municipal'] = str_shi\n nick_name_info = self.driver.find_elements_by_xpath(\n '/html//div[@class=\"member_info_r yh\"]/h4')\n nick_name = nick_name_info[0].text[0:nick_name_info[0].text.index('I')]\n print('昵称', nick_name)\n item['nike_name'] = nick_name\n item['education'] = person_dict['学历']\n item['height'] = person_dict['身高']\n item['buy_car'] = person_dict['购车']\n item['salary'] = person_dict['月薪']\n item['housing'] = person_dict['住房']\n item['weight'] = person_dict['体重']\n item['constellation'] = person_dict['星座']\n item['nation'] = person_dict['民族']\n item['zodiac'] = person_dict['属相']\n item['blood_type'] = person_dict['血型']\n item['age'] = age_info[0:age_info.index(',')]\n print('年龄', age_info[0:age_info.index(',')])\n item['address'] = str_sheng + str_shi\n item['age_info'] = age_info\n item['image_dir'] = nick_name + '_' + item['age'] + '_' + person_id\n item['url'] = response.url\n item['introduce_oneself'] = self.driver.find_element_by_xpath(\n '/html//div[@class=\"main_1000 mt15 fn-clear\"]//div[@class=\"js_text\"]'\n ).text\n print('个性短语', item['introduce_oneself'])\n item['interest_label'] = ''\n item['personality_label'] = ''\n try:\n self.driver.find_element_by_xpath(\n '/html//div[@class=\"d_more DNA_xq_more DNA_xq_more_a\"]/a'\n ).click()\n time.sleep(1)\n gexing_info = self.driver.find_elements_by_xpath(\n '/html//div[@class=\"test4\"]//div[@class=\"list_a fn-clear\"]')\n print('aaa', type(gexing_info), gexing_info)\n gexing_tag = ''\n for i in gexing_info:\n gexing_tag += i.text\n item['personality_label'] = ''.join(gexing_tag)\n except Exception as e:\n item['personality_label'] = '还没有填写个性元素'\n print('个性', item['personality_label'])\n try:\n self.driver.find_element_by_xpath(\n '/html//div[@class=\"d_more DNA_xq_more\"]/a').click()\n self.driver.implicitly_wait(1)\n aihao_info = self.driver.find_elements_by_xpath(\n '/html/body/div[6]/div[1]/div[3]/div/div[1]/div[1]/ul')\n print('bbb', type(aihao_info), aihao_info)\n aihao_tag = ''\n for i in aihao_info:\n aihao_tag += i.text\n item['interest_label'] = ''.join(aihao_tag)\n except Exception as e:\n item['interest_label'] = '还没有填写兴趣爱好'\n print('她的兴趣爱好', item['interest_label'])\n find_mate = self.driver.find_elements_by_xpath(\n '/html//div[@class=\"bg_white mt15\"]')\n \"\"\"\n 择偶要求\n \"\"\"\n mate = find_mate[1].find_elements_by_xpath(\n 'div[@class=\"js_box\"]/ul[@class=\"js_list fn-clear\"]')\n mate_dict = {}\n for i in mate:\n mate_dict = parse(i.text)\n item['person_id_mate'] = person_id\n item['age_mate'] = mate_dict['年龄']\n item['height_mate'] = mate_dict['身高']\n item['nation_mate'] = mate_dict['民族']\n item['education_mate'] = mate_dict['学历']\n item['image_mate'] = mate_dict['相册']\n item['marital_status'] = mate_dict['婚姻状况']\n item['address_mate'] = mate_dict['居住地']\n item['sincerity_mate'] = mate_dict['诚信']\n print('择偶要求', mate_dict)\n \"\"\"\n 生活方式\n \"\"\"\n life = find_mate[2].find_elements_by_xpath(\n 'div[@class=\"js_box\"]/ul[@class=\"js_list fn-clear\"]')\n life_style = {}\n for i in life:\n temp = parse(i.text)\n if isinstance(temp, dict):\n life_style.update(parse(i.text))\n else:\n life_style['吸烟'] = '未填写生活方式'\n life_style['饮酒'] = '未填写生活方式'\n life_style['锻炼习惯'] = '未填写生活方式'\n life_style['饮食习惯'] = '未填写生活方式'\n life_style['逛街购物'] = '未填写生活方式'\n life_style['宗教信仰'] = '未填写生活方式'\n life_style['作息时间'] = '未填写生活方式'\n life_style['交际圈子'] = '未填写生活方式'\n life_style['最大消费'] = '未填写生活方式'\n try:\n housework = []\n pet = []\n jiawu1 = find_mate[2].find_elements_by_xpath(\n 'div[@class=\"js_box\"]//div[@class=\"pt25 fn-clear\"]//dd[@class=\"cur\"]'\n )\n for i in jiawu1:\n housework.append(i.text)\n print('家务1 ', i.text)\n jiawu2 = find_mate[2].find_elements_by_xpath(\n 'div[@class=\"js_box\"]//div[@class=\"fl pr\"]/em')\n for i in jiawu2:\n pet.append(i.text)\n print('家务2 ', i.text)\n except Exception as e:\n housework.append('家务水平程度未填写')\n housework.append('宠物喜欢程度未填写')\n pet.append('家务分配未填写')\n pet.append('关于宠物未填写')\n item['person_id_life'] = person_id\n item['smoke'] = life_style['吸烟']\n item['drink_wine'] = life_style['饮酒']\n item['exercise_habits'] = life_style['锻炼习惯']\n item['eating_habits'] = life_style['饮食习惯']\n item['shopping'] = life_style['逛街购物']\n item['religious_belief'] = life_style['宗教信仰']\n item['time_table'] = life_style['作息时间']\n item['circle_of_communication'] = life_style['交际圈子']\n item['maximum_consumption'] = life_style['最大消费']\n item['housework'] = housework[0]\n item['household_assignment'] = pet[0]\n item['pet'] = housework[1]\n item['about_pets'] = pet[1]\n print('生活方式', life_style)\n print('家务', housework[0], pet[0])\n print('宠物', housework[1], pet[1])\n \"\"\"\n 经济实力\n \"\"\"\n economic_dict = {}\n economic = find_mate[3].find_elements_by_xpath(\n 'div[@class=\"js_box\"]/ul[@class=\"js_list fn-clear\"]')\n for i in economic:\n economic_dict = parse(i.text)\n item['person_id_economic'] = person_id\n item['salary_economic'] = economic_dict['月薪']\n item['buy_house_economic'] = economic_dict['购房']\n item['buy_car_economic'] = economic_dict['购车']\n item['economic_concept'] = economic_dict['经济观念']\n item['investment_financing'] = economic_dict['投资理财']\n item['foreign_debt'] = economic_dict['外债贷款']\n print('经济实力', economic_dict)\n \"\"\"\n 工作学习\n \"\"\"\n work = find_mate[4].find_elements_by_xpath(\n 'div[@class=\"js_box\"]/ul[@class=\"js_list fn-clear\"]')\n work_study = {}\n for i in work:\n if i.text:\n temp = parse(i.text)\n if isinstance(temp, dict):\n work_study.update(parse(i.text))\n else:\n work_study['职业职位'] = '未填写工作学习方式'\n work_study['公司行业'] = '未填写工作学习方式'\n work_study['公司类型'] = '未填写工作学习方式'\n work_study['福利待遇'] = '未填写工作学习方式'\n work_study['工作状态'] = '未填写工作学习方式'\n work_study['调动工作可能性'] = '未填写工作学习方式'\n work_study['事业与家庭'] = '未填写工作学习方式'\n work_study['海外工作可能性'] = '未填写工作学习方式'\n work_study['毕业院校'] = '未填写工作学习方式'\n work_study['专业类型'] = '未填写工作学习方式'\n work_study['语言能力'] = '未填写工作学习方式'\n item['person_id_study'] = person_id\n item['position'] = work_study['职业职位']\n item['company'] = work_study['公司行业']\n item['company_type'] = work_study['公司类型']\n item['welfare'] = work_study['福利待遇']\n item['working'] = work_study['工作状态']\n item['transfer_work'] = work_study['调动工作可能性']\n item['work_family'] = work_study['事业与家庭']\n item['overseas_job'] = work_study['海外工作可能性']\n item['university'] = work_study['毕业院校']\n item['major'] = work_study['专业类型']\n item['language'] = work_study['语言能力']\n print('工作学习', work_study)\n \"\"\"\n 婚姻观念\n \"\"\"\n marriage = find_mate[5].find_elements_by_xpath(\n 'div[@class=\"js_box\"]/ul[@class=\"js_list fn-clear\"]')\n marriage_family = {}\n for i in marriage:\n if i.text:\n temp = parse(i.text)\n if isinstance(temp, dict):\n marriage_family.update(parse(i.text))\n else:\n marriage_family['籍贯'] = '未填写婚姻观念'\n marriage_family['户口'] = '未填写婚姻观念'\n marriage_family['国籍'] = '未填写婚姻观念'\n marriage_family['个性待征'] = '未填写婚姻观念'\n marriage_family['幽默感'] = '未填写婚姻观念'\n marriage_family['脾气'] = '未填写婚姻观念'\n marriage_family['对待感情'] = '未填写婚姻观念'\n marriage_family['是否要小孩'] = '未填写婚姻观念'\n marriage_family['何时结婚'] = '未填写婚姻观念'\n marriage_family['是否能接受异地恋'] = '未填写婚姻观念'\n marriage_family['理想婚姻'] = '未填写婚姻观念'\n marriage_family['愿与对方父母同住'] = '未填写婚姻观念'\n marriage_family['家中排行'] = '未填写婚姻观念'\n marriage_family['父母情况'] = '未填写婚姻观念'\n marriage_family['兄弟姐妹'] = '未填写婚姻观念'\n marriage_family['父母经济情况'] = '未填写婚姻观念'\n marriage_family['父母医保情况'] = '未填写婚姻观念'\n marriage_family['父母的工作'] = '未填写婚姻观念'\n item['person_id_marriage'] = person_id\n item['address_marriage'] = marriage_family['籍贯']\n item['registered_residence'] = marriage_family['户口']\n item['nationality'] = marriage_family['国籍']\n item['personality'] = marriage_family['个性待征']\n item['humor'] = marriage_family['幽默感']\n item['temper'] = marriage_family['脾气']\n item['feelings'] = marriage_family['对待感情']\n item['want_child'] = marriage_family['是否要小孩']\n item['when_mary'] = marriage_family['何时结婚']\n item['strange_love'] = marriage_family['是否能接受异地恋']\n item['ideal_marriage'] = marriage_family['理想婚姻']\n item['live_parents'] = marriage_family['愿与对方父母同住']\n item['rankings_home'] = marriage_family['家中排行']\n item['parents_situation'] = marriage_family['父母情况']\n item['brothers'] = marriage_family['兄弟姐妹']\n item['parents_economic'] = marriage_family['父母经济情况']\n item['parents_medical'] = marriage_family['父母医保情况']\n item['parents_working'] = marriage_family['父母的工作']\n print('婚姻观念', marriage_family)\n \"\"\"\n 相片列表\n \"\"\"\n print('相片url', response.url)\n list_images = self.driver.find_elements_by_xpath(\n '/html//div[@id=\"bigImg\"]//a')\n print('相片列表', type(list_images), list_images)\n images = []\n for i in list_images:\n image = i.find_element_by_xpath('img').get_attribute('src')\n images.append(image)\n print('相片地址', image)\n item['img_urls'] = images\n print('执行到了最后执行到了最后执行到了最后执行到了最后执行到了最后执行到了最后执行到了最后')\n yield item\n\n\ncmdline.execute('scrapy crawl jiayuan_main'.split())\n", "<docstring token>\n<import token>\n\n\nclass jiayuan_data(RedisSpider):\n pool = redis.ConnectionPool(host='127.0.0.1', port=6379, db=0,\n decode_responses=True)\n r = redis.StrictRedis(connection_pool=pool)\n name = 'jiayuan_main'\n redis_key = 'jiayuan_main:start_urls'\n url_base = (\n 'http://search.jiayuan.com/v2/index.php?key=&sex=f&stc=&sn=default&sv=1&p=%s&pt=163649&ft=off&f=select&mt=d'\n )\n redis_key = 'sinaspider:start_urls'\n login_url = 'http://login.jiayuan.com/'\n start_urls = []\n pre_page_num = 25\n option = webdriver.ChromeOptions()\n option.add_argument('--headless')\n option.add_argument('--window-size=1920,1080')\n prefs = {'profile.managed_default_content_settings.images': 2}\n option.add_experimental_option('prefs', prefs)\n try:\n driver = webdriver.Chrome(chrome_options=option)\n except Exception as e:\n driver.close()\n print('spider出现了异常,关闭', str(e))\n driver.get(login_url)\n time.sleep(3)\n driver.find_element_by_id('login_btn').click()\n driver.find_element_by_id('login_email').clear()\n driver.find_element_by_id('login_email').send_keys(USER_NAME)\n driver.find_element_by_id('login_password').clear()\n driver.find_element_by_id('login_password').send_keys(PASSWD)\n driver.find_element_by_id('login_btn').click()\n cookies = driver.get_cookies()\n for p in range(1, 173649):\n search_url = (\n 'http://search.jiayuan.com/v2/index.php?key=&sex=f&stc=&sn=default&sv=1&p=%s&pt=173649&ft=off&f=select&mt=d'\n % p)\n start_urls.append(search_url)\n \"\"\"\n 下载器中间件在下载器和Scrapy引擎之间,每一个request和response都会通过中间件进行处理。\n 在中间件中,对request进行处理的函数是process_request(request, spider)\n \"\"\"\n\n def start_requests(self):\n for url in self.start_urls:\n yield Request(url=url, callback=self.get_main_info)\n\n def get_main_info(self, response):\n time.sleep(1)\n print('当前的url', response.url)\n print('重新加载url')\n self.driver.get(response.url)\n self.driver.implicitly_wait(3)\n user_list = self.driver.find_elements_by_xpath(\n '/html//ul[@id=\"normal_user_container\"]/li//div[@class=\"user_name\"]/a[@class=\"os_stat\"]'\n )\n if user_list == []:\n print('user_list为空了,解析有问题')\n url_details = []\n for user in user_list:\n main_url_main = user.get_attribute('href')\n print('人员主页url', main_url_main)\n url_details.append(main_url_main)\n print('人员详情url2', len(url_details))\n if url_details != []:\n for url in url_details:\n yield Request(url=url, cookies=self.cookies, callback=self.\n get_details)\n\n def get_details(self, response):\n \"\"\"\n <class 'str'>\n 年 龄:\n 26-29岁之间\n 身 高:\n 169-185厘米\n 民 族:\n 汉族\n 学 历:\n 不限\n 相 册:\n 有照片\n 婚姻状况:\n 未婚\n 居 住 地:\n 湖北十堰\n 诚 信:\n 不限\n 将这种类型的文字全部转成{'学历': '不限', '婚姻状况': '未婚', '居住地': '湖北十堰', '相册': '有照片', '身高': '169-185厘米', '民族': '汉族', '诚信': '不限', '年龄': '26-29岁之间'}这种dict方便入库\n \"\"\"\n pass\n\n def parse(str1):\n temp_list = str1.split('\\n')\n result = {}\n result_str = ''\n if len(temp_list) > 1:\n for i in range(len(temp_list)):\n if i % 2 == 0:\n result[temp_list[i].replace(' ', '').replace(':', '')\n ] = temp_list[i + 1]\n return result\n else:\n result_str = str1\n return result_str\n item = JiayuanItem()\n self.driver.get(response.url)\n self.driver.implicitly_wait(3)\n print('打开浏览器')\n print('当前的url', response.url)\n age_info = self.driver.find_element_by_xpath(\n '/html//h6[@class=\"member_name\"]').text\n person_id = response.url[response.url.rfind('/') + 1:response.url.\n index('?')]\n print('年龄地址信息', type(age_info), age_info)\n address = self.driver.find_elements_by_xpath(\n '/html//h6[@class=\"member_name\"]/a')\n str_address = ''\n str_sheng = address[0].get_attribute('text')\n str_shi = address[1].get_attribute('text')\n print('人员地址', str_sheng + 'sssss' + str_shi)\n \"\"\"\n 人个信息\n \"\"\"\n person_info = self.driver.find_elements_by_xpath(\n '/html//ul[@class=\"member_info_list fn-clear\"]')\n person_dict = {}\n for i in person_info:\n person_dict = parse(i.text)\n print('个人信息', person_dict)\n \"\"\"\n 处理item,对应mysql的person_info表\n \"\"\"\n item['person_id'] = person_id\n item['province'] = str_sheng\n item['municipal'] = str_shi\n nick_name_info = self.driver.find_elements_by_xpath(\n '/html//div[@class=\"member_info_r yh\"]/h4')\n nick_name = nick_name_info[0].text[0:nick_name_info[0].text.index('I')]\n print('昵称', nick_name)\n item['nike_name'] = nick_name\n item['education'] = person_dict['学历']\n item['height'] = person_dict['身高']\n item['buy_car'] = person_dict['购车']\n item['salary'] = person_dict['月薪']\n item['housing'] = person_dict['住房']\n item['weight'] = person_dict['体重']\n item['constellation'] = person_dict['星座']\n item['nation'] = person_dict['民族']\n item['zodiac'] = person_dict['属相']\n item['blood_type'] = person_dict['血型']\n item['age'] = age_info[0:age_info.index(',')]\n print('年龄', age_info[0:age_info.index(',')])\n item['address'] = str_sheng + str_shi\n item['age_info'] = age_info\n item['image_dir'] = nick_name + '_' + item['age'] + '_' + person_id\n item['url'] = response.url\n item['introduce_oneself'] = self.driver.find_element_by_xpath(\n '/html//div[@class=\"main_1000 mt15 fn-clear\"]//div[@class=\"js_text\"]'\n ).text\n print('个性短语', item['introduce_oneself'])\n item['interest_label'] = ''\n item['personality_label'] = ''\n try:\n self.driver.find_element_by_xpath(\n '/html//div[@class=\"d_more DNA_xq_more DNA_xq_more_a\"]/a'\n ).click()\n time.sleep(1)\n gexing_info = self.driver.find_elements_by_xpath(\n '/html//div[@class=\"test4\"]//div[@class=\"list_a fn-clear\"]')\n print('aaa', type(gexing_info), gexing_info)\n gexing_tag = ''\n for i in gexing_info:\n gexing_tag += i.text\n item['personality_label'] = ''.join(gexing_tag)\n except Exception as e:\n item['personality_label'] = '还没有填写个性元素'\n print('个性', item['personality_label'])\n try:\n self.driver.find_element_by_xpath(\n '/html//div[@class=\"d_more DNA_xq_more\"]/a').click()\n self.driver.implicitly_wait(1)\n aihao_info = self.driver.find_elements_by_xpath(\n '/html/body/div[6]/div[1]/div[3]/div/div[1]/div[1]/ul')\n print('bbb', type(aihao_info), aihao_info)\n aihao_tag = ''\n for i in aihao_info:\n aihao_tag += i.text\n item['interest_label'] = ''.join(aihao_tag)\n except Exception as e:\n item['interest_label'] = '还没有填写兴趣爱好'\n print('她的兴趣爱好', item['interest_label'])\n find_mate = self.driver.find_elements_by_xpath(\n '/html//div[@class=\"bg_white mt15\"]')\n \"\"\"\n 择偶要求\n \"\"\"\n mate = find_mate[1].find_elements_by_xpath(\n 'div[@class=\"js_box\"]/ul[@class=\"js_list fn-clear\"]')\n mate_dict = {}\n for i in mate:\n mate_dict = parse(i.text)\n item['person_id_mate'] = person_id\n item['age_mate'] = mate_dict['年龄']\n item['height_mate'] = mate_dict['身高']\n item['nation_mate'] = mate_dict['民族']\n item['education_mate'] = mate_dict['学历']\n item['image_mate'] = mate_dict['相册']\n item['marital_status'] = mate_dict['婚姻状况']\n item['address_mate'] = mate_dict['居住地']\n item['sincerity_mate'] = mate_dict['诚信']\n print('择偶要求', mate_dict)\n \"\"\"\n 生活方式\n \"\"\"\n life = find_mate[2].find_elements_by_xpath(\n 'div[@class=\"js_box\"]/ul[@class=\"js_list fn-clear\"]')\n life_style = {}\n for i in life:\n temp = parse(i.text)\n if isinstance(temp, dict):\n life_style.update(parse(i.text))\n else:\n life_style['吸烟'] = '未填写生活方式'\n life_style['饮酒'] = '未填写生活方式'\n life_style['锻炼习惯'] = '未填写生活方式'\n life_style['饮食习惯'] = '未填写生活方式'\n life_style['逛街购物'] = '未填写生活方式'\n life_style['宗教信仰'] = '未填写生活方式'\n life_style['作息时间'] = '未填写生活方式'\n life_style['交际圈子'] = '未填写生活方式'\n life_style['最大消费'] = '未填写生活方式'\n try:\n housework = []\n pet = []\n jiawu1 = find_mate[2].find_elements_by_xpath(\n 'div[@class=\"js_box\"]//div[@class=\"pt25 fn-clear\"]//dd[@class=\"cur\"]'\n )\n for i in jiawu1:\n housework.append(i.text)\n print('家务1 ', i.text)\n jiawu2 = find_mate[2].find_elements_by_xpath(\n 'div[@class=\"js_box\"]//div[@class=\"fl pr\"]/em')\n for i in jiawu2:\n pet.append(i.text)\n print('家务2 ', i.text)\n except Exception as e:\n housework.append('家务水平程度未填写')\n housework.append('宠物喜欢程度未填写')\n pet.append('家务分配未填写')\n pet.append('关于宠物未填写')\n item['person_id_life'] = person_id\n item['smoke'] = life_style['吸烟']\n item['drink_wine'] = life_style['饮酒']\n item['exercise_habits'] = life_style['锻炼习惯']\n item['eating_habits'] = life_style['饮食习惯']\n item['shopping'] = life_style['逛街购物']\n item['religious_belief'] = life_style['宗教信仰']\n item['time_table'] = life_style['作息时间']\n item['circle_of_communication'] = life_style['交际圈子']\n item['maximum_consumption'] = life_style['最大消费']\n item['housework'] = housework[0]\n item['household_assignment'] = pet[0]\n item['pet'] = housework[1]\n item['about_pets'] = pet[1]\n print('生活方式', life_style)\n print('家务', housework[0], pet[0])\n print('宠物', housework[1], pet[1])\n \"\"\"\n 经济实力\n \"\"\"\n economic_dict = {}\n economic = find_mate[3].find_elements_by_xpath(\n 'div[@class=\"js_box\"]/ul[@class=\"js_list fn-clear\"]')\n for i in economic:\n economic_dict = parse(i.text)\n item['person_id_economic'] = person_id\n item['salary_economic'] = economic_dict['月薪']\n item['buy_house_economic'] = economic_dict['购房']\n item['buy_car_economic'] = economic_dict['购车']\n item['economic_concept'] = economic_dict['经济观念']\n item['investment_financing'] = economic_dict['投资理财']\n item['foreign_debt'] = economic_dict['外债贷款']\n print('经济实力', economic_dict)\n \"\"\"\n 工作学习\n \"\"\"\n work = find_mate[4].find_elements_by_xpath(\n 'div[@class=\"js_box\"]/ul[@class=\"js_list fn-clear\"]')\n work_study = {}\n for i in work:\n if i.text:\n temp = parse(i.text)\n if isinstance(temp, dict):\n work_study.update(parse(i.text))\n else:\n work_study['职业职位'] = '未填写工作学习方式'\n work_study['公司行业'] = '未填写工作学习方式'\n work_study['公司类型'] = '未填写工作学习方式'\n work_study['福利待遇'] = '未填写工作学习方式'\n work_study['工作状态'] = '未填写工作学习方式'\n work_study['调动工作可能性'] = '未填写工作学习方式'\n work_study['事业与家庭'] = '未填写工作学习方式'\n work_study['海外工作可能性'] = '未填写工作学习方式'\n work_study['毕业院校'] = '未填写工作学习方式'\n work_study['专业类型'] = '未填写工作学习方式'\n work_study['语言能力'] = '未填写工作学习方式'\n item['person_id_study'] = person_id\n item['position'] = work_study['职业职位']\n item['company'] = work_study['公司行业']\n item['company_type'] = work_study['公司类型']\n item['welfare'] = work_study['福利待遇']\n item['working'] = work_study['工作状态']\n item['transfer_work'] = work_study['调动工作可能性']\n item['work_family'] = work_study['事业与家庭']\n item['overseas_job'] = work_study['海外工作可能性']\n item['university'] = work_study['毕业院校']\n item['major'] = work_study['专业类型']\n item['language'] = work_study['语言能力']\n print('工作学习', work_study)\n \"\"\"\n 婚姻观念\n \"\"\"\n marriage = find_mate[5].find_elements_by_xpath(\n 'div[@class=\"js_box\"]/ul[@class=\"js_list fn-clear\"]')\n marriage_family = {}\n for i in marriage:\n if i.text:\n temp = parse(i.text)\n if isinstance(temp, dict):\n marriage_family.update(parse(i.text))\n else:\n marriage_family['籍贯'] = '未填写婚姻观念'\n marriage_family['户口'] = '未填写婚姻观念'\n marriage_family['国籍'] = '未填写婚姻观念'\n marriage_family['个性待征'] = '未填写婚姻观念'\n marriage_family['幽默感'] = '未填写婚姻观念'\n marriage_family['脾气'] = '未填写婚姻观念'\n marriage_family['对待感情'] = '未填写婚姻观念'\n marriage_family['是否要小孩'] = '未填写婚姻观念'\n marriage_family['何时结婚'] = '未填写婚姻观念'\n marriage_family['是否能接受异地恋'] = '未填写婚姻观念'\n marriage_family['理想婚姻'] = '未填写婚姻观念'\n marriage_family['愿与对方父母同住'] = '未填写婚姻观念'\n marriage_family['家中排行'] = '未填写婚姻观念'\n marriage_family['父母情况'] = '未填写婚姻观念'\n marriage_family['兄弟姐妹'] = '未填写婚姻观念'\n marriage_family['父母经济情况'] = '未填写婚姻观念'\n marriage_family['父母医保情况'] = '未填写婚姻观念'\n marriage_family['父母的工作'] = '未填写婚姻观念'\n item['person_id_marriage'] = person_id\n item['address_marriage'] = marriage_family['籍贯']\n item['registered_residence'] = marriage_family['户口']\n item['nationality'] = marriage_family['国籍']\n item['personality'] = marriage_family['个性待征']\n item['humor'] = marriage_family['幽默感']\n item['temper'] = marriage_family['脾气']\n item['feelings'] = marriage_family['对待感情']\n item['want_child'] = marriage_family['是否要小孩']\n item['when_mary'] = marriage_family['何时结婚']\n item['strange_love'] = marriage_family['是否能接受异地恋']\n item['ideal_marriage'] = marriage_family['理想婚姻']\n item['live_parents'] = marriage_family['愿与对方父母同住']\n item['rankings_home'] = marriage_family['家中排行']\n item['parents_situation'] = marriage_family['父母情况']\n item['brothers'] = marriage_family['兄弟姐妹']\n item['parents_economic'] = marriage_family['父母经济情况']\n item['parents_medical'] = marriage_family['父母医保情况']\n item['parents_working'] = marriage_family['父母的工作']\n print('婚姻观念', marriage_family)\n \"\"\"\n 相片列表\n \"\"\"\n print('相片url', response.url)\n list_images = self.driver.find_elements_by_xpath(\n '/html//div[@id=\"bigImg\"]//a')\n print('相片列表', type(list_images), list_images)\n images = []\n for i in list_images:\n image = i.find_element_by_xpath('img').get_attribute('src')\n images.append(image)\n print('相片地址', image)\n item['img_urls'] = images\n print('执行到了最后执行到了最后执行到了最后执行到了最后执行到了最后执行到了最后执行到了最后')\n yield item\n\n\ncmdline.execute('scrapy crawl jiayuan_main'.split())\n", "<docstring token>\n<import token>\n\n\nclass jiayuan_data(RedisSpider):\n pool = redis.ConnectionPool(host='127.0.0.1', port=6379, db=0,\n decode_responses=True)\n r = redis.StrictRedis(connection_pool=pool)\n name = 'jiayuan_main'\n redis_key = 'jiayuan_main:start_urls'\n url_base = (\n 'http://search.jiayuan.com/v2/index.php?key=&sex=f&stc=&sn=default&sv=1&p=%s&pt=163649&ft=off&f=select&mt=d'\n )\n redis_key = 'sinaspider:start_urls'\n login_url = 'http://login.jiayuan.com/'\n start_urls = []\n pre_page_num = 25\n option = webdriver.ChromeOptions()\n option.add_argument('--headless')\n option.add_argument('--window-size=1920,1080')\n prefs = {'profile.managed_default_content_settings.images': 2}\n option.add_experimental_option('prefs', prefs)\n try:\n driver = webdriver.Chrome(chrome_options=option)\n except Exception as e:\n driver.close()\n print('spider出现了异常,关闭', str(e))\n driver.get(login_url)\n time.sleep(3)\n driver.find_element_by_id('login_btn').click()\n driver.find_element_by_id('login_email').clear()\n driver.find_element_by_id('login_email').send_keys(USER_NAME)\n driver.find_element_by_id('login_password').clear()\n driver.find_element_by_id('login_password').send_keys(PASSWD)\n driver.find_element_by_id('login_btn').click()\n cookies = driver.get_cookies()\n for p in range(1, 173649):\n search_url = (\n 'http://search.jiayuan.com/v2/index.php?key=&sex=f&stc=&sn=default&sv=1&p=%s&pt=173649&ft=off&f=select&mt=d'\n % p)\n start_urls.append(search_url)\n \"\"\"\n 下载器中间件在下载器和Scrapy引擎之间,每一个request和response都会通过中间件进行处理。\n 在中间件中,对request进行处理的函数是process_request(request, spider)\n \"\"\"\n\n def start_requests(self):\n for url in self.start_urls:\n yield Request(url=url, callback=self.get_main_info)\n\n def get_main_info(self, response):\n time.sleep(1)\n print('当前的url', response.url)\n print('重新加载url')\n self.driver.get(response.url)\n self.driver.implicitly_wait(3)\n user_list = self.driver.find_elements_by_xpath(\n '/html//ul[@id=\"normal_user_container\"]/li//div[@class=\"user_name\"]/a[@class=\"os_stat\"]'\n )\n if user_list == []:\n print('user_list为空了,解析有问题')\n url_details = []\n for user in user_list:\n main_url_main = user.get_attribute('href')\n print('人员主页url', main_url_main)\n url_details.append(main_url_main)\n print('人员详情url2', len(url_details))\n if url_details != []:\n for url in url_details:\n yield Request(url=url, cookies=self.cookies, callback=self.\n get_details)\n\n def get_details(self, response):\n \"\"\"\n <class 'str'>\n 年 龄:\n 26-29岁之间\n 身 高:\n 169-185厘米\n 民 族:\n 汉族\n 学 历:\n 不限\n 相 册:\n 有照片\n 婚姻状况:\n 未婚\n 居 住 地:\n 湖北十堰\n 诚 信:\n 不限\n 将这种类型的文字全部转成{'学历': '不限', '婚姻状况': '未婚', '居住地': '湖北十堰', '相册': '有照片', '身高': '169-185厘米', '民族': '汉族', '诚信': '不限', '年龄': '26-29岁之间'}这种dict方便入库\n \"\"\"\n pass\n\n def parse(str1):\n temp_list = str1.split('\\n')\n result = {}\n result_str = ''\n if len(temp_list) > 1:\n for i in range(len(temp_list)):\n if i % 2 == 0:\n result[temp_list[i].replace(' ', '').replace(':', '')\n ] = temp_list[i + 1]\n return result\n else:\n result_str = str1\n return result_str\n item = JiayuanItem()\n self.driver.get(response.url)\n self.driver.implicitly_wait(3)\n print('打开浏览器')\n print('当前的url', response.url)\n age_info = self.driver.find_element_by_xpath(\n '/html//h6[@class=\"member_name\"]').text\n person_id = response.url[response.url.rfind('/') + 1:response.url.\n index('?')]\n print('年龄地址信息', type(age_info), age_info)\n address = self.driver.find_elements_by_xpath(\n '/html//h6[@class=\"member_name\"]/a')\n str_address = ''\n str_sheng = address[0].get_attribute('text')\n str_shi = address[1].get_attribute('text')\n print('人员地址', str_sheng + 'sssss' + str_shi)\n \"\"\"\n 人个信息\n \"\"\"\n person_info = self.driver.find_elements_by_xpath(\n '/html//ul[@class=\"member_info_list fn-clear\"]')\n person_dict = {}\n for i in person_info:\n person_dict = parse(i.text)\n print('个人信息', person_dict)\n \"\"\"\n 处理item,对应mysql的person_info表\n \"\"\"\n item['person_id'] = person_id\n item['province'] = str_sheng\n item['municipal'] = str_shi\n nick_name_info = self.driver.find_elements_by_xpath(\n '/html//div[@class=\"member_info_r yh\"]/h4')\n nick_name = nick_name_info[0].text[0:nick_name_info[0].text.index('I')]\n print('昵称', nick_name)\n item['nike_name'] = nick_name\n item['education'] = person_dict['学历']\n item['height'] = person_dict['身高']\n item['buy_car'] = person_dict['购车']\n item['salary'] = person_dict['月薪']\n item['housing'] = person_dict['住房']\n item['weight'] = person_dict['体重']\n item['constellation'] = person_dict['星座']\n item['nation'] = person_dict['民族']\n item['zodiac'] = person_dict['属相']\n item['blood_type'] = person_dict['血型']\n item['age'] = age_info[0:age_info.index(',')]\n print('年龄', age_info[0:age_info.index(',')])\n item['address'] = str_sheng + str_shi\n item['age_info'] = age_info\n item['image_dir'] = nick_name + '_' + item['age'] + '_' + person_id\n item['url'] = response.url\n item['introduce_oneself'] = self.driver.find_element_by_xpath(\n '/html//div[@class=\"main_1000 mt15 fn-clear\"]//div[@class=\"js_text\"]'\n ).text\n print('个性短语', item['introduce_oneself'])\n item['interest_label'] = ''\n item['personality_label'] = ''\n try:\n self.driver.find_element_by_xpath(\n '/html//div[@class=\"d_more DNA_xq_more DNA_xq_more_a\"]/a'\n ).click()\n time.sleep(1)\n gexing_info = self.driver.find_elements_by_xpath(\n '/html//div[@class=\"test4\"]//div[@class=\"list_a fn-clear\"]')\n print('aaa', type(gexing_info), gexing_info)\n gexing_tag = ''\n for i in gexing_info:\n gexing_tag += i.text\n item['personality_label'] = ''.join(gexing_tag)\n except Exception as e:\n item['personality_label'] = '还没有填写个性元素'\n print('个性', item['personality_label'])\n try:\n self.driver.find_element_by_xpath(\n '/html//div[@class=\"d_more DNA_xq_more\"]/a').click()\n self.driver.implicitly_wait(1)\n aihao_info = self.driver.find_elements_by_xpath(\n '/html/body/div[6]/div[1]/div[3]/div/div[1]/div[1]/ul')\n print('bbb', type(aihao_info), aihao_info)\n aihao_tag = ''\n for i in aihao_info:\n aihao_tag += i.text\n item['interest_label'] = ''.join(aihao_tag)\n except Exception as e:\n item['interest_label'] = '还没有填写兴趣爱好'\n print('她的兴趣爱好', item['interest_label'])\n find_mate = self.driver.find_elements_by_xpath(\n '/html//div[@class=\"bg_white mt15\"]')\n \"\"\"\n 择偶要求\n \"\"\"\n mate = find_mate[1].find_elements_by_xpath(\n 'div[@class=\"js_box\"]/ul[@class=\"js_list fn-clear\"]')\n mate_dict = {}\n for i in mate:\n mate_dict = parse(i.text)\n item['person_id_mate'] = person_id\n item['age_mate'] = mate_dict['年龄']\n item['height_mate'] = mate_dict['身高']\n item['nation_mate'] = mate_dict['民族']\n item['education_mate'] = mate_dict['学历']\n item['image_mate'] = mate_dict['相册']\n item['marital_status'] = mate_dict['婚姻状况']\n item['address_mate'] = mate_dict['居住地']\n item['sincerity_mate'] = mate_dict['诚信']\n print('择偶要求', mate_dict)\n \"\"\"\n 生活方式\n \"\"\"\n life = find_mate[2].find_elements_by_xpath(\n 'div[@class=\"js_box\"]/ul[@class=\"js_list fn-clear\"]')\n life_style = {}\n for i in life:\n temp = parse(i.text)\n if isinstance(temp, dict):\n life_style.update(parse(i.text))\n else:\n life_style['吸烟'] = '未填写生活方式'\n life_style['饮酒'] = '未填写生活方式'\n life_style['锻炼习惯'] = '未填写生活方式'\n life_style['饮食习惯'] = '未填写生活方式'\n life_style['逛街购物'] = '未填写生活方式'\n life_style['宗教信仰'] = '未填写生活方式'\n life_style['作息时间'] = '未填写生活方式'\n life_style['交际圈子'] = '未填写生活方式'\n life_style['最大消费'] = '未填写生活方式'\n try:\n housework = []\n pet = []\n jiawu1 = find_mate[2].find_elements_by_xpath(\n 'div[@class=\"js_box\"]//div[@class=\"pt25 fn-clear\"]//dd[@class=\"cur\"]'\n )\n for i in jiawu1:\n housework.append(i.text)\n print('家务1 ', i.text)\n jiawu2 = find_mate[2].find_elements_by_xpath(\n 'div[@class=\"js_box\"]//div[@class=\"fl pr\"]/em')\n for i in jiawu2:\n pet.append(i.text)\n print('家务2 ', i.text)\n except Exception as e:\n housework.append('家务水平程度未填写')\n housework.append('宠物喜欢程度未填写')\n pet.append('家务分配未填写')\n pet.append('关于宠物未填写')\n item['person_id_life'] = person_id\n item['smoke'] = life_style['吸烟']\n item['drink_wine'] = life_style['饮酒']\n item['exercise_habits'] = life_style['锻炼习惯']\n item['eating_habits'] = life_style['饮食习惯']\n item['shopping'] = life_style['逛街购物']\n item['religious_belief'] = life_style['宗教信仰']\n item['time_table'] = life_style['作息时间']\n item['circle_of_communication'] = life_style['交际圈子']\n item['maximum_consumption'] = life_style['最大消费']\n item['housework'] = housework[0]\n item['household_assignment'] = pet[0]\n item['pet'] = housework[1]\n item['about_pets'] = pet[1]\n print('生活方式', life_style)\n print('家务', housework[0], pet[0])\n print('宠物', housework[1], pet[1])\n \"\"\"\n 经济实力\n \"\"\"\n economic_dict = {}\n economic = find_mate[3].find_elements_by_xpath(\n 'div[@class=\"js_box\"]/ul[@class=\"js_list fn-clear\"]')\n for i in economic:\n economic_dict = parse(i.text)\n item['person_id_economic'] = person_id\n item['salary_economic'] = economic_dict['月薪']\n item['buy_house_economic'] = economic_dict['购房']\n item['buy_car_economic'] = economic_dict['购车']\n item['economic_concept'] = economic_dict['经济观念']\n item['investment_financing'] = economic_dict['投资理财']\n item['foreign_debt'] = economic_dict['外债贷款']\n print('经济实力', economic_dict)\n \"\"\"\n 工作学习\n \"\"\"\n work = find_mate[4].find_elements_by_xpath(\n 'div[@class=\"js_box\"]/ul[@class=\"js_list fn-clear\"]')\n work_study = {}\n for i in work:\n if i.text:\n temp = parse(i.text)\n if isinstance(temp, dict):\n work_study.update(parse(i.text))\n else:\n work_study['职业职位'] = '未填写工作学习方式'\n work_study['公司行业'] = '未填写工作学习方式'\n work_study['公司类型'] = '未填写工作学习方式'\n work_study['福利待遇'] = '未填写工作学习方式'\n work_study['工作状态'] = '未填写工作学习方式'\n work_study['调动工作可能性'] = '未填写工作学习方式'\n work_study['事业与家庭'] = '未填写工作学习方式'\n work_study['海外工作可能性'] = '未填写工作学习方式'\n work_study['毕业院校'] = '未填写工作学习方式'\n work_study['专业类型'] = '未填写工作学习方式'\n work_study['语言能力'] = '未填写工作学习方式'\n item['person_id_study'] = person_id\n item['position'] = work_study['职业职位']\n item['company'] = work_study['公司行业']\n item['company_type'] = work_study['公司类型']\n item['welfare'] = work_study['福利待遇']\n item['working'] = work_study['工作状态']\n item['transfer_work'] = work_study['调动工作可能性']\n item['work_family'] = work_study['事业与家庭']\n item['overseas_job'] = work_study['海外工作可能性']\n item['university'] = work_study['毕业院校']\n item['major'] = work_study['专业类型']\n item['language'] = work_study['语言能力']\n print('工作学习', work_study)\n \"\"\"\n 婚姻观念\n \"\"\"\n marriage = find_mate[5].find_elements_by_xpath(\n 'div[@class=\"js_box\"]/ul[@class=\"js_list fn-clear\"]')\n marriage_family = {}\n for i in marriage:\n if i.text:\n temp = parse(i.text)\n if isinstance(temp, dict):\n marriage_family.update(parse(i.text))\n else:\n marriage_family['籍贯'] = '未填写婚姻观念'\n marriage_family['户口'] = '未填写婚姻观念'\n marriage_family['国籍'] = '未填写婚姻观念'\n marriage_family['个性待征'] = '未填写婚姻观念'\n marriage_family['幽默感'] = '未填写婚姻观念'\n marriage_family['脾气'] = '未填写婚姻观念'\n marriage_family['对待感情'] = '未填写婚姻观念'\n marriage_family['是否要小孩'] = '未填写婚姻观念'\n marriage_family['何时结婚'] = '未填写婚姻观念'\n marriage_family['是否能接受异地恋'] = '未填写婚姻观念'\n marriage_family['理想婚姻'] = '未填写婚姻观念'\n marriage_family['愿与对方父母同住'] = '未填写婚姻观念'\n marriage_family['家中排行'] = '未填写婚姻观念'\n marriage_family['父母情况'] = '未填写婚姻观念'\n marriage_family['兄弟姐妹'] = '未填写婚姻观念'\n marriage_family['父母经济情况'] = '未填写婚姻观念'\n marriage_family['父母医保情况'] = '未填写婚姻观念'\n marriage_family['父母的工作'] = '未填写婚姻观念'\n item['person_id_marriage'] = person_id\n item['address_marriage'] = marriage_family['籍贯']\n item['registered_residence'] = marriage_family['户口']\n item['nationality'] = marriage_family['国籍']\n item['personality'] = marriage_family['个性待征']\n item['humor'] = marriage_family['幽默感']\n item['temper'] = marriage_family['脾气']\n item['feelings'] = marriage_family['对待感情']\n item['want_child'] = marriage_family['是否要小孩']\n item['when_mary'] = marriage_family['何时结婚']\n item['strange_love'] = marriage_family['是否能接受异地恋']\n item['ideal_marriage'] = marriage_family['理想婚姻']\n item['live_parents'] = marriage_family['愿与对方父母同住']\n item['rankings_home'] = marriage_family['家中排行']\n item['parents_situation'] = marriage_family['父母情况']\n item['brothers'] = marriage_family['兄弟姐妹']\n item['parents_economic'] = marriage_family['父母经济情况']\n item['parents_medical'] = marriage_family['父母医保情况']\n item['parents_working'] = marriage_family['父母的工作']\n print('婚姻观念', marriage_family)\n \"\"\"\n 相片列表\n \"\"\"\n print('相片url', response.url)\n list_images = self.driver.find_elements_by_xpath(\n '/html//div[@id=\"bigImg\"]//a')\n print('相片列表', type(list_images), list_images)\n images = []\n for i in list_images:\n image = i.find_element_by_xpath('img').get_attribute('src')\n images.append(image)\n print('相片地址', image)\n item['img_urls'] = images\n print('执行到了最后执行到了最后执行到了最后执行到了最后执行到了最后执行到了最后执行到了最后')\n yield item\n\n\n<code token>\n", "<docstring token>\n<import token>\n\n\nclass jiayuan_data(RedisSpider):\n pool = redis.ConnectionPool(host='127.0.0.1', port=6379, db=0,\n decode_responses=True)\n r = redis.StrictRedis(connection_pool=pool)\n name = 'jiayuan_main'\n redis_key = 'jiayuan_main:start_urls'\n url_base = (\n 'http://search.jiayuan.com/v2/index.php?key=&sex=f&stc=&sn=default&sv=1&p=%s&pt=163649&ft=off&f=select&mt=d'\n )\n redis_key = 'sinaspider:start_urls'\n login_url = 'http://login.jiayuan.com/'\n start_urls = []\n pre_page_num = 25\n option = webdriver.ChromeOptions()\n option.add_argument('--headless')\n option.add_argument('--window-size=1920,1080')\n prefs = {'profile.managed_default_content_settings.images': 2}\n option.add_experimental_option('prefs', prefs)\n try:\n driver = webdriver.Chrome(chrome_options=option)\n except Exception as e:\n driver.close()\n print('spider出现了异常,关闭', str(e))\n driver.get(login_url)\n time.sleep(3)\n driver.find_element_by_id('login_btn').click()\n driver.find_element_by_id('login_email').clear()\n driver.find_element_by_id('login_email').send_keys(USER_NAME)\n driver.find_element_by_id('login_password').clear()\n driver.find_element_by_id('login_password').send_keys(PASSWD)\n driver.find_element_by_id('login_btn').click()\n cookies = driver.get_cookies()\n for p in range(1, 173649):\n search_url = (\n 'http://search.jiayuan.com/v2/index.php?key=&sex=f&stc=&sn=default&sv=1&p=%s&pt=173649&ft=off&f=select&mt=d'\n % p)\n start_urls.append(search_url)\n <docstring token>\n\n def start_requests(self):\n for url in self.start_urls:\n yield Request(url=url, callback=self.get_main_info)\n\n def get_main_info(self, response):\n time.sleep(1)\n print('当前的url', response.url)\n print('重新加载url')\n self.driver.get(response.url)\n self.driver.implicitly_wait(3)\n user_list = self.driver.find_elements_by_xpath(\n '/html//ul[@id=\"normal_user_container\"]/li//div[@class=\"user_name\"]/a[@class=\"os_stat\"]'\n )\n if user_list == []:\n print('user_list为空了,解析有问题')\n url_details = []\n for user in user_list:\n main_url_main = user.get_attribute('href')\n print('人员主页url', main_url_main)\n url_details.append(main_url_main)\n print('人员详情url2', len(url_details))\n if url_details != []:\n for url in url_details:\n yield Request(url=url, cookies=self.cookies, callback=self.\n get_details)\n\n def get_details(self, response):\n \"\"\"\n <class 'str'>\n 年 龄:\n 26-29岁之间\n 身 高:\n 169-185厘米\n 民 族:\n 汉族\n 学 历:\n 不限\n 相 册:\n 有照片\n 婚姻状况:\n 未婚\n 居 住 地:\n 湖北十堰\n 诚 信:\n 不限\n 将这种类型的文字全部转成{'学历': '不限', '婚姻状况': '未婚', '居住地': '湖北十堰', '相册': '有照片', '身高': '169-185厘米', '民族': '汉族', '诚信': '不限', '年龄': '26-29岁之间'}这种dict方便入库\n \"\"\"\n pass\n\n def parse(str1):\n temp_list = str1.split('\\n')\n result = {}\n result_str = ''\n if len(temp_list) > 1:\n for i in range(len(temp_list)):\n if i % 2 == 0:\n result[temp_list[i].replace(' ', '').replace(':', '')\n ] = temp_list[i + 1]\n return result\n else:\n result_str = str1\n return result_str\n item = JiayuanItem()\n self.driver.get(response.url)\n self.driver.implicitly_wait(3)\n print('打开浏览器')\n print('当前的url', response.url)\n age_info = self.driver.find_element_by_xpath(\n '/html//h6[@class=\"member_name\"]').text\n person_id = response.url[response.url.rfind('/') + 1:response.url.\n index('?')]\n print('年龄地址信息', type(age_info), age_info)\n address = self.driver.find_elements_by_xpath(\n '/html//h6[@class=\"member_name\"]/a')\n str_address = ''\n str_sheng = address[0].get_attribute('text')\n str_shi = address[1].get_attribute('text')\n print('人员地址', str_sheng + 'sssss' + str_shi)\n \"\"\"\n 人个信息\n \"\"\"\n person_info = self.driver.find_elements_by_xpath(\n '/html//ul[@class=\"member_info_list fn-clear\"]')\n person_dict = {}\n for i in person_info:\n person_dict = parse(i.text)\n print('个人信息', person_dict)\n \"\"\"\n 处理item,对应mysql的person_info表\n \"\"\"\n item['person_id'] = person_id\n item['province'] = str_sheng\n item['municipal'] = str_shi\n nick_name_info = self.driver.find_elements_by_xpath(\n '/html//div[@class=\"member_info_r yh\"]/h4')\n nick_name = nick_name_info[0].text[0:nick_name_info[0].text.index('I')]\n print('昵称', nick_name)\n item['nike_name'] = nick_name\n item['education'] = person_dict['学历']\n item['height'] = person_dict['身高']\n item['buy_car'] = person_dict['购车']\n item['salary'] = person_dict['月薪']\n item['housing'] = person_dict['住房']\n item['weight'] = person_dict['体重']\n item['constellation'] = person_dict['星座']\n item['nation'] = person_dict['民族']\n item['zodiac'] = person_dict['属相']\n item['blood_type'] = person_dict['血型']\n item['age'] = age_info[0:age_info.index(',')]\n print('年龄', age_info[0:age_info.index(',')])\n item['address'] = str_sheng + str_shi\n item['age_info'] = age_info\n item['image_dir'] = nick_name + '_' + item['age'] + '_' + person_id\n item['url'] = response.url\n item['introduce_oneself'] = self.driver.find_element_by_xpath(\n '/html//div[@class=\"main_1000 mt15 fn-clear\"]//div[@class=\"js_text\"]'\n ).text\n print('个性短语', item['introduce_oneself'])\n item['interest_label'] = ''\n item['personality_label'] = ''\n try:\n self.driver.find_element_by_xpath(\n '/html//div[@class=\"d_more DNA_xq_more DNA_xq_more_a\"]/a'\n ).click()\n time.sleep(1)\n gexing_info = self.driver.find_elements_by_xpath(\n '/html//div[@class=\"test4\"]//div[@class=\"list_a fn-clear\"]')\n print('aaa', type(gexing_info), gexing_info)\n gexing_tag = ''\n for i in gexing_info:\n gexing_tag += i.text\n item['personality_label'] = ''.join(gexing_tag)\n except Exception as e:\n item['personality_label'] = '还没有填写个性元素'\n print('个性', item['personality_label'])\n try:\n self.driver.find_element_by_xpath(\n '/html//div[@class=\"d_more DNA_xq_more\"]/a').click()\n self.driver.implicitly_wait(1)\n aihao_info = self.driver.find_elements_by_xpath(\n '/html/body/div[6]/div[1]/div[3]/div/div[1]/div[1]/ul')\n print('bbb', type(aihao_info), aihao_info)\n aihao_tag = ''\n for i in aihao_info:\n aihao_tag += i.text\n item['interest_label'] = ''.join(aihao_tag)\n except Exception as e:\n item['interest_label'] = '还没有填写兴趣爱好'\n print('她的兴趣爱好', item['interest_label'])\n find_mate = self.driver.find_elements_by_xpath(\n '/html//div[@class=\"bg_white mt15\"]')\n \"\"\"\n 择偶要求\n \"\"\"\n mate = find_mate[1].find_elements_by_xpath(\n 'div[@class=\"js_box\"]/ul[@class=\"js_list fn-clear\"]')\n mate_dict = {}\n for i in mate:\n mate_dict = parse(i.text)\n item['person_id_mate'] = person_id\n item['age_mate'] = mate_dict['年龄']\n item['height_mate'] = mate_dict['身高']\n item['nation_mate'] = mate_dict['民族']\n item['education_mate'] = mate_dict['学历']\n item['image_mate'] = mate_dict['相册']\n item['marital_status'] = mate_dict['婚姻状况']\n item['address_mate'] = mate_dict['居住地']\n item['sincerity_mate'] = mate_dict['诚信']\n print('择偶要求', mate_dict)\n \"\"\"\n 生活方式\n \"\"\"\n life = find_mate[2].find_elements_by_xpath(\n 'div[@class=\"js_box\"]/ul[@class=\"js_list fn-clear\"]')\n life_style = {}\n for i in life:\n temp = parse(i.text)\n if isinstance(temp, dict):\n life_style.update(parse(i.text))\n else:\n life_style['吸烟'] = '未填写生活方式'\n life_style['饮酒'] = '未填写生活方式'\n life_style['锻炼习惯'] = '未填写生活方式'\n life_style['饮食习惯'] = '未填写生活方式'\n life_style['逛街购物'] = '未填写生活方式'\n life_style['宗教信仰'] = '未填写生活方式'\n life_style['作息时间'] = '未填写生活方式'\n life_style['交际圈子'] = '未填写生活方式'\n life_style['最大消费'] = '未填写生活方式'\n try:\n housework = []\n pet = []\n jiawu1 = find_mate[2].find_elements_by_xpath(\n 'div[@class=\"js_box\"]//div[@class=\"pt25 fn-clear\"]//dd[@class=\"cur\"]'\n )\n for i in jiawu1:\n housework.append(i.text)\n print('家务1 ', i.text)\n jiawu2 = find_mate[2].find_elements_by_xpath(\n 'div[@class=\"js_box\"]//div[@class=\"fl pr\"]/em')\n for i in jiawu2:\n pet.append(i.text)\n print('家务2 ', i.text)\n except Exception as e:\n housework.append('家务水平程度未填写')\n housework.append('宠物喜欢程度未填写')\n pet.append('家务分配未填写')\n pet.append('关于宠物未填写')\n item['person_id_life'] = person_id\n item['smoke'] = life_style['吸烟']\n item['drink_wine'] = life_style['饮酒']\n item['exercise_habits'] = life_style['锻炼习惯']\n item['eating_habits'] = life_style['饮食习惯']\n item['shopping'] = life_style['逛街购物']\n item['religious_belief'] = life_style['宗教信仰']\n item['time_table'] = life_style['作息时间']\n item['circle_of_communication'] = life_style['交际圈子']\n item['maximum_consumption'] = life_style['最大消费']\n item['housework'] = housework[0]\n item['household_assignment'] = pet[0]\n item['pet'] = housework[1]\n item['about_pets'] = pet[1]\n print('生活方式', life_style)\n print('家务', housework[0], pet[0])\n print('宠物', housework[1], pet[1])\n \"\"\"\n 经济实力\n \"\"\"\n economic_dict = {}\n economic = find_mate[3].find_elements_by_xpath(\n 'div[@class=\"js_box\"]/ul[@class=\"js_list fn-clear\"]')\n for i in economic:\n economic_dict = parse(i.text)\n item['person_id_economic'] = person_id\n item['salary_economic'] = economic_dict['月薪']\n item['buy_house_economic'] = economic_dict['购房']\n item['buy_car_economic'] = economic_dict['购车']\n item['economic_concept'] = economic_dict['经济观念']\n item['investment_financing'] = economic_dict['投资理财']\n item['foreign_debt'] = economic_dict['外债贷款']\n print('经济实力', economic_dict)\n \"\"\"\n 工作学习\n \"\"\"\n work = find_mate[4].find_elements_by_xpath(\n 'div[@class=\"js_box\"]/ul[@class=\"js_list fn-clear\"]')\n work_study = {}\n for i in work:\n if i.text:\n temp = parse(i.text)\n if isinstance(temp, dict):\n work_study.update(parse(i.text))\n else:\n work_study['职业职位'] = '未填写工作学习方式'\n work_study['公司行业'] = '未填写工作学习方式'\n work_study['公司类型'] = '未填写工作学习方式'\n work_study['福利待遇'] = '未填写工作学习方式'\n work_study['工作状态'] = '未填写工作学习方式'\n work_study['调动工作可能性'] = '未填写工作学习方式'\n work_study['事业与家庭'] = '未填写工作学习方式'\n work_study['海外工作可能性'] = '未填写工作学习方式'\n work_study['毕业院校'] = '未填写工作学习方式'\n work_study['专业类型'] = '未填写工作学习方式'\n work_study['语言能力'] = '未填写工作学习方式'\n item['person_id_study'] = person_id\n item['position'] = work_study['职业职位']\n item['company'] = work_study['公司行业']\n item['company_type'] = work_study['公司类型']\n item['welfare'] = work_study['福利待遇']\n item['working'] = work_study['工作状态']\n item['transfer_work'] = work_study['调动工作可能性']\n item['work_family'] = work_study['事业与家庭']\n item['overseas_job'] = work_study['海外工作可能性']\n item['university'] = work_study['毕业院校']\n item['major'] = work_study['专业类型']\n item['language'] = work_study['语言能力']\n print('工作学习', work_study)\n \"\"\"\n 婚姻观念\n \"\"\"\n marriage = find_mate[5].find_elements_by_xpath(\n 'div[@class=\"js_box\"]/ul[@class=\"js_list fn-clear\"]')\n marriage_family = {}\n for i in marriage:\n if i.text:\n temp = parse(i.text)\n if isinstance(temp, dict):\n marriage_family.update(parse(i.text))\n else:\n marriage_family['籍贯'] = '未填写婚姻观念'\n marriage_family['户口'] = '未填写婚姻观念'\n marriage_family['国籍'] = '未填写婚姻观念'\n marriage_family['个性待征'] = '未填写婚姻观念'\n marriage_family['幽默感'] = '未填写婚姻观念'\n marriage_family['脾气'] = '未填写婚姻观念'\n marriage_family['对待感情'] = '未填写婚姻观念'\n marriage_family['是否要小孩'] = '未填写婚姻观念'\n marriage_family['何时结婚'] = '未填写婚姻观念'\n marriage_family['是否能接受异地恋'] = '未填写婚姻观念'\n marriage_family['理想婚姻'] = '未填写婚姻观念'\n marriage_family['愿与对方父母同住'] = '未填写婚姻观念'\n marriage_family['家中排行'] = '未填写婚姻观念'\n marriage_family['父母情况'] = '未填写婚姻观念'\n marriage_family['兄弟姐妹'] = '未填写婚姻观念'\n marriage_family['父母经济情况'] = '未填写婚姻观念'\n marriage_family['父母医保情况'] = '未填写婚姻观念'\n marriage_family['父母的工作'] = '未填写婚姻观念'\n item['person_id_marriage'] = person_id\n item['address_marriage'] = marriage_family['籍贯']\n item['registered_residence'] = marriage_family['户口']\n item['nationality'] = marriage_family['国籍']\n item['personality'] = marriage_family['个性待征']\n item['humor'] = marriage_family['幽默感']\n item['temper'] = marriage_family['脾气']\n item['feelings'] = marriage_family['对待感情']\n item['want_child'] = marriage_family['是否要小孩']\n item['when_mary'] = marriage_family['何时结婚']\n item['strange_love'] = marriage_family['是否能接受异地恋']\n item['ideal_marriage'] = marriage_family['理想婚姻']\n item['live_parents'] = marriage_family['愿与对方父母同住']\n item['rankings_home'] = marriage_family['家中排行']\n item['parents_situation'] = marriage_family['父母情况']\n item['brothers'] = marriage_family['兄弟姐妹']\n item['parents_economic'] = marriage_family['父母经济情况']\n item['parents_medical'] = marriage_family['父母医保情况']\n item['parents_working'] = marriage_family['父母的工作']\n print('婚姻观念', marriage_family)\n \"\"\"\n 相片列表\n \"\"\"\n print('相片url', response.url)\n list_images = self.driver.find_elements_by_xpath(\n '/html//div[@id=\"bigImg\"]//a')\n print('相片列表', type(list_images), list_images)\n images = []\n for i in list_images:\n image = i.find_element_by_xpath('img').get_attribute('src')\n images.append(image)\n print('相片地址', image)\n item['img_urls'] = images\n print('执行到了最后执行到了最后执行到了最后执行到了最后执行到了最后执行到了最后执行到了最后')\n yield item\n\n\n<code token>\n", "<docstring token>\n<import token>\n\n\nclass jiayuan_data(RedisSpider):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n option.add_argument('--headless')\n option.add_argument('--window-size=1920,1080')\n <assignment token>\n option.add_experimental_option('prefs', prefs)\n try:\n driver = webdriver.Chrome(chrome_options=option)\n except Exception as e:\n driver.close()\n print('spider出现了异常,关闭', str(e))\n driver.get(login_url)\n time.sleep(3)\n driver.find_element_by_id('login_btn').click()\n driver.find_element_by_id('login_email').clear()\n driver.find_element_by_id('login_email').send_keys(USER_NAME)\n driver.find_element_by_id('login_password').clear()\n driver.find_element_by_id('login_password').send_keys(PASSWD)\n driver.find_element_by_id('login_btn').click()\n <assignment token>\n for p in range(1, 173649):\n search_url = (\n 'http://search.jiayuan.com/v2/index.php?key=&sex=f&stc=&sn=default&sv=1&p=%s&pt=173649&ft=off&f=select&mt=d'\n % p)\n start_urls.append(search_url)\n <docstring token>\n\n def start_requests(self):\n for url in self.start_urls:\n yield Request(url=url, callback=self.get_main_info)\n\n def get_main_info(self, response):\n time.sleep(1)\n print('当前的url', response.url)\n print('重新加载url')\n self.driver.get(response.url)\n self.driver.implicitly_wait(3)\n user_list = self.driver.find_elements_by_xpath(\n '/html//ul[@id=\"normal_user_container\"]/li//div[@class=\"user_name\"]/a[@class=\"os_stat\"]'\n )\n if user_list == []:\n print('user_list为空了,解析有问题')\n url_details = []\n for user in user_list:\n main_url_main = user.get_attribute('href')\n print('人员主页url', main_url_main)\n url_details.append(main_url_main)\n print('人员详情url2', len(url_details))\n if url_details != []:\n for url in url_details:\n yield Request(url=url, cookies=self.cookies, callback=self.\n get_details)\n\n def get_details(self, response):\n \"\"\"\n <class 'str'>\n 年 龄:\n 26-29岁之间\n 身 高:\n 169-185厘米\n 民 族:\n 汉族\n 学 历:\n 不限\n 相 册:\n 有照片\n 婚姻状况:\n 未婚\n 居 住 地:\n 湖北十堰\n 诚 信:\n 不限\n 将这种类型的文字全部转成{'学历': '不限', '婚姻状况': '未婚', '居住地': '湖北十堰', '相册': '有照片', '身高': '169-185厘米', '民族': '汉族', '诚信': '不限', '年龄': '26-29岁之间'}这种dict方便入库\n \"\"\"\n pass\n\n def parse(str1):\n temp_list = str1.split('\\n')\n result = {}\n result_str = ''\n if len(temp_list) > 1:\n for i in range(len(temp_list)):\n if i % 2 == 0:\n result[temp_list[i].replace(' ', '').replace(':', '')\n ] = temp_list[i + 1]\n return result\n else:\n result_str = str1\n return result_str\n item = JiayuanItem()\n self.driver.get(response.url)\n self.driver.implicitly_wait(3)\n print('打开浏览器')\n print('当前的url', response.url)\n age_info = self.driver.find_element_by_xpath(\n '/html//h6[@class=\"member_name\"]').text\n person_id = response.url[response.url.rfind('/') + 1:response.url.\n index('?')]\n print('年龄地址信息', type(age_info), age_info)\n address = self.driver.find_elements_by_xpath(\n '/html//h6[@class=\"member_name\"]/a')\n str_address = ''\n str_sheng = address[0].get_attribute('text')\n str_shi = address[1].get_attribute('text')\n print('人员地址', str_sheng + 'sssss' + str_shi)\n \"\"\"\n 人个信息\n \"\"\"\n person_info = self.driver.find_elements_by_xpath(\n '/html//ul[@class=\"member_info_list fn-clear\"]')\n person_dict = {}\n for i in person_info:\n person_dict = parse(i.text)\n print('个人信息', person_dict)\n \"\"\"\n 处理item,对应mysql的person_info表\n \"\"\"\n item['person_id'] = person_id\n item['province'] = str_sheng\n item['municipal'] = str_shi\n nick_name_info = self.driver.find_elements_by_xpath(\n '/html//div[@class=\"member_info_r yh\"]/h4')\n nick_name = nick_name_info[0].text[0:nick_name_info[0].text.index('I')]\n print('昵称', nick_name)\n item['nike_name'] = nick_name\n item['education'] = person_dict['学历']\n item['height'] = person_dict['身高']\n item['buy_car'] = person_dict['购车']\n item['salary'] = person_dict['月薪']\n item['housing'] = person_dict['住房']\n item['weight'] = person_dict['体重']\n item['constellation'] = person_dict['星座']\n item['nation'] = person_dict['民族']\n item['zodiac'] = person_dict['属相']\n item['blood_type'] = person_dict['血型']\n item['age'] = age_info[0:age_info.index(',')]\n print('年龄', age_info[0:age_info.index(',')])\n item['address'] = str_sheng + str_shi\n item['age_info'] = age_info\n item['image_dir'] = nick_name + '_' + item['age'] + '_' + person_id\n item['url'] = response.url\n item['introduce_oneself'] = self.driver.find_element_by_xpath(\n '/html//div[@class=\"main_1000 mt15 fn-clear\"]//div[@class=\"js_text\"]'\n ).text\n print('个性短语', item['introduce_oneself'])\n item['interest_label'] = ''\n item['personality_label'] = ''\n try:\n self.driver.find_element_by_xpath(\n '/html//div[@class=\"d_more DNA_xq_more DNA_xq_more_a\"]/a'\n ).click()\n time.sleep(1)\n gexing_info = self.driver.find_elements_by_xpath(\n '/html//div[@class=\"test4\"]//div[@class=\"list_a fn-clear\"]')\n print('aaa', type(gexing_info), gexing_info)\n gexing_tag = ''\n for i in gexing_info:\n gexing_tag += i.text\n item['personality_label'] = ''.join(gexing_tag)\n except Exception as e:\n item['personality_label'] = '还没有填写个性元素'\n print('个性', item['personality_label'])\n try:\n self.driver.find_element_by_xpath(\n '/html//div[@class=\"d_more DNA_xq_more\"]/a').click()\n self.driver.implicitly_wait(1)\n aihao_info = self.driver.find_elements_by_xpath(\n '/html/body/div[6]/div[1]/div[3]/div/div[1]/div[1]/ul')\n print('bbb', type(aihao_info), aihao_info)\n aihao_tag = ''\n for i in aihao_info:\n aihao_tag += i.text\n item['interest_label'] = ''.join(aihao_tag)\n except Exception as e:\n item['interest_label'] = '还没有填写兴趣爱好'\n print('她的兴趣爱好', item['interest_label'])\n find_mate = self.driver.find_elements_by_xpath(\n '/html//div[@class=\"bg_white mt15\"]')\n \"\"\"\n 择偶要求\n \"\"\"\n mate = find_mate[1].find_elements_by_xpath(\n 'div[@class=\"js_box\"]/ul[@class=\"js_list fn-clear\"]')\n mate_dict = {}\n for i in mate:\n mate_dict = parse(i.text)\n item['person_id_mate'] = person_id\n item['age_mate'] = mate_dict['年龄']\n item['height_mate'] = mate_dict['身高']\n item['nation_mate'] = mate_dict['民族']\n item['education_mate'] = mate_dict['学历']\n item['image_mate'] = mate_dict['相册']\n item['marital_status'] = mate_dict['婚姻状况']\n item['address_mate'] = mate_dict['居住地']\n item['sincerity_mate'] = mate_dict['诚信']\n print('择偶要求', mate_dict)\n \"\"\"\n 生活方式\n \"\"\"\n life = find_mate[2].find_elements_by_xpath(\n 'div[@class=\"js_box\"]/ul[@class=\"js_list fn-clear\"]')\n life_style = {}\n for i in life:\n temp = parse(i.text)\n if isinstance(temp, dict):\n life_style.update(parse(i.text))\n else:\n life_style['吸烟'] = '未填写生活方式'\n life_style['饮酒'] = '未填写生活方式'\n life_style['锻炼习惯'] = '未填写生活方式'\n life_style['饮食习惯'] = '未填写生活方式'\n life_style['逛街购物'] = '未填写生活方式'\n life_style['宗教信仰'] = '未填写生活方式'\n life_style['作息时间'] = '未填写生活方式'\n life_style['交际圈子'] = '未填写生活方式'\n life_style['最大消费'] = '未填写生活方式'\n try:\n housework = []\n pet = []\n jiawu1 = find_mate[2].find_elements_by_xpath(\n 'div[@class=\"js_box\"]//div[@class=\"pt25 fn-clear\"]//dd[@class=\"cur\"]'\n )\n for i in jiawu1:\n housework.append(i.text)\n print('家务1 ', i.text)\n jiawu2 = find_mate[2].find_elements_by_xpath(\n 'div[@class=\"js_box\"]//div[@class=\"fl pr\"]/em')\n for i in jiawu2:\n pet.append(i.text)\n print('家务2 ', i.text)\n except Exception as e:\n housework.append('家务水平程度未填写')\n housework.append('宠物喜欢程度未填写')\n pet.append('家务分配未填写')\n pet.append('关于宠物未填写')\n item['person_id_life'] = person_id\n item['smoke'] = life_style['吸烟']\n item['drink_wine'] = life_style['饮酒']\n item['exercise_habits'] = life_style['锻炼习惯']\n item['eating_habits'] = life_style['饮食习惯']\n item['shopping'] = life_style['逛街购物']\n item['religious_belief'] = life_style['宗教信仰']\n item['time_table'] = life_style['作息时间']\n item['circle_of_communication'] = life_style['交际圈子']\n item['maximum_consumption'] = life_style['最大消费']\n item['housework'] = housework[0]\n item['household_assignment'] = pet[0]\n item['pet'] = housework[1]\n item['about_pets'] = pet[1]\n print('生活方式', life_style)\n print('家务', housework[0], pet[0])\n print('宠物', housework[1], pet[1])\n \"\"\"\n 经济实力\n \"\"\"\n economic_dict = {}\n economic = find_mate[3].find_elements_by_xpath(\n 'div[@class=\"js_box\"]/ul[@class=\"js_list fn-clear\"]')\n for i in economic:\n economic_dict = parse(i.text)\n item['person_id_economic'] = person_id\n item['salary_economic'] = economic_dict['月薪']\n item['buy_house_economic'] = economic_dict['购房']\n item['buy_car_economic'] = economic_dict['购车']\n item['economic_concept'] = economic_dict['经济观念']\n item['investment_financing'] = economic_dict['投资理财']\n item['foreign_debt'] = economic_dict['外债贷款']\n print('经济实力', economic_dict)\n \"\"\"\n 工作学习\n \"\"\"\n work = find_mate[4].find_elements_by_xpath(\n 'div[@class=\"js_box\"]/ul[@class=\"js_list fn-clear\"]')\n work_study = {}\n for i in work:\n if i.text:\n temp = parse(i.text)\n if isinstance(temp, dict):\n work_study.update(parse(i.text))\n else:\n work_study['职业职位'] = '未填写工作学习方式'\n work_study['公司行业'] = '未填写工作学习方式'\n work_study['公司类型'] = '未填写工作学习方式'\n work_study['福利待遇'] = '未填写工作学习方式'\n work_study['工作状态'] = '未填写工作学习方式'\n work_study['调动工作可能性'] = '未填写工作学习方式'\n work_study['事业与家庭'] = '未填写工作学习方式'\n work_study['海外工作可能性'] = '未填写工作学习方式'\n work_study['毕业院校'] = '未填写工作学习方式'\n work_study['专业类型'] = '未填写工作学习方式'\n work_study['语言能力'] = '未填写工作学习方式'\n item['person_id_study'] = person_id\n item['position'] = work_study['职业职位']\n item['company'] = work_study['公司行业']\n item['company_type'] = work_study['公司类型']\n item['welfare'] = work_study['福利待遇']\n item['working'] = work_study['工作状态']\n item['transfer_work'] = work_study['调动工作可能性']\n item['work_family'] = work_study['事业与家庭']\n item['overseas_job'] = work_study['海外工作可能性']\n item['university'] = work_study['毕业院校']\n item['major'] = work_study['专业类型']\n item['language'] = work_study['语言能力']\n print('工作学习', work_study)\n \"\"\"\n 婚姻观念\n \"\"\"\n marriage = find_mate[5].find_elements_by_xpath(\n 'div[@class=\"js_box\"]/ul[@class=\"js_list fn-clear\"]')\n marriage_family = {}\n for i in marriage:\n if i.text:\n temp = parse(i.text)\n if isinstance(temp, dict):\n marriage_family.update(parse(i.text))\n else:\n marriage_family['籍贯'] = '未填写婚姻观念'\n marriage_family['户口'] = '未填写婚姻观念'\n marriage_family['国籍'] = '未填写婚姻观念'\n marriage_family['个性待征'] = '未填写婚姻观念'\n marriage_family['幽默感'] = '未填写婚姻观念'\n marriage_family['脾气'] = '未填写婚姻观念'\n marriage_family['对待感情'] = '未填写婚姻观念'\n marriage_family['是否要小孩'] = '未填写婚姻观念'\n marriage_family['何时结婚'] = '未填写婚姻观念'\n marriage_family['是否能接受异地恋'] = '未填写婚姻观念'\n marriage_family['理想婚姻'] = '未填写婚姻观念'\n marriage_family['愿与对方父母同住'] = '未填写婚姻观念'\n marriage_family['家中排行'] = '未填写婚姻观念'\n marriage_family['父母情况'] = '未填写婚姻观念'\n marriage_family['兄弟姐妹'] = '未填写婚姻观念'\n marriage_family['父母经济情况'] = '未填写婚姻观念'\n marriage_family['父母医保情况'] = '未填写婚姻观念'\n marriage_family['父母的工作'] = '未填写婚姻观念'\n item['person_id_marriage'] = person_id\n item['address_marriage'] = marriage_family['籍贯']\n item['registered_residence'] = marriage_family['户口']\n item['nationality'] = marriage_family['国籍']\n item['personality'] = marriage_family['个性待征']\n item['humor'] = marriage_family['幽默感']\n item['temper'] = marriage_family['脾气']\n item['feelings'] = marriage_family['对待感情']\n item['want_child'] = marriage_family['是否要小孩']\n item['when_mary'] = marriage_family['何时结婚']\n item['strange_love'] = marriage_family['是否能接受异地恋']\n item['ideal_marriage'] = marriage_family['理想婚姻']\n item['live_parents'] = marriage_family['愿与对方父母同住']\n item['rankings_home'] = marriage_family['家中排行']\n item['parents_situation'] = marriage_family['父母情况']\n item['brothers'] = marriage_family['兄弟姐妹']\n item['parents_economic'] = marriage_family['父母经济情况']\n item['parents_medical'] = marriage_family['父母医保情况']\n item['parents_working'] = marriage_family['父母的工作']\n print('婚姻观念', marriage_family)\n \"\"\"\n 相片列表\n \"\"\"\n print('相片url', response.url)\n list_images = self.driver.find_elements_by_xpath(\n '/html//div[@id=\"bigImg\"]//a')\n print('相片列表', type(list_images), list_images)\n images = []\n for i in list_images:\n image = i.find_element_by_xpath('img').get_attribute('src')\n images.append(image)\n print('相片地址', image)\n item['img_urls'] = images\n print('执行到了最后执行到了最后执行到了最后执行到了最后执行到了最后执行到了最后执行到了最后')\n yield item\n\n\n<code token>\n", "<docstring token>\n<import token>\n\n\nclass jiayuan_data(RedisSpider):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n option.add_argument('--headless')\n option.add_argument('--window-size=1920,1080')\n <assignment token>\n option.add_experimental_option('prefs', prefs)\n try:\n driver = webdriver.Chrome(chrome_options=option)\n except Exception as e:\n driver.close()\n print('spider出现了异常,关闭', str(e))\n driver.get(login_url)\n time.sleep(3)\n driver.find_element_by_id('login_btn').click()\n driver.find_element_by_id('login_email').clear()\n driver.find_element_by_id('login_email').send_keys(USER_NAME)\n driver.find_element_by_id('login_password').clear()\n driver.find_element_by_id('login_password').send_keys(PASSWD)\n driver.find_element_by_id('login_btn').click()\n <assignment token>\n for p in range(1, 173649):\n search_url = (\n 'http://search.jiayuan.com/v2/index.php?key=&sex=f&stc=&sn=default&sv=1&p=%s&pt=173649&ft=off&f=select&mt=d'\n % p)\n start_urls.append(search_url)\n <docstring token>\n\n def start_requests(self):\n for url in self.start_urls:\n yield Request(url=url, callback=self.get_main_info)\n\n def get_main_info(self, response):\n time.sleep(1)\n print('当前的url', response.url)\n print('重新加载url')\n self.driver.get(response.url)\n self.driver.implicitly_wait(3)\n user_list = self.driver.find_elements_by_xpath(\n '/html//ul[@id=\"normal_user_container\"]/li//div[@class=\"user_name\"]/a[@class=\"os_stat\"]'\n )\n if user_list == []:\n print('user_list为空了,解析有问题')\n url_details = []\n for user in user_list:\n main_url_main = user.get_attribute('href')\n print('人员主页url', main_url_main)\n url_details.append(main_url_main)\n print('人员详情url2', len(url_details))\n if url_details != []:\n for url in url_details:\n yield Request(url=url, cookies=self.cookies, callback=self.\n get_details)\n <function token>\n\n\n<code token>\n", "<docstring token>\n<import token>\n\n\nclass jiayuan_data(RedisSpider):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n option.add_argument('--headless')\n option.add_argument('--window-size=1920,1080')\n <assignment token>\n option.add_experimental_option('prefs', prefs)\n try:\n driver = webdriver.Chrome(chrome_options=option)\n except Exception as e:\n driver.close()\n print('spider出现了异常,关闭', str(e))\n driver.get(login_url)\n time.sleep(3)\n driver.find_element_by_id('login_btn').click()\n driver.find_element_by_id('login_email').clear()\n driver.find_element_by_id('login_email').send_keys(USER_NAME)\n driver.find_element_by_id('login_password').clear()\n driver.find_element_by_id('login_password').send_keys(PASSWD)\n driver.find_element_by_id('login_btn').click()\n <assignment token>\n for p in range(1, 173649):\n search_url = (\n 'http://search.jiayuan.com/v2/index.php?key=&sex=f&stc=&sn=default&sv=1&p=%s&pt=173649&ft=off&f=select&mt=d'\n % p)\n start_urls.append(search_url)\n <docstring token>\n <function token>\n\n def get_main_info(self, response):\n time.sleep(1)\n print('当前的url', response.url)\n print('重新加载url')\n self.driver.get(response.url)\n self.driver.implicitly_wait(3)\n user_list = self.driver.find_elements_by_xpath(\n '/html//ul[@id=\"normal_user_container\"]/li//div[@class=\"user_name\"]/a[@class=\"os_stat\"]'\n )\n if user_list == []:\n print('user_list为空了,解析有问题')\n url_details = []\n for user in user_list:\n main_url_main = user.get_attribute('href')\n print('人员主页url', main_url_main)\n url_details.append(main_url_main)\n print('人员详情url2', len(url_details))\n if url_details != []:\n for url in url_details:\n yield Request(url=url, cookies=self.cookies, callback=self.\n get_details)\n <function token>\n\n\n<code token>\n", "<docstring token>\n<import token>\n\n\nclass jiayuan_data(RedisSpider):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n option.add_argument('--headless')\n option.add_argument('--window-size=1920,1080')\n <assignment token>\n option.add_experimental_option('prefs', prefs)\n try:\n driver = webdriver.Chrome(chrome_options=option)\n except Exception as e:\n driver.close()\n print('spider出现了异常,关闭', str(e))\n driver.get(login_url)\n time.sleep(3)\n driver.find_element_by_id('login_btn').click()\n driver.find_element_by_id('login_email').clear()\n driver.find_element_by_id('login_email').send_keys(USER_NAME)\n driver.find_element_by_id('login_password').clear()\n driver.find_element_by_id('login_password').send_keys(PASSWD)\n driver.find_element_by_id('login_btn').click()\n <assignment token>\n for p in range(1, 173649):\n search_url = (\n 'http://search.jiayuan.com/v2/index.php?key=&sex=f&stc=&sn=default&sv=1&p=%s&pt=173649&ft=off&f=select&mt=d'\n % p)\n start_urls.append(search_url)\n <docstring token>\n <function token>\n <function token>\n <function token>\n\n\n<code token>\n", "<docstring token>\n<import token>\n<class token>\n<code token>\n" ]
false
99,388
904f0c408b9ef611c6a1650c507d06e05c7c4627
print ("alok kumar mishra")
[ "print (\"alok kumar mishra\")\n", "print('alok kumar mishra')\n", "<code token>\n" ]
false
99,389
2a8020063c58ad5ae5af32c2062b7b3f5d72e05a
import os from click.testing import CliRunner from cli.script import cli def get_graph_code(): return ''' from copy import deepcopy as dc class StringCopier(object): def __init__(self): self.copied_strings = set() def copy(self): string1 = 'this' string2 = dc(string1) string1.add(string1) return string2 class DoSomething(object): def something(self): copier = StringCopier() copied_string = copier.copy() ''' def test_produce_graph(): runner = CliRunner() with runner.isolated_filesystem(): with open('code.py', 'w') as f: f.write(get_graph_code()) runner.invoke(cli, ['code.py', '--output', 'code_output']) assert 'code_output' in os.listdir(os.path.curdir) def test_file_extension(): runner = CliRunner() with runner.isolated_filesystem(): with open('code.py', 'w') as f: f.write(get_graph_code()) runner.invoke(cli, ['code.py', '--output', 'code_output', '--output-format', 'png']) assert 'code_output' in os.listdir(os.path.curdir)
[ "import os\n\nfrom click.testing import CliRunner\n\nfrom cli.script import cli\n\n\ndef get_graph_code():\n return '''\nfrom copy import deepcopy as dc\n\nclass StringCopier(object):\n def __init__(self):\n self.copied_strings = set()\n\n def copy(self):\n string1 = 'this'\n string2 = dc(string1)\n string1.add(string1)\n return string2\n\nclass DoSomething(object):\n def something(self):\n copier = StringCopier()\n copied_string = copier.copy()\n'''\n\n\ndef test_produce_graph():\n runner = CliRunner()\n with runner.isolated_filesystem():\n with open('code.py', 'w') as f:\n f.write(get_graph_code())\n\n runner.invoke(cli, ['code.py', '--output', 'code_output'])\n assert 'code_output' in os.listdir(os.path.curdir)\n\n\ndef test_file_extension():\n runner = CliRunner()\n with runner.isolated_filesystem():\n with open('code.py', 'w') as f:\n f.write(get_graph_code())\n\n runner.invoke(cli, ['code.py', '--output', 'code_output', '--output-format', 'png'])\n assert 'code_output' in os.listdir(os.path.curdir)\n", "import os\nfrom click.testing import CliRunner\nfrom cli.script import cli\n\n\ndef get_graph_code():\n return \"\"\"\nfrom copy import deepcopy as dc\n\nclass StringCopier(object):\n def __init__(self):\n self.copied_strings = set()\n\n def copy(self):\n string1 = 'this'\n string2 = dc(string1)\n string1.add(string1)\n return string2\n\nclass DoSomething(object):\n def something(self):\n copier = StringCopier()\n copied_string = copier.copy()\n\"\"\"\n\n\ndef test_produce_graph():\n runner = CliRunner()\n with runner.isolated_filesystem():\n with open('code.py', 'w') as f:\n f.write(get_graph_code())\n runner.invoke(cli, ['code.py', '--output', 'code_output'])\n assert 'code_output' in os.listdir(os.path.curdir)\n\n\ndef test_file_extension():\n runner = CliRunner()\n with runner.isolated_filesystem():\n with open('code.py', 'w') as f:\n f.write(get_graph_code())\n runner.invoke(cli, ['code.py', '--output', 'code_output',\n '--output-format', 'png'])\n assert 'code_output' in os.listdir(os.path.curdir)\n", "<import token>\n\n\ndef get_graph_code():\n return \"\"\"\nfrom copy import deepcopy as dc\n\nclass StringCopier(object):\n def __init__(self):\n self.copied_strings = set()\n\n def copy(self):\n string1 = 'this'\n string2 = dc(string1)\n string1.add(string1)\n return string2\n\nclass DoSomething(object):\n def something(self):\n copier = StringCopier()\n copied_string = copier.copy()\n\"\"\"\n\n\ndef test_produce_graph():\n runner = CliRunner()\n with runner.isolated_filesystem():\n with open('code.py', 'w') as f:\n f.write(get_graph_code())\n runner.invoke(cli, ['code.py', '--output', 'code_output'])\n assert 'code_output' in os.listdir(os.path.curdir)\n\n\ndef test_file_extension():\n runner = CliRunner()\n with runner.isolated_filesystem():\n with open('code.py', 'w') as f:\n f.write(get_graph_code())\n runner.invoke(cli, ['code.py', '--output', 'code_output',\n '--output-format', 'png'])\n assert 'code_output' in os.listdir(os.path.curdir)\n", "<import token>\n\n\ndef get_graph_code():\n return \"\"\"\nfrom copy import deepcopy as dc\n\nclass StringCopier(object):\n def __init__(self):\n self.copied_strings = set()\n\n def copy(self):\n string1 = 'this'\n string2 = dc(string1)\n string1.add(string1)\n return string2\n\nclass DoSomething(object):\n def something(self):\n copier = StringCopier()\n copied_string = copier.copy()\n\"\"\"\n\n\n<function token>\n\n\ndef test_file_extension():\n runner = CliRunner()\n with runner.isolated_filesystem():\n with open('code.py', 'w') as f:\n f.write(get_graph_code())\n runner.invoke(cli, ['code.py', '--output', 'code_output',\n '--output-format', 'png'])\n assert 'code_output' in os.listdir(os.path.curdir)\n", "<import token>\n<function token>\n<function token>\n\n\ndef test_file_extension():\n runner = CliRunner()\n with runner.isolated_filesystem():\n with open('code.py', 'w') as f:\n f.write(get_graph_code())\n runner.invoke(cli, ['code.py', '--output', 'code_output',\n '--output-format', 'png'])\n assert 'code_output' in os.listdir(os.path.curdir)\n", "<import token>\n<function token>\n<function token>\n<function token>\n" ]
false
99,390
454a76544b63ce9f08b4d36b7607d0a19d678440
import sys from multiprocessing import Queue, Manager, Process from logger import Logger class BaseProcessor: _logger = None _file_handler = None _process_list = [] _manager = None _event_queue = None _task_queue = None _process_count = 0 _use_verbose_logging = False def __init__(self, file_handler, process_count, use_verbose_logging): self._file_handler = file_handler self._process_count = process_count self._use_verbose_logging = use_verbose_logging self._logger = Logger() self._manager = Manager() self._event_queue = self._manager.Queue() self._task_queue = self._manager.Queue() def _get_process(self, process_id): raise AttributeError("not supported") def _run_processes(self, items_to_process, event_handler_func, event_handler_args): total_to_process = len(items_to_process) processes = self._initialize_processes() self._fill_task_queue(items_to_process) self._process_events(total_to_process, event_handler_func, event_handler_args) self._stop_processes(processes) def _initialize_processes(self): processes = [] for i in range(self._process_count): process = self._get_process(i) processes.append(process) process.start() return processes def _fill_task_queue(self, items): for item in items: self._task_queue.put(item) def _process_events(self, total_to_process, event_handler_func, event_handler_args): num_processed = 0 num_processed_by_process_list = [0] * self._process_count while True: self._write_progress_to_console(num_processed, total_to_process, num_processed_by_process_list) event = None try: event = self._event_queue.get(True, 1) except: pass if event is not None: args_to_use = (event, num_processed_by_process_list, num_processed, total_to_process) args_to_use += event_handler_args num_processed = event_handler_func(*args_to_use) if num_processed >= total_to_process: break def _stop_processes(self, processes): for i in range(self._process_count): self._task_queue.put(-1) for process in processes: process.join() def _write_progress_to_console(self, num_processed, total_to_process, num_processed_by_process_list): output_str = "Progress: " + str(num_processed) + "/" + str(total_to_process) + " " for i in range(len(num_processed_by_process_list)): output_str += ("P" + str(i) + ": " + str(num_processed_by_process_list[i]) + " ") sys.stdout.write(output_str + "\r") sys.stdout.flush() def _log_process_message(self, process_id, message): if self._use_verbose_logging: self._logger.print_log("[process: " + str(process_id) + "] " + message)
[ "import sys\nfrom multiprocessing import Queue, Manager, Process\nfrom logger import Logger\n\nclass BaseProcessor:\n\n _logger = None\n _file_handler = None\n _process_list = []\n _manager = None\n _event_queue = None\n _task_queue = None\n _process_count = 0\n _use_verbose_logging = False\n\n def __init__(self, file_handler, process_count, use_verbose_logging):\n self._file_handler = file_handler\n self._process_count = process_count\n self._use_verbose_logging = use_verbose_logging\n \n self._logger = Logger()\n self._manager = Manager()\n self._event_queue = self._manager.Queue()\n self._task_queue = self._manager.Queue()\n\n def _get_process(self, process_id):\n raise AttributeError(\"not supported\")\n\n def _run_processes(self, items_to_process, event_handler_func, event_handler_args):\n total_to_process = len(items_to_process)\n\n processes = self._initialize_processes()\n self._fill_task_queue(items_to_process)\n\n self._process_events(total_to_process, event_handler_func, event_handler_args)\n\n self._stop_processes(processes)\n\n def _initialize_processes(self):\n processes = []\n for i in range(self._process_count):\n process = self._get_process(i)\n processes.append(process)\n process.start()\n\n return processes\n\n def _fill_task_queue(self, items):\n for item in items:\n self._task_queue.put(item)\n\n def _process_events(self, total_to_process, event_handler_func, event_handler_args):\n num_processed = 0\n num_processed_by_process_list = [0] * self._process_count\n \n while True:\n self._write_progress_to_console(num_processed, total_to_process, num_processed_by_process_list)\n\n event = None\n try:\n event = self._event_queue.get(True, 1) \n except:\n pass\n\n if event is not None:\n args_to_use = (event, num_processed_by_process_list, num_processed, total_to_process)\n args_to_use += event_handler_args\n\n num_processed = event_handler_func(*args_to_use)\n\n if num_processed >= total_to_process:\n break\n\n def _stop_processes(self, processes):\n for i in range(self._process_count):\n self._task_queue.put(-1)\n\n for process in processes:\n process.join()\n\n def _write_progress_to_console(self, num_processed, total_to_process, num_processed_by_process_list):\n output_str = \"Progress: \" + str(num_processed) + \"/\" + str(total_to_process) + \" \"\n\n for i in range(len(num_processed_by_process_list)):\n output_str += (\"P\" + str(i) + \": \" + str(num_processed_by_process_list[i]) + \" \")\n\n sys.stdout.write(output_str + \"\\r\")\n sys.stdout.flush()\n\n def _log_process_message(self, process_id, message):\n if self._use_verbose_logging:\n self._logger.print_log(\"[process: \" + str(process_id) + \"] \" + message)", "import sys\nfrom multiprocessing import Queue, Manager, Process\nfrom logger import Logger\n\n\nclass BaseProcessor:\n _logger = None\n _file_handler = None\n _process_list = []\n _manager = None\n _event_queue = None\n _task_queue = None\n _process_count = 0\n _use_verbose_logging = False\n\n def __init__(self, file_handler, process_count, use_verbose_logging):\n self._file_handler = file_handler\n self._process_count = process_count\n self._use_verbose_logging = use_verbose_logging\n self._logger = Logger()\n self._manager = Manager()\n self._event_queue = self._manager.Queue()\n self._task_queue = self._manager.Queue()\n\n def _get_process(self, process_id):\n raise AttributeError('not supported')\n\n def _run_processes(self, items_to_process, event_handler_func,\n event_handler_args):\n total_to_process = len(items_to_process)\n processes = self._initialize_processes()\n self._fill_task_queue(items_to_process)\n self._process_events(total_to_process, event_handler_func,\n event_handler_args)\n self._stop_processes(processes)\n\n def _initialize_processes(self):\n processes = []\n for i in range(self._process_count):\n process = self._get_process(i)\n processes.append(process)\n process.start()\n return processes\n\n def _fill_task_queue(self, items):\n for item in items:\n self._task_queue.put(item)\n\n def _process_events(self, total_to_process, event_handler_func,\n event_handler_args):\n num_processed = 0\n num_processed_by_process_list = [0] * self._process_count\n while True:\n self._write_progress_to_console(num_processed, total_to_process,\n num_processed_by_process_list)\n event = None\n try:\n event = self._event_queue.get(True, 1)\n except:\n pass\n if event is not None:\n args_to_use = (event, num_processed_by_process_list,\n num_processed, total_to_process)\n args_to_use += event_handler_args\n num_processed = event_handler_func(*args_to_use)\n if num_processed >= total_to_process:\n break\n\n def _stop_processes(self, processes):\n for i in range(self._process_count):\n self._task_queue.put(-1)\n for process in processes:\n process.join()\n\n def _write_progress_to_console(self, num_processed, total_to_process,\n num_processed_by_process_list):\n output_str = 'Progress: ' + str(num_processed) + '/' + str(\n total_to_process) + ' '\n for i in range(len(num_processed_by_process_list)):\n output_str += 'P' + str(i) + ': ' + str(\n num_processed_by_process_list[i]) + ' '\n sys.stdout.write(output_str + '\\r')\n sys.stdout.flush()\n\n def _log_process_message(self, process_id, message):\n if self._use_verbose_logging:\n self._logger.print_log('[process: ' + str(process_id) + '] ' +\n message)\n", "<import token>\n\n\nclass BaseProcessor:\n _logger = None\n _file_handler = None\n _process_list = []\n _manager = None\n _event_queue = None\n _task_queue = None\n _process_count = 0\n _use_verbose_logging = False\n\n def __init__(self, file_handler, process_count, use_verbose_logging):\n self._file_handler = file_handler\n self._process_count = process_count\n self._use_verbose_logging = use_verbose_logging\n self._logger = Logger()\n self._manager = Manager()\n self._event_queue = self._manager.Queue()\n self._task_queue = self._manager.Queue()\n\n def _get_process(self, process_id):\n raise AttributeError('not supported')\n\n def _run_processes(self, items_to_process, event_handler_func,\n event_handler_args):\n total_to_process = len(items_to_process)\n processes = self._initialize_processes()\n self._fill_task_queue(items_to_process)\n self._process_events(total_to_process, event_handler_func,\n event_handler_args)\n self._stop_processes(processes)\n\n def _initialize_processes(self):\n processes = []\n for i in range(self._process_count):\n process = self._get_process(i)\n processes.append(process)\n process.start()\n return processes\n\n def _fill_task_queue(self, items):\n for item in items:\n self._task_queue.put(item)\n\n def _process_events(self, total_to_process, event_handler_func,\n event_handler_args):\n num_processed = 0\n num_processed_by_process_list = [0] * self._process_count\n while True:\n self._write_progress_to_console(num_processed, total_to_process,\n num_processed_by_process_list)\n event = None\n try:\n event = self._event_queue.get(True, 1)\n except:\n pass\n if event is not None:\n args_to_use = (event, num_processed_by_process_list,\n num_processed, total_to_process)\n args_to_use += event_handler_args\n num_processed = event_handler_func(*args_to_use)\n if num_processed >= total_to_process:\n break\n\n def _stop_processes(self, processes):\n for i in range(self._process_count):\n self._task_queue.put(-1)\n for process in processes:\n process.join()\n\n def _write_progress_to_console(self, num_processed, total_to_process,\n num_processed_by_process_list):\n output_str = 'Progress: ' + str(num_processed) + '/' + str(\n total_to_process) + ' '\n for i in range(len(num_processed_by_process_list)):\n output_str += 'P' + str(i) + ': ' + str(\n num_processed_by_process_list[i]) + ' '\n sys.stdout.write(output_str + '\\r')\n sys.stdout.flush()\n\n def _log_process_message(self, process_id, message):\n if self._use_verbose_logging:\n self._logger.print_log('[process: ' + str(process_id) + '] ' +\n message)\n", "<import token>\n\n\nclass BaseProcessor:\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __init__(self, file_handler, process_count, use_verbose_logging):\n self._file_handler = file_handler\n self._process_count = process_count\n self._use_verbose_logging = use_verbose_logging\n self._logger = Logger()\n self._manager = Manager()\n self._event_queue = self._manager.Queue()\n self._task_queue = self._manager.Queue()\n\n def _get_process(self, process_id):\n raise AttributeError('not supported')\n\n def _run_processes(self, items_to_process, event_handler_func,\n event_handler_args):\n total_to_process = len(items_to_process)\n processes = self._initialize_processes()\n self._fill_task_queue(items_to_process)\n self._process_events(total_to_process, event_handler_func,\n event_handler_args)\n self._stop_processes(processes)\n\n def _initialize_processes(self):\n processes = []\n for i in range(self._process_count):\n process = self._get_process(i)\n processes.append(process)\n process.start()\n return processes\n\n def _fill_task_queue(self, items):\n for item in items:\n self._task_queue.put(item)\n\n def _process_events(self, total_to_process, event_handler_func,\n event_handler_args):\n num_processed = 0\n num_processed_by_process_list = [0] * self._process_count\n while True:\n self._write_progress_to_console(num_processed, total_to_process,\n num_processed_by_process_list)\n event = None\n try:\n event = self._event_queue.get(True, 1)\n except:\n pass\n if event is not None:\n args_to_use = (event, num_processed_by_process_list,\n num_processed, total_to_process)\n args_to_use += event_handler_args\n num_processed = event_handler_func(*args_to_use)\n if num_processed >= total_to_process:\n break\n\n def _stop_processes(self, processes):\n for i in range(self._process_count):\n self._task_queue.put(-1)\n for process in processes:\n process.join()\n\n def _write_progress_to_console(self, num_processed, total_to_process,\n num_processed_by_process_list):\n output_str = 'Progress: ' + str(num_processed) + '/' + str(\n total_to_process) + ' '\n for i in range(len(num_processed_by_process_list)):\n output_str += 'P' + str(i) + ': ' + str(\n num_processed_by_process_list[i]) + ' '\n sys.stdout.write(output_str + '\\r')\n sys.stdout.flush()\n\n def _log_process_message(self, process_id, message):\n if self._use_verbose_logging:\n self._logger.print_log('[process: ' + str(process_id) + '] ' +\n message)\n", "<import token>\n\n\nclass BaseProcessor:\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __init__(self, file_handler, process_count, use_verbose_logging):\n self._file_handler = file_handler\n self._process_count = process_count\n self._use_verbose_logging = use_verbose_logging\n self._logger = Logger()\n self._manager = Manager()\n self._event_queue = self._manager.Queue()\n self._task_queue = self._manager.Queue()\n\n def _get_process(self, process_id):\n raise AttributeError('not supported')\n <function token>\n\n def _initialize_processes(self):\n processes = []\n for i in range(self._process_count):\n process = self._get_process(i)\n processes.append(process)\n process.start()\n return processes\n\n def _fill_task_queue(self, items):\n for item in items:\n self._task_queue.put(item)\n\n def _process_events(self, total_to_process, event_handler_func,\n event_handler_args):\n num_processed = 0\n num_processed_by_process_list = [0] * self._process_count\n while True:\n self._write_progress_to_console(num_processed, total_to_process,\n num_processed_by_process_list)\n event = None\n try:\n event = self._event_queue.get(True, 1)\n except:\n pass\n if event is not None:\n args_to_use = (event, num_processed_by_process_list,\n num_processed, total_to_process)\n args_to_use += event_handler_args\n num_processed = event_handler_func(*args_to_use)\n if num_processed >= total_to_process:\n break\n\n def _stop_processes(self, processes):\n for i in range(self._process_count):\n self._task_queue.put(-1)\n for process in processes:\n process.join()\n\n def _write_progress_to_console(self, num_processed, total_to_process,\n num_processed_by_process_list):\n output_str = 'Progress: ' + str(num_processed) + '/' + str(\n total_to_process) + ' '\n for i in range(len(num_processed_by_process_list)):\n output_str += 'P' + str(i) + ': ' + str(\n num_processed_by_process_list[i]) + ' '\n sys.stdout.write(output_str + '\\r')\n sys.stdout.flush()\n\n def _log_process_message(self, process_id, message):\n if self._use_verbose_logging:\n self._logger.print_log('[process: ' + str(process_id) + '] ' +\n message)\n", "<import token>\n\n\nclass BaseProcessor:\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __init__(self, file_handler, process_count, use_verbose_logging):\n self._file_handler = file_handler\n self._process_count = process_count\n self._use_verbose_logging = use_verbose_logging\n self._logger = Logger()\n self._manager = Manager()\n self._event_queue = self._manager.Queue()\n self._task_queue = self._manager.Queue()\n\n def _get_process(self, process_id):\n raise AttributeError('not supported')\n <function token>\n\n def _initialize_processes(self):\n processes = []\n for i in range(self._process_count):\n process = self._get_process(i)\n processes.append(process)\n process.start()\n return processes\n\n def _fill_task_queue(self, items):\n for item in items:\n self._task_queue.put(item)\n\n def _process_events(self, total_to_process, event_handler_func,\n event_handler_args):\n num_processed = 0\n num_processed_by_process_list = [0] * self._process_count\n while True:\n self._write_progress_to_console(num_processed, total_to_process,\n num_processed_by_process_list)\n event = None\n try:\n event = self._event_queue.get(True, 1)\n except:\n pass\n if event is not None:\n args_to_use = (event, num_processed_by_process_list,\n num_processed, total_to_process)\n args_to_use += event_handler_args\n num_processed = event_handler_func(*args_to_use)\n if num_processed >= total_to_process:\n break\n\n def _stop_processes(self, processes):\n for i in range(self._process_count):\n self._task_queue.put(-1)\n for process in processes:\n process.join()\n <function token>\n\n def _log_process_message(self, process_id, message):\n if self._use_verbose_logging:\n self._logger.print_log('[process: ' + str(process_id) + '] ' +\n message)\n", "<import token>\n\n\nclass BaseProcessor:\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __init__(self, file_handler, process_count, use_verbose_logging):\n self._file_handler = file_handler\n self._process_count = process_count\n self._use_verbose_logging = use_verbose_logging\n self._logger = Logger()\n self._manager = Manager()\n self._event_queue = self._manager.Queue()\n self._task_queue = self._manager.Queue()\n\n def _get_process(self, process_id):\n raise AttributeError('not supported')\n <function token>\n <function token>\n\n def _fill_task_queue(self, items):\n for item in items:\n self._task_queue.put(item)\n\n def _process_events(self, total_to_process, event_handler_func,\n event_handler_args):\n num_processed = 0\n num_processed_by_process_list = [0] * self._process_count\n while True:\n self._write_progress_to_console(num_processed, total_to_process,\n num_processed_by_process_list)\n event = None\n try:\n event = self._event_queue.get(True, 1)\n except:\n pass\n if event is not None:\n args_to_use = (event, num_processed_by_process_list,\n num_processed, total_to_process)\n args_to_use += event_handler_args\n num_processed = event_handler_func(*args_to_use)\n if num_processed >= total_to_process:\n break\n\n def _stop_processes(self, processes):\n for i in range(self._process_count):\n self._task_queue.put(-1)\n for process in processes:\n process.join()\n <function token>\n\n def _log_process_message(self, process_id, message):\n if self._use_verbose_logging:\n self._logger.print_log('[process: ' + str(process_id) + '] ' +\n message)\n", "<import token>\n\n\nclass BaseProcessor:\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __init__(self, file_handler, process_count, use_verbose_logging):\n self._file_handler = file_handler\n self._process_count = process_count\n self._use_verbose_logging = use_verbose_logging\n self._logger = Logger()\n self._manager = Manager()\n self._event_queue = self._manager.Queue()\n self._task_queue = self._manager.Queue()\n\n def _get_process(self, process_id):\n raise AttributeError('not supported')\n <function token>\n <function token>\n\n def _fill_task_queue(self, items):\n for item in items:\n self._task_queue.put(item)\n <function token>\n\n def _stop_processes(self, processes):\n for i in range(self._process_count):\n self._task_queue.put(-1)\n for process in processes:\n process.join()\n <function token>\n\n def _log_process_message(self, process_id, message):\n if self._use_verbose_logging:\n self._logger.print_log('[process: ' + str(process_id) + '] ' +\n message)\n", "<import token>\n\n\nclass BaseProcessor:\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __init__(self, file_handler, process_count, use_verbose_logging):\n self._file_handler = file_handler\n self._process_count = process_count\n self._use_verbose_logging = use_verbose_logging\n self._logger = Logger()\n self._manager = Manager()\n self._event_queue = self._manager.Queue()\n self._task_queue = self._manager.Queue()\n\n def _get_process(self, process_id):\n raise AttributeError('not supported')\n <function token>\n <function token>\n\n def _fill_task_queue(self, items):\n for item in items:\n self._task_queue.put(item)\n <function token>\n <function token>\n <function token>\n\n def _log_process_message(self, process_id, message):\n if self._use_verbose_logging:\n self._logger.print_log('[process: ' + str(process_id) + '] ' +\n message)\n", "<import token>\n\n\nclass BaseProcessor:\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __init__(self, file_handler, process_count, use_verbose_logging):\n self._file_handler = file_handler\n self._process_count = process_count\n self._use_verbose_logging = use_verbose_logging\n self._logger = Logger()\n self._manager = Manager()\n self._event_queue = self._manager.Queue()\n self._task_queue = self._manager.Queue()\n <function token>\n <function token>\n <function token>\n\n def _fill_task_queue(self, items):\n for item in items:\n self._task_queue.put(item)\n <function token>\n <function token>\n <function token>\n\n def _log_process_message(self, process_id, message):\n if self._use_verbose_logging:\n self._logger.print_log('[process: ' + str(process_id) + '] ' +\n message)\n", "<import token>\n\n\nclass BaseProcessor:\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __init__(self, file_handler, process_count, use_verbose_logging):\n self._file_handler = file_handler\n self._process_count = process_count\n self._use_verbose_logging = use_verbose_logging\n self._logger = Logger()\n self._manager = Manager()\n self._event_queue = self._manager.Queue()\n self._task_queue = self._manager.Queue()\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def _log_process_message(self, process_id, message):\n if self._use_verbose_logging:\n self._logger.print_log('[process: ' + str(process_id) + '] ' +\n message)\n", "<import token>\n\n\nclass BaseProcessor:\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __init__(self, file_handler, process_count, use_verbose_logging):\n self._file_handler = file_handler\n self._process_count = process_count\n self._use_verbose_logging = use_verbose_logging\n self._logger = Logger()\n self._manager = Manager()\n self._event_queue = self._manager.Queue()\n self._task_queue = self._manager.Queue()\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n\n\nclass BaseProcessor:\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n<class token>\n" ]
false
99,391
6ba7a8b5132aac7204f72ad1592113d08f54071b
from pymongo import MongoClient from chirpy.config import settings def connect(**kwargs): defaults = { 'host': settings.mongo.get('host'), 'port': settings.mongo.get('port') } defaults.update(kwargs) client = MongoClient(**defaults) return client[settings.mongo.database] if __name__ == '__main__': db = connect() db.tweets.count()
[ "from pymongo import MongoClient\nfrom chirpy.config import settings\n\ndef connect(**kwargs):\n defaults = {\n 'host': settings.mongo.get('host'),\n 'port': settings.mongo.get('port')\n }\n defaults.update(kwargs)\n\n client = MongoClient(**defaults)\n return client[settings.mongo.database]\n \nif __name__ == '__main__':\n db = connect()\n db.tweets.count()\n", "from pymongo import MongoClient\nfrom chirpy.config import settings\n\n\ndef connect(**kwargs):\n defaults = {'host': settings.mongo.get('host'), 'port': settings.mongo.\n get('port')}\n defaults.update(kwargs)\n client = MongoClient(**defaults)\n return client[settings.mongo.database]\n\n\nif __name__ == '__main__':\n db = connect()\n db.tweets.count()\n", "<import token>\n\n\ndef connect(**kwargs):\n defaults = {'host': settings.mongo.get('host'), 'port': settings.mongo.\n get('port')}\n defaults.update(kwargs)\n client = MongoClient(**defaults)\n return client[settings.mongo.database]\n\n\nif __name__ == '__main__':\n db = connect()\n db.tweets.count()\n", "<import token>\n\n\ndef connect(**kwargs):\n defaults = {'host': settings.mongo.get('host'), 'port': settings.mongo.\n get('port')}\n defaults.update(kwargs)\n client = MongoClient(**defaults)\n return client[settings.mongo.database]\n\n\n<code token>\n", "<import token>\n<function token>\n<code token>\n" ]
false
99,392
490e3e72f82c96a5627e7efa4015b5484a579d5d
from core.forms import AnonymousSubscribeForm, LeadGenerationForm from django.utils import translation from django.conf import settings from directory_constants import urls def subscribe_form(request): return { 'subscribe': { 'form': AnonymousSubscribeForm(), }, } def lead_generation_form(request): return { 'lead_generation': { 'form': LeadGenerationForm() } } def html_lang_attribute(request): return { 'directory_components_html_lang_attribute': translation.get_language() } def footer_contact_us_link(request): if settings.FEATURE_FLAGS.get('INTERNATIONAL_CONTACT_LINK_ON'): footer_contact_us_link = urls.build_great_url('international/contact/') else: footer_contact_us_link = urls.CONTACT_US return { 'footer_contact_us_link': footer_contact_us_link }
[ "from core.forms import AnonymousSubscribeForm, LeadGenerationForm\nfrom django.utils import translation\nfrom django.conf import settings\nfrom directory_constants import urls\n\n\ndef subscribe_form(request):\n return {\n 'subscribe': {\n 'form': AnonymousSubscribeForm(),\n },\n }\n\n\ndef lead_generation_form(request):\n return {\n 'lead_generation': {\n 'form': LeadGenerationForm()\n }\n }\n\n\ndef html_lang_attribute(request):\n return {\n 'directory_components_html_lang_attribute': translation.get_language()\n }\n\n\ndef footer_contact_us_link(request):\n if settings.FEATURE_FLAGS.get('INTERNATIONAL_CONTACT_LINK_ON'):\n footer_contact_us_link = urls.build_great_url('international/contact/')\n else:\n footer_contact_us_link = urls.CONTACT_US\n\n return {\n 'footer_contact_us_link': footer_contact_us_link\n }\n", "from core.forms import AnonymousSubscribeForm, LeadGenerationForm\nfrom django.utils import translation\nfrom django.conf import settings\nfrom directory_constants import urls\n\n\ndef subscribe_form(request):\n return {'subscribe': {'form': AnonymousSubscribeForm()}}\n\n\ndef lead_generation_form(request):\n return {'lead_generation': {'form': LeadGenerationForm()}}\n\n\ndef html_lang_attribute(request):\n return {'directory_components_html_lang_attribute': translation.\n get_language()}\n\n\ndef footer_contact_us_link(request):\n if settings.FEATURE_FLAGS.get('INTERNATIONAL_CONTACT_LINK_ON'):\n footer_contact_us_link = urls.build_great_url('international/contact/')\n else:\n footer_contact_us_link = urls.CONTACT_US\n return {'footer_contact_us_link': footer_contact_us_link}\n", "<import token>\n\n\ndef subscribe_form(request):\n return {'subscribe': {'form': AnonymousSubscribeForm()}}\n\n\ndef lead_generation_form(request):\n return {'lead_generation': {'form': LeadGenerationForm()}}\n\n\ndef html_lang_attribute(request):\n return {'directory_components_html_lang_attribute': translation.\n get_language()}\n\n\ndef footer_contact_us_link(request):\n if settings.FEATURE_FLAGS.get('INTERNATIONAL_CONTACT_LINK_ON'):\n footer_contact_us_link = urls.build_great_url('international/contact/')\n else:\n footer_contact_us_link = urls.CONTACT_US\n return {'footer_contact_us_link': footer_contact_us_link}\n", "<import token>\n\n\ndef subscribe_form(request):\n return {'subscribe': {'form': AnonymousSubscribeForm()}}\n\n\ndef lead_generation_form(request):\n return {'lead_generation': {'form': LeadGenerationForm()}}\n\n\n<function token>\n\n\ndef footer_contact_us_link(request):\n if settings.FEATURE_FLAGS.get('INTERNATIONAL_CONTACT_LINK_ON'):\n footer_contact_us_link = urls.build_great_url('international/contact/')\n else:\n footer_contact_us_link = urls.CONTACT_US\n return {'footer_contact_us_link': footer_contact_us_link}\n", "<import token>\n<function token>\n\n\ndef lead_generation_form(request):\n return {'lead_generation': {'form': LeadGenerationForm()}}\n\n\n<function token>\n\n\ndef footer_contact_us_link(request):\n if settings.FEATURE_FLAGS.get('INTERNATIONAL_CONTACT_LINK_ON'):\n footer_contact_us_link = urls.build_great_url('international/contact/')\n else:\n footer_contact_us_link = urls.CONTACT_US\n return {'footer_contact_us_link': footer_contact_us_link}\n", "<import token>\n<function token>\n\n\ndef lead_generation_form(request):\n return {'lead_generation': {'form': LeadGenerationForm()}}\n\n\n<function token>\n<function token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<function token>\n" ]
false
99,393
af176a53c5002e247a09537d9e30456a579fc9f1
#!/usr/bin/env python # Copyright (c) 2011 Vincent Batts, Vienna, VA, USA # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import os import sys from optparse import OptionParser import logging # Setup our path, if this is running from the src directory fpath = os.path.join(os.path.dirname(os.path.abspath(__file__)),"../lib") if os.path.exists(fpath): sys.path.insert(0,fpath) import pysubsonic log = logging.getLogger('subsonic') def parse_args(args): usage = "usage: %prog [options]" parser = OptionParser(usage) parser.add_option("-s","--search",dest="search",default=None, help="string to search for") parser.add_option("-D",dest="debug",action="store_true", default=False,help="debugging") parser.add_option("-i",dest="indexes",action="store_true", default=False,help="show indexes") return parser.parse_args(args) def init_logging(level = pysubsonic.DEFAULT_LOG_LEVEL): hndlr = logging.StreamHandler() log.addHandler(hndlr) log.setLevel(level) def has_cmd(cmd): if os.system('type -p %s 2>/dev/null >/dev/null' % cmd) == 0: return True else: return False def check_system(): if not has_cmd('play'): return False if not has_cmd('wget'): return False if not has_cmd('curl'): return False return True if __name__ == '__main__': (opts, args) = parse_args(sys.argv[0:]) if opts.debug: init_logging(logging.DEBUG) else: init_logging() auth = pysubsonic.config.read_config()['auth'] sub = pysubsonic.subsonic.Subsonic(auth['url'], auth['username'], auth['password']) log.debug( sub.__mkparams__() ) log.debug( sub.getLicense() ) response = sub.getMusicFolders() # '{"subsonic-response": {\n "license": {\n "date": "2011-05-16T15:18:12",\n "email": "[email protected]",\n "key": "8e2c6485e247b6c2457c8c0bdcaca459",\n "valid": true\n },\n "status": "ok",\n "version": "1.6.0",\n "xmlns": "http://subsonic.org/restapi"\n}}' log.debug(response) basedirs = response['subsonic-response']['musicFolders']['musicFolder'] # {u'subsonic-response': {u'musicFolders': {u'musicFolder': [{u'id': 0, u'name': u'Music'}, {u'id': 1, u'name': u'Videos'}]}, u'status': u'ok', u'version': u'1.6.0', u'xmlns': u'http://subsonic.org/restapi'}} log.debug(basedirs) if opts.indexes: response = sub.getIndexes( musicFolderId = '0' ) log.debug(response) if opts.search: response = sub.search2( query = opts.search ) log.debug(response)
[ "#!/usr/bin/env python\n# Copyright (c) 2011 Vincent Batts, Vienna, VA, USA\n# \n# Permission is hereby granted, free of charge, to any person obtaining a copy\n# of this software and associated documentation files (the \"Software\"), to deal\n# in the Software without restriction, including without limitation the rights\n# to use, copy, modify, merge, publish, distribute, sublicense, and/or\n# sell copies of the Software, and to permit persons to whom the Software is\n# furnished to do so, subject to the following conditions:\n# \n# The above copyright notice and this permission notice shall be included in\n# all copies or substantial portions of the Software.\n# \n# THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\n# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\n# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL\n# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\n# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\n# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\n# THE SOFTWARE.\n\nimport os\nimport sys\nfrom optparse import OptionParser\nimport logging\n\n# Setup our path, if this is running from the src directory\nfpath = os.path.join(os.path.dirname(os.path.abspath(__file__)),\"../lib\")\nif os.path.exists(fpath):\n sys.path.insert(0,fpath)\n\nimport pysubsonic\n\nlog = logging.getLogger('subsonic')\n\ndef parse_args(args):\n usage = \"usage: %prog [options]\"\n parser = OptionParser(usage)\n parser.add_option(\"-s\",\"--search\",dest=\"search\",default=None,\n help=\"string to search for\")\n parser.add_option(\"-D\",dest=\"debug\",action=\"store_true\",\n default=False,help=\"debugging\")\n parser.add_option(\"-i\",dest=\"indexes\",action=\"store_true\",\n default=False,help=\"show indexes\")\n return parser.parse_args(args)\n\ndef init_logging(level = pysubsonic.DEFAULT_LOG_LEVEL):\n hndlr = logging.StreamHandler()\n log.addHandler(hndlr)\n log.setLevel(level)\n\ndef has_cmd(cmd):\n if os.system('type -p %s 2>/dev/null >/dev/null' % cmd) == 0:\n return True\n else:\n return False\n\ndef check_system():\n if not has_cmd('play'): return False\n if not has_cmd('wget'): return False\n if not has_cmd('curl'): return False\n return True\n\n\nif __name__ == '__main__':\n\n (opts, args) = parse_args(sys.argv[0:])\n if opts.debug:\n init_logging(logging.DEBUG)\n else:\n init_logging()\n\n\n auth = pysubsonic.config.read_config()['auth']\n sub = pysubsonic.subsonic.Subsonic(auth['url'], auth['username'], auth['password'])\n\n log.debug( sub.__mkparams__() )\n\n log.debug( sub.getLicense() )\n\n response = sub.getMusicFolders()\n # '{\"subsonic-response\": {\\n \"license\": {\\n \"date\": \"2011-05-16T15:18:12\",\\n \"email\": \"[email protected]\",\\n \"key\": \"8e2c6485e247b6c2457c8c0bdcaca459\",\\n \"valid\": true\\n },\\n \"status\": \"ok\",\\n \"version\": \"1.6.0\",\\n \"xmlns\": \"http://subsonic.org/restapi\"\\n}}'\n log.debug(response)\n\n basedirs = response['subsonic-response']['musicFolders']['musicFolder']\n # {u'subsonic-response': {u'musicFolders': {u'musicFolder': [{u'id': 0, u'name': u'Music'}, {u'id': 1, u'name': u'Videos'}]}, u'status': u'ok', u'version': u'1.6.0', u'xmlns': u'http://subsonic.org/restapi'}}\n log.debug(basedirs)\n \n if opts.indexes:\n response = sub.getIndexes( musicFolderId = '0' )\n log.debug(response)\n\n if opts.search:\n response = sub.search2( query = opts.search )\n log.debug(response)\n\n", "import os\nimport sys\nfrom optparse import OptionParser\nimport logging\nfpath = os.path.join(os.path.dirname(os.path.abspath(__file__)), '../lib')\nif os.path.exists(fpath):\n sys.path.insert(0, fpath)\nimport pysubsonic\nlog = logging.getLogger('subsonic')\n\n\ndef parse_args(args):\n usage = 'usage: %prog [options]'\n parser = OptionParser(usage)\n parser.add_option('-s', '--search', dest='search', default=None, help=\n 'string to search for')\n parser.add_option('-D', dest='debug', action='store_true', default=\n False, help='debugging')\n parser.add_option('-i', dest='indexes', action='store_true', default=\n False, help='show indexes')\n return parser.parse_args(args)\n\n\ndef init_logging(level=pysubsonic.DEFAULT_LOG_LEVEL):\n hndlr = logging.StreamHandler()\n log.addHandler(hndlr)\n log.setLevel(level)\n\n\ndef has_cmd(cmd):\n if os.system('type -p %s 2>/dev/null >/dev/null' % cmd) == 0:\n return True\n else:\n return False\n\n\ndef check_system():\n if not has_cmd('play'):\n return False\n if not has_cmd('wget'):\n return False\n if not has_cmd('curl'):\n return False\n return True\n\n\nif __name__ == '__main__':\n opts, args = parse_args(sys.argv[0:])\n if opts.debug:\n init_logging(logging.DEBUG)\n else:\n init_logging()\n auth = pysubsonic.config.read_config()['auth']\n sub = pysubsonic.subsonic.Subsonic(auth['url'], auth['username'], auth[\n 'password'])\n log.debug(sub.__mkparams__())\n log.debug(sub.getLicense())\n response = sub.getMusicFolders()\n log.debug(response)\n basedirs = response['subsonic-response']['musicFolders']['musicFolder']\n log.debug(basedirs)\n if opts.indexes:\n response = sub.getIndexes(musicFolderId='0')\n log.debug(response)\n if opts.search:\n response = sub.search2(query=opts.search)\n log.debug(response)\n", "<import token>\nfpath = os.path.join(os.path.dirname(os.path.abspath(__file__)), '../lib')\nif os.path.exists(fpath):\n sys.path.insert(0, fpath)\n<import token>\nlog = logging.getLogger('subsonic')\n\n\ndef parse_args(args):\n usage = 'usage: %prog [options]'\n parser = OptionParser(usage)\n parser.add_option('-s', '--search', dest='search', default=None, help=\n 'string to search for')\n parser.add_option('-D', dest='debug', action='store_true', default=\n False, help='debugging')\n parser.add_option('-i', dest='indexes', action='store_true', default=\n False, help='show indexes')\n return parser.parse_args(args)\n\n\ndef init_logging(level=pysubsonic.DEFAULT_LOG_LEVEL):\n hndlr = logging.StreamHandler()\n log.addHandler(hndlr)\n log.setLevel(level)\n\n\ndef has_cmd(cmd):\n if os.system('type -p %s 2>/dev/null >/dev/null' % cmd) == 0:\n return True\n else:\n return False\n\n\ndef check_system():\n if not has_cmd('play'):\n return False\n if not has_cmd('wget'):\n return False\n if not has_cmd('curl'):\n return False\n return True\n\n\nif __name__ == '__main__':\n opts, args = parse_args(sys.argv[0:])\n if opts.debug:\n init_logging(logging.DEBUG)\n else:\n init_logging()\n auth = pysubsonic.config.read_config()['auth']\n sub = pysubsonic.subsonic.Subsonic(auth['url'], auth['username'], auth[\n 'password'])\n log.debug(sub.__mkparams__())\n log.debug(sub.getLicense())\n response = sub.getMusicFolders()\n log.debug(response)\n basedirs = response['subsonic-response']['musicFolders']['musicFolder']\n log.debug(basedirs)\n if opts.indexes:\n response = sub.getIndexes(musicFolderId='0')\n log.debug(response)\n if opts.search:\n response = sub.search2(query=opts.search)\n log.debug(response)\n", "<import token>\n<assignment token>\nif os.path.exists(fpath):\n sys.path.insert(0, fpath)\n<import token>\n<assignment token>\n\n\ndef parse_args(args):\n usage = 'usage: %prog [options]'\n parser = OptionParser(usage)\n parser.add_option('-s', '--search', dest='search', default=None, help=\n 'string to search for')\n parser.add_option('-D', dest='debug', action='store_true', default=\n False, help='debugging')\n parser.add_option('-i', dest='indexes', action='store_true', default=\n False, help='show indexes')\n return parser.parse_args(args)\n\n\ndef init_logging(level=pysubsonic.DEFAULT_LOG_LEVEL):\n hndlr = logging.StreamHandler()\n log.addHandler(hndlr)\n log.setLevel(level)\n\n\ndef has_cmd(cmd):\n if os.system('type -p %s 2>/dev/null >/dev/null' % cmd) == 0:\n return True\n else:\n return False\n\n\ndef check_system():\n if not has_cmd('play'):\n return False\n if not has_cmd('wget'):\n return False\n if not has_cmd('curl'):\n return False\n return True\n\n\nif __name__ == '__main__':\n opts, args = parse_args(sys.argv[0:])\n if opts.debug:\n init_logging(logging.DEBUG)\n else:\n init_logging()\n auth = pysubsonic.config.read_config()['auth']\n sub = pysubsonic.subsonic.Subsonic(auth['url'], auth['username'], auth[\n 'password'])\n log.debug(sub.__mkparams__())\n log.debug(sub.getLicense())\n response = sub.getMusicFolders()\n log.debug(response)\n basedirs = response['subsonic-response']['musicFolders']['musicFolder']\n log.debug(basedirs)\n if opts.indexes:\n response = sub.getIndexes(musicFolderId='0')\n log.debug(response)\n if opts.search:\n response = sub.search2(query=opts.search)\n log.debug(response)\n", "<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n\n\ndef parse_args(args):\n usage = 'usage: %prog [options]'\n parser = OptionParser(usage)\n parser.add_option('-s', '--search', dest='search', default=None, help=\n 'string to search for')\n parser.add_option('-D', dest='debug', action='store_true', default=\n False, help='debugging')\n parser.add_option('-i', dest='indexes', action='store_true', default=\n False, help='show indexes')\n return parser.parse_args(args)\n\n\ndef init_logging(level=pysubsonic.DEFAULT_LOG_LEVEL):\n hndlr = logging.StreamHandler()\n log.addHandler(hndlr)\n log.setLevel(level)\n\n\ndef has_cmd(cmd):\n if os.system('type -p %s 2>/dev/null >/dev/null' % cmd) == 0:\n return True\n else:\n return False\n\n\ndef check_system():\n if not has_cmd('play'):\n return False\n if not has_cmd('wget'):\n return False\n if not has_cmd('curl'):\n return False\n return True\n\n\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n\n\ndef parse_args(args):\n usage = 'usage: %prog [options]'\n parser = OptionParser(usage)\n parser.add_option('-s', '--search', dest='search', default=None, help=\n 'string to search for')\n parser.add_option('-D', dest='debug', action='store_true', default=\n False, help='debugging')\n parser.add_option('-i', dest='indexes', action='store_true', default=\n False, help='show indexes')\n return parser.parse_args(args)\n\n\ndef init_logging(level=pysubsonic.DEFAULT_LOG_LEVEL):\n hndlr = logging.StreamHandler()\n log.addHandler(hndlr)\n log.setLevel(level)\n\n\n<function token>\n\n\ndef check_system():\n if not has_cmd('play'):\n return False\n if not has_cmd('wget'):\n return False\n if not has_cmd('curl'):\n return False\n return True\n\n\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n\n\ndef parse_args(args):\n usage = 'usage: %prog [options]'\n parser = OptionParser(usage)\n parser.add_option('-s', '--search', dest='search', default=None, help=\n 'string to search for')\n parser.add_option('-D', dest='debug', action='store_true', default=\n False, help='debugging')\n parser.add_option('-i', dest='indexes', action='store_true', default=\n False, help='show indexes')\n return parser.parse_args(args)\n\n\ndef init_logging(level=pysubsonic.DEFAULT_LOG_LEVEL):\n hndlr = logging.StreamHandler()\n log.addHandler(hndlr)\n log.setLevel(level)\n\n\n<function token>\n<function token>\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n\n\ndef parse_args(args):\n usage = 'usage: %prog [options]'\n parser = OptionParser(usage)\n parser.add_option('-s', '--search', dest='search', default=None, help=\n 'string to search for')\n parser.add_option('-D', dest='debug', action='store_true', default=\n False, help='debugging')\n parser.add_option('-i', dest='indexes', action='store_true', default=\n False, help='show indexes')\n return parser.parse_args(args)\n\n\n<function token>\n<function token>\n<function token>\n<code token>\n", "<import token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<code token>\n" ]
false
99,394
4539d89988d16b3b25420b9a1c416209ca8804ff
# # Copyright (c) European Synchrotron Radiation Facility (ESRF) # # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the 'Software'), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of # the Software, and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # __authors__ = ['O. Svensson'] __license__ = 'MIT' __date__ = '21/04/2019' # Corresponding EDNA code: # https://github.com/olofsvensson/edna-mx # mxPluginExec/plugins/EDPluginH5ToCBF-v1.1/plugins/EDPluginH5ToCBFv1_1.py import pathlib from edna2.tasks.AbstractTask import AbstractTask from edna2.utils import UtilsImage from edna2.utils import UtilsConfig from edna2.utils import UtilsLogging logger = UtilsLogging.getLogger() class H5ToCBFTask(AbstractTask): def getInDataSchema(self): return { "type": "object", "required": ["hdf5File"], "properties": { "imageNumber": {"type": "integer"}, "startImageNumber": {"type": "integer"}, "imageNumber": {"type": "integer"}, "hdf5ImageNumber": {"type": "integer"}, "hdf5File": {"type": "string"}, "forcedOutputDirectory": {"type": "string"} } } def getOutDataSchema(self): return { "type": "object", "properties": { "outputCBFFile": {"type": "string"} } } def run(self, inData): outData = {} hdf5File = pathlib.Path(inData['hdf5File']) directory = hdf5File.parent prefix = UtilsImage.getPrefix(hdf5File) if 'imageNumber'in inData: commandLine, cbfFile = self.generateCommandsWithImageNumber( inData, directory, prefix, hdf5File) outData['outputCBFFile'] = str(cbfFile) elif 'startImageNumber' in inData and 'endImageNumber' in inData: commandLine, template = self.generateCommandsWithImageRange( inData, directory, prefix, hdf5File) outData['outputCBFFileTemplate'] = template self.setLogFileName('h5ToCBF.log') self.runCommandLine('/opt/pxsoft/bin/eiger2cbf ' + commandLine, ignoreErrors=True) return outData @classmethod def generateCommandsWithImageNumber(cls, inData, directory, prefix, hdf5File): """ This method creates a list of commands for the converter """ imageNumber = inData['imageNumber'] if 'hdf5ImageNumber' in inData: hdf5ImageNumber = inData['hdf5ImageNumber'] else: hdf5ImageNumber = imageNumber if 'master.h5' in str(hdf5File): masterFile = hdf5File else: if UtilsConfig.isEMBL(): fileName = '{0}_master.h5'.format(prefix) else: fileName = '{0}_{1}_master.h5'.format(prefix, hdf5ImageNumber) masterFile = directory / fileName if 'forcedOutputImageNumber' in inData: cbfFileName = prefix + \ "_%04d" % inData['forcedOutputImageNumber'] + ".cbf" imageNumberInHdf5File = imageNumber else: cbfFileName = prefix + "_%04d" % imageNumber + ".cbf" imageNumberInHdf5File = 1 if not 'forcedOutputDirectory' in inData: cbfFile = directory / cbfFileName else: forcedOutputDirectory = \ pathlib.Path(inData['forcedOutputDirectory']) if not forcedOutputDirectory.exists(): forcedOutputDirectory.mkdir(parents=True, mode=0o755) cbfFile = forcedOutputDirectory / cbfFileName commandLine = "{0} {1} {2}".format( masterFile, imageNumberInHdf5File, cbfFile ) return commandLine, cbfFile @classmethod def generateCommandsWithImageRange(cls, inData, directory, prefix, hdf5File): startImageNumber = inData['startImageNumber'] endImageNumber = inData['endImageNumber'] if 'hdf5ImageNumber' in inData: hdf5ImageNumber = inData['hdf5ImageNumber'] else: hdf5ImageNumber = startImageNumber if 'master.h5' in str(hdf5File): masterFile = hdf5File else: fileName = prefix + "_{0}_master.h5".format(hdf5ImageNumber) masterFile = directory / fileName cbfFileNamePrefix = prefix + '_' if 'forcedOutputDirectory' in inData: forcedOutputDirectory = \ pathlib.Path(inData['forcedOutputDirectory']) if not forcedOutputDirectory.exists(): forcedOutputDirectory.mkdir(mode=0o755, parents=True) cbfFilePath = forcedOutputDirectory / cbfFileNamePrefix else: cbfFilePath = directory / cbfFileNamePrefix commandLine = "{0} {1}:{2} {3}".format( masterFile, startImageNumber, endImageNumber, cbfFilePath) cbfFileTemplate = str(cbfFilePath) + "######.cbf" return commandLine, cbfFileTemplate
[ "#\n# Copyright (c) European Synchrotron Radiation Facility (ESRF)\n#\n# Permission is hereby granted, free of charge, to any person obtaining a copy of\n# this software and associated documentation files (the 'Software'), to deal in\n# the Software without restriction, including without limitation the rights to\n# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of\n# the Software, and to permit persons to whom the Software is furnished to do so,\n# subject to the following conditions:\n#\n# The above copyright notice and this permission notice shall be included in all\n# copies or substantial portions of the Software.\n#\n# THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\n# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS\n# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR\n# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER\n# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN\n# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.\n#\n\n__authors__ = ['O. Svensson']\n__license__ = 'MIT'\n__date__ = '21/04/2019'\n\n# Corresponding EDNA code:\n# https://github.com/olofsvensson/edna-mx\n# mxPluginExec/plugins/EDPluginH5ToCBF-v1.1/plugins/EDPluginH5ToCBFv1_1.py\n\nimport pathlib\n\nfrom edna2.tasks.AbstractTask import AbstractTask\n\nfrom edna2.utils import UtilsImage\nfrom edna2.utils import UtilsConfig\nfrom edna2.utils import UtilsLogging\n\nlogger = UtilsLogging.getLogger()\n\n\nclass H5ToCBFTask(AbstractTask):\n\n def getInDataSchema(self):\n return {\n \"type\": \"object\",\n \"required\": [\"hdf5File\"],\n \"properties\": {\n \"imageNumber\": {\"type\": \"integer\"},\n \"startImageNumber\": {\"type\": \"integer\"},\n \"imageNumber\": {\"type\": \"integer\"},\n \"hdf5ImageNumber\": {\"type\": \"integer\"},\n \"hdf5File\": {\"type\": \"string\"},\n \"forcedOutputDirectory\": {\"type\": \"string\"}\n }\n }\n\n def getOutDataSchema(self):\n return {\n \"type\": \"object\",\n \"properties\": {\n \"outputCBFFile\": {\"type\": \"string\"}\n }\n }\n\n def run(self, inData):\n outData = {}\n hdf5File = pathlib.Path(inData['hdf5File'])\n directory = hdf5File.parent\n prefix = UtilsImage.getPrefix(hdf5File)\n if 'imageNumber'in inData:\n commandLine, cbfFile = self.generateCommandsWithImageNumber(\n inData, directory, prefix, hdf5File)\n outData['outputCBFFile'] = str(cbfFile)\n elif 'startImageNumber' in inData and 'endImageNumber' in inData:\n commandLine, template = self.generateCommandsWithImageRange(\n inData, directory, prefix, hdf5File)\n outData['outputCBFFileTemplate'] = template\n self.setLogFileName('h5ToCBF.log')\n self.runCommandLine('/opt/pxsoft/bin/eiger2cbf ' + commandLine, ignoreErrors=True)\n return outData\n\n @classmethod\n def generateCommandsWithImageNumber(cls, inData, directory, prefix,\n hdf5File):\n \"\"\"\n This method creates a list of commands for the converter\n \"\"\"\n imageNumber = inData['imageNumber']\n if 'hdf5ImageNumber' in inData:\n hdf5ImageNumber = inData['hdf5ImageNumber']\n else:\n hdf5ImageNumber = imageNumber\n if 'master.h5' in str(hdf5File):\n masterFile = hdf5File\n else:\n if UtilsConfig.isEMBL():\n fileName = '{0}_master.h5'.format(prefix)\n else:\n fileName = '{0}_{1}_master.h5'.format(prefix, hdf5ImageNumber)\n masterFile = directory / fileName\n if 'forcedOutputImageNumber' in inData:\n cbfFileName = prefix + \\\n \"_%04d\" % inData['forcedOutputImageNumber'] + \".cbf\"\n imageNumberInHdf5File = imageNumber\n else:\n cbfFileName = prefix + \"_%04d\" % imageNumber + \".cbf\"\n imageNumberInHdf5File = 1\n if not 'forcedOutputDirectory' in inData:\n cbfFile = directory / cbfFileName\n else:\n forcedOutputDirectory = \\\n pathlib.Path(inData['forcedOutputDirectory'])\n if not forcedOutputDirectory.exists():\n forcedOutputDirectory.mkdir(parents=True, mode=0o755)\n cbfFile = forcedOutputDirectory / cbfFileName\n commandLine = \"{0} {1} {2}\".format(\n masterFile, imageNumberInHdf5File, cbfFile\n )\n return commandLine, cbfFile\n\n @classmethod\n def generateCommandsWithImageRange(cls, inData, directory, prefix, hdf5File):\n startImageNumber = inData['startImageNumber']\n endImageNumber = inData['endImageNumber']\n if 'hdf5ImageNumber' in inData:\n hdf5ImageNumber = inData['hdf5ImageNumber']\n else:\n hdf5ImageNumber = startImageNumber\n if 'master.h5' in str(hdf5File):\n masterFile = hdf5File\n else:\n fileName = prefix + \"_{0}_master.h5\".format(hdf5ImageNumber)\n masterFile = directory / fileName\n cbfFileNamePrefix = prefix + '_'\n if 'forcedOutputDirectory' in inData:\n forcedOutputDirectory = \\\n pathlib.Path(inData['forcedOutputDirectory'])\n if not forcedOutputDirectory.exists():\n forcedOutputDirectory.mkdir(mode=0o755, parents=True)\n cbfFilePath = forcedOutputDirectory / cbfFileNamePrefix\n else:\n cbfFilePath = directory / cbfFileNamePrefix\n commandLine = \"{0} {1}:{2} {3}\".format(\n masterFile, startImageNumber, endImageNumber, cbfFilePath)\n cbfFileTemplate = str(cbfFilePath) + \"######.cbf\"\n return commandLine, cbfFileTemplate\n\n\n", "__authors__ = ['O. Svensson']\n__license__ = 'MIT'\n__date__ = '21/04/2019'\nimport pathlib\nfrom edna2.tasks.AbstractTask import AbstractTask\nfrom edna2.utils import UtilsImage\nfrom edna2.utils import UtilsConfig\nfrom edna2.utils import UtilsLogging\nlogger = UtilsLogging.getLogger()\n\n\nclass H5ToCBFTask(AbstractTask):\n\n def getInDataSchema(self):\n return {'type': 'object', 'required': ['hdf5File'], 'properties': {\n 'imageNumber': {'type': 'integer'}, 'startImageNumber': {'type':\n 'integer'}, 'imageNumber': {'type': 'integer'},\n 'hdf5ImageNumber': {'type': 'integer'}, 'hdf5File': {'type':\n 'string'}, 'forcedOutputDirectory': {'type': 'string'}}}\n\n def getOutDataSchema(self):\n return {'type': 'object', 'properties': {'outputCBFFile': {'type':\n 'string'}}}\n\n def run(self, inData):\n outData = {}\n hdf5File = pathlib.Path(inData['hdf5File'])\n directory = hdf5File.parent\n prefix = UtilsImage.getPrefix(hdf5File)\n if 'imageNumber' in inData:\n commandLine, cbfFile = self.generateCommandsWithImageNumber(inData,\n directory, prefix, hdf5File)\n outData['outputCBFFile'] = str(cbfFile)\n elif 'startImageNumber' in inData and 'endImageNumber' in inData:\n commandLine, template = self.generateCommandsWithImageRange(inData,\n directory, prefix, hdf5File)\n outData['outputCBFFileTemplate'] = template\n self.setLogFileName('h5ToCBF.log')\n self.runCommandLine('/opt/pxsoft/bin/eiger2cbf ' + commandLine,\n ignoreErrors=True)\n return outData\n\n @classmethod\n def generateCommandsWithImageNumber(cls, inData, directory, prefix,\n hdf5File):\n \"\"\"\n This method creates a list of commands for the converter\n \"\"\"\n imageNumber = inData['imageNumber']\n if 'hdf5ImageNumber' in inData:\n hdf5ImageNumber = inData['hdf5ImageNumber']\n else:\n hdf5ImageNumber = imageNumber\n if 'master.h5' in str(hdf5File):\n masterFile = hdf5File\n else:\n if UtilsConfig.isEMBL():\n fileName = '{0}_master.h5'.format(prefix)\n else:\n fileName = '{0}_{1}_master.h5'.format(prefix, hdf5ImageNumber)\n masterFile = directory / fileName\n if 'forcedOutputImageNumber' in inData:\n cbfFileName = prefix + '_%04d' % inData['forcedOutputImageNumber'\n ] + '.cbf'\n imageNumberInHdf5File = imageNumber\n else:\n cbfFileName = prefix + '_%04d' % imageNumber + '.cbf'\n imageNumberInHdf5File = 1\n if not 'forcedOutputDirectory' in inData:\n cbfFile = directory / cbfFileName\n else:\n forcedOutputDirectory = pathlib.Path(inData[\n 'forcedOutputDirectory'])\n if not forcedOutputDirectory.exists():\n forcedOutputDirectory.mkdir(parents=True, mode=493)\n cbfFile = forcedOutputDirectory / cbfFileName\n commandLine = '{0} {1} {2}'.format(masterFile,\n imageNumberInHdf5File, cbfFile)\n return commandLine, cbfFile\n\n @classmethod\n def generateCommandsWithImageRange(cls, inData, directory, prefix, hdf5File\n ):\n startImageNumber = inData['startImageNumber']\n endImageNumber = inData['endImageNumber']\n if 'hdf5ImageNumber' in inData:\n hdf5ImageNumber = inData['hdf5ImageNumber']\n else:\n hdf5ImageNumber = startImageNumber\n if 'master.h5' in str(hdf5File):\n masterFile = hdf5File\n else:\n fileName = prefix + '_{0}_master.h5'.format(hdf5ImageNumber)\n masterFile = directory / fileName\n cbfFileNamePrefix = prefix + '_'\n if 'forcedOutputDirectory' in inData:\n forcedOutputDirectory = pathlib.Path(inData[\n 'forcedOutputDirectory'])\n if not forcedOutputDirectory.exists():\n forcedOutputDirectory.mkdir(mode=493, parents=True)\n cbfFilePath = forcedOutputDirectory / cbfFileNamePrefix\n else:\n cbfFilePath = directory / cbfFileNamePrefix\n commandLine = '{0} {1}:{2} {3}'.format(masterFile, startImageNumber,\n endImageNumber, cbfFilePath)\n cbfFileTemplate = str(cbfFilePath) + '######.cbf'\n return commandLine, cbfFileTemplate\n", "__authors__ = ['O. Svensson']\n__license__ = 'MIT'\n__date__ = '21/04/2019'\n<import token>\nlogger = UtilsLogging.getLogger()\n\n\nclass H5ToCBFTask(AbstractTask):\n\n def getInDataSchema(self):\n return {'type': 'object', 'required': ['hdf5File'], 'properties': {\n 'imageNumber': {'type': 'integer'}, 'startImageNumber': {'type':\n 'integer'}, 'imageNumber': {'type': 'integer'},\n 'hdf5ImageNumber': {'type': 'integer'}, 'hdf5File': {'type':\n 'string'}, 'forcedOutputDirectory': {'type': 'string'}}}\n\n def getOutDataSchema(self):\n return {'type': 'object', 'properties': {'outputCBFFile': {'type':\n 'string'}}}\n\n def run(self, inData):\n outData = {}\n hdf5File = pathlib.Path(inData['hdf5File'])\n directory = hdf5File.parent\n prefix = UtilsImage.getPrefix(hdf5File)\n if 'imageNumber' in inData:\n commandLine, cbfFile = self.generateCommandsWithImageNumber(inData,\n directory, prefix, hdf5File)\n outData['outputCBFFile'] = str(cbfFile)\n elif 'startImageNumber' in inData and 'endImageNumber' in inData:\n commandLine, template = self.generateCommandsWithImageRange(inData,\n directory, prefix, hdf5File)\n outData['outputCBFFileTemplate'] = template\n self.setLogFileName('h5ToCBF.log')\n self.runCommandLine('/opt/pxsoft/bin/eiger2cbf ' + commandLine,\n ignoreErrors=True)\n return outData\n\n @classmethod\n def generateCommandsWithImageNumber(cls, inData, directory, prefix,\n hdf5File):\n \"\"\"\n This method creates a list of commands for the converter\n \"\"\"\n imageNumber = inData['imageNumber']\n if 'hdf5ImageNumber' in inData:\n hdf5ImageNumber = inData['hdf5ImageNumber']\n else:\n hdf5ImageNumber = imageNumber\n if 'master.h5' in str(hdf5File):\n masterFile = hdf5File\n else:\n if UtilsConfig.isEMBL():\n fileName = '{0}_master.h5'.format(prefix)\n else:\n fileName = '{0}_{1}_master.h5'.format(prefix, hdf5ImageNumber)\n masterFile = directory / fileName\n if 'forcedOutputImageNumber' in inData:\n cbfFileName = prefix + '_%04d' % inData['forcedOutputImageNumber'\n ] + '.cbf'\n imageNumberInHdf5File = imageNumber\n else:\n cbfFileName = prefix + '_%04d' % imageNumber + '.cbf'\n imageNumberInHdf5File = 1\n if not 'forcedOutputDirectory' in inData:\n cbfFile = directory / cbfFileName\n else:\n forcedOutputDirectory = pathlib.Path(inData[\n 'forcedOutputDirectory'])\n if not forcedOutputDirectory.exists():\n forcedOutputDirectory.mkdir(parents=True, mode=493)\n cbfFile = forcedOutputDirectory / cbfFileName\n commandLine = '{0} {1} {2}'.format(masterFile,\n imageNumberInHdf5File, cbfFile)\n return commandLine, cbfFile\n\n @classmethod\n def generateCommandsWithImageRange(cls, inData, directory, prefix, hdf5File\n ):\n startImageNumber = inData['startImageNumber']\n endImageNumber = inData['endImageNumber']\n if 'hdf5ImageNumber' in inData:\n hdf5ImageNumber = inData['hdf5ImageNumber']\n else:\n hdf5ImageNumber = startImageNumber\n if 'master.h5' in str(hdf5File):\n masterFile = hdf5File\n else:\n fileName = prefix + '_{0}_master.h5'.format(hdf5ImageNumber)\n masterFile = directory / fileName\n cbfFileNamePrefix = prefix + '_'\n if 'forcedOutputDirectory' in inData:\n forcedOutputDirectory = pathlib.Path(inData[\n 'forcedOutputDirectory'])\n if not forcedOutputDirectory.exists():\n forcedOutputDirectory.mkdir(mode=493, parents=True)\n cbfFilePath = forcedOutputDirectory / cbfFileNamePrefix\n else:\n cbfFilePath = directory / cbfFileNamePrefix\n commandLine = '{0} {1}:{2} {3}'.format(masterFile, startImageNumber,\n endImageNumber, cbfFilePath)\n cbfFileTemplate = str(cbfFilePath) + '######.cbf'\n return commandLine, cbfFileTemplate\n", "<assignment token>\n<import token>\n<assignment token>\n\n\nclass H5ToCBFTask(AbstractTask):\n\n def getInDataSchema(self):\n return {'type': 'object', 'required': ['hdf5File'], 'properties': {\n 'imageNumber': {'type': 'integer'}, 'startImageNumber': {'type':\n 'integer'}, 'imageNumber': {'type': 'integer'},\n 'hdf5ImageNumber': {'type': 'integer'}, 'hdf5File': {'type':\n 'string'}, 'forcedOutputDirectory': {'type': 'string'}}}\n\n def getOutDataSchema(self):\n return {'type': 'object', 'properties': {'outputCBFFile': {'type':\n 'string'}}}\n\n def run(self, inData):\n outData = {}\n hdf5File = pathlib.Path(inData['hdf5File'])\n directory = hdf5File.parent\n prefix = UtilsImage.getPrefix(hdf5File)\n if 'imageNumber' in inData:\n commandLine, cbfFile = self.generateCommandsWithImageNumber(inData,\n directory, prefix, hdf5File)\n outData['outputCBFFile'] = str(cbfFile)\n elif 'startImageNumber' in inData and 'endImageNumber' in inData:\n commandLine, template = self.generateCommandsWithImageRange(inData,\n directory, prefix, hdf5File)\n outData['outputCBFFileTemplate'] = template\n self.setLogFileName('h5ToCBF.log')\n self.runCommandLine('/opt/pxsoft/bin/eiger2cbf ' + commandLine,\n ignoreErrors=True)\n return outData\n\n @classmethod\n def generateCommandsWithImageNumber(cls, inData, directory, prefix,\n hdf5File):\n \"\"\"\n This method creates a list of commands for the converter\n \"\"\"\n imageNumber = inData['imageNumber']\n if 'hdf5ImageNumber' in inData:\n hdf5ImageNumber = inData['hdf5ImageNumber']\n else:\n hdf5ImageNumber = imageNumber\n if 'master.h5' in str(hdf5File):\n masterFile = hdf5File\n else:\n if UtilsConfig.isEMBL():\n fileName = '{0}_master.h5'.format(prefix)\n else:\n fileName = '{0}_{1}_master.h5'.format(prefix, hdf5ImageNumber)\n masterFile = directory / fileName\n if 'forcedOutputImageNumber' in inData:\n cbfFileName = prefix + '_%04d' % inData['forcedOutputImageNumber'\n ] + '.cbf'\n imageNumberInHdf5File = imageNumber\n else:\n cbfFileName = prefix + '_%04d' % imageNumber + '.cbf'\n imageNumberInHdf5File = 1\n if not 'forcedOutputDirectory' in inData:\n cbfFile = directory / cbfFileName\n else:\n forcedOutputDirectory = pathlib.Path(inData[\n 'forcedOutputDirectory'])\n if not forcedOutputDirectory.exists():\n forcedOutputDirectory.mkdir(parents=True, mode=493)\n cbfFile = forcedOutputDirectory / cbfFileName\n commandLine = '{0} {1} {2}'.format(masterFile,\n imageNumberInHdf5File, cbfFile)\n return commandLine, cbfFile\n\n @classmethod\n def generateCommandsWithImageRange(cls, inData, directory, prefix, hdf5File\n ):\n startImageNumber = inData['startImageNumber']\n endImageNumber = inData['endImageNumber']\n if 'hdf5ImageNumber' in inData:\n hdf5ImageNumber = inData['hdf5ImageNumber']\n else:\n hdf5ImageNumber = startImageNumber\n if 'master.h5' in str(hdf5File):\n masterFile = hdf5File\n else:\n fileName = prefix + '_{0}_master.h5'.format(hdf5ImageNumber)\n masterFile = directory / fileName\n cbfFileNamePrefix = prefix + '_'\n if 'forcedOutputDirectory' in inData:\n forcedOutputDirectory = pathlib.Path(inData[\n 'forcedOutputDirectory'])\n if not forcedOutputDirectory.exists():\n forcedOutputDirectory.mkdir(mode=493, parents=True)\n cbfFilePath = forcedOutputDirectory / cbfFileNamePrefix\n else:\n cbfFilePath = directory / cbfFileNamePrefix\n commandLine = '{0} {1}:{2} {3}'.format(masterFile, startImageNumber,\n endImageNumber, cbfFilePath)\n cbfFileTemplate = str(cbfFilePath) + '######.cbf'\n return commandLine, cbfFileTemplate\n", "<assignment token>\n<import token>\n<assignment token>\n\n\nclass H5ToCBFTask(AbstractTask):\n <function token>\n\n def getOutDataSchema(self):\n return {'type': 'object', 'properties': {'outputCBFFile': {'type':\n 'string'}}}\n\n def run(self, inData):\n outData = {}\n hdf5File = pathlib.Path(inData['hdf5File'])\n directory = hdf5File.parent\n prefix = UtilsImage.getPrefix(hdf5File)\n if 'imageNumber' in inData:\n commandLine, cbfFile = self.generateCommandsWithImageNumber(inData,\n directory, prefix, hdf5File)\n outData['outputCBFFile'] = str(cbfFile)\n elif 'startImageNumber' in inData and 'endImageNumber' in inData:\n commandLine, template = self.generateCommandsWithImageRange(inData,\n directory, prefix, hdf5File)\n outData['outputCBFFileTemplate'] = template\n self.setLogFileName('h5ToCBF.log')\n self.runCommandLine('/opt/pxsoft/bin/eiger2cbf ' + commandLine,\n ignoreErrors=True)\n return outData\n\n @classmethod\n def generateCommandsWithImageNumber(cls, inData, directory, prefix,\n hdf5File):\n \"\"\"\n This method creates a list of commands for the converter\n \"\"\"\n imageNumber = inData['imageNumber']\n if 'hdf5ImageNumber' in inData:\n hdf5ImageNumber = inData['hdf5ImageNumber']\n else:\n hdf5ImageNumber = imageNumber\n if 'master.h5' in str(hdf5File):\n masterFile = hdf5File\n else:\n if UtilsConfig.isEMBL():\n fileName = '{0}_master.h5'.format(prefix)\n else:\n fileName = '{0}_{1}_master.h5'.format(prefix, hdf5ImageNumber)\n masterFile = directory / fileName\n if 'forcedOutputImageNumber' in inData:\n cbfFileName = prefix + '_%04d' % inData['forcedOutputImageNumber'\n ] + '.cbf'\n imageNumberInHdf5File = imageNumber\n else:\n cbfFileName = prefix + '_%04d' % imageNumber + '.cbf'\n imageNumberInHdf5File = 1\n if not 'forcedOutputDirectory' in inData:\n cbfFile = directory / cbfFileName\n else:\n forcedOutputDirectory = pathlib.Path(inData[\n 'forcedOutputDirectory'])\n if not forcedOutputDirectory.exists():\n forcedOutputDirectory.mkdir(parents=True, mode=493)\n cbfFile = forcedOutputDirectory / cbfFileName\n commandLine = '{0} {1} {2}'.format(masterFile,\n imageNumberInHdf5File, cbfFile)\n return commandLine, cbfFile\n\n @classmethod\n def generateCommandsWithImageRange(cls, inData, directory, prefix, hdf5File\n ):\n startImageNumber = inData['startImageNumber']\n endImageNumber = inData['endImageNumber']\n if 'hdf5ImageNumber' in inData:\n hdf5ImageNumber = inData['hdf5ImageNumber']\n else:\n hdf5ImageNumber = startImageNumber\n if 'master.h5' in str(hdf5File):\n masterFile = hdf5File\n else:\n fileName = prefix + '_{0}_master.h5'.format(hdf5ImageNumber)\n masterFile = directory / fileName\n cbfFileNamePrefix = prefix + '_'\n if 'forcedOutputDirectory' in inData:\n forcedOutputDirectory = pathlib.Path(inData[\n 'forcedOutputDirectory'])\n if not forcedOutputDirectory.exists():\n forcedOutputDirectory.mkdir(mode=493, parents=True)\n cbfFilePath = forcedOutputDirectory / cbfFileNamePrefix\n else:\n cbfFilePath = directory / cbfFileNamePrefix\n commandLine = '{0} {1}:{2} {3}'.format(masterFile, startImageNumber,\n endImageNumber, cbfFilePath)\n cbfFileTemplate = str(cbfFilePath) + '######.cbf'\n return commandLine, cbfFileTemplate\n", "<assignment token>\n<import token>\n<assignment token>\n\n\nclass H5ToCBFTask(AbstractTask):\n <function token>\n\n def getOutDataSchema(self):\n return {'type': 'object', 'properties': {'outputCBFFile': {'type':\n 'string'}}}\n\n def run(self, inData):\n outData = {}\n hdf5File = pathlib.Path(inData['hdf5File'])\n directory = hdf5File.parent\n prefix = UtilsImage.getPrefix(hdf5File)\n if 'imageNumber' in inData:\n commandLine, cbfFile = self.generateCommandsWithImageNumber(inData,\n directory, prefix, hdf5File)\n outData['outputCBFFile'] = str(cbfFile)\n elif 'startImageNumber' in inData and 'endImageNumber' in inData:\n commandLine, template = self.generateCommandsWithImageRange(inData,\n directory, prefix, hdf5File)\n outData['outputCBFFileTemplate'] = template\n self.setLogFileName('h5ToCBF.log')\n self.runCommandLine('/opt/pxsoft/bin/eiger2cbf ' + commandLine,\n ignoreErrors=True)\n return outData\n\n @classmethod\n def generateCommandsWithImageNumber(cls, inData, directory, prefix,\n hdf5File):\n \"\"\"\n This method creates a list of commands for the converter\n \"\"\"\n imageNumber = inData['imageNumber']\n if 'hdf5ImageNumber' in inData:\n hdf5ImageNumber = inData['hdf5ImageNumber']\n else:\n hdf5ImageNumber = imageNumber\n if 'master.h5' in str(hdf5File):\n masterFile = hdf5File\n else:\n if UtilsConfig.isEMBL():\n fileName = '{0}_master.h5'.format(prefix)\n else:\n fileName = '{0}_{1}_master.h5'.format(prefix, hdf5ImageNumber)\n masterFile = directory / fileName\n if 'forcedOutputImageNumber' in inData:\n cbfFileName = prefix + '_%04d' % inData['forcedOutputImageNumber'\n ] + '.cbf'\n imageNumberInHdf5File = imageNumber\n else:\n cbfFileName = prefix + '_%04d' % imageNumber + '.cbf'\n imageNumberInHdf5File = 1\n if not 'forcedOutputDirectory' in inData:\n cbfFile = directory / cbfFileName\n else:\n forcedOutputDirectory = pathlib.Path(inData[\n 'forcedOutputDirectory'])\n if not forcedOutputDirectory.exists():\n forcedOutputDirectory.mkdir(parents=True, mode=493)\n cbfFile = forcedOutputDirectory / cbfFileName\n commandLine = '{0} {1} {2}'.format(masterFile,\n imageNumberInHdf5File, cbfFile)\n return commandLine, cbfFile\n <function token>\n", "<assignment token>\n<import token>\n<assignment token>\n\n\nclass H5ToCBFTask(AbstractTask):\n <function token>\n\n def getOutDataSchema(self):\n return {'type': 'object', 'properties': {'outputCBFFile': {'type':\n 'string'}}}\n\n def run(self, inData):\n outData = {}\n hdf5File = pathlib.Path(inData['hdf5File'])\n directory = hdf5File.parent\n prefix = UtilsImage.getPrefix(hdf5File)\n if 'imageNumber' in inData:\n commandLine, cbfFile = self.generateCommandsWithImageNumber(inData,\n directory, prefix, hdf5File)\n outData['outputCBFFile'] = str(cbfFile)\n elif 'startImageNumber' in inData and 'endImageNumber' in inData:\n commandLine, template = self.generateCommandsWithImageRange(inData,\n directory, prefix, hdf5File)\n outData['outputCBFFileTemplate'] = template\n self.setLogFileName('h5ToCBF.log')\n self.runCommandLine('/opt/pxsoft/bin/eiger2cbf ' + commandLine,\n ignoreErrors=True)\n return outData\n <function token>\n <function token>\n", "<assignment token>\n<import token>\n<assignment token>\n\n\nclass H5ToCBFTask(AbstractTask):\n <function token>\n\n def getOutDataSchema(self):\n return {'type': 'object', 'properties': {'outputCBFFile': {'type':\n 'string'}}}\n <function token>\n <function token>\n <function token>\n", "<assignment token>\n<import token>\n<assignment token>\n\n\nclass H5ToCBFTask(AbstractTask):\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<assignment token>\n<import token>\n<assignment token>\n<class token>\n" ]
false
99,395
eddc8e8cac92279ffe76511c6b57a6a7217c8173
# Generated by Django 3.0.2 on 2020-06-23 17:14 from django.conf import settings from django.db import migrations, models import django.db.models.deletion import text_miner.models class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Document', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('filesize', models.IntegerField()), ('filename', models.CharField(max_length=200)), ('date', models.DateTimeField(auto_now_add=True)), ('document', models.FileField(max_length=200, upload_to=text_miner.models.user_directory_path)), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='ScanPdf', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('category', models.TextField(max_length=1000)), ('category_value', models.IntegerField()), ('document', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='text_miner.Document')), ], ), migrations.CreateModel( name='Results', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('prediction', models.IntegerField()), ('document', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='text_miner.Document')), ], ), migrations.CreateModel( name='InformationExtracted', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('information', models.TextField(max_length=100000)), ('result', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='text_miner.Results')), ], ), ]
[ "# Generated by Django 3.0.2 on 2020-06-23 17:14\n\nfrom django.conf import settings\nfrom django.db import migrations, models\nimport django.db.models.deletion\nimport text_miner.models\n\n\nclass Migration(migrations.Migration):\n\n initial = True\n\n dependencies = [\n migrations.swappable_dependency(settings.AUTH_USER_MODEL),\n ]\n\n operations = [\n migrations.CreateModel(\n name='Document',\n fields=[\n ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),\n ('filesize', models.IntegerField()),\n ('filename', models.CharField(max_length=200)),\n ('date', models.DateTimeField(auto_now_add=True)),\n ('document', models.FileField(max_length=200, upload_to=text_miner.models.user_directory_path)),\n ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)),\n ],\n ),\n migrations.CreateModel(\n name='ScanPdf',\n fields=[\n ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),\n ('category', models.TextField(max_length=1000)),\n ('category_value', models.IntegerField()),\n ('document', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='text_miner.Document')),\n ],\n ),\n migrations.CreateModel(\n name='Results',\n fields=[\n ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),\n ('prediction', models.IntegerField()),\n ('document', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='text_miner.Document')),\n ],\n ),\n migrations.CreateModel(\n name='InformationExtracted',\n fields=[\n ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),\n ('information', models.TextField(max_length=100000)),\n ('result', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='text_miner.Results')),\n ],\n ),\n ]\n", "from django.conf import settings\nfrom django.db import migrations, models\nimport django.db.models.deletion\nimport text_miner.models\n\n\nclass Migration(migrations.Migration):\n initial = True\n dependencies = [migrations.swappable_dependency(settings.AUTH_USER_MODEL)]\n operations = [migrations.CreateModel(name='Document', fields=[('id',\n models.AutoField(auto_created=True, primary_key=True, serialize=\n False, verbose_name='ID')), ('filesize', models.IntegerField()), (\n 'filename', models.CharField(max_length=200)), ('date', models.\n DateTimeField(auto_now_add=True)), ('document', models.FileField(\n max_length=200, upload_to=text_miner.models.user_directory_path)),\n ('user', models.ForeignKey(on_delete=django.db.models.deletion.\n CASCADE, to=settings.AUTH_USER_MODEL))]), migrations.CreateModel(\n name='ScanPdf', fields=[('id', models.AutoField(auto_created=True,\n primary_key=True, serialize=False, verbose_name='ID')), ('category',\n models.TextField(max_length=1000)), ('category_value', models.\n IntegerField()), ('document', models.ForeignKey(on_delete=django.db\n .models.deletion.CASCADE, to='text_miner.Document'))]), migrations.\n CreateModel(name='Results', fields=[('id', models.AutoField(\n auto_created=True, primary_key=True, serialize=False, verbose_name=\n 'ID')), ('prediction', models.IntegerField()), ('document', models.\n ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=\n 'text_miner.Document'))]), migrations.CreateModel(name=\n 'InformationExtracted', fields=[('id', models.AutoField(\n auto_created=True, primary_key=True, serialize=False, verbose_name=\n 'ID')), ('information', models.TextField(max_length=100000)), (\n 'result', models.ForeignKey(on_delete=django.db.models.deletion.\n CASCADE, to='text_miner.Results'))])]\n", "<import token>\n\n\nclass Migration(migrations.Migration):\n initial = True\n dependencies = [migrations.swappable_dependency(settings.AUTH_USER_MODEL)]\n operations = [migrations.CreateModel(name='Document', fields=[('id',\n models.AutoField(auto_created=True, primary_key=True, serialize=\n False, verbose_name='ID')), ('filesize', models.IntegerField()), (\n 'filename', models.CharField(max_length=200)), ('date', models.\n DateTimeField(auto_now_add=True)), ('document', models.FileField(\n max_length=200, upload_to=text_miner.models.user_directory_path)),\n ('user', models.ForeignKey(on_delete=django.db.models.deletion.\n CASCADE, to=settings.AUTH_USER_MODEL))]), migrations.CreateModel(\n name='ScanPdf', fields=[('id', models.AutoField(auto_created=True,\n primary_key=True, serialize=False, verbose_name='ID')), ('category',\n models.TextField(max_length=1000)), ('category_value', models.\n IntegerField()), ('document', models.ForeignKey(on_delete=django.db\n .models.deletion.CASCADE, to='text_miner.Document'))]), migrations.\n CreateModel(name='Results', fields=[('id', models.AutoField(\n auto_created=True, primary_key=True, serialize=False, verbose_name=\n 'ID')), ('prediction', models.IntegerField()), ('document', models.\n ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=\n 'text_miner.Document'))]), migrations.CreateModel(name=\n 'InformationExtracted', fields=[('id', models.AutoField(\n auto_created=True, primary_key=True, serialize=False, verbose_name=\n 'ID')), ('information', models.TextField(max_length=100000)), (\n 'result', models.ForeignKey(on_delete=django.db.models.deletion.\n CASCADE, to='text_miner.Results'))])]\n", "<import token>\n\n\nclass Migration(migrations.Migration):\n <assignment token>\n <assignment token>\n <assignment token>\n", "<import token>\n<class token>\n" ]
false
99,396
9ab41e572c9be2c6e9ca36cfbf982c472baedc3c
import os from os import path from PyQt5 import QtWidgets, QtCore, QtGui from PyQt5.QtWidgets import QLabel, QAbstractItemView from ui.transfer_window import Ui_TransferWindow import requests import json import configparser from static import set_text from time import sleep from base import find_transfer, success from static import generate_unique_number, get_organization from error_window import ErrorWindow class TransferWindow(QtWidgets.QMainWindow): def __init__(self): super(TransferWindow, self).__init__() self.setFixedSize(482, 340) # Инициализация окон self.ui_3 = Ui_TransferWindow() self.ui_7 = ErrorWindow() self.ui_3.setupUi(self) # Пути до папок self.result_dir = path.join(path.dirname(__file__), 'result') self.img_dir = path.join(path.dirname(__file__), 'img') self.config_dir = path.join(path.dirname(__file__), 'config') self.json_dir = path.join(path.dirname(__file__), 'json') self.log_dir = path.join(path.dirname(__file__), 'log') # Список всех файлов в папке result self.files = os.listdir(self.result_dir) # Открытие файла конфига self.config = configparser.RawConfigParser() self.config.read(path.join(self.config_dir, 'config.ini'), encoding='utf-8') # Берем имя организации для имени файла self.date = '' self.organization_name = get_organization() # Добавление списка в listView self.model = QtCore.QStringListModel(self) self.ui_3.listView.setModel(self.model) self.ui_3.listView.setWordWrap(True) self.ui_3.listView.hide() # Запрет редактирования элементов listView self.ui_3.listView.setEditTriggers(QAbstractItemView.NoEditTriggers) # Прогрессбар self.ui_3.progressBar.hide() # Подключение кнопок self.ui_3.pushButton.clicked.connect(self.create_json) self.ui_3.pushButton_2.clicked.connect(self.close_window) # Иконка окна self.setWindowIcon(QtGui.QIcon(path.join(self.img_dir, 'gosuslugi_5.png'))) # Текст по окну self.setWindowTitle('Выбор даты для отправки') set_text(self.ui_3.pushButton, 'Отправить') self.ui_3.pushButton.setStyleSheet(""" background-color: #b2edbf; """) set_text(self.ui_3.pushButton_2, 'Закрыть') self.ui_3.pushButton_2.setStyleSheet(""" background-color: #f7c8c8; """) # Закрытие окна def close_window(self): self.close() def show_error_window(self, error): label = self.ui_7.findChildren(QLabel) for item in label: item.setText(error) self.ui_7.show() def get_date_for_transfer(self): date = self.ui_3.calendarWidget.selectedDate() return date.toString('dd-MM-yyyy') # Чтение json шаблона def read_json_template(self): with open(path.join(self.json_dir, 'template.json'), 'r', encoding='utf-8') as json_file: json_data = json.load(json_file) python_json_data = json.loads(json_data) return python_json_data def read_json_today(self): with open(path.join(self.result_dir, f'{self.organization_name}-{self.date}.json'), 'r', encoding='utf-8')\ as json_file: json_data = json.load(json_file) python_json_data = json.loads(json_data) return python_json_data # Создание и запись json файла def write_json(self, data): if os.path.exists(path.join(self.result_dir, f'{self.organization_name}-{self.date}.json')): json_list = self.read_json_today() else: json_list = self.read_json_template() with open(path.join(self.result_dir, f'{self.organization_name}-{self.date}.json'), 'w', encoding='utf-8') as json_file: if json_list[0]['order']['depart'] != '': json_list.append(data) else: json_list = [data] python_json = str(json_list).replace("'", '\"') # Преобразует ковычки к нужному формату json.dump(f"{python_json}", json_file, ensure_ascii=False) def create_json(self): # Берет дату с календаря self.date += self.get_date_for_transfer() depart_number = '' laboratory_name = '' laboratory_ogrn = '' # Чтение конфига for section in self.config.sections(): if self.config.has_section('json_data'): if self.config.has_option(section, 'depart_number')\ and self.config.has_option(section, 'laboratory_name')\ and self.config.has_option(section, 'laboratory_ogrn'): depart_number = self.config.get(section, 'depart_number') laboratory_name = self.config.get(section, 'laboratory_name') laboratory_ogrn = self.config.get(section, 'laboratory_ogrn') if os.path.exists(path.join(self.result_dir, f'{self.organization_name}-{self.date}.json')): python_json_dict = self.read_json_today() else: python_json_dict = self.read_json_template() python_json_dict = python_json_dict[0] transfer_list = find_transfer(self.date) if not transfer_list: python_json_dict['order']['patient']['surname'] = 'В базе' python_json_dict['order']['patient']['name'] = 'нет пациентов' python_json_dict['order']['patient']['patronymic'] = 'для отправки' self.write_json(python_json_dict) progress = 0 if transfer_list: self.ui_3.progressBar.show() for el in range(len(transfer_list)): unique_number = generate_unique_number() python_json_dict['order']['number'] = unique_number python_json_dict['order']['depart'] = depart_number python_json_dict['order']['laboratoryName'] = laboratory_name python_json_dict['order']['laboratoryOgrn'] = laboratory_ogrn python_json_dict['order']['name'] = transfer_list[el][2] python_json_dict['order']['ogrn'] = transfer_list[el][3] python_json_dict['order']['orderDate'] = transfer_list[el][4] python_json_dict['order']['serv'][0]['code'] = transfer_list[el][5] python_json_dict['order']['serv'][0]['name'] = transfer_list[el][6] python_json_dict['order']['serv'][0]['testSystem'] = transfer_list[el][7] python_json_dict['order']['serv'][0]['biomaterDate'] = transfer_list[el][8] python_json_dict['order']['serv'][0]['readyDate'] = transfer_list[el][9] python_json_dict['order']['serv'][0]['result'] = transfer_list[el][10][0] python_json_dict['order']['serv'][0]['type'] = transfer_list[el][11][0] python_json_dict['order']['serv'][0]['value'] = transfer_list[el][12] python_json_dict['order']['patient']['surname'] = transfer_list[el][13] python_json_dict['order']['patient']['name'] = transfer_list[el][14] python_json_dict['order']['patient']['patronymic'] = transfer_list[el][15] python_json_dict['order']['patient']['gender'] = transfer_list[el][16] python_json_dict['order']['patient']['birthday'] = transfer_list[el][17] python_json_dict['order']['patient']['phone'] = transfer_list[el][18] python_json_dict['order']['patient']['email'] = transfer_list[el][19] python_json_dict['order']['patient']['documentType'] = transfer_list[el][20] python_json_dict['order']['patient']['documentNumber'] = transfer_list[el][22] python_json_dict['order']['patient']['documentSerNumber'] = transfer_list[el][21] python_json_dict['order']['patient']['snils'] = transfer_list[el][23] python_json_dict['order']['patient']['oms'] = transfer_list[el][24] python_json_dict['order']['patient']['address']['regAddress']['town'] = transfer_list[el][25] python_json_dict['order']['patient']['address']['regAddress']['house'] = transfer_list[el][26] python_json_dict['order']['patient']['address']['regAddress']['region'] = transfer_list[el][27] python_json_dict['order']['patient']['address']['regAddress']['building'] = transfer_list[el][28] python_json_dict['order']['patient']['address']['regAddress']['district'] = transfer_list[el][29] python_json_dict['order']['patient']['address']['regAddress']['appartament'] = transfer_list[el][30] python_json_dict['order']['patient']['address']['regAddress']['streetName'] = transfer_list[el][31] python_json_dict['order']['patient']['address']['factAddress']['town'] = transfer_list[el][32] python_json_dict['order']['patient']['address']['factAddress']['house'] = transfer_list[el][33] python_json_dict['order']['patient']['address']['factAddress']['region'] = transfer_list[el][34] python_json_dict['order']['patient']['address']['factAddress']['building'] = transfer_list[el][35] python_json_dict['order']['patient']['address']['factAddress']['district'] = transfer_list[el][36] python_json_dict['order']['patient']['address']['factAddress']['appartament'] = transfer_list[el][37] python_json_dict['order']['patient']['address']['factAddress']['streetName'] = transfer_list[el][38] self.write_json(python_json_dict) sleep(1) progress += 100 / len(transfer_list) self.ui_3.progressBar.setValue(progress) self.logging_transfer() def logging_transfer(self): # Открытие json файла with open(path.join(self.result_dir, f'{self.organization_name}-{self.date}.json'), 'r', encoding='utf-8')\ as read_file: json_file = json.load(read_file) python_json = json.loads(json_file) patient_list = [] for patients_dict in python_json: surname = f"{patients_dict['order']['patient']['surname']}" name = f"{patients_dict['order']['patient']['name']}" patronymic = f"{patients_dict['order']['patient']['patronymic']}" patient = f'{surname} {name} {patronymic}' patient_list.append(patient) transfer_json = self.transfer_data() status_list = [] # Передача статусов в лог, если json не пустой if patient_list[0] != 'В базе нет пациентов для отправки': with open(path.join(self.log_dir, 'console_log.txt'), 'a') as log_file: log_file.write(f'{str(transfer_json)}\n\n') transfer_list = find_transfer(self.date) # Добавление ошибок for elements in range(len(transfer_list)): if transfer_json['body'][int(elements)]['status'] == 'error': # Вставка элементов в каждый 2 patient_list.insert(elements * 3 + 1, f"{transfer_json['body'][int(elements)]['message']}") # Вставка элементов в каждый 3 patient_list.insert(elements * 3 + 2, '----------------------------------------------' '--------------------------') status_list.append('error') elif transfer_json['body'][int(elements)]['status'] == 'ok'\ or transfer_json['body'][int(elements)]['status'] == '': patient_list.insert(elements * 3 + 1, f"Успешно!") patient_list.insert(elements * 3 + 2, '----------------------------------------------' '--------------------------') status_list.append('ok') for elem in range(len(status_list)): if status_list[elem] == 'ok': success(transfer_list[elem][0], 1) # Скрывает календарь и показывает листвью self.ui_3.calendarWidget.hide() self.ui_3.listView.show() self.model.setStringList(patient_list) self.ui_3.pushButton.setEnabled(False) if os.path.isfile(path.join(self.result_dir, f'{self.organization_name}-{self.date}.json')): os.remove(path.join(self.result_dir, f'{self.organization_name}-{self.date}.json')) self.date = '' # Получение и отправка данных в API def transfer_data(self): try: date = self.get_date_for_transfer() organization_name = get_organization() # Открытие json файла with open(path.join(self.result_dir, f'{organization_name}-{date}.json'), 'r', encoding='utf-8')\ as read_file: json_file = json.load(read_file) depart_number = '' token = '' address = '' # Чтение конфига for section in self.config.sections(): if self.config.has_section('json_data'): if self.config.has_option(section, 'depart_number'): depart_number = self.config.get(section, 'depart_number') if self.config.has_section('transfer_data'): if self.config.has_option(section, 'token') and self.config.has_option(section, 'address'): token = self.config.get(section, 'token') address = self.config.get(section, 'address') login = {'depart number': depart_number, 'token': token } # Получение нового токена response = requests.post(f'https://{address}/api/v2/order/get-depart-token', login) response_json = response.json() response_token = response_json['body']['token'] # Отправка данных в api transfer_info = {'depart number': depart_number, 'token': response_token, 'json': json_file} transfer = requests.post(f'https://{address}/api/v2/order/ext-orders-package', transfer_info) transfer_json = transfer.json() return transfer_json # Обработка ConnectionError при отключенном Континент АП except OSError: self.show_error_window('Нет связи с сервером') self.close_window()
[ "import os\nfrom os import path\nfrom PyQt5 import QtWidgets, QtCore, QtGui\nfrom PyQt5.QtWidgets import QLabel, QAbstractItemView\nfrom ui.transfer_window import Ui_TransferWindow\nimport requests\nimport json\nimport configparser\nfrom static import set_text\nfrom time import sleep\nfrom base import find_transfer, success\nfrom static import generate_unique_number, get_organization\nfrom error_window import ErrorWindow\n\n\nclass TransferWindow(QtWidgets.QMainWindow):\n def __init__(self):\n super(TransferWindow, self).__init__()\n self.setFixedSize(482, 340)\n # Инициализация окон\n self.ui_3 = Ui_TransferWindow()\n self.ui_7 = ErrorWindow()\n self.ui_3.setupUi(self)\n # Пути до папок\n self.result_dir = path.join(path.dirname(__file__), 'result')\n self.img_dir = path.join(path.dirname(__file__), 'img')\n self.config_dir = path.join(path.dirname(__file__), 'config')\n self.json_dir = path.join(path.dirname(__file__), 'json')\n self.log_dir = path.join(path.dirname(__file__), 'log')\n # Список всех файлов в папке result\n self.files = os.listdir(self.result_dir)\n # Открытие файла конфига\n self.config = configparser.RawConfigParser()\n self.config.read(path.join(self.config_dir, 'config.ini'), encoding='utf-8')\n # Берем имя организации для имени файла\n self.date = ''\n self.organization_name = get_organization()\n # Добавление списка в listView\n self.model = QtCore.QStringListModel(self)\n self.ui_3.listView.setModel(self.model)\n self.ui_3.listView.setWordWrap(True)\n self.ui_3.listView.hide()\n # Запрет редактирования элементов listView\n self.ui_3.listView.setEditTriggers(QAbstractItemView.NoEditTriggers)\n # Прогрессбар\n self.ui_3.progressBar.hide()\n # Подключение кнопок\n self.ui_3.pushButton.clicked.connect(self.create_json)\n self.ui_3.pushButton_2.clicked.connect(self.close_window)\n # Иконка окна\n self.setWindowIcon(QtGui.QIcon(path.join(self.img_dir, 'gosuslugi_5.png')))\n # Текст по окну\n self.setWindowTitle('Выбор даты для отправки')\n set_text(self.ui_3.pushButton, 'Отправить')\n self.ui_3.pushButton.setStyleSheet(\"\"\"\n background-color: #b2edbf;\n \"\"\")\n set_text(self.ui_3.pushButton_2, 'Закрыть')\n self.ui_3.pushButton_2.setStyleSheet(\"\"\"\n background-color: #f7c8c8;\n \"\"\")\n\n # Закрытие окна\n def close_window(self):\n self.close()\n\n def show_error_window(self, error):\n label = self.ui_7.findChildren(QLabel)\n\n for item in label:\n item.setText(error)\n\n self.ui_7.show()\n\n def get_date_for_transfer(self):\n date = self.ui_3.calendarWidget.selectedDate()\n return date.toString('dd-MM-yyyy')\n\n # Чтение json шаблона\n def read_json_template(self):\n with open(path.join(self.json_dir, 'template.json'), 'r', encoding='utf-8') as json_file:\n json_data = json.load(json_file)\n python_json_data = json.loads(json_data)\n\n return python_json_data\n\n def read_json_today(self):\n with open(path.join(self.result_dir, f'{self.organization_name}-{self.date}.json'), 'r', encoding='utf-8')\\\n as json_file:\n json_data = json.load(json_file)\n python_json_data = json.loads(json_data)\n\n return python_json_data\n\n # Создание и запись json файла\n def write_json(self, data):\n if os.path.exists(path.join(self.result_dir, f'{self.organization_name}-{self.date}.json')):\n json_list = self.read_json_today()\n else:\n json_list = self.read_json_template()\n\n with open(path.join(self.result_dir,\n f'{self.organization_name}-{self.date}.json'), 'w', encoding='utf-8') as json_file:\n if json_list[0]['order']['depart'] != '':\n json_list.append(data)\n else:\n json_list = [data]\n python_json = str(json_list).replace(\"'\", '\\\"') # Преобразует ковычки к нужному формату\n\n json.dump(f\"{python_json}\", json_file, ensure_ascii=False)\n\n def create_json(self):\n # Берет дату с календаря\n self.date += self.get_date_for_transfer()\n\n depart_number = ''\n laboratory_name = ''\n laboratory_ogrn = ''\n\n # Чтение конфига\n for section in self.config.sections():\n if self.config.has_section('json_data'):\n if self.config.has_option(section, 'depart_number')\\\n and self.config.has_option(section, 'laboratory_name')\\\n and self.config.has_option(section, 'laboratory_ogrn'):\n depart_number = self.config.get(section, 'depart_number')\n laboratory_name = self.config.get(section, 'laboratory_name')\n laboratory_ogrn = self.config.get(section, 'laboratory_ogrn')\n\n if os.path.exists(path.join(self.result_dir, f'{self.organization_name}-{self.date}.json')):\n python_json_dict = self.read_json_today()\n else:\n python_json_dict = self.read_json_template()\n\n python_json_dict = python_json_dict[0]\n\n transfer_list = find_transfer(self.date)\n\n if not transfer_list:\n python_json_dict['order']['patient']['surname'] = 'В базе'\n python_json_dict['order']['patient']['name'] = 'нет пациентов'\n python_json_dict['order']['patient']['patronymic'] = 'для отправки'\n self.write_json(python_json_dict)\n\n progress = 0\n if transfer_list:\n self.ui_3.progressBar.show()\n\n for el in range(len(transfer_list)):\n unique_number = generate_unique_number()\n\n python_json_dict['order']['number'] = unique_number\n python_json_dict['order']['depart'] = depart_number\n python_json_dict['order']['laboratoryName'] = laboratory_name\n python_json_dict['order']['laboratoryOgrn'] = laboratory_ogrn\n python_json_dict['order']['name'] = transfer_list[el][2]\n python_json_dict['order']['ogrn'] = transfer_list[el][3]\n python_json_dict['order']['orderDate'] = transfer_list[el][4]\n\n python_json_dict['order']['serv'][0]['code'] = transfer_list[el][5]\n python_json_dict['order']['serv'][0]['name'] = transfer_list[el][6]\n python_json_dict['order']['serv'][0]['testSystem'] = transfer_list[el][7]\n python_json_dict['order']['serv'][0]['biomaterDate'] = transfer_list[el][8]\n python_json_dict['order']['serv'][0]['readyDate'] = transfer_list[el][9]\n python_json_dict['order']['serv'][0]['result'] = transfer_list[el][10][0]\n python_json_dict['order']['serv'][0]['type'] = transfer_list[el][11][0]\n python_json_dict['order']['serv'][0]['value'] = transfer_list[el][12]\n\n python_json_dict['order']['patient']['surname'] = transfer_list[el][13]\n python_json_dict['order']['patient']['name'] = transfer_list[el][14]\n python_json_dict['order']['patient']['patronymic'] = transfer_list[el][15]\n python_json_dict['order']['patient']['gender'] = transfer_list[el][16]\n python_json_dict['order']['patient']['birthday'] = transfer_list[el][17]\n python_json_dict['order']['patient']['phone'] = transfer_list[el][18]\n python_json_dict['order']['patient']['email'] = transfer_list[el][19]\n python_json_dict['order']['patient']['documentType'] = transfer_list[el][20]\n python_json_dict['order']['patient']['documentNumber'] = transfer_list[el][22]\n python_json_dict['order']['patient']['documentSerNumber'] = transfer_list[el][21]\n python_json_dict['order']['patient']['snils'] = transfer_list[el][23]\n python_json_dict['order']['patient']['oms'] = transfer_list[el][24]\n\n python_json_dict['order']['patient']['address']['regAddress']['town'] = transfer_list[el][25]\n python_json_dict['order']['patient']['address']['regAddress']['house'] = transfer_list[el][26]\n python_json_dict['order']['patient']['address']['regAddress']['region'] = transfer_list[el][27]\n python_json_dict['order']['patient']['address']['regAddress']['building'] = transfer_list[el][28]\n python_json_dict['order']['patient']['address']['regAddress']['district'] = transfer_list[el][29]\n python_json_dict['order']['patient']['address']['regAddress']['appartament'] = transfer_list[el][30]\n python_json_dict['order']['patient']['address']['regAddress']['streetName'] = transfer_list[el][31]\n\n python_json_dict['order']['patient']['address']['factAddress']['town'] = transfer_list[el][32]\n python_json_dict['order']['patient']['address']['factAddress']['house'] = transfer_list[el][33]\n python_json_dict['order']['patient']['address']['factAddress']['region'] = transfer_list[el][34]\n python_json_dict['order']['patient']['address']['factAddress']['building'] = transfer_list[el][35]\n python_json_dict['order']['patient']['address']['factAddress']['district'] = transfer_list[el][36]\n python_json_dict['order']['patient']['address']['factAddress']['appartament'] = transfer_list[el][37]\n python_json_dict['order']['patient']['address']['factAddress']['streetName'] = transfer_list[el][38]\n\n self.write_json(python_json_dict)\n sleep(1)\n\n progress += 100 / len(transfer_list)\n self.ui_3.progressBar.setValue(progress)\n\n self.logging_transfer()\n\n def logging_transfer(self):\n # Открытие json файла\n with open(path.join(self.result_dir, f'{self.organization_name}-{self.date}.json'), 'r', encoding='utf-8')\\\n as read_file:\n json_file = json.load(read_file)\n python_json = json.loads(json_file)\n\n patient_list = []\n\n for patients_dict in python_json:\n surname = f\"{patients_dict['order']['patient']['surname']}\"\n name = f\"{patients_dict['order']['patient']['name']}\"\n patronymic = f\"{patients_dict['order']['patient']['patronymic']}\"\n patient = f'{surname} {name} {patronymic}'\n patient_list.append(patient)\n\n transfer_json = self.transfer_data()\n status_list = []\n\n # Передача статусов в лог, если json не пустой\n if patient_list[0] != 'В базе нет пациентов для отправки':\n with open(path.join(self.log_dir, 'console_log.txt'), 'a') as log_file:\n log_file.write(f'{str(transfer_json)}\\n\\n')\n\n transfer_list = find_transfer(self.date)\n\n # Добавление ошибок\n for elements in range(len(transfer_list)):\n if transfer_json['body'][int(elements)]['status'] == 'error':\n # Вставка элементов в каждый 2\n patient_list.insert(elements * 3 + 1, f\"{transfer_json['body'][int(elements)]['message']}\")\n # Вставка элементов в каждый 3\n patient_list.insert(elements * 3 + 2, '----------------------------------------------'\n '--------------------------')\n status_list.append('error')\n elif transfer_json['body'][int(elements)]['status'] == 'ok'\\\n or transfer_json['body'][int(elements)]['status'] == '':\n patient_list.insert(elements * 3 + 1, f\"Успешно!\")\n patient_list.insert(elements * 3 + 2, '----------------------------------------------'\n '--------------------------')\n status_list.append('ok')\n\n for elem in range(len(status_list)):\n if status_list[elem] == 'ok':\n success(transfer_list[elem][0], 1)\n\n # Скрывает календарь и показывает листвью\n self.ui_3.calendarWidget.hide()\n self.ui_3.listView.show()\n self.model.setStringList(patient_list)\n self.ui_3.pushButton.setEnabled(False)\n\n if os.path.isfile(path.join(self.result_dir, f'{self.organization_name}-{self.date}.json')):\n os.remove(path.join(self.result_dir, f'{self.organization_name}-{self.date}.json'))\n\n self.date = ''\n\n # Получение и отправка данных в API\n def transfer_data(self):\n try:\n date = self.get_date_for_transfer()\n organization_name = get_organization()\n # Открытие json файла\n with open(path.join(self.result_dir, f'{organization_name}-{date}.json'), 'r', encoding='utf-8')\\\n as read_file:\n json_file = json.load(read_file)\n\n depart_number = ''\n token = ''\n address = ''\n # Чтение конфига\n for section in self.config.sections():\n if self.config.has_section('json_data'):\n if self.config.has_option(section, 'depart_number'):\n depart_number = self.config.get(section, 'depart_number')\n if self.config.has_section('transfer_data'):\n if self.config.has_option(section, 'token') and self.config.has_option(section, 'address'):\n token = self.config.get(section, 'token')\n address = self.config.get(section, 'address')\n\n login = {'depart number': depart_number,\n 'token': token\n }\n\n # Получение нового токена\n response = requests.post(f'https://{address}/api/v2/order/get-depart-token',\n login)\n\n response_json = response.json()\n response_token = response_json['body']['token']\n\n # Отправка данных в api\n transfer_info = {'depart number': depart_number,\n 'token': response_token,\n 'json': json_file}\n\n transfer = requests.post(f'https://{address}/api/v2/order/ext-orders-package',\n transfer_info)\n transfer_json = transfer.json()\n\n return transfer_json\n # Обработка ConnectionError при отключенном Континент АП\n except OSError:\n self.show_error_window('Нет связи с сервером')\n self.close_window()\n", "import os\nfrom os import path\nfrom PyQt5 import QtWidgets, QtCore, QtGui\nfrom PyQt5.QtWidgets import QLabel, QAbstractItemView\nfrom ui.transfer_window import Ui_TransferWindow\nimport requests\nimport json\nimport configparser\nfrom static import set_text\nfrom time import sleep\nfrom base import find_transfer, success\nfrom static import generate_unique_number, get_organization\nfrom error_window import ErrorWindow\n\n\nclass TransferWindow(QtWidgets.QMainWindow):\n\n def __init__(self):\n super(TransferWindow, self).__init__()\n self.setFixedSize(482, 340)\n self.ui_3 = Ui_TransferWindow()\n self.ui_7 = ErrorWindow()\n self.ui_3.setupUi(self)\n self.result_dir = path.join(path.dirname(__file__), 'result')\n self.img_dir = path.join(path.dirname(__file__), 'img')\n self.config_dir = path.join(path.dirname(__file__), 'config')\n self.json_dir = path.join(path.dirname(__file__), 'json')\n self.log_dir = path.join(path.dirname(__file__), 'log')\n self.files = os.listdir(self.result_dir)\n self.config = configparser.RawConfigParser()\n self.config.read(path.join(self.config_dir, 'config.ini'), encoding\n ='utf-8')\n self.date = ''\n self.organization_name = get_organization()\n self.model = QtCore.QStringListModel(self)\n self.ui_3.listView.setModel(self.model)\n self.ui_3.listView.setWordWrap(True)\n self.ui_3.listView.hide()\n self.ui_3.listView.setEditTriggers(QAbstractItemView.NoEditTriggers)\n self.ui_3.progressBar.hide()\n self.ui_3.pushButton.clicked.connect(self.create_json)\n self.ui_3.pushButton_2.clicked.connect(self.close_window)\n self.setWindowIcon(QtGui.QIcon(path.join(self.img_dir,\n 'gosuslugi_5.png')))\n self.setWindowTitle('Выбор даты для отправки')\n set_text(self.ui_3.pushButton, 'Отправить')\n self.ui_3.pushButton.setStyleSheet(\n \"\"\"\n background-color: #b2edbf;\n \"\"\"\n )\n set_text(self.ui_3.pushButton_2, 'Закрыть')\n self.ui_3.pushButton_2.setStyleSheet(\n \"\"\"\n background-color: #f7c8c8;\n \"\"\"\n )\n\n def close_window(self):\n self.close()\n\n def show_error_window(self, error):\n label = self.ui_7.findChildren(QLabel)\n for item in label:\n item.setText(error)\n self.ui_7.show()\n\n def get_date_for_transfer(self):\n date = self.ui_3.calendarWidget.selectedDate()\n return date.toString('dd-MM-yyyy')\n\n def read_json_template(self):\n with open(path.join(self.json_dir, 'template.json'), 'r', encoding=\n 'utf-8') as json_file:\n json_data = json.load(json_file)\n python_json_data = json.loads(json_data)\n return python_json_data\n\n def read_json_today(self):\n with open(path.join(self.result_dir,\n f'{self.organization_name}-{self.date}.json'), 'r', encoding=\n 'utf-8') as json_file:\n json_data = json.load(json_file)\n python_json_data = json.loads(json_data)\n return python_json_data\n\n def write_json(self, data):\n if os.path.exists(path.join(self.result_dir,\n f'{self.organization_name}-{self.date}.json')):\n json_list = self.read_json_today()\n else:\n json_list = self.read_json_template()\n with open(path.join(self.result_dir,\n f'{self.organization_name}-{self.date}.json'), 'w', encoding=\n 'utf-8') as json_file:\n if json_list[0]['order']['depart'] != '':\n json_list.append(data)\n else:\n json_list = [data]\n python_json = str(json_list).replace(\"'\", '\"')\n json.dump(f'{python_json}', json_file, ensure_ascii=False)\n\n def create_json(self):\n self.date += self.get_date_for_transfer()\n depart_number = ''\n laboratory_name = ''\n laboratory_ogrn = ''\n for section in self.config.sections():\n if self.config.has_section('json_data'):\n if self.config.has_option(section, 'depart_number'\n ) and self.config.has_option(section, 'laboratory_name'\n ) and self.config.has_option(section, 'laboratory_ogrn'):\n depart_number = self.config.get(section, 'depart_number')\n laboratory_name = self.config.get(section,\n 'laboratory_name')\n laboratory_ogrn = self.config.get(section,\n 'laboratory_ogrn')\n if os.path.exists(path.join(self.result_dir,\n f'{self.organization_name}-{self.date}.json')):\n python_json_dict = self.read_json_today()\n else:\n python_json_dict = self.read_json_template()\n python_json_dict = python_json_dict[0]\n transfer_list = find_transfer(self.date)\n if not transfer_list:\n python_json_dict['order']['patient']['surname'] = 'В базе'\n python_json_dict['order']['patient']['name'] = 'нет пациентов'\n python_json_dict['order']['patient']['patronymic'] = 'для отправки'\n self.write_json(python_json_dict)\n progress = 0\n if transfer_list:\n self.ui_3.progressBar.show()\n for el in range(len(transfer_list)):\n unique_number = generate_unique_number()\n python_json_dict['order']['number'] = unique_number\n python_json_dict['order']['depart'] = depart_number\n python_json_dict['order']['laboratoryName'] = laboratory_name\n python_json_dict['order']['laboratoryOgrn'] = laboratory_ogrn\n python_json_dict['order']['name'] = transfer_list[el][2]\n python_json_dict['order']['ogrn'] = transfer_list[el][3]\n python_json_dict['order']['orderDate'] = transfer_list[el][4]\n python_json_dict['order']['serv'][0]['code'] = transfer_list[el][5]\n python_json_dict['order']['serv'][0]['name'] = transfer_list[el][6]\n python_json_dict['order']['serv'][0]['testSystem'] = transfer_list[\n el][7]\n python_json_dict['order']['serv'][0]['biomaterDate'\n ] = transfer_list[el][8]\n python_json_dict['order']['serv'][0]['readyDate'] = transfer_list[\n el][9]\n python_json_dict['order']['serv'][0]['result'] = transfer_list[el][\n 10][0]\n python_json_dict['order']['serv'][0]['type'] = transfer_list[el][11\n ][0]\n python_json_dict['order']['serv'][0]['value'] = transfer_list[el][\n 12]\n python_json_dict['order']['patient']['surname'] = transfer_list[el\n ][13]\n python_json_dict['order']['patient']['name'] = transfer_list[el][14\n ]\n python_json_dict['order']['patient']['patronymic'] = transfer_list[\n el][15]\n python_json_dict['order']['patient']['gender'] = transfer_list[el][\n 16]\n python_json_dict['order']['patient']['birthday'] = transfer_list[el\n ][17]\n python_json_dict['order']['patient']['phone'] = transfer_list[el][\n 18]\n python_json_dict['order']['patient']['email'] = transfer_list[el][\n 19]\n python_json_dict['order']['patient']['documentType'\n ] = transfer_list[el][20]\n python_json_dict['order']['patient']['documentNumber'\n ] = transfer_list[el][22]\n python_json_dict['order']['patient']['documentSerNumber'\n ] = transfer_list[el][21]\n python_json_dict['order']['patient']['snils'] = transfer_list[el][\n 23]\n python_json_dict['order']['patient']['oms'] = transfer_list[el][24]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'town'] = transfer_list[el][25]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'house'] = transfer_list[el][26]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'region'] = transfer_list[el][27]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'building'] = transfer_list[el][28]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'district'] = transfer_list[el][29]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'appartament'] = transfer_list[el][30]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'streetName'] = transfer_list[el][31]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'town'] = transfer_list[el][32]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'house'] = transfer_list[el][33]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'region'] = transfer_list[el][34]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'building'] = transfer_list[el][35]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'district'] = transfer_list[el][36]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'appartament'] = transfer_list[el][37]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'streetName'] = transfer_list[el][38]\n self.write_json(python_json_dict)\n sleep(1)\n progress += 100 / len(transfer_list)\n self.ui_3.progressBar.setValue(progress)\n self.logging_transfer()\n\n def logging_transfer(self):\n with open(path.join(self.result_dir,\n f'{self.organization_name}-{self.date}.json'), 'r', encoding=\n 'utf-8') as read_file:\n json_file = json.load(read_file)\n python_json = json.loads(json_file)\n patient_list = []\n for patients_dict in python_json:\n surname = f\"{patients_dict['order']['patient']['surname']}\"\n name = f\"{patients_dict['order']['patient']['name']}\"\n patronymic = f\"{patients_dict['order']['patient']['patronymic']}\"\n patient = f'{surname} {name} {patronymic}'\n patient_list.append(patient)\n transfer_json = self.transfer_data()\n status_list = []\n if patient_list[0] != 'В базе нет пациентов для отправки':\n with open(path.join(self.log_dir, 'console_log.txt'), 'a'\n ) as log_file:\n log_file.write(f'{str(transfer_json)}\\n\\n')\n transfer_list = find_transfer(self.date)\n for elements in range(len(transfer_list)):\n if transfer_json['body'][int(elements)]['status'] == 'error':\n patient_list.insert(elements * 3 + 1,\n f\"{transfer_json['body'][int(elements)]['message']}\")\n patient_list.insert(elements * 3 + 2,\n '------------------------------------------------------------------------'\n )\n status_list.append('error')\n elif transfer_json['body'][int(elements)]['status'\n ] == 'ok' or transfer_json['body'][int(elements)]['status'\n ] == '':\n patient_list.insert(elements * 3 + 1, f'Успешно!')\n patient_list.insert(elements * 3 + 2,\n '------------------------------------------------------------------------'\n )\n status_list.append('ok')\n for elem in range(len(status_list)):\n if status_list[elem] == 'ok':\n success(transfer_list[elem][0], 1)\n self.ui_3.calendarWidget.hide()\n self.ui_3.listView.show()\n self.model.setStringList(patient_list)\n self.ui_3.pushButton.setEnabled(False)\n if os.path.isfile(path.join(self.result_dir,\n f'{self.organization_name}-{self.date}.json')):\n os.remove(path.join(self.result_dir,\n f'{self.organization_name}-{self.date}.json'))\n self.date = ''\n\n def transfer_data(self):\n try:\n date = self.get_date_for_transfer()\n organization_name = get_organization()\n with open(path.join(self.result_dir,\n f'{organization_name}-{date}.json'), 'r', encoding='utf-8'\n ) as read_file:\n json_file = json.load(read_file)\n depart_number = ''\n token = ''\n address = ''\n for section in self.config.sections():\n if self.config.has_section('json_data'):\n if self.config.has_option(section, 'depart_number'):\n depart_number = self.config.get(section,\n 'depart_number')\n if self.config.has_section('transfer_data'):\n if self.config.has_option(section, 'token'\n ) and self.config.has_option(section, 'address'):\n token = self.config.get(section, 'token')\n address = self.config.get(section, 'address')\n login = {'depart number': depart_number, 'token': token}\n response = requests.post(\n f'https://{address}/api/v2/order/get-depart-token', login)\n response_json = response.json()\n response_token = response_json['body']['token']\n transfer_info = {'depart number': depart_number, 'token':\n response_token, 'json': json_file}\n transfer = requests.post(\n f'https://{address}/api/v2/order/ext-orders-package',\n transfer_info)\n transfer_json = transfer.json()\n return transfer_json\n except OSError:\n self.show_error_window('Нет связи с сервером')\n self.close_window()\n", "<import token>\n\n\nclass TransferWindow(QtWidgets.QMainWindow):\n\n def __init__(self):\n super(TransferWindow, self).__init__()\n self.setFixedSize(482, 340)\n self.ui_3 = Ui_TransferWindow()\n self.ui_7 = ErrorWindow()\n self.ui_3.setupUi(self)\n self.result_dir = path.join(path.dirname(__file__), 'result')\n self.img_dir = path.join(path.dirname(__file__), 'img')\n self.config_dir = path.join(path.dirname(__file__), 'config')\n self.json_dir = path.join(path.dirname(__file__), 'json')\n self.log_dir = path.join(path.dirname(__file__), 'log')\n self.files = os.listdir(self.result_dir)\n self.config = configparser.RawConfigParser()\n self.config.read(path.join(self.config_dir, 'config.ini'), encoding\n ='utf-8')\n self.date = ''\n self.organization_name = get_organization()\n self.model = QtCore.QStringListModel(self)\n self.ui_3.listView.setModel(self.model)\n self.ui_3.listView.setWordWrap(True)\n self.ui_3.listView.hide()\n self.ui_3.listView.setEditTriggers(QAbstractItemView.NoEditTriggers)\n self.ui_3.progressBar.hide()\n self.ui_3.pushButton.clicked.connect(self.create_json)\n self.ui_3.pushButton_2.clicked.connect(self.close_window)\n self.setWindowIcon(QtGui.QIcon(path.join(self.img_dir,\n 'gosuslugi_5.png')))\n self.setWindowTitle('Выбор даты для отправки')\n set_text(self.ui_3.pushButton, 'Отправить')\n self.ui_3.pushButton.setStyleSheet(\n \"\"\"\n background-color: #b2edbf;\n \"\"\"\n )\n set_text(self.ui_3.pushButton_2, 'Закрыть')\n self.ui_3.pushButton_2.setStyleSheet(\n \"\"\"\n background-color: #f7c8c8;\n \"\"\"\n )\n\n def close_window(self):\n self.close()\n\n def show_error_window(self, error):\n label = self.ui_7.findChildren(QLabel)\n for item in label:\n item.setText(error)\n self.ui_7.show()\n\n def get_date_for_transfer(self):\n date = self.ui_3.calendarWidget.selectedDate()\n return date.toString('dd-MM-yyyy')\n\n def read_json_template(self):\n with open(path.join(self.json_dir, 'template.json'), 'r', encoding=\n 'utf-8') as json_file:\n json_data = json.load(json_file)\n python_json_data = json.loads(json_data)\n return python_json_data\n\n def read_json_today(self):\n with open(path.join(self.result_dir,\n f'{self.organization_name}-{self.date}.json'), 'r', encoding=\n 'utf-8') as json_file:\n json_data = json.load(json_file)\n python_json_data = json.loads(json_data)\n return python_json_data\n\n def write_json(self, data):\n if os.path.exists(path.join(self.result_dir,\n f'{self.organization_name}-{self.date}.json')):\n json_list = self.read_json_today()\n else:\n json_list = self.read_json_template()\n with open(path.join(self.result_dir,\n f'{self.organization_name}-{self.date}.json'), 'w', encoding=\n 'utf-8') as json_file:\n if json_list[0]['order']['depart'] != '':\n json_list.append(data)\n else:\n json_list = [data]\n python_json = str(json_list).replace(\"'\", '\"')\n json.dump(f'{python_json}', json_file, ensure_ascii=False)\n\n def create_json(self):\n self.date += self.get_date_for_transfer()\n depart_number = ''\n laboratory_name = ''\n laboratory_ogrn = ''\n for section in self.config.sections():\n if self.config.has_section('json_data'):\n if self.config.has_option(section, 'depart_number'\n ) and self.config.has_option(section, 'laboratory_name'\n ) and self.config.has_option(section, 'laboratory_ogrn'):\n depart_number = self.config.get(section, 'depart_number')\n laboratory_name = self.config.get(section,\n 'laboratory_name')\n laboratory_ogrn = self.config.get(section,\n 'laboratory_ogrn')\n if os.path.exists(path.join(self.result_dir,\n f'{self.organization_name}-{self.date}.json')):\n python_json_dict = self.read_json_today()\n else:\n python_json_dict = self.read_json_template()\n python_json_dict = python_json_dict[0]\n transfer_list = find_transfer(self.date)\n if not transfer_list:\n python_json_dict['order']['patient']['surname'] = 'В базе'\n python_json_dict['order']['patient']['name'] = 'нет пациентов'\n python_json_dict['order']['patient']['patronymic'] = 'для отправки'\n self.write_json(python_json_dict)\n progress = 0\n if transfer_list:\n self.ui_3.progressBar.show()\n for el in range(len(transfer_list)):\n unique_number = generate_unique_number()\n python_json_dict['order']['number'] = unique_number\n python_json_dict['order']['depart'] = depart_number\n python_json_dict['order']['laboratoryName'] = laboratory_name\n python_json_dict['order']['laboratoryOgrn'] = laboratory_ogrn\n python_json_dict['order']['name'] = transfer_list[el][2]\n python_json_dict['order']['ogrn'] = transfer_list[el][3]\n python_json_dict['order']['orderDate'] = transfer_list[el][4]\n python_json_dict['order']['serv'][0]['code'] = transfer_list[el][5]\n python_json_dict['order']['serv'][0]['name'] = transfer_list[el][6]\n python_json_dict['order']['serv'][0]['testSystem'] = transfer_list[\n el][7]\n python_json_dict['order']['serv'][0]['biomaterDate'\n ] = transfer_list[el][8]\n python_json_dict['order']['serv'][0]['readyDate'] = transfer_list[\n el][9]\n python_json_dict['order']['serv'][0]['result'] = transfer_list[el][\n 10][0]\n python_json_dict['order']['serv'][0]['type'] = transfer_list[el][11\n ][0]\n python_json_dict['order']['serv'][0]['value'] = transfer_list[el][\n 12]\n python_json_dict['order']['patient']['surname'] = transfer_list[el\n ][13]\n python_json_dict['order']['patient']['name'] = transfer_list[el][14\n ]\n python_json_dict['order']['patient']['patronymic'] = transfer_list[\n el][15]\n python_json_dict['order']['patient']['gender'] = transfer_list[el][\n 16]\n python_json_dict['order']['patient']['birthday'] = transfer_list[el\n ][17]\n python_json_dict['order']['patient']['phone'] = transfer_list[el][\n 18]\n python_json_dict['order']['patient']['email'] = transfer_list[el][\n 19]\n python_json_dict['order']['patient']['documentType'\n ] = transfer_list[el][20]\n python_json_dict['order']['patient']['documentNumber'\n ] = transfer_list[el][22]\n python_json_dict['order']['patient']['documentSerNumber'\n ] = transfer_list[el][21]\n python_json_dict['order']['patient']['snils'] = transfer_list[el][\n 23]\n python_json_dict['order']['patient']['oms'] = transfer_list[el][24]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'town'] = transfer_list[el][25]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'house'] = transfer_list[el][26]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'region'] = transfer_list[el][27]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'building'] = transfer_list[el][28]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'district'] = transfer_list[el][29]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'appartament'] = transfer_list[el][30]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'streetName'] = transfer_list[el][31]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'town'] = transfer_list[el][32]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'house'] = transfer_list[el][33]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'region'] = transfer_list[el][34]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'building'] = transfer_list[el][35]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'district'] = transfer_list[el][36]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'appartament'] = transfer_list[el][37]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'streetName'] = transfer_list[el][38]\n self.write_json(python_json_dict)\n sleep(1)\n progress += 100 / len(transfer_list)\n self.ui_3.progressBar.setValue(progress)\n self.logging_transfer()\n\n def logging_transfer(self):\n with open(path.join(self.result_dir,\n f'{self.organization_name}-{self.date}.json'), 'r', encoding=\n 'utf-8') as read_file:\n json_file = json.load(read_file)\n python_json = json.loads(json_file)\n patient_list = []\n for patients_dict in python_json:\n surname = f\"{patients_dict['order']['patient']['surname']}\"\n name = f\"{patients_dict['order']['patient']['name']}\"\n patronymic = f\"{patients_dict['order']['patient']['patronymic']}\"\n patient = f'{surname} {name} {patronymic}'\n patient_list.append(patient)\n transfer_json = self.transfer_data()\n status_list = []\n if patient_list[0] != 'В базе нет пациентов для отправки':\n with open(path.join(self.log_dir, 'console_log.txt'), 'a'\n ) as log_file:\n log_file.write(f'{str(transfer_json)}\\n\\n')\n transfer_list = find_transfer(self.date)\n for elements in range(len(transfer_list)):\n if transfer_json['body'][int(elements)]['status'] == 'error':\n patient_list.insert(elements * 3 + 1,\n f\"{transfer_json['body'][int(elements)]['message']}\")\n patient_list.insert(elements * 3 + 2,\n '------------------------------------------------------------------------'\n )\n status_list.append('error')\n elif transfer_json['body'][int(elements)]['status'\n ] == 'ok' or transfer_json['body'][int(elements)]['status'\n ] == '':\n patient_list.insert(elements * 3 + 1, f'Успешно!')\n patient_list.insert(elements * 3 + 2,\n '------------------------------------------------------------------------'\n )\n status_list.append('ok')\n for elem in range(len(status_list)):\n if status_list[elem] == 'ok':\n success(transfer_list[elem][0], 1)\n self.ui_3.calendarWidget.hide()\n self.ui_3.listView.show()\n self.model.setStringList(patient_list)\n self.ui_3.pushButton.setEnabled(False)\n if os.path.isfile(path.join(self.result_dir,\n f'{self.organization_name}-{self.date}.json')):\n os.remove(path.join(self.result_dir,\n f'{self.organization_name}-{self.date}.json'))\n self.date = ''\n\n def transfer_data(self):\n try:\n date = self.get_date_for_transfer()\n organization_name = get_organization()\n with open(path.join(self.result_dir,\n f'{organization_name}-{date}.json'), 'r', encoding='utf-8'\n ) as read_file:\n json_file = json.load(read_file)\n depart_number = ''\n token = ''\n address = ''\n for section in self.config.sections():\n if self.config.has_section('json_data'):\n if self.config.has_option(section, 'depart_number'):\n depart_number = self.config.get(section,\n 'depart_number')\n if self.config.has_section('transfer_data'):\n if self.config.has_option(section, 'token'\n ) and self.config.has_option(section, 'address'):\n token = self.config.get(section, 'token')\n address = self.config.get(section, 'address')\n login = {'depart number': depart_number, 'token': token}\n response = requests.post(\n f'https://{address}/api/v2/order/get-depart-token', login)\n response_json = response.json()\n response_token = response_json['body']['token']\n transfer_info = {'depart number': depart_number, 'token':\n response_token, 'json': json_file}\n transfer = requests.post(\n f'https://{address}/api/v2/order/ext-orders-package',\n transfer_info)\n transfer_json = transfer.json()\n return transfer_json\n except OSError:\n self.show_error_window('Нет связи с сервером')\n self.close_window()\n", "<import token>\n\n\nclass TransferWindow(QtWidgets.QMainWindow):\n\n def __init__(self):\n super(TransferWindow, self).__init__()\n self.setFixedSize(482, 340)\n self.ui_3 = Ui_TransferWindow()\n self.ui_7 = ErrorWindow()\n self.ui_3.setupUi(self)\n self.result_dir = path.join(path.dirname(__file__), 'result')\n self.img_dir = path.join(path.dirname(__file__), 'img')\n self.config_dir = path.join(path.dirname(__file__), 'config')\n self.json_dir = path.join(path.dirname(__file__), 'json')\n self.log_dir = path.join(path.dirname(__file__), 'log')\n self.files = os.listdir(self.result_dir)\n self.config = configparser.RawConfigParser()\n self.config.read(path.join(self.config_dir, 'config.ini'), encoding\n ='utf-8')\n self.date = ''\n self.organization_name = get_organization()\n self.model = QtCore.QStringListModel(self)\n self.ui_3.listView.setModel(self.model)\n self.ui_3.listView.setWordWrap(True)\n self.ui_3.listView.hide()\n self.ui_3.listView.setEditTriggers(QAbstractItemView.NoEditTriggers)\n self.ui_3.progressBar.hide()\n self.ui_3.pushButton.clicked.connect(self.create_json)\n self.ui_3.pushButton_2.clicked.connect(self.close_window)\n self.setWindowIcon(QtGui.QIcon(path.join(self.img_dir,\n 'gosuslugi_5.png')))\n self.setWindowTitle('Выбор даты для отправки')\n set_text(self.ui_3.pushButton, 'Отправить')\n self.ui_3.pushButton.setStyleSheet(\n \"\"\"\n background-color: #b2edbf;\n \"\"\"\n )\n set_text(self.ui_3.pushButton_2, 'Закрыть')\n self.ui_3.pushButton_2.setStyleSheet(\n \"\"\"\n background-color: #f7c8c8;\n \"\"\"\n )\n\n def close_window(self):\n self.close()\n\n def show_error_window(self, error):\n label = self.ui_7.findChildren(QLabel)\n for item in label:\n item.setText(error)\n self.ui_7.show()\n\n def get_date_for_transfer(self):\n date = self.ui_3.calendarWidget.selectedDate()\n return date.toString('dd-MM-yyyy')\n\n def read_json_template(self):\n with open(path.join(self.json_dir, 'template.json'), 'r', encoding=\n 'utf-8') as json_file:\n json_data = json.load(json_file)\n python_json_data = json.loads(json_data)\n return python_json_data\n\n def read_json_today(self):\n with open(path.join(self.result_dir,\n f'{self.organization_name}-{self.date}.json'), 'r', encoding=\n 'utf-8') as json_file:\n json_data = json.load(json_file)\n python_json_data = json.loads(json_data)\n return python_json_data\n <function token>\n\n def create_json(self):\n self.date += self.get_date_for_transfer()\n depart_number = ''\n laboratory_name = ''\n laboratory_ogrn = ''\n for section in self.config.sections():\n if self.config.has_section('json_data'):\n if self.config.has_option(section, 'depart_number'\n ) and self.config.has_option(section, 'laboratory_name'\n ) and self.config.has_option(section, 'laboratory_ogrn'):\n depart_number = self.config.get(section, 'depart_number')\n laboratory_name = self.config.get(section,\n 'laboratory_name')\n laboratory_ogrn = self.config.get(section,\n 'laboratory_ogrn')\n if os.path.exists(path.join(self.result_dir,\n f'{self.organization_name}-{self.date}.json')):\n python_json_dict = self.read_json_today()\n else:\n python_json_dict = self.read_json_template()\n python_json_dict = python_json_dict[0]\n transfer_list = find_transfer(self.date)\n if not transfer_list:\n python_json_dict['order']['patient']['surname'] = 'В базе'\n python_json_dict['order']['patient']['name'] = 'нет пациентов'\n python_json_dict['order']['patient']['patronymic'] = 'для отправки'\n self.write_json(python_json_dict)\n progress = 0\n if transfer_list:\n self.ui_3.progressBar.show()\n for el in range(len(transfer_list)):\n unique_number = generate_unique_number()\n python_json_dict['order']['number'] = unique_number\n python_json_dict['order']['depart'] = depart_number\n python_json_dict['order']['laboratoryName'] = laboratory_name\n python_json_dict['order']['laboratoryOgrn'] = laboratory_ogrn\n python_json_dict['order']['name'] = transfer_list[el][2]\n python_json_dict['order']['ogrn'] = transfer_list[el][3]\n python_json_dict['order']['orderDate'] = transfer_list[el][4]\n python_json_dict['order']['serv'][0]['code'] = transfer_list[el][5]\n python_json_dict['order']['serv'][0]['name'] = transfer_list[el][6]\n python_json_dict['order']['serv'][0]['testSystem'] = transfer_list[\n el][7]\n python_json_dict['order']['serv'][0]['biomaterDate'\n ] = transfer_list[el][8]\n python_json_dict['order']['serv'][0]['readyDate'] = transfer_list[\n el][9]\n python_json_dict['order']['serv'][0]['result'] = transfer_list[el][\n 10][0]\n python_json_dict['order']['serv'][0]['type'] = transfer_list[el][11\n ][0]\n python_json_dict['order']['serv'][0]['value'] = transfer_list[el][\n 12]\n python_json_dict['order']['patient']['surname'] = transfer_list[el\n ][13]\n python_json_dict['order']['patient']['name'] = transfer_list[el][14\n ]\n python_json_dict['order']['patient']['patronymic'] = transfer_list[\n el][15]\n python_json_dict['order']['patient']['gender'] = transfer_list[el][\n 16]\n python_json_dict['order']['patient']['birthday'] = transfer_list[el\n ][17]\n python_json_dict['order']['patient']['phone'] = transfer_list[el][\n 18]\n python_json_dict['order']['patient']['email'] = transfer_list[el][\n 19]\n python_json_dict['order']['patient']['documentType'\n ] = transfer_list[el][20]\n python_json_dict['order']['patient']['documentNumber'\n ] = transfer_list[el][22]\n python_json_dict['order']['patient']['documentSerNumber'\n ] = transfer_list[el][21]\n python_json_dict['order']['patient']['snils'] = transfer_list[el][\n 23]\n python_json_dict['order']['patient']['oms'] = transfer_list[el][24]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'town'] = transfer_list[el][25]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'house'] = transfer_list[el][26]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'region'] = transfer_list[el][27]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'building'] = transfer_list[el][28]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'district'] = transfer_list[el][29]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'appartament'] = transfer_list[el][30]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'streetName'] = transfer_list[el][31]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'town'] = transfer_list[el][32]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'house'] = transfer_list[el][33]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'region'] = transfer_list[el][34]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'building'] = transfer_list[el][35]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'district'] = transfer_list[el][36]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'appartament'] = transfer_list[el][37]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'streetName'] = transfer_list[el][38]\n self.write_json(python_json_dict)\n sleep(1)\n progress += 100 / len(transfer_list)\n self.ui_3.progressBar.setValue(progress)\n self.logging_transfer()\n\n def logging_transfer(self):\n with open(path.join(self.result_dir,\n f'{self.organization_name}-{self.date}.json'), 'r', encoding=\n 'utf-8') as read_file:\n json_file = json.load(read_file)\n python_json = json.loads(json_file)\n patient_list = []\n for patients_dict in python_json:\n surname = f\"{patients_dict['order']['patient']['surname']}\"\n name = f\"{patients_dict['order']['patient']['name']}\"\n patronymic = f\"{patients_dict['order']['patient']['patronymic']}\"\n patient = f'{surname} {name} {patronymic}'\n patient_list.append(patient)\n transfer_json = self.transfer_data()\n status_list = []\n if patient_list[0] != 'В базе нет пациентов для отправки':\n with open(path.join(self.log_dir, 'console_log.txt'), 'a'\n ) as log_file:\n log_file.write(f'{str(transfer_json)}\\n\\n')\n transfer_list = find_transfer(self.date)\n for elements in range(len(transfer_list)):\n if transfer_json['body'][int(elements)]['status'] == 'error':\n patient_list.insert(elements * 3 + 1,\n f\"{transfer_json['body'][int(elements)]['message']}\")\n patient_list.insert(elements * 3 + 2,\n '------------------------------------------------------------------------'\n )\n status_list.append('error')\n elif transfer_json['body'][int(elements)]['status'\n ] == 'ok' or transfer_json['body'][int(elements)]['status'\n ] == '':\n patient_list.insert(elements * 3 + 1, f'Успешно!')\n patient_list.insert(elements * 3 + 2,\n '------------------------------------------------------------------------'\n )\n status_list.append('ok')\n for elem in range(len(status_list)):\n if status_list[elem] == 'ok':\n success(transfer_list[elem][0], 1)\n self.ui_3.calendarWidget.hide()\n self.ui_3.listView.show()\n self.model.setStringList(patient_list)\n self.ui_3.pushButton.setEnabled(False)\n if os.path.isfile(path.join(self.result_dir,\n f'{self.organization_name}-{self.date}.json')):\n os.remove(path.join(self.result_dir,\n f'{self.organization_name}-{self.date}.json'))\n self.date = ''\n\n def transfer_data(self):\n try:\n date = self.get_date_for_transfer()\n organization_name = get_organization()\n with open(path.join(self.result_dir,\n f'{organization_name}-{date}.json'), 'r', encoding='utf-8'\n ) as read_file:\n json_file = json.load(read_file)\n depart_number = ''\n token = ''\n address = ''\n for section in self.config.sections():\n if self.config.has_section('json_data'):\n if self.config.has_option(section, 'depart_number'):\n depart_number = self.config.get(section,\n 'depart_number')\n if self.config.has_section('transfer_data'):\n if self.config.has_option(section, 'token'\n ) and self.config.has_option(section, 'address'):\n token = self.config.get(section, 'token')\n address = self.config.get(section, 'address')\n login = {'depart number': depart_number, 'token': token}\n response = requests.post(\n f'https://{address}/api/v2/order/get-depart-token', login)\n response_json = response.json()\n response_token = response_json['body']['token']\n transfer_info = {'depart number': depart_number, 'token':\n response_token, 'json': json_file}\n transfer = requests.post(\n f'https://{address}/api/v2/order/ext-orders-package',\n transfer_info)\n transfer_json = transfer.json()\n return transfer_json\n except OSError:\n self.show_error_window('Нет связи с сервером')\n self.close_window()\n", "<import token>\n\n\nclass TransferWindow(QtWidgets.QMainWindow):\n <function token>\n\n def close_window(self):\n self.close()\n\n def show_error_window(self, error):\n label = self.ui_7.findChildren(QLabel)\n for item in label:\n item.setText(error)\n self.ui_7.show()\n\n def get_date_for_transfer(self):\n date = self.ui_3.calendarWidget.selectedDate()\n return date.toString('dd-MM-yyyy')\n\n def read_json_template(self):\n with open(path.join(self.json_dir, 'template.json'), 'r', encoding=\n 'utf-8') as json_file:\n json_data = json.load(json_file)\n python_json_data = json.loads(json_data)\n return python_json_data\n\n def read_json_today(self):\n with open(path.join(self.result_dir,\n f'{self.organization_name}-{self.date}.json'), 'r', encoding=\n 'utf-8') as json_file:\n json_data = json.load(json_file)\n python_json_data = json.loads(json_data)\n return python_json_data\n <function token>\n\n def create_json(self):\n self.date += self.get_date_for_transfer()\n depart_number = ''\n laboratory_name = ''\n laboratory_ogrn = ''\n for section in self.config.sections():\n if self.config.has_section('json_data'):\n if self.config.has_option(section, 'depart_number'\n ) and self.config.has_option(section, 'laboratory_name'\n ) and self.config.has_option(section, 'laboratory_ogrn'):\n depart_number = self.config.get(section, 'depart_number')\n laboratory_name = self.config.get(section,\n 'laboratory_name')\n laboratory_ogrn = self.config.get(section,\n 'laboratory_ogrn')\n if os.path.exists(path.join(self.result_dir,\n f'{self.organization_name}-{self.date}.json')):\n python_json_dict = self.read_json_today()\n else:\n python_json_dict = self.read_json_template()\n python_json_dict = python_json_dict[0]\n transfer_list = find_transfer(self.date)\n if not transfer_list:\n python_json_dict['order']['patient']['surname'] = 'В базе'\n python_json_dict['order']['patient']['name'] = 'нет пациентов'\n python_json_dict['order']['patient']['patronymic'] = 'для отправки'\n self.write_json(python_json_dict)\n progress = 0\n if transfer_list:\n self.ui_3.progressBar.show()\n for el in range(len(transfer_list)):\n unique_number = generate_unique_number()\n python_json_dict['order']['number'] = unique_number\n python_json_dict['order']['depart'] = depart_number\n python_json_dict['order']['laboratoryName'] = laboratory_name\n python_json_dict['order']['laboratoryOgrn'] = laboratory_ogrn\n python_json_dict['order']['name'] = transfer_list[el][2]\n python_json_dict['order']['ogrn'] = transfer_list[el][3]\n python_json_dict['order']['orderDate'] = transfer_list[el][4]\n python_json_dict['order']['serv'][0]['code'] = transfer_list[el][5]\n python_json_dict['order']['serv'][0]['name'] = transfer_list[el][6]\n python_json_dict['order']['serv'][0]['testSystem'] = transfer_list[\n el][7]\n python_json_dict['order']['serv'][0]['biomaterDate'\n ] = transfer_list[el][8]\n python_json_dict['order']['serv'][0]['readyDate'] = transfer_list[\n el][9]\n python_json_dict['order']['serv'][0]['result'] = transfer_list[el][\n 10][0]\n python_json_dict['order']['serv'][0]['type'] = transfer_list[el][11\n ][0]\n python_json_dict['order']['serv'][0]['value'] = transfer_list[el][\n 12]\n python_json_dict['order']['patient']['surname'] = transfer_list[el\n ][13]\n python_json_dict['order']['patient']['name'] = transfer_list[el][14\n ]\n python_json_dict['order']['patient']['patronymic'] = transfer_list[\n el][15]\n python_json_dict['order']['patient']['gender'] = transfer_list[el][\n 16]\n python_json_dict['order']['patient']['birthday'] = transfer_list[el\n ][17]\n python_json_dict['order']['patient']['phone'] = transfer_list[el][\n 18]\n python_json_dict['order']['patient']['email'] = transfer_list[el][\n 19]\n python_json_dict['order']['patient']['documentType'\n ] = transfer_list[el][20]\n python_json_dict['order']['patient']['documentNumber'\n ] = transfer_list[el][22]\n python_json_dict['order']['patient']['documentSerNumber'\n ] = transfer_list[el][21]\n python_json_dict['order']['patient']['snils'] = transfer_list[el][\n 23]\n python_json_dict['order']['patient']['oms'] = transfer_list[el][24]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'town'] = transfer_list[el][25]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'house'] = transfer_list[el][26]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'region'] = transfer_list[el][27]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'building'] = transfer_list[el][28]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'district'] = transfer_list[el][29]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'appartament'] = transfer_list[el][30]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'streetName'] = transfer_list[el][31]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'town'] = transfer_list[el][32]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'house'] = transfer_list[el][33]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'region'] = transfer_list[el][34]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'building'] = transfer_list[el][35]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'district'] = transfer_list[el][36]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'appartament'] = transfer_list[el][37]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'streetName'] = transfer_list[el][38]\n self.write_json(python_json_dict)\n sleep(1)\n progress += 100 / len(transfer_list)\n self.ui_3.progressBar.setValue(progress)\n self.logging_transfer()\n\n def logging_transfer(self):\n with open(path.join(self.result_dir,\n f'{self.organization_name}-{self.date}.json'), 'r', encoding=\n 'utf-8') as read_file:\n json_file = json.load(read_file)\n python_json = json.loads(json_file)\n patient_list = []\n for patients_dict in python_json:\n surname = f\"{patients_dict['order']['patient']['surname']}\"\n name = f\"{patients_dict['order']['patient']['name']}\"\n patronymic = f\"{patients_dict['order']['patient']['patronymic']}\"\n patient = f'{surname} {name} {patronymic}'\n patient_list.append(patient)\n transfer_json = self.transfer_data()\n status_list = []\n if patient_list[0] != 'В базе нет пациентов для отправки':\n with open(path.join(self.log_dir, 'console_log.txt'), 'a'\n ) as log_file:\n log_file.write(f'{str(transfer_json)}\\n\\n')\n transfer_list = find_transfer(self.date)\n for elements in range(len(transfer_list)):\n if transfer_json['body'][int(elements)]['status'] == 'error':\n patient_list.insert(elements * 3 + 1,\n f\"{transfer_json['body'][int(elements)]['message']}\")\n patient_list.insert(elements * 3 + 2,\n '------------------------------------------------------------------------'\n )\n status_list.append('error')\n elif transfer_json['body'][int(elements)]['status'\n ] == 'ok' or transfer_json['body'][int(elements)]['status'\n ] == '':\n patient_list.insert(elements * 3 + 1, f'Успешно!')\n patient_list.insert(elements * 3 + 2,\n '------------------------------------------------------------------------'\n )\n status_list.append('ok')\n for elem in range(len(status_list)):\n if status_list[elem] == 'ok':\n success(transfer_list[elem][0], 1)\n self.ui_3.calendarWidget.hide()\n self.ui_3.listView.show()\n self.model.setStringList(patient_list)\n self.ui_3.pushButton.setEnabled(False)\n if os.path.isfile(path.join(self.result_dir,\n f'{self.organization_name}-{self.date}.json')):\n os.remove(path.join(self.result_dir,\n f'{self.organization_name}-{self.date}.json'))\n self.date = ''\n\n def transfer_data(self):\n try:\n date = self.get_date_for_transfer()\n organization_name = get_organization()\n with open(path.join(self.result_dir,\n f'{organization_name}-{date}.json'), 'r', encoding='utf-8'\n ) as read_file:\n json_file = json.load(read_file)\n depart_number = ''\n token = ''\n address = ''\n for section in self.config.sections():\n if self.config.has_section('json_data'):\n if self.config.has_option(section, 'depart_number'):\n depart_number = self.config.get(section,\n 'depart_number')\n if self.config.has_section('transfer_data'):\n if self.config.has_option(section, 'token'\n ) and self.config.has_option(section, 'address'):\n token = self.config.get(section, 'token')\n address = self.config.get(section, 'address')\n login = {'depart number': depart_number, 'token': token}\n response = requests.post(\n f'https://{address}/api/v2/order/get-depart-token', login)\n response_json = response.json()\n response_token = response_json['body']['token']\n transfer_info = {'depart number': depart_number, 'token':\n response_token, 'json': json_file}\n transfer = requests.post(\n f'https://{address}/api/v2/order/ext-orders-package',\n transfer_info)\n transfer_json = transfer.json()\n return transfer_json\n except OSError:\n self.show_error_window('Нет связи с сервером')\n self.close_window()\n", "<import token>\n\n\nclass TransferWindow(QtWidgets.QMainWindow):\n <function token>\n\n def close_window(self):\n self.close()\n\n def show_error_window(self, error):\n label = self.ui_7.findChildren(QLabel)\n for item in label:\n item.setText(error)\n self.ui_7.show()\n\n def get_date_for_transfer(self):\n date = self.ui_3.calendarWidget.selectedDate()\n return date.toString('dd-MM-yyyy')\n\n def read_json_template(self):\n with open(path.join(self.json_dir, 'template.json'), 'r', encoding=\n 'utf-8') as json_file:\n json_data = json.load(json_file)\n python_json_data = json.loads(json_data)\n return python_json_data\n\n def read_json_today(self):\n with open(path.join(self.result_dir,\n f'{self.organization_name}-{self.date}.json'), 'r', encoding=\n 'utf-8') as json_file:\n json_data = json.load(json_file)\n python_json_data = json.loads(json_data)\n return python_json_data\n <function token>\n\n def create_json(self):\n self.date += self.get_date_for_transfer()\n depart_number = ''\n laboratory_name = ''\n laboratory_ogrn = ''\n for section in self.config.sections():\n if self.config.has_section('json_data'):\n if self.config.has_option(section, 'depart_number'\n ) and self.config.has_option(section, 'laboratory_name'\n ) and self.config.has_option(section, 'laboratory_ogrn'):\n depart_number = self.config.get(section, 'depart_number')\n laboratory_name = self.config.get(section,\n 'laboratory_name')\n laboratory_ogrn = self.config.get(section,\n 'laboratory_ogrn')\n if os.path.exists(path.join(self.result_dir,\n f'{self.organization_name}-{self.date}.json')):\n python_json_dict = self.read_json_today()\n else:\n python_json_dict = self.read_json_template()\n python_json_dict = python_json_dict[0]\n transfer_list = find_transfer(self.date)\n if not transfer_list:\n python_json_dict['order']['patient']['surname'] = 'В базе'\n python_json_dict['order']['patient']['name'] = 'нет пациентов'\n python_json_dict['order']['patient']['patronymic'] = 'для отправки'\n self.write_json(python_json_dict)\n progress = 0\n if transfer_list:\n self.ui_3.progressBar.show()\n for el in range(len(transfer_list)):\n unique_number = generate_unique_number()\n python_json_dict['order']['number'] = unique_number\n python_json_dict['order']['depart'] = depart_number\n python_json_dict['order']['laboratoryName'] = laboratory_name\n python_json_dict['order']['laboratoryOgrn'] = laboratory_ogrn\n python_json_dict['order']['name'] = transfer_list[el][2]\n python_json_dict['order']['ogrn'] = transfer_list[el][3]\n python_json_dict['order']['orderDate'] = transfer_list[el][4]\n python_json_dict['order']['serv'][0]['code'] = transfer_list[el][5]\n python_json_dict['order']['serv'][0]['name'] = transfer_list[el][6]\n python_json_dict['order']['serv'][0]['testSystem'] = transfer_list[\n el][7]\n python_json_dict['order']['serv'][0]['biomaterDate'\n ] = transfer_list[el][8]\n python_json_dict['order']['serv'][0]['readyDate'] = transfer_list[\n el][9]\n python_json_dict['order']['serv'][0]['result'] = transfer_list[el][\n 10][0]\n python_json_dict['order']['serv'][0]['type'] = transfer_list[el][11\n ][0]\n python_json_dict['order']['serv'][0]['value'] = transfer_list[el][\n 12]\n python_json_dict['order']['patient']['surname'] = transfer_list[el\n ][13]\n python_json_dict['order']['patient']['name'] = transfer_list[el][14\n ]\n python_json_dict['order']['patient']['patronymic'] = transfer_list[\n el][15]\n python_json_dict['order']['patient']['gender'] = transfer_list[el][\n 16]\n python_json_dict['order']['patient']['birthday'] = transfer_list[el\n ][17]\n python_json_dict['order']['patient']['phone'] = transfer_list[el][\n 18]\n python_json_dict['order']['patient']['email'] = transfer_list[el][\n 19]\n python_json_dict['order']['patient']['documentType'\n ] = transfer_list[el][20]\n python_json_dict['order']['patient']['documentNumber'\n ] = transfer_list[el][22]\n python_json_dict['order']['patient']['documentSerNumber'\n ] = transfer_list[el][21]\n python_json_dict['order']['patient']['snils'] = transfer_list[el][\n 23]\n python_json_dict['order']['patient']['oms'] = transfer_list[el][24]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'town'] = transfer_list[el][25]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'house'] = transfer_list[el][26]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'region'] = transfer_list[el][27]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'building'] = transfer_list[el][28]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'district'] = transfer_list[el][29]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'appartament'] = transfer_list[el][30]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'streetName'] = transfer_list[el][31]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'town'] = transfer_list[el][32]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'house'] = transfer_list[el][33]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'region'] = transfer_list[el][34]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'building'] = transfer_list[el][35]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'district'] = transfer_list[el][36]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'appartament'] = transfer_list[el][37]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'streetName'] = transfer_list[el][38]\n self.write_json(python_json_dict)\n sleep(1)\n progress += 100 / len(transfer_list)\n self.ui_3.progressBar.setValue(progress)\n self.logging_transfer()\n <function token>\n\n def transfer_data(self):\n try:\n date = self.get_date_for_transfer()\n organization_name = get_organization()\n with open(path.join(self.result_dir,\n f'{organization_name}-{date}.json'), 'r', encoding='utf-8'\n ) as read_file:\n json_file = json.load(read_file)\n depart_number = ''\n token = ''\n address = ''\n for section in self.config.sections():\n if self.config.has_section('json_data'):\n if self.config.has_option(section, 'depart_number'):\n depart_number = self.config.get(section,\n 'depart_number')\n if self.config.has_section('transfer_data'):\n if self.config.has_option(section, 'token'\n ) and self.config.has_option(section, 'address'):\n token = self.config.get(section, 'token')\n address = self.config.get(section, 'address')\n login = {'depart number': depart_number, 'token': token}\n response = requests.post(\n f'https://{address}/api/v2/order/get-depart-token', login)\n response_json = response.json()\n response_token = response_json['body']['token']\n transfer_info = {'depart number': depart_number, 'token':\n response_token, 'json': json_file}\n transfer = requests.post(\n f'https://{address}/api/v2/order/ext-orders-package',\n transfer_info)\n transfer_json = transfer.json()\n return transfer_json\n except OSError:\n self.show_error_window('Нет связи с сервером')\n self.close_window()\n", "<import token>\n\n\nclass TransferWindow(QtWidgets.QMainWindow):\n <function token>\n\n def close_window(self):\n self.close()\n\n def show_error_window(self, error):\n label = self.ui_7.findChildren(QLabel)\n for item in label:\n item.setText(error)\n self.ui_7.show()\n\n def get_date_for_transfer(self):\n date = self.ui_3.calendarWidget.selectedDate()\n return date.toString('dd-MM-yyyy')\n\n def read_json_template(self):\n with open(path.join(self.json_dir, 'template.json'), 'r', encoding=\n 'utf-8') as json_file:\n json_data = json.load(json_file)\n python_json_data = json.loads(json_data)\n return python_json_data\n\n def read_json_today(self):\n with open(path.join(self.result_dir,\n f'{self.organization_name}-{self.date}.json'), 'r', encoding=\n 'utf-8') as json_file:\n json_data = json.load(json_file)\n python_json_data = json.loads(json_data)\n return python_json_data\n <function token>\n\n def create_json(self):\n self.date += self.get_date_for_transfer()\n depart_number = ''\n laboratory_name = ''\n laboratory_ogrn = ''\n for section in self.config.sections():\n if self.config.has_section('json_data'):\n if self.config.has_option(section, 'depart_number'\n ) and self.config.has_option(section, 'laboratory_name'\n ) and self.config.has_option(section, 'laboratory_ogrn'):\n depart_number = self.config.get(section, 'depart_number')\n laboratory_name = self.config.get(section,\n 'laboratory_name')\n laboratory_ogrn = self.config.get(section,\n 'laboratory_ogrn')\n if os.path.exists(path.join(self.result_dir,\n f'{self.organization_name}-{self.date}.json')):\n python_json_dict = self.read_json_today()\n else:\n python_json_dict = self.read_json_template()\n python_json_dict = python_json_dict[0]\n transfer_list = find_transfer(self.date)\n if not transfer_list:\n python_json_dict['order']['patient']['surname'] = 'В базе'\n python_json_dict['order']['patient']['name'] = 'нет пациентов'\n python_json_dict['order']['patient']['patronymic'] = 'для отправки'\n self.write_json(python_json_dict)\n progress = 0\n if transfer_list:\n self.ui_3.progressBar.show()\n for el in range(len(transfer_list)):\n unique_number = generate_unique_number()\n python_json_dict['order']['number'] = unique_number\n python_json_dict['order']['depart'] = depart_number\n python_json_dict['order']['laboratoryName'] = laboratory_name\n python_json_dict['order']['laboratoryOgrn'] = laboratory_ogrn\n python_json_dict['order']['name'] = transfer_list[el][2]\n python_json_dict['order']['ogrn'] = transfer_list[el][3]\n python_json_dict['order']['orderDate'] = transfer_list[el][4]\n python_json_dict['order']['serv'][0]['code'] = transfer_list[el][5]\n python_json_dict['order']['serv'][0]['name'] = transfer_list[el][6]\n python_json_dict['order']['serv'][0]['testSystem'] = transfer_list[\n el][7]\n python_json_dict['order']['serv'][0]['biomaterDate'\n ] = transfer_list[el][8]\n python_json_dict['order']['serv'][0]['readyDate'] = transfer_list[\n el][9]\n python_json_dict['order']['serv'][0]['result'] = transfer_list[el][\n 10][0]\n python_json_dict['order']['serv'][0]['type'] = transfer_list[el][11\n ][0]\n python_json_dict['order']['serv'][0]['value'] = transfer_list[el][\n 12]\n python_json_dict['order']['patient']['surname'] = transfer_list[el\n ][13]\n python_json_dict['order']['patient']['name'] = transfer_list[el][14\n ]\n python_json_dict['order']['patient']['patronymic'] = transfer_list[\n el][15]\n python_json_dict['order']['patient']['gender'] = transfer_list[el][\n 16]\n python_json_dict['order']['patient']['birthday'] = transfer_list[el\n ][17]\n python_json_dict['order']['patient']['phone'] = transfer_list[el][\n 18]\n python_json_dict['order']['patient']['email'] = transfer_list[el][\n 19]\n python_json_dict['order']['patient']['documentType'\n ] = transfer_list[el][20]\n python_json_dict['order']['patient']['documentNumber'\n ] = transfer_list[el][22]\n python_json_dict['order']['patient']['documentSerNumber'\n ] = transfer_list[el][21]\n python_json_dict['order']['patient']['snils'] = transfer_list[el][\n 23]\n python_json_dict['order']['patient']['oms'] = transfer_list[el][24]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'town'] = transfer_list[el][25]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'house'] = transfer_list[el][26]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'region'] = transfer_list[el][27]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'building'] = transfer_list[el][28]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'district'] = transfer_list[el][29]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'appartament'] = transfer_list[el][30]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'streetName'] = transfer_list[el][31]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'town'] = transfer_list[el][32]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'house'] = transfer_list[el][33]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'region'] = transfer_list[el][34]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'building'] = transfer_list[el][35]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'district'] = transfer_list[el][36]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'appartament'] = transfer_list[el][37]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'streetName'] = transfer_list[el][38]\n self.write_json(python_json_dict)\n sleep(1)\n progress += 100 / len(transfer_list)\n self.ui_3.progressBar.setValue(progress)\n self.logging_transfer()\n <function token>\n <function token>\n", "<import token>\n\n\nclass TransferWindow(QtWidgets.QMainWindow):\n <function token>\n\n def close_window(self):\n self.close()\n\n def show_error_window(self, error):\n label = self.ui_7.findChildren(QLabel)\n for item in label:\n item.setText(error)\n self.ui_7.show()\n\n def get_date_for_transfer(self):\n date = self.ui_3.calendarWidget.selectedDate()\n return date.toString('dd-MM-yyyy')\n\n def read_json_template(self):\n with open(path.join(self.json_dir, 'template.json'), 'r', encoding=\n 'utf-8') as json_file:\n json_data = json.load(json_file)\n python_json_data = json.loads(json_data)\n return python_json_data\n <function token>\n <function token>\n\n def create_json(self):\n self.date += self.get_date_for_transfer()\n depart_number = ''\n laboratory_name = ''\n laboratory_ogrn = ''\n for section in self.config.sections():\n if self.config.has_section('json_data'):\n if self.config.has_option(section, 'depart_number'\n ) and self.config.has_option(section, 'laboratory_name'\n ) and self.config.has_option(section, 'laboratory_ogrn'):\n depart_number = self.config.get(section, 'depart_number')\n laboratory_name = self.config.get(section,\n 'laboratory_name')\n laboratory_ogrn = self.config.get(section,\n 'laboratory_ogrn')\n if os.path.exists(path.join(self.result_dir,\n f'{self.organization_name}-{self.date}.json')):\n python_json_dict = self.read_json_today()\n else:\n python_json_dict = self.read_json_template()\n python_json_dict = python_json_dict[0]\n transfer_list = find_transfer(self.date)\n if not transfer_list:\n python_json_dict['order']['patient']['surname'] = 'В базе'\n python_json_dict['order']['patient']['name'] = 'нет пациентов'\n python_json_dict['order']['patient']['patronymic'] = 'для отправки'\n self.write_json(python_json_dict)\n progress = 0\n if transfer_list:\n self.ui_3.progressBar.show()\n for el in range(len(transfer_list)):\n unique_number = generate_unique_number()\n python_json_dict['order']['number'] = unique_number\n python_json_dict['order']['depart'] = depart_number\n python_json_dict['order']['laboratoryName'] = laboratory_name\n python_json_dict['order']['laboratoryOgrn'] = laboratory_ogrn\n python_json_dict['order']['name'] = transfer_list[el][2]\n python_json_dict['order']['ogrn'] = transfer_list[el][3]\n python_json_dict['order']['orderDate'] = transfer_list[el][4]\n python_json_dict['order']['serv'][0]['code'] = transfer_list[el][5]\n python_json_dict['order']['serv'][0]['name'] = transfer_list[el][6]\n python_json_dict['order']['serv'][0]['testSystem'] = transfer_list[\n el][7]\n python_json_dict['order']['serv'][0]['biomaterDate'\n ] = transfer_list[el][8]\n python_json_dict['order']['serv'][0]['readyDate'] = transfer_list[\n el][9]\n python_json_dict['order']['serv'][0]['result'] = transfer_list[el][\n 10][0]\n python_json_dict['order']['serv'][0]['type'] = transfer_list[el][11\n ][0]\n python_json_dict['order']['serv'][0]['value'] = transfer_list[el][\n 12]\n python_json_dict['order']['patient']['surname'] = transfer_list[el\n ][13]\n python_json_dict['order']['patient']['name'] = transfer_list[el][14\n ]\n python_json_dict['order']['patient']['patronymic'] = transfer_list[\n el][15]\n python_json_dict['order']['patient']['gender'] = transfer_list[el][\n 16]\n python_json_dict['order']['patient']['birthday'] = transfer_list[el\n ][17]\n python_json_dict['order']['patient']['phone'] = transfer_list[el][\n 18]\n python_json_dict['order']['patient']['email'] = transfer_list[el][\n 19]\n python_json_dict['order']['patient']['documentType'\n ] = transfer_list[el][20]\n python_json_dict['order']['patient']['documentNumber'\n ] = transfer_list[el][22]\n python_json_dict['order']['patient']['documentSerNumber'\n ] = transfer_list[el][21]\n python_json_dict['order']['patient']['snils'] = transfer_list[el][\n 23]\n python_json_dict['order']['patient']['oms'] = transfer_list[el][24]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'town'] = transfer_list[el][25]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'house'] = transfer_list[el][26]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'region'] = transfer_list[el][27]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'building'] = transfer_list[el][28]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'district'] = transfer_list[el][29]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'appartament'] = transfer_list[el][30]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'streetName'] = transfer_list[el][31]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'town'] = transfer_list[el][32]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'house'] = transfer_list[el][33]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'region'] = transfer_list[el][34]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'building'] = transfer_list[el][35]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'district'] = transfer_list[el][36]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'appartament'] = transfer_list[el][37]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'streetName'] = transfer_list[el][38]\n self.write_json(python_json_dict)\n sleep(1)\n progress += 100 / len(transfer_list)\n self.ui_3.progressBar.setValue(progress)\n self.logging_transfer()\n <function token>\n <function token>\n", "<import token>\n\n\nclass TransferWindow(QtWidgets.QMainWindow):\n <function token>\n <function token>\n\n def show_error_window(self, error):\n label = self.ui_7.findChildren(QLabel)\n for item in label:\n item.setText(error)\n self.ui_7.show()\n\n def get_date_for_transfer(self):\n date = self.ui_3.calendarWidget.selectedDate()\n return date.toString('dd-MM-yyyy')\n\n def read_json_template(self):\n with open(path.join(self.json_dir, 'template.json'), 'r', encoding=\n 'utf-8') as json_file:\n json_data = json.load(json_file)\n python_json_data = json.loads(json_data)\n return python_json_data\n <function token>\n <function token>\n\n def create_json(self):\n self.date += self.get_date_for_transfer()\n depart_number = ''\n laboratory_name = ''\n laboratory_ogrn = ''\n for section in self.config.sections():\n if self.config.has_section('json_data'):\n if self.config.has_option(section, 'depart_number'\n ) and self.config.has_option(section, 'laboratory_name'\n ) and self.config.has_option(section, 'laboratory_ogrn'):\n depart_number = self.config.get(section, 'depart_number')\n laboratory_name = self.config.get(section,\n 'laboratory_name')\n laboratory_ogrn = self.config.get(section,\n 'laboratory_ogrn')\n if os.path.exists(path.join(self.result_dir,\n f'{self.organization_name}-{self.date}.json')):\n python_json_dict = self.read_json_today()\n else:\n python_json_dict = self.read_json_template()\n python_json_dict = python_json_dict[0]\n transfer_list = find_transfer(self.date)\n if not transfer_list:\n python_json_dict['order']['patient']['surname'] = 'В базе'\n python_json_dict['order']['patient']['name'] = 'нет пациентов'\n python_json_dict['order']['patient']['patronymic'] = 'для отправки'\n self.write_json(python_json_dict)\n progress = 0\n if transfer_list:\n self.ui_3.progressBar.show()\n for el in range(len(transfer_list)):\n unique_number = generate_unique_number()\n python_json_dict['order']['number'] = unique_number\n python_json_dict['order']['depart'] = depart_number\n python_json_dict['order']['laboratoryName'] = laboratory_name\n python_json_dict['order']['laboratoryOgrn'] = laboratory_ogrn\n python_json_dict['order']['name'] = transfer_list[el][2]\n python_json_dict['order']['ogrn'] = transfer_list[el][3]\n python_json_dict['order']['orderDate'] = transfer_list[el][4]\n python_json_dict['order']['serv'][0]['code'] = transfer_list[el][5]\n python_json_dict['order']['serv'][0]['name'] = transfer_list[el][6]\n python_json_dict['order']['serv'][0]['testSystem'] = transfer_list[\n el][7]\n python_json_dict['order']['serv'][0]['biomaterDate'\n ] = transfer_list[el][8]\n python_json_dict['order']['serv'][0]['readyDate'] = transfer_list[\n el][9]\n python_json_dict['order']['serv'][0]['result'] = transfer_list[el][\n 10][0]\n python_json_dict['order']['serv'][0]['type'] = transfer_list[el][11\n ][0]\n python_json_dict['order']['serv'][0]['value'] = transfer_list[el][\n 12]\n python_json_dict['order']['patient']['surname'] = transfer_list[el\n ][13]\n python_json_dict['order']['patient']['name'] = transfer_list[el][14\n ]\n python_json_dict['order']['patient']['patronymic'] = transfer_list[\n el][15]\n python_json_dict['order']['patient']['gender'] = transfer_list[el][\n 16]\n python_json_dict['order']['patient']['birthday'] = transfer_list[el\n ][17]\n python_json_dict['order']['patient']['phone'] = transfer_list[el][\n 18]\n python_json_dict['order']['patient']['email'] = transfer_list[el][\n 19]\n python_json_dict['order']['patient']['documentType'\n ] = transfer_list[el][20]\n python_json_dict['order']['patient']['documentNumber'\n ] = transfer_list[el][22]\n python_json_dict['order']['patient']['documentSerNumber'\n ] = transfer_list[el][21]\n python_json_dict['order']['patient']['snils'] = transfer_list[el][\n 23]\n python_json_dict['order']['patient']['oms'] = transfer_list[el][24]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'town'] = transfer_list[el][25]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'house'] = transfer_list[el][26]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'region'] = transfer_list[el][27]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'building'] = transfer_list[el][28]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'district'] = transfer_list[el][29]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'appartament'] = transfer_list[el][30]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'streetName'] = transfer_list[el][31]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'town'] = transfer_list[el][32]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'house'] = transfer_list[el][33]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'region'] = transfer_list[el][34]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'building'] = transfer_list[el][35]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'district'] = transfer_list[el][36]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'appartament'] = transfer_list[el][37]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'streetName'] = transfer_list[el][38]\n self.write_json(python_json_dict)\n sleep(1)\n progress += 100 / len(transfer_list)\n self.ui_3.progressBar.setValue(progress)\n self.logging_transfer()\n <function token>\n <function token>\n", "<import token>\n\n\nclass TransferWindow(QtWidgets.QMainWindow):\n <function token>\n <function token>\n\n def show_error_window(self, error):\n label = self.ui_7.findChildren(QLabel)\n for item in label:\n item.setText(error)\n self.ui_7.show()\n\n def get_date_for_transfer(self):\n date = self.ui_3.calendarWidget.selectedDate()\n return date.toString('dd-MM-yyyy')\n <function token>\n <function token>\n <function token>\n\n def create_json(self):\n self.date += self.get_date_for_transfer()\n depart_number = ''\n laboratory_name = ''\n laboratory_ogrn = ''\n for section in self.config.sections():\n if self.config.has_section('json_data'):\n if self.config.has_option(section, 'depart_number'\n ) and self.config.has_option(section, 'laboratory_name'\n ) and self.config.has_option(section, 'laboratory_ogrn'):\n depart_number = self.config.get(section, 'depart_number')\n laboratory_name = self.config.get(section,\n 'laboratory_name')\n laboratory_ogrn = self.config.get(section,\n 'laboratory_ogrn')\n if os.path.exists(path.join(self.result_dir,\n f'{self.organization_name}-{self.date}.json')):\n python_json_dict = self.read_json_today()\n else:\n python_json_dict = self.read_json_template()\n python_json_dict = python_json_dict[0]\n transfer_list = find_transfer(self.date)\n if not transfer_list:\n python_json_dict['order']['patient']['surname'] = 'В базе'\n python_json_dict['order']['patient']['name'] = 'нет пациентов'\n python_json_dict['order']['patient']['patronymic'] = 'для отправки'\n self.write_json(python_json_dict)\n progress = 0\n if transfer_list:\n self.ui_3.progressBar.show()\n for el in range(len(transfer_list)):\n unique_number = generate_unique_number()\n python_json_dict['order']['number'] = unique_number\n python_json_dict['order']['depart'] = depart_number\n python_json_dict['order']['laboratoryName'] = laboratory_name\n python_json_dict['order']['laboratoryOgrn'] = laboratory_ogrn\n python_json_dict['order']['name'] = transfer_list[el][2]\n python_json_dict['order']['ogrn'] = transfer_list[el][3]\n python_json_dict['order']['orderDate'] = transfer_list[el][4]\n python_json_dict['order']['serv'][0]['code'] = transfer_list[el][5]\n python_json_dict['order']['serv'][0]['name'] = transfer_list[el][6]\n python_json_dict['order']['serv'][0]['testSystem'] = transfer_list[\n el][7]\n python_json_dict['order']['serv'][0]['biomaterDate'\n ] = transfer_list[el][8]\n python_json_dict['order']['serv'][0]['readyDate'] = transfer_list[\n el][9]\n python_json_dict['order']['serv'][0]['result'] = transfer_list[el][\n 10][0]\n python_json_dict['order']['serv'][0]['type'] = transfer_list[el][11\n ][0]\n python_json_dict['order']['serv'][0]['value'] = transfer_list[el][\n 12]\n python_json_dict['order']['patient']['surname'] = transfer_list[el\n ][13]\n python_json_dict['order']['patient']['name'] = transfer_list[el][14\n ]\n python_json_dict['order']['patient']['patronymic'] = transfer_list[\n el][15]\n python_json_dict['order']['patient']['gender'] = transfer_list[el][\n 16]\n python_json_dict['order']['patient']['birthday'] = transfer_list[el\n ][17]\n python_json_dict['order']['patient']['phone'] = transfer_list[el][\n 18]\n python_json_dict['order']['patient']['email'] = transfer_list[el][\n 19]\n python_json_dict['order']['patient']['documentType'\n ] = transfer_list[el][20]\n python_json_dict['order']['patient']['documentNumber'\n ] = transfer_list[el][22]\n python_json_dict['order']['patient']['documentSerNumber'\n ] = transfer_list[el][21]\n python_json_dict['order']['patient']['snils'] = transfer_list[el][\n 23]\n python_json_dict['order']['patient']['oms'] = transfer_list[el][24]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'town'] = transfer_list[el][25]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'house'] = transfer_list[el][26]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'region'] = transfer_list[el][27]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'building'] = transfer_list[el][28]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'district'] = transfer_list[el][29]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'appartament'] = transfer_list[el][30]\n python_json_dict['order']['patient']['address']['regAddress'][\n 'streetName'] = transfer_list[el][31]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'town'] = transfer_list[el][32]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'house'] = transfer_list[el][33]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'region'] = transfer_list[el][34]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'building'] = transfer_list[el][35]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'district'] = transfer_list[el][36]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'appartament'] = transfer_list[el][37]\n python_json_dict['order']['patient']['address']['factAddress'][\n 'streetName'] = transfer_list[el][38]\n self.write_json(python_json_dict)\n sleep(1)\n progress += 100 / len(transfer_list)\n self.ui_3.progressBar.setValue(progress)\n self.logging_transfer()\n <function token>\n <function token>\n", "<import token>\n\n\nclass TransferWindow(QtWidgets.QMainWindow):\n <function token>\n <function token>\n\n def show_error_window(self, error):\n label = self.ui_7.findChildren(QLabel)\n for item in label:\n item.setText(error)\n self.ui_7.show()\n\n def get_date_for_transfer(self):\n date = self.ui_3.calendarWidget.selectedDate()\n return date.toString('dd-MM-yyyy')\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n\n\nclass TransferWindow(QtWidgets.QMainWindow):\n <function token>\n <function token>\n <function token>\n\n def get_date_for_transfer(self):\n date = self.ui_3.calendarWidget.selectedDate()\n return date.toString('dd-MM-yyyy')\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n\n\nclass TransferWindow(QtWidgets.QMainWindow):\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n<class token>\n" ]
false
99,397
1bd5231c9cdf59fe2e2900d2bdd454d979000fcb
import komand from .schema import UnisolateMachineInput, UnisolateMachineOutput # Custom imports below class UnisolateMachine(komand.Action): def __init__(self): super(self.__class__, self).__init__( name='unisolate_machine', description='Restore network connectivity to a machine', input=UnisolateMachineInput(), output=UnisolateMachineOutput()) def run(self, params={}): self.logger.info("Running...") machine_id = params.get("machine_id") comment = params.get("comment") self.logger.info("Attempting to unisolate machine id: " + machine_id) response = self.connection.unisolate_machine(machine_id, comment) return {"machine_isolation_response": komand.helper.clean(response)} def test(self): self.connection.test() payload = self.connection.fake_isolation_response() return {"machine_isolation_response": payload}
[ "import komand\nfrom .schema import UnisolateMachineInput, UnisolateMachineOutput\n# Custom imports below\n\n\nclass UnisolateMachine(komand.Action):\n\n def __init__(self):\n super(self.__class__, self).__init__(\n name='unisolate_machine',\n description='Restore network connectivity to a machine',\n input=UnisolateMachineInput(),\n output=UnisolateMachineOutput())\n\n def run(self, params={}):\n self.logger.info(\"Running...\")\n\n machine_id = params.get(\"machine_id\")\n comment = params.get(\"comment\")\n\n self.logger.info(\"Attempting to unisolate machine id: \" + machine_id)\n response = self.connection.unisolate_machine(machine_id, comment)\n return {\"machine_isolation_response\": komand.helper.clean(response)}\n\n def test(self):\n self.connection.test()\n payload = self.connection.fake_isolation_response()\n return {\"machine_isolation_response\": payload}\n", "import komand\nfrom .schema import UnisolateMachineInput, UnisolateMachineOutput\n\n\nclass UnisolateMachine(komand.Action):\n\n def __init__(self):\n super(self.__class__, self).__init__(name='unisolate_machine',\n description='Restore network connectivity to a machine', input=\n UnisolateMachineInput(), output=UnisolateMachineOutput())\n\n def run(self, params={}):\n self.logger.info('Running...')\n machine_id = params.get('machine_id')\n comment = params.get('comment')\n self.logger.info('Attempting to unisolate machine id: ' + machine_id)\n response = self.connection.unisolate_machine(machine_id, comment)\n return {'machine_isolation_response': komand.helper.clean(response)}\n\n def test(self):\n self.connection.test()\n payload = self.connection.fake_isolation_response()\n return {'machine_isolation_response': payload}\n", "<import token>\n\n\nclass UnisolateMachine(komand.Action):\n\n def __init__(self):\n super(self.__class__, self).__init__(name='unisolate_machine',\n description='Restore network connectivity to a machine', input=\n UnisolateMachineInput(), output=UnisolateMachineOutput())\n\n def run(self, params={}):\n self.logger.info('Running...')\n machine_id = params.get('machine_id')\n comment = params.get('comment')\n self.logger.info('Attempting to unisolate machine id: ' + machine_id)\n response = self.connection.unisolate_machine(machine_id, comment)\n return {'machine_isolation_response': komand.helper.clean(response)}\n\n def test(self):\n self.connection.test()\n payload = self.connection.fake_isolation_response()\n return {'machine_isolation_response': payload}\n", "<import token>\n\n\nclass UnisolateMachine(komand.Action):\n\n def __init__(self):\n super(self.__class__, self).__init__(name='unisolate_machine',\n description='Restore network connectivity to a machine', input=\n UnisolateMachineInput(), output=UnisolateMachineOutput())\n\n def run(self, params={}):\n self.logger.info('Running...')\n machine_id = params.get('machine_id')\n comment = params.get('comment')\n self.logger.info('Attempting to unisolate machine id: ' + machine_id)\n response = self.connection.unisolate_machine(machine_id, comment)\n return {'machine_isolation_response': komand.helper.clean(response)}\n <function token>\n", "<import token>\n\n\nclass UnisolateMachine(komand.Action):\n\n def __init__(self):\n super(self.__class__, self).__init__(name='unisolate_machine',\n description='Restore network connectivity to a machine', input=\n UnisolateMachineInput(), output=UnisolateMachineOutput())\n <function token>\n <function token>\n", "<import token>\n\n\nclass UnisolateMachine(komand.Action):\n <function token>\n <function token>\n <function token>\n", "<import token>\n<class token>\n" ]
false
99,398
616dd09300f1a4220e1fa1826debf297b5db543a
import re from random import randrange from fixture.contact import Contact def test_phones_on_homepage(app): contact_from_home_page = app.contact.get_contact_list()[0] contact_from_edit_page = app.contact.get_contact_info_from_edit_page(0) assert contact_from_home_page.lastname == clear(contact_from_edit_page.lastname) assert contact_from_home_page.firstname == clear(contact_from_edit_page.firstname) assert contact_from_home_page.address == contact_from_edit_page.address assert contact_from_home_page.all_phones_from_home_page == merge_phones_like_on_home_page(contact_from_edit_page) assert contact_from_home_page.all_email_from_home_page == merge_email_like_on_home_page(contact_from_edit_page) # def test_phones_on_view_homepage(app): # contact_from_view_page = app.contact.get_contact_from_view_page(0) # contact_from_edit_page = app.contact.get_contact_info_from_edit_page(0) # assert contact_from_view_page.home == contact_from_edit_page.home # assert contact_from_view_page.mobile == contact_from_edit_page.mobile # assert contact_from_view_page.work == contact_from_edit_page.work #сравнение списка контактов с главной страницы со списком из ДБ def test_phones_on_homepage_check_db(app, db): contact_from_home_page = app.contact.get_contact_list() contact_from_db = db.get_contact_list() assert len(contact_from_home_page) == len(contact_from_db) assert sorted(contact_from_home_page, key=Contact.id_or_max) == sorted(contact_from_db, key=Contact.id_or_max) def clear(s): return re.sub("[() -]", "", s) def merge_phones_like_on_home_page(contact): return "\n".join(filter(lambda x: x!="", map(lambda x: clear(x), filter(lambda x: x is not None, [contact.home, contact.mobile, contact.work])))) def merge_email_like_on_home_page(contact): return "\n".join(filter(lambda x: x!="", map(lambda x: clear(x), filter(lambda x: x is not None, [contact.email, contact.email2, contact.email3]))))
[ "import re\nfrom random import randrange\nfrom fixture.contact import Contact\n\ndef test_phones_on_homepage(app):\n contact_from_home_page = app.contact.get_contact_list()[0]\n contact_from_edit_page = app.contact.get_contact_info_from_edit_page(0)\n assert contact_from_home_page.lastname == clear(contact_from_edit_page.lastname)\n assert contact_from_home_page.firstname == clear(contact_from_edit_page.firstname)\n assert contact_from_home_page.address == contact_from_edit_page.address\n assert contact_from_home_page.all_phones_from_home_page == merge_phones_like_on_home_page(contact_from_edit_page)\n assert contact_from_home_page.all_email_from_home_page == merge_email_like_on_home_page(contact_from_edit_page)\n\n# def test_phones_on_view_homepage(app):\n# contact_from_view_page = app.contact.get_contact_from_view_page(0)\n# contact_from_edit_page = app.contact.get_contact_info_from_edit_page(0)\n# assert contact_from_view_page.home == contact_from_edit_page.home\n# assert contact_from_view_page.mobile == contact_from_edit_page.mobile\n# assert contact_from_view_page.work == contact_from_edit_page.work\n\n#сравнение списка контактов с главной страницы со списком из ДБ\ndef test_phones_on_homepage_check_db(app, db):\n contact_from_home_page = app.contact.get_contact_list()\n contact_from_db = db.get_contact_list()\n assert len(contact_from_home_page) == len(contact_from_db)\n assert sorted(contact_from_home_page, key=Contact.id_or_max) == sorted(contact_from_db, key=Contact.id_or_max)\n\ndef clear(s):\n return re.sub(\"[() -]\", \"\", s)\n\ndef merge_phones_like_on_home_page(contact):\n return \"\\n\".join(filter(lambda x: x!=\"\",\n map(lambda x: clear(x),\n filter(lambda x: x is not None,\n [contact.home, contact.mobile, contact.work]))))\n\ndef merge_email_like_on_home_page(contact):\n return \"\\n\".join(filter(lambda x: x!=\"\",\n map(lambda x: clear(x),\n filter(lambda x: x is not None,\n [contact.email, contact.email2, contact.email3]))))\n\n\n\n\n\n\n", "import re\nfrom random import randrange\nfrom fixture.contact import Contact\n\n\ndef test_phones_on_homepage(app):\n contact_from_home_page = app.contact.get_contact_list()[0]\n contact_from_edit_page = app.contact.get_contact_info_from_edit_page(0)\n assert contact_from_home_page.lastname == clear(contact_from_edit_page.\n lastname)\n assert contact_from_home_page.firstname == clear(contact_from_edit_page\n .firstname)\n assert contact_from_home_page.address == contact_from_edit_page.address\n assert contact_from_home_page.all_phones_from_home_page == merge_phones_like_on_home_page(\n contact_from_edit_page)\n assert contact_from_home_page.all_email_from_home_page == merge_email_like_on_home_page(\n contact_from_edit_page)\n\n\ndef test_phones_on_homepage_check_db(app, db):\n contact_from_home_page = app.contact.get_contact_list()\n contact_from_db = db.get_contact_list()\n assert len(contact_from_home_page) == len(contact_from_db)\n assert sorted(contact_from_home_page, key=Contact.id_or_max) == sorted(\n contact_from_db, key=Contact.id_or_max)\n\n\ndef clear(s):\n return re.sub('[() -]', '', s)\n\n\ndef merge_phones_like_on_home_page(contact):\n return '\\n'.join(filter(lambda x: x != '', map(lambda x: clear(x),\n filter(lambda x: x is not None, [contact.home, contact.mobile,\n contact.work]))))\n\n\ndef merge_email_like_on_home_page(contact):\n return '\\n'.join(filter(lambda x: x != '', map(lambda x: clear(x),\n filter(lambda x: x is not None, [contact.email, contact.email2,\n contact.email3]))))\n", "<import token>\n\n\ndef test_phones_on_homepage(app):\n contact_from_home_page = app.contact.get_contact_list()[0]\n contact_from_edit_page = app.contact.get_contact_info_from_edit_page(0)\n assert contact_from_home_page.lastname == clear(contact_from_edit_page.\n lastname)\n assert contact_from_home_page.firstname == clear(contact_from_edit_page\n .firstname)\n assert contact_from_home_page.address == contact_from_edit_page.address\n assert contact_from_home_page.all_phones_from_home_page == merge_phones_like_on_home_page(\n contact_from_edit_page)\n assert contact_from_home_page.all_email_from_home_page == merge_email_like_on_home_page(\n contact_from_edit_page)\n\n\ndef test_phones_on_homepage_check_db(app, db):\n contact_from_home_page = app.contact.get_contact_list()\n contact_from_db = db.get_contact_list()\n assert len(contact_from_home_page) == len(contact_from_db)\n assert sorted(contact_from_home_page, key=Contact.id_or_max) == sorted(\n contact_from_db, key=Contact.id_or_max)\n\n\ndef clear(s):\n return re.sub('[() -]', '', s)\n\n\ndef merge_phones_like_on_home_page(contact):\n return '\\n'.join(filter(lambda x: x != '', map(lambda x: clear(x),\n filter(lambda x: x is not None, [contact.home, contact.mobile,\n contact.work]))))\n\n\ndef merge_email_like_on_home_page(contact):\n return '\\n'.join(filter(lambda x: x != '', map(lambda x: clear(x),\n filter(lambda x: x is not None, [contact.email, contact.email2,\n contact.email3]))))\n", "<import token>\n\n\ndef test_phones_on_homepage(app):\n contact_from_home_page = app.contact.get_contact_list()[0]\n contact_from_edit_page = app.contact.get_contact_info_from_edit_page(0)\n assert contact_from_home_page.lastname == clear(contact_from_edit_page.\n lastname)\n assert contact_from_home_page.firstname == clear(contact_from_edit_page\n .firstname)\n assert contact_from_home_page.address == contact_from_edit_page.address\n assert contact_from_home_page.all_phones_from_home_page == merge_phones_like_on_home_page(\n contact_from_edit_page)\n assert contact_from_home_page.all_email_from_home_page == merge_email_like_on_home_page(\n contact_from_edit_page)\n\n\ndef test_phones_on_homepage_check_db(app, db):\n contact_from_home_page = app.contact.get_contact_list()\n contact_from_db = db.get_contact_list()\n assert len(contact_from_home_page) == len(contact_from_db)\n assert sorted(contact_from_home_page, key=Contact.id_or_max) == sorted(\n contact_from_db, key=Contact.id_or_max)\n\n\ndef clear(s):\n return re.sub('[() -]', '', s)\n\n\n<function token>\n\n\ndef merge_email_like_on_home_page(contact):\n return '\\n'.join(filter(lambda x: x != '', map(lambda x: clear(x),\n filter(lambda x: x is not None, [contact.email, contact.email2,\n contact.email3]))))\n", "<import token>\n<function token>\n\n\ndef test_phones_on_homepage_check_db(app, db):\n contact_from_home_page = app.contact.get_contact_list()\n contact_from_db = db.get_contact_list()\n assert len(contact_from_home_page) == len(contact_from_db)\n assert sorted(contact_from_home_page, key=Contact.id_or_max) == sorted(\n contact_from_db, key=Contact.id_or_max)\n\n\ndef clear(s):\n return re.sub('[() -]', '', s)\n\n\n<function token>\n\n\ndef merge_email_like_on_home_page(contact):\n return '\\n'.join(filter(lambda x: x != '', map(lambda x: clear(x),\n filter(lambda x: x is not None, [contact.email, contact.email2,\n contact.email3]))))\n", "<import token>\n<function token>\n<function token>\n\n\ndef clear(s):\n return re.sub('[() -]', '', s)\n\n\n<function token>\n\n\ndef merge_email_like_on_home_page(contact):\n return '\\n'.join(filter(lambda x: x != '', map(lambda x: clear(x),\n filter(lambda x: x is not None, [contact.email, contact.email2,\n contact.email3]))))\n", "<import token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef merge_email_like_on_home_page(contact):\n return '\\n'.join(filter(lambda x: x != '', map(lambda x: clear(x),\n filter(lambda x: x is not None, [contact.email, contact.email2,\n contact.email3]))))\n", "<import token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n" ]
false
99,399
dbea66187cb132299c8a20e98db2dc674d59c3d0
# Generated by Django 2.1.5 on 2019-01-10 12:37 import backend.utils from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('posts', '0003_auto_20190110_0604'), ] operations = [ migrations.AddField( model_name='post', name='unique_identifier', field=models.CharField(default=backend.utils.id_generator, max_length=8), ), ]
[ "# Generated by Django 2.1.5 on 2019-01-10 12:37\n\nimport backend.utils\nfrom django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('posts', '0003_auto_20190110_0604'),\n ]\n\n operations = [\n migrations.AddField(\n model_name='post',\n name='unique_identifier',\n field=models.CharField(default=backend.utils.id_generator, max_length=8),\n ),\n ]\n", "import backend.utils\nfrom django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n dependencies = [('posts', '0003_auto_20190110_0604')]\n operations = [migrations.AddField(model_name='post', name=\n 'unique_identifier', field=models.CharField(default=backend.utils.\n id_generator, max_length=8))]\n", "<import token>\n\n\nclass Migration(migrations.Migration):\n dependencies = [('posts', '0003_auto_20190110_0604')]\n operations = [migrations.AddField(model_name='post', name=\n 'unique_identifier', field=models.CharField(default=backend.utils.\n id_generator, max_length=8))]\n", "<import token>\n\n\nclass Migration(migrations.Migration):\n <assignment token>\n <assignment token>\n", "<import token>\n<class token>\n" ]
false